
Programmers Reference,
Volume 1: Overview

.... .

TM

SOFTWARE DEVELOPMENT KIT

Microsoft® Windows™
Version 3.1

Programmer's Reference
Volume 1: Overview

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright© 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Times, and
Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and Code View are registered trademarks, and Windows
and QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product

of AGFA Compugraphic Division of Agfa Corporation.
Apple and TrueType are registered trademarks of Apple Computer, Inc.
Banyan and VINES are registered trademarks of Banyan Systems, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company.
Intel is a registered trademark, and i486 is a trademark of Intel Corporation.
Helvetica, Linotype, Times, and Times Roman are registered trademarks of Linotype AG and/or

its subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.
Novell and NetWare are registered trademarks of Novell, Inc.
Ungermann-Bass and Net/One are registered trademarks ofUngermann-Bass, Inc.
Paintbrush is a trademark of ZSoft Corporation.

Document No. PC28915-0492

Contents

Introduction ... xvii

Document Conventions xv111

Part 1 Window Management, Graphics, and System Services
Chapter 1 Window Management.. 3

1.1 Messages... 7
1.1.1 Generating and Processing Messages... 7
1.1.2 Translating Messages 8
1.1.3 Examining Messages 9
1.1.4 Sending Messages... 10
1.1.5 A voiding Message Deadlocks 10
1.1. 6 Message Functions ,... 11

1.2 Creating and Managing Windows .. 12
1.2.1 Window Classes.. 12
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12
1.2.13
1.2.14
1.2.15
1.2.16
1.2.17
1.2.18
1.2.19

How Windows Locates a Class 13
Class Ownership 14
Registering a Window Class.. 14
Shared Window Classes 14
Predefined Window Classes 14
Elements of a Window Class.. 15
Class Styles . 18
Internal Data Structures 20
Window Subclassing 20
Redrawing the Client Area... 21
Class and Private Display Contexts.. 21
Window Procedures.. 22
Window Styles .. 26
Multiple Document Interface Windows... 29
Title Bar 30
System Menu 30
Scroll Bars... 30
Menus .. 31

iv Microsoft Windows Programmer's Reference

1.2.20 Window State .. 32
1.2.21 Life Cycle of a Window.. 32
1.2.22 Window-CreationFunctions ... 33

1.3 Display and Movement Functions .. 34
1.4 Input Functions... 36
1.5 Hardware Functions .. 36
1.6 Painting ... 37

1.6.1 How Windows Manages the Display ... 37
1.6.2 Display Context Types.. 38
1.6.3 Display-Context Cache... 41
1.6.4 Painting Sequence ... 42
1.6.5 WM_FAINTMessage .. 42
1.6.6 Update Region .. 43
1.6.7 Window Background .. 43
1.6.8 Brush Alignment ... 44
1.6.9 Painting Rectangular Areas .. 44
1.6.10 Drawing Icons ... 45
1.6.11 Drawing Formatted Text... 45
1.6.12 Drawing Gray Text ... 46
1.6.13 Nonclient-AreaPainting ... 47
1.6.14 Painting Functions .. 47

1. 7 Dialog Boxes 48
1.7.1 Uses for Dialog Boxes .. 49
1.7.2 Creating a Dialog Box .. 50
1.7.3 Return Values from a Dialog Box .. 51
1. 7.4 Controls in a Dialog Box 51
1.7.5 Keyboard Interface for Dialog Boxes... 55
1. 7 .6 Functions for Dialog Boxes.. 57

1.8 Scrolling .. 58
1.8.1 Standard Scroll Bars and Scroll-Bar Controls 58
1.8.2 Scroll Box ... 59
1.8.3 Scrolling Requests .. 59
1. 8.4 Processing Scroll Messages.. 60
1.8.5 Scrolling the Client Area.. 60
1.8.6 Hiding a Standard Scroll Bar.. 61
1.8.7 Scrolling Functions ... 61

1.9 Menu Functions .. 61
1.10 Information Functions 63
1.11 System Functions.. 63
1.12 Clipboard Functions ... 64

Chapter 2

Contents v

1.13 Error Functions... 65
1.14 The Caret .. 65

1.14.l Creating and Displaying a Caret ... 65
1.14.2 Sharing the Caret.. 66
1.14.3 Caret Functions... 66

1.15 The Cursor .. 67
1.15 .1 The Mouse and the Cursor.. 67
1.15.2 Displaying and Hiding the Cursor.. 67
1.15.3 Positioning the Cursor.. 68
1.15.4 The Cursor Hot Spot and Confining the Cursor............................... 68
1.15.5 Creating a Custom Cursor.. 68
1.15.6 Cursor Functions ... 68

1.16 Hooks .. 69
1.16.1 Filter-Function Chain .. 69
1.16.2 Installing a Filter Function ... 70
1.16.3 Hook Functions... 71

1.17 Property Lists.. 71
1.17 .1 Using Property Lists 71
1.17 .2 Property Functions.. 73

1.18 Rectangles... 73
1.18 .1 Using Rectangles in a Windows Application................................... 73
1.18. 2 Rectangle Coordinates 7 4
1.18.3 Creating and Manipulating Rectangles .. 74
1.18.4 RectangleFunctions .. 76

1.19 Related Topics .. 76

Graphics Device Interface... 77
2.1 Device Contexts.. 79

2.1.1 Accessing Output Devices.. 79
2.1.2 Device-Context Attributes.. 81
2.1.3 Device-Context Functions .. 82

2.2 Drawing Tools.. 83
2.2.1 Using Brushes... 83
2.2.2 Using Pens 84
2.2.3 Specifying Colors ... 85
2.2.4 Drawing-Tool Functions... 86

2.3 Color Palettes.. 86
2.3.1 Understanding Color Palettes... 87
2.3.2 UsingaColorPalette .. 89
2.3.3 Color-Palette Functions.. 90

vi Microsoft Windows Programmer's Reference

Chapter 3

2.4 Drawing Attributes... 91
2.4.1 Setting Colors .. 91
2.4.2 Controlling Stretch.. 91
2.4.3 Drawing-Attribute Functions.. 91

2.5 Mapping Modes.. 92
2.5.1 Constrained Mapping Modes .. 93
2.5.2 Other Mapping Modes.. 95
2.5.3 Mapping Functions... 96

2.6 Coordinate Functions .. 96
2. 7 Region Functions.. 98
2.8 Clipping Functions... 99
2.9 Line Output ... 99

2.9.1 Arcs ... 100
2.9.2 Simple Lines ... 100
2.9.3 Line-Output Functions.. 101

2.10 Ellipses and Polygons ... 101
2.10.1 Rectangles ... 101
2.10.2 Bounding Rectangles 101
2.10.3 Ellipse and Polygon Functions ... 102

2.11 Bitmap Functions.. 102
2.12 Device-Independent Bitmap Functions.. 103
2.13 Text Functions 104
2.14 Font Functions 105
2.15 Metafiles ... 106

2.15 .1 Creating a Metafile 106
2.15.2 Storing a Metafile ... 108
2.15.3 Changing How Windows Plays a Metafile 108
2.15.4 Metafile Functions.. 109

2.16 Device-Control Functions .. 109
2.17 Printer Functions... 110
2.18 Related Topics.. 111

System Services ... 113
3 .1 Module-Management Functions 115
3.2 Memory-Management Functions ... 115
3.3 Segment Functions ... 117
3.4 Operating-System Interrupt Functions... 118
3.5 Task Functions .. 119

Contents vii

3.6 Resource-Management Functions.. 119
3.7 String-Manipulation Functions.. 120
3.8 Atom-ManagementFunctions .. 121
3.9 Initialization-File Functions... 122
3.10 Communication Functions... 122
3.11 Utility Macros and Functions... 123
3.12 File Input and Output Functions .. 124
3.13 Debugging Functions... 125
3.14 Optimization-Tool Functions... 125
3.15 Application-Execution Functions... 126
3.16 RelatedTopics .. 126

Part 2 Extension Libraries

Chapter 4 Common Dialog Box Library ... 129
4.1 Using Color Dialog Boxes... 132

4.1.1 Color Models Used by the Color Dialog Box................................ 133
4.1.2 Using the Color Dialog Box to Display Basic Colors.................... 136
4.1.3 Using the Color Dialog Box to Display Custom Colors................ 137

4.2 Using Font Dialog Boxes... 139
4.2.1 Displaying the Font Dialog Box in Your Application 140

4.3 Using Open and Save As Dialog Boxes... 142
4.3.1 Displaying the Open Dialog Box in Your Application.................. 142
4.3.2 Displaying the Save As Dialog Box in Your Application............. 145
4.3.3 Monitoring List Box Controls in an Open or

Save As Dialog Box.. 146
4.3.4 Monitoring Filenames in an Open or Save As Dialog Box........... 147

4.4 Using Print and Print Setup Dialog Boxes... 148
4.4.1 Device Drivers and the Print Dialog Box....................................... 148
4.4.2 Displaying a Print Dialog Box for the Default Printer................... 149

4.5 Using Find and Replace Dialog Boxes.. 150
4.5. l Displaying the Find Dialog Box... 150
4.5.2 Displaying the Replace Dialog Box... 152
4.5.3 Processing Dialog Box Messages for a Find or

Replace Dialog Box.. 153
4.6 Customizing Common Dialog Boxes .. 154

4.6.l Appropriate and Inappropriate Customizations............................. 154
4.6.2 Hook Functions and Custom Dialog Box Templates..................... 154
4.6.3 Displaying the Custom Dialog Box.. 159

viii Microsoft Windows Programmer's Reference

4.7 Supporting Help for the Common Dialog Boxes..................................... 160
4.8 Error Detection ... 161
4.9 Related Topics.. 162

Chapter 5 Dynamic Data Exchange Management Library... 163
5.1 Basic Concepts ... 166

5 .1.1 Client and Server Interaction 166
5.1.2 Transactions and the DDE Callback Function............................... 166
5.1.3 Service Names, Topic Names, and Item Names 167
5.1.4 System Topic .. 167

5.2 Initialization.. 168
5.3 Callback Function... 170
5 .4 String Management 171
5.5 Name Service .. 173

5.5.1 Service-NameRegistration ... 173
5.5.2 Service-NameFilter .. 174

5.6 Conversation Management... 174
5. 6.1 Single Conversations 17 5
5.6.2 Multiple Conversations... 178

5.7 Data Management ... 180
5.8 Transaction Management... 183

5.8.1 Request Transaction .. 183
5.8.2 Poke Transaction... 183
5.8.3 Advise Transaction... 184
5.8.4 Execute Transaction.. 185
5.8.5 Synchronous and Asynchronous Transactions 186
5.8.6 Transaction Control.. 187
5.8.7 Transaction Classes... 188
5.8.8 Transaction Summary ... 189

5. 9 Error Detection 190
5 .10 Monitoring Applications 190

Chapter 6 Object Linking and Embedding Libraries ... 195
6.1 Basics of Object Linking and Embedding ... 199

6.1.1 Compound Documents ... 199
6.1.2 Linked and Embedded Objects... 200
6.1.3 Benefits of Object Linking and Embedding................................... 202
6.1.4 Choosing Between OLE and the DDEML 203

Contents ix

6.2 Data Transfer in Object Linking and Embedding.................................... 206
6.2. l Client Applications... 206
6.2.2 Server Applications 206
6.2.3 Object Handlers.. 207
6.2.4 Communication Between OLE Libraries....................................... 207
6.2.5 Clipboard Conventions... 207
6.2.6 Registration... 210
6.2.7 Client User Interface... 213
6.2.8 Server User Interface.. 217
6.2.9 Object Storage Formats .. 218

6.3 Client Applications... 220
6.3.l Starting a Client Application.. 221
6.3.2 Opening a Compound Document. .. 222
6.3.3 Document Management.. 222
6.3.4 Saving a Document.. ... 223
6.3.5 Closing a Document... 223
6.3.6 Asynchronous Operations .. 223
6.3.7 Displaying and Printing Objects... 225
6.3.8 Opening and Closing Objects... 226
6.3.9 Deleting Objects ... 227
6.3.10 Client Cut and Copy Commands.. 227
6.3.11 Creating Objects ... 228
6.3.12 Undo Command .. 231
6.3.13 Class Name Object Command .. 231
6.3.14 Links Command .. 231
6.3.15 Closing a Client Application .. 233

6.4 Server Applications 233
6.4.1 Starting a Server Application 234
6.4.2 Opening a Document or Object.. 236
6.4.3 Server Cut and Copy Commands... 237
6.4.4 Update, Save As, and New Commands.. 238
6.4.5 Closing a Server Application.. 239

6.5 Object Handlers.. 240
6.5.1 Implementing Object Handlers ... 240
6.5.2 Creating Objects in an Object Handler... 243

6.6 Direct Use of Dynamic Data Exchange ... 245
6.6.1 Client Applications and Direct Use of

Dynamic Data Exchange 245
6.6.2 Server Applications and Direct Use of

Dynamic Data Exchange 248

x Microsoft Windows Programmer's Reference

6.6.3 Conversations.. 248
6.6.4 Items for the System Topic ... 249
6.6.5 Standard Item Names and Notification Control............................. 249
6.6.6 Standard Commands in ODE Execute Strings............................... 251

Chapter 7 Shell Library .. 255
7 .1 Registration Database... 257

7.1.1 Structure of the Database .. 258
7 .1.2 Format of Registration Files 260
7.1.3 Class Registration ... 261
7.1.4 Querying and Deleting Database Entries 265

7.2 Drag-Drop Feature .. 266
7.3 Using Associations to Find and Start Applications 268
7.4 Extracting Icons from Executable Files 268
7.5 Related Topics .. 269

Chapter 8 Tool Helper Library .. 271
8.1 Calling Tool Helper Functions... 273
8.2 Accessing Internal Windows Lists... 273

8.2.1 Walking the Windows Class List ... 274
8.2.2 Walking the Windows Module List... ... 274
8.2.3 Walking the Windows Task Queue .. 274

8.3 Obtaining Advisory Information.. 275
8.4 Walking the Global and Local Heaps .. 275

8.4.1 Walking the Global Heap ... 275
8.4.2 Walking the Local Heap ... 276

8.5 Tracing the Windows Stack... 276
8.6 Examining and Modifying Memory Contents... 277
8.7 Installing Callback Functions... 277
8.8 Controlling Process Execution... 278

Chapter 9 Data Decompression Library ... 279
9 .1 Data Compression 281
9.2 Data Decompression ... 282
9.3 Decompressing a Single File .. 283
9.4 Decompressing Multiple Files.. 283
9.5 Reading Bytes from Compressed Files .. 283

Contents xi

Chapter 10 System Resources Stress-Testing Library .. 285
10.1 System Resources Stress-Testing Library Functions 287

Chapter 11 File Installation Library ... 289
11.1 File Installation Concepts... 291
11.2 Creating an Installation Program 292
11.3 Adding Version Information to a File.. 294

Chapter 12 32-Bit Memory Management Library ... 295
12.1 Segmented and Flat Memory Models 298
12.2 Using the WINMEM32.DLL Library.. 299
12.3 Considerations for Using 32-Bit Memory... 300

12.3.1 Flat Memory Model Limitations .. 301
12.3.2 The Application Stack.. 301
12.3.3 Interrupt-Time Code... 302
12.3.4 Programming Languages .. 302

12.4 Using 32-Bit Memory in a Windows Application 303
12.4.1 Using 32-Bit Data Objects .. 303
12.4.2 Using 32-Bit Code and Data in a Subroutine Library.................... 303
12.4.3 Using 32-Bit Code and Data for the Main Program 304

12.5 Error Values .. 304

Chapter 13 Floating-Point-Emulation Library .. 305
13.1 Emulation Methods .. 307

13.1.1 Emulation by Exception Handler ... 307
13.1.2 Windows 80x87 Floating-Point Emulation 308

13.2 Windows 3.0 Limitations ... 310
13.3 Functions.. 310
13.4 Structures .. 315

Chapter 14 Screen Saver Library ... 319
14.1 About Screen Savers .. 321
14.2 Creating a Screen Saver 322

14.2.1 Processing Screen Saver Messages 323
14.2.2 Providing a Configuration Routine 323
14.2.3 Creating Module-Definition and Resource-Definition Files 324

14.3 Installing New Screen Savers ... 324

xii Microsoft Windows Programmer's Reference

14.4 A Sample Screen Saver.. 325
14.4.1 General-Purpose Declarations 325
14.4.2 Message Handling ... 325
14.4.3 Configuration Dialog Box .. 327
14.4.4 Adding Help.. 329
14.4.5 Exporting Functions .. 330

14.5 Functions... 330

Part 3 Application Notes

Chapter 15 Control Panel Applications .. 343
15. l Starting a Control Panel Application ... 345
15.2 Creating a Control Panel Application .. 347

15.2.1 Creating the Entry-Point Function.. 348
15.2.2 Initializing the Application... 349
15.2.3 Responding to User Actions... 350
15.2.4 Exiting the Application and the DLL ... 350
15.2.5 Example of a Control Panel Application.. 350

15.3 Installing a New Application.. 352

Chapter 16 File Manager Extensions ... 353
16.1 Creating a File Manager Extension .. 355
16.2 Creating the Entry-Point Function ... 356

16.2.1 Loading the Extension 357
16.2.2 Processing Menu Selections ... 357
16.2.3 Initializing the Extension Menu.. 357
16.2.4 Updating the Extension Menu .. 358
16.2.5 Processing File Selections .. 358
16.2.6 Quitting the Extension DLL ... 358

16.3 Installing Extensions.. 358
16.4 Extension Messages .. 359
16.5 File Manager Extension Example 360
16.6 Adding the Undelete Command... 363

Chapter 17 Shell Dynamic Data Exchange Interface .. 365
17.1 PROGMAN.INIFile .. 367

17 .1.1 Settings Section... 368
17.1.2 Groups Section .. 369
17 .1.3 Restrictions Section 369

Contents xiii

17.2 Command-String Interface... 370
17.2.1 CreateGroup .. 371
17 .2.2 ShowGroup 371
17.2.3 DeleteGroup.. 372
17.2.4 Reload... 372
17.2.5 Addltem .. 373
17.2.6 Replaceltem .. 374
17.2.7 Deleteltem... 374
17.2.8 ExitProgman ... 375

17.3 Requesting Group Information.. 375

Chapter 18 International Applications... 377
18.1 Creating an International Application .. 379
18.2 Achieving Country and Language Independence.................................... 379

18.2.1 International Information in WIN.IN!.. .. 379
18.2.2 International Information in Windows Functions.......................... 383
18.2.3 International Uses of the File Version Library 388

18.3 Achieving Easy Localization ... 388
18.3.1 Isolation ofLocalizable Information .. 388
18.3.2 Allocating Extra Space for Strings... 389
18.3.3 Handling Foreign Languages ... 389

Chapter 19 Network Applications... 391
19.1 Sharing by Multiple Users .. 393

19 .1.1 Sharing Directories... 393
19.1.2 Sharing Temporary Storage .. 394
19 .1.3 Sharing Files 394
19.1.4 Sharing Devices .. 394

19.2 Calling Network Software in Protected Mode ... 395
19.2.1 Microsoft Networks and MS-DOS Network Functions 395
19.2.2
19.2.3
19.2.4
19.2.5
19.2.6

NetBIOS Functions... 396
LAN Manager Networks.. 396
Novell NetWare .. 397
Ungermann-Bass Net/One .. 397
Banyan VINES 397

Chapter 20 Windows Applications with MS-DOS Functions .. 399
20.1 Using DOS Protected-Mode Interface Functions 401

20.1.1 Windows Kernel ... 401
20.1.2 Other Application Programming Interfaces................................... 402

xiv Microsoft Windows Programmer's Reference

20.2 Support for MS-DOS Interrupts... 402
20.2.1 Unsupported MS-DOS Interrupts and Functions 402
20.2.2 Partially Supported MS-DOS Interrupt 21h Functions 403

20.3 NetBIOS Support.. 404

Chapter 21 Windows Prologs and Epilogs ... 405
21.1 Data-Segmentinitialization .. 407

21.1.1 Exported Far Functions ... 407
21.1.2 Nonexported Far Functions .. 409
21.1.3 Exported Far Functions in a Dynamic-Link Library 410

21.2 Pro logs in Real Mode... 411
21.3 Prologs in Protected Mode ... 411

Chapter 22 Windows Application Startup .. 413
22.1 Startup Requirements ... 415
22.2 Example of a Startup Routine .. 416
22.3 Function Reference... 418

Chapter 23 Video Techniques ... 421
23.1 Using an Identity Palette .. 423

23.1.1 Understanding the System Palette.. 423
23.1.2 Creating an Identity Palette... 424

23.2 Accommodating Different Video Adapters and Drivers......................... 424
23.2.1 Distinguishing Between Standard VGA and Super VGA.............. 424
23.2.2 Adapting Identity Palettes to Different Display Adapters 425

23.3 Using a Device-Independent Bitmap Driver.. .. 425
23.3.1 Creating a Driver Display Context... 425
23.3.2 Moving Bitmaps to and from the Display...................................... 427
23.3.3 Modifying Bitmaps... 427
23.3.4 Creating a Driver Device Context .. 428

Chapter 24 Self-Loading Windows Applications .. 429
24.1 Loader Functions 431
24.2 Loader Data Table 431
24.3 Loader Code 432

24.3.1 Loading Segments ... 432
24.3.2 Reloading Segments ... 433
24.3.3 Resetting Hardware... 433

24.4 Function Reference ... 434

Contents xv

Chapter 25 Installable Drivers .. 439
25.1 About Installable Drivers... 441
25.2 Creating an Installable Driver .. 442

25.2.1 Opening an Installable Driver... 445
25.2.2 Closing an Installable Driver .. 445
25.2.3 Configuring an Installable Driver... 446
25.2.4 Enumerating Instances of an Installable Driver............................. 446

25.3 Updating the SYSTEM.IN! File .. 446
25.4 Contents of the OEMSETUP.INF Files... 448
25.5 Drivers Control Panel Application... 449

25.5.1 Installing a Driver... 450
25.5.2 Using Drivers with the Drivers Control Panel Application........... 450

25.6 Creating a Custom Configuration Application .. 451

Part 4 Appendix

Appendix Module and Library Names ... 455

Index ... 481

Introduction

This manual, Microsoft Windows Programmer's Reference, Volume 1, describes
different interface functions and extension libraries supported by the Microsoft®
Windows TM operating system. It also includes application notes describing special
Windows features for applications. The appendix provides a listing of module and
library names for Windows functions.

Part 1, "Windows Management, Graphics, and Systems Services," presents func
tions that relate to window management, graphics output, and system services.
Window manager functions process messages; create, move, or alter a window; or
create system output. Graphics device interface (GDI) functions perform device
independent graphics operations, such as the creation of line, text, and bitmap out
put on different output devices. System services functions perform operations such
as accessing code and data in modules, allocating and managing memory, translat
ing strings, and creating and opening files.

Part 2, "Extension Libraries," describes the libraries that support many of the
features new to Windows version 3.1. These new features include common dia
log boxes; management functions that simplify dynamic data exchange (ODE);
object linking and embedding (OLE); such shell enhancements as the registration
database and the drag-drop feature; tool helper functions that streamline the crea
tion of Windows-hosted tools; data decompression functions; a stress-testing facil
ity that artificially consumes system resources and can be used when debugging
applications; file installation functions; functions that allow an application to make
use of the 32-bit memory-addressing capabilities of 80386 and 80486 processors;
floating-point emulation; and the screen saver that is built into Control Panel.

Part 3, "Application Notes," describes techniques an application should use to
implement some Windows features and enhancements. This part of the manual
explains how to create a Control Panel application, how to create and install
extensions for File Manager, how to use the dynamic-data exchange interface of
Program Manager, how to make applications country- and language-independent,
how to write network applications, how to integrate Windows applications with
Microsoft MS-DOS® functions, how to write a compiler that generates Windows
prolog and epilog code, how to initialize and start Windows applications, how
to improve the video performance of Windows applications, how to write self
loading Windows applications, and how to interact with installable drivers.

The appendix lists the module and library for each Windows function.

xviii Microsoft Windows Programmer's Reference

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a resource
definition statement or function name (MENU or Create Window),
an MS-DOS command, or a command-line option (/nod). You must
type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X, Y) requires you
to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key combina
tions-for example, ALT +SPACEBAR.

Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

Sets off code examples and shows syntax spacing.

Window Management, Graphics,
and System Services

Part 1

Window Management

Chapter 1

I. I Messages 7
I. I. I Generating and Processing Messages.. 7
I. I .2 Translating Messages... 8

1.1.3 Examining Messages ... 9
I.1.4 Sending Messages.. IO
1.1.5 A voiding Message Deadlocks 10
1.1.6 Message Functions... 11

1.2 Creating and Managing Windows... 12
I.2.1 Window Classes... 12

1.2.1.1 System Global Classes.. 13

1.2.1.2

1.2.1.3

Application Global Classes..................................... 13
Application Local Classes....................................... 13

1.2.2 How Windows Locates a Class... I3

1.2.3 Class Ownership.. 14
1.2.4 Registering a Window Class.. 14
1.2.5 Shared Window Classes.. 14

1.2.6 Predefined Window Classes.. I4
1.2.7 Elements of a Window Class... 15

1.2.7.1 Class Name.. 16

1.2.7.2
1.2.7.3

1.2.7.4
1.2.7.5

1.2.7.6

Window-Procedure Address................................... 16
Instance Handle... 16
Class Cursor 17
Class Icon 17

Class Background Brush... 17
1.2.7.7 Class Menu.. I8

1.2. 8 Class Styles 18

4 Microsoft Windows Programmer's Reference

1.2.9
1.2.10
1.2.11
1.2.12
1.2.13

Internal Data Structures 20
Window Subclassing...... 20
Redrawing the Client Area .. 21
Class and Private Display Contexts... 21
Window Procedures... 22
1.2.13.1 Window Messages .. 23
1.2.13.2 Default Window Procedure 24

1.2.14 Window Styles ... 26

1.2.15
1.2.16
1.2.17
1.2.18
1.2.19
1.2.20
1.2.21

1.2.14.1 Overlapped Windows .. 26
1.2.14.2
1.2.14.3
1.2.14.4

Owned Windows... 27
Pop-up Windows... 27
Child Windows.. 28

Multiple Document Interface Windows 29
Title Bar 30
System Menu 30
Scroll Bars.. 30
Menus ... 31
Window State ... 32
Life Cycle of a Window ... 32

1.2.22 Window-CreationFunctions .. 33

1.3 Display and Movement Functions 34
1.4 Input Functions... 36
1.5 Hardware Functions 36
1.6 Painting ... 37

1.6.1 How Windows Manages the Display.. 37
1.6.2 Display Context Types... 38

1.6.2.1 Common Display Context 38
1.6.2.2 Class Display Context... 39
1.6.2.3
1.6.2.4

Private Display Context .. 40
Window Display Context.. 41

1.6.3 Display-Context Cache .. 41
1.6.4 Painting Sequence.. 42
1.6.5 WM_PAINT Message ... 42
1.6.6 Update Region ... 43
1.6.7 Window Background ... 43
1.6.8 Brush Alignment .. 44
1.6.9 Painting Rectangular Areas ... 44

Chapter 1 Window Management 5

1.6.10 Drawing Icons .. 45
1.6.11 DrawingFormattedText ... 45
1.6.12 Drawing Gray Text .. 46
1.6.13 Nonclient-AreaPainting .. 47
1.6.14 Painting Functions 4 7

1.7 Dialog Boxes .. 48
1. 7 .1 Uses for Dialog Boxes... 49

1. 7 .1.1 Modeless Dialog Box.. 49
1.7.1.2 Modal Dialog Box ... 49
1.7.1.3 System-Modal Dialog Box 50

1.7.2 Creating a Dialog Box... 50
1. 7.2.1 Dialog Box Template.. 50
1.7.2.2 Dialog Box Measurements 50

1.7.3 Return Values from a Dialog Box ... 51
1. 7.4 Controls in a Dialog Box 51

1. 7.4.1 Control Identifiers 51
1.7.4.2 The WS_TABSTOP and WS_GROUP

1.7.4.3
1.7.4.4
1.7.4.5
1.7.4.6

Control Styles.. 52
Buttons .. 52
Edit Controls... 53
List Boxes and Directory Listings 54
Combo Boxes 54

1. 7.4. 7 Owner-Drawn Dialog Box Controls....................... 54
1. 7.4.8 Messages for Dialog Box Controls......................... 55

1.7.5 Keyboard Interface for Dialog Boxes.. 55
1.7.6 Functions for Dialog Boxes ... 57

1.8 Scrolling ... 58
1.8.1 Standard Scroll Bars and Scroll-Bar Controls 58
1.8.2 Scroll Box .. 59
1.8.3 Scrolling Requests ... 59
1.8.4 Processing Scroll Messages... 60
1.8.5 Scrolling the Client Area... 60
1.8.6 Hiding a Standard Scroll Bar... 61
1.8.7 Scrolling Functions .. 61

1.9 Menu Functions .. 61
1.10 Information Functions.. 63
1.11 System Functions... 63
1.12 Clipboard Functions... 64

6 Microsoft Windows Programmer's Reference

1.13 Error Functions... 65
1.14 The Caret.. 65

1.14.1 Creating and Displaying a Caret.. .. 65
1.14.2 Sharing the Caret .. 66
1.14.3 Caret Functions.. 66

1.15 The Cursor .. 67
1.15.1 The Mouse and the Cursor. .. 67
1.15.2 Displaying and Hiding the Cursor ... 67
1.15.3
1.15.4
1.15.5

Positioning the Cursor 68
The Cursor Hot Spot and Confining the Cursor........................ 68
Creating a Custom Cursor 68

1.15.6 Cursor Functions .. 68
1.16 Hooks ... 69

1.16.1 Filter-Function Chain ... 69
1.16.2 Installing a Filter Function... 70
1.16.3 Hook Functions .. 71

1.17 Property Lists 71
1.17 .1 Using Property Lists 71
1.17 .2 Property Functions... 73

1.18 Rectangles .. 73
1.18.1 Using Rectangles in a Windows Application 73
1.18 .2 Rectangle Coordinates 7 4
1.18.3 Creating and Manipulating Rectangles 74
1.18 .4 Rectangle Functions... 7 6

1.19 Related Topics .. 76

Chapter 1 Window Management 7

This chapter describes the functions in the Microsoft Windows operating system
that process messages; create, move, or alter a window; or create system output.
These functions constitute the window manager interface.

1.1 Messages
Messages are the input to an application. They represent events that the applica
tion may need to respond to. A message is a structure that contains a message iden
tifier and message parameters. The content of the parameters varies with the
message type.

1.1.1 Generating and Processing Messages
Windows generates an input message for each input event, such as when the user
moves the mouse or presses a key. Windows collects input messages in a system
wide message queue and then places the messages, as well as timer and paint mes
sages, in an application message queue. An application message queue is a first in,
first out queue. Timer and paint messages are exceptions to the first in, first out
rule; these messages are held in an application's message queue until the applica
tion has processed all other messages. Windows places messages that belong to a
specific application in that application's message queue. The application then
reads the messages by using the GetMessage function and dispatches them to the
appropriate window procedure by using the DispatchMessage function.

Windows sends some messages directly to the window procedure in the appro
priate application instead of placing the messages in the application's message
queue. Such messages are called unqueued messages. Typically, an unqueued mes
sage is any message that affects the window only. The SendMessage function
sends messages directly to a window procedure. For more information about win
dow procedures, see Section 1.2.13, "Window Procedures."

For example, the Create Window function directs Windows to send a
WM_ CREATE message to a window procedure of an application and to wait
until the window procedure has processed the message. Windows sends this mes
sage directly to the window procedure and does not place it in the application's
message queue.

Although Windows generates most messages, an application can create its own
messages and place them in its own message queue or that of another application.

An application typically uses the GetMessage function in a loop within its Win
Main function to remove messages from the application's message queue. This
loop is called the main message loop. The GetMessage function searches an appli
cation's message queue and, if any messages exist, returns the top message in the
queue. If the message queue is empty, GetMessage waits for a message to be

8 Microsoft Windows Programmer's Reference

placed in the queue. While waiting, GetMessage relinquishes control to Windows,
allowing other applications to take control and process their own messages.

Once an application's WinMain function has retrieved a message from the appli
cation's message queue, it can dispatch the message to a window procedure by
using the DispatchMessage function. This function directs Windows to call the
window procedure of the window associated with the message, and then passes the
content of the message as function arguments. The window procedure can then
process the message and carry out any requested changes to the window. When
the window procedure returns, Windows returns control to the main message loop
in the WinMain function. The main message loop can then retrieve the next mes
sage from the queue.

Note Unless noted otherwise, Windows can send messages in any sequence. An
application should not rely on receiving messages in a particular order.

Windows generates a message each time the user presses a key. The message con
tains a virtual-key code that defines which key was pressed, but does not define
the character value of that key. To retrieve the character value, the main message
loop in the WinMain function must translate the virtual-key message by using the
TranslateMessage function. This function puts another message with an appro
priate character value in the application's message queue. The message can then
be dispatched to a window procedure.

1.1.2 Translating Messages
In general, a WinMain function should use the TranslateMessage function to
translate every message, not just virtual-key messages. Although Translate
Message has no effect on other types of messages, it guarantees that keyboard
input is translated correctly.

The following example illustrates the typical main message loop that a WinMain
function uses to retrieve messages from the application's message queue and dis
patch them to the application's window procedures:

int PASCAL WinMain(hinst, hPrevinst, lpCmdline, ShowCmd)
HINSTANCE hinst;
HINSTANCE hPrevinst;
LPSTR lpCmdline;
int ShowCmd;
{

MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

Chapter 1 Window Management 9

An application that uses accelerator keys must load an accelerator table from the
resource-definition file by using the LoadAccelerators function and then trans
late keyboard messages into accelerator-key messages by using the Translate
Accelerator function. For more information about accelerator keys, see the
Microsoft Windows Guide to Programming.

The main message loop for an application that uses accelerator keys should have
the following form:

while (GetMessage(&msg, NULL, 0, 0)) {
if (TranslateAccelerator(hwnd, haccel, &msg) 0) {

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

The TranslateAccelerator function must appear before the standard Translate
Message and DispatchMessage functions. Furthermore, because Translate
Accelerator automatically dispatches the accelerator-key message to the
appropriate window procedure, the TranslateMessage and DispatchMessage
functions should not be called if TranslateAccelerator returns a nonzero value.

1.1.3 Examining Messages
An application can use the PeekMessage function to examine its message queue
for specific messages without removing them from the queue. The function returns
a nonzero value if a message exists in the queue and lets the application retrieve
the message and process it without going through the application's main message
loop.

Typically, an application uses PeekMessage to check periodically for messages
when the application is carrying out a lengthy operation, such as processing input
and output. For example, this function can be used to check for messages that end
the operation. PeekMessage also gives the application a chance to yield control if
no messages are present, because PeekMessage can yield if no messages are in
the message queue.

10 Microsoft Windows Programmer's Reference

1.1.4 Sending Messages
The SendMessage and PostMessage functions let applications pass messages to
their windows or to the windows of other applications. The PostAppMessage
function is a variation on PostMessage that posts a message using the applica
tion's module handle rather than a window handle.

The PostMessage function directs Windows to post a message-that is, place the
message in an application's message queue. The PostMessage function immedi
ately returns control to the calling application, and any action to be carried out as a
result of the message does not occur until the message is read from the queue.

The SendMessage function directs Windows to send a message directly to the
given window procedure, bypassing the application's message queue. Windows
does not return control to the calling application until the window procedure that
receives the message processes the message or returns control as a result of a call
to the Reply Message function.

When an application transmits a message, it must do so by calling SendMessage
if the application relies on the return value of a message. The return value of Send
Message is the same as the value returned by the window procedure that
processed the message. PostMessage returns immediately after sending the mes
sage, so its return value is only a Boolean value indicating whether the message
was successfully placed in the queue and does not indicate how the message was
processed.

1.1.5 Avoiding Message Deadlocks
An application can create a deadlock condition in Windows if it yields control
while processing a message sent from another application (or by Windows on
behalf of another application) by using the SendMessage function.

Typically, a task that calls SendMessage to send a message to another task
does not continue running until the window procedure that receives the message
returns. When the task that receives the message yields control, the sending task
cannot continue to run and to process messages because it is waiting for Send
Message to return, resulting in a message deadlock.

The application processing the message does not have to yield explicitly to cause
the problem. Calling any one of the following functions can result in the applica
tion yielding control:

• DialogBox

• DialogBoxlndirect

• DialogBoxlndirectParam

• DialogBoxParam

Chapter 1 Window Management 11

• GetMessage

• MessageBox

• PeekMessage

• Yield

Before calling any of these functions while processing a message, a window
procedure should first call the InSendMessage function to find out whether the
message was sent by the SendMessage function from another application. If
InSendMessage returns a nonzero value, the window procedure must call the
ReplyMessage function before calling any function that yields control.

1.1.6 Message Functions
Message functions read and process Windows messages in an application's mes
sage queue. Following are the message functions:

Function

CallWindowProc

DispatchMessage

GetMessage

GetMessageExtralnfo

GetMessagePos

GetMessageTime

GetQueueStatus

hardware_ event

InSendMessage

PeekMessage

PostAppMessage

PostMessage

PostQuitMessage

Description

Passes message information to the specified window pro
cedure.

Passes a message to the window procedure of the
specified window.

Retrieves a message from an application's message queue.

Retrieves information about a hardware message.

Returns the position of the mouse at the time the last mes
sage was retrieved from the calling application's message
queue.

Returns the time at which the last message was retrieved
from the calling application's message queue.

Returns a value that identifies the types of messages, if
any, that are in the application's message queue.

Places a hardware message in the system queue.

Finds out whether the current window procedure is pro
cessing a message that was sent as a result of another
application calling the SendMessage function.

Checks an application's message queue and returns one
message from the specified range of messages, if any such
messages are in the queue.

Places a message in an application's message queue.

Places a message in the message queue of the application
associated with a specified window.

Posts a WM_ QUIT message to the calling application.

12 Microsoft Windows Programmer's Reference

Function

Reply Message

SendMessage

SetMessageQueue

TranslateAccelerator

TranslateMDISysAccel

TranslateMessage

WaitMessage

WinMain

Description

Replies to a message sent from a different task without
returning control to the task.

Sends a message to a window or windows.

Creates a new message queue of a different size.

Processes accelerator keys for menu commands.

Processes accelerator keystrokes for a multiple document
interface (MDI) child window.

Translates virtual-keystroke messages into character mes
sages.

Yields control to other applications.

Serves as an entry point for execution of a Windows appli
cation.

For detailed information about the message functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1.2 Creating and Managing Windows
This section describes how to create, destroy, modify, and obtain information
about windows.

1.2.1 Window Classes
A window class is a set of attributes that defines how a window looks and be
haves. Before an application can create and use a window, a window class must
have been created and registered for that window. An application registers a class
by filling a WNDCLASS structure and passing a pointer to the structure to the
RegisterClass function. Any number of window classes can be registered. Once
a class has been registered, Windows lets the application create any number of
windows belonging to that class. The registered class remains available until it is
deleted or the application closes.

Although a complete window class consists of many elements, Windows requires
only that an application supply a class name, the address of the window proce
dure that will process all messages sent to windows belonging to this class, and an
instance handle identifying the application that registered the class. The other ele
ments of the window class define default attributes for windows of the class, such
as the shape of the cursor and the content of the menu for the window.

There are three types of window classes: system global classes, application global
classes, and application local classes. These types differ in scope and in when and
how they are created and destroyed.

Chapter 1 Window Management 13

1.2.1.1 System Global Classes
Windows creates system global classes when it starts. These classes are available
for use by all applications at all times. Because Windows creates system global
classes on behalf of all applications, an application cannot create or destroy any of
these classes. System global classes include edit-control and list-box control
classes.

1.2.1.2 Application Global Classes
An application or (more likely) a dynamic-link library (DLL) creates an applica
tion global class by specifying the CS_GLOBALCLASS style for the class. Once
created, it is globally available to all applications within the system. Typically, a
DLL creates an application global class so that applications that call the DLL can
use the class. Windows destroys an application global class when the application
that created it closes or the DLL that created it is unloaded. For this reason, it is
essential that all applications destroy all windows using that class before the appli
cation that created the class closes or the DLL that created the class is unloaded.
Use the UnregisterCiass function to remove an application global class and free
the storage associated with it.

1.2.1.3 Application Local Classes
An application local class is any window class created by an application for its
exclusive use. This is the more common type of class created by an application.
Use the UnregisterCiass function to remove an application local class and free
the storage associated with it.

1.2.2 How Windows Locates a Class
When an application creates a window with a specified class, Windows uses the
following procedure to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, it searches the applica
tion global class list.

3. If Windows does not find the name in the application global class list, it
searches the system global class list.

This procedure is used for all windows created by the application, including win
dows created by Windows on the application's behalf, such as dialog boxes. It is
possible, then, to override system global classes without affecting other applica
tions.

14 Microsoft Windows Programmer's Reference

1.2.3 Class Ownership
Windows determines class ownership from the hlnstance member of the
WNDCLASS structure passed to the RegisterClass function when the applica
tion or DLL registers the class. For Windows DLLs, the hlnstance member must
be the instance handle of the DLL. When the application that registered the class
closes or the DLL that registered the class is unloaded, the class is destroyed. For
this reason, all windows using the class must be destroyed before the application
closes or the DLL is unloaded.

1.2.4 Registering a Window Class
When Windows registers a window class, it copies the attributes into its own
memory area. Windows uses these internally stored attributes when an application
refers to the window class by name; it is not necessary for the application that orig
inally registers the class to keep the structure available.

1.2.5 Shared Window Classes
An application must not share its registered classes with other applications. Some
information in a window class, such as the address of the window procedure, is
specific to a given application and cannot be used by other applications. However,
applications can share an application global class. For more information, see
Section 1.2.1.2, "Application Global Classes."

Although an application must not share one of its registered classes with other
applications, different instances of the same application can share a registered
class. Once a window class has been registered by an application, it is available to
all subsequent instances of that application. This means that new instances of an
application do not need to, and should not, register window classes that have been
registered by previous instances.

1.2.6 Predefined Window Classes
Windows provides several predefined system-global window classes. These
classes define special control windows that carry out common input tasks, such
as letting the user direct scrolling, type text, and select from a list of names. The
predefined window classes are available to all applications and can be used any
number of times to create any number of control windows. See the description of
the Create Window function in the Microsoft Windows Programmer's Reference,
Volume 2, for a list of the predefined window classes.

Chapter 1 Window Management 15

1.2. 7 Elements of a Window Class
The elements of a window class define the default behavior of windows created
from that class. The application that registers a window class assigns elements to
the class by setting appropriate members in a WNDCLASS structure and passing
the structure to the RegisterCiass function. An application can retrieve informa
tion about a given window class with the GetCiasslnfo function. The window
class elements are as follows:

Element

Class name

Window-procedure address

Instance handle

Class cursor

Class icon

Class background brush

Class menu

Class styles

Class extra

Window extra

Purpose

Distinguishes the class from other registered classes.

Points to the function that processes all messages
that are sent to windows in the class, and defines the
behavior of the window.

Identifies the application or DLL that registered the
class.

Defines the shape of the cursor when the cursor is in a
window of the class.

Defines the shape of the icon Windows displays when a
window belonging to the class is minimized.

Defines the color and pattern Windows uses to fill the
client area when the window is opened or painted. If
this parameter is set to NULL, the window must paint
its own background whenever it receives the
WM_ERASEBKGND message.

Specifies the default menu used for any window
belonging to the class that does not explicitly define a
menu.

Defines how to update the window after moving or
resizing, how to process double-clicks of the mouse,
how to allocate space for the display context, and other
aspects of the window.

Specifies the amount of extra memory, in bytes, that
Windows should reserve at the end of the
WNDCLASS structure. Windows initializes this
memory to zero.

Specifies the amount of extra memory, in bytes, that
Windows should reserve at the end of any window
structure an application creates that has this class.
Windows initializes this memory to zero.

The following sections describe the elements of a window class and explain the de
fault values for these elements if no explicit value is given when the class is regis
tered.

16 Microsoft Windows Programmer's Reference

1.2.7 .1 Class Name
Every window class needs a class name. The class name distinguishes one class
from another. An application assigns a class name to the class by setting the
lpszClassName member of the WNDCLASS structure to the address of a null
terminated string that specifies the name.

In the case of an application global class, the class name must be unique to distin
guish it from other application global classes. If an application registers another
application global class with the name of an existing application global class, the
RegisterClass function returns zero, indicating failure. The conventional method
for ensuring this uniqueness is to include the application name in the name of the
application global class.

The class name must be unique among all the classes registered by an application.
An application cannot register an application local class and an application global
class with the same class name.

1.2. 7 .2 Window-Procedure Address
Every class needs a window-procedure address. The address defines the entry
point of the window procedure that is used to process all messages for windows in
the class. Windows passes messages to the procedure when it requires the window
to carry out tasks, such as painting its client area or responding to input from the
user. An application assigns a window-procedure to a class by copying its address
to the lpfn WndProc member of the WNDCLASS structure. The window proce
dure must be exported in the module-definition (.DEF) file. For more information
about exporting functions, see the Microsoft Windows Guide to Programming.

1.2. 7 .3 Instance Handle
Every window class needs an instance handle to identify the application or DLL
that registered the class. As a multitasking system, Windows lets several applica
tions or DLLs run at the same time, so it needs instance handles to keep track of
all applications and DLLs. Windows assigns a unique handle to each copy of a
running application or DLL.

Multiple instances of the same application or DLL all use the same code segment,
but each has its own data segment. Windows uses an instance handle to identify
the data segment that corresponds to a particular instance of an application or DLL.

Windows passes an instance handle to an application or DLL when the application
first begins operation. The application or DLL assigns this instance handle to the
class by copying it to the hlnstance member of the WNDCLASS structure.

Chapter 1 Window Management 17

1.2.7.4 Class Cursor
The class cursor defines the shape of the cursor when the cursor is in the client
area of a window in the class. Windows automatically sets the cursor to the given
shape as soon as the cursor enters the window's client area, and ensures that the
cursor keeps that shape while it remains in the client area. To assign a cursor
shape to a window class, an application typically loads a predefined cursor shape
by using the Load Cursor function, and then assigns the returned cursor handle to
the hCursor member of the WNDCLASS structure. Alternatively, you can use
Microsoft Image Editor (IMAGED IT.EXE) to create your own custom cursor, and
use Microsoft Windows Resource Compiler (RC) to add the cursor as a resource
to your application's executable file. The application can then use the Load
Cursor function to load the custom cursor from the application's resources.

Windows does not require a class cursor. If an application sets the hCursor
member of the WNDCLASS structure to NULL, a class cursor is not defined.
Windows assumes that the window will set the cursor shape each time the cur
sor moves into the window. A window can set the cursor shape by calling the
SetCursor function whenever the window receives the WM_MOUSEMOVE
message.

1.2. 7 .5 Class Icon
The class icon defines the shape of the icon used when the window of the given
class is minimized. To assign an icon to a window class, an application typi
cally loads the icon from the application's resources by using the Loadlcon
function, and then assigns the returned icon handle to the hlcon member of the
WNDCLASS structure.

Windows does not require that a window class have a class icon. If an application
sets the hlcon member of the WNDCLASS structure to NULL, a class icon is not
defined. In this case, Windows sends the WM_ICONERASEBKGND message to
a window of the class whenever the window must paint the background of the
icon. If the window does not process the WM_ICONERASEBKGND message,
Windows draws an image of the contents of the window's client area onto the icon
when it is minimized.

1.2. 7 .6 Class Background Brush
A class background brush is the brush used to prepare the client area of a
window for subsequent drawing by the application. Windows uses the brush
to fill the client area with a solid color or pattern, thereby removing all pre
vious images from that location whether they belonged to the window or not.
Windows notifies a window that its background needs to be painted by sending
the WM_ERASEBKGND message to the window.

18 Microsoft Windows Programmer's Reference

To assign a background brush to a class, an application can create a brush by using
the appropriate functions from the graphics device interface (GDI) and then assign
the returned brush handle to the hbrBackground member of the WNDCLASS
structure.

Instead of creating a brush, an application can use a standard system color by set
ting the hbrBackground member to one of the standard system color values. For
a list of the standard system color values, see the description of the SetSysColors
function in the Microsoft Windows Programmer's Reference, Volume 2.

To use a standard system color, the application must increase the background
color value by one. For example, COLOR_BACKGROUND + 1 is the system
background color.

1.2.7.7 Class Menu
A class menu defines the default menu to be used by the windows in the class if
no explicit menu is given when the windows are created. A menu is a list of com
mands from which a user can select actions for the application to carry out. To
assign a menu to a class, an application sets the lpszMenuName member of the
WNDCLASS structure to the address of a null-terminated string that specifies the
resource name of the menu. The menu is assumed to be a resource in the given
application. Windows automatically loads the menu when it is needed. Note that
if the menu resource is identified by an integer and not by a name, the application
can set the lpszMenuName member to that integer value by applying the
MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If an application sets the lpszMenuName
member of the WNDCLASS structure to NULL, Windows assumes that the win
dows in the class have no menu bars. Even if no class menu is given, an applica
tion can still define a menu bar for a window when it creates the window.

Windows does not allow menu bars with child windows. If a menu is given for a
class and a child window of that class is created, the menu is ignored. For more
information about menus, see Section 1.2.19, "Menus."

1.2.8 Class Styles
The class styles define additional elements of the window class. Two or more
styles can be combined by using the bitwise OR (I) operator. The class styles are
as follows:

Style

CS_BYTEALIGNCLIENT

CS_BYTEALIGNWINDOW

CS_CLASSDC

CS_DBLCLKS

CS_GLOBALCLASS

CS_HREDRAW

CS_NOCLOSE

CS_OWNDC

cs_pARENTDC

CS_SAVEBITS

CS_VREDRAW

Chapter 1 Window Management 19

Description

Aligns the window's client area on a byte boundary
(in the x direction).

Aligns the window on a byte boundary (in the x direc
tion).

Allocates one display context to be shared by all win
dows in the class. For more information about device
contexts, see Section 1.2.12

Sends double-click messages to the window proce
dure.

Specifies that the window class is an application
global class. An application global class is created by
an application or DLL and is available to all applica
tions. The class is destroyed when the application or
DLL that created the class closes; it is essential, there
fore, that all windows created with the application
global class be closed before the application or DLL
closes.

Requests that the entire client area be redrawn if a
movement or size adjustment changes the width of
the client area.

Inhibits the Close command on the System menu
(sometimes referred to as the Control menu).

Allocates a unique display context for each window
in the class. For more information about device con
texts, see Section 1.2.12

Gives the parent window's display context to the
child windows. For more information about device
contexts, see Section 1.2.12

Saves, as a bitmap, the portion of the screen image
that is obscured by a window; Windows uses the
saved bitmap to re-create the screen image when the
window is removed. Windows displays the bitmap at
its original location and does not send WM_PAINT
messages to windows that had been obscured by the
window if the memory used by the bitmap has not
been discarded and if other screen actions have not
invalidated the stored image.

Requests that the entire client area be redrawn if a
movement or size adjustment changes the height of
the client area.

To assign a style to a window class, an application assigns the style value to the
style member of the WNDCLASS structure.

20 Microsoft Windows Programmer's Reference

1.2.9 Internal Data Structures
Windows maintains internal data structures for each window class and window.
These structures are not directly accessible to applications but can be examined
and modified by using the following functions:

• GetClasslnfo

• GetClassLong

• GetClassName

• GetClassWord

• GetWindowLong

• GetWindowWord

• SetClassLong

• SetClassWord

• SetWindowLong

• SetWindowWord

1. 2 .10 Window Subclassing
A subclass is a window or set of windows that belong to the same window class,
and whose messages are intercepted and processed by another window procedure
(or procedures) before being passed to the class window procedure.

To create the subclass, the SetWindowLong function is used to change which win
dow procedure is associated with a particular window, causing Windows to call
the new window procedure instead of the previous one. An application must call
the CallWindowProc function to pass to the previous window procedure any mes
sages not processed by the new window procedure. This allows Windows to create
a chain of window procedures. The application can retrieve the address of the pre
vious window procedure by using the GetWindowLong function before using the
SetWindowLong function.

Similarly, the SetClassLong function changes which window procedure is asso
ciated with a window class. Any window that is subsequently created with that
class will be associated with the replacement window procedure for that class, as
will the window whose handle is passed to SetClassLong. Other existing win
dows that were previously created with the class are not affected, however.

When an application subclasses a window or class of windows, it must export
the replacement window procedure in its module-definition file, call the Make
Proclnstance function to create the address of the procedure, and pass the address
to the SetWindowLong or SetClassLong function. For more information about
module-definition files, see the Microsoft Windows Guide to Programming.

Chapter 1 Window Management 21

1. 2 .11 Redrawing the Client Area
When a window is moved, Windows automatically copies the contents of the
client area to the new location. This saves time because a window does not have to
recalculate and redraw the contents of the client area as part of the move. If the
window moves and changes size, Windows copies only as much of the previous
client area as is needed to fill the new location. If the window increases in size,
Windows copies the entire client area and sends a WM_PAINT message to the
window to fill in the newly exposed areas.

When a window is moved, Windows assumes the contents of the client area
remain valid and can be copied without modification to the new location. For
some windows, however, the contents of the client area are not valid after a move,
especially if the move includes a change in size. For example, a clock application
whose window must always contain the complete image of the clock has to redraw
the window anytime the window changes size, and has to update the time after the
move. To redraw the entire client area instead of copying the previous contents
each time a window changes size, a window should specify the CS_ VREDRA W
and CS_HREDRA W styles in the window class.

1.2.12 Class and Private Display Contexts
A display context is a special set of values that applications use for drawing in the
client area of their windows. Windows requires a display context for each window
on the system display but allows some flexibility in how that display context is
stored and treated by the system.

Ifno display-context style is explicitly given, Windows assumes that each win
dow will use a display context retrieved from a pool of contexts maintained by
Windows. In such cases, each window must retrieve and initialize the display con
text before painting, and then free it after painting.

To avoid retrieving a display context each time it needs to paint inside a window,
an application can specify the CS_OWNDC style for the window class. This class
style directs Windows to create a private display context-that is, to allocate a
unique display context for each window in the class. The application need only
retrieve the context once, and then use it for all subsequent painting. Although the
CS_OWNDC style is convenient, it must be used carefully because each display
context uses a significant amount of system resources.

By specifying the CS_CLASSDC style, an application can have some of the con
venience of a private display context without allocating a separate display context
for each window. The CS_CLASSDC style directs Windows to create a single
class display context-that is, one display context to be shared by all windows in
the class. An application need only retrieve the display context for a window; as
long as no other window in the class retrieves that display context, the window can
continue to use the context.

22 Microsoft Windows Programmer's Reference

Similarly, by specifying the CS_PARENTDC style, an application can create child
windows that inherit the device context of their parent. For more information
about display contexts, see the Microsoft Windows Guide to Programming.

1.2.13 Window Procedures
A window procedure processes all messages sent to all windows in a given class.
Windows sends messages to a window procedure when it receives input from the
user that is intended for the given window, or when it needs the procedure to carry
out some action on its window, such as painting inside the client area.

A window procedure receives the following types of messages:

• Input messages from the keyboard, mouse or other pointing device, and timer

• Requests for information, such as a request for the window title

• Reports of changes made to the system by other windows, such as a change to
the WIN.IN! file

• Messages that give the window procedure an opportunity to modify the stan
dard system response to certain actions, such as an opportunity to adjust a menu
before it is displayed

• Requests to carry out some action on its window or client area, such as a
request to update the client area

• Information about its status in relation to other windows, such as its losing
access to the keyboard or becoming the active window

Most of the messages a window procedure receives are from Windows, but it can
also receive messages from other windows, including windows it owns. These
messages can be requests for information or notification that a given event has
occurred within another window.

A window procedure continues to receive messages from the system and possibly
other windows in the system until the window procedure, the window procedure
of a parent window, or the system destroys the window. Even while the window
is in the process of being destroyed, the window procedure receives additional
messages that give it the opportunity to carry out any cleanup tasks before
terminating. These messages include WM_ CLOSE, WM_DESTROY,
WM_QUERYENDSESSION, and WM_ENDSESSION. But once the window
is destroyed, no more messages are passed to the procedure for that particular
window. If there is more than one window of the class, however, the window
procedure continues to receive messages for the other windows until they, too,
are destroyed.

A window procedure defines how all windows of a given window actually behave;
that is, it defines what response the windows make to commands from the user
or system. The window procedure must examine messages it receives from the

Chapter 1 Window Management 23

system and determine what action, if any, to take. For example, if the user clicks
the scroll bar, the window procedure may scroll the contents of the client area.
Windows passes information that affects a window and provides some tools to
carry out tasks, such as drawing and scrolling, but the window procedure must
carry out each actual task.

A window procedure can also choose not to respond to a given message. If it
does not respond, the procedure must pass the message to the DefWindowProc
function to give the system the opportunity to respond. This function carries out
default actions based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the DefWindowProc
function is required in all window proced11fes.

A window procedure also receives messages that are really intended to be pro
cessed by the system. These messages, called nonclient-area messages, inform the
procedure either that the user has carried out some action in a nonclient area of
the window, such as clicking the title bar, or that some information about the win
dow is required by the system to carry out an action, such as to move or adjust the
size of the window. Although Windows passes these messages to the window pro
cedure, the procedure should pass them to the DefWindowProc function and not
attempt to process them. In any case, the window procedure must not ignore the
message or return without passing it to DefWindowProc.

1.2.13.1 Window Messages
A window message is a set of values that Windows sends to a window procedure
to provide input to the window or request the window to carry out some action.
Windows includes a wide variety of messages that it or applications can send to a
window procedure. Most messages are sent to a window as a result of a given func
tion being executed or as a result of input from the user.

Every message consists of four values: a handle that identifies the window, a mes
sage identifier, a 16-bit message-specific value, and a 32-bit message-specific
value. These values are passed as individual parameters to the window procedure.
The window procedure then examines the message identifier to determine what
response to make and how to interpret the 16- and 32-bit values.

A window procedure must use the Pascal calling convention. The following illus
trates the window procedure syntax:

LONG FAR PASCAL WndProc(hwnd, msg, wParam, lParam)
HWNDhwnd;
UINT msg;
WPARAM wParam;
LPARAM lParam;

24 Microsoft Windows Programmer's Reference

The hwnd parameter identifies the window receiving the message; the msg
parameter is the message identifier; the wParam parameter is 16 bits of addi
tional message-specific information; and lParam is 32 bits of additional message
specific information. The window procedure must return a 32-bit value that
indicates the result of message processing. The possible return values depend
on the actual message sent.

Windows expects to make an intersegment call to the window procedure, so the
procedure must be declared with the FAR attribute. The window-procedure name
must be exported by including it in an EXPORTS statement in the application's
module-definition file.

1.2.13.2 Default Window Procedure
The DetwindowProc function is the default message processor for window proce
dures that do not or cannot process some of the messages sent to them. For most
window procedures, the DetwindowProc function carries out most, if not all, pro
cessing of nonclient-area messages. These are the messages that signify actions to
be carried out on parts of the window other than the client area. The messages that
DetwindowProc processes and the default actions for each are as follows:

Message

WM_ACTIVATE

WM_CANCELMODE

WM_CHARTOITEM

WM_ CLOSE

WM_CTLCOLOR

WM_DRAWITEM

WM_ERASEBKGND

WM_GETTEXT

WM_GETTEXTLENGTH

WM_ICONERASEBKGND

Default action

Activates or deactivates a window.

Cancels internal processing of standard scroll
bar input, cancels internal menu processing, and
releases mouse capture.

Returns-1.

Calls the DestroyWindow function.

Sets the background and text color and returns a
handle of the brush used to fill the control back
ground.

Draws the focus rectangle for an owner-drawn
list box item.

Fills the client area with the color and pattern
specified by the class brush, if any.

Copies the window title into a specified buffer.

Returns the length, in bytes, of the window title.

Fills the icon's client area with the window's
background brush.

Message

WM_KEYUP

WM_MOUSEACTIVATE

WM_NCACTIVATE

WM_NCCALCSIZE

WM_NCCREATE

WM_NCDESTROY

WM_NCHITTEST

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

WM_NCMOUSEMOVE

WM_NCPAINT

WM_PAINT

WM_QUERYENDSESSION

WM_QUERYOPEN

WM_SETCURSOR

WM_SETREDRAW

Chapter 1 Window Management 25

Default action

Sends a WM_SYSCOMMAND message to the
top-level window ifthe FIO key or the ALT key
was released. The wParam parameter of the mes
sage is set to SC_KEYMENU.

Sends the WM_MOUSEACTIVATE response to
the parent window. The parent determines
whether to activate the child window.

Activates or deactivates the window and draws
the icon or title bar to show the new state.

Computes the size of the client area.

Initializes standard scroll bars, if any, and sets
the default title for the window.

Frees any space internally allocated for the win
dow title.

Finds out what part of the window the mouse is
in.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Finds out whether the left mouse button was
pressed while the mouse was in the nonclient
area of a window.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Tests the given point to find out the location of
the mouse and, if necessary, generates additional
messages.

Paints the nonclient areas of the window.

Validates the current update region, but does not
paint the region.

Returns TRUE.

Returns TRUE.

Displays the appropriate mouse cursor, based
on the position of the cursor.

Forces an immediate update of information
about the clipping region of the complete
window.

26 Microsoft Windows Programmer's Reference

Message

WM_SETTEXT

WM_SHOWWINDOW

WM_SYSCHAR

WM_SYSCOMMAND

WM_SYSKEYDOWN

WM_SYSKEYUP

WM_ VKEYTOITEM

WM_ WINDOWPOSCHANGED

WM_ WINDOWPOSCHANGING

Default action

Sets and displays the window title.

Opens or closes a window.

Generates a WM_SYSCOMMAND message
for menu input.

Carries out the requested system command.

Examines the given key and generates a
WM_SYSCOMMAND message if the key is
either TAB or ENTER.

Sends a WM_SYSCOMMAND message to the
top-level window if the FIO key or the ALT key
was released. The wParam parameter of the mes
sage is set to SC_KEYMENU.

Returns -1.

Sends the WM_SIZE and WM_MOVE mes
sages to the window.

Sends the WM_GETMINMAXINFO mes
sage to the window if the window has the
WS_OVERLAPPED or WS_THICKFRAME
style.

For detailed information on each Windows message, see the Microsoft Windows
Programmer's Reference, Volume 3.

1. 2 .14 Window Styles
Windows provides several different window styles that can be combined to form
different kinds of windows. The styles are used in the Create Window function
when the window is created.

1.2.14.1 Overlapped Windows
An overlapped window is always a top-level window. In other words, an over
lapped window never has a parent window. It has a client area, a border, and a title
bar. It can also have a System menu, Minimize and Maximize buttons, scroll bars,
and a menu, if these items are specified when the window is created. For a win
dow used as a main interface, the System menu and Minimize and Maximize but
tons are strongly recommended.

Every overlapped window can have a corresponding icon that Windows displays
when the window is minimized. A minimized window is not destroyed. It can be
restored to its previous size and position. An application minimizes a window to
save screen space when several windows are open at the same time.

Chapter 1 Window Management 27

An application creates an overlapped window by using the WS_OVERLAPPED
or WS_OVERLAPPEDWINDOW style with the Create Window function. An
overlapped window created with the WS_OVERLAPPED style always has a title
bar and a border. The WS_OVERLAPPEDWINDOW style creates an overlapped
window with a title bar, a thick-frame border, a System menu, and Minimize and
Maximize buttons. For a complete list of window styles, see the description of the
Create Window function in the Microsoft Windows Programmer's Reference,
Volume 2.

1.2.14.2 Owned Windows
An owned window is a special type of overlapped window. Every owned window
must be owned by an overlapped window. Being owned forces several constraints
ona window:

• An owned window is always in front of its owner when the windows are in z
order. Attempting to move the owner-that is, on an imaginary z-axis extend
ing in front of the owned window from the screen toward the user-causes the
owned window also to change position to ensure that it will always be in front
of its owner.

• Windows automatically destroys an owned window when it destroys the win
dow's owner.

• An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the owner's window
handle as the hWndParentparameter of the Create Window function when cre
ating a window that has the WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that creates the dialog
box receives the handle of the owner window as its hWndParentparameter.

1.2.14.3 Pop-upWindows
Pop-up windows are another special type of overlapped window. The main dif
ference between a pop-up window and other overlapped windows is that an over
lapped window always has a title bar, whereas the title bar is optional for a pop-up
window. Like other overlapped windows, pop-up windows can be owned.

You create a pop-up window by using the WS_POPUP window style with the
Create Window function. An application can use the ShowWindow function to
open or close a pop-up window.

28 Microsoft Windows Programmer's Reference

1.2.14.4 Child Windows
A child window is a window that is confined to the client area of a parent window.
Child windows are typically used to divide the client area of a parent window into
different functional areas.

You create a child window by using the WS_CHILD window style with the
Create Window function. An application can use the ShowWindow function to
show or hide a child window.

Every child window must have a parent window. The parent window can be an
overlapped window, a pop-up window, or even another child window. The parent
window relinquishes a portion of its client area to the child window, and the child
window receives all input from this area. The window class does not have to be
the same for each of the child windows of the parent window. This means an appli
cation can fill a parent window with child windows that look different and carry
out different tasks.

A child window has a client area, but it does not have any other features unless
these are explicitly requested. An application can request a border, title bar,
Minimize and Maximize buttons, and scroll bars for a child window. In most
cases, the application designs its own features for the child window.

Although it is not required, every child window should have a unique integer iden
tifier. The identifier, given in the hmenu parameter of the Create Window function
in place of a menu, helps identify the child window when its parent window has
other child windows. The child window should use this identifier in any messages
it sends to the parent window. This is the way a parent window with multiple child
windows can identify which child window is sending the message. Child windows
that share the same parent window are sibling windows.

Windows always positions the child window relative to the upper-left comer of
the parent window's client area. The coordinates are always client coordinates.
(For information about mapping, see Chapter 2, "Graphics Device Interface.") If
all or part of a child window is moved outside the visible portion of the parent win
dow's client area, the child window is clipped; that is, the portion outside the
parent window's client area is not displayed.

A child window is an independent window that receives its own input and other
messages. Input intended for a child window goes directly to the child window
and is not passed through the parent window. The only exception is if input to the
child window has been disabled by the Enable Window function. In this case,
Windows passes any input that would have gone to the child window to the parent
window instead. This gives the parent window an opportunity to examine the input
and enable the child window, if necessary.

Chapter 1 Window Management 29

Actions that affect the parent window can also affect the child window, as follows:

Parent window

Shown

Hidden

Destroyed

Moved

Increased in size or maximized

Child window

Shown after the parent window is shown.

Hidden before the parent window is hidden. A child
window can be visible only when the parent win
dow is visible.

Destroyed before the parent window is destroyed.

Moved with the parent window's client area. The
child window is responsible for painting after the
move.

Paints any portions of the parent window that have
been exposed as a result of the increased size of the
client area.

Windows does not automatically clip a child window from the parent window's
client area. This means the parent window draws over the child window if it car
ries out any drawing in the same location as the child window. Windows does clip
the child window from the parent window's client area if the parent window has a
WS_CLIPCHILDREN style. If the child window is clipped, the parent window
cannot draw over it.

A child window can overlap other child windows in the same client area. Sibling
windows can draw in each other's client area unless one child window has a
WS_CLIPSIBLINGS style. If the application specifies this style for a child win
dow, any portion of that child's sibling window that lies within this window is
clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style,
a slight loss in performance occurs.

Each window takes up system resources, so an application should not use child
windows indiscriminately. For optimum performance, an application that needs to
logically divide its main window should do so in the window procedure of the
main window rather than by using child windows.

1. 2 .15 Multiple Document Interface Windows
Windows MDI provides applications with a standard interface for displaying mul
tiple documents within the same instance of an application. An MDI application
creates a frame window that contains a client window in place of its client area.
An application creates an MDI client window by calling Create Window with the
class MDICLIENT and passing a CLIENTCREATESTRUCT structure as the

30 Microsoft Windows Programmer's Reference

1.2.16 Title Bar

function's lpvParam parameter. This client window in tum can own multiple child
windows, each of which displays a separate document. An MDI application con
trols these child windows by sending messages to its client window.

For more information about MDI, see the Microsoft Windows Guide to
Programming.

The title bar, a rectangle at the top of the window, provides space for the window
title or name. An application defines the window title when it creates the window.
It can also change this name anytime by using the SetWindowText function. A
title bar makes it possible for the user to move the window by using a mouse or
other pointing device.

1.2.17 System Menu
The System menu, identified by a box at the left end of the title bar, is a pop-up
menu that contains the system commands. (The System menu is sometimes re
ferred to as the Control menu.) The system commands are commands that can be
selected by the user to direct Windows to carry out actions that affect the window,
such as moving and closing it.

To create a window with a System menu or Close box, the application must
specify both the WS_SYSMENU and WS_CAPTION window styles when the
window is created.

1.2 .18 Scroll Bars
The horizontal and vertical scroll bars are bars on the lower and right sides of a
window, respectively, making it possible for a user to scroll the contents of the
client area. Windows sends scroll requests to a window as WM_HSCROLL and
WM_ VSCROLL messages. If the window permits scrolling, the window proce
dure must process these messages.

A window can have one or both scroll bars. To create a window with a scroll
bar, the application must specify the WS_HSCROLL or WS_ VSCROLL window
style when the window is created. An application can use the ShowScrollBar
function to show or hide a scroll bar of a window with the WS_HSCROLL or
WS_ VSCROLL style.

1.2.19 Menus

Chapter 1 Window Management 31

A menu is a list of commands from which the user can select using the mouse or
other pointing device or the keyboard. When the user selects an item, Windows
sends a corresponding message to the window procedure to indicate which com
mand was selected. Windows provides two types of menus: menu bars (sometimes
called static menus) and pop-up menus.

A menu bar is a horizontal menu that appears at the top of a window and below
the title bar, if one exists. Any window except a child window can have a menu
bar. If an application does not specify a menu when it creates a window, the win
dow receives the default menu bar (if any) defined by the window class.

A pop-up menu contains a vertical list of items and is often displayed when a user
selects a menu-bar item. In turn, a pop-up menu item can display another pop-up
menu. A pop-up menu can float-that is, it can appear anywhere on the screen
designated by the application. An application creates an empty pop-up menu by
calling the CreatePopupMenu function, and then fills in the menu using the
AppendMenu and InsertMenu functions. It displays the pop-up menu by calling
TrackPopupMenu.

An application can create or modify an individual menu item with the
MF _OWNERDRA W style, indicating that the item is an owner-drawn item.
In this case, the owner of the menu is responsible for drawing all visual aspects
of the menu item, including checked, grayed, and highlighted states. When the
menu is displayed for the first time, the window that owns the menu receives a
WM_MEASUREITEM message. The lParam parameter of this message points
to a MEASUREITEMSTRUCT structure. The owner then fills in this structure
with the dimensions of the item and returns. Windows uses the information in the
structure to determine the size of the item so that Windows can appropriately
detect the user's interaction with the item. Windows sends the WM_DRAWITEM
message whenever the owner of the menu must update the visual appearance of an
owner-drawn menu item. A top-level menu item cannot be an owner-drawn item.

An application can call the AppendMenu, InsertMenu, or ModifyMenu func
tion to add an owner-drawn menu item to a menu or to change an existing menu
item to be an owner-drawn menu item. To maintain additional data associated with
the item, the application can supply a 32-bit value for the lpNewltem parameter of
the function. This value is available to the application as the itemData member of
the structures pointed to by the lParam parameter of the WM_MEASUREITEM
and WM_DRA WITEM messages. For example, if an application were to draw the
text in a menu item by using a specific color, the 32-bit value could contain a
pointer to a string. The application could then set the text color before drawing the
item when it received the WM_DRA WITEM message. For more information
about menus, see the Microsoft Windows Guide to Programming.

32 Microsoft Windows Programmer's Reference

1.2.20 Window State
The window state can be open (minimized, maximized, or restored), hidden or vis
ible, and enabled or disabled. The initial state of a window depends on whether the
following window styles are used:

• WS_DISABLED

• WS_MINIMIZE

• WS_MAXIMIZE

• ws_ VISIBLE

By default, Windows creates windows that are initially enabled-that is, windows
that can start receiving input messages immediately. An application can disable
input to a new window by specifying the WS_DISABLED window style.

A new window is not displayed until an application opens it by using the Show
Window function or specifies the WS_ VISIBLE window style when it creates the
window. For overlapped windows, the WS_ICONIC window style creates a win
dow that is minimized initially.

1.2.21 Life Cycle of a Window
Because the purpose of any window is to make it possible for the user to specify
data or for the application to display information, a window starts its life cycle
when the application has a need for input or output. A window continues its life
cycle until there is no longer a need for it or the application is closed. Some win
dows, such as the window used for the application's main user interface, last the
life of the application. Other windows, such as a window used as a dialog box,
may last only a few seconds.

The first step in a window's life cycle is creation. Given a registered window class
with a corresponding window procedure, the application uses the Create Window
function to create the window. This function directs Windows to prepare internal
structures for the window and to return a unique integer value, called a window
handle, that the application can use to identify the window in subsequent function
calls.

The first message most windows process is WM_CREATE, the window-creation
message. The Create Window function sends this message to inform the window
procedure that it can now perform any initialization, such as allocating memory
and preparing data files. The wParam parameter is not used, but the lParam
parameter contains a long pointer to a CREATESTRUCT structure, whose mem
bers correspond to the parameters passed to Create Window.

Chapter 1 Window Management 33

The WM_ CREA TE message is sent directly to the window procedure, bypassing
the application's message queue. This means an application creates a window and
processes the WM_CREATE message before it enters the main message loop.

After a window has been created, it must be opened (displayed) before it can be
used. An application can open the window in one of two ways: It can specify the
WS_ VISIBLE window style in the Create Window function to open the window
immediately after creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an application
should not specify WS_ VISIBLE, but should call ShowWindow from the Win
Main function with the nCmdShow parameter set to specify the window state.

When the window is no longer needed or the application is terminated, the win
dow must be destroyed. This is done by using the DestroyWindow function.
Destroy Window removes the window from the system display and invalidates the
window handle. It also sends WM_DESTROY and WM_NCDESTROY messages
to the window procedure. The Destroy Window function also destroys all of the
window's child and owned windows.

The window procedure also receives a WM_DESTROY message when the
WM_ CLOSE message is processed by the DefWindowProc function. When a
window procedure receives a WM_DESTROY message, it should free any allo
cated memory and close any open data files.

The window used as the application's main user interface should always be the
last window destroyed and should always cause the application to terminate.
When this window receives a WM_DESTROY message, it should call the Post
QuitMessage function. This function copies a WM_ QUIT message to the applica
tion's message queue as a signal for the application to close when the message is
read from the queue.

1.2.22 Window-Creation Functions
Window-creation functions create, destroy, modify, and obtain information about
windows. Following are the window-creation functions:

Function

AdjustWindowRect

AdjustWindowRectEx

Create Window
Create Window Ex

DeIDlgProc

Description

Computes the size of a window to fit a given client area.

Computes the size of a window with extended style to fit a
given client area.

Creates overlapped, pop-up, and child windows.

Creates overlapped, pop-up, and child windows with
extended styles.

Provides default processing for messages that an applica
tion-defined dialog box procedure does not process.

34 Microsoft Windows Programmer's Reference

Function

DefFrameProc

DefMDIChildProc

DefWindowProc

Destroy Window

GetClasslnfo

GetClassLong

GetClassName

GetClassWord

GetLastActivePopup

Get Window Long

Get Window Word

RegisterCJass

SetClassLong

SetClassWord

Set Window Long

Set Window Word

UnregisterClass

Description

Provides default processing for messages that an applica
tion-defined MDI frame window does not process.

Provides default processing for messages that an applica
tion-defined MDI child window does not process.

Provides default processing for messages that an applica
tion-defined window procedure does not process.

Destroys a window.

Retrieves information about a specified class.

Retrieves a long value from the extra class memory
associated with a window.

Retrieves a window-class name.

Retrieves a word value from the extra class memory
associated with a window.

Finds out which pop-up window owned by another win
dow was most recently active.

Retrieves a long value from the extra window memory
associated with a window.

Retrieves a word value from the extra window memory
associated with a window.

Registers a window class.

Set a Jong value in the extra class memory associated with
a window.

Set a word value in the extra class memory associated with
a window.

Set a long value in the extra window memory associated
with a window.

Set a word value in the extra window memory associated
with a window.

Removes a window class from the window-class table.

For detailed information about the window-creation functions, see the Microsoft
Windows Programmer's Reference, Volume 2.

1.3 Display and Movement Functions
Display and movement functions show, hide, and move windows and obtain infor
mation about the number and position of windows on the screen. Following are
display and movement functions:

Function

ArrangelconicWindows

BeginDeferWindowPos

BringWindowToTop

Close Window

DeferWindowPos

EndDeferWindowPos

GetCiientRect

Get Wind ow Placement

GetWindowRect

GetWindowText

GetWindowTextLength

lslconic

Is Window Visible

IsZoomed

Move Window
Openlcon

SetWindowPiacement

SetWindowPos

SetWindowText

ShowOwnedPopups

Show Window

Chapter 1 Window Management 35

Description

Arranges minimized (iconic) child windows.

Initializes memory used by the DeferWindowPos func
tion.

Brings a window to the top of a stack of overlapped win
dows.

Minimizes the specified window.

Records positioning information for a window to be
moved or resized by the EndDeferWindowPos function.

Positions or sizes several windows simultaneously based
on information recorded by the DeferWindowPos func
tion.

Copies the coordinates of a window's client area.

Retrieves the show state and the normal (restored), min
imized, and maximized positions of a window.

Copies the dimensions of an entire window.

Copies a window title into a buffer.

Returns the length, in bytes, of the given window's title
or text.

Specifies whether a window is minimized (iconic).

Determines whether the given window is visible.

Determines whether a window is maximized.

Changes the size and position of a window.

Opens the specified window.

Sets the show state and the normal (restored), minimized,
and maximized positions of a window.

Changes the size, position, and ordering of overlapped,
pop-up, and child windows.

Sets the window title or text.

Shows or hides all pop-up windows.

Sets the visibility state of the given window.

For detailed information about the display and movement functions, see the
Microsoft Windows Programmer's Reference, Volume 2.

36 Microsoft Windows Programmer's Reference

1.4 Input Functions
Input functions disable input from system devices, take control of system devices,
or define special actions that Windows takes when an application receives input
from a system device. The system devices are the mouse (or other pointing de
vice), the keyboard, and the timer. Following are input functions:

Function

Enable Window

GetActive Window

GetCapture

GetCurrentTime

GetDoubleClickTime

GetFocus

GetTickCount

Is Window Enabled

Kill Timer

ReleaseCapture

SetActive Window

SetCapture

SetDoubleClickTime

SetFocus

SetSysModalWindow

SetTimer

SwapMouseButton

Description

Enables or disables mouse and keyboard input to a given
window.

Returns a handle of the active window.

Returns a handle of the window with the mouse capture.

Retrieves the current Windows time.

Retrieves the current double-click time for the mouse.

Retrieves the handle of the window that currently has the
input focus.

Returns the number of timer ticks recorded since the system
was started.

Determines whether the specified window is enabled for
mouse and keyboard input.

Removes the specified timer event.

Releases mouse input and restores normal input processing.

Makes a window the active window.

Causes mouse input to be sent to a specified window.

Sets the double-click time for the mouse.

Assigns the input focus to a specified window.

Makes the specified window a system modal window.

Creates a system timer.

Reverses the actions of the left and right mouse buttons.

For detailed information about the input functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1.5 Hardware Functions
Hardware functions alter the state of input devices and obtain state information.
Windows uses the mouse and the keyboard as input devices. Following are hard
ware functions:

Function

EnableHardwarelnput

GetAsyncKeyState

GetlnputState

GetKBCodePage
GetKeyboardState
GetKeyNameText

GetKeyState

Map VirtualKey

OemKeyScan

SetKeyboardState

VkKeyScan

Chapter 1 Window Management 37

Description

Enables or disables mouse and keyboard input throughout
the application.

Returns interrupt-level information about the key state.

Returns nonzero ifthere is mouse or keyboard input.

Determines which code-page tables are loaded.

Copies an array that contains the state of each key.

Retrieves a string specifying the name of a key from a list
maintained by the keyboard driver.

Retrieves the state of a virtual key.

Accepts a virtual-key code or scan code for a key and
returns the corresponding scan code, virtual-key code, or
ASCII value.

Maps the ASCII values of OEM character codes 0 through
OxOFF into the OEM scan codes and shift states. For
more information about the OEM character set, see the
Microsoft Windows Guide to Programming.

Sets the state of one or more keys by altering values in an
array.

Translates a Windows character to the corresponding
virtual-key code and shift state for the current keyboard.

For detailed information about the hardware functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1. 6 Painting
This section describes the system display and the preparation of windows for paint
ing and other general-purpose graphics operations.

1.6.1 How Windows Manages the Display
The system display is the principal display device for all applications running with
Windows. All applications are free to display some form of output on the system
display; but because many applications can run at one time, the complete system
display must be shared. Windows shares the system display by carefully managing
the access that applications have to it. Windows ensures that each application has
space to display output but does not draw in the space reserved for other applica
tions.

Windows manages the system display by using display contexts. The display con
text is a special device context that treats each window as a separate display sur
face. An application that retrieves a display context for a specific window has

38 Microsoft Windows Programmer's Reference

complete control of the system display within that window, but cannot access or
paint over any part of the display outside the window. With a display context,
an application can use GDI painting functions, as well as the painting functions
described in Section 1.6.14, "Painting Functions," to draw in the given window.

1. 6. 2 Display Context Types
There are four types of display contexts: common, class, private, and window. The
common, class, and private display contexts permit drawing in the client area of a
given window. The window display context permits drawing anywhere in the win
dow. When a window is created, Windows assigns a common, class, or private dis
play context to it, based on the type of display context specified in that window's
class style. A window display context can be used for painting within a window's
nonclient area.

1.6.2.1 Common Display Context
A common display context is the default context for all windows. Windows
assigns a common display context to the window if a display-context type is not
explicitly specified in the window's class style.

A common display context permits drawing in a window's client area, but it is
not immediately available for use by a window. A common display context must
be retrieved from a cache of display contexts before a window can carry out any
drawing in its client area. The GetDC or BeginPaint function retrieves the display
context and returns a handle of the context. The handle can be used with GDI func
tions to draw in the client area of the given window. After drawing is complete, an
application must use the ReleaseDC or EndPaint function to return the context to
the cache. After the context is released, drawing cannot occur until another display
context is retrieved.

When a common display context is retrieved, Windows gives it default selections
for the tools currently available to carry out the actual drawing. The default selec
tions for a common display context are as follows:

Attribute

Background color

Background mode

Bitmap

Brush

Brush origin

Default

Background color setting from Windows Control Panel
(typically, white).

OPAQUE.

No default.

WHITE_BRUSH.

(0,0).

Attribute

Clipping region

Color palette

Current pen position

Device origin

Drawing mode

Font

Intercharacter spacing

Mapping mode

Pen

Polygon-filling mode

Relative-absolute flag

Stretching mode

Text color

Viewport extent

Viewport origin

Window extent

Window origin

Chapter 1 Window Management 39

Default

Entire client area with the update region clipped as appro
priate. Child and pop-up windows in the client area may also
be clipped.

DEFAULT_PALETTE.

(0,0).

Upper-left corner of client area.

R2_COPYPEN.

SYSTEM_FONT (SYSTEM_FIXED_FONT for applica
tions written to run with Windows versions 3.0 or earlier).

0.

MM_TEXT.

BLACK_PEN.

ALTERNATE.

ABSOLUTE.

BLACKONWHITE.

Text color setting from Control Panel (typically, black).

(1, 1).

(0,0).

(1,1).

(0,0).

An application can modify the attributes of the display context by using the selec
tion functions and display-context attribute functions. (For more information about
these functions, see the Microsoft Windows Programmer's Reference, Volume 2.)
For example, applications typically change the selected pen, brush, and font.

When a common display context is released, the current selections, such as map
ping mode and clipping region, are lost. Windows does not preserve the previous
selections of a common display context. Applications that modify the attributes of
a common display context must do so each time another context is retrieved.

1.6.2.2 Class Display Context
A window has a class display context if the window class specifies the
CS_CLASSDC style. A class display context is shared by all windows in a given
class. A class display context is not part of the display context cache. Instead,
Windows specifically allocates a class context for exclusive use by the window
class.

A class display context must be retrieved before it can be used, but it does not
have to be released after use. As long as only one window from the class uses the
context, the class display context can be kept and reused. If another window in

40 Microsoft Windows Programmer's Reference

the class needs to use the context, that window must retrieve it before any drawing
occurs. Retrieving the context sets the correct device origin and clipping region for
the new window and ensures that the context is applied to the correct window. An
application can use the GetDC or BeginPaint function to retrieve a handle of the
class display context. The ReleaseDC and EndPaint functions have no effect on a
class display context.

A class display context is given the same default selections as a common display
context when the first window of the class is created. These selections can be mod
ified at any time. Windows preserves all new selections made for the class display
context, except for the clipping region and device origin, which are adjusted for
the current window when the context is retrieved. This means a change made by
one window applies to all windows that subsequently use the context.

Note Changing the mapping mode of a class display context may have an un
desirable effect on how a window's background is erased. For more information,
see Section 1.6.7, "Window Background," and Chapter 2, "Graphics Device
Interface."

1.6.2.3 Private Display Context
A window has a private display context if the window class specifies the
CS_OWNDC style. A private display context is used exclusively by a given win
dow. A private display context is not part of the display context cache. Instead,
Windows specifically allocates the context for exclusive use by the window.
Although using private display contexts is convenient, they are expensive in terms
of system resources, so an application should use them sparingly.

A private display context needs to be retrieved only once. Thereafter, it can be
kept and used any number of times by the window. Windows automatically up
dates the context to reflect changes to the window, such as moving or sizing. An
application can use the GetDC or BeginPaint function to retrieve a handle of a pri
vate display context. The ReleaseDC and EndPaint functions have no effect on a
private display context.

A private display context is given the same default selections as a common display
context when the window is created. These selections can be modified at any time.
Windows preserves any new selections made for the context. New selections, such
as of a clipping region or brush, remain selected until the window specifically
makes a change.

Note Changing the mapping mode of a private display context may have an un
desirable effect on how the window's background is erased. For more information,
see Section 1.6.7, "Window Background," and Chapter 2, "Graphics Device
Interface."

Chapter 1 Window Management 41

1.6.2.4 Window Display Context
A window display context permits painting anywhere in a window, including the
title bar, menus, and scroll bars. Its origin is the upper-left corner of the window
instead of the upper-left comer of the client area.

The GetWindowDC function retrieves a window display context from the same
cache as it does common display contexts. Therefore, a window that uses a win
dow display context must release it with the ReleaseDC function immediately
after drawing.

Windows always sets the current selections of a window display context to the
same default selections as a common display context and does not preserve any
change the window may have made to these selections. The CS_OWNDC and
CS_CLASSDC class styles have no effect on the window display context.

A window display context is intended to be used for special painting within a win
dow's nonclient area. Because painting in nonclient areas of overlapped windows
is not recommended, most applications reserve a display context for designing cus
tom child windows. For example, an application can use the display context to
draw a custom border around the window. In such cases, the window usually
processes the WM_NCPAINT message instead of passing it to the DetWindow
Proc function. For applications that do not process WM_NCPAINT messages but
still need to paint within the nonclient area, the GetSystemMetrics function can
be used to retrieve the dimensions of various parts of the nonclient area, such as
the title bar, menu bar, and scroll bars.

1.6.3 Display-Context Cache
Windows maintains a cache of display contexts that it uses for common display
contexts and window display contexts. This cache contains five display contexts,
which means only five common display contexts can be active at any one time. To
prevent more than five from being retrieved, a window that uses a common or
window display context must release that context immediately after drawing.

If a window fails to release a common display context, all five display contexts
may eventually be active and unavailable for any other window. In such a case,
Windows ignores all subsequent requests for a common display context. In the
retail version of Windows, the system appears to be deadlocked, while the debug
ging version of Windows undergoes a fatal exit, alerting you of a problem.

The ReleaseDC function releases a display context and returns it to the cache.
Class and private display contexts are individually allocated for each class or win
dow; they do not belong to the cache, so they do not need to be released after use.

42 Microsoft Windows Programmer's Reference

1.6.4 Painting Sequence
To manage the system display, Windows carries out many operations that affect
the contents of the client area. If Windows moves, sizes, or alters the appearance
of the screen, the change may affect a given window. If so, Windows marks the
area changed by the operation as ready for updating and, at the next opportunity,
sends a WM_PAINT message to the window so that it can update the window in
the update region. If a window paints in its client area, it must call the BeginPaint
function to retrieve a handle of a display context, must update the changed area as
defined by the update region, and finally, must call the EndPaint function to
complete the operation.

A window can paint within its client area at any time-that is, at times other than
in response to a WM_P AINT message. The only requirement is that it retrieve a
display context for the client area before carrying out any operations.

1.6.5 WM_PAINT Message
The WM_PAINT message is a request from Windows to a given window to up
date its display. Windows sends a WM_PAINT message to a window whenever
it is necessary to repaint a portion of the window. When a window receives a
WM_PAINT message, it should retrieve the update region by using the Begin
Paint function, and it should carry out whatever operations are necessary to up
date that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually generate
WM_PAINT messages. Instead, Windows accumulates the changes made by these
functions and its own changes while a window processes other messages in its
message queue. Postponing the WM_PAINT message lets a window process all
changes at once instead of updating bits and pieces in time-consuming individual
steps.

To direct Windows to send a WM_PAINT message, an application can use the
Update Window function. The Update Window function sends the message
directly to the window, regardless of the number of other messages in the applica
tion's message queue. Update Window is typically used when a window needs to
update its client area immediately, such as just after the window is created.

Once a window receives a WM_P AINT message, it must call the BeginPaint func
tion to retrieve the display context for the client area and to retrieve other informa
tion such as the update region and whether the background has been erased.

Windows automatically selects the update region as the clipping region of the dis
play context. Since GDI discards (clips) drawing that extends outside the clipping
region, only drawing that is in the update region is actually visible. For more infor
mation about the clipping region, see Chapter 2, "Graphics Device Interface."

Chapter 1 Window Management 43

The BeginPaint function clears the update region to prevent the same region from
generating subsequent WM_PAINT messages.

After completing the painting operation, the window must call the EndPaint func
tion to release the display context.

1.6.6 Update Region
An update region defines the part of the client area that is marked for painting on
the next WM_PAINT message. The purpose of the update region is to save appli
cations the time it takes to paint the entire contents of the client area. If only the
part that needs painting is added to the update region, only that part is painted. For
example, if a word changes in the client area of a word-processing application,
only the word needs to be painted, not the entire line of text. This saves the time it
takes the application to draw the text, especially if there are many different sizes
and fonts.

The InvalidateRect and InvalidateRgn functions add a given rectangle or region
to the update region. The rectangle or region must be given in client coordinates.
The update region itself is defined in client coordinates. Windows adds its own
rectangles and regions to a window's update region after operations such as
moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given rectangle or region
from the update region. These functions are typically used when the window has
updated a specific part of the display in the update region before receiving the
WM_PAINT message.

The GetUpdateRect function retrieves the smallest rectangle that encloses the
entire update region. The GetUpdateRgn function retrieves the update region
itself. These functions can be used to compute the current size of the update region
to determine if painting is required.

1.6.7 Window Background
The window background is the color or pattern the client area is filled with
before a window begins painting in the client area. Windows paints the back
ground for a window or gives the window the opportunity to do so by sending a
WM_ERASEBKGND message to the window when the application calls the
BeginPaint function.

The background is important because if it is not erased, the client area will con
tain whatever was originally on the screen before the window was moved there.
Windows erases the background by filling it with the background brush specified
by the window's class.

44 Microsoft Windows Programmer's Reference

Windows applications that use class or private display contexts should be careful
about erasing the background. Windows assumes the background is to be com
puted by using the MM_ TEXT mapping mode. If the display context has any
other mapping mode, the area erased may not be within the visible part of the
client area.

1.6.8 Brush Alignment
Brush alignment is particularly important on the system display where scrolling
and moving are commonplace. A brush is a pattern of bits with a minimum size of
8-by-8 bits. GDI paints with a brush by repeating the pattern again and again
within a given rectangle or region. If the region is moved by an arbitrary amount
for example, if the window is scrolled-and the brush is used again to fill empty
areas around the original area, there is no guarantee that the original pattern and
the new pattern will be aligned. For example, if the scroll moves the original filled
area up one pixel, the intersection of the original area and any new painting will be
out of alignment by one pixel, or bit. Depending on the pattern, this may have an
undesirable visual effect. For more information about brushes, see Chapter 2,
"Graphics Device Interface."

To ensure that a brush is aligned after a window is moved, an application must
take the following steps:

1. Call the SelectObject function to select a different brush to be the current brush.

2. Call the SetBrushOrg function to realign the current brush.

3. Call the UnrealizeObject function to realign the origin of the original brush
when it is selected next. (UnrealizeObject should not be used on stock objects,
only on brushes created by the application.)

4. Call the SelectObject function to select the original brush.

1.6.9 Painting Rectangular Areas
The FillRect, FrameRect, and InvertRect functions provide an easy way to carry
out painting operations on rectangles in the client area.

The FillRect function fills a rectangle with the color and pattern of a given brush.
This function fills all parts of the rectangle, including the edges or borders.

The FrameRect function uses a brush to draw a border around a rectangle. The
border width and height is one unit.

The InvertRect function inverts the contents of the given rectangle. On mono
chrome displays, white pixels become black, and vice versa. On color displays, the

Chapter 1 Window Management 45

results depend on the method used by the display to generate color. In either case,
calling InvertRect twice with the same rectangle restores the screen to its original
colors.

1.6.10 Drawing Icons
The Draw Icon function draws an icon at a given location in the client area. An
icon is a bitmap that a window uses as a symbol to represent an item, such as an
application or a warning.

You can use the Image Editor to create an icon and then use Microsoft Windows
Resource Compiler (RC) to add the icon to your application's resources. Your
application can then call the Loadlcon function to load the icon into memory.

Applications can also call the Createlcon function to create an icon and can mod
ify a previously loaded or created icon at any time. An icon resource is in global
memory, and the icon's handle is the handle of that memory. An application can
free memory used to store an icon created by Createlcon by calling the Delete
Icon function.

1.6.11 Drawing Formatted Text
The DrawText function formats and draws text within a given rectangle in the
client area. This function provides simple text processing that most applications
can use to display text. DrawText output is similar to the output generated by a
terminal, except it uses the selected font and can clip the text if it extends outside
a given rectangle. DrawText provides many different formatting styles. For a list
of the text formatting styles, see the description of the DrawText function in the
Microsoft Windows Programmer's Reference, Volume 2.

The DrawText function uses the currently selected font, so applications can draw
formatted text in a font other than the system font.

DrawText does not hyphenate, and although it can left align, right align, or center
text, it cannot combine alignment styles. In other words, it cannot align to both the
left and right.

DrawText recognizes a number of control characters and carries out special
actions when it encounters them. The control characters and their respective
actions are as follows:

Windows character

Carriage return (13)

Action

Interpreted as a line-break character. The text is immedi
ately broken and continued on the next line down in the
rectangle.

46 Microsoft Windows Programmer's Reference

Windows character

Linefeed (10)

Space (32)

Tab (9)

1.6.12 Drawing Gray Text

Action

Interpreted as a line-break character. The text is immedi
ately broken and continued on the next line down in the
rectangle.

A carriage return-linefeed character combination is inter
preted as a single line-break character.

Interpreted as a wordwrap character if the
DT_ WORDBREAK style is given. If the text is too
long to fit on the current line in the formatting rectangle,
the line is broken at the wordwrap character that is closest
to the end of the line.

Expanded into a given number of spaces if the
DT_EXPANDTABS style is given. The number of
spaces depends on which tab-stop value is given with the
DT_TABSTOP style. The default value is eight.

An application can draw gray text by calling the SetTextColor function to set the
current text color to COLOR_GRAYTEXT, the solid gray system color used to
draw disabled text. However, if the current display driver does not support a solid
gray color, this value is set to zero.

The GrayString function is a multiple-purpose function that gives applications
another way to gray text or carry out other customized operations on text or bit
maps before drawing the result in a client area. To gray text, the function creates a
memory bitmap, draws the string in the bitmap, and then grays the string by com
bining it with a gray brush. The GrayString function finally copies the gray text
to the display. However, an application can intercept or modify each step of this
process to carry out custom effects, such as changing the gray brush to a patterned
brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the selected font of
the given display context. First, GrayString sets text color to black. It then creates
a bitmap and uses the TextOut function to write a given string to the bitmap. It
then uses the PatBlt function and a gray brush to gray the text, and uses the BitBlt
function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has MM_ TEXT
mapping mode. Other mapping modes cause undesirable results.

GrayString lets an application modify this graying procedure in three ways: by
defining an additional brush to be combined with the text before the text is dis
played, by replacing the call to the TextOut function with a call to an application
supplied function, and by disabling the call to the PatBlt function.

Chapter 1 Window Management 47

If an additional brush is combined with text, it is defined for the hbr parameter of
GrayString. The brush is combined with the text as the text is copied to the client
area by the BitBlt function. The additional brush is intended to be used to give the
text a desired color, because the bitmap used to draw the text is a monochrome
bitmap.

If an application-supplied function replaces TextOut, it is defined for the gsprc
parameter of GrayString. When gsprc is not NULL, GrayString automatically
calls the application-supplied function instead of the TextOut function and passes
it a handle of the display context for the memory bitmap and the long pointer and
count passed to GrayString. The function can carry out any operation and inter
pret the long pointer and count in any way. For example, a negative count could be
used to indicate that the long pointer points to an icon handle that signals the appli
cation-supplied function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out, GrayString assumes it is
successful if the application-supplied function returns a nonzero value.

GrayString suppresses graying if it receives a cch parameter equal to -1 and the
application-supplied function returns zero. This provides a way to combine custom
patterns with the text without interference from the gray brush.

1.6.13 Nonclient-Area Painting
Windows sends a WM_NCPAINT message to the window whenever a part of the
nonclient area of the window, such as the title bar, menu bar, or window frame,
needs painting. Processing this message is not recommended because a window
that does so must be able to paint all the required parts of the nonclient area for the
window. Unless the Windows application is creating a custom nonclient area for a
child window, a window should pass this message to the DefWindowProc func
tion for default processing.

1.6.14 Painting Functions
Painting functions prepare a window for painting and carry out some useful
general-purpose graphics operations. Although all the paint functions are specifi
cally intended for the system display, some can be used for other output devices.
Following are the painting functions:

Function

BeginPaint

DrawFocusRect

Draw Icon

DrawText

EndPaint

Description

Prepares a window for painting.

Draws a rectangle in the style used to indicate focus.

Draws an icon.

Draws characters of a specified string.

Marks the end of window repainting.

48 Microsoft Windows Programmer's Reference

Function

ExcludeUpdateRgn

FillRect

FrameRect

GetDC

GetDCEx

GetUpdateRect

GetUpdateRgn

Get Window DC

GrayString

InvalidateRect

InvalidateRgn

InvertRect

Lock Window Update

Redraw Window

ReleaseDC

Update Window

ValidateRect

ValidateRgn

Description

Prevents drawing within invalid areas of a window.

Fills a given rectangle by using the specified brush.

Draws a border for the given rectangle.

Retrieves the display context for the client area. For more
information about device contexts, see Section 1.2.12,
"Class and Private Display Contexts," and Section 1.6.2,
"Display Context Types."

Retrieves the display context for the client area (as does the
GetDC function). For more information about device con
texts, see Section 1.2.12, "Class and Private Display Con
texts," and Section 1.6.2, "Display Context Types."

Copies the dimensions of a window region's bounding rect
angle.

Copies a window's update region.

Retrieves the display context for an entire window. For more
information about device contexts, see Section 1.2.12,
"Class and Private Display Contexts," and Section 1.6.2,
"Display Context Types."

Writes the characters of a string by using gray text.

Marks a rectangle for repainting.

Marks a region for repainting.

Inverts the display bits of the specified rectangle.

Disables or reenables drawing in a window.

Updates a rectangle or region within a window's client area.

Releases a display context. For more information about
device contexts, see Section 1.2.12, "Class and Private Dis
play Contexts," and Section 1.6.2, "Display Context Types."

Notifies the application when parts of a window need
redrawing.

Releases the specified rectangle from repainting.

Releases the specified region from repainting.

For detailed information about the painting functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1. 7 Dialog Boxes
A dialog box is a temporary window that Windows creates for special-purpose
input and then destroys immediately after use. An application typically uses a
dialog box to prompt the user for additional information about a current command
selection.

Chapter 1 Window Management 49

1. 7 .1 Uses for Dialog Boxes
For convenience and to keep from introducing device-dependent values into the
application code, applications use dialog boxes instead of creating their own win
dows. This device independence is maintained by using logical coordinates in the
dialog box template. A dialog box is convenient to use because all aspects of the
dialog box, except how to carry out its tasks, are predefined. A dialog box supplies
a window class and procedure; the window for the dialog box is created automat
ically. The application supplies a dialog box procedure to carry out tasks and a
dialog box template that describes the dialog box style and content. For additional
information about dialog boxes, see the Microsoft Windows Guide to Program
ming.

1. 7 .1.1 Mode less Dialog Box
A modeless dialog box allows the user to supply information to the dialog box and
return to the previous task without canceling or removing the dialog box. A mode
less dialog box makes it possible for a user to supply more than one piece of infor
mation about the current task without having to select a command from a menu
each time. For example, a modeless dialog box is often used with a text-search
command in word-processing applications. The dialog box remains displayed
while the search is carried out. The user can then return to the dialog box and
search for the same word again, or change the entry in the dialog box and search
for a new word.

An application with a modeless dialog box processes messages for that box by
using the lsDialogMessage function inside the main message loop. The dialog
box procedure of a modeless dialog box must send a message to the parent win
dow when it has input for the parent window. The dialog box procedure must also
destroy the dialog box when it is no longer needed. An application can call the
DestroyWindow function to destroy a modeless dialog box. The application must
not call the EndDialog function to destroy a modeless dialog box.

1. 7 .1.2 Modal Dialog Box
A modal dialog box requires the user to respond to a request before the application
continues. Typically, a modal dialog box is used when a chosen command needs
additional information before it can proceed.

A modal dialog box disables its parent window, and it creates its own message
loop, temporarily taking control of the application's message queue from the appli
cation's main message loop.

By default, a modal dialog box cannot be moved by the user. An application can
create a movable modal dialog box by specifying the WS_CAPTION window
style.

50 Microsoft Windows Programmer's Reference

The dialog box is displayed until the dialog box procedure calls the EndDialog
function, or until Windows is closed. The parent window remains disabled unless
the dialog box enables it. Note that enabling the parent window is not recom
mended because it defeats the purpose of the modal dialog box.

1. 7 .1.3 System-Modal Dialog Box
A system-modal dialog box is identical to a modal dialog box except that all win
dows, not just the parent window, are disabled. System-modal dialog boxes must
be used with care because they effectively shut down the system until the user sup
plies the required information.

1. 7 .2 Creating a Dialog Box
A dialog box is typically created by using either the CreateDialog or DialogBox
function. These functions load a dialog box template from the application's execut
able file and then create a pop-up window that matches the template's specifica
tions. The dialog box belongs to the predefined dialog box class unless another
class is explicitly defined. The DialogBox function creates a modal dialog box; the
CreateDialog function creates a modeless dialog box.

Use the WS_ VISIBLE style for the dialog box template if you want the dialog box
to appear upon creation.

1 . 7. 2 .1 Dialog Box Template
The dialog box template is a description of the dialog box: its height and width,
the controls it contains, its style, the type of border it uses, and so on. A template
is an application's resource. You use the Resource Compiler to convert the text
description of the template to the required binary form and to add that binary form
to the application's executable file.

Because a dialog box is system-independent, you can easily modify the template
without changing the source code.

The CreateDialog or DialogBox function loads the resource into memory when it
creates the dialog box and then uses the information in the dialog box template to
create the dialog box, position it, and create and position the controls for the dialog
box.

1. 7 .2 .2 Dialog Box Measurements
Dialog box and control dimensions and coordinates are device-independent. Be
cause a dialog box may be displayed on system displays that have widely varying
pixel resolutions, dialog box dimensions are specified in system-character widths

Chapter 1 Window Management 51

and heights instead of pixels. This ensures the best possible appearance of charac
ters. One unit in the x-direction is equal to one-fourth of the dialog box base width
unit. One unit in the y-direction is equal to one-eighth of the dialog box base
height unit. The dialog box base units are computed from the height and width
of the system font; the GetDialogBaseUnits function returns the dialog box base
units for the current display. Applications can convert these measurements to
pixels by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the height of a full
screen window, and it does not allow the width of a dialog box to be greater than
the width of the screen.

1. 7 .3 Return Values from a Dialog Box
The DialogBox function that creates a modal dialog box does not return until the
dialog box procedure has called the EndDialog function to signal the destruction
of the dialog box. When control finally returns from the DialogBox function, the
return value is equal to the value specified in the EndDialog function. This means
a modal dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way because they do not use
the EndDialog function to close and do not return control in the same way a
modal dialog box does. Instead, a modeless dialog box returns values to its parent
window by using the SendMessage function to send a notification message to the
parent window. Although Windows does not explicitly define the content of a noti
fication message, most applications use a WM_ COMMAND message with an
integer value that identifies the dialog box in the wParam parameter and the return
value in the !Param parameter. A modal dialog box can also use this technique to
return values to its parent window before closing.

1. 7 .4 Controls in a Dialog Box
A control is a child window that belongs to a predefined or application-defined
window class and that gives the user a method of supplying input to the applica
tion. A dialog box can contain any number and any types of controls. Examples of
controls are push buttons and edit controls. Most dialog boxes contain one or more
controls of the predefined class. The number of controls, the order in which they
should be created, and the location of each in the dialog box are defined by the
control statements given in the dialog box template.

1. 7 .4.1 Control Identifiers
Every control in a dialog box needs a unique control identifier, or ID, to distin
guish it from other controls. Because all controls send information to the dialog

52 Microsoft Windows Programmer's Reference

box procedure through WM_ COMMAND messages, the control identifiers are
essential for the dialog box to determine which control sent a given message.

Each control in the dialog box must have a unique identifier. If a dialog box has a
menu bar, there must be no conflict between menu-item identifiers and control
identifiers. Because Windows sends menu input to a dialog box procedure as
WM_ COMMAND messages, conflicts with menu and control identifiers can
cause errors. Menus in dialog boxes are not recommended.

The dialog box procedure usually identifies each dialog box control by using its
control identifier. Occasionally the dialog box procedure requires the window
handle that was given to the control when it was created. The dialog box proce
dure can retrieve this window handle by using the GetDlgltem function.

1.7.4.2 The WS_ TABSTOP and WS_GROUP Control Styles
The WS_TABSTOP style specifies that the user can move the input focus to the
given control by pressing the TAB key or SHIFT+TAB keys. Typically, every control
in the dialog box has this style, so the user can move the input focus from one con
trol to the other. If two or more controls are in the dialog box, the TAB key moves
the input focus to the controls in the order in which they have been created. The
SHIFT+TAB keys move the input focus in reverse order. For modal dialog boxes, the
TAB and SHIFT+TAB keys are automatically enabled for moving the input focus. For
modeless dialog boxes, the lsDialogMessage function must be used to filter mes
sages for the dialog box and to process these keystrokes. Otherwise, the keys have
no special meaning and the WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input focus within a
group of controls by using the arrow keys. The first control in a group of controls
must have the WS_GROUP style. The next control that has the WS_GROUP style
marks the bottom boundary of the group; the input focus cannot be moved to this
control by using the arrow keys. The DOWN ARROW and RIGHT ARROW keys move
the input focus to controls in the order in which they have been created. The UP

ARROW and LEFT ARROW keys move the input focus in reverse order. For modal
dialog boxes, the arrow keys are automatically enabled for moving the input focus.
For modeless dialog boxes, the lsDialogMessage function must be used to filter
messages for the dialog box and to process these keystrokes. Otherwise, the keys
have no special meaning and the WS_GROUP style is ignored.

1.7.4.3 Buttons
Buttons are the principal interface of a dialog box. Almost all dialog boxes have
at least one push button, and most have one default push button (a push button
having the BS_DEFPUSHBUTTON style) and one or more other push buttons.
Many dialog boxes have collections of radio buttons enclosed in group boxes or
have lists of check boxes.

Chapter 1 Window Management 53

Most modal or modeless dialog boxes that use the special keyboard interface
have a default push button whose control identifier is set to IDOK so that the
action the dialog box procedure takes when the button is chosen is identical to the
action taken when the ENTER key is pressed. There can be only one button with the
default style; however, an application can assign the default style to any button at
any time. Most dialog boxes that use the special keyboard interface can also set
the control identifier of another push button to IDCANCEL so that the action of
the ESC key is duplicated by choosing that button.

When a dialog box first starts, the dialog box procedure can set the initial state of
each button by using the CheckDlgButton function, which sets or clears the but
ton state. This function is most useful when used to set the state of radio buttons or
check boxes. If the dialog box contains a group of radio buttons in which only one
button should be set at any given time, the dialog box procedure can use the
CheckRadioButton function to set the appropriate radio button and automatically
clear any other radio button.

Before a dialog box terminates, the dialog box procedure can check the state of
each button control by using the IsDlgButtonChecked function, which returns the
current state of the button. A dialog box typically saves this information to initial
ize the buttons the next time the dialog box is created.

1. 7 .4.4 Edit Controls
Many dialog boxes have edit controls that let the user supply text as input. Most
dialog box procedures initialize an edit control when the dialog box first starts. For
example, the dialog box procedure may place a proposed filename in the control
that the user can select, modify, or replace. The dialog box procedure can set the
text in an edit control by using the SetDlgltemText function, which copies text
from a given buffer to the edit control. When the edit control receives the input
focus, the complete text is automatically selected for editing.

Because edit controls do not automatically return their text to the dialog box, the
dialog box procedure must retrieve the text before terminating. It can retrieve the
text by using the GetDlgltemText function, which copies the edit-control text to a
buffer. The dialog box procedure typically saves this text to initialize the edit con
trol later or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog
box procedure can retrieve a number from an edit control by using the GetDlg
ltemlnt function, which retrieves the text from the edit control and converts the
text to a decimal value. The user enters the number in decimal digits. It can be
either signed or unsigned. The dialog box procedure can display an integer by
using the SetDlgltemlnt function. SetDlgltemlnt converts a signed or unsigned
integer to a string of decimal digits.

54 Microsoft Windows Programmer's Reference

1. 7 .4.5 List Boxes and Directory Listings
Some dialog boxes display lists, such as a list of filenames, from which the user
can select one or more items. To display a list of filenames, a dialog box typically
uses a list box and the DlgDirList and DlgDirSelect functions. The DlgDirList
function automatically fills a list box with the filenames in the current directory.
The DlgDirSelect function retrieves the selected filename from the list box. To
gether, these two functions provide a convenient way for a dialog box to display a
directory listing that makes it possible for the user to select a file without having to
type the location and name of the file.

1. 7 .4.6 Combo Boxes
Another method for providing a list of items to a user is by using a combo box. A
combo box consists of either a static control or edit control combined with a list
box. The list box can be displayed at all times or pulled down by the user. If the
combo box contains a static control, that control always displays the current selec
tion (if any) from the list box portion of the combo box. If the combo box uses an
edit control, the user can type a selection; the list box highlights the first item (if
any) that matches what the user has entered in the edit control. The user can
choose the OK button or press ENTER to complete the choice.

1. 7 .4. 7 Owner-Drawn Dialog Box Controls
List boxes, combo boxes, and buttons can be designated as owner-drawn controls
by creating them with the appropriate style. Following are available styles:

Style

LBS_OWNERDRAWFIXED

LBS_OWNERDRA WVARIABLE

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

BS_OWNERDRAW

Meaning

Creates an owner-drawn list box with items
that have the same, fixed height.

Creates an owner-drawn list box with items
that have different heights.

Creates an owner-drawn combo box with items
that have the same, fixed height.

Creates an owner-drawn combo box with items
that have different heights.

Creates an owner-drawn button.

When a control has the owner-drawn style, Windows handles the user's interac
tion with the control as usual, performing such tasks as detecting when a user has
chosen a button and notifying the button's owner of the event. However, because
the control is owner-drawn, the owner of the control is completely responsible for
the visual appearance of the control. Owner-drawn list boxes and combo boxes
can control the display of only the individual elements within a list box or combo
box, not the entire list box or combo box.

Chapter 1 Window Management 55

When Windows first creates a dialog box containing owner-drawn controls, it
sends the owner a WM_MEASUREITEM message for each owner-drawn control.
The lParam parameter of this message contains a pointer to a MEASUREITEM
STRUCT structure. When the owner receives the message for a control, the
owner fills in the appropriate members of the structure and returns. This informs
Windows of the dimensions of the control or of its items so that Windows can
appropriately detect the user's interaction with the control. If a list box or
combo box is created with the LBS_OWNERDRA WV ARIABLE or
CBS_OWNERDRA WV ARIABLE style, the WM_MEASUREITEM message
is sent to the owner for each item in the control, because each item can differ in
height. Otherwise, this message is sent once for the entire owner-drawn control.

Whenever an owner-drawn control needs to be redrawn, Windows sends the
WM_DRA WITEM message to the owner of the control. The lParam parameter of
this message contains a pointer to a DRA WITEMSTRUCT structure that con
tains information about the drawing required for the control. Similarly, if an item
is deleted from a list box or combo box, Windows sends the WM_DELETEITEM
message containing a pointer to a DELETEITEMSTRUCT structure that de
scribes the deleted item.

1. 7 .4.8 Messages for Dialog Box Controls
Many controls recognize predefined messages that, when sent to the control, cause
it to carry out some action. A dialog box procedure can send a message to a con
trol by supplying the control identifier and using the SendDlgltemMessage func
tion, which is identical to the SendMessage function except that it uses a control
identifier instead of a window handle to identify the control that is to receive the
message.

1. 7 .5 Keyboard Interface for Dialog Boxes
Windows provides a special keyboard interface for modal dialog boxes and mode
less dialog boxes that use the IsDialogMessage function to filter messages. This
keyboard interface carries out special processing for several keys and generates
messages that correspond to certain buttons in the dialog box or change the input
focus from one control to another. The keys used in this interface and the respec
tive actions are as follows:

Key

DOWN ARROW

ENTER

ESC

Action

Moves the input focus to the next control in the group.

Sends a WM_ COMMAND message to the dialog box procedure.
The wParam parameter is set to 1 or the default button.

Sends a WM_ COMMAND message to the dialog box procedure.
The wParam parameter is set to 2.

56 Microsoft Windows Programmer's Reference

Key

LEFT ARROW

RIGHT ARROW

SHIFT+TAB

TAB

UPARROW

Action

Moves the input focus to the previous control in the group.

Moves the input focus to the next control in the group.

Moves the input focus to the previous control that has the
WS_TABSTOP style.

Moves the input focus to the next control that has the
WS_TABSTOP style.

Moves the input focus to the previous control in the group.

The TAB key and the arrow keys have no effect if the .controls in the dialog box do
not have the WS_TABSTOP or WS_GROUP style. The keys have no effect in a
modeless dialog box if the IsDialogMessage function is not used to filter mes
sages for the dialog box.

Note For applications that use accelerator keys and have modeless dialog boxes,
the IsDialogMessage function must be called before the TranslateAccelerator
function. Otherwise, the keyboard interface for the dialog box may not be
processed correctly.

Applications that have modeless dialog boxes and need those boxes to have the
special keyboard interface must filter all messages retrieved from the applica
tion's message queue through the IsDialogMessage function before carrying out
any other processing. This means that the application must pass the message to
lsDialogMessage immediately after retrieving the message by using the Get
Message or PeekMessage function. Most applications that have modeless dialog
boxes incorporate the IsDialogMessage function as part of the main message loop
in the WinMain function. The IsDialogMessage function automatically processes
any messages for the dialog box. This means that if the function returns a nonzero
value, the message does not require additional processing and must not be passed
to the TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes ALT+application-defined mnemonic
key sequences.

In modal dialog boxes, the arrow keys have specific functions that depend on the
controls in the box. For example, the keys move the input focus from control to
control in group boxes, move the cursor in edit controls, and scroll the contents of
list boxes. The arrow keys cannot be used to scroll the contents of any dialog box
that has its own scroll bars. If a dialog box has scroll bars, the application must
provide an appropriate keyboard interface for the scroll bars. Note that the mouse
interface for scrolling is available if the system has a mouse.

Chapter 1 Window Management 57

1. 7 .6 Functions for Dialog Boxes
The functions listed in this section create, alter, test, and destroy dialog boxes and
controls within dialog boxes. Following are the functions for dialog boxes:

Function

CheckDigButton

CheckRadioButton

CreateDialog

CreateDialoglndirect
CreateDialoglndirectParam

CreateDialogParam

DefDlgProc

DialogBox
DialogBoxlndirect

DialogBoxlndirectParam

DialogBoxParam
DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

EndDialog

GetDialogBaseUnits

GetDlgCtrlID
GetDigltem

GetDlgltemlnt

GetDlgltemText

GetNextDlgGroupltem

Description

Places or removes a check mark, or changes the state
of a three-state button or check box.

Selects a specified radio button and clears all others.

Creates a modeless dialog box.

Creates a modeless dialog box from a template.

Creates a modeless dialog box from a template and
then passes data to it.

Creates a modeless dialog box and then passes data
to it.

Provides default processing for any Windows mes
sages that a dialog box with a private window class
does not process.

Creates a modal dialog box.

Creates a modal dialog box from a template.

Creates a modal dialog box from a template and then
passes data to it.

Creates a modal dialog box and then passes data to it.

Fills a list box with names of files matching a path.

Fills a combo box with names of files matching a
specified path and filename.

Copies the current selection from a list box to a
string.

Copies the current selection from a combo box to a
string.

Frees resources and destroys windows associated
with a modal dialog box.

Retrieves the base dialog units used by Windows
when creating a dialog box.

Returns the identifier of a control window.

Retrieves the handle of a dialog box control in the
given dialog box.

Translates the control text of a control into an integer
value.

Copies a control's text into a string.

Returns the window handle of the next item in a
group.

58 Microsoft Windows Programmer's Reference

Function

GetNextDlgTabltem

IsDialogMessage

IsDlgButtonChecked

MapDialogRect

SendDlgltemMessage

SetDlgltemlnt

SetDlgltemText

Description

Returns the window handle of the next or previous
item.

Determines whether a message is intended for the
given modeless dialog box.

Tests whether a button is selected.

Converts the dialog box coordinates to client coordi
nates.

Sends a message to a control within a dialog box.

Sets the title or text of a control to a string that repre
sents an integer.

Sets the title or text of a control to a string.

For detailed information about the functions for dialog boxes, see the Microsoft
Windows Programmer's Reference, Volume 2.

1.8 Scrolling
Scrolling is the movement of data in and out of the client area at the request of the
user. It is a way for the user to see a document or graphic in parts if Windows can
not fit the entire document or graphic inside the client area. A scroll bar allows the
user to control scrolling.

1.8.1 Standard Scroll Bars and Scroll-Bar Controls
A standard scroll bar is a part of the nonclient area of a window. It is created
with the window and displayed when the window is displayed. The sole purpose
of a standard scroll bar is to let users generate scrolling requests for the win
dow's client area. A window has standard scroll bars if it is created with the
WS_ VSCROLL or WS_HSCROLL style. A standard scroll bar is either vertical
or horizontal. A vertical scroll bar, if used, always appears at the right of the client
area; a horizontal scroll bar, if used, always appears at the bottom. A standard
scroll bar always has the standard scroll-bar height and width as defined by the
SM_CXVSCROLL and SM_CYHSCROLL system metric values. (For more
information, see the description of the GetSystemMetrics function in the
Microsoft Windows Programmer's Reference, Volume 2.)

A scroll-bar control is a control window that looks and acts like a standard scroll
bar. But unlike a standard scroll bar, a scroll-bar control is not part of any window.
As a separate window, a scroll-bar control can receive the input focus and indi
cates that it has the focus by displaying a flashing caret in the scroll box (also
called the thumb). When a scroll-bar control has the input focus, the user can
use the keyboard to direct the scrolling. Unlike standard scroll bars, a scroll-bar

Chapter 1 Window Management 59

control provides a built-in keyboard interface. Scroll-bar controls also can be used
for other purposes. For example, a scroll-bar control can be used to select values
from a range of values, such as a color from a spectrum of colors.

1.8.2 Scroll Box
The scroll box is the small rectangle in a scroll bar. It shows the approximate loca
tion within the current document or file of the data currently displayed in the client
area. For example, the scroll box is in the middle of the scroll bar when page three
of a five-page document is in the client area.

The SetScrollPos function sets the scroll box position in a scroll bar. Because
Windows does not automatically update the scroll box position when an applica
tion scrolls, SetScrollPos must be used to update the position. The GetScrollPos
function retrieves the current position.

A scroll box position is represented as an integer. The position is relative to the
left or upper end of the scroll bar, depending on whether the scroll bar is horizon
tal or vertical. The position must be within the scroll-bar range, which is defined
by minimum and maximum values. The positions are distributed equally along the
scroll bar. For example, if the range is 0 through 100, there are 101 positions along
the scroll bar, each equally spaced so that position 50 is in the middle of the scroll
bar. The initial range depends on the scroll bar. Standard scroll bars have an initial
range of 0 through 100; scroll-bar controls have an empty range (both minimum
and maximum values are 0) if no explicit range is given when the control is
created. An application can change the range by using the SetScrollRange func
tion to set new minimum and maximum values so that applications can change the
range at any time. The GetScrollRange function retrieves the current minimum
and maximum values. The minimum and maximum values can be any integers.
For example, a spreadsheet program with 255 rows can set the vertical scroll range
to 1 through 255.

If SetScrollPos specifies a position value that is less than the minimum or more
than the maximum, the minimum or maximum value is used instead. SetScrollPos
moves the scroll box along the scroll bar.

1.8.3 Scrolling Requests
A user makes a scrolling request by clicking in a scroll bar. Windows sends the re
quest to the given window in the form of WM_HSCROLL and WM_ VSCROLL
messages. The messages' lParam parameter contains a position value and the
handle of the scroll-bar control that generated the message (lParam is zero if a
standard scroll bar generated the message). The wParam parameter specifies the
type of scrolling; for example, the user may scroll up one line, scroll down a page,
or scroll to the bottom. The type of scrolling is determined by which area of the
scroll bar the user clicks.

60 Microsoft Windows Programmer's Reference

The user can also make a scrolling request by using the scroll box, the small
rectangle inside the scroll bar. The user moves the scroll box by moving the
mouse while holding the left mouse button down when the cursor is positioned
on the scroll box. The scroll bar sends SB_THUMBTRACK and
SB_THUMBPOSITION flags with a WM_HSCROLL or WM_ VSCROLL
message to an application as the user moves the scroll box. Each message speci
fies the current position of the scroll box.

1.8.4 Processing Scroll Messages
A window that permits scrolling needs a standard scroll bar or a scroll-bar control
to let the user generate scrolling requests, and it needs a window procedure to
process the WM_HSCROLL and WM_ VSCROLL messages that represent the
scrolling requests. Although the result of a scrolling request depends entirely on
how the window processes it, a window typically carries out a scroll operation by
moving through the application's displayed information in some direction from
the current location or to a known beginning or end and by displaying the data at
the new location. For example, a word-processing application can scroll to the
next line, the next page, or to the end of the document.

1.8.5 Scrolling the Client Area
The simplest way to scroll is to erase the current contents of the client area, and
then paint the new information. This is the method an application is likely to use
with SB_PAGEUP, SB_PAGEDOWN, SB_ TOP, and SB_END requests, which
require completely new contents.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not all the con
tents need to be erased, since some are still visible after the scroll. The Scroll
Window function preserves a portion of the client area's contents, moves the
preserved portion the specified amount, and prepares the rest of the client area
for painting new information. ScrollWindow uses the BitBlt function to move a
specific part of the client area to a new location within the client area. Any part of
the client area that is uncovered (not in the part to be preserved) is invalidated and
is erased and painted over at the next WM_P AINT message.

Scroll Window also lets an application clip a part of the client area from the scroll.
This keeps items that have fixed positions in the client area, such as child win
dows, from moving. This action automatically invalidates the part of the client
area that is to receive the new information so that the application does not have to
compute its own clipping regions.

Chapter 1 Window Management 61

1.8.6 Hiding a Standard Scroll Bar
For standard scroll bars, if the minimum and maximum values are equal, the scroll
bar is hidden and, in effect, disabled. Using this technique, you can temporarily
hide a scroll bar when it is not needed for the current contents of the client area.

The SetScrollRange function hides and disables a standard scroll bar when equal
minimum and maximum values are specified. No scrolling requests can be made
through the scroll bar when it is hidden. SetScrollRange enables the scroll bar and
shows it again when it sets the minimum and maximum values to unequal values.
The ShowScrollBar function can also be used to hide or show a scroll bar. It does
not affect the scroll bar's range or scroll box's position.

1.8. 7 Scrolling Functions
Scrolling functions control the scrolling of a window's contents and control the
window's scroll bars. Following are the scrolling functions:

Function

EnableScrollBar

GetScrollPos

GetScrollRange

ScrollDC

ScrollWindow

ScrollWindowEx

SetScrollPos

SetScrollRange

ShowScrollBar

Description

Enables or disables one or both arrows of a scroll bar.

Retrieves the current position of the scroll box.

Copies the minimum and maximum scroll-bar positions for
given the scroll bars for a specified scroll operation.

Scrolls a rectangle of bits horizontally and vertically.

Moves the contents of the client area.

Moves the contents of the client area (as does the ScrollWindow
function) but with extended capabilities.

Sets the scroll box.

Sets the minimum and maximum scroll-bar positions.

Displays or hides a scroll bar and its controls.

For detailed information about the scrolling functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1. 9 Menu Functions
A menu is an input tool in a Windows application that offers users one or more
items, which they can select with the mouse or keyboard. An item in a menu bar
can display a pop-up menu, and any item in a pop-up menu can display another
pop-up menu. In addition, a pop-up menu can appear anywhere on the screen.

62 Microsoft Windows Programmer's Reference

Menu functions create, modify, and destroy menus. Following are the menu func
tions:

Function

AppendMenu

CheckMenultem

CreateMenu

CreatePopupMenu

DeleteMenu

Destroy Menu
DrawMenuBar

EnableMenultem

GetMenu

GetMenuCheckMarkDimensions

GetMenultemCount
GetMenultemID

GetMenuState
GetMenuString

GetSubMenu
GetSystemMenu

HiliteMenultem

InsertMenu

IsMenu
LoadMenulndirect

Modify Menu
RemoveMenu

SetMenu

SetMenultemBitmaps

TrackPopupMenu

Description

Appends a menu item to a menu.

Places or removes check marks next to pop-up
menu items.

Creates an empty menu.

Creates an empty pop-up menu.

Removes a menu item and destroys any
associated pop-up menus.

Destroys the specified menu.

Redraws a menu bar.

Enables, disables, or grays a menu item.

Retrieves a handle of the menu of a specified
window.

Retrieves the dimensions of the default menu
check-mark bitmap.

Returns the count of items in a menu.

Returns the item's identification.

Obtains the status of a menu item.

Copies a menu label into a string.

Retrieves the menu handle of a pop-up menu.

Accesses the System menu for copying and
modification.

Highlights or removes the highlighting from a
top-level (menu-bar) menu item.

Inserts a menu item in a menu.

Determines if a menu handle is valid.

Loads a menu resource.

Changes a menu item.

Removes an item from a menu but does not
destroy it.

Specifies a new menu for a window.

Associates bitmaps with a menu item for dis
play whether an item is or is not checked.

Displays a pop-up menu at a specified screen
location and tracks user interaction with the
menu.

For detailed information about the menu functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

Chapter 1 Window Management 63

1.10 Information Functions
Information functions obtain information about the number and position of win
dows on the screen. Following are the information functions:

Function

AnyPopup

ChildWindowFromPoint

EnumChildWindows

EnumTaskWindows

Enum Windows

Find Window

GetNextWindow

GetParent

GetTop Window

Get Window

GetWindowTask

Is Child

Is Window

SetParent

SystemParameterslnfo

WindowFromPoint

Description

Indicates whether any pop-up window exists.

Determines which child window contains a specific
point.

Enumerates the child windows that belong to a specific
parent window.

Enumerates all windows associated with a given task.

Enumerates windows on the display.

Returns the handle of a window with the given class and
title.

Returns a handle of the next or previous window.

Retrieves the handle of the specified window's parent
window.

Returns a handle of the top-level child window.

Returns a handle of a window that has the specified rela
tionship to the given window.

Returns the handle of a task associated with a window.

Determines whether a window is the descendent of a
specified window.

Determines whether a window is a valid, existing
window.

Changes the parent window of a child window.

Retrieves or sets systemwide values.

Identifies the window containing a specified point.

For detailed information about information functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1.11 System Functions
System functions return information about the system metrics, color, and time.
Following are the system functions:

Function

GetCurrentTime

GetSysColor

Description

Returns the time elapsed since the system was started.

Retrieves the system color.

64 Microsoft Windows Programmer's Reference

Function

GetSystemMetrics

GetTimerResolution
SetSysColors

SystemParameterslnfo

Description

Retrieves information about the system metrics.

Retrieves the timer resolution.

Changes one or more system colors.

Queries or sets systemwide parameters.

For detailed information about system functions, see the Microsoft Windows
Programmer's Reference, Volume 2.

1.12 Clipboard Functions
The clipboard provides a mechanism that makes it possible for applications to pass
data handles to other applications. For more information about the clipboard, see
the Microsoft Windows Guide to Programming.

Clipboard functions carry out data interchange between Windows applications.
Following are the clipboard functions:

Function Description
~~~~~~~~~~~~~~~ 

ChangeClipboardChain 

CloseClipboard 

Empty Clipboard 

EnumClipboardFormats 
GetClipboardData 

GetClipboardFormatName 

GetClipboardOwner 

GetClipboardViewer 

GetOpenClipboardWindow 

GetPriorityClipboardFormat 

IsClipboardFormatAvailable 

Removes a window from the chain of clipboard 
viewers. 

Closes the clipboard. 

Empties the clipboard and reassigns clipboard 
ownership. 

Enumerates the available clipboard formats. 

Retrieves data from the clipboard. 

Retrieves the clipboard format. 

Retrieves the window handle associated with the 
current clipboard owner. 

Retrieves the handle of the first window in the 
clipboard-viewer chain. 

Retrieves the handle of the window that currently 
has the clipboard open. 

Retrieves data from the clipboard in the first format 
in a prioritized format list. 

Returns nonzero if the data in the given format is 
available. 



Function 

Open Clipboard 

RegisterClipboardFormat 

SetClipboardData 

SetClipboardViewer 

Chapter 1 Window Management 65 

Description 

Opens the clipboard. 

Registers a new clipboard format. 

Copies a handle of data for the clipboard. 

Adds a handle to the clipboard-viewer chain. 

For detailed information about clipboard functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1 .13 Error Functions 
Error functions display error messages and prompt the user for a response. Follow
ing are the error functions: 

Function 

Flash Window 

MessageBeep 

Message Box 

Description 

Flashes the window by inverting its active or inactive state. 

Generates a beep on the system speaker. 

Creates a window with the given text and title. 

For detailed information about error functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1.14 The Caret 
The Windows caret is a flashing line, block, or bitmap that marks a location in a 
window's client area. The caret is especially useful in word-processing applica
tions to mark a location in text for keyboard editing. 

1.14.1 Creating and Displaying a Caret 
Windows forms a caret by inverting the pixel color within the rectangle given by 
the caret's position, width, and height. Windows flashes the caret by alternately 
inverting the display and restoring it to its previous appearance. The caret's flash 
rate, in milliseconds, defines the elapsed time between inverting and restoring the 
display. A complete flash (on-off-on) takes twice the blink time. 



66 Microsoft Windows Programmer's Reference 

The CreateCaret function creates the caret shape and assigns ownership of the 
caret to the given window. The caret can vary in color and shape; a bitmap caret 
can be given any pattern. The following illustration shows some typical variations 
in the appearance of the caret. 

Underlin~ 

Vertical line I 

Solid blodD 

Gray bloc 

Bitmap~ 

Windows displays a solid caret by inverting everything in the rectangle defined by 
the caret's width and height. For a gray caret, Windows inverts every other pixel. 
For a pattern, Windows inverts only the white bits of the bitmap that defines the 
pattern. The width and height of a caret are given in logical units, which means 
they are subject to the window's mapping mode. 

1.14.2 Sharing the Caret 
There is only one caret, so only one caret shape can be active at a time. All appli
cations must cooperatively share the caret. Because Windows does not inform an 
application when a caret is created or destroyed, each window should create, 
move, show, or hide a caret only when it has the input focus or is active. A win
dow should destroy the caret before losing the input focus or becoming inactive. 

Your application can use the CreateBitmap function to create a bitmap for the 
caret; or, after you have used the Image Editor to create a bitmap and have used 
the Resource Compiler to add it to your application's resources, your applica
tion can use the LoadBitmap function to load the bitmap from the application's 
resources. 

1.14. 3 Caret Functions 
Caret functions create, destroy, display, and hide the caret and alter its blink time. 
Following are the caret functions: 

Function 

CreateCaret 
DestroyCaret 

Description 

Creates a caret. 
Destroys the current caret. 



Function 

GetCaretBlinkTime 

GetCaretPos 

HideCaret 

SetCaretBlinkTime 

SetCaretPos 

ShowCaret 

Chapter 1 Window Management 67 

Description 

Returns the caret's flash rate. 

Returns the current caret position. 

Removes a caret from a given window. 

Establishes the caret's flash rate. 

Moves a caret to the specified position. 

Displays the newly created caret or redisplays a hidden caret. 

For detailed information about the caret functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1.15 The Cursor 
The cursor is a bitmap, displayed on the screen. The user can use a mouse or other 
pointing device to move this bitmap to an item on the screen, such as a window or 
an icon. (In the remainder of section, the term mouse is used for any pointing de
vice.) 

1.15 .1 The Mouse and the Cursor 
When a system has a mouse, the cursor shows the current location of the mouse. 
Windows automatically displays and moves the cursor when the mouse is moved. 
If a system does not have a mouse, Windows does not automatically display or 
move the cursor. Applications can use the cursor functions to display or move the 
cursor when a system does not have a mouse. For an introduction to the cursor 
functions, see Section 1.15.6, "Cursor Functions." 

1.15.2 Displaying and Hiding the Cursor 
In a system without a mouse, Windows does not display or move the cursor unless 
the user chooses certain system commands, such as commands for sizing and 
moving. This means that after a call to the SetCursor function, the cursor remains 
on the screen until a subsequent call to SetCursor with the parameter set to NULL 
removes the cursor, or until a system command is carried out. Applications that 
need to use the cursor without a mouse usually simulate mouse input by using 
keys, such as the arrow keys, and display and move the cursor by using the cursor 
functions. 



68 Microsoft Windows Programmer's Reference 

The ShowCursor function shows or hides the cursor. It is used to temporarily 
hide the cursor, and then restore it without changing the current cursor shape. This 
function actually sets an internal counter that determines whether the cursor 
should be drawn. Showing the cursor increments the counter; hiding the cursor 
decrements the counter. The cursor is only visible when the count is not a negative 
value. 

1.15.3 Positioning the Cursor 
The SetCursorPos and GetCursorPos functions set and retrieve the current 
screen coordinates of the cursor. Although the cursor can be set at a location other 
than the current mouse location, if the system has a mouse any mouse movement 
causes the cursor to be redrawn at the mouse location. The SetCursorPos and Get
CursorPos functions are most often used in applications that use the keyboard 
and specified keystrokes to move the cursor. Note that screen coordinates are not 
affected by the mapping mode in a window's client area. 

1.15. 4 The Cursor Hot Spot and Confining the Cursor 
The hot spot of the cursor is the location in the cursor bitmap that is tracked and 
recognized as the position of the mouse or keyboard arrow key. For example, the 
hot spot on the pointer is the point at the tip of the arrow. 

The ClipCursor function confines the cursor to a given rectangle on the screen. 
The cursor can move to the edge of the rectangle but cannot move out of it. Clip
Cursor is typically used to restrict the cursor to a given window, such as a dialog 
box that contains a warning about a serious error. The rectangle is always given in 
screen coordinates and does not have to be within the window of the active appli
cation. 

1.15. 5 Creating a Custom Cursor 
The SetCursor function sets the cursor shape and draws the cursor. When a sys
tem has a mouse, Windows automatically changes the shape of the cursor when it 
crosses a window border or enters a different part of a window, such as a title or 
menu bar. Windows uses standard cursor shapes for the different parts of the 
screen, such as a pointer in a title bar. The SetCursor function lets an application 
delete the standard cursor and draw its own custom cursor. The cursor keeps its 
new shape until the mouse moves or a system command is carried out. 

1.15.6 Cursor Functions 
Cursor functions set, move, show, hide, and confine the cursor. Following are the 
cursor functions: 



1.16 Hooks 

Function 

ClipCursor 

CopyCursor 

CreateCursor 

DestroyCursor 

GetClipCursor 

Get Cursor 

GetCursorPos 

Load Cursor 

SetCursor 
SetCursorPos 

ShowCursor 

Chapter 1 Window Management 69 

Description 

Restricts the cursor to a given rectangle. 

Copies a cursor. 

Creates a cursor from two bit masks. 

Destroys a cursor created by the CreateCursor function. 

Retrieves the screen coordinates of the rectangle to which the cur
sor has been restricted. 

Retrieves the handle of the current cursor. 

Stores the cursor position (in screen coordinates). 

Loads a cursor from the resource file. 

Sets the cursor shape. 

Sets the position of the cursor. 

Increases or decreases the cursor display count. 

For detailed information about the cursor functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

A hook is a point in the Windows message-handling mechanism that an applica
tion can use to gain access to the message stream. Windows provides many types 
of hooks; each type provides access to a particular type or range of messages. To 
take advantage of a particular hook, an application can install a filter function that 
processes the messages associated with the hook. A filter function processes the 
messages before they reach the destination window procedure. 

1.16 .1 Filter-Function Chain 
A filter-function chain is a series of connected filter functions for a particular 
system hook. For example, all keyboard filter functions are installed by 
WH_KEYBOARD and all journaling-record filter functions are installed by 
WH_JOURNALRECORD. An application passes a filter function to a system 
hook with a call to the SetWindowsHook function. Each call adds a new filter 
function to the beginning of the chain. Whenever an application passes the address 
of a filter function to a system hook, it must reserve space for the address of the 
next filter function in the chain. SetWindowsHook installs a hook function into a 
hook chain and returns a handle of the hook. 

Once each filter function completes its task, it must call the DefHookProc func
tion. DefHookProc uses the address stored in the location reserved by the applica
tion to access the next filter function in the chain. 



70 Microsoft Windows Programmer's Reference 

To remove a filter function from a filter chain, an application must call the 
UnhookWindowsHook function with the type of hook and a pointer to the func
tion. 

The standard window hooks and debugging hooks are as follows: 

Type 

WH_CALLWNDPROC 

WH_CBT 

WH_DEBUG 

WH_ GETMESSAGE 

WH_HARDWARE 

WH_JOURNALPLAYBACK 

WH_JOURNALRECORD 

WH_KEYBOARD 

WH_MOUSE 

WH_MSGFILTER 

WH_SYSMSGFILTER 

Purpose 

Installs a window filter. 

Installs a computer-based training (CBT) filter. 

Installs a debugging filter. 

Installs a message filter (on debugging versions 
only). 

Installs a nonstandard hardware-message filter. 

Installs a journaling playback filter. 

Installs a journaling record filter. 

Installs a keyboard filter. 

Installs a mouse-message filter. 

Installs a message filter. 

Installs a systemwide message filter. 

Note The WH_CALLWNDPROC and WH_GETMESSAGE hooks will affect 
system performance. They are supplied for debugging purposes only. 

1.16.2 Installing a Filter Function 
To install a filter function, an application must do the following: 

1. Export the function in its module-definition (.DEF) file. 

2. Obtain the function's address by using the GetProcAddress function. (The 
MakeProclnstance function is used only when the filter function is not in a 
DLL.) 

3. Call the Set WindowsHook function, specifying the type of hook function and 
the address of the function (returned by GetProcAddress). 

4. Store the return value from SetWindowsHook in a reserved location. This 
value is the handle of the previous filter function. 



· Chapter 1 Window Management 71 

Note Filter functions must reside in fixed library code and data. This allows hooks 
to operate in a large-frame Expanded Memory Specification (EMS) environment. 

1.16.3 Hook Functions 
Following are the hook functions: 

Function 

CallMsgFilter 

CallNextHookEx 
DefHookProc 

SetWindowsHookEx 

Unhook WindowsHookEx 

Description 

Passes a message and other data to the filter function 
for the current message. 

Passes hook information down the hook chain. 

Calls the next filter function in a filter-function chain. 

Installs a system filter function, an application filter 
function, or both. 

Removes a Windows filter function from a filter
function chain. 

For detailed information about the hook functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1.17 Property Lists 
A property list is a storage area that contains handles for data that the application 
needs to associate with a window. 

1.17 .1 Using Property Lists 
Once a data handle is in a window's property list, any application that can access 
the window can also access the handle. Using the property list is a convenient way 
to make data (for example, an alternate title or menu for a window) available when 
the application needs to modify a window. 

Every window has its own property list. When a window is created, the list is 
empty. The SetProp function adds entries to the list. Each entry contains a unique 



72 Microsoft Windows Programmer's Reference 

Windows character string and a data handle. The Windows character string identi
fies the handle; the handle identifies the data associated with the window, as 
shown in the following illustration. 

Windows string Handle 

"binary data" hMemory 

"icon" hicon 

'screen text" hText 

The data handle can identify any object that the application needs to associate with 
the window. The GetProp function retrieves the data handle of an entry from the 
list without removing the entry. The handle can then be used to retrieve or use the 
data. The RemoveProp function removes an entry from the list when it is no 
longer needed. 

Although the purpose of the property list is to associate data with a window for 
use by the application that owns the window, the handles in a property list are 
accessible to any application that has access to the window. This means an applica
tion can retrieve and use a data handle from the property list of a window created 
by another application. But using another application's data handles must be done 
with care. Only shared, global memory objects, such as GDI drawing objects, can 
be used by other applications. If a property list contains local or global memory 
handles or resource handles, only the application that has created the window can 
use them. An application can use the Windows clipboard to share global memory 
handles with other applications. (For more information about the clipboard, see the 
Microsoft Windows Guide to Programming.) Local memory handles cannot be 
shared. 

The contents of a property list can be enumerated by using the EnumProps func
tion. The function passes the string and data handle of each entry in the list to an 
application-supplied function. The application-supplied function can then carry 
out the necessary task. 

The data handles in a property list always belong to the application that created 
them. The property list itself, like other window-related data, belongs to Windows. 
A window's property list is allocated in the USER heap, the local heap of the 
USER library. Although there is no defined limit to the number of entries in a 
property list, the number of entries depends on how much space is available in the 
USER heap. The available space depends on how many windows, window classes, 
and other window-related objects have been created. 



Chapter 1 Window Management 73 

The application creates the entries in a property list. Before a window is destroyed 
or the application that owns the window closes, all entries in the property list must 
be removed by using the RemoveProp function. Failure to remove the entries 
leaves the property list in the USER heap and makes the space it occupies un
usable for subsequent applications. This can ultimately cause an overflow of the 
USER heap. 

An application can use the RemoveProp function at any time to remove 
entries from the property list. If there are entries in the property list when the 
WM_DESTROY message is received for the window, the entries must be re
moved at that time. To ensure that all entries are removed, use the EnumProps 
function to enumerate all entries in the property list. An application should remove 
only those properties that it added to the property list. Windows adds properties 
for its own use and disposes of them automatically. An application must not re
move properties that Windows has added to the list. 

1.17 .2 Property Functions 
Property functions create and access a window's property list. Following are the 
property functions: 

Function 

EnumProps 

GetProp 

RemoveProp 

SetProp 

Description 

Passes the properties of a window to an enumeration function. 

Retrieves a handle associated with a string from the window's prop
erty list. 

Removes a string from the property list. 

Copies a string and a data handle into a window's property list. 

For detailed information about the property functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1.18 Rectangles 
In Windows, a rectangle is defined by a RECT structure. The structure specifies 
two points: the upper-left and lower-right corners of the rectangle. The sides of a 
rectangle extend from these two points and are parallel to the x- and y-axes. 

1.18.1 Using Rectangles in a Windows Application 
Rectangles are used to specify rectangular areas on the screen or in a window, 
such as the cursor clipping region, the client repaint area, a formatting area for for
matted text, and the scroll area. Rectangles are also used to fill, frame, or invert an 



74 Microsoft Windows Programmer's Reference 

area in the client area with a given brush, and to retrieve the coordinates of a win
dow or a window's client area. 

Because rectangles are used for many different purposes, the rectangle functions 
do not use an explicit unit of measure. Instead, all rectangle coordinates and dimen
sions are given in signed, logical values. The units of measure are determined by 
the function in which the rectangle is used. 

1.18.2 Rectangle Coordinates 
Valid coordinate values for a rectangle are in the range -32,768 through 32,767. 
Valid widths and heights, which must be positive, are in the range 0 through 
32,767. This means that a rectangle whose left and right sides or whose top and 
bottom are further apart than 32,768 units is not valid. Following is a rectangle 
whose upper-left corner is left of the origin and whose width is less than 32,767. 

y (16000, 2000) 

x 

- -( 16000, 2000) 

Width = 16000-(-16000) = 32000 <= 32767 

1.18.3 Creating and Manipulating Rectangles 
The SetRect function creates a rectangle, the CopyRect function makes a copy of 
a given rectangle, and the SetRectEmpty function creates an empty rectangle. An 
empty rectangle is any rectangle that has zero width, zero height, or both. 

The InflateRect function increases or decreases the width or height of a rectangle, 
or both. It can add or remove width from both ends of the rectangle; it can add or 
remove height from both the top and bottom of the rectangle. 

The OffsetRect function moves the rectangle by a given amount. It moves the rect
angle by adding the given x-amount, y-amount, or x- and y-amounts to the corner 
coordinates. 



Chapter 1 Window Management 75 

The PtlnRect function finds out whether a given point lies within a given rect
angle. The point is in the rectangle if it lies on the left or top side or is completely 
within the rectangle. 

The IsRectEmpty function finds out whether the given rectangle is empty. 

The IntersectRect function creates a new rectangle that is the intersection of 
two existing rectangles. The intersection is the largest rectangle contained in 
both existing rectangles. The intersection of two rectangles can be illustrated 
as follows. 

Rectangle 1 

Intersection 

The UnionRect function creates a new rectangle that is the union of two existing 
rectangles. The union is the smallest rectangle that contains both existing rectan
gles. The union of two rectangles can be illustrated as follows. 

Rectangle 2 

For information about functions that draw ellipses and polygons, see Chapter 2, 
"Graphics Device Interface." 



76 Microsoft Windows Programmer's Reference 

1.18.4 Rectangle Functions 
Rectangle functions alter and obtain information about rectangles in a window's 
client area. Following are the rectangle functions: 

Function 

CopyRect 
EqualRect 

GetBoundsRect 

Inflate Re ct 

IntersectRect 
OffsetRect 
PtlnRect 

SetBoundsRect 

SetRectEmpty 
SubtractRect 
UnionRect 

Description 

Makes a copy of an existing rectangle. 

Finds out whether two rectangles are equal. 

Returns current accumulated bounding rectangle. 

Expands or shrinks the specified rectangle. 

Finds the intersection of two rectangles. 

Moves a given rectangle. 

Indicates whether a specified point lies within a given rectangle. 

Controls bounding-rectangle accumulation. 

Sets a rectangle to an empty rectangle. 

Creates a rectangle from the difference between two rectangles. 

Stores the union of two rectangles. 

For detailed information about the rectangle functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

1.19 Related Topics 
For more information about window management functions, see the Microsoft 
Windows Programmer's Reference, Volume 2. 

For more information about Windows data types, messages, structures, and 
macros, see the Microsoft Windows Programmer's Reference, Volume 3. 

For general information about developing Windows applications, see the 
Microsoft Windows Guide to Programming. 

For information about creating, editing, and compiling resources for Windows 
applications, see Microsoft Windows Programming Tools. 



Graphics Device Interface 

Chapter 2 

2.1 Device Contexts . . .. . . .. . . . . .. . . . . . .. . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 
2.1.1 Accessing Output Devices......................................................... 79 

2. I. I. I Saving and Restoring a Device Context................. 79 

2.1.1.2 Deleting a Device Context...................................... 80 
2.1.1.3 Creating a Compatible Device Context .................. 80 
2.1.1.4 Creating an Information Context............................ 80 

2. I .2 Device-Context Attributes......................................................... 81 

2.1.3 Device-Context Functions ...................... ..................... .............. 82 
2.2 Drawing Tools............................................................................................ 83 

2.2. l Using Brushes............................................................................ 83 

2.2.2 Using Pens ................................................................................. 84 
2.2.3 Specifying Colors ......................................... ... ... ..... .................. 85 
2.2.4 Drawing-Tool Functions............................................................ 86 

2.3 Color Palettes .................................................................................... ......... 86 
2.3.1 Understanding Color Palettes .................................................... 87 
2.3.2 Using a Color Palette................................................................. 89 
2.3.3 Color-Palette Functions............................................................. 90 

2.4 Drawing Attributes..................................................................................... 91 
2.4.1 Setting Colors ............................................................................ 91 

2.4.2 Controlling Stretch..................................................................... 91 
2.4.3 Drawing-Attribute Functions..................................................... 91 

2.5 Mapping Modes . . . .. . . . . . . . . . . . . . . . . . . ... . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . 92 
2.5.1 Constrained Mapping Modes .................................................... 93 

2.5.1.l MM_TEXTMappingMode ................................... 93 
2.5 .1.2 MM_LOENGLISH Mapping Mode....................... 94 



78 Microsoft Windows Programmer's Reference 

2.5.2 Other Mapping Modes............................................................... 95 
2.5.2.1 Partially Constrained Mapping Mode..................... 95 
2.5.2.2 Unconstrained Mapping Mode................................ 95 

2.5.3 Mapping Functions .................................................................... 96 
2.6 Coordinate Functions ................... .............................................................. 96 
2.7 Region Functions ....................................................................................... 98 
2.8 Clipping Functions..................................................................................... 99 
2.9 Line Output ................................................................................................ 99 

2.9.1 Arcs .......................................................................................... 100 
2.9.2 Simple Lines ............................................................................ 100 
2.9.3 Line-OutputFunctions ............................................................. 101 

2.10 Ellipses and Polygons .............................................................................. 101 
2.10.1 Rectangles................................................................................ 101 
2.10.2 BoundingRectangles ............................................................... 101 
2.10.3 Ellipse and Polygon Functions ................................................ 102 

2.11 Bitmap Functions . .. . . . . . .. . . ... . . .. . . . . . . . . .. . .. . . .. . .. . . . . .. . . .. . . . . . . . .. . . .. . . . . .. . . . . . . . . . ... . . .. . 102 
2.12 Device-Independent Bitmap Functions ................................................... 103 
2.13 Text Functions.......................................................................................... 104 
2.14 Font Functions .......................................................................................... 105 
2.15 Metafiles ................................................................................................... 106 

2.15.1 Creating a Metafile .................................................................. 106 
2.15.2 Storing a Metafile .................................................................... 108 
2.15.3 Changing How Windows Plays a Metafile............................. 108 
2.15.4 Metafile Functions ................................................................... 109 

2.16 Device-Control Functions .. . .. . . . .. . . . . . . . .. . . . . . .. . . .. ... . .. . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . .. . 109 
2.17 Printer Functions . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . .. . ... . . . . .. . . . . . .. . . . . .. . .. . . . . . . . . .. . . . . . . . .. . . . . . 110 
2.18 Related Topics.......................................................................................... 111 



Chapter 2 Graphics Device Interface 79 

This chapter describes the functions that perform device-independent graphics 
operations in an application for the Microsoft Windows operating system. These 
operations include the creation of line, text, and bitmap output on different output 
devices. The functions performing those operations constitute the Windows 
graphics device interface (GDI). 

Some Windows functions in the USER application programming interface (API) 
are closely related to these GDI function groups. For a full description of these 
functions, see Chapter I, "Window Management." 

2.1 Device Contexts 
A device context (DC) is a link between a Windows application, a device driver, 
and an output device, such as a printer or plotter. Windows maintains a cache of 
five special device contexts for the system display. Applications must release 
these device contexts after using them. 

The following illustration shows the flow of information from a Windows applica
tion through a device context and a device driver to an output device. 

l~fi :I ,y <,;J ~ .. GDI 
~ Output 

Application Hf-- Device 1--1 Device 1------i device 
context driver 

li1 
-¢- () tl' 

2.1.1 Accessing Output Devices 
Any Windows application can use GDI functions to access an output device. GDI 
passes calls, which are device independent, from the application to the device 
driver. The device driver then translates the calls into device-dependent opera
tions. 

2 .1.1.1 Saving and Restoring a Device Context 
The SaveDC and RestoreDC functions save and restore device contexts. The 
former saves the original attributes, and the latter makes them available at a later 
time. For example, a Windows application may need to save its original clipping 
region so that it can restore the original state of the client area after a series of 
alterations occur. 



80 Microsoft Windows Programmer's Reference 

2.1.1.2 Deleting a Device Context 
The DeleteDC function deletes a device context and ensures that shared resources 
are not removed until the last context is deleted. The device driver is a shared re
source. DeleteDC should be used to delete device contexts created by the applica
tion. If the application uses the GetDC function to retrieve a device context, it 
should use the ReleaseDC function, not DeleteDC. 

2.1.1.3 Creating a Compatible Device Context 
The CreateCompatibleDC function causes Windows to treat a portion of 
memory as a virtual device. Then Windows prepares a device context that has the 
same attributes as the device for which the virtual device was created, but the de
vice context has no connected output device. 

To use the compatible device context, the application creates a compatible bit
map and selects it into the device context. Any output the application sends to the 
device is drawn in the selected bitmap. Because the device context is compatible 
with an actual device, the context of the bitmap can be copied directly to the actual 
device, or vice versa. This also means that the application can send output to mem
ory (prior to sending it to the device). 

Note The CreateCompatibleDC function works only for devices that support 
raster operations. To discover whether a device supports raster operations, an 
application can call the GetDeviceCaps function with the RC_BITBLT index. 

2.1.1.4 Creating an Information Context 
The CreateIC function creates an information context for a device. An informa
tion context is a device context with limited capabilities; it cannot be used to write 
to the device. An application uses an information context to gather information 
about the selected device. Information contexts are useful in large applications that 
require memory conservation. 

By using an information context and the GetDeviceCaps function, you can obtain 
the following device information: 

• Device technology 

• Physical display size 

• Color capabilities of the device 

• Color-palette capabilities of the device 



Chapter 2 Graphics Device Interface 81 

• Drawing objects available on the device 

• Clipping capabilities of the device 

• Raster capabilities of the device 

• Curve-drawing capabilities of the device 

• Line-drawing capabilities of the device 

• Polygon-drawing capabilities of the device 

• Text capabilities of the device 

2.1.2 Device-Context Attributes 
Device-context attributes describe selected drawing objects (pens and brushes), 
the selected font and its color, the way in which objects are drawn (or mapped) to 
the device, the area on the device available for output (clipping region), and other 
important information. The structure that contains the device-context attributes is 
called the device-context data block. The default attributes and the GDI functions 
that affect or use them are as follows. 

Attribute 

Background color 

Background mode 

Bitmap 

Brush 

Brush origin 

Clipping region 

Default 

White 

OPAQUE 

No default 

WHITE_BRUSH 

(0,0) 

Display surface 

GDI functions 

SetBkColor 

SetBkMode 

CreateBitmap 
CreateBitmaplndirect 
CreateCompatibleBitmap 
SelectObject 

CreateBrushlndirect 
CreateDIBPatternBrush 
CreateHatchBrush 
CreatePatternBrush 
CreateSolidBrush 
SelectObject 

SetBrushOrg 
UnrealizeObject 

CreateEllipticRgn 
CreateEllipticRgnlndirect 
CreatePolygonRgn 
CreatePolyPolygonRgn 
CreateRectRgn 
CreateRoundRectRgn 
ExcludeClipRect 
IntersectClipRect 
OffsetClipRgn 
SelectClipRgn 



82 Microsoft Windows Programmer's Reference 

2.1.3 

Attribute 

Color palette 

Current pen position 

Drawing mode 

Font 

Intercharacter spacing 

Mapping mode 

Pen 

Polygon-filling mode 

Stretching mode 

Text color 

Viewport extent 

Viewport origin 

Window extent 

Window origin 

Device-Context Functions 

Default 

DEFAULT_PALETTE 

(0,0) 

R2_COPYPEN 

SYSTEM_FONT 

0 
MM_ TEXT 

BLACK_PEN 

ALTERNATE 

BLACKONWHITE 

Black 

(1,1) 

(0,0) 
(1,1) 

(0,0) 

GDI functions 

CreatePalette 
RealizePalette 
SelectPalette 
UnrealizeObject 

Line To 
MoveTo 
SetROP2 

CreateFont 
CreateFontlndirect 
SelectObject 
SetTextCharacter Extra 
SetMapMode 

CreatePen 
CreatePenlndirect 
SelectObject 

SetPoly FillMode 
SetStretchBltMode 

SetTextColor 
SetViewportExt 

SetViewportOrg 
Set Window Ext 

SetWindowOrg 

Device-context functions create, delete, and restore device contexts. Following are 
the GDI device-context functions: 

Function 

CreateCompatibleDC 

CreateDC 
CreatelC 

DeleteDC 

Description 

Creates a memory device context. 

Creates a device context. 

Creates an information context. 

Deletes a device context. 



Function 

GetDCOrg 

ResetDC 

RestoreDC 

SaveDC 

Chapter 2 Graphics Device Interface 83 

Description 

Retrieves the origin of a specified device context. 

Updates a device context. 

Restores a device context. 

Saves the current state of the device context. 

In addition, applications can use the following functions in the USER API to 
retrieve and release device contexts: 

Function 

BeginPaint 

GetDC 

GetWindowDC 

ReleaseDC 

Description 

Prepares a window for painting, fills a buffer with information 
about the painting, and retrieves a handle of a device context. 

Retrieves the handle of a device context for the client area of the 
given window. 

Retrieves a device context for an entire window, including title 
bar, menus, and scroll bars. 

Releases a device context, freeing it for use by other applications. 

For more information about these USER functions, see Chapter 1, "Window 
Management." 

2.2 Drawing Tools 
A Windows application can use drawing tools when it creates output: a bitmap, 
a brush, or a pen. An application can use the pen and brush together, outlining a 
region or object with the pen and filling the interior of the region or object with the 
brush. GDI allows the application to create pens with solid colors, bitmaps with 
solid or combination colors, and brushes with solid or combination colors. (The 
available colors and color combinations depend on the capabilities of the intended 
output device.) 

2. 2 .1 Using Brushes 
There are six predefined brushes available in GDI: black, dark-gray, gray, hollow, 
light-gray, null, and white. (Hollow and null brushes are identical.) An application 
selects any one of them by using the GetStockObject function. 



84 Microsoft Windows Programmer's Reference 

There are six hatched brush patterns: backward diagonal, cross, diagonal cross, for
ward diagonal, horizontal, and vertical. (A hatch line is a thin line that appears at 
regular intervals on a solid background.) An application can select any one of the 
six patterns by using the CreateHatchBrush function. The following illustration 
shows the different hatched brush patterns. 

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL 

§ IJ ~ 
HS_ VERTICAL HS_CROSS HS_DIAGCROSS 

• • • 
2.2.2 Using Pens 

There are three predefined pens available in GDI: black, null, or white. An applica
tion selects any one of them by using the GetStockObject function. 

An application can create an original pen by using the CreatePen function. This 
function allows the application to select one of six pen styles, a pen width, and a 
pen color (if the device has color capabilities). The pen style can be solid, dashed, 
or dotted; it can combine an alternating dot and dash or two dots and a dash; or it 
can be null. The pen width is the number of logical units GDI maps to a specific 
number of pixels (this number is dependent on the current mapping mode if the 
pen is selected into a device context). The pen color is an RGB (red, green, blue) 
color value. The following figure shows a variety of pen patterns obtained from 
calls to CreatePen: 

Solid Line width of 1 

Dash Line width of 4 

Dot Line width of 7 

Dash and dot Line width of 1 O 

Dash and two dots Line width of 13 



Chapter 2 Graphics Device Interface 85 

2.2.3 Specifying Colors 
Many of the GDI functions that create pens and brushes require that the calling 
application specify a color in the form of a doubleword. The color can be speci
fied as: 

• An explicit RGB value 

• An index to a logical-palette entry 

• A palette-relative RGB value 

The second and third methods of specifying color require the application to create 
a logical palette. Section 2.3, "Color Palettes," describes Windows color palettes 
and the functions used by an application to exploit their capabilities. 

An explicit RGB doubleword value is a long integer that contains a red, a green, 
and a blue color field. The first (low-order) byte contains the red field, the second 
byte contains the green field, the third byte contains the blue field, and the fourth 
(high-order) byte must be zero. Each field specifies the intensity of the color; 
zero indicates the lowest intensity, and 255 indicates the highest. For example, 
OxOOFFOOOO specifies pure blue, and OxOOOOFFOO specifies pure green. The RGB 
macro accepts values for the relative intensities of the three colors and returns an 
explicit RGB doubleword value. 

When GDI receives the RGB value as a function parameter, it passes the RGB 
color value directly to the output device driver, which selects the closest available 
color on the device. The GetNearestColor function returns the logical color 
closest to a specified logical color that a given device can represent. 

If the device is a plotter, the driver converts the RGB value to a single color that 
matches one of the pens on the device. 

If the device uses color raster technology and the RGB value specifies a color for a 
pen, the driver selects a solid color. If the device uses color raster technology and 
the RGB value specifies a color for a brush, the driver selects from a variety of 
available color combinations. Because many color devices can display only a few 
colors, the actual color is simulated by dithering (that is, mixing pixels of colors 
that the device can actually render). 

If the device is monochrome (black-and-white), the driver selects black, white, or 
a shade of gray, depending on the RGB value. If the sum of the RGB values is 
zero, the driver selects a black brush. If the sum of the RGB values is 765, the 
driver selects a white brush. If the sum of the RGB values is between zero and 
765, the driver selects one of the gray patterns available. 

The GetRValue, GetGValue, and GetBValue macros extract the values for red, 
green, and blue from an explicit RGB doubleword value. 



86 Microsoft Windows Programmer's Reference 

2.2.4 Drawing-Tool Functions 
Drawing-tool functions create and delete the drawing tools that GDI uses when 
it creates output on a device or display surface. Following are the drawing-tool 
functions: 

Function 

CreateBrushlndirect 
CreateDIBPatternBrush 

CreateHatchBrush 

CreatePatternBrush 

CreatePen 

CreatePenlndirect 

CreateSolidBrush 
DeleteObject 

EnumObjects 

GetBrushOrg 

GetBrushOrgEx 
GetObject 

GetStockObject 

IsGDIObject 
SelectObject 

SetBrushOrg 

UnrealizeObject 

2.3 Color Palettes 

Description 

Creates a logical brush. 

Creates a logical brush that has a pattern defined by a 
device-independent bitmap (DIB). 

Creates a logical brush that has a hatched pattern. 

Creates a logical brush that has a pattern defined by a 
memory bitmap. 

Creates a logical pen. 

Creates a logical pen. 

Creates a logical brush. 

Deletes a logical pen, brush, font, bitmap, or region. 

Enumerates the available pens or brushes. 

Retrieves the current brush origin for a device context. 

Retrieves the origin of the current brush. 

Copies the bytes of logical data that define an object. 

Retrieves a handle of one of the predefined stock pens, 
brushes, fonts, or color palettes. 

Determines if handle is not GDI object. 

Selects an object as the current object. 

Sets the origin of all brushes selected into a given device 
context. 

Directs GDT to reset the origin of the given brush. 

Many color graphics displays are capable of displaying a wide range of colors. In 
most cases, however, the actual number of colors that the display can render at any 
given time is more limited. For example, a display that is potentially able to pro
duce over 262,000 different colors may be able to show only 256 of those colors at 
a time because of hardware limitations. 

To render colors, a display device often maintains a palette of colors. When an 
application requests a color that is not currently displayed, the display device adds 
the requested color to the palette. However, when the number of requested colors 
exceeds the maximum number for the device, it must replace an existing color 



Chapter 2 Graphics Device Interface 87 

with the requested color. As a result, if the total number of colors requested by 
one or more windows exceeds the number available on the display, many of the 
actual colors displayed will be incorrect. 

Windows color palettes act as a buffer between color-intensive applications and 
the system. When a window has the input focus, Windows ensures that the win
dow displays all the colors it requests, up to the maximum number simultaneously 
available on the display, and displays additional colors by matching them to avail
able colors. In addition, Windows matches the colors requested by inactive win
dows as closely as possible to the available colors. This process significantly 
reduces undesirable changes in the colors displayed in inactive windows. 

2 .3 .1 Understanding Color Palettes 
Color palettes provide a device-independent method for accessing the color capa
bilities of a display device by managing the physical, or system, palette of the de
vice, if one is available. Typically, devices that can display at least 256 colors use 
a system palette. 

An application employs the system palette by creating and using one or more 
logical palettes. Each entry in the system palette contains a specific color. Then, 
instead of specifying an explicit value for a color when performing graphics oper
ations, the application indicates which color is to be displayed by supplying an 
index into the logical palette. 

Because more than one application can use logical palettes, it is possible that the 
total number of colors requested for display can exceed the capacity of the display 
device. Windows acts as a mediator among the applications. 

When a window requests that its logical palette be given its requested colors (a 
process known as realizing its palette), Windows first matches entries in the logi
cal palette to current entries in the system palette. If an exact match for a given 
logical palette entry is not possible, Windows sets the entry in the logical palette 
into an unused entry in the system palette. 

When all entries in the system palette have been used, Windows takes the logical 
palette entries that do not exactly match and matches them as closely as possible to 
entries already in the system palette. To further aid color matching, Windows sets 
aside 20 static colors in the system palette (the default palette) to which it can 
match entries in a background palette. 

Windows always satisfies the color requests of the foreground window first; this 
procedure ensures that the active window has the best color display possible. For 
the remaining windows, Windows t;atisfies the color requests of the window that 
most recently received the input focus, the window that was active before that one, 
and so on. 



88 Microsoft Windows Programmer's Reference 

The following illustration shows this process. In this illustration, a hypothetical 
display has a system palette capable of containing 12 colors. The application that 
created Logical Palette 1 owns the active window and was the first to realize its 
logical palette, which consists of 8 colors. Because the active window was active 
when it realized its palette, Windows mapped all of the colors in Logical Palette 1 
directly to the system palette. 

Logical Palette 2 is owned by a window that realized its logical palette while it 
was inactive. Three of the colors (1, 3, and 5) in Logical Palette 2 were identical 
to colors in the system palette. To save space in the palette, Windows simply 
matched those colors to existing system colors when the second application 
realized its palette. Colors 0, 2, 4, and 6 were not already in the system palette, 
however, so Windows mapped those colors into the system palette. Because the 
system palette became full, Windows was not able to map the remaining two 
colors (which did not exactly match existing colors in the system palette) into the 
system palette. Instead, it matched them to the closest colors in the system palette. 

0 

2 

3 

4 

5 

6 

System palette Logical palette 1 
(active window) 

--Eml!lmlmm!mJlmO 
7 1 

sllllllll ~ 

: ============~==~~ll!llllll!li B~~~~ 8 

Palette Manager Color-Mapping Algorithm 



Chapter 2 Graphics Device Interface 89 

2.3.2 Using a Color Palette 
Before drawing to the display device with a color palette, an application must first 
create a logical palette by calling the CreatePalette function and then use the 
SelectPalette function to select the palette for the device context of the output de
vice for which it will be used. An application cannot select a palette into a device 
context by using the SelectObject function. 

All functions with a color parameter accept an index to an entry in the logical 
palette. The palette index specifier is a long integer value with the first bit in 
its high-order byte set to 1 and the palette index in the two low-order bytes. 
For example, OxO 1000005 specifies the palette entry with an index of 5. The 
PALETTEINDEX macro accepts an integer value representing the index of a 
logical palette entry and returns a palette index value, which an application can 
use as a parameter for GDI functions that require a color. 

An application can also specify a palette index indirectly by using a palette
relative RGB value. If the target display device supports logical palettes, 
Win-dows matches the palette-relative RGB value to the closest palette entry. 
If the target device does not support palettes, the RGB value is used as though it 
were an explicit RGB value. The palette-relative RGB value is identical to an 
explicit RGB value except that the second bit of the high-order byte is set to 1. For 
example, Ox02FFOOOO specifies a palette-relative RGB value for pure blue. The 
PALETTERGB macro accepts values for red, green, and blue and returns a 
palette-relative RGB value, which an application can use as a parameter for GDI 
functions that require a color. 

If an application specifies an RGB value instead of a palette entry, Windows uses 
the closest matching color in the default palette of 20 static colors. 

If the source and destination device contexts have selected and realized different 
palettes, the BitBlt function does not properly move bitmap bits to or from a 
memory device context. In this case, you must call the GetDIBits function with 
the DIB_RGB_COLORS flag to retrieve the bitmap bits from the source bitmap 
in a device-independent format. Then you use the SetDIBits function to set the 
retrieved bits in the destination bitmap. This ensures that Windows properly 
matches colors between the two device contexts. 

Note The BitBlt function successfully moves bitmap bits between two screen 
display contexts, even if they have selected and realized different palettes. The 
StretchBlt function properly moves bitmap bits between device contexts whether 
or not they use different palettes. 



90 Microsoft Windows Programmer's Reference 

2.3.3 Color-Palette Functions 
Windows color palettes allow an application to use as many colors as needed 
without interfering with its own color display or colors displayed by other win
dows. Following are the functions an application calls to use color palettes: 

Function 

AnimatePalette 

CreatePalette 

GetN earestColor 

GetN earestPalettelndex 

GetPaletteEntries 

GetSystemPaletteEntries 

GetSystemPaletteU se 

ResizePalette 
SetPaletteEntries 

SetSystemPalette Use 
Update Colors 

Description 

Replaces entries in a logical palette; Windows maps the 
new entries into the system palette immediately. 

Creates a logical palette. 

Retrieves the solid color closest to a specified logical 
color that a given device can represent. 

Retrieves the index of a logical palt':tte entry most 
nearly matching a specified RGB value. 

Retrieves entries from a logical palette. 

Retrieves a range of palette entries from the system 
palette. 

Determines whether an application has access to the full 
system palette. 

Changes the size of the specified logical palette. 

Sets new palette entries in a logical palette; Windows 
does not map the new entries to the system palette until 
the application realizes the logical palette. 

Allows an application to use the full system palette. 

Performs a pixel-by-pixel translation of each pixel's cur
rent color to the system palette. This process allows an 
inactive window to correct its colors without redrawing 
its client area. 

The USER API also provides two palette-management functions: 

Function Description 

Realize Palette 

SelectPalette 
Maps entries in a logical palette to the system palette. 

Selects a logical palette into a device context. 

For more information about these USER functions, see Chapter 1, "Window 
Management." 



Chapter 2 Graphics Device Interface 91 

2.4 Drawing Attributes 
A drawing attribute can take one of the following forms: line, brush, text, or bit
map output. 

2.4.1 Setting Colors 
Line output can be solid or broken (dashed, dotted, or a combination of the two). 
If it is broken, the space between the breaks can be filled by setting the back
ground mode to OPAQUE and selecting a color. By setting the background mode 
to TRANSPARENT, the space between breaks is left in its original state. The Set
BkMode and SetBkColor functions set the background mode and color. 

Brush output is solid, patterned, or hatched. The space between hatch marks can 
be filled by setting the background mode to OPAQUE and selecting a color. When 
Windows creates brush output on a display, it combines the existing color on the 
display surface with the brush color to yield a new and final color; this is a binary 
raster operation. If the default raster operation is not appropriate, a new one is 
chosen by using the SetROP2 function. 

The appearance of text output is limited only by the number of available fonts and 
the color capabilities of the output device. The SetBkColor function sets the color 
of the text background (the unused portion of each character cell), and the SetText
Color function sets the color of the character itself. 

2.4.2 Controlling Stretch 
The appearance of bitmap output can be affected by the stretch mode, which deter
mines how lines eliminated from the bitmap are combined. If an application copies 
a bitmap to a device and it is necessary to shrink or expand the bitmap before 
drawing, the effects of the StretchBlt and StretchDIBits functions can be con
trolled by calling the SetStretchBltMode function to set the current stretch mode 
for a device context. 

2 .4.3 Drawing-Attribute Functions 
Drawing-attribute functions affect the appearance of Windows output. Following 
are the drawing-attribute functions: 

Function 

GetBkColor 

GetBkMode 

GetPolyFillMode 

Description 

Returns the current background color. 

Returns the current background mode. 

Retrieves the current polygon-filling mode. 



92 Microsoft Windows Programmer's Reference 

Function 

GetROP2 

GetStretchBltMode 

GetTextColor 

SetBkColor 

SetBkMode 

SetPoly FillMode 

SetROP2 

SetStretchBltMode 

SetTextColor 

2.5 Mapping Modes 

Description 

Retrieves the current drawing mode. 

Retrieves the current stretching mode. 

Retrieves the current text color. 

Sets the background color. 

Sets the background mode. 

Sets the polygon-filling mode. 

Sets the current drawing mode. 

Sets the stretching mode. 

Sets the text color. 

To maintain device independence, GDI creates output in a logical space and maps 
it to the display. The mapping mode defines the relationship between units in the 
logical space and pixels on a device. 

There are eight different GDI mapping modes, each of which has a specific use in 
a Windows application. Following are these mapping modes: 

Mapping mode 

MM_ANISOTROPIC 

MM_HIENGLISH 

MM_HIMETRIC 

MM_ISOTROPIC 

MM_LOENGLISH 

MM_LOMETRIC 

MM_ TEXT 

MM_TWIPS 

Description 

Maps one logical unit to an arbitrary physical unit. The 
x-axis and y-axis are arbitrarily scaled. 

Maps one logical unit to 0.001 inch. The positive y-axis 
extends upward. 

Maps one logical unit to 0.01 millimeter. The positive y-axis 
extends upward. 

Maps one logical unit to an arbitrary physical unit. One unit 
along the x-axis is always equal to one unit along the y-axis. 

Maps one logical unit to 0.01 inch. The positive y-axis 
extends upward. 

Maps one logical unit to 0.1 millimeter. The positive y-axis 
extends upward. 

Maps one logical unit to one pixel. The positive y-axis 
extends downward. 

Maps one logical unit to 1/1440 inch (1/20 of a point; a 
point is 1172 inch). The positive y-axis extends upward. 



Chapter 2 Graphics Device Interface 93 

2.5.1 Constrained Mapping Modes 
GDI classifies six of the mapping modes as constrained mapping modes. These 
mapping modes are constrained because the scaling factor is fixed, so an applica
tion cannot change the number of logical units that Windows maps to a physical 
unit. The relationship of logical units to physical units for each constrained map
ping mode follows: 

Mapping mode Logical units Physical unit 

MM_HIENGLISH 1000 I inch 

MM_HIMETRIC 100 1 millimeter 

MM_LOENGLISH 100 1 inch 

MM_LOMETRIC 10 1 millimeter 

MM_ TEXT Device pixel 

MM_TWIPS 1440 I inch 

Note The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, 
MM_LOMETRIC, and MM_TWIPS mapping modes sometimes map logical 
units to device units in ways that do not correspond exactly to the preceding 
table. This typically occurs on displays; for example, on an VGA display there 
is a 33 percent increase in the dimensions of the device units. 

The increase in the dimensions of device units occurs so that the same output 
looks equally crisp and readable whatever the device resolution and the display 
technology for the device. An application can use the GetDeviceCaps function 
with the LOGPIXELSX and LOGPIXELSY indices to discover the scaling factor. 

In each of the six constrained modes, one logical unit is mapped to a predefined 
physical unit. For instance, the MM_ TEXT mapping mode maps one logical unit 
to one device pixel, and the MM_LOENGLISH mapping mode maps one logical 
unit to 0.01 inch on the device. Examples for these two modes follow. 

2.5.1.1 MM_TEXTMappingMode 
The default mapping mode is MM_ TEXT. In this mapping mode, one logical unit 
is mapped to one pixel on the device or display. 

The following illustration shows three rectangles created by a Windows applica
tion by using the MM_ TEXT mapping mode. The drawing on the left illustrates 
the logical coordinate space, and the one on the right illustrates the device, or 



94 Microsoft Windows Programmer's Reference 

physical, coordinate space. The rectangles appear vertically elongated in the physi
cal space because pixels on the chosen display are longer than they are wide. The 
rectangles appear to be upside-down because the positive y-axis extends 
downward in the physical-coordinate system. 

Logical coordinate system 

y-axis 

• (+): 

I ·-----,---
(-) ' Origin 

(-): 

' 

- - - _.,.. x-axis 
(+) 

Physical coordinate system 

Origin 

(+)t 
y-axis 

- - - - - - - - - - - - - ... x-axis 
(+) 

2.5.1.2 MM_LOENGLISH Mapping Mode 
The following illustration shows three rectangles created by a Windows appli
cation by using the MM_LOENGLISH mapping mode. The drawing on the left 
illustrates how the rectangles appear in relation to the x-axis and y-axis in the 
logical coordinate system. The one on the right illustrates how the rectangles 
appear in relation to the x-axis and y-axis in the physical coordinate system. 

Logical coordinate system 

y-axis 

• (+): 

' •-----r---
{-} • Origin 

(-): 

' 

- - - _.,.. x-axis 
(+) 

Physical coordinate system 

y-axis 

• (-): 

• - - - - - • - - - - - - - - - - _.,.. x-axis 
(-) • Origin (+) 

(+): 

' 



Chapter 2 Graphics Device Interface 95 

2.5.2 Other Mapping Modes 
The MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, which are not 
constrained, use two rectangular regions to derive a scaling factor and an orienta
tion: the window and the viewport. The window lies within the logical-coordinate 
space, and the viewport lies within the physical-coordinate space. Both possess an 
origin, an x-extent, and a y-extent. The origin may be any one of the four corners. 
The x-extent is the horizontal distance from the origin to its opposing corner. The 
y-extent is the vertical distance from the origin to its opposing corner. 

Windows creates a horizontal scaling factor by dividing the viewport' s x-extent by 
the window's x-extent and creates a vertical scaling factor by dividing the view
port' s y-extent by the window's y-extent. These scaling factors determine the num
ber of logical units that Windows maps to a number of pixels. In addition to 
determining scaling factors, the window and viewport determine the orientation of 
an object. Windows always maps the window origin to the viewport origin, the 
window x-extent to the viewport x-extent, and the window y-extent to the view
port y-extent. 

2.5.2.1 Partially Constrained Mapping Mode 
An application creates output with equally scaled axes by using the 
MM_ISOTROPTC mapping mode. As the term isotropic implies, Windows 
maps a symmetrical object (for example, a square or a circle) in the logical space 
as a symmetrical object in the physical space. In order to maintain this symmetry, 
GDI shrinks one of the viewport extents. The amount of shrinkage depends on the 
requested extents and the aspect ratio of the device. This mapping mode is called 
partially constrained because the application does not have complete control in 
altering the scaling factor. 

2.5.2.2 Unconstrained Mapping Mode 
An application can completely alter the horizontal and vertical scaling factors by 
using the MM_ANISOTROPIC mapping mode and setting the window and view
port extents to any value after selecting this mapping mode. Windows does not 
alter either scaling factor in this mode. 



96 Microsoft Windows Programmer's Reference 

2.5.3 Mapping Functions 
Mapping functions alter and retrieve information about the GDI mapping modes. 
Following are the mapping functions: 

Function 

GetMapMode 
GetViewportExt 

GetViewportExtEx 

GetViewportOrg 

GetViewportOrgEx 
Get Window Ext 
GetWindowExtEx 

GetWindowOrg 

GetWindowOrgEx 
OffsetViewportOrg 
OffsetViewportOrgEx 

OffsetWindowOrg 

OffsetWindowOrgEx 
Scale ViewportExt 

Scale ViewportExtEx 

Scale Window Ext 

Scale WindowExtEx 
SetMapMode 
Set ViewportExt 

SetViewportExtEx 

SetViewportOrg 
SetViewportOrgEx 

Set Wind ow Ext 

SetWindowExtEx 

SetWindowOrg 
SetWindowOrgEx 

2. 6 Coordinate Functions 

Description 

Retrieves the current mapping mode. 

Retrieves the viewport extents of a device context. 

Retrieves viewport extents. 

Retrieves the viewport origin of a device context. 

Retrieves viewport origin. 

Retrieves the window extents of a device context. 

Retrieves window extents. 

Retrieves the window origin of a device context. 

Retrieves window origin. 

Modifies a viewport origin. 

Moves viewport origin. 

Modifies a window origin. 

Moves window origin. 

Modifies the viewport extents. 

Scales viewport extents. 

Modifies the window extents. 

Scales window extents. 

Sets the mapping mode of a specified device context. 

Sets the viewport extents for a device context. 

Sets viewport extents. 

Sets the viewport origin for a device context. 

Sets viewport origin. 

Sets the window extents for a device context. 

Sets window extents. 

Sets the window origin for a device context. 

Sets the window origin. 

Coordinate functions convert client coordinates to screen coordinates (or vice 
versa). These functions are useful in graphics-intensive applications. Following 
are the coordinate functions: 



Function 

DPtoLP 

Chapter 2 Graphics Device Interface 97 

Description 

Converts device points (that is, points relative to the win
dow origin) into logical points. 

GetCurrentPosition 

GetCurrentPositionEx 

LPtoDP 

Retrieves the current position, in logical coordinates. 

Retrieves position in logical units. 

Converts logical points into device points. 

GDI uses the following equations to transform logical points to device points and 
device points to logical points: 

• Transforming logical points to device points: 

Dx = (L.x - xWO) * xVE!xWE + xVO 
Dy= (Ly - yWO) * yVE!yWE + yVO 

• Transforming device points to logical points: 

L.x = (Dx - xVO) * xWE!xVE + xWO 
Ly= (Dy -yVO) * yWE!yVE + yWO 

Following are descriptions of the variables used in these transformation equations: 

Variable 

xWO 

yWO 

xWE 

yWE 

xVO 

yVO 

xVE 

yVE 

Lx 

Ly 

Dx 

Dy 

Description 

Window origin x-coordinate 

Window origin y-coordinate 

Window extent x-coordinate 

Window extent y-coordinate 

Viewport origin x-coordinate 

Viewport origin y-coordinate 

Viewport extent x-coordinate 

Viewport extent y-coordinate 

Logical-coordinate system x-coordinate 

Logical-coordinate system y-coordinate 

Device x-coordinate 

Device y-coordinate 

The following four ratios are scaling factors used to determine the necessary 
stretching or compressing oflogical units: xVE!xWE, yVE!yWE, xWE!xVE, and 
yWE/yVE. 

The subtraction and addition of viewport and window origins is referred to as the 
translational component of the equation. 



98 Microsoft Windows Programmer's Reference 

In addition, applications can use the following functions from the USER API to 
convert coordinates from one system to another: 

Function 

ChildWindowFromPoint 

ClientToScreen 

ScreenToClient 

WindowFromPoint 

Description 

Determines which, if any, of the child windows belong
ing to a given parent window contains a specified point. 

Converts the client coordinates of a given point on the 
display to screen coordinates. 

Converts the screen coordinates of a given point on the 
display to client coordinates. 

Retrieves the handle of the window that contains a 
given point. 

For more information about these USER functions, see Chapter 1, "Window 
Management." 

2. 7 Region Functions 
Region functions create, alter, and retrieve information about regions. A region is 
an elliptical or polygonal area within a window that can be filled with graphics out
put. An application uses these functions in conjunction with the clipping functions 
to create clipping regions. (For more information about clipping functions, see the 
next section, "Clipping Functions.") Following are the region functions: 

Function 

CombineRgn 

CreateEllipticRgn 

CreateEllipticRgnlndirect 
CreatePolygonRgn 
CreatePolyPolygonRgn 

CreateRectRgn 

CreateRectRgnlndirect 

CreateRoundRectRgn 

EqualRgn 
FillRgn 

FrameRgn 

GetRgnBox 

InvertRgn 

Description 

Combines two existing regions into a new region. 

Creates an elliptical region. 

Creates an elliptical region. 

Creates a polygonal region. 

Creates a region consisting of a series of closed 
polygons that are filled as though they were a single 
polygon. 

Creates a rectangular region. 

Creates a rectangular region. 

Creates a rounded rectangular region. 

Determines whether two regions are identical. 

Fills the given region with a brush pattern. 

Draws a border for a given region. 

Retrieves the coordinates of the bounding rectangle of 
a region. 

Inverts the colors in a region. 



Function 

OffsetRgn 
PaintRgn 
PtlnRegion 

RectlnRegion 

SetRectRgn 

2.8 Clipping Functions 

Chapter 2 Graphics Device Interface 99 

Description 

Moves the given region. 

Fills the region with the selected brush pattern. 

Tests whether a point is within a region. 

Tests whether any part of a rectangle is within a region. 

Changes a region into a specified rectangular region. 

Clipping functions create, test, and alter clipping regions. A clipping region is the 
portion of a window's client area where GDI creates output. Any output sent to a 
portion of the client area that is outside the clipping region will not be visible. Clip
ping regions are useful in Windows applications that need to save one part of the 
client area and simultaneously send output to another. Following are the clipping 
functions: 

Function 

ExcludeCiipRect 

GetBoundsRect 

GetClipBox 

IntersectClipRect 

OffsetClipRgn 
Pt Visible 

RectVisible 

SelectClipRgn 

SetBoundsRect 

2. 9 Line Output 

Description 

Excludes a rectangle from the clipping region. 

Returns the current accumulated bounding rectangle for the 
specified device context. 

Copies the dimensions of a bounding rectangle. 

Forms the intersection of a clipping region and a rectangle. 

Moves a clipping region. 

Tests whether a point lies in a region. 

Determines whether part of a rectangle lies in a region. 

Selects a clipping region. 

Controls the accumulation of bounding-rectangle information 
for the specified device context. 

Line output functions require coordinates in logical units, which GDI uses to draw 
a line in logical space. (The use of logical units ensures device independence in 
Windows.) GDI maps this line from the logical space to pixels on the device. The 
number of logical units that GDI maps to a pixel depends on the current mapping 
mode. When GDI draws a line, it excludes the last specified point. 

If an application draws lines and does not create a new pen, GDI uses the default 
pen. This pen is black and is one pixel wide when the mapping mode is 
MM_ TEXT. An application can create a new pen of a different width, style, and 



100 Microsoft Windows Programmer's Reference 

2.9.1 Arcs 

color by using the CreatePen function. The new color is dependent on the color 
capabilities of the output device. The new style can be solid, dotted, dashed, or 
combined (dotted and dashed). Once an application creates a new pen, it can select 
the pen into a display context by using the SelectObject function. 

The Arc function uses a bounding rectangle to define the size of an arc. The 
bounding rectangle is hidden; GDI uses it only to describe the location and size of 
the arc. 

The upper portion of the following illustration shows an arc as it would appear on 
a display. The lower portion shows the arc suspended in the bounding rectangle 
used by GDI to determine the size and shape of the arc. 

i ....... " ................... " " " . " ...... " " ........ " ............... " ......... " .......... ~ 

2.9.2 Simple Lines 
Simple line output can be created by using the LineTo and MoveTo functions. 
The application created the rectangle on the left by using a styled pen and the rect
angle on the right by using a solid pen. 

LSolidpen 

L...----------l 



Chapter 2 Graphics Device Interface 101 

2.9.3 Line-Output Functions 
Line-output functions create simple and complex line output with the selected pen. 
Following are the line-output functions: 

Function 

Arc 

LineDDA 

Line To 

Move To 

MoveToEx 

Polyline 

Description 

Draws an arc. 

Computes successive points on a line. 

Draws a line with the selected pen. 

Moves the current position to the specified point. 

Moves the current position. 

Draws a set of line segments. 

2 .1 O Ellipses and Polygons 
Ellipse and polygon functions require coordinates in logical units, which GDI uses 
to determine the location and size of an object in logical space. (The use of logical 
units ensures device independence in Windows.) GDI maps the object from logi
cal space to pixels on the device. The number of logical units that Windows maps 
to a pixel depends on the current mapping mode. The default mapping mode, 
MM_ TEXT, maps one logical unit to one pixel. 

2 .10 .1 Rectangles 
The Rectangle function draws a rectangle, using the current pen. The RoundRect 
function also draws a rectangle, but with rounded rather than square corners. 

When GDI draws a rectangle, it uses four arguments. The first two arguments 
specify the upper-left corner of the rectangle. The last two arguments do not actu
ally specify part of the rectangle; they specify the point adjacent to the lower-right 
corner. For example, ifthe first point is specified by (xi, y1) and the second point is 
specified by (x2 , y2 ), the rectangle's upper-left corner will be (xi, y 1) and the lower
right corner will be (x2 - 1, y2 -1). 

2.10.2 Bounding Rectangles 
The Chord, Ellipse, and Pie functions use a bounding rectangle, instead of a 
radius or circumference measurement, to define the size of the object they create. 
The bounding rectangle is hidden; GDI uses it only to describe the location and 
size of the object. 



102 Microsoft Windows Programmer's Reference 

2.10.3 Ellipse and Polygon Functions 
Ellipse and polygon functions, which draw ellipses and polygons, are particularly 
useful in drawing and charting applications. GDI draws the perimeter of each ob
ject with the selected pen and fills the interior by using the selected brush. Follow
ing are the ellipse and polygon functions: 

Function 

Chord 

Ellipse 

Pie 

Polygon 
Poly Polygon 

Rectangle 

RoundRect 

Description 

Draws a chord. 

Draws an ellipse. 

Draws a pie. 

Draws a polygon. 

Draws a series of closed polygons that are filled as though they were 
a single polygon. 

Draws a rectangle. 

Draws a rounded rectangle. 

2 .11 Bitmap Functions 
A bitmap is a matrix of memory bits that, when copied to a device, defines the 
color and pattern of a corresponding matrix of pixels on the display surface of the 
device. Bitmaps are useful in drawing, charting, and word-processing applications 
because they prepare images in memory and then quickly copy them to the display. 

The relationship between bitmap bits in memory and pixels on a device is device
dependent. On a monochrome device, the correspondence is usually one-to-one, 
where one bit in memory corresponds to one pixel on the device. 

Bitmap functions display bitmaps. Following are the bitmap functions: 

Function 

BitBlt 

CreateBitmap 
CreateBitmaplndirect 
CreateCompatibleBitmap 

CreateDiscardableBitmap 

ExtFloodFill 

Description 

Copies a bitmap from a source to a destination device. 

Creates a bitmap. 

Creates a bitmap described in a structure. 

Creates a bitmap that is compatible with a specified 
device. 

Creates a discardable bitmap that is compatible with a 
specified device. 

Fills the display surface within a border or over an area 
of a given color. 



Function 

FloodFill 

GetBitmapBits 

GetBitmapDimension 

GetBitmapDimensionEx 

GetPixel 

LoadBitmap 

PatBlt 

SetBitmapBits 

SetBitmapDimension 

SetBitmapDimensionEx 
SetPixel 

StretchBlt 

Chapter 2 Graphics Device Interface 103 

Description 

Fills the display surface within a border. 

Retrieves the bits in memory for a specific bitmap. 

Retrieves the height and width of a bitmap. 

Retrieves the height and width of a bitmap. 

Retrieves the RGB value for a pixel. 

Loads a bitmap from a resource file. 

Creates a bit pattern. 

Sets the bits of a bitmap. 

Sets the height and width of a bitmap. 

Sets the height and width of a bitmap. 

Sets the RGB value for a pixel. 

Copies a bitmap from a source to a destination device 
(compressing or stretching the bitmap, if necessary). 

In addition, applications can use the LoadBitmap function from the USER API to 
load a bitmap from a resource file. For more information about this USER func
tion, see Chapter 1, "Window Management." 

2 .12 Device-Independent Bitmap Functions 
Microsoft Windows provides a set of functions that define and manipulate color 
bitmaps so that they can be appropriately displayed on a device with a given reso
lution, regardless of the method used by the device to represent color in memory. 
These functions translate a device-independent bitmap (DIE) specification into a 
device-specific format. 

A DIE specification consists of two parts: 

• A BITMAPINFO structure that defines the format of the bitmap and, option
ally, supplies a table of colors used by the bitmap 

• An array of bytes that contain the bitmap bit values 

Depending on the values contained in the bitmap information structure, the bitmap 
bit values can specify explicit RGB color values or indices into the color table. In 
addition, the color table can consist of indices into the currently realized logical 
palette instead of explicit RGB color values. Note that the coordinate-system 
origin for DIBs is the lower-left corner, not the Windows default upper-left corner. 



104 Microsoft Windows Programmer's Reference 

Following are the DIB functions: 

Function 

CreateDIBitmap 

GetDIBits 

SetDIBits 

SetDIBitsToDevice 

StretchD IBits 

2.13 Text Functions 

Description 

Creates a device-specific memory bitmap from a DIB specifi
cation and, optionally, initializes bits in the bitmap. This func
tion is similar to the CreateBitmap function. 

Retrieves the bits in memory for a specific bitmap in device
independent form. This function is similar to the GetBitmap
Bits function. 

Sets bits of a memory bitmap from a DIB. This function is sim
ilar to the SetBitmapBits function. 

Sets bits on a device surface directly from a DIB. 

Moves a DIB from a source rectangle into a destination rect
angle, stretching or compressing the bitmap as required. 

Text functions retrieve text information, alter text alignment, alter text justifica
tion, and write text on a device or display surface. GDI uses the current font for 
text output. Following are the GDI text functions: 

Function 

ExtTextOut 

GetTextAlign 

GetTextCharacterExtra 

GetTextExtent 

GetTextExtentPoint 

SetTextAlign 

SetTextCharacter Extra 

SetTextJustification 

TextOut 

Description 

Writes a character string, within a rectangular region, 
using the currently selected font. The rectangular region 
can be opaque (filled with the current background color). 
It can also be a clipping region. 

Returns a mask of the text alignment flags. 

Retrieves the current setting for the amount of inter
character spacing. 

Uses the current font to compute the width and height of 
text. 

Retrieves dimensions of string. 

Positions a string of text on a display or device. 

Sets the amount of intercharacter spacing. 

Justifies a text line. 

Writes a character string using the current font. 



Chapter 2 Graphics Device Interface 105 

The USER API also includes the following text functions: 

Function 

DrawText 

GetTabbedTextExtent 

GrayString 

TabbedTextOut 

Description 

Draws formatted text into a rectangle. 

Computes the width and height of a line of text containing 
tab characters. 

Draws gray text by writing the text in a memory bitmap 
and graying the bitmap. Then it copies the bitmap to the 
display. 

Writes a character string with expanded tabs, using the 
current font. 

For more information about these USER functions, see Chapter 1, "Window 
Management." 

2.14 Font Functions 
Font functions select, create, remove, and retrieve information about fonts. A font 
is a subset of a particular typeface, which is a set of characters that share a similar 
fundamental design. Following are the font functions: 

Function 

AddFontResource 

CreateFont 

CreateFontlndirect 

CreateScalableFontResource 

EnumFontFamilies 

EnumFonts 

GetAspectRatioFilter 

GetAspectRatioFilter Ex 

Description 

Adds a font resource in the specified file to the 
system font table. 

Creates a logical font that has the specified charac
teristics. 

Creates a logical font that has the specified charac
teristics. 

Creates a font resource file containing the font 
directory information and the font module name for 
a specified scalable font file. 

Enumerates the fonts in a specified font family that 
are available on a given device. (Supersedes the 
EnumFonts function.) 

Enumerates the fonts available on a given device. 
Superseded by the EnumFontFamilies function. 

Retrieves the setting for the current aspect-ratio 
filter. 

Retrieves current aspect-ratio filter. 



106 Microsoft Windows Programmer's Reference 

Function 

GetCharABCWidths 

GetCharWidth 

GetFontData 
GetGlyphOutline 

GetOutlineTextMetrics 

GetRasterizerCaps 

GetTextFace 

GetTextMetrics 
RemoveFontResource 

SetMapperFlags 

Description 

Retrieves the widths of consecutive characters in a 
specified range from the current TrueType font. 

Retrieves the widths of individual characters in a 
range of consecutive characters from the current 
font. 

Retrieves font metric data from a TrueType font file. 

Retrieves the outline curve or bitmap for an outline 
character in the current font. 

Fills a buffer with metrics for the selected TrueType 
font. 

Retrieves flags indicating whether TrueType fonts 
are installed in the system. 

Copies the current font name to a buffer. 

Fills a buffer with metrics for the selected font. 

Removes a font resource from the font table. 

Alters the algorithm the font mapper uses. 

For information about using font functions in an application, see the Microsoft 
Windows Guide to Programming. 

2.15 Metafiles 
A metafile is a collection of GDI commands that creates desired text or images. 
Metafiles provide a convenient method of storing graphics commands that create 
text or images. Metafiles are especially useful in applications that use specific text 
or a particular image repeatedly. They are also device-independent; by creating 
text or images with GDI commands and then placing the commands in a metafile, 
an application can re-create the text or images repeatedly on a variety of devices. 
Metafiles are also useful in applications that need to pass graphics information to 
other applications. 

2 .15 .1 Creating a Metafile 
A Windows application must create a metafile in a special device context. It can
not use the device contexts that the CreateDC or GetDC function returns; instead, 
it must use the device context that the CreateMetaFile function returns. 

Windows allows an application to use a subset of the GDI functions to create a 
metafile. This subset consists of all GDI functions that create output (rather than 
functions that provide state information, such as the GetDeviceCaps function). 
The following list shows GDI functions that an application can use in a metafile: 



Chapter 2 Graphics Device Interface 107 

Animate Palette OffsetViewportOrg SetBkMode 
Arc OffsetWindowOrg SetDIBitsToDevice 
BitBlt PatBlt SetMapMode 
Chord Pie SetMapperFlags 
CreateBrushlndirect Polygon SetPixel 
CreateDIBPatternBrush Polyline SetPolyFillMode 
CreateFontlndirect Poly Polygon SetROP2 
CreatePatternBrush RealizePalette SetStretchBitMode 
Ellipse RestoreDC SetTextColor 
Escape RoundRect SetTextJ ustification 
ExcludeCiipRect Save DC SetViewportExt 
ExtTextOut Scale ViewportExt SetViewportOrg 
FloodFill Scale Window Ext SetWindowExt 
IntersectClipRect SelectClipRgn SetWindowOrg 
Line To SelectObject StretchBlt 
Move To SelectPalette StretchDIBits 
OffsetClipRgn SetBkColor TextOut 

To create output in a metafile, an application must follow four steps: 

l. Create a special device context by using the CreateMetaFile function. 

2. Send GDI commands to the metafile by using the special device context. 

3. Close the metafile by calling the CloseMetaFile function. This function returns 
a metafile handle. 

4. Display the image or text on a device by using the PlayMetaFile function and 
passing to the function the metafile handle obtained from CloseMetaFile and a 
device-context handle for the device on which the metafile is to be played. 

The device context that the CreateMetaFile function creates does not have default 
attributes of its own. Whatever device-context attributes are in effect for the output 
device when an application plays a metafile will be the defaults for the metafile. 
The metafile can change these attributes while it is playing. If the application 
needs to retain the same device-context attributes after the metafile has finished 
playing, it should save the output device context by calling the SaveDC function 
before calling the PlayMetaFile function. Then, when PlayMetaFile returns, the 
application can call the RestoreDC function to restore the original device-context 
attributes. 

Although the maximum size of a metafile is 232 bytes or records, the actual size of 
a metafile is limited by the amount of memory or disk space available. For infor
mation about the format of metafile records and descriptions of their contents, see 
the Microsoft Windows Programmer's Reference, Volume 4. 



108 Microsoft Windows Programmer's Reference 

2.15.2 Storing a Metafile 
An application can store a metafile in system memory or in a disk file. 

To store the metafile in memory, an application calls the CreateMetaFile function 
and passes NULL as the function parameter. The application can free the memory 
that Windows uses to store the metafile by calling the DeleteMetaFile function. 
This function removes a metafile from memory and invalidates its handle. 
DeleteMetaFile has no effect on disk files. 

There are two ways of storing a metafile in a disk file: 

• When the application calls the CreateMetaFile function to open a metafile, it 
passes a filename as the function parameter; the metafile is then recorded in a 
disk file. 

• After the application has created a metafile in memory, it calls the Copy
MetaFile function. This function accepts the handle of a memory metafile 
and the name of the disk file to which the metafile will be saved. 

The GetMetaFile function opens a metafile stored in a disk file and makes it avail
able for replay or modification. This function accepts the filename of a metafile 
stored on disk and returns a metafile handle. 

2.15.3 Changing How Windows Plays a Metafile 
A metafile does not have to be played back in its entirety or exactly in the form 
in which it was recorded. An application can use the EnumMetaFile function to 
locate a specific metafile record. EnumMetaFile calls a callback function sup
plied by the application and passes it the following information: 

• The metafile device context 

• A pointer to the metafile handle table 

• A pointer to a metafile record 

• The number of associated objects with handles in the handle table 

• A pointer to application-supplied data 

The callback function can then use this information to play a single record, to 
query the record, to copy it, or to modify it. 

The PlayMetaFileRecord function plays a metafile record by executing the GDI 
function contained in the record. 



Chapter 2 Graphics Device Interface 109 

When Windows plays or enumerates the records in a metafile, it identifies each 
object with an index into a handle table. Functions that select objects (such as 
SelectObject and SelectPalette) identify the object by means of the object handle 
that the application passes to the function. 

Objects are added to the table in the order in which they are created. For example, 
if a brush is the first object created in a metafile, the brush is given index 0. If the 
second object is a pen, it is given index 1, and so on. For information about the for
mat of the handle table, see the description of the HAND LET ABLE structure in 
the Microsoft Windows Programmer's Reference, Volume 3. 

2.15.4 Metafile Functions 
Metafile functions close, copy, create, delete, retrieve, play, and return information 
about metafiles. Following are the metafile functions: 

Function 

CloseMetaFile 

CopyMetaFile 

CreateMetaFile 

DeleteMetaFile 

EnumMetaFile 

GetMetaFile 

GetMetaFileBits 

PlayMetaFile 

PlayMetaFileRecord 

SetMetaFileBits 

SetMetaFileBitsBetter 

Description 

Closes a metafile and creates a metafile handle. 

Copies a source metafile to a file. 

Creates a metafile display context. 

Deletes a metafile from memory. 

Enumerates the GDI calls within a metafile. 

Creates a handle of a metafile. 

Stores a metafile as a collection of bits in a global memory 
object. 

Plays the contents of a specified metafile. 

Plays a metafile record. 

Creates a memory metafile. 

Creates a memory block from a metafile. 

2 .16 Device-Control Functions 
Device-control functions retrieve information about a device and modify its initial
ization state. Following are the device-control functions: 

Function 

DeviceCapabilities 

DeviceMode 

Description 

Retrieves capabilities of a printer driver. 

Sets the current printing modes for a device by prompting the 
user with a dialog box. 



110 Microsoft Windows Programmer's Reference 

Function 

ExtDeviceMode 

GetDeviceCaps 

ResetDC 

Description 

Retrieves or modifies device initialization information for a 
given printer driver or displays a driver-supplied dialog box for 
configuring the driver. 

Retrieves device-specific information about a given display 
device. 

Updates the specified device context, based on the information 
in a DEVMODE structure. 

The printer driver, rather than GDI, provides the DeviceCapabilities, Device
Mode, and ExtDeviceMode functions. 

2 .17 Printer Functions 
The Escape function allows an application to access some facilities of a particular 
device that are not directly <Jvailable through GDI. When an application calls 
Escape for a printer device context, the printer functions regulate the flow of 
printer output from Windows applications, retrieve information about a printer, 
and alter the settings of a printer. 

Following are the eight printer functions in Windows 3 .1, which supersede many 
of the printer escapes: 

Function 

AbortDoc 

EndDoc 

EndPage 

Query Abort 

SetAbortProc 

SpoolFile 

StartDoc 

StartPage 

Description 

Ends the current print job and erases everything drawn since the last 
call to the StartDoc function. 

Ends a print job. 

Informs the printer that the application has finished writing to a 
page. 

Informs the abort procedure for a printing application that a print 
job should be stopped. 

Sets the application-supplied abort procedure that allows a print job 
to be canceled during spooling. 

Places a file into the spooler queue. 

Starts a print job. 

Prepares the printer driver to begin accepting data. 

For information about printing from Windows applications, see the Microsoft 
Windows Guide to Programming. 



Chapter 2 Graphics Device Interface 111 

2 .18 Related Topics 
For more information about USER API functions, see Chapter 1, "Window 
Management." 

For an introduction to using font functions in an application and to printing from 
Windows applications, see the Microsoft Windows Guide to Programming. 

For more information about the HAND LET ABLE structure and the format of 
metafile records, see the Microsoft Windows Programmer's Reference, Volumes 3 
and 4, respectively. 





System Services 

Chapter 3 

3 .1 Module-Management Functions .. . . . . . . . .. . . .. . . . . . . . .. . . . . . . . .. . . . . .. . .. . . .. . . . . . . . . . . . . . . . . 115 
3.2 Memory-ManagementFunctions............................................................. 115 
3.3 Segment Functions................................................................................... 117 
3.4 Operating-System Interrupt Functions .................................................... 118 
3.5 Task Functions......................................................................................... 119 
3.6 Resource-Management Functions ........................................................... 119 
3.7 String-Manipulation Functions................................................................ 120 
3.8 Atom-Management Functions ................................................................. 121 
3.9 Initialization-File Functions..................................................................... 122 
3 .10 Communication Functions....................................................................... 122 
3.11 Utility Macros and Functions .................................................................. 123 
3.12 File Input and Output Functions.............................................................. 124 
3 .13 Debugging Functions . .. . . . .. . . .. . .. . . . . . .. . . . .. . . . . . . ... . . . .. . . .. . ... . . .. . . . . .. . . . . . .. . .. . . .. . . . . .. 125 
3.14 Optimization-ToolFunctions ................................................................... 125 
3.15 Application-Execution Functions............................................................ 126 
3.16 Related Topics.......................................................................................... 126 





Chapter 3 System Services 115 

This chapter describes the system services interface functions for the Microsoft 
Windows operating system. These functions access code and data in modules, 
allocate and manage both local and global memory, manage tasks, load program 
resources, translate strings from one character set to another, alter the Windows 
initialization file, assist in system debugging, carry out communications through 
the system's input and output (110) ports, create and open files, and create sounds 
using the system's sound generator. 

3.1 Module-Management Functions 
Module-management functions alter and retrieve information about Windows 
modules, which are loadable, executable units of code and data. Following are the 
module-management functions: 

Function 

FreeLibrary 

FreeModule 

FreeProclnstance 

GetCodeHandle 

GetlnstanceData 

GetModuleFileName 

GetModuleHandle 

GetModuleUsage 

GetProcAddress 

Get Version 

LoadLibrary 

MakeProclnstance 

Description 

Decreases the reference count of a library by one, and 
removes it from memory if the reference count is zero. 

Decreases the reference count of a module by one, and 
removes it from memory if the reference count is zero. 

Removes a function-instance entry at an address. 

Determines which code segment contains a specified func
tion. 

Copies data from an offset in one instance to an offset in 
another instance. 

Copies a module filename. 

Returns the handle of a specified module. 

Returns the reference count of a module. 

Returns the address of a function in a module. 

Returns the current version number of Windows. 

Loads a library module. 

Returns a function-instance address. 

3.2 Memory-Management Functions 
Memory-management functions manage system memory. There are two catego
ries of memory-management functions: those that manage global memory and 
those that manage local memory. Global memory is all memory in the system that 



116 Microsoft Windows Programmer's Reference 

has not been allocated by an application or reserved by the system. Local memory 
is the memory in the data segment of a Windows application. Following are the 
memory-management functions: 

Function 

GetFreeSpace 

GetFreeSystemResources 

GetWinFlags 

GlobalAlloc 

Global Compact 

GlobalDosAlloc 

GlobalDosFree 

GlobalFlags 

GlobalFree 

GlobalHandle 

GlobalLock 

GlobalLRUNewest 

GlobalLRUOldest 

GlobalNotify 
GlobalReAlloc 

GlobalSize 

GlobalUnlock 

GlobalUnWire 

Global Wire 

LimitEmsPages 

Description 

Retrieves the number of bytes available in the global 
heap. 

Returns the percentage of free system-resource space. 

Retrieves information about the system-memory con
figuration. 

Allocates memory from the global heap. 

Compacts global memory to generate free bytes. 

Allocates global memory that can be accessed by 
MS-DOS. 

Frees global memory previously allocated by the 
GlobalDosAlloc function. 

Returns the flags and lock count of a global memory 
object. 

Removes a global memory object and invalidates the 
handle of the memory object. 

Retrieves the handle of a global memory object. 

Retrieves a pointer to a global memory object speci
fied by a handle. Except in the case of nondiscardable 
objects in protected (standard or 386-enhanced) mode, 
the object is locked in memory at the given address and 
its lock count is increased by one. 

Moves a global memory object to the newest least 
recently used (LRU) position. 

Moves a global memory object to the oldest LRU posi
tion. 

Installs a notification procedure for the current task. 

Reallocates a global memory object. 

Returns the size, in bytes, of a global memory object. 

Invalidates the pointer to a global memory object pre
viously retrieved by the GlobalLock function. If the 
object is discardable, GlobalUnlock decreases the lock 
count of the object by one. 

Decreases the lock count set by the GlobalWire func
tion, and unlocks the memory object if the count is zero. 

Moves an object to low memory and increases the lock 
count. 

Limits the amount of expanded memory that Windows 
assigns to an application. 



Function 

LocalAlloc 
Local Compact 
LocalFlags 

LocalFree 

LocalHandle 

Locallnit 

LocalLock 

LocalReAlloc 

LocalShrink 

LocalSize 

LocalUnlock 
LockSegment 

SetSwapAreaSize 

SwitchStackBack 

SwitchStackTo 

UnlockSegment 

3.3 Segment Functions 

Chapter 3 System Services 117 

Description 

Allocates memory from the local heap. 

Compacts local memory. 

Returns the memory type of a local memory object. 

Frees a local memory object from memory if the lock 
count is zero and invalidates the handle of the memory 
object. 

Retrieves the handle of a local memory object. 

Initializes a local heap in the specified segment. 

Locks the local memory object by increasing its lock 
count. 

Reallocates a local memory object. 

Shrinks the local heap. 

Returns the size, in bytes, of a local memory object. 

Unlocks a local memory object. 

Locks a specified data segment in memory. 

Increases the amount of memory that an application 
reserves for code segments. 

Returns the stack of the current task to the task's data 
segment after it had been previously redirected by the 
SwitchTasksBack function. 

Changes the stack of the current task to the specified 
data segment, such as the data segment of a dynamic
link library (DLL). 

Unlocks a specified data segment. 

Segment functions allocate, free, and convert selectors; lock and unlock memory 
objects referenced by selectors; and retrieve information about segments. Follow
ing are the selector functions: 

Function 

AllocDStoCSAlias 

AllocSelector 

FreeSelector 

GetCodelnfo 

GetSelector Base 

Description 

Accepts a data-segment (DS) selector and returns a code
segment (CS) selector that can be used to execute code in a 
data segment. 

Allocates a new selector. 

Frees a selector originally allocated by the Alloc
DStoCSAlias or AllocSelector function. 

Retrieves information about a code segment. 

Returns the base of a selector. 



118 Microsoft Windows Programmer's Reference 

Function 

GetSelectorLimit 

GlobalFix 

GlobalPageLock 

GlobalPageUnlock 

GlobalUnfix 

LockSegment 

PrestoChangoSelector 

SetSelectorBase 

SetSelectorLimit 

UnlockSegment 

Description 

Returns the limit of a selector. 

Prevents a global memory object from moving in linear 
memory. 

Page-locks the memory associated with the specified 
global selector and increments its page-lock count. 
Memory that is page-locked cannot be moved or paged out 
to disk. 

Decrements the page-lock count for the memory associated 
with the specified global selector. If the page-lock count 
reaches zero, the memory can be moved and paged out to 
disk. 

Unlocks a global memory object previously fixed by the 
GlobalFix function. 

Locks a segment in memory. 

Generates a temporary code selector that corresponds to a 
given data selector or a temporary data selector that corre
sponds to a given code selector. 

Sets the base of a selector. 

Sets the limit of a selector. 

Unlocks a segment previously locked by the Lock
Segment function. 

Note An application should not use these functions unless it is absolutely neces
sary. Use of these functions violates preferred Windows programming practices. 

3.4 Operating-System Interrupt Functions 
Operating-system interrupt functions make it possible for an assembly-language 
application to perform certain MS-DOS and NetBIOS interrupts without directly 
coding the interrupt. This ensures compatibility with future Microsoft products. 
Following are the operating-system interrupt functions: 

Function 

DOS3Call 

NetBIOSCall 

Description 

Issues an MS-DOS 2lh (function-request) interrupt. 

Issues a NetBIOS 5Ch interrupt. 



Chapter3 System Services 119 

3.5 Task Functions 
Task functions alter the execution status of tasks, return information associated 
with a task, and retrieve information about the environment in which the task is 
being executed. A task is a single Windows application call. Following are the 
task functions: 

Function 

Catch 

Exit Windows 

GetCurrentPDB 

GetCurrentTask 

GetDOSEnvironment 

GetNumTasks 

Is Task 

SetErrorMode 

Throw 
Yield 

Description 

Copies the current execution environment to a buffer. 

Initiates the standard Windows shutdown procedure. 

Returns the current MS-DOS program database (PDB), also 
known as the program segment prefix (PSP). 

Returns the handle of the current task. 

Retrieves the environment string of the currently running 
task. 
Returns the number of tasks currently being executed in the 
system. 
Determines whether a task handle is valid. 

Controls whether Windows handles MS-DOS Function 24h 
errors or allows the calling application to handle them. 

Restores the execution environment to the specified values. 

Stops the current task and starts any waiting task. 

3.6 Resource-Management Functions 
Resource-management functions find and load application resources from a 
Windows executable file. A resource can be a cursor, icon, bitmap, string, or font. 
Following are the resource-management functions: 

Function 

AccessResource 
AllocResource 

FindResource 
FreeResource 

LoadAccelerators 
LoadBitmap 

Load Cursor 
Loadlcon 

Description 

Opens the specified resource. 
Allocates uninitialized memory for a resource. 

Determines the location of a resource. 
Removes a loaded resource from memory. 

Loads an accelerator table. 
Loads a bitmap resource. 

Loads a cursor resource. 
Loads an icon resource. 



120 Microsoft Windows Programmer's Reference 

Function 

LoadMenu 

LoadResource 

LoadString 

LockResource 

SetResourceHandler 

SizeofResource 

Description 

Loads a menu resource. 

Loads a resource. 

Loads a string resource. 

Retrieves the absolute memory address of a resource. 

Sets up a function to load resources. 

Supplies the size, in bytes, of a resource. 

3. 7 String-Manipulation Functions 
String-manipulation functions translate strings from one character set to another, 
determine and convert the case of strings, determine whether a character is alpha
betic or alphanumeric, find adjacent characters in a string, and perform other string 
manipulations. Following are the string-manipulation functions: 

Function 

AnsiLower 

AnsiLowerBuff 

AnsiNext 
AnsiPrev 

AnsiToOem 

AnsiToOemBuff 

AnsiUpper 

AnsiUpperBuff 

IsCharAlpha 

Is Char AlphaNumeric 

IsCharLower 

Is Char Upper 

lsDBCSLeadByte 

lstrcat 

lstrcmp 

lstrcmpi 

lstrcpy 

Description 

Converts a character string to lowercase. 

Converts a character string in a buffer to lowercase. 

Returns a long pointer to the next character in a string. 

Returns a long pointer to the previous character in a string. 

Converts a Windows character string to an OEM character 
string. 

Converts a Windows character string in a buffer to an OEM 
character string. 

Converts a character string to uppercase. 

Converts a character string in a buffer to uppercase. 

Determines whether a character is alphabetic. 

Determines whether a character is alphanumeric. 

Determines whether a character is lowercase. 

Determines whether a character is uppercase. 

Determines whether a character is a double-byte character 
set (DBCS) lead byte. 

Concatenates two strings identified by long pointers. 

Performs a case-sensitive comparison of two strings iden
tified by long pointers. 

Performs a case-insensitive comparison of two strings iden
tified by long pointers. 

Copies one string to another. Both strings are identified by 
long pointers. 



Function 

lstrlen 

OemToAnsi 

OemToAnsiBuff 

ToAscii 

wsprintf 

wvsprintf 

Chapter 3 System Services 121 

Description 

Determines the length of a string identified by a long 
pointer. 

Converts an OEM character string to a Windows character 
string. 

Converts an OEM character string in a buffer to a Windows 
character string. 

Translates a virtual-key code to the corresponding 
Windows character or characters. 

Formats and stores a series of characters and values in a 
buffer. Format arguments are passed separately. 

Formats and stores a series of characters and values in a 
buffer. Format arguments are passed through an array. 

3.8 Atom-Management Functions 
Atom-management functions create and manipulate atoms. Atoms are integers that 
uniquely identify character strings. They are useful in applications that use many 
character strings and in applications that need to conserve memory. Windows 
stores atoms in atom tables. A local atom table is allocated in an application's 
data segment; it cannot be accessed by other applications. The global atom table 
can be shared and is useful in applications that use dynamic data exchange (DDE). 
Following are the atom-management functions: 

Function 

AddAtom 

DeleteAtom 

FindAtom 

GetAtomHandle 

GetAtomName 

GlobalAddAtom 

GlobalDeleteAtom 

GlobalFindAtom 

GlobalGetAtomName 

InitAtomTable 

Description 

Creates an atom for a character string. 

Deletes an atom if the reference count is zero. 

Retrieves an atom associated with a character string. 

Retrieves a handle (relative to the local heap) of the string 
that corresponds to a specified atom. 

Copies the character string associated with an atom. 

Creates a global atom for a character string. 

Deletes a global atom if the reference count is zero. 

Retrieves a global atom associated with a character string. 

Copies the character string associated with a global atom. 

Initializes an atom hash table. 

The MAKEINTATOM macro can also be used to cast an integer for use as a 
function argument. 



122 Microsoft Windows Programmer's Reference 

3. 9 Initialization-File Functions 
Initialization-file functions obtain information from and copy information to a 
Windows or private (application-specific) initialization file. The Windows initiali
zation file (WIN.IN!) is a special ASCII file that contains entry-value pairs repre
senting run-time options for applications. Following are the initialization-file 
functions: 

Function 

GetPrivateProfilelnt 

GetPrivateProfileString 

GetProfilelnt 

GetProfileString 

WritePrivateProfileString 

WriteProfileString 

Description 

Returns an integer value in a section from a private 
initialization file. 

Returns a character string in a section from a private 
initialization file. 

Returns an integer value in a section from the WIN.IN! 
file. 

Returns a character string in a section from the 
WIN .INI file. 

Copies a character string to a private initialization file 
or deletes one or more lines from a private initializa
tion file. 

Copies a character string to the WIN.IN! file or deletes 
one or more lines from WIN .INI. 

An application should use a private initialization file to record information that 
affects it alone. This improves the performance of the application and Windows by 
reducing the amount of information that Windows must read when it accesses the 
initialization file. An application should record information in WIN.IN! only if the 
information affects the Windows environment or other applications and should 
send the WM_ WININICHANGE message to all top-level windows. 

The WININI.WRI and SYSINI.WRI files supplied with the retail version of 
Windows describe the contents of the WIN.IN! and SYSTEM.IN! files. 

3 .10 Communication Functions 
Communication functions carry out communications through the serial and par
allel I/O ports of the system. Following are the communication functions: 

Function 

BuildCommDCB 

ClearCommBreak 
CloseComm 

Description 

Fills a device control block with control codes. 

Clears the break state from a communications device. 

Closes a communications device after transmitting the 
current buffer. 



Function 

EnableCommNotification 

EscapeCommFunction 

Flush Comm 

GetCommError 

GetCommEventMask 
GetCommState 

Open Comm 

Read Comm 

SetCommBreak 

SetCommEventMask 

SetCommState 

TransmitCommChar 

UngetCommChar 

WriteComm 

Chapter 3 System Services 123 

Description 

Enables/disables WM_COMMNOTIFY posting to 
window. 

Directs a device to carry out an extended function. 

Flushes characters from a communications device. 

Fills a buffer with the communication status. 

Retrieves and then clears an event mask. 

Fills a buffer with a device control block. 

Opens a communications device. 

Reads the bytes from a communications device into a 
buffer. 

Sets a break state on a communications device. 

Retrieves and then sets an event mask on a communica
tions device. 

Sets a communications device to the state specified by 
the device control block. 

Places a character at the head of the transmit queue. 

Specifies which character will be read next. 

Writes the bytes from a buffer to a communications 
device. 

3.11 Utility Macros and Functions 
Utility macros and functions return contents of words and bytes, create unsigned 
long integers and structures, and perform specialized arithmetic. Following are the 
utility macros and functions: 

Function or macro 

HIBYTE 

HIWORD 

LO BYTE 

LO WORD 

MAKEINTATOM 

MAKEINTRESOURCE 

MAKEL ONG 

MAKEPOINT 

Description 

Returns the high-order byte of an integer. 

Returns the high-order word of a long integer. 

Returns the low-order byte of an integer. 

Returns the low-order word of a long integer. 

Casts an integer for use as a function argument. 

Converts an integer value into a long pointer to a string, 
with the high-order word of the long pointer set to zero. 

Creates an unsigned long integer. 

Converts a long value that contains the x- and y
coordinates of a point into a POINT structure. 



124 Microsoft Windows Programmer's Reference 

Function or macro 

MulDiv 

PALETTEINDEX 

PALETTERGB 

RGB 

Description 

Multiplies two word-length values and then divides the 
result by a third word-length value, returning the result 
rounded to the nearest integer. 

Converts an integer into a palette-index COLORREF 
value. 

Converts values for red, green, and blue into a palette
relative RGB COLORREF value. 

Converts values for red, green, and blue into an explicit 
RGB COLORREF value. 

3.12 File Input and Output Functions 
File 1/0 functions create, open, read from, write to, and close files. Following are 
the file 1/0 functions: 

Function 

GetDriveType 

GetSystemDirectory 
GetTempDrive 

GetTempFileName 

GetWindowsDirectory 
_hmemcpy 

_hread 
_hwrite 

_lclose 

_lcreat 

_llseek 
_lopen 

_lread 

_lwrite 

OpenFile 
SetHandleCount 

Description 

Determines whether a disk drive is removable, fixed, or 
remote. 

Retrieves the path of the Windows system subdirectory. 

Returns the letter of the optimal drive for temporary file 
storage. 

Creates a temporary filename. 

Retrieves the path of the Windows directory. 

Copies bytes. 

Reads from a file. 

Writes to a file. 

Closes a file. 

Creates a new file or opens and truncates an existing file. 

Positions the pointer to a file. 

Opens an existing file. 

Reads data from a file. 

Writes data to a file. 

Creates, opens, reopens, or deletes the specified file. 

Changes the number of file handles available to a task. 



Chapter 3 System Services 125 

3 .13 Debugging Functions 
Debugging functions help locate programming errors in an application or library. 
Following are the debugging functions: 

Function 

DebugBreak 

DebugOutput 

Directed Yield 
FatalAppExit 

FatalExit 

Description 

Causes a breakpoint exception to occur in the calling func
tion. 

Sends messages to the debugging terminal. 

Forces execution of a specified task to continue. 

Displays a message and then exits the application. 

Displays the current state of Windows and prompts for 
instructions on how to proceed. 

GetSystemDebugState 
GetWinDebuglnfo 

Locklnput 
OutputDebugString 

Returns system-state information to a debugger. 

Queries current system-debugging information. 

Locks input to all tasks except the current one. 

Sends a debugging message to the debugger if present, or 
to the AUX device if the debugger is not present. 

QuerySendMessage 

SetWinDebuglnfo 
ValidateCodeSegments 

Determines if a message originated in a task. 

Sets current system-debugging information. 

Determines whether any code segments have been altered 
by random memory overwrites. 

ValidateFreeSpaces Checks free segments in memory for valid contents. 

3.14 Optimization-Tool Functions 
Optimization-tool functions control how the Microsoft Windows Profiler software 
development tool interacts with an application being developed. Following are the 
optimization-tool functions: 

Function 

ProfClear 

ProfFinish 
ProfFlush 
ProflnsChk 

ProfSampRate 

ProfSetup 

ProfStart 
ProfStop 

Description 

Discards all samples in the Profiler sampling buffer. 

Stops sampling by Profiler and flushes the buffer to disk. 

Flushes the Profiler sampling buffer to disk. 

Determines if Profiler is installed. 

Sets the rate of code sampling by Profiler. 

Sets up the Profiler sampling buffer and recording rate. 

Starts sampling by Profiler. 

Stops sampling by Profiler. 



126 Microsoft Windows Programmer's Reference 

3 .15 Application-Execution Functions 
Application-execution tasks permit one application to execute another program. 
Following are the application-execution functions: 

Function 

LoadModule 
WinExec 

WinHelp 

Description 

Executes a separate application. 

Executes a separate application. 

Runs the Windows Help application and passes context or topic infor
mation to Help. 

The WinExec function provides a high-level method for executing any Windows 
or MS-DOS application. The calling application supplies a string containing the 
name of the executable file to be run and any command parameters, and it also 
specifies the initial state of the application window. 

The LoadModule function is similar but provides more control over the environ
ment in which the application is executed. The calling application supplies the 
name of the executable file and an MS-DOS Function 4Bh, Code OOh, parameter 
block. 

The WinHelp function executes the Windows Help application and, optionally, 
passes data to it indicating the nature of the help requested by the application. This 
data is either an integer that specifies a context identifier in the help file or a string 
containing a keyword in the help file. 

3 .16 Related Topics 
For an introduction to file input and output, libraries, and memory management, 
see the Microsoft Windows Guide to Programming. 

For more information about Windows functions and macros, see the Microsoft 
Windows Programmer's Reference, Volumes 2 and 3. 

For information about debugging and optimization tools, see Microsoft Windows 
Programming Tools. 



Extension Libraries 

Part 2 





Common Dialog Box Library 

Chapter 4 

4.1 Using Color Dialog Boxes....................................................................... 132 
4.1.l Color Models Used by the Color Dialog Box......................... 133 

4.1.1.1 RGB Color Model................................................. 133 
4.1.1.2 HSL Color Model.................................................. 135 
4.1.1.3 Converting HSL Values to RGB Values.............. 135 

4.1.2 Using the Color Dialog Box to Display Basic Colors............. 136 
4.1.2.1 Initializing the CHOOSECOLOR Structure......... 136 
4.1.2.2 Calling the ChooseColor Function........................ 137 

4.1.3 Using the Color Dialog Box to Display Custom Colors......... 137 
4.1.3.1 Initializing the CHOOSECOLOR Structure......... 137 
4.1.3.2 Calling the ChooseColor Function........................ 138 

4.2 Using Font Dialog Boxes......................................................................... 139 
4.2.1 Displaying the Font Dialog Box in Your Application............ 140 

4.3 Using Open and Save As Dialog Boxes .................................................. 142 
4.3.1 Displaying the Open Dialog Box in Your Application ........... 142 
4.3.2 Displaying the Save As Dialog Box in Your Application...... 145 
4.3.3 Monitoring List Box Controls in an Open or 

Save As Dialog Box................................................................. 146 
4.3.4 Monitoring Filenames in an Open or Save As Dialog Box.... 147 

4.4 Using Print and Print Setup Dialog Boxes .. . . . . . . . .. . . .. . . . .. . . . .. . . . .. . . .. . . . . . . .. . . .. 148 
4.4.1 Device Drivers and the Print Dialog Box................................ 148 
4.4.2 Displaying a Print Dialog Box for the Default Printer............ 149 

4.5 Using Find and Replace Dialog Boxes.................................................... 150 
4.5.1 Displaying the Find Dialog Box .............................................. 150 
4.5.2 Displaying the Replace Dialog Box........................................ 152 
4.5.3 Processing Dialog Box Messages for a Find or 

Replace Dialog Box................................................................. 153 



130 Microsoft Windows Programmer's Reference 

4.6 Customizing Common Dialog Boxes ...................................................... 154 
4.6.1 Appropriate and Inappropriate Customizations ...................... 154 
4.6.2 Hook Functions and Custom Dialog Box Templates.............. 154 

4.6.2. l The Hook Function................................................ 155 
4.6.2.2 Customizing a Dialog Box Template.................... 158 

4.6.3 Displaying the Custom Dialog Box......................................... 159 
4.7 Supporting Help for the Common Dialog Boxes.................................... 160 
4.8 Error Detection ......................................................................................... 161 
4.9 Related Topics.......................................................................................... 162 



Chapter 4 Common Dialog Box Library 131 

Common dialog boxes make it easier for you to develop applications for the 
Microsoft Windows operating system. A common dialog box is a dialog box that 
an application displays by calling a single function rather than by creating a dialog 
box procedure and a resource file containing a dialog box template. The dynamic
link library COMMDLG.DLL provides a default procedure and template for each 
type of common dialog box. Each default dialog box procedure processes mes
sages and notifications for a common dialog box and its controls. A default dialog 
box template defines the appearance of a common dialog box and its controls. 

In addition to simplifying the development of Windows applications, a common 
dialog box assists users by providing a standard set of controls for performing cer
tain operations. As Windows developers begin using the common dialog boxes in 
their applications, users will find that after they master using a common dialog 
box in one application, they can easily perform the same operations in other appli
cations. 

This chapter describes the various common dialog boxes and includes sample code 
to help you use common dialog boxes in your Windows applications. 

Following are the types of common dialog boxes in the order in which they are 
presented in this chapter: 

Name 

Color 

Font 

Open 

Save As 

Print 

Print Setup 

Find 

Description 

Displays available colors, from which the user can select one; displays 
controls that let the user define a custom color. 

Displays lists of fonts, point sizes, and colors that correspond to avail
able fonts; after the user selects a font, the dialog box displays sample 
text rendered with that font. 

Displays a list of filenames matching any specified extensions, directo
ries, and drives. By selecting one of the listed filenames, the user indi
cates which file an application should open. 

Displays a list of filenames matching any specified extensions, directo
ries, and drives. By selecting one of the listed filenames, the user indi
cates which file an application should save. 

Displays information about the installed printer and its configuration. 
By altering and selecting controls in this dialog box, the user specifies 
how output should be printed and starts the printing process. 

Displays the current list of available printers. The user can select a 
printer from this list. This common dialog box also provides options for 
setting the paper orientation, size, and source (when the printer driver 
supports these options). In addition to being called directly, the Print 
Setup dialog can be opened from within the Print dialog. 

Displays an edit control in which the user can type a string for which 
the application should search. The user can specify the direction of the 
search, whether the application should match the case of the specified 
string, and whether the string to match is an entire word. 



132 Microsoft Windows Programmer's Reference 

Name Description 

Replace Displays two edit controls in which the user can type strings: the first 
string identifies a word or value that the application should replace, and 
the second string identifies the replacement word or value. 

Applications that use the common dialog boxes should specify at least 8K for the 
stack size, as shown in the following example: 

NAME cd 

EXETYPE WINDOWS 

STUB 'WINSTUB.EXE' 

CODE PRELOAD MOVEABLE DISCARDABLE 

DATA PRELOAD MOVEABLE MULTIPLE 

HEAPSIZE 1024 

STACKSIZE 8192 

EXPORTS 
FILEOPENHOOKPROC @1 

4.1 Using Color Dialog Boxes 
The Color dialog box contains controls that make it possible for a user to select 
and create colors. 

Following is a Color dialog box. 

~u:s:tom Colors: 

D!!ue:~ 
~at:~ 

ColorlSgJid _Lum:~ 

,!!.ed:~ 
§_reen:~ 
BIJ!.e:~ 



Chapter 4 Common Dialog Box Library 133 

The Basic Colors control displays up to 48 colors. The actual number of colors dis
played is determined by the display driver. For example, a VGA driver displays 48 
colors, and a monochrome display driver displays only 16. With the Basic Colors 
control, the user can select a displayed color. 

To display the Custom Colors control, the user clicks the Define Custom Colors 
button. The Custom Colors control displays custom colors. The user can select one 
of the 16 rectangles in this control and then create a new color by using one of the 
following methods: 

• Specifying red, green, and blue (RGB) values by using the Red, Green, and 
Blue edit controls, and then choosing the Add to Custom Colors button to dis
play the new color in the selected rectangle. 

• Moving the cursor in the color spectrum control (at the upper-right of the dialog 
box) to select hue and saturation values; moving the cursor in the luminosity 
control (the rectangle to the right of the spectrum control); and then choosing 
the Add to Custom Colors button to display the new color in the selected rect
angle. 

• Specifying hue, saturation, and luminosity (HSL) values by using the Hue, Sat, 
and Lum edit controls and then choosing the Add to Custom Colors button to 
display the new color in the selected rectangle. 

The ColorlSolid control displays the dithered and solid colors that correspond to 
the user's selection. (A dithered color is a color created by combining one or more 
pure or solid colors.) The Flags member of the CHOOSECOLOR structure con
tains a flag bit that, when set, displays a Help button. For more information about 
the CHOOSECOLOR structure, see the Microsoft Windows Programmer's 
Reference, Volume 3. 

An application can display the Color dialog box in one of two ways: fully open or 
partially open. When the Color dialog box is displayed partially open, the user can
not change the custom colors. 

4.1.1 Color Models Used by the Color Dialog Box 
The Color dialog box uses two models for specifying colors: the RGB model and 
the HSL model. Regardless of the model used, internal storage is accomplished by 
use of the RGB model. 

4.1.1.1 RGB Color Model 
The RGB model is used to designate colors for displays and other devices that 
emit light. Valid red, green, and blue values are in the range 0 through 255, with 0 
indicating the minimum intensity and 255 indicating the maximum intensity. The 
following illustration shows how the primary colors red, green, and blue can be 



134 Microsoft Windows Programmer's Reference 

combined to produce four additional colors. (With display devices, the color black 
results when the red, green, and blue values are set to 0-that is, with display tech
nology, black is the absence of all colors.) 

YELLOW 

CYAN 

Following are eight colors and their associated RGB values: 

Color RGB values 

Red 255,0,0 
Green 0,255,0 
Blue 0,0,255 
Cyan 0,255,255 
Magenta 255,0,255 
Yellow 255,255,0 
White 255,255,255 
Black 0,0,0 

Windows stores internal colors as 32-bit RGB values. The high-order byte of the 
high-order word is reserved; the low-order byte of the high-order word specifies 
the intensity of the blue component; the high-order byte of the low-order word 
specifies the intensity of the green component; and the low-order byte of the low
order word specifies the intensity of the red component. 



Chapter 4 Common Dialog Box Library 135 

4.1.1.2 HSL Color Model 
The Color dialog box provides controls for specifying HSL values. The following 
illustration shows the color spectrum control and the vertical luminosity control 
that appear in the Color dialog box and shows the ranges of values the user can 
specify with these controls. 

240 - ..--------------. -240 

Saturation Luminosity 

o-~----------

1 

-0 

0 Hue 239 

In the Color dialog box, the saturation and luminosity values must be in the range 
0 through 240 and the hue value must be in the range 0 through 239. 

4.1.1.3 Converting HSL Values to RGB Values 
The dialog box procedure provided in COMMDLG.DLL for the Color dialog box 
contains code that converts HSL values to the corresponding RGB values. Follow
ing are several colors with their associated HSL and RGB values: 

Color HSL values RGB values 

Red (0, 240, 120) (255, 0, 0) 

Yellow (40, 240, 120) (255, 255, 0) 

Green (80, 240, 120) (0, 255, 0) 

Cyan (120, 240, 120) (0, 255, 255) 

Blue (160, 240, 120) (0, 0, 255) 

Magenta (200, 240, 120) (255, 0, 255) 

White (0, 0, 240) (255, 255, 255) 

Black (0, 0, 0) (0, 0, 0) 



136 Microsoft Windows Programmer's Reference 

4.1.2 Using the Color Dialog Box to Display Basic Colors 
An application can display the Color dialog box so that a user can select one color 
from a list of basic screen colors. This section describes how you can provide code 
and structures in your application that make this possible. 

4.1.2.1 Initializing the CHOOSECOLOR Structure 
Before you display the Color dialog box you need to initialize a CHOOSE
COLOR structure. This structure should be global or declared as a static vari
able. The members of this structure contain information about such items as the 
following: 

• Structure size 

• Which window owns the dialog box 

• Whether the application is customizing the common dialog box 

• The hook function and custom dialog box template to use for a customized ver
sion of the Color dialog box 

• RGB values for the selected basic color 

If your application does not customize the dialog box and you want the user to 
be able to select a single color from the basic colors, you should initialize the 
CHOOSECOLOR structure in the following manner: 

/* Color variables */ 

CHOOSECOLOR cc; 
COLORREF cl r; 
COLORREF aclrCust[16]; 
int i; 

/* Set the custom color controls to white. */ 

for (i = 0; i < 16; i++) 
aclrCust[iJ = RGB(255, 255, 255); 

/* Initialize clr to black. */ 

cl r = RGB(0, 0, 0); 

/* Set all structure fields to zero. */ 

memset(&cc, 0, sizeof(CHOOSECOLOR)); 

/* Initialize the necessary CHOOSECOLOR members. */ 

cc.lStructSize = sizeof(CHOOSECOLOR); 
cc.hwndOwner = hwnd; 



cc.rgbResult = clr; 
cc.lpCustColors = aclrCust; 
cc.Flags= CC_PREVENTFULLOPEN; 

if (ChooseColor(&cc)) 

Chapter 4 Common Dialog Box Library 137 

I* Use cc.rgbResult to select the user-requested color. */ 

In the previous example, the array to which the lpCustColors member points 
contains 16 doubleword RGB values that specify the color white, and the 
CC_PREVENTFULLOPEN flag is set in the Flags member to disable the Define 
Custom Colors button and prevent the user from selecting a custom color. 

4 .1.2 .2 Calling the ChooseColor Function 
After you initialize the structure, you should call the ChooseColor function. If the 
function is successful and the user chooses the OK button to close the dialog box, 
the rgbResult member contains the RGB values for the basic color that the user 
selected. 

4.1.3 Using the Color Dialog Box to Display Custom Colors 
An application can display the Color dialog box so that the user can create and 
select a custom color. This section describes how you can provide code and struc
tures in your application that make this possible. 

4.1.3.1 Initializing the CHOOSECOLOR Structure 
Before you display the Color dialog box, you need to initialize a CHOOSE
COLOR structure. This structure should be global or declared as a static vari
able. The members of this structure contain information about such items as the 
following: 

• Structure size 

• Which window owns the dialog box 

• Whether the application is customizing the common dialog box 

• The hook function and custom dialog box template to use for a customized 
version of the Color dialog box 

• RGB values for the custom color control 



138 Microsoft Windows Programmer's Reference 

If your application does not customize the dialog box and you want the user to be 
able to create and select custom colors, you should initialize the CHOOSE
COLOR structure in the following manner: 

/* Color Variables */ 

CHOOSECOLOR chsclr; 
OWORD dwCustClrs[16] { RGB(255, 255, 255), 

RGB(223, 223, 223), 
RGB(191, 191, 191)' 
RGB(159, 159, 159), 
RGB(127, 127, 127)' 
RGB(95, 95, 95), 
RGB(63, 63, 63), 
RGB(31, 31, 31), 

} ; 
BOOL fSetColor FALSE; 
int i ; 

chsclr.lStructSize = sizeof (CHOOSECOLOR); 
chsclr.hwndOwner hwnd; 
chsclr.hlnstance = NULL; 
chsclr.rgbResult = 0L; 
chsclr.lpCustColors = (LPDWORD) dwCustClrs; 
chsclr.Flags = CC_FULLOPEN; 
chsclr.lCustData = 0L; 
chsclr.lpfnHook = (FARPROC) NULL; 
chsclr.lpTemplateName = (LPSTR)NULL; 

RGB(239, 239, 239), 
RGB(207, 207, 207)' 
RGB(175, 175, 175), 
RGB(143, 143, 143)' 
RGB( 111, 111, 111), 
RGB(79, 79, 79), 
RGB(47, 47, 47), 
RGB(15, 15, 15) 

In the previous example, the array to which lpCustColors points contains sixteen 
32-bit RGB values that specify 16 scales of gray, and the CC_FULLOPEN flag is 
set in the Flags member to display the complete Color dialog box. 

4.1.3.2 Calling the ChooseColor Function 
After you initialize the structure, you should call the ChooseColor function as 
shown in the following code fragment: 

if (fSetColor = ChooseColor(&chsclr)) 

. I* Use chsclr.lpCustColors to select user specified colors*/ 

If the function is successful and the user chooses the OK button to close the dialog 
box, the lpCustColors member points to an array that contains the RGB values 
for the custom colors requested by the application's user. 

Applications can exercise more control over custom colors by creating a new 
message identifier for the string defined by the COLOROKSTRING constant. The 



Chapter 4 Common Dialog Box Library 139 

application creates the new message identifier by calling the RegisterWindow
Message function and passing this constant as the single parameter. After calling 
RegisterWindowMessage, the application receives a message immediately prior 
to the dismissal of the dialog box. The lParam parameter of this message contains 
a pointer to the CHOOSECOLOR structure. The application can use the lpCust
Colors member of this structure to check the current color. If the application 
returns a nonzero value when it processes this message, the dialog box is not dis
missed. 

Similarly, applications can create a new message identifier for the string defined 
by the SETRGBSTRING constant. The application's hook function can use the 
message identifier returned by calling RegisterWindowMessage with the 
SETRGBSTRING constant to set a color in the dialog box. For example, the fol
lowing line of code sets the color selection to blue: 

SendMessage(hwhndDlg, wSetRGBMsg, 0, (LPARAM) RGB(0, 0, 255)); 

In this example, wSetRGBMsg is the message identifier returned by the Register
WindowMessage function. The lParam parameter of the SendMessage function 
is set to the RGB values of the desired color. The wParam parameter is not used. 

The application can specify any valid RGB values in this call to SendMessage. If 
the RGB values match one of the basic colors, the system selects the basic color 
and updates the spectrum and luminosity controls. If the RGB values do not match 
one of the basic colors, the system updates the spectrum and luminosity controls, 
but the basic color selection remains unchanged. 

Note that ifthe Color dialog box is not fully open and the application sends RGB 
values that do not match one of the basic colors, the system does not update the 
dialog box. Updates are unnecessary because the spectrum and luminosity controls 
are not visible when the dialog box is only partially open. 

For more information about processing registered window messages, see Section 
4.5, "Using Find and Replace Dialog Boxes." 

4.2 Using Font Dialog Boxes 
The Font dialog box contains controls that make it possible for a user to select a 
font, a font style (such as bold, italic, or regular), a point size, and an effect (such 
as underline, strikeout, or a text color). 

Following is a Font dialog box. 



140 Microsoft Windows Programmer's Reference 

Elfeci.---~ 

D Stri!>eoul 

D ]J_nderline 
~olor: 

l•Black II 

Bold 
Bold Italic 10 
Italic 11 

12 

['~·'· AaBbYyZz 

4.2.1 Displaying the Font Dialog Box in Your Application 
The Font dialog box appears after you initialize the members in a 
CHOOSEFONT structure and call the ChooseFont function. This structure 
should be global or declared as a static variable. The members of the 
CHOOSEFONT structure contain information about such items as the following: 

• The attributes of the font that initially is to appear in the dialog box. 

• The attributes of the font that the user selected. 

• The point size of the font that the user selected. 

• Whether the list of fonts corresponds to a printer, a screen, or both. 

• Whether the available fonts listed are TrueType only. 

• Whether the Effects box should appear in the dialog box. 

• Whether dialog box messages should be processed by an application-supplied 
hook function. 

• Whether the point sizes of the selectable fonts should be limited to a specified 
range. 

• Whether the dialog box should display only what-you-see-is-what-you-get 
(WYSIWIG) fonts. (These fonts are resident on both the screen and the printer.) 

• The color that the ChooseFont function should use to render text in the Sample 
box the first time the application displays the dialog box. 

• The color that the user selected for text output. 

To display the Font dialog box, an application should perform the following steps: 

1. If the application requires printer fonts, retrieve a device-context handle for the 
printer and use this handle to set the hDC member of the CHOOSEFONT 
structure. (If the Font dialog box displays only screen fonts, this member 
should be set to NULL.) 



Chapter 4 Common Dialog Box Library 141 

2. Set the appropriate flags in the Flags member of the CHOOSEFONT struc
ture. This setting must include CF _SCREENFONTS, CF _PRINTERFONTS, or 
CF_BOTH. 

3. Set the rgbColors member of the CHOOSEFONT structure ifthe default 
color (black) is not appropriate. 

4. Set the nFontType member of the CHOOSEFONT structure using the appro
priate constant. 

5. Set the nSizeMin and nSizeMax members of the CHOOSEFONT structure if 
the CF _LIMITSIZE value is specified in the Flags member. 

6. Call the ChooseFont function. 

The following example initializes the CHOOSEFONT structure and calls the 
ChooseFont function: 

LOGFONT lf; 
CHOOSEFONT cf; 

f* Set all structure fields to zero. */ 

memset(&cf, 0, sizeof(CHOOSEFONT)); 

cf.lStructSize = sizeof(CHOOSEFONT); 
cf.hwndOwner = hwnd; 
cf.lplogFont = &lf; 
cf.Flags= CF_SCREENFONTS I CF_EFFECTS; 
cf.rgbColors = RGB(0, 255, 255); /*light blue*/ 
cf.nFontType = SCREEN_FONTTYPE; 

ChooseFont(&cf); 

When the user closes the Font dialog box by choosing the OK button, the 
ChooseFont function returns information about the selected font in the LOG
FONT structure to which the lpLogFont member points. An application can use 
this LOGFONT structure to select the font that will be used to render text. The 
following example selects a font by using the LOGFONT structure and renders a 
string of text: 

hdc = GetDC(hwnd); 
hFont = CreateFontlndirect(cf.lplogFont); 
hFontOld = SelectObject(hdc, hFont); 
TextOut(hdc, 50, 150, 

"AaBbCcDdEeFfGgHhliJjKkllMmNnOoPpQqRrSsTtUuVvWwXxYyZz", 52); 
SelectObject(hdc, hFontOld); 
DeleteObject(hFont); 
ReleaseDC(hwnd, hdc); 



142 Microsoft Windows Programmer's Reference 

An application can also use the WM_CHOOSEFONT_GETLOGFONT message 
to retrieve the current LOGFONT structure for the Font dialog box before the 
user closes the dialog box. 

4.3 Using Open and Save As Dialog Boxes 
The Open dialog box and the Save As dialog box are similar in appearance. Each 
contains controls that make it possible for the user to specify the location and 
name of a file or set of files. In the case of the Open dialog box, the user selects 
the file or files to be opened; in the case of the Save As dialog box, the user selects 
the file or files to be saved. 

4.3.1 Displaying the Open Dialog Box in Your Application 
The Open dialog box appears after you initialize the members of an OPEN
FILENAME structure and call the GetOpenFileName function. 

Following is an Open dialog box. 

FileH_ame: 

B c:\window:s: 

dcnxcode_wri ~c:\ Iii hw.wri It windows 
iust.wri (k3 sy:s:tem just2.wri 
mylst".'ri 
rev.wn 0 f!_ead Only 
unischd. wri 
unitool. wri • Lisi Files of !Ype: Driyes: 

!write Files(".WRIJ II I liiiill c: II 

Before the call to GetOpenFileName, structure members contain such data as 
the name of the directory and the filter that are to appear in the dialog box. (A fil
ter is a filename extension. The common dialog box code uses the extension to 
filter appropriate filenames from a directory.) After the call, structure members 
contain such data as the name of the selected file and the number of characters in 
that filename. 

To display an Open dialog box, an application should perform the following steps: 

1. Store the valid filters in a character array. 

2. Set the lpstrFilter member to point to this array. 

3. Set the nFilterlndex member to the value of the index that identifies the 
default filter. 



Chapter 4 Common Dialog Box Library 143 

4. Set the lpstrFile member to point to an array that contains the initial filename 
and receives the selected filename. 

5. Set the nMaxFile member to the value that specifies the length of the filename 
array. 

6. Set the lpstrFileTitle member to point to a buffer that receives the title of the 
selected file. 

7. Set the nMaxFileTitle member to specify the length of the buffer. 

8. Set the lpstrlnitialDir member to point to a string that specifies the initial 
directory. (If this member does not point to a valid string, it must be set to 0 or 
point to a string that is set to NULL.) 

9. Set the lpstrTitle member to point to a string specifying the name that should 
appear in the title bar of the dialog box. (If this pointer is NULL, the title will 
be Open.) 

10. Initialize the lpstrDefExt member to point to the default extension. (This exten
sion can be 0, 1, 2, or 3 characters long.) 

11. Call the GetOpenFileName function. 

The following example initializes an OPENFILENAME structure, calls the 
GetOpenFileName function, and opens the file by using the lpstrFile member 
of the structure. The OPENFILENAME structure should be global or declared 
as a static variable. 

OPENFILENAME ofn; 
char szDirName[256J; 
char szFile[256], szFileTitle[256J; 
UINT i, cbString; 
char chReplace; /* string separator for szFilter */ 
char szFilter[256]; 
HFILE hf; 

/* Get the system directory name, and store in szDirName. */ 

GetSystemDirectory(szDirName, sizeof(szDirName)); 
szFile[0] = '\0'; 

if ((cbString = LoadString(hinst, IDS_FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) { 

ErrorHandl er(); 
return 0L; 

} 

chReplace = szFilter[cbString - l]; /* retrieve wildcard */ 

for (i = 0; szFilter[i] != '\0'; i++) 
if (szFilter[i] == chReplace) 

szFilter[i] = '\0'; 



144 Microsoft Windows Programmer's Reference 

/*Set all structure members to zero. */ 

memset(&ofn, 0, sizeof(OPENFILENAME)); 

ofn.lStructSize = sizeof(OPENFILENAME); 
ofn.hwndOwner = hwnd; 
ofn.lpstrFilter = szFilter; 
ofn.nFilterindex = 1; 
ofn.lpstrFile= szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle); 
ofn.lpstrinitialDir = szDirName; 
ofn.Flags = OFN_SHOWHELP I OFN_PATHMUSTEXIST I OFN_FILEMUSTEXIST; 

if (GetOpenFileName(&ofn)) { 
hf= _lopen(ofn.lpstrFile, OF_READ); 

/* Perform file operations. */ 

else 
ErrorHandler(); 

The string referred to by the IDS_FILTERSTRING constant in the preceding 
example is defined as follows in the resource-definition file: 

STRINGTABLE 
BEGIN 

IDS_FILTERSTRING "Write Files(*.WRI) l*.Wri I Word Files(*.DOC) l*.docl" 
END 

The vertical bars in this string are used as wildcards. After using the LoadString 
function to retrieve the string, the wildcards are replaced with NULL. The wild
card can be any unique character and must be included as the last character in the 
string. Initializing strings in this manner guarantees that the parts of the string are 
contiguous in memory and that the string is terminated with two null characters. 

Applications that can open files over a network can create a new message identi
fier for the string defined by the SHAREVISTRING constant. The application 
creates the new message identifier by calling the RegisterWindowMessage 
function and passing this constant as the single parameter. After calling Register
WindowMessage, the application is notified whenever a sharing violation occurs 
during a call to the OpenFile function. For more information about processing 
registered window messages, see Section 4.5, "Using Find and Replace Dialog 
Boxes." 



Chapter 4 Common Dialog Box Library 145 

4.3.2 Displaying the Save As Dialog Box in Your Application 
The Save As dialog box appears after you initialize the members of an OPEN
FILENAME structure and call the GetSaveFileName function. 

Following is a Save As dialog box. 

ll_irectorie:s:: 
c:\windows 

f2::. c:\ 
E@- windows 
L:J system 

Save File as l.Ype: D riye:s:: 

~lw_rit_e_Fi_les_(" __ W_R_IJ~-•- l~•~c~~~~~l_I 

1 

D Read Only 

Before the call to GetSaveFileName, structure members contain such data as the 
name of the initial directory and a filter string. After the call, structure members 
contain such data as the name of the file to be saved and the number of characters 
in that filename. 

The following example initializes an OPENFILENAME structure, calls GetSave
FileName function, and saves the file. The OPENFILENAME structure should 
be global or declared as a static variable. 

OPENFILENAME ofn; 
char szDirName[256]; 
char szFile[256J, szFileTitle[256]; 
UINT i, cbString; 
char chReplace; /* string separator for szFilter */ 
char szFilter[256J; 
HFILE hf; 

/* 
* Retrieve the system directory name, and store it in 
* szDirName. 
*/ 

GetSystemDirectory(szDirName, sizeof(szDirName)); 

if ((cbString = LoadString(hinst, IDS_FILTERSTRING, 
szFilter, sizeof(szFilter))) == 0) { 

ErrorHandl er(); 
return 0; 



146 Microsoft Windows Programmer's Reference 

chReplace = szFilter[cbString - 1]; /* retrieve wildcard */ 

for (i = 0; szFilter[iJ != '\0'; i++) 
if (szFilter[iJ == chReplace) 

szFilter[i] '\0'; 
} 

/* Set all structure members to zero. */ 

memset(&ofn, 0, sizeof(OPENFILENAME)); 

I* Initialize the OPENFILENAME members. */ 

szFile[0] = '\0'; 

ofn.lStructSize sizeof(OPENFILENAME); 
ofn.hwndOwner = hwnd; 
ofn. lpstrFilter = szFilter; 
ofn.lpstrFile= szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeof(szFileTitle); 
ofn.lpstrlnitialDir = szDirName; 
ofn.Flags = OFN_SHOWHELP I OFN_OVERWRITEPROMPT; 

if (GetSaveFileName(&ofn)) { 

/* Perform file operations. */ 

else 
ErrorHandler(); 

The string referred to by the IDS_FILTERSTRING constant in the preceding 
example is defined in the resource-definition file. It is used in exactly the same 
way as the IDS_FILTERSTRING constant discussed in Section 4.3.1, "Displaying 
the Open Dialog Box in Your Application." 

4.3.3 Monitoring List Box Controls in an Open or Save As Dialog Box 
An application can monitor list box selections in order to process and display data 
in custom controls. For example, an application can use a custom control to dis
play the total length, in bytes, of all of the files selected in the File Name box. 
One method the application can use to obtain this value is to recompute the total 
count of bytes each time the user selects a file or cancels the selection of a file. A 
faster method is for the application to use the LBSELCHSTRING message to iden
tify a new selection and add the corresponding file length to the value that appears 
in the custom control. (Note that in this example, the custom control is a standard 



Chapter 4 Common Dialog Box Library 147 

Windows control that you identify in a resource file template for one of the com
mon dialog boxes.) 

An application registers the selection-change message with the RegisterWindow
Message function. Once the application registers the message, it uses this func
tion's return value to identify messages from the dialog box. The message is 
processed in the application-supplied hook function for the common dialog box. 
The wParam parameter of each message identifies the list box in which the selec
tion occurred. The low-order word of the lParam parameter identifies the list box 
item. The high-order word of the lParam parameter is one of the following values: 

Value 

CD_LBSELCHANGE 

CD _LBSELSUB 

CD_LBSELADD 

CD_LBSELNOITEMS 

Meaning 

Specifies that the item identified by the low-order word of 
lParam was the item in a single-selection list box. 

Specifies that the item identified by the low-order word of 
lParam is no longer selected in a multiple-selection list box. 

Specifies that the item identified by the low-order word of 
lParam was selected from a multiple-selection list box. 

Specifies that no items exist in a multiple-selection list box. 

For an example that registers a common dialog box message, see Section 4.5, 
"Using Find and Replace Dialog Boxes." 

4.3.4 Monitoring Filenames in an Open or Save As Dialog Box 
Applications can alter the normal processing of an Open or Save As dialog box by 
monitoring which filename the user types and by performing other, unique opera
tions. For example, one application could prevent the user from closing the dialog 
box if the selected filename is prohibited; another application could make it pos
sible for the user to select multiple filenames. 

To monitor filenames, an application should register the FILEOKSTRING 
message. An application registers this message by calling the RegisterWindow
Message function and passing the message name as its single parameter. After the 
message is registered, the dialog box procedure in COMMDLG.DLL uses it to 
signal that the user has selected a filename and chosen the OK button and that the 
dialog box has checked the filename and is ready to return. The dialog box proce
dure signals these actions by sending the message to the application's hook func
tion. After receiving the message, the hook function should return a value to the 
dialog box procedure that called it. If the hook function did not process the mes
sage, it should return O; if the hook function did process the message and the 
dialog box should close, the hook function should return O; if the hook function 
did process the message but the dialog box should not close, the hook function 
should return 1. (All other return values are reserved.) 



148 Microsoft Windows Programmer's Reference 

4.4 Using Print and Print Setup Dialog Boxes 
A Print dialog box contains controls that let a user configure a printer for a particu
lar print job. The user can make such selections as print quality, page range, and 
number of copies (if the printer supports multiple copies). 

Following is a Print dialog box. 

Print Range 

OAll 

0 S~lection 

®:!'.a!ie<: 
, £;~m: ~ Io:~ 

Print Q_uality: 1320 dpi x 96 dpi II J;_opieo: LJ 
D Print to File 

Choosing the Setup button in the Print dialog box displays the following Print 
Setup dialog box for a Postscript printer. 

0 Specific .e_rinter: 

/Diconix 150 Plus: on LPT1: II 
Orientation----, 

®Portrait 

0 Landscape 

Paper 

Si,;e: I Letter 8112 x 11 in II 
.S.ource: l~!_rac_to_r ____ ~ll_ 1 

The Print Setup dialog box provides controls that make it possible for the user to 
reconfigure the selected printer. 

4.4.1 Device Drivers and the Print Dialog Box 
The Print dialog box differs from other common dialog boxes in that part of its 
dialog box procedure resides in COMMDLG.DLL and part in a printer driver. A 
printer driver is a program that configures a printer, converts graphics device inter
face (GDI) commands to low-level printer commands, and stores commands for a 
particular print job in a printer's queue. 



Chapter 4 Common Dialog Box Library 149 

A printer driver exports a function called ExtDeviceMode, which displays a 
dialog box and its controls. In previous versions of Windows, an application called 
the LoadLibrary function to load a device driver and the GetProcAddress func
tion to obtain the address of the ExtDeviceMode function. This is no longer 
necessary with the Windows common dialog box interface. Instead of calling 
LoadLibrary and GetProcAddress, a Windows application can call a single 
function, PrintDlg, to display the Print dialog box and begin a print job. The code 
for PrintDlg resides in COMMDLG.DLL. The dialog box that appears when an 
application calls PrintDlg differs slightly from the dialog box that appears when 
the application calls directly into the device driver. The functionality is very simi
lar in spite of the different appearance. 

4.4.2 Displaying a Print Dialog Box for the Default Printer 
To display a Print dialog box for the default printer, an application must initialize 
a PRINTDLG structure and then call the PrintDlg function. 

The members of the PRINTDLG structure can contain information about such 
items as the following: 

• The printer device context 

• Values that should appear in the dialog box controls 

• The hook function and custom dialog box template to use for a customized ver
sion of the Print dialog box or Print Setup dialog box 

An application can display a Print dialog box for the currently installed printer by 
performing the following steps: 

1. Setting the PD _RETURNDC flag in the Flags member of the PRINTDLG 
structure. (This flag should only be set if the application requires a device
context handle.) 

2. Initializing the lStructSize, hDevMode, and hDevNames members. 

3. Calling the PrintDlg function and passing a pointer to the PRINTDLG struc
ture just initialized. 

Setting the PD _RETURNDC flag causes PrintDlg to display the Print dialog box 
and return a handle identifying a printer device context in the hDC member of the 
PRINTDLG structure. (The application passes the device-context handle as the 
first parameter to the GDI functions that render output on the printer.) 

The following example initializes the members of the PRINTDLG structure and 
calls the PrintDlg function prior to printing output. This structure should be global 
or declared as a static variable. 



150 Microsoft Windows Programmer's Reference 

PRINTDLG pd; 

/*Set all structure members to zero. */ 

memset(&pd, 0, sizeof(PRINTDLG)); 

/* Initialize the necessary PRINTDLG structure members. */ 

pd.lStructSize = sizeof(PRINTDLG); 
pd.hwndOwner = hwnd; 
pd.Flags PD_RETURNDC; 

/* Print a test page if successful. */ 

if (PrintDlg(&pd) != 0) { 

} 

else 

Escape(pd.hDC, STARTDOC, 8, "Test-Doc", NULL); 

/* Print text and rectangle. */ 

TextOut(pd.hDC, 50, 50, "Common Dialog Test Page", 23); 
Rectangle(pd.hDC, 50, 90, 625, 105); 
Escape(pd.hDC, NEWFRAME, 0, NULL, NULL); 
Escape(pd.hDC, ENDDOC, 0, NULL, NULL); 
DeleteDC(pd.hDC); 
if (pd.hDevMode != NULL) 

GlobalFree(pd.hDevMode); 
if (pd.hDevNames != NULL) 

GlobalFree(pd.hDevNames); 

ErrorHandl er(); 

4.5 Using Find and Replace Dialog Boxes 
The Find dialog box and the Replace dialog box are similar in appearance. You 
can use the Find dialog box to add string-search capabilities to your application 
and use the Replace dialog box to add both string-search and string-substitution 
capabilities. 

4.5.1 Displaying the Find Dialog Box 
The Find dialog box contains controls that make it possible for a user to specify 
the following: 

• The string that the application should find 

• Whether the string specifies a complete word or part of a word 

• Whether the application should match the case of the specified string 



Chapter 4 Common Dialog Box Library 151 

• The direction in which the application should search (preceding or following 
the current cursor location) 

• Whether the application should resume the search, searching for the next occur
rence of the string 

Following is a Find dialog box. 

D Match ~hole Word Only Direction 

~ tt.la!C:~t.,a~~' 

Im 
I i• 
I I 

To display the Find dialog box, you need to initialize a FINDREPLACE structure 
and call the FindText function. Members of the FINDREPLACE structure con
tain information about such items as the following: 

• Which window owns the dialog box 

• How the application should perform the search 

• A character buffer that is to receive the string 

To initialize the FINDREPLACE structure, you need to perform the following 
tasks: 

1. Set the lStructSize member by using the sizeof operator. 

2. Set the hwndOwner member by using the handle that identifies the owner win
dow of the dialog box. 

3. If you are customizing the Find dialog box, set the hlnstance member to iden
tify the instance of the module that contains your custom dialog box template. 

4. Set the Flags member to indicate the selection state of the dialog box options. 
(For example, setting the FR_NOUPDOWN flag disables the Up and Down 
buttons, setting the FR_NOWHOLEWORD flag disables the Match Whole 
Word Only check box, and setting the FR_NOMATCHCASE flag disables the 
Match Case check box). 

5. If you arc supplying a custom dialog box template or hook function, set addi
tional flags in the Flags member. 

6. Set the lpstrFindWhat member to point to the buffer that will receive the 
string to be found. 

7. Set the wFindWhatLen member to specify the size, in bytes, of the buffer to 
which lpstrFindWhat points. 

8. Set the ICustData member with any custom data your application may need to 
access. 



152 Microsoft Windows Programmer's Reference 

9. If your application customizes the Find dialog box, set the lpfnHook member 
to point to your hook function. 

10. If your application uses a custom dialog box template, set the lpTemplate
Name member to point to the string that identifies the template. 

The following example initializes the FINDREPLACE structure and then calls 
the Find Text function. This structure should be global or declared as a static vari
able. 

FINDREPLACE fr; 

f* Set all structure fields to zero. */ 

memset(&fr, 0, sizeof(FINDREPLACE)); 

fr.lStructSize = sizeof(FINDREPLACE); 
fr.hwndOwner = hwnd; 
fr.lpstrFindWhat = szFindWhat; 
fr.wFindWhatlen = sizeof(szFindWhat); 

hDlg = FindTextC&fr); 

break; 

4.5.2 Displaying the Replace Dialog Box 
The Replace dialog box is similar to the Find dialog box. However, the Replace 
dialog box has no Direction box and has three additional controls that make it 
possible for the user to specify the following: 

• The replacement string 

• Whether the application should replace the occurrence of the string that is cur
rently highlighted 

• Whether the application should replace all occurrences of the string 

Following is a Replace dialog box. 

Rep_lace With: l~te_st2 ______ ~ 

tsl [t;j"~i~~:iit'.~~·~~-~r.~J:fo.i~J 
D Match~ase 



Chapter 4 Common Dialog Box Library 153 

To display the Replace dialog box, you need to initialize a FINDREPLACE struc
ture and call the ReplaceText function. 

4.5.3 Processing Dialog Box Messages for a Find or Replace Dialog Box 
The Find and Replace dialog boxes differ from the other common dialogs in two 
respects: First, they are modeless; and second, their respective dialog box proce
dures send messages to the application that calls the FindText or ReplaceText 
function. These messages contain data specified by the user in the dialog box con
trols, such as the direction in which the application should search for a string, 
whether the application should match the case of the specified string, and whether 
the application should match the entire string. 

To process messages from a Find or Replace dialog box, an application must regis
ter the dialog box's unique message, FINDMSGSTRING. 

The application registers this message with the RegisterWindowMessage func
tion. Once the application registers the message, it uses the function's return value 
to identify messages from the Find or Replace dialog box. The following example 
registers the message with the RegisterWindowMessage function: 

UINT uFindReplaceMsg; 

/* Register the FindReplace message. */ 

uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRINGl; 

After the application registers this message, it can process messages for the Find 
or Replace dialog box by using the RegisterWindowMessage return value. The 
following example processes messages for the Find dialog box and then calls its 
own SearchFile function to locate the string of text. If the user is closing the dialog 
box (that is, if the Flags member of FIND REPLACE is FR_DIALOGTERM), 
the handle should be invalidated and the procedure should return zero. 

LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg, WPARAM wParam, 

{ 
LPARAM l Pa ram) 

FINDREPLACE FAR* lpfr; 

if (msg == uFindReplaceMsg) { 

} 

lpfr = (FINDREPLACE FAR*) lParam; 
SearchFile((BOOL) (lpfr->Flags & FR_DOWN), 

(BOOL) (lpfr->Flags & FR_MATCHCASE)); 
return 0; 

I 
I 



154 Microsoft Windows Programmer's Reference 

4.6 Customizing Common Dialog Boxes 
A custom cominon dialog box is a common dialog box that has been altered to suit 
a particular Windows application. The customization may be complex and include 
the hiding of original controls, the addition of new controls, or a change in the size 
of the original dialog box; or it may be simple, such as the alteration of a single 
existing control. 

Developers who need to customize a common dialog box must provide a special 
hook function and, in most cases, a custom dialog box template. Customizations of 
this kind require a significant amount of additional code-displaying a customized 
common dialog box is not as simple as initializing the members of a structure and 
calling a single function. 

Applications that subclass controls in any of the common dialog boxes must do so 
while processing the WM_INITDIALOG message in the application's hook func
tion. This allows the application to receive the control-specific messages first, be
cause it will have subclassed the control after the common dialog box has installed 
its subclassing procedures. (The previous hook function should be called for all 
messages that are not handled by the application's subclass function, as is standard 
for subclassing.) 

An application cannot subclass a control by defining a local class to override a 
specific control type. The reason is that the data segment would not be correctly 
initialized when the class was called-the data segment would be the common 
dialog box's data segment, not the application's data segment. 

4.6.1 Appropriate and Inappropriate Customizations 
From the user's perspective, the chief benefit of the common dialog box is its con
sistent appearance and functionality from application to application. Therefore, it 
becomes important that a developer only customize a common dialog box when it 
is absolutely necessary for an application. Otherwise, the consistent appearance 
and simple coding interface are lost. Appropriate customizations leave intact as 
many of the original controls as possible. Increasing the size of the dialog box or 
adding new controls in available space that already appears in the dialog box 
would be an appropriate customization. Hiding original controls or otherwise 
changing the intended functionality of the original controls would be an inappro
priate customization. 

4.6.2 Hook Functions and Custom Dialog Box Templates 
Each common dialog box uses the dialog box procedure and dialog box template 
provided for it in COMMDLG.DLL. The dialog box procedure processes mes
sages and notifications for the common dialog box and its controls. The dialog box 



Chapter 4 Common Dialog Box Library 155 

template defines the appearance of the dialog box-its dimensions, its location, 
and the dimensions and locations of controls that appear within it. 

In addition to the provided dialog box procedure and dialog box template, a cus
tom dialog box requires a hook function that you provide and, usually, a custom 
version of the dialog box template. 

4.6.2.1 The Hook Function 
The dialog box procedure provided in COMMDLG.DLL for a common dialog box 
calls the application's hook function if the application sets the appropriate flag and 
pointer in the structure for that common dialog box. The structure for each com
mon dialog box contains a Flags member that specifies whether the application 
supplies a hook function and contains an lpfnHook member that points to the 
hook function if one exists. If the application sets the Flags member to indicate 
that a hook function exists, it must also set the lpfnHook member. The following 
example sets the Flags and lpfnHook members of an OPENFILENAME struc
ture to support an application's hook function: 

/fdefi ne STRICT 

#include <windows.h> 
#include <commdlg.h> 
#include <string.h> 
#include "header.h" 

OPENFILENAME ofn; 

/* required for all Windows applications */ 

f* specific to this program 

/* Get the system directory name, and store in szOirName. */ 

GetSystemOirectory((LPSTR)szOirName, 255); 

f* Initialize the OPENFILENAME members. */ 

szFil e[0] = '\0'; 
ofn.lStructSize sizeof{OPENFILENAME); 
ofn.hwndOwner = hwnd; 
ofn.hinstance = hinst; 
ofn.lpstrFilter = szFilter[0J; 
ofn.lpstrCustomFilter =NULL; 
ofn.nMaxCustFilter = 0L; 
ofn.nFilterindex = IL; 
ofn.lpstrFile= szFile; 
ofn.nMaxFile = sizeof(szFile); 
ofn.lpstrFileTitle = szFileTitle; 
ofn.nMaxFileTitle = sizeofCszFileTitle); 
ofn.lpstrinitialDir = szDirName; 



156 Microsoft Windows Programmer's Reference 

ofn.lpstrTitle =NULL; 
ofn.Flags = OFN_ENABLEHOOK I OFN_ENABLETEMPLATE; 
ofn.nFileOffset = 0; 
ofn.nFileExtension = 0; 
ofn.lpstrDefExt =NULL; 
ofn.lpfnHook = MakeProcinstance((FARPROC) FileOpenHookProc, hinst); 
ofn.lpTemplateName = "FileOpen"; 

In the previous example, the MakeProclnstance function is called to create a 
procedure-instance address for the hook function. This address is assigned to the 
lpfnHook member of the OPENFILENAME structure. If the hook function is 
part of a dynamic-link library (rather than an application), the procedure address is 
obtained by calling the GetProcAddress function (instead of MakeProclnstance). 

The hook function processes any messages or notifications that the custom dia
log box requires. With the exception of one message (WM_INITDIALOG), the 
hook function receives messages and notifications before the dialog box procedure 
provided in COMMDLG.DLL receives them. In the case of WM_INITDIALOG, 
the hook function receives the message after the dialog box procedure and should 
process it as described in the Microsoft Windows Programmer's Reference, 
Volume 3. When the hook function finishes processing a message, it returns 
a value that indicates whether the dialog box procedure provided in 
COMMDLG.DLL should also process the message. If the dialog box proce-
dure should process the message, the return value is FALSE; if the dialog box 
procedure should ignore the message, the return value is TRUE. 

To process the message from the OK button after the dialog box procedure 
processes it, an application must post a message to itself when the OK message is 
received. When the application receives the message it has posted, the common 
dialog box procedure will have finished processing messages for the dialog box. 
This technique is particularly useful when working with the Find and Replace 
dialog boxes, because the Flags member of the FINDREPLACE structure does 
not reflect changes to the dialog box until after the messages have been processed 
by COMMDLG.DLL. 

The following example shows a hook function for a custom Open dialog box: 

UINT CALLBACK FileOpenHookProcCHWND hdlg, UINT msg, WPARAM wParam, 
LPARAM lParam) 

{ 
switch(msg) { 

case WM_INITDIALOG: 
return TRUE; 



Chapter 4 Common Dialog Box Library 157 

case WM_COMMAND: 

/* Use IsDlgButtonChecked to set lCustData. */ 

if (wParam == IDOK) { 

/* Set backup flag. */ 

ofn. l CustData = 
(DWORD) IsDlgButtonChecked(hdlg, ID_CUSTCHX); 

} 

return FALSE; /* Allow standard processing. *f 

/*Allow standard processing. */ 

return FALSE; 

This hook function tests a custom check box when the user chooses the OK but
ton. If the check box was selected, the hook function sets the ICustData member 
of the OPENFILENAME structure to 1; otherwise, it sets the ICustData member 
toO. 

A hook function should never call the EndDialog function. Instead, if a hook func
tion contains code that abnormally terminates a common dialog box, this code 
should pass the IDABORT value to the dialog box procedure by using the Post
Message function as shown in the following example: 

PostMessage(hDlg, WM_COMMAND, IDABORT, (LONG) FALSE); 

When a hook function posts the IDABORT value, the common dialog box func
tion returns the value contained in the low word of the lParam parameter. For 
example, if the hook function for GetOpenFileName called the PostMessage 
function with (LONG) 100 as the last parameter, GetOpenFileName would return 
100. 

A hook function must be exported in an application's module-definition (.DEF) 
file as shown in the following example: 

NAME cd 

EXETYPE WINDOWS 

STUB 'WINSTUB.EXE' 

CODE PRELOAD MOVEABLE DISCARDABLE 



158 Microsoft Windows Programmer's Reference 

DATA PRELOAD MOVEABLE MULTIPLE 

HEAPSIZE 1024 

STACKSIZE 8192 

EXPORTS 
FILEOPENHOOKPROC @1 

4.6.2.2 Customizing a Dialog Box Template 
The dialog box template provided in COMMDLG.DLL for each common dialog 
box contains the data that the dialog box procedure uses to display that common 
dialog box. Most applications that customize a common dialog box also need to 
create a custom dialog box template to use instead of the dialog box template in 
COMMDLG.DLL. (A custom dialog box template is not required for all custom 
dialog boxes. For instance, a template would not be necessary if an application 
changed a dialog box in a relatively minor way and only in an unusual situation.) 

A developer should create a custom dialog box template by modifying the appro
priate dialog box template in COMMDLG.DLL. Following are the template 
filenames and the names of their corresponding common dialog boxes: 

Template filename Corresponding dialog box 

COLOR.DLG Color 

FILEOPEN.DLG Open (single selection) 

FILEOPEN.DLG Open (multiple selection) 

FINDTEXT.DLG Find 

FINDTEXT.DLG Replace 

FONT.DLG Font 

PRNSETUP.DLG Print 

PRNSETUP.DLG Print Setup 

The following excerpt is from a custom dialog box template created for an Open 
dialog box: 

END 

CONTROL "&Backup File", ID_CUSTCHX, "button", 
BS_AUTOCHECKBOX I WS_CHILD I WS_TABSTOP I WS_GROUP, 
208, 86, 50, 12 

This entry supports the addition of a new Backup File check box immediately 
below the existing Read Only check box. 

The custom template should be added to the application's resource file. 



Chapter 4 Common Dialog Box Library 159 

4.6.3 Displaying the Custom Dialog Box 
After your application creates the hook function and the dialog box template, it 
should set the members of the structure for the common dialog box being cus
tomized and call the appropriate function to display the custom dialog box. 

The following example calls the GetOpenFileName function and creates a 
backup file if the user selected the custom Backup File check box in the custom 
Open dialog box: 

/* Open the file and create a backup. */ 

if (GetOpenFileNameC&ofn)) { 

hf= _lopen(ofn.lpstrFile, OF_READWRITE); 

/* Create the backup file. */ 

if (ofn.lCustData) { 

/* Process files with extension. */ 

if (ofn.nFileExtension){ 

for (i=0; i<Cint)ofn.nFileExtension; i++) 
szChar[i] = *Ofn.lpstrFile++; 

/* Process files without extension. */ 

else { 

i =0; 

while (*ofn.lpstrFile!='\0') 
szChar[i++J = *Ofn.lpstrFile++; 

szChar[i ]='.'; 
}/*end else*/ 

pszNewPAFN = lstrcat(szChar, "BAK"); 

I* Create the backup file. */ 

hfBackup = _ lcreat(pszNewPAFN, 0); 



160 Microsoft Windows Programmer's Reference 

/* Copy contents of original file to the backup file. */ 

while ((cBuflngth=_lread(hf, cBufl, 256)) == 256) 
_lwrite(hfBackup, cBufl, cBuflngthl; 

_lwrite(hfBackup, cBufl, cBuflngth); 
_lclose(hfBackup); 

} /*endif GetOpenFileName*/ 

/* File operations begin here. */ 

} I* endif (GetOpenFileName) 

The following is the custom Open dialog box. The new Backup File check box 
appears in the lower-right corner. 

printers..txt 
readme.txt 
sy:s:ini.txt 
:s:y:s:ini2.txt 
:s:y:s:ini3.txt 
winini.txt 

f2i7 c:\ 
•window:s 
['.]system 

List Files of .lvpe: D riye:s:: 

~IW_1i_le_F_ile~•l_"_T_X_T~J -~II_ I liiiil c: joe 

D !!_ackup File 

II 

4. 7 Supporting Help for the Common Dialog Boxes 
An application can display a Help button in any of the common dialog boxes by 
setting the appropriate flag in the Flags member of the structure for that common 
dialog box. Following are the structures for the common dialog boxes and the 
Help flag that corresponds to each structure: 

Structure 

OPENFILENAME 

CHOOSECOLOR 

FINDREPLACE 

CHOOSEFONT 

PRINTDLG 

Flag value 

OFN_SHOWHELP 

CC_SHOWHELP 

FR_SHOWHELP 

CF _SHOWHELP 

PD_SHOWHELP 



Chapter 4 Common Dialog Box Library 161 

If an application displays the Help button, it must process the user's request for 
Help. This can be done either in one of the application's window procedures or in 
a hook function. 

If the application processes the request for Help in one of the application's win
dow procedures, it must first create a new message identifier for the string defined 
by the HELPMSGSTRING constant. The application creates the new message 
identifier by calling the RegisterWindowMessage function and passing this con
stant as the single parameter. (For more information about processing registered 
window messages, see Section 4.5, "Using Find and Replace Dialog Boxes.") 
In addition to creating a new message identifier, the application must set the 
hwndOwner member of the appropriate structure for the common dialog box 
so that this member contains the handle of the dialog box's owner window. After 
the message identifier is created and the hwndOwner member is set, the dialog 
box procedure notifies the window procedure of the owner window whenever the 
user chooses the Help button. 

The following example processes a user's request for Help in the window proce
dure of its owner window. The if statement should be in the default: section of the 
switch statement that processes messages. 

MyHelpMsg RegisterWindowMessage(HELPMSGSTRING); 

if (message == MyHelpMsg) 
WinHelp(hWnd, "appfile.hlp", HELP_CONTEXT, ID_MLCONTEXT); 

If the application processes the request for Help in a hook function, it should test 
for the following condition in the WM_ COMMAND message: 

wParam == pshHelp 

When this condition is true, the hook function should call the WinHelp function 
as shown in the preceding example. (To process Help in a hook function, you must 
include the header file DLGS.H in the source file that contains the hook-function 
code.) 

4.8 Error Detection 
Whenever a common dialog box function fails, an application can call the Comm
DlgExtendedError function to find out the cause of the failure. The CommDlg
ExtendedError function returns an error value that identifies the cause of the 
most recent error. 



162 Microsoft Windows Programmer's Reference 

Six constants are defined in the CDERR.H header file that identify the ranges 
of error values for categories of errors returned by CommDlgExtendedError. 
Following are these constants in ascending order by value range: 

Constant 

CDERR_GENERALCODES 

PDERR_pRINTERCODES 

CFERR_CHOOSEFONTCODES 

FNERR_FILENAMECODES 

FRERR_FINDREPLACECODES 

CCERR_CHOOSECOLORCODES 

4. 9 Related Topics 

Meaning 

General error codes for common dialog boxes. 
These errors are in the range OxOOOO through 
OxOFFF. 

Error codes for the Print common dialog box. 
These errors are in the range OxlOOO through 
OxlFFF. 

Error codes for the Font common dialog box. 
These errors are in the range Ox2000 through 
Ox2FFF. 

Error codes for the Open and Save As com
mon dialog boxes. These errors are in the 
range Ox3000 through Ox3FFF. 

Error codes for the Find and Replace common 
dialog boxes. These errors are in the range 
Ox4000 through Ox4FFF. 

Error codes for the Color common dialog box. 
These errors are in the range Ox5000 through 
Ox5FFF. 

For more information about functions for common dialog boxes, see the Microsoft 
Windows Programmer's Reference, Volume 2. 

For more information about common dialog box structures and messages, see the 
Microsoft Windows Programmer's Reference, Volume 3. 



Dynamic Data Exchange 
Management Library 

Chapter 5 

5 .1 Basic Concepts......................................................................................... 166 
5 .1.1 Client and Server Interaction................................................... 166 
5 .1.2 Transaction~ and the DDE Callback Function ........................ 166 
5.1.3 Service Names, Topic Names, and Item Names..................... 167 
5.1.4 System Topic........................................................................... 167 

5.2 Initialization............................................................................................. 168 
5 .3 Callback Function.................................................................................... 170 
5 .4 String Management.................................................................................. 171 
5.5 Name Service ........................................................................................... 173 

5.5.1 Service-NameRegistration ...................................................... 173 
5.5.2 Service-Name Filter................................................................. 174 

5.6 Conversation Management...................................................................... 174 
5.6.1 SingleConversations ............................................................... 175 
5 .6.2 Multiple Conversations............................................................ 178 

5. 7 Data Management ... . .. . . . . . . . . . . . . .. . . . .. . . . .. . ... . . . . . .. . .. . .. . . .. .. . .. . . .. . . . .. . . . .. . . . .. . . .. . . .. . 180 
5. 8 Transaction Management......................................................................... 183 

5 .8.1 Request Transaction................................................................. 183 
5.8.2 Poke Transaction..................................................................... 183 
5.8.3 Advise Transaction.................................................................. 184 
5.8.4 Execute Transaction................................................................. 185 
5.8.5 Synchronous and Asynchronous Transactions........................ 186 
5.8.6 Transaction Control................................................................. 187 
5.8.7 Transaction Classes................................................................. 188 
5.8.8 Transaction Summary.............................................................. 189 

5.9 Error Detection......................................................................................... 190 
5.10 Monitoring Applications.......................................................................... 190 





Chapter 5 Dynamic Data Exchange Management Library 165 

This chapter describes how to use the Dynamic Data Exchange Management 
Library (DDEML). The DDEML is a dynamic-link library (DLL) that applications 
running with the Microsoft Windows operating system can use to share data. 

The following topics are related to the information in this chapter: 

• Atoms 

• Memory management 

• Clipboard 

• Dynamic-link libraries 

• Object linking and embedding (OLE) 

Dynamic data exchange (DDE) is a form of interprocess communication that uses 
shared memory to exchange data between applications. Applications can use DDE 
for one-time data transfers and for ongoing exchanges in which the applications 
send updates to one another as new data becomes available. 

Dynamic data exchange differs from the clipboard data-transfer mechanism that 
is also part of the Windows operating system. One difference is that the clipboard 
is almost always used as a one-time response to a specific action by the user
such as choosing the Paste command from a menu. Although DDE may also be 
initiated by a user, it typically continues without the user's further involvement. 

The DDEML provides an application programming interface (API) that simplifies 
the task of adding DDE capability to a Windows application. Instead of sending, 
posting, and processing DDE messages directly, an application uses the functions 
provided by the DDEML to manage DDE conversations. (A DDE conversation is 
the interaction between client and server applications.) The DDEML also provides 
a facility for managing the strings and data that are shared among DDE applica
tions. Instead of using atoms and pointers to shared memory objects, DDE applica
tions create and exchange string handles, which identify strings, and data handles, 
which identify global memory objects. DDEML provides a service that makes it 
possible for a server application to register the service names that it supports. The 
names are broadcast to other applications in the system, which can then use the 
names to connect to the server. The DDEML also ensures compatibility among 
DDE applications by forcing them to implement the DDE protocol in a consistent 
manner. 

Existing applications that use the message-based DDE protocol are fully compat
ible with those that use the DDEML. That is, an application that uses message
based DDE can establish conversations and perform transactions with applications 
that use the DDEML. Because of the many advantages of the DDEML, new appli
cations should use it rather than the DDE messages. 



166 Microsoft Windows Programmer's Reference 

The DDEML can run on systems that have Microsoft Windows version 3.0 or 
later installed. The DDEML does not support real mode. To use the API elements 
of the DDE management library, you must include the DDEML.H header file in 
your source files, link with DDEML.LIB, and ensure that DDEML.DLL resides in 
the system's path. 

5 .1 Basic Concepts 
The concepts in this section are key to understanding DDE and the DDEML. 

5 .1.1 Client and Server Interaction 
Dynamic data exchange always takes place between a client application and a 
server application. The client initiates the exchange by establishing a conversation 
with the server so that it can send transactions to the server. (A transaction is a re
quest for data or services.) The server responds to these transactions by providing 
data or services to the client. A server can have many clients at the same time, and 
a client can request data from multiple servers. Also, an application can be both a 
client and a server. A client terminates a conversation when it no longer needs a 
server's data or services. 

For example, a graphics application might contain a bar graph that represents a cor
poration's quarterly profits, and the data for the bar graph might be contained in a 
spreadsheet application. To obtain the latest profit figures, the graphics application 
(the client) establishes a conversation with the spreadsheet application (the server). 
The graphics application then sends a transaction to the spreadsheet application, 
requesting the latest profit figures. 

5.1.2 Transactions and the DOE Callback Function 
The DDEML notifies an application ofDDE activity that affects the application by 
sending transactions to the application's DDE callback function. A transaction is 
similar to a message-it is a named constant accompanied by other parameters 
that contain additional information about the transaction. 

The DDEML passes a transaction to an application-defined DDE callback func
tion, which carries out the appropriate action depending on the type of the transac
tion. For example, when a client application attempts to establish a conversation 
with a server application, the client calls the DdeConnect function. This causes 
the DDEML to send an XTYP _CONNECT transaction to the server's DDE 



Chapter 5 Dynamic Data Exchange Management Library 167 

callback function. The callback function can allow the conversation by returning 
TRUE to the DDEML, or it can deny the conversation by returning FALSE. 

For a detailed discussion of transactions, see Section 5 .8, "Transaction 
Management." 

5.1.3 Service Names, Topic Names, and Item Names 
A DDE server uses a three-level hierarchy-service name (called "application 
name" in previous DDE documentation), topic name, and item name-to uniquely 
identify a unit of data that the server can exchange during a conversation. A ser
vice name is a string that a server application responds to when a client attempts to 
establish a conversation with the server. A client must specify this service name to 
be able to establish a conversation with the server. Although a server can respond 
to many service names, most servers respond to only one name. 

A topic name is a string that identifies a logical data context. For servers that 
operate on file-based documents, topic names are typically filenames; for other 
servers, they are other application-specific strings. A client must specify a topic 
name along with a server's service name when it attempts to establish a conversa
tion with a server. 

An item name is a string that identifies a unit of data that a server can pass to a 
client during a transaction. For example, an item name might identify an integer, 
a string, several paragraphs of text, or a bitmap. 

To a client, these names are the keys that make it possible for the client to estab
lish a conversation with a server and to receive data from the server. 

5.1.4 System Topic 
The System topic provides a context for information that may be of general inter
est to any DDE client. Server applications are encouraged to support the System 
topic at all times. (The System topic is defined in the DDEML header file as 
SZDDESYS_ TOPIC.) 

To find out which servers are present and the kinds of information they can pro
vide, a client can request a conversation on the System topic with the service 
name set to NULL when the client application starts. Such wildcard conversations 
should be kept to a minimum, because they are costly in terms of system perfor
mance. 

For more information about initiating DDE conversations, see Section 5.6, 
"Conversation Management." 



168 Microsoft Windows Programmer's Reference 

A server should support the following item names within the System topic and any 
other item names that may be useful to a client: 

Item 

SZDDE_ITEM_ITEMLIST 

SZDDESYS_ITEM_FORMATS 

SZDDESYS_ITEM_HELP 

SZDDESYS_ITEM_RTNMSG 

SZDDESYS_ITEM_STATUS 

SZDDESYS_ITEM_SYSITEMS 

SZDDESYS_ITEM_ TOPICS 

Description 

A list of the items that are supported under a non
System topic. (This list may vary from moment 
to moment and from topic to topic.) 

A list of clipboard format numbers that the server 
can render. This list should be ordered with the 
most descriptive formats first. A server may not 
be able to render all items in all formats within 
this list. At a minimum, a server should support 
the CF _TEXT clipboard format for item names 
associated with the System topic. 

For more information about clipboard formats 
and rendering data, see the Microsoft Windows 
Guide to Programming. 

General help information. 

Supporting detail for the most recently used 
WM_DDE_ACK message. This is useful when 
more than 8 bits of application-specific return 
data are required. 

An indication of the current status of the server. 
Typically, this item supports only the CF _TEXT 
format and contains the Ready or Busy string. 

A list of the items supported under the System 
topic by this server. 

A list of the topics supported by the server at the 
current time. (This list may vary from moment to 
moment.) 

These item names are string constants defined in the DDEML header files. To 
obtain string handles for these strings, an application must use the DDEML string
management functions, just as it would for any other string in a DDEML applica
tion. For more information about managing strings, see Section 5.4, "String 
Management." 

5.2 Initialization 
The DDEML requires that Windows be running; otherwise, the system cannot 
load the DDEML dynamic-link library. Before calling any DDEML function, an 
application should call the GetWinFlags function, checking the return value for 
the WF _PM ODE flag. If this flag is returned, the application can call DDEML 
functions. 



Chapter 5 Dynamic Data Exchange Management Library 169 

Before calling any other DDEML function, an application must call the Dde
Initialize function. The Ddelnitialize function obtains an instance identifier for 
the application, registers the application's DDE callback function with the 
DDEML, and specifies the transaction filter flags for the callback function. 

The DDEML uses instance identifiers so that it can support applications that allow 
multiple DDEML instances. Each instance of an application must pass its instance 
identifier as the idlnst parameter to any other DDEML function that requires it. An 
application that uses multiple DDEML instances should assign a different DDE 
callback function to each instance. This makes it possible for the application to 
identify each instance within its callback function. 

The purpose for multiple DDEML instances is to support DLLs using the DDEML. 
It is not recommended that an application have multiple DDE instances. 

Transaction filters optimize system performance by preventing the DDEML from 
passing unwanted transactions to the application's DDE callback function. An 
application sets the transaction filters when it calls the Ddelnitialize function. An 
application should specify a transaction filter flag for each type of transaction that 
it does not process in its callback function. An application can change its transac
tion filters with a subsequent call to the Ddelnitialize function. For a complete list 
of transaction filter flags, see the description of the Ddelnitialize function in the 
Microsoft Windows Programmer's Reference, Volume 2. 

For more information about transactions, see Section 5.8, "Transaction 
Management." 

The following example shows how to initialize an application to use the DDEML: 

DWORD idinst = 0L; 
HANDLE hlnst; 
FARPROC lpDdeProc; 

/* instance identifier */ 
f* instance handle */ 
f* procedure instance address */ 

lpDdeProc = MakeProcinstance((FARPROC) DdeCallback, hlnst); 
if (Ddeinitialize(&idinst, f* receives instance identifier */ 

(PFNCALLBACK) lpDdeProc, /* address of callback function */ 
CBF_FAIL_EXECUTES I /* filter XTYP_EXECUTE transactions */ 
CBF_FAIL_POKES, 0L); /*filter XTYP_POKE transactions */ 

return FALSE; 

This example obtains a procedure-instance address for the callback func-
tion named DdeCallback and then passes the address to the DDEML. The 
CBF _FAIL_EXECUTES and CBF _FAIL_POKES filters prevent the DDEML 
from passing XTYP _EXECUTE or XTYP _POKE transactions to the callback 
function. 



170 Microsoft Windows Programmer's Reference 

An application should call the DdeUninitialize function when it no longer needs 
to use the DDEML. This function terminates any conversations currently open for 
the application and frees the DDEML resources that the system allocated for the 
application. 

The DDEML may have difficulty terminating a conversation. This occurs when 
the other partner in a conversation fails to terminate its end of the conversation. In 
this case, the system enters a modal loop while it waits for any conversations to be 
terminated. A system-defined timeout period is associated with this loop. If the 
timeout period expires before the conversations have been terminated, a message 
box appears that gives the user the choice of waiting for another timeout period 
(Retry), waiting indefinitely (Ignore), or exiting the modal loop (Abort). An appli
cation should call DdeUninitialize after it has become invisible to the user and 
after its message loop has terminated. 

5.3 Callback Function 
An application that uses the DDEML must provide a callback function that 
processes the DDE events that affect the application. The DDEML notifies an 
application of such events by sending transactions to the application's DDE call
back function. The transactions that a callback function receives depend on the 
callback-filter flags that the application specified in the Ddelnitialize function and 
on whether the application is a client, a server, or both. The following example 
shows the general structure of a callback function for a typical client application: 

HDDEDATA EXPENTRY DdeCallback(wType, wFmt, hConv, hszl, 
hsz2, hData, dwDatal, dwData2) 

WORD wType; /* transaction type 
WORD wFmt; /* clipboard format 
HCONV hConv; /* handle of the conversation 
HSZ hszl; /* handle of a string 
HSZ hsz2; /* handle of a string 
HDDEDATA hData; /* handle of a global memory 
DWORD dwDatal; /* transaction-specific data 
DWORD dwData2; /* transaction-specific data 
{ 

switch (wType) { 
case XTYP_REGISTER: 
case XTYP_UNREGISTER: 

return (HDDEDATA) NULL; 

*f 
*/ 
*I 
*I 
*I 

object *I 
*/ 
*/ 



Chapter 5 Dynamic Data Exchange Management Library 171 

case XTYP_ADVDATA: 

return (HDDEDATA) DDE_FACK; 

case XTYP_XACT_COMPLETE: 

return (HDDEDATA) NULL; 

case XTYP_DISCONNECT: 

return (HDDEDATA) NULL; 

default: 
return CHDDEDATA) NULL; 

} 

The wType parameter specifies the transaction type sent to the callback function 
by the DDEML. The values of the remaining parameters depend on the transaction 
type. The transaction types and the events that generate them are described in the 
following sections of this chapter. For detailed information about each transaction 
type, see Section 5.8, "Transaction Management." 

5.4 String Management 
Many DDEML functions require access to strings in order to carry out a DDE 
task. For example, a client must specify a service name and a topic name when it 
calls the DdeConnect function to request a conversation with a server. An applica
tion specifies a string by passing a string handle rather than a pointer in a DDEML 
function. A string handle is a doubleword value, assigned by the system, that iden
tifies a string. 

An application can obtain a string handle for a particular string by calling the 
DdeCreateStringHandle function. This function registers the string with the sys
tem and returns a string handle to the application. The application can pass the 



172 Microsoft Windows Programmer's Reference 

handle to DDEML functions that need to access the string. The following example 
obtains string handles for the System topic string and the service-name string: 

HSZ hszServName; 
HSZ hszSysTopic; 

hszServName = DdeCreateStringHandle( 
idlnst, /* instance identifier */ 
"MyServer", /* string to register */ 
CP_WINANSI); /* code page */ 

hszSysTopic = DdeCreateStringHandle( 
idlnst, /* instance identifier */ 
SZDDESYS_TOPIC, /*System topic */ 
CP_WINANSI); /* code page */ 

The idlnst parameter in the preceding example specifies the instance identifier 
obtained by the Ddelnitialize function. 

An application's DDE callback function receives one or more string handles 
during most DDE transactions. For example, a server receives two string handles 
during the XTYP _REQUEST transaction: One identifies a string specifying a 
topic name; the other identifies a string specifying an item name. An application 
can obtain the length of the string that corresponds to a string handle and copy the 
string to an application-defined buffer by calling the DdeQueryString function, as 
the following example demonstrates: 

DWORD idlnst; 
DWORD cb; 
HSZ hszServ; 
PSTR pszServName; 

cb = DdeQueryString(idlnst, hszServ, (LPSTR) NULL, 0L, CP_WINANSI) + 1; 
pszServName = (PSTR) LocalAlloc(LPTR, (WORD) cb); 
DdeQueryString(idlnst, hszServ, pszServName, cb, CP_WINANSI); 

An instance-specific string handle is not mappable from string handle to string to 
string handle again. For instance, in the following example, the DdeQueryString 
function creates a string from a string handle and then DdeCreateStringHandle 
creates a string handle from that string, but the two handles are not the same: 

DWORD cb; 
HSZ hszlnst, hszNew; 
PSZ pszlnst; 

DdeQueryString(idlnst, hszlnst, pszlnst, cb, CP_WINANSI); 
hszNew = DdeCreateStringHandle(idlnst, pszlnst, CP_WINANSI); 
/* hszNew != hszlnst ! */ 



Chapter 5 Dynamic Data Exchange Management Library 173 

A string handle that is passed to an application's DDE callback function becomes 
invalid when the callback function returns. An application can save a string handle 
for use after the callback function returns by using the DdeKeepStringHandle 
function. 

When an application calls DdeCreateStringHandle, the system enters the 
specified string into a systemwide string table and generates a handle that it uses to 
access the string. The system also maintains a usage count for each string in the 
string table. 

When an application calls the DdeCreateStringHandle function and specifies a 
string that already exists in the table, the system increments the usage count rather 
than adding another occurrence of the string. (An application can also increment 
the usage count by using the DdeKeepStringHandle function.) When an applica
tion calls the DdeFreeStringHandle function, the system decrements the usage 
count. 

A string is removed from the table when its usage count equals zero. Because 
more than one application can obtain the handle of a particular string, an applica
tion should not free a string handle more times than it has created or kept the 
handle. Otherwise, the application could cause the string to be removed from the 
table, denying other applications access to the string. 

The DDEML string-management functions are based on the Windows atom 
manager and are subject to the same size restrictions as atoms. 

5.5 Name Service 
The DDEML makes it possible for a server application to register the 
service names that it supports and to prevent the DDEML from sending 
XTYP _CONNECT transactions for unsupported service names to the server's 
DDE callback function. The remaining topics in this section describe this service. 

5.5.1 Service-Name Registration 
By registering its service names with the DDEML, a server informs other DDE 
applications in the system that a new server is available. A server registers a ser
vice name by calling the DdeNameService function, specifying a string handle 
that identifies the name. As a result, the DDEML sends an XTYP _REGISTER 
transaction to the callback function of each DDEML application in the system 
(except those that specified the CBF _SKIP _REGISTRATIONS filter flag in the 
Ddelnitialize function). The XTYP _REGISTER transaction passes two string 
handles to a callback function: The first identifies the string specifying the base 



174 Microsoft Windows Programmer's Reference 

service name; the second identifies the string specifying the instance-specific serv
ice. A client typically uses the base service name in a list of available servers, so 
that the user can select a server from the list. The client uses the instance-specific 
service name to establish a conversation with a specific instance of a server appli
cation if more than one instance is running. 

A server can use the DdeNameService function to unregister a service name. This 
causes the DDEML to send XTYP _UNREGISTER transactions to the other DDE 
applications in the system, informing them that they can no longer use the name to 
establish conversations. 

A server should call the DdeNameService function to register its service names 
soon after calling the Ddelnitialize function. A server should unregister its service 
names just before calling the DdeUninitialize function. 

5.5.2 Service-Name Filter 
Besides registering service names, the DdeNameService function makes it 
possible for a server to turn its service-name filter on or off. When a server turns 
off its service-name filter, the DDEML sends the XTYP _CONNECT transaction 
to the server's DDE callback function whenever any client calls the DdeConnect 
function, regardless of the service name specified in the function. When a server 
turns on its service-name filter, the DDEML sends the XTYP _CONNECT transac
tion to the server only when the DdeConnect function specifies a service name 
that the server has specified in a call to the DdeNameService function. 

By default, the service-name filter is on when an application calls Ddelnitialize. 
This prevents the DDEML from sending the XTYP _CONNECT transaction to a 
server before the server has created the string handles that it needs. A server can 
turn off its service-name filter by specifying the DNS_FILTEROFF flag in a call 
to the DdeNameService function. The DNS_FILTERON flag turns on the filter. 

5.6 Conversation Management 
A conversation between a client and a server is always established at the request of 
the client. When a conversation is established, each partner receives a handle that 
identifies the conversation. The partners use this handle in other DDEML func
tions to send transactions and manage the conversation. 

A client can request a conversation with a single server, or it can request multiple 
conversations with one or more servers. The remaining topics in this section 
describe how an application establishes conversations and explain how an appli
cation can obtain information about conversations that are already established. 



Chapter 5 Dynamic Data Exchange Management Library 175 

5.6.1 Single Conversations 
A client application requests a single conversation with a server by calling the 
DdeConnect function, specifying string handles that identify the strings speci
fying the service name of the server and the topic name of interest. The DDEML 
responds by sending the XTYP _CONNECT transaction to the DOE callback 
function of each server application that either has registered a service name that 
matches the one specified in the DdeConnect function or has turned service-name 
filtering off by calling the DdeNameService function. A server can also filter the 
XTYP _CONNECT transactions by specifying the CBF _FAIL_CONNECTIONS 
filter flag in the Ddelnitialize function. During the XTYP _CONNECT transac
tion, the DDEML passes the service name and the topic name to the server. The 
server should examine the names and return TRUE if it supports the service/topic 
name pair or FALSE if it does not. 

If no server returns TRUE from the XTYP _CONNECT transaction, the client re
ceives NULL from the DdeConnect function and no conversation is established. 
If a server does return TRUE, a conversation is established and the client receives 
a conversation handle-a doubleword value that identifies the conversation. The 
client uses the handle in subsequent DDEML calls to obtain data from the server. 
The server receives the XTYP _CONNECT_CONFIRM transaction (unless the 
server specified the CBF _FAIL_ CONFIRMS filter flag). This transaction passes 
the conversation handle to the server. 

The following example requests a conversation on the System topic with a server 
that recognizes the service name MyServer. The hszServName and hszSysTopic 
parameters are previously created string handles. 

HCONV hConv; 
HWND hwndParent; 
HSZ hszServName; 
HSZ hszSysTopic; 

hConv = DdeConnect( 
idinst, 
hszServName, 
hszSysTopic, 
( PCONVCONTEXT) 

if (hConv == NULL) 

/* instance identifier 
I* service-name string handle 
/* System-topic string handle 

NULL); /* reserved--must be NULL 

MessageBox(hwndParent, "MyServer is unavailable.", 
( LPSTR) NULL, MB_OK); 

return FALSE; 

The DdeConnect function in the preceding example causes the DOE callback 
function of the MyServer application to receive an XTYP _CONNECT transaction. 



176 Microsoft Windows Programmer's Reference 

In the following example, the server responds to the XTYP _CONNECT transac
tion by comparing the topic-name string handle that the DDEML passed to the 
server with each element in the array of topic-name string handles that the server 
supports. If the server finds a match, it establishes the conversation. 

#define CTOPICS 5 

HSZ hszl; 
HSZ ahszTopics[CTOPICS]; 
int i ; 

f* string handle passed by DDEML */ 
f* array of supported topics */ 
f* loop counter *I 

f* Use switch statement to examine transaction types. */ 

case XTYP_CONNECT: 
for Ci = 0; i < CTOPICS; i++) { 

if Chszl == ahszTopics[iJ) 
return TRUE; /* establish a conversation */ 

} 

return FALSE; /* topic not supported; deny conversation */ 

f* Process other transaction types. */ 

If the server returns TRUE in response to the XTYP _CONNECT transaction, the 
DDEML sends an XTYP _CONNECT_CONFIRM transaction to the server's 
DDE callback function. The server can obtain the handle for the conversation by 
processing this transaction. 

A client can establish a wildcard conversation by specifying NULL for the 
service-name string handle, the topic-name string handle, or both in a call to the 
DdeConnect function. When at least one of the string handles is NULL, the 
DDEML sends the XTYP _ WILDCONNECT transaction to the callback functions 
of all DDE applications (except those that filter the XTYP _ WILDCONNECT 
transaction). Each server application should respond by returning a data handle 
that identifies a null-terminated array of HSZPAIR structures. If the server appli
cation has not called the DdeNameService function to register its service names 
and filtering is on, the server does not receive XTYP _ WILDCONNECT transac
tions. For more information about data handles, see Section 5.7, "Data Manage
ment." 

The array should contain one structure for each service/topic name pair that 
matches the pair specified by the client. The DDEML selects one of the pairs to 
establish a conversation and returns to the client a handle that identifies the conver
sation. The DDEML sends the XTYP _CONNECT_CONFIRM transaction to the 



Chapter 5 Dynamic Data Exchange Management Library 177 

server (unless the server filters this transaction). The following example shows a 
typical server response to the XTYP _ WILDCONNECT transaction: 

#define CTOPICS 2 

UINT type; 
UINT fmt; 
HSZPAIR ahp[(CTOPICS + 1)]; 
HSZ ahszTopicList[CTOPICS]; 
HSZ hszServ, hszTopic; 
WORD i , j; 

if (type XTYP_WILDCONNECT) { 

/* 
*Scan the topic list, and create array of HSZPAIR 
* structures. 
*/ 

j 0; 
for (i = 0; i < CTOPICS; i++) { 

if (hszTopic == (HSZ) NULL I I 

/* 

hszTopic == ahszTopicList[i]) { 
ahp[j].hszSvc = hszServ; 
ahp[j++J.hszTopic = ahszTopicList[i]; 

*End the list with an HSZPAIR structure that contains NULL 
* string handles as its members. 
*/ 

ahp[j].hszSvc =NULL; 
ahp[j++J.hszTopic =NULL; 

/* 
* Return a handle to a global memory object containing the 
* HSZPAIR structures. 
*/ 

return DdeCreateDataHandle( 
idinst, f* instance identifier */ 
&ahp, /* points to HSZPAIR array */ 
sizeof(HSZ) * j' /* length of the array */ 
0' /* start at the beginning */ 
NULL, /* no item-name string */ 
fmt, /* return the same format */ 
0); /* let the system own it */ 



178 Microsoft Windows Programmer's Reference 

Either the client or the server can terminate a conversation at any time by calling 
the DdeDisconnect function. This causes the callback function of the partner in 
the conversation to receive the XTYP _DISCONNECT transaction (unless the 
partner specified the CBF _SKIP _DISCONNECTS filter flag). Typically, an appli
cation responds to the XTYP _DISCONNECT transaction by using the DdeQuery
Convlnfo function to obtain information about the conversation that terminated. 
After the callback function returns from processing the XTYP _DISCONNECT 
transaction, the conversation handle is no longer valid. 

A client application that receives an XTYP _DISCONNECT transaction in its 
DDE callback function can attempt to reestablish the conversation by calling the 
DdeReconnect function. The client must call DdeReconnect from within its DDE 
callback function. 

5.6.2 Multiple Conversations 
A client application can use the DdeConnectList function to determine whether 
any servers of interest are available in the system. A client specifies a service 
name and topic name when it calls the DdeConnectList function, causing the 
DDEML to broadcast the XTYP _ WILDCONNECT transaction to the DDE call
back functions of all servers that match the service name (except those that filter 
the transaction). A server's callback function should return a data handle that iden
tifies a null-terminated array ofHSZPAIR structures. The array should contain 
one structure for each service/topic name pair that matches the pair specified by 
the client. The DDEML establishes a conversation for each HSZPAIR structure 
filled by the server and returns a conversation-list handle to the client. The server 
receives the conversation handle by way of the XTYP _CONNECT_CONFIRM 
transaction (unless the server filters this transaction). 

A client can specify NULL for the service name, topic name, or both when it calls 
the DdeConnectList function. If the service name is NULL, all servers in the sys
tem that support the specified topic name respond. A conversation is established 
with each responding server, including multiple instances of the same server. If 
the topic name is NULL, a conversation is established on each topic recognized by 
each server that matches the service name. 

A client can use the DdeQueryNextServer and DdeQueryConvlnfo functions to 
identify the servers that respond to the DdeConnectList function. The DdeQuery
NextServer function returns the next conversation handle in a conversation list; 
the DdeQueryConvlnfo function fills a CONVINFO structure with information 
about the conversation. The client can keep the conversation handles that it needs 
and discard the rest from the conversation list. 



Chapter 5 Dynamic Data Exchange Management Library 179 

The following example uses the DdeConnectList function to establish conver
sations with all servers that support the System topic and then uses the Dde
Query NextServer and DdeQueryConvlnfo functions to obtain the servers' 
service-name string handles and store them in a buffer: 

HCONVLIST hconvList; 
DWORD idinst; 
HSZ hszSystem; 
HCONV hconv = NULL; 
CONVINFO ci; 
UINT cConv = 0; 
HSZ *pHsz, *aHsz; 

/* conversation list */ 
/* instance identifier */ 
/* System topic */ 
/* conversation handle *I 
/* holds conversation data */ 
/* count of conv. handles */ 
/* point to string handles */ 

/* Connect to all servers that support the System topic. */ 

hconvList = DdeConnectList(idinst, NULL, hszSystem, NULL, NULL); 

/* Count the number of handles in the conversation list. */ 

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) cConv++; 

/*Allocate a buffer for the string handles. */ 

hconv = NULL; 
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ)); 

/* Copy the string handles to the buffer. */ 

pHsz = aHsz; 
while ((hconv = DdeQueryNextServer(hconvList, hconv)) !=NULL) { 

DdeQueryConvinfo(hconv, QID_SYNC, CPCONVINFO) &ci ); 
DdeKeepStringHandle(idinst, ci.hszSvcPartner); 
*pHsz++ = ci.hszSvcPartner; 

} 

f* Use the handles; converse with servers. */ 

/* Free the memory, and terminate conversations. */ 

LocalFree((HANDLE) aHsz); 
DdeDisconnectList(hconvList); 

An application can terminate an individual conversation in a conversation list 
by calling the DdeDisconnect function. Arr application can terminate all conver
sations in a conversation list by calling the DdeDisconnectList function. Both 
functions cause the DDEML to send XTYP _DISCONNECT transactions to each 
partner's DDE callback function. The DdeDisconnectList function sends a 
XTYP _DISCONNECT transaction for each conversation handle in the list. 



180 Microsoft Windows Programmer's Reference 

A client can use the DdeConnectList function to enumerate the conversation 
handles in a conversation list by passing an existing conversation-list handle to the 
DdeConnectList function. The enumeration process removes the handles of termi
nated conversations from the list. 

If the DdeConnectList function specifies an existing conversation-list handle 
and a service name or topic name that is different from those used to create the 
existing conversation list, the function creates a new conversation list that contains 
the handles of any new conversations and the handles from the existing list. 

The DdeConnectList function attempts to prevent duplicate conversations in a 
conversation list. A duplicate conversation is a second conversation with the same 
server on the same service name and topic name. Two such conversations would 
have different handles, yet they would be duplicate conversations. 

5. 7 Data Management 
Because DDE uses global memory to pass data from one application to another, 
the DDEML provides a set of functions that DDE applications can use to create 
and manage global memory objects. 

All transactions that involve the exchange of data require the application sup
plying the data to create a local buffer containing the data and then to call the 
DdeCreateDataHandle function. This function allocates a global memory object, 
copies the data from the buffer to the memory object, and returns a data handle of 
the application. A data handle is a doubleword value that the DDEML uses to pro
vide access to data in the global memory object. To share the data in a global 
memory object, an application passes the data handle to the DDEML, and the 
DDEML passes the handle to the DDE callback function of the application that is 
receiving the data transaction. 

The following example shows how to create a global memory object and obtain a 
handle of the object. During the XTYP _ADVREQ transaction, the callback func
tion converts the current time to an ASCII string, copies the string to a local buff
er, then creates a global memory object that contains the string. The callback 
function returns the handle of the global memory object to the DDEML, which 
passes the handle to the client application. 

typedef struct { /* tm */ 
int hour; 
int minute; 
int second; 

} TIME; 

TIME tmTime; 
HSZ hszTime; 
HSZ hszNow; 



Chapter 5 Dynamic Data Exchange Management Library 181 

HDDEDATA EXPENTRY DdeProc(wType, wFmt, hConv, hszl, hsz2, 
hData, dwDatal, dwData2) 

WORD wType; 
WORD wFmt; 
HCONV hConv; 
HSZ hszl; 
HSZ hsz2; 
HDDEDATA hData; 
DWORD dwDatal; 
DWORD dwData2; 
{ 

char szBuf[32J; 

switch (wType) { 

case XTYP_ADVREQ: 
if ((hszl == hszTime && hsz2 == hszNow) 

&& (wFmt == CF_ TEXT)) { 

/* Copy formatted time string to buffer. */ 

itoa(tmTime.hour, szBuf, 10); 
strcat(szBuf, ":"); 
if (tmTime.minute < 10) 

strcat(szBuf, "0"); 
itoa(tmTime.minute, &szBuf[strlen(szBuf)J, 10); 
strcat(szBuf, ":"); 
if (tmTime.second < 10) 

strcat(szBuf, "0"); 
itoa(tmTime.second, &szBuf[strlen(szBuf)J, 10); 
szBuf[strlen(szBuf)J = '\0'; 

/* Create global object, and return data handle. */ 

return (OdeCreateDataHandle( 
idlnst, /* instance identifier *I 
(LP BYTE) szBuf, /* source buffer *I 
strl en ( szBufl + 1, /* size of global object */ 
0L, /* offset from beginning */ 
hszNow, /* item-name string */ 
CF_ TEXT, /* clipboard format */ 
0) ) ; /* no creation flags */ 

} else 
return (HDDEDATA) NULL; 

/* Process other transaction types. */ 

} 

} 



182 Microsoft Windows Programmer's Reference 

The receiving application obtains a pointer to the global memory object by pass
ing the data handle to the DdeAccessData function. The pointer returned by 
DdeAccessData provides read-only access. The application should use the pointer 
to review the data and then call the DdeUnaccessData function to invalidate the 
pointer. The application can copy the data to a local buffer by using the DdeGet
Data function. 

The following example obtains a pointer to the global memory object identified by 
the hData parameter, copies the contents to a local buffer, and then invalidates the 
pointer: 

HDDEDATA hData; 
LPBYTE lpszAdviseData; 
DWORD cbDatalen; 
DWORD i; 
char szData[32]; 

case XTYP_ADVDATA: 

lpszAdviseData = DdeAccessData(hData, &cbDatalen); 
for Ci = 0; i < cbDatalen; i++) 

szData[i] = *lpszAdviseData++; 
DdeUnaccessData(hData); 
return (HDDEDATA) TRUE; 

Usually, when an application that created a data handle passes that handle to 
the DDEML, the handle becomes invalid in the creating application. This is fine 
if the application needs to share data with just a single application. If an appli
cation needs to share the same data with multiple applications, however, the 
creating application should specify the HDAT A_APPOWNED flag in Dde
CreateDataHandle. Doing so gives ownership of the memory object to the creat
ing application and prevents the DDEML from invalidating the data handle. When 
the creating application finishes using a memory object it owns, it should free the 
object by calling the DdeFreeDataHandle function. 

If an application has not yet passed the handle of a global memory object to the 
DDEML, the application can add data to the object or overwrite data in the object 
by using the DdeAddData function. Typically, an application uses DdeAddData 
to fill an uninitialized global memory object. After an application passes a data 
handle to the DDEML, the global memory object identified by the handle cannot 
be changed; it can only be freed. 

The DDEML data-management functions can handle huge memory objects. A 
DDEML application should check the size of a global memory object and allocate 
a huge buffer of the appropriate size before copying the object. 



Chapter 5 Dynamic Data Exchange Management Library 183 

5. 8 Transaction Management 
After a client has established a conversation with a server, the client can send 
transactions to obtain data and services from the server. The remaining topics in 
this section describe the types of transactions that clients can use to interact with a 
server. 

5.8.1 Request Transaction 
A client application can use the XTYP _REQUEST transaction to request a data 
item from a server application. The client calls the DdeClientTransaction func
tion, specifying XTYP _REQUEST as the transaction type and specifying the data 
item the application needs. 

The DDEML passes the XTYP _REQUEST transaction to the server, specifying 
the topic name, item name, and data format requested by the client. If the server 
supports the requested topic, item, and data format, the server should return a data 
handle that identifies the current value of the item. The DDEML passes this handle 
to the client as the return value from the DdeClientTransaction function. The 
server should return NULL if it does not support the topic, item, or format re
quested. 

The DdeClientTransaction function uses the lpdwResult parameter to return 
a transaction status flag to the client. If the server does not process the 
XTYP _REQUEST transaction, DdeClientTransaction returns NULL, and 
lpdwResult points to the DDE_FNOTPROCESSED or DDE_FBUSY flag. If the 
DDE_FNOTPROCESSED flag is returned, the client has no way to determine 
why the server did not process the transaction. 

If a server does not support the XTYP _REQUEST transaction, it should specify 
the CBF _F AIL_REQUESTS filter flag in the Ddelnitialize function. This pre
vents the DDEML from sending this transaction to the server. 

5.8.2 Poke Transaction 
A client can send unsolicited data to a server by using the DdeClientTransaction 
function to send an XTYP _POKE transaction to a server's callback function. 

The client application first creates a buffer that contains the data to send to the 
server and then passes a pointer to the buffer as a parameter to the DdeClient
Transaction function. Alternatively, the client can use the DdeCreateData
Handle function to obtain a data handle that identifies the data and then pass the 
handle to DdeClientTransaction In either case, the client also specifies the topic 
name, item name, and data format when it calls DdeClientTransaction. 



184 Microsoft Windows Programmer's Reference 

The DDEML passes the XTYP _POKE transaction to the server, specifying the 
topic name, item name, and data format that the client requested. To accept the 
data item and format, the server should return DDE_FACK. To reject the data, the 
server should return DDE_FNOTPROCESSED. If the server is too busy to accept 
the data, the server should return DDE_FBUSY. 

When the DdeClientTransaction function returns, the client can use the lpdw
Result parameter to access the transaction status flag. If the flag is DDE_FBUSY, 
the client should send the transaction again later. 

If a server does not support the XTYP _POKE transaction, it should specify the 
CBF _FAIL_POKES filter flag in the Ddelnitialize function. This prevents the 
DDEML from sending this transaction to the server. 

5.8.3 Advise Transaction 
A client application can use the DDEML to establish one or more links to items in 
a server application. When such a link is established, the server sends periodic up
dates about the linked item to the client (typically, whenever the value of the item 
associated with the server application changes). This establishes an advise loop 
between the two applications that remains in place until the client ends it. 

There are two kinds of advise loops: "hot" and "warm." In a hot advise loop, the 
server immediately sends a data handle that identifies the changed value. In a 
warm advise loop, the server notifies the client that the value of the item has 
changed but does not send the data handle until the client requests it. 

A client can request a hot advise loop with a server by specifying the 
XTYP _ADVSTART transaction type in a call to the DdeClientTransaction 
function. To request a warm advise loop, the client must combine the 
XTYPF _NODATA flag with the XTYP _ADVSTART transaction type. In either 
event, the DDEML passes the XTYP _ADVSTART transaction to the server's 
DDE callback function. The server's DDE callback function should examine the 
parameters that accompany the XTYP _ADVSTART transaction (including the 
requested format, topic name, and item name) and then return TRUE to allow the 
advise loop or FALSE to deny it. 

After an advise loop is established, the server application should call the DdePost
Advise function whenever the value of the item associated with the requested item 
name changes. This results in an XTYP _ADVREQ transaction being sent to the 
server's own DDE callback function. The server's DDE callback function should 
return a data handle that identifies the new value of the data item. The DDEML 
then notifies the client that the specified item has changed by sending the 
XTYP _ADVDATA transaction to the client's DDE callback function. 



Chapter 5 Dynamic Data Exchange Management Library 185 

If the client requested a hot advise loop, the DDEML passes the data handle for 
the changed item to the client during the XTYP _ADVDATA transaction. Other
wise, the client can send an XTYP _REQUEST transaction to obtain the data 
handle. 

It is possible for a server to send updates faster than a client can process the new 
data. This can be a problem for a client that must perform long processing opera
tions on the data. In this case, the client should specify the XTYPF _ACKREQ flag 
when it requests an advise loop. This causes the server to wait for the client to 
acknowledge that it has received and processed a data item before the server sends 
the next data item. Advise loops that are established with the XTYPF _ACKREQ 
flag are more robust with fast servers but may occasionally miss updates. Advise 
loops established without the XTYPF _ACKREQ flag are guaranteed not to miss 
updates as long as the client keeps up with the server. 

A client can end an advise loop by specifying the XTYP _ADVSTOP transaction 
type in a call to the DdeClientTransaction function. 

If a server does not support advise loops, it should specify the 
CBF _FAIL_ADVISES filter flag in the Ddelnitialize function. This prevents the 
DDEML from sending the XTYP _ADVST ART and XTYP _ADVSTOP transac
tions to the server. 

5.8.4 Execute Transaction 
A client can use the XTYP _EXECUTE transaction to cause a server to execute a 
command or series of commands. 

To execute a server command, the client first creates a buffer that contains a com
mand string for the server to execute and then passes either a pointer to the buffer 
or a data handle identifying the buffer when it calls the DdeClientTransaction 
function. Other required parameters include the conversation handle, the item
name string handle, the format specification, and the XTYP _EXECUTE transac
tion type. When an application creates a data handle for passing execute data, the 
application must specify NULL for the hszltem parameter of the DdeCreate
DataHandle function. 

The DDEML passes the XTYP _EXECUTE transaction to the server's DDE call
back function specifying the format name, conversation handle, topic name, and 
data handle identifying the command string. If the server supports the command, 
it should use the DdeAccessData function to obtain a pointer to the command 
string, execute the command, and then return DDE_FACK. If the server does not 
support the command or cannot complete the transaction, it should return 
DDE_FNOTPROCESSED. The server should return DDE_FBUSY if it is too 
busy to complete the transaction. 



186 Microsoft Windows Programmer's Reference 

When the DdeClientTransaction function returns, the client can use the lpdw
Result parameter to access the transaction status flag. If the flag is DDE_FBUSY, 
the client should send the transaction again later. 

If a server does not support the XTYP _EXECUTE transaction, it should specify 
the CBF _F AIL_EXECUTES filter flag in the Ddelnitialize function. Doing so 
prevents the DDEML from sending this transaction to the server. 

5.8.5 Synchronous and Asynchronous Transactions 
A client can send either synchronous or asynchronous transactions. In a syn
chronous transaction, the client specifies a timeout value that indicates the 
maximum amount of time to wait for the server to process the transaction. The 
DdeClientTransaction function does not return until the server processes the 
transaction, the transaction fails, or the timeout value expires. The client speci
fies the timeout value when it calls DdeClientTransaction. 

During a synchronous transaction, the client enters a modal loop while waiting for 
the transaction to be processed. The client can still process user input but cannot 
send another synchronous transaction until the DdeClientTransaction function 
returns. 

A client sends an asynchronous transaction by specifying the TIMEOUT_ASYNC 
flag in the DdeClientTransaction function. The function returns after the trans
action is begun, passing a transaction identifier to the client. When the server 
finishes processing the asynchronous transaction, the DDEML sends an 
XTYP _XACT_COMPLETE transaction to the client. One of the parameters 
that the DDEML passes to the client during the XTYP _XACT_COMPLETE 
transaction is the transaction identifier. By comparing this transaction identifier 
with the identifier returned by the DdeClientTransaction function, the client 
identifies which asynchronous transaction the server has finished processing. 

A client can use the DdeSetUserHandle function as an aid to processing an asyn
chronous transaction. This function makes it possible for a client to associate an 
application-defined doubleword value with a conversation handle and transac-
tion identifier. The client can use the DdeQueryConvlnfo function during the 
XTYP _XACT_COMPLETE transaction to obtain the application-defined double
word value. This saves an application from having to maintain a list of active trans
action identifiers. 

If a server does not process an asynchronous transaction in a timely manner, the 
client can abandon the transaction by calling the DdeAbandonTransaction func
tion. The DDEML releases all resources associated with the transaction and dis
cards the results of the transaction when the server finishes processing it. 



Chapter 5 Dynamic Data Exchange Management Library 187 

The asynchronous transaction method is provided for applications that must send a 
high volume of ODE transactions while simultaneously performing a substantial 
amount of processing, such as calculations. The asynchronous method is also use
ful in applications that need to stop processing DOE transactions temporarily so 
they can complete other tasks without interruption. In most other situations, an 
application should use the synchronous method. 

Synchronous transactions are simpler to maintain and faster than asynchronous 
transactions. However, only one synchronous transaction can be performed at a 
time, whereas many asynchronous transactions can be performed simultaneously. 
With synchronous transactions, a slow server can cause a client to remain idle 
while waiting for a response. Also, synchronous transactions cause the client to 
enter a modal loop that could bypass message filtering in the application's own 
message loop. 

5.8.6 Transaction Control 
An application can suspend transactions to its ODE callback function-either 
those transactions associated with a specific conversation handle or all transac
tions regardless of the conversation handle. This is useful when an application 
receives a transaction that requires lengthy processing. In this case, an application 
can return CBR_BLOCK to suspend future transactions associated with that trans
action's conversation handle, leaving the application free to process other conver
sations. 

When processing is complete, the application calls the DdeEnableCallback func
tion to resume transactions associated with the suspended conversation. Calling 
DdeEnableCallback causes the DDEML to resend the transaction that resulted in 
the application suspending the conversation. Therefore, the application should 
store the result of the transaction in such a way that it can obtain and return the 
result without reprocessing the transaction. 

An application can suspend all transactions associated with a specific conversa
tion handle by specifying the handle and the EC_DISABLE flag in a call to the 
DdeEnableCallback function. By specifying a NULL handle, an application can 
suspend all transactions for all conversations. 

When a conversation is suspended, the DDEML saves transactions for the conver
sation in a transaction queue. When the application reenables the conversation, the 
DDEML removes the saved transactions from the queue, passing each transaction 
to the appropriate callback function. Even though the capacity of the transaction 
queue is large, an application should reenable a suspended conversation as soon as 
possible to avoid losing transactions. 



188 Microsoft Windows Programmer's Reference 

An application can resume usual transaction processing by specifying the 
EC_ENABLEALL flag in the DdeEnableCallback function. For a more con
trolled resumption of transaction processing, the application can specify the 
EC_ENABLEONE flag. This removes one transaction from the transaction queue 
and passes it to the appropriate callback function; after the single transaction is 
processed, any conversations are again disabled. 

5.8. 7 Transaction Classes 

Class 

XCLASS_BOOL 

XCLASS_DATA 

XCLASS_FLAGS 

The DDEML has four classes of transactions. Each class is identified by a con
stant that begins with the XCLASS_ prefix. The classes are defined in the 
DDEML header file. The class constant is combined with the transaction-type 
constant and is passed to the DDE callback function of the receiving application. 

A transaction's class determines the return value that a callback function is 
expected to return if it processes the transaction. The following table shows the 
return values and transaction types associated with each of the four transaction 
classes: 

Return value 

TRUE or FALSE 

A data handle, CBR_BLOCK, or 
NULL 

A transaction flag: DDE_FACK, 
DDE_FBUSY, or 
DDE_FNOTPROCESSED 

Transaction 

XTYP _ADVSTART 
XTYP _CONNECT 

XTYP _ADVREQ XTYP _REQUEST 
XTYP_WILDCONNECT 

XTYP _ADVDATA 
XTYP _EXECUTE XTYP _POKE 

XCLASS_NOTIFICATION None XTYP _ADVSTOP 
XTYP _CONNECT_CONFIRM 
XTYP _DISCONNECT 
XTYP _ERROR XTYP _REGISTER 
XTYP _UNREGISTER 
XTYP _XACT_COMPLETE 



Chapter 5 Dynamic Data Exchange Management Library 189 

5.8.8 Transaction Summary 
The following list shows each DDE transaction type, the receiver of each type, and 
a description of the activity that causes the DDEML to generate each type: 

Transaction type 

XTYP _ADVDATA 

XTYP _ADVREQ 

XTYP _ADVSTART 

XTYP _ADVSTOP 

XTYP _CONNECT 

XTYP_CONNECT_CONFIRM 

XTYP _DISCONNECT 

XTYP_ERROR 

XTYP _EXECUTE 

XTYP _MONITOR 

Receiver 

Client 

Server 

Server 

Server 

Server 

Server 

Client/Server 

Client/Server 

Server 

DDE monitor
ing application 

Cause 

A server responded to an 
XTYP _ADVREQ transaction 
by returning a data handle. 

A server called the DdePost
Advise function, indicating that 
the value of a data item in an 
advise loop had changed. 

A client specified the 
XTYP _ADVSTART transaction 
type in a call to the DdeClient
Transaction function. 

A client specified the 
XTYP _ADV STOP transaction 
type in a call to the DdeClient
Transaction function. 

A client called the DdeConnect 
function, specifying a service 
name and topic name supported 
by the server. 

The server returned TRUE in re
sponse to an XTYP _CONNECT 
or XTYP _ WILDCONNECT 
transaction. 

A partner in a conversation 
called the DdeDisconnect func
tion, causing both partners to 
receive this transaction. 

A critical error has occurred. 
The DDEML may not have 
sufficient resources to continue. 

A client specified the 
XTYP _EXECUTE transaction 
type in a call to the DdeClient
Transaction function. 

A DDE event occurred in the 
system. For more information 
about DDE monitoring applica
tions, see Section 5.10, 
"Monitoring Applications." 



190 Microsoft Windows Programmer's Reference 

Transaction type 

XTYP_POKE 

XTYP _REGISTER 

XTYP _REQUEST 

XTYP _UNREGISTER 

XTYP _ WILDCONNECT 

XTYP _XACT_COMPLETE 

5. 9 Error Detection 

Receiver 

Server 

Client/Server 

Server 

Client/Server 

Server 

Client 

Cause 

A client specified the 
XTYP _POKE transaction 
type in a call to the DdeClient
Transaction function. 

A server application used the 
DdeNameService function to 
register a service name. 

A client specified the 
XTYP _REQUEST transaction 
type in a call to the DdeClient
Transaction function. 

A server application used the 
DdeNameService function to 
unregister a service name. 

A client called the DdeConnect 
or DdeConnectList function, 
specifying NULL for the service 
name, the topic name, or both. 

An asynchronous transaction, 
sent when the client specified 
the TIMEOUT_ASYNC flag 
in a call to the DdeClient
Transaction function, has 
concluded. 

Whenever a DDEML function fails, an application can call the DdeGetLastError 
function to determine the cause of the failure. The DdeGetLastError function 
returns an error value that specifies the cause of the most recent error. 

For a list of possible error values for each DDEML function, see the individual 
function descriptions in the Microsoft Windows Programmer's Reference, 
Volume 2. 

5 .10 Monitoring Applications 
Microsoft Windows DDESpy (DDESPY.EXE) monitors DDE activity in the sys
tem. You can use DDESpy as a tool for debugging your DDE applications. For 
more information about DDESpy, see Microsoft Windows Programming Tools. 



Chapter 5 Dynamic Data Exchange Management Library 191 

You can use the API elements of the DDEML to create your own DDE monitoring 
applications. Like any DDEML application, a DDE monitoring application con
tains a DDE callback function. The DDEML notifies a monitoring application's 
DDE callback function whenever a DDE event occurs, passing information about 
the event to the callback function. The application typically displays the informa
tion in a window or writes it to a file. 

To receive notifications from the DDEML, an application must have registered 
itself as a DDE monitor by specifying the APPCLASS_MONITOR flag in a call 
to the Ddelnitialize function. In this same call, the application can specify one or 
more monitor flags to indicate the types of events of which the DDEML is to 
notify the application's callback function. The following table describes each of 
the monitor flags an application can specify: 

Flag 

MF _CALLBACKS 

MF_CONV 

MF_ERRORS 

MF _HSZ_INFO 

MF_LINKS 

MF _posTMSGS 

MF _SENDMSGS 

Meaning 

Notifies the callback function whenever a transaction is sent to 
any DDE callback function in the system. 

Notifies the callback function whenever a conversation is estab
lished or terminated. 

Notifies the callback function whenever a DDEML error occurs. 

Notifies the callback function whenever a DDEML application 
creates, frees, or increments the use count of a string handle or 
whenever a string handle is freed as a result of a call to the 
DdeUninitialize function. 

Notifies the callback function whenever an advise loop is 
started or ended. 

Notifies the callback function whenever the system or an appli
cation posts a DDE message. 

Notifies the callback function whenever the system or an appli
cation sends a DDE message. 

The following example shows how to register a DDE monitoring application so 
that its DDE callback function receives notifications of all DDE events: 

DWORD idinst; 
PFNCALLBACK lpDdeProc; 
hinst = hinstance; 

lpDdeProc = CPFNCALLBACK) MakeProcinstance( 
CFARPROC) DDECallback, /*points to callback function */ 
hinstance); /*instance handle */ 



192 Microsoft Windows Programmer's Reference 

if CDdelniti al i ze( 
(LPDWDRD) &idlnst, /* instance identifier */ 
lpDdeProc, /* points to callback function */ 
APPC LASS_ MONITOR f* this is a monitoring application *f 
MF_CALLBACKS /* monitor callback functions */ 
MF_CONV /* monitor conversation data */ 
MF_ERRORS /* monitor DDEML errors */ 
MF_HSl_INFO /* monitor data-handle activity */ 
MF_LINKS /* monitor advise loops */ 
MF_ POSTMSGS /* monitor posted DDE messages */ 
MF_SENDMSGS, /* monitor sent DDE messages *I 
0L)) /* reserved */ 

return FALSE; 

The DDEML informs a monitoring application of a DDE event by sending an 
XTYP _MONITOR transaction to the application's DDE callback function. During 
this transaction, the DDEML passes a monitor flag that specifies the type of DDE 
event that has occurred and a handle of a global memory object that contains 
detailed information about the event. The DDEML provides a set of structures 
that the application can use to extract the information from the memory object. 
There is a corresponding structure for each type of DDE event. The following 
table describes each of these structures: 

Structure 

MONCBSTRUCT 
MONCONVSTRUCT 

MONERRSTRUCT 

MONLINKSTRUCT 

MONHSZSTRUCT 
MONMSGSTRUCT 

Description 

Contains information about a transaction. 

Contains information about a conversation. 

Contains information about the latest DDE error. 

Contains information about an advise loop. 

Contains information about a string handle. 

Contains information about a DDE message that was sent 
or posted. 

The following example shows the DDE callback function of a DDE monitoring 
application that formats information about each string handle event and then dis
plays the information in a window. The function uses the MONHSZSTRUCT 
structure to extract the information from the global memory object. 

HDDEDATA CALLBACK DDECallback(wType, wFmt, hConv, hszl, hsz2, 
hData, dwDatal, dwData2) 

WORD wType; 
WORD wFmt; 
HCONV hConv; 
HSZ hszl; 
HSZ hsz2; 
HDDEDATA hData; 
DWORD dwDatal; 
DWORD dwData2; 



{ 

LPVOID l pData; 
char *SzAction; 
char buf[256J; 
DWORD cb; 

switch CwType) 

Chapter 5 Dynamic Data Exchange Management Library 193 

case XTYP_MONITOR: 

f* Obtain a pointer of the global memory object. */ 

if (lpData = DdeAccessDataChData, &cb)) { 

f* Examine the monitor flag. */ 

switch CdwData2) { 
case MF_HSZ_INFO: 

#define PHSZS CCMONHSZSTRUCT FAR *)lpData) 

f* 
* The global memory object contains 
* string-handle data. Use the MONHSZSTRUCT 
* structure to access the data. 
*/ 

switch CPHSZS->fsAction) { 

f* 
* Examine the action flags to determine 
* the action performed on the handle. 
*f 

case MH_CREATE: 
szAction = "Created"; 
break; 

case MH_KEEP: 
szAction "Incremented"; 
break; 

case MH_DELETE: 
szAction = "Deleted"; 
break; 

case MH_CLEANUP: 
szAction = "Cleaned up"; 
break; 

default: 
DdeUnaccessDataChData); 
return ((HDDEDATA) 0); 



194 Microsoft Windows Programmer's Reference 

/* Write formatted output to a buffer. */ 

wsprintf(buf, 
"Handle %s, Task: %x, Hsz: %lx(%s)", 
(LPSTR) szAction, PHSZS->hTask, PHSZS->hsz, 
(LPSTR) PHSZS->str); 

f* Display text in window or write to file. */ 

break; 

#undef PHSZS 

} 

} 

} 

/* Process other MF_* flags. */ 

default: 
break; 

/* Free the global memory object. */ 

DdeUnaccessData(hData); 
break; 

default: 
break; 

return ((HDDEDATA) 0); 



Object Linking and Embedding 
Libraries 

Chapter 6 

6.1 Basics of Object Linking and Embedding............................................... 199 
6.1.1 Compound Documents . .. . . . . . . . .. . . . .. . . . .. . . .. . .. . . . . . . . . .. . . .. . . .. . .. . . . . . . .. . . 199 
6.1.2 Linked and Embedded Objects................................................ 200 

6.1.2.1 Packages................................................................ 201 
6.1.2.2 Verbs ..................................................................... 201 

6.1.3 Benefits of Object Linking and Embedding............................ 202 
6.1.4 Choosing Between OLE and the DDEML. ............................. 203 

6.1.4.1 Using OLE for Standard DOE Operations ........... 204 
6.1.4.2 Using Both OLE and the DDEML ....................... 205 

6.2 Data Transfer in Object Linking and Embedding ................................... 206 
6.2.1 Client Applications .................................................................. 206 
6.2.2 Server Applications ...................... ........................................... 206 
6.2.3 Object Handlers ....................................................................... 207 
6.2.4 Communication Between OLE Libraries................................ 207 
6.2.5 Clipboard Conventions............................................................ 207 
6.2.6 Registration.............................................................................. 210 

6.2.6.1 Registration Database ........................................... 211 
6.2.6.2 Version Control for Servers.................................. 213 

6.2.7 Client User Interface................................................................ 213 
6.2.7.1 New and Changed Commands .............................. 214 
6.2.7.2 Using Packages ..................................................... 216 



196 Microsoft Windows Programmer's Reference 

6.2.8 Server User Interface ............................................................... 217 
6.2.8.1 Updating Objects from 

Multiple-Instance Servers ..................................... 217 
6.2.8.2 Updating Objects from 

Single-Instance Servers......................................... 218 
6.2.9 Object Storage Formats ........................................................... 218 

6.3 Client Applications................................................................................... 220 
6.3.1 Starting a Client Application ................................................... 221 
6.3.2 Opening a Compound Document............................................ 222 
6.3.3 
6.3.4 
6.3.5 
6.3.6 
6.3.7 
6.3.8 
6.3.9 
6.3.10 
6.3.11 

6.3.12 
6.3.13 
6.3.14 
6.3.15 

Document Management........................................................... 222 
Saving a Document.................................................................. 223 
Closing a Document................................................................. 223 
Asynchronous Operations........................................................ 223 
Displaying and Printing Objects.............................................. 225 
Opening and Closing Objects .. . . . . .. . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 226 
Deleting Objects ....................................................................... 227 
Client Cut and Copy Commands............................................. 227 
Creating Objects ....................................................................... 228 
6.3.11.1 Object-Creation Functions.................................... 228 
6.3.11.2 Paste and Paste Link Commands.......................... 230 
Undo Command....................................................................... 231 
Class Name Object Command ................................................. 231 
Links Command....................................................................... 231 
Closing a Client Application ................................................... 233 

6.4 Server Applications.................................................................................. 233 
6.4.1 Starting a Server Application................................................... 234 
6.4.2 Opening a Document or Object............................................... 236 
6.4.3 Server Cut and Copy Commands ............................................ 237 
6.4.4 Update, Save As, and New Commands................................... 238 
6.4.5 Closing a Server Application ................................................... 239 

6.5 Object Handlers ........................................................................................ 240 
6.5.1 Implementing Object Handlers................................................ 240 
6.5.2 Creating Objects in an Object Handler.................................... 243 

6.5.2.1 DefCreateFromClip and DllCreateFromClip........ 243 
6.5.2.2 DefLoadFromStream and DllLoadFromStream ... 244 



Chapter 6 Object Linking and Embedding Libraries 197 

6.6 Direct Use of Dynamic Data Exchange................................................... 245 
6.6.1 Client Applications and Direct Use of 

Dynamic Data Exchange ......................................................... 245 
6.6.2 Server Applications and Direct Use of 

Dynamic Data Exchange . . . . . .. . . . . . . .. . . .. . ... . .. . . . .. . .. . . . ... . . . . . . .. . . . . . .. . . 248 
6.6.3 Conversations........................................................................... 248 
6.6.4 Items for the System Topic...................................................... 249 

6.6.5 Standard Item Names and Notification Control...................... 249 
6.6.6 Standard Commands in DDE Execute Strings........................ 251 

6.6.6.1 International Execute Commands......................... 252 
6.6.6.2 Required Commands............................................. 252 
6.6.6.3 Variants on Required Commands......................... 254 





Chapter 6 Object Linking and Embedding Libraries 199 

This chapter describes the implementation of object linking and embedding (OLE) 
for applications that run with the Microsoft Windows operating system. The chap
ter also describes how an application can use linked and embedded objects to cre
ate compound documents. The following topics are related to the information in 
this chapter: 

• Dynamic data exchange (DDE) 

• Clipboard 

• Registration database 

• Dynamic-link libraries 

• Multiple document interface 

This chapter does not go into detail about the recommended user interface for 
applications that use linked and embedded objects. For information about this 
subject, see Microsoft Windows User Interface Guidelines. 

6.1 Basics of Object Linking and Embedding 
This section explains some basic OLE concepts and compares OLE functionality 
to that of the Dynamic Data Exchange Management Library (DDEML). 

6.1.1 Compound Documents 
An application that uses OLE can cooperate with other OLE applications to pro
duce a document containing different kinds of data, all of which can be easily 
manipulated by the user. The user editing such a document is able to improve the 
document by using the best features of many different applications. An application 
that implements OLE gives its users the ability to move away from an application
centered view of computing and toward a document-centered view. In application
centered computing, the tool used to complete a task is often a single application; 
whereas, in document-centered computing, a user can combine the advantages of 
many tools to complete a job. 

A document that uses linked and embedded objects can contain many kinds of 
data in many different formats; such a document is called a compound document. 
A compound document uses the facilities of different OLE applications to manipu
late the different kinds of data it displays. Any kind of data format can be incor
porated into a compound document; with little or no extra code, OLE applications 
can even support data formats that have not yet been invented. The user working 
with a compound document does not need to know which data formats are compat
ible with one another or how to find and start any applications that created the 
data. Whenever a user chooses to work with part of a compound document, the 
application responsible for that part of the document starts automatically. 



200 Microsoft Windows Programmer's Reference 

For example, a compound document could be a brochure that included text, charts, 
ranges of cells in a spreadsheet, and illustrations. The information could be embed
ded in the document, or the document could contain links to certain information 
instead of containing the information itself. The user working with the brochure 
could automatically switch between the applications that produced its components. 

The following illustration shows the relationships between a compound document 
and its linked and embedded objects. 

-J Chart Server 

Paste, 
Paste Link, or 
Paste Special 

Insert Object 

-Jrnsert Object 

Select 
table object 
from list. 

Cut or 
Copy 

-jClipboard 

~ abc.doc 

Client 

[i]::::.::::::::::::::::::::·:::· 

::::.:=;::::o:/tH:: ~ ~ 

:;;;:::=::;::\:;:::;::;:::. abc.doc 

~ 
xyz.doc 

Update or Exit 
OK -l Table Server 

~I 

6.1.2 Linked and Embedded Objects 

-l Copy 

OK 

0 To Clipboard 

Copy 

Paste, '--
Paste Link, 
or Paste 
Special 

Drag and 
Drop 

File Manager 

~ abc.doc 

~ xyz.doc 

An object is any data that can be presented in a compound document and manipu
lated by a user. Anything from a single cell in a spreadsheet to an entire document 



Chapter 6 Object Linking and Embedding Libraries 201 

can be an object. When an object is incorporated into a document, it maintains an 
association with the application that produced it. That association can be a link, or 
the object can be embedded in the file. 

If the object is linked, the document provides only minimal storage for the data to 
which the object is linked, and the object can be updated automatically whenever 
the data in the original application changes. For example, if a range of spreadsheet 
cells were linked to information in a text file, the data would be stored in some 
other file and only a link to the data would be saved with the text file. 

If an object is embedded, all the data associated with it is saved as part of the file 
in which it is embedded. If a range of spreadsheet cells were embedded in a text 
file, the data in the cells would be saved with the text file, including any necessary 
formulas; the name of the server for the spreadsheet cells would be saved along 
with this data. The user could select this embedded object while working with the 
text file, and the spreadsheet application would be started automatically for editing 
those cells. The presentation and the behavior of the data is the same for a linked 
and an embedded object. 

6.1.2.1 Packages 
A package is a type of OLE object that encapsulates another object, a file, or a 
command line inside a graphic representation (such as an icon or bitmap). When 
the user double-clicks the graphic object, the OLE libraries activate the object in
side the package. The package itself is always an embedded object, not a link. The 
contents of a package can be an embedded object, a link, or even a file dropped 
from Windows File Manager. 

Packages are useful for presenting compact token views of large files or OLE 
objects. An application could also use a package as it would use a hyperlink
that is, to connect information in different documents. 

Windows version 3 .1 includes the application Microsoft Windows Object Pack
ager (PACKAGER.EXE). With Packager, a user can associate a file or data selec
tion with an icon or graphic. 

6.1.2.2 Verbs 
The types of actions a user can perform on an object are called verbs. Two typical 
verbs for an object are Play and Edit. 

The nature of an object determines its behavior when a user works with it. The 
most typical use for some objects, such as voice annotations and animated scripts, 
is to play them. For example, a user could play an animated script by double
clicking it. In this case, Play is the primary verb for the object. 



202 Microsoft Windows Programmer's Reference 

For other objects, the most typical use is to edit them. In the case of text produced 
by a word processor, for example, the primary verb could be Edit. 

The client application typically specifies the primary verb when the user double
clicks an object. However, the server application determines the meaning of that 
verb. A user can invoke an object's subsidiary verbs by using the Class Name 
Object command or the Links dialog box. For more information about these 
topics, see Section 6.2.7, "Client User Interface." 

The action taken when a user double-clicks a package is that of the primary verb 
of the object inside the package. The secondary verb for a packaged object is Edit 
Package; when the user chooses this verb, Packager starts. The user can use Pack
ager to gain access to the secondary verb for the object inside the package. 

Many objects support only one verb-for example, an object created by a text edi
tor might support only Edit. If an object supports only one verb, that verb is used 
no matter what the client application specifies. 

For more information about verbs, see Section 6.2.6, "Registration." 

6.1.3 Benefits of Object Linking and Embedding 
OLE offers the following benefits: 

• An application can specialize in performing one job very well. For example, a 
drawing application that implements OLE does not need any text-editing tools; 
a user could put text into the drawing and edit that text by using any text editor 
that supports OLE. 

• An application is automatically extensible for future data formats, because the 
content of an object does not matter to the containing document. 

• A user can concentrate on the task instead of on any software required to 
complete the task. 

• A file can be more compact, because linking to objects allows a file to use an 
object without having to store that object's data. 

• A document can be printed or transmitted without using the application that 
originally produced the document. 

• Linked objects in a file can be updated dynamically. 

Future implementations of this protocol could take advantage of a wide variety of 
object types. For example, the user of a voice-recorder application could dictate a 
comment, package the comment as an object with a visual representation, and 
embed the graphic as an object in a text file. When a user double-clicked the 
graphic for this object (a pair of lips, perhaps), the voice-recorder application 



Chapter 6 Object Linking and Embedding Libraries 203 

would play the recorded comment. Linked and embedded objects also lend them
selves to implementations such as animated drawings, executable macro scripts, 
hypertext, and annotations. 

6.1.4 Choosing Between OLE and the DDEML 
Applications can exchange data by using either OLE or the DDEML. Unless an 
application has a strong requirement for managing multiple items in a single con
versation with another application, the application should use OLE instead of the 
DDEML. 

Both OLE and the DDEML are message-based systems supported by dynarnic
link libraries. Developers are encouraged to use these libraries rather than using 
the underlying message-based protocols. For more information about the message
based OLE protocol, see Section 6.6, "Direct Use of Dynamic Data Exchange." 

Unlike OLE, the DDEML supports multiple items per conversation. With OLE, a 
client needing links to several objects in a document must establish a separate con
versation for each object. 

OLE offers the following advantages that the DDEML does not: 

Advantage 

Extensibility to future en
hancements 

Persistent embedding and 
linking of objects 

Rendering of common 
data formats 

Server rendering of 
specialized data formats 

Description 

The OLE libraries may be updated in future releases to 
support new data formats, link tracking, editing without 
exiting the client application, and other enhancements 
that will not be immediately available to applications that 
use the DDEML. 

The OLE libraries do most of the work of activating 
objects when an embedded document is reopened, by 
reestablishing the conversation between a client and 
server. In contrast, establishing a DDE link (DDE advise 
loop) is the responsibility of either the user (if the link is 
not persistent) or of the application (if the link is per
sistent). 

The OLE libraries assume the burden of rendering com
mon data formats on a display context. DDE applica
tions, however, must do this work themselves. 

The OLE libraries facilitate the rendering of specialized 
data formats in the client's display context. (The server 
application or object handler actually performs the ren
dering.) The client application has to do very little work 
to render the embedded or linked data in its display con
text. Such rendering of embedded or linked data is 
beyond the scope of the DDEML alone. 



204 Microsoft Windows Programmer's Reference 

Advantage 

Activating embedded and 
linked objects 

Creating objects and links 
from the clipboard 

Creating objects and links 
from files 

Description 

The OLE libraries support activating a server to edit a 
linked or embedded object or to render data. Activating 
servers for data rendering and editing is beyond the scope 
of the DDEML. 

The OLE libraries do most of the work when an applica
tion is using the clipboard to copy and paste links or ex
change objects. In contrast, DDE applications must call 
the Windows clipboard functions directly to perform 
such operations. 

The OLE libraries provide direct support for using files 
to exchange data. No DDE protocol is defined for this 
purpose. 

The OLE libraries use DDE messages instead of the DDEML, because the librar
ies were written before the DDEML was available. 

6.1.4.1 Using OLE for Standard ODE Operations 
Although most of the OLE application programming interface (API) was designed 
for linked and embedded objects, it can also be applied to standard DDE items. In 
particular, an application can use the OLE API to perform the following DDE 
tasks: 

• Initializing conversations based on application and topic names or wildcards. 

• Requesting data for named items in negotiated formats from a server. 

• Establishing an advise loop-that is, requesting that a DDE server notify the 
client of changes to the values of specified items and, optionally, that the server 
send the data when the change occurs. 

• Sending data from a server to a client. 

• Poking data from a client to a server. 

• Sending a DDE command. (This is supported by the OleExecute function.) 

An OLE client application receives a pointer to an OLEOBJECT structure; this 
structure includes class name, document name, and item name information. These 
names correspond exactly to DDE counterparts, as follows: 

OLE name 

Class name 

Document name 

Item name 

DDEname 

Service name (formerly called "application name") 

Topic name 

Item name 



Chapter 6 Object Linking and Embedding Libraries 205 

The client can use the OleCreateFromFile function to make an object and specify 
all three names. If the client application needs multiple items from the same topic, 
it must have an OLEOBJECT structure for each item, which causes a DDE con
versation to be created for each item. 

The client library maps OLE functions that work on the OLEOBJECT structure 
to DDE messages as follows: 

OLE function 

OleExecute 

OleRequestData 

OleSetData 

DDEmessage 

WM_DDE_EXECUTE 

WM_DDE_REQUEST 

WM_DDE_POKE 

Some functions (such as OleActivate) are too complicated for this one-to-one 
mapping of function to DDE message. For these functions, the DDE message 
depends on the circumstance. 

If a client application needs to duplicate the functionality of WM_DDE_ADVISE 
with OLE, the client must create the link with olerender_format for the render
opt parameter, specify the required format, and use the OleGetData function to 
retrieve the value when the callback function receives the OLE_ CHANGED noti
fication. If more than one item or format is required, the client must create an 
OLEOBJECT structure for each item/format pair. Although this method creates a 
conversation for each advise transaction, it may be inefficient if the client needs to 
create many such conversations. 

A server application can make itself accessible to DDE by calling the OleRegister
Server function to make the System topic available and the OleRegisterServer
Doc function to make other topics available. When a client connects and asks 
for an item, the server library calls the GetObject function in the server's OLE
SERVERDOCVTBL structure, followed by other server-implemented functions 
that are appropriate to the client's request. (Usually, the library calls the GetData 
function in the server's OLEOBJECTVTBL structure.) As long as the object 
allocated by the call to GetObject has not been released, the server should send a 
notification when the item has changed, so that the OLE libraries can send data to 
clients that have sent WM_DDE_ADVISE. 

6.1.4.2 Using Both OLE and the DDEML 
Some applications may need features supported only by OLE and may also need 
to use the DDEML to support simultaneous links for many items that are updated 
frequently. Client applications of this kind can use the OLE libraries to initiate con
versations with OLE servers and the DDEML to initiate conversations with DDE 
servers. 



206 Microsoft Windows Programmer's Reference 

Server applications that need to support both OLE and the DDEML must use 
different service names (DDE application names) for OLE and DDE conversa
tions; otherwise, the OLE and DDEML libraries cannot determine which library 
should respond when an initiation request is received. Typically, the application 
changes the service name for the OLE conversation in this case, because other 
applications and the user must use the service name for the DDE conversation, 
but the OLE service name is hidden. 

6.2 Data Transfer in Object Linking and Embedding 
This section gives a brief overview of how applications share information under 
OLE. Details of the implementation are given in later sections of this chapter. 

Applications use three dynamic-link libraries (DLLs), OLECLI.DLL, 
OLESVR.DLL, and SHELL.DLL, to implement object linking and embedding. 
Object linking and embedding is supported by OLECLI.DLL and OLESVR.DLL. 
The registration database is supported by SHELL.DLL. 

6.2.1 Client Applications 
An OLE client application can accept, display, and store OLE objects. The 
objects themselves can contain any kind of data. A client application typically 
identifies an object by using a distinctive border or other visual cue, as described 
in Microsoft Windows User Inteiface Guidelines. 

6.2.2 Server Applications 
An OLE server is any application that can edit an object when the OLE libraries 
inform it that the user of a client application has selected the object. (Some servers 
can perform operations on an object other than editing.) When the user double
clicks an object in a client application, the server associated with that object starts 
and the user works with the object inside the server application. When the server 
starts, its window is typically sized so that only the object is visible. If the user 
double-clicks a linked object, the entire linked file is loaded and the linked portion 
of the file is selected. For embedded objects, the user chooses the Update com
mand from the File menu to save changes to the object and chooses Exit when 
finished. 

Many applications are capable of acting as both clients and servers for linked and 
embedded objects. 



Chapter 6 Object Linking and Embedding Libraries 207 

6.2.3 Object Handlers 
Some OLE server applications implement an additional kind of OLE library called 
an object handler. Object handlers are dynamic-link libraries that act as intermedi
aries between client and server applications. Typically, an object handler is sup
plied by the developers of a server application as a way of improving perfor
mance. For example, an object handler could be used to redraw a changed object if 
the presentation data for that object could not be rendered by the client library. 

6.2.4 Communication Between OLE Libraries 
Client applications use functions from the OLE API to inform the client library, 
OLECLI.DLL, that a user wants to perform an operation on an object. The 
client library uses ODE messages to communicate with the server library, 
OLESVR.DLL. The server library is responsible for starting and stopping the 
server application, directing the interaction with the server's callback functions, 
and maintaining communication with the client library. 

When a server application modifies an embedded object, the server notifies the 
server library of changes. The server library then notifies the client library, and the 
client library calls back to the client application, informing it that the changes have 
occurred. Typically, the client application then forces a repaint of the embedded 
object in the document file. If the server changes a linked object, the server library 
notifies the client library that the object has changed and should be redrawn. 

6.2.5 Clipboard Conventions 
When first embedding or linking an object, OLE client and server applications 
typically exchange data by using the clipboard. When a server application puts an 
object on the clipboard, it represents the object with data formats, such as Native 
data, OwnerLink data, ObjectLink data, and a presentation format. The order in 
which these formats are put on the clipboard is very important, because the order 
determines the type of object. For example, if the first format is Native and the 
second is OwnerLink, client applications can use the data to create an embedded 
object. If the first format is Owner Link, however, the data describes a linked 
object. 

Native data completely defines an object for a particular server. The data can be 
meaningful only to the server application. The client application provides storage 
for Native data, in the case of embedded objects. 

OwnerLink data identifies the owner of a linked or embedded object. 



208 Microsoft Windows Programmer's Reference 

Presentation formats allow the client library to display the object in a document. 
CF _METAFILEPICT, CF _DIB, and CF _BITMAP are typical presentation for
mats. Native data can be used as a presentation format, typically when an object 
handler has been defined for that class of data. Native data cannot be used twice in 
the definition of an object, however; ifthe server puts Native and OwnerLink data 
on the clipboard to describe an embedded object, it cannot use Native data as a pre
sentation format for that object. The ability of object handlers to use Native data as 
the presentation data accounts for the significance of the order of the formats: the 
order is the only way to distinguish between an embedded object and a link that 
uses Native data for its presentation. 

ObjectLink data identifies a linked object's class and document and the item that 
is the source for the linked object. (If the item name specified in the ObjectLink 
format is NULL, the link refers to the entire server document.) 

The following table describes the contents of the ObjectLink, OwnerLink, and 
Native clipboard formats: 

Format name 

ObjectLink 

OwnerLink 

Native 

Contents 

Null-terminated string for class name, null-terminated string for 
document name, string for item name with two terminating null 
characters. 

Null-terminated string for class name, null-terminated string for 
document name, string for item name with two terminating null 
characters. 

Stream of bytes interpreted only by the server application or 
object-handler library. This format can be unique to the server 
application and must allow the server to load and work with the 
object. 

Although the ObjectLink and OwnerLink formats contain the same information, 
the OLE libraries use them differently. The libraries use OwnerLink format to 
identify the owner of an object (which can be different from the source of the 
object) and ObjectLink format to identify the source of the data for an object. 

The class name in the ObjectLink or OwnerLink format is a unique name for a 
class of objects that a server supports. Server applications register the class name 
or names they support in the registration database. (For example, the class name 
used by Windows Paintbrush TM is PB rush.) An application can use the class name 
to look up information about a server in the registration database. (For more infor
mation about registration, see Section 6.2.6, "Registration.") The document name 
is typically a fully qualified path that identifies the file containing a document. The 
item name uniquely identifies the part of a document that is defined as an object. 
Item names are assigned by server applications; an item name can be any string 
that the server uses to identify part of a document. Items names cannot contain the 
forward-slash (/) character. 



Chapter 6 Object Linking and Embedding Libraries 209 

Data in OwnerLink or ObjectLink format could look like the following example: 

Microsoft Excel Worksheet\0c:\directry\docname.xls\0R1Cl:R5C3\0\0 

The order in which various data formats are put on the clipboard depends on the 
type of data being copied to the clipboard and the capabilities of the server applica
tion. The following table shows the order of clipboard data formats for four differ
ent types of data selections. An object does not necessarily use all of the formats 
listed for it. 

Source selection 

Embedded object 

Linked object 

Pictorial data 

Structured data 

Clipboard contents, in order 

Native 
OwnerLink 
Picture or other presentation format (optional) 
ObjectLink (included only if the server also supports links) 

Owner Link 
Picture or other presentation format (optional; for linked 

objects, this can be Native data) 
ObjectLink 

Application-specific formats 
Native 
Owner Link 
Picture 
ObjectLink 

Structured data formats (if selection is structured data only) 
Native 
Owner Link 
Picture, text, and so on 
ObjectLink 

Before copying data for an embedded or linked object to the clipboard, a server 
puts descriptions of the data formats on the clipboard. These data formats are 
listed in order of their level of description, from most descriptive to least. (For 
example, Microsoft Word would put rich-text format (RTF) onto the clipboard 
first, then the CF _TEXT clipboard format.) 

When a user chooses the Paste command, the client application queries the for
mats on the clipboard and uses the first format that is compatible with the destina
tion for the object. Because server applications put data onto the clipboard in order 
of their fidelity of description, the first acceptable format found by a client applica
tion is the best format for it to use. If the client application finds an acceptable for
mat prior to the Native format, it incorporates the data into the target document 
without making it an embedded object. (For example, a Microsoft Word document 
would not make an embedded object from clipboard data that was in RTF format. 
Similarly, structured data or a structured document would be embedded into a 



210 Microsoft Windows Programmer's Reference 

drawing application but would be converted into the destination document's native 
data type ifthe destination were a worksheet or structured document.) If the client 
application cannot accept any of the data formats prior to Native and OwnerLink, 
it uses the Native and OwnerLink formats to make an embedded object and then 
finds an appropriate presentation format. The destination application may require 
different formats depending on where the selection is to be placed in the destina
tion document; for example, pasting into a picture frame and pasting into a stream 
of text could require different formats. 

When a user chooses the Paste Link command from the Edit menu, the client appli
cation looks for the ObjectLink format on the clipboard and ignores the Native and 
OwnerLink formats. The ObjectLink format identifies the source class, document, 
and object. If the application finds the ObjectLink format and a useful presentation 
format, it uses them to make an OLE link to the source document for the object. If 
the ObjectLink format is not available, the client application may look for the Link 
format and create a DDE link. This type of link does not support the OLE protocol. 

When an application that does not support OLE copies from an OLE item on the 
clipboard, it ignores the Native, OwnerLink and ObjectLink formats; the behavior 
of the copying application does not change. 

6.2.6 Registration 
The registration database supports linked and embedded objects by providing a 
systemwide source of information about whether server applications support the 
OLE protocol, the names of the executable files for these applications, the verbs 
for classes of objects, and whether an object-handler library exists for a given 
class of object. For more information about this database, see Chapter 7, "Shell 
Library." 

When a server application is installed, it registers itself as an OLE server with the 
registration database. (This database is supported by the dynamic-link library 
SHELL.DLL.) To register itself as an OLE server, a server application records in 
the database that it supports one or more OLE protocols. The only protocols sup
ported by version l.x of the Microsoft OLE libraries are StdFileEditing and Std
Execute. StdFileEditing is the current protocol for linked and embedded objects. 
StdExecute is used only by applications that support the OleExecute function. 
(A third name, Static, describes a picture than cannot be edited by using standard 
OLE techniques.) 

When a client activates a linked or embedded object, the client library finds 
the cornrnand line for the server in the database, appends the /Embedding or 
/Embedding.filename command-line option, and uses the new cornrnand line to 
start the server. Starting the server with either of these options differs from the 
user starting it directly. Either a slash (/) or a hyphen (-) can precede the word 



Chapter 6 Object Linking and Embedding Libraries 211 

Embedding. For details about how a server reacts when it is started with these 
options, see Section 6.3.8, "Opening and Closing Objects." 

The entries in the registration database are used whenever an application or library 
needs information about an OLE server. For example, client applications that sup
port the Insert Object command refer to the database in order to list the OLE serv
er applications that could provide a new object. The client application also uses the 
registration database to retrieve the name of the server application for the Paste 
Special dialog box. 

6.2.6.1 Registration Database 
Applications typically add key and value pairs to the registration database by using 
Microsoft Windows Registration Editor (REGEDIT.EXE). Applications could 
also use the registration functions to add this information to the database. 

The registration database stores keys and values as null-terminated strings. Keys 
are hierarchically structured, with the names of the components of the keys sepa
rated by backslash characters (\) . The class name and server path should be regis
tered for every class the server supports. (This class name must be the same string 
as the server uses when it calls the OleRegisterServer function.) If a class has 
an object-handler library, it should be registered using the handler keyword. An 
application should also register all the verbs its class or classes support. (An appli
cation's verbs must be sequential; for example, if an object supports three verbs, 
the primary verb is 0 and the other verbs must be 1 and 2.) 

To be available for OLE transactions, a server should register the key and value 
pairs shown in the following example when it is installed. This example shows 
the form of key and value pairs as they would be added to a database with Regis
tration Editor. Although the text string sometimes wraps to the next line in this 
example, the lines should not include newline characters when they are added to 
the database. 

HKEY_CLASSES_ROOT\class name= readable version of class name 
HKEY_CLASSES_ROOT\.ext= class name 
HKEY _CLASSES_ROOT\class name\protocol \StdFileEditing\server = 

executable file name 
HKEY _CLASSES_ROOT\class name\protocol \StdFileEditing\handler = 

dll name 
HKEY _ CLASSES_ROOT\class name\protocol \StdFileEditing\verb\O = 

primary verb 
HKEY _CLASSES_ROOT\class name\protocol \StdFileEditing\verb\l = 

secondary verb 



212 Microsoft Windows Programmer's Reference 

Servers that support the OleExecute function also add the following line to the 
database: 

HKEY _ CLASSES_ROOT\class name\protocol \StdExecute\server = 
executable file name 

An ampersand(&) can be used in the verb specification to indicate that the follow
ing character is an accelerator key. For example, if a verb is specified as &Edit, 
the E key is an accelerator key. 

A server can register the entire path for its executable file, rather than registering 
only the filename and arguments. Registering only the filename fails if the applica
tion is installed in a directory that is not mentioned in the PATH environment vari
able. Usually, registering the path and filename is less ambiguous than registering 
only the filename. 

Servers can register data formats that they accept on calls to the OleSetData 
function or that they can return when a client calls the OleRequestData function. 
Clients can use this information to initialize newly created objects (for example, 
from data selected in the client) or when using the server as an engine (for 
example, when sending data to a chart and getting a new picture back). Client 
applications should not depend on the requested data format, because the calls 
can be rejected by the server. 

In the following example,format is the string name of the format as passed to the 
RegisterClipboardFormat function or is one of the system-defined clipboard for
mats (for example, CF _MET AFILEPICT): 

HKEY _CLASSES_ROOT\class name\ protocol \StdFileEditing 
\SetDataFormats = format[,format] 

HKEY _CLASSES _ROOT\ class name\ protocol\ StdFileEditing 
\RequestDataFormats = format[,format] 

For compatibility with earlier applications, the system registration service also 
reads and writes registration information in the [embedding] section of the 
WIN.IN! initialization file. 

In the following example, the keyword picture indicates that the server can pro
duce metafiles for use when rendering objects: 

[embedding] 
classname=comment, textual class name,pathlarguments,picture 



Chapter 6 Object Linking and Embedding Libraries 213 

6.2.6.2 Version Control for Servers 
Server applications should store version numbers in their Native data formats. 
New versions of servers that are intended to replace old versions should be 
capable of dealing with data in Native format that was created by older versions. 
It is sometimes important to give the user the option of saving the data in the old 
format, to support an environment with a mixture of new and old versions, or to 
permit data to be read by other applications that can interpret only the old format. 

There can be only one application at a time (on one workstation) registered as a 
server for a given class name. The class name (which is stored with the Native 
data for objects) and the server application are associated in the registration 
database when the server application registers during installation. 

If a new version of a server application allows the user to keep the old version 
available, a new class name should be allocated for the new server. A good way to 
do this is to append a version number to the class name. This allows the user to 
easily differentiate between the two versions when necessary. (The OLE libraries 
do not check these numbers.) 

When the new version of the server is installed, the user should be given the op
tion of either mapping the old objects to the new server (registering the new server 
as the server for both class names) or keeping them separate. When the user keeps 
them separate, the user will be aware of two kinds of object (for example, Graphl 
and Graph2). 

The user should be able to discard the old server version at a later time by remap
ping the registration database, typically with the help of the server setup program. 
To remap the database, the old and new objects are given the same value for read
able version of class name (although their class names remain distinct). The OLE 
client library removes duplicate names when it produces the list in the Insert 
Object dialog box. When a client application produces a list by enumerating the 
registration database, the application must do this filtering itself. 

6.2.7 Client User Interface 
When a user opens a document that contains a linked or embedded object, the 
client application uses the OLE functions to communicate with OLECLI.DLL. 
This library assists the client application with such tasks as loading and drawing 
objects, updating objects (when necessary), and interacting with server applica
tions. 



214 Microsoft Windows Programmer's Reference 

6.2. 7 .1 New and Changed Commands 
An OLE client application typically implements the following new or changed 
commands as part of its Edit menu. (Although this user interface is not mandatory, 
it is recommended for consistency with existing OLE applications.) 

Command 

Copy 

Cut 

Paste 

Paste Link 

Class Name Object 

Links 

Insert Object 

Paste Special 

Description 

Copies an object from a document to the clipboard. 

Removes an object from a document and places it on the clip
board. 

Copies an object from the clipboard to a document. 

Inserts a link between a document and the file that contains an 
object. 

Makes it possible for the user to activate the verbs for a linked 
or embedded object. The actual text used instead of the Class 
Name placeholder depends upon the selected object. 

Makes it possible for the user to change link updating options, 
update linked objects, cancel links, repair broken links, and acti
vate the verbs associated with linked objects. 

Starts the server application chosen by the user from a dialog 
box and embeds in a document the object produced by the serv
er. This command is optional. 

Transfers an object from the clipboard to a document or inserts 
a link to the object, using the data format chosen by the user 
from a dialog box. This command is optional. 

In addition to the listed menu changes, client applications must also implement 
changes to their Copy and Cut commands. When a linked or embedded object 
is selected in the client application, the application can use the OleCopyTo
Clipboard function to implement the Cut and Copy commands. 

When the user chooses the Paste command, a client application should insert the 
contents of the clipboard at the current position in a document. If the clipboard 
contains an object, choosing this command typically embeds the object in the 
document. 

When the user chooses the Paste Link command, the client library typically inserts 
a linked object at the current position in a document. The object is displayed in the 
document, but the Native data that defines that object is stored elsewhere. 

If a user copies a linked object to the clipboard, other documents can use this 
object to produce a link to the original data. 

The Class Name Object command allows the user to choose one of an object's 
verbs. If the selection in the document is an embedded object, the Class Name 
placeholder is typically replaced by the class and name of the object; for example, 



Chapter 6 Object Linking and Embedding Libraries 215 

if a user selects an object that is a range of spreadsheet cells for Microsoft Excel, 
the text of the command might be "Microsoft Excel Worksheet Object." If an ob
ject supports only one verb, the name of the verb should precede the class name in 
the menu item; for example, if the only verb for a text object is Edit, the text of the 
command might be "Edit WPDocument Object." When an object supports more 
than one verb, choosing the Class Name Object command brings up a cascading 
menu listing each of the verbs. 

For more information about verbs, see Section 6.1.2.2, "Verbs." 

Choosing the Links command brings up a Links dialog box, which lists the 
selected links and their source documents and gives the user the opportunity to 
change how the links are updated, cancel the link, change the link, or activate the 
verbs for the link. A user can use this dialog box to repair links to objects that have 
been moved or renamed. 

When the user chooses the Paste Special command, a client application should 
bring up a dialog box listing the data formats the client supports that are presently 
on the clipboard. The Paste Special dialog box makes if possible for the user to 
override the default behaviors of the Paste and Paste Link commands. For 
example, if the first format on the clipboard can be edited by the client appli
cation, the default behavior is for the client to copy the data into the document 
without making it into an object. The user could override this default behavior 
and create an object from such data by using the Paste Special command. 

When the user chooses the Insert Object command, a client application should 
allow the user to insert an object of a specified class at the current position in a 
document. For example, to insert a range of spreadsheet cells in a text document, 
a user could choose the Insert Object command and select "Microsoft Excel Work
sheet" from the dialog box. Selecting this item would start Microsoft Excel. The 
user would use Microsoft Excel to create the object to be embedded in the text 
document. When finished, the user would quit Microsoft Excel; the range of 
spreadsheet cells would automatically be embedded in the text document. 

The Insert Object command is optional because a user could achieve the same 
results without it, although the procedure is less convenient. To use the same 
example as that shown in the preceding paragraph, the user could leave the client 
application, start Microsoft Excel, and use the Microsoft Excel Cut or Copy com
mand to transfer data to the clipboard. After returning to the client application, the 
user could choose the Paste command to move the data from the clipboard into the 
text document. 

If the user chooses the Undo command after activating an object, all the changes 
made since the object was last updated (or since the object was activated, if it has 
not been updated) are discarded and the object returns to its state prior to the up
date. The Undo command closes the connection to the server. 



216 Microsoft Windows Programmer's Reference 

For more information about these commands, including illustrations of the dialog 
boxes, see Microsoft Windows User Interface Guidelines. 

6.2. 7.2 Using Packages 
A package is an embedded graphical object that contains another object, which 
can be linked or embedded. For example, a user can package a file in an icon and 
embed the icon in an OLE document. Most of the packaging capabilities are pro
vided by the dynamic-link library SHELL.DLL. 

A user can put a package into an OLE document in a number of different ways: 

• Copy a file from File Manager to the clipboard, and then choose the Paste or 
Paste Link command from the Edit menu in the client application. 

• Drag a file from File Manager and drop it in the open window for a document 
in a client application. 

• Select Package from the list of objects in the Insert Object dialog box. This 
starts Object Packager, with which the user can associate a file or data selection 
with an icon or graphic. Choosing Update and then Exit from Object Pack
ager's File menu puts the package in the client document. 

• Run Packager directly, following the steps outlined in the previous list item. 

For information about how a client application should react when a user drops 
a file from File Manager in the client's window, see the description of the 
OleCreateFromFile function in the Microsoft Windows Programmer's Reference, 
Volume 2. 

A user whose system does not include the Windows version 3.1 File Manager can 
follow these steps to create a package by using Object Packager: 

• Copy to the clipboard the data to be packaged. 

• Open Object Packager and paste the data into it. (At this point, the user could 
modify the default icon, the default label identifying the icon, or both.) 

• Choose Copy Package from the Object Packager Edit menu to copy the pack
age to the clipboard. 

• Choose the Paste command from the Edit menu in the client application to 
embed the package. 

For more information about Object Packager, see Section 6.1.2.1, "Packages," or 
Microsoft Windows User Inteiface Guidelines. 



Chapter 6 Object Linking and Embedding Libraries 217 

6.2.8 Server User Interface 
A server for linked and embedded objects is any application that can be used to 
edit an object when the OLE libraries inform it that the user of a client application 
has activated the object. (Some servers can use verbs other than Edit to work with 
an object.) Although client applications implement many changes to the user inter
face to support OLE, the user interface does not change significantly for server 
applications. 

OLE servers typically implement changes to the following commands in the Edit 
menu. (Although this user interface is not mandatory, it is recommended for con
sistency with existing OLE applications.) 

Command 

Cut 

Copy 

Description 

Transfers data from the application to the clipboard, deleting the data 
from the source document. A client application can use this data to 
create an embedded object. 

Transfers a copy of the data from the application to the clipboard. A 
client application can use this data to create an embedded object and 
may be able to establish a link to the source document. 

Some menu items change names or behave differently when a server is started 
as part of activating an object from within a compound document. The exact 
behavior of the server depends on whether the server supports the multiple docu
ment interface (MDI). 

6.2.8.1 Updating Objects from Multiple-Instance Servers 
When an embedded object is edited or played by a multiple-instance server-that 
is, a server that does not support the multiple document interface (MDI), the Save 
command on the File menu should change to Update. (This change does not occur 
when a server starts for a linked object.) When the user chooses the Update com
mand, the object in the client is updated but the focus remains with the server win
dow. To close the server window, the user chooses the Exit command. 

When the user chooses the Save As, New, or Open command, the application 
should display a warning message asking the user whether to update the object in 
the compound document before performing the action. The New and Open com
mands break the link between the client and server applications. The Save As com
mand also breaks the link between the client and server if the server was editing an 
embedded object. 



218 Microsoft Windows Programmer's Reference 

6.2.8.2 Updating Objects from Single-Instance Servers 
The same rules for updating objects from multiple-instance servers apply to single
instance (MDI) servers, with the following differences: 

• When the focus in an MDI server changes from a window in which an 
embedded object was activated to a window in which a document that does not 
contain an embedded object is being edited, the Update command should 
change back to Save. 

• When the user chooses the New or Open command, the window containing the 
embedded object remains open. (This eliminates the need to prompt the user to 
update the object.) 

6. 2. 9 Object Storage Formats 
The presentation data in linked or embedded objects can be thought of as a pre
sentation object. A presentation objects can be standard, generic, or NULL. A 
standard presentation object is used when the format is metafile, bitmap, or device
independent bitmap (DIB). The client library supports the presentation objects, 
including drawing them. Neither client applications nor object handlers can use 
the presentation objects; they are solely for the use of the client library. 

The following list gives the storage format for strings in OLE. The items appear in 
the order listed. 

Type 

LONG 
Variable 

Description 

Length of string, including terminating null character. 

Null-terminated stream of bytes. 

The following list gives the storage format for the standard presentation object 
used for linked and embedded objects. The items appear in the order listed. 

Type 

LONG 
LONG 
Variable 

LONG 
LONG 
LONG 
Variable 

Description 

OLE version number. 

Format identifier. This value is 5. 

Class string. For standard presentation objects, this string is 
METAFILEPICT, BITMAP, or DIB. 

Width of object, in MM_HIMETRIC units. 

Height of object, in MM_HIMETRIC units. 

Size of presentation data, in bytes. 

Presentation data. 



Chapter 6 Object Linking and Embedding Libraries 219 

The following list gives the storage format for the generic presentation object used 
for linked and embedded objects. Generic objects are used when the clipboard for
mat is other than metafile, bitmap, or DIB. The items appear in the order listed. 

Type 

LONG 
LONG 
Variable 

LONG 

LONG 

LONG 
Variable 

Description 

OLE version number. 

Format identifier. This value is 5. 

Class string. 

Clipboard format value. If this value exists, the next item in storage is the 
size of the presentation data. 

Clipboard format name. This value exists only if the clipboard format 
value is NULL. 

Size of presentation data, in bytes. 

Presentation data. 

The following list gives the storage format for embedded objects. The items 
appear in the order listed. 

Type 

LONG 
LONG 
Variable 

Variable 

Variable 

LONG 
Variable 

Variable 

Description 

OLE version number. 

Format identifier. This value is 2. 

Class string. 

Topic string. 

Item string. 

Size of Native data, in bytes. 

Native data. 

Presentation object (standard, generic, or NULL). 

The following list gives the storage format for linked objects. The items appear in 
the order listed. 

Type 

LONG 
LONG 
Variable 

Variable 

Variable 

Variable 

short 

Description 

OLE version number. 

Format identifier. This value is 1. 

Class string. 

Topic string. 

Item string. 

Network name string. 

Network type. 



220 Microsoft Windows Programmer's Reference 

Type 

short 
LONG 
Variable 

Description 

Network driver version number. 

Link update options. 

Presentation object (standard, generic, or NULL). 

The following list gives the storage format for static objects. The only difference 
between the format for static objects and the format for standard presentation 
objects is the value of the format identifier. The items appear in the order listed. 

Type 

LONG 
LONG 
Variable 

LONG 
LONG 
LONG 
Variable 

Description 

OLE version number. 

Format identifier. This value is 3. 

Class string. For static objects, this string is METAFILEPICT, BITMAP, 
orDIB. 

Width of object, in MM_HIMETRIC units. 

Height of object, in MM_HIMETRIC units. 

Size of presentation data, in bytes. 

Presentation data. 

6.3 Client Applications 
A client application uses a server application to activate and render an object 
contained by a compound document. A client application provides storage for 
embedded objects, such contextual information as the target printer and page 
position, and a means for the user to activate the object and the server application 
associated with that object. Client applications also provide ways of putting 
embedded and linked objects into a document and taking them out again. 

Client applications must provide permanent storage for objects in the compound 
document's file. When an item being saved is an embedded object, the client 
library stores the object's Native data, the presentation data for the object (for 
example, a metafile ), and the Owner Link information. When the item being saved 
is a link to another document, the client library stores the presentation data and the 
ObjectLink format. 

Client applications accommodate asynchronous operations by defining a callback 
function to which the library sends notifications about current operations. As long 
as the client continues to dispatch messages, it can react to the notifications being 
sent to the callback function and to input from the user. For more information 
about asynchronous operations, see Section 6.3.6, "Asynchronous Operations." 



Chapter 6 Object Linking and Embedding Libraries 221 

6.3.1 Starting a Client Application 
When a client application starts, it should follow these steps: 

1. Register the clipboard formats that it requires. 

2. Allocate and initialize as many OLECLIENT structures as required. 

3. Allocate and initialize an OLESTREAM structure. 

A client application can register the clipboard formats by calling the Register
ClipboardFormat function for each format, specifying such formats as Native, 
OwnerLink, ObjectLink, and any other formats it requires. 

A client application uses two structures to receive information from the client 
library: OLECLIENT and OLESTREAM. 

The OLECLIENT structure points to an OLECLIENTVTBL structure, which 
in turn points to a callback function supplied by the client application. The OLE 
libraries use this callback function to notify the client of any changes to an object. 
The parameters for the callback function are a pointer to the client structure, a 
pointer to the relevant object, and a value giving the reason for the notification. 
Typically, an application creates one OLECLIENT structure for each OLE
OBJECT structure. Having a separate OLECLIENT structure for each object 
allows an application to take object-specific action in response to the 
OLE_ QUERY _PAINT callback notification. 

The OLECLIENT structure can also point to data that describes the state of an 
object. This data, when present, is supplied and used only by the client application. 
The client application allocates a separate OLECLIENT structure for each object 
and stores state information about that object in the structure. Because one argu
ment to the callback function is a pointer to the OLECLIENT structure, this is an 
efficient method of retrieving the object's state information when the callback 
function is called. 

The OLESTREAM structure points to an OLESTREAMVTBL structure, which 
is a table of pointers to client-supplied functions for stream input and output. The 
client libraries use these functions when loading and saving objects. A client can 
customize functions for particular situations, and a client can make such changes 
as varying the permanent storage for an object; for example, a client could store an 
object in a database, instead of in a file with the rest of the document. 

The client application should create a pointer to the callback function in the OLE
CLIENTVTBL structure and pointers to the functions in the OLESTREAM
VTBL structure by using the MakeProclnstance function. Callback functions 
should be exported in the module-definition file. 



222 Microsoft Windows Programmer's Reference 

6.3.2 Opening a Compound Document 
To open a compound document, a client application should take the following 
steps: 

1. Register the document with the client library. 

2. Load the document data from a file. 

3. For each object in the document, call the OleLoadFromStream function. 

4. List any objects with manual links so that the user can update them. Automat
ically update any automatic links. 

The OleRegisterClientDoc function registers a document with the client library 
and returns a handle that is used in object-creation functions and document
management functions. (This registration does not involve the registration 
database.) 

A client application should call the OleLoadFromStream function for each 
object in the document that will be shown on the screen or otherwise activated. 
(It is often not necessary to load every object in a document immediately when the 
document is opened.) Parameters for this function include a pointer to the OLE
CLIENT structure, which is used to locate the client's callback function (and 
which is sometimes used by the client to store private state information for the 
object), and a pointer to the OLESTREAM structure. The library calls the Get 
function in the OLESTREAMVTBL structure to load the object. 

6.3.3 Document Management 
A client application should notify the library when it opens, closes, saves, or re
names a document, or causes a document to revert to a previously saved state. A 
client application can use the following functions to accomplish these tasks: 

Function 

OleRegisterClientDoc 
OleRenameClientDoc 

OleRevertClientDoc 

OleRevokeClientDoc 

OleSavedClientDoc 

Description 

Registers an opened document with the library. 

Informs the library that a document has been renamed. 

Informs the library that a document has reverted to a pre
viously saved state. 

Informs the library that a document should be closed or no 
longer exists. 

Informs the library that a document has been saved. 

A client application should also maintain a persistent name for each object. This 
name should be unique within the scope of the client document and should be 
stored with the document. This name is specified when the object is created and 
should persist when the document is saved and reopened. When a client uses the 



Chapter 6 Object Linking and Embedding Libraries 223 

OleRename function to change the name of an object, the new name must also be 
unique and must be stored with the document. 

6.3.4 Saving a Document 
A client application should follow these steps to save a document: 

1. Save the data for the document in the document's file. 

2. For each object in the document, call the OleSaveToStream function. 

3. When the library confirms that all objects have been saved, call the OleSaved
ClientDoc function. 

A client application can call the OleQuerySize function to determine the size of 
the buffer required to store an object before calling OleSaveToStream. 

6.3.5 Closing a Document 
A client application should follow these steps to close a document: 

1. For each object in the document, call the OleRelease function. 

2. Use either the OleRevertClientDoc or the OleSavedClientDoc function to reg
ister the current state of the document with the library. 

3. When the library confirms that all objects have been closed, call the 
OleRevokeClientDoc function. 

6.3.6 Asynchronous Operations 
When a client application calls a function that invokes a server application, actions 
taken by the client and server can be asynchronous. For example, the actions of up
dating a document and closing a server are asynchronous. Whenever an asynchro
nous operation begins, the client library returns OLE_ W AIT_FOR_RELEASE. 
When a client application receives this notification, it must wait for the 
OLE_RELEASE notification before it quits. If the client cannot take further 
action until the asynchronous operation finishes, it should enter a message
dispatch loop and wait for OLE_RELEASE. Otherwise, it should allow the main 
message loop to continue dispatching messages so that processing can continue. 

An application can run only one asynchronous operation at a time for an object; 
each asynchronous operation must end with the OLE_RELEASE notification 
before the next one begins. The client's callback function must receive 
OLE_RELEASE for all pending asynchronous operations before calling the 
OleRevokeClientDoc function. 



224 Microsoft Windows Programmer's Reference 

Some of the object-creation functions return OLE_ WAIT_FOR_RELEASE. 
The client application can continue to work with the document while waiting for 
OLE_RELEASE, but some functions (for example, OleActivate) cannot be called 
until the asynchronous operation has been completed. 

If an application calls a function for an object before receiving OLE_RELEASE 
for that object, the function may return OLE_BUSY. The server also returns 
OLE_BUSY when processing a new request would interfere with the processing 
of a current request from a client application or user. When a function returns 
OLE_BUSY, the client application can display a message reporting the busy condi
tion at this point or it can enter a loop to wait for the function to return OLE_OK. 
(The OLE_QUERY_RETRY notification is also sent to the client's callback func
tion when the server is busy; when the callback function returns FALSE, the trans
action with the server is ended.) Note that ifthe server uses the OleBlockServer 
function to postpone OLE activities, the OLE_ QUERY _RETRY notification is 
not sent to the client. 

The following example shows a message-dispatch loop that allows a client applica
tion to transact messages while waiting for the OLE_RELEASE notification: 

while ((olestat = OleQueryReleaseStatus(lpObject)) 
if (GetMessage(&msg, NULL, NULL, NULL)) { 

TranslateMessageC&msg); 
DispatchMessageC&msg); 

} 

} 

if Colestat == OLE_ERROR_OBJECT) { 

/* The lpObject parameter is invalid. */ 

else { /* if olestat == OLE_OK */ 

OLE BUSY) 

/* The object is released, or the server has terminated. */ 

} 

A server application could end unexpectedly while a client is waiting for 
OLE_RELEASE. In this case, the client library recovers properly only if the 
client uses the OleQueryReleaseStatus function, as shown in the preceding 
example. 

The following table shows which OLE functions can return the 
OLE_ WAIT_FOR_RELEASE or OLE_BUSY value to a client application: 

Function 

OleActivate 

OleClose 

OLE_ BUSY 

Yes 

Yes 

OLE_ WAIT_FOR_RELEASE 

Yes 

Yes 



Chapter 6 Object Linking and Embedding Libraries 225 

Function OLE_ BUSY OLE_ WAIT_FOR_RELEASE 

OleCopyFromLink Yes Yes 

Ole Create No Yes 

OleCreateFromClip No Yes 

OleCreateFromFile No Yes 

OleCreateFromTemplate No Yes 

OleCreateLinkFromClip No Yes 

OleCreateLinkFromFile No Yes 

OleDelete Yes Yes 

OleExecute Yes Yes 

OleLoadFromStream No Yes 

OleObjectConvert Yes No 
OleReconnect Yes Yes 

OleRelease Yes Yes 

OleRequestData Yes Yes 
OleSetBounds Yes Yes 

OleSetColorScheme Yes Yes 

OleSetData Yes Yes 

OleSetHostNames Yes Yes 
OleSetLinkUpdateOptions Yes Yes 

OleSetTargetDevice Yes Yes 

OleUnlockServer No Yes 

Ole Update Yes Yes 

6.3. 7 Displaying and Printing Objects 
When an object has been loaded and, if necessary, brought up to date, the object 
can be displayed or printed with the container document. To display an object, the 
client application should set up the device context and bounding rectangle (ensur
ing that they use the same mapping mode) and then call the OleDraw function. 
The client application can use the OleQueryBounds function to retrieve the size 
of the bounding rectangle on the target device. 

An object handler can be used to draw an object. If an object handler exists for an 
object, the call to the OleDraw function is received and processed by the object 
handler. If there is no object handler, the client library uses the object's presenta
tion data to display or print the object. 

If the presentation data for an object is a metafile, the library periodically sends 
an OLE_QUERY_PAINT notification to the client's callback function while 



226 Microsoft Windows Programmer's Reference 

drawing the object. If the callback function returns FALSE, the OleDraw func
tion returns immediately and the drawing is ended. A client could also use the 
OLE_QUERY_PAINT notification to take some actions within the callback func
tion and then return TRUE to indicate that drawing should continue. Any actions 
the client takes at this time should not interfere with the drawing operation; for 
example, the client should not scroll the window. 

If the target device for an object changes (for example, when the user changes 
printers), the client application should call the OleSetTargetDevice function. The 
client should also call OleSetTargetDevice whenever an object is created or 
loaded. 

If the size of the presentation rectangle for the object changes (for example, 
through action by the user) the client application should call the OleSetBounds 
function. After calling OleSetBounds, the client should call the OleUpdate 
function to update the object and then OleDraw to redisplay it. 

6.3.8 Opening and Closing Objects 
When the user requests the client application to activate an object, the client 
should check whether the object is busy by calling the OleQueryReleaseStatus 
function. If the object is busy, the client should either refuse the request to open 
the object or enter a message-dispatch loop, waiting for the OLE_RELEASE noti
fication. 

If the object to be activated is not busy, the client should call the OleActivate 
function. The library notifies the client when the server is open or when an error 
occurs. 

The OleActivate function allows the client application to specify whether to dis
play the activated object in a window of the server application. A client might hide 
the server window if an object is updated automatically. 

A client application can use the OleQueryOpen function to determine whether a 
specified object is open. The OleClose function allows the client to close an open 
object. Closing an object terminates the connection with the server. To reestablish 
a terminated connection between a linked object and an open server, the client can 
use the OleReconnect function. To close an open object and release it from 
memory, a client application can call the OleRelease function. 

The first time a client application activates a particular embedded object, the client 
should call the OleSetHostNames function, specifying the string the server win
dow should display in its title bar. This string should be the name of the client 
document containing the object. The client does not need to call OleSetHost
Names every time an embedded object is activated, because the library maintains 
a record of the specified names. 



Chapter 6 Object Linking and Embedding Libraries 227 

6.3.9 Deleting Objects 
To permanently delete an object from a document, the client should call the 
OleDelete function. OleDelete closes the specified object, if necessary, before 
deleting it. 

6.3.10 Client Cut and Copy Commands 
A client application can copy an object to the clipboard by simply opening the 
clipboard, calling the OleCopyToClipboard function, and closing the clipboard 
again. If the client supports delayed rendering, however, it should follow these 
steps to cut or copy an object to the clipboard: 

1. Open and empty the clipboard. 

2. Put the preferred data formats on the clipboard. 

3. Call the OleEnumFormats function to retrieve the formats for the object. 

4. Call the SetClipboardData function to put the formats on the clipboard, speci
fying NULL for the handle of the data. 

If the call to the OleEnumFormats function retrieves the ObjectLink format, 
the client should call SetClipboardData with OwnerLink instead of Object
Link format. (For more information, see the following description of the Ole
CopyToClipboard function.) 

5. Put any additional presentation data formats on the clipboard. 

6. Close the clipboard. 

To support the Cut command on the Edit menu, an application can call OleCopy
ToClipboard and then delete the object by using the OleDelete function. (The 
client can put only one of the selected objects on the clipboard, even when the user 
has selected and cut or copied multiple objects. In this case, the client typically 
puts the first object in the selection onto the clipboard.) 

The OleCopyToClipboard function always copies OwnerLink format, not Object
Link format, to the clipboard. For embedded objects, Native data always precedes 
the OwnerLink format. If a linked object uses Native data, OwnerLink format 
always precedes the Native data. If an application uses the OleGetData function 
to retrieve data from a linked object that has been copied by using OleCopyTo
Clipboard, it should specify ObjectLink format, not OwnerLink format, even if 
OwnerLink format was put on the clipboard. 

When an application that can act as both a client and server copies a selection to 
the clipboard that contains one or more objects, it should first allocate enough 
memory for the selection. To discover how much memory is required for each 
object, the application can call the OleQuerySize function. When memory has 
been allocated, the application should call the OleRegisterClientDoc function, 



228 Microsoft Windows Programmer's Reference 

specifying Clipboard for the document name. (In this case, the handle returned by 
the call to OleRegisterClientDoc identifies a document that is used only during 
the copy operation.) To save each object to memory, the application calls the Ole
Clone function, calls the OleSaveToStream function for the cloned object, and 
then calls the OleRelease function to free the memory for the cloned object. 
When the selection has been saved to the stream, the application can call the 
SetClipboardData function. If SetClipboardData is successful, the application 
should call the OleSavedClientDoc function. The application then calls the 
OleRevokeClientDoc function, specifying the handle retrieved by the call to 
OleRegisterClientDoc. 

For more information about the Cut and Copy commands, see Section 6.4.3, 
"Server Cut and Copy Commands." 

6.3.11 CreatingObjects 
A client application can put linked and embedded objects in a document by past
ing them from the clipboard, creating them from a file, copying them from other 
objects, or by starting a server application to create them directly. 

6.3.11.1 Object-Creation Functions 
Each of the following functions creates an embedded or linked object in a 
specified document: 

Function 

OleClone 

OleCopyFromLink 

OleCreate 

OleCreateFromClip 

OleCreateFromFile 

OleCreateFromTemplate 

OleCreatelnvisible 

OleCreateLinkFromClip 

Description 

Creates an exact copy of an object. 

Creates an embedded object that is a copy of a linked 
object. 

Creates an embedded object of a specified class. 

Creates an object from the clipboard. This function typi
cally creates an embedded object. 

Creates an object by using the contents of a file. This 
function typically creates an embedded object. 

Creates an embedded object by using another object as 
a template. 

Creates an object without displaying the server applica
tion to the user. 

Creates an object by using information on the clipboard. 
This function typically creates a linked object. 



Function 

OleCreateLinkFromFile 

OleObjectConvert 

Chapter 6 Object Linking and Embedding Libraries 229 

Description 

Creates an object by using the contents of a file. This 
function typically creates a linked object. 

Creates an object that supports a specified protocol by 
converting an existing object. 

Each of these functions requires a parameter that points to an OLEOBJECT struc
ture when the function returns. Server applications often create an OLEOBJECT 
structure whenever an object is created; OLEOBJECT points to functions that 
describe how the server interacts with the object. Before the client library gives the 
client application a pointer to this structure, the library includes with the structure 
some internal information corresponding to the OwnerLink or ObjectLink data. 
This internal information allows the client library to identify the correct server 
when an OLE function such as OleActivate passes it a pointer to an OLE
OBJECT structure. For more information about the OLEOBJECT structure, 
see Section 6.4.1, "Starting a Server Application." 

Each new object must have a name that is unique to the client document. Although 
meaningful object names can be helpful, some applications assign unique object 
names simply by incrementing a counter for each new object. For more informa
tion about object names, see Section 6.3.3, "Document Management." 

If a client application implements the Insert Object command, it should use the reg
istration database to find out what OLE servers are available and then list those 
servers for the user. When the user selects one of the servers and chooses the OK 
button, the client can use the OleCreate function to create an object at the current 
position. 

The OleCopyFromLink, OleCreate, and OleCreateFromTemplate functions 
always create an embedded object. The other object-creation functions can create 
either an embedded object or a linked object, depending on the order and type of 
available data. 

If a client application's callback function receives the OLE_RELEASE noti
fication after the client calls the OleCreate or OleCreateFromFile function, 
the client should respond by calling the OleQueryReleaseError function. If 
OleQueryReleaseError shows that there was an error when the object was 
created, the client application should delete the object. 

Whenever an object-creation function returns OLE_ WAIT_FOR_RELEASE, the 
calling application should either wait for the OLE_RELEASE notification or 
notify the user that the object cannot be created. For more information, see Section 
6.3.6, "Asynchronous Operations." 



230 Microsoft Windows Programmer's Reference 

If a client application accepts files dropped from File Manager, it should respond 
to the WM_DROPFILES message by calling the OleCreateFromFile function 
and specifying Packager for the lpszClass parameter. 

6.3.11.2 Paste and Paste Link Commands 
A client application should follow these steps to create an embedded or linked 
object by pasting from the clipboard: 

1. Call the OleQueryCreateFromClip function to determine whether to enable 
the Paste command. If this function fails when StdFileEditing is specified for 
the lpszProtocol parameter, call it again, specifying Static. 

2. Call the OleQueryLinkFromClip function to determine whether to enable the 
Paste Link command. 

• If the user chooses the Paste command, open the clipboard and call the 
OleCreateFromClip function. 

• If the user chooses Paste Link, open the clipboard and call the 
OleCreateLinkFromClip function. 

3. Close the clipboard. 

4. Call the OleQueryType function to determine the kind of object created by the 
creation function. (Depending on the order of clipboard data, OleCreateFrom
Clip can sometimes create a linked object and OleCreateLinkFromClip can 
sometimes create an embedded object.) 

The client application should put the pasted data or object into the document at the 
current position. The client should select the object so that the user can work with 
it immediately. If both the OleQueryCreateFromClip and OleQueryLinkFrom
Clip functions fail but there is data on the clipboard that the client can interpret, 
the client should enable the Paste command. 

If the information on the clipboard is incomplete-for example, if Native data is 
not accompanied by the OwnerLink format-the Paste command should insert a 
static object into the document. (A static object consists of the presentation data 
for an object; it cannot be edited by using standard OLE techniques. Attempts to 
open static objects fail and generate no notifications.) 

If the client application implements the Paste Special command, it should use the 
EnumClipboardFormats function to produce a list of data formats on the clip
board. The client should also check the registration database to find the full name 
of the server application. The Paste Link button in the Paste Special dialog box 
works in exactly the same way as the Paste Link command on the Edit menu. 



Chapter 6 Object Linking and Embedding Libraries 231 

If the DDE Link format is available on the clipboard instead of ObjectLink format, 
the client application should perform the same link operation that it supported 
prior to the implementation of OLE. 

6.3.12 Undo Command 
A client application can use the OleClone function to support the Undo command. 
A cloned object is identical to the original except for connections to the server 
application; the cloned object is not automatically connected to the server. When 
the server is closed and the object is updated, the saved copy of the object gives 
the user the opportunity to undo all of the changes made in the server. Support for 
the Undo command is provided by the client application, because the server can
not maintain a record of the prior states of objects. 

The Undo command restores an object to its condition prior to the last update from 
the server. To support this behavior, the client application must clone the object 
when it is first activated and then clone the updated object when an update occurs; 
the client must maintain two clones of the object. The clone of the original object 
must be maintained so that an updated object can be restored if the user chooses 
the Undo command. The clone of the updated object must be maintained to sup
port the Undo command ifthe updated object is updated again. Because the data 
changes when the update occurs, the clone for supporting the Undo command 
must be made before any updates occur. 

Because the client application cannot distinguish between different types of object 
activation, the client must clone an object for verbs that do not edit the object, 
even though no updates can occur in those cases. 

6.3.13 Class Name Object Command 
A client application can implement the Class Name Object command by using the 
OleActivate function. OleActivate includes a parameter that allows the client to 
specify the verb chosen by the user. 

6.3.14 Links Command 
When a user chooses the Links command, a dialog box appears listing every 
linked object in the document. The selected links are highlighted in the dialog box. 
The dialog box makes it possible for the user to invoke the verbs for an object, 
select whether link updating should be automatic or manual, update a link immedi
ately, cancel a link, and repair broken links. For more information about this 
dialog box, see Microsoft Windows User Inteiface Guidelines. 



232 Microsoft Windows Programmer's Reference 

The Links dialog box includes buttons that allow the user to activate the primary 
and secondary verbs for an object. A client application can implement these but
tons by using the OleActivate function. 

A client application can use the OleGetLinkUpdateOptions and OleSetLink
UpdateOptions functions to support the link-update radio buttons in the Links 
dialog box. The following are the three possible update options: 

Option 

oleupdate_always 

oleupdate_ onsave 

oleupdate_oncall 

Description 

Update the linked object whenever possible. This option sup
ports the Automatic link-update radio button in the Links dialog 
box. 

Update the linked object when the source document is saved by 
the server. 

Update the linked object only on request from the client applica
tion. This option supports the Manual link-update radio button 
in the Links dialog box. 

These update options control when updates to the presentation of an object occur. 
The contents of the source document are used to update the presentation whenever 
the link is activated. 

To support the Update Now button in the Links dialog box, an application can call 
the OleUpdate function. When a user chooses Update Now, the client application 
should update the links the user selected. 

A user's choosing the Cancel Link button in the Links dialog box changes an 
object into a picture that an application cannot edit by using standard OLE tech
niques. An application can implement the Cancel Link button by using the Ole
ObjectConvert function. 

A client application should activate the Change Link button in the Links dialog 
box only if all the selected links are to the same source document. When the client 
has the correct information, it can repair the link by using the OleGetData and 
OleSetData functions. To retrieve the link information for an object, a client can 
call the OleGetData function, specifying the ObjectLink format. (The call to 
OleGetData fails if ObjectLink is specified and the object is not a link.) A client 
can retrieve class information by using OleGetData and specifying either the 
OwnerLink format (for embedded objects) or the ObjectLink format (for linked 
objects). The client can make it possible for the user to edit the link information 
and store it in the object by using the OleSetData function, specifying the Object
Link format. 



Chapter 6 Object Linking and Embedding Libraries 233 

6.3.15 Closing a Client Application 
A client application should use the OleRelease function to remove all 
objects from memory when it shuts down. If the library returns the value 
OLE_ WAIT _FOR_RELEASE instead of OLE_ OK, the client should not quit. 
The client can perform many cleanup tasks while waiting for the OLE_RELEASE 
notification-for example, it can close files, free memory, and hide windows. 

The OLE_RELEASE notification to the client's callback function indicates that 
an operation has finished in a server application, but it does not identify the opera
tion or indicate whether the operation was successful. A client application can call 
the OleQueryReleaseStatus function to determine whether an operation has been 
completed for a specified object. The OleQueryReleaseMethod function indi
cates the nature of the operation that has finished for a specified object. To dis
cover the error value for the operation, the client can call the 
OleQueryReleaseError function. 

If a client owns the clipboard when it quits, it should make sure that the data on 
the clipboard is complete and in the correct order. 

6.4 Server Applications 
An OLE server supplies functions that the server library calls when a user works 
with an object. The server library, OLESVR.DLL, uses DDE commands to com
municate with the client library. When the client application calls one of the func
tions in the OLE API, the client library informs the server library and the server 
library routes the request to the appropriate function in the server-supplied list of 
function pointers. 

In addition to the specialized functions that the server creates and which are called 
by the server library, there are ten OLE functions that allow a server to control the 
library's ability to gain access to the server and the documents and objects it con
trols: 

Function 

OleBlockServer 

OleRegisterServer 

OleRegisterServerDoc 

OleRenameServerDoc 

Description 

Queues requests to the server until the server calls the 
OleUnblockServer function. 

Registers the specified server with the library. Information 
registered includes the class name and instance and 
whether the server supports single or multiple instances. 

Registers a document with the server library. 

Renames the specified document. 



234 Microsoft Windows Programmer's Reference 

Function 

OleRevertServerDoc 

OleRevokeObject 

OleRevokeServer 

OleRevokeServerDoc 
OleSavedServerDoc 

OleUnblockServer 

Description 

Restores a document to a previously saved state, without 
closing the document. 

Revokes access to the specified object. 

Revokes access to the specified server, closing any docu
ments and ending communication with client applications. 

Revokes access to the specified document. 

Informs the library that a document has been saved. Call
ing this function is equivalent to sending the OLE_SAVED 
notification. 

Processes a request from a queue created when the server 
application called the OleBiockServer function. 

The OleRevokeServer and OleRevokeServerDoc functions can return 
OLE_ WAIT_FOR_RELEASE. When a server application receives this error 
value, it should take the same action as a client application, dispatching messages 
until the server library calls the corresponding Release function. 

6.4.1 Starting a Server Application 
When a server application starts, it should follow these steps: 

1. Register window classes and window procedures for the main window, docu
ments, and objects. 

2. Initialize the function tables for the OLESERVERVTBL, OLESERVER-
DOCVTBL, and OLEOBJECTVTBL structures. 

3. Register the clipboard formats. 

4. Allocate memory for the OLESERVER structure. 

5. Register the server with the library by calling the OleRegisterServer function. 

6. Check for the /Embedding and /Embeddingfilename options on the command 
line and act according to the following guidelines. (Applications should also 
check for -Embedding whenever they check for these options.) 

• If neither /Embedding nor !Embeddingfilename is present, call the 
OleRegisterServerDoc function, specifying an untitled document. 

• If the /Embedding option is present, do not register a document or display a 
window. (In this case, the server takes actions only in response to calls from 
the server library.) 

• If the !Embeddingfilename option is present, do not display a window. 
Process the filename string and call the OleRegisterServerDoc function. 

The OLESERVERVTBL, OLESERVERDOCVTBL, and OLEOBJECT
VTBL structures are tables of function pointers. The server library uses these 



Chapter 6 Object Linking and Embedding Libraries 235 

structures to route requests from the client application to the server. The server 
application should create the function pointers in these structures by using the 
MakeProclnstance function. The functions should also be exported in the applica
tion's module-definition file. 

The OLESERVER structure contains a pointer to an OLESERVERVTBL 
structure. The OLESERVERVTBL structure contains pointers to functions that 
control such fundamental server tasks as opening files, creating objects, and termi
nating after an editing session. Several of the functions pointed to by the OLE
SERVERVTBL structure cause the server to allocate and initialize an 
OLESERVERDOC structure. 

The OLESERVERDOC structure contains a pointer to an OLESERVER
DOCVTBL structure. The OLESERVERDOCVTBL structure contains pointers 
to functions that control such tasks as saving or closing documents or setting docu
ment dimensions. The OLESERVERDOCVTBL structure also contains a func
tion that causes the server to allocate and initialize an OLEOBJECT structure. 

The OLEOBJECT structure contains a pointer to an OLEOBJECTVTBL 
structure. The OLEOBJECTVTBL structure contains pointers to functions that 
operate on objects. After the server application creates an OLEOBJECT struc
ture, the server library gives information about the structure to the client library. 
The client library then creates a parallel OLEOBJECT structure (including inter
nal information identifying the server application, the document, and the item for 
the object) and passes a pointer to that structure to the client application. 

This hierarchy of structures-OLESERVER, OLESERVERDOC, and OLE
OBJECT-makes it possible for a server to open as many documents as the 
library requests and for each document to contain as many objects as necessary. 

A server application can register the clipboard formats by calling the Register
ClipboardFormat function for each format, specifying Native, Owner Link, 
ObjectLink, and any other formats it requires. 

When the server application starts, it creates an OLESERVER structure and then 
registers it with the library by calling the OleRegisterServer function. When this 
function returns, one of its parameters points to a server handle. The library uses 
this handle of refer to the server, and the server uses it in calls to the server
specific OLE functions. 

If an OLE server application is also a DDE server, the class name specified in 
the call to the OleRegisterServer function cannot be the same as the name of the 
executable file for the application. 

When a client working with a compound document opens a linked or embedded 
object for editing, the client library starts the server using the /Embedding com
mand-line option. The server uses this option to determine whether the object has 
been opened directly by a user or as part of an editing session for linked and 



236 Microsoft Windows Programmer's Reference 

embedded objects. (If the object is a linked object, the /Embedding option is fol
lowed by a filename.) When a server is started for an embedded object with the 
/Embedding option, the server should not create a document or show a window. 
Instead, it should call the OleRegisterServer function and then enter a message
dispatch loop. (If the server is started with the /Embeddingfilename option, it 
should also call the OleRegisterServerDoc function.) The server then takes 
actions in response to calls from the library. The server should not make itself 
visible until the library calls the Show or Do Verb function in the OLEOBJECT
VTBL structure. (Server applications should check for both -Embedding and 
/Embedding.) 

By calling the OleBlockServer function, a server application can cause requests 
from the client library to be saved in a queue. When the server is ready for the 
server library to process the requests, it can call the OleUnblockServer function. 
It is best to use the OleUnblockServer function prior to the GetMessage function 
in a message loop, so that all blocked requests are unblocked before getting the 
next message. (Often a server returns OLE_BUSY instead of calling OleBlock
Server. Returning OLE_BUSY has two advantages: It allows the client to decide 
whether to retry the message or discontinue the operation, and it allows the server 
to choose which requests to process.) 

When an error occurs in a server-supplied function, the server should return the 
OLESTATUS error value that best describes the error. The OLE libraries use 
these error values to help determine the appropriate behavior in error situations. 
However, the client application does not necessarily receive the error values the 
server returns; the OLE libraries may change error values before passing them to 
the client application. 

6.4.2 Opening a Document or Object 
Whenever the server library calls the Open, Create, CreateFromTemplate, or 
Edit function in the OLESERVERVTBL structure, the server creates an OLE
SERVERDOC structure. If the document is opened by a call from the server 
library, the server application returns the OLESERVERDOC structure to the 
library. If the document is opened directly by a user, however, the server should 
call the OleRegisterServerDoc function to register the document with the library. 
The library then uses the GetObject function in the OLESERVERDOCVTBL 
structure to request the server to create an OLEOBJECT structure for each object 
requested by the client application. 

A new instance of the server application is typically started when the client acti
vates a linked or embedded object. This new instance is unnecessary if the object 
is already open in an instance of the server or if the server is a single-instance 
(MDI) server that is already open. For more information about the rules for 
starting new instances of server applications, see Microsoft Windows User Inter
face Guidelines. 



Chapter 6 Object Linking and Embedding Libraries 237 

Whether the server library starts a new instance of a server to edit an embedded 
or linked object depends upon the value specified when the server calls the Ole
RegisterServer function. 

6.4.3 Server Cut and Copy Commands 
A server application should follow these steps to cut or copy onto the clipboard 
data that a client can then use to create an embedded or linked object: 

1. Open and empty the clipboard. 

2. Put the data formats that describe the selection on the clipboard, using the Set
ClipboardData function. 

3. Close the clipboard. 

If the server cuts data onto the clipboard, rather than copying it, the server typi
cally does not offer ObjectLink or Link formats, because the source for the data 
has been removed from the document. 

The server should put data on the clipboard in the order given in Section 6.2.5, 
"Clipboard Conventions." 

Typically, the server puts server-specific formats, Native format, OwnerLink for
mat, and presentation formats on the clipboard. If it can support links, the server 
also puts ObjectLink format and, when appropriate, Link format on the clipboard. 
The server must provide a presentation format (CF _METAFILE, CF _BITMAP, 
or CF _DIB) if the server does not have an object handler. Native data can be used 
as a presentation format only if the server has an object handler that can use the 
Native data. 

If a user copies onto the clipboard a selection that includes an embedded object or 
a link, the data formats the server should copy depend upon whether the container 
document modifies the object or link. If the document does not modify the object 
or link, the best formats are the Native and OwnerLink formats from the original 
source of the object. If the document modifies the object or link-for example, by 
recoloring it-the best formats are the Native and OwnerLink formats from the 
container document. 

If a server uses a metafile as the presentation format for an object, the mapping 
mode for that metafile must be MM_ANISOTROPIC. When a server application 
uses fonts in these metafiles, it can improve performance by using TrueType fonts. 
(Metafiles scale better when they use TrueType fonts.) To use TrueType fonts 
exclusively, the server should set bit 2 (04h) of the lpPitchAndFamily member 
of the LOG FONT structure. 



238 Microsoft Windows Programmer's Reference 

The OLE libraries express the size of every object in MM_HIMETRIC units. 
Neither the width nor height of an object should exceed 32,767 MM_HIMETRIC 
units. 

6.4.4 Update, Save As, and New Commands 
When a server is started as part of editing an object from within a compound docu
ment, the server application should change the Save command on the File menu to 
Update. When the user chooses the Update command, the server should call the 
OleSavedServerDoc function. 

When the user chooses the Save As, New, or Open command in a single
document server, the application should display a message asking the user 
whether to update the object in the compound document before performing the 
action. When the user chooses the Save As command, the server should call the 
OleRenameServerDoc function. If the user responds to the message by choosing 
to save changes in the object before renaming the document, the server should call 
the OleSavedServerDoc function before calling OleRenameServerDoc. For 
embedded objects, choosing the Save As command causes the connection with the 
client to be broken, because this command reassociates a document in memory 
with the specified new file. For linked objects, calling OleRenameServerDoc 
when the user chooses Save As makes it possible for the client to associate the 
link with the new file. 

Most server applications maintain a "dirty" flag that records whether changes have 
been made to each open document in an instance. The following table shows the 
rules that apply to this flag when the server edits an embedded object. By follow
ing these rules, a server can ensure that this flag is TRUE when the document 
being edited in the server matches the embedded object in the client and that, other
wise, this flag is FALSE. 

Flag 

TRUE 
TRUE 
TRUE 
FALSE 

FALSE 

Condition 

Library calls the Create function in the OLESERVERVTBL structure. 

Library calls the CreateFromTemplate function in OLESERVERVTBL. 

Document is changed in server. 

Library calls the Edit function in OLESERVERVTBL. 

Library calls the GetData function in OLEOBJECTVTBL with the 
Native data format. (The flag should not change for any other formats.) 

A server following these rules displays the message asking whether to update the 
object whenever it destroys a document that was editing an embedded object and 
the "dirty" flag is TRUE. 



Chapter 6 Object Linking and Embedding Libraries 239 

In an MDI server application, the New and Open commands on the File menu 
simply open a new window, and the connection with the client application remains 
unchanged. The user can continue to work with the server application after choos
ing one of these commands, but when the user exits the server application, the 
focus does not necessarily return to the client application. 

Typically, a server can call the OleSavedServerDoc function whenever an object 
needs to be updated in the client document, including when the server closes the 
document. When the server closes the document and the object should be updated, 
the server sends the OLE_ CLOSED notification. Client applications receive the 
OLE_ CLOSED notification for embedded objects but not for linked objects, 
because the server library intercepts the notification for linked objects. 

6.4.5 Closing a Server Application 
The server library calls the Exit function in the OLESERVERVTBL structure 
when the server must quit. The server library calls the Release function to inform 
the server that it is safe to quit; the server does not necessarily stop when the 
library calls Release. 

The server must exit when it is invisible and the library calls Release. (The only 
exception is when an application supports multiple servers; in this case, an invis
ible server is sometimes not revocable when the library calls Release.) If the 
server has no open documents and it was started with the /Embedding option 
(indicating that it was started by a client application), the server should exit when 
the library calls the Release function. If the user explicitly loads a document into a 
single-instance (MDI) server, however, the server should not exit when the library 
calls Release. 

When the user closes a server that has edited an embedded object without updating 
changes to the client application, the server should display a message asking 
whether to save the changes. If the user chooses to save the changes, the server 
should send the OLE_ CLOSED notification and call the OleRevokeServerDoc 
function. (Because sending OLE_ CLOSED prompts the server library to send 
data to the client library, it is not necessary to send OLE_ CHANGED or 
OLE_SA VED. If the user chooses not to save the changes, the server should 
simply call the OleRevokeServerDoc function (without sending OLE_ CLOSED). 

A server can use the OleRevokeObject function to revoke a client's access to an 
object-for example, if the user destroys the object. Similarly, the OleRevoke
ServerDoc function revokes a client's access to a document. (Because Ole
RevokeServerDoc revokes a client's access to all objects in a document, an 
application that uses OleRevokeServerDoc does not need to call the OleRevoke
Object function for objects in that document.) To terminate all conversations with 



240 Microsoft Windows Programmer's Reference 

client applications, the server can call the OleRevokeServer function. These func
tions inform the server library that the specified items are no longer available. 

A server application can receive OLE_ W AIT_FOR_RELEASE-for example, the 
OleRevokeServerDoc function can return this value. Although a server can enter 
a message-dispatch loop and wait for the library to call the server's Release func
tion, servers should never enter message-dispatch loops inside any of the server
supplied functions that are called by the server library. 

The client application should not instruct the server to close the document or exit 
when the server is editing a linked object, unless the server is updating the link 
without displaying the object to the user. Because a linked object exists inde
pendently of the client, the user controls saving and closing the document by using 
the server application. 

If a server application owns the clipboard when it closes, it should make sure that 
the data on the clipboard is complete and in the correct order. For example, any 
Native data should be accompanied by the OwnerLink format. 

6.5 Object Handlers 
An application developer can use object handlers to introduce customized features 
into implementations of linked and embedded objects. When an object handler 
exists for a class of object, the object handler supplants some or all of the function
ality that is usually provided by the client library and the server application. The 
object handler can take specialized action for any of the functions it intercepts. 
The object handler passes functions that it does not take action on to the client 
library, which then implements the default processing for that class. 

An application might use an object handler to render Native data as the presenta
tion data for an object, instead of using metafiles or bitmaps. Object handlers 
could also be used to implement special behavior when an object is opened. 

6.5.1 Implementing Object Handlers 
A server installing an object handler registers the handler with the registration 
database, using the keyword handler. Whenever a client application calls one of 
the object-creation functions, the client library uses the class name specified for 
the object and the handler keyword to search the registration database. If the 
library finds an object handler, the client library loads the handler and calls it to 
create the object. The handler can create an object for which all of the creation 
functions and methods are defined by the handler, or it can call default object
creation functions in the client library. 



Chapter 6 Object Linking and Embedding Libraries 241 

The client library exports the object-creation OLE functions with new names; in 
each case, the prefix "Ole" is changed to "Def' (for "default"). Object handlers 
can import any of these functions and use them when creating objects. 

Object handlers must import the following functions: 

OLE function 

Ole Create 

OleCreateFromCiip 

OleCreateFromFile 

OleCreateFromTemplate 

OleCreateLinkFromClip 

OleCreateLinkFromFile 

OleLoadFromStream 

Name exported by client library 

DefCreate 

DefCreateFromClip 

DefCreateFromFile 

DefCreateFromTemplate 

DefCreateLinkFromClip 

DefCreateLinkFromFile 

DefLoadFromStream 

When an object handler defines a function that is to be called by the client applica
tion, it should use the same name as the corresponding OLE function the client 
calls, with the prefix "Ole" replaced by "Dll''. For example, when an object han
dler uses the DefCreate function exported by the client library, the handler should 
use it inside a function named DH Create. When the client library finds an object 
handler for a class of object, it calls handler-specific object-creation functions by 
specifying this "Dll" prefix. 

When the handler calls one of the default object-creation functions, it receives a 
handle of an OLEOBJECT structure, which in turn points to the OLEOBJECT
VTBL structure containing the current object-management functions. The object 
handler should copy this OLEOBJECTVTBL structure and customize the struc
ture by replacing any function pointers in the structure with pointers to functions 
of its own. (If the object handler saves the pointers to the default functions, any of 
the replacement functions can also call the default functions in the table of func
tion pointers.) When the object handler has finished customizing the structure, it 
should replace the pointer to the old OLEOBJECTVTBL structure with a pointer 
to the modified OLEOBJECTVTBL structure. 

When the client makes a call to a function in the client library, the call is dis
patched through the object handler's OLEOBJECTVTBL structure. If the object 
handler has replaced the function pointer, the call is routed to the function supplied 
by the handler. Otherwise, the call is routed to the client library. 

Each OLECLIENT, OLEOBJECT, OLESERVER, OLESERVERDOC, or 
OLESTREAM structure contains a pointer to a structure that contains a table of 
function pointers. (Structures containing tables of function pointers are identified 
with the "VTBL" suffix.) Each of the structures containing a pointer to a "VTBL" 



242 Microsoft Windows Programmer's Reference 

structure can also contain extra instance-specific information. This information is 
meaningful only to the application that supplies it and should not be used by other 
applications; for example, an object handler should not attempt to use any instance
specific information in an OLECLIENT structure. 

The object handler should use the "Def' and "Dll" renaming conventions when it 
defines specialized functions. For example, if an object handler modifies the Draw 
function from an object's OLEOBJECTVTBL structure, it should copy that 
Draw function to a function named Deffiraw and replace the Draw function with 
a specialized function named DllDraw. Inside the DllDraw function, the object 
handler can call Deffiraw if the default drawing operation is appropriate in a par
ticular case. 

The following example demonstrates this process of copying and replacing point
ers to functions. Functions with the "Dll" prefix should be exported in the module
definition file. 

/* Declare the DllDraw and DefDraw functions. 

OLESTATUS FAR PASCAL DllDraw(LPOLEOBJECT, HOC, LPRECT, LPRECT, HOC); 
OLESTATUS (FAR PASCAL *DefDraw)(LPOLEOBJECT, HOC, LPRECT, LPRECT, HOC); 

/* Copy the Draw function from OLEOBJECTVTBL to DefDraw. */ 

DefDraw = lpobj->lpvtbl->Draw; 

/*Copy DllDraw to OLEOBJECTVTBL. 

*lpobj->lpvtbl->Draw = DllDraw; 

OLESTATUS FAR PASCAL DllDraw(lpObject, hdc, lpBounds, lpWBounds, 
hdcFormat) 

LPOLEOBJECT lpObject; 
HOC hdc; 
LPRECT lpBounds; 
LPRECT lpWBounds; 
HOC hdcFormat; 
{ 

} 

/* Return DefDraw if Native data is not available. */ 

if ((*lpobj->lpvtbl->GetData) (lpobj, cfNative, &hData) != OLE_OK) 
return (*DefDraw) (lpobj, hdc, lpBounds, lpWBounds, hdcFormat); 



Chapter 6 Object Linking and Embedding Libraries 243 

6.5.2 Creating Objects in an Object Handler 
Most of the object-creation functions in the OLE API work in exactly the same 
way when they are renamed and used by object-handler DLLs. Two functions are 
somewhat different, however: OleCreateFromClip and OleLoadFromStream. 

6.5.2.1 DefCreateFromClip and DllCreateFromClip 
When the client library calls the DllCreateFromClip function, the library 
includes a parameter that is not specified in the original call to the OleCreate
FromClip function. This parameter, objtype, specifies whether the object being 
created is an embedded object or a link; its value can be either OT_LINK or 
OT_EMBEDDED. 

The following syntax block shows the objtype parameter when an object handler 
uses the DefCreateFromClip function. The DllCreateFromClip function has 
exactly the same syntax as DefCreateFromClip. For a full description of all 
the parameters, see the description of the OleCreateFromClip function in the 
Microsoft Windows Programmer's Reference, Volume 2. 

OLESTATUS DefCreateFromClip(lpszProtocol, lpclient, lhclientdoc, 
lpszObjname, lplpobject, renderopt, cf Format, obj type); 

LPSTR lpszProtocol; /* address of string for protocol name 
LPOLECLIENT lpclient; /* address of client structure 
LHCLIENTDOC lhclientdoc; /* long handle of client document 
LPSTR lpszObjname; /* string for object name 
LPOLEOBJECT FAR * lplpobject; /* address of pointer to object 
OLEOPT_RENDER renderopt; /* rendering options 
OLECLIPFORMAT cfFormat; /* clipboard format 
LONG objtype; /* OT_LINKED or OT_EMBEDDED 

*/ 
*I 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

If DllCreateFromClip calls DefCreateFromClip, DllCreateFromClip should 
pass it the objtype parameter along with the other parameters from the version of 
DefCreateFromClip that was exported by the client library. DllCreateFromClip 
can modify some of these parameters before passing them back to DefCreate
FromClip. For example, the object handler could specify a different value for 
the renderopt parameter when it calls DefCreateFromClip. If the client calls 
this function with olerender_draw for renderopt and the handler performs 
the drawing with Native data, the handler could change olerender_draw to 
olerender_none. If the client calls this function with olerender_draw for 
renderopt and the handler calls the GetData function and performs the drawing 
based on a class-specific format, the handler could change olerender _draw to 



244 Microsoft Windows Programmer's Reference 

olerender_ format. If the handler needed a different rendering format than the 
format specified by the client application, the object handler could also change 
the value of the cfFormat parameter in the call to DefCreateFromClip. 

If an object handler uses Native data to render an embedded object, the handler 
can call the library and specify olerender_none. If a handler uses Native data to 
render a linked object, it can use olerender_format and specify Native data. 
When the handler's Draw function is called, the handler calls the GetData func
tion, specifying Native data, to do the rendering. If a handler uses a private data 
format, the procedure is the same-except that the private format is specified with 
the olerender_format option and with the GetData function. 

6.5.2.2 DefloadFromStream and DllloadFromStream 
When the client library calls the DllLoadFromStream function, the library in
cludes three parameters that are not specified in the original call to the OleLoad
FromStream function. One of the additional parameters is objtype, as described 
for DefCreateFromClip and DllCreateFromClip. The other two parameters are 
aClass, which is an atom containing the class name for the object, and cfFormat, 
which specifies a private clipboard format that the object handler can use for ren
dering the object. 

The following syntax block shows the objtype, aClass, and cfFormat parameters 
when an object handler uses the DefLoadFromStream function. The DllLoad
FromStream function has exactly the same syntax as DefLoadFromStream. For 
a full description of all the parameters, see the description of the OleLoadFrom
Stream function in the Microsoft Windows Programmer's Reference, Volume 2. 

OLESTATUS DefloadFromStream(lpstream, lpszProtocol, lpclient, 
lhclientdoc, lpszObjname, lplpobject, objtype, aClass, cfFormat); 

LPOLESTREAM lpstream; /* address of stream for object */ 
LPSTR 1 pszProtocol; /* address of string for protocol name */ 
LPOLECLIENT lpclient; /*address of client structure */ 
LHCLIENTDOC lhclientdoc; /* long handle of client document */ 
LPSTR lpszObjname; /* string for object name */ 
LPOLEOBJECT FAR* lplpobject; /* address of pointer to object */ 
LONG objtype; /* OT_LINKED or OT_EMBEDDED */ 
ATOM aClass; /* atom containing object's class name*/ 
OLECLIPFORMAT cfFormat; /* private data format for rendering */ 

If DllLoadFromStream calls DefLoadFromStream, DllLoadFromStream 
should pass it the three additional parameters along with the other parameters from 
the version of DefLoadFromStream that was exported by the client library. 



Chapter 6 Object Linking and Embedding Libraries 245 

DllLoadFromStream can modify some of these parameters before passing them 
back to DetLoadFromStream. For example, the object handler could modify the 
value of the cfFormat parameter to specify a private data format it would use to 
render the object. 

When the client calls the object handler with DetLoadFromStream, the handler 
uses the Get function from the OLESTREAMVTBL structure to obtain the data 
for the object. 

6.6 Direct Use of Dynamic Data Exchange 
The OLE libraries, OLECLI.DLL and OLESVR.DLL, use DDE messages to com
municate with each other. Although client and server applications can use DDE 
directly, without employing OLECLI.DLL or OLESVR.DLL, this method of im
plementing OLE is not recommended. Future enhancements to the OLE libraries 
will benefit applications that use the libraries but will not benefit applications that 
use DDE directly. 

The following information about the DDE-based OLE protocol is provided for 
applications that must implement DDE directly, despite losing the ability to take 
advantage of future enhancements to the system. 

Implementation of the OLE protocol requires implementation of the underlying 
DDE protocol. All the standard DDE rules and facilities apply. Applications that 
conform to this protocol must also conform to the DDE specification. Conforming 
to this specification implies supporting the System topic and the standard items in 
that topic. 

6.6.1 Client Applications and Direct Use of Dynamic Data Exchange 
When opening a link or an embedded document, the client application should 
look up the class name in the registration database, as described in Section 6.2.6, 
"Registration." 

The following pseudocode illustrates the chain of events for a client implementing 
OLE through DDE. Whenever a client that attempts to establish a conversation 
with a server receives responses from more than one server, the client should 
accept the first server and reject the others. 



246 Microsoft Windows Programmer's Reference 

Linked object: 

WM_DDE_INITIATE class name, document name 
if not found { 

I* 

WM_DDE_INITIATE class name, OLESystem 
if not found { 

/* 

WM_DDE_INITIATE class name, System 
if not found { 

launch application name, /Embedding 
fLaunched = true 
WM_DDE_INITIATE class name, OLESystem 
if not found { 

WM_DDE_INITIATE class name, System 
if not found 

return error 

* Now there is a conversation with the server on the System or 
* OLESystem topic. 
*/ 

WM_DDE_EXECUTE StdOpenDocument(DocumentName) 
WM_DDE_INITIATE class name, document name 
if not found { 

if(fLaunched) WM_DDE_EXECUTE StdExit /* clean up */ 
return error 

*Now there is a conversation with the correct document. 
*/ 



Chapter 6 Object Linking and Embedding Libraries 247 

Embedded object: 

WM_DDE_INITIA1E class name, OLESystem 
if not found { 

I* 

WM_DDE_INITIATE class name, System 
if not found { 

launch application name, /Embedding 
tLaunched =true 
WM_DDE_INITIA 1E class name, OLESystem 
if not found { 

WM_DDE_INITIA 1E class name, System 
if not found 

return error 

*Now there is a conversation with the server on the system or 
* OLESystem topic. 
*/ 

DDE_EXECUTE StdEditDocument(DocumentName) 

I* 
* Or StdCreateDoc if this is an Insert Object command 
*I 

WM_DDE_INITIA1E class name, document name 
if not found { 

if(tLaunched) DDE_EXECU1E StdExit /* clean up*/ 
return error 

I* Now there is a conversation with the correct document. */ 



248 Microsoft Windows Programmer's Reference 

6.6.2 Server Applications and Direct Use of Dynamic Data Exchange 
When a server receives the /Embedding command-line argument, it should not 
create a new default document. Instead, it should wait until the client sends either 
the StdOpenDocument command or the StdEditDocument command followed 
by the Native data and then instructs the server to show the window. The server 
can use the StdHostNames item to display the client's name in the window title. 

The following pseudocode illustrates the chain of events for a server implementing 
OLE through DDE. The example shows two cases: one in which the server reuses 
a single instance for editing all objects (in MDI child windows), and another in 
which a new instance is used for each object. Applications that use a new instance 
for each object should reject requests to open or create a new document when they 
already have a document open. 

MDI application: 

case WM_DDE_INITIATE: 
if class name == this class { 

if (DocumentName == OLESystem II DocumentName ==System) 
WM_DDE_ACK 

else if DocumentN ame == name of some open document 
WM_DDE_ACK 

Multiple-instance application: 

case WM_DDE_INITIA TE: 
if class name == this class { 

6.6.3 Conversations 

if (DocumentName == OLESystem II DocumentName ==System) { 
if no documents are open 

WM_DDE_ACK 
} 
else if DocumentName ==name of some open document 

WM_DDE_ACK 

Document operations are performed during conversations with an application's 
OLESystem or System topic. The document's class name is used to establish the 
conversation. 



Chapter 6 Object Linking and Embedding Libraries 249 

Data transfer and negotiation operations are performed during conversations with 
the document (that is, the topic). The document name is used to establish the con
versation. 

Note that the topic name is used only in initiating conversations and is not fixed 
throughout the conversation; permitting the document to be renamed does not 
mean that there will be two names. Therefore, it is reasonable to tie the topic name 
to the document name. 

6.6.4 Items for the System Topic 
An application using DDE-based OLE can use three new items for the System 
topic: the Topics item, the Protocols item, and the Status item. 

The Topics item returns a list of DDE topic names that the server application has 
open. Where topics correspond to documents, the topic name is the document 
name. 

The Protocols item returns a list of protocol names supported by the application. 
The list is returned in tab-separated text format. A protocol is a defined set of DDE 
execute strings and item and format conventions that the application understands. 
The protocol currently defined for linked and embedded objects is the following: 

Protocol: StdFileEditing commands/items/formats 

For compatibility with client applications that were written before the implementa
tion of the OLE protocol, server applications that use the DDE protocol directly 
should also include the string Embedding in the list of protocols. 

The Status item is a text item that returns Ready if the server is prepared to re
spond to DDE requests; otherwise, it returns Busy. This item can be queried to 
determine if the client should offer such functions as one that gives the user an 
opportunity to update the object. Because it is possible that a server could reject or 
defer a request even if Status returns Ready, client applications should not depend 
solely on the Ready item. 

6.6.5 Standard Item Names and Notification Control 
Applications supporting OLE with direct DDE use four clipboard formats in addi
tion to the regular data and picture formats. These are ObjectLink, OwnerLink, 
Native, and Binary. Binary format is a stream of bytes whose interpretation is 
implicit in the item; for example, the EditEnvltems, StdTargetDevice, and 
StdHostNames items are in Binary format. The ObjectLink, OwnerLink, and 
Native formats are described in Section 6.2.5, "Clipboard Conventions." 



250 Microsoft Windows Programmer's Reference 

New items available on each topic other than the System topic are defined for this 
protocol. These items are the following: 

Item 

StdDocumentName 

EditEnvltems 

StdHostNames 

StdTargetDevice 

Description 

Contains the permanent document name associated with the 
topic. If no permanent storage is associated with the topic, 
this item is empty. This item supports both request and advise 
transactions and can be used to detect the renaming of open 
documents. 

Returns a list in tab-separated text format of the items that 
contain environmental information supported by the server for 
its documents. Currently defined items are StdHostNames, 
StdDocDimensions, and StdTargetDevice. Applications can 
declare other items (and define their interpretations if Binary 
format is used) to permit clients that are informed of these 
items to provide more detailed information. Servers that can
not use particular items should omit their names from the 
EditEnvltems item. Clients should use the 
WM_DDE_REQUEST message with this item to find out 
which items the server can use and should supply the data 
through a WM_DDE_POKE message. 

Accepts information about the client application, in Binary 
format interpreted as the following structure: 
struct { 

WORD clientNameOffset; 
WORD documentNameOffset; 
BYTE data[]; 

} StdHostNames; 
The offsets are relative to the start of the data array. They indi
cate the starting point for the appropriate information in the 
array. 

Accepts information about the target device that the client is 
using. This information is in Binary format, interpreted as the 
following structure. Offsets are relative to the start of the data 
array. 
typedef struct _OLETARGETDEVICE { 

WORD otdDeviceNameOffset; 
WORD otdDriverNameOffset; 
WORD otdPortNameOffset; 
WORD otdExtDevmodeOffset; 
WORD otdExtDevmodeSize; 
WORD otdEnvironmentOffset; 
WORD otdEnvironmentSize; 
BYTE otdData[J; 

} OLETARGETDEVICE; 



Item 

StdDocDimensions 

StdColorScheme 

null 

Chapter 6 Object Linking and Embedding Libraries 251 

Description 

Accepts information about the size of a document. This infor
mation is in Binary format, interpreted as the following struc
ture. These values are specified in MM_HIMETRIC units. 
struct { 

int iXContainer; 
int iYContainer; 

} StdDocDimensions; 
Returns the colors that the server is currently using and 
accepts information about the colors that the client requests 
the server to use. This information is in Binary format, inter
preted as a LOGPALETTE structure. 

Specifies a request or advise transaction on all data contained 
in the topic. This item is a zero-length item name. 

The update method used for advise transactions on items follows a convention 
in which an update specifier is appended to the actual item name. The item is 
encoded as follows: 

itemnamelupdate type 

For backward compatibility, omitting the update type has the same result as speci
fying /Change. The update type placeholder may be filled with one of the follow
ing values: 

Value 

/Change 
/Close 
/Save 

Meaning 

Notify for each change. 

Notify when document is closed. 

Notify when document is saved. 

DDE server applications are required to save each occurrence of a 
WM_DDE_ADVISE message that specifies a unique combination of 
itemname, update type, format, and conversation. A notification is disabled 
by a WM_DDE_UNADVISE message with corresponding parameters. If the 
WM_DDE_UNADVISE message does not specify a format, it disables the 
oldest notification in first in, first out (FIFO) rotation. 

6.6.6 Standard Commands in ODE Execute Strings 
The syntax for standard commands sent in execute strings is the same as for other 
DDE commands: 

command(argumentl ,argument2, ... )[ command2(argumentl ,argument2, .. . ) ] 

Commands without arguments do not require parentheses. String arguments must 
be enclosed in double quotes. 



252 Microsoft Windows Programmer's Reference 

6.6.6.1 International Execute Commands 
DDE execute strings are typically sent from a macro language in an external appli
cation and are typically localized. OLE execute commands, however, are sent by 
application programs for their own purposes, need not be localized, and must be 
commonly recognized. 

The OLE standard execute commands should not be localized; the U.S. spelling 
and separator characters are used. Therefore, the following rules apply: 

• Client applications and the client library send standard execute commands in 
U.S. form. 

• The server library must receive the U.S. form for these commands. 

• Servers written directly to the DDE-level protocol should parse the U.S. form, 
if they have no additional commands. 

• Servers that support both OLE and localized DDE execute commands should 
first parse the string by using localized separators. If this fails, they should 
parse it again using the U.S. form and, if successful, should execute the com
mand. Optionally, ifthe command is received in the U.S. form, the server can 
check that the command is one of the valid standard commands. 

6.6.6.2 Required Commands 
This section lists commands that must be supported by server applications. 

The StdNewDocument, StdNewFromTemplate, StdEditDocument, and Std
OpenDocument commands all make the document available for DDE conversa
tions with the name DocumentName. They do not show any window associated 
with the document; the client must send the StdShowltem and StdDoVerbltem 
commands, or the StdDo Verbltem command alone to make the window visible. 
This enables the client to negotiate additional parameters with the server (for 
example, the StdTargetDevice item) without causing unnecessary repaints. 

StdNewDocument( ClassName, DocumentName) 
Creates a new, empty document of the given class, with the given name, but 
does not save it. The server should return an error value if the document name 
is already in use. When the client receives this error, it should generate another 
name and try again. 

The server should not show the window until it receives a StdShowltem com
mand. Waiting for the client to send the StdShowltem and StdDoVerbltem 
commands makes it possible for the client to negotiate additional parameters 
(for example, by using StdTargetDevice) without forcing the window to re
paint. 



Chapter 6 Object Linking and Embedding Libraries 253 

Std.New From Template( ClassName, DocumentName, TemplateName) 
Creates a new document of the given class with the given document name, 
using the template with the given permanent name (that is, filename). 

The server should not show the window until it receives a Std.Show Item 
command. Waiting for the client to send a StdShowltem command makes it 
possible for the client to negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

StdEditDocument(DocumentName) 
Creates a document with the given name and prepares to accept data that is 
poked into it with WM_DDE_POKE. The server should return an error if the 
document name is already in use. When the client receives this error, it should 
generate another name and try again. 

The server should not show the window until it receives a StdShowltem 
command. Waiting for the client to send a StdShowltem command makes it 
possible for the client to negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

StdOpenDocument(DocumentName) 
Sent to the System topic. This command opens an existing document with the 
given name. 

The server should not show the window until it receives a StdShowltem 
command. Waiting for the client to send a StdShowltem command makes it 
possible for the client to negotiate additional parameters (for example, by using 
StdTargetDevice) without forcing the window to repaint. 

StdCloseDocument(DocumentName) 
Sent to the System topic. This command closes the window associated with the 
document. Following acknowledgment, the server terminates any conversations 
associated with the document. The server should not activate the window while 
closing it. 

StdShowltem(DocumentName, ItemName [,fDoNotTakeFocus]) 
Sent to the System topic. This command makes the window containing the 
named document visible and scrolls to show the named item (if any). The op
tional third argument indicates whether the server should take the focus and 
bring itself to the front. This argument should be TRUE if the server should not 
take the focus; otherwise, it should be FALSE. The default value is FALSE. 

Std.Exit 
Shuts down the server application. This command should be used only by the 
client application that launched the server. This command is available in the 
System topic only. 

StdExit is sent to shut down an application if an error occurs during the startup 
phase or if the client started the server for an invisible update. If servers have 
unsaved data opened by the user, they should ignore this command. 



254 Microsoft Windows Programmer's Reference 

6.6.6.3 Variants on Required Commands 
The following variants of the above commands may be sent to the document topic 
rather than the System topic. This allows a client that already has a conversation 
with the document to avoid opening an additional conversation with the system. 
The document name is omitted from these commands because it is implied by the 
conversation topic and because it may have been changed by the server. This kind 
of name change does not invalidate the conversation. The client should not be 
forced to keep track of the name change unnecessarily. However, the server must 
be able to use the conversation information to identify the document on which to 
operate. 

StdCloseDocument 
Sent to the document conversation. This command closes the document 
associated with the conversation without activating it. This command causes 
a WM_DDE_TERMINATE message to be posted by the server window 
following the acknowledgment. 

StdDoVerbltem(ItemName, iVerb,fShow,fDoNotTakeFocus) 
Sent to the document conversation. This command is similar to the 
StdShowltem command, except that it includes an integer indicating which of 
the registered operations to perform and a flag indicating whether to show the 
window. The server can ignore the fShow flag, if necessary. 

StdShowltem(ItemName [,fDoNotTakeFocus]) 
Sent to the document conversation. This command shows the document win
dow, scrolling if necessary to bring the item into view. If the item name is 
NULL, scrolling does not occur. The optional second argument indicates 
whether the server should take the focus and bring itself to the front. This argu
ment should be TRUE if the server should not take the focus; otherwise, it 
should be FALSE. The default value is FALSE. 



Shell Library 

Chapter 7 

7 .1 Registration Database ...... ... ... ... ..... .... ... . ..... .... ....... ... . . ... ... ..... .... ..... ...... ... 257 
7.1.1 Structure of the Database ......................................................... 258 
7.1.2 Format of Registration Files.................................................... 260 

. 7.1.3 Class Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 
7 .1.3 .1 Registering Filename Extensions.......................... 261 
7.1.3.2 Shell Properties ..................................................... 262 
7 .1.3.3 Protocol Properties................................................ 263 
7.1.3.4 Server Registration in WIN.IN! ............................ 264 

7 .1.4 Querying and Deleting Database Entries ... ... .... .... .... . .... ..... .... 265 
7.2 Drag-Drop Feature ................................................................................... 266 
7.3 Using Associations to Find and Start Applications ................................. 268 
7.4 Extracting Icons from Executable Files................................................... 268 
7.5 Related Topics .......................................................................................... 269 





Chapter 7 Shell Library 257 

This chapter describes features of the shell for the Microsoft Windows operating 
system. The following features are supported by the dynamic-link library 
SHELL.DLL: 

• The registration database 

• The drag-drop feature 

• Using associations to find and start applications 

• Extracting icons from executable files 

7 .1 Registration Database 
The registration database is a systemwide source of information about applica
tions. This information is used to support the integration of applications with 
Windows File Manager and is used by applications that support object linking and 
embedding (OLE). 

An application can use the registration database to store the following information: 

• The name of the executable file that is associated with a given filename 
extension 

• The command line to execute-or dynamic data exchange (ODE) messages to 
send-when the user opens a file from Windows shell applications (File 
Manager or Program Manager) 

• The command line to execute-or DOE messages to send-when the user 
prints a file from File Manager 

• Details about the implementation of OLE if the application is an OLE server 

The registration database is a standard part of Windows version 3.1. Any Win
dows version 3.0 application that supports OLE also uses the registration database. 
The registration database is not meant as a place for applications to store private 
data. Applications should use private initialization files for data that is not defined 
or that is not needed either by the Windows 3.1 shell applications or by OLE appli
cations. 

For most applications, the developer uses Microsoft Windows Registration Editor 
(REGEDIT.EXE) to edit the registration database and produce a registration 
(.REG) file that contains readable text strings corresponding to database entries. 
This .REG file can be merged into the user's registration database when the appli
cation is installed. For more information about merging text files with the data
base, see Section 7 .1.2, "Format of Registration Files." 



258 Microsoft Windows Programmer's Reference 

7 .1.1 Structure of the Database 
The registration database is stored in binary format in a file named REG.DAT. 
This file is saved in the user's Windows directory. 

Data in the registration database is in the form of a hierarchically structured tree. 
Each node in the tree is identified by a key name. Each key name is a string from 
the set of printable ASCII characters (values 32 through 127). Key names cannot 
include a space, a backslash(\), or a wildcard (*or?). Key names beginning with 
a period (.) are reserved. 

Any key name can also be associated with a text string that provides further infor
mation about that key. The text string can contain any character from the set of 
printable ASCII characters. These text strings are also called values. 

Each key name is unique with respect to the key that is immediately above it in 
the hierarchy. For example, the open and print keys are often subkeys of the key 
named shell. Both open and print might have subkeys named command, but 
open could not have two subkeys named command. 

The system defines a standard entry for the root level of the database: 
HKEY_CLASSES_ROOT. Root-level key names that begin with a period 
are reserved by the system. Database entries that are subordinate to the 
HKEY _CLASSES_ ROOT key define types (or classes) of documents and 
the properties that are associated with these classes. Information stored under 
HKEY _ CLASSES_ROOT is used by Windows shell applications and by 
OLE applications. 

The following table shows the structure of a typical REG.DAT file. In this table, 
bold characters designate reserved words and italic characters designate words or 
phrases that vary with the registering application. 



Key 

HKEY _ CLASSES_ROOT 

.ext 

ClassName 

shell 

open 

command 

ddeexec 

application 

topic 

if exec 

print 

command 

ddeexec 

application 

topic 

if exec 

protocol 

StdFileEditing 

server 

handler 

verb 

Chapter 7 Shell Library 259 

Text string 

class name 

class description 

command line to open application 

DDE command used when opening document 

DDE application name to start conversation 

topic of the DDE conversation 

DDE command if conversation does not start 

command line to open application 

DDE command used when printing document 

DDE application name to start conversation 

topic of the DDE conversation 

DDE command if conversation does not start 

command line for opening application 

path and filename for handler DLL 

any verb 

Future versions of the database will include more reserved words. To avoid con
flict with future versions, applications should record information that is not used 
by the Windows shell or OLE in private initialization files. 

Standardized keys help an application navigate in the database. When an applica
tion has found the key for a feature, it typically uses the text string associated with 
that key. (As shown in the preceding list, however, not all keys have text strings.) 
For example, if an application needs to display the name of an application in a 
dialog box, the application might use the ClassName key to find the class descrip
tion text string. The class name is often an abbreviated string, for application use 
only, whereas the class description is the full name of the application and is pre
sented in the user interface. 



260 Microsoft Windows Programmer's Reference 

Some standard entries to the database that are occasionally used by OLE server 
applications are not noted in the preceding list. For more information about these 
standard entries, see Chapter 6, "Object Linking and Embedding Libraries." 

The following illustration shows how Windows Paintbrush is registered in 
REG.DAT (as displayed when REGEDIT.EXE is started with the /v option). 

Full Path: 

Value: 

\PB rush\protocol\S tdFileE diting\server 

pbrush.exe 

PB rush = Paintbrush Picture 

[

protocol 
L S tdFileE diting 

~aaua~1mm,•mu1 
verb 
L 0 =Edit 

shell t open 
L _command = pbrush_ exe %1 

pr mt 
L command = pbrush_ exe /p %1 

_pcx = PBrush 
.msp = PBrush 

.bmp = PBrush 

7 .1.2 Format of Registration Files 
For most applications, the developer creates a registration (.REG) file that con
tains the database entries. Registration Editor (REGEDIT.EXE) can then be used 
to merge the .REG file into the user's REG.DAT file when the application is in
stalled on the user's system. 

The following example shows the format of a .REG file that would set up 
Microsoft Paintbrush with the entries shown in Figure 7 .1: 

REG EDIT 

This is a comment line. 

HKEY_CLASSES_ROOT\PBrush = Paintbrush Picture 
HKEY_CLASSES_ROOT\.bmp PBrush 
HKEY_CLASSES_ROOT\.msp = PBrush 
HKEY_CLASSES_ROOT\.pcx = PBrush 
HKEY_CLASSES_ROOT\PBrush\shell\print\command = pbrush.exe /p %1 
HKEY_CLASSES_ROOT\PBrush\shell\open\command = pbrush.exe %1 
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\verb\0 Edit 
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\server = pbrush.exe 

The first line of the file must be REG EDIT, as shown. Any subsequent lines that 
do not begin with HKEY _CLASSES_ ROOT are currently treated as com
ments by REGEDIT.EXE. For compatibility with future versions of the database, 



Chapter 7 Shell Library 261 

however, a comment should not begin with a backslash(\) character or with the 
string HKEY. Each line to be added to the database must begin with a full key 
name. To create a key with an associated text string, the key name must be fol
lowed by at least one space, an equal sign(=), another space, and the string. Char
acters following the equal sign and single space are treated as the value of the key. 

When SHELL.DLL encounters the string % 1 in a command, it replaces that string 
with the name of the document being opened or printed. 

A .REG file cannot be larger than 64K. 

The setup procedure for the registering application typically merges this file with 
the user's REG.DAT file by running REGEDIT.EXE with the /s option. (Applica
tions that must update the database with Windows 3.0 can use REGLOAD.EXE 
instead of REGEDIT.EXE to merge the files. REGLOAD.EXE is smaller than 
REGEDIT.EXE and does not require the common dialog box dynamic-link library 
COMMDLG.DLL.) 

7 .1.3 Class Registration 
Database entries that are one level below the HKEY _ CLASSES_ROOT root
level entry are defined as classes of documents. The exception to this definition is 
the .ext class. 

Database entries that are subordinate to the class-definition entries describe the 
properties of a class. The database can describe two kinds of document properties 
for each class of document: shell properties and protocol properties. 

7 .1.3.1 Registering Filename Extensions 
The .ext key name defines all files with that extension as members of a specified 
class. The registering application specifies the document class for an extension in 
the text string associated with the .ext key name. 

Unlike other second-level key names, the .ext key name is not a class definition. 
Instead, it helps associate a class with a specific filename extension. For example, 
a word processor application can define a .DOC filename extension with the text 
string wpdoc. Then, when the word processor uses wpdoc as the class name for its 
documents, the .DOC extension is associated with that class. 

The class name is the same name used by an OLE server application when it regis
ters itself. For example, if a voice-annotation application named TALK.EXE regis
tered as an OLE server, the information would look like this: 

HKEY_CLASSES_ROOT\.tlk Talk 
HKEY_CLASSES_ROOT\Talk =Talk Voice Annotation 



262 Microsoft Windows Programmer's Reference 

Filename extensions are recorded both in the database and in the [extensions] 
section of WIN.IN! when the user records a filename association in the Associate 
dialog box. The Associate dialog box is displayed when the user chooses the 
Associate command from the File menu in File Manager. (Although File Manager 
automatically records the information in both places, SHELL.DLL does not. 
Applications that register filename extensions in the registration database should 
also record the information in WIN.INI, to provide compatibility with applications 
written before Windows 3.1.) 

File Manager uses the filename associations recorded in WIN.IN! ifthe informa
tion is not found in the registration database. If information is duplicated in the 
database and WIN.INI, File Manager uses the information in the database. 

7 .1.3.2 Shell Properties 
Shell properties describe how a document of a given class interacts with Windows 
shell applications. There are two key names for shell properties: open and print. 
The open properties describe how the class responds to a request from a Windows 
shell application to open a document. The print properties describe how the class 
responds to a request from Print Manager to print a document. 

Both the open and print key names must have the command subkey. The value 
assigned to command specifies the command line used to run the application. If 
appropriate, this value can include command-line options. 

If an application supports DDE, it can also define the ddeexec subkey for either or 
both of the open and print key names. The text string given with the ddeexec key 
name is treated as a DDE command. Defining ddeexec is particularly useful if an 
application already supports DDE open and print commands. Using DDE mes
sages can add flexibility, particularly for applications that support the multiple 
document interface (MDI), because a DDE message string can include more than 
one command. 

The ddeexec key has three predefined subkeys: application, topic, and ifexec. 

The text string given with the application key name specifies the application 
name to use in establishing the DDE conversation. If the registering application 
does not specify an application key, the shell uses the application name specified 
in the command key. 

The text string given with the topic key name specifies the topic name of the DDE 
conversation. If the application does not register a topic key, the shell uses the 
System topic as the default topic name. 

The text string given with the ifexec key name defines the DDE command to use 
when initiation of the DDE conversation fails (for example, if the application is 
not running). When the initiation fails, the command specified by the command 



Chapter 7 Shell Library 263 

key is carried out and then the string specified with the if exec key is sent. (If an 
application does not specify a value for the ifexec key, the command specified by 
the command key is executed when initiation fails and the string specified with 
the ddeexec key is sent again.) 

Opening Files An application should open a file in a new instance of the asso
ciated application, even if the application supports MDL If the user has already 
opened the file, applications typically give the focus to the window with the file 
instead of obtaining a new copy of the file. 

If an MDI application does not use memory efficiently when multiple instances 
of the application are running, the application can open the file in the existing 
instance, as a new MDI window. 

Printing Files After opening the file as described in the preceding section, the 
application should carry out the print command. Whenever possible, applications 
should display the Print dialog box to give the user the opportunity to customize 
the print job. If this is not possible, the file should be printed immediately. Once 
the file is printed or the user chooses to cancel the print job, the application should 
close. (If the file was opened as a new MDI window, the application typically 
closes the window, rather than the entire application, when the print job has 
finished.) 

7 .1.3.3 Protocol Properties 
A protocol is a convention for manipulating a document or some other collection 
of data. Database entries that are subordinate to the protocol key name describe 
the properties of a protocol. Although a class can support any number of protocols, 
currently only one is defined. This protocol, StdFileEditing, is used by documents 
that support OLE. 

The StdFileEditing protocol has three subkeys: server, handler, and verb. 

The text string given with the server key name is a command line that an OLE 
client application uses to start the server application for a linked or embedded 
object. 

The text string given with the handler key name is the name of a dynamic-link 
library that acts as an object handler for OLE objects. For more information about 
object handlers, see Chapter 6, "Object Linking and Embedding Libraries." 

The verb key name has subkeys that identify the kind of action a server should 
take when it opens an object. These subkeys are consecutive numbers, beginning 
with zero. The 0 subkey corresponds to the primary verb for the objects supported 



264 Microsoft Windows Programmer's Reference 

by the server. For example, 0 often means Edit and 1 often means Play. For 
more information about verbs, see Chapter 6, "Object Linking and Embedding 
Libraries." 

For example, if an application named New App could not use REGEDIT.EXE to 
set up its protocol properties, it could set them up by using the following example: 

HKEY hkProtocol; 

if (RegCreateKey(HKEY_CLASSES_ROOT, I* root 
"NewAppDocument\\protocol\\StdFileEditing", I* protocol string 
&hkProtocol) != ERROR_SUCCESS) /* protocol key handle 

return FALSE; 

RegSetVal ue(hkProtocol, /* handle to protocol key 
"server", /* name of subkey 
REG_ SZ, /* required 
"newapp.exe", /* command to activate server 
10); /* text string size 

RegSetVal ue(hkProtocol, /* handle to protocol key 
"handler", /* name of subkey 
REG_ SZ, /* required 
"nwappobj.dll", /* name of object handler 
12); /* text string size 

RegSetVal ue(hkProtocol, /* handle to protocol key 
"verb\\0", /* name of subkey 
REG_SZ, /* required 
"Edit", /* server should edit object 
4); /* text string size 

RegCloseKey(hkProtocol ); /* close protocol key and subkeys 

7 .1.3.4 Server Registration in WIN.IN! 
When an application creates a server protocol property and saves this key in 
REG.DAT, SHELL.DLL also puts this information into the WIN.IN! initializa
tion file. Some applications that use linked and embedded objects were devel
oped before the implementation of the registration database. The information in 
WIN.IN! allows such an application to find the command line that starts the 
server for an object. Server registration entries in WIN.IN! are also written to 
the registration database whenever the user starts Windows. 

*/ 
*/ 
*I 

*I 
*/ 
*/ 
*/ 
*/ 

*/ 
*I 
*I 
*I 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

*I 

The server registration entries in WIN.IN! are in a section headed [embedding]. If 
an [embedding] section does not already exist when a registering application calls 
the RegCloseKey function for a key, SHELL.DLL creates it. When an application 



Chapter 7 Shell Library 265 

calls RegCloseKey, every class-definition key in REG.DAT that is not already in 
the [embedding] section is added to WIN.IN!, not simply the key for which Reg
CloseKey was called. 

The server information in WIN.IN! is recorded in the following form: 

[embedding] 
ClassName=comment,textual class name,path/arguments,Picture 

The keyword Picture indicates that the server can produce metafiles for use when 
rendering objects. Because commas are used as field separators, none of the fields 
can contain a comma. 

A server can register only the name and arguments for its executable file, rather 
than the entire path, if the application is always installed in a directory that is men
tioned in the PATH environment variable. Usually, registering the path and 
filename is less ambiguous than registering only the filename. 

When the database is opened, the shell library reads the [embedding] section 
of WIN.IN! and updates the registration database with any new information it 
contains. If the [embedding] section contains information that conflicts with 
REG.DAT, the information in REG.DAT is overwritten. When the database is 
closed, the shell library writes the information in REG.DAT back into the 
[embedding] section of WIN.IN!. This ensures that applications that depend on 
WIN.IN! for information about linked and embedded objects retrieve current infor
mation and that new OLE applications can simply read from and write to 
REG.DAT. 

7 .1.4 Querying and Deleting Database Entries 
An application can use the RegCreateKey and RegSetValue functions to add 
keys to the registration database and the RegCloseKey function to indicate that a 
key is no longer needed by the application. Other registration functions allow an 
application to query the contents of the database and delete keys. 

An application can use the RegEnumKey function to determine the subkeys 
of a specified key. Because the first parameter ofRegEnumKey must be the 
handle of an open key, this function is typically preceded by a call to the Reg
OpenKey function and followed by a call to RegCloseKey. (Because the 
HKEY _CLASSES_ ROOT key is always open, bracketing RegEnumKey 
with RegOpenKey and RegCloseKey is not strictly necessary when 
HKEY _CLASSES_ ROOT is specified as the first parameter of RegEnum
Key. Using RegOpenKey and RegCloseKey is a time optimization in this case, 
however.) The RegQueryValue function retrieves the text string that has been 
associated with a key name. 



266 Microsoft Windows Programmer's Reference 

The following example uses the RegEnumKey function to put the values 
associated with top-level keys into a list box: 

HKEY hkRoot; 
char szBuff[80J, szValue[80]; 
static DWORD dwindex; 
LONG cb; 

if (RegOpenKey(HKEY_CLASSES_ROOT, NULL, &hkRoot) == ERROR_SUCCESS) { 
for (dwlndex = 0; RegEnumKey(hkRoot, dwlndex, szBuff, 

sizeof(szBuff)) == ERROR_SUCCESS; ++dwindex) { 

} 

} 

if (*SZBUff == '. ') 
continue; 

cb = sizeof(szValue); 
if (RegQueryValue(hkRoot, (LPSTR) szBuff, szValue, 

&cb) == ERROR_SUCCESS) 
SendDl gitemMessage(hDl g, ID_ ENUMLIST, LB_ADDSTRING, 0, 

(LONG) (LPSTR) szValue); 

RegCloseKey(hkRoot); 

The following example uses the RegQueryValue function to retrieve the name of 
an object handler and then calls the RegDeleteKey function to delete the key if its 
value is nwappobj.dll: 

char szBuff[80]; 
LONG cb; 
HKEY hkStdFileEditing; 

if (RegOpenKey(HKEY_CLASSES_ROOT, 
"NewAppDocument\\protocol\\StdFileEditing", 
&hkStdFileEditing) == ERROR_SUCCESS) { 

} 

cb = sizeof(szBuff); 
if CRegQueryValue(hkStdFileEditing, 

"handler", 
szBuff, 
&cb) == ERROR_ SUCCESS 
&& lstrcmpi("nwappobj.dll", szBuff) == 0) 

Reg De 1 eteKey ( hkStd Fi 1 eEdit i ng, "handler"); 
RegCloseKey(hkStdFileEditing); 

7. 2 Drag-Drop Feature 
When an application implements the drag-drop feature, a user can select one or 
more files in File Manager, drag them to an open application, and drop them there. 



Chapter 7 Shell Library 267 

The application in which the files were dropped receives a message it can use to 
retrieve the filenames and the coordinates of the point at which the files were 
dropped. 

The drag-drop feature depends upon SHELL.DLL. The drag-drop feature does not 
depend in any way on the registration database, however. 

An application that can accept dropped files from File Manager calls the Drag
AcceptFiles function for one or more of its windows. Then, when the user releases 
the mouse button to drop a file or files in the window specified in the call to Drag
AcceptFiles, File Manager sends the application a WM_DROPFILES message. 
(File Manager does not send the WM_DROPFILES message to an application un
less the application calls DragAcceptFiles.) WM_DROPFILES contains a handle 
of an internal data structure the application can query to retrieve the name of the 
dropped file and the coordinates of the position at which the cursor was located 
when the file was dropped. The application can use the DragQueryFile function 
to retrieve the number of files that were dropped and their names. The Drag
QueryPoint function returns the window coordinates of the cursor when the user 
released the mouse button. 

To free the memory allocated by the system for the WM_DROPFILES message, 
an application should call the DragFinish function when it is finished. 

For example, an application can call the DragAcceptFiles function when it starts 
and call a drag-drop function when it receives a WM_DROPFILES message, as 
shown in the following example: 

case WM_CREATE: 
DragAcceptFiles(hwnd, TRUE); 
break; 

case WM_DROPFILES: 
DragFunc(hwnd, wParam); 
break; 

case WM_ DESTROY: 
DragAcceptFiles(hwnd, FALSE); 
break; 

The following example uses the DragQueryPoint function to determine where to 
begin to write text. The first call to the DragQueryFile function determines the 
number of dropped files. The loop writes the name of each file, beginning at the 
point returned by DragQueryPoint. 

POINT pt; 
WORD cFiles, a; 
char szFile[80J; 

DragQueryPoint((HANDLE) wParam, &pt); 



268 Microsoft Windows Programmer's Reference 

cFi l es = DragQueryFil e( (HANDLE) wParam, 0xFFFF, ( LPSTR) NULL, 0); 

for(a = 0; a < cFiles; pt.y += 20, a++) { 
DragQueryFile((HANDLE) wParam, a, szFile, sizeof(szFile)); 
TextOut(hdc, pt.x, pt.y, szFile, strlen(szFile)l; 

} 

DragFinish((HANDLE) wParam); 

7 .3 Using Associations to Find and Start Applications 
File Manager includes an Associate dialog box that makes it possible for users to 
associate a filename extension with a specific application. File Manager stores 
these associations in the registration database and the WIN.IN! initialization file. 
If a file has a filename extension that has been associated with an application, that 
application starts automatically whenever a user double-clicks that file in File 
Manager. 

Using the FindExecutable and ShellExecute functions, applications can take 
advantage of such associations to find and start applications or open and print files. 

An application can use the FindExecutable function to retrieve the name and 
handle of the executable file that is associated with a specified filename. The 
ShellExecute function either opens or prints a specified file, depending on the 
value of its lpszOp parameter. To open a document file, the function relies on the 
association of the filename extension. 

7 .4 Extracting Icons from Executable Files 
An application can use the Extractlcon function to retrieve the handle of an icon 
from a specified executable file, dynamic-link library, or icon file. The following 
example uses the DragQueryPoint function to retrieve the coordinates of the 
point where a file was dropped, the DragQueryFile function to retrieve the file
name of a dropped file, and the Extractlcon function to retrieve the handle of the 
first icon in the file, if any: 

HOC hdc; 
HANDLE hCurrentinst, hicon; 
POINT pt; 
char szFile[80]; 

hCurrentinst = (HANDLE) GetWindowWord(hwnd, GWW_HINSTANCEl; 

DragQueryPoint((HANDLE) wParam, &pt); 



Chapter 7 Shell Library 269 

DragQueryFile((HANDLEl wParam, 0, szFile, sizeof(szFile)); 
hicon = Extractlcon(hCurrentinst, szFile, 0); 

if (hicon == NULL) 
TextOut(hdc, pt.x, pt.y, "No icons found.", 15); 

else if (hicon = CHICON) ll 
TextOut(hdc, pt.x, pt.y, 

"File must be .EXE, .ICO, or .DLL.", 33); 
else 

Drawlcon(hdc, pt.x, pt.y, hicon); 

7 .5 Related Topics 
For more information about OLE, see Chapter 6, "Object Linking and Embedding 
Libraries." 

For more information about Program Manager, see Chapter 17, "Shell Dynamic 
Data Exchange Interface." 





Tool Helper Library 

Chapter 8 

8.1 Calling Tool Helper Functions ....................... ......................................... 273 
8.2 Accessing Internal Windows Lists.......................................................... 273 

8.2.1 Walking the Windows Class List.. .......................................... 274 
8.2.2 Walking the Windows Module List ........................................ 274 
8.2.3 Walking the Windows Task Queue ......................................... 274 

8.3 Obtaining Advisory Information............................................................. 275 
8.4 Walking the Global and Local Heaps ...................................................... 275 

8.4.1 Walking the Global Heap ........................................................ 275 
8.4.2 Walking the Local Heap .......................................................... 276 

8.5 Tracing the Windows Stack ..................................................................... 276 
8.6 Examining and Modifying Memory Contents......................................... 277 
8. 7 Installing Callback Functions .. . . . . . . .. . . .. . .. . . . . . . . . .. . . . . . . . . . . .. . . .. . . . . .. . . . . . .. . . . .. . . . . . 277 
8.8 Controlling Process Execution................................................................. 278 





Chapter 8 Tool Helper Library 273 

The tool helper library (TOOLHELP.DLL) makes it easier for developers who 
work with the Microsoft Windows 3.1 operating system to obtain system informa
tion and control system activity. This dynamic-link library was designed to stream
line the creation of Windows-hosted tools, specifically Windows-hosted 
debugging applications. TOOLHELP.DLL is available to applications running 
with Windows versions 3.0 and later. 

To use the elements of TOOLHELP.DLL in an application, you must include the 
TOOLHELP.H header file in the application source files, link the application with 
TOOLHELP.LIB, and ensure that TOOLHELP.DLL is in the system path. 

The following topics are related to the information in this chapter: 

• Debugging 

• Memory management 

• Windows classes 

• Task management 

• Interrupts 

8.1 Calling Tool Helper Functions 
Most of the functions in TOOLHELP.DLL use structures to return information. 
The first member in each of these structures is a doubleword value named dwSize. 
This value must be initialized before an application calls the function that uses the 
structure; otherwise, the function fails. 

The dwSize member enables new versions of TOOLHELP.DLL to include addi
tional features without breaking code written for structures in Windows versions 
earlier than 3 .1. 

The THSAMPLE.C sample program demonstrates how to use some of the func
tions in TOOLHELP.DLL. For a full description of these functions, see the 
Microsoft Windows Programmer's Reference, Volume 2. For a full description 
of the TOOLHELP.DLL structures, see the Microsoft Windows Programmer's 
Reference, Volume 3. 

8.2 Accessing Internal Windows Lists 
TOOLHELP.DLL includes functions that enable you to retrieve information from 
the internal Windows lists. These lists include the class list, module list, and task 
queue. 



274 Microsoft Windows Programmer's Reference 

8.2.1 Walking the Windows Class List 
The ClassFirst function fills a CLASSENTRY structure with information about 
the first class on the Windows class list. This information includes the name of the 
class and the instance handle of the task that owns the class. 

You use ClassFirst to begin a walk through the Windows class list. The 
ClassNext function continues the walk by filling a CLASSENTRY structure 
with information about the next class on the Windows class list. 

You use the GetClasslnfo function to obtain more specific class information. Get· 
Classlnfo requires the instance handle provided by ClassFirst or ClassNext in 
the CLASSENTRY structure. 

8.2.2 Walking the Windows Module List 
The ModuleFirst function fills a MODULEENTRY structure with information 
about the first module on the list of all currently loaded modules. This information 
includes the module name, handle, reference count, path to the executable file, and 
soon. 

You use ModuleFirst to begin a walk through the Windows module list. The 
ModuleNext function continues the walk by filling a MODULEENTRY struc
ture with information about the next module on the list. 

The ModuleFindHandle function fills a MODULEENTRY structure with infor
mation about a module whose handle is known. The ModuleFindName function 
fills a MODULEENTRY structure with information about a module whose 
name is known. You use ModuleFindHandle or ModuleFindName, rather than 
ModuleFirst, to begin a walk through the Windows module list at a specific 
module, rather than at the first module on the list. 

8.2.3 Walking the Windows Task Queue 
The TaskFirst function fills a T ASKENTRY structure with information about 
the first task in the Windows task queue. This information includes the task 
handle, SS register value, SP register value, stack dimensions, number of pending 
events, PSP offset, and so on. 

You use TaskFirst to begin a walk through the Windows task queue. The Task
N ext function continues the walk by filling a TASKENTRY structure with infor
mation about the next task in the task queue. 

The TaskFindHandle function fills a TASKENTRY structure with information 
about a task whose handle is known. You use TaskFindHandle, rather than 



Chapter 8 Tool Helper Library 275 

TaskFirst, to begin a walk through the Windows task queue at a specific task, 
rather than at the first task in the queue. 

8 .3 Obtaining Advisory Information 
To simplify system analysis, TOOLHELP.DLL includes functions that retrieve 
general information about the USER heap, GDI heap, memory manager, and vir
tual timer. 

The SystemHeaplnfo function fills a SYSHEAPINFO structure with information 
about the USER and GDI heaps. This information includes the percentage of free 
space and the segment handle for each heap. 

The MemManlnfo function fills a MEMMANINFO structure with status and 
performance information about the memory manager. This information includes 
the size of the largest free memory object, the maximum number of pages avail
able, the maximum number of lockable pages, total linear space, total unlocked 
pages, number of pages in the system swap file, and so on. 

The TimerCount function fills a TIMERINFO structure with the execution times 
of the current task and virtual machine (VM). 

8.4 Walking the Global and Local Heaps 
TOOLHELP.DLL includes functions that enable a developer to examine objects 
on the global and local heaps. 

8.4.1 Walking the Global Heap 
The Globallnfo function fills a GLOBALINFO structure with information about 
the global heap. This information includes the total number of items, the number 
of free items, and the number of "least recently used" (LRU) items on the global 
heap. The information enables the application to determine how much memory to 
allocate for a global-heap walk. The application must allocate the memory before 
starting the walk. If the application allocates any memory after starting the walk, 
the results of the heap walk will be corrupt. 

The GlobalFirst function fills a GLOBALENTRY structure with information 
about the first object on the global heap. This information includes the structure 
size, the size and address of the object, the lock count, and so on. 



276 Microsoft Windows Programmer's Reference 

You use GlobalFirst to begin a walk through the global heap. The GlobalNext 
function continues the walk by filling a GLOBALENTRY structure with informa
tion about the next object on the global heap. 

The GlobalEntryHandle function fills a GLOBALENTRY structure with infor
mation about a global object whose handle or selector is known. The 
GlobalEntryModule function fills a GLOBALENTRY structure with informa
tion about a specific segment in a module. You use GlobalEntryHandle or 
GlobalEntryModule, rather than GlobalFirst, to begin a walk through the global 
heap at a specific object, rather than at the first object on the global heap. 

8.4.2 Walking the Local Heap 
The Locallnfo function fills a LOCALINFO structure with the total number of 
items on the local heap. This information enables the application to determine how 
much memory to allocate for a local-heap walk. The application must allocate the 
memory before starting the walk. If the application allocates any memory after 
starting the walk, the results of the heap walk will be corrupt. 

The LocalFirst function fills a LOCALENTRY structure with information about 
the first object on the local heap. This information includes the structure size; the 
handle, address, and size of the object; the lock count; and so on. 

You can use LocalFirst to begin a walk through the local heap. The LocalNext 
function continues the walk by filling a LOCALENTRY structure with informa
tion about the next object on the local heap. 

8. 5 Tracing the Windows Stack 
The StackTraceFirst function fills a STACKTRACEENTRY structure with 
information about the first stack frame for an inactive task. This information 
includes the stack-frame module handle, segment number, register contents, 
frame type, and so on. 

You use StackTraceFirst to begin a stack trace of an inactive task. The Stack
TraceNext function continues the stack trace by filling a STACKTRACE
ENTRY structure with information about the task's next stack frame. 

The StackTraceCSIPFirstfunction fills a STACKTRACEENTRY structure 
with information about a stack frame whose SS:BP and CS:IP values are known. 
You should use StackTraceCSIPFirst, rather than StackTraceFirst, to begin a 
stack trace of an active task. 



Chapter 8 Tool Helper Library 277 

8.6 Examining and Modifying Memory Contents 
TOOLHELP.DLL includes functions that enable you to examine and modify 
global memory contents without consideration for selector tiling and aliasing or 
read-write attributes. 

The Memory Read function reads global memory at a specific selector and offset. 
The MemoryWrite function writes to global memory at a specific selector and 
offset. 

The GlobalHandleToSel function converts a global memory handle to a selector. 

8. 7 Installing Callback Functions 
TOOLHELP.DLL includes functions that enable you to trap an application's inter
rupts and notifications. 

The InterruptRegister function installs a callback function that handles all sys
tem interrupts. The callback function must be reentrant and must explicitly pre
serve all register values. The InterruptUnRegister function restores the default 
processing. 

The NotifyRegister function installs a notification callback function for a specific 
task. Typically, the notification callback function cannot use any Windows func
tions except the TOOLHELP.DLL functions and the PostMessage function. The 
NotifyUnRegister function restores the default processing. 

The exit code returned by a non-Windows application may reflect an error en
countered by Windows when it attempted to start the application, rather than a 
value returned by the application itself. These error values are as follows: 

Error value 

Ox81 

Cause 

Could not start the application because of a file-access problem. 
This problem originated either in the application or its PIF file. Fol
lowing are likely reasons for this error value: 

File not found 
Path not found 
No file handles 
Invalid drive 
Access denied 
Sharing violation 
Invalid executable format 



278 Microsoft Windows Programmer's Reference 

Error value 

Ox82 

Ox83 

Ox84 

Ox85 

Ox86 

Cause 

Could not start the application, because of insufficient memory or 
disk space. 

Abnormal termination. 

Could not start the application, because of incorrect version. 

Could not start the application, because MS-DOS Interrupt 2lh 
Function 4B00h (Load and Execute Program) failed. 

Could not start the application, because the TOOLHELP.DLL task
switching functions prevented it from starting. 

8.8 Controlling Process Execution 
TOOLHELP.DLL includes four functions you can use to control process execu
tion: TaskGetCSIP, TaskSetCSIP, TaskSwitch, and TerminateApp. These 
functions are designed for use exclusively in Windows-hosted debuggers. 

When an inactive task is activated, it begins execution at the location specified by 
its CS :IP value. The TaskSetCSIP function sets this value, and the TaskGetCSIP 
function returns the value. 

The TaskSwitch function activates a specific task beginning at a specified CS:IP 
value. 

The TerminateApp function terminates an application as if a general protection 
(GP) fault had occurred. 



Data Decompression Library 

Chapter g 

9 .1 Data Compression.................................................................................... 281 
9.2 Data Decompression................................................................................ 282 
9.3 Decompressing a Single File ................................................................... 283 
9.4 Decompressing Multiple Files................................................................. 283 
9.5 Reading Bytes from Compressed Files ................................................... 283 





Chapter 9 Data Decompression Library 281 

The Microsoft Windows operating system includes the dynamic-link library 
LZEXPAND.DLL. Typically, an application calls functions in LZEXPAND.DLL 
to decompress data previously compressed by Microsoft File Compression Utility 
(COMPRESS.EXE). 

A version ofLZEXPAND.DLL was shipped with Windows version 3.0. That ver
sion of LZEXPAND.DLL does not contain the full set of functions that is included 
with the Windows 3.1 version. Applications that could be installed on a system 
running Windows 3.0 should always check the version number of the library to 
ensure that the correct version is being used. For more information about checking 
version numbers, see Chapter 11, "File Installation Library." 

This chapter describes important concepts relating to data compression and 
describes the decompression functions in LZEXPAND.DLL. 

9 .1 Data Compression 
Data compression is an operation that reduces the size of a file by minimizing re
dundant data. In a file that contains text, redundant data could be frequently occur
ring characters, such as the space character, or common vowels, such as the letters 
e and a; it could also be frequently occurring character strings. Data compression 
operations create a compressed version of a file by minimizing this redundant 
data. 

Each of the many types of data-compression operations minimizes redundant data 
in a unique manner. For example, the Huffman encoding algorithm assigns a code 
to characters in a file based on how frequently those characters occur. Another 
compression algorithm, called run-length encoding, generates a two-part value for 
repeated characters: The first part specifies the number of times the character is re
peated, and the second part identifies the character. Another compression algo
rithm, known as the Lempel-Ziv algorithm, converts variable-length strings into 
fixed-length codes, which consume less space than the original strings. 

To compress large applications or data files, you can run COMPRESS.EXE from 
the Microsoft MS-DOS® command line. COMPRESS.EXE uses the Lempel-Ziv 
compression algorithm. 



282 Microsoft Windows Programmer's Reference 

9.2 Data Decompression 
Applications can call the functions in LZEXPAND.DLL to decompress files com
pressed with COMPRESS.EXE. The functions can also process uncompressed 
files without attempting to decompress them. 

The following table describes each function found in LZEXPAND.DLL: 

Function 

CopyLZFile 

GetExpandedName 

LZClose 

LZCopy 

LZDone 

LZinit 

LZOpenFile 

LZRead 

LZSeek 

LZStart 

Purpose 

Copies a source file to a destination file. If the source file was 
compressed, this function creates a decompressed destination 
file. If the source file was not compressed, this function dupli
cates the original file. This function is intended for multiple
file copy operations. 

Retrieves the original name of a compressed file if the /r 
switch was used during compression of the file. 

Closes a file that was opened when the application called the 
LZOpenFile or the OpenFile function. 

Copies a source file to a destination file. If the source file was 
compressed, this function creates a decompressed destination 
file. If the source file was not compressed, this function dupli
cates the original file. This function is intended for single-file 
copy operations. 

Frees memory allocated by the LZStart function. The LZ
Start and LZDone functions are used with the CopyLZFile 
function to copy multiple files. 

Creates structures that are used for decompressing files. 

Opens a file. If the file was compressed, this function returns 
a special file handle that identifies the compressed file; if the 
file was not compressed, this function returns an MS-DOS file 
handle. 

Reads a specified number of bytes from a file. If the file was 
compressed, this function decompresses the bytes before copy
ing them to the destination buffer. 

Positions the file pointer within the decompressed image of a 
compressed file. The application calls this function to position 
the pointer prior to calling the LZRead function. 

This function allocates memory for multiple-file copy opera
tions. 

For more information about individual functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 



Chapter 9 Data Decompression Library 283 

9.3 Decompressing a Single File 
An application can decompress a single compressed file by performing the follow
ing tasks: 

1. Open the compressed file by calling the LZOpenFile function or a combination 
of the OpenFile and LZinit functions. For information about the OpenFile 
function, see the Microsoft Windows Programmer's Reference, Volume 2. 

2. Open the destination file by calling the LZOpenFile or OpenFile function. 

3. Copy the source file to the destination file by calling the LZCopy function and 
passing the handles returned by LZOpenFile (or LZinit). 

4. Close the files by calling the LZClose function. 

9.4 Decompressing Multiple Files 
An application can decompress multiple files by performing the following tasks: 

1. Open the source file by calling the LZOpenFile function or a combination of 
the OpenFile and LZinit functions. 

2. Open the destination file by calling the LZOpenFile or OpenFile function. 

3. Allocate memory for the copy operation by calling the LZStart function. 

4. Copy the source files to the destination files by calling the CopyLZFile func
tion. 

5. Release the allocated memory by calling the LZDone function. 

6. Close the files by calling the LZClose function. 

9.5 Reading Bytes from Compressed Files 
In addition to decompressing a complete file at a time, an application can decom
press compressed files a portion at a time by using the LZSeek and LZRead 
functions. These functions are particularly useful when it is necessary to extract 
parts of large files. For example, a font manufacturer may have compressed files 
containing font metrics in addition to character data. To use the information in 
these files, an application would need to decompress the file; however, most 
applications would use only part of the file at any particular time. When the user 
queried the font metrics, the application would extract data from the header. When 
the user rendered text output, the application would reposition the file pointer by 
calling LZSeek and extract the character data. 





System Resources Stress-Testing 
Library 

Chapter 1 O 

10.1 System Resources Stress-Testing Library Functions .... ...... ...... ...... .... ... . 287 





Chapter 10 System Resources Stress-Testing Library 287 

The system resources stress-testing library (STRESS.DLL) is a dynamic-link 
library that artificially consumes system resources, enabling developers to 
observe how an application behaves in scarce-resource conditions. This library 
was designed to make scarce-resource testing easier and more realistic. It is used 
by the STRESS.EXE utility. 

10.1 System Resources Stress-Testing Library Functions 
Following are the system resources affected by STRESS.DLL, with the functions 
that consume and release each resource: 

Resource Allocation function Release function 

Global memory AllocMem FreeAllMem 

GDI heap memory AllocGDIMem FreeAllGDIMem 

User heap memory AllocUserMem FreeAllUserMem 
Disk space AllocDiskSpace UnAllocDiskSpace 

File handles AllocFileHandles UnAllocFileHandles 

For more information about STRESS.DLL functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 





File Installation Library 

Chapter 11 

11.1 File Installation Concepts . ....... ..... ..... ... ........ ... ... ... ... ... ........... ..... .... .... .... 291 
11.2 Creating an Installation Program............................................................. 292 
11.3 Adding Version Information to a File ..... ... ... .. . ...... ... .... .. .. . ....... ..... .... ..... 294 





Chapter 11 File Installation Library 291 

The file installation library in the Microsoft Windows version 3.1 operating sys
tem makes it easier for applications to install files properly and enables utility 
programs to analyze files that are currently installed. 

The following topics are related to the information in this chapter: 

• Resources 

• Microsoft Windows Resource Compiler (RC) 

11.1 File Installation Concepts 
The file installation library includes functions that determine where a file should 
be installed, identify conflicts with currently installed files, and perform the instal
lation process. These functions enable installation programs to avoid the following 
problems: 

• Installing older versions of components over newer versions 

• Changing the language in a mixed-language system without notification 

• Installing multiple copies of a library in different directories 

• Copying files to network directories shared by multiple users 

The file installation library also includes functions that enable applications to 
query a version resource for information about a file and present the information 
to the user in a clear format. This information includes the file's purpose, author, 
version number, and so on. (For more information about version resources, see 
Section 11.3, "Adding Version Information to a File.") 

The file installation library is available for Windows and non-Windows applica
tions. Windows applications should use the dynamic-link library VER.DLL and 
the header file VER.H. Non-Windows applications should use one of the follow
ing static-link libraries: VERS.LIB, VERC.LIB, VERM.LIB, or VERL.LIB. 
Applications that use the static-link libraries should use the following line before 
including VER.H: 

/fodefi ne LIB 



292 Microsoft Windows Programmer's Reference 

11.2 Creating an Installation Program 
An installation program typically has the following goals: 

• To place files in the correct location 

• To notify the user if the installation program is replacing an existing file with a 
version that is significantly different-for example, replacing a German file 
with an English file, or replacing a newer file with an older file 

When writing the installation program, you must have the following information 
for each file on the installation disk(s): 

• The name and location of the file (referred to as the source file). 

• The name of the equivalent file on the user's hard disk (referred to as the desti
nation file). This name is usually the same as the filename on the installation 
disk. 

• The sharing status of the file-that is, whether the file is private to the applica
tion being installed or could be shared by multiple applications. 

For each file on the installation disk(s), the installation program must, at least, call 
the VerFindFile and VerlnstallFile functions. These functions are described 
briefly in the rest of this section. 

You use the VerFindFile function with the destination-file name to determine 
where the file should be copied to on the disk. This function also enables you to 
specify whether the file is private to the application or can be shared. If a problem 
occurs in finding the file, VerFindFile returns an error value. For example, if 
Windows is using the destination file, VerFindFile returns VFF _FILEINUSE. 
The installation program must notify the user of the problem and respond to the 
user's decision to continue or end the installation. 

The VerlnstallFile function copies the source file to a temporary file in the 
directory specified by VerFindFile. If necessary, VerlnstallFile expands the file 
by using the functions in the data decompression library, LZEXPAND.DLL. 

VerlnstallFile compares the version information of the temporary file to that of 
the destination file. If they differ, VerlnstallFile returns one or more error values. 
For example, it returns VIF _SRCOLD if the temporary file is older than the desti
nation file and VIF _DIFFLANG if the files have different language identifiers or 
code-page values. The installation program must notify the user of the problem 
and respond to the user's decision to continue or end the installation. 



Chapter 11 File Installation Library 293 

Some VerlnstallFile errors are recoverable. That is, the installation program 
can call VerlnstallFile again, specifying the VIFF _FORCEINST ALL option, 
to install the file regardless of the version conflict. If V erlnstallFile returns 
VIF _ TEMPFILE and the user chooses not to force the installation, the installation 
program should delete the temporary file. 

VerlnstallFile could encounter a nonrecoverable error when attempting to force 
installation, even though the error did not exist previously. For example, the file 
could be locked by another user before the installation program tried to force 
installation. If an installation program attempts to force installation after a non
recoverable error, VerlnstallFile fails. The installation program must deal with 
this situation. 

The recommended solution is to display a common dialog box with the buttons 
Install, Skip, and Install All for all errors. The Install All button should prevent the 
installation program from prompting the user about similar errors by including the 
VIFF _FORCEINST ALL option in all subsequent uses of VerlnstallFile. For non
recoverable errors, the Install and Install All buttons should be disabled. 

To display a useful error message to the user, the installation program usually 
must retrieve information from the version resources of the conflicting files. The 
file installation library provides four functions the installation program can use for 
this purpose: GetFile VersionlnfoSize, GetFile Versionlnfo, VerQuery Value, 
and VerLanguageName. The GetFileVersionlnfoSize function returns the size 
of the version information. The GetFile Versionlnfo function then uses informa
tion retrieved by GetFile VersionlnfoSize to retrieve a structure that contains the 
information. The V erQuery Value function retrieves a specific member from that 
structure. 

For example, if VerlnstallFile returns the VIF _DIFFTYPE error, the installation 
program should use GetFile VersionlnfoSize, GetFile Versionlnfo, and Ver
Query Value on the temporary and destination files to obtain the general type of 
each file. If the languages of the files conflict, the installation program should also 
use the VerLanguageName function to translate the binary language identifier 
into a text representation of the language. (For example, Ox040C translates to the 
string French.) 

IfVerlnstallFile returns a file error, such as VIF _ACCESSVIOLATION, the in
stallation program should use MS-DOS Interrupt 2lh Function 59h (Get Extended 
Error) to obtain the most recent error value. The program should translate this 
value into an informative message to display to the user. The program must not 
yield control between calling VerlnstallFile and calling Get Extended Error. If it 
does, the MS-DOS error value could reflect a later error. (An error could also 
occur while the program is making the MS-DOS call.) 



294 Microsoft Windows Programmer's Reference 

For more information about the version-stamping functions, see the Microsoft 
Windows Programmer's Reference, Volume 2. For more information about Inter
rupt 21h Function 59h, see the Microsoft MS-DOS Programmer's Reference. 

11.3 Adding Version Information to a File 
Version information can be added to any Windows file that can have Windows 
resources, such as a dynamic-link library, an executable file, or a font file. To add 
the information, you must create a version resource and add the resource to the 
file by using RC. For more information about using RC, see Microsoft Windows 
Programming Tools. 



32-Bit Memory Management 
Library 

Chapter 12 

12.1 Segmented and Flat Memory Models...................................................... 298 
12.2 Using the WINMEM32.DLL Library ...................................................... 299 
12.3 Considerations for Using 32-Bit Memory ............................................... 300 

12.3.1 Flat Memory Model Limitations ............................................. 301 
12.3.2 The Application Stack............................................................. 301 
12.3.3 Interrupt-TimeCode ................................................................ 302 
12.3.4 Programming Languages......................................................... 302 

12.4 Using 32-Bit Memory in a Windows Application .................................. 303 
12.4.1 Using 32-Bit Data Objects ....................................................... 303 
12.4.2 Using 32-Bit Code and Data in a Subroutine Library ............. 303 
12.4.3 Using 32-Bit Code and Data for the Main Program ................ 304 

12.5 Error Values ............................................................................................. 304 





Chapter 12 32-Bit Memory Management Library 297 

One of the significant features of 80386 and 80486 processors is the availability of 
32-bit registers for the manipulation of code and data. Applications written to use 
these registers can avoid the segmented memory model of earlier CPUs and in
stead use a flat memory model in which memory is viewed as a single, contiguous 
block. 

Although the Microsoft Windows operating system continues to adhere to a seg
mented 16-bit memory model, Windows does provide a set of functions that allow 
an application to make use of the 32-bit memory-addressing capabilities of the 
80386 and 80486 processors. These functions are available to an application 
through a dynamic-link library (DLL) named WINMEM32.DLL. 

Your application's installation program should use the file installation 
library (VER.DLL) to ensure that it does not install an older version of 
WINMEM32.DLL over a newer version. For more information about VER.DLL, 
see Chapter 11, "File Installation Library." 

This chapter introduces the functions contained in WINMEM32.DLL and explains 
how to use these functions in the context of a Windows application. It covers the 
following information: 

• Some of the differences between a segmented memory model and a flat 
memory model 

• Use of WINMEM32.DLL to take advantage of the 32-bit memory-addressing 
capabilities of 80386 and 80486 processors 

• Programming considerations for use of 32-bit memory in a Windows 
application 

• Use of 32-bit memory in a Windows application 

• A directory of WINMEM32.DLL functions 

• Assembly-language examples illustrating how to use WINMEM32.DLL 
functions 

Important You should be thoroughly familiar with the following information 
about 80386 and 80486 processors that is not covered in this chapter: 

• Terminology and concepts relating to the architecture 

• Code-management features 

• Memory-management features 

Only developers with experience writing Windows applications and assembly lan
guage code should attempt to use these functions in an application. 



298 Microsoft Windows Programmer's Reference 

12 .1 Segmented and Flat Memory Models 
The family of processors that includes 80286, 80386, and 80486 processors imple
ments a segmented memory model in which system memory is divided into 64K 
segments. In the real mode of these processors, the address of any byte consists of 
two 16-bit values: a segment address and an offset. (Windows version 3.1 does not 
support real mode.) In the protected mode of the 80286, 80386, and 80486 proces
sors, the segment address is replaced by a selector value that the processor uses to 
access the 64K segment. In either mode, a memory object larger than 64K occu
pies all or part of several segments. An application cannot access such an object as 
though it consisted of a single contiguous block simply by incrementing a pointer 
to the memory. Instead, the application can increment only the offset portion of 
the address, taking care not to exceed the 64K boundary of the segment. 

The 80386 processor introduced 32-bit registers that parallel the 16-bit registers 
of older processors. These registers make it possible for the first time to access 
memory in segments larger than 64K. In fact, the maximum segment size is poten
tially so large (232 bytes) that a flat memory model utilizing a single segment is 
now feasible. In this model, an application's code, data, or both occupy a single 
segment. The application can manipulate the 32-bit offset portion of the memory 
as though it were a simple pointer. The application can increment and decrement 
the offset portion of the memory throughout the address space without having to 
deal with multiple segment boundaries. 

To a certain extent, the flat memory model most closely resembles the tiny 
memory model, in which both code and data occupy a single segment; of course, 
the segment is much larger than the 64K limit imposed by the segmented memory 
model. As in the tiny memory model, the beginning of the segment of the flat 
memory model can appear anywhere in memory. In other words, the segment
descriptor portion of the address can refer to virtually any location in memory. As 
the application moves through memory, the segment descriptor never changes. 
Only the offset is incremented and decremented to point to different locations in 
memory. 

The flat memory model makes it possible for you to ignore segments and segment 
registers. The segment registers are loaded at the start of the 32-bit code and are 
then left alone. The rest of the application runs in this purely 32-bit offset mode
all pointers are near pointers. 

It is not possible to implement a Windows application by using an exclusively 
flat memory model. Because Windows itself relies on the 16-bit segmented 
memory model, any application that interacts with Windows must implement at 
least one 16-bit code segment. Despite this limitation, it is possible for a Windows 
application to reside largely in one or more 32-bit code segments and to use 32-bit 
data segments. The WINMEM32.DLL library makes this possible in a way that 
ensures the application cooperates fully with Windows and similar platforms. For 
more information, see Section 12.3.1, "Flat Memory Model Limitations." 



Chapter 12 32-Bit Memory Management Library 299 

12.2 Using the WINMEM32.DLL Library 
Although you could directly implement code for a flat memory model in your 
Windows application, this implementation would necessarily be unique to your 
application. As a result, your application might not run with future versions of 
Windows or with other compatible platforms. 

WINMEM32.DLL supplies a standard method for implementing a flat memory 
model that is guaranteed to run with future versions of Windows and other compat
ible platforms. It gives your application access to services for allocating, reallocat
ing, and freeing 32-bit memory objects; for translating 32-bit pointers to 16-bit 
pointers that can be used by Windows and MS-DOS functions; and for aliasing a 
data segment to a code segment so you can execute code loaded into a 32-bit seg
ment. 

Your application can load WINMEM32.DLL when Windows is running in stan
dard or 386 enhanced mode. However, because the 32-bit registers of the 80386 
or 80486 processor are available only when Windows is in 386 enhanced mode, 
WINMEM32.DLL is enabled only in that mode. If your application runs in stan
dard mode, you must design your application so that it can access 16-bit memory 
instead of 32-bit memory. You can find out which mode Windows is running in 
by calling the GetWinFlags function. 

WINMEM32.DLL contains eight functions that enable your application to access 
32-bit memory. The following table summarizes each of these functions: 

Function 

GetWinMem32Version 

Globall 6Pointer Alloc 

Global16PointerFree 

Global32Alloc 

Global32CodeAlias 

Global32CodeAliasFree 

Global32Free 

Global32Realloc 

Description 

Returns the version number of the WINMEM32.DLL 
application programming interface (API). 
Converts a 32-bit pointer to a 16-bit pointer. 
Frees a pointer alias created by the Global16Pointer
Alloc function. 
Allocates a 32-bit memory object. 
Creates a code-segment alias for a 32-bit memory object, 
allowing code in the object to be executed. 
Frees a code-segment alias created by the Global32-
CodeAlias function. 
Frees a 32-bit memory object. 
Changes the size of a 32-bit memory object. 

A directory listing of these functions appears later in this chapter. 

Because WINMEM32.DLL is a standard Windows DLL, your application loads it 
as it would any other DLL. Your application should be linked so that the case of 
the DLL entry point names is ignored. 



300 Microsoft Windows Programmer's Reference 

The WINMEM32.DLL functions use the same calling conventions as other 
Windows functions. The DLL entry points are external FAR PASCAL proce
dures. They preserve the SS, BP, DS, SI, and DI registers, and they return values 
in the AX register or the DX:AX register pair. 

12 .3 Considerations for Using 32-Bit Memory 
As previously noted, Windows adheres to the segmented memory model. That is, 
all far pointers are in the form 16: 16 consisting of a 16-bit segment selector, com
bined with a 16-bit offset within the segment. An application using the 32-bit regis
ters of the 80386 or 80486 processor cannot directly call the Windows functions, 
because its far pointers are in the form 16:32 and Windows cannot work with the 
extra 16 bits in the offset portion of the address. 

Because of this conflict, a Windows application cannot reside exclusively in a 
32-bit segment. It must contain at least one 16-bit helper code segment through 
which it interacts with Windows (including WINMEM32.DLL). In other words, 
all calls to Windows functions must be made in the helper code segment. The 
helper segment contains the code that converts the 16:32 pointers in the 32-bit 
segment to the 16: 16 pointers used by Windows functions. This segment also 
performs the same tasks for the application when the application makes calls to 
MS-DOS, to other DLLs, or to any other code that uses 16:16 pointers exclu
sively. 

An important limitation on this helper segment is that it must not be discardable 
(although it can be movable). If the segment is discarded and a 32-bit segment 
attempts to access the segment, an indirect call into the Windows kernel module 
to reload the segment results. Because the source of this indirect call is not a 16-bit 
segment, the system might crash. 

Another important consideration is that in writing your application you must not 
assume anything about the state of the 32-bit registers around 16:16 function calls. 
For instance, the Windows function calls preserve SI and DI registers, but they pre
sently do not preserve ESI and EDI registers. If the application needs to preserve 
32-bit registers around 16:16 function calls, it must explicitly push and pop the reg
ister values around the calls. If the 32-bit code segment that calls a Windows func
tion (by means of the helper segment) needs ESI and EDI registers to be preserved 
when the Windows function returns, the helper segment must explicitly save the 
registers before making the actual Windows function call. The helper segment 
must then restore the registers when the Windows function returns. 

This rule also applies to return values when a 32-bit segment indirectly calls a 
Windows function and the caller requires a 32-bit return value. The helper seg
ment must explicitly set the high-order 16 bits of the return value when it moves 
it into the EAX register, as shown in the following examples: 



Chapter 12 32-Bit Memory Management Library 301 

movzx eax,ax unsigned return 

movsx eax,ax signed return 

All these considerations apply equally to calls to Windows DLLs, MS-DOS, and 
other 16-bit functions. 

12.3.1 Flat Memory Model Limitations 
In the Windows environment, system memory is a shared resource that Windows 
manages on behalf of all applications. For this reason, a true flat memory model 
is not possible in the Windows environment. When an application allocates 32-bit 
memory in Windows, the memory that Windows gives the application can be 
located anywhere in physical memory. The memory to which the selector refers 
is specific to the application and does not include systemwide memory locations. 
In other words, the selector that the application receives does not refer to linear 
address 0. This means that offset 400h for the selector does not point to the 
MS-DOS ROM BIOS data area, for example. 

Windows applications do not need to address these systemwide memory locations 
directly, so there is no need to map these locations in the 32-bit memory objects. 

12.3.2 The Application Stack 
Windows cannot operate in an environment of mixed segment types (including 
both 16: 16 and 16:32 segments). As a result, the stack selector size must match the 
corresponding code selector size. When the processor is executing code in a 16:32 
(USE32) code segment, the selector in the SS register must contain a 16:32 selec
tor. When the processor is executing code in a 16:16 (USE16) segment, the SS reg
ister must contain a 16: 16 selector. 

When the 80386 or 80486 processor is executing on a USE16 stack segment, it 
uses the low-order 16 bits of the ESP register as the SP register. Because only the 
low-order 16 bits are of use when the processor is running on a USE16 stack seg
ment, the processor does not control how the high-order 16 bits of the ESP register 
are set. As a result, the high-order 16 bits are set at random. When an application 
switches to a USE32 stack segment, the ESP register contains a corrupted pointer 
unless the high-order 16 bits of ESP are set properly. 

Suppose that a Windows application has a USE32 code segment and a USE16 
helper segment, but (improperly) only a USE32 stack. When the application calls 
from its USE32 code into the USE16 segment, the application continues to use 
its USE32 stack. The USE16 code segment calls a Windows function, which 
changes the selector in the SS register to a USE16 selector. Because the stack is 
now USE16, the high-order 16 bits of the ESP register are set at random. The code 
that originally switched stacks then restores the original selector in SS and, lacking 



302 Microsoft Windows Programmer's Reference 

the information that the selector referred to a USE32 stack, restores the 16-bit SP 
register instead of the full 32 bits of the ESP register. As a result, the USE32 stack 
now has an invalid pointer in the ESP register. 

There are a number of ways to deal with this problem. One solution is for an appli
cation to maintain two separate stacks, one USE16 and the other USE32. Maintain
ing separate stacks requires you to include extra code-for example, you must 
copy parameters for stack-calling conventions such as that used in C. Another solu
tion is to maintain one stack but two stack selectors, one USE16 and the other 
USE32, both of which point to the same memory. This requires the USE32 stack 
to be restricted to ESP values less than or equal to FFFFh. 

In either case, the USE16 code segment must switch to the USE32 stack immedi
ately before calling into a USE32 code segment. When control returns from the 
USE32 code segment to the USE16 code segment, the USE16 segment must 
switch back to the USE16 stack before doing anything else. 

Because the problem with stack switching is the corruption of the high 16 bits of 
ESP, a Windows application with 16:32 code must make sure that it sets the high 
16 bits of ESP when it is switching to the USE32 stack selector. It sets these bits 
by placing the selector into the SS register, as shown in the following example: 

mov ss,word ptr [Use32StackSel] 
mov esp,dword ptr [Use32Stack0ffset] 

mov ss,word ptr [Use32StackSel] 
movzx esp.word ptr [Use32Stack0ffset] 

mov ss,word ptr [Use32StackSelJ 
movzx esp,sp 

12.3.3 Interrupt-Time Code 
A 32-bit code segment in a Windows application must not contain code that is 
executed at interrupt time. Also, it must not contain data that is accessed at inter
rupt time. Any code executed at interrupt time must be in a USE16 code segment. 
The code must use a USE16 stack. Data used at interrupt time must be USE16 
data. This rule also applies to processor exceptions (such as the coprocessor excep
tion) because they are handled as interrupts are handled. Note, however, that it is 
acceptable for a 32-bit code segment to access data in a USE16 data segment. 

12.3.4 Programming Languages 
The helper segment has to perform very low-level tasks to manage transitions 
between USE16 and USE32 stacks and between USE16 and USE32 code. For this 
reason, it is difficult to use a high-level language such as C to write the helper 



Chapter 12 32-Bit Memory Management Library 303 

segment code. Even if you write the helper segment in C, you must add assembly
language support for the more difficult tasks. In most cases, it is easier and more 
efficient to write the entire helper segment in assembly language. 

12 .4 Using 32-Bit Memory in a Windows Application 
There are three common uses for 32-bit memory in a Windows application. In 
increasing order of complexity, they are: 

• Using 32-bit data objects in 16-bit code 

• Using 32-bit code and data in a subroutine library 

• Using 32-bit code and data for the main program 

The remaining topics in this section briefly describe these uses. 

12.4.1 Using 32-Bit Data Objects 
The simplest use of 32-bit memory is to store data that is used exclusively by 
USE16 code segments. In this case, the application does not require a dedicated 
helper segment because it contains no USE32 code segments. Instead, each of its 
code segments performs the necessary tasks of allocating, reallocating, and freeing 
the 32-bit memory. If data from the 32-bit memory is to be passed to Windows 
functions or other 16-bit functions, the application calls the Globall6Pointer
Alloc function so that the application's USE16 code segment can perform the alias
ing of 32-bit pointers to the 16-bit pointers. 

12.4.2 Using 32-Bit Code and Data in a Subroutine Library 
Using 32-bit segments for code and data can simplify porting an application from 
a 32-bit platform to the Windows environment when portions of the application 
can be isolated as a subroutine library. This subroutine library serves as a low
level engine but does not call Windows or MS-DOS functions. 

As when the 32-bit memory is used exclusively for data storage, the USE16 code 
segment retains control of the program. Typically, the USE16 segment allocates 
the 32-bit memory, creating one or more objects for code and data. In addition to 
the data-management tasks described in Section 12.3, "Considerations for Using 
32-Bit Memory," the USE16 segment also loads the subroutine code into one of 
the 32-bit segments, fixes up the pointers in the code as required, and creates a 
code-segment alias to permit the code to be executed. The USE16 code segment is 
responsible for maintaining control of the program flow, calling into the USE32 
code segment when it requires the low-level services of the subroutine library. 



304 Microsoft Windows Programmer's Reference 

12 .4.3 Using 32-Bit Code and Data for the Main Program 
The most complex use of 32-bit memory involves placing the primary control 
of the program in a 32-bit code segment. In this type of application, the USE16 
segment is reduced to helper status exclusively. During initialization, the USE16 
segment allocates the 32-bit memory for code and data, loads the code into the 
USE32 segment, creates a code-segment alias for the USE32 segment, and then 
calls the main entry point in the USE32 segment. 

From then on, the USE32 segment takes control of the program, calling into the 
USE16 helper segment only when the application needs to call Windows or 
MS-DOS functions. The USE32 segment continues to control the flow of the pro
gram until the application is ready to close. Only then does it return control to the 
USE16 segment so the USE16 segment can free the 32-bit memory and perform 
other cleanup tasks before the application quits. 

12.5 Error Values 
This section describes error values returned by the functions that applications can 
use for 32-bit memory management. Most of these functions return zero to indi
cate success. The following table describes each error value: 

Value 

WM32_Insufficient_Mem 

WM32_Insufficient_Sels 

WM32_Invalid_Arg 

WM32_Invalid_Flags 

WM32_Invalid_Func 

Meaning 

Insufficient memory. There is not enough memory to 
satisfy the requested allocation or reallocation. 

Selector not available. There is not enough room in the 
descriptor table(s) to allocate the required selector(s). 
It may be necessary to advise the user to close other 
Windows applications. 

Invalid parameter. One of the parameters was invalid. 
For example, a size parameter might be out of range. 

Invalid flag. The wFlags parameter contained at least 
one invalid bit setting. The wFlags parameter currently 
is not used and must be set to zero. 

Invalid function. The current Windows mode does not 
support this function. Windows supports the 32-bit 
memory functions only in 386 enhanced mode. 



Floating-Point-Emulation Library 

Chapter 13 

13.1 Emulation Methods.................................................................................. 307 
13.1.1 Emulation by Exception Handler ............................................ 307 
13.1.2 Windows 80x87 Floating-Point Emulation............................. 308 

13.2 Windows 3.0 Limitations......................................................................... 310 
13.3 Functions.................................................................................................. 310 
13.4 Structures .................................................................................................. 315 





Chapter 13 Floating-Point-Emulation Library 307 

This chapter describes two methods that can be used to support floating-point 
emulation in Windows applications. In particular, the chapter describes in 
detail the Windows 80x87 floating-point emulator in the dynamic-link library 
WIN87EM.DLL. This information is intended to be used by compiler vendors 
who want to develop floating-point emulators that are compatible with 
WIN87EM.DLL. 

13 .1 Emulation Methods 
With floating-point emulation, Windows applications that contain floating-point 
instructions can run on any computer, regardless of whether the computer has 
floating-point hardware. 

To support floating-point emulation for Windows applications, compiler vendors 
can use one of the following methods: 

• Emulation by exception handler 

• Windows 80x87 floating-point emulation 

13 .1.1 Emulation by Exception Handler 
With emulation by exception handler, a Windows application contains floating
point instructions for all floating-point operations and an exception handler for 
occurrences of Interrupt 07h (coprocessor not available). When the application 
starts, it installs the exception handler and the exception handler processes any 
floating-point exceptions that occur thereafter. 

When the application runs on a computer with no floating-point hardware, a 
floating-point exception occurs the first time a floating-point instruction is 
executed. The exception handler is responsible for patching and then restarting 
the instruction. To patch the floating-point instruction, the exception handler actu
ally replaces it with a call to emulation code. The new instruction calls the emula
tion code directly (rather than generating an exception) for as long as the patched 
instruction remains in memory. 

This method can be used only with the Microsoft Windows operating system, ver
sion 3.1, because Windows version 3.0 standard mode does not save and restore 
the state of the exception handler across task switches. 



308 Microsoft Windows Programmer's Reference 

This method may be less efficient than other methods because it requires that 
floating-point instructions be patched while the application is running rather than 
while it is loading. As long as the patched instructions remain in memory, how
ever, this method is as efficient as other methods. If Windows discards the code 
segments that contain the patched instructions, the floating-point instructions must 
be patched again because Windows always loads a fresh copy of the code when it 
restores the discarded segments. 

13.1.2 Windows 80x87 Floating-Point Emulation 
With Windows 80x87 floating-point emulation, the Windows application contains 
calls to floating-point instructions for all floating-point operations, but the applica
tion also includes fixup records for each instruction. When Windows loads the 
application, Windows determines whether floating-point hardware is present. If 
the hardware it is not present, Windows uses the fixup records to replace the actual 
instructions with calls to emulation code. 

To support this method, the application's startup routine must check whether 
WIN87EM.DLL is present. Then the routine must initialize WIN87EM.DLL by 
calling the __ fpmath function with the BX register set to 0 and must set the 
floating-point exception handler by calling the __ fpmath function with the BX 
register set to 3 and the DS:AX registers pointing to the exception handler. When 
the application's WinMain function returns to the startup routine, the routine must 
release WIN87EM.DLL by calling the __ fpmath function with the BX register 
set to 2. After WIN87EM.DLL has been released, the startup routine can end the 
application. 

For this method to work correctly, the Windows application must contain the 
proper fixup records-sometimes called operating system (OS) fixups-to convert 
instructions to emulation calls. For WIN87EM.DLL, each call consists of an inter
rupt (int) instruction followed by one or more words defining the floating-point 
operation and operands. The call is actually generated by the addition of fixup 
values to the first two words of the corresponding floating-point instruction. The 
fixup values to use depend on the instruction-the values are defined as follows: 

fINT equ 0CDh 
fFWAIT equ 09Bh 
fESCAPE equ 0D8h 
fFNOP equ 090h 
fES equ 026h 
fCS equ 02Eh 
fSS equ 036h 
fDS equ 03Eh 
BEG INT equ 034h 



Chapter 13 Floating-Point-Emulation Library 

FIARQQ equ ( fINT + 256*(BEGINT + 8)) - ( fFWAIT + 256*fDS) 
FISRQQ equ ( fINT + 256*(BEGINT + 8)) - ( fFWAIT + 256*fSS) 
FI C RQQ equ ( fINT + 256*(BEGINT + 8)) - (fFWAIT + 256*fCS) 
FIERQQ equ ( fI NT + 256*(BEGINT + 8)) - (fFWAIT + 256*fES) 
FIDRQQ equ (fINT + 256*(BEGINT + 0) ) - (fFWAIT + 256*fESCAPE) 
FIWRQQ equ ( fI NT + 256*(BEGINT + 9)) - ( fFNOP + 256*fFWAIT) 
FJARQQ equ 256*( ( (0 shl 6) or (fESCAPE and 03Fh)) - fESCAPE) 
FJSRQQ equ 256*(((1 sh l 6) or ( fESCAPE and 03Fh)) - fESCAPE) 
FJCRQQ equ 256*(((2 sh l 6) or ( fESCAPE and 03Fh)) - fESCAPE) 

Each of the six fixup record types consists of two one-word values, as shown in 
the following example: 

osfixuptbl label word 
OW FIARQQ, FJARQQ 
OW FISRQQ, FJSRQQ 
OW FICRQQ, FJCRQQ 
OW FIERQQ, 0h 
OW FIDRQQ, 0h 
OW FIWRQQ, 0h 

osfixuptbllen = $-osfixuptbl 

309 

The loader assumes that each floating-point instruction is preceded by a wait 
instruction. The loader adds the first word to the combination of the wait instruc
tion byte and the first byte in the floating-point instruction. For fixup types 1 
through 3, the loader adds the second word to the second and third bytes of the 
floating-point instruction. For types 4 through 6, the loader makes no changes to 
these bytes (it adds zero). 

Because WIN87EM.DLL polls for exceptions by using the fwait instruction, the 
loader must replace each nop and fwait instruction pair with a call to emulation 
code, even if a floating-point coprocessor is available. These instructions must 
have a corresponding fixup record of type 6. 

WIN87EM.DLL does not emulate the following floating-point instructions: 

fbld 
fbstp 
fcos 
fdecstp 
fincstp 
finit 
fldenv 
fnop 
fpreml 
frstor 

fsave 
fsetpm 
fsin 
fsincos 
fstenv 
fucom 
fucomp 
fucompp 
fxtract 



310 FPlnit 

13.2 Windows 3.0 Limitations 
Windows 3.0 does not correctly save and restore the emulator state for emulator 
functions Ox38 through Ox3E. This means that Windows applications that use a 
floating-point emulator other than WIN87EM.DLL may not run successfully if 
another application that is using WIN87EM.DLL is also running. 

Windows 3 .1 does correctly save and restore the emulator state. Therefore, 
applications that use other floating-point emulators should be run only under 
Windows 3.1. 

13.3 Functions 

FPlnit 

This section describes the functions that can be used for 80x87 floating-point emu
lation. 

LPVOID _FPinit(void) 

Parameters 

Return Value 

Comments 

See Also 

The _FPinit function initializes the Windows floating-point-emulation library 
(WIN87EM.DLL) or floating-point coprocessor and sets up a default floating
point exception-handler routine. Only dynamic-link libraries (DLLs) need to call 
this function. 

This function has no parameters. 

The return value is a pointer to the previous floating-point exception handler. 

A DLL must ensure that the floating-point emulator or coprocessor has been ini
tialized before making any function calls that use floating-point arithmetic. If a 
task that does not initialize the floating-point emulator or coprocessor can call the 
DLL, or if the task's floating-point exce1>tion handler does not handle floating
point exceptions appropriately for the DLL, the DLL must call the _FPinit func
tion to initialize the emulator or coprocessor. Before returning control to the 
calling task, the DLL must call the _FPTerm function to restore the previous 
exception handler. 

_FPTerm 



__ fpmath 311 

__ fpmath ~ 

extern 

mov 
ca 11 

Parameters 

Comments 

Example 

__ fpmath:far 

bx, Function 
__ fpmath 

floating-point function 
floating-point math 

The __ fpmath function is the control function for Windows 80x87 floating-point 
emulation. 

Function 
Specifies the floating-point function to execute. The Function parameter can be 
one of the following values: 

Value Meaning 

0 Initializes the floating-point emulator. An application calls this function 
when it starts. If an error occurs, the function sets the carry flag. Otherwise, 
it clears the flag. 

Resets the floating-point emulator. The action carried out by this function 
is similar to the action carried out by the finit instruction. 

2 Stops the floating-point emulator. An application called this function just 
before it ended. 

3 Sets the handler for the coprocessor error exception (Interrupt 16). The 
DS:AX registers must contain the 32-bit address of the exception handler. 
The emulator calls the handler whenever an unmasked floating-point excep
tion occurs. The exception handler can carry out any action-it does not 
have to return. 

I 0 Retrieves a count of the elements on the floating-point stack, copying the 
count to the AX register. The number of elements is equal to the number of 
floating-point values on the floating-point coprocessor (if one is present) 
plus any additional values stored by the emulator. 

11 Indicates whether a floating-point coprocessor is present. This function re
turns 1 in the AX register if a coprocessor is present. Otherwise, it returns 0. 

Function values 4 through 9 are not used. 

The following example initializes the floating-point emulator: 

xor 
ca 11 

bx, bx 
__ fpmath 

; bx= 0 to initialize floating point 



312 FPTerm 

FPTerm 
void _FPTerm(lpOldFPSigHandler) 
FARPROC lpOldFPSigHandler; I* address of exception handler */ 

Parameters 

Return Value 

Comments 

See Also 

The _FPTerm function restores the floating-point exception-handler routine that 
was in effect when a dynamic-link library (DLL) called the _FPinit function to 
initialize the floating-point emulator or coprocessor. Only DLLs need to call this 
function. 

lpOldFPSigHandler 
Specifies the address of the previous exception handler. 

This function does not return a value. 

A DLL must ensure that the floating-point emulator or coprocessor has been ini
tialized before making any function calls that use floating-point arithmetic. If a 
task that does not initialize the floating-point emulator or coprocessor can call the 
DLL, or if it is possible that the task's floating-point exception handler does not 
handle floating-point exceptions appropriately for the DLL, the DLL must call the 
_FPinit function to initialize the emulator or coprocessor. Before returning con
trol to the calling task, the DLL must call the _FPTerm function to restore the pre
vious exception handler. 

_FPinit 

Win87Emlnfo 
int __ Win87Emlnfo(pWJS, cbWin87EmlnfoStruct) 
Win87EmlnfoStruct far *pWIS; I* buffer to receive information *I 

*/ int cb Win87EmlnfoStruct; I* size of buffer, in bytes 

Parameters 

The __ Win87Emlnfo function retrieves information about the floating-point emu
lator, such as whether a floating-point coprocessor is present and the code and data 
segment addresses of the emulator. 

pWIS 
Points to the Win87EmlnfoStruct structure that is to receive the floating-point 
emulator information. The Win87EmlnfoStruct structure has the following 
form: 



Return Value 

typedef struct _Win87EminfoStruct { 
unsigned Version; 
unsigned SizeSaveArea; 
unsigned WinDataSeg; 
unsigned WinCodeSeg; 
unsigned Have80x87; 
unsigned Unused; 

} Win87EmlnfoStruct; 

Win87EmRestore 313 

For more information about this structure, see Section 13.4, "Structures." 

cb Win87EmlnfoStruct 
Specifies the size, in bytes, of the structure that is to receive the information. 

This function returns zero if no errors occur. Otherwise, it returns a nonzero value. 

Win87EmRestore 
int __ Win87EmRestore(void far *pWin87EmSaveArea, int cbWin87EmSaveArea) 
void far *pWin87EmSaveArea; I* buffer containing state */ 
int cbWin87EmSaveArea; I* size, in bytes, of buffer */ 

Parameters 

Return Value 

See Also 

The __ Win87EmRestore function restores the states of the floating-point 
coprocessor (if one is present) and the floating-point emulator to the states 
previously saved by the __ Win87EmSave function. 

p Win87EmSaveArea 
Points to the Win87EmSaveArea structure containing the state of the floating
point coprocessor and emulator. The __ Win87EmSave function must have 
been used previously to fill the structure. 

cbWin87EmSaveArea 
Specifies the size, in bytes, of the structure containing the emulator state. 

This function returns zero if the function is successful. Otherwise, it returns a 
nonzero value. 

__ Win87EmSave 



314 Win87EmSave 

Win87EmSave IT!J 
int __ Win87EmSave(pWin87EmSaveArea, cbWin87EmSaveArea) 
void far *pWin87EmSaveArea; I* buffer to receive state */ 
int cbWin87EmSaveArea; I* size, in bytes, of buffer */ 

Parameters 

Return Value 

Comments 

See Also 

The __ Win87EmSave function saves the current states of the floating-point 
coprocessor (if one is present) and the floating-point emulator, copying the states 
to the buffer pointed to by p Win87EmSaveArea. 

An application that calls __ Win87EmSave should call the __ Win87EmRestore 
function before carrying out any floating-point operations. 

p Win87EmSaveArea 
Points to the Win87EmSaveArea structure that is to receive the state of the 
floating-point emulator. 

cb Win87EmSaveArea 
Specifies the size, in bytes, of the structure to receive the emulator state. 

This function returns zero if the function is successful. Otherwise, it returns a 
nonzero value. 

An application can find out the size, in bytes, of the buffer needed to save the 
floating-point states by using the __ Win87Emlnfo function to retrieve the 
Win87EmlnfoStruct structure. The SizeSaveArea member of this structure 
specifies the size of the buffer. 

__ Win87Emlnfo, __ Win87EmRestore 



Win87EmlnfoStruct 315 

13.4 Structures 
This section describes the structures that can be used for 80x87 floating-point emu
lation. 

Win87EmlnfoStruct 

Members 

See Also 

typedef struct _Win87EminfoStruct { 
unsigned Version; 
unsigned SizeSaveArea; 
unsigned WinDataSeg; 
unsigned WinCodeSeg; 
unsigned Have80x87; 
unsigned Unused; 

} Win87EminfoStruct; 

The Win87EmlnfoStruct structure contains information about the floating-point 
emulator. 

Version 
Specifies the major and minor version numbers. The high-order byte specifies 
the major version number, the low-order byte the minor version number. 

SizeSaveArea 
Specifies the size, in bytes, of the buffer needed to save the floating-point emu
lator state. An application uses the specified size to allocate sufficient space to 
save the state before calling the __ Win87EmSave function. 

WinDataSeg 
Specifies the emulator's data segment address or selector. 

WinCodeSeg 
Specifies the emulator's code segment address or selector. 

Have80x87 
Specifies the floating-point emulator flag. If an 80287 or 80387 floating-point 
coprocessor is present, this member is 1. Otherwise, it is 0. 

Unused 
Not used. 

__ Win87Emlnfo, __ Win87EmSave 



316 Win87EmSaveArea 

Win87EmSaveArea 

Members 

Comments 

typedef struct _Win87EmSaveArea { 
unsigned char Save80x87Area[SIZE_80X87_AREAJ; 
unsigned char SaveEmArea[J; 

} Win87EmSaveArea; 

The Win87EmSaveArea structure contains the states of the floating-point 
coprocessor and floating-point emulator. 

Save80x87 Area 
Specifies an array of values defining the state of the floating-point coproces
sor if one is present. The array has the same format as data saved by an fsave 
instruction and consists of SIZE_80X87 _AREA (94) array elements. 

SaveEmArea 
Specifies an array of values defining the state of the floating-point emulator. 
The array has the following form: 

Have8087 db 0 1 if coprocessor is present; otherwise, 
db ? reserved 
dw ? reserved 
dw ? reserved 

Control Word lab el word emulator control word 
CWmask db ? exception masks 
CWcntl db ? arithmetic control flags 

StatusWord label word emulator status word 
SWerr db ? exception flags 
SW cc db ? condition codes 

0 

BASstk dw ? offset of start of emulator register area 
CURstk dw ? offset of current top-of-stack register 
LIMstk dw ? offset of end of emulator register area 

dw ? dup(?) reserved 

The BASstk, CURstk, and LIMstk fields specify the offsets from the start of the 
SaveEmArea member into the emulator's register area. If BASstk and CURstk 
have the same value, the stack is empty. Each of the emulator's registers is 12 
bytes long and has the form shown in the following illustration. 

0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 

Pointer --1 I I I I I I I I I I I I 
lsb msb exl exh fig tag 

'-TYi 
Mantissa Exponent Flag Tag 



See Also 

Win87EmSaveArea 317 

The mantissa contains the leading 1 before the decimal point in the high-order bit 
of the most significant byte (msb ). The exponent is not biased, that is, it is a signed 
integer. The following illustration shows the flag and tag bytes. 

Bit: 7 6 5 4 3 2 1 0 

Flag: I I x I x I x I x I x I x I x I X = unused 

Sign_J 

Bit: 7 6 5 4 3 2 1 0 

Tag: X x x x x 

Special (set for NAN or Inf) 

ZROorlNF (set for a or Inf) _ _____, 

X =unused 

__ Win87EmRestore, __ Win87EmSave 





Screen Saver Library 

Chapter 14 

14.1 About Screen Savers................................................................................ 321 
14.2 Creating a Screen Saver ........................................................................... 322 

14.2.1 Processing Screen Saver Messages .... ... ..... ..... .... .... ..... ........ ... 323 
14.2.2 Providing a Configuration Routine .... ... ..... ..... .... ... . ..... ........ ... 323 
14.2.3 Creating Module-Definition and Resource-Definition Files... 324 

14.3 Installing New Screen Savers .................................................................. 324 
14.4 A Sample Screen Saver ............................................................................ 325 

14.4.1 General-Purpose Declarations ... .... ..... ... ..... ...... ... ... .. .... ........ ... 325 
14.4.2 Message Handling . ... . ....... .... ... ..... ... . ... .... .... ...... ........ ........... ... 325 
14.4.3 Configuration Dialog Box....................................................... 327 
14.4.4 Adding Help ............................................................................. 329 
14.4.5 Exporting Functions................................................................. 330 

14.5 Functions.................................................................................................. 330 





Chapter 14 Screen Saver Library 321 

The Microsoft Windows operating system provides special applications called 
screen savers that start when the mouse and keyboard have been idle for a period 
of time. Screen savers exist for two main reasons: 

• To avoid phosphor burn caused by static images on a screen 

• To conceal sensitive information left on a screen 

Clearing a screen addresses both goals, but screen savers are not restricted to this 
simple use. They can also display animated sequences such as a fish tank or fire
works. Animated sequences avoid phosphor burn by continually changing the 
image. 

Windows provides a screen saver application that monitors the mouse and key
board and starts the screen saver after a period of inactivity. The Desktop section 
of Windows Control Panel makes it possible for users to select from a series of 
screen savers, specify how much time should elapse before the screen saver is 
started, configure screen savers, and preview screen savers. 

This chapter describes how to create a custom screen saver and add it to the library 
of screen savers users can select by using Control Panel. 

14.1 About Screen Savers 
Screen savers are Windows applications that contain specific variable decla
rations, exported functions, and resource definitions. The static-link library 
SCRNSA VE.LIB contains the WinMain function and other startup code required 
for a screen saver. To create a screen saver, you create a source module containing 
specific function and variable definitions and link it with SCRNSA VE.LIB. Your 
screen saver module is responsible only for configuring itself and for providing 
visual effects. 

Screen savers are loaded automatically when Windows starts or when a user 
activates the screen saver feature by using Control Panel. Windows monitors key
strokes and mouse movements and starts the screen saver after a period of inactiv
ity specified by the user. 

Windows does not start the screen saver if any of the following conditions exists: 

• The active application is not a Windows application. 

• A computer-based training (CBT) window is present. 

• The active application returns a nonzero value in response to the 
WM_SYSCOMMAND message sent with the SC_SCREENSA VE 
identifier. 



322 Microsoft Windows Programmer's Reference 

When your screen saver starts, the startup code in SCRNSA VE.LIB creates a 
full-screen window. The window class for the screen saver window is declared as 
follows: 

WNDCLASS els; 

cls.hCursor 
cls.hicon 
cls.lpszMenuName 
cls.lpszClassName 
cls.hbrBackground 
cls.hlnstance 
els.style 

cls.lpfnWndProc 
cls.cbWndExtra 
cls.cbClsExtra 

NULL; 
LoadiconChinst, MAKEINTATOMCID_APP)); 
NULL; 
"WindowsScreenSaverClass"; 
GetStockObject(BLACK_BRUSH); 
hlnst; 
CS_VREDRAW I CS_HREDRAW 
I CS_SAVEBITS I CS_DBLCLKS; 
ScreenSaverProc; 
0; 
0; 

Your source module provides the ScreenSaverProc window procedure. Your 
resource-definition file supplies the icon identified by ID_APP. This icon is vis
ible only when your screen saver is run as a stand-alone application. (To be run by 
Control Panel, a screen saver must have the .SCR filename extension; to be run as 
a stand-alone application, it must have the .EXE filename extension.) 

14.2 Creating a Screen Saver 
The SCRNSA VE.H header file defines the function prototypes for the screen 
saver functions in SCRNSA VE.LIB. You must include this header file in your 
source module. 

You must also define the idsAppName string. The idsAppName string should 
contain a screen saver name of the form Screen Saver.Name, where Name is a 
unique name for your screen saver. For example, a screen saver named Bouncer 
would include the following line in the STRING TABLE statement in its resource
definition file: 

STRINGTABLE PRELOAD 
BEGIN 

idsAppName "Screen Saver.Bouncer" 

/* other strings */ 

END 

If your screen saver stores configuration information, it should use the idsApp
Name string as the application heading for the configuration block in the 
CONTROL.IN! file. For more information about storing screen saver config
uration information, see Section 14.2.2, "Providing a Configuration Routine." 



Chapter 14 Screen Saver Library 323 

Your application should declare the following global variables, which are defined 
in SCRNSA VE.LIB: 

extern HANDLE hMaininstance; 
extern HWND hMainWindow; 

The hMainlnstance variable contains the instance handle of your application. The 
hMain Window variable contains the window handle of the screen saver window. 

14.2.1 Processing Screen Saver Messages 
Your screen saver module must include a ScreenSaverProc window procedure to 
receive and process messages for the screen saver window. The ScreenSaverProc 
window procedure must pass unprocessed messages to the DefScreenSaverProc 
function rather than to the DetWindowProc function. 

Your ScreenSaverProc window procedure can substitute its own actions for the 
message handling performed by DefScreenSaverProc. For information about 
how the DefScreenSaverProc function responds to key window messages, see 
Section 14.5, "Functions." 

The ScreenSaverProc window procedure must be exported by including it in the 
EXPORTS section of your module-definition (.DEF) file. 

14.2.2 Providing a Configuration Routine 
When the user chooses the Setup button, Windows uses the /c or -c command-line 
option to start the screen saver. To start the screen saver without displaying the 
configuration dialog box, Windows uses the Is or -s command-line option. When 
no command-line option is used, Windows displays the configuration dialog box, 
just as if /c had been specified. 

If your screen saver supports configuration by the user, your source module must 
provide the following functions and dialog box resource to handle configuration: 

Name 

ScreenSaverConfigureDialog 

RegisterDialogClasses 

DLG_SCRNSAVECONFIGURE 

Description 

Dialog box procedure for a configuration 
dialog box. 

Function that registers any special or non
standard window classes needed for a config
uration dialog box. 

Dialog box template for a configuration dialog 
box. 



324 Microsoft Windows Programmer's Reference 

When Windows starts your screen saver with the configuration option (/c), the 
WinMain function in SCRNSA VE.LIB calls the RegisterDialogClasses function 
and then displays the configuration dialog box. 

Define the ScreenSaverConfigureDialog function as you would any dialog box 
procedure. 

Your screen saver should save its configuration settings in the CONTROL.IN! 
file. SCRNSA VE.LIB uses the application name stored in the idsAppName 
STRINGTABLE statement as the CONTROL.INI application heading. Your 
application can use the LoadString function to retrieve the name of the heading 
from CONTROL.IN! and then use the WritePrivateProfileString and Write
PrivateProfileint functions to store the configuration information. 

The hlnst parameter of the RegisterDialogClasses function contains the instance 
handle for the screen saver. This is the same value contained in the hMain
Instance global variable. If your configuration routine does not require any 
special window classes, your RegisterDialogClasses function can simply return 
TRUE. 

14.2.3 Creating Module-Definition and Resource-Definition Files 
Be sure to export the ScreenSaverProc function and, if it is present, the Screen
SaverConfigureDialog function. The RegisterDialogClasses function should not 
be exported. 

The DESCRIPTION statement in your module-definition file must use the 
following format: 

DESCRIPTION 'SCRNSA VE : description' 

If your screen saver includes a configuration routine, you should include a dialog 
box template with the DLG_SCRNSA VECONFIGURE identifier. 

14.3 Installing New Screen Savers 
Control Panel searches the Windows startup directory for files with the .SCR 
extension when compiling the list of available screen savers. (Screen saver applica
tions are standard Windows executable files. Simply rename the compiled screen 
saver so that its extension is .SCR.) 



Chapter 14 Screen Saver Library 325 

14.4 A Sample Screen Saver 
The remainder of this chapter discusses the implementation of a screen saver appli
cation. 

14.4.1 General-Purpose Declarations 
Screen savers must use the string identifier idsAppName to identify themselves 
for other routines in SCRNSA VE.LIB: 

STRINGTABLE PRELOAD 
BEGIN 

idsAppName "Screen Saver.ScreenSaverName" 

/* other strings */ 

END 

The idsAppName string contains the name of the screen saver. The name to the 
right of the period is a unique name for the screen saver. The screen saver applica
tion can retrieve this string by calling the LoadString function. 

Screen savers must also declare the following external variables: 

HINSTANCE hMainlnstance; 
HWND hMainWindow; 

These external variables are defined in SCRNSA VE.LIB. They contain handles to 
the application instance and main window. 

14.4.2 Message Handling 
The following ScreenSaverProc function processes the WM_ CREATE, 
WM_ TIMER, WM_DESTROY, and WM_ERASEBKGND messages before 
calling the Def'ScreenSaverProc function: 

LONG FAR PASCAL ScreenSaverProc(hWnd, msg, wParam, lParam) 
HWND hWnd; 
WORD msg; 
WORD wParam; 
LONG lParam; 
{ 

RECT re; 
static WORD wBottomCount; 



326 Microsoft Windows Programmer's Reference 

switch (msg) 
{ 

case WM_CREATE: { 

} 

HANDLE hResinfo; 
GetiniEntries(); 
GetiniSettings(); 

f* load strings from STRINGTABLE */ 
f* load initialization settings */ 

f* Load DIB image. */ 

hbmlmage = LoadBitmap(hMaininstance, szDIBName); 

f* Create a timer to move the image. */ 

wTimer = SetTimer(hWnd, ID_ TIMER, wElapse, NULL); 

xPos xPosinit; 
yPos yPosinit; 

break; 

case WM_ TIMER: 

if (bPause && bBottom) { 
if (++wBottomCount 10) { 

wBottomCount = 0; 
bBottom = FALSE; 

} 

break; 
} 

Moveimage(hWnd); /*move the image slightly*/ 

break; 

case WM_DESTRDY: 

if (hbmlmage) 
DeleteObject(hbmlmage); 

if (wTimer) 
KillTimer(hWnd, ID_TIMER); 

break; 

case WM_ERASEBKGND: 
GetClientRect(hWnd, &re); 
FillRect((HDC) wParam, &re, 

CHBRUSH) GetStockObject(BLACK_BRUSH)); 
return 0L; 



} 

default: 
break; 

Chapter 14 Screen Saver Library 327 

return DefScreenSaverProc(hWnd, msg, wParam, lParam); 

If your window procedure traps the WM_DESTROY message, it must use one of 
the following methods to properly end the screen saver: 

• After processing the message, pass it to the DefScreenSaverProc function. 

• In the WM_DESTROY case of the message handler, call the PostQuitMessage 
function. 

14.4.3 Configuration Dialog Box 
A screen saver uses the ScreenSaverConfigureDialog function to process mes
sages sent to the configuration dialog box. (A screen saver's resource-definition 
file includes the dialog box template.) The configuration dialog box is displayed 
when the user selects the Setup button from Desktop section of Control Panel. 

The ScreenSaverConfigureDialog function saves its configuration information in 
the CONTROL.IN! file. This configuration information is largely specific to the 
screen saver and may include such settings as speed, color, number of objects, and 
position. 

The configuration information may also include password protection. When a 
screen saver is password protected, the user cannot deactivate it and return to the 
Windows session without typing the password in a dialog box. Adding password 
protection to a screen saver requires three dialog boxes: one for setting or chang
ing the password, one for typing the password after the screen saver has been acti
vated, and one for informing the user when the password is incorrect. These dialog 
boxes can be defined as follows: 

#define ID_OLDTEXT 100 
#define ID_ NEWTEXT 101 
#define ID_ AGAIN 102 
#define ID_ PASSWORD 103 
#define ID_ ETOLD 104 
#define ID_ ETNEW 105 
ffdefi ne ID_ ET AGAIN 106 
ffdefi ne ID_ ETPASSWORD 107 
ffdefi ne ID_ ICON 108 
#define ID_ PASSWORDH ELP 109 



328 Microsoft Windows Programmer's Reference 

#ifdef RC_INVOKED 

DLG_CHANGEPASSWORD DIALOG 8,16,174,79 
FONT 8, "MS Sans Serif" 
STYLE WS_POPUP I DS_MODALFRAME WS_CAPTION I WS_SYSMENU 
CAPTION "Change Password" 
BEGIN 

LTEXT "&Old Password:", ID_OLDTEXT, 
EDITTEXT ID_ETOLD, 
LTEXT "&New Password:", ID_NEWTEXT, 
EDITTEXT ID_ETNEW, 

4, 3,80,14 
84, 3,80,14, ES_PASSWORD 
4,21,80,14 

LTEXT "&Retype New Password:", ID_AGAIN, 
EDITTEXT ID_ETAGAIN, 

84,21,80,14, ES_PASSWORD 
4,39,80,14 

84,39,80,14, ES_PASSWORD 
4,59,40,14 DEFPUSHBUTTON "OK", IDOK, 

PUSHBUTTON "&Help", ID_PASSWORDHELP, 
PUSHBUTTON "Cancel", IDCANCEL, 

64,59,40,14 
124,59,40,14 

END 

DLG_ENTERPASSWORD DIALOG 250,175,170,96 
FONT 8, "MS Sans Serif" 
STYLE WS_POPUP I DS_MODALFRAME WS_CAPTION I WS_SYSMENU 
CAPTION "<name of screen saver>" 
BEGIN 

LTEXT "The screen saver you are using is password protected. 
You must type the screen saver password 
to turn off the screen saver.", 

LTEXT "Password:", ID_PASSWORD, 
EDITTEXT ID_ETPASSWORD, 
DEFPUSHBUTTON "OK", IDOK, 
PUSHBUTTON "Cancel", IDCANCEL, 
ICON"", ID_ICON, 

END 

-1, 31,3,140,40 
31,45,40,14 
71,45,80,14, 
31,66,40,14 

111,66,40,14 
3, 3,32,32 

DLG_INVALIDPASSWORD DIALOG 8,16,174, 79 
FONT 8, "MS Sans Serif" 

ES_ PASSWORD 

STYLE WS_POPUP I DS_MODALFRAME I WS_CAPTION WS_SYSMENU 
CAPTION "<name of screen saver>" 
BEGIN 

ICON"", ID_ICON, 3, 3, 0, 0 
LTEXT "Incorrect password;\n\nCheck your screen saver password, 

and try again.", -1, 40,3,130,40 
DEFPUSHBUTTON "OK", IDOK, 70,50,40,14 

END 
#endif 

The preceding example wraps long lines in the DLG_ENTERP ASS WORD and 
DLG_INV ALIDPASSWORD dialog boxes. These lines should not wrap in your 
resource-definition file. 



Chapter 14 Screen Saver Library 329 

The ScreenSaverConfigureDialog function typically processes a message from a 
check box that specifies whether the screen saver is password protected and a mes
sage specifying that the user has chosen the button to set the password, as shown 
in the following example: 

case ID_SETPASSWORD: { 
FARPROC fpDialog; 

if ((fpDialog = MakeProclnstance(DlgChangePassword, 
hMainlnstance)) ==NULL) 

return FALSE; 
DialogBox(hMaininstance, MAKEINTRESOURCE(DLG_CHANGEPASSWORD), 

hDlg, fpDialog); 
FreeProcinstance(fpDialog); 
SendMessage(hDlg, WM_NEXTDLGCTL, hIDOK, 11 ); 
break; 

case ID_PASSWORDPROTECTED: 
bPassword A= l; 
CheckDlgButton(hDlg, wParam, bPasswordl; 
EnableWindow(hSetPassword, bPassword); 
break; 

The DlgChangePassword function displays the DLG_CHANGEPASSWORD 
dialog box. 

14.4.4 Adding Help 
The configuration and password dialog boxes for screen savers typically include a 
Help button. Screen saver applications can check for the Help-button identifier and 
call the WinHelp function in the same way Help is provided in other Windows 
applications. In addition, SCRNSA VE.LIB includes HelpMessageFilterHook
Function, which posts the MyHelpMessage message whenever the user presses 
the Fl key while using a screen saver dialog box. A screen saver can check for this 
message in the ScreenSaverConfigureDialog function, as follows: 

switch (msg) { 

} 

/* process messages */ 

default: 
if (msg==MyHelpMessage) 

DoLocalHelpFunc(); 



330 Microsoft Windows Programmer's Reference 

14.4.5 Exporting Functions 
A typical module-definition file for a screen saver application might look like this: 

NAME BOUNCER 

DESCRIPTION 'SCRNSAVE : Bounce a bitmap' 

STUB 'WINSTUB.EXE' 
EXETYPE WINDOWS 

CODE MOVEABLE DISCARDABLE PRELOAD 
DATA MOVEABLE MULTIPLE PRELOAD 

HEAPSIZE 1024 
STACKSIZE 4096 

EXPORTS 
ScreenSaverProc @1 
ScreenSaverConfigureDialog @2 
DlgChangePassword @3 
DlgGetPassword @4 
DlginvalidPassword @5 
HelpMessageFilterHookFunction @6 

The ScreenSaverProc, ScreenSaverConfigureDialog, DlgChangePassword, 
and HelpMessageFilterHookFunctionfunctions have been discussed earlier in 
this chapter. The screen saver module typically does not make explicit calls to the 
HelpMessageFilterHookFunction, DlgGetPassword, or DlglnvalidPassword 
function. · 

14. 5 Functions 
This section describes the functions that applications can use to create a screen 
saver. 



DefScreenSaverProc 331 

DefScreenSaverProc CIIJ 
#include <scrnsave.h> 

LRESULT DefScreenSaverProc(hwnd, msg, wParam, lParam) 
HWND hwnd; /* handle of screen saver window */ 
UINT msg; /* message */ 
WPARAM wParam; I* first message parameter */ 
LPARAM lParam; I* second message parameter */ 

Parameters 

The DefScreenSaverProc function provides default processing for any messages 
that a screen saver application does not process. All window messages that are not 
explicitly processed by the screen saver application's ScreenSaverProc window 
procedure must be passed to the DefScreenSaverProc function. 

hwnd 
Identifies the screen saver window. 

msg 
Specifies the message to be processed. The DefScreenSaverProc function 
responds to messages that affect screen saver operation as follows: 

Message 

WM_ACTIVATE, 
WM_ACTIVATEAPP, 
WM_NCACTIVATE 

WM_SETCURSOR 

WM_LBUTTONDOWN, 
WM_RBUTTONDOWN, 
WM_MBUTTONDOWN, 
WM_KEYDOWN, 
WM_KEYUP, 
WM_MOUSEMOVE 

WM_DESTROY 

Response 

Closes the screen saver if wParam is 
FALSE, unless the password option is 
enabled in the configuration dialog box. 
If the password option is enabled, these 
messages are ignored. A wParam value 
of FALSE indicates that the screen 
saver is losing the input focus. The 
screen saver is closed by sending a 
WM_ CLOSE message. 

Removes the cursor from the screen by 
setting the cursor to NULL. 

Posts a WM_ CLOSE message to close 
the screen saver window, unless the 
password option is enabled. If the pass
word option is enabled, a 
WM_MOUSEMOVE message displays 
the dialog box created by the 
DlgGetPassword function. 

Calls the PostQuitMessage function to 
close the screen saver. 



332 DlgChangePassword 

Return Value 

Comments 

See Also 

Message 

WM_SYSCOMMAND 

Response 

Returns FALSE if the wParam parame
ter of the WM_SYSCOMMAND mes
sage is either SC_SCREENSAVE or 
SC_CLOSE. 

If a screen saver application must perform a different action in response to any 
of these messages, the application's ScreenSaverProc window procedure 
should process the message and not call DefScreenSaverProc for that message. 

wParam 
Specifies 16 bits of additional message-dependent information. 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value specifies the result of the message processing and depends on the 
message sent. 

A screen saver application's ScreenSaverProcwindow procedure should use 
DefScreenSaverProc in place of the DefWindowProc function. The DefScreen
SaverProc function passes any messages that do not affect screen saver operation 
to DefWindowProc. 

ScreenSaverProc 

DlgChangePassword 
#include <scrnsave.h> 

BOOL DlgChangePassword(hDlg, message, wParam, lParam) 
HWND hDlg; I* handle of dialog box */ 
UINT message; /* message */ 
WPARAM wParam; /*first message parameter */ 
LPARAM lParam; /*second message parameter */ 

Parameters 

The DlgChangePassword function receives messages from a dialog box that 
changes the password for a screen saver. 

hDlg 
Identifies the dialog box that changes the password for a screen saver. 

message 
Specifies the message. 



Return Value 

Comments 

See Also 

DlgGetPassword 333 

wParam 
Specifies 16 bits of additional message-dependent information. 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value is nonzero if the function is successful; otherwise, it is zero. 

This function is called by the ScreenSaverContigureDialog function to change 
the password for a screen saver. An application uses the MakeProclnstance func
tion with DlgChangePassword to display a configuration dialog box. 

A password applies to all screen savers using SCRNSA VE.LIB. Whether the pass
word is enabled, however, is specific to a particular screen saver. 

The dialog box template for the change password dialog box must use the 
DLG_CHANGEPASSWORD identifier (defined as 2000). 

The DlgChangePassword function must be exported by including it in an 
EXPORTS statement in the application's module-definition (.DEF) file. 

DlgGetPassword, DlglnvalidPassword, ScreenSaverContigureDialog 

DlgGetPassword 
#include <scrnsave.h> 

BOOL DlgGetPassword(hDlg, message, wParam, lParam) 
HWND hDlg; I* handle of dialog box */ 
VINT message; I* message */ 
WPARAM wParam; I* first message parameter */ 
LPARAM lParam; I* second message parameter */ 

Parameters 

The DlgGetPassword function receives messages from the dialog box that 
retrieves the user's password. 

hDlg 
Identifies the dialog box that retrieves the user's password. 

message 
Specifies the message. 

wParam 
Specifies 16 bits of additional message-dependent information. 



334 DlglnvalidPassword 

Return Value 

Comments 

See Also 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value is nonzero if the function is successful; otherwise, it is zero. 

The DlgGetPassword function is provided in SCRNSA VE.LIB. Most applica
tions provide a dialog box template and export the function without explicitly 
calling it in their code. This reference information for DlgGetPassword is pro
vided for applications that change the default behavior. 

The DlgGetPassword function is called by the DefScreenSaverProc function to 
retrieve the password for a screen saver. 

A password applies to all screen savers using SCRNSA VE.LIB. Whether the pass
word is enabled, however, is specific to a particular screen saver. 

The dialog box template for the dialog box that retrieves the user's password must 
use the DLG_ENTERPASSWORD identifier (defined as 2001). 

The DlgGetPassword function must be exported by including it in an EXPORTS 
statement in the application's module-definition (.DEF) file. 

DefScreenSaverProc, DlgChangePassword, DlglnvalidPassword 

Dig lnva I id Password 
#include <scrnsave.h> 

BOOL DlglnvalidPassword(hDlg, message, wParam, lParam) 
HWND hDlg; I* handle of dialog box */ 
UINT message; /* message */ 
WPARAM wParam; I* first message parameter */ 
LPARAM lParam; I* second message parameter */ 

Parameters 

The DlglnvalidPassword function displays a dialog box warning that a user's 
password is invalid. 

hDlg 
Identifies the dialog box that warns that a user's password is invalid. 

message 
Specifies the message. 



Return Value 

Comments 

See Also 

HelpMessageFilterHookFunction 335 

wParam 
Specifies 16 bits of additional message-dependent information. 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value is nonzero if the function is successful; otherwise, it is zero. 

The DlglnvalidPassword function is provided in SCRNSA VE.LIB. Most appli
cations provide a dialog box template and export the function without explicitly 
calling it in their code. This reference information for DlglnvalidPassword is pro
vided for applications that change the default behavior. 

DlglnvalidPassword is called during processing of the DlgGetPassword function 
when the user types an incorrect password. 

A password applies to all screen savers using SCRNSA VE.LIB. Whether the pass
word is enabled, however, is specific to a particular screen saver. 

The dialog box template for the dialog box warning that the user's password is 
invalid must use the DLG_INV ALIDPASSWORD identifier (defined as 2002). 

The DlglnvalidPassword function must be exported by including it in an 
EXPORTS statement in the application's module-definition (.DEF) file. 

DlgChangePassword, DlgGetPassword 

HelpMessageFilterHookFunction 
#include <scrnsave.h> 

DWORD HelpMessageFilterHookFunction(nCode, wParam, lpMsg) 
int nCode; I* identifier of hook */ 
WORD wParam; I* virtual-key code */ 
LPMSG lpMsg; I* address of message */ 

Parameters 

The HelpMessageFilterHookFunction function posts a message when the user 
presses the Fl key while using one of the screen saver dialog boxes. 

nCode 
Specifies a code used by the Windows hook function (also called the message
filter function) to determine how to process the message. 



336 RegisterDialogClasses 

Return Value 

Comments 

See Also 

wParam 
Specifies the virtual-key code pressed by the user. 

lpMsg 
Points to a message identifying the key event. 

The return value is TRUE if the function posts a message. Otherwise, it specifies 
the result of the default message processing and is determined by the value of the 
nCode parameter. 

The HelpMessageFilterHookFunctionfunction is provided in SCRNSAVE.LIB. 
Most applications export the function and check for the help message registered 
by the library without explicitly calling the function in their code. This reference 
information for HelpMessageFilterHookFunctionis provided for applications 
that change the default behavior. 

The HelpMessageFilterHookFunction function posts a registered message called 
MyHelpMessage. An application should check for this message in its Screen
SaverConfigureDialog function. 

The HelpMessageFilterHookFunction function must be exported by including it 
in an EXPORTS statement in the application's module-definition (.DEF) file. 

ScreenSaverConfigureDialog 

RegisterDialogClasses 
#include <scrnsave.h> 

BOOL RegisterDialogClasses(h/nst) 
HANDLE hlnst; /* handle of application instance */ 

Parameters 

Return Value 

Comments 

The RegisterDialogClasses function registers any special or nonstandard window 
classes needed by a screen saver application's configuration dialog box. 

hlnst 
Identifies an instance of the module that is registering the window classes. 

The return value is nonzero if the function is successful. Otherwise, it is zero. 

The RegisterDialogClasses function should not be exported. It is called by 
routines defined in the SCRNSA VE.LIB file. 



See Also 

ScreenSaverConfigureDialog 337 

If a screen saver does not register any special window classes for the configuration 
dialog box, the RegisterDialogClasses function can simply return a nonzero value. 

ScreenSaverConfigureDialog 

ScreenSaverConfigureDialog 
#include <scrnsave.h> 

BOOL ScreenSaverConfigureDialog(hdlg, wmsg, wParam, lParam) 
HWND hdlg; I* handle of dialog box */ 
UINT wmsg; I* message */ 
WPARAM wParam; I* first message parameter */ 
LPARAM lParam; I* second message parameter */ 

Parameters 

Return Value 

Comments 

The ScreenSaverConfigureDialog function receives messages sent to a screen 
saver application's configuration dialog box. A screen saver application that sup
ports user configuration must provide this function. 

hdlg 
Identifies the configuration dialog box. 

wmsg 
Specifies the message. 

wParam 
Specifies 16 bits of additional message-dependent information. 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value is nonzero if the function processes the message or zero if it 
does not, except in response to a WM_INITDIALOG message. In response to a 
WM_INITDIALOG message, ScreenSaverConfigureDialog should return zero if 
it calls the SetFocus function to set the input focus to one of the controls in the 
dialog box. Otherwise, it should return nonzero, in which case the system sets the 
input focus to the first control in the dialog box that can be given the focus. 

An application uses the MakeProclnstance function with ScreenSaver
ConfigureDialog to display a configuration dialog box. 

The dialog box template for the configuration dialog box must have the 
DLG_SCRNSA VECONFIGUREidentifier. 



338 ScreenSaverProc 

See Also 

A screen saver application should save its configuration settings in the 
CONTROL.IN! file. 

The dialog box procedure is used only if the default window class 
(WC_DIALOG) is used for the dialog box. The default class is used if no 
explicit class is given in the dialog box template. Although the dialog box proce
dure is similar to a window procedure, it must not call the DetwindowProc func
tion to process unwanted messages. Unwanted messages are processed internally 
by the default dialog box procedure. 

The ScreenSaverConfigureDialog function must be exported by including it in 
an EXPORTS statement in the application's module-definition (.DEF) file. 

MakeProclnstance, RegisterDialogClasses 

ScreenSaverProc 
#include <scrnsave.h> 

LRESULT ScreenSaverProc(hwnd, wmsg, wParam, lParam) 
HWND hwnd; I* handle of screen saver window */ 
unsigned wmsg; I* message */ 
UINT wParam; I* first message parameter */ 
LPARAM lParam; I* second message parameter */ 

The ScreenSaverProc function receives messages sent to a screen saver window. 

Parameters hwnd 

Return Value 

Identifies the window. 

wmsg 
Specifies the message. 

wParam 
Specifies 16 bits of additional message-dependent information. 

lParam 
Specifies 32 bits of additional message-dependent information. 

The return value is the result of the message processing. It depends on the message 
that is processed. 



Comments 

See Also 

ScreenSaverProc 339 

A screen saver application's ScreenSaverProc window procedure should use the 
DefScreenSaverProc function instead of the DefWindowProc function to pro
vide default message processing. The DefScreenSaverProc function passes any 
messages that do not affect screen saver operations to DefWindowProc. 

The ScreenSaverProc function must be exported by including it in an EXPORTS 
statement in the application's module-definition (.DEF) file. 

DefScreenSaverProc 





Application Notes 

Part 3 





Control Panel Applications 

Chapter 15 

15 .1 Starting a Control Panel Application....................................................... 345 
15.2 Creating a Control Panel Application...................................................... 347 

15.2.1 Creating the Entry-Point Function........................................... 348 
15.2.2 Initializing the Application...................................................... 349 
15.2.3 Responding to User Actions.................................................... 350 
15.2.4 Exiting the Application and the DLL ...................................... 350 
15.2.5 Example of a Control Panel Application................................. 350 

15.3 Installing a New Application................................................................... 352 





Chapter 15 Control Panel Applications 345 

This chapter describes Control Panel (CONTROL.EXE) for the Microsoft 
Windows operating system. It explains how to create a Control Panel application 
and then add the application to Control Panel. 

Control Panel provides a window for running applications. These applications are 
used to configure the Windows environment. A number of standard applications 
are included with Windows. However, additional ones can be created and added to 
Control Panel. This capability is useful for modifying environmental factors 
unique to specific hardware and software. The following illustration shows the 
Control Panel window: 

- Control Panel ~ 
.Settings Help 

HI A\ - e • -,, 
Color Fonts Ports Mouse Desktop Keyboard - • rr!Jl M , ~ 

Prinlers International Date/Time Network 386 Enhanced Drivers 

e_~ 
11!11!!11 

An application is contained in a dynamic-link library (DLL). A DLL can support 
more than one Control Panel application. 

Control Panel loads Control Panel application libraries in this order: 

1. The library containing the standard Control Panel applications 

2. Libraries specified in the [MMCPL] section of the CONTROL.INI file 

3. Libraries with the .CPL filename extension residing in the same directory as the 
CONTROL.EXE file 

4. Libraries with the .CPL filename extension residing in the Windows SYSTEM 
directory 

15 .1 Starting a Control Panel Application 
There are three ways to start a Control Panel application: 

• The user can open Control Panel and start an application by double-clicking the 
application icon. 

• The user or an application can open Control Panel by using a command-line 
argument that specifies the name of the application to start. When the Control 
Panel application closes, Control Panel automatically closes. 



346 Microsoft Windows Programmer's Reference 

• An application can send a WM_CPL_LAUNCH message to Control Panel 
while Control Panel is running. When the Control Panel application closes, 
Control Panel sends back a WM_CPL_LAUNCHED confirmation message. 
For more information about these messages, see the Microsoft Windows 
Programmer's Reference, Volume 3. 

The following example shows how an application can start Control Panel and the 
Printers application from the command line by using the WinExec function: 

WinExec("control .exe printers", SW_SHOWNORMAL) 

When Control Panel starts, it immediately displays the Printers application. After 
the Printers application finishes, Control Panel ends. 

The following example shows a function that starts a Control Panel application by 
using the WM_CPL_LAUNCH message: 

BOOL StartApplet(LPSTR lpszName, HWND hwndMine) 
{ 

HANDLE hAppletName; 
HWND hwndCPL; 
LPSTR lpszAppletName; 
BOOL fStartedCPL = FALSE; 

f* 

f* global-object handle for app name */ 
f* handle of Control Panel window */ 
f* name of the application */ 
/*application started by CONTROL.EXE? */ 

*Allocate a global, sharable memory block to hold the 
*application-name string. 
*f 

hAppletName = GlobalAlloc(GMEM_MOVEABLE I GMEM_NOT_BANKED, 
lstrlen(lpszName) + 1); 

if(hAppletName == (HANDLE) NULL) 
return FALSE; 

lpszAppletName = GlobalLock(hAppletName); 
lstrcpy(lpszAppletName, lpszName); 
GlobalUnlock(hAppletName); 

f* 
*Get the Control Panel window handle and start Control Panel, if 
* necessary. 
*f 

if((hwndCPL = FindWindow((LPSTR) "CtlPanelClass", 
(LPSTR) "Control Panel")) == (HWND) NULL) { 

WinExec("control.exe", SW_SHOWNA); 
hwndCPL = FindWindow((LPSTR) "CtlPanelClass", 

(LPSTR) "Control Panel"); 



} 

} 

Chapter 15 Control Panel Applications 347 

ifC!hwndCPL) { 
GlobalFree(hAppletName); 
return FALSE; 

} 

fStartedCPL = TRUE; 

/*Start the application and end Control Panel, if started. */ 

SendMessage(hwndCPL, WM_CPL_LAUNCH, (WPARAM) hwndMine, 
(LPARAM) lpszAppletName); 

ifCfStartedCPL) 
SendMessage(hwndCPL, WM_CLOSE, 0, 0L); 

GlobalFree(hAppletName); 
return TRUE; 

15.2 Creating a Control Panel Application 
A Control Panel application must reside in a DLL that includes a standard entry
point function named CPIApplet. The application must include the CPL.H header 
file for the definition of the Control Panel messages. Control Panel communicates 
with the DLL by sending the following CPL messages to the CPIApplet function: 

Message 

CPL_DBLCLK 

CPL_EXIT 

CPL_GETCOUNT 

CPL_INIT 

CPL_INQUIRE 

Description 

Sent when the user double-clicks an application icon. In 
response to this message, the DLL should start its configura
tion process, usually displaying a dialog box. 

Sent after the last CPL_STOP message and immediately 
before Control Panel calls the FreeLibrary function for the 
DLL. In response to this message, the DLL should free any 
remaining memory and prepare to exit. 

Sent after the CPL_INIT message, to prompt the DLL to 
return a number indicating how many applications it services. 

Sent immediately after the DLL is loaded, to prompt the DLL 
to perform initialization procedures, including memory allo
cation. 

Sent after the CPL_GETCOUNT message, to prompt the 
DLL to provide information about each application. The han
dler for this message is a good place to include any initializa
tion required by individual applications. 



348 Microsoft Windows Programmer's Reference 

Message 

CPL_NEWINQUIRE 

CPL_SELECT 

CPL_STOP 

Description 

Sent to a Control Panel DLL to request information about an 
application that the DLL supports. The CPL_NEWINQUIRE 
message is the same as the CPL_INQUIRE message except 
that its second parameter (lParam2) is a pointer to a NEW
CPLINFO structure instead of a CPLINFO structure. New 
applications should use CPL_NEWINQUIRE instead of 
CPL_INQUIRE. 

Sent when the user selects an application icon. 

Sent once for each application before Control Panel ends. In 
response to this message, the DLL should free any memory 
associated with the individual application for which the mes
sage is sent. 

For more information about these messages, see the Microsoft Windows 
Programmer's Reference, Volume 3. 

15.2.1 Creating the Entry-Point Function 
Control Panel communicates with an application DLL through the CPIApplet 
function. Be sure to export this function by listing it in the EXPORTS statement 
of your module-definition (.DEF) file. The CPIApplet function handles the mes
sages listed previously, performing three main tasks: 

Task 

Initializing the application 
(CPL_INIT, 
CPL_INQUIRE) 

Running the application 
(CPL_DBLCLK) 

Closing the application 
(CPL_STOP, CPL_EXIT) 

Result 

Allocates any memory needed and gives Control Panel 
the information needed to display the application icon. 

Passes control to a dialog box and its associated message 
processor. 

Frees any memory allocated and prepares to exit. 

The CPIApplet function has the following format: 

LONG CALLBACK* CPIApplet(hwndCPL, iMessage, lParaml, lParam2) 

The hwndCP L parameter contains the handle of the Control Panel window. 
The iMessage parameter contains one of the CPL messages listed previously. 
The lParaml and lParam2 parameters contain message-dependent values. For 
more information about the CPIApplet function, see the Microsoft Windows 
Programmer's Reference, Volume 2. 



Chapter 15 Control Panel Applications 349 

15.2.2 Initializing the Application 
To initialize a Control Panel application, Control Panel sends the CPL_INIT 
message first to the CPIApplet function, which prompts the application DLL to 
perform initialization procedures. If initialization succeeds, CPIApplet returns 
nonzero. 

If CPIApplet returns zero in response to the CPL_INIT message, Control Panel 
calls the FreeLibrary function and ends communication with the application 
DLL. This is the only way an application can notify Control Panel of initialization 
problems and prevent the application from being loaded. 

If initialization is successful, Control Panel sends the CPL_GETCOUNT message. 
The CPIApplet function responds by returning the number of applications ser
viced by the application DLL. This number determines how many icons Control 
Panel displays for the DLL. 

Once Control Panel finds out the number of applications serviced by the DLL, it 
sends the CPL_NEWINQUIRE message once for each application. The lParaml 
parameter specifies the application number, which is zero for the first application 
and CPL_GETCOUNT minus 1 for the last application. 

Control Panel passes a far pointer to a NEWCPLINFO structure in the lParam2 
parameter. The NEWCPLINFO structure has the following form: 

typedef struct tagNEWCPLINFO /* ncpli */ 
{ 

DWORD dwSize; /* length of structure, in bytes */ 
DWORD dwFlags; /* setup flags */ 
DWORD dwHelpContext; /* help-context number */ 
LONG l Data ; /* application-defined data */ 
HI CON hicon; /* handle of icon (owned by CPL.EXE) */ 
char szName[32]; /* short-name string */ 
char szinfo[64J; /* description string (status line) */ 
char szHelpFile[128J; /* path to help file */ 

} NEWCPLINFO; 

The CPIApplet function must fill in the NEWCPLINFO structure. The function 
must assign values for the dwSize, hlcon, szName, and szlnfo members for the 
structure size, application icon, short name, and description. To add an accelerator 
key for the application, precede the selected accelerator character in the szName 
string with an ampersand. If the application DLL supports context-sensitive Help, 
the CPIApplet function should also assign the values for the dwHelpContext and 
szHelpFile members. The IData member can be used for application-defined data. 



350 Microsoft Windows Programmer's Reference 

Note The CPL_NEWINQUIRE message and NEWCPLINFO structure replace 
the CPL_INQUIRE message and CPLINFO structure. The latter have been kept 
for backward compatibility with Windows version 3.0. If the application DLL 
does not respond to the CPL_NEWINQUIRE message, Control Panel sends it the 
CPL_INQUIRE message. Then the lParam2 parameter points to a CPLINFO 
structure rather than to a NEWCPLINFO structure. For more information about 
these structures, see the Microsoft Windows Programmer's Reference, Volume 3. 

15.2.3 Responding to User Actions 
Control Panel sends the CPL_SELECT and CPL_DBLCLK messages when the 
user selects (single-clicks) or double-clicks an application icon. For each message, 
Control Panel passes the application number in lParaml and the IData value in 
lParam2. 

Typically, an application DLL responds to the CPL_SELECT message by doing 
nothing. When it receives the CPL_DBLCLK message, it transfers control to the 
appropriate dialog box. 

15.2.4 Exiting the Application and the DLL 
Before exiting, Control Panel sends the CPL_STOP message once for each 
application in the DLL. The lParaml and lParam2 parameters sent with the 
CPL_STOP message correspond to the application number and the IData 
value. After Control Panel sends the last CPL_STOP message, it sends a 
CPL_EXIT message and then calls the FreeLibrary function to free the DLL. 

When the CPL_STOP and CPL_EXIT cases in the switch statement are exe
cuted, the DLL frees memory that it allocated. Typically, the DLL frees memory 
associated with individual applications when the CPL_STOP case is executed and 
frees any other allocated memory when the CPL_EXIT case is executed. 

15.2.5 Example of a Control Panel Application 
The following example shows the CPIApplet function for a DLL containing 
three Control Panel applications that set preferences for a component stereo sys
tem attached to the computer. 

The example uses a programmer-defined StereoApplets array that contains three 
structures, each corresponding to one of the Control Panel applications. Each 
structure contains all the information required by the CPL_INQUIRE message, 
as well as the dialog box template and dialog box procedure required by the 
CPL_DBLCLK message. The following example fills the structures in the Stereo
Applets array: 



Chapter 15 Control Panel Applications 351 

#define NUM_APPLETS 3 

typedef struct tagApplets 
{ 

int icon; /* icon-resource identifier 
int namestring; /* name-string resource identifier 
int descstring; /* description-string resource identifier 
int dlgtemplate; /* dialog box template resource identifier 
FARPROC dlgfn; /* dialog box procedure 

} APPLETS; 

APPLETS StereoApplets[NUM_APPLETS] 
{ 

} ; 

AMP_ICON, AMP_NAME, AMP_DESC, AMP_DLG, AmpDlgProc, 
TUNER_ICON, TUNER_NAME, TUNER_DESC, TUNER_DLG, TunerDlgProc, 
TAPE_ICON, TAPE_NAME, TAPE_DESC, TAPE_DLG, TapeDlgProc, 

This code defines the CPIApplet function for the preceding example: 

LONG FAR PASCAL CPlApplet(hwndCPL, iMessage, lParaml, 1Param2) 
HWND hwndCPL; /* handle of Control Panel window */ 
unsigned int iMessage; /* message */ 
LONG lParaml; /*first message parameter */ 
LONG 1Param2; /*second message parameter */ 
{ 

int i ; 
LPCPLINFO lpCPllnfo; 

i = (int) lParaml; 

switch (iMessage) { 
case CPL_INIT: /* first message, sent once */ 

return ((LONG) TRUE); 

case CPL_GETCOUNT: /* second message, sent once */ 
return (NUM_APPLETS); 
break; 

case CPL_INQUIRE: /* third message, sent once per app */ 
lpCPlinfo = (LPCPLINF0)1Param2; 

lpCPlinfo->idlcon 
lpCPlinfo->idName 
lpCPlinfo->idinfo 
l pCPl Info->l Data 

break; 

StereoApplets[i].icon; 
StereoApplets[i].namestring; 
StereoApplets[i].descstring; 
0L; 

case CPL_SELECT: /*application selected*/ 
break; 

*/ 
*/ 
*/ 
*/ 
*/ 



352 Microsoft Windows Programmer's Reference 

} 

} 

case CPL_DBLCLK: /*application double-clicked*/ 
DialogBox(hinstance, 

MAKEINTRESOURCE(StereoApplets[i].dlgtemplate), 
hwndCPL, (DLGPROC) StereoApplets[i].dlgfn); 

break; 

case CPL_STOP: /* sent once per app before CPL_EXIT */ 
break; 

case CPL_EXIT: /*sent once before Freelibrary called*/ 
break; 

default: 
break; 

return (0L); 

15.3 Installing a New Application 
There are three ways to register an application DLL with Control Panel: 

• List the DLL in the [MMCPL] section of the CONTROL.IN! file. Use this 
method when the DLL is part of a system library and handles more than just 
messages from Control Panel. The following is a sample CONTROL.INI entry: 

[MMC PL] 
myapplets=mydll .dll 

• Assign the DLL a .CPL filename extension and install it in the directory that 
contains the CONTROL.IN! file. 

• Assign the DLL a .CPL filename extension and install it in the Windows 
SYSTEM directory. 



File Manager Extensions 

Chapter 16 

16.1 Creating a File Manager Extension ... ..... ......... .......... ... ...... ..... .... ......... ... 355 
16.2 Creating the Entry-Point Function........................................................... 356 

16.2.1 Loading the Extension............................................................. 357 
16.2.2 
16.2.3 
16.2.4 
16.2.5 
16.2.6 

Processing Menu Selections ... ..... ... . . ...... ... ... ... . .. . ... . .... ........ .... 357 
Initializing the Extension Menu .... .... ... . ...... ....... ........ ......... .... 357 
Updating the Extension Menu................................................. 358 
Processing File Selections ....................................................... 358 
Quitting the Extension DLL .................................................... 358 

16.3 Installing Extensions................................................................................ 358 
16.4 Extension Messages................................................................................. 359 
16.5 File Manager Extension Example............................................................ 360 
16.6 Adding the Undelete Command.............................................................. 363 





Chapter 16 File Manager Extensions 355 

This chapter describes how to create and install extensions for File Manager in the 
Microsoft Windows operating system. A File Manager extension is a dynamic
link library (DLL) that adds a menu to File Manager. 

File Manager maintains a list of extensions in an initialization file and loads 
the extensions when starting. An extension DLL contains an entry point that 
processes menu commands and notification messages sent by File Manager. Up 
to five extension DLLs can be installed at any one time. 

16 .1 Creating a File Manager Extension 
A File Manager extension must reside in a DLL that includes a standard entry 
point, the FMExtensionProc function. It must include the WFEXT .H header file 
that defines File Manager messages and structures. File Manager communicates 
with the extension DLL by sending the following messages to the DLL's FM
ExtensionProc function: 

Message 

1through99 

FMEVENT_INITMENU 

FMEVENT_LOAD 

FMEVENT_SELCHANGE 

FMEVENT_UNLOAD 

FMEVENT_USER_REFRESH 

Meaning 

User has selected an item from the extension
supplied menu. The value is the identifier of the 
selected menu item. 

User has selected the extension's menu. The exten
sion should initialize items in the menu. 

File Manager is loading the extension DLL and 
prompts the DLL for information about the menu 
that the DLL supplies. 

Selection in the File Manager directory window or 
Search Results window has changed. 

Extension DLL is being unloaded. 

User has chosen the Refresh command from the 
Window menu. The extension should update items 
in the menu, if necessary. 

For more information about these messages, see the following section. For infor
mation about the FMExtensionProc function, see the Microsoft Windows 
Programmer's Reference, Volume 2. 



356 Microsoft Windows Programmer's Reference 

16.2 Creating the Entry-Point Function 
File Manager communicates with an extension DLL through the FMExtension
Proc function. Be sure to export this function by listing it in an EXPORTS state
ment of your module-definition (.DEF) file. The FMExtensionProc function 
handles the messages listed in the previous section, performing the following 
tasks: 

Task 

Initializing the extension 
(FMEVENT_LOAD) 

Initializing the menu 
(FMEVENT_INITMENU) 

Processing menu selections 

Processing file selections 
(FMEVENT_SELCHANGE) 

Updating items in the menu 
(FMEVENT_USER_REFRESH) 

Quitting the extension DLL 
(FMEVENT_UNLOAD) 

Action 

Provides File Manager with the name and 
handle of the menu and saves the menu
item delta value. 

Initializes all top-level menu items and 
the items in any submenus. 

Carries out commands that the user 
chooses from the extension's menu. 

Queries File Manager for information 
about the file that the user has selected 
from the directory window or Search 
Results window. For information about 
using the FM_ GETFILESEL message to 
retrieve information about a selected file, 
see the Microsoft Windows Programmer's 
Reference, Volume 3. 

Modifies the menu as appropriate when 
the user chooses File Manager's Refresh 
command from the Window menu. 

Frees any memory allocated and prepares 
to exit. 

The FMExtensionProc function is defined as follows: 

HMENU FAR PASCAL FMExtensionProc(hwnd, wMsg, lParam) 
HWND hwnd; 
WORD wMsg; 
LONG l Pa ram; 

The hwnd parameter identifies the File Manager window. An extension should use 
this window handle to specify the parent window for any dialog boxes or message 
boxes it needs to display. It should also use this handle to send query messages to 
File Manager. The wMsg parameter contains one of the File Manager messages 
listed previously. The lParam parameter contains a message-dependent value. The 
return value from the FMExtensionProc function depends on the value of the 
wMsg parameter. 

The menu added to File Manager may be a hierarchical (cascaded) menu and may 
contain grayed, disabled, or checked menu items in addition to command items. 



Chapter 16 File Manager Extensions 357 

Menu items should be text only; owner-drawn menus and bitmap menus are not 
supported. Changing the check-mark bitmap is not supported. 

Whenever File Manager calls the FMExtensionProc function, it waits to refresh 
its directory windows (for changes in the file system) until after the function 
returns. This allows the extension to perform large numbers of file operations 
without excessive repainting on the part of File Manager. The extension does not 
need to send the FM_REFRESH_ WINDOWS message to notify File Manager to 
repaint its directory windows. 

16.2.1 Loading the Extension 
File Manager sends, first, the FMEVENT_LOAD message to the FMExtension
Proc function. The lParam parameter that accompanies the FMEVENT _LOAD 
message points to an FMS_LOAD structure that File Manager uses to obtain 
information about the extension-supplied menu, including the menu name and 
menu handle. For detailed information about the FMS_LOAD structure, see the 
Microsoft Windows Programmer's Reference, Volume 3. 

File Manager also uses the FMS_LOAD structure to pass the menu-item delta 
value to the extension. To avoid conflicts with its own menu-item identifiers, File 
Manager renumbers the menu-item identifiers in an extension-supplied menu by 
adding the delta value to each identifier. If an extension DLL needs to modify its 
menu after File Manager has loaded it, it must use the delta value. For example, to 
delete a menu item, the extension DLL finds the sum of the delta value and the 
menu item's identifier and then passes the sum as the id/tern parameter to the 
DeleteMenu function. 

16.2.2 Processing Menu Selections 
The menu resource that you define for your extension's menu must use menu-item 
identifiers in the range 1through99. When the user selects an item, the extension 
receives a command notification, which is the actual identifier of the selected item 
as defined in the resource-definition file (which has the .RC filename extension). 
The command notification is not the sum of the delta value and the identifier. An 
extension DLL' s FMExtensionProc function carries out commands by processing 
command notifications. 

16.2.3 Initializing the Extension Menu 
Whenever the user selects the extension's main menu item from File Manager's 
menu bar, File Manager sends the FMEVENT_INITMENU message to the exten
sion DLL. An extension can use this message to initialize its menu items. For 
example, an extension can add check marks, disable items, or gray items during 
this message. 



358 Microsoft Windows Programmer's Reference 

When the user selects submenus within the extension's menu, File Manager does 
not send the FMEVENT_INITMENU message. An extension DLL must initialize 
all items at the same time, including those in submenus. 

16.2.4 Updating the Extension Menu 
When the user chooses the Refresh command from the Window menu, File 
Manager sends an FMEVENT_USER_REFRESH message to an extension DLL. 
An extension can use this opportunity to update its menu items. 

16.2.5 Processing File Selections 
When the user selects a filename in the directory window or in the Search Results 
window, File Manager sends the FMEVENT_SELCHANGE message to an exten
sion DLL. An extension can use this opportunity to send a query message to File 
Manager to obtain more information about the user's selection. For more informa
tion, see Section 16.4, "Extension Messages." 

Because the user can change the selection often, the extension should return 
promptly after processing the FMEVENT_SELCHANGE message to avoid slow
ing the user's selection process. 

16.2.6 Quitting the Extension DLL 
When File Manager quits, it sends the FMEVENT_UNLOAD message to each 
extension DLL and then calls the FreeLibrary function to free the DLLs. Each 
DLL should free any memory that it has allocated. 

16.3 Installing Extensions 
File Manager installs extensions that have settings in the [AddOns] section of 
the WINFILE.INI initialization file. Each setting contains an entry and a value. 
An entry consists of a string that represents the name of an extension. The value 
assigned to the entry consists of a string that specifies the path to the extension 
DLL. An application can use the WritePrivateProfileString function to add a set
ting to WINFILE.INI. The following example shows a setting in WINFILE.INI: 



Chapter 16 File Manager Extensions 359 

[AddOnsJ 
My File Manager Extension=c:\win\system\rfmine.dll 

File Manager does not display an error message if it cannot find an extension 
DLL, so an extension DLL can be deleted in order to uninstall it. Even so, an appli
cation that installs an extension DLL should provide an uninstall option to remove 
the extension's setting from the WINFILE.INI file. 

16.4 Extension Messages 
An extension can send the following window messages to retrieve relevant infor
mation from File Manager. File Manager is only guaranteed to respond correctly 
to messages sent from the FMExtensionProc function. For more information 
about these messages, see the Microsoft Windows Programmer's Reference, 
Volume 3. 

Message 

FM_GETDRIVEINFO 

FM_GETFILESEL 

FM_GETFILESELLFN 

FM_GETFOCUS 

FM_GETSELCOUNT 

FM_GETSELCOUNTLFN 

FM_REFRESH_ WINDOWS 

Description 

File Manager returns drive information from the 
active window. An extension provides a pointer to 
an FMS_GETDRIVEINFO structure; File 
Manager fills the structure with drive information. 

File Manager returns information about a selected 
file from the active File Manager window (either 
the directory window or the Search Results win
dow). An extension provides a pointer to an 
FMS_GETFILESEL structure; File Manager 
fills the structure with file information. 

Same as the FM_GETFILESEL message except 
that the selected file may have a long filename. 

File Manager returns a value that identifies the 
type of window with input focus. 

File Manager returns the count of selected files in 
the directory and Search Results windows. 

Same as the FM_GETSELCOUNT message except 
that the count includes files with long filenames. 

File Manager repaints either its active window or 
all of its windows. This message is similar to File 
Manager's Refresh command on the Window 
menu. 



360 Microsoft Windows Programmer's Reference 

Message 

FM_RELOAD_EXTENSIONS 

Description 

File Manager reloads all extensions. First File 
Manager unloads all extensions, sending an 
FMEVENT_UNLOAD message to each exten
sion. Then it reloads the extensions, sending an 
FMEVENT_LOAD message to each extension. 
The FM_RELOAD_EXTENSIONS message 
allows an extension to uninstall itself by removing 
its setting from the WINFILE.INI file; this action 
causes File Manager to reload the remaining exten
sions. Other applications (for example, installation 
programs) can also post this message by calling the 
PostMessage function. 

16.5 File Manager Extension Example 
The following example shows the FMExtensionProc function for a sample exten
sion DLL. It demonstrates how an extension processes the menu commands and 
notification messages sent by File Manager. 

HINSTANCE hinst; 
HMENU hmenu; 
WORD wMenuDelta; 
BOOL fMultiple = FALSE; 
BOOL fLFN = FALSE; 

DWORD FAR PASCAL FMExtensionProc(hwnd, wMsg, lParam) 
HWND hwnd; 
WORD wMsg; 
LONG lParam; 
{ 

char szBuf[200]; 
int count; 

switch (wMsg) { 
case FMEVENT LOAD: 

#define lpload ((LPFMS_LOAD)lParam) 

/*Save the menu-item delta value. */ 

wMenuDelta = lpload->wMenuDelta; 

f* Fill the FMS_LOAD structure. */ 

lpload->dwSize = sizeof(FMS_LOAD); 
lstrcpy(lpload->szMenuName, "&Extension"); 



Chapter 16 File Manager Extensions 361 

/* Return the handle of the menu. */ 

return (OWORO) (lpload->hMenu = LoadMenu(hinst, 
MAKEINTRESOURCE(MYMENU))); 

break; 

case FMEVENT UNLOAD: 

/* Perform any cleanup procedures here. */ 

break; 

case FMEVENT INITMENU: 

/* Copy the menu-item delta value and menu handle. */ 

wMenuDelta = LOWORO(lParam); 
hmenu = (HMENU) HIWORO(lParam); 

/* 
*Add check marks to menu items as appropriate. Add menu-
* item delta values to menu-item identifiers to specify the 
* menu items to check. 
*/ 

CheckMenuitem(hmenu, wMenuOelta + MULTIPLE, 
fMultiple ? MF_~YCOMMANO I MF_CHECKED : 

MF_BYCOMMAND I MF_UNCHECKED); 
CheckMenuitem(hmenu, wMenuDelta + LFN, 

fLFN ? MF_BYCOMMAND I MF_CHECKED : 
MF_BYCOMMAND I MF_UNCHECKEO); 

break; 

case FMEVENT USER_REFRESH: 
MessageBox(hwnd, "User refresh event", "Hey!", MB_OK); 
break; 

case FMEVENT SELCHANGE: 

I* 

OutputDebugString("Sel change\r\n"); 
break; 

*The following messages are generated when the user chooses 
* items from the extension menu. 
*/ 

case GETFOCUS: 
wsprintf(szBuf, "Focus %d", (int)SendMessage(hwnd, 

FM_GETFOCUS, 0, 0Lll; 
MessageBox(hwnd, szBuf, "Focus", MB_OK); 
break; 



362 Microsoft Windows Programmer's Reference 

case GETCOUNT: 
count = (int)SendMessage(hwnd, 

fLFN? FM_GETSELCOUNTLFN : FM_GETSELCOUNT, 0, 0L); 

wsprintf(szBuf, "%d files selected", count); 
MessageBox(hwnd, szBuf, "Selection Count", MB_OK); 
break; 

case GETFILE: 
{ 

FMS_GETFILESEL file; 

count = (int) SendMessage(hwnd, 
fLFN ? FM_GETSELCOUNTLFN : FM_GETSELCOUNT, 
FMFOCUS_DIR, 0L); 

while (count >= 1) { 

} 

/*Selection indices are zero-based (0 is first). */ 

count--; 
SendMessage(hwnd, FM_GETFILESEL, count, 

(LONG) (LPFMS_GETFILESEL)&file); 
OemToAnsi(file.szName, file.szName); 
wsprintf(szBuf, "file %s\nSize %ld", 

(LPSTR)file.szName, file.dwSize); 
MessageBox(hwnd, szBuf, "File Information", MB_OK); 

if (!fMultiple) 
break; 

break; 

case GETDRIVE: 
{ 

FMS_GETDRIVEINFO drive; 

SendMessage(hwnd, FM_GETDRIVEINFO, 0, 
(LONG) (LPFMS_GETDRIVEINFO)&drive); 

OemToAnsi(drive.szVolume, drive.szVolume); 
OemToAnsi(drive.szShare, drive.szShare); 

wsprintf(szBuf, 
"%s\nFree Space %ld\nTotal Space %ld\nVolume %s\nShare %s", 

(LPSTR) drive.szPath, drive.dwFreeSpace, 
drive.dwTotalSpace, (LPSTR) drive.szVolume, 

} 

(LPSTR) drive.szShare); 
MessageBox(hwnd, szBuf, "Drive Info", MB_OK); 
break; 



case LFN: 
fLFN = ! fLFN; 
break; 

case MULTIPLE: 
fMultiple !fMultiple; 
break; 

case REFRESH: 
case REFRESHALL: 

Chapter 16 File Manager Extensions 363 

SendMessage(hwnd, FM_REFRESH_WINDOWS, 
wMsg == REFRESHALL, 0L); 

} 

break; 

case RELOAD: 
PostMessage(hwnd, FM_RELOAD_EXTENSIONS, 0, 0L); 
break; 

return NULL; 

16.6 Adding the Undelete Command 
File Manager supports a hook for adding an Undelete command to the File menu 
(below the Delete command). If an undelete dynamic-link library is specified in 
the WINFILE.INI file, File Manager adds the Undelete command to the File menu 
when it starts. When the user chooses the Undelete command, File Manager calls 
the DLL. 

The [settings] section of the WINFILE.INI file should include a reference to the 
undelete DLL, as follows: 

[settings] 
UNDELETE.DLL=C:\MYDIR\OTHER.DLL 

An undelete DLL must include a standard entry point, the UndeleteFile function. 
This function must be exported by specifying the name of the function in the 
EXPORTS statement of the DLL' s module-definition (.DEF) file. 

The UndeleteFile function is defined as follows: 

int FAR PASCAL UndeleteFile(hwndParent, lpszDir) 
HWND hwndParent; 
LPSTR lpszDir; 

The hwndParent parameter identifies the parent window for any dialog boxes that 
the DLL creates. The lpszDir parameter specifies the initial directory to be used 
(for example, C:\TEMP). For more information about the UndeleteFile function, 
see the Microsoft Windows Programmer's Reference, Volume 2. 





Shell Dynamic Data Exchange 
Interface 

Chapter 17 

17.1 PROGMAN.INIFile ................................................................................ 367 
17 .1.1 Settings Section........................................................................ 368 
17 .1.2 Groups Section......................................................................... 369 
17 .1.3 Restrictions Section................................................................. 369 

17.2 Command-String Interface...................................................................... 370 
17.2.1 CreateGroup ............................................................................. 371 
17.2.2 ShowGroup .............................................................................. 371 
17.2.3 DeleteGroup............................................................................. 372 
17 .2.4 Reload . . . ... . . . . . . .. . . . . ... . .. . .. . ... . .. . . .. . . ... . . .. . ... . . .. . . . .. . . . . . . ... . . .. . . . . . . . . . .. . . 372 
17 .2.5 Addltem .. . . . . . . ... . . .. ... . .. . .. . . .. . .. . . .. . . ... . . .. . ... . . .. . . . .. . . . . . . .. . .. . . .. . ... . .. . .. . 373 
17.2.6 Replaceltem ............................................................................. 374 
17.2.7 Deleteltem ................................................................................ 374 
17.2.8 ExitProgman ............................................................................ 375 

17.3 Requesting Group Information ................................................................ 375 





Chapter 17 Shell Dynamic Data Exchange Interface 367 

This chapter describes the dynamic data exchange (DOE) interface of Windows 
Program Manager (PROGMAN.EXE). Program Manager is an application that 
lets users group, start, and otherwise control other applications for the Microsoft 
Windows operating system. Program Manager starts automatically when the user 
starts Windows and continues to run as long as Windows is in use. Upon starting, 
Program Manager displays one or more windows within its main window. Each 
window contains icons that correspond to logically related Windows applications. 
For example, the Main window contains an icon for the File Manager, Control 
Panel, Print Manager, Clipboard, MS-DOS Prompt, and Windows Setup applica
tions. 

The following topics are related to the information in this chapter: 

• Atoms 

• Dynamic data exchange (DDE) 

• Registration database 

17 .1 PROGMAN.INI File 
When Program Manager starts, it searches its initialization file for a list of group 
files. The windows that appear in Program Manager's main window correspond to 
group files. From the user's perspective, a group file is a collection of icons that 
represent logically related applications, but from the programmer's perspective, a 
group file is actually a collection of data. This data includes the color information 
for the icons (their AND and XOR masks), an offset to the resource header for 
each icon, the ideal resolution for displaying each icon, the name of the executable 
file that contains the application, and so on. For a description of the group file for
mat, see the Microsoft Windows Programmer's Reference, Volume 4. 

Group files are identified in the Program Manager initialization file. This initializa
tion file, PROGMAN.INI, has the following form: 

[Settings] 
Window=64 48 576 384 1 
Order= 3 4 5 6 8 7 2 1 9 
AutoArrange=l 
SaveSettings=l 
MinOnRun=l 
Startup= 
display.drv=v776816.drv 



368 Microsoft Windows Programmer's Reference 

[Groups] 
Groupl=C:\WINDOWS\MAIN.GRP 
Group2=C:\WINDOWS\ACCESSOR.GRP 
Group3=C:\WINDOWS\GAMES.GRP 
Group4=C:\WINDOWS\STARTUP.GRP 
Group5=C:\WINDOWS\LZEXPAND.GRP 
Group6=C:\WINDOWS\COMDLG.GRP 
Group7=C:\WINDOWS\GDI.GRP 
Group8=C:\WINDOWS\WINPROJ.GRP 
Group9=C:\WINDOWS\MICROSOF.GRP 

[Restrictions] 
NoRun=l 
NoClose=l 
NoSaveSettings=0 
NoFileMenu=0 
Editlevel=3 

The following three sections describe the contents of the PROGMAN.INI file. 

17 .1.1 Settings Section 
The first section of the initialization file, [Settings], controls attributes of the 
Program Manager environment. The following entries appear in the [Settings] 
section: 

Entry 

Window= 

Order= 

Auto Arrange= 

SaveSettings= 

MinOnRun= 

Startup= 

display.drv= 

Meaning 

Specifies the location and dimensions of Program Manager's main 
window. 

Specifies the order in which the groups listed in the [Groups] sec
tion appear in Program Manager's main window. 

Specifies whether Program Manager should automatically arrange 
icons within groups. 

Specifies whether to save the position of Program Manager's main 
window when exiting Program Manager. 

Specifies whether to minimize Program Manager when an applica
tion is started. 

Specifies the name of the startup group. Program Manager automat
ically starts the applications in the startup group whenever it starts. 
If the startup group has a name other than "Startup", that name must 
be specified by the Startup= entry. 

Specifies the display driver that was in use when Program Manager 
last ended. When Program Manager starts, it compares this value to 
the string in the SYSTEM.IN! file. If they are different, Program 
Manager reextracts the application icons. 



Chapter 17 Shell Dynamic Data Exchange Interface 369 

17 .1. 2 Groups Section 
The second section of the initialization file, [Groups], identifies the names of the 
group files for which Program Manager should display unique windows or icons. 
The groups must be numbered, but they need not be listed in any particular order. 
Program Manager never changes the number of an existing group, so if an applica
tion other than Program Manager constructs a PROGMAN.INI file, it can assign 
meaningful numbers to groups, if necessary. 

17 .1.3 Restrictions Section 
The third section of the initialization file, [Restrictions], disables some capabilities 
of the Program Manager environment. The following entries can appear in the 
[Restrictions] section: 

Entry 

NoRun= 

NoClose= 

N oSaveSettings= 

NoFileMenu= 

EditLevel= 

Meaning 

Specifies whether to disable the Run command on the File menu. 
If this entry is set to 1, the command is disabled. If this entry is 
set to 0, the Run command is enabled. The default is 0 (enabled) 
if no value is specified. 

Specifies whether to prevent the user from exiting Program 
Manager through the File menu, the System menu, the ALT +F4 
accelerator, or the Task List. If this entry is set to 1, exiting is pre
vented. If this entry is set to 0, exiting is allowed. The default is 0 
(allowing exiting) if no value is specified. 

Specifies whether to disable the Save Settings on Exit command 
on the Options menu. If this entry is set to 1, the Save Settings on 
Exit command is disabled. If this entry is set to 0, the command 
is enabled. The default is 0 (enabled) if no value is specified. 

Specifies whether to disable the File menu and all of its com
mands. If this entry is set to 1, the File menu is disabled. If this 
entry is set to 0, the menu is enabled. The default setting is 0 
(enabled) if no value is specified. 

Controls the extent to which the user can modify read-write 
groups. (Shared, read-only groups cannot be modified.) This 
entry may be set to one of the following values: 

Value 

0 

Meaning 

Allows any modifications to the group. This is the 
default. 

Prevents the user from creating, deleting, or renam
ing groups. 



370 Microsoft Windows Programmer's Reference 

Entry Meaning (continued) 

Value 

2 

3 

4 

Meaning 

Prevents the user from creating, deleting, or renam
ing groups and from creating or deleting items in a 
group. 

Prevents the user from creating, deleting, or renam
ing groups; from creating or deleting items in a 
group; and from changing command lines for items 
in a group. 

Prevents the user from changing any property of an 
item in a group; from creating, deleting, or renaming 
groups; from creating or deleting items in a group; 
and from changing command lines for items in a 
group. 

Setting NoRun to 1 and EditLevel to 3 prevents a user from using Program 
Manager to run any applications that are not already in a program group. 

17 .2 Command-String Interface 
Program Manager has a DDE command-string interface that allows other applica
tions to create, display, delete and reload groups; add items to groups; replace 
items in groups; delete items from groups; and to close Program Manager. The 
following commands perform these actions: 

Addltem 
CreateGroup 
DeleteGroup 
Deleteltem (Windows version 3.1 only) 

ExitProgman 
Reload (Windows 3.1 only) 
Replaceltem (Windows 3.1 only) 
ShowGroup 

The setup program for an application can use these commands, for example, to 
instruct Program Manager to install the application's icon in a group. 

Multiple commands may be concatenated; each command must be contained in 
square brackets, and parameters must be contained in parentheses and separated 
by commas. Quotation marks must be used to delimit arguments that contain 
spaces, brackets, or parentheses. For example, the following set of commands 
adds WINAPP.EXE to the Windows Applications group: 

[CreateGroup(Windows Applications)] 
[ShowGroup(l) J 
[Additem(winapp.exe,Win App,winapp.exe,2)] 

To use these commands, an application must first initiate a conversation with 
Program Manager. The application and topic names for the conversation are both 



Chapter 17 Shell Dynamic Data Exchange Interface 371 

PROGMAN. Then the application sends the WM_DDE_EXECUTE message, 
specifying the appropriate command and its parameters. 

Note The user can configure Windows to use a shell other than Program Manager 
as the default. As a result, you should not design an application assuming that 
Program Manager will be available for a DDE conversation. 

The following sections describe Program Manager DDE command strings in 
detail. In the syntax blocks in the following sections, brackets enclose optional 
arguments. 

17.2.1 CreateGroup 
The syntax for the CreateGroup command has this form: 

CreateGroup(GroupName[,GroupPath]) 

The CreateGroup command instructs Program Manager to create a new group or 
activate the window of an existing group. 

Following are the parameters for this command: 

Group Name 
Identifies the group to be created. This parameter is a string. If a group already 
exists with the name specified by GroupName, CreateGroup activates the 
group window. 

Group Path 
Specifies the path of the group file. If your application does not supply this 
parameter, Windows uses a default filename for the group in the Windows 
directory. 

17.2.2 ShowGroup 
The syntax for the ShowGroup command has this form: 

ShowGroup( GroupName,ShowCommand) 

The ShowGroup command instructs Program Manager to minimize, maximize, or 
restore the window of an existing group. 

Following are the parameters for this command: 

Group Name 
Identifies the group window to be minimized, maximized, or restored. 



372 Microsoft Windows Programmer's Reference 

ShowCommand 
Specifies the action that Program Manager is to perform on the group window. 
This parameter is an integer. It must have one of the following values: 

Value 

1 

2 

3 

4 

5 

6 

7 

8 

Meaning 

Activates and displays the group window. If the window is minimized 
or maximized, Windows restores it to its original size and position. 

Activates the group window and displays it as an icon. 

Activates the group window and displays it as a maximized window. 

Displays the group window in its most recent size and position. The win
dow that is currently active remains active. 

Activates the group window and displays it in its current size and posi
tion. 

Minimizes the group window. 

Displays the group window as an icon. The window that is currently 
active remains active. 

Displays the group window in its current state. The window that is cur
rently active remains active. 

17.2.3 DeleteGroup 

17 .2.4 Reload 

The syntax for the DeleteGroup command has this form: 

DeleteGroup( Group Name) 

The DeleteGroup command instructs Program Manager to delete an existing 
group. 

Following is the parameter for this command: 

GroupName 
Identifies the group to be deleted. 

The syntax for the Reload command has this form: 

Reload( Group Name) 

The ReloadGroup command instructs Program Manager to remove and reload an 
existing group. An application that modifies group files can use this command to 
cause Program Manager to update the groups when it has finished making modifi
cations. 



17.2.5 Addltem 

Chapter 17 Shell Dynamic Data Exchange Interface 373 

Following is the parameter for this command: 

Group Name 
Identifies the group to be removed and reloaded. If the GroupName parameter 
is not specified, Program Manager unloads all groups and reloads the [Group] 
section of PROGMAN.INI. The [Settings] and [Restrictions] sections are not 
reread. 

The syntax for the Addltem command has this form: 

Addltem( CmdLine[, 
Name[,IconPath[,Iconlndex[, xPos, yPos[, DefDir[, 
HotKey,[,JMinimize] ] ] ] ] ] ]) 

The Addltem command instructs Program Manager to add an icon to an existing 
group. 

Following are the parameters for this command: 

CmdLine 
Specifies the full command line required to execute the application. This param
eter is a string. At a minimum, this string is the name of the executable file for 
the application. It can also include the full path of the application and any 
parameters required by the application. 

Name 
Specifies the title that is displayed below the icon in the group window. 

IconPath 
Identifies the filename for the icon to be displayed in the group window. This 
parameter is a string. This file can be either a Windows executable file or an 
icon file. If the lconPath parameter is not specified, Program Manager uses the 
first icon in the file specified by the CmdLine parameter if that file is an execut
able file. If CmdLine specifies an associated file, Program Manager uses the 
first icon of the associated executable file. The association is taken from the reg
istration database. (For more information about the registration database, see 
Chapter 7, "Shell Library.") If CmdLine specifies neither an executable file nor 
an associated executable file, Program Manager uses a default icon. 

lconlndex 
Specifies the index of the icon in the file identified by the lconPath parameter. 
The Iconlndex parameter is an integer. PROGMAN.EXE contains five built-in 
icons that can be used for non-Windows programs. 



374 Microsoft Windows Programmer's Reference 

xPos 
Specifies the horizontal position of the icon in the group window. This parame
ter is an integer. You must use both the xPos and yPos parameters to specify the 
position of the icon. If you do not specify the position, Program Manager places 
the icon in the next available space. 

yPos 
Specifies the vertical position of the icon in the group window. This parameter 
is an integer. You must use both the xPos and yPos parameters to specify the 
position of the icon. If you do not specify the position, Program Manager places 
the icon in the next available space. 

DefDir 
Specifies the name of the default (or working) directory. This parameter is a 
string. 

HotKey 
Identifies a hot (or shortcut) key that is specified by the user. 

}Minimize 
Specifies whether an application window should be minimized when it is first 
displayed. 

17.2.6 Replaceltem 
The syntax for the Replaceltem command has this form: 

Replaceltem(/temName) 

The Replaceltem command instructs Program Manager to delete an item and 
record the position of the deleted item. Program Manager will add a new item 
(specified by the next Add.Item command) at this recorded position. 

Following is the parameter for this command: 

ItemName 
Specifies the item to be deleted. Its position is recorded by Program Manager. 

17 .2. 7 Deleteltem 
The syntax for the Deleteltem command has this form: 

Deleteltem(/temName) 

The Deleteltem command instructs Program Manager to delete an item from the 
currently active group. 



Chapter 17 Shell Dynamic Data Exchange Interface 375 

Following is the parameter for this command: 

ItemName 
Specifies the item to be deleted from the currently active group. 

17 .2.8 ExitProgman 
The syntax for the ExitProgman command has this form: 

ExitProgman( bSaveGroups) 

If Program Manager was started by another application, the ExitProgman com
mand instructs Program Manager to exit and, optionally, save its group infor
mation. 

Following is the parameter for this command: 

bSaveGroups 
Specifies a Boolean value that, if nonzero, causes Program Manager to save its 
group information before closing. If bSaveGroups is zero, Program Manager 
does not save its group information. 

17 .3 Requesting Group Information 
Program Manager can provide information about its groups to an application. 
Applications can request this information from Program Manager by using the 
PROGMAN topic. 

An application can obtain a list of Program Manager groups by issuing a request 
for the Group item. Program Manager provides the list in CF_ TEXT format. The 
list consists of group-name strings separated by carriage returns. 

An application can use a group name as an item name to request information about 
the group. Program Manager provides this information in CF_ TEXT format. The 
fields of group information are separated by commas. The first line of the informa
tion contains the group name (in quotation marks), the path of the group file, and 
the number of items in the group. Each subsequent line contains information about 
an item in the group, including the command line (in quotation marks), the default 
directory, the icon path, the position in the group, the icon index, the shortcut key 
(in numeric form), and the minimize flag. 





lnternationa I Applications 

Chapter 18 

18.1 Creating an International Application...................................................... 379 
18.2 Achieving Country and Language Independence.................................... 379 

18.2.1 International Information in WIN.IN!..................................... 379 
18.2.2 International Information in Windows Functions ................... 383 

18.2.2.1 Comparing and Sorting Strings ............................. 384 
18.2.2.2 Case Conversions.................................................. 385 
18.2.2.3 Handling Character Sets........................................ 385 
18.2.2.4 
18.2.2.5 
18.2.2.6 

Handling Filenames .. ...... ...... .. .... .......... ...... .......... 386 
Handling the Keyboard......................................... 387 
Handling Initialization Files.................................. 387 

18.2.3 International Uses of the File Version Library ........................ 388 
18.3 Achieving Easy Localization................................................................... 388 

18.3.1 Isolation of Localizable Information....................................... 388 
18.3.2 Allocating Extra Space for Strings.......................................... 389 
18.3.3 Handling Foreign Languages................................................... 389 





Chapter 18 International Applications 379 

The Microsoft Windows operating system provides means for making applica
tions country- and language-independent. This chapter describes how to design 
Windows applications so that they can be readily adapted to international markets. 
The following topics are related to the information in this chapter: 

• File version library 

• Resources and Resource Compiler (RC) 

• Initialization files 

18.1 Creating an International Application 
To reach worldwide audiences, you need to design Windows applications so that 
they can be marketed in more than one country and modified for new markets. 
International applications must be country- and language-independent and easy to 
localize. 

A Windows application, regardless of the language used in its interface, should 
be able to handle data from different countries and in different languages. For 
example, a database developed primarily for the English-speaking market should 
accept French and German input. The application should also support different cur
rency symbols and date and time formats. Furthermore, it should permit complex 
operations, such as sorting, in any language selected by the user. 

A Windows application should be developed so that localization can be easily 
accomplished. Localization is the process of adapting an application for a market 
other than the one for which it was originally designed. Adapting an application 
involves translating the product, adding new features when required, and modify
ing the product to meet local needs. 

18.2 Achieving Country and Language Independence 
Windows provides resources for writing applications that are country- and 
language-independent. These resources consist of international information stored 
in the WIN.IN! file and in certain Windows functions. By using the resources 
described in this section, you can correctly produce international applications. 

18.2 .1 International Information in WIN.INI 
The [Intl] section of the WIN.IN! file contains the current country settings for 
Windows. The user can modify these settings through Control Panel. An applica
tion has access to the current country settings through the GetProfilelnt and Get
ProfileString functions and can modify them through the WriteProfileString 



380 Microsoft Windows Programmer's Reference 

function. An application should read the required country settings at startup and 
should monitor the WM_ WININICHANGE message to update its country settings 
in case the country settings in WIN .INI have changed. 

Following are the country settings stored in WIN.IN!: 

iCountry 
Country code. This value is based on the telephone country code. The only 
exception is Canada, which has 2 instead of 1 (I is used by the United States). 
This setting controls country-dependent features not supported by Windows. 

sCountry 
String defining the selected country name. 

sLanguage 
National language code selected by the user. The International dialog box in 
Control Panel changes the language of the installed language-dependent mod
ule. Following are some of the language codes that Windows currently supports: 

Code Language 

DAN Danish 

DEU German 

ENG U .K. English 

ENU U.S. English 

ESN Modern Spanish 

ESP Castilian Spanish 

FIN Finnish 

FRA French 

FRC Canadian French 

ISL Icelandic 

ITA Italian 

NLD Dutch 

NOR Norwegian 

PTG Portuguese 

SVE Swedish 

sList 
List separator. This character separates elements in a list. The list separator 
must be different from the decimal separator to avoid conflicts with lists of 
numbers. 

iMeasure 
Measurement system selected by the user, where 0 equals metric and 1 equals 
English. This setting controls measurement-dependent features of an appli
cation. 



Chapter 18 International Applications 381 

iTime 
Time format. This setting defines the time format: 12 hours or 24 hours, where 
0 equals the 12-hour clock and 1 equals the 24-hour clock. 

sTime 
Time separator. This character is displayed between hours and minutes and 
between minutes and seconds. 

sll59 
Trailing string (A.M., for example) used in some countries for times between 
00:00 and 11:59. 

s2359 
Trailing string (P.M., for example) for times between 12:00 and 23:59 when in 
12-hour clock format or trailing string (GMT, for example) for any time when 
in 24-hour clock format. 

iTLZero 
Value specifying whether the hours displayed should have a leading zero, 
where 0 equals no leading zero (9:15, for example) and 1 equals a leading zero 
(09:15, for example). 

iDate 
Date format. Kept for compatibility with Windows 2.x. The values for this set
ting are: 0 equals Month-Day-Year, 1 equals Day-Month-Year, and 2 equals 
Year-Month-Day. The sShortDate setting should be used instead. 

sDate 
Date separator. Kept for compatibility with Windows 2.x. The sShortDate set
ting should be used instead. 

sShortDate 
Date picture of the short date format. The sShortDate setting accepts only the 
values m, mm, d, dd, yy and yyyy. For information about these values and the 
format of date pictures, see the sLongDate setting. 

sLongDate 
Date picture of the long date format, which is similar to the sShortDate setting, 
except it can also contain strings. Following are formats for different month 
(m), day (d), and year (y) values: 

Value Format 

m 1-12 
mm 01-12 
mmm Jan-Dec 

mmmm January-December 

d 1-31 
dd 01-31 



382 Microsoft Windows Programmer's Reference 

Value Format 

ddd Mon-Sun 

dddd Monday-Sunday 

yy 00-99 

yyyy 1900-2040 

Following are examples of different date pictures: 

Date picture 

dmmmm, yyyy 

dddd, mmmm d, yyyy 

m/d/yy 

dd-mm-yyyy 

d "of' mmmm, yyyy 

sCurrency 

Example 

9 January, 1989 

Friday, February 7, 1992 

3118/89 

18-03-1989 

9 of January, 1992 

Currency symbol of a given country. Use of this setting requires care. If the cur
rency symbol is changed through Control Panel, do not make global replace
ments of currency amounts in your application. Once the user has entered an 
amount using a particular currency, that currency should stay the same. This set
ting also requires special attention when files are shared among users or applica
tions. 

iCurrency 
Currency format. The values for this setting are as follows: 

Value 

0 

Meaning 

Currency symbol prefix with no separation ($1, for example) 

Currency symbol suffix with no separation (1$, for example) 

2 Currency symbol prefix with one character separation($ 1, for example) 

3 Currency symbol suffix with one character separation (1 $, for example) 

iCurrDigits 
Number of digits used for the fractional part of a currency amount. 

iNegCurr 
Negative currency format. The values for this setting are: 

Value Negative format 

0 ($1) 

-$1 

2 $-1 

3 $1-

4 (1$) 



Chapter 18 International Applications 383 

Value Negative format 

5 -1$ 

6 1-$ 

7 1$-

8 -1 $ 

9 -$ 1 

10 $1-

Note The dollar symbol represents any currency symbol defined by the 
sCurrency setting. 

sThousand 
Symbol used to separate thousands in numbers with more than three digits. 

sDecimal 
Character used to separate the integer part from the fractional part of a number. 

illigits 
Value defining the number of decimal digits that should be used in a number. 

iLzero 
Value specifying whether a decimal value less than 1.0 (and greater than -1.0) 
should contain a leading zero, as follows: 

Value Meaning 

0 

1 

Do not use a leading zero (.7, for example). 

Use a leading zero (0.7, for example). 

18.2.2 International Information in Windows Functions 
Windows includes provisions for specifying a national language. Language, in 
conjunction with the specification of a country, allows Windows to describe more 
precisely the characteristics of a given geographical location (for example, Swiss
German as opposed to Swiss-French). The following Windows functions behave 
differently depending on the language that is selected: 

AnsiLower 
AnsiLowerBuff 
AnsiNext 
AnsiPrev 
AnsiUpper 
AnsiUpperBuff 

IsCharAlpha 
IsCharAlphaNumeric 
IsCharLower 
IsCharUpper 
lstrcmp 
lstrcmpi 



384 Microsoft Windows Programmer's Reference 

18.2.2.1 Comparing and Sorting Strings 
The lstrcmp and lstrcmpi functions allow applications to compare and sort strings 
based on the language specified by the user. These functions take into account 
different alphabetic orderings, diacritical marks, and special cases that require 
character compression or expansion. Note that the lstrcmp and lstrcmpi functions 
do not act the same way as the C run-time functions strcmp and strcmpi. 

The comparison done by lstrcmp and lstrcmpi is based on a primary value and a 
secondary value (see the following illustration). Each character has a primary and 
a secondary value. For example, in the following matrix, the letter d has a primary 
value of 4 and a secondary value of 2. 

Secondary values 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 A A A A A A A a a. a a a a a 

Primary 2 B b 

values 3 c c; c \: 

4 D d 

5 E E: E E E e e e e e 

6 F f 

When performing the comparison of two strings, the primary value takes prece
dence over the secondary value. That is, the secondary value is ignored unless a 
comparison based on primary value shows the strings as equivalent. 

The following examples show the effect of primary and secondary values on string 
comparisons: 

Comparison 

A=A 

A<a 

Ab<ab 

ab<Ac 

Result 

Primary values equal 

Primary values equal, secondary values unequal (A< a) 

Primary values equal, secondary values unequal (A< a) 

Primary values unequal (b < c) 

The lstrcmpi function ignores the effect of case in determining secondary value. 
That is, when lstrcmpi is called to compare AB and ab, the two strings are equiv
alent. However, lstrcmpi does not ignore diacritical marks, so Ab precedes ab 
regardless of whether the comparison is performed by the lstrcmp or lstrcmpi 
function. 



Chapter 18 International Applications 385 

When strings of different lengths are compared, length takes precedence over sec
ondary values. That is, the shorter string always precedes the longer string as 
long as the primary values in the shorter string equal the primary values for equiv
alent characters in the longer string. For example, ab precedes ABC, but ABC 
precedes AD. 

Depending on the language module installed, some characters are treated differ
ently. For example, if the German language module is installed, the 13 character 
expands toss. If the Spanish language module is installed, the characters ch are 
treated as a single character that sorts between c and d. 

18.2.2.2 Case Conversions 
Use of the case conversion functions, AnsiLower, AnsiLowerBuff, AnsiUpper, 
and AnsiUpperBuff, varies depending on the language module installed. The 
IsCharAlpha, IsCharAlphaNumeric, IsCharLower and IsCharUpper func
tions are also language-dependent. Different languages treat case conversions 
differently. 

Note Do not use the C-language case-conversion functions; they do not handle 
characters with values greater than 128 properly. 

18.2.2.3 Handling Character Sets 
If you are writing international Windows applications, you will handle different 
character sets. It is especially important in this case to understand the difference 
between the Windows and OEM character sets. 

The Windows character set is essentially equivalent to the ANSI character set. 

The OEM character set is defined by the Windows operating system as the charac
ter set used by MS-DOS. The term OEM does not refer to a specific character set; 
instead, it refers to any of the different character sets (code pages) that can be 
installed and used by MS-DOS. 

Because Windows runs on top of MS-DOS, there must be a layer between 
Windows and MS-DOS that performs translations between Windows and OEM 
characters. When Windows is first installed, the Windows Setup program looks at 
the character set that has been installed by MS-DOS and then installs the correct 
translation tables and Windows OEM fonts. 

Windows applications should use the Windows AnsiToOem and OemToAnsi 
functions when transferring information to and from MS-DOS. Also, applications 
should use the correct character set when creating filenames. For more informa
tion about handling filenames, see the following section. 



386 Microsoft Windows Programmer's Reference 

There is no one-to-one mapping between the Windows and OEM character sets. 
Applying the AnsiToOem function and then the OemToAnsi function to a given 
string does not always result in the original string. 

Because the Windows and OEM character sets are 8-bit character sets, always use 
unsigned char values instead of signed char values. Bugs that result from using 
signed char values are very hard to track. 

18.2.2.4 Handling Filenames 
Applications do file handling differently depending on factors such as speed, size, 
and programming style. This section describes the most common methods for 
handling filenames. 

The easiest way of handling filenames in Windows is to use the Windows charac
ter set for all filenames and to use the _lcreat, _lopen, and OpenFile functions to 
deal with differences between the MS-DOS and the OEM character sets. 

Another way to handle filenames is to use the OpenFile function to obtain a full 
path, by using the szPathName member from the OFSTRUCT structure. The 
szPathName member contains characters from the OEM character set and must 
first be converted to the Windows character set before it is used as a parameter for 
the OpenFile function, for other Windows functions, or in a dialog box. 

The following example shows this conversion: 

if (QpenFile("myfile.txt", &of, OF_EXISTS) -1) { 
OemToAnsi(of.szPathName, szAnsiPath); 
OpenFile(szAnsiPath, &of, OF_CREATE); 

The third, and maybe most complicated, way of handling files is to call MS-DOS 
directly (by using the DOS3Call function or an Interrupt 21h instruction). You 
must ensure that your application always passes OEM characters to MS-DOS. 

Differences between the Windows and OEM character sets complicate the han
dling of filenames. Problems can occur when applications try to create filenames 
using the Windows character set that have no equivalent characters in the OEM 
set. For example, the character E does not exist in code page 437 (437 is the stan
dard U.S. extended ASCII character set). If the application tries to save the file 
named E.TXT, Windows converts E.TXT into E.TXT (by using the AnsiToOem 
function) and then passes it to MS-DOS. 

You can prevent confusion about filenames by using the ES_OEMCONVERT and 
CBS_OEMCONVERT control styles. These styles (the first for edit controls and 
the second for combo boxes) read the user's input and convert the typed character 
to a valid character (one that exists in the OEM character set). This way, the user 
sees on the screen the actual filename that will be stored at the MS-DOS level. 



Chapter 18 International Applications 387 

18.2.2.5 Handling the Keyboard 
The most important keyboard issue for international applications is the use of the 
VK_ OEM keys for user input because the locations of these keys change depend
ing on the keyboard layout chosen by the user. 

The VkKeyScan function is used to translate characters from the Windows char
acter set into a virtual-key code plus a shift state. This function can be also used 
when one application has to send text to another application by simulating key
board input. 

Some other useful keyboard functions are the following: 

Function 

ToAscii 

GetKeyNameText 

GetKBCodePage 

Purpose 

Converts a virtual-key code plus a shift state to a character in 
the Windows character set. This function is the opposite of the 
VkKeyScan function. 

Retrieves a string that contains the name of a key (the SHIFT 
key or the ENTER key, for example). The string is in the lan
guage associated with the keyboard. For example, for a French 
keyboard layout the names of the keys are in French. 

Returns the code page (OEM character set) that was running at 
the MS-DOS level at the time Windows was installed. Note 
that there is no real relationship between the keyboard and the 
code page installed. 

To type characters that are not on your keyboard, use the ALT key and the numeric 
keypad. For characters in the Windows character set, hold down ALT and then, 
using the numeric keypad, type 0 and the three-digit code of the character you 
want. For an OEM character, type the three-digit code for the character. 

18.2.2.6 Handling Initialization Files 
The WIN.IN! and SYSTEM.IN! files use the Windows character set. Usually, 
however, applications do not access SYSTEM.IN!. For WIN.IN! as well as for pri
vate initialization files, applications should use the following functions: 

GetPrivateProfilelnt 
GetPrivateProfileString 
GetProfilelnt 

GetProfileString 
WritePrivateProfileString 
WriteProfileString 

The Windows character set should always be used with these functions. 

The section names and setting names in WIN.IN! and in private initialization files 
should be independent of the language of the application. Usually, all of these 
names remain in English. For example, in WIN.IN! the section name [Desktop] 



388 Microsoft Windows Programmer's Reference 

and the setting name Wall paper should always remain in English so that applica
tions in different languages can access the same information. 

18.2.3 International Uses of the File Version Library 
If your application includes a Windows version resource, you can use the func
tions in the file version library (VER.DLL) in your installation program. A 
Windows version resource includes the language, code page, version number, and 
so on for a file. The functions in VER.DLL retrieve information from a file's ver
sion resource and install files based on this information. For example, if an installa
tion program tries to replace an existing copy of an application with a new copy in 
a different language, the VerlnstallFile function returns an error that indicates a 
language conflict. Then the installation program queries the user about whether to 
overwrite the old file, install the new copy in another location, or exit. 

For more information about the contents of a version resource and about using ver
sion functions, see Chapter 11, "File Installation Library." 

18.3 Achieving Easy Localization 
Creating applications that are easy to localize is not difficult if you follow a few 
basic rules. 

18.3.1 Isolation of Localizable Information 
The most important rule for localization is to never mix functional code with 
strings, messages, or any other information that has to be modified to localize your 
application. 

Hard-coded strings (strings mixed with functional code) make localization more 
difficult. In most Windows applications, all menus, strings and messages should 
be placed in the resource-definition (.RC) file. All the dialog box information 
should be placed in the dialog box script (.DLG) file. If you do this, you just need 
to run the Resource Compiler (RC) to obtain a new, localized version of the prod
uct instead of recompiling the executable file. 

Strings that are not meant to be modified (filenames, WIN.IN! setting names, and 
so on) can be placed in the .RC file, but the file should contain comments docu
menting that the names are permanent and should not be modified. It is a good 
idea also to mark what should be translated (explaining limitations, if any). The 
better you make the documentation, the easier the localization will be. 



Chapter 18 International Applications 389 

The .RC files and .DLG files should contain anything that can be a localization 
item. It is better to have extra information in these files than to have too little. In 
cases where an .RC or a .DLG file cannot be used, place all the information in a 
file, such as an include file, that is separate from any functional code. 

18.3.2 Allocating Extra Space for Strings 
Many languages are more verbose than English and require more space to hold 
strings or to display dialog boxes. There are cases, as with menus, where the space 
allocation is done dynamically, but in most cases the application has to provide the 
space. The following table shows the percentage of additional space that an appli
cation should allocate for non-English strings of various lengths. 

Length in characters 

1-10 

11-20 

21-30 
31-50 
51-70 
70+ 

Additional space required 

200% 

100% 

80% 

60% 

40% 

30% 

In the English version of your application, avoid creating dense menus where most 
of the available space (all except one line, for example) is used. Dialog boxes 
should be designed so that items can be moved freely, allowing reorganization of 
the contents as translation demands. Do not crowd status bars with information. 
Even abbreviations are often longer in other languages. 

18.3.3 Handling Foreign Languages 
Never make assumptions about language usage when dealing with foreign lan
guages. The ordering of words can be different, and the number of words required 
is often greater than in English. 

Keep in mind the following grammatical points when preparing an application for 
localizing: 

• A void using the same word in more than one message. Some wo~ such as 
none, can have different translations (different gender and number) depending 
on the context. "/ / 

• Do not create plurals of words by adding s. Keep two strings, one for the singu
lar and one for the plural. 

• Avoid using slang, abbreviations, or jargon, because they are difficult to trans
late. 



390 Microsoft Windows Programmer's Reference 

Keep these syntactical considerations also in mind when localizing: 

• A void parsing text to obtain information. Parsing normally assumes specific 
syntax. 

• Do not create a long string from several short strings. The long string may not 
make sense in another language, because the order of parts of speech varies in 
different languages. 

Incorporate graphic objects such as bitmaps, cursors, and icons with these con
siderations in mind: 

• A void the use of embedded text in graphics. Text is difficult to modify when in 
graphical form. If you cannot avoid this, leave enough space for translation and 
try to create tools to simplify the modification. 

• Look for graphic objects that represent international concepts, because graphic 
objects are also language dependent. 

Keep in mind the following points when planning screen elements: 

• Do not hard-code the position or size of any element on the screen, because an 
item changes position and size as it gets translated. In cases where you need to 
define the size or position of certain object, place this definition in the resource
definition (.RC) file. 

• Use the Create Window function carefully. The lpClassName parameter should 
be constant and independent from localization, but the lpWindowName parame
ter, which is the string that appears in the title bar, should be localized. The 
string used for lpWindowName should be taken from the resources. 

All messages should be self-contained, not dynamically assembled. In cases where 
messages have variables added to them at run time, do not make any assumptions 
about the position of the variable in the message. Handle variables in messages in 
the following manner: 

1. Place the string containing the variable in the resource-definition (.RC) file: 

CannotOpen, "The application could not open the file %s" 

2. Use the wsprintffunction to incorporate the variable into the string: 

LoadString(hlnst, CannotOpen, lpFormat, Maxlen); 
wsprintf(FinalString, lpFormat, FileName); 



Network Applications 

Chapter 1 g 

19.1 Sharing by Multiple Users ....................................................................... 393 
19.1.1 Sharing Directories .................................................................. 393 
19.1.2 Sharing Temporary Storage ..................................................... 394 
19.1.3 Sharing Files ............................................................................ 394 
19 .1.4 Sharing Devices . . . . . . .. . . . . . ... . . .. . .. . . . ... . . .. . . . . . ... . . . . .. . . . .. . . .. . . .. . .. . . .. . . . . 394 

19.2 Calling Network Software in Protected Mode ........................................ 395 
19.2. l Microsoft Networks and MS-DOS Network Functions .......... 395 
19.2.2 NetBIOS Functions.................................................................. 396 
19.2.3 
19.2.4 
19.2.5 
19.2.6 

LAN Manager Networks......................................................... 396 
Novell NetWare ....................................................................... 397 
Ungermann-Bass Net/One ....................................................... 397 
Banyan VINES ......................................................... ............... 397 





Chapter 19 Network Applications 393 

As local area networks (LANs) become increasingly common, application devel
opers need to ensure that their applications run properly in a network environment. 
To do this, they should consider the behavior of applications shared by multiple 
users and the compatibility of applications that access network software directly 
with protected (standard or 386 enhanced) mode. 

19.1 Sharing by Multiple Users 
Many corporations choose to have their computer users share a single copy of an 
application that resides on a network server. The Microsoft Windows operating 
system, version 3.0 and later, can be run this way. The /n (network) option used in 
Windows Setup configures the user's system so that most Windows files are used 
directly off the network, but the user's personal files and configuration informa
tion are stored in a private Windows directory. (For more information about using 
a shared copy of Windows, see the Microsoft Windows User's Guide.) 

If you intend to allow shared copies of your application, you must ensure that two 
users running the same application do not interfere with each other. The following 
sections present guidelines for preparing an application for network support. 

19 .1.1 Sharing Directories 
Many applications store configuration files in the same directory as the executable 
file for the application. This method does not work for multiple users, however, 
because the application stores each user's information in the same directory, over
writing the other users' information in the process. 

Instead of using configuration files, an application should use the Windows profile 
functions to store user-specific information in initialization (.INI) files. The profile 
functions create initialization files in a user's private Windows directory, unless 
the application specifies a different directory. 

Windows profile functions, such as WriteProfileString, usually store profile and 
configuration information in .INI files. Profile functions fall into two categories: 
those that access WIN.IN! and those that access another .INI file specified by the 
program. 

The functions that access WIN.IN! are GetProfileString, GetProfilelnt, and 
WriteProfileString. Because each user has a unique copy of WIN.IN!, these func
tions can be used safely, even when the application is being shared by more than 
one user. 

The functions that access other .INI files are GetPrivateProfileString, Get
PrivateProfilelnt, and WritePrivateProfileString. These functions behave simi
larly to the functions that access WIN.IN!, except that the application specifies the 



394 Microsoft Windows Programmer's Reference 

name of the private initialization file. When using these functions, you should 
specify the name of the file, but not a complete path (for example, MY APP.IN! 
instead of C:\MYAPP\MYAPP.INI). By default, the file will be located in the 
user's private Windows directory; specifying a full path could give multiple users 
access to the same file. 

The exception to the preceding rule are initialization files that need to be shared 
by all users. Make sure that those files cannot be left in an inconsistent state if 
multiple users update them simultaneously. 

For a full description of the profile functions, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

19.1.2 Sharing Temporary Storage 
When creating temporary files, use the GetTempFileName function to determine 
a unique name and location for the file. This function ensures that temporary 
filenames do not conflict, even if multiple users share the same temporary storage 
directory. 

19 .1.3 Sharing Files 
A network manages file sharing as if the SHARE utility were loaded. Each file 
that can be accessed on the network should use a sharing mode to ensure data 
integrity. Applications should also be designed to handle sharing violations. 

A sharing violation occurs when one process (or machine) attempts to access a file 
after a different process has requested the server to block access to the file. If an 
application opens the file in compatibility mode, a sharing violation results in a 
critical error. Therefore, unless the application uses the SetErrorMode function to 
set the error mode so that it always fails, Windows displays the standard sharing 
violation message. 

For more information on file sharing and record locking, see The MS-DOS 
Encyclopedia (Redmond, Washington: Microsoft Press, 1988). 

19 .1.4 Sharing Devices 
Windows 3.1 includes three functions that an application can use to manage 
its network connections: WNetAddConnection, WNetCancelConnection, and 
WNetGetConnection. The WNetAddConnection function redirects a local 
device (either a disk drive or a printer port) to a shared device on a remote server. 



Chapter 19 Network Applications 395 

The WNetCancelConnection function cancels a redirection to a shared device. 
The WNetGetConnection function returns the name of the network resource 
associated with a redirected local device. For more information about these net
work functions, see the Microsoft Windows Programmer's Reference, Volume 2. 

19.2 Calling Network Software in Protected Mode 
Windows applications running in protected mode require special support when
ever they make a call to real-mode software. This includes calls to MS-DOS, the 
BIOS, or a network. Non-Windows applications running with Windows do not 
require this special support, however, because they always run in real or virtual-
8086 mode. 

Windows applications running in protected mode require application program
ming interface (API) mapping. If the arguments to the calling function include 
pointers to data, that data should be copied into the first 1 megabyte of address 
space so that the real-mode software can access it. The processor is then switched 
into real or virtual-8086 mode so that the real-mode software can process the func
tion. Finally, when the function returns, any data it modified is copied back to the 
caller's protected-mode address. 

Fortunately, most applications interact with the network only indirectly, by using 
MS-DOS functions to manipulate files on redirected drives or by using MS-DOS 
or BIOS functions to print to a remote printer using redirected printer ports. 
Windows applications can continue to perform these functions as usual, because 
Windows automatically maps standard MS-DOS and BIOS functions. 

Some applications, however, need to use functions that are specific to a particular 
network or networking protocol. Some part of the software must map these func
tions, and, in some cases, this may require special procedures on the part of the 
programmer. 

The remainder of this chapter describes programming considerations for design
ing Windows applications that use the following networking protocols and net
works: Microsoft Networks and MS-DOS network functions, NetBIOS functions, 
Microsoft LAN Manager-based networks, Novell NetWare, Ungermann-Bass 
Net/One, and Banyan VINES. 

19.2.1 Microsoft Networks and MS-DOS Network Functions 
Many networks on the market today are based on the Microsoft Networks stan
dard, also known as MS-NET. These networks support a set of standard MS-DOS 
functions that perform network activities, such as redirecting drive letters. 



396 Microsoft Windows Programmer's Reference 

Current versions of Windows automatically handle these MS-DOS functions. 
However, in order to maintain compatibility with future Windows products, your 
application should not make MS-DOS calls by using Interrupt 21h. Instead, it 
should set up all the registers for Interrupt 21h and then make a far call to the 
Windows DOS3Call function. 

For a full description of the DOS3Call function, see the Microsoft Windows 
Programmer's Reference, Volume 2. For more information about Microsoft 
Networks functions, see The MS-DOS Encyclopedia. 

19.2.2 NetBIOS Functions 
NetBIOS is the most widely used networking APL The functions in this API are 
normally called by using Interrupt 5Ch. Current versions of Windows handle 
most NetBIOS functions. However, in order to maintain compatibility with future 
Windows products, the application should not make the NetBIOS call by using 
Interrupt 5Ch. Instead, it should set up all the registers for Interrupt 5Ch and then 
make a far call to the Windows NetBIOSCall function. 

Windows does not support the following rarely used NetBIOS functions: 

Function number 

71h 
72h 
73h 
78h 

79h 

Function name 

Send.No.Ack 
Chain.Send.No.Ack 

Lan.Status.Alert 

Find.Name 

Trace 

For a full description of the NetBIOSCall function, see the Microsoft Windows 
Programmer's Reference, Volume 2. 

19.2.3 LAN Manager Networks 
Networks based on Microsoft LAN Manager can be installed in either basic or 
enhanced versions. All versions of LAN Manager support MS-NET and NetBIOS 
functions. However, if you are running the enhanced version of LAN Manager 
with the API option, your applications can also use a powerful set of networking 
functions. 

Non-Windows applications can call networking functions by linking with 
DOSNET.LIB, a static-link library provided with the network software. Windows 
applications, however, must use two dynamic-link libraries (DLLs), NETAPl.DLL 
and PMSPL.DLL, distributed on every workstation with the enhanced version of 



Chapter 19 Network Applications 397 

LAN Manager 2.0. (These DLLs do not run with LAN Manager l .x or with the 
basic version of LAN Manager 2.0.) 

For more details on writing Windows applications for LAN Manager, see the 
Microsoft LAN Manager Programmer's Reference. 

19.2.4 Novell NetWare 
Novell NetWare supports MS-NET and, optionally, NetBIOS functions, which are 
described earlier in this chapter. Novell NetWare also supports the NetWare and 
IPX/SPX APis, both based on Interrupt 2lh. 

Windows applications cannot make NetWare calls by using Interrupt 2lh directly, 
because this method is not supported in all Windows operating modes. Instead, the 
Interrupt 21h instruction should be replaced by a far call to the NetWareRequest 
function. This function is exported by name from the NetWare DLL and should be 
imported to the module-definition (.DEF) file as NetWare.NetWareRequest. 

Windows applications cannot make IPX/SPX calls at this time, although Novell 
plans to make this support available in a future release. For more information, con
tact Novell product support. 

19.2.5 Ungermann-Bass Net/One 
Ungermann-Bass Net/One is based on the Microsoft Networks standard. It sup
ports standard MS-NET functions and most NetBIOS functions described earlier 
in this chapter. 

Net/One also supports private extensions to the NetBIOS function set (Interrupt 
5Ch Functions 72h-7Dh). These functions are supported by Windows. You can 
call these functions as you would standard NetBIOS functions by making a far call 
to the NetBIOSCall function. 

19.2.6 Banyan VINES 
Banyan VINES supports the standard MS-NET functions and, optionally, 
NetBIOS functions. A toolkit is available for applications that write directly to 
the VINES APL 

Windows applications can call the MS-NET and NetBIOS functions as previously 
described. 

VINES version 4.0 does not support Windows applications that call the VINES 
API directly, but Banyan intends to make this support available in VINES 4.1. For 
more information, contact Banyan product support. 





Windows Applications with 
MS-DOS Functions 

Chapter 20 

20.1 Using DOS Protected-Mode Interface Functions .................................... 401 
20.1.1 Windows Kernel ...................................................................... 401 
20.1.2 Other Application Programming Interfaces............................ 402 

20.2 Support for MS-DOS Interrupts.............................................................. 402 
20.2.1 Unsupported MS-DOS Interrupts and Functions .................... 402 
20.2.2 Partially Supported MS-DOS Interrupt 21h Functions ........... 403 

20.3 NetBIOS Support ..................................................................................... 404 





Chapter 20 Windows Applications with MS-DOS Functions 401 

This chapter describes the support in the Microsoft Windows operating system 
version 3.0 and later for Windows and non-Windows applications using DOS 
Protected-Mode Interface (DPMI) version 1.0 functions, MS-DOS interrupts and 
functions in protected mode, and the NetBIOS in protected mode. 

DPMI enables MS-DOS applications to access the extended memory of PC
architecture computers while maintaining system protection. It also defines a new 
interface, through Interrupt 3 lh, that protected-mode applications use for such 
tasks as allocating memory, modifying descriptors, and calling real-mode software. 

According to the DPMI specification, the term real-mode software refers to code 
that runs in the low I-megabyte address space and uses segment:offset addressing. 
With Windows 3.0 and later in protected mode, so-called real-mode software is 
actually run in virtual-8086 mode. However, because virtual-8086 mode is a close 
approximation ofreal mode, both are referred to as real mode in this chapter. 

For more information about the DPMI specification, contact Intel Corporation 
product support, or submit a service request through Microsoft OnLine. 

20 .1 Using DOS Protected-Mode Interface Functions 
Windows 3.0 and later in 386 enhanced mode supports DPMI version 1.0. 
Windows 3.0 and later in standard mode supports a subset ofDPMI that enables 
applications to call terminate-and-stay-resident (TSR) programs and device drivers 
running in real (or virtual-8086) mode. To ease the porting of an application to 
other operating environments, all code that calls DPMI functions directly should 
reside in a dynamic-link library (DLL). 

20.1.1 Windows Kernel 
Windows applications should not use the MS-DOS memory management func
tions for DPMI. The Windows 3.0 and later kernel has two functions, Global
DOSAlloc and GlobalDOSFree, that should be used by Windows applications 
and DLLs for allocating and freeing MS-DOS addressable memory. 

Because the Windows kernel provides functions for allocating memory, manipulat
ing descriptors, and locking memory, no DPMI functions other than the following 
are required for Windows applications: 

Interrupt 21h function 

0200h 
0201h 
0300h 
0301h 

Description 

Get Real Mode Interrupt Vector 

Set Real Mode Interrupt Vector 

Simulate Real Mode Interrupt 

Call Real Mode Procedure with Far Return Frame 



402 Microsoft Windows Programmer's Reference 

Interrupt 21h function Description 

0302h 

0303h 
0304h 

Call Real Mode Procedure with Interrupt Return 
Frame 
Allocate Real Mode Callback Address 
Free Real Mode Callback Address 

Non-Windows applications running in 386 enhanced mode can use all DPMI func
tions, because those functions are not restricted by the kernel. 

20.1.2 Other Application Programming Interfaces 
In general, any software-interrupt function that passes parameters in the EAX, 
EBX, ECX, EDX, ESI, EDI, and EBP registers works as long as none of the regis
ters contains a selector value. In other words, if a software-interrupt function is 
completely register-based without any pointers, segment registers, or stack parame
ters, that function should work with Windows running in protected mode. 

More complex software interrupt functions require the calling function to use the 
DPMI translation functions. 

20.2 Support for MS-DOS Interrupts 
This section discusses support for MS-DOS interrupts and functions when Win
dows runs in protected mode with MS-DOS version 3.0 and later. 

All MS-DOS interrupts and functions that are not mentioned in this section 
should work exactly as documented in The MS-DOS Encyclopedia (Redmond, 
Washington: Microsoft Press, 1988). 

20.2.1 Unsupported MS-DOS Interrupts and Functions 
The following MS-DOS interrupts are not supported in protected mode and will 
fail if called: 

Interrupt 

20h 
25h 
26h 
27h 

Description 

Terminate Program 
Absolute Disk Read 
Absolute Disk Write 
Terminate and Stay Resident 



Chapter 20 Windows Applications with MS-DOS Functions 403 

The following MS-DOS Interrupt 21h functions are also not supported in pro
tected mode: 

Function Description 

OOh Terminate Process 
OFh Open File with FCB 
IOh Close File with FCB 
14h Sequential Read 
15h Sequential Write 
16h Create File with FCB 
21h Random Read 
22h Random Write 
23h Get File Size 
24h Set Random Record Number 
27h Random Block Read 
28h Random Block Write 

20.2.2 Partially Supported MS-DOS Interrupt 21h Functions 
The following MS-DOS Interrupt 21h functions behave differently in protected 
mode than they do in real mode. To use these functions, an application might 
require additional code: 

Function 

25h 
35h 
38h 
4402-4405h 
440Ch 
6501-6506h 

Description 

Set Interrupt Vector 
Get Interrupt Vector 
Get/Set Current Country Information 
Send/Receive Control Data 
Generic IOCTL for Character Devices 
Get Extended Country Information 

Functions 25h and 35h set and get the protected-mode interrupt vector. They can 
be used to hook hardware interrupts, such as the timer or keyboard interrupt, as 
well as to hook software interrupts. (Except for Interrupts 23h, 24h, and lCh, soft
ware interrupts that are issued in real mode are not passed to protected-mode inter
rupt handlers. However, all hardware interrupts are passed to protected-mode 
interrupt handlers before being passed to real mode). 

Function 38h returns a 34-byte buffer containing a doubleword real-mode address. 
The address at offset 12h is used for case mapping. To call the case-mapping func
tion, use the DPMI translation function to simulate a real-mode FAR call. 



404 Microsoft Windows Programmer's Reference 

Functions 4402h, 4403h, 4404h, and 4405h are used to receive data from a device 
or send data to a device. Because it is not possible to break the transfers automat
ically into small pieces, the calling program should assume that a transfer of 
greater than 4 K will fail unless the address of the buffer is in the low 1 megabyte. 

Only certain extensions of Function 440Ch (Minor Codes 45h and 65h) are sup
ported for protected mode. The extensions of Function 440Ch that are used for 
code-page switching (Minor Codes 4Ah, 4Ch, 4Dh, 6Ah, and 6Bh) are not sup
ported for protected-mode programs. To use 440Ch to switch code pages, you 
must use the DPMI translation functions. 

Functions 6501h, 6502h, 6503h, 6504h, 6505h, and 6506h are supported for 
protected-mode programs. However, all doubleword parameters returned will 
contain real-mode addresses (that is, the case-conversion procedure address and 
all the pointers to tables will contain real-mode segment:offset addresses). To call 
the case-conversion procedure in real mode, you must use the DPMI translation 
functions. 

20.3 NetBIOS Support 
Windows supports standard NetBIOS (Interrupt 5Ch) functions in protected mode. 
All network control blocks (NCBs) and buffers must reside in fixed memory that 
is page-locked. To ease the porting of the application to other operating systems, 
all code that calls NetBIOS functions directly should reside in a DLL. 

For additional information on NetBIOS support in Windows network drivers, 
see the Microsoft Windows Device Driver Adaptation Guide. For more informa
tion about developing applications for networks, see Chapter 19, "Network 
Applications." 



Windows Prologs and Epilogs 

Chapter 21 

21. l Data-Segment Initialization ... . ... ..... ... . ..... ... . . .. . .... .... .... ... . ....... ... . .... ... . ..... 407 
21.1.1 Exported Far Functions ........................................................... 407 
21.1.2 Nonexported Far Functions..................................................... 409 
21.1.3 Exported Far Functions in a Dynamic-Link Library ............... 410 

21.2 Prologs in Real Mode............................................................................... 411 
21.3 Prologs in Protected Mode....................................................................... 411 





Chapter 21 Windows Prologs and Epilogs 407 

This chapter describes the prolog and epilog used with far functions in applica
tions and dynamic-link libraries (DLLs) for the Microsoft Windows operating sys
tem. Compiler vendors can use this information to enable their compilers to 
generate prolog and epilog code that is suitable for Windows. 

In Windows version 3.0 and earlier, the prolog and epilog for far functions must 
include instructions to mark the stack frame, indicating that the frame belongs to 
a far function. This makes it possible for real-mode Windows to locate segment 
addresses on the stack and update those addresses when it moves or discards 
the corresponding segments. Marking stack frames for far functions also allows 
debugging applications, such as Microsoft Code View® for Windows (CVW) and 
Microsoft Windows 80386 Debugger (WDEB386.EXE), to display meaningful 
information about the contents of an application's stack. 

Marking stack frames for far functions is optional for Windows 3.1 applications. 
Old debugging applications that do not access TOOLHELP.DLL, however, still 
need marking. Debugging applications that use TOOLHELP.DLL do not require 
stack frames for far functions to be marked. 

21.1 Data-Segment Initialization 
The Windows prolog and epilog contain instructions that initialize the DS register, 
setting the register to the segment address of the application or DLL. Windows 
requires callback functions, such as window, dialog box, and enumeration proce
dures, to initialize the DS register whenever they are called by Windows or an 
application. This guarantees that the function accesses its own data segment rather 
than the data segment of the caller. 

21.1.1 Exported Far Functions 
The Windows prolog used with exported far functions, such as dialog box and 
enumeration procedures, ensures that the DS register receives the data segment 
address for the application when Windows or an application calls the exported 
function. In Windows version 3.0 and earlier, the prolog and epilog for exported 
far functions have the following form: 

push ds put DS in AX, take 3 bytes to do it, 
pop ax so the code can be rewritten as 
nop MOV AX, IMM when appropriate 

inc bp push odd BP to indicate this stack 
push bp frame corresponds to a far CALL 

mov bp, sp set up BP to access arguments and 
local variables 



408 Microsoft Windows Programmer's Reference 

push 
mov 
sub 

sub 
mov 
pop 
pop 
dee 
retf 

ds 
ds, ax 
sp, canst 

bp, 2 
sp, bp 
ds 
bp 
bp 

save OS 
set OS to proper data segment 
allocate local storage (optional) 

restore registers 

Because Windows 3.1 does not support real mode, the inc bp and dee bp instruc
tions are not required. Also, a variety of other changes can be made to the prolog 
and epilog to improve speed and reduce the size of the code. If a far function is 
part of an application (not part of a DLL), the SS register is already the proper 
value for the OS register, so calling the MakeProclnstance function is not neces
sary. The prolog and epilog can be modified as follows: 

push 
mov 

push 

push 
pop 

pop 
pop 

retf 

bp 
bp, 

ds 

SS 

ds 

ds 
bp 

; 
sp 

set up stack frame (optional) 

save calling function's OS 

move SS to OS 

restore registers 

An alternative form of the prolog and epilog for far functions follows: 

push bp ; set up stack frame (optional) 
mov bp, sp 

push ds save calling function's OS 

mov ax, SS move SS to OS 
mov ds, ax 

sub sp, canst (optional) allocate local storage 



Chapter 21 Windows Prologs and Epilogs 409 

mov ds, [bp-2] restore registers 
leave 

retf 

Each of the variations of prolog and epilog code discussed previously works 
whether or not a far function is exported. The code can be called by an application 
or DLL as well as by the system. 

If an application copies the contents of the SS register to the DS register, it doesn't 
need to call the MakeProclnstance function to obtain a procedure-instance 
address before calling an exported far function. Similarly, if a DLL moves the 
DGROUP data segment to the DS register through the AX register, the DLL 
doesn't need to call MakeProclnstance before calling an exported far function. 

Although window procedures for an application require this same prolog, Win
dows loads the AX register before calling these procedures. An application, there
fore, never needs to create a procedure-instance address for its window procedures. 

21.1.2 Nonexported Far Functions 
Although not required, nonexported far functions can also include prolog code that 
initializes the DS register. In this case, it is assumed that the function is never 
called by Windows or an application and that the DS register contains the correct 
segment address when the function is called. The prolog for a nonexported func
tion has the following form: 

mov 
nop 

push 
mov 

push 
mov 

pop 
pop 
retf 

ax, 

bp 
bp, 

ds 
ds, 

ds 
bp 

ds 

sp 

ax 

copy OS to AX 

set up stack frame (optional) 

save calling function's OS 
move same value back to OS 

pop same value back to OS 

An alternative form of the prolog for a nonexported function follows: 

push ds ; copy OS to AX 
pop ax 
nop 



410 Microsoft Windows Programmer's Reference 

push 
mov 

push 

mov 

pop 
pop 
retf 

bp 
bp, 

ds 

ds, 

ds 
bp 

sp 

ax 

set up stack frame (optional) 

save calling function's DS 

move same value back to DS 

pop same value back to DS 

A compiler should not generate the preceding code by default because it reloads 
the DS register with the same value two times per far call. Loading segment regis
ters is a slow operation in protected mode and should be avoided as much as 
possible. 

21.1.3 Exported Far Functions in a Dynamic-Link Library 
Exported far functions in DLLs also require a prolog. The prolog code in a DLL 
must generate a reference to the DGROUP data segment. The SS register can
not be used because execution occurs on the calling function's stack. Exported 
far functions cannot use this method because fixups to DGROUP are illegal for a 
multiple instance application. 

The prolog and epilog for exported far functions in a DLL has the following form: 

mov 

push 
mov 

push 
mov 

pop 
pop 

retf 

ax, 

bp 
bp, 

ds 
ds, 

ds 
bp 

DGROUP 

sp 

ax 

get DGROUP value 

set up stack frame (optional) 

save calling function's DS 
move DGROUP to DS 

restore registers 

Following is an alternative form of the prolog for exported far functions in a DLL: 

mov 

push 
mov 

ax, DGROUP 

bp 
bp, sp 

get DGROUP value 

set up stack frame (optional) 



push 
mov 

sub 

mov 

leave 

ds 
ds, ax 

sp, con st 

ds, [bp-2] 

Chapter 21 Windows Prologs and Epilogs 411 

save calling function's OS 
move OGROUP to OS 

allocate local storage (optional) 

restore registers 

Windows inserts the current data segment address as the second operand 
(DGROUP) of the initial mov instruction. 

21.2 Prologs in Real Mode 
When Windows 3.0 and earlier is running in real mode, Windows must walk each 
application stack whenever it moves or discards segments. In particular, it must 
check each stack for any segment addresses that may have been affected by the 
segment operations. 

To help Windows locate segment addresses associated with the stack frames 
of far functions, the Windows prolog increments the old frame pointer, contained 
in the BP register, before saving it on the stack. Because all stack offsets, includ
ing frame pointers, are expected to be word-aligned, incrementing the BP register 
gives Windows a quick way to locate all far function stack frames. 

Windows only walks the stack in real mode. In protected mode, selector values do 
not change even though Windows may move and discard segments. Therefore, 
functions in protected mode do not need to increment the BP register when they 
save it. However, some debugging programs, such as CVW and WDEB386.EXE, 
use the incremented BP register to determine which stack frames correspond to far 
functions and give meaningless stack backtraces if the BP register is not incre
mented before it is saved. 

21.3 Prologs in Protected Mode 
Although exported functions in protected-mode, single-instance applications need 
to set the DS register, these functions do not require the exported prolog described 
in the previous section. Instead, they can use code similar to that generated by the 
_loadds keyword of the Microsoft C Optimizing Compiler (CL) to set the DS reg
ister. 



412 Microsoft Windows Programmer's Reference 

The code generated by _loadds copies the data segment selector to the DS register 
whenever the function is called. Because a selector does not change value when 
the corresponding segment is moved, there is no need to set the AX register to the 
appropriate data segment address before calling the function (or to mark the stack 
frame). The function can, therefore, be called directly rather than through a 
procedure-instance address. The _loadds code has the following form: 

push bp 
mov bp,sp 
push ds 
mov ax, CONSTANT 
mov ds, ax 

Functions that use the _loadds code can be used as callback functions. Because no 
prolog code is required, the functions do not need to be exported when used in an 
application. Functions in DLLs can also use the _loadds code. However, the func
tions must be exported to ensure that other applications can link dynamically to 
them. 

In multiple-instance applications, the Windows prolog is needed only for far 
functions called by Windows. For these functions, procedure-instance addresses 
are required. The _loadds code cannot be used in multiple-instance applications. 
Instead, applications should copy the SS register to the DS register. 



Windows Application Startup 

Chapter 22 

22.1 Startup Requirements............................................................................... 415 
22.2 Example of a Startup Routine.................................................................. 416 
22.3 Function Reference .. ... ... ... . .... ..... .. . . ... . ..... ... . . ... ....... .......... ... . ... .. .. ... ... . . .... 418 





Chapter 22 Windows Application Startup 415 

This chapter describes the startup requirements of applications for the Microsoft 
Windows operating system. It also discusses the steps needed to initialize an appli
cation before its entry-point function, WinMain, can be called. 

Windows dynamic-link libraries (DLLs) also have startup requirements. For a 
complete description of the startup routines for those DLLs, see the Microsoft 
Windows Guide to Programming. 

22.1 Startup Requirements 
When Windows starts an application, it calls a startup routine supplied with the 
application rather than the application's WinMain function. The startup routine is 
responsible for initializing the application, calling WinMain, and exiting the appli
cation when WinMain returns control. 

When Windows first calls the startup routine, the processor registers have the 
following values: 

Register 

AX 

BX 

ex 
DI 
SI 

BP 
ES 

DS 

SS 

SP 

Value 

Contains zero. 

Specifies the size, in bytes, of the stack. 

Specifies the size, in bytes, of the heap. 

Contains a handle identifying the new application instance. 

Contains a handle identifying the previous application instance. 

Contains zero. 

Contains the segment address of the program segment prefix (PSP). 

Contains the segment address of the automatic data segment for the 
application. 

Same as the DS register. 

Contains the offset to the first byte of the application stack. 

To initialize and exit a Windows application, the startup routine must follow these 
steps: 

1. Initialize the task by using the InitTask function. InitTask also returns values 
that the startup routine passes to the WinMain function. 

2. Clear the event that started the task by calling the WaitEvent function. 

3. Initialize the queue and support routines for the application by calling the lnit
App function with the instance handle returned by the InitTask function. 

4. Call the entry point for the application, the WinMain function. 

5. Exit the application by calling the MS-DOS End Program function (Interrupt 
21h Function 4Ch) when WinMain returns. 



416 Microsoft Windows Programmer's Reference 

Although the startup routine is essentially the same for all Windows applications, 
a variety of startup routines may need to be developed to accommodate the differ
ent memory models and high-level language run-time libraries used by Windows 
applications. If a Windows application uses functions and variables provided by 
run-time libraries, the startup routine may need to be customized to initialize the 
library at the same time as the application. Customizing the startup routine for 
run-time library initialization is entirely dependent on the library and is, therefore, 
beyond the scope of this chapter. 

22 .2 Example of a Startup Routine 
A startup routine initializes and exits a Windows application. The routine in the 
following example, the _astart function, shows the code needed for startup, 
which includes Cmacros defined in the CMACROS.INC header file. When 
assembled, this code is suitable for small-model Windows applications that do 
not use run-time libraries: 

.xlist 
small memory model memS = 1 

?DF = 1 
?PLM = 1; 
?WIN = 1; 

Do not generate default segment definitions. 

include cmacros.inc 
. 1 i st 

STACKSLOP = 256 

createSeg _TEXT,CODE,PARA,PUBLIC,CODE 
createSeg NULL, NULL, PARA,PUBLIC,BEGDATA,DGROUP 
createSeg _DATA,DATA, PARA,PUBLIC,DATA, DGROUP 
defGrp DGROUP,DATA 

assumes DS,DATA 

sBegin NULL 
DD 0 

labelW <PUBLIC,rsrvptrs> 
maxRsrvPtrs = 5 

DW maxRsrvPtrs 
DW maxRsrvPtrs 

sEnd NULL 

sBegin DATA 
staticW hPrev,0 
staticW hlnstance,0 
staticD lpszCmdline,0 
staticW cmdShow,0 
sEnd DATA 

DUP (0) 

Save WinMain parameters. 



externFP 
externFP 
externFP 
externFP 
externP 

sBegin 
assumes 

label NP 

ix: 

app. 
noinit: 

s End 

Chapter 22 Windows Application Startup 417 

<INITTASK> 
<WAIT EVENT> 
<INITAPP> 
<DDS3CALL> 
<WINMAIN> 

CODE 
CS,CODE 

<PUBLIC, __ astart> 

xor 
push 

cCall 
or 
jz 

add 
jc 

mov 
mov 
mov 
mov 
mov 

xor 
cCall 
cCall 
or 
jz 

bp,bp 
bp 

IN ITT ASK 
ax.ax 
noinit 

cx,STACKSLOP 
noi nit 

hPrev,si 
hinstance,di 
word ptr lpszCmdline,bx 
word ptr lpszCmdline+2,es 
cmdShow,dx 

ax,ax 
WAITEVENT ,<ax> 
INITAPP,<hinstance> 
ax.ax 
noi nit 

zero bp 

Initialize the task. 

Add in stack slop space. 
If overflow, return error. 

Clear initial event that 
started this task. 

Initialize the queue. 

cCall WINMAIN,<hinstance,hPrev,lpszCmdline,cmdShow> 

mov 
cCall 

ah,4Ch 
DOS3CALL 

mov al ,0FFh 
jmp short ix 

CODE 

end a start 

Exit with return code from 

Exit with error code. 

start address 

Windows requires the null segment (containing the rsrvptrs array), which is 
defined at the beginning of this sample. The InitTask function copies the top, 
minimum, and bottom address offsets of the stack into the third, fourth, and fifth 
elements of the rsrvptrs array. Applications can use these offsets to check the 



418 lnitApp 

amount of space available on the stack. The debugging version of Windows also 
uses these offsets to check the stack. Applications must, therefore, not change 
these offsets, since doing so can cause a system debugging error (RIP). 

22.3 Function Reference 

lnitApp 
xternFP InitApp 

push 
call 

hlnstance 
InitApp 

ax,ax 

This section provides information about the InitApp, InitTask, and WaitEvent 
functions mentioned earlier in this chapter. 

instance handle 

zero if error or 
jz error handler 

Parameters 

Return Value 

See Also 

lnitTask 
externFP InitTask 

call InitTask 

The InitApp function creates the application queue and installs application
support routines, such as the signal procedure, version-specific resource loaders, 
and the divide-by-zero interrupt routine. 

hlnstance 
Identifies the task to be initialized. This parameter must have been previously 
supplied by Windows. 

This function returns a nonzero value in the AX register if successful. Otherwise, 
it returns zero in the AX register to indicate an error. 

InitTask 

Initialize a task. 



Parameters 

Return Value 

Comments 

See Also 

lnitTask 419 

The InitTask function initializes the task by setting registers, setting up the com
mand line, and initializing the heap. This must be the first function called by the 
startup routine for the application. 

This function has no parameters. 

This function returns 1 in the AX register and fills the CX, DX, ES:BX, SI, and DI 
registers with information about the new task, if the function is successful. Other
wise, it returns zero in the AX register to indicate an error. 

When the function is successful, other registers contain the following values: 

Register 

ex 

DI 

DX 

ES 

ES:BX 

SI 

Value 

Contains the stack limit, in bytes. The startup routines should check the 
limit to ensure there is a minimum of 100 bytes in the stack. 

Contains the instance handle for the new task. The startup routine 
passes this address to the WinMain function. 

Contains an nCmdShow parameter. The startup routine passes this 
parameter to the WinMain function for use with the Create Window 
function. 

Contains the segment address of the program segment prefix (PSP) for 
the new task. 

Contains the 32-bit address of the command line (MS-DOS format). 
The startup routine passes this address to the WinMain function. 

Contains the instance handle for the previous instance of the applica
tion, if any. The startup routine passes this address to the WinMain 
function. 

ThelnitTask function also copies the top, minimum, and bottom address offsets 
of the stack to the 16 bytes of reserved memory at the beginning of the automatic 
data segment for the application. The reserved memory has the following format: 

DW 0 
globalW oOldSP,0 
globalW hOldSS,5 
globalW plocalHeap,0 
globalW pAtomTable,0 
globalW pStackTop,0 
globalW pStackMin,0 
globalW pStackBot,0 

InitApp 



420 WaitEvent 

WaitEvent 
externFP WaitEvent 

push 
ca 11 

or 
jnz 

task ID 
WaitEvent 

ax,ax 
resched 

Parameters 

Return Value 

task identifier 

; nonzero if rescheduled 

The WaitEvent function checks for a posted event and, if one is found, clears the 
event and returns control to the application. If no event is found, the function sus
pends execution of the application by calling the Windows scheduler. 

task!D 
Identifies the task to check events for. If this parameter is zero, the function 
checks events for the current task. 

This function returns a nonzero value if the Windows scheduler has scheduled 
another application. Otherwise, it returns zero. 



Video Techniques 

Chapter 23 

23.1 Using an Identity Palette.......................................................................... 423 
23.1.1 Understanding the System Palette........................................... 423 
23.1.2 Creating an Identity Palette ..................... ................. ............... 424 

23.2 Accommodating Different Video Adapters and Drivers......................... 424 
23.2.1 Distinguishing Between Standard VGA and Super VGA ...... 424 
23.2.2 Adapting Identity Palettes to Different Display Adapters...... 425 

23.3 Using a Device-Independent Bitmap Driver ........................................... 425 

23.3.1 Creating a Driver Display Context.......................................... 425 
23.3.2 

23.3.3 

23.3.4 

Moving Bitmaps to and from the Display............................... 427 
Modifying Bitmaps.................................................................. 427 

Creating a Driver Device Context........................................... 428 





Chapter 23 Video Techniques 423 

This chapter describes some techniques that can improve the video performance 
of applications for the Microsoft Windows operating system. These techniques 
include using an identity palette to speed up image drawing, accommodating 
differences in video adapters, and modifying device-independent bitmaps (DIBs) 
by using the DIB driver. 

23 .1 Using an Identity Palette 
Windows reserves a group of system palette entries for a fixed number of colors. 
These colors, which are named system colors, are used for drawing screen ele
ments such as scroll bars. Windows also uses the system colors as replacement 
color entries when inactive windows request more color entries than are available 
in the system palette. Windows places the system colors at the top and bottom of 
the system palette to ensure that logical operations (such as XOR) work correctly. 

By arranging logical palettes the same way that Windows arranges the system 
palette, you can avoid unexpected color changes and improve the speed at which 
your application draws DIBs. To do this, you must create an identity palette, a logi
cal palette that matches the system palette. To use identity palettes, however, you 
need to understand how Windows sets up the system palette. 

23.1.1 Understanding the System Palette 
When an application realizes a palette (that is, requests the palette be given 
specified colors), Windows adds the logical palette entries to the system pal-
ette. Windows always reserves system palette entries for the system colors. For 
example, a 256-color video graphics adapter (VGA) driver with 20 system colors 
allows an application to use a maximum of 236 system palette entries. If a logical 
palette contains more entries than can fit in the system palette (after the system 
colors are added), Windows truncates the palette, using only as many colors 
as it can fit without encroaching on the reserved system colors. You can force 
Windows to relinquish the system color entries (by using the SetSystem
PaletteUse function), but by doing so you change the coloring of all Windows 
screen elements to black and white. 

The maximum number of colors available to a foreground window equals the num
ber of colors supported by the video driver minus the number of system reserved 
colors and the number of palette entries reserved by the application. 

Windows places the system colors at the top and bottom of the system palette. For 
example, a 256-color VGA driver uses the top 10 and bottom 10 system palette 
entries for the system colors. If a logical palette does not contain the system 
colors or if the system colors appear in locations other than the default positions, 



424 Microsoft Windows Programmer's Reference 

Windows changes the ordering of the palette entries when your application real
izes its palette. At this point, logical palette entry n does not necessarily match sys
tem palette entry n. When your application draws a bitmap to the device context, 
Windows must translate the bitmap palette indices to the new locations on the sys
tem palette. This translation step takes time. 

The goal is to make the logical palette exactly match the system palette. By doing 
so, your images can be colored exactly as you expect. The video driver can also 
draw the images faster because the translation step is avoided. 

23.1.2 Creating an Identity Palette 
An identity palette is a logical palette that exactly matches the system palette and 
therefore has the same number of entries as the system palette and includes color 
entries for the system colors. The system colors appear at the top and bottom of 
the color table. 

The Microsoft Windows Paintbrush application always saves bitmaps with an 
identity palette. To convert a bitmap palette to an identity palette, you can open the 
bitmap in Paintbrush and then save it. 

23.2 Accommodating Different Video Adapters and Drivers 
This section contains information on adapting your logical palette to a different 
display type. 

23.2.1 Distinguishing Between Standard VGA and Super VGA 
Most super VGA adapters are single-plane devices, which makes them well
suited for displaying DIBs. On a super VGA adapter, there is little speed differ
ence between drawing DIBs and drawing device-dependent bitmaps-you can 
choose whichever format is more convenient for your application. 

Standard VGA adapters have multiple planes and are not as well suited for display
ing DIBs. It is faster to work with device-dependent bitmaps on standard VGA. To 
determine whether a standard VGA adapter is present, use the following code: 

hDC = CreateDCC"DISPLAY", NULL, NULL, NULL); 

bisMultiplane = CGetDeviceCaps(hDC, PLANES) > ll; 

DeleteOC(hOC); 



Chapter 23 Video Techniques 425 

23.2.2 Adapting Identity Palettes to Different Display Adapters 
Even if two display devices use the same number of system colors, you cannot 
assume that the red, green, and blue (RGB) values for the low-intensity colors 
match. One particular problem is the difference between super VGA and 8514 
systems. Both provide 256 colors and use 20 system colors, but the low-intensity 
system color values for the VGA are different from those for the 8514. An identity 
palette created on a VGA system is not the same as an identity palette on an 8514 
system. 

If you create an identity palette on a VGA system and then display the DIB on an 
8514 system, Windows recognizes the low-intensity colors in the logical palette as 
custom colors rather than system colors. It puts these colors in the custom-color 
section of the palette (in entries 10 through 245) and the 8514 system colors in the 
top and bottom of the system palette. 

To avoid misrecognition of colors, an application can do the following: 

1. When the application loads, it should use the GetSystemColors function to 
retrieve the system colors from the system palette and compare these colors 
against the system colors used in the DIB palettes. 

2. If the colors do not match, the application should copy the current system 
colors (retrieved from the system palette) over the DIB system colors. 

23.3 Using a Device-Independent Bitmap Driver 
Many MS-DOS applications manipulate screen memory directly. To maintain the 
device independence of Windows, it is not possible to allow an application to 
access screen memory directly. However, an application can use the DIB driver 
(DIB.DRV) to directly manipulate an image in memory. 

23.3.1 Creating a Driver Display Context 
An application can load the DIB driver by passing the DIB driver name and a 
BITMAPINFO structure containing the DIB bits to the CreateDC function. For 
example, the following example creates a DIB display context that represents the 
packed DIB described by the BITMAPINFO structure bi: 

hdc = CreateDC("DIB", NULL, NULL, &bi); 

An application must observe the following rules when working with a device con
text created in this manner: 

• If the last parameter of CreateDC is NULL, the display context is associated 
with a 0-by-O 8-bit DIB. Any attempt to draw with it will fail. 



426 Microsoft Windows Programmer's Reference 

• The BITMAPINFO structure must remain locked for the life of the device 
context. 

• The DIB driver supports 1-bit, 4-bit, or 8-bit DIE bitmaps. The run-length 
encoding (RLE) format is not supported. 

• The DIE driver supports only Windows version 3.0 or later DIE headers. 

• Multiple DIE-driver display contexts can be active. 

• DIEs reside in the memory-based image buffer in the CF _DIB (packed-DIE) 
format. 

• The DIE driver expects the RGBQUAD structure for color matching; it does 
not use palette indices. (If an application uses an RGB value for drawing, the 
DIE driver uses the closest match found in the color table of the DIE.) 

The following example uses the DIE driver to draw a circle in a DIE copied from 
the clipboard: 

if (IsClipboardFormatAvailableCCF_DIB) && OpenClipboard()) { 
HANDLE hdib; 

} 

HOC hdc; 

/*Get the DIB from the clipboard. 

hdib = GetClipboardData(CF_DIB); 

/* Create a DIB driver hdc on the DIB surface. */ 

hdc = CreateDC("DIB", NULL, NULL, 
(LPBITMAPINFO) GlobalLock(hdib)); 

/* Draw a circle in the DIB. 

Ellipse(hdc, 0, 0, 100, 100); 

/* Delete the DIB driver HOC now that you are done with it. */ 

DeleteDC(hdc); 

/* Unlock the DIB. 

GlobalUnlock(hdib); 

/*Release the clipboard. 

CloseClipboard(); 



Chapter 23 Video Techniques 427 

23.3.2 Moving Bitmaps to and from the Display 
The DIB driver is a separate driver and is not associated with the display driver. 
Because of this, an application cannot use the BitBlt function to move bitmaps 
between a DIE-driver device context and a screen device context. An application 
can use the GetDIBits function to copy from the screen device context to a DIB 
device context. To copy a DIB device context to the screen device context, an 
application can use the StretchDIBits function. 

An application can maximize the speed of StretchDIBits by using one of the 
following methods: 

• One-to-one mapping for the palette 

• DIB_PAL_COLORS, an option that prevents color matching by the graphics 
device interface (GDI) 

23.3.3 Modifying Bitmaps 
DIBs offer many advantages over device-dependent bitmaps. Unlike device
dependent bitmaps, however, DIBs cannot be selected into a video device context. 
Before the DIB driver was available, this meant that applications could not take 
advantage of the extensive graphics device interface (GDI) functions to modify 
DIBs directly. To use GDI routines to draw in or otherwise modify a DIB, an 
application would follow a procedure such as this: 

1. Create a memory device context. 

2. Use the CreateDIBitmap function to convert the DIB to device-dependent 
format. 

3. Select the device-dependent bitmap into the memory device context. 

4. Call GDI routines to modify the device-dependent bitmap. 

5. Use the GetDIBits function to convert the device-dependent bitmap to DIB 
format. 

This method works well if you only use GDI routines to modify the bitmap. If you 
want to speed up certain operations by writing replacement functions that directly 
modify the DIB bits, however, the procedure can become complicated. The direct
manipulation routines work on the DIB, but the GDI routines work on the device
dependent bitmap. 

Direct manipulation can be considerably faster than using equivalent GDI 
routines; in one sample application, a direct-manipulation function (drawing a 
triangle) ran eight times faster than the equivalent GDI operation. Also, direct
manipulation routines for other products may be reusable. 



428 Microsoft Windows Programmer's Reference 

The DIB driver makes it possible for you to mix GDI calls with direct
manipulation routines, so you can combine the advantages of both methods. 

23.3.4 Creating a Driver Device Context 
The DIB driver makes it possible for you to create a DIB device context. To 
create the DIB device context, call the CreateDC function, supplying a pointer 
to a BITMAPINFO structure: 

hdc = CreateDC("DIB", NULL, NULL, lpbi); 

You can use the device-context handle returned by the CreateDC function with 
most GDI functions to modify the bitmap. Concurrently, you can call your own 
direct-manipulation functions to modify the actual bitmap bits. Any changes made 
directly to the bitmap bits are reflected in the DIB-driver device context. When 
you finish modifying the bitmap, you can use the StretchDIBits function to trans
fer the DIB to the video device context. 

The DIB driver can handle 1-bit, 4-bit, or 8-bit DIBs. You can create multiple DIB 
driver contexts. Note the following limitations: 

1. The BITMAPINFO structure must be locked for the life of the device context. 

2. The DIB driver handles only the Windows BITMAPINFOHEADER format. 

3. The RLE format is not supported. 

4. The DIB must use the DIB_RGB_COLORS format. The DIB driver does not 
support the DIB_PAL_COLORS (palette indexes) format. 

You can distribute the DIB driver with applications that run under Windows. 



Self-Loading Windows Applications 

Chapter 24 

24.1 Loader Functions...................................................................................... 431 
24.2 Loader Data Table.................................................................................... 431 
24.3 Loader Code............................................................................................. 432 

24.3.1 Loading Segments ................................................................... 432 
24.3.2 Reloading Segments ................................................................ 433 
24.3.3 Resetting Hardware ................................................................. 433 

24.4 Function Reference.................................................................................. 434 





Chapter 24 Self-Loading Windows Applications 431 

This chapter describes the contents of a unique segment that is found only in self
loading applications for the Microsoft Windows operating system. This segment 
contains six functions: three that the application developer supplies and three that 
the Windows kernel supplies. The segment also contains a table of pointers to 
these functions and loader code. 

This chapter contains references to the Windows (new-style) header and the data 
tables in a Windows executable file. For a complete description of an executable 
file before it is altered by the loader and loaded into memory, see the Microsoft 
Windows Programmer's Reference, Volume 4. 

24.1 Loader Functions 
The Windows kernel provides a loader function that places applications into 
memory and passes execution to a specified entry point. Some Windows applica
tions, however, must bypass this kernel function and load themselves in order to 
be executed correctly. For example, a compiler for Windows might contain two 
floating-point modules: one requiring a math coprocessor and one emulating the 
coprocessor. The standard loader function in the Windows kernel does not provide 
a method of specifying that code in one module should be loaded in place of code 
in another; this means that the compiler needs to load the appropriate code itself in 
order to run efficiently and correctly. Likewise, the code for a Windows applica
tion might be compressed with a special compression algorithm in order to fit 
on a certain number of disks, but the standard loader function does not provide a 
method for dealing with a compressed file format. The application, therefore, must 
load itself in order to be executed correctly. 

To indicate that a Windows application is self-loading, the 16-bit flag value in the 
executable file's Windows header must contain the value Ox0800 (that is, bit 11 
must be set). Otherwise, Windows ignores the private loader code and installs the 
application by using the standard loader functions in the Windows kernel. 

24.2 Loader Data Table 
In addition to the loader functions, the first segment of a self-loading Windows 
application contains a loader data table with far pointers to each of the loader func
tions. The format of this table follows: 

Location 

OxOO 

Ox02 

Ox04 

Description 

Specifies the version number (this value must be OxAO). 

Reserved. 

Points to a startup procedure, which the application developer provides. 



432 Microsoft Windows Programmer's Reference 

Location 

Ox OS 

OxOC 
Ox IO 
Ox14 
Oxl8 

OxlC 
OxlE 
Ox20 
Ox22 
Ox24 

Description 

Points to a reloading procedure, which the application developer pro
vides. 

Reserved. 

Points to a memory-allocation procedure, which the kernel provides. 

Points to an entry-number procedure, which the kernel provides. 

Points to an exit procedure, which the application developer provides. 

Reserved. 

Reserved. 

Reserved. 

Reserved. 

Points to a set-owner procedure, which the kernel provides. 

All of the pointers in this table must point to locations within the first segment. 
There can be no fixups outside this segment. 

After the segment table for an executable file is loaded into memory, each entry 
contains an additional 16-bit value. This value is a segment selector (or handle) 
that the loader created. 

24. 3 Loader Code 
The first segment of a self-loading Windows application contains loader code for 
the six required loader functions. The code loads and reloads segments and resets 
hardware. 

24.3.1 Loading Segments 
The kernel calls the BootApp function supplied by the application developer, 
instead of loading the application in the normal manner, if the 16-bit value in the 
information block for the Windows header contains the value Ox0800 (that is, bit 
11 is set). The BootApp function allocates memory for all segments by calling the 
kernel-supplied MyAlloc function. If the segment is identified as a PRELOAD or 
FIXED type, BootApp also calls the LoadAppSeg function (another function sup
plied by the application developer). The BootApp function also calls SetOwner, a 
kernel-supplied function, to associate the correct information block with each seg
ment handle. 



Chapter 24 Self-Loading Windows Applications 433 

The first segment that the BootApp function should allocate is the application's 
automatic data segment. This data segment contains the application's stack. The 
automatic data segment must be allocated before the BootApp function calls the 
Windows PatchCodeHandle function. For more information about the Patch
CodeHandle function, see the Microsoft Windows Programmer's Reference, 
Volume 2. 

24.3.2 Reloading Segments 
In addition to loading segments, the LoadAppSeg function reloads segments 
that the Windows kernel has discarded. Because the LoadAppSeg function is 
responsible for reloading segments, it must update bits 1 and 2 of the 16-bit 
flag value in the segment table. (Only self-loading applications should alter the 
Windows header or the data tables that follow it.) Bit 1 specifies whether memory 
is allocated for the segment, and bit 2 specifies whether the segment is currently 
loaded. For a complete description of the segment table, see the Microsoft 
Windows Programmer's Reference, Volume 4. 

If the loader allocates memory for a segment but the segment is not loaded (that 
is, bit 1 is set and bit 2 is not), the LoadAppSeg function should call the 
Windows GlobalHandle function to determine whether memory is allocated 
for the segment. If memory is not allocated, the LoadAppSeg function should 
call the Windows GlobalReAlloc function to reallocate memory for the segment. 

Once memory is allocated, the LoadAppSeg function should read the segment 
from the executable file and call the PatchCodeHandle function to correct each 
function prolog that occurs in the segment. Once the function prologs are altered, 
the LoadAppSeg function should resolve any far pointers that occur in the seg
ment. If the pointer is specified by an ordinal value, the LoadAppSeg function 
should call the kernel-supplied EntryAddrProc function to resolve the address. 

24.3.3 Resetting Hardware 
When closing a self-loading application, the kernel calls the ExitProc function, 
supplied by the application developer, to reset any hardware that a dynamic-link 
library may have accessed. However, the ExitProc function does not need to free 
memory or close files. 



434 BootApp 

24.4 Function Reference 

BootApp 

This section provides information about the functions supplied by the application 
developer and by the kernel for self-loading Windows applications. 

void BootApp(hBlock, hFile) 
HANDLE hBlock; /* handle of information block */ 

*/ HANDLE hFile; /* handle of executable file 

Parameters 

Return Value 

Comments 

The BootApp function loads the given application. 

hBlock 
Identifies the selector for the segment that contains the information block in the 
Windows (new-style) header. 

hFile 
Identifies the executable file that contains the application. The hFile parameter 
must be a valid MS-DOS file handle. 

This function does not return a value. 

The information block in the Windows header that is identified by the hBlock 
parameter specifies the linker version number, the length of various tables of data, 
offsets to those tables, heap and stack sizes, and so on. For a description of the 
Windows header, see the Microsoft Windows Programmer's Reference, Volume 4. 

The BootApp function is one of three functions required for self-loading 
Windows applications. The application developer must provide the code for 
this function and store a pointer to the function at offset Ox0004 in the applica
tion's loader code and data table. 

The Windows kernel calls this function after loading the application's executable 
header and data tables. 



ExitProc 435 

EntryAddrProc [TIJ 

DWORD EntryAddrProc(hBlock, wEntryNo) 
HANDLE hBlock; /*selector for information block */ 
WORD wEntryNo; /* entry-table procedure index */ 

Parameters 

Return Value 

Comments 

ExitProc 

The EntryAddrProc function retrieves an address for the specified procedure. 

hBlock 
Specifies the selector for the segment that contains the information block in the 
Windows (new-style) header. 

wEntryNo 
Specifies the index to the entry in an entry table that identifies the procedure for 
which the function should return an address. 

The return value is the address of the specified procedure if the function is success
ful. Otherwise, the return value is zero. 

The wEntryNo parameter is also known as the procedure's ordinal number. 

The Entry AddrProc function is one of three functions supplied by the Windows 
kernel. The kernel loads a pointer to this function at offset Ox0014 in the loader's 
code and data table. The kernel loads the pointer before calling the private startup 
procedure (the BootApp function). 

Entry AddrProc is called from the LoadAppSeg function, which the application 
developer must supply. 

void ExitProc(hBlock) 
HANDLE hBlock; /* selector of information block */ 

Parameters 

Return Value 

The ExitProc function closes a self-loading application. 

hBlock 
Specifies the selector for the segment that contains the information block in the 
Windows (new-style) header. 

This function does not return a value. 



436 LoadAppSeg 

Comments 

LoadAppSeg 

The Windows header information block identified by the hBlock parameter speci
fies the linker version number, the length of various tables of data, offsets to those 
tables, heap and stack sizes, and so on. For a description of the Windows header, 
see the Microsoft Windows Programmer's Reference, Volume 4. 

The ExitProc function is one of three functions required for self-loading Windows 
applications. The application developer must provide the code for this function 
and store a pointer to it at offset Ox0018 in the application's loader code and data 
table. 

ExitProc does not need to free memory owned by the application, nor is it neces
sary for the function to close any open files. 

WORD LoadAppSeg(hBlock, hFile, wSeg!D) 
HANDLE hBlock; I* handle of module information block *I 

*I 
*I 

HANDLE hFile; I* handle of executable file 
WORD wSeg!D; I* segment identifier 

Parameters 

Return Value 

Comments 

The LoadAppSeg function loads a segment for the first time or reloads a dis
carded segment. The segment is identified by the wSeg/D parameter and belongs 
to the given application. 

hBlock 
Specifies the segment selector for the segment containing the module informa
tion block. 

hFile 
Identifies the executable file that contains the application. This parameter is an 
MS-DOS file handle. (This handle is -1 if the file is not open.) 

wSeg/D 
Identifies the segment that the function should reload. 

The return value is a selector for the segment if the function is successful. Other
wise, it is zero. 

The information block in the Windows (new-style) header identified by the hBlock 
parameter specifies the linker version number, the length of various tables of data, 
offsets to those tables, heap and stack sizes, and so on. For a description of the 
Windows header, see the Microsoft Windows Programmer's Reference, Volume 4. 

The third parameter, wSeg!D, is determined by the linker at link time. 



MyAlloc 

MyAlloc 437 

The LoadAppSeg function is one of three functions required for self-loading 
Windows applications. The application developer must provide the code for this 
function and store a pointer to it at offset Ox0008 in the application's loader code 
and data table. 

DWORD MyAlloc(wFlags, wSize, wElem) 
WORD wFlags; /* segment flags *I 

*/ 
*/ 

WORD wSize; /* size of element 
WORD wElem; I* number of elements in segment 

Parameters 

Return Value 

Comments 

See Also 

The MyAlloc function allocates memory for a segment in a self-loading appli
cation. 

wFlags 
Specifies the segment flags. 

wSize 
Specifies the element size, in bytes. 

wElem 
Specifies the number of elements in the segment. 

The low-order word of the return value contains a segment handle if the function 
is successful; the high-order word contains a selector if the function is successful. 
(However, if the function allocates only a handle for the segment, the low-order 
word contains zero and the high-order word contains the handle.) Otherwise, the 
return value is zero for both high-order and low-order words. 

The flags specified by the wFlags parameter are the values that precede the seg
ment table appearing immediately after the information block in the Windows 
(new-style) header. The kernel translates wFlags into the proper values before 
calling the GlobalAlloc function. 

The segment size, in bytes, is obtained by shifting the value specified in the wSize 
parameter left by the number of bits specified by the wElem parameter. 

The My Alloc function is one of three functions supplied by the Windows kernel. 
The kernel loads a pointer to this function at offset Ox0014 in the loader's code 
and data table. The kernel loads the pointer before calling the private startup proce
dure (the BootApp function). 

BootApp 



438 SetOwner 

SetOwner 
void SetOwner(hSel, hOwner) 
WORD hSel; I* selector of segment *I 

*I HANDLE hOwner; /* handle of information block 

The SetOwner function associates the given segment with an executable file or 
application. 

Parameters hSel 

Return Value 

Comments 

Specifies a selector or handle identifying the segment to be associated with the 
executable file or application. 

hOwner 
Identifies the information bock in the Windows (new-style) executable-file 
header for the application that contains the segment. 

This function does not return a value. 

The Windows header information block identified by the hOwner parameter speci
fies the linker version number, the length of various tables of data, offsets to these 
tables, heap and stack sizes, and so on. For a description of the Windows header, 
see the Microsoft Windows Programmer's Reference, Volume 4. 

The SetOwner function is one of three functions required for self-loading 
Windows applications. The application developer must provide the code for 
this function and store a pointer to it at offset Ox0004 in the application's loader 
code and data table. 

After the kernel allocates memory for a segment by using the My Alloc function, it 
calls SetOwner. 



Installable Drivers 

Chapter 25 

25.1 About Installable Drivers ......................................................................... 441 
25.2 Creating an Installable Driver .................................................................. 442 

25.2.1 Opening an Installable Driver .................................................. 445 
25.2.2 Closing an Installable Driver................................................... 445 
25.2.3 Configuring an Installable Driver............................................ 446 
25.2.4 Enumerating Instances of an Installable Driver ...................... 446 

25.3 Updating the SYSTEM.IN! File.............................................................. 446 
25.4 Contents of the OEMSETUP.INF Files .................................................. 448 
25.5 Drivers Control Panel Application.......................................................... 449 

25.5.1 lnstallingaDriver .................................................................... 450 

25.5.2 Using Drivers with the Drivers Control Panel Application.... 450 
25.6 Creating a Custom Configuration Application ........................................ 451 





Chapter 25 Installable Drivers 441 

This chapter describes installable drivers and the installable-driver interface for the 
Microsoft Windows operating system. Topics discussed in this chapter include: 
the common entry point for installable drivers, messages used by the common 
entry point, actions that an installable driver should take in response to these mes
sages, and functions available for the installable driver interface. 

25 .1 About Installable Drivers 
An installable driver is a Windows dynamic-link library (DLL) that a Windows 
application (or another Windows DLL) can open, enable, query, disable, and 
close. An application can perform these operations by calling the following func
tions: 

Function 

CloseDriver 

GetDriverlnfo 
GetDriverModuleHandle 

GetNextDriver 

OpenDriver 

SendDriverMessage 

Description 

Closes an installable driver. 

Retrieves installable-driver data. 

Retrieves an installable driver's module handle. 

Enumerates installed drivers. 

Opens an installable driver. 

Sends a message to an installable driver. 

When an application calls the OpenDriver, SendDriverMessage, or CloseDriver 
function, Windows processes the call and issues one or more of the following 
driver messages: 

Message 

DRV_CLOSE 

DRV _CONFIGURE 

DRV _DISABLE 

DRV_ENABLE 

DRV_FREE 

DRV _INSTALL 

DRV_LOAD 

Description 

Notifies an installable driver that Windows will decre
ment the use count for the driver and send a 
DRV _FREE message if the use count reaches zero. 

Notifies an installable driver that it should display a 
custom-configuration dialog box. (This message 
should only be sent if the driver returns a nonzero 
value when the DRV _QUERYCONFIGURE mes
sage is processed.) 

Notifies an installable driver that the memory that it 
has allocated is about to be freed. 

Notifies an installable driver that it has been loaded 
or reloaded or that Windows has been enabled. 

Notifies an installable driver that it will be discarded. 

Notifies an installable driver that it has been success
fully installed. 

Notifies an installable driver that it has been success
fully loaded. 



442 Microsoft Windows Programmer's Reference 

Message 

DRV_OPEN 

DRV_POWER 

Description 

Notifies an installable driver that it is about to be 
opened. 
Notifies an installable driver that the power source 
for the device is about to be turned off or on. 

DRV _QUERYCONFIGURE Queries an installable driver about whether it sup
ports the DRY _CONFIGURE message and can dis
play a private configuration dialog box. 

DRV_REMOVE Notifies an installable driver that it is about to be 
removed from the system. 

These messages, which are defined in the Windows header file (WINDOWS.H), 
are processed by the main routine in an installable driver. This routine is called the 
DriverProc function. 

Some of the preceding messages should be sent by Windows only when one of the 
installable driver functions is called by an application. The circumstances under 
which these messages are sent are described in the following list: 

Message 

DRV_CLOSE 

DRV _DISABLE 

DRV_ENABLE 

DRV_FREE 

DRV_LOAD 

Description 

Issued by Windows when an application calls the CloseDriver 
function. 
Issued prior to exiting Windows and returning to MS-DOS or 
when the driver is freed. 

Issued when returning to Windows from MS-DOS or the first 
time the installable driver is loaded. 

Issued by Windows after an application calls the CloseDriver 
function and the use count is decremented to zero. 

Issued by Windows after the first OpenDriver call is made for a 
particular installable driver. 

The remaining messages can be sent by an application to an installable driver by 
calling the SendDriverMessage function. 

25.2 Creating an Installable Driver 
An installable driver is a Windows dynamic-link library (DLL) that supports a 
special entry point, the DriverProc function. This function processes the driver 
messages described in the previous section. This function may also process pri
vate driver messages. These messages can be assigned values ranging from 
DRV _RESERVED to DRV _USER (two constants that appear in WINDOWS.H). 



Chapter 25 Installable Drivers 443 

The following example shows the basic structure of the DriverProc function: 

LRESULT CALLBACK* DriverProc (DWORD 
HDRVR 
UINT 
LP A RAM 
LP A RAM 

dwDriverldentifier, 
hDriver, 
wMessage, 
l Paraml, 
l Param2) 

{ 

DWORD dwRes = 0L; 

switch (wMessage) 
{ 

case DRV_LOAD: 

f* Sent when the driver is loaded. This is always */ 
f* the first message received by a driver. */ 

dwRes = lL; 
break; 

case DRV_FREE: 

f* Return 0L to fail. 

f* Sent when the driver is about to be discarded. */ 
/* This is the last message a driver receives */ 
f* before it is freed. */ 

dwRes = lL; 
break; 

case DRV_OPEN: 

/* Return value is ignored. 

f* Sent when the driver is opened. 

dwRes = ll; 

break; 

case DRV_CLOSE: 

f* Return 0L to fail. 
f* This value is subsequently used */ 
f* for dwDriverldentifier. */ 

f* Sent when the driver is closed. Drivers are */ 
f* unloaded when the open count reaches zero. */ 

dwRes = lL; 
break; 

f* Return 0L to fail. 



444 Microsoft Windows Programmer's Reference 

case DRV_ENABLE: 

/* Sent when the driver is loaded or reloaded and */ 
/* when Windows is enabled. Hook or rehook */ 
/* interrupts and initialize hardware. Expect the */ 
/* driver to be in memory only between the enable */ 
/* and disable messages. */ 

dwRes = ll; 
break; 

case DRV_DISABLE: 

/* Return value is ignored. 

/* Sent before the driver is freed or when Windows */ 
/* is disabled. Unhook interrupts and place */ 
/*peripherals in an inactive state. */ 

dwRes = ll; 
break; 

case DRV_INSTALL: 

/* Return value is ignored. 

/* Sent when the driver is installed. */ 

dwRes = DRV_DK; /* Can also return ORV CANCEL */ 
/* and DRV_RESTART. */ 

break; 

case DRV_REMOVE: 

/* Sent when the driver is removed. 

dwRes = ll; 
break; 

/* Return value is ignored. 

case DRV_QUERYCONFIGURE: 

/* Sent to determine if the driver can be 
/* configured. 

dwRes = 0L; 

break; 

case DRV_CONFIGURE: 

/* Zero indicates configuration 
/* NOT supported. 

/* Sent to display the custom-configuration */ 
/* dialog box for the driver. */ 

dwRes = DRV_OK; /* Can also return DRV_CANCEL */ 
/* and DRV_RESTART. */ 

break; 



Chapter 25 Installable Drivers 445 

default: 

/*Process any messages not explicitly trapped. */ 

return DefDriverProc (dwDriveridentifier, hDriver, 
wMessage, lParaml, 1Param2); 

return dwRes; 
} 

25.2.1 Opening an Installable Driver 
An application opens an installable driver by calling the OpenDriver function. 
When an application calls this function, Windows adds the driver name to an inter
nal list of installed drivers. (When the application calls the CloseDriver function, 
Windows deletes the corresponding driver name from this list.) 

When an application calls the OpenDriver function to open the first instance of a 
driver, Windows issues the DRV _LOAD, DRV _ENABLE, and DRV _OPEN mes
sages, in that order. (Subsequent calls to OpenDriver cause only DRY _OPEN to 
be sent.) When the driver processes the DRV _LOAD message, it reads the con
figuration settings (if any exist) from the corresponding entry in the SYSTEM.IN! 
file and configures the driver and any associated hardware. In addition to configur
ing the driver and associated hardware, the driver also allocates required memory. 

After processing the DRV _LOAD message, the driver returns a nonzero value if it 
loads successfully. If it returns zero, Windows immediately unloads the driver 
(without issuing a DRV _FREE message). 

When the driver processes the DRV _ENABLE message, it hooks or chains re
quired interrupts and prepares associated peripherals. 

When the driver processes the DRV _OPEN message, it allocates memory required 
by a single instance of the driver. 

25.2.2 Closing an Installable Driver 
An application closes an installable driver by calling the CloseDriver function. 
When the application calls this function, Windows deletes the corresponding 
driver name from an internal list. 

When an application calls the CloseDriver function to close the last instance of 
a driver, Windows issues the DRV _CLOSE, DRV _DISABLE, and DRV _FREE 
messages, in that order. (When the application is not closing the last instance 
of the driver, only DRY _CLOSE is sent.) When the driver processes the 



446 Microsoft Windows Programmer's Reference 

ORV _CLOSE message, it frees any resources that were allocated when the 
driver was opened and returns a nonzero value. If the driver returns a value of 
zero, closing fails. 

When the driver processes the ORV _DISABLE message, it places any associated 
peripherals in an inactive state and unhooks all interrupts. 

When the driver processes the ORV _FREE message, it frees any resources that are 
still allocated. 

25.2.3 Configuring an Installable Driver 
Many installable drivers support a private configuration dialog box that lets the 
user configure the driver and associated hardware. To determine whether a driver 
supports such a dialog box, an application calls the SendDriverMessage function 
and issues the ORV _QUERY CONFIGURE message. If the driver is configurable, 
this function returns a nonzero value. If it is not configurable, this function returns 
zero. If the SendDriverMessage function returns a nonzero value, the application 
displays the configuration dialog box by calling the SendDriverMessage function 
a second time and sending the ORV _CONFIGURE message. 

If the driver supports a private configuration dialog box, it should display the 
dialog box and process user input when it receives the ORV _CONFIGURE mes
sage. Typically, any configuration data specified by the user is maintained in the 
[drivers] section of the Windows SYSTEM.IN! file. 

25.2.4 Enumerating Instances of an Installable Driver 
An application can retrieve a handle identifying either the first instance of an 
installable driver or each instance of the driver by calling the GetNextDriver 
function. 

25.3 Updating the SYSTEM.INI File 
Upon installation, the [drivers] section of the SYSTEM.IN! file contains an entry 
for each installable driver. This entry has the following form: 

entry=driver _filename optional_information 



Chapter 25 Installable Drivers 447 

An application can open a driver by using its filename or its entry. If a fully qual
ified path is not specified with the filename, the driver file must exist on the stan
dard Windows search path. The driver interface searches for the driver as follows: 

• If an application specifies a section name, that section of SYSTEM.IN! is 
searched instead of the [drivers] section. 

• If an application specifies an entry in the search section, the driver with a 
filename corresponding to the entry is opened. 

• If the string specified by the application does not match an entry in the search 
section, the system assumes the string is a driver filename. 

The optional information (optional_information) following the driver name 
(driver Jilename) lists information a driver needs after installation. A driver main
tains configuration information here if the information is limited or if it needs to 
be associated with the entry. For example, two prototype drivers could be installed 
in the system. The first driver could be associated with serial port one, and the sec
ond driver could be associated with serial port two. The [drivers] section of the 
SYSTEM.IN! might show this association in the following way: 

[drivers] 
prototypel=proto.drv coml 
prototype2=proto.drv com2 

If your driver uses more extensive configuration information, it can create a sec
tion in the SYSTEM.IN! file reserved for its parameters. For example, the install
able driver PROTO.DRY might create the following [proto.drv] section: 

[proto.drv] 
port=230 
int=3 

When reserving a section for your driver, use the filename of your driver to iden
tify the section. A driver usually configures and maintains this section of informa
tion when it displays the configuration dialog box used for the 
DRV _CONFIGURE message. 

If you want your installable driver loaded when Windows starts, place its filename 
or an alias from the [drivers] section of the SYSTEM.IN! file on the drivers= line 
of the [boot] section found in the SYSTEM.IN! file. Windows loads these drivers 
at startup and sends DRY _LOAD and DRY _ENABLE messages to them but does 
not open them. This makes it possible for you to install drivers that remain resi
dent while Windows is enabled. 



448 Microsoft Windows Programmer's Reference 

25.4 Contents of the OEMSETUP.INF Files 
The OEMSETUP.INF file uses the same format as the Windows 3.0 SETUP.INF 
file with the exception of a new [Installable.Drivers] section. This section identi
fies the names and characteristics of each driver on the disk. Each driver entry has 
the following form: 

entry=disk:filename, type(s), description, VxD(s), default_params 

Note that the elements that compose a driver entry are separated by commas. 
Comments are delimited by semicolons; all characters following a semicolon 
are considered part of the comment string. 

Following are the elements that compose a driver entry: 

Element 

entry 

disk 

filename 

type(s) 

description 

VxD(s) 

default_params 

Description 

Identifies the driver. This string must be unique. 

Specifies the disk number for the disk that contains the driver. This 
entry corresponds to an entry in the [disks] section of SETUP.INF. 

Specifies the name of the file that contains the driver. 

Specifies the driver type. 

Describes the driver. This string appears in the dialog box dis
played by the Drivers Control Panel application. 

Identifies any VxDs required by the driver. (For a description of the 
manner in which multiple VxD names are parsed, see the Microsoft 
Windows Virtual Device Adaptation Guide.) 

Specifies default parameters for the driver. Additional options are 
appended to the driver entry in the [drivers] section of 
SYSTEM.IN!. 

If you create an OEMSETUP.INF file to distribute with your driver, it must 
include the [disks] and [Installable.Drivers] sections. For example, the following 
entries could be used in an OEMSETUP.INF file for a prototype installable driver: 

[disks] 
Numeric mappings for disk titles 

1 = ., "Sample Distribution Disk l" 

[Installable.Drivers] 
The installable drivers section is unique to the drivers application. 

; It is parsed with comma-separated fields. 

prototype=l:proto.drv,"ampl ,freq","Sample scope driver","l:VXDA.386" 

The Drivers Control Panel application may need to copy files that support your 
driver. If any of these files are not VxDs, include a section in the SYSTEM.IN! 



Chapter 25 Installable Drivers 449 

file listing them. Use the entry (that is, prototype) as the name of this new section. 
For example, if the prototype driver has an additional file called 
POWERSRC.DLL, include the following section: 

[prototype] 
; Keyname sections can be created for dependent files. All 
; dependent files will be copied directly to the system directory. 

1: POWERSRC. DLL 

25.5 Drivers Control Panel Application 
The Drivers Control Panel application installs, configures, and removes drivers. 
When started, the Drivers Control Panel application displays the following dia
log box. 

';; Drivers 

!nstalled Drivers 

Timer 
[MCI) MIDI Sequencer 
[MCI) Sound 

The Installed Drivers list box displays the description strings of the installed 
drivers. The installed drivers are determined by examining the [drivers] and [mci] 
sections of the SYSTEM.IN! file. The description strings are cached in the 
[drivers.description] section of the CONTROL.IN! file to reduce delays in find
ing and loading them. If a description string does not match an installed driver, the 
application searches the MMSETUP.INF file and then the header of the driver file 
to obtain the description string. A scroll bar appears in the list box if there are 
more drivers than can be displayed. 

The following buttons are found in the Control Panel dialog box: 

Button 

OK 
Cancel 

Result when chosen 

Exits the dialog box and makes any changes permanent. 

Exits the dialog box. The application ignores any requests to install or 
remove drivers made during the session. Any configuration changes 
made during the session are retained because they are done by the 
driver. 



450 Microsoft Windows Programmer's Reference 

Button 

Remove 

Setup 

Add Drivers 

Default 

25.5.1 Installing a Driver 

Result when chosen 

Removes the information about the selected driver from the 
SYSTEM.IN! file. When removing drivers, the Control Panel applica
tion sends the DRV _REMOVE message to the driver if there is only 
one entry in the SYSTEM.IN! file for it. 

Applies only to configurable drivers. When the user selects a driver 
in the list box, the application opens the driver and sends it the 
DRV _QUERYCONFIGURE message. If a driver responds that it 
can be configured-that is, it supports a configuration dialog box to 
set such parameters as the COM port, the interrupt number, or input 
and output (1/0) port address-then the application enables the Setup 
button. If the user chooses the Setup button, the application sends a 
DRV _CONFIGURE message to the driver. 

Installs a new driver. 

Redisplays the list of files from the MMSETUP.INF file. Note that the 
Default button is active when the OEM drivers are displayed. 

When the user selects a driver from the Installed Drivers list box, the Add 
Driver dialog box closes. The new driver becomes selected in the list box when 
the user chooses the OK button. The Drivers Control Panel application sends 
the DRY _INSTALL message to the driver if there is only one entry in the 
SYSTEM.INI file for it. (A driver receives the DRV _INST ALL message for 
its initial installation.) The Drivers Control Panel application can install up to 
four wave devices, four musical instrument digital interface (MIDI) devices, 
and ten media control interface (MCI) devices of the same type. 

If the selected driver is not an installable driver, the Driver Control Panel applica
tions displays a "Cannot Install" message. If the user chooses the Cancel button, 
the dialog box closes with no changes made. 

25.5.2 Using Drivers with the Drivers Control Panel Application 
During installation, the Drivers Control Panel application opens the driver and 
obtains the description line, originally defined in the module-definition (.DEF) 
file, from the driver header. The application uses the description line to construct 
the settings for the [drivers] section. The description line in the .DEF file should 
have the following form: 

DESCRIPTION type( s ):text 



Chapter 25 Installable Drivers 451 

Following are the parameters in the description line: 

Parameter 

type(s) 

text 

Meaning 

Type of driver used for the entry in the SYSTEM.IN! file. Multiple 
entries are separated by commas. 

Text that describes the driver. This will be displayed in the Drivers 
Control Panel application. 

For example, the header file for an oscilloscope driver (OSCl.DRV) can use the 
following description line: 

DESCRIPTION 'FREQ,AMPL:Oscilloscope frequency and amplitude drivers.' 

Based on this definition, if both drivers are installed (that is, if the Drivers Control 
Panel application displays a selection for both FREQ and AMPL), the Drivers 
Control Panel application creates the following settings in the SYSTEM.IN! file: 

[drivers] 
FREQ osci .drv 
AMPL = osci.drv 

If you want your driver added to a named section of the SYSTEM.IN! file, you 
can add the section name to the type of driver. For example, the following descrip
tion line specifies that a voltmeter driver be added to the [RCC] section: 

DESCRIPTION 'VOLTMETER[RCC]:RCC voltmeter driver.' 

25.6 Creating a Custom Configuration Application 
The Drivers Control Panel application provides a convenient interface for 
installing drivers. You should use this interface for configuring features that 
are hardware- or driver-dependent. 

If your driver configures system features-those features that are hardware-
and device-independent-you should create a custom Control Panel application. 





Module and Library Names 

Appendix 

Module and Library Names Table.......................................................... 457 





Appendix 





Appendix: Module and Library Names 457 

This appendix lists the module and import libraries associated with each Microsoft 
Windows function. 

Function Module Import library 

AbortDoc GDI LIEW.LIB 

AccessResource KERNEL LIEW.LIB 

AddAtom KERNEL LIEW.LIB 

AddFontResource GDI LIEW.LIB 

AdjustWindowRect USER LIEW.LIB 

AdjustWindowRectEx USER LIEW.LIB 

AllocDiskSpace STRESS STRESS.LIB 

AllocDStoCSAlias KERNEL LIEW.LIB 

AllocFileHandles STRESS STRESS.LIB 

AllocGDIMem STRESS STRESS.LIB 

AllocMem STRESS STRESS.LIB 

AllocResource KERNEL LIEW.LIB 

AllocSelector KERNEL LIEW.LIB 

AllocUserMem STRESS STRESS.LIB 

AnimatePalette GDI LIEW.LIB 

AnsiLower USER LIEW.LIB 

AnsiLowerBuff USER LIEW.LIB 

AnsiNext USER LIEW.LIB 

AnsiPrev USER LIEW.LIB 

AnsiToOem KEYBOARD LIEW.LIB 

AnsiToOemBuff KEYBOARD LIEW.LIB 

AnsiUpper USER LIEW.LIB 

AnsiUpperBuff USER LIEW.LIB 

AnyPopup USER LIEW.LIB 

AppendMenu USER LIEW.LIB 

Arc GDI LIEW.LIB 

ArrangelconicWindows USER LIEW.LIB 

BeginDeferWindowPos USER LIEW.LIB 

BeginPaint USER LIEW.LIB 

BitBlt GDI LIEW.LIB 

BringWindowToTop USER LIEW.LIB 

BuildCommDCB USER LIEW.LIB 

CallMsgFilter USER LIEW.LIB 

CallNextHookEx USER LIEW.LIB 

CallWindowProc USER LIEW.LIB 



458 Microsoft Windows Programmer's Reference 

Function Module Import library 

Catch KERNEL LIBW.LIB 

ChangeClipboardChain USER LIBW.LIB 

ChangeMenu USER LIBW.LIB 

CheckDlgButton USER LIBW.LIB 

CheckMenultem USER LIBW.LIB 

CheckRadioButton USER LIBW.LIB 

ChildWindowFromPoint USER LIEW.LIB 

ChooseColor CO MMD LG CO MMD LG.LIB 

ChooseFont CO MMD LG CO MMD LG.LIB 

Chord GDI LIBW.LIB 

ClassFirst TOOLHELP TOOLHELP.LIB 

ClassNext TOOLHELP TOOLHELP.LIB 

ClearCommBreak USER LIBW.LIB 

ClientToScreen USER LIBW.LIB 

Clip Cursor USER LIBW.LIB 

CloseClipboard USER LIEW.LIB 

CloseComm USER LIEW.LIB 

CloseDriver USER LIEW.LIB 

CloseMetaFile GDI LIEW.LIB 

Close Window USER LIBW.LIB 

CombineRgn GDI LIBW.LIB 

CommDlgExtendedError CO MMD LG COMMDLG.LIB 

CopyCursor USER LIBW.LIB 

Copy Icon USER LIEW.LIB 

CopyLZFile LZEXPAND LZEXPAND.LIB 

CopyMetaFile GDI LIBW.LIB 

CopyRect USER LIBW.LIB 

CountClipboardFormats USER LIBW.LIB 

CreateBitmap GDI LIEW.LIB 

CreateBitmaplndirect GDI LIBW.LIB 

CreateBrushlndirect GDI LIBW.LIB 

CreateCaret USER LIBW.LIB 

CreateCompatibleBitmap GDI LIEW.LIB 

CreateCompatibleDC GDI LIBW.LIB 

CreateCursor USER LIBW.LIB 

CreateDC GDI LIBW.LIB 

CreateDialog USER LIEW.LIB 

CreateDialoglndirect USER LIBW.LIB 



Appendix: Module and Library Names 459 

Function Module Import library 

CreateDialoglndirectParam USER LIBW.LIB 

CreateDialogParam USER LIBW.LIB 

CreateDIBitmap GDI LIBW.LIB 

CreateDIBPatternBrush GDI LIBW.LIB 

CreateDiscardableBitmap GDI LIBW.LIB 

CreateEllipticRgn GDI LIBW.LIB 

CreateEllipticRgnlndirect GDI LIBW.LIB 

CreateFont GDI LIBW.LIB 

CreateFontlndirect GDI LIBW.LIB 

CreateHatchBrush GDI LIBW.LIB 
CreateIC GDI LIBW.LIB 

Createlcon USER LIBW.LIB 

CreateMenu USER LIBW.LIB 

CreateMetaFile GDI LIBW.LIB 
CreatePalette GDI LIBW.LIB 

CreatePatternBrush GDI LIBW.LIB 

CreatePen GDI LIBW.LIB 

CreatePenlndirect GDI LIBW.LIB 
CreatePolygonRgn GDI LIBW.LIB 

CreatePolyPolygonRgn GDI LIBW.LIB 

CreatePopupMenu USER LIBW.LIB 

CreateRectRgn GDI LIBW.LIB 
CreateRectRgnlndirect GDI LIBW.LIB 

CreateRoundRectRgn GDI LIBW.LIB 

CreateScalableFontResource GDI LIBW.LIB 

CreateSolidBrush GDI LIBW.LIB 
Create Window USER LIBW.LIB 

Create Window Ex USER LIBW.LIB 

DdeAbandonTransaction DDEML DDEML.LIB 

DdeAccessData DDEML DDEML.LIB 
DdeAddData DDEML DDEML.LIB 
DdeClientTransaction DDEML DDEML.LIB 

DdeCmpStringHandles DDEML DDEML.LIB 

DdeConnect DDEML DDEML.LIB 

DdeConnectList DDEML DDEML.LIB 

DdeCreateDataHandle DDEML DDEML.LIB 

DdeCreateStringHandle DDEML DDEML.LIB 

DdeDisconnect DDEML DDEML.LIB 



460 Microsoft Windows Programmer's Reference 

Function Module Import library 

DdeDisconnectList DDEML DDEML.LIB 

DdeEnableCallback DDEML DDEML.LIB 

DdeFreeDataHandle DDEML DDEML.LIB 

DdeFreeStringHandle DDEML DDEML.LIB 

DdeGetData DDEML DDEML.LIB 

DdeGetLastError DDEML DDEML.LIB 

Ddelnitialize DDEML DDEML.LIB 

DdeKeepStringHandle DDEML DDEML.LIB 

DdeNameService DDEML DDEML.LIB 

DdePostAdvise DDEML DDEML.LIB 

DdeQueryConvlnfo DDEML DDEML.LIB 

DdeQueryNextServer DDEML DDEML.LIB 

DdeQueryString DDEML DDEML.LIB 

DdeReconnect DDEML DDEML.LIB 

DdeSetUserHandle DDEML DDEML.LIB 

DdeUnaccessData DDEML DDEML.LIB 

DdeU ninitialize DDEML DDEML.LIB 

DebugBreak KERNEL LIEW.LIB 

DebugOutput KERNEL LIEW.LIB 

DeIDlgProc USER LIEW.LIB 

DeIDriverProc USER LIEW.LIB 

DeferWindowPos USER LIEW.LIB 

DefFrameProc USER LIEW.LIB 

DefHookProc USER LIEW.LIB 

DefMDIChildProc USER LIEW.LIB 

DefScreenSaverProc SCRNSAVE.LIB 

DefWindowProc USER LIEW.LIB 

DeleteAtom KERNEL LIEW.LIB 

Delete DC GDI LIEW.LIB 

DeleteMenu USER LIEW.LIB 

DeleteMetaFile GDI LIEW.LIB 

DeleteObject GDI LIEW.LIB 

DestroyCaret USER LIEW.LIB 

DestroyCursor USER LIEW.LIB 

Destroy Icon USER LIEW.LIB 

Destroy Menu USER LIEW.LIB 

Destroy Window USER LIEW.LIB 

DialogBox USER LIEW.LIB 



Appendix: Module and Library Names 461 

Function Module Import library 

DialogBoxlndirect USER LIBW.LIB 

DialogBoxlndirectParam USER LIBW.LIB 

DialogBoxParam USER LIBW.LIB 

Directed Yield KERNEL LIBW.LIB 

DispatchMessage USER LIEW.LIB 

DlgChangePassword SCRNSAVE.LIB 

DlgDirList USER LIEW.LIB 

DlgDirListComboBox USER LIEW.LIB 

DlgDirSelect USER LIBW.LIB 

DlgDirSelectComboBox USER LIBW.LIB 

DlgDirSelectComboBoxEx USER LIBW.LIB 

DlgDirSelectEx USER LIBW.LIB 

DlgGetPassword SCRNSAVE.LIE 

DlglnvalidPassword SCRNSAVE.LIB 
DOS3Call KERNEL LIBW.LIB 

DPtoLP GDI LIEW.LIB 

DragAcceptFiles SHELL SHELL.LIB 

DragFinish SHELL SHELL.LIB 

DragQueryFile SHELL SHELL.LIB 

DragQueryPoint SHELL SHELL.LIB 

DrawFocusRect USER LIEW.LIB 

Draw Icon USER LIBW.LIB 

DrawMenuBar USER LIEW.LIB 

DrawText USER LIEW.LIB 

Ellipse GDI LIBW.LIB 

EmptyClipboard USER LIBW.LIB 

EnableCommNotification USER LIEW.LIB 

EnableHardwarelnput USER LIBW.LIE 

EnableMenultem USER LIBW.LIB 

EnableScrollBar USER LIBW.LIB 

Enable Window USER LIBW.LIB 

EndDeferWindowPos USER LIBW.LIB 

EndDialog USER LIBW.LIB 

EndDoc GDI LIBW.LIB 

EndPage GDI LIBW.LIB 

EndPaint USER LIBW.LIB 

EnumChildWindows USER LIBW.LIE 

EnumClipboardFormats USER LIBW.LIB 



462 Microsoft Windows Programmer's Reference 

Function Module Import library 

EnumFontFamilies GDI LIEW.LIB 

EnumFonts GDI LIBW.LIE 

EnumMetaFile GDI LIBW.LIE 

EnumObjects GDI LIBW.LIB 

EnumProps USER LIBW.LIB 

EnumTaskWindows USER LIBW.LIB 

EnumWindows USER LIBW.LIE 

EqualRect USER LIBW.LIB 

EqualRgn GDI LIBW.LIB 

Escape GDI LIBW.LIB 

EscapeCommFunction USER LIBW.LIB 

ExcludeClipRect GDI LIBW.LIB 

ExcludeUpdateRgn USER LIBW.LIB 

Exit Windows USER LIBW.LIB 

ExitWindowsExec USER LIEW.LIB 

ExtFloodFill GDI LIBW.LIB 

Extractlcon SHELL SHELL.LIB 

ExtTextOut GDI LIEW.LIB 

FatalAppExit KERNEL LIBW.LIB 

FatalExit KERNEL LIBW.LIB 

FillRect USER LIBW.LIE 

FillRgn GDI LIEW.LIB 

FindAtom KERNEL LIBW.LIE 

FindExecutable SHELL SHELL.LIB 

FindResource KERNEL LIBW.LIB 

Find Text CO MMD LG CO MMD LG.LIB 

Find Window USER LIBW.LIE 

Flash Window USER LIBW.LIB 

FloodFill GDI LIBW.LIB 

Flush Comm USER LIEW.LIB 

FrameRect USER LIBW.LIB 

FrameRgn GDI LIBW.LIB 

FreeAllGDIMem STRESS STRESS.LIB 

FreeAllMem STRESS STRESS.LIB 

FreeAllUserMem STRESS STRESS.LIB 

FreeLibrary KERNEL LIBW.LIE 

FreeModule KERNEL LIBW.LIB 

FreeProclnstance KERNEL LIBW.LIB 



Appendix: Module and Library Names 463 

Function Module Import library 

Free Resource KERNEL LIBW.LIB 

FreeSelector KERNEL LIBW.LIB 

GetActiveWindow USER LIBW.LIB 

GetAspectRatioFilter GDI LIBW.LIB 

GetAspectRatioFilterEx GDI LIBW.LIB 

GetAsyncKeyState USER LIEW.LIB 

GetAtomHandle KERNEL LIBW.LIB 

GetAtomName KERNEL LIBW.LIB 

GetBitmapBits GDI LIEW.LIB 

GetBitmapDimension GDI LIBW.LIB 

GetBitmapDimensionEx GDI LIBW.LIB 

GetBkColor GDI LIBW.LIB 

GetBkMode GDI LIEW.LIB 

GetBoundsRect GDI LIBW.LIB 

GetBrushOrg GDI LIBW.LIB 

GetBrushOrgEx GDI LIBW.LIB 

GetCapture USER LIBW.LIB 

GetCaretBlinkTime USER LIBW.LIB 

GetCaretPos USER LIBW.LIB 

GetChar ABCWidths GDI LIBW.LIB 

GetCharWidth GDI LIBW.LIB 

GetClasslnfo USER LIBW.LIB 

Get Class Long USER LIBW.LIB 

GetClassName USER LIBW.LIB 

GetClassWord USER LIBW.LIB 

GetClientRect USER LIBW.LIB 

GetClipboardData USER LIBW.LIB 

GetClipboardFormatName USER LIEW.LIB 

GetClipboardOwner USER LIBW.LIB 

GetClipboardViewer USER LIEW.LIB 

GetClipBox GDI LIBW.LIB 

GetClipCursor USER LIBW.LIB 

GetCodeHandle KERNEL LIBW.LIB 

GetCodelnfo KERNEL LIBW.LIB 

GetCommError USER LIBW.LIB 

GetCommEventMask USER LIBW.LIB 

GetCommState USER LIBW.LIB 

GetCurrentPDB KERNEL LIBW.LIB 



464 Microsoft Windows Programmer's Reference 

Function Module Import library 

GetCurrentPosition GDI LIBW.LIB 

GetCurrentPositionEx GDI LIBW.LIB 

GetCurrentTask KERNEL LIBW.LIB 

GetCurrentTime USER LIBW.LIB 

GetCursor USER LIBW.LIB 

GetCursorPos USER LIBW.LIB 

GetDC USER LIBW.LIB 

GetDCEx USER LIBW.LIB 

GetDCOrg GDI LIBW.LIB 

GetDesktopWindow USER LIBW.LIB 

GetDeviceCaps GDI LIBW.LIB 

GetDialogBase Units USER LIBW.LIB 

GetDIBits GDI LIBW.LIB 

GetDlgCtrlID USER LIBW.LIB 

GetDlgltem USER LIBW.LIB 

GetDlgltemlnt USER LIBW.LIB 

GetDlgltemText USER LIBW.LIB 

GetDOSEnvironment KERNEL LIBW.LIB 

GetDoubleClickTime USER LIBW.LIB 

GetDriverlnfo USER LIBW.LIB 

GetDriverModuleHandle USER LIBW.LIB 

GetDriveType KERNEL LIBW.LIB 

GetExpandedName LZEXPAND LZEXPAND.LIB 

GetFileResource VER VER.LIB 

GetFileResourceSize VER VER.LIB 

GetFileTitle CO MMD LG COMMDLG.LIB 

GetFile Versionlnfo VER VER.LIB 

GetFile VersionlnfoSize VER VER.LIB 

GetFocus USER LIBW.LIB 

GetFontData GDI LIBW.LIB 

GetFreeFileHandles STRESS STRESS.LIB 

GetFreeSpace KERNEL LIBW.LIB 

GetFreeSystemResources USER LIBW.LIB 

GetGlyphOutline GDI LIBW.LIB 

GetlnputState USER LIBW.LIB 

GetlnstanceData KERNEL LIBW.LIB 

GetKBCodePage KEYBOARD LIBW.LIB 

GetKerningPairs GDI LIBW.LIB 



Appendix: Module and Library Names 465 

Function Module Import library 

GetKeyboardState USER LIBW.LIB 
GetKeyboardType KEYBOARD LIBW.LIB 
GetKeyNameText KEYBOARD LIBW.LIB 

GetKeyState USER LIBW.LIB 

GetLastActivePopup USER LIBW.LIB 

GetMapMode GDI LIBW.LIB 
GetMenu USER LIBW.LIB 

GetMenuCheckMarkDimensions USER LIBW.LIB 

GetMenultemCount USER LIBW.LIB 

GetMenultemID USER LIBW.LIB 
GetMenuState USER LIBW.LIB 

GetMenuString USER LIBW.LIB 

GetMessage USER LIBW.LIB 

GetMessageExtralnfo USER LIBW.LIB 
GetMessagePos USER LIBW.LIB 

GetMessageTime USER LIBW.LIB 

GetMetaFile GDI LIBW.LIB 

GetMetaFileBits GDI LIBW.LIB 
GetModuleFileName KERNEL LIBW.LIB 

GetModuleHandle KERNEL LIBW.LIB 

GetModuleUsage KERNEL LIBW.LIB 

GetNearestColor GDI LIEW.LIB 
GetNearestPalettelndex GDI LIEW.LIB 

GetNextDlgGroupltem USER LIEW.LIB 

GetNextDlgTabltem USER LIEW.LIB 

GetNextDriver USER LIEW.LIB 
GetNextWindow USER LIBW.LIB 

GetNumTasks KERNEL LIBW.LIB 

GetObject GDI LIBW.LIB 

GetOpenClipboardWindow USER LIEW.LIB 

GetOpenFileName COMMDLG CO MMD LG.LIB 

GetOutlineTextMetrics GDI LIEW.LIB 

GetPaletteEntries GDI LIEW.LIB 

GetParent USER LIEW.LIB 
GetPixel GDI LIEW.LIB 

GetPolyFillMode GDI LIEW.LIB 

GetPriorityClipboardFormat USER LIEW.LIB 

GetPrivateProfilelnt KERNEL LIEW.LIB 



466 Microsoft Windows Programmer's Reference 

Function Module Import library 

GetPrivateProfileString KERNEL LIEW.LIB 

GetProcAddress KERNEL LIEW.LIB 

GetProfilelnt KERNEL LIEW.LIB 

GetProfileString KERNEL LIEW.LIB 

GetProp USER LIEW.LIB 

GetQueueStatus USER LIEW.LIB 
GetRasterizerCaps GDI LIEW.LIB 

GetRgnBox GDI LIEW.LIB 

GetROP2 GDI LIEW.LIB 

GetSaveFileName CO MMD LG CO MMD LG.LIB 
GetScrollPos USER LIEW.LIB 

GetScrollRange USER LIEW.LIB 

GetSelectorBase KERNEL LIEW.LIB 

GetSelectorLimit KERNEL LIEW.LIB 
GetStockObject GDI LIEW.LIB 

GetStretchBltMode GDI LIEW.LIB 

GetSubMenu USER LIEW.LIB 

GetSysColor USER LIEW.LIB 
GetSysModalWindow USER LIEW.LIB 

GetSystemDebugState USER LIEW.LIB 

GetSystemDir VERS.LIB 

GetSystemDirectory KERNEL LIEW.LIB 
GetSystemMenu USER LIEW.LIB 

GetSystemMetrics USER LIEW.LIB 

GetSystemPaletteEntries GDI LIEW.LIB 

GetSystemPaletteUse GDI LIEW.LIB 
GetTabbedTextExtent USER LIEW.LIB 

GetTempDrive KERNEL LIEW.LIB 

GetTempFileName KERNEL LIEW.LIB 

GetTextAlign GDI LIEW.LIB 

GetTextCharacterExtra GDI LIEW.LIB 

GetTextColor GDI LIEW.LIB 

GetTextExtent GDI LIEW.LIB 

GetTextExtentPoint GDI LIEW.LIB 

GetTextFace GDI LIEW.LIB 

GetTextMetrics GDI LIEW.LIB 

GetTickCount USER LIEW.LIB 

GetTimerResolution USER LIEW.LIB 



Appendix: Module and Library Names 467 

Function Module Import library 

GetTopWindow USER LIEW.LIB 

GetUpdateRect USER LIBW.LIB 

GetUpdateRgn USER LIBW.LIB 

Get Version KERNEL LIBW.LIB 

GetViewportExt GDI LIBW.LIB 

GetViewportExtEx GDI LIBW.LIB 

GetViewportOrg GDI LIBW.LIB 

GetViewportOrgEx GDI LIEW.LIB 

GetWinDebuglnfo KERNEL LIEW.LIB 

Get Window USER LIEW.LIB 

Get Window DC USER LIEW.LIB 

GetWindowExt GDI LIEW.LIB 

GetWindowExtEx GDI LIEW.LIB 

Get Window Long USER LIEW.LIB 

GetWindowOrg GDI LIEW.LIB 

GetWindowOrgEx GDI LIEW.LIB 

Get Window Placement USER LIEW.LIB 

GetWindowRect USER LIEW.LIB 

GetWindowsDir VERS.LIB 

GetWindowsDirectory KERNEL LIEW.LIB 

GetWindowTask USER LIEW.LIB 

GetWindowText USER LIEW.LIB 

GetWindowTextLength USER LIEW.LIB 

Get Window Word USER LIEW.LIB 

GetWinFlags KERNEL LIEW.LIB 

GetWinMem32Version WINMEM32 WINMEM32.LIB 

Globall6PointerAlloc WINMEM32 WINMEM32.LIB 

Globall6PointerFree WINMEM32 WINMEM32.LIB 

Global32Alloc WINMEM32 WINMEM32.LIB 

Global32CodeAlias WINMEM32 WINMEM32.LIB 

Global32CodeAliasFree WINMEM32 WINMEM32.LIB 

Global32Free WINMEM32 WINMEM32.LIB 

Global32Realloc WINMEM32 WINMEM32.LIB 

GlobalAddAtom USER LIEW.LIB 

GlobalAlloc KERNEL LIEW.LIB 

Global Compact KERNEL LIEW.LIB 

GlobalDeleteAtom USER LIEW.LIB 

GlobalDosAlloc KERNEL LIEW.LIB 



468 Microsoft Windows Programmer's Reference 

Function Module Import library 

GlobalDosFree KERNEL LIEW.LIB 

GlobalEntryHandle TOOLHELP TOOLHELP.LIB 

GlobalEntryModule TOOLHELP TOOLHELP.LIB 

GlobalFindAtom USER LIEW.LIB 

GlobalFirst TOOLHELP TOOLHELP.LIB 

GlobalFix KERNEL LIEW.LIB 

GlobalFlags KERNEL LIEW.LIB 

GlobalFree KERNEL LIEW.LIB 

GlobalGetAtomName USER LIEW.LIB 

GlobalHandle KERNEL LIEW.LIB 

GlobalHandleToSel TOOLHELP TOOLHELP.LIB 

Globallnfo TOOLHELP TOOLHELP.LIB 

GlobalLock KERNEL LIEW.LIB 

GlobalLRUNewest KERNEL LIEW.LIB 

GlobalLRUOldest KERNEL LIEW.LIB 

GlobalNext TOOLHELP TOOLHELP.LIB 

GlobalNotify KERNEL LIEW.LIB 

GlobalPageLock KERNEL LIEW.LIB 

GlobalPageUnlock KERNEL LIEW.LIB 

GlobalReAlloc KERNEL LIEW.LIB 

GlobalSize KERNEL LIEW.LIB 

GlobalUnfix KERNEL LIEW.LIB 

Global Unlock KERNEL LIEW.LIB 

GlobalUnWire KERNEL LIEW.LIB 

GlobalWire KERNEL LIEW.LIB 

GrayString USER LIEW.LIB 

hardware_ event USER LIEW.LIB 

HelpMessageFilterHookFunction SCRNSAVE.LIB 

HideCaret USER LIEW.LIB 

HiliteMenultem USER LIEW.LIB 

hmemcpy KERNEL LIEW.LIB 

_bread KERNEL LIEW.LIB 

_hwrite KERNEL LIEW.LIB 

InflateRect USER LIEW.LIB 

InitAtomTable KERNEL LIEW.LIB 

InSendMessage USER LIEW.LIB 

InsertMenu USER LIEW.LIB 

lnterruptRegister TOOLHELP TOOLHELP.LIB 



Appendix: Module and Library Names 469 

Function Module Import library 

InterruptU nRegister TOOLHELP TOOLHELP.LIB 

lntersectClipRect GDI LIEW.LIB 

lntersectRect USER LIEW.LIB 

InvalidateRect USER LIEW.LIB 

InvalidateRgn USER LIEW.LIB 

InvertRect USER LIEW.LIB 

InvertRgn GDI LIEW.LIB 

IsBadCodePtr KERNEL LIEW.LIB 

IsBadHugeReadPtr KERNEL LIEW.LIB 

IsBadHugeWritePtr KERNEL LIEW.LIB 

IsBadReadPtr KERNEL LIEW.LIB 

IsBadStringPtr KERNEL LIEW.LIB 

IsBadWritePtr KERNEL LIEW.LIB 

IsCharAlpha USER LIEW.LIB 

IsChar AlphaNumeric USER LIEW.LIB 

IsCharLower USER LIEW.LIB 

IsCharUpper USER LIEW.LIB 

Is Child USER LIEW.LIB 

IsClipboardFormatAvailable USER LIEW.LIB 

IsDBCSLeadByte KERNEL LIEW.LIB 

IsDialogMessage USER LIEW.LIB 

IsDlgButtonChecked USER LIEW.LIB 

IsGDIObject GDI LIEW.LIB 

lslconic USER LIEW.LIB 

IsMenu USER LIEW.LIB 

IsRectEmpty USER LIEW.LIB 

Is Task KERNEL LIEW.LIB 

Is Window USER LIEW.LIB 

Is Window Enabled USER LIEW.LIB 

Is Window Visible USER LIEW.LIB 

IsZoomed USER LIEW.LIB 

Kill Timer USER LIEW.LIB 

_lclose KERNEL LIEW.LIB 

_lcreat KERNEL LIEW.LIB 

LimitEmsPages KERNEL LIEW.LIB 

LineDDA GDI LIEW.LIB 

Line To GDI LIEW.LIB 

_llseek KERNEL LIEW.LIB 



470 Microsoft Windows Programmer's Reference 

Function Module Import library 

LoadAccelerators USER LIEW.LIB 

LoadBitmap USER LIEW.LIB 

Load Cursor USER LIEW.LIB 

Loa die on USER LIEW.LIB 

LoadLibrary KERNEL LIEW.LIB 

LoadMenu USER LIEW.LIB 

LoadMenulndirect USER LIEW.LIB 

LoadModule KERNEL LIEW.LIB 

LoadResource KERNEL LIEW.LIB 

Load String USER LIEW.LIB 

LocaIAIIoc KERNEL LIEW.LIB 

Local Compact KERNEL LIEW.LIB 

LocaIFirst TOOLHELP TOOLHELP.LIB 

LocaIFiags KERNEL LIEW.LIB 

LocaIFree KERNEL LIEW.LIB 

LocalHandle KERNEL LIEW.LIB 

Locallnfo TOOLHELP TOOLHELP.LIB 

Locallnit KERNEL LIEW.LIB 

LocalLock KERNEL LIEW.LIB 

LocaINext TOOLHELP TOOLHELP.LIB 

LocaIReAIIoc KERNEL LIEW.LIB 

LocaIShrink KERNEL LIEW.LIB 

LocaISize KERNEL LIEW.LIB 

LocaIUnlock KERNEL LIEW.LIB 

Locklnput USER LIEW.LIB 

LockResource KERNEL LIEW.LIB 

LockSegment KERNEL LIEW.LIB 

Lock Window Update USER LIEW.LIB 

LogError KERNEL LIEW.LIB 

LogParamError KERNEL LIEW.LIB 

_lopen KERNEL LIEW.LIB 

LPtoDP GDI LIEW.LIB 

_lread KERNEL LIEW.LIB 

Istrcat KERNEL LIEW.LIB 

lstrcmp USER LIEW.LIB 

lstrcmpi USER LIEW.LIB 

lstrcpy KERNEL LIEW.LIB 

Istrlen KERNEL LIEW.LIB 



Appendix: Module and Library Names 471 

Function Module Import library 

_lwrite KERNEL LIEW.LIB 

LZClose LZEXPAND LZEXPAND.LIB 

LZCopy LZEXPAND LZEXPAND.LIB 

LZDone LZEXPAND LZEXPAND.LIB 

LZinit LZEXPAND LZEXPAND.LIB 

LZOpenFile LZEXPAND LZEXPAND.LIB 

LZRead LZEXPAND LZEXPAND.LIB 

LZSeek LZEXPAND LZEXPAND.LIB 

LZStart LZEXPAND LZEXPAND.LIB 

MakeProclnstance KERNEL LIEW.LIB 

MapDialogRect USER LIEW.LIB 

Map VirtualKey KEYBOARD LIEW.LIB 

Map Window Points USER LIEW.LIB 

MemManlnfo TOOLHELP TOOLHELP.LIB 

Memory Read TOOLHELP TOOLHELP.LIB 

Memory Write TOOLHELP TOOLHELP.LIB 

MessageBeep USER LIEW.LIB 

Message Box USER LIEW.LIB 

Modify Menu USER LIEW.LIB 

ModuleFindHandle TOOLHELP TOOLHELP.LIB 

ModuleFindN ame TOOLHELP TOOLHELP.LIB 

ModuleFirst TOOLHELP TOOLHELP.LIB 

ModuleNext TOOLHELP TOOLHELP.LIB 

Move To GDI LIEW.LIB 

MoveToEx GDI LIEW.LIB 

Move Window USER LIEW.LIB 

MulDiv GDI LIEW.LIB 

NetBIOSCall KERNEL LIEW.LIB 

Notify Register TOOLHELP TOOLHELP.LIB 

Notify U nRegister TOOLHELP TOOLHELP.LIB 

OemKeyScan KEYBOARD LIEW.LIB 

OemToAnsi KEYBOARD LIEW.LIB 

OemToAnsiBuff KEYBOARD LIEW.LIB 

OffsetClipRgn GDI LIEW.LIB 

OffsetRect USER LIEW.LIB 

OffsetRgn GDI LIEW.LIB 

OffsetViewportOrg GDI LIEW.LIB 

OffsetViewportOrgEx GDI LIEW.LIB 



472 Microsoft Windows Programmer's Reference 

Function Module Import library 

OffsetWindowOrg GDI LIEW.LIB 

OffsetWindowOrgEx GDI LIBW.LIB 

OleActivate OLECLI OLECLI.LIB 

OleBlockServer OLESVR OLESVR.LIB 

OleClone OLECLI OLECLI.LIB 

OleClose OLECLI OLECLI.LIB 

OleCopyFromLink OLECLI OLECLI.LIB 

OleCopyToClipboard OLECLI OLECLI.LIB 

OleCreate OLECLI OLECLI.LIB 

OleCreateFromClip OLECLI OLECLI.LIB 
OleCreateFromFile OLECLI OLECLl.LIB 

OleCreateFromTemplate OLECLI OLECLI.LIB 

OleCreatelnvisible OLECLI OLECLI.LIB 

OleCreateLinkFromClip OLECLI OLECLl.LIB 

OleCreateLinkFromFile OLECLI OLECLl.LIB 

OleDelete OLECLI OLECLl.LIB 

OleDraw OLECLI OLECLI.LIB 

OleEnumFormats OLECLI OLECLI.LIB 

OleEnumObjects OLECLI OLECLI.LIB 

OleEqual OLECLI OLECLI.LIB 

OleExecute OLECLI OLECLI.LIB 

OleGetData OLECLI OLECLI.LIB 

OleGetLinkUpdateOptions OLECLI OLECLl.LIB 

OlelsDcMeta OLECLI OLECLI.LIB 

OleLoadFromStream OLECLI OLECLI.LIB 

OleLockServer OLECLI OLECLI.LIB 

OleObjectConvert OLECLI OLECLI.LIB 

OleQueryBounds OLECLI OLECLI.LIB 

OleQueryClientVersion OLECLI OLECLI.LIB 

OleQueryCreateFromClip OLECLI OLECLI.LIB 

OleQueryLinkFromClip OLECLI OLECLI.LIB 

OleQueryName OLECLI OLECLl.LIB 

OleQueryOpen OLECLI OLECLl.LIB 

OleQueryOutOIDate OLECLI OLECLl.LIB 

OleQueryProtocol OLECLI OLECLI.LIB 

OleQueryReleaseError OLECLI OLECLI.LIB 

OleQueryReleaseMethod OLECLI OLECLI.LIB 

OleQueryReleaseStatus OLECLI OLECLI.LIB 



Appendix: Module and Library Names 473 

Function Module Import library 

OleQueryServerVersion OLESVR OLES YR.LIB 

OleQuerySize OLECLI OLECLI.LIE 

OleQueryType OLECLI OLECLI.LIB 

OleReconnect OLECLI OLECLI.LIE 

OleRegisterClientDoc OLECLI OLECLI.LIB 

OleRegisterServer OLESVR OLESVR.LIB 

OleRegisterServerDoc OLESVR OLESVR.LIB 

OleRelease OLECLI OLECLI.LIE 

OleRename OLECLI OLECLI.LIB 

OleRenameClientDoc OLECLI OLECLI.LIB 

OleRenameServerDoc OLESVR OLESVR.LIB 

OleRequestData OLECLI OLECLI.LIB 

OleRevertClientDoc OLECLI OLECLI.LIB 

OleRevertServerDoc OLESVR OLESVR.LIB 

OleRevokeClientDoc OLECLI OLECLI.LIB 

OleRevokeObject OLESVR OLESVR.LIB 

OleRevokeServer OLESVR OLES YR.LIE 

OleRevokeServerDoc OLESVR OLES YR.LIE 

OleSavedClientDoc OLECLI OLECLI.LIB 

OleSavedServerDoc OLESVR OLESVR.LIB 

OleSaveToStream OLECLI OLECLI.LIB 

OleSetBounds OLECLI OLECLI.LIB 

OleSetColorScheme OLECLI OLECLI.LIE 

OleSetData OLECLI OLECLI.LIB 

OleSetHostNames OLECLI OLECLI.LIB 

OleSetLinkUpdateOptions OLECLI OLECLI.LIE 

OleSetTargetDevice OLECLI OLECLI.LIB 

OleUnblockServer OLESVR OLES YR.LIB 

Ole UnlockServer OLECLI OLECLI.LIB 

Ole Update OLECLI OLECLI.LIE 

Open Clipboard USER LIEW.LIB 

Open Comm USER LIEW.LIB 

OpenDriver USER LIEW.LIB 

OpenFile LZEXPAND LZEXPAND.LIB 

Openlcon USER LIEW.LIB 

OutputDebugString KERNEL LIEW.LIB 

PaintRgn GDI LIEW.LIB 

PatBlt GDI LIEW.LIB 



474 Microsoft Windows Programmer's Reference 

Function Module Import library 

PeekMessage USER LIEW.LIB 

Pie GDI LIEW.LIB 

PlayMetaFile GDI LIEW.LIB 

PlayMetaFileRecord GDI LIEW.LIB 

Polygon GDI LIEW.LIB 

Polyline GDI LIEW.LIB 

Poly Polygon GDI LIEW.LIB 

PostAppMessage USER LIEW.LIB 

PostMessage USER LIEW.LIB 

PostQuitMessage USER LIEW.LIB 

PrestoChangoSelector KERNEL LIEW.LIB 

PrintDlg CO MMD LG COMMDLG.LIB 

ProfClear LIEW.LIB 

ProfFinish LIEW.LIB 

ProfFlush LIEW.LIB 

ProflnsChk LIEW.LIB 

ProfSampRate LIEW.LIB 

ProfSetup LIEW.LIB 

ProfStart LIEW.LIB 

ProfStop LIEW.LIB 

PtlnRect USER LIEW.LIB 

PtlnRegion GDI LIEW.LIB 

Pt Visible GDI LIEW.LIB 

Query Abort GDI LIEW.LIB 

QuerySendMessage USER LIEW.LIB 

Read Comm USER LIEW.LIB 

RealizePalette USER LIEW.LIB 

Rectangle GDI LIEW.LIB 

RectlnRegion GDI LIEW.LIB 

RectVisible GDI LIEW.LIB 

Redraw Window USER LIEW.LIB 

RegCloseKey SHELL SHELL.LIB 

RegCreateKey SHELL SHELL.LIB 

RegDeleteKey SHELL SHELL.LIB 

RegEnumKey SHELL SHELL.LIB 

RegisterClass USER LIEW.LIB 

RegisterClipboardFormat USER LIEW.LIB 

RegisterWindowMessage USER LIEW.LIB 



Appendix: Module and Library Names 475 

Function Module Import library 

RegOpenKey SHELL SHELL.LIB 

RegQueryValue SHELL SHELL.LIB 

RegSetValue SHELL SHELL.LIB 

ReleaseCapture USER LIEW.LIB 

ReleaseDC USER LIEW.LIB 

RemoveFontResource GDI LIEW.LIB 

RemoveMenu USER LIEW.LIB 

RemoveProp USER LIEW.LIB 

ReplaceText CO MMD LG CO MMD LG.LIB 

Reply Message USER LIEW.LIB 

ResetDC GDI LIEW.LIB 

Resize Palette GDI LIEW.LIB 

RestoreDC GDI LIEW.LIB 

RoundRect GDI LIEW.LIB 

SaveDC GDI LIEW.LIB 

Scale ViewportExt GDI LIEW.LIB 

Scale ViewportExtEx GDI LIEW.LIB 

Scale Window Ext GDI LIEW.LIB 

Scale WindowExtEx GDI LIEW.LIB 

ScreenSaverProc SCRNSAVE.LIB 

ScreenToClient USER LIEW.LIB 

ScrollDC USER LIEW.LIB 

ScrollWindow USER LIEW.LIB 

ScrollWindowEx USER LIEW.LIB 

SelectClipRgn GDI LIEW.LIB 

SelectObject GDI LIEW.LIB 

SelectPalette USER LIEW.LIB 

SendDlgltemMessage USER LIEW.LIB 

SendDriverMessage USER LIEW.LIB 

SendMessage USER LIEW.LIB 

SetAbortProc GDI LIEW.LIB 

SetActive Window USER LIEW.LIB 

SetBitmapBits GDI LIEW.LIB 

SetBitmapDimension GDI LIEW.LIB 

SetBitmapDimensionEx GDI LIEW.LIB 

SetBkColor GDI LIEW.LIB 

SetBkMode GDI LIEW.LIB 

SetBoundsRect GDI LIEW.LIB 



476 Microsoft Windows Programmer's Reference 

Function Module Import library 

SetBrushOrg GDI LIEW.LIB 

SetCapture USER LIEW.LIB 

SetCaretBlinkTime USER LIEW.LIB 

SetCaretPos USER LIEW.LIB 

SetClassLong USER LIEW.LIB 

SetClassWord USER LIEW.LIB 

SetClipboardData USER LIEW.LIB 

SetClipboardViewer USER LIEW.LIB 

SetCommBreak USER LIEW.LIB 

SetCommEventMask USER LIEW.LIB 

SetCommState USER LIEW.LIB 

SetCursor USER LIEW.LIB 

SetCursorPos USER LIEW.LIB 

SetDIBits GDI LIEW.LIB 

SetDIBitsToDevice GDI LIEW.LIB 

SetDlgltemlnt USER LIEW.LIB 

SetDlgltemText USER LIEW.LIB 

SetDoubleClickTime USER LIEW.LIB 

SetErrorMode KERNEL LIEW.LIB 

SetFocus USER LIEW.LIB 

SetHandleCount KERNEL LIEW.LIB 

SetKeyboardState USER LIEW.LIB 

SetMapMode GDI LIEW.LIB 

SetMapperFlags GDI LIEW.LIB 

SetMenu USER LIEW.LIB 

SetMenultemBitmaps USER LIEW.LIB 

SetMessageQueue USER LIEW.LIB 

SetMetaFileBits GDI LIEW.LIB 

SetMetaFileBitsBetter GDI LIEW.LIB 

SetPaletteEntries GDI LIEW.LIB 

SetParent USER LIEW.LIB 

SetPixel GDI LIEW.LIB 

SetPoly FillMode GDI LIEW.LIB 

SetProp USER LIEW.LIB 

SetRect USER LIEW.LIB 

SetRectEmpty USER LIEW.LIB 

SetRectRgn GDI LIEW.LIB 

SetResourceHandler KERNEL LIEW.LIB 



Appendix: Module and Library Names 477 

Function Module Import library 

SetROP2 GDI LIEW.LIB 

SetScrollPos USER LIEW.LIB 

SetScrollRange USER LIEW.LIB 

SetSelectorBase KERNEL LIEW.LIB 

SetSelectorLimit KERNEL LIEW.LIB 

SetStretchBltMode GDI LIEW.LIB 

SetSwapAreaSize KERNEL LIEW.LIB 

SetSysColors USER LIEW.LIB 

SetSysModalWindow USER LIEW.LIB 

SetSystemPaletteUse GDI LIEW.LIB 

SetTextAlign GDI LIEW.LIB 

SetTextCharacterExtra GDI LIEW.LIB 

SetTextColor GDI LIEW.LIB 

SetTextJustification GDI LIEW.LIB 

SetTimer USER LIEW.LIB 

SetViewportExt GDI LIEW.LIB 

SetViewportExtEx GDI LIEW.LIB 

SetViewportOrg GDI LIEW.LIB 

SetViewportOrgEx GDI LIEW.LIB 

SetWinDebuglnfo KERNEL LIEW.LIB 

SetWindowExt GDI LIEW.LIB 

SetWindowExtEx GDI LIEW.LIB 

SetWindowLong USER LIEW.LIB 

SetWindowOrg GDI LIEW.LIB 

SetWindowOrgEx GDI LIEW.LIB 

SetWindowPlacement USER LIEW.LIB 

SetWindowPos USER LIEW.LIB 

SetWindowsHook USER LIEW.LIB 

SetWindowsHookEx USER LIEW.LIB 

SetWindowText USER LIEW.LIB 

SetWindowWord USER LIEW.LIB 

ShellExecute SHELL SHELL.LIB 

ShowCaret USER LIEW.LIB 

ShowCursor USER LIEW.LIB 

ShowOwnedPopups USER LIEW.LIB 

ShowScrollBar USER LIEW.LIB 

Show Window USER LIEW.LIB 

SizeofResource KERNEL LIEW.LIB 



478 Microsoft Windows Programmer's Reference 

Function Module Import library 

SpoolFile GDI LIEW.LIB 

StackTraceCSIPFirst TOOLHELP TOOLHELP.LIB 

StackTraceFirst TOOLHELP TOOLHELP.LIB 

StackTraceNext TOOLHELP TOOLHELP.LIB 

StartDoc GDI LIBW.LIB 

StartPage GDI LIBW.LIB 

StretchBlt GDI LIBW.LIB 

StretchDIBits GDI LIBW.LIB 

SubtractRect USER LIBW.LIB 

SwapMouseButton USER LIEW.LIB 

Swap Recording KERNEL LIBW.LIB 

SwitchStackBack KERNEL LIBW.LIB 

SwitchStackTo KERNEL LIBW.LIB 

SystemHeaplnfo TOOLHELP TOOLHELP.LIB 

SystemParameterslnf o USER LIEW.LIB 

TabbedTextOut USER LIEW.LIB 

TaskFindHandle TOOLHELP TOOLHELP.LIB 

TaskFirst TOOLHELP TOOLHELP.LIB 

TaskGetCSIP TOOLHELP TOOLHELP.LIB 

TaskNext TOOLHELP TOOLHELP.LIB 

TaskSetCSIP TOOLHELP TOOLHELP.LIB 

TaskSwitch TOOLHELP TOOLHELP.LIB 

TerminateApp TOOLHELP TOOLHELP.LIB 

TextOut GDI LIEW.LIB 

Throw KERNEL LIEW.LIB 

Timer Count TOOLHELP TOOLHELP.LIB 

ToAscii KEYBOARD LIBW.LIB 

TrackPopupMenu USER LIBW.LIB 

TranslateAccelerator USER LIEW.LIB 

TranslateMDISysAccel USER LIEW.LIB 

TranslateMessage USER LIEW.LIB 

TransmitCommChar USER LIBW.LIB 

UnAllocDiskSpace STRESS STRESS.LIB 

UnAllocFileHandles STRESS STRESS.LIB 

UngetCommChar USER LIEW.LIB 

UnhookWindowsHook USER LIEW.LIB 

UnhookWindowsHookEx USER LIEW.LIB 

UnionRect USER LIEW.LIB 



Appendix: Module and Library Names 479 

Function Module Import library 

UnlockSegment KERNEL LIEW.LIB 

UnrealizeObject GDI LIEW.LIB 

UnregisterClass USER LIBW.LIB 

UpdateColors GDI LIBW.LIB 

Update Window USER LIEW.LIB 

ValidateCodeSegments KERNEL LIBW.LIB 

ValidateFreeSpaces KERNEL LIBW.LIB 

ValidateRect USER LIBW.LIB 

ValidateRgn USER LIBW.LIB 

VerFindFile VER VER.LIB 

VerlnstallFile VER VER.LIB 

VerLanguageName VER VER.LIB 

VerQueryValue VER VER.LIB 

VkKeyScan KEYBOARD LIEW.LIB 

WaitMessage USER LIBW.LIB 

WindowFromPoint USER LIBW.LIB 

WinExec KERNEL LIBW.LIB 

WinHelp USER LIBW.LIB 

WNetAddConnection USER LIBW.LIB 

WNetCancelConnection USER LIBW.LIB 

WNetGetConnection USER LIBW.LIB 

WriteComm USER LIBW.LIB 

WritePrivateProfileString KERNEL LIBW.LIB 

WriteProfileString KERNEL LIBW.LIB 

_wsprintf USER LIBW.LIB 

wvsprintf USER LIBW.LIB 

Yield KERNEL LIBW.LIB 





Index 

32-bit memory management library 
32-bit memory, using 

application stack, 301 
common uses in applications, 303-304 
flat memory model limitations, 301 
helper code segment, 300-303 
interrupt-time code, 302 

described, 297 
error values, 32-bit memory management, 304 
functions, 299 
segmented vs. flat memory models, 298 
WINMEM32.DLL library, using, 299 

386 enhanced mode, DPMI applications, 401 

A 
Addltem command, Program Manager, 373 
Advise transaction, DDEML, 184 
ANSI character set. See Windows character set 
AnsiLower function, 385 
AnsiLowerBuff function, 385 
AnsiToOem function, 385 
AppendMenu function, 31 
Application (service) name, DDE servers, 167 
Application execution functions, 126 
Application global class, 13 
application key name, registration database, 262 
Application local class, 13 
Application stack, 301 
Application startup 

functions,418-420 
requirements for startup, 415 
sample startup routine, 416 

Arc function, 100 
Associate dialog box, File Manager, 268 
Asynchronous transaction, DDEML, 186 
Atom management functions, 121 

B 
Background, painting, 43 
Banyan VINES network functions, 397 
BeginPaint function 

class display context, 40 
painting windows, 42 

BeginPaint function (continued) 
private display context, 40 
window background, 43 

BitBlt function 
color palettes, 89 
gray text, drawing, 46 
scrolling the client area, 60 

Bitmap 
bitmap functions, 102 
caret, creating and displaying, 65-66 
device-independent bitmap driver 

device context, creating, 428 
display context, creating, 425-426 
modifying bitmaps, 427 
StretchDIBits function, using, 427 

device-independent bitmaps 
functions, 104 
specification, 103 

displaying 
avoiding color misrecognition, 425 
standard vs. super VGA adapters, 424 

palettes, converting to identity palettes, 424 
shrinking or expanding, 91 

BITMAPINFO structure 
device-independent bitmap specification, 103 
DIB driver device context, creating, 428 
DIB driver display context, creating, 425-426 

BITMAPINFOHEADER structure, 428 
BootApp function, 432-434 
Bounding rectangle, 100-101 
Brush 

alignment, 44 
class background brush, 17 
colors, setting, 91 
predefined in GDI, 83 

Buttons in dialog boxes, 52 

c 
CallWindowProc function, 20 
Caret 

creating and displaying, 65 
functions, 66 
sharing, 66 

Case conversion, language-dependent, 385 



482 Index 

CheckDlgButton function, 53 
CheckRadioButton function, 53 
Child window 

controls in a dialog box, 52 
creating and displaying, 28-29 

ChooseColor function, 137-138 
CHOOSECOLOR structure, 136-137 
ChooseFont function, 140 
CHOOSEFONT structure, 140 
Chord function, 101 
Class list, Windows, 274 
Class Name Object command, OLE applications, 

231 
CLASSENTRY structure, 274 
ClassFirst function, 274 
ClassNext function, 274 
Client applications 

DDE transactions, 166 
OLE client applications 

asynchronous operations, 223 
Class Name Object command, 231 
closing, 233 
closing documents, 223 
compound documents, opening, 222 
copying objects, 227 
creating objects, 228 
DDE, direct use of, 245-247 
deleting objects, 227 
described, 206 
displaying objects, 225 
Links command, 231 
opening and closing objects, 226 
Paste and Paste Link commands, 230 
printing objects, 225 
saving documents, 223 
starting, 221 
Undo command, 231 

Client user interface, OLE applications, 213-216 
CLIENTCREATESTRUCT structure, 29 
Clipboard 

See also Object linking and embedding 
formats, 208 
functions, 64 
OLE conventions, 207-210 

ClipCursor function, 68 
Clipping functions, GDI, 99 
CloseDriver function, 445 
CloseMetaFile function, 107 

- Color 
color matching, illustrated, 88 
color palettes 

described, 86-88 
functions, 90 
using, 89 

identity palette 
color misrecognition, avoiding, 425 
creating and testing, 424 
described, 423 

setting colors, 91 
specifying for brushes and pens, 85 
system colors, 63 
system palette, described, 423 

Color dialog box 
described, 132 
displaying basic colors, 136 
displaying custom colors, 137 
HSL color model, 135 
RGB color model, 133-134 

Combo box, in dialog boxes, 54 
command key name, registration database, 262 
CommDlgExtendedError function, 161 
Common dialog box library 

Color dialog box 
described, 132 
displaying basic colors, 136 
displaying custom colors, 137 
HSL color model, 135 
RGB color model, 133-134 

COMMDLG.DLLlibrary, 131 
common dialog boxes, described, 131 
customizing common dialog boxes 

described, 154 
dialog box template, 158 
displaying custom dialog boxes, 159 
hook function, 155-157 

error detection, 161 
Find dialog box, 150, 153 
Font dialog box, 139 
Help button in common dialog boxes, 160 
Open dialog box 

displaying, 142 
monitoring filenames, 147 
monitoring list box controls, 146 

Print dialog box, 148-149 
Print Setup dialog box, 148 
Replace dialog box, 152-153 



Common dialog box library (continued) 
Save As dialog box 

displaying, 145 
monitoring filenames, 147 
monitoring list box controls, 146 

Communication functions, 122 
Comparing strings, language-dependent functions, 

384 
Compound document, OLE applications 

described, 199 
illustrated, 200 
opening, 222 

COMPRESS.EXE program, 281 
Configuration files, using profile functions, 393 
Configuration routine, screen savers, 323 
Control menu (System menu), 30 
Control Panel applications 

creating, 347 
Drivers Control Panel application, 449 
entry-point function, creating, 348 
example application, 350 
exiting, 350 
initializing, 349 
installing, 352 
order of loading, 345 
responding to user actions, 350 
starting, 345 

CONTROL.EXE (Control Panel), 345 
CONTROL.IN! file 

installing applications, 352 
screen saver configuration, 324 

Controls 
dialog box controls 

buttons, 52 
combo boxes, 54 
control identifiers, 51-52 
edit controls, 53 
list boxes, 54 
messages, 55 
owner-drawn controls, 54 

scroll bars, 59 
Conversation. See Dynamic Data Exchange 

Management Library (DDEML) 
CONVINFO structure, 178 
Coordinate functions, GDI, 96 
Coordinates for rectangles, 7 4 
Copy command 

OLE client applications, 227 
OLE server applications, 217, 237 

CopyLZFile function, 283 
CopyMetaFile function, 108 

CopyRect function, 74 
Country settings, WIN.IN! file, 380 
CPL messages, 347 
CPL_DBLCLK message, 350 
CPL_EXIT message, 350 
CPL_INQUIRE message, 350 
CPL_NEWINQUIRE message, 349 
CPL_SELECT message, 350 
CPL_STOP message, 350 
CPlApplet function 

CPL messages, 347 
creating, 348 
example application, 350 
initializing an application, 349 

CPLINFO structure, 350 

Index 483 

CreateBitmap function, creating carets, 66 
CreateCaret function, 66 
CreateCompatibleDC function, 80 
CreateDC function 

DIB driver device context, creating, 428 
DIB driver display context, creating, 425-426 

CreateDialog function, 50 
CreateDIBitmap function, 427 
CreateGroup command, Program Manager, 371 
CreateHatchBrush function, 83 
CreateIC function, 80 
Createlcon function, 45 
CreateMetaFile function, 106-108 
CreatePalette function, 89 
CreatePen function, 84 
CreatePopupMenu function, 31 
CREATESTRUCT structure, 32 
Create Window function 

child windows, 28 
localization guidelines, 390 
MDI client windows, 30 
overlapped windows, 26 
owned windows, 27 
pop-up windows, 27 
window life cycle, described, 32 

Cursor 
See also Caret 
class cursor, 17 
custom cursor, creating, 68 
displaying or hiding, 67 
functions, 68 
hot spot, 68 

Cut command 
OLE client applications, 227 
OLE server applications, 217, 237 



484 Index 

D 
Data decompression library 

data compression, described, 281 
decompressing files 

multiple files, 283 
single file, 283 

functions, 282 
reading from compressed files, 283 
version number, checking, 281 

Data handle 
dynamic data exchange, 180 
property lists, 71 

DDE. See Dynamic data exchange 
DdeAbandonTransaction function, 186 
DdeAccessData function 

command strings, 185 
global memory objects, 182 

DdeAddData function, 182 
DdeCallback function, 170 
DdeClientTransaction function 

advise transaction, 184 
execute transaction, 185 
poke transaction, 183 
request transaction, 183 
synchronous and asynchronous transactions, 186 

DdeConnect function, 175 
DdeConnectList function, 178 
DdeCreateDataHandle function, 180 
DdeCreateStringHandle function, 171 
DdeDisconnect function, 178, 180 
DdeDisconnectList function, 180 
DdeEnableCallback function, 187 
ddeexec key name, registration database, 262 
DdeFreeDataHandle function, 182 
DdeFreeStringHandle function, 173 
DdeGetData function, 182 
Ddelnitialize function 

initializing DDEML, 168 
monitoring DDE applications, 190 

DdeKeepStringHandle function, 173 
DDEML. See Dynamic Data Exchange 

Management Library 
DdeN ameService function, 17 4 
DdePostAdvise function, 184 
DdeQueryConvlnfo function, 178, 186 
DdeQueryNextServer function, 178 
DdeQueryString function, 172 
DdeReconnect function, 178 
DdeSetUserHandle function, 186 
DdeUnaccessData function, 182 

DdeUninitialize function, 170 
Debugging functions, 125 
Debugging hooks, 70 
Decompressing files 

functions in LZEXPAND.DLL, 282 
multiple files, 283 
reading from compressed files, 283 
single file, 283 

DefCreateFromClip function, 243 
DefHookProc function, 69 
DefLoadFromStream function, 244 
DefScreenSaverProc function, 323, 325, 331 
DefWindowProc function, 23-24 
DeleteDC function, 80 
DeleteGroup command, Program Manager, 372 
Deletelcon function, 45 
Deleteltem command, Program Manager, 374 
DELETEITEMSTRUCT structure, 55 
DeleteMetaFile function, 108 
DestroyWindow function 

modeless dialog boxes, 49 
window life cycle, described, 33 

Device context 
attributes and related functions, 81 
defined, 79 
DIB driver device context, 428 
functions, 82 
metafiles, 106 
output devices, accessing, 79-80 
stretch mode, setting, 91 

Device control functions, 109 
Device-independent bitmap 

functions, 104 
specification, 103 

Dialog box 
See also Common dialog box library 
configuration dialog box, 323 
controls 

buttons, 52 
combo boxes, 54 
control identifiers, 51-52 
edit controls, 53 
list boxes, 54 
messages, 55 
owner-drawn controls, 54 

creating, 50 
dialog box template, 50 
functions, 57 
keyboard interface, 55 
measurements, 51 
modal dialog box, 49 



Dialog box (continued) 
modeless dialog box, 49 
return values, 51 
system-modal dialog box, 50 

DialogBox function, 50-51 
DIB. See Device-independent bitmap 
DIB.DRV, device-independent bitmap driver, 425 
Directory listing, in dialog boxes, 54 
Disabled text, drawing, 46 
DispatchMessage function, 7-8 
Display context 

cache,41 
class display context, 39 
common display context, 38 
creating, 21 
DIB driver display context, 425 
private display context, 40 
window display context, 41 

DlgChangePassword function, 332 
DlgDirList function, 54 
DlgDirSelect function, 54 
DlgGetPassword function, 333 
DlglnvalidPassword function, 334 
DllCreateFromClip function, 243 
DllLoadFromStream function, 244 
Document conventions, xvii 
DOS Protected-Mode Interface (DPMI) 

memory-management functions, 401 
MS-DOS interrupts and functions, 402 
NetBIOS support, 404 
real mode vs. virtual-8086 mode, 401 
specification, requesting a copy of, 401 
translation functions, 402 

DOS3Call function 
international applications, 386 
network applications, 396 

DOSNET.LIB library, 397 
DPMI. See DOS Protected-Mode Interface 
Drag-drop feature, Shell library, 266-268 
DragAcceptFiles function, 267 
DragFinish function, 267 
DragQueryFile function, 267 
DragQuerylcon function, 268 
DragQueryPoint function, 267 
Drawlcon function, 45 
Drawing attributes 

colors, setting, 91 
functions, 91 

Drawing tools 
brushes,83 
colors, specifying, 85 
functions, 86 
pens,84 

DRA WITEMSTRUCT structure, 55 
DrawText function, 45 
Driver, installable 

closing, 445 
configuring, 446 
creating, 442-446 

Index 485 

custom configuration application, 451 
described, 441 
Drivers Control Panel application 

described, 449 
driver description line, 450 
installing drivers, 450 

instances, enumerating, 446 
messages, described, 441 
OEMSETUP.INF file, creating, 448 
opening, 445 
SYSTEM.IN! file, updating, 446 

DriverProc function, 442 
DRV _CLOSE message, 446 
DRV _CONFIGURE message, 446 
DRV _DISABLE message, 446 
DRV _ENABLE message, 445 
DRV _FREE message, 446 
DRV _INST ALL message, 450 
DRV _LOAD message, 445 
DRV _OPEN function, 445 
DRV _QUERYCONFIGURE message, 446 
Dynamic data exchange 

See also Dynamic Data Exchange Management 
Library (DDEML) 

described, 165 
key names, registration database, 262 
OLE libraries 

client applications, 245 
conversations, 248 
execute strings, 251-252 
server applications, 248 
standard item names, 249 
System topic, items for, 249 
using for standard DDE operations, 204 

Program Manager interface 
command-string interface, 370-375 
described, 367 
group information, requesting, 375 
PROGMAN.INI file, 367-369 



486 Index 

Dynamic Data Exchange Management 
Library (DDEML) 

See also Object linking and embedding 
callback function, 170 
client and server interaction, 166 
conversations 

multiple conversations, 178 
single conversations, 175 
suspending, 187 
terminating, 170 

data management, 180 
DDEML.DLL library, 166 
DDEML.H header file, 166 
DDEML.LIB library, 166 
described, 165 
error detection, 190 
initializing, 168 
item names, 167 
monitoring applications, 190-194 
vs. OLE, 203 
OLE, using with DDEML, 205 
service names 

described, 167 
registering, 17 4 
service-name filter, 17 4 

string management, 171 
System topic, 167 
topic names, 167 
transaction management 

advise transaction, 184 
asynchronous transactions, 186 
controlling transactions, 187 
execute transaction, 185 
poke transaction, 183 
request transaction, 183 
synchronous transactions, 186 
transaction classes, 188 
transaction summary, 189 

transaction, defined, 166 
Dynamic-link library (DLL) 

File Manager extensions, 355-363 
installable drivers 

creating, 442 
described, 441 
Drivers Control Panel application, 449 
OEMSETUP.INF file, creating, 448 
SYSTEM.IN! file, updating, 446 

network applications, 397 
prolog and epilog for, 410 
undelete DLL, 363 

E 
Edit controls in dialog boxes, 53 
Ellipse functions, 102 
Embedded object 

See also Object linking and embedding (OLE) 
defined, 201 

Emulation, floating-point 
emulation by exception handler, 307 
functions, 310 
structures, 315 
Windows 3.0 limitations, 31 O 
Windows 80x87 floating-point emulation, 308 

EndDialog function, 49, 51 
EndPaint function 

class display context, 40 
painting sequence, 42 
painting windows, 42 
private display context, 40 

EntryAddrProc function, 433, 435 
EnumClipboardFormats function, 230 
EnumProps function, 72 
Epilog and prolog code 

data segment initialization, 407--411 
described, 407 

Error detection 
common dialog boxes, 161 
DDEML functions, 190 

Error functions, 65 
Escape function, 110 
Execute strings, OLE 

international execute commands, 252 
required commands, 252-254 
syntax for standard commands, 251 

Execute transaction, DDEML, 185 
Execution functions, 126 
ExitProc function, 433, 435 
ExitProgman command, Program Manager, 375 
ExtDeviceMode function, 149 
Extended memory, DPMI applications, 401 
Extractlcon function, 268 

F 
Far functions, prolog and epilog for, 407--410 
File 1/0 functions, 124 
File Installation library 

described, 291 
installation program, creating, 292 
international uses, 388 
VER.DLL library, 291 
VERC.LIB library, 291 



File Installation library (continued) 
VERL.LIB library, 291 
VERM.LIB library, 291 
VERS.LIB library, 291 
version information, adding to files, 294 

File Manager 
associating filename extensions, 268 
dragging and dropping files, 266-268 

File Manager extensions 
creating, 355 
entry-point function, creating, 356-358 
extension, defined, 355 
installing extensions, 358 
messages, 359 
quitting the extension DLL, 358 
sample extension DLL, 360-363 
Undelete command, adding, 363 

File sharing, network applications, 394 
Filename handling, Windows vs. OEM 

character set, 386-387 
Fil!Rect function, 44 
Filter function 

filter-function chain, 69 
installing, 70 

Find dialog box 
displaying, 150 
processing messages, 153 

FindExecutable function, 268 
FINDMSGSTRING message, 153 
FINDREPLACE structure, 151-152 
FindText function, 151 
Flat memory model, 298, 301 
Floating-point-emulation library 

emulation by exception handler, 307 
functions, 310-314 
structures, 315-317 
WIN87EM.DLL library, 308 
Windows 3.0 limitations, 310 
Windows 80x87 floating-point emulation, 308 

FMEVENT _INITMENU message, 357 
FMEVENT_LOAD message, 357 
FMEVENT_SELCHANGE message, 358 
FMEVENT_UNLOAD message, 358 
FMEVENT_USER_REFRESH message, 358 
FMExtensionProc function 

defining, 356 
menu selections, processing, 357 
message processing, 356, 358 
messages sent by File Manager, 355 
sample extension DLL, 360 

FMS_LOAD structure, 357 

Font dialog box, 139 
Font functions, 105 
_FPinit function, 310 
_fpmath function, 311 
_FPTerm function, 312 
FrameRect function, 44 
FreeLibrary function 

Index 487 

Control Panel applications, exiting, 350 
File Manager, quitting, 358 

Functions 
data decompression functions, 282 
DdeCallback function, 170 
DPMI functions, 401 
far functions, pro log and epilog for, 407-410 
floating-point-emulation functions, 310-314 
graphics device interface (GDI) 

bitmap functions, 102 
clipping functions, 99 
color palette functions, 90 
coordinate functions, 96 
device context functions, 82 
device control functions, 109 
DIB functions, 104 
drawing attribute functions, 91 
drawing tool functions, 86 
ellipse and polygon functions, 102 
font functions, 105 
line output functions, 101 
mapping functions, 96 
metafile functions, 109 
printer functions, 110 
region functions, 98 
text functions, 104 

initialization functions, 418-420 
installable-driver functions, 441 
library names, listed, 457-479 
loader functions, 434-438 
module names, listed, 457 
network functions, 395-397 
OLE functions 

asynchronous operations, 224 
document management, 222 
object creation, 228 
object handlers, 241 
server applications, 233 

screen saver functions, 330-338 
System resources stress-testing library, 287 
system services interface 

application execution functions, 126 
atom management functions, 121 
communication functions, 122 



488 Index 

Functions (continued) 

G 

system services interface (continued) 
debugging functions, 125 
file 1/0 functions, 124 
initialization file functions, 122 
memory management functions, 116 
module management functions, 115 
operating-system interrupt functions, 118 
optimization tool functions, 125 
resource management functions, 119 
segment functions, 117 
string manipulation functions, 120 
task functions, 119 
utility functions, 123 

Tool Helper library 
calling Tool Helper functions, 273 
installing callback functions, 277 

window management 
caret functions, 66 
clipboard functions, 64 
cursor functions, 68 
dialog boxes, functions for, 57 
display and movement functions, 34 
error functions, 65 
hardware functions, 36 
hook functions, 71 
information functions, 63 
input functions, 36 
internal data structures, 20 
menu functions, 61 
message functions, 11 
painting functions, 47 
property functions, 73 
rectangle functions, 76 
scrolling functions, 61 
system functions, 63 
window-creation functions, 33 

WINMEM32.DLL library functions, 299 

GDI. See Graphics device interface 
GDI heap, obtaining information about, 275 
GetBValue macro, 85 
GetClasslnfo function, 274 
GetCursorPos function, 68 
GetData function, 205 
GetDC function 

class display context, 40 
private display context, 40 

GetDeviceCaps function, 80 
device information, obtaining, 80 
scaling factor, obtaining, 93 

GetDialogBaseUnits function, 51 
GetDIBits function, 89, 427 
GetDlgltem function, 52 
GetDlgltemText function, 53 
GetFile Versionlnfo function, 293 
GetFile VersionlnfoSize function, 293 
GetGValue macro, 85 
GetKBCodePage function, 387 
GetKeyNameText function, 387 
GetMessage function 

dialog boxes, keyboard interface, 56 
generating and processing messages, 7 

GetMetaFile function, 108 
GetNearestColor function, 85 
GetNextDriver function, 446 
GetObject function, 205 
GetOpenFileName function, 142 
GetPrivateProfilelnt function, 394 
GetProfilelnt function, 393 
GetProfileString function, 393 
GetProp function, 71 
GetRValue macro, 85 
GetSaveFileName function, 145 
GetScrollRange function, 59 
GetStockObject function 

brushes, selecting, 83 
pens, selecting, 84 

GetSystemColors function, 425 
GetSystemMetrics function, 41 
GetTempFileName function, 394 
GetUpdateRect function, 43 
GetUpdateRgn function, 43 
GetWindowDC function, 41 
GetWindowLong function, 20 
GetWinFlags function 

initializing DDEML, 168 
loading WINMEM32.DLL, 299 

Global heap, walking, 275 
Global memory contents, modifying, 277 
GlobalDOSAlloc function, 401 
GlobalDOSFree function, 401 
GLOBALENTRY structure, 275 
GlobalEntryHandle function, 276 
GlobalEntryModule function, 276 
GlobalFirst function, 275 
Globa!Handle function, 433 
Globa!HandleToSel function, 277 
Globallnfo function, 275 



GLOBALINFO structure, 275 
GlobalNext function, 275 
GlobalRealloc function, 433 
Graphics device interface (GDI) 

bitmaps 
bitmap functions, 102 
DIB functions, 104 
DIB specification, 103 

clipping functions, 99 
color palettes 

color matching, illustrated, 88 
described, 86-88 
functions, 90 
using, 89 

coordinate functions, 96 
device contexts 

attributes and related functions, 81 
defined, 79 
functions, 82 
output devices, accessing, 79-80 

device control functions, 109 
drawing attributes 

colors, setting, 91 
functions, 91 
stretch, controlling, 91 

drawing tools 
brushes, 83 
colors, specifying, 85 
functions, 86 
pens,84 

ellipse and polygon functions, 101 
font functions, 105 
line output 

described, 99 
functions, 101 

mapping 
constrained mapping modes, 93 
functions, 96 
MM_LOENGLISH mapping mode, illustrated, 94 
MM_ TEXT mapping mode, illustrated, 94 
other mapping modes, 95 

metafiles 
creating, 106 
functions, 109 
GDI functions used in metafiles, 107 
playing, 108 
storing, 108 

printer functions, 110 
region functions, 98 
text functions, 104 
transformation equations, 97 

Gray text, drawing, 46 
GrayString function, 46 

H 

Index 489 

handler key name, registration database, 263 
Hardware functions, 36 
Hatch line, creating, 83 
Help button in common dialog boxes, 160 
HelpMessageFilterHookFunction function, 

329,335 
Hook function, common dialog boxes, 155-157 
Hooks 

filter-function chain, 69 
functions, 71 
installing a filter function, 70 

Hot spot of the cursor, 68 
HSL color model, 135 
HSZP AIR structure, 178 

Icon 
class icon, 17 
drawing, 45 
extracting from executable files, 268 

Identity palette 
color misrecognition, avoiding, 425 
creating and testing, 424 
described, 423 

ifexec key name, registration database, 262 
Import library names, listed, 457-479 
InflateRect function, 74 
Information context, creating, 80 
Information functions, 63 
.INI files, using profile functions, 393 
InitApp function, 418 
Initialization files 

functions, 122 
languageindependence,387 

Initializing applications, 415 
InitTask function, 415, 419 
Input functions, 36 
Input messages, generating and processing, 7 
Insert Object command, OLE applications, 229 
InsertMenu function, 31 
Installable driver 

closing, 445 
configuring, 446 
creating, 442-446 
custom configuration application, 451 
described, 441 



490 Index 

Installable driver (continued) 
Drivers Control Panel application 

described, 449 
driver description line, 450 
installing drivers, 450 

instances, enumerating, 446 
messages, described, 441 
OEMSETUP.INF file, creating, 448 
opening, 445 
SYSTEM.IN! file, updating, 446 

Installation program, creating, 292 
Instance handle for window classes, 16 
International applications 

creating, 379 
language codes, 380 
language-dependent functions 

case conversions, 385 
character sets, handling, 385 
filenames, handling, 386 
initialization files, handling, 387 
keyboard, handling, 387 
listed, 383 
strings, comparing and sorting, 384 

localization 
allocating extra space for strings, 389 
foreign language guidelines, 389 
isolating localizable information, 388 

VER.DLL version library, 388 
WIN.IN! file settings, 379-383 

Interrupt 21h 
vs. DOS3Call function, 396 
vs. NetWareRequest function, 397 
protected mode, support for functions, 403 

Interrupt 5Ch vs. NetBIOSCall function, 396 
Interrupt functions 

operating-system, 118 
protected mode and MS-DOS interrupts, 403 

InterruptRegister function, 277 
IntersectRect function, 75 
InvalidateRect function, 43 
InvalidateRgn function, 43 
InvertRect function, 44 
IPX/SPX application programming interface, 397 
IsCharAlpha function, 385 
IsCharAlphaNumeric function, 385 
IsCharLower function, 385 
IsCharUpper function, 385 
IsDialogMessage function 

keyboard interface, 55 
processing messages, 49 

IsDlgButtonChecked function, 53 

IsRectEmpty function, 75 
Item name, DDE servers, 167 

K 
Key names, registration database 

adding and deleting keys, 265 
described, 258 

Keyboard interface for dialog boxes, 55 

L 
LAN Manager networks, 396 
Language 

See also International applications 
language codes, WIN.IN! file, 380 
language-dependent functions 

case conversions, 385 
character sets, handling, 385 
filenames, handling, 386 
initialization files, handling, 387 
keyboard, handling, 387 
listed, 383 
strings, comparing and sorting, 384 

localization guidelines, 389 
VER.DLL version library, 388 

_lcreat function, 386 
Lempel-Ziv algorithm, 281 
Library names, listed, 457-479 
Line output 

colors, setting, 91 
described, 99 
functions, 101 

LineTo function, 100 
Linked object 

See also Object linking and embedding (OLE) 
defined, 201 

Links command, OLE applications, 231 
List box, in dialog boxes, 54 
LoadAccelerators function, 9 
LoadAppSeg function, 432-433, 436 
LoadBitmap function, displaying the caret, 66 
LoadCursor function, 17 
Loader code, 432 
Loader data table, 431 
Loader functions, 434-438 
Loadlcon function 

assigning a class icon, 17 
loading icons into memory, 45 

LoadModule function, 126 
LoadString function, 144 
Local heap, walking, 276 



LOCALENTRY structure, 276 
LocalFirst function, 276 
Locallnfo function, 276 
LOCALINFO structure, 276 
Localization 

See also International applications 
allocating extra space for strings, 389 
foreign language guidelines, 389 
isolating localizable information, 388 

LocalNext function, 276 
LOGFONT structure 

Font dialog box, 141 
TrueType fonts, server applications, 237 

Logical palette 
adapting to different display types, 424 
creating identity palettes, 424 
realizing, 423 

_lopen function, 386 
lstrcmp function, 384 
lslrcmpi function, 384 
LZClose function, 283 
LZCopy function, 283 
LZDone function, 283 
LZEXPAND.DLL library. See Data decompression 

library 
LZinit function, 283 
LZOpenFile function, 283 
LZStart function, 283 

M 
Macros, utility, 123 
MAKEINTATOMmacro, 121 
MAKEINTRESOURCE macro, 18 
MakeProclnstance function 

filter function, installing, 70 
window subclassing, 20 

MapDialogRect function, 51 
Mapping, GDI 

constrained mapping modes, 93 
functions, 96 
MM_LOENGLISH mapping mode, illustrated, 94 
MM_ TEXT mapping mode, illustrated, 94 
other mapping modes, 95 
transformation equations, 97 

MCI devices, installing, 450 
MDI. See Multiple document interface 
MEASUREITEMSTRUCT structure 

menu items, displaying, 31 
owner-drawn dialog box controls, 55 

MemManinfo function, 275 

MEMMANINFO structure, 275 
Memory 

32-bit memory, using 
application stack, 301 

Index 491 

common uses in applications, 303-304 
flat memory model limitations, 301 
helper code segment, 300, 303 
interrupt-time code, 302 

error values, 32-bit memory management, 304 
memory contents, modifying, 277 
segmented vs. flat memory models, 298 
WINMEM32.DLL library, using, 299 

Memory management 
DPMI applications, 401 
functions, 116 

Memory manager, obtaining information about, 275 
MemoryRead function, 277 
MemoryWrite function, 277 
Menu 

class menu, 18 
creating or modifying, 31 
functions, 61 
System menu, 30 

Messages 
default window procedure, 24 
examining, 9 
generating and processing, 7-8 
message deadlocks, avoiding, 10 
message functions, 11 
sending, 10 
translating, 8 
window procedures, 22 

Metafile 
creating, 106 
functions, 109 
GDI functions used in metafiles, 107 
OLE server applications, 237 
playing, 108 
storing, 108 

Microsoft Networks standard (MS-NET), 395 
MIDI devices, installing, 450 
Modal dialog box, 49 
Modeless dialog box, 49 
ModifyMenu function, 31 
Module list, Windows, 274 
Module management functions, 115 
Module names, listed, 457-479 
MODULEENTRY structure, 274 
ModuleFindHandle function, 274 
ModuleFirst function, 274 
ModuleNext function, 274 



492 Index 

Monitoring applications, 190-194 
MoveTo function, 100 
Moving windows, 34 
MS-DOS interrupts 

partially supported in protected mode, 403 
unsupported in protected mode, 402 

MS-DOS network functions, 395 
MS-NET, Microsoft Networks standard, 395 
Multiple document interface (MDI) windows, 30 
MyAlloc function, 432, 437 

N 
Native clipboard format, 208 
Net/One network functions, 397 
NETAPl.DLL library, 397 
NetBIOS functions 

calling from dynamic-link libraries, 404 
network applications, developing, 396 

NetBIOSCall function, 396-397 
NetWareRequest function, 397 
Network applications 

Banyan VINES networks, 397 
devices, sharing, 395 
directories, sharing, 393 
files, sharing, 394 
LAN Manager networks, 396 
Microsoft Networks standard, 395 
MS-DOS network functions, 395 
NetBIOS functions, 396 
Novell NetWare, 397 
profile functions, 393 
protected mode, 395 
sharing by multiple users, 393 
temporary files, creating, 394 
Ungermann-Bass Net/One networks, 397 

NEWCPLINFO structure, 349 
NotifyRegister function, 277 
NotifyUnRegister function, 277 
Novell NetWare functions, 397 

0 
Object handler, OLE libraries 

creating objects in, 243 
described, 207 
implementing, 240 

Object linking and embedding (OLE) 
benefits of OLE, 202 
client applications 

asynchronous operations, 223 
Class Name Object command, 231 

Object linking and embedding (OLE) (continued) 
client applications (continued) 

closing, 233 
closing documents, 223 
copying objects, 227 
creating objects, 228 
deleting objects, 227 
described, 220 
displaying objects, 225 
document management, 222 
Links command, 231 
opening and closing objects, 226 
Paste and Paste Link commands, 230 
printing objects, 225 
saving documents, 223 
starting, 221 
Undo command, 231 

compound documents 
described, 199 
illustrated, 200 
opening, 222 

data transfer 
client applications, 206 
client user interface, 213-216 
clipboard conventions, 207-210 
commands, new and changed, 214 
communication between libraries, 207 
object handlers, 207 
packages, 216 
registration database, 211 
server applications, 206 
server user interface, 217 
version control for servers, 213 

DDEML 
vs. OLE, 203 
using with OLE, 205 

dynamic data exchange 
client applications, 245-247 
conversations, 248 
DDE operations, using OLE for, 204 
execute strings, 251-254 
server applications, 248 
standard item names, 249 
System topic, items for, 249 

embedded object, defined, 201 
formats for storing objects, 218-220 
linked object, defined, 201 
object handlers 

creating objects in, 243 
implementing, 240 

OLECLI.DLL library, 206 



Object linking and embedding (OLE) (continued) 
OLESVR.DLL library, 206 
packages, 201, 216 
server applications 

closing, 239 
Cut and Copy commands, 237 
functions, 233 
opening documents or objects, 236 
Save and Save As commands, 238 
starting, 234 
Update command, 238 

verbs, 201 
ObjectLink clipboard format, 208 
OEM character set 

handling filenames, 386 
handling the keyboard, 387 
translating to the Windows character set, 385 

OEMSETUP.INF file, installable drivers section, 
448 

OemToAnsi function, 385 
OffsetRect function, 74 
OLE. See Object linking and embedding 
OleActivate function 

Class Name Object command, implementing, 231 
Links dialog box buttons, implementing, 231 
opening objects, 226 

OleBlockServer function 
asynchronous operations, 224 
queued client-library requests, 236 

OLECLI.DLL library. See Object linking and 
embedding (OLE) 

OLECLIENT structure 
object handlers, 242 
opening compound documents, 222 
starting client applications, 221 

OLECLIENTVTBL structure, 221 
OleClone function 

copying objects to the clipboard, 228 
restoring updated objects, 231 

OleClose function, 226 
OleCopyFromLink function, 229 
OleCopyToClipboard function, 214, 227 
OleCreate function, 229 
OleCreateFromClip function 

client applications, 230 
object handlers, 243 

OleCreateFromFile function, 205 
OleCreateFromTemplate function, 229 
OleCreateLinkFromClip function, 230 
OleDelete function, 227 

OleDraw function, 225 
OleEnumFormats function, 227 
OleExecute function, 205 

Index 493 

OleGetData function, 232 
OleGetLinkUpdateOptions command, 232 
OleLoadFromStream function, 222 
OLEOBJECT structure 

client applications, creating objects, 229 
object handlers, 241 
server applications 

opening objects, 236 
starting, 235 

OleObjectConvert function, 232 
OLEOBJECTVTBL structure, 241 
OleQueryBounds function, 225 
OleQueryCreateFromClip function, 230 
OleQueryLinkFromClip function, 230 
OleQueryOpen function, 226 
OleQueryReleaseError function 

closing client applications, 233 
creating objects, 229 

OleQueryReleaseMethod function, 233 
OleQueryReleaseStatus function 

activating objects, 226 
asynchronous operations, 224 
closing client applications, 233 

OleQuerySize function, 223 
OleQueryType function, 230 
OleReconnect function, 226 
OleRegisterClientDoc function, 222, 228 
OleRegisterServer function 

DDE operations, 205 
server applications, starting, 234 

OleRegisterServerDoc function 
DDE operations, 205 
opening documents or objects, 236 
starting server applications, 234 

OleRelease function 
closing client applications, 233 
closing documents, 223 
closing objects, 226 

OleRenameServerDoc function, 238 
OleRequestData function, 212 
OleRevertClientDoc function, 223 
OleRevokeClientDoc function, 223, 228 
OleRevokeObject function, 240 
OleRevokeServerDoc function, 239 
OleSavedClientDoc function, 223, 228 
OleSavedServerDoc function, 238 
OleSaveToStream function, 223, 228 



494 Index 

OLESERVER structure 
object handlers, 242 
starting server applications, 234 

OLESERVERDOC structure 
object handlers, 242 
opening documents, 236 

OLESERVERDOCVTBL structure 
DDE operations, 205 
starting server applications, 234 

OLESERVERVTBL structure 
closing server applications, 239 
opening documents or objects, 236 
starting server applications, 234 
updating documents, 238 

OleSetBounds function, 226 
OleSetData function 

changing links, 232 
registering data formats, 212 

OleSetHostNames function, 226 
OleSetLinkUpdateOptions command, 232 
OleSetTargetDevice function, 226 
OLESTREAM structure 

object handlers, 242 
opening compound documents, 222 
starting client applications, 221 

OLESTREAMVTBL structure, 221-222 
OLESVR.DLL library. See Object linking and 

embedding (OLE) 
OleUnblockServer function, 236 
OleUpdate function 

displaying objects, 226 
updating links, 232 

Open dialog box 
displaying, 142 
filenames, monitoring, 147 
list box controls, monitoring, 146 

Open properties, registration database, 262 
OpenDriver function, 445 
OpenFile function 

decompressing files, 283 
handling files in international applications, 386 

OPENFILENAME structure 
Open dialog box, 142 
Save As dialog box, 145 

Operating-system interrupt functions, 118 
Optimization tool functions, 125 
OwnerLink clipboard format, 208 

p 
Package, OLE applications, 201, 216 
Painting windows 

background, 43 
brush alignment, 44 
display context 

cache, 41 
class display context, 39 
common display context, 38 
private display context, 40 
window display context, 41 

functions, 47 
gray text, 46 
icons, 45 
nonclient area, 47 
painting sequence, 42 
rectangular areas, 44 
system display, described, 37 
text, 45 
update region, 43 
WM_PAINT message, 42 

Palette 
color palettes 

color matching, illustrated, 88 
described, 86-88 
functions, 90 
using, 89 

identity palette 
color misrecognition, avoiding, 425 
creating and testing, 424 
described, 423 

system palette, described, 423 
PALETTEINDEXmacro, 89 
P ALETTERGB macro, 89 
Paste command, OLE applications, 230 
Paste Link command, OLE applications, 230 
Paste Special command, OLE applications, 230 
PatBlt function, 46 
PatchCodeHandle function, 433 
PeekMessage function 

dialog boxes, keyboard interface, 56 
examining messages, 9 

Pen, predefined in GDI, 84 
Pie function, 101 
PlayMetaFile function, 107 
PlayMetaFileRecord function, 108 



PMSPL.DLL library, 396 
Poke transaction, DDEML, 183 
Polygon functions, 102 
Pop-up menu, 31 
Pop-up window, 27 
PostMessage function, 10 
PostQuitMessage function, 33 
Print dialog box, 148-149 
Print properties, registration database 262-263 
Print Setup dialog box, 148 ' 
PrintDlg function, 149 
PRINTDLG structure, 149 
Printer 

default printer, 149 
printer functions, 110 

Process execution, controlling, 278 
Prof~le functions for network applications, 393 
Profiler functions, 125 
PROGMAN.EXE (Program Manager), 367 
PROGMAN.INI file 

form, 367 
Groups section, 369 
Restrictions section, 369 
Settings section, 368 

Program Manager, DDE interface 
command-string interface 

Addltem command, 373 
concatenating commands, 370 
CreateGroup command, 371 
DeleteGroup command, 372 
Deleteltem command, 374 
ExitProgman command, 375 
Reload command, 372 
Replaceltem command, 374 
ShowGroup command, 371 

group information, requesting, 375 
group, defined, 367 

Prolog and epilog code 
data segment initialization, 407-411 
described, 407 
protected mode, 411-412 
real mode, 411 

Property lists 
creating and using, 71 
property functions, 73 

Protected mode 
DPMI applications, described, 401 
MS-DOS interrupts, support for, 402 
network software, calling, 395 
prolog code, 411 

Protocol properties, registration database, 263 

Index 495 

PtlnRect function, 75 
Push buttons in dialog boxes, 52 

a 
Querying registration database entries, 265 

R 
Real mode 

stack walking, 411 
vs. virtual-8086 mode, 401 

RECT structure, 73 
Rectangle 

bounding rectangles 
arcs, 100 
ellipses and polygons, 101 

coordinates, 7 4 
creating, 7 4 
defining, 73 
drawing text in, 45 
functions, 76 
painting rectangular areas, 44 

REG.DAT file, 258-259 
RegCloseKey function, 264-265 
RegCreateKey function, 265 
RegDeleteKey function, 265 
REGEDIT.EXE, 257 
RegEnumKey function, 265 
Region functions, GDI, 98 
RegisterClass function 

class ownership, 14 
registering window classes, 12 

RegisterClipboardFormat function, 212, 235 
RegisterDialogClasses function, 323, 336 
Registering window classes, 14 
RegisterWindowMessage function 

Color dialog box, 139 
filenames, monitoring, 147 
Find and Replace dialog boxes, 153 
J:Ielp button in common dialog boxes, 160 
hst box controls, monitoring, 147 
Open dialog box, 144 

Registration database 
class registration 

filename extensions, 261 
protocol properties, 263 
server registration, 264 
shell properties, 262 

described, 257 
format of registration files, 260 
merging text files with the database, 261 



496 Index 

Registration database (continued) 
OLE applications, 211 
querying database entries, 265 
structure of the database, 258-259 

REGLOAD.EXE, 261 
RegOpenKey function, 265 
RegQueryValue function, 265 
RegSetValue function, 265 
ReleaseDC function 

cache of display contexts, 41 
class display context, 40 
private display context, 40 
window display context, 41 

Reload command, Program Manager, 372 
RemoveProp function, 71, 73 
Replace dialog box 

displaying, 152 
processing messages, 153 

Replaceltem command, Program Manager, 374 
ReplaceText function, 152 
ReplyMessage function, 10 
Request transaction, DDEML, 183 
Resource management functions, 119 
RestoreDC function, 79 
RGB color model, 133-134 

s 
Save As command, OLE server applications, 238 
Save As dialog box 

displaying, 145 
filenames, monitoring, 147 
list box controls, monitoring, 146 

Save command, OLE server applications, 238 
SaveDC function, 79 
Screen saver 

configuration routine, 323 
creating, 322 
functions, 330-338 
icon, 322 
installing, 324 
messages, processing, 323 
module-definition file, 324 
resource-definition file, 324 
sample 

configuration dialog box, 327 
declarations, general-purpose, 325 
exporting functions, 330 
Help, 329 
message handling, 325 

SCRNSAVE.LIB library, 321 

ScreenSaverConfigureDialog function 
adding Help, 329 
configuration dialog box, 327 
described, 337 
exporting, 324 

ScreenSaverProc function 
described, 338 
exporting, 324 
message handling, 323 
source module, 322 

SCRNSAVE.LIB library. See Screen saver 
Scrolling 

client area, 60 
functions, 61 
scroll bars 

described, 58 
hiding, 61 

scroll box, 59 
scroll messages, processing, 60 
scrolling requests, 59 

ScrollWindow function, 60 
SearchFile function, 153 
Segment functions, 117 
Segmented memory model, 298 
Segments, loading and reloading, 432 
SelectObject function 

brush alignment, 44 
restriction with color palettes, 89 

SelectPalette function, 89 
Self-loading applications 

loader data table, 431 
loader functions, 434-438 
loading and reloading segments, 432 
resetting hardware, 433 

SendDlgltemMessage function, 55 
SendDriverMessage function, 445-446 
SendMessage function 

return values from dialog boxes, 51 
sending messages, 10 
window procedure, sending messages to, 7 

Server applications 
DDE transactions, 166 
OLE servers 

closing, 239 
Cut and Copy commands, 237 
DDE, direct use of, 248 
DDE, required commands, 252-254 
described, 206 
functions, 233 
opening documents or objects, 236 
Save and Save As commands, 238 



Server applications (continued) 
OLE servers (continued) 

server user interface, 217 
starting, 234 
Update command, 238 
version control, 213 

server key name, registration database, 263 
Server registration, WIN.IN! file, 264 
Service name, DDE servers, 167 
SetBkColor function, 91 
SetBkMode function, 91 
SetBrushOrg function, 44 
SetClassLong function, 20 
SetClipboardData function 

client applications, 227 
server applications, 237 

SetCursor function 
class cursor, 17 
custom cursor, 68 

SetCursorPos function, 68 
SetDIBits function, 89 
SetDlgltemText function, 53 
SetErrorMode function, 394 
SetOwner function, 432, 438 
SetProp function, 71 
SetRect function, 74 
SetROP2 function, 91 
SetScrollPos function, 59 
SetScrollRange function, 59, 61 
SetStretchBltMode function, 91 
SetSystemPaletteUse function, 423 
SetTextColor function, 46 
SetWindowLong function, 20 
SetWindowsHook function, 69-70 
SetWindowText function, 30 
Sharing violation, defined, 394 
Shell dynamic data exchange interface 

command-string interface 
Addltem command, 373 
concatenating commands, 370 
CreateGroup command, 371 
DeleteGroup command, 372 
Deleteltem command, 374 
ExitProgman command, 375 
Reload command, 372 
Replaceltem command, 374 
ShowGroup command, 371 

group information, requesting, 375 

Index 497 

Shell dynamic data exchange interface (continued) 
PROGMAN.INI file 

form, 367 
Groups section, 369 
Restrictions section, 369 
Settings section, 368 

Program Manager, described, 367 
Shell library 

associations, using in File Manager, 268 
drag-drop feature, 266-268 
icons, extracting, 268 
OLE applications, 210 
registration database 

class registration, 261-264 
described, 257 
filename extensions, registering, 261 
format of registration files, 260 
merging text files with the database, 261 
protocol properties, 263 
querying database entries, 265 
server registration, 264 
shell properties, 262 
structure of the database, 258-259 

SHELL.DLL library. See Shell library 
ShellExecute function, 268 
ShowCursor function, 67 
ShowGroup command, Program Manager, 371 
ShowScrollBar function, 30, 61 
ShowWindow function 

displaying child windows, 28 
displaying new windows, 32 
pop-up windows, 27 
window life cycle, described, 32 

Sorting strings, language-dependent functions, 384 
Stack 

application stack, 301 
stack frames, marking, 407 
tracing, 276 
walking the stack, 411 

StackTraceCSIPFirst function, 276 
STACKTRACEENTRY structure, 276 
StackTraceFirst function, 276 
StackTraceNext function, 276 
Standard mode, DPMI applications, 401 
Startup routine (application) 

functions, 418-420 
requirements, 415 
sample, 416 



498 Index 

StdFileEditing protocol, 263 
STRESS.DLL library, 287 
StretchBlt function, 91 
StretchDIBits function, 427 
String handle, DDE, 171 
String manipulation functions, 120 
Synchronous transaction, DDEML, 186 
SYSHEAPINFO structure, 275 
System display, 37 
System functions, 63 
System global class, 13 
System menu, 30 
System-modal dialog box, 50 
System palette, 423 
System resources stress-testing library, 287 
System services interface functions 

application execution functions, 126 
atom management functions, 121 
communication functions, 122 
debugging functions, 125 
file 110 functions, 124 
initialization file functions, 122 
memory management functions, 116 
module management functions, 115 
operating-system interrupt functions, 118 
optimization tool functions, 125 
resource management functions, 119 
segment functions, 117 
string manipulation functions, 120 
task functions, 119 
utility macros and functions, 123 

System topic, DDEML, 167 
SystemHeaplnfo function, 275 
SYSTEM.IN! file, installable drivers section, 446 
Systems topic, DDE-based OLE, 249 

T 
Task interrupt functions, 119 
Task queue, Windows, 274 
TASKENTRY structure, 274 
TaskFirst function, 274 
TaskGetCSIP function, 278 
TaskNext function, 274 
TaskSetCSIP function, 278 
TaskSwitch function, 278 
Template, common dialog box, 158 
TerminateApp function, 278 

Text 
colors, setting for text, 91 
functions, 104 
gray text, drawing, 46 
rectangles, drawing text in, 45 

TextOut function, 46 
THSAMPLE.C sample program, 273 
Time, system functions, 63 
Timer, obtaining information about, 275 
TimerCount function, 275 
TIMERINFO structure, 275 
Title bar, 30 
ToAscii function, 387 
Tool Helper library 

advisory information, obtaining, 275 
callback functions, installing, 277 
functions, calling, 273 
global heap, walking, 275 
local heap, walking, 276 
memory contents, modifying, 277 
process execution, controlling, 278 
stack, tracing, 276 
THSAMPLE.C sample program, 273 
TOOLHELP.DLL library, 273 
Windows class list, walking, 274 
Windows module list, walking, 274 
Windows task queue, walking, 274 

TOOLHELP.DLL library. See Tool Helper library 
topic key name, registration database, 262 
Topic name, DDE servers, 167 
TrackPopupMenu function, 31 
Transaction, DDE 

See also Dynamic Data Exchange Management 
Library (DDEML) 

defined, 166 
Transformation equations, GDI, 97 
TranslateAccelerator function 

modeless dialog boxes, 56 
translating keyboard input, 9 

TranslateMessage function, 8 
TrueType fonts, server applications, 237 

u 
UndeleteFile function, 363 
Undo command, OLE applications, 231 
Ungermann-Bass Net/One network functions, 397 
UnhookWindowsHook function, 69 



UnionRect function, 75 
Unrealize function, 44 
UnregisterClass function, 13 
Update command, OLE server applications, 238 
Update Window function, 42 
USER heap, obtaining information about, 275 
Utility macros and functions, 123 

v 
V alidateRect function, 4 3 
ValidateRgn function, 43 
VER.DLL library. See File Installation library 
VER.H header file, 291 
verb key name, registration database, 263 
Verb, object linking and embedding, 201 
VERC.LIB library, 291 
VerFindFile function, 292 
VerlnstallFile function, 292, 388 
VerLanguageName function, 293 
VERL.LIB library, 291 
VERM.LIB library, 291 
VerQueryValue function, 293 
VERS.LIB library, 291 
Version control for OLE servers, 213 
Version information, adding to files, 294 
VGA adapters, standard vs. super, 424 
Video techniques 

device-independent bitmap driver 
device context, creating, 428 
display context, creating, 425 
modifying bitmaps, 427 
StretchDIBits function, using, 427 

identity palette 
color misrecognition, avoiding, 425 
creating and testing, 424 
described, 423 

logical palette, adapting, 424 
standard vs. super VGA adapters, 424 
system palette, described, 423 

VINES application programming interface, 397 
Virtual-8086 mode vs. real mode, 401 
Virtual-key codes, translating characters to, 387 
VK_OEM keys, 387 
VkKeyScan function, 387 

w 
WaitEvent function, 415, 420 
Walking the application stack, 411 
Wave devices, installing, 450 

WIN87EM.DLL library 
See Floating-point-emulation library 

Win87Emlnfo function, 312 
Win87EmlnfoStruct structure, 315 
_ Win87EmRestore function, 313 
_ Win87EmSave function, 314 
Win87EmSaveArea structure, 316 
Window 

See also Dialog box; Menu 
caret, 65-66 
client area, redrawing, 21 
cursor, 67 
data structures, internal, 20 
display context, 21 
life cycle, described, 32 
MDI client windows, 30 
menus, 31 
property lists, 71-73 
rectangles, 73-76 
scroll bars, 30 
scrolling, 58-61 
state of a window, 32 
System menu, 30 
title bar, 30 

Window class 
application global classes, 13 
application local classes, 13 
class background brush, 17 
class cursor, 17 
class icon, 17 
class menu, 18 
class name, 16 
class ownership, 14 
class styles, 18-19 
data structures, internal, 20 
described, 12 
display context, 21 
elements of, defined, 15 
instance handle, 16 
locating classes, 13 
predefined, 14 
registering classes, 14 
sharing among applications, 14 
subclasses, 20 
system global classes, 13 
window-procedure address, 16 

Window functions 
caret functions, 66 
clipboard functions, 64 
cursor functions, 68 
dialog boxes, functions for, 57 

Index 499 



500 Index 

Window functions (continued) 
display and movement functions, 34 
error functions, 65 
hardware functions, 36 
hook functions, 71 
information functions, 63 
input functions, 36 
menu functions, 61 
message functions, 11 
painting functions, 47 
property functions, 73 
scrolling functions, 61 
system functions, 63 
window-creation functions, 33 

Window hooks, 69-70 
Window messages, 23 
Window painting 

background, 43 
brush alignment, 44 
display context 

cache, 41 
class display context, 39 
common display context, 38 
private display context, 40 
window display context, 41 

gray text, 46 
icons, 45 
nonclient area, 47 
painting sequence, 42 
rectangular areas, 44 
system display, described, 37 
text, 45 
update region, 43 
WM_PAINT message, 42 

Window procedure 
default window procedure, 24 
described, 22 
window messages, 23 

Window style 
child windows, 28 
overlapped windows, 26 
owned windows, 27 
pop-up windows, 27 

Window subclass, 20 
Windows 80x87 floating-point emulation, 308-310 
Windows character set 

handling filenames, 386 
handling the keyboard, 387 
translating to the OEM character set, 385 

Windows lists, accessing, 274 
WinExec function 

Control Panel applications, starting, 345 
described, 126 

WINFILE.INI file 
File Manager extensions, installing, 358 
undelete DLL, 363 

WinHelp function, 126, 160 
WIN .INI file 

filename extension entries, 261 
functions, 122 
international settings, 379-383 
languageindependence,387 
profile functions, using, 393 
server registration entries, 264 

WinMain function 
called by startup routines, 415 
message loops, described, 7 
translating messages, 8 

WINMEM32.DLL library. See 32-bit memory 
management library 

WM_CHOOSEFONT_GETLOGFONT message, 
142 

WM_ CLOSE message, 33 
WM_ COMMAND message 

controls in dialog boxes, 52 
return values from dialog boxes, 51 

WM_CPL_LAUNCH message, 346 
WM_CREATEmessage, 32 
WM_DDE_ADVISE message, 205 
WM_DDE_EXECUTE message, 205, 371 
WM_DDE_POKE message, 205 
WM_DDE_REQUEST message, 205 
WM_DELETEITEM message, 55 
WM_DESTROY message, 33, 73 
WM_DRA WITEM message, 55 
WM_DROPFILES message, 230, 267 
WM_ERASEBKGND message, 17, 43 
WM_HSCROLL message, 59-60 
WM_ICONERASEBKGND message, 17 
WM_INITDIALOG message, 154 
WM_MEASUREITEM message, 55 
WM_MOUSEMOVE message, 17 
WM_NCDESTROY message, 33 
WM_NCPAINT message, 47 
WM_PAINT message, 42 
WM_ QUIT message, 33 
WM_ VSCROLL message, 59-60 
WM_ WININICHANGE message, 122 



WNDCLASS structure 
class background brush, 17 
class cursor, 17 
class icon, 17 
class menu, 18 
class ownership, 14 
defining window class elements, 15 
instance handle, 16 
registering window classes, 12 
window class name, 16 
window-procedure address, 16 

WNetAddConnection function, 394-395 
WNetCancelConnection function, 394-395 
WNetGetConnection function, 394-395 
WritePrivateProfileString function, 358, 394 
WriteProfileString function, 393 
wsprintf function, 390 

x 
XTYP _ADVSTART transaction, 184 
XTYP _ADVSTOP transaction, 185 
XTYP _CONNECT transaction, 175 
XTYP _CONNECT_ CONFIRM transaction, 

175, 178 
XTYP _DISCONNECT transaction, 178, 180 
XTYP _EXECUTE transaction, 185 
XTYP _MONITOR transaction, 192 
XTYP _POKE transaction, 183 
XTYP _REGISTER transaction, 17 4 
XTYP _REQUEST transaction, 172, 183 
XTYP _ WILDCONNECT transaction, 178 
XTYP _XACT_COMPLETE transaction, 186 

Index 501 







Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-639 

0392 Part No. 28915 


