
•

'

•
• ' '

•

Microsoft® Windows™
Version 3.1

Programmer's Reference
Volume 3: Messages,
Structures, and Macros

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright© 1991 International Typeface
Corporation. All rights reserved.

Copyright© 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New
Century Schoolbook, Times, and Times Roman typefont data is the property of Linotype or its
licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.
PANOSE is a trademark ofElseWare Corporation.
Epson and FX are registered trademarks of Epson America, Inc.
Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.
IBM is a registered trademark of International Business Machines Corporation.
ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface

Corporation.
Helvetica, New Century Schoolbook, Palatino, Times, and Times Roman are registered trademarks of

Linotype AG and/or its subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.
Okidata is a registered trademark of Oki America, Inc.

Document No. PC28917-0492

Contents

Introduction... v

Organization of This Manual... v
Document Conventions vi

Chapter 1 Data Types.. 1

Chapter 2 Messages.. 11
2.1 Window Messages .. 14
2.2 Notification Messages.. 213

Chapter 3 Structures.. 229

Chapter 4 Macros... 429

Chapter 5 Printer Escapes... 449

Chapter 6 Dynamic Data Exchange Transactions ... 513

Chapter 7 File Manager Events and Messages .. 529
7.1 File Manager Events ... 531
7 .2 File Manager Messages.. 534

Chapter 8 Control Panel Messages.. 541

Chapter 9 Common Dialog Box Messages.. 551

Chapter 1 O Installable Driver Messages... 559

Appendix A Binary and Ternary Raster-Operation Codes ... 571
A. I Binary Raster Operations... 573
A.2 Ternary Raster Operations ... 576

iv Microsoft Windows Programmer's Reference

Appendix B Virtual-Key Codes ... 587

Appendix C Character Sets .. 593
C.1 ANSI Character Set ... 596
C.2 Symbol Character Set .. 597
C.3 OEM Character Set .. 598

Index ... 599

Introduction

This manual, Microsoft Windows Programmer's Reference, Volume 3, describes
the data types, messages, structures, macros, and printer escapes supported by the
Microsoft® Windows TM operating system. In addition, dynamic data exchange
(DDE) transactions, File Manager events, raster-operation codes, virtual-key
codes, and character tables are presented.

Organization of This Manual
Following are brief descriptions of the chapters and appendixes in this manual:

• Chapter 1, "Data Types," describes the keywords that define the size and mean
ing of parameter and return values associated with the Windows application
programming interface (API).

• Chapter 2, "Messages," describes formatted window messages, through which
the Windows operating system communicates with applications, and notifica
tion messages, which notify a control's parent window of actions that occur
within the control.

• Chapter 3, "Structures," defines the data structures associated with the func
tions that are part of the Windows API.

• Chapter 4, "Macros," describes the purpose and defines the parameters of mac
ros used to help manipulate data in Windows applications.

• Chapter 5, "Printer Escapes," lists printer escapes for the Windows operating
system.

• Chapter 6, "Dynamic Data Exchange Transactions," describes the transactions
sent by the Dynamic Data Exchange Management Library (DDEML) to an ap
plication's dynamic data exchange (DOE) callback function. The transactions
notify the application of DDE activity that affects the application.

• Chapter 7, "File Manager Events and Messages," provides descriptions of the
events and menu commands File Manager sends to communicate with a File
Manager extension dynamic-link library (DLL). The chapter also describes mes
sages the DLL can send File Manager to retrieve information.

• Chapter 8, "Control Panel Messages," lists the messages Control Panel sends to
communicate with a Control Panel DLL.

vi Microsoft Windows Programmer's Reference

• Chapter 9, "Common Dialog Box Messages," describes the messages a com
mon dialog box can send to notify applications that the user has made or
changed a selection in the dialog box.

• Chapter 10, "Installable Driver Messages," lists the messages the Windows
operating system sends to notify installable drivers about specific events.

• Appendix A, "Binary and Ternary Raster-Operation Codes," lists and describes
the binary and ternary raster operations used by the graphics device interface
(GDI).

• Appendix B, "Virtual-Key Codes," shows the symbolic constant names,
hexadecimal values, and keyboard equivalents for Windows virtual-key codes.

• Appendix C, "Character Tables," illustrates the Windows character set, the
Symbol character set, and the OEM character set used by the Windows operat
ing system.

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a
resource-definition statement or function name (MENU or
CreateWindow), a command, or a command-line option
(/nod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the
actual value. For example, the statement SetCursorPos(X,Y)
requires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

Introduction vii

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key combina
tions-for example, ALT +SPACEBAR.

Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

Data Types

Chapter 1

Alphabetic Reference .. 3

Chapter 1 Data Types 3

The data types in this chapter are keywords that define the size and meaning of
parameters and return values associated with functions for the Microsoft Windows
operating system, version 3.1. The following table contains character, integer, and
Boolean types; pointer types; and handles. The character, integer, and Boolean
types are common to most C compilers. Most of the pointer-type names begin
with a prefix of P, N (for near pointers), or LP (for long pointers). A near pointer
accesses data within the current data segment, and a long pointer contains a 32-bit
segment:offset value. A Windows application uses a handle to refer to a resource
that has been loaded into memory. Windows provides access to these resources
through internally maintained tables that contain individual entries for each
handle. Each entry in the handle table contains the address of the resource and a
means of identifying the resource type.

The Windows data types are defined in the following table:

Type

ABORTPROC

ATOM

BOOL

BYTE

CATCHBUF[9]

COLORREF

DLGPROC

DWORD

FARPROC

FNCALLBACK

FONTENUMPROC

GLOBALHANDLE

GNOTIFYPROC

GOBJENUMPROC

GRAYSTRINGPROC

Definition

32-bit pointer to an AbortProc callback function.

16-bit value used as an atom handle.

16-bit Boolean value.

8-bit unsigned integer. Use LPBYTE to create
32-bit pointers. Use PBYTE to create pointers
that match the compiler memory model.

18-byte buffer used by the Catch function.

32-bit value used as a color value.

32-bit pointer to a dialog box procedure.

32-bit unsigned integer or a segment:offset
address. Use LPDWORD to create 32-bit
pointers. Use PDWORD to create pointers that
match the compiler memory model.

32-bit pointer to a function.

32-bit value identifying the DdeCallback func
tion. Use PFNCALLBACK to create pointers
that match the compiler memory model.

32-bit pointer to an EnumFontsProc callback
function.

16-bit value used as a handle to a global memory
object.

32-bit pointer to a NotifyProc callback function.

32-bit pointer to a EnumObjectsProc callback
function.

32-bit pointer to a GrayStringProc callback
function.

4 Microsoft Windows Programmer's Reference

Type

HANDLE

HCURSOR

HFILE

HGDIOBJ

HG LO BAL

HHOOK

HKEY

HLOCAL

HMODULE

HOBJECT

HWND

HOOKPROC

HRSRC

LHCLIENTDOC

LHSERVER

LHSERVERDOC

LINEDDAPROC

LOCALHANDLE

LONG

LP ABC

LPARAM

LPBI

LPBITMAP

Definition

16-bit value used as a general handle. Use
LPHANDLE to create 32-bit pointers. Use
SPHANDLE to create 16-bit pointers. Use
PHANDLE to create pointers that match the
compiler memory model.

16-bit value used as a cursor handle.

16-bit value used as a file handle.

16-bit value used as a graphics device interface
(GDI) object handle.

16-bit value used as a handle to a global memory
object.

32-bit value used as a hook handle.

32-bit value used as a handle to a key in the regis
tration database. Use PHKEY to create 32-bit
pointers.

16-bit value used as a handle to a local memory
object.

16-bit value used as a module handle.

16-bit value used as a handle to an OLE object.

16-bit value used as a handle to a window.

32-bit pointer to a hook procedure.

16-bit value used as a resource handle.

32-bit value used as a handle to an OLE client
document.

32-bit value used as a handle to an OLE server.

32-bit value used as a handle to an OLE server
document.

32-bit pointer to a LineDDAProc callback func
tion.

16-bit value used as a handle to a local memory
object.

32-bit signed integer.

32-bit pointer to an ABC structure.

32-bit signed value passed as a parameter to a
window procedure or callback function.

32-bit pointer to a BANDINFOSTRUCT struc
ture.

32-bit pointer to a BITMAP structure. Use
NPBITMAP to create 16-bit pointers. Use PBIT
MAP to create pointers that match the compiler
memory model.

Type

LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO

LPBITMAPINFOHEADER

LPCATCHBUF

LPCBT_ CREATEWND

LPCHOOSECOLOR

LPCHOOSEFONT

LPCLIENTCREATESTRUCT

LPCOMPAREITEMSTRUCT

LPCPLINFO

LPCREATESTRUCT

LPCSTR

LPCTLINFO

LPCTLSTYLE

LPDCB

LPDEBUGHOOKINFO

Chapter 1 Data Types 5

Definition

32-bit pointer to a BITMAPCOREHEADER
structure. Use PBITMAPCOREHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPCOREINFO struc
ture. Use PBITMAPCOREINFO to create point
ers that match the compiler memory model.

32-bit pointer to a BITMAPFILEHEADER
structure. Use PBITMAPFILEHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPINFO structure. Use
PBITMAPINFO to create pointers that match
the compiler memory model.

32-bit pointer to a BITMAPINFOHEADER
structure. Use PBITMAPINFOHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a CATCHBUF array.

32-bit pointer to a CBT_ CREATEWND struc
ture.

32-bit pointer to a CHOOSECOLOR structure.

32-bit pointer to a CHOOSEFONT structure.

32-bit pointer to a CLIENTCREATESTRUCT
structure.

32-bit pointer to a COMPAREITEMSTRUCT
structure. Use PCOMPAREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a CPLINFO structure. Use
PCPLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CREATESTRUCT structure.

32-bit pointer to a nonmodifiable character string.

32-bit pointer to a CTLINFO structure. Use
PCTLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CTLSTYLE structure. Use
PCTLSTYLE to create pointers that match the
compiler memory model.

32-bit pointer to a DCB structure.

32-bit pointer to a DEBUGHOOKINFO
structure.

6 Microsoft Windows Programmer's Reference

Type

LPDELETEITEMSTRUCT

LPDEVMODE

LPDEVNAMES

LPDOCINFO

LPDRAWITEMSTRUCT

LPDRIVERINFOSTRUCT

LPDRVCONFIGINFO

LPEVENTMSG

LPDRIVERINFOSTRUCT

LPFINDREPLACE

LPFMS_ GETDRIVEINFO

LPFMS_GETFILESEL

LPFMS_LOAD

LPHANDLETABLE

LPHELPWININFO

LP INT

LPKERNINGPAIR

Definition

32-bit pointer to a DELETEITEMSTRUCT
structure. Use PDELETEITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a DEVMODE structure. Use
NPDEVMODE to create 16-bit pointers. Use
PDEVMODE to create pointers that match the
compiler memory model.

32-bit pointer to a DEVNAMES structure.

32-bit pointer to a DOCINFO structure.

32-bit pointer to a DRAWITEMSTRUCT struc
ture. Use PDRAWITEMSTRUCT to create
pointers that match the compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a DRVCONFIGINFO struc
ture. Use PDRVCONFIGINFO to create point
ers that match the compiler memory model.

32-bit pointer to a EVENTMSG structure. Use
NPEVENTMSG to create 16-bit pointers. Use
PEVENTMSG to create pointers that match the
compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a FINDREPLACE structure.

32-bit pointer to a FMS_GETDRIVEINFO
structure.

32-bit pointer to a FMS_GETFILESEL struc
ture.

32-bit pointer to a FMS_LOAD structure.

32-bit pointer to a HANDLETABLE structure.
Use PHANDLETABLE to create pointers that
match the compiler memory model.

32-bit pointer to a HELPWININFO structure.
Use PHELPWININFO to create pointers that
match the compiler memory model.

32-bit pointer to a 16-bit signed value. Use PINT
to create pointers that match the compiler
memory model.

32-bit pointer to a KERNINGPAIR structure.

Type

LPLOGBRUSH

LPLOGFONT

LPLOGPALETTE

LPLOGPEN

LPLONG

LPMAT2

LPMDICREATESTRUCT

LPMEASUREITEMSTRUCT

LPMETAFILEPICT

LPMETARECORD

LPMOUSEHOOKSTRUCT

LP MSG

LPNCCALCSIZE_PARAMS

LPNEWCPLINFO

Chapter 1 Data Types 7

Definition

32-bit pointer to a LOGBRUSH structure. Use
NPLOGBRUSH to create 16-bit pointers. Use
PLOGBRUSH to create pointers that match the
compiler memory model.

32-bit pointer to a LOG FONT structure. Use
NPLOGFONT to create 16-bit pointers. Use
PLOGFONT to create pointers that match the
compiler memory model.

32-bit pointer to a LOGPALETTE structure.
Use NPLOGPALETTE to create 16-bit point
ers. Use PLOGPALETTE to create pointers that
match the compiler memory model.

32-bit pointer to a LOGPEN structure. Use
NPLOGPEN to create 16-bit pointers. Use
PLOGPEN to create pointers that match the com
piler memory model.

32-bit pointer to a 32-bit signed integer. Use
PLONG to create pointers that match the com
piler memory model.

32-bit pointer to a MAT2 structure.

32-bit pointer to an MDICREATESTRUCT
structure.

32-bit pointer to a MEASUREITEMSTRUCT
structure. Use PMEASUREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a METAFILEPICT structure.

32-bit pointer to a METARECORD structure.
Use PMETARECORD to create pointers that
match the compiler memory model.

32-bit pointer to a MOUSEHOOKSTRUCT
structure.

32-bit pointer to an MSG structure. Use NPMSG
to create 16-bit pointers. Use PMSG to create
pointers that match the compiler memory model.

32-bit pointer to an NCCALCSIZE_PARAMS
structure.

32-bit pointer to an NEWCPLINFO structure.
Use PNEWCPLINFO to create pointers that
match the compiler memory model.

8 Microsoft Windows Programmer's Reference

Type

LPNEWTEXTMETRIC

LPOFSTRUCT

LPOLECLIENT

LPOLECLIENTVTBL

LPOLEOBJECT

LPOLEOBJECTVTBL

LPOLESERVER

LPOLESERVERDOC

LPOLESERVERDOCVTBL

LPOLESERVERVTBL

LPOLESTREAM

LPOLESTREAMVTBL

LPOLETARGETDEVICE

LPOPENFILENAME

LPOUTLINETEXTMETRIC

LPPAINTSTRUCT

LPPALETTEENTRY

LPPOINT

LPPOINTFX

LPPRINTDLG

LPRASTERIZER_STATUS

LPRECT

Definition

32-bit pointer to a NEWTEXTMETRIC struc
ture. Use NPNEWTEXTMETRIC to create
16-bit pointers. Use PNEWTEXTMETRIC to
create pointers that match the compiler memory
model.

32-bit pointer to an OFSTRUCT structure. Use
NPOFSTRUCT to create 16-bit pointers. Use
POFSTRUCT to create pointers that match the
compiler memory model.

32-bit pointer to OLECLIENT structure.

32-bit pointer to OLECLIENTVTBL structure.

32-bit pointer to OLEOBJECT structure.

32-bit pointer to OLEOBJECTVTBL structure.

32-bit pointer to OLESERVER structure.

32-bit pointer to OLESERVERDOC structure.

32-bit pointer to OLESERVERDOCVTBL
structure.

32-bit pointer to OLESERVERVTBL structure.

32-bit pointer to OLESTREAM structure.

32-bit pointer to OLESTREAMVTBL structure.

32-bit pointer to OLETARGETDEVICE struc
ture.

32-bit pointer to OPENFILENAME structure.

32-bit pointer to an OUTLINETEXTMETRIC
structure.

32-bit pointer to a PAINTSTRUCT structure.
Use NPPAINTSTRUCT to create 16-bit point
ers. Use PPAINTSTRUCT to create pointers
that match the compiler memory model.

32-bit pointer to a PALETTEENTRY structure.

32-bit pointer to a POINT structure. Use
NPPOINT to create 16-bit pointers. Use
PPOINT to create pointers that match the com
piler memory model.

32-bit pointer to a POINTFX structure.

32-bit pointer to a PRINTDLG structure.

32-bit pointer to a RASTERIZER_STATUS
structure.

32-bit pointer to a RECT structure. Use
NPRECT to create 16-bit pointers. Use PRECT
to create pointers that match the compiler
memory model.

Type

LPRGBQUAD

LPRGBTRIPLE

LPSEGINFO

LPSIZE

LPSTR

LPTEXTMETRIC

LPTTPOLYCURVE

LPTTPOLYGONHEADER

LPVOID

LPWINDOWPLACEMENT

LPWINDOWPOS

LPWNDCLASS

LPWORD

LRESULT

MFENUMPROC

NEARPROC
OLECLIPFORMAT

PATTERN

PCONVCONTEXT

PCONVINFO

Chapter 1 Data Types 9

Definition

32-bit pointer to a RGBQUAD structure.

32-bit pointer to a RGBTRIPLE structure.

32-bit pointer to a SEGINFO structure.

32-bit pointer to a SIZE structure. Use NPSIZE
to create 16-bit pointers. Use PSIZE to create
pointers that match the compiler memory model.

32-bit pointer to a character string. Use NPSTR
to create 16-bit pointers. Use PSTR to create
pointers that match the compiler memory model.

32-bit pointer to a TEXTMETRIC structure.
Use NPTEXTMETRIC to create 16-bit point
ers. Use PTEXTMETRIC to create pointers that
match the compiler memory model.

32-bit pointer to a TTPOLYCURVE structure.

32-bit pointer to a TTPOLYGONHEADER
structure.

32-bit pointer to an unspecified type.

32-bit pointer to a WINDOWPLACEMENT
structure. Use PWINDOWPLACEMENT to
create pointers that match the compiler memory
model.

32-bit pointer to a WINDOWPOS structure.

32-bit pointer to a WNDCLASS structure. Use
NPWNDCLASS to create 16-bit pointers. Use
PWNDCLASS to create pointers that match the
compiler memory model.

32-bit pointer to a 16-bit unsigned value. Use
PWORD to create pointers that match the com
piler memory model.

32-bit signed value returned from a window pro
cedure or callback function.

32-bit pointer to an EnumMetaFileProc call
back function.

16-bit pointer to a function.

16-bit value used as a standard clipboard format.

Equivalent to the LOGBRUSH structure. Use
LPPATTERN to create 32-bit pointers. Use
NPPATTERN to create 16-bit pointers. Use
PPATTERN to create pointers that match the
compiler memory model.

32-bit pointer to a CONVCONTEXT structure.

32-bit pointer to a CONVINFO structure.

1 D Microsoft Windows Programmer's Reference

Type

PHSZPAIR

PROPENUMPROC

RSRCHDLRPROC

TIMERPROC

UINT
WNDENUMPROC

WNDPROC

WORD

WPARAM

Definition

32-bit pointer to a HSZPAIR structure.

32-bit pointer to an EnumPropFixedProc or
EnumPropMovableProc callback function.

32-bit pointer to a LoadProc callback function.

32-bit pointer to a TimerProc callback function.

16-bit unsigned value.
32-bit pointer to an EnumWindowsProc call
back function.

32-bit pointer to a window procedure.

16-bit unsigned value.
16-bit signed value passed as a parameter to a
window procedure or callback function.

Messages

Chapter 2

2.1 Window Messages 14
2.2 Notification Messages .. 213

Chapter 2 Messages 13

The Microsoft Windows operating system communicates with applications
through formatted window messages. These messages are sent to an application's
window procedure for processing.

Some messages return values that contain information about the success of the
message or contain other data needed by an application. To obtain the return
value, the application must call the SendMessage function to send the message to
a window. This function does not return until the message has been processed.

If the application does not require the return value of the message, it can call the
PostMessage function to send the message. This function places a message in a
window's application queue and then returns immediately. If a message does not
have a return value, the application can use either function to send the message, un
less the message description indicates otherwise.

A message consists of three parts: a message number, a word parameter, and a
long parameter. Message numbers are identified by predefined message names.
Each message name begins with letters that suggest the meaning or origin of the
message. The word parameter and long parameter, named wParam and lParam re
spectively, contain values that depend on the message number.

The lParam parameter often contains more than one type of information. For ex
ample, the high-order word may contain a handle to a window and the low-order
word may contain an integer value. The HIWORD and LOWORD utility macros
can be used to extract the high- and low-order words of the lParam parameter.
The HIBYTE and LOBYTE utility macros can be used with HIWORD and
LO WORD to access any of the bytes. Casting can also be used.

Following are the four ranges of message numbers:

Range

0 through WM_ USER - 1

WM_ USER through Ox7FFF

Ox8000 through OxBFFF

OxCOOO through OxFFFF

Meaning

Messages reserved for use by Windows.

Integer messages for use by applications.

Messages reserved for use by Windows.

String messages for use by applications.

Message numbers in the first range (0 through WM_ USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_ USER through Ox7FFF) can be
defined and used by an application to send messages within a private window
class. Such predefined control classes as BUTTON, EDIT, LISTBOX, and
COMBOBOX may use values in this range. Messages in this range should not be
sent to other applications unless the applications have been designed to exchange
messages and to attach the same meaning to the message numbers.

14 BM_GETCHECK

Message numbers in the third range (OxSOOO through OxBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (OxCOOO through OxFFFF) are defined at run
time when an application calls the RegisterWindowMessage function to obtain a
message number for a string. All applications that register the identical string can
use the associated message number for exchanging messages with each other. The
actual message number, however, is not a constant and cannot be assumed to be
the same in different Windows sessions.

2 .1 Window Messages
This section describes window messages. These messages are presented in alpha
betic order.

BM_ GETCHECK

Parameters

Return Value

BM_GETCHECK
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends a BM_ GETCHECK message to retrieve the check state of a
button.

This message has no parameters.

The return value from a button created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style may be one of the following values:

Value Meaning

0 Button state is unchecked.

Button state is checked.

2 Button state is indeterminate (applies only if the button has the
BS_3STATE orBS_AUT03STATE style).

If the button has any other style, the return value is 0.

Example

See Also

BM_GETSTATE 15

This example determines ifthe ID_MYCHECKBOX control is currently checked:

int checked;

checked = (int) SendDlgitemMessage(hwndDlg, ID_MYCHECKBOX,
BM_GETCHECK, 0, 0U;

BM_GETST ATE, BM_SETCHECK

BM_ GETSTATE

Parameters

Return Value

BM_GETSTATE
wParam 0;
1 Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends a BM_ GETST ATE message to retrieve the state of a button.

This message has no parameters.

The return value specifies the current state of the button. You can use the follow
ing masks to extract information about the state:

Mask

Ox0003

Ox0004

Ox0008

Description

Specifies the check state (radio buttons and check boxes only). A value of 0
indicates the button is unchecked. A value of 1 indicates the button is
checked. A radio button is checked when it contains a dot; a check box is
checked when it contains an X. A value of 2 indicates the check state is in
determinate (3-state check boxes only). The state of a 3-state check box is
indeterminate when it is grayed.

Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the
mouse button.

Specifies the focus state. A nonzero value indicates that the button has the
focus.

16 BM_ SETCHECK

Example

See Also

This example determines whether a button currently has the focus:

#define BFFOCUS 0x0008

DWORD dwResult;

dwResult = SendDlgitemMessage(hdlg, ID_MYBUTTON, BM_GETSTATE, 0, 0L);
if (dwResult & BFFOCUS)

/* button has the focus *I

BM_GETCHECK, BM_SETSTATE

BM_ SETCHECK

Parameters

Return Value

Comments

Example

See Also

BM_SETCHECK
wParam (WPARAMJ fCheck; /* check state */
lParam = 0L; /*not used, must be zero*/

An application sends a BM_SETCHECK message to set the check state of a
button.

JC heck
Value of wParam. Specifies the check state. This parameter can be one of the
following values:

Value

0

2

Meaning

Set the button state to unchecked.

Set the button state to checked.

Set the button state to indeterminate. This value can be used only if the
button has the BS_3STATE or BS_AUT03STATE style.

The return value is always zero.

The BM_SETCHECK message has no effect on push buttons.

This example places a dot inside a radio button:

SendDlgitemMessage(hdlg, ID_MYRADIOBUTTON, BM_SETCHECK, TRUE, 0L);

BM_GETCHECK, BM_GETSTATE, BM_SETSTATE

BM_SETSTATE 17

BM_ SETSTATE lliJ

Parameters

Return Value

Comments

Example

See Also

BM_SETSTATE
wParam (WPARAM) fState;
l Pa ram = 0L;

/* highlight state */
/* not used, must be zero */

An application sends a BM_SETST A TE message to set the highlight state of a
button.

fState
Value of wParam. Specifies whether the button is to be highlighted. A nonzero
value highlights the button. A zero value removes any highlighting.

The return value is always zero.

Highlighting affects the exterior of a button. It has no effect on the check state of a
radio button or check box.

A button is automatically highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

This example highlights and then removes highlighting from a push button, simu
lating the visual effect of a user clicking the button:

SendDlgitemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, TRUE, 0Ll;

f*
* Perform some action; then remove the highlighting,
* thereby returning it to its normal state.
*/

SendDlgitemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, FALSE, 0Ll;

BM_GETSTATE, BM_SETCHECK

18 BM_ SETSTYLE

BM_ SETSTYLE

Parameters

Return Value

Comments

BM_SETSTYLE
wParam (WPARAM) LOWORD(dwStyle); /*style */
lParam = MAKELPARAM(fRedraw, 0); /*redraw flag*/

An application sends a BM_SETSTYLE message to change the style of a button.

dwStyle
Value of wParam. Specifies the button style. For an explanation of button
styles, see the following Comments section.

fRedraw
Value of the low-order word of lParam. Specifies whether the button is to be
redrawn. A value of TRUE redraws the button. A value of FALSE does not
redraw the button.

The return value is always zero.

The following are the button styles:

Value

BS_3STATE

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_CHECKBOX

BS_DEFPUSHBUTTON

Meaning

Creates a button that is the same as a check box, ex
cept that the box can be grayed (dimmed) as well as
checked. The grayed state typically is used to show
that a check box has been disabled.

Creates a button that is the same as a three-state
check box, except that the box changes its state when
the user selects it. The state cycles through checked,
grayed, and normal.

Creates a button that is the same as a check box, ex
cept that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next
time the user selects the box.

Creates a button that is the same as a radio button,
except that when the user selects it, the button auto
matically highlights itself and clears (removes the
selection from) any other buttons in the same group.

Creates a small square that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style).

Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option (the default option).

Example

Value

BS_GROUPBOX

BS_LEFTTEXT

BS_OWNERDRAW

Bs_pusHBUTTON

BS_RADIOBUTTON

CB_ADDSTRING 19

Meaning

Creates a rectangle in which other buttons can be
grouped. Any text associated with this style is dis
played in the rectangle's upper-left comer.

Places text on the left side of the radio button or
check box when combined with a radio button or
check box style.

Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the
button is created, and it receives a
WM_DRAWITEM message when a visual aspect of
the button has changed. The BS_OWNERDRAW
style cannot be combined with any other button
styles.

Creates a push button that posts a WM_ COMMAND
message to the owner window when the user selects
the button.

Creates a small circle that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually
used in groups of related but mutually exclusive
choices.

An application should not attempt to change a button's type (for example, chang
ing a radio button to a check box).

This example sends a BM_SETSTYLE message to make a button become the de
fault push button:

SendDlgitemMessage(hdlg, ID_MYPUSHBUTTDN, BM_SETSTYLE,
(WPARAM) BS_DEFPUSHBUTTON, TRUE);

CB_ADDSTRING
CB_ADDSTRING
wParam 0;
lParam = (LPARAM) (LPCSTR) lpsz;

/* not used, must be zero */
/* address of string to add */

An application sends a CB_ADDSTRING message to add a string to the list box
of a combo box. If the list box does not have the CBS_SORT style, the string is
added to the end of the list. Otherwise, the string is inserted into the list and the list
is sorted.

20 CB_ DELETESTRING

Parameters

Return Value

Comments

Example

See Also

lpsz
Value of lParam. Points to the null-terminated string to be added. If the combo
box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the lpsz parameter is stored rather than
the string it would otherwise point to.

The return value is the zero-based index to the string in the list box. The return
value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insuffi
cient space is available to store the new string.

If an owner-drawn combo box was created with the CBS_SORT style but not the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the combo box so that the new item can be properly
placed in the list box.

To insert a string into a specific location within the list, use the
CB_INSERTSTRING message.

This example adds the string "my string" to a list box:

DWORD dwindex;

dwindex = SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_ADDSTRING, 0, (LPARAM) ((LPCSTRl "my string"));

CB_INSERTSTRING, WM_COMPAREITEM

CB_ DELETESTRING

Parameters

Return Value

CB_ DE LETESTRI NG
wParam = (WPARAMl index;
l Pa ram = 0L;

/* item to delete */
/* not used, must be zero */

An application sends a CB_DELETESTRING message to delete a string in the list
box of a combo box.

index
Value of wParam. Specifies the zero-based index of the string to delete.

The return value is a count of the strings remaining in the list. The return value is
CB_ERR if the index parameter specifies an index greater than the number of
items in the list.

Comments

Example

See Also

CB_DIR

Parameters

CB_DIR 21

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the owner
of the combo box so that the application can free any additional data associated
with the item.

This example deletes the first string in a combo box:

DWDRD dwRemaining;

dwRemaining = SendDlgltemMessage(hdlg, ID_MYCDMBDBDX,
CB_DELETESTRING, 0, 0L);

WM_DELETEITEM

CB_ DIR
wParam (WPARAM) (UINT) uAttrs; /* file attributes */
lParam (LPARAM) (LPCSTR) lpszFileSpec; /*address of filename*/

An application sends a CB_DIR message to add a list of filenames to the list box
of a combo box.

uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list
box. It can be any combination of the following values:

Value

OxOOOO
OxOOOl
Ox0002
Ox0004
OxOOlO
Ox0020
Ox4000

Ox8000

Meaning

File can be read from or written to.

File can be read from but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name pointed to by the lpszFileSpec parameter specifies a directory.

File has been archived.

All drives that match the name specified by the lpszFileSpec parameter
are included.

Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi
tion to files that do not match the specified type.

22 CB_FINDSTRING

Return Value

Example

See Also

lpszFileSpec
Value of lParam. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains any wildcards (for example, *.*),all
files that match and have the attributes specified by the uAttrs parameter will be
added to the list.

The return value is the zero-based index of the last filename added to the list. The
return value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new strings.

This example adds the names of all available drives to a combo box:

DWORD dwindexLastitem;

dwindexlastitem = SendDlgitemMessage(hdlg, ID_MYCOMBOBOX, CB_DIR,
0x4000 I 0x8000, (LPARAM) ((LPCSTR) "*"));

DlgDirList

CB_ FINDSTRING

Parameters

Return Value

CB_ FI NDSTRI NG
wParam (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /*address of prefix string */

An application sends a CB_FINDSTRING message to find the first string that con
tains the prefix specified in the list box of a combo box.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi
nation of uppercase and lowercase letters.

The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

Comments

Example

See Also

CB_FINDSTRINGEXACT 23

If the combo box's style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

This example searches for the string "my string" in a combo box and copies it, if
found, to the szBuf buffer:

char szBuf[20];
DWORD dwlndex;

dwlndex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_FINDSTRING, 0, (LPARAMl ((LPCSTR) "my string"));

if (dwlndex != CB_ERRl
SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETLBTEXT, (WPARAM) dwlndex, (LPARAMl ((LPCSTR) szBuf)l;

CB_FINDSTRINGEXACT, CB_SETCURSEL

CB_ FINDSTRINGEXACT

Parameters

Return Value

CB_FINDSTRINGEXACT
wParam (WPARAMl indexStart; /* item before start of search *f
lParam = (LPARAMl (LPCSTR) lpszFind; /*address of prefix string *f

An application sends a CB_FINDSTRINGEXACT message to find the first list
box string (in a combo box) that matches the string specified in the lpszFind
parameter.

indexStart
Value ofwParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so this string can contain any combination of uppercase and
lowercase letters.

The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

24 CB_GETCOUNT

Commentf

See Also

If the combo box's style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

CB_FINDSTRING, CB_SETCURSEL

CB_ GETCOUNT

Parameters

Return Value

Comments

Example

CB_GETCOUNT
wParam = 0;
l Pa ram = 0L;

/* not used, must be zero *I
/* not used, must be zero */

An application sends a CB_GETCOUNT message to retrieve the number of items
in the list box of a combo box.

This message has no parameters.

The return value is the number of items in the list box.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a combo box:

WORD clistltems;

clistltems = (WORD) SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETCOUNT, 0, 0);

CB_ GETCURSEL
CB_GETCURSEL
wParam 0;
l Pa ram = 0L;

/* not used, must be zero *I
/* not used, must be zero *I

An application sends a CB_GETCURSEL message to retrieve the index of the cur
rently selected item, if any, in the list box of a combo box.

Parameters

Return Value

Example

See Also

CB_GETDROPPEDCONTROLRECT 25

This message has no parameters.

The return value is the zero-based index of the currently selected item, or it is
CB_ERR if no item is selected.

This example retrieves the index of the currently selected string in the list box of a
combo box and then retrieves that string:

char szBuf[20];
DWORD dwlndex;

dwlndex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_GETCURSEL, 0, 0);
if (dwlndex l= CB_ERRl

SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, CWPARAMl dwlndex, (LPARAM) ((LPCSTR) szBufl);

CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT

Parameters

Return Value

CB_GETDROPPEDCONTROLRECT
wParam 0;
lParam = (LPARAM) (RECT FAR*) lprc;

/* not used, must be zero */
/* address of RECT structure */

An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve
the screen coordinates of the visible (dropped-down) list box of a combo box.

lprc
Value of lParam. Points to the RECT structure that is to receive the coordi
nates. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

The return value is always CB_ OKAY.

26 CB_GETDROPPEDSTATE

Example This example retrieves the bounding rectangle of the list box of a combo box:

RECT rel;

SendDlgitemMessage(hdlg, ID_MYCDMBDBOX,
CB_GETDROPPEDCONTROLRECT, 0, (DWORD) ((LPRECTl &rel));

CB_ GETDROPPEDSTATE

Parameters

Return Value

Example

See Also

CB_GETDROPPEDSTATE
wParam 0;
1 Pa ram = 0L;

/* not used, must be zero *f
f* not used, must be zero */

An application sends a CB_GETDROPPEDSTATE message to determine whether
the list box of a combo box is visible (dropped down).

This message has no parameters.

The return value is nonzero if the list box is visible; otherwise, it is zero.

This example determines whether the list box of a combo box is visible:

BOOL fDropped;

fDropped = (BOOL) SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETDROPPEDSTATE, 0, 0L);

CB_SHOWDROPDOWN

CB_ GETEDITSEL
CB_GETEDITSEL
wParam = 0;
1 Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends a CB_GETEDITSEL message to retrieve the starting and
ending character positions of the current selection in the edit control of a combo
box.

Parameters

Return Value

Example

See Also

CB_ GETEXTENDEDUI 27

This message has no parameters.

The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

This example retrieves the selection positions of the edit control of a combo box,
and converts them into starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETEDITSEL, 0, 0L);

wStart LOWORD(dwResult);
wEnd = HIWORD(dwResult);

CB_SETEDITSEL

CB_ GETEXTENDEDUI

Parameters

Return Value

Comments

CB_ GETEXTENDEDU I
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends a CB_GETEXTENDEDUI message to determine whether a
combo box has the default user interface or the extended user interface.

This message has no parameters.

The return value is nonzero if the combo box has the extended user interface;
otherwise, it is zero.

The extended user interface differs from the default user interface in the following
ways:

• Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only).

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

• Scrolling in the static control is disabled when the item list is not visible (arrow
keys are disabled).

28 CB_GETITEMDATA

Example

See Also

This example determines whether a combo box has the extended user interface:

BOOL fExtended;

fExtended = (BOOL) SendOlgitemMessage(hdlg, IO_MYCOMBOBOX,
CB_GETEXTENDEDUI, 0, 0L);

CB_SETEXTENDEDUI

CB_ GETITEMDATA

Parameters

Return Value

See Also

CB_GETITEMDATA
wParam (WPARAM) index;
l Pa ram = 0L;

f* item index
f* not used, must be zero */

An application sends a CB_GETITEMDATA message to a combo box to retrieve
the application-supplied doubleword value associated with the specified item in
the combo box. (This is the value in the lParam parameter of a CB_SETITEM
DATA message.)

index
Value of wParam. Specifies the zero-based index of the item.

The return value is the doubleword value associated with the item, or it is
CB_ERR if an error occurs.

CB_SETITEMDATA

CB_ GETITEMHEIGHT lliJ
CB_ GETITEMHEI GHT
wParam (WPARAM) index; f* item index */
lParam = 0L; /*not used, must be zero*/

An application sends a CB_GETITEMHEIGHT message to retrieve the height of
list items in a combo box.

Parameters

Return Value

Example

See Also

CB_GETLBTEXT 29

index
Value of wParam. Specifies the component of the combo box whose height is
to be retrieved. If the index parameter is -1, the height of the edit-control (or
static-text) portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRA WV ARIABLE style, index specifies the zero-based index
of the list item whose height is to be retrieved. Otherwise, index should be set
to zero.

The return value is the height, in pixels, of the list items in a combo box. The re
turn value is the height of the item specified by the index parameter if the combo
box has the CBS_OWNERDRA WV ARIABLE style. The return value is the
height of the edit-control (or static-text) portion of the combo box if index is -1.
The return value is CB_ERR if an error occurred.

This example sends a CB_GETITEMHEIGHT message to retrieve the height of
the list items in a combo box:

LRESULT lrHeight;

lrHeight = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETITEMHEIGHT, 0, 0L);

CB_SETITEMHEIGHT

CB_GETLBTEXT CIQJ

Parameters

CB_ GETLBTEXT
wParam (WPARAM) index; I* item index */
lParam = (LPARAM) (LPCSTR) lpszBuffer; I* address of buffer*/

An application sends a CB_GETLBTEXT message to retrieve a string from the
list box of a combo box.

index
Value of wParam. Specifies the zero-based index of the string to retrieve.

lpszBuffer
Value of lParam. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. A
CB_GETLBTEXTLEN message can be sent before the CB_GETLBTEXT mes
sage to retrieve the length, in bytes, of the string.

30 CB_GETLBTEXTLEN

Return Value

Comments

Example

See Also

The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the buffer pointed to by the lpszBuffer parameter of
the message receives the doubleword value associated with the item.

This example retrieves the length of the first item in the list box of a combo box,
allocates sufficient memory for the string, and sends a CB_GETLBTEXT message
to retrieve the string:

DWORD cbitemString;
PSTR psz;

cbitemString = SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, 0, 0L);

if (cbitemString != CB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbitemString);
SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,

CB_GETLBTEXT, 0, (LPARAM) ((LPCSTR) psz));

CB_GETLBTEXTLEN

CB_ GETLBTEXTLEN

Parameters

Return Value

CB_ GETLBTEXTLEN
wParam = (WPARAM) index;
1 Pa ram = 0L;

/* item index
f* not used, must be zero */

An application sends a CB_GETLBTEXTLEN message to retrieve the length of a
string in the list box of a combo box.

index
Value of wParam. Specifies the zero-based index of the string.

The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

Example

See Also

CB_INSERTSTRING 31

This example retrieves the length of the first item in the list box of a combo box:

DWORD cbitemString;

cbitemString = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, 0, 0L);

CB_GETLBTEXT

CB_ INSERTSTRING

Parameters

Return Value

Example

See Also

CB_ INSERTSTRI NG
wParam (WPARAM) index;
lParam = (LPARAM) (LPCSTR) lpsz;

/* item index */
/* address of string to insert */

An application sends a CB_INSERTSTRING message to insert a string into the
list box of a combo box. Unlike the CB_ADDSTRING message, the
CB_INSERTSTRING message does not cause a list with the CBS_SORT style to
be sorted.

index
Value of wParam. Specifies the zero-based index of the position at which to in
sert the string. If this parameter is -1, the string is added to the end of the list.

lpsz
Value of lParam. Points to the null-terminated string that is to be inserted. If
the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the lpsz parameter is stored rather than
the string it would otherwise point to.

The return value is the index of the position at which the string was inserted. The
return value is CB _ERR if an error occurs. The return value is CB _ERRSP ACE if
insufficient space is available to store the new string.

This example inserts the string "my string" into the third position in the list box of
a combo box:

SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string"));

CB_ADDSTRING

32 CB_LIMITTEXT

CB_ LIMITTEXT [IT]

Parameters

Return Value

Comments

Example

CB_ LIMITTEXT
wParam CWPARAM) cchlimit; /* maximum number of characters */
lParam = 0L; /*not used, must be zero */

An application sends a CB_LIMITTEXT message to limit the length of the text
that the user may type in the edit control of a combo box.

cchLimit
Value of wParam. Specifies the length, in bytes, of the text the user can enter.
If this parameter is zero, the text length is set to 65,535 bytes.

The return value is 1 if the message is successful. If this message is sent to a
combo box with the style CBS_DROPDOWNLIST, the return value is CB_ERR.

If the combo box does not have the style CBS_AUTOHSCROLL, setting the text
limit to be larger than the size of the edit control has no effect.

The CB_LIMITTEXT message limits only the text the user can enter. It has no ef
fect on any text already in the edit control when the message is sent, nor does it af
fect the length of the text copied to the edit control when a string in the list box is
selected.

This example limits the text of the edit control of a combo box to five characters:

SendDlgitemMessage(hdlg, ID_MYCDMBOBOX, CB_LIMITTEXT, 5, 0L);

CB_ RESETCONTENT

Parameters

Return Value

CB_ RESETCONTENT
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero */

An application sends a CB_RESETCONTENT message to remove all items from
the list box and edit control of a combo box.

This message has no parameters.

The return value is always CB_OKAY.

Comments

Example

See Also

CB_SELECTSTRING 33

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the owner of the combo box receives a
WM_DELETEITEM message for each item in the combo box.

This example removes all items from the list box and edit control of a combo box:

SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_RESETCONTENT, 0, 0L);

WM_DELETEITEM

CB_ SELECTSTRING

Parameters

Return Value

Comments

CB_ SELECTSTRI NG
wParam (WPARAM) indexStart; /* item before first selection */
lParam = (LPARAM) (LPCSTR) lpszSelect; /*address of prefix string */

An application sends a CB_SELECTSTRING message to search for a string in the
list box of a combo box and, if the string is found, to select the string in the list
box and copy it to the edit control.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszSelect
Value of lParam. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the string was found. The re
turn value is CB_ERR and the current selection is not changed if the search was
unsuccessful.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

If the combo box's style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

34 CB_SETCURSEL

Example

See Also

This example searches the entire list box of a combo box for the string "my string"
and, if the string is found, selects it:

DWORD dwindexFoundString;

dwindexFoundString = SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string"));

CB_FINDSTRING

CB_SETCURSEL

Parameters

Return Value

Example

See Also

CB_SETCURSEL
wParam (WPARAM) index; /* item index
l Pa ram = 0L; /* not used, must be zero */

An application sends a CB_SETCURSEL message to select a string in the list box
of a combo box. If necessary, the list box scrolls the string into view (if the list
box is visible). The text in the edit control of the combo box is changed to reflect
the new selection. Any previous selection in the list box is removed.

index
Value of wParam. Specifies the zero-based index of the string to select. If the
index parameter is -1, any current selection in the list box is removed and the
edit control is cleared.

The return value is the index of the item selected if the message is successful. The
return value is CB_ERR if the index parameter is greater than the number of items
in the list or if index is set to -1 (which clears the selection).

This example retrieves the number of items in the list box of a combo box and
sends a CB_SETCURSEL message to select the last item in the list:

WORD clistitems;

clistitems = (WPARAM) SendDlgitemMessage(hdlg,
ID_MYCOMBOBOX, CB_GETCOUNT, 0, 0);

SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETCURSEL,
clistitems - 1, /* zero-based index, so subtract one from total */
0L);

CB_GETCURSEL, CB_FINDSTRING

CB_SETEXTENDEDUI 35

CB_SETEDITSEL []]]

Parameters

Return Value

Comments

Example

See Also

CB_SETEDITSEL
wParam 0;
lParam = MAKELPARAM(ichStart, ichEnd);

/* not used, must be zero */
I* start and end positions */

An application sends a CB_SETEDITSEL message to select characters in the edit
control of a combo box.

ichStart
Value of the low-order word of lParam. Specifies the starting position. If this
parameter is set to -1, the selection, if any, is removed.

ichEnd
Value of the high-order word of lParam. Specifies the ending position. If this
parameter is set to -1, all text from the starting position to the last character in
the edit control is selected.

The return value is nonzero if the message is successful. It is CB_ERR if the mes
sage is sent to a combo box with the CBS_DROPDOWNLIST style.

The positions are zero-based. To select the first character of the edit control, you
specify a starting position of zero. The ending position is for the character just
after the last character to select. For example, to select the first four characters of
the edit control, you would use a starting position of 0 and an ending position of 4.

This example selects the first four characters of the edit control of a combo box:

SendDlgitemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETEDITSEL, 0, MAKELONG(0, 4));

CB_GETEDITSEL

CB_ SETEXTENDEDUI
CB_ SETEXTENDEDU I
wParam (WPARAM) (BOOL) fExtended;
1 Pa ram = 0L;

/* extended UI flag */
/* not used, must be zero */

An application sends a CB_SETEXTENDEDUI message to select either the de
fault user interface or the extended user interface for a combo box that has the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

36 CB_SETITEMDATA

Parameters

Return Value

Comments

Example

See Also

/Extended
Value of wParam. Specifies whether the combo box should use the extended
user interface or the default user interface. A value of TRUE selects the ex
tended user interface; a value of FALSE selects the standard user interface.

The return value is CB_OKAY ifthe operation is successful, or it is CB_ERR if
an error occurred.

The extended user interface differs from the default user interface in the following
ways:

• Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only).

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

• Scrolling in the static control is disabled when the item list is not visible (the
arrow keys are disabled).

This example selects the extended user interface for a combo box:

SendDlgitemMessage(hdlg, ID_MYCOMBOBOX, CB_SETEXTENDEDUI,
TRUE, 0L);

CB_GETEXTENDEDUI

CB_ SETITEMDATA IT!]

Parameters

CB_SETITEMDATA
wParam (WPARAM) index; /* item index */
lParam = (LPARAM) (DWORD) dwData; /*item data */

An application sends a CB_SETITEMDATA message to set the doubleword value
associated with the specified item in a combo box. If the item is in an owner
drawn combo box created without the CBS_HASSTRINGS style, this message re
places the doubleword value that was contained in the ZParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the
combo box.

index
Value of wParam. Specifies the zero-based index to the item.

dwData
Value of lParam. Specifies the new value to be associated with the item.

CB_SETITEMHEIGHT 37

Return Value The return value is CB_ERR if an error occurs.

See Also CB_ADDSTRING, CB_INSERTSTRING

CB_ SETITEMHEIGHT

Parameters

Return Value

Comments

Example

See Also

CB_SETITEMHEIGHT
wParam (WPARAM) index; /* item index */
lParam = (LPARAM) (int) height; /* item height*/

An application sends a CB_SETITEMHEIGHT message to set the height oflist
items in a combo box or the height of the edit-control (or static-text) portion of a
combo box.

index
Value of wParam. Specifies whether the height of list items or the height of the
edit-control (or static-text) portion of the combo box is set.

If the combo box has the CBS_OWNERDRA WV ARIABLE style, the index
parameter specifies the zero-based index of the list item whose height is to be
set; otherwise, index must be zero and the height of all list items will be set.

If index is -1, the height of the edit-control or static-text portion of the combo
box is to be set.

height
Value of the low-order word of lParam. Specifies the height, in pixels, of the
combo box component identified by index.

The return value is CB_ERR if the index or height is invalid.

The height of the edit-control (or static-text) portion of the combo box is set inde
pendently of the height of the list items. An application must ensure that the height
of the edit-control (or static-text) portion isn't smaller than the height of a particu
lar list box item.

This example sends a CB_SETITEMHEIGHT message to set the height of list
items in a combo box:

LPARAM lrHeight;

SendDlgitemMessage(hdlg, ID_MYCOMBOBOX, CB_SETITEMHEIGHT,
0, lrHeight);

CB_GETITEMHEIGHT

38 CB_SHOWDROPDOWN

CB_ SHOWDROPDOWN

Parameters

Return Value

Comments

Example

CB_ SHOWDROPDOWN
wParam CWPARAM) CBOOL) fShow;
l Pa ram = 0L;

f* the show/hide flag */
f* not used, must be zero *f

An application sends a CB_SHOWDROPDOWN message to show or hide the list
box of a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST
style.

JS how
Value of wParam. Specifies whether the drop-down list box is to be shown or
hidden. A value of TRUE shows the list box. A value of FALSE hides the list
box.

The return value is always nonzero.

This message has no effect on a combo box created with the CBS_SIMPLE style.

This example shows the list box of a combo box:

SendDlgitemMessage(hdlg, ID_MYCOMBOBOX, CB_SHOWDROPDOWN, TRUE, 0L);

DM_GETDEFID

Parameters

Return Value

DM_GETDEFID
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
/* not used, must be zero */

An application sends a DM_ GETDEFID message to get the identifier of the de
fault push button for a dialog box.

This message has no parameters.

The return value is a doubleword value. If the default push button has an identifier
value, the high-order word contains DC_HASDEFID and the low-order word con
tains the identifier value. The return value is zero if the default push button does
not have an identifier value.

"" Example

See Also

EM_CANUNDO 39

This example gets the identifier of the default push button of a dialog box:

DWORD dwResult;
WORD idDefPushButton;

dwResult = SendMessage(hdlg, DM_GETDEFID, 0, 0Ll;
if (HIWORD(dwResult) == DC_HASDEFID)

idDefPushButton = LOWORD(dwResult);

DM_SETDEFID

DM_ SETDEFID

Parameters

Return Value

DM_ S ETD E F ID
wIDPushBtn = wParam; /* identifier of new default push button */

An application sends a DM_SETDEFID message to change the identifier of the de
fault push button for a dialog box.

wIDPushBtn
Value of wParam. Specifies the identifier of the push button that will become
the default.

The return value is always nonzero.

EM_CANUNDO

Parameters

Return Value

EM_ CAN UNDO
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
f* not used, must be zero */

An application sends an EM_CANUNDO message to determine whether an edit
control operation can be undone.

This message has no parameters.

The return value is nonzero if the last edit operation can be undone, or it is zero if
the last edit operation cannot be undone.

40 EM_EMPTYUNDOBUFFER

Example

See Also

This example sends an EM_ CANUNDO message to determine whether the last
edit-control operation can be undone and, if so, sends an EM_ UNDO message to
undo the last operation:

if (SendDlgitemMessage(hdlg, ID_MYEDITCDNTROL, EM_CANUNDO, 0, 0L))
SendDlgitemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, 0, 0L);

EM_ UNDO

EM_ EMPTYUNDOBUFFER

Parameters

Return Value

Comments

Example

See Also

EM_EMPTYUNDOBUFFER
wParam 0;
1 Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero *f

An application sends an EM_EMPTYUNDOBUFFER message to reset (clear) the
undo flag of an edit control. The undo flag is set whenever an operation within the
edit control can be undone.

This message has no parameters.

This message does not return a value.

The undo flag is automatically cleared whenever the edit control receives a
WM_SETTEXT or EM_SETHANDLE message.

This example resets the undo flag of an edit control:

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL, EM_EMPTYUNDOBUFFER, 0, 0L);

EM_CANUNDO, EM_SETHANDLE, EM_ UNDO, WM_SETTEXT

EM_ FMTLINES 41

EM_ FMTLINES IT!]

Parameters

Return Value

Comments

Example

See Also

EM_ FMTLI NES
wParam (WPARAM) (BOOU fAddEOL;
l Pa ram = 0L;

/* line break flag */
/* not used, must be zero */

An application sends an EM_FMTLINES message to set the inclusion of soft line
break characters on or off within a multiline edit control. A soft line break consists
of two carriage returns and a linefeed inserted at the end of a line that is broken be
cause of wordwrapping.

This message is processed only by multiline edit controls.

fAddEOL
Value of wParam. Specifies whether soft line break characters are to be in
serted. A value of TRUE inserts the characters; a value of FALSE removes
them.

The return value is identical to thefAddEOL parameter.

This message affects only the buffer returned by the EM_GETHANDLE message
and the text returned by the WM_ GETTEXT message. It has no effect on the dis
play of the text within the edit control.

A line that ends with a hard line break is not affected by the EM_FMTLINES mes
sage. A hard line break consists of one carriage return and a linefeed.

This example sends an EM_FMTLINES message to turn off soft line breaks, then
allocates a buffer for the text, and then retrieves the text by sending a
WM_GETTEXT message:

WPARAM cbText;
HGLOBAL hmem;
LPSTR lpstr;

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_FMTLINES, FALSE, 0);

cbText = (WPARAM) SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXTLENGTH, 0, 0L);

cbText++; I* make room for the terminating null character*/
hmem = (HGLOBAL) GlobalAlloc(GMEM_MOVEABLE, (OWORD) cbText);
lpstr = Globallock(hmem);
SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,

WM_GETTEXT, cbText, (LPARAM) lpstr);

EM_GETHANDLE, WM_GETTEXT

42 EM_ GETFIRSTVISIBLELINE

EM_ GETFIRSTVISIBLELINE

Parameters

Return Value

Example

EM_GETFIRSTVISIBLELINE
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
f* not used, must be zero */

An application sends an EM_ GETFIRSTVISIBLELINE message to determine the
topmost visible line in an edit control.

This message has no parameters.

The return value is the zero-based index of the topmost visible line. For single-line
edit controls, the return value is zero.

This example gets the index of the topmost visible line in an edit control:

int FirstVis;

FirstVis = (int) SendDlgitemMessage(hdlg, IDD_EDIT,
EM_GETFIRSTVISIBLELINE, 0, 0L);

EM_ GETHANDLE

Parameters

Return Value

Comments

EM_ GETHANDLE
wPa ram 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends an EM_GETHANDLE message to retrieve a handle to the
memory currently allocated for a multiline edit control. The handle is a local
memory handle and can be used by any of the functions that take a local memory
handle as a parameter.

This message is processed only by multiline edit controls.

This message has no parameters.

The return value is a local memory handle identifying the buffer that holds the con
tents of the edit control. If an error occurs, such as sending the message to a single
line edit control, the return value is zero.

An application can send this message to a multiline edit control in a dialog box
only if it created the dialog box with the DS_LOCALEDIT style flag set. If the

Example

See Also

EM_GETLINE 43

DS_LOCALEDIT style is not set, the return value is still nonzero, but the return
value will not be meaningful.

This example sends an EM_GETHANDLE message to a multiline edit control and
calls the LocalSize function to determine the current size of the edit control using
the handle returned by the EM_GETHANDLE message:

HANDLE hmemMle;
WORD cbMle;

hmemMle = (HLOCAL) SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETHANDLE, 0, 0L);

cbMle = LocalSize(hmemMle);

EM_SETHANDLE

EM_GETLINE

Parameters

Return Value

Comments

EM GETLINE
wParam (WPARAM) line; /*line number to retrieve */
lParam = (LPARAM) (LPSTR) lpch; /*address of buffer for line*/

An application sends an EM_GETLINE message to retrieve a line of text from an
edit control.

line
Value of wParam. Specifies the line number of the line to retrieve from a multi
line edit control. Line numbers are zero-based; a value of zero specifies the first
line. This parameter is ignored by a single-line edit control.

lpch
Value of lParam. Points to the buffer that receives a copy of the line. The first
word of the buffer specifies the maximum number of bytes that can be copied
to the buffer.

The return value is the number of bytes actually copied. The return value is zero if
the line number specified by the line parameter is greater than the number of lines
in the edit control.

The copied line does not contain a terminating null character.

44 EM_GETLINECOUNT

Example

See Also

This example sets the maximum size of the buffer, sends an EM_ GETLINE mes
sage to get the first line of the multiline edit control, and adds a terminating null
character to the end of the retrieved line:

unsigned char szBuf[128];
WORD cbText;

*(WORD *) szBuf = sizeof(szBuf) - 1; /* sets the buffer size */
cbText = (WORD) SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETLINE,
0,
CDWORD) CLPSTR) szBuf);

szBuf[cbTextJ = '\0';

f* line number
f* buffer address
f* terminating null character*/

EM_LINELENGTH, WM_GETTEXT

EM_ GETLINECOUNT

Parameters

Return Value

Example

See Also

EM_ GET LIN ECOUNT
wParam 0;
l Pa ram = 0L;

f* not used, must be zero *f
f* not used, must be zero */

An application sends an EM_GETLINECOUNT message to retrieve the number
of lines in a multiline edit control.

This message is processed only by multiline edit controls.

This message has no parameters.

The return value is an integer containing the number of lines in the multiline edit
control. If no text is in the edit control, the return value is 1.

This example sends an EM_GETLINECOUNT message to retrieve the number of
lines in a multiline edit control and then sends an EM_LINESCROLL message to
scroll the edit control so that the last line is displayed at the top of the edit control.

int clines;

Clines = (int) SendDlgitemMessage(hdlg, ID_MYEDITCONTROl,
EM_GETlINECOUNT, 0, 0l);

SendDlgitemMessage(hdlg, ID_MYEDITCONTROl,
EM_LINESCROlL, 0, MAKELONG(clines - 1, 0));

EM_GETLINE, EM_LINELENGTH

EM_GETMODIFY 45

EM_ GETMODIFY IT!]

Parameters

Return Value

Comments

Example

See Also

EM_GETMODIFY
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends an EM_GETMODIFY message to determine whether the
contents of an edit control have been modified.

This message has no parameters.

The return value is nonzero if the edit-control contents have been modified, or it is
zero if the contents have remained unchanged.

Windows maintains an internal flag indicating whether the contents of the edit con
trol have been changed. This flag is cleared when the edit control is first created;
or an EM_SETMODIFY message can be sent to clear the flag.

This example sends an EM_GETMODIFY message to determine whether the edit
control has been modified and, if it has, retrieves the current contents of the edit
control and clears the modification flag by sending an EM_SETMODIFY mes
sage:

char szBuf[l28J;

if (SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETMODIFY, 0, 0L)) {

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, sizeof(szBuf}, (LPARAMl ((LPCSTR) szBuf));

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETMODIFY, FALSE, 0L);

EM_SETMODIFY

46 EM_ GETPASSWORDCHAR

EM_ GETPASSWORDCHAR

Parameters

Return Value

Comments

See Also

EM_GETPASSWORDCHAR
wParam 0;
lParam = 0L;

/* not used, must be zero *I
/* not used, must be zero *I

An application sends an EM_ GETPASSWORDCHAR message to retrieve the
password character displayed in an edit control when the user enters text.

This message has no parameters.

The return value specifies the character to be displayed in place of the character
typed by the user. The return value is NULL if no password character exists.

If the edit control is created with the ES_PASSWORD style, the default password
character is set to an asterisk (*).

EM_SETPASSWORDCHAR

EM_GETRECT

Parameters

Return Value

EM GETRECT
wParam 0; /* not used, must be zero */
lParam = CLPARAM) CRECT FAR*) lprc; /* address of RECT structure */

An application sends an EM_GETRECT message to retrieve the formatting rect
angle of an edit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.

!pre
Value of lParam. Points to the RECT structure that receives the formatting
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

The return value is not a meaningful value.

Comments

Example

EM_GETSEL 47

The formatting rectangle of a multiline edit control can be modified by the
EM_SETRECT and EM_SETRECTNP messages.

This example sends an EM_ GETRECT message to retrieve the formatting
rectangle of an edit control:

RECT rel;

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, 0, (DWORD) ((LPRECT) &rel));

See Also EM_SETRECT

EM_ GETSEL IT!J

Parameters

Return Value

Example

See Also

EM GETSEL
wParam 0;
l Pa ram = 0L;

/* not used, must be zero *f
/* not used, must be zero *I

An application sends an EM_GETSEL message to get the starting and ending char
acter positions of the current selection in an edit control.

This message has no parameters.

The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

This example gets the selection positions of an edit control and converts them into
starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, EM_GETSEL, 0, 0L);
wStart LOWORD(dwResult);
wEnd HIWORD(dwResult);

EM_SETSEL

48 EM_ GETWORDBREAKPROC

EM_ GETWORDBREAKPROC

Parameters

Return Value

Comments

See Also

EM_GETWORDBREAKPROC
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends the EM_GETWORDBREAKPROC message to an edit con
trol to retrieve the current wordwrap function.

This message has no parameters.

The return value specifies the procedure-instance address of the application-de
fined wordwrap function. The return value is NULL if no wordwrap function ex
ists.

A wordwrap function scans a text buffer (which contains text to be sent to the dis
play), looking for the first word that does not fit on the current display line. The
word wrap function places this word at the beginning of the next line on the dis
play. A wordwrap function defines at what point Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words.

EM_SETWORDBREAKPROC, Mak.eProclnstance, WordBreakProc

EM_LIMITIEXT

Parameters

Return Value

EM_ LIMITTEXT
wParam (WPARAM) cchMax;
l Pa ram = 0L;

/* text length */
I* not used, must be zero */

An application sends an EM_LIMITTEXT message to limit the length of the text
the user can enter into an edit control.

cchMax
Value of wParam. Specifies the length, in bytes, of the text the user can enter.
If this parameter is zero, the text length is set to 65,535 bytes.

This message does not return a value.

Comments

See Also

EM_LINEFROMCHAR 49

The EM_LIMITTEXT message limits only the text the user can enter. It has no
effect on any text already in the edit control when the message is sent, nor does it
affect the length of text copied to the edit control by the WM_SETTEXT message.

If an application uses the WM_SETTEXT message to place more text into an edit
control than is specified in the EM_LIMITTEXT message, the user can edit the en
tire contents of the edit control.

WM_SETTEXT

EM LINEFROMCHAR
EM_ LIN EFROMCHAR
wParam (WPARAMl ich;
l Pa ram = 0L;

/* character index */
/* not used, must be zero */

An application sends an EM_LINEFROMCHAR message to retrieve the line num
ber of the line that contains the specified character index. A character index is the
number of characters from the beginning of the edit control.

This message is processed only by multiline edit controls.

Parameters ich

Return Value

Example

See Also

Value of wParam. Specifies the character index of the character contained in
the line whose number is to be retrieved. If the ich parameter is -1, either the
line number of the current line (the line containing the caret) is retrieved or, if
there is a selection, the line number of the line containing the beginning of the
selection is retrieved.

The return value is the zero-based line number of the line containing the character
index specified by ich.

This example sends an EM_LINEFROMCHAR message to retrieve the line num
ber of the current line in a multiline edit control:

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINEFROMCHAR, -1, 0L);

EM_LINEINDEX

50 EM_ LINEINDEX

EM_ LINEINDEX

Parameters

Return Value

Example

See Also

EM_ LINEINDEX
wParam CWPARAM) line; f* line number
l Pa ram = 0l; f* not used, must be zero *f

An application sends an EM_LINEINDEX message to retrieve the character index
of a line within a multiline edit control. The character index is the number of char
acters from the beginning of the edit control to the specified line.

This message is processed only by multiline edit controls.

line
Value ofwParam. Specifies the zero-based line number. A value of-1 speci
fies the current line number (the line that contains the caret).

The return value is the character index of the line specified in the line parameter,
or it is -1 if the specified line number is greater than the number of lines in the
edit control.

This example uses the EM_GETLINECOUNT message to retrieve the number of
lines in an edit control and then uses EM_LINEINDEX to retrieve the character
index for the last line in the edit control:

WPARAM cl i nes, index;

clines = (WPARAM) SendDlgitemMessage(hdlg, ID_MYEDITCONTROl,
EM_GETlINECOUNT, 0, 0l);

index = CWPARAM) SendDlgitemMessage(hdlg, ID_MYEDITCONTROl,
EM_LINEINDEX, clines - 1, 0L);

EM_LINEFROMCHAR

EM_ LINELENGTH
EM_ LI NElENGTH
wParam (WPARAM) ich;
l Pa ram = 0l;

f* character index *f
/* not used, must be zero *f

An application sends an EM_LINELENGTH message to retrieve the length of a
line in an edit control.

EM_LINESCROLL 51

Parameters ich

Return Value

Comments

See Also

Value of wParam. Specifies the character index of a character in the line whose
length is to be retrieved when EM_LINELENGTH is sent to a multiline edit
control. If this parameter is -1, the message returns the number of unselected
characters on lines containing selected characters. For example, if the selection
extended from the fourth character of one line through the eighth character
from the end of the next line, the return value would be 10 (three characters
on the first line and seven on the next).

When EM_LINELENGTH is sent to a single-line edit control, this parameter is
ignored.

The return value is the length, in bytes, of the line specified by the ich parameter
when an EM_LINELENGTH message is sent to a multiline edit control. The re
turn value is the length, in bytes, of the text in the edit control when an
EM_LINELENGTH message is sent to a single-line edit control.

Use the EM_LINEINDEX message to retrieve a character index for a given line
number within a multiline edit control.

EM_LINEINDEX

EM_ LINESCROLL
EM_LINESCROLL
wParam 0; /* not used, must be zero */

/* lines and characters to scroll */ lParam = MAKELPARAM(dv, dh);

An application sends an EM_LINESCROLL message to scroll the text of a multi
line edit control.

This message is processed only by multiline edit controls.

Parameters dv

dh

Value of the low-order word of lParam. Specifies the number of lines to scroll
vertically.

Value of the high-order word of lParam. Specifies the number of character posi
tions to scroll horizontally. This value is ignored if the edit control has either
the ES_RIGHT or ES_CENTER style.

52 EM_ REPLACES EL

Return Value

Comments

Example

The return value is nonzero if the message is sent to a multiline edit control, or it is
zero if the message is sent to a single-line edit control.

The edit control does not scroll vertically past the last line of text in the edit con
trol. If the current line plus the number of lines specified by the dv parameter
exceeds the total number of lines in the edit control, the value is adjusted so that
the last line of the edit control is scrolled to the top of the edit-control window.

The EM_LINESCROLL message can be used to scroll horizontally past the last
character of any line.

This example sends an EM_LINESCROLL message to scroll the text in a multi
line edit control vertically by five lines:

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, 0, MAKELONG(5, 0));

EM_ REPLACESEL

Parameters

Return Value

Comments

EM_ REPLACESEL
wParam 0;
lParam = (LPARAM) (LPCSTR) lpszReplace;

/* not used, must be zero */
/* address of new string */

An application sends an EM_REPLACESEL message to replace the current selec
tion in an edit control with the text specified by the lpszReplace parameter.

lpszReplace
Value of lParam. Points to a null-terminated string containing the replacement
text.

This message does not return a value.

Use the EM_REPLACESEL message when you want to replace only a portion of
the text in an edit control. If you want to replace all of the text, use the
WM_SETTEXT message.

If there is no current selection, the replacement text is inserted at the current cursor
location.

Example

See Also

EM_SETHANDLE 53

This example sets the selection to the beginning of the edit control and inserts the
string "C:\":

SendDlgltemMessage(hdlg, IO_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, 0));

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_REPLACESEL, 0, (LPARAM) ((LPCSTR) "C:\\"));

WM_SETTEXT

EM_SETHANDLE
EM_SETHANDLE
wParam (WPARAM) (HLOCAL) hloc; /* handle of local memory object */
lParam = 0L; /* not used, must be zero */

An application sends an EM_SETHANDLE message to set the handle to the local
memory that will be used by a multiline edit control.

This message is processed only by multiline edit controls.

Parameters hloc

Return Value

Comments

Value ofwParam. Identifies the local memory. This handle must have been
created by a previous call to the LocalAlloc function using the
LMEM_MOVEABLE flag. The memory should contain a null-terminated
string, or the first byte of the allocated memory should be set to zero.

This message does not return a value.

Before an application sets a new memory handle, it should send an
EM_GETHANDLE message to retrieve the handle to the current memory buffer
and should free that memory by using the LocalFree function.

Sending an EM_SETHANDLE message clears the undo buffer (EM_CANUNDO
returns zero) and the internal modification flag (EM_GETMODIFY returns zero).
The edit-control window is redrawn.

An application can send this message to a multiline edit control in a dialog box
only if it has created the dialog box with the DS_LOCALEDIT style flag set.

54 EM_ SETHANDLE

Example

See Also

This example frees the current memory for the edit control, allocates new
memory, and reads up to BUF _SIZE bytes of a file into the allocated memory. It
then sends an EM_SETHANDLE message to set the handle of the edit control to
the new memory, effectively placing up to BUF _SIZE bytes of the file into the
edit control.

#define BUF_SIZE 4 * 1024

HANDLE hFile;
OFSTRUCT ofs;
HLOCAL hOldMem, hNewMem;
PSTR pBuf;
int cbRead;

/* Get the handle to the old memory and free it. */

hOldMem = (HLOCAL) SendDlgitemMessage(hdlg,
ID_MYEDITCONTROL, EM_GETHANDLE, 0, 0L);

LocalFree(hOldMem);

/* Allocate new memory and read the file into it. */

hNewMem = LocalAlloc(LMEM_MOVEABLE, BUF_SIZE);
pBuf = Locallock(hNewMem);
hFile = OpenFile("test.txt", &ofs, OF_READ);
cbRead = _lread(hFile, pBuf, BUF_SIZE);
pBuf[cbRead] = '\0'; /* terminating null character */
_lclose(hFile);

/*Adjust the buffer for the amount actually read in. */

LocalReAlloc(hNewMem, cbRead, 0);

/* Set the handle to the new buffer. */

LocalUnlock(hNewMem);
SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,

EM_SETHANDLE, hNewMem, 0L);

EM_CANUNDO, EM_GETHANDLE, EM_GETMODIFY, LocalAlloc,
LocalFree

EM_SETPASSWORDCHAR 55

EM_ SETMODIFY IT!J

Parameters

Return Value

Example

See Also

EM_SETMODIFY
wParam (WPARAM) (UINT) fModified;
l Pa ram = 0L;

/* modification flag */
/* not used, must be zero */

An application sends an EM_SETMODIFY message to set or clear the modifica
tion flag for an edit control. The modification flag indicates whether the text
within the edit control has been modified. It is automatically set whenever the user
changes the text. An EM_GETMODIFY message can be sent to retrieve the value
of the modification flag.

}Modified
Value of wParam. Specifies the new value for the modification flag. A value of
TRUE indicates the text has been modified, and a value of FALSE indicates it
has not been modified.

This message does not return a value.

This example sends an EM_SETMODIFY message to clear the modification flag:

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL, EM_SETMODIFY, FALSE, 0L);

EM_GETMODIFY

EM_ SETPASSWORDCHAR
EM_SETPASSWORDCHAR
wParam (WPARAMl (UINT) ch; /* character to display */

/* not used, must be zero *I l Pa ram = 0L;

An application sends an EM_SETPASSWORDCHAR message to set or remove a
password character displayed in an edit control when the user types text. When a
password character is set, that character is displayed for each character the user
types.

This message has no effect on a multiline edit control.

Parameters ch
Value of wParam. Specifies the character to be displayed in place of the charac
ter typed by the user. If the ch parameter is zero, the actual characters typed by
the user are displayed.

56 EM_ SETREADONL Y

Return Value

Comments

Example

See Also

The return value is nonzero if the message is sent to an edit control.

When the EM_SETPASSWORDCHAR message is received by an edit control,
the edit control redraws all visible characters by using the character specified by
the ch parameter.

If the edit control is created with the ES_PASSWORD style, the default
password character is set to an asterisk (*). This style is removed if an
EM_SETPASSWORDCHAR message is sent with the wParam parameter
set to zero.

This example sends an EM_SETPASSWORDCHAR message to set the password
character of an edit control to a question mark:

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETPASSWORDCHAR, (WORD) '?', 0L);

EM_GETPASSWORDCHAR

EM_ SETREADONLY

Parameters

Return Value

Comments

Example

EM_ SETREADON LY
wParam (WPARAM) (BOOL) fReadOnly;
l Pa ram = 0L;

/* read-only flag */
/* not used, must be zero */

An application sends an EM_SETREADONL Y message to set the read-only state
of an edit control.

fR.eadOnly
Value of wParam. Specifies whether to set or remove the read-only state of the
edit control. A value of TRUE sets the state to read-only; a value of FALSE
sets the state to read/write.

The return value is nonzero if the operation is successful, or it is zero if an error
occurs.

When the state of an edit control is set to read-only, the user cannot change the
text within the edit control.

This example sets the state of an edit control to read-only:

SendDlgitemMessage(hdlg, IDD_EDIT, EM_SETREADONLY,
TRUE, 0L);

EM_ SETRECT 57

EM_ SETRECT [0

Parameters

Return Value

Comments

EM SETRECT
wParam 0; /* not used, must be zero */
lParam = CLPARAM) Cconst RECT FAR*) lprc; /*address of RECT */

An application sends an EM_SETRECT message to set the formatting rectangle of
a multiline edit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.
When the edit control is first created, the formatting rectangle is the same as the
client area of the edit-control window. By using the EM_SETRECT message, an
application can make the formatting rectangle larger or smaller than the edit
control window.

This message is processed only by multiline edit controls.

lprc
Value of lParam. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

This message does not return a value.

The EM_SETRECT message causes the text of the edit control to be redrawn. To
change the size of the formatting rectangle without redrawing the text, use the
EM_SETRECTNP message.

If the edit control does not have a horizontal scroll bar, and the formatting rect
angle is set to be larger than the edit-control window, lines of text exceeding the
width of the edit-control window (but smaller than the width of the formatting
rectangle) are clipped instead of wrapped.

If the edit control contains a border, the formatting rectangle is reduced by the size
of the border. If you are adjusting the rectangle returned by an EM_ GETRECT
message, you must remove the size of the border before using the rectangle with
the EM_SETRECT message.

58 EM_ SETRECTNP

Example

See Also

This example retrieves the current formatting rectangle for a multiline edit control,
removes the border width dimensions, and sets the right border to 32767 so that all
text sent to the edit control is clipped rather than wrapped if it exceeds the width of
the edit-control window. The example then sends an EM_SETRECT message to
set the new formatting rectangle.

RECT rect;

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, 0, (LPARAM) <RECT FAR*) &rect);

rect.left = 0; /*remove border width */
rect.right = 32767; f* clip all lines */
rect.bottom += rect.top; /* remove border height*/
rect.top = 0; /* remove border height */
SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,

EM_SETRECT, 0, (LPARAM) (RECT FAR*) &rect);

EM_GETRECT, EM_SETRECTNP, Move Window

EM_SETRECTNP
EM_SETRECTNP
wParam 0; /* not used, must be zero */
lParam = (LPARAM) (canst RECT FAR*) lprc; /*address of RECT */

An application sends an EM_SETRECTNP message to set the formatting rect
angle of a multiline edit control. The formatting rectangle is the limiting rectangle
of the text. The limiting rectangle is independent of the size of the edit-control win
dow. When the edit control is first created, the formatting rectangle is the same as
the client area of the edit-control window. By using the EM_SETRECTNP mes
sage, an application can make the formatting rectangle larger or smaller than the
edit-control window.

The EM_SETRECTNP message is identical to the EM_SETRECT message, ex
cept that the edit-control window is not redrawn.

This message is processed only by multiline edit controls.

Parameters

EM_ SETSEL 59

!pre
Value of lParam. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

Return Value This message does not return a value.

See Also EM_SETRECT

EM_ SETSEL CEJ

Parameters

Return Value

Comments

EM SETSEL
wParam (WPARAM) (UINT) fScroll;
lParam = MAKELPARAM(ichStart, ichEnd);

f* flag for caret scrolling*/
I* start and end positions */

An application sends an EM_SETSEL message to select a range of characters in
an edit control.

fScroll
Value of wParam. When this parameter is zero, the caret is scrolled into view.
When this parameter is 1, the caret is not scrolled into view.

ichStart
Value of the low-order word of lParam. Specifies the starting position.

ichEnd
Value of the high-order word of lParam. Specifies the ending position.

The return value is nonzero if the message is sent to an edit control.

If the ichStart parameter is 0 and the ichEnd parameter is -1, all the text in the edit
control is selected. If ichStart is -1, any current selection is removed. The caret is
placed at the end of the selection indicated by the greater of the two values ichEnd
and ichStart.

60 EM_SETTABSTOPS

Example

See Also

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_ CUT message to copy the contents of the edit
control to the clipboard and then to delete the contents of the edit control.

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, 0, 0L);

EM_GETSEL, EM_REPLACESEL

EM_ SETTABSTOPS ~.o]

Parameters

Return Value

Comments

EM_SETTABSTOPS
wParam (WPARAM) cTabs;
lParam = (LPARAM) (const int FAR•) lpTabs;

I• number of tab stops •/
I• tab-stop array •/

An application sends an EM_SETT AB STOPS message to set the tab stops in a
multiline edit control (MLE). When text is copied to an MLE, any tab character in
the text causes space to be generated up to the next tab stop.

This message is processed only by MLEs.

cTabs
Value of wParam. Specifies the number of tab stops contained in the lpTabs
parameter. If this parameter is 0, the lpTabs parameter is ignored and default
tab stops are set at every 32 dialog box units. If this parameter is 1, tab stops are
set at every n dialog box units, where n is the distance pointed to Ly the lpTabs
parameter. If the cTabs parameter is greater than 1, lpTabs points to an array of
tab stops.

lpTabs
Low and high-order words of lParam. Points to an array of unsigned integers
specifying the tab stops, in dialog box units. If the cTabs parameter is I, lpTahs
points to an unsigned integer containing the distance between all tab stops, in
dialog units.

The return value is nonzero ifthe tabs were set; otherwise, the return value is zero.

The EM_SETTABSTOPS message does not automatically redraw the edit-control
window. If the application is changing the tab stops for text already in the edit con
trol, it should call the InvalidateRect function to redraw the edit-control window.

Example

See Also

EM_ SETWORDBREAKPROC 61

This example sends an EM_SETT ABSTOPS message to set tab stops at every 64
dialog box units. It then calls InvalidateRect to redraw the edit-control window.

WORD wTabSpacing = 64;

SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETTABSTOPS, 1, (LPARAMJ (int far*) &wTabSpacing);

InvalidateRect(GetDlgltem(hdlg, ID_MYEDITCONTROL),
NULL, TRUE);

GetDialogBaseUnits

EM_ SETWORDBREAKPROC

Parameters

Return Value

Comments

See Also

EM_SETWORDBREAKPROC
wParam 0; /* not used, must be zero */
lParam = (LPARAM) (EDITWORDBREAKPROC) ewbprc; /* address of function */

An application sends the EM_SETWORDBREAKPROC message to an edit
control to replace the default wordwrap function with an application-defined
wordwrap function.

ewbprc
Value of lParam. Specifies the procedure-instance address of the application
defined wordwrap function. The MakeProclnstance function must be used to
create the address. For more information, see the description of the Word
BreakProc callback function.

This message does not return a value.

A wordwrap function scans a text buffer (which contains text to be sent to the dis
play), looking for the first word that does not fit on the current display line. The
wordwrap function places this word at the beginning of the next display line.

A wordwrap function defines the point at which Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words. Either a multiline or a single-line edit control might call this function when
the user presses arrow keys in combination with the CTRL key to move the cursor
to the next word or previous word. The default wordwrap function breaks a line of
text at a space character. The application-defined function may define wordwrap
to occur at a hyphen or a character other than the space character.

EM_ GETWORDBREAKPROC, MakeProclnstance, WordBreakProc

62 EM_ UNDO

EM_ UNDO

Parameters

Return Value

Comments

Example

See Also

EM_ UNDO
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero */

An application sends an EM_ UNDO message to undo the last edit-control
operation.

This message has no parameters.

The return value is always nonzero for a single-line edit control. For a multiline
edit control, the return value is nonzero if the undo operation is successful or zero
if the undo operation fails.

An undo operation can also be undone. For example, you can restore deleted text
with the first EM_ UNDO message and remove the text again with a second
EM_ UNDO message as long as there is no intervening edit-control operation.

This example undoes the last edit-control operation:

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, 0, 0L);

EM_CANUNDO

LB_ADDSTRING

Parameters

LB_ADDSTRING
wParam 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) lpsz; f* address of string to add*/

An application sends an LB_ADDSTRING message to add a string to a list box. If
the list box does not have the CBS_SORT style, the string is added to the end of
the list. Otherwise, the string is inserted into the list and the list is sorted.

lpsz
Value of lParam. Points to the null-terminated string that is to be added. If the
list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the lpsz parameter is stored rather than
the string it would otherwise point to.

Return Value

Comments

Example

See Also

LB_DELETESTRING 63

The return value is the zero-based index to the string in the list box. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if insuffi
cient space is available to store the new string.

If an owner-drawn list box was created with the LBS_SORT style but not the
LBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the list box so the new item can be properly placed in
the list box.

This example adds the string "my string" to a list box:

DWDRD dwlndex;

dwlndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_ADDSTRING, 0, CLPARAM) ((LPCSTR) "my string"));

LB_DELETESTRING, LB_INSERTSTRING, WM_COMPAREITEM

LB_ DELETESTRING

Parameters

Return Value

Comments

LB_ DE LETESTRI NG
wParam (WPARAM) index;
l Pa ram = 0L;

/* index of string to delete */
/* not used, must be zero */

An application sends an LB_DELETESTRING message to delete a string in a list
box.

index
Value of wParam. Specifies the zero-based index of the string to delete.

The return value is a count of the strings remaining in the list. The return value is
LB_ERR if the index parameter specifies an index greater than the number of
items in the list.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the owner of
the list box so that the application can free any additional data associated with the
item.

64 LB_DIR

Example

See Also

LB_DIR

Parameters

This example deletes the first string in a list box:

DWORD dwRemaining;

dwRemaining = SendDlgitemMessage(hdlg, ID_MYLISTBOX,
LB_DELETESTRING, 0, 0L);

LB_ADDSTRING, WM_DELETEITEM

LB_ DIR
wParam CWPARAMl CUINT) uAttrs; /* file attributes */
lParam CLPARAM) CLPCSTR) lpszFileSpec; /*filename string's address*/

An application sends an LB_DIR message to add a list of filenames to a list box.

uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list
box. It can be any combination of the following values:

Value

OxOOOO
OxOOOl
Ox0002
Ox0004
OxOOIO
Ox0020
Ox4000

OxSOOO

lpszFileSpec

Meaning

File can be read from or written to.

File can be read from but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name pointed to by the lpszFileSpec parameter specifies a directory.

File has been archived.

All drives that match the name specified by the lpszFileSpec parameter
are included.

Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi
tion to files that do not match the specified type.

Value of lParam. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains wildcards (for example, *. *), all files
that match and have the attributes specified by the uAttrs parameter are added
to the list.

Return Value

Example

See Also

LB_FINDSTRING 65

The return value is the zero-based index of the last filename added to the list. The
return value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new strings.

This example adds the names of all available drives to a list box:

DWORD dwindexlastitem;

dwindexlastitem = SendDlgitemMessage(hdlg, ID_MYLISTBOX, LB_DIR,
0x4000 I 0x8000, (LPARAMl ((LPCSTR) "*"));

DlgDirList

LB_ FINDSTRING

Parameters

Return Value

Comments

LB_ FI NDSTRI NG
wParam (WPARAMl indexStart; /• item before start of search •/
lParam = CLPARAM) (LPCSTRl lpszFind; /• address of search string •/

An application sends an LB_FINDSTRING message to find the first string in a list
box that contains the specified prefix.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi
nation of uppercase and lowercase letters.

The return value is the index of the matching item, or it is LB _ERR if the search
was unsuccessful.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_FINDSTRING depends on
whether the LBS_SORT style is used. IfLBS_SORT is used, WM_COM
PAREITEM messages are sent to the owner of the list box to determine which
item matches the specified string. Otherwise, LB_FINDSTRING attempts to
match the doubleword value against the value of lpszFind.

66 LB_FINDSTRINGEXACT

Example

See Also

This example searches for the string "my string" in a list box and copies it, if
found, to the szB uf buffer:

char szBuf[20J;
DWDRD dwindex;

dwindex = SendDlgitemMessage(hdlg, ID_MYLISTBOX,
LB_FINDSTRING, 0, (LPARAM) ((LPCSTR) "my string"));

if (dwindex != LB_ERR)
SendDlgitemMessage(hdlg, ID_MYLISTBOX,

LB_GETTEXT, (WPARAM) dwindex, (LPARAM) ((LPCSTR) szBuf));

LB_ADDSTRING,LB_FINDSTRINGEXACT,LB_INSERTSTRING

LB_ FINDSTRINGEXACT

Parameters

Return Value

LB_FINDSTRINGEXACT
wParam (WPARAM) indexStart; /* item before start of search */
lParam = (LPARAM) (LPCSTR) lpszFind; /*address of search string */

An application sends an LB_FINDSTRINGEXACT message to find the first list
box string that matches the string specified in the lpszFind parameter.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so the string can contain any combination of uppercase and
lowercase letters.

The return value is the index of the matching item, or it is LB_ERR ifthe search
was unsuccessful.

Comments

See Also

LB_ GETCARETINDEX 67

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_FINDSTRINGEXACT de
pends on whether the LBS_SORT style is used. If LBS_SORT is used,
WM_COMPAREITEM messages are sent to the owner of the list box to deter
mine which item matches the specified string. Otherwise, LB_FINDSTRINGEX
ACT attempts to match the doubleword value against the value of lpszFind.

LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_ GETCARETINDEX

Parameters

Return Value

Example

See Also

LB_GETCARETINDEX
wParam 0;
1 Pa ram = 0L;

/* not used, must be zero */
f* not used, must be zero */

An application sends an LB_GETCARETINDEX message to determine the index
of the item that has the focus rectangle in a multiple-selection list box. The item
may or may not be selected.

This message has no parameters.

The return value is the zero-based index of the item that has the focus rectangle in
a list box. If the list box is a single-selection list box, the return value is the index
of the item that is selected, if any.

This example sends an LB_GETCARETINDEX message to retrieve the index of
the item that has the focus rectangle in the list box:

LRESULT lrlndex;

lrlndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETCARETINDEX, 0, 0L);

LB_SETCARETINDEX

68 LB_ GETCOUNT

LB_ GETCOUNT

Parameters

Return Value

Comments

Example

LB_ GETCOUNT
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends an LB_GETCOUNT message to retrieve the number of
items in a list box.

This message has no parameters.

The return value is the number of items in the list box, or it is LB_ERR if an error
occurs.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a list box:

DWORD clistltems;

clistltems = SendDlgitemMessage(hdlg, ID_MYLISTBOX, LB_GETCOUNT, 0, 0);

LB_ GETCURSEL

Parameters

Return Value

Comments

LB_GETCURSEL
wParam 0;
lParam = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends an LB_GETCURSEL message to retrieve the index of the
currently selected item, if any, in a single-selection list box.

This message has no parameters.

The return value is the zero-based index of the currently selected item. It is
LB_ERR if no item is currently selected.

An application should use the LB_GETCARETINDEX to retrieve the index of the
item that has the focus rectangle in a multiple-selection list box.

The LB_GETCURSEL message cannot be sent to a multiple-selection list box.

Example

See Also

LB_GETHORIZONTALEXTENT 69

This example retrieves the index of the currently selected string in a list box and
then retrieves that string:

char szBuf[20J;
DWORD dwindex;

dwindex = SendDlgitemMessage(hdlg, ID_MYLISTBOX, LB_GETCURSEL, 0, 0);
if (dwindex != LB_ ERR)

SendDlgitemMessage(hdlg, ID_MYLISTBDX,
LB_GETTEXT, CWPARAMJ dwindex, CLPARAMJ ((LPCSTR) szBufl);

LB_GETCARETINDEX

LB_ GETHORIZONTALEXTENT

Parameters

Return Value

Comments

Example

See Also

LB_GETHDRIZONTALEXTENT
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
/* not used, must be zero */

An application sends the LB_GETHORIZONTALEXTENT message to retrieve
from a list box the width, in pixels, by which the list box can be scrolled horizon
tally if the list box has a horizontal scroll bar.

This message has no parameters.

The return value is the scrollable width of the list box, in pixels.

To respond to the LB_GETHORIZONTALEXTENT message, the list box must
have been defined with the WS_HSCROLL style.

This example gets the horizontal extent of a list box:

SendDlgitemMessage(hDlg, ID_MYLISTBOX,
LB_GETHORIZONTALEXTENT, 0, 0L);

LB_SETHORIZONTALEXTENT

70 LB_GETITEMDATA

LB_ GETITEMDATA

Parameters

Return Value

Example

See Also

LB_GETITEMDATA
wParam = (WPARAM) index;
l Pa ram = 0L;

f* i tern index
f* not used, must be zero */

An application sends the LB_GETITEMDATA message to retrieve the
application-supplied doubleword value associated with the specified item in a
list box. (This is the value of the lParam parameter of an LB_SETITEMDATA
message.)

index
Value of wParam. Specifies the zero-based index of the item.

The return value is the doubleword value associated with the item, or it is
LB_ERR if an error occurs.

This example retrieves the value associated with an item in a list box. The value is
the handle of a global memory object.

HGLOBAL hLBData;
LPSTR lpLBData;
HWND hlistBox;
WPARAM nindex;

if ((hLBData = LOWORD(SendMessage(hlistBox, LB_GETITEMDATA,
nlndex, 0L)))) {

if ((lpLBData = Globallock(hLBData))) {

. /* Access or manipulate the data */

GlobalUnlock(hLBData);

LB_ADDSTRING, LB_INSERTSTRING, LB_SETITEMDATA

LB_GETITEMRECT 71

LB_ GETITEMHEIGHT ITIJ

Parameters

Return Value

Example

See Also

LB_GETITEMHEIGHT
wParam CWPARAM) index;
1 Pa ram = 0L;

/* item index */
/* not used, must be zero */

An application sends an LB_GETITEMHEIGHT message to determine the height
of items in a list box.

index
Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRA WV ARIABLE style; otherwise, it should be set to zero.

The return value is the height, in pixels, of the items in the list box. The return
value is the height of the item specified by the index parameter if the list box has
the LBS_OWNERDRA WV ARIABLE style. The return value is LB_ERR if an
error occurs.

This example sends LB_GETITEMHEIGHT to retrieve the height of the items in
a list box:

LRESULT lrHeight;

lrHeight = SendDlgitemMessage(hdlg, ID_MYLISTBDX,
LB_GETITEMHEIGHT, 0, 0L);

LB_SETITEMHEIGHT

LB_ GETITEMRECT
LB_ GETITEMRECT
wParam CWPARAM) index; /* item index */
lParam = CLPARAM) CRECT FAR*) lprc; /* address of RECT structure*/

An application sends an LB_GETITEMRECT message to retrieve the dimensions
of the rectangle that bounds an item as it is currently displayed in the list box win
dow.

72 LB_GETSEL

Parameters index
Value of wParam. Specifies the zero-based index of the item.

lprc
Value of lParam. Specifies a long pointer to a RECT structure that receives the
client coordinates for the item in the list box. The RECT structure has the fol
lowing form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

Return Value The return value is LB_ERR if an error occurs.

LB_GETSEL Cfil

Parameters

Return Value

See Also

LB_ GETS EL
wPa ram (WP A RAM) index;
l Pa ram = 0L;

/* item index */
/* not used, must be zero */

An application sends an LB_GETSEL message to retrieve the selection state of an
item.

index
Value of wParam. Specifies the zero-based index of the item.

The return value is a positive number if an item is selected; otherwise, it is zero.
The return value is LB_ERR if an error occurs.

LB_SETSEL

LB_GETSELITEMS 73

LB_ GETSELCOUNT [ill

Parameters

Return Value

See Also

LB_ GET SE LC DUNT
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

An application sends an LB_GETSELCOUNT message to retrieve the total num
ber of selected items in a multiple-selection list box.

This message has no parameters.

The return value is the count of selected items in a list box. The return value is
LB_ERR if the list box is a single-selection list box.

LB_SETSEL

LB_ GETSELITEMS

Parameters

Return Value

See Also

LB_ GETSELITEMS
wParam (WPARAMl cltems; /*maximum number of items */
lParam = (LPARAMl (int FAR*) lpltems; /*address of buffer */

An application sends an LB_GETSELITEMS message to fill a buffer with an
array of integers that specify the item numbers of selected items in a multiple
selection list box.

cltems
Value of wParam. Specifies the maximum number of selected items whose
item numbers are to be placed in the buffer.

lpltems
Value of lParam. Specifies a long pointer to a buffer large enough for the num
ber of integers specified by the cltems parameter.

The return value is the actual number of items placed in the buffer. The return
value is LB_ERR ifthe list box is a single-selection list box.

LB_ GETSELCOUNT

74 LB_GETTEXT

LB_GETTEXT

Parameters

Return Value

Comments

Example

See Also

LB GETTEXT
wParam = (WPARAM) index; /* item index */
lParam = (LPARAM) (LPCSTR) lpszBuffer; /* address of buffer */

An application sends an LB_GETTEXT message to retrieve a string from a list
box.

index
Value of wParam. Specifies the zero-based index of the string to retrieve.

lpszBuffer
Value of lParam. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. An
LB_GETTEXTLEN message can be sent before the LB_GETTEXT message to
retrieve the length, in bytes, of the string.

The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the buffer pointed to by the lpszBuffer parameter
receives the doubleword value associated with the item.

This example retrieves the length of the first item in the list box, allocates suffi
cient memory for the string, and then sends an LB_GETTEXT message to retrieve
the string:

DWORD cbltemString;
PSTR psz;

cbltemString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, 0, 0L);

if (cbitemString != LB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbltemString);
SendDlgltemMessage(hdlg, ID_MYLISTBOX,

LB_GETTEXT, 0, (LPARAM) ((LPCSTR) psz));

LB_GETTEXTLEN

LB_GETTOPINDEX 75

LB_ GETTEXTLEN CEJ

Parameters

Return Value

Example

See Also

LB_ GETT EXT LEN
wParam (WPARAM) index;
l Pa ram = 0L;

/* item index */
/* not used, must be zero */

An application sends an LB_GETTEXTLEN message to retrieve the length of a
string in a list box.

index
Value of wParam. Specifies the zero-based index of the string.

The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

This example retrieves the length of the first item in the list box:

DWORD cbltemString;

cbltemString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, 0, 0L);

LB_GETTEXT

LB_ GETTOPINDEX

Parameters

Return Value

See Also

LB_GETTOPINDEX
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero */

An application sends an LB_GETTOPINDEX message to retrieve the index of the
first visible item in a list box. Initially, the item with index 0 is at the top of the list
box, but if the list box is scrolled, another item may be at the top.

This message has no parameters.

The return value is the zero-based index of the first visible item in a list box.

LB_SETTOPINDEX

76 LB_INSERTSTRING

LB_ INSERTSTRING

Parameters

Return Value

Example

See Also

LB_ INSERTSTRING
wParam (WPARAM) index;
lParam = (LPARAM) (LPCSTR) lpsz;

I* item index *I
I* address of string to insert */

An application sends an LB_INSERTSTRING message to insert a string into a list
box. Unlike the LB_ADDSTRING message, the LB_INSERTSTRING message
does not cause a list with the LBS_SORT style to be sorted.

index
Value of wParam. Specifies the zero-based index of the position at which to in
sert the string. If this parameter is -1, the string is added to the end of the list.

lpsz
Value of lParam. Points to the null-terminated string that is to be inserted. If
the list was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the lpsz parameter is stored rather than
the string it would otherwise point to.

The return value is the index of the position at which the string was inserted. The
return value is LB_ERR if an error occurs. The return value is LB_ERRSPACE if
insufficient space is available to store the new string.

This example inserts the string "my string" into the third position of the list box:

SendDlgitemMessage(hdlg, ID_MYLISTBDX,
LB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string"));

LB_ADDSTRING

LB_ RESETCONTENT

Parameters

Return Value

LB_ RESETCONTENT
wParam 0;
1 Pa ram = 0L;

I* not used, must be zero */
I* not used, must be zero */

An application sends an LB_RESETCONTENT message to remove all items from
a list box.

This message has no parameters.

This message does not return a value.

Comments

Example

See Also

LB_SELECTSTRING 77

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the owner of the list box receives a
WM_DELETEITEM message for each item in the list box.

This example removes all items from a list box:

SendDlgitemMessage(hdlg, ID_MYLISTBOX, LB_RESETCONTENT, 0, 0Ll;

WM_DELETEITEM

LB_ SELECTSTRING

Parameters

Return Value

Comments

LB_ SELECTSTRI NG
wParam (WPARAMl indexStart; /* item before start of search */
lParam = (LPARAMl (LPCSTRl lpszFind; /*address of search string */

An application sends an LB_SELECTSTRING message to search the list box for
an item that matches the specified string, and if a matching item is found, to select
the item.

index Start
Value ofwParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is -1, the entire list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the search was successful. The
return value is LB _ERR if the search was unsuccessful and the current selection is
not changed.

The list box is scrolled, if necessary, to bring the selected item into view.

An item is selected only if its initial characters (from the starting point) match the
characters in the string specified by the lpszFind parameter.

78 LB_ SELITEMRANGE

Example

See Also

If the list box was created with an owner-drawn style but without the LBS_HAS
STRINGS style, the action taken by LB_SELECTSTRING depends on whether
the LBS_SORT style is used. IfLBS_SORT is used, WM_COMPAREITEM
messages are sent to the owner of the list box to determine which item matches
the specified string. Otherwise, LB_SELECTSTRING attempts to match the
doubleword value against the value of lpszFind.

This example searches the entire list box for an item that matches the string "my
string" and, if the item is found, selects it:

DWORD dwindexFoundString;

dwindexFoundString = SendDlgitemMessage(hdlg, ID_MYLISTBOX,
LB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string"));

LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_ SELITEMRANGE

Parameters

Return Value

Comments

LB_SELITEMRANGE
wParam (WPARAM) (BOOL) fSelect; /* selection flag */
lParam = MAKELPARAM(wFirst, wlast); /*first and last items*/

An application sends an LB_SELITEMRANGE message to select one or more
consecutive items in a multiple-selection list box.

fSelect
Value of wParam. Specifies how to set the selection. If the fSelect parameter is
nonzero, the string is selected and highlighted; ifjSelectis zero, the highlight is
removed and the string is no longer selected.

wFirst
Value of the low-order word of lParam. Specifies the zero-based index of the
first item to set.

wLast
Value of the high-order word of lParam. Specifies the zero-based index of the
last item to set.

The return value is LB_ERR if an error occurs.

This message should be used only with multiple-selection list boxes.

LB_SETCOLUMNWIDTH 79

LB_ SETCARETINDEX [IT]

Parameters

Return Value

Example

See Also

LB_ SETCARETI NDEX
wParam (WPARAM) index; /* item index */
lParam = MAKELPARAM(fScroll, 0); /* flag for scrolling item*/

An application sends an LB_SETCARETINDEX message to set the focus rect
angle to the item at the specified index in a multiple-selection list box. If the item
is not visible, it is scrolled into view.

index
Value of wParam. Specifies the zero-based index of the item to receive the
focus rectangle in the list box.

fScroll
Value of lParam. If this value is zero, the item is scrolled until it is fully visible.
If this value is nonzero, the item is scrolled until it is at least partially visible.

The return value is LB_ERR if an error occurs.

This example sends an LB_SETCARETINDEX message to set the focus rectangle
to an item in a list box:

WPARAM wlndex;

wlndex = 0; /* set index to first item */

SendDl g ItemMessage (hd lg, ID_ MY LI STBOX, LB_ SETCARETI NDEX,
wlndex, 0L);

LB_GETCARETINDEX

LB_ SETCOLUMNWIDTH
LB_SETCOLUMNWIDTH
wParam (WPARAMl cxColumn; /* column width
l Pa ram = 0L; /* not used, must be zero */

An application sends an LB_SETCOLUMNWIDTH message to a multiple
column list box (created with the LBS_MULTICOLUMN style) to set the width,
in pixels, of all columns in the list box.

80 LB_SETCURSEL

Parameters

Return Value

Example

ex Column
Value of wParam. Specifies the width, in pixels, of all columns.

This message does not return a value.

This example sets the width of the columns in a multiple-column list box:

WPARAM wColWidth;

wColWidth = 100; /* set column width to 100 pixels */

SendDlgltemMessage(hDlg, ID_MYLISTBOX, LB_SETCOLUMNWIDTH,
wColWidth, 0U;

LB_ SETCURSEL

Parameters

Return Value

Comments

See Also

LB_SETCURSEL
wParam (WPARAM) index;
l Pa ram = 0L;

/* item index */
/* not used, must be zero */

An application sends an LB_SETCURSEL message to select a string and scroll it
into view, if necessary. When the new string is selected, the list box removes the
highlight from the previously selected string.

index
Value of wParam. Specifies the zero-based index of the string that is selected.
If the index parameter is -1, the list box is set to have no selection.

The return value is LB_ERR if an error occurs. The return value will be LB_ERR
even though no error has occurred if the index parameter is -1.

This message should be used only with single-selection list boxes. It cannot be
used to set or remove a selection in a multiple-selection list box.

LB_GETCURSEL

LB_SETHORIZONTALEXTENT 81

LB_ SETHORIZONTALEXTENT [TI]

Parameters

Return Value

Comments

Example

LB_SETHORIZONTALEXTENT
wParam (WPARAMJ cxExtent; /* horizontal scroll width */
lParam = 0L; /*not used, must be zero */

An application sends the LB_SETHORIZONTALEXTENT message to set the
width, in pixels, by which a list box can be scrolled horizontally. If the size of the
list box is smaller than this value, the horizontal scroll bar horizontally scrolls
items in the list box. If the size of the list box is equal to or greater than this value,
the horizontal scroll bar is hidden.

cxExtent
Value of w P aram. Specifies the number of pixels by which the list box can be
scrolled.

This message does not return a value.

To respond to the LB_SETHORIZONTALEXTENT message, the list box must
have been defined with the WS_HSCROLL style.

By default, the horizontal extent of a list box is zero. Windows does not display
the scroll bar unless the horizontal extent is set to a value greater than the width, in
pixels, of the client area of the list box.

This example sets the horizontal extent of a list box based on the width of the
string about to be added to the list box. The horizontal extent is set if the string is
wider than the widest string in the list box and is wider than the client area of the
list box.

DWORD dwStringExt;
HDC hdcLB;
PSTR pszString;
TEXTMETRIC tm;
WORD wlongest;
WORD wLBWidth;

dwStringExt = GetTextExtent(hdcLB, (LPSTR) pszString,
strlen(pszString)) + tm.tmAveCharWidth;

82 LB_SETITEMDATA

See Also

if ((LOWORO(dwStringExt) > wlongest) &&

}

(LOWORO(dwStringExt) > wLBWidthll {
SendOlgitemMessage(hOlg, ID_MYLISTBOX, LB_SETHORIZONTALEXTENT,

LOWORD(dwStringExt), 0L);
wlongest = LOWORD(dwStringExt);

SendDlgitemMessage(hDlg, ID_MYLISTBOX, LB_ADDSTRING, 0,
(LPARAMl ((LPCSTRl pszString));

LB_GETHORIZONTALEXTENT

LB_SETITEMDATA @J

Parameters

Return Value

Example

LB_SETITEMDATA
wParam (WPARAM) index; /* item index */
lParam = (LPARAMl dwData; /*value to associate with item*/

An application sends the LB_SETITEMDATA message to set a doubleword value
associated with the specified item in a list box.

index
Value of wParam. Specifies the zero-based index of the item.

dwData
Value of lParam. Specifies the value to be associated with the item.

The return value is LB_ERR if an error occurs.

This example associates a handle of a 64-byte memory object with each item in a
list box:

HGLOBAL
LPSTR
HWND
WPARAM

hLBData;
lpLBData;
hlistBox;
nindex;

case WM INITDIALOG:

See Also

LB_SETITEMHEIGHT 83

if ((hLBData = GlobalAlloc(GMEM_MOVEABLE, 64)))
if ((lpLBData = Globallock(hLBData))) {

. /* Store the data in the memory object. */

GlobalUnlock(hLBData);

SendMessage(hlistBox, LB_SETITEMDATA, nindex,
MAKELONG(hLBData, 0));

LB_ADDSTRING, LB_GETITEMDATA, LB_INSERTSTRING

LB_ SETITEMHEIGHT
LB_SETITEMHEIGHT
wParam CWPARAM) index; /* item index */
lParam = MAKELPARAM(cyitem, 0); /*item height*/

An application sends an LB_SETITEMHEIGHT message to set the height of
items in a list box. If the list box has the LBS_OWNERDRA WV ARIABLE style,
this message sets the height of the item specified by the wParam parameter. Other
wise, this message sets the height of all items in the list box.

Parameters index

Return Value

Example

See Also

Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRA WV ARIABLE style; otherwise, it should be set to zero.

cyltem
Value of the low-order word of lParam. Specifies the height, in pixels, of the
item.

The return value is LB_ERR if the index or height is invalid.

This example sends an LB_SETITEMHEIGHT message to set the height of the
items in a list box:

LPARAM lpmHeight;

SendDlgitemMessage(hdlg, ID_MYLISTBOX, LB_SETITEMHEIGHT,
0, lpmHeight);

LB_GETITEMHEIGHT

84 LB_SETSEL

LB_ SETSEL CI!J

Parameters

Return Value

Comments

See Also

LB_SETSEL
wParam (WPARAM) (BOOL) fSelect; /* selection flag */
lParam = MAKELPARAM(index, 0); /*item index */

An application sends an LB_SETSEL message to select a string in a multiple
selection list box.

JS elect
Value of wParam. Specifies how to set the selection. If the JS elect parameter is
TRUE, the string is selected and highlighted; ifjSelect is FALSE, the highlight
is removed and the string is no longer selected.

index
Value of the low-order word of lParam. Specifies the zero-based index of the
string to set. If the index parameter is -1, the selection is added to or removed
from all strings, depending on the value ofjSelect.

The return value is LB_ERR if an error occurs.

This message should be used only with multiple-selection list boxes.

LB_GETSEL

LB_ SETTABSTOPS

Parameters

LB_SETTABSTOPS
wParam (WPARAM) cTabs; /* number of tab stops */
lParam = (LPARAM) (int FAR*) lpTabs; /* address of tab-stop array*/

An application sends an LB_SETTABSTOPS message to set the tab-stop posi
tions in a list box.

cTabs
Value of wParam. Specifies the number of tab stops in the list box.

lpTabs
Value of lParam. Points to the first member of an array of integers containing
the tab stops, in dialog box units. The tab stops must be sorted in increasing
order; back tabs are not allowed.

Return Value

Comments

LB_SETTOPINDEX 85

The return value is nonzero if all the tabs were set; otherwise, the return value is
zero.

To respond to the LB_SETTABSTOPS message, the list box must have been
created with the LBS_USETABSTOPS style.

If the cTabs parameter is zero and the lpTabs parameter is NULL, the default tab
stop is two dialog box units.

If cTabs is 1, the edit control will have tab stops separated by the distance
specified by lpTabs.

If lpTabs points to more than a single value, a tab stop will be set for each value in
lpTabs, up to the number specified by cTabs.

A dialog box unit is a horizontal or vertical distance. One horizontal dialog box
unit is equal to one-fourth of the current dialog box base width unit. The dialog
box base units are computed based on the height and width of the current system
font. The GetDialogBaseUnits function returns the current dialog box base units,
in pixels.

LB_ SETTOPINDEX

Parameters

Return Value

Comments

LB_SETTOPINDEX
wParam (WPARAM) index; /* item index
l Pa ram = 0L; /* not used, must be zero */

An application sends an LB_SETTOPINDEX message to ensure that a particular
item in a list box is visible.

index
Value of wParam. Specifies the zero-based index of the item in the list box.

The return value is LB_ERR if an error occurs.

The system scrolls the list box so that either the specified item appears at the top
of the list box or the maximum scroll range has been reached.

86 STM_GETICON

Example

See Also

This example searches for an item in a list box that matches the string "my string"
and, if a match is found, ensures that the item is visible:

int i Index;

iindex = (int) SendMessage(hMyListbox, LB_FINDSTRING, -1,
(LPARAM) CLPCSTR) "my string");

if Ciindex != LB_ERR)
SendMessage(hMyli stbox, LB_SETTOPINDEX, (WPARAM) i Index, 0L);

LB_GETTOPINDEX

STM_ GETICON

Parameters

Return Value

Example

See Also

STM_GETICON
wParam 0;
l Pa ram = 0L;

/* not used, must be zero *I
/* not used, must be zero */

An application sends an STM_ GETICON message to retrieve the handle of the
icon associated with an icon resource.

This message has no parameters.

The return value is the icon handle if the operation is successful, or it is zero if the
icon has no associated icon resource or if an error occurred.

This example gets the handle of the icon associated with an icon resource:

HICON hicon;

hicon = CHICON) SendDlgitemMessage(hdlg, IOD_ICON,
STM_GETICON, 0, 0L);

STM_SETICON

WM_ACTIVATE 87

STM SETICON ITIJ

Parameters

Return Value

Example

See Also

STM SETI CON
wParam CWPARAMl CHICON) hicon;
lParam = 0L;

/* handle of the icon */
/* not used, must be zero */

An application sends an STM_SETICON message to associate an icon with an
icon resource.

hie on
Value ofwParam. Identifies the icon to associate with the icon resource.

The return value is the handle of the icon that was previously associated with the
icon resource, or it is zero if an error occurred.

This example associates the system-defined question-mark icon with an icon re
source:

HICON hlcon, hOldicon;

hlcon = Loadlcon((HANDLE) NULL, IDI_QUESTION);
hOldicon = (HICONl SendDlgitemMessage(hdlg, IDD_ICON,

STM_SETICON, hlcon, 0L);

STM_GETICON

WM_ ACTIVATE

Parameters

WM_ ACTIVATE
fActive = wParam; /* activation flag */
fMinimized = (BOOL) HIWORDClParam); /*minimized flag */
hwnd = CHWNDl LOWORD(lParaml; /*window handle */

The WM_ACTIV ATE message is sent when a window is being activated or
deactivated. This message is sent first to the window procedure of the main win
dow being deactivated and then to the window procedure of the main window
being activated.

fActive
Value ofwParam. Specifies whether the window is being activated or deacti
vated. It can be one of the following values:

88 WM_ACTIVATEAPP

Return Value

Comments

Example

See Also

Value

WA_INACTIVE

WA_ACTIVE

WA_CLICKACTIVE

fMinimized

Description

The window is being deactivated.

The window is being activated through some method
other than a mouse click (for example, by use of the key
board interface to select the window).

The window is being activated by a mouse click.

Value of the high-order word of lParam. Specifies the minimized state of the
window being activated or deactivated. A nonzero value indicates the window
is minimized.

hwnd
Value of the low-order word of lParam. Identifies the window being activated
or deactivated. This handle can be NULL.

An application should return zero if it processes this message.

If the window is activated with a mouse click, it also receives a
WM_MOUSEACTIV ATE message.

This example sets the input focus while processing the WM_ACTIVATE message:

case WM_ACTIVATE:

if CwParam && !HIWORDClParam))
SetFocusChwnd);

break;

WM_MOUSEACTIV ATE, WM_NCACTIV ATE

WM_ACTIVATEAPP
WM_ACTIVATEAPP
fActive = CBOOL) wParam; /* the activation/deactivation flag */
htask = CHTASK) LOWORDClParam); /*task handle */

The WM_ACTIV ATEAPP message is sent when a window is about to be acti
vated and that window belongs to a different task than the active window. The
message is sent to all top-level windows of the task being activated and to all top
level windows of the task being deactivated.

Parameters

Return Value

See Also

WM_ASKCBFORMATNAME 89

fActive
Value of wParam. Specifies whether the window is being activated or deacti
vated. A nonzero value means the window is being activated. A zero value
means the window is being deactivated.

htask
Value of the low-order word of lParam. Specifies a task handle. If the f Active
parameter is nonzero, the handle identifies the task that owns the window being
deactivated. Iff Active is zero, the handle identifies the task that owns the win
dow being activated.

An application should return zero if it processes this message.

WM_ACTIV ATE

WM_ASKCBFORMATNAME

Parameters

Return Value

Comments

See Also

WM_ASKCBFORMATNAME
wParam (WPARAMJ cbMax;
lParam = (LPARAMJ lpszFormatName;

f* maximum bytes to copy */
f* address of format name */

A clipboard viewer application sends a WM_ASKCBFORMATNAME message
to the clipboard owner when the clipboard contains the data handle of the
CF _OWNERDISPLA Y format (that is, when the clipboard owner should display
the clipboard contents).

cbMax
Value of w Pa ram. Specifies the maximum number of bytes to copy.

lpszFormatName
Value of lParam. Points to the buffer where the copy of the format name is to
be stored.

An application should return zero if it processes this message.

The clipboard owner should copy the name of the CF_ OWNERDISPLA Y format
into the specified buffer, not exceeding the maximum number of bytes.

WM_PAINTCLIPBOARD

90 WM_CANCELMODE

WM_ CANCELMODE

Parameters

Return Value

Comments

See Also

WM_CANCELMODE

The WM_CANCELMODE message is sent to inform a window to cancel any in
ternal mode. This message is sent to the focus window when a dialog box or mes
sage box is displayed, giving the focus window the opportunity to cancel modes
such as mouse capture.

This message has no parameters.

An application should return zero if it processes this message.

The DefWindowProc function processes this message by calling the Release
Capture function. DefWindowProc does not cancel any other modes.

DefWindowProc, ReleaseCapture

WM_ CHANGECBCHAIN

Parameters

Return Value

WM_CHANGECBCHAIN
hwndRemoved = CHWND) wParam;
hwndNext = CHWND) LOWORDClParam);

f* handle of removed window */
f* handle of next window */

The WM_CHANGECBCHAIN message notifies the first window in the clipboard
viewer chain that a window is being removed from the chain.

hwndRemoved
Value of wParam. Identifies the window that is being removed from the
clipboard-viewer chain.

hwndNext
Value of the low-order word of lParam. Identifies the window that follows the
window being removed from the clipboard-viewer chain.

An application should return zero if it processes this message.

WM_ CHAR 91

Comments Each window that receives the WM_CHANGECBCHAIN message should call
the SendMessage function to pass the message on to the next window in the
clipboard-viewer chain. If the window being removed is the next window in the
chain, the window specified by the hwndNext parameter becomes the next window
and clipboard messages are passed on to it.

See Also ChangeClipboardChain, SendMessage

WM_ CHAR [EJ

Parameters

WM_ CHAR
nVKey = wParam; /* virtual-key code*/

/* key data */ dwKeyData = (DWORD) lParam;

The WM_ CHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. The WM_ CHAR message contains the
value of the key being pressed or released.

nVKey
Value of wParam. Specifies the virtual-key code value of the key.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

24

25-26
27-28
29

30

31

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is I if the key is down before
the message is sent, or it is 0 ifthe key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

92 WM_ CHARTOITEM

Return Value

Comments

See Also

An application should return zero if it processes this message.

Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word
of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division(/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_KEYDOWN, WM_KEYUP

WM_ CHARTOITEM

Parameters

Return Value

WM_ CHARTO ITEM
nKey = wParam;
hwndlistBox = (HWND) LOWORD(lParam);
iCaretPos = HIWORD(lParam);

I* key value */
/*list box handle*/
/* caret position *I

The WM_CHARTOITEM message is sent by a list box with the
LBS_ WANTKEYBOARDINPUT style to its owner in response to a WM_ CHAR
message.

nKey
Value of wParam. Specifies the value of the key the user pressed.

hwndListBox
Value of the low-order word of lParam. Identifies the list box.

iCaretPos
Value of the high-order word of lParam. Specifies the current caret position.

The return value specifies the action that the application performed in responst:'
the message. A return value of -2 indicates that the application handled all aspects
of selecting the item and requires no further action by the list box. return value
of -1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an
item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

Comments

See Also

WM_CHOOSEFONT_GETLOGFONT 93

Only owner-drawn list boxes that do not have the LBS_HASSTRINGS style can
receive this message.

WM_ CHAR, WM_ VKEYTOITEM

WM CHILDACTIVATE

Parameters

Return Value

See Also

WM_ CH I LOA CTI VA TE

The WM_CHILDACTIVATE message is sent to a multiple document interface
(MDI) child window when the user clicks the window's title bar or when the win
dow is activated, moved, or sized.

This message has no parameters.

An application should return zero if it processes this message.

MoveWindow, SetWindowPos

WM_ CHOOSEFONT _ GETLOGFONT

Parameters

Return Value

WM_CHOOSEFONT_GETLOGFONT
wParam = 0;
lplf = (LPLOGFONT) lParam;

/* not used, must be zero */
/* address of a LOGFONT structure */

An application sends a WM_CHOOSEFONT_GETLOGFONT message to the
Font dialog box created by the ChooseFont function to retrieve the current
LOGFONT structure.

lplf
Points to a LOGFONT structure that receives information about the current
logical font.

This message does not return a value.

94 WM_ CLEAR

Comments An application uses this message to retrieve the LOGFONT structure while the
Font dialog box is open. When the user closes the dialog box, the ChooseFont
function receives information about the LOGFONT structure.

See Also WM_GETFONT

WM_ CLEAR lliJ

Parameters

Return Value

Comments

Example

See Also

WM CLEAR
wParam 0;
l Pa ram = 0L;

f* not used, must be zero *f
f* not used, must be zero */

An application sends a WM_ CLEAR message to an edit control or combo box to
delete (clear) the current selection, if any, in the edit control.

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

The deletion performed by the WM_ CLEAR message can be undone by sending
the edit control an EM_ UNDO message.

To delete the current selection and place the deleted contents into the clipboard,
use the WM_ CUT message.

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_ CLEAR message to delete the contents of the
edit control.

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
WM_ CLEAR, 0, 0L);

EM_UNDO, WM_COPY, WM_CUT, WM_PASTE

WM_ COMMAND 95

WM_ CLOSE CE]

Parameters

Return Value

Example

See Also

WM CLOSE
wParam 0;
1 Pa ram = 0L;

/* not used, must be zero */
/* not used, must be zero */

The WM_ CLOSE message is sent as a signal that a window or an application
should terminate. An application can prompt the user for confirmation prior to
destroying the window by processing the WM_ CLOSE message and calling the
Destroy Window function only if the user confirms the choice.

This message has no parameters.

An application should return zero if it processes this message.

This example processes a WM_ CLOSE message and requests confirmation from
the user before terminating the application:

case WM_CLOSE:
if (MessageBox(hwnd, "Are you sure you want to exit?", "MyApp",

MB_ ICONQUESTION I MB_OKCANCEL) == IDOK)
DestroyWindow(hwnd);

return 0L;

DestroyWindow, PostQuitMessage WM_DESTROY, WM_ QUIT

WM_ COMMAND
WM_ COMMAND
iditem = wParam; /* control or menu item identifier */
hwndCtl = (HWND) LOWORD(lParam); /* handle of control */
wNotifyCode = HIWORD(lParam); /*notification message */

The WM_ COMMAND message is sent to a window when the user selects an item
from a menu, when a control sends a notification message to its parent window, or
when an accelerator keystroke is translated.

96 WM_ COMMAND

Parameters

Return Value

Comments

Example

See Also

id/tern
Value of wParam. Specifies the identifier of the menu item or control.

hwndCtl
Value of the low-order word of lParam. Identifies the control sending the mes
sage if the message is from a control. Otherwise, this parameter is zero.

wNotifyCode
Value of the high-order word of lParam. Specifies the notification message if
the message is from a control. If the message is from an accelerator, this
parameter is 1. If the message is from a menu, this parameter is 0.

An application should return zero if it processes this message.

Accelerator keystrokes that are defined to select items from the System menu
(sometimes referred to as the Control menu) are translated into
WM_SYSCOMMAND messages.

If an accelerator keystroke that corresponds to a menu item occurs when the win
dow that owns the menu is minimized, no WM_ COMMAND message is sent.
However, if an accelerator keystroke occurs that does not match any of the items
on the window's menu or on the System menu, a WM_ COMMAND message is
sent even if the window is minimized.

This example creates an Options dialog box in response to a WM_ COMMAND
message sent as a result of a menu selection:

FARPROC l pProc;

case WM_COMMANO:
switch (wParam) {

case IDM_OPTIONS:

}

break;

lpProc = MakeProclnstance(OptionsProc, hlnstance);
DialogBox(hlnstance, "OptionsBox", hwnd, lpProc);
FreeProclnstance(lpProc);
break;

I* Process other menu commands. *I

WM_SYSCOMMAND

WM_COMMNOTIFY 97

WM_ COMMNOTIFY CID

Parameters

Return Value

Comments

See Also

WM_ COMMNOTI FY
idDevice = wParam; /* communication-device ID */
nNotifyStatus = LOWORD(lParam); /*notification-status flag*/

The WM_COMMNOTIFY message is posted by a communication device driver
whenever a COM port event occurs. The message indicates the status of a win
dow's input or output queue.

idDevice
Value of wParam. Specifies the identifier of the communication device that is
posting the notification message.

nNotifyStatus
Value of the low-order word of !Param. Specifies the notification status in the
low-order word. The notification status may be one or more of the following
flags:

Value

CN_EVENT

CN_RECEIVE

CN_TRANSMIT

Meaning

Indicates that an event has occurred that was enabled in the
event word of the communication device. This event was
enabled by a call to the SetCommEventMask function. The
application should call the GetCommEventMask function to
determine which event occurred and to clear the event.

Indicates that at least cb WriteNotify bytes are in the input
queue. The cb Write Notify parameter is a parameter of the
EnableCommNotification function.

Indicates that fewer than cbOutQueue bytes are in the output
queue waiting to be transmitted. The cbOutQueue parameter
is a parameter of the EnableCommNotification function.

An application should return zero if it processes this message.

This message is sent only when the event word changes for the communication
device. The application that sends WM_COMMNOTIFY must clear each event to
be sure of receiving future notifications.

EnableCommNotification

98 WM_ COMPACTING

WM_ COMPACTING

Parameters

Return Value

Comments

See Also

WM_ COM PAC TI NG
wCompactRatio = wParam; I* compacting ratio */

The WM_ COMPACTING message is sent to all top-level windows when Win
dows detects that more than 12.5 percent of system time over a 30- to 60-second
interval is being spent compacting memory. This indicates that system memory is
low.

wCompactRatio
Value of wParam. Specifies the ratio of central processing unit (CPU) time cur
rently spent by Windows compacting memory to CPU time currently spent by
Windows performing other operations. For example, Ox8000 represents 50 per
cent of CPU time spent compacting memory.

An application should return zero if it processes this message.

When an application receives this message, it should free as much memory as
possible, taking into account the current level of activity of the application and the
total number of applications running with Windows. The application can call the
GetNumTasks function to determine how many applications are running.

GetNumTasks

WM_ COMPAREITEM
WM_ COMPARE ITEM
idCtl wParam; /* control identifier */
lpcis = (canst COMPAREITEMSTRUCT FAR*) lParam; /* structure */

The WM_COMPAREITEM message determines the relative position of a new
item in the sorted list of an owner-drawn combo box or list box. Whenever the ap
plication adds a new item, Windows sends this message to the owner of a combo
box or list box created with the CBS_SORT or LBS_SORT style.

WM_ COMPAREITEM 99

Parameters idCtl

Return Value

Comments

See Also

Value of wParam. Specifies the identifier of the control that sent the
WM_ COMPAREITEM message.

lpcis
Value of lParam. Points to a COMPAREITEMSTRUCT data structure that
contains the identifiers and application-supplied data for two items in the
combo box or list box. The COMPAREITEMSTRUCT structure has the fol
lowing form:

typedef struct tagCOMPAREITEMSTRUCT
UINT CtlType;
UINT Ctl ID;
HWND hwnd Item;
UINT itemIDl;
DWORD itemDatal;
UINT itemID2;
DWORD itemData2;

} COMPAREITEMSTRUCT;

/* cis */

The return value indicates the relative position of the two items. It may be any of
the following values:

Value

-1

0

Meaning

Item 1 precedes item 2 in the sorted order.

Item 1 and item 2 are equivalent in the sorted order.

Item 1 follows item 2 in the sorted order.

When the owner of an owner-drawn combo box or list box receives this
message, the owner returns a value indicating which of the items specified in the
COMPAREITEMSTRUCT structure should appear before the other. Typically,
Windows sends this message several times until it determines the exact position
for the new item.

COMPAREITEMSTRUCT

100 WM_ COPY

WM_ COPY

Parameters

Return Value

Example

See Also

WM_ COPY
wParam 0;
l Pa ram = 0L;

/* not used, must be zero *I
/* not used, must be zero *I

An application sends a WM_ COPY message to an edit control or combo box to
copy the current selection to the clipboard in CF_ TEXT format.

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_COPY message to copy the contents of the edit
control to the clipboard.

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONG(0, -1));

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
WM_COPY, 0, 0L);

WM_CLEAR, WM_CUT, WM_PASTE

WM_ CREATE

Parameters

WM CREATE
lpcs = (CREATESTRUCT FAR*) lParam; /* structure address

The WM_ CREA TE message is sent when an application requests that a window
be created by calling the CreateWindowEx or Create Window function. The win
dow procedure for the new window receives this message after the window is
created but before the window becomes visible. The message is sent to the win
dow before the CreateWindowEx or Create Window function returns.

lpcs
Value of lParam. Points to a CREATESTRUCT data structure containing in
formation about the window being created. The members of the CREA TE
STRUCT structure are identical to the parameters of the CreateWindowEx
function.

Return Value

See Also

WM_ CTLCOLOR 101

The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT
void FAR* lpCreateParams;
HINSTANCE hlnstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int ex;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

CREATESTRUCT;

If an application processes this message, it should return 0 to continue creation of
the window. If the application returns -1, the window will be destroyed and the
CreateWindowEx or Create Window function will return a NULL handle.

Create Window, Create Window Ex, WM_NCCREATE

WM_ CTLCOLOR
WM_CTLCOLOR
hdcChild = (HOC) wParam;
hwndChild = CHWNO) LOWORDClParam);
nCtlType = (int) HIWORO(lParam);

f* child-window display context */
f* handle of child window */
f* type of control

The WM_CTLCOLOR message is sent to the parent of a system-defined control
class or a message box when the control or message box is about to be drawn. The
following controls send this message:

Combo boxes
Edit controls
List boxes
Buttons
Static controls
Scroll bars

102 WM_CTLCOLOR

Parameters

Return Value

Comments

Example

hdcChild
Value of wParam. Identifies the display context for the child window.

hwndChild
Value of the low-order word of lParam. Identifies the child window.

nCtlType
Value of the high-order word of lParam. Specifies the type of the control. This
parameter can be one of the following values:

Value Meaning

CTLCOLOR_BTN Button

CTLCOLOR_DLG Dialog box

CTLCOLOR_EDIT Edit control

CTLCOLOR_LISTBOX List box

CTLCOLOR_MSGBOX Message box

CTLCOLOR_SCROLLBAR Scroll bar

CTLCOLOR_STATIC Static control

If an application processes the WM_CTLCOLOR message, it must return a handle
to the brush that is to be used for painting the control background or it must return
NULL.

To change the text color, the application should call the SetTextColor function
with the desired red, green, and blue (RGB) values.

To change the background color of a single-line edit control, the application must
set the brush handle in both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX
message codes, and the application must call the SetBkColor function in response
to the CTLCOLOR_EDIT code.

The return value from this message has no effect on a button with the
BS_PUSHBUTTON or BS_DEFPUSHBUTTON style.

This example creates a green brush and passes the handle of the brush to a single
line edit control in response to a WM_CTLCOLOR message:

static HBRUSH hbrGreen;

switch(msg) {
case WM_INITDIALOG:

/* Create a green brush */

hbrGreen = CreateSolidBrush(RGB(0, 255, 0));
return TRUE;

See Also

WM_ CUT

Parameters

Return Value

Comments

WM_ CUT 103

case WM_CTLCOLOR:
switch(HIWORD(lParam)) {

case CTLCOLOR_EDIT:

/* Set text to white and background to green */

SetTextColor((HDC) wParam, RGB(255, 255, 255));
SetBkColor((HDC) wParam, RGB(0, 255, 0));
return hbrGreen;
break;

case CTLCOLOR_MSGBOX:

/*
* For single-line edit controls, this code must be
*processed so that the background color of the format
* rectangle will also be painted with the new color.
*/

return hbrGreen;

return (HBRUSH) NULL;

SetBkColor

WM_ CUT
wParam
lParam

0.
'

0L;
/* not used, must be zero */
/* not used, must be zero */

An application sends a WM_ CUT message to an edit control or combo box to de
lete (cut) the current selection, if any, in the edit control and copy the deleted text
to the clipboard in CF _TEXT format.

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

An EM_ UNDO message can be sent to the edit control to undo the deletion per
formed by the WM_ CUT message.

104 WM_DDE_ACK

Example

See Also

To delete the current selection without placing the deleted text onto the clipboard,
use the WM_ CLEAR message.

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_ CUT message to delete the contents of the edit
control and to copy the deleted text to the clipboard.

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, 0, MAKELONGC0, -1));

SendDlgitemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, 0, 0L);

WM_CLEAR, WM_COPY, WM_PASTE

WM_DDE_ACK
#include <dde.h>

WM_DDLACK
wParam CWPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(wlow, wHigh); /*depending on received message*/

The WM_DDE_ACK message notifies an application of the receipt and pro
cessing of a WM_DDE_INITIATE, WM_DDE_EXECUTE, WM_DDE_DAT A,
WM_DDE_ADVISE, WM_DDE_UNADVISE, or WM_DDE_POKE message,
and in some cases, of a WM_DDE_REQUEST message.

Parameters hwnd
Value of wParam. Specifies the handle of the window posting the message.

wLow
Value of the low-order word of lParam. Specifies data as follows, depending
on the message to which the WM_DDE_ACK message is responding:

Message

WM_DDE_INITIATE

WM_DDE_EXECUTE
and all other messages

Parameter

aApplication

wStatus

Description

An atom that contains the name of
the replying application.

A series of flags that indicate the
status of the response.

Return Value

Comments

WM_DDE_ACK 105

wHigh
Value of high-order word of lParam. Specifies data as follows, depending on
the message to which the WM_DDE_ACK message is responding:

Message Parameter

WM_DDE_INITIATE aTopic

WM_DDE_EXECUTE hCommands

All other messages alt em

This message does not return a value.

Description

An atom that contains the topic with
which the replying server window is
associated.

A handle that identifies the data item
containing the command string.

An atom that specifies the data item
for which the response is sent.

The wStatus word consists of a DDEACK data structure. The DDEACK structure
has the following form:

#include <dde.h>

typedef struct tagDDEACK /* ddeack */
WORD bAppReturnCode:S,

reserved:6,
fBusy:l,
fAck: 1;

DDEACK;

For a full description of this structure, see Chapter 3, "Structures."

Posting
Except in response to the WM_DDE_INITIATE message, the application posts
the WM_DDE_ACK message by calling the PostMessage function, not the Send
Message function. When responding to WM_DDE_INITIATE, the application
sends the WM_DDE_ACK message by calling SendMessage.

When acknowledging any message with an accompanying altem atom, the applica
tion posting WM_DDE_ACK can either reuse the altem atom that accompanied
the original message or delete it and create a new one.

When acknowledging WM_DDE_EXECUTE, the application that posts
WM_DDE_ACK should reuse the hCommands object that accompanied the origi
nal WM_DDE_EXECUTE message.

106 WM_DDE_ADVISE

See Also

If an application has initiated the termination of a conversation by posting
WM_DDE_TERMINATE and is awaiting confirmation, the waiting application
should not acknowledge (positively or negatively) any subsequent messages sent
by the other application. The waiting application should delete any atoms or
shared memory objects received in these intervening messages (but should not de
lete the atoms in response to the WM_DDE_ACK message).

Receiving
The application that receives WM_DDE_ACK should delete all atoms accompany
ing the message.

If the application receives WM_DDE_ACK in response to a message with an
accompanying hData object, the application should delete the hData object.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_ADVISE message, the application should delete the hOptions object
posted with the original WM_DDE_ADVISE message.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_EXECUTE message, the application should delete the hCommands
object posted with the original WM_DDE_EXECUTE message.

DDEACK, PostMessage, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_INITIATE, WM_DDE_POKE,
WM_DDE_REQUEST, WM_DDE_TERMINATE, WM_DDE_UNADVISE

WM_ DOE_ ADVISE
1fi ncl ude <dde. h>

WM_DDE_ADVISE
wParam (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(hOptions, alteml; /*send options and data item*/

A dynamic data exchange (DOE) client application posts the WM_DDE_ADVISE
message to a DOE server application to request the server to supply an update for
a data item whenever it changes.

WM_ DDE_ADVISE 107

Parameters hwnd

Return Value

Comments

Value ofwParam. Identifies the sending window.

hOptions
Value of the low-order word of lParam. Specifies a handle of a global memory
object that specifies how the data is to be sent.

altem
Value of the high-order word of lParam. Specifies the data item being re
quested.

This message does not return a value.

The global memory object identified by the hOptions parameter consists of a DDE
ADVISE data structure. The DDEADVISE data structure has the following form:

#include <dde.h>

typedef struct tagDDEADVISE
WORD reserved:14,

fDeferUpd:l,
fAckReq:l;

short cf Format;
DDEADVISE;

/* ddeadv */

For a full description of this structure, see Chapter 3, "Structures."

If an application supports more than one clipboard format for a single topic and
item, it can post multiple WM_DDE_ADVISE messages for the topic and item,
specifying a different clipboard format with each message.

Posting
The application posts the WM_DDE_ADVISE message by calling the Post
Message function, not the SendMessage function.

The application allocates hOptions by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative WM_DDE_ACK
message, the posting (client) application must delete the hOptions object.

108 WM_ DOE_ DATA

See Also

Receiving
The application posts the WM_DDE_ACK message to respond positively or nega
tively. When posting WM_DDE_ACK, the application can reuse the altem atom
or delete it and create a new one. If the WM_DDE_ACK message is positive, the
application should delete the hOptions object; otherwise, the application should
not delete the object.

DDEADVISE, GlobalAddAtom, GlobalAlloc, PostMessage,
WM_DDE_DATA, WM_DDE_REQUEST

WM_ DDE_ DATA
#include <dde.h>

WM_DDE_DATA
wParam (WPARAM) hwnd;
lParam = MAKELPARAM(hData, altem);

f* handle of posting window */
/* memory object and data item */

A dynamic data exchange (DDE) server application posts a WM_DDE_DAT A
message to a DDE client application to pass a data item to the client or to notify
the client of the availability of a data item.

Parameters hwnd

Return Value

Comments

Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of lParam. Identifies the global memory object
containing the data and additional information. The handle should be set to
NULL if the server is notifying the client that the data item value has changed
during a warm link. A warm link is established when the client sends a
WM_DDE_ADVISE message with the fDeferUpd bit set.

altem
Value of the high-order word of lParam. Specifies the data item for which data
or notification is sent.

This message does not return a value.

The global memory object identified by the hData parameter consists of a DDE
DATA structure. The DDEDATA structure has the following form:

#include <dde.h>

typedef struct tagDDEDATA
WORD unused:12,

fResponse:l,
fRelease:l,
reserved:l,
fAckReq:l;

short cf Format;
BYTE Value[l];

} DDEDATA;

WM_DDE_DATA 109

f* ddedat */

For a full description of this structure, see Chapter 3, "Structures."

Posting
The application posts the WM_DDE_DAT A message by calling the PostMessage
function, not the SendMessage function.

The application allocates hData by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative WM_DDE_ACK
message, the posting (server) application must delete the hData object.

If the posting (server) application sets the fRelease member of the DDEDATA
structure to FALSE, the posting application is responsible for deleting hData upon
receipt of either a positive or negative acknowledgment.

The application should not set both the fAckReq and fRelease members of the
DDEDATA structure to FALSE. If both members are set to FALSE, it is difficult
for the posting (server) application to determine when to delete hData.

Receiving
If fAckReq is TRUE, the application posts the WM_DDE_ACK message to re
spond positively or negatively. When posting WM_DDE_ACK, the application
can reuse the altem atom or delete it and create a new one.

If fAckReq is FALSE, the application deletes the alt em atom.

If the posting (server) application specified hData as NULL, the receiving (client)
application can request the server to send the actual data by posting a
WM_DDE_REQUEST message.

After processing a WM_DDE_DAT A message in which hData is not NULL, the
application should delete hData unless either of the following conditions is true:

110 WM_ DOE_ EXECUTE

See Also

• The fRelease member is FALSE.

• The fRelease member is TRUE, but the receiving (client) application responds
with a negative WM_DDE_ACK message.

DDEDATA, GlobalAddAtom, GlobalAlloc, PostMessage, WM_DDE_ACK,
WM_DDE_ADVISE, WM_DDE_POKE, WM_DDE_REQUEST

WM_ DOE_ EXECUTE
#include <dde.h>

WM_ DD E_ EX EC UTE
wParam (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(reserved, hCommands); /*commands to execute */

A dynamic data exchange (DDE) client application posts a
WM_DDE_EXECUTE message to a DDE server application to send a string to
the server to be processed as a series of commands. The server application is ex
pected to post a WM_DDE_ACK message in response.

Parameters hwnd

Return Value

Comments

Value ofwParam. Identifies the sending window.

reserved
Value of the low-order word of lParam. Reserved; must be zero.

hCommands
Value of the high-order word of lParam. Identifies a global memory object con
taining the command(s) to be executed.

This message does not return a value.

The command string is a null-terminated string, consisting of one or more opcode
strings enclosed in single brackets ([]) and separated by spaces.

Each opcode string has the following syntax. The parameters list is optional.

opcode parameters

The opcode is any application-defined single token. It cannot include spaces, com
mas, parentheses, or quotation marks.

See Also

WM_ ODE_ INITIATE 111

The parameters list can contain any application-defined value or values. Multiple
parameters are separated by commas, and the entire parameter list is enclosed in
parentheses. Parameters cannot include commas or parentheses except inside a
quoted string. If a bracket or parenthesis character is to appear in a quoted string, it
must be doubled-for example, "((".

The following are valid command strings:

[connect][download(queryl,results.txt)J[disconnect]
[query("sales per employee for each district")]
[open("sample.xlm")J[run("rlcl")J

Posting
The application posts the WM_DDE_EXECUTE message by calling the Post
Message function, not the SendMessage function.

The application allocates hCommands by calling the GlobalAlloc function with
the GMEM_DDESHARE option.

When processing a WM_DDE_ACK message posted in reply to a
WM_DDE_EXECUTE message, the application that posted the original
WM_DDE_EXECUTE message must delete the hCommands object sent back in
the WM_DDE_ACK message.

Receiving
The application posts the WM_DDE_ACK message to respond positively or nega
tively, reusing the hCommands object.

PostMessage, WM_DDE_ACK

WM_ DOE_ INITIATE
#include <dde.h>

WM_ DOE_ INITIATE
wParam (WPARAMl hwnd; /* sending window's handle */
lParam = MAKELPARAM(aApplication, aTopic); /*application and topic */

A dynamic data exchange (DDE) client application sends a WM_DDE_INITIATE
message to initiate a conversation with server applications responding to the
specified application and topic names.

112 WM_ DOE_ INITIATE

Parameters

Return Value

Comments

Upon receiving this message, all server applications with names that match the
aApplication application and that support the aTopic topic are expected to
acknowledge it (see the WM_DDE_ACK message).

hwnd
Value of wParam. Identifies the sending window.

aApplication
Value of the low-order word of lParam. Specifies the name of the application
with which a conversation is requested. The application name cannot contain
slash marks (/) or backslashes (\). These characters are reserved for future use
in network implementations. If aApplication is NULL, a conversation with all
applications is requested.

a Topic
Value of the high-order word of lParam. Specifies the topic for which a conver
sation is requested. If the topic is NULL, a conversation for all available topics
is requested.

This message does not return a value.

If aApplication is NULL, any application can respond. If aTopic is NULL, any
topic is valid. Upon receiving a WM_DDE_INITIATE request with the aTopic
parameter set to NULL, an application is expected to send a WM_DDE_ACK mes
sage for each of the topics it supports.

Sending
The application sends the WM_DDE_INITIA TE message by calling the Send
Message function, not the PostMessage function. The application broadcasts the
message to all windows by setting the first parameter of SendMessage to -1, as
shown:

SendMessage(-1, WM_DDE_INITIATE, hwndClient, MAKELONG(aApp, aTopic));

If the application has already obtained the window handle of the desired server, it
can send WM_DDE_INITIATE directly to the server window by passing the
server's window handle as the first parameter of SendMessage.

The application allocates aApplication and aTopic by calling GlobalAddAtom.

When SendMessage returns, the application deletes the aApplication and aTopic
atoms.

See Also

WM_ ODE_ POKE 113

Receiving
To complete the initiation of a conversation, the application responds with one or
more WM_DDE_ACK messages, where each message is for a separate topic.
When sending a WM_DDE_ACK message, the application creates new
aApplication and aTopic atoms; it should not reuse the atoms sent with the
WM_DDE_INITIATE message.

GlobalAddAtom, SendMessage, WM_DDE_ACK

WM_DDE_POKE

Parameters

#include <dde.h>

WM_ DOE_ POKE
wParam (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(hData, alteml; /*data handle and item *I

A dynamic data exchange (ODE) client application posts a WM_DDE_POKE
message to a server application. A client uses this message to request the server to
accept an unsolicited data item. The server is expected to reply with a
WM_DDE_ACK message indicating whether it accepted the data item.

hwnd
Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of lParam. Identifies the data being posted. The
handle identifies a global memory object that contains a DDEPOKE data struc
ture. The DDEPOKE structure has the following form:

#include <dde.h>

typedef struct tagDDEPOKE { /* ddepok */
WORD unused:l3,

fRelease:l,
fReserved:2;

short cfFormat;
BYTE Val ue[l];

} DDEPOKE;

114 WM_DDE_POKE

Return Value

Comments

See Also

For a full description of this structure, see Chapter 3, "Structures."

alt em
Value of the high-order word of lParam. Specifies a global atom that identifies
the data item being offered to the server.

This message does not return a value.

Posting
The posting (client) application should do the following:

• Use the PostMessage function to post the WM_DDE_POKE message.

• Use the GlobalAlloc function with the GMEM_DDESHARE option to allocate
memory for the data.

• Use the GlobalAddAtom function to create the atom for the data item.

• Delete the global memory object if the server application responds with a nega
tive WM_DDE_ACK message.

• Delete the global memory object if the client has set the fRelease member of
the DDEPOKE structure to FALSE and the server responds with either a posi
tive or negative WM_DDE_ACK.

Receiving
The receiving (server) application should do the following:

• Post the WM_DDE_ACK message to respond positively or negatively. When
posting WM_DDE_ACK, reuse the data-item atom or delete it and create a new
one.

• Delete the global memory object after processing WM_DDE_POKE unless
either the fRelease flag was set to FALSE or the fRelease flag was set to
TRUE but the server has responded with a negative WM_DDE_ACK message.

DDEPOKE, GlobalAlloc, PostMessage, WM_DDE_ACK, WM_DDE_DAT A

WM_ ODE_ REQUEST 115

WM_ DOE_ REQUEST ~

#include <dde.h>

WM_DDE_REQUEST
wParam (WPARAM) hwnd; /* handle of posting window */
lParam = MAKELPARAM(cfFormat, altem); /* clipboard format and item*/

A dynamic data exchange (DDE) client application posts a WM_DDE_REQUEST
message to a DDE server application to request the value of a data item.

Parameters hwnd

Return Value

Comments

See Also

Value of wParam. Identifies the sending window.

cfFormat
Value of the low-order word of ZParam. Specifies a standard or registered clip
board format number.

alt em
Value of the high-order word of ZParam. Specifies which data item is being re
quested from the server.

This message does not return a value.

Posting
The application posts the WM_DDE_REQUEST message by calling the Post
Message function, not the SendMessage function.

The application allocates altem by calling the GlobalAddAtom function.

Receiving
If the receiving (server) application can satisfy the request, it responds with a
WM_DDE_DAT A message containing the requested data. Otherwise, it responds
with a negative WM_DDE_ACK message.

When responding with either a WM_DDE_DAT A or WM_DDE_ACK message,
the application can reuse the altem atom or delete it and create a new one.

GlobalAddAtom, PostMessage, WM_DDE_ACK

116 WM_ ODE_ TERMINATE

WM_ DDE_ TERMINATE

Parameters

Return Value

Comments

See Also

#include <dde.h>

WM_ DOE_ TERMINATE
wParam (WPARAM) hwnd; /* handle of posting window */
lParam = 0L; /* not used, must be zero */

A dynamic data exchange (DDE) application (client or server) posts a
WM_DDE_TERMINATE message to terminate a conversation.

hwnd
Value of wParam. Identifies the sending window.

This message does not return a value.

Posting
The application posts the WM_DDE_TERMINATE message by calling the Post
Message function, not the SendMessage function.

While waiting for confirmation of the termination, the posting application should
not acknowledge any other messages sent by the receiving application. If the post
ing application receives messages (other than WM_DDE_ TERMINATE) from the
receiving application, it should delete any atoms or shared memory objects accom
panying the messages.

Receiving
The application responds by posting a WM_DDE_TERMINATE message.

PostMessage

WM_DDE_UNADVISE 117

WM_ DOE_ UNADVISE IT!]

#include <dde.h>

WM_DDE_UNADVISE
wParam (WPARAM) hwnd;
lParam = MAKELPARAM(cfFormat, altem);

/* handle of posting window */
/*clipboard format and item */

A dynamic data exchange (DDE) client application posts a
WM_DDE_UNADVISE message to inform a server application that
the specified item or a particular clipboard format for the item should no
longer be updated. This terminates the warm or hot link for the specified item.

Parameters hwnd

Reiurn Value

Comments

See Also

Value ofwParam. Identifies the sending window.

cfFormat
Value of the low-order word of ZParam. Specifies the clipboard format of the
item for which the update request is being retracted. When the cfFormat
parameter is NULL, all active WM_DDE_ADVISE conversations for the item
are to be terminated.

alt em
Value of the high-order word of ZParam. Specifies the item for which
the update request is being retracted. When altem is NULL, all active
WM_DDE_ADVISE conversations associated with the client are to be
terminated.

This message does not return a value.

Posting
The application posts the WM_DDE_UNADVISE message by calling the Post
Message function, not the SendMessage function.

The application allocates a/tern by calling the GlobalAddAtom function.

Receiving
The application posts the WM_DDE_ACK message to respond positively or nega
tively. When posting WM_DDE_ACK, the application can reuse the altem atom
or delete it and create a new one.

GlobalAddAtom, PostMessage, WM_DDE_ACK

118 WM_DEADCHAR

WM_ DEADCHAR

Parameters

Return Value

Comments

WM_ DEADCHAR
ch Dead Key wParam;
dwKeyData = (DWORD) lParam;

/* dead-key character */
/* key data */

The WM_DEADCHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. It specifies the character value of a
dead key. A dead key is a key, such as the umlaut (double-dot) character, that is
combined with other characters to form a composite character. For example, the
umlaut-0 character consists of the dead key, umlaut, and the 0 key.

chDeadKey
Value of wParam. Specifies the dead-key character value.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

24

25-26
27-28
29

30

31

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

An application should return zero if it processes this message.

An application typically uses the WM_DEADCHAR message to give the user
feedback about each key pressed. For example, an application can display the
accent in the current character position without moving the caret.

Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word

See Also

WM_ DELETEITEM 119

of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_KEYDOWN

WM DELETEITEM
WM_ DELETEITEM
idCtl wParam; /* control identifier */
lpdis = (const DELETEITEMSTRUCT FAR*) lParam; /*structure */

The WM_DELETEITEM message is sent to the owner of an owner-drawn list box
or combo box when the list box or combo box is destroyed or when items are re
moved by the LB_DELETESTRING, LB_RESETCONTENT,
CB_DELETESTRING, or CB_RESETCONTENT message.

Parameters idCtl

Return Value

See Also

Value ofwParam. Specifies the identifier of the control that sent the
WM_DELETEITEM message.

lpdis
Value of lParam. Points to a DELETEITEMSTRUCT structure that contains
information about the item deleted from the list box. The DELETEITEM
STRUCT structure has the following form:

typedef struct tagDELETEITEMSTRUCT {
UINT CtlType;
UINT Ctl ID;
UINT itemID;
HWND hwndltem;
DWORD itemData;

} DELETEITEMSTRUCT;

/*deli*/

An application should return TRUE if it processes this message.

CB_DELETESTRING, CB_RESETCONTENT, LB_DELETESTRING,
LB_RESETCONTENT

120 WM_ DESTROY

WM_ DESTROY

Parameters

Return Value

Comments

Example

See Also

WM_ DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is sent
to the window procedure of the window being destroyed after the window is re
moved from the screen.

This message is sent first to the window being destroyed and then to the child win
dows as they are destroyed. During the processing of the WM_DESTROY mes
sage, it can be assumed that all child windows still exist.

This message has no parameters.

An application should return zero if it processes this message.

If the window being destroyed is part of the clipboard-viewer chain (set by calling
the SetClipboardViewer function), the window must remove itself from the
clipboard-viewer chain by calling the ChangeClipboardChain function before
returning from the WM_DESTROY message.

This example processes the WM_DESTROY message by calling the PostQuit
Message function:

case WM_ DESTROY:
PostQuitMessage(0);
return 0L;

ChangeClipboardChain, DestroyWindow, PostQuitMessage, SetClipboard
Viewer, WM_CLOSE

WM_ DESTROYCLIPBOARD

Parameters

WM_DESTROYCLIPBOARD

The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when
the clipboard is emptied by a call to the EmptyClipboard function.

This message has no parameters.

WM_DRAWCLIPBOARD 121

Return Value An application should return zero if it processes this message.

See Also EmptyClipboard

WM_ DEVMODECHANGE ~

Parameters

Return Value

Comments

See Also

WM_DEVMODECHANGE
lpszDev = (LPCSTR) lParam; /* address of device name *I

The WM_DEVMODECHANGE message is sent to all top-level windows when
the default device-mode settings have changed.

lpszDev
Value of lParam. Points to the device name specified in the Windows initializa
tion file, WIN.IN!.

An application should return zero if it processes this message.

Applications that receive this message may reinitialize their device-mode settings.
Applications that use the ExtDeviceMode function to save and restore device set
tings typically do not process this message.

This message is not sent when the user changes the default printer from Control
Panel. In this case, a WM_ WININICHANGE message is generated.

ExtDeviceMode, WM_ WININICHANGE

WM_ DRAWCLIPBOARD
WM_ DRAWCLI PBOARD

The WM_DRA WCLIPBOARD message is sent to the first window in the
clipboard-viewer chain when the contents of the clipboard change. Only applica
tions that have joined the clipboard-viewer chain by calling the SetClipboard
Viewer function need to process this message.

122 WM_DRAWITEM

Parameters

Return Value

Comments

See Also

This message has no parameters.

An application should return zero if it processes this message.

Each window that receives the WM_DRA WCLIPBOARD message should call
the SendMessage function to pass the message on to the next window in the clip
board-viewer chain. The handle of the next window is returned by the Set
ClipboardViewer function; the handle may be modified in response to a
WM_ CHANGECBCHAIN message.

SendMessage, SetClipboardViewer, WM_ CHANGECBCHAIN

WM_ DRAWITEM
WM_ DRAW ITEM
idCtl (int) wParam; /* control identifier */
lpdis = (canst DRAWITEMSTRUCT FAR*) lParam; /* structure */

The WM_DRA WITEM message is sent to the owner of an owner-drawn button,
combo box, list box, or menu when a visual aspect of the button, combo box, list
box, or menu has changed.

Parameters idCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_DRA WITEM message. This parameter is zero if the message was sent by
a menu.

lpdis
Value of lParam. Points to a DRA WITEMSTRUCT structure that contains in
formation about the item to be drawn and the type of drawing required. The
DRA WITEMSTRUCT structure has the following form:

typedef struct tagDRAWITEMSTRUCT { /* ditm */
UINT CtlType;
UINT CtlID;
U INT i temID;
UINT itemAction;
UINT itemState;
HWND hwnd Item;
HOC hDC;
RECT re Item;
DWORD itemData;

} DRAWITEMSTRUCT;

Return Value

Comments

Example

See Also

WM_DRAWITEM 123

An application should return TRUE if it processes this message.

The itemAction member of the DRA WITEMSTRUCT structure defines the
drawing operation that is to be performed. The data in this member allows the
owner of the control to determine what drawing action is required.

Before returning from processing this message, an application should ensure that
the device context identified by the hDC member of the DRA WITEMSTRUCT
structure is in the default state.

This example shows how to process the WM_DRA WITEM message:

LPDRAWITEMSTRUCT lpdis;

case WM_DRAWITEM:
lpdis = CDRAWITEMSTRUCT FAR*) lParam;

switch Clpdis->itemAction)

case ODA_DRAWENTIRE:

. /* Redraw the entire control or menu. */

return TRUE;

case ODA_SELECT:

. /* Redraw to reflect current selection state. */

return TRUE;

case ODA_FOCUS:

}

break;

. /* Redraw to reflect current focus state. *I

return TRUE;

WM_COMPAREITEM, WM_DELETEITEM, WM_INITDIALOG,
WM_MEASUREITEM

124 WM_DROPFILES

WM_ DROPFILES

Parameters

Return Value

See Also

WM_ DROP FILES
hDrop = (HANDLE) wParam; /* handle of internal drop structure */

The WM_DROPFILES message is sent when the user releases the left mouse but
ton over the window of an application that has registered itself as a recipient of
dropped files.

hDrop
Value ofwParam. Identifies an internal data structure describing the dropped
files. This handle is used by the DragFinish, DragQueryFile, and DragQuery
Point functions to retrieve information about the dropped files.

An application should return zero if it processes this message.

DragAcceptFiles, DragFinish, DragQueryFile, DragQueryPoint

WM_ ENABLE

Parameters

Return Value

See Also

WM_ ENABLE
fEnabled = (BOOL) wParam; /* the enabled/disabled flag */

The WM_ENABLE message is sent when an application changes the enabled state
of a window. It is sent to the window whose enabled state is changing. This mes
sage is sent before the Enable Window function returns but after the enabled state
(WS_DISABLE style bit) of the window has changed.

/Enabled
Value of wParam. Specifies whether the window has been enabled or disabled.
This parameter is TRUE if the window has been enabled; it is FALSE if the
window has been disabled.

An application should return zero if it processes this message.

Enable Window

WM_ENTERIDLE 125

WM_ENDSESSION CEJ

Parameters

Return Value

Comments

See Also

WM_ENDSESSION
fEndSession = (BOOLJ wParam; /* end-session flag */

The WM_ENDSESSION message is sent to an application that has returned
a nonzero value in response to a WM_QUERYENDSESSION message. The
WM_ENDSESSION message informs the application whether the session is
actually ending.

fEndSession
Value of wParam. Specifies whether the session is being ended. It is TRUE if
the session is being ended; otherwise, it is FALSE.

An application should return zero if it processes this message.

If the fEndSession parameter is TRUE, Windows can terminate any time after all
applications have returned from processing this message. Therefore, an application
should perform all tasks required for termination before returning from this mes
sage.

The application does not need to call the DestroyWindow or PostQuitMessage
function when the session is ending.

DestroyWindow, ExitWindows, PostQuitMessage,
WM_QUERYENDSESSION

WM_ENTERIDLE

Parameters

WM_ENTERIDLE
fwSource = wParam;
hwndDlg = (HWND) LOWORD(lParam);

/* idle-source flag */
/* handle of dialog box or window */

The WM_ENTERIDLE message informs an application's main window proce
dure that a modal dialog box or a menu is entering an idle state. A modal dialog
box or menu enters an idle state when no messages are waiting in its queue after it
has processed one or more previous messages.

fwSource
Value of wParam. Specifies whether the message is the result of a dialog box
or a menu being displayed. This parameter can be one of the following values:

126 WM_ERASEBKGND

Return Value

Comments

See Also

Value

MSGF _DIALOGBOX

MSGF_MENU

hwndDlg

Description

The system is idle because a dialog box is being dis
played.

The system is idle because a menu is being displayed.

Value of the low-order word of lParam. Identifies the dialog box (ifjwSource
is MSGF _DIALOGBOX) or the handle of the window containing the displayed
menu (ifjwSource is MSGF _MENU).

An application should return zero if it processes this message.

The DefWindowProc function returns zero when it processes this message.

DefWindowProc

WM_ ERASEBKGND
WM_ ERASEBKGND
hdc = (HOC) wParam; /* device-context handle*/

The WM_ERASEBKGND message is sent when the window background needs
to be erased (for example, when a window is resized). It is sent to prepare an in
validated region for painting.

Parameters hdc

Return Value

Comments

Value of wParam. Identifies the device context.

An application should return nonzero if it erases the background; otherwise, it
should return zero.

The DefWindowProc function erases the background by using the class back
ground brush specified by the hbrbackground member of the WNDCLASS struc
ture.

If the hbrbackground member is NULL, the application should process the
WM_ERASEBKGND message and erase the background color. When processing
the WM_ERASEBKGND message, the application must align the origin of the in
tended brush with the window coordinates by first calling the UnrealizeObject
function for the brush and then selecting the brush.

See Also

WM_GETDLGCODE 127

Windows computes the background by using the MM_ TEXT mapping mode. If
the device context is using any other mapping mode, the area erased may not be
within the visible part of the client area.

UnrealizeObject, WM_ICONERASEBKGND

WM_ FONTCHANGE

Parameters

Return Value

Comments

See Also

WM_ FONTCHANGE
wParam 0;
1 Pa ram = 0L;

f* not used, must be zero */
/* not used, must be zero */

An application sends the WM_FONTCHANGE message to all top-level windows
in the system after changing the pool of font resources.

This message has no parameters.

An application should return zero if it processes this message.

An application that adds or removes fonts from the system (for example, by using
the AddFontResource or RemoveFontResource function) should send this mes
sage to all top-level windows.

To send the WM_FONTCHANGE message to all top-level windows, an applica
tion can call the SendMessage function with the hwnd parameter set to OxFFFF.

AddFontResource, RemoveFontResource, SendMessage

WM_ GETDLGCODE
WM_GETDLGCODE

The WM_GETDLGCODE message is sent to the dialog box procedure associated
with a control. Normally, Windows handles all arrow-key and TAB-key input to the
control. By responding to the WM_GETDLGCODE message, an application can
take control of a particular type of input and process the input itself.

128 WM_GETFONT

Parameters

Return Value

Comments

This message has no parameters.

The return value is one or more of the following values, indicating which type of
input the application processes:

Value

DLGC_DEFPUSHBUTTON

DLGC_HASSETSEL

DLGc_PUSHBUTTON

DLGC_RADIOBUTTON

DLGC_ WANTALLKEYS

DLGC_ WANTARROWS

DLGC_ WANTCHARS

DLGC_ WANTMESSAGE

DLGC_ WANTTAB

Meaning

Default push button

EM_SETSEL messages

Push button

Radio button

All keyboard input

Arrow keys

WM_ CHAR messages

All keyboard input (the application passes this
message on to the control)

TAB key

Although the DefWindowProc function always returns zero in response to the
WM_GETDLGCODE message, the window procedures for the predefined control
classes return a code appropriate for each class.

The WM_GETDLGCODE message and the returned values are useful only with
user-defined dialog box controls or standard controls modified by subclassing.

WM_GETFONT

Parameters

Return Value

See Also

WM_GETFONT
wParam = 0;
l Pa ram = 0L;

I* not used, must be zero */
/* not used, must be zero */

An application sends a WM_GETFONT message to a control to retrieve the font
with which the control is currently drawing its text.

This message has no parameters.

The return value is the handle of the font used by the control, or it is NULL if the
control is using the system font.

WM_SETFONT

WM_GETMINMAXINFO 129

WM_ GETMINMAXINFO lliJ

Parameters

Return Value

Example

WM_ GETM I NMAX INFO
lpmmi = (MINMAXINFO FAR*) lParam; /*address of structure*/

The WM_GETMINMAXINFO message is sent to a window whenever Windows
needs the maximized position or dimensions of the window or needs the maxi
mum or minimum tracking size of the window. The maximized size of a window
is the size of the window when its borders are fully extended. The maximum track
ing size of a window is the largest window size that can be achieved by using the
borders to size the window. The minimum tracking size of a window is the small
est window size that can be achieved by using the borders to size the window.

Windows fills in a MINMAXINFO data structure, specifying default values for
the various positions and dimensions. The application may change these values if
it processes this message.

lpmmi
Value of lParam. Points to a MINMAXINFO data structure. The MINMAX
INFO structure has the following form:

typedef struct tagMINMAXINFO
POINT ptReserved;

/* mmi */

POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

MINMAXINFO;

An application should return zero if it processes this message.

This example processes a WM_GETMINMAXINFO message and sets the min
imum tracking width of the window to 200 and the minimum tracking height of
the window to 500:

MINMAXINFO FAR* lpmmi;

case WM_GETMINMAXINFO:
lpmmi = (MINMAXINFO FAR*)
lpmmi->ptMinTrackSize.x
lpmmi->ptMinTrackSize.y

break;

l Pa ram;
200;
500;

130 WM_GETTEXT

WM_ GETIEXT lliJ

Parameters

Return Value

Comments

Example

See Also

WM_GETTEXT
wParam (WPARAM) cchTextMax; /* number of bytes to copy */
lParam = (LPARAM) lpszText; /*address of buffer for text*/

An application sends a WM_ GETTEXT message to copy the text that corresponds
to a window into a buffer provided by the caller.

cchTextMax
Value of wParam. Specifies the maximum number of bytes to be copied, includ
ing the terminating null character.

lpszText
Value of lParam. Points to the buffer that is to receive the text.

The return value is the number of bytes copied. It is CB_ERR ifthe message is
sent to a combo box that has no edit control.

For an edit control, the text to be copied is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To copy the text of an item in a list box, an application can use
the LB_GETTEXT message.

When the WM_GETTEXT message is sent to a static control with the SS_ICON
style, the handle of the icon will be returned in the first two bytes of the buffer
pointed to by lpszText. This is true only if the WM_SETTEXT message has been
used to set the icon.

This example copies text from an edit control to a buffer:

HWND hwndMyEdit;
char szBuffer[32J;

hwndMyEdit = GetDlg!tem(hdlg, ID_MYEDITCONTROL);
SendMessage(hdlg, WM_GETTEXT, sizeof(szBuffer),

(LPARAM) ((LPSTR) szBuffer));

LB_GETTEXT, WM_GETTEXTLENGTH, WM_SETTEXT

WM_GETTEXTLENGTH 131

WM_ GETTEXTLENGTH IT!]

Parameters

Return Value

Comments

Example

See Also

WM_ GETTEXTLENGTH
wParam 0;
l Pa ram = 0L;

/* not used, must be zero */
I* not used, must be zero */

An application sends a WM_GETTEXTLENGTH message to determine the
length, in bytes, of the text associated with a window. The length does not include
the terminating null character.

This message has no parameters.

The return value is a word specifying the length, in bytes, of the text.

For an edit control, the text to be copied is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To determine the length of an item in a list box, an application
can use the LB_ GETTEXTLEN message.

This example enables the push button in a dialog box if the user has entered text in
an edit control in the dialog box:

case ID_MYEDITCONTROL:
if (HIWORD(lParam) == EN_CHANGE)

EnableWindow(GetDlgltem(hdlg, IDOK),
(BOOL) SendMessage(LOWORD(lParam),
WM_GETTEXTLENGTH, 0, 0L));

return TRUE;

LB_GETTEXTLEN, WM_GETTEXT

132 WM_HSCROLL

WM_HSCROLL

Parameters

Return Value

Comments

See Also

WM_HSCROLL
wScrollCode = wParam; /* scroll bar code */
nPos = LOWORD(lParam); /* current position of scroll box*/
hwndCtl = CHWND) HIWORD(lParam); /*handle of the control */

The WM_HSCROLL message is sent to a window when the user clicks the win
dow's horizontal scroll bar.

wScrollCode
Value of wParam. Specifies a scroll bar code that indicates the user's scrolling
request. This parameter can be one of the following values:

Value

SB_LEFT

SB_LINELEFT

SB_LINERIGHT

SB_PAGELEFT

SB_PAGERIGHT

SB_RIGHT

SB_THUMBPOSITION

SB_THUMBTRACK

nPos

Description

Scroll to far left.

Scroll left.

Scroll right.

Scroll one page left.

Scroll one page right.

Scroll to far right.

Scroll to absolute position. The current position is
specified by the nPos parameter.

Drag scroll box (thumb) to specified position. The cur
rent position is specified by the nPos parameter.

Value of the low-order word of lParam. Specifies the current position of the
scroll box if the wScrollCode parameter is SB_THUMBPOSITION or
SB_THUMBTRACK; otherwise, the nPos parameter is not used.

hwndCtl
Value of the high-order word of lParam. Identifies the control if
WM_HSCROLL is sent by a scroll bar. If WM_HSCROLL is sent as a result of
the user clicking a pop-up window's scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK scroll bar code typically is used by applications that
give some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_ VSCROLL

WM_HSCROLLCLIPBOARD 133

WM_HSCROLLCLIPBOARD CI!J

Parameters

Return Value

Comments

See Also

WM_HSCROLLCLIPBOARD
hwndCBViewer = (HWND) wParam;
wScrollCode = LOWORD(lParam);
nPos = (int) HIWORD(lParam);

/* handle of clipboard viewer */
/* scroll bar code */
/*scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF _OWNERDISPLA Y format
and an event occurs in the clipboard viewer's horizontal scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndCBViewer
Value ofwParam. Identifies a clipboard-viewer window.

wScrollCode
Value of the low-order word of lParam. Specifies a scroll bar code. This
parameter can be one of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_ THUMBPOSITION

SB_TOP

nPos

Description

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position.

Scroll to upper left.

Value of the high-order word of lParam. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word of
lParam is not used.

An application should return zero if it processes this message.

The clipboard owner should use the InvalidateRect function or repaint as needed.
The scroll bar position should also be reset.

InvalidateRect, WM_ VSCROLLCLIPBOARD

134 WM_ICONERASEBKGND

WM_ ICONERASEBKGND
WM_ICONERASEBKGND
hdc = (HOC) wParam; f* device-context handle */

The WM_ICONERASEBKGND message is sent to a minimized (iconic) window
when the background of the icon must be filled before painting the icon. A win
dow receives this message only if a class icon is defined for the window; other
wise, WM_ERASEBKGND is sent.

Parameters hdc

Return Value

Comments

See Also

Value of wParam. Identifies the device context of the icon.

An application should return zero if it processes this message.

The DefWindowProc function fills the icon background with the background
brush of the parent window.

DefWindowProc, WM_ERASEBKGND

WM_ INITDIALOG

Parameters

WM_INITDIALOG
hwndFocus = (HWND) wParam; /* handle of control for focus */
dwData = lParam; /*application-specific data */

The WM_INITDIALOG message is sent to a dialog box procedure immediately
before the dialog box is displayed.

hwndFocus
Value of wParam. Identifies the first cpntrol in the dialog box that can be given
the input focus. Usually, this is the first control in the dialog box with the
WS_TABSTOP style.

dwData
Value of !Param. Specifies application-specific data that was passed by the
function used to create the dialog box if the dialog box was created by one of
the following functions:

CreateDialogParam
DialogBoxlndirectParam
DialogBoxParam

Return Value

Example

See Also

WM_ INITMENU 135

An application should return nonzero to set the input focus to the control identified
by the hwndF ocus parameter. An application should return zero if the dialog box
procedure uses the SetFocus function to set the input focus to a different control
in the dialog box.

This example changes the font used by controls in a dialog box to a font that is not
bold.

HFONT hOlgFont;
LOG FONT l Font;

case WM_INITDIALOG:

I* Get dialog box font and create version that is not bold. */

hDlgFont = (HFONT) NULL;
if ((hOlgFont = (HFONT) SendMessage(hdlg, WM_GETFONT, 0, 0L))) {

if (GetObject(hOlgFont, sizeof(LOGFONT), (LPSTR) &lFont)) {
lFont.lfWeight = FW_NORMAL;

}
}

if (hDlgFont = CreateFontindirect((LPLOGFONT) &lFont)) {
SendDlgltemMessage(hdlg, ID_CTRLl, WM_SETFONT,

hDlgFont, 0Ll;

}

SendDlgitemMessage(hdlg, ID_CTRL2, WM_SETFONT,
hDlgFont, 0L);

/* Set font for remaining controls. */

return TRUE;

CreateDialogParam, DialogBoxlndirectParam, DialogBoxParam, SetFocus

WM_ INITMENU
WM_INITMENU
hmenulnit = (HMENU) wParam; /* handle of menu to initialize */

The WM_INITMENU message is sent when a menu is about to become active. It
occurs when the user clicks an item on the menu bar or presses a menu key. This
allows an application to modify the menu before it is displayed.

136 WM_INITMENUPOPUP

Parameters

Return Value

Comments

See Also

hmenulnit
Value of wParam. Identifies the menu to be initialized.

An application should return zero if it processes this message.

This message is sent only when a menu is first accessed; only one
WM_INITMENU message is generated for each access. This means, for example,
that moving the mouse across several menu items while holding down the button
does not generate new messages. WM_INITMENU does not provide information
about menu items.

WM_INITMENUPOPUP

WM_ INITMENUPOPUP

Parameters

Return Value

WM_INITMENUPOPUP
hmenuPopup = (HMENU) wParam; /* handle of pop-up menu */
nindex = (int) LOWORD(lParam); /*index of pop-up menu */
fSystemMenu = (BOOL) HIWORD(lParam); /*System-menu flag */

The WM_INITMENUPOPUP message is sent when a pop-up menu is about to be
come active. This allows an application to modify the pop-up menu before it is dis
played, without changing the entire menu.

hmenuPopup
Value of wParam. Identifies the pop-up menu.

nlndex
Value of the low-order word of lParam. Specifies the index of the pop-up menu
in the main menu.

jSystemMenu
Value of the high-order word of lParam. Specifies a nonzero value if the pop
up menu is the System menu (sometimes referred to as the Control menu);
otherwise, this parameter is zero.

An application should return zero if it processes this message.

Example

See Also

This example initializes the items in a pop-up menu:

int nCount;
WORD witem;
UINT uID;

case WM_INITMENUPOPUP:
nCount = GetMenuitemCount(wParam);
for Cwitem = 0; witem < nCount; witem++)

uID = GetMenuitemID(wParam, witem);

/* Initialize menu items. */

break;

WM_INITMENU

WM_ KEYDOWN 137

WM_KEYDOWN

Parameters

WM_ KEY DOWN
wVkey = wParam;
dwKeyData = lParam;

/* virtual-key code */
f* key data */

The WM_KEYDOWN message is sent when a nonsystem key is pressed. A non
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

wVkey
Value of wParam. Specifies the virtual-key code of the given key.

dwKeydata
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

24

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

138 WM_KEYUP

Return Value

Comments

Bit

25-26
27-28
29

30

31

Description

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

For a WM_KEYDOWN message, the value of bit 29 (context code) is 0 and
the value of bit 31 (key-transition state) is 0.

An application should return zero if it processes this message.

Because of the autorepeat feature, more than one WM_KEYDOWN message may
occur before a WM_KEYUP message is sent. The previous key state (bit 30) can
be used to determine whether the WM_KEYDOWN message indicates the first
down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER key on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also WM_ CHAR, WM_KEYUP

WM_ KEY UP
wVkey = wParam;
dwKeyData = lParam;

/* virtual-key code *I
/* key data */

The WM_KEYUP message is sent when a nonsystem key is released. A non
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

Parameters

Return Value

Comments

See Also

WM_KEYUP 139

wVkey
Value of wParam. Specifies the virtual-key code of the given key.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0--15

16-23

24

25-26
27-28
29

30

31

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

For a WM_KEYUP message, the value of bit 29 (context code) is 0 and the
value of bit 31 (key-transition state) is 1.

An application should return zero if it processes this message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_CHAR, WM_KEYDOWN

140 WM_KILLFOCUS

WM_KILLFOCUS

Parameters

Return Value

Comments

See Also

WM_KILLFOCUS
hwndGetFocus = (HWND) lParam; /* handle of window receiving focus */

The WM_KILLFOCUS message is sent immediately before a window loses the
input focus.

hwndGetFocus
Value of wParam. Identifies the window that receives the input focus. (This
parameter may be NULL.)

An application should return zero if it processes this message.

If an application is displaying a caret, the caret should be destroyed at this point.

SetFocus, WM_SETFOCUS

WM_ LBUTTONDBLCLK

Parameters

WM_ LBUTTONDB LC LK
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

I* key flags */
I* horizontal position of cursor */
/* vertical position of cursor */

The WM_LBUTTONDBLCLK message is sent when the user double-clicks the
left mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_ SHIFT

Description

Set if CTRL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFT key is down.

Return Value

Comments

See Also

WM_LBUTTONDOWN 141

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_LBUTTONDBLCLK messages. Windows generates a
WM_LBUTTONDBLCLK message when the user presses, releases, and again
presses the left mouse button within the system's double-click time limit. Double
clicking the left mouse button actually generates four messages: a
WM_LBUTTONDOWN message, a WM_LBUTTONUP message, the
WM_LBUTTONDBLCLK message, and another WM_LBUTTONUP message.

WM_LBUTTONDOWN, WM_LBUTTONUP

WM_ LBUTTONDOWN

Parameters

WM_ LBUTTONDOWN
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

f* key flags */
f* horizontal position of cursor */
/* vertical position of cursor */

The WM_LBUTTONDOWN message is sent when the user presses the left
mouse button.

fwKeys
Value ofwParam. Specifies whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

142 WM_LBUTTONUP

Return Value

See Also

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONUP

WM_LBUTTONUP

Parameters

Return Value

See Also

WM_ LBUTTONUP
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* key flags */
/* horizontal position of cursor */
/* vertical position of cursor */

The WM_LBUTTONUP message is sent when the user releases the left mouse
button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down.
This parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFf key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONDOWN

WM_MBUTTONDBLCLK 143

WM_MBUTTONDBLCLK lliJ

Parameters

Return Value

Comments

See Also

WM_MBUTTONDBLCLK
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* key flags */
f* horizontal position of cursor */
/* vertical position of cursor */

The WM_MBUTTONDBLCLK message is sent when the user double-clicks the
middle mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_ CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Set if CTRL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_MBUTTONDBLCLK messages. Windows generates a
WM_MBUTTONDBLCLK message when the user presses, releases, and again
presses the middle mouse button within the system's double-click time limit.
Double-clicking the middle mouse button actually generates four messages: a
WM_MBUTTONDOWN message, a WM_MBUTTONUP message, the
WM_MBUTTONDBLCLK message, and another WM_MBUTTONUP message.

WM_MBUTTONDOWN, WM_MBUTTONUP

144 WM_ MBUTIONDOWN

WM_ MBUTIONDOWN

Parameters

Return Value

See Also

WM_MBUTTONDOWN
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

f* key flags */
f* horizontal position of cursor */
f* vertical position of cursor */

The WM_MBUTTONDOWN message is sent when the user presses the middle
mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_LBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if left button is down.

Set if right button is down.

Set if SHIFr key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left comer of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left comer of the window.

An application should return zero if it processes this message.

WM_MBUTTONDBLCLK, WM_MBUTTONUP

WM_MBUTTONUP
WM_MBUTTONUP
fwKeys = wParam;
xPos LOWORD(lParaml;
yPos = HIWORD(lParam);

f* key flags */
f* horizontal position of cursor */
f* vertical position of cursor */

The WM_MBUTTONUP message is sent when the user releases the middle
mouse button.

Parameters

Return Value

See Also

WM_MDIACTIVATE 145

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_LBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if left button is down.

Set if right button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_MBUTTONDBLCLK, WM_MBUTTONDOWN

WM_ MDIACTIVATE
WM_MDIACTIVATE
/* Message sent to MDI client */
wParam CWPARAM) CHWND) hwndChildAct; /* child to activate */
lParam = 0L; /*not used, must be zero */

/* Message received by MDI child */
wParam = CWPARAM) fActivate;
hwndAct = (HWND) LOWORDClParam);
hwndDeact = CHWND) HIWORDClParam);

/* activation flag */
/* child being activated */
/* child being deactivated */

An application sends the WM_MDIACTIV ATE message to a multiple document
interface (MDI) client window to instruct the client window to activate a different
MDI child window. As the client window processes this message, it sends
WM_MDIACTIV ATE to the child window being deactivated and to the child win
dow being activated.

146 WM_MDICASCADE

Parameters

Return Value

Comments

See Also

In message sent to MDI client window:

hwndChildAct
Value ofwParam. Identifies the MDI child window to be activated.

In message received by MDI child window:

/Activate
Value of wParam. Specifies whether to activate or deactivate the child window.
If this parameter is TRUE, the child window is activated. If this parameter is
FALSE, the child window is deactivated.

hwndAct
Value of the low-order word of lParam. Identifies the child window being
activated.

hwndDeact
Value of the high-order word of lParam. Identifies the child window being
deactivated.

An application should return zero if it processes this message.

An MDI child window is activated independently of the MDI frame window.
When the frame window becomes active, the child window that was last activated
with the WM_MDIACTIV ATE message receives the WM_NCACTIV ATE mes
sage to draw an active window frame and title bar; it does not receive another
WM_MDIACTIV ATE message.

WM_MDIGETACTIVE, WM_NCACTIV ATE, WM_MDINEXT

WM_ MDI CASCADE

Parameters

WM_ MDI CASCADE
fnCascade = wParam; /* cascade flag */

The WM_MDICASCADE message is sent to a multiple document interface
(MDI) client window to arrange all its child windows in a cascade format.

Jn Cascade
Value of wParam. Specifies a cascade flag. Currently, only the following flag
may be specified:

Return Value

See Also

Value

MDITILE_SKIPDISABLED

WM_MDICREATE 147

Meaning

Prevents disabled MDI child windows from being
cascaded.

An application should return zero if it processes this message.

WM_MDIICONARRANGE, WM_MDITILE

WM_ MDICREATE

Parameters

Return Value

Comments

WM_ MD I CREATE
wParam 0; /* not used, must be zero */
lParam = (LPARAMJ (MDICREATESTRUCT FAR*) lpmcs; /*structure address */

An application sends the WM_MDICREATE message to a multiple document in
terface (MDI) client window to create a child window.

lpmcs
Value of lParam. Points to an MDICREATESTRUCT structure. The
MDICREATESTRUCT structure has the following form:

typedef struct tagMDICREATESTRUCT
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;
int
int

x·
'

y;
int ex;
int cy;
DWORD style;
LPARAM lParam;

} MDICREATESTRUCT;

/* mdic *I

The return value is the handle of the new window in the low-order word and zero
in the high-order word.

The window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS,
WS_CLIPCHILDREN, WS_SYSMENU, WS_CAPTION, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX, plus additional style bits
specified in the MDICREATESTRUCT structure to which lpmcs points.

148 WM_MDIDESTROY

See Also

Windows adds the title of the new child window to the window menu of the frame
window. An application should create all child windows of the client window with
this message.

If the MDIS_ALLCHILDSTYLES style is set when the MDI client window is
created, Create Window overrides the default style bits.

If a client window receives any message that changes the activation of child win
dows while the currently active MDI child window is maximized, Windows re
stores the currently active child window and maximizes the newly activated child
window.

When the MDI child window is created, Windows sends the WM_ CREATE mes
sage to the window. The lpmcs parameter of the WM_CREATE message contains
a pointer to a CREATESTRUCT structure. The lpCreateParams member of the
CREATESTRUCT structure contains a pointer to the MDICREATESTRUCT
structure passed with the WM_MDICREATE message that created the MDI child
window.

An application should not send a second WM_MDICREATE message while a
WM_MDICREATE message is still being processed. For example, it should not
send a WM_MDICREATE message while an MDI child window is processing its
WM_ CREATE message.

WM_MDlDESTROY

WM_MDIDESTROY [ill

Parameters

Return Value

Comments

WM_MDIDESTROY
hwndChild = (HWND) wParam; /* handle of child to destroy */

An application sends the WM_MDIDESTROY message to a multiple document
interface (MDI) client window to close an MDI child window.

hwndChild
Value ofwParam. Identifies the child window to destroy.

An application should return zero if it processes this message.

This message removes the title of the child window from the frame window and
deactivates the child window. An application should close all MDI child windows
with this message.

See Also

WM_MDllCONARRANGE 149

If a client window receives any message that changes the activation of child win
dows while the currently active MDI child window is maximized, Windows re
stores the currently active child window and maximizes the newly activated child
window.

WM_MDICREATE

WM_ MDIGETACTIVE

Parameters

Return Value

See Also

WM_MDIGETACTIVE

The WM_MDIGET ACTIVE message retrieves the multiple document interface
(MDI) child window that is active, along with a flag indicating whether the child
window is maximized.

This message has no parameters.

The return value is the handle of the active MDI child window in its low-order
word. If the window is maximized, the high-order word is 1; otherwise, the high
order word is 0.

WM_MDIACTIV ATE

WM_ MDllCONARRANGE

Parameters

Return Value

See Also

WM_MDIICONARRANGE

The WM_MDIICONARRANGE message is sent to a multiple document interface
(MDI) client window to arrange all minimized document child windows. It does
not affect child windows that are not minimized.

This message has no parameters.

An application should return zero if it processes this message.

WM_MDICASCADE, WM_MDITILE

150 WM_ MDI MAXIMIZE

WM_MDIMAXIMIZE

Parameters

Return Value

Comments

WM_MDIMAXIMIZE
hwndMaximize = (HWND) wParam; f* handle of child to maximize */

The WM_MDIMAXIMIZE message causes a multiple document interface (MDI)
client window to maximize an MDI child window. When a child window is maxi
mized, Windows resizes it to make its client area fill the client window. Windows
places the child window's System menu (sometimes referred to as the Control
menu) in the frame's menu bar so that the user can restore or minimize the child
window; Windows adds the title of the child window to the frame window's menu
of child windows.

hwndMaximize
Value of wParam. Identifies the child window to maximize.

An application should return zero if it processes this message.

If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win
dows restores the currently active child window and maximizes the newly acti
vated child window.

WM_MDINEXT

Parameters

WM_ MD IN EXT
wParam (WPARAM) hwndChild; /* handle of child window */
lParam = (LPARAM) fNext; /* next or previous child window*/

An application sends the WM_MDINEXT message to a multiple document inter
face (MDI) client window to activate the child window immediately behind the
currently active child window and place the currently active child window behind
all other child windows.

hwndChild
Value of wParam. Specifies the handle of the child window.

JN ext
Value of lParam. If this parameter is zero, the message specifies that the next
MDI child window should be activated. If this parameter is nonzero, the mes
sage specifies that the previous MDI child window should be activated.

Return Value

Comments

See Also

WM_MDISETMENU 151

An application should return zero if it processes this message.

If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win
dows restores the currently active child window and maximizes the newly acti
vated child window.

WM_MDIACTIV ATE, WM_MDIGEJ ACTIVE
--,,,

WM_ MDI RESTORE

Parameters

Return Value

See Also

WM_ MD IRES TO RE
wParam = (WPARAMl wIDChild; /* handle of child window */

An application sends the WM_MDIRESTORE message to a multiple document in
terface (MDI) client window to restore an MDI child window from maximized or
minimized size.

wIDChild
Value ofwParam. Specifies the handle of the child window.

An application should return zero if it processes this message.

WM_MDIMAXIMIZE

WM_ MDISETMENU

Parameters

WM_MDISETMENU
wParam (WPARAMl (BOOL) fRefresh;
lParam = MAKELPARAM(hmenuFrame, hmenuWindowl;

/* refresh flag*/
/* new menus */

An application sends a WM_MDISETMENU message to replace the menu of a
multiple document interface (MDI) frame window, the Window pop-up menu, or
both.

fRefresh
Value of wParam. Specifies whether to refresh the current menus or specify
new menus. It is TRUE if the menus should just be refreshed. It is FALSE if,

152 WM_MDITILE

Return Value

Comments

See Also

instead, the hmenuFrame and hmenu Window parameters should be used to
specify new menus for the window.

hmenuFrame
Value of the low-order word of lParam. Identifies the new frame-window
menu. If this parameter is zero, the frame-window menu is not changed.

hmenu Window
Value of the high-order word of lParam. Identifies the new Window pop-up
menu. If this parameter is zero, the Window pop-up menu is not changed.

The return value is the handle of the frame-window menu replaced by this mes
sage.

After sending this message, an application must call the DrawMenuBar function
to update the menu bar.

If this message replaces the Window pop-up menu, MDI child-window menu
items are removed from the previous Window menu and added to the new Win
dow pop-up menu.

If an MDI child window is maximized and this message replaces the MDI frame
window menu, the System menu (sometimes referred to as the Control menu) and
restore controls are removed from the previous frame-window menu and added to
the new menu.

DrawMenuBar

WM_MDITILE

Parameters

WM MDITILE
fTile = wParam; /* tiling flag */

The WM_MDITILE message is sent to a multiple document interface (MDI)
client window to arrange all its child windows in a tiled format.

]Tile
Value of wParam. Specifies a tiling flag. This parameter can be one of the fol
lowing flags:

Return Value

See Also

Value

MDITILE_HORIZONTAL

MDITILE_SKIPDISABLED

MDITILE_ VERTICAL

WM_MEASUREITEM 153

Meaning

Tiles MDI child windows so that they are wide
rather than tall.

Prevents disabled MDI child windows from being
tiled.

Tiles MDI child windows so that they are tall
rather than wide.

An application should return zero if it processes this message.

WM_MDICASCADE, WM_MDIICONARRANGE

WM_ MEASUREITEM

Parameters

WM_ MEASURE ITEM
nIDCtl = (int) wParam; /* control identifier */
lpmisCtl = CMEASUREITEMSTRUCT FAR*) lParam; /*address of structure*/

The WM_MEASUREITEM message is sent to the owner of an owner-drawn but
ton, combo box, list box, or menu item when the control is created. When the
owner receives the message, the owner fills in the MEASUREITEMSTRUCT
structure pointed to by the lpmisCtl message parameter and returns; this informs
Windows of the dimensions of the control. If a list box or combo box is created
with the LBS_OWNERDRA WV ARIABLE or CBS_OWNERDRA WV ARIABLE
style, this message is sent to the owner for each item in the control; otherwise, this
message is sent once.

nIDCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_MEASUREITEM message. This parameter is 0 if the message was sent
by a menu. This parameter is -1 when the system is requesting the dimensions
of an edit control in an owner-drawn combo box.

lpmisCtl
Value of lParam. Points to a MEASUREITEMSTRUCT structure that con
tains the dimensions of the owner-drawn control.

154 WM_MENUCHAR

Return Value

Comments

See Also

The MEASUREITEMSTRUCT structure has the following form:

typedef struct tagMEASUREITEMSTRUCT { /* mi */
UINT CtlType;
UINT Ctl ID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;

} MEASUREITEMSTRUCT;

An application should return TRUE if it processes this message.

Windows sends the WM_MEASUREITEM message to the owner of a combo
box or list box created with the OWNERDRA WFIXED style before sending
WM_INITDIALOG. As a result, when the owner receives this message, Windows
has not yet determined the height and width of the font used in the control; func
tion calls and calculations requiring these values should occur in the main function
of the application or library.

WM_COMPAREITEM, WM_DELETEITEM, WM_DRA WITEM,
WM_INITDIALOG

WM_MENUCHAR

Parameters

WM_MENUCHAR
chUser = wParam;
fMenu LOWORD(lParam);
hmenu = (HMENU) HIWORD(lParam);

/* ASCII character */
/*menu flag */
/* handle of the menu */

The WM_MENUCHAR message is sent when the user presses the key corre
sponding to a menu mnemonic character that doesn't match any of the predefined
mnemonics in the current menu. It is sent to the window that owns the menu.

chUser
Value of wParam. Specifies the ASCII character that corresponds to the key the
user pressed.

]Menu
Value of the low-order word of lParam. Specifies the type of the selected
menu. This parameter can be one of the following values:

Return Value

Comments

Value

MF_POPUP

MF_SYSMENU

WM_MENUSELECT 155

Meaning

The menu is a pop-up menu.

The menu is a System menu (sometimes referred to as a
Control menu).

hmenu
Value of the high-order word of lParam. Identifies the selected menu.

The return value is one of the following command code values in the high-order
word:

Value

0

2

Description

Informs Windows that it should discard the character corresponding to the
key the user pressed, and creates a short beep on the system speaker.

Informs Windows that it should close the current menu.

Informs Windows that the low-order word of the return value contains the
item number for a specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains 0 or 1. An applica
tion should process this message when an accelerator key has been used to select a
bitmap placed in a menu.

·The WM_MENUCHAR message is generated when the user presses ALT and any
key, even if the key does not correspond to a mnemonic character. In this case, the
hmenu parameter contains the window handle of the menu.

WM_ MENUSELECT

Parameters

WM_ MENUS ELECT
wIDitem = wParam; /* item identifier or menu handle */
fwMenu = LOWORD(lParam); /*menu flags */
hmenu = (HMENU) HIWORD(lParaml; /*handle of the menu *I

The WM_MENUSELECT message is sent to the window associated with a menu
when the user selects a menu item.

w!Dltem
Value ofwParam. Specifies the menu-item identifier ifthe selected item is a
menu item. If the selected item contains a pop-up menu, w!Dltem contains the
handle of the pop-up menu.

156 WM_MOUSEACTIVATE

Return Value

Comments

fwMenu
Low word of lParam. Specifies one or more menu flags. This parameter can be
a combination of the following values:

Flag Description

MF_BITMAP

MF_CHECKED

MF _DISABLED

MF_GRAYED

MF _MOUSESELECT

MF _OWNERDRAW

MF_POPUP

MF _SEPARATOR

MF_SYSMENU

hmenu

Item is a bitmap.

Item is checked.

Item is disabled.

Item is grayed.

Item was selected with a mouse.

Item is an owner-drawn item.

Item contains a pop-up menu.

Item is a menu-item separator.

Item is contained in the System menu (sometimes re
ferred to as the Control menu). The hmenu parameter
identifies the System menu associated with the message.

High word of lParam. If the fwMenu parameter contains the MF _SYSMENU
flag, this parameter specifies the menu handle of the System menu.

An application should return zero if it processes this message.

If the fwMenu parameter contains -1 and the hmenu parameter contains 0, Win
dows has closed the menu. This occurs both when the menu is closed because the
user pressed ESC or clicked outside the menu and when the user has selected a
menu item.

WM_ MOUSEACTIVATE
WM_MOUSEACTI VA TE
hwndToplevel = (HWND) wParam;
wHitTestCode = LOWORD(lParam);
wMsg = HIWORD(lParam);

/* handle of top-level parent */
I* hit-test code */
/* mouse-message identifier */

The WM_MOUSEACTIV ATE message is sent when the cursor is in an inactive
window and the user presses a mouse button. The parent window receives this
message only if the child window passes it to the DefWindowProc function.

Parameters

Return Value

Comments

WM_MOUSEMOVE 157

hwndTopLevel
Value of wParam. Identifies the top-level parent window of the window being
activated.

wHitTestCode
Value of the low-order word of lParam. Specifies the hit-test area code. A hit
test is a test that determines the location of the cursor.

wMsg
Value of the high-order word of lParam. Specifies the identifier of the mouse
message.

The return value specifies whether the window should be activated and whether
the mouse event should be discarded. It must be one of the following values:

Value

MA_ACTIVATE

MA_NOACTIVATE

MA_ACTIVATEANDEAT

MA_NOACTIVATEANDEAT

Meaning

Activate the window.

Do not activate the window.

Activate the window and discard the mouse event.

Do not activate the window; discard the mouse
event.

If the child window passes the message to the DefWindowProc function, Def
WindowProc passes this message to a window's parent window before any pro
cessing occurs. If the parent window returns a nonzero value, processing is halted.

WM_MOUSEMOVE

Parameters

WM_MOUSEMOVE
fwKeys = wParam;
xPos LOWORDClParam);
yPos = HIWORDClParam);

/* key flags */
/* horizontal position of cursor */
/* vertical position of cursor */

The WM_MOUSEMOVE message is sent to a window when the mouse cursor
moves. If the mouse is not captured, the message goes to the window beneath the
cursor. Otherwise, the message goes to the window that has captured the mouse.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

158 WM_ MOVE

Value

MK_ CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_ SHIFT

xPos

Description

Set if CTRL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

Return Value An application should return zero ifit processes this message.

Comments The MAKEPOINT macro can be used to convert the lParam parameter to a
POINT structure.

See Also SetCapture, WM_NCHITTEST

WM_ MOVE lliJ

Parameters

WM_ MOVE
xPos (int) LOWORDClParam);
yPos = (int) HIWORDClParam);

/* horizontal position */
/* vertical position */

The WM_MOVE message is sent after a window has been moved.

xPos
Value of the low-order word of lParam. Specifies the new x-coordinate of the
upper-left corner of the client area of the window.

yPos
Value of the high-order word of lParam. Specifies the new y-coordinate of the
upper-left corner of the client area of the window.

Return Value

Comments

See Also

WM_NCACTIVATE 159

An application should return zero if it processes this message.

The xPos and yPos parameters are given in screen coordinates for overlapped and
pop-up windows and in parent-client coordinates for child windows.

An application can use the MAKEPOINT macro to convert the lParam parameter
to a POINT data structure.

MAKEPOINT, POINT

WM_ NCACTIVATE

Parameters

Return Value

Comments

See Also

WM_ NCACTI VATE
fActive = (BOOL) wParam; /* the active/inactive flag */

The WM_NCACTIVATE message is sent to a window when its nonclient area
needs to be changed to indicate an active or inactive state.

/Active
Value of wParam. Specifies when a title bar or icon needs to be changed to indi
cate an active or inactive state. The/Active parameter is TRUE if an active title
bar or icon is to be drawn. It is FALSE for an inactive title bar or icon.

When the/Active parameter is FALSE, an application should return TRUE to indi
cate that Windows should proceed with the default processing or FALSE to pre
vent the caption bar or icon from being deactivated. When/Active is TRUE, the
return value is ignored.

The DefWindowProc function draws the title bar and title bar text in their active
colors when the/Active parameter is TRUE and in their inactive colors when
f Active is FALSE.

DefWindowProc

160 WM_ NCCALCSIZE

WM_ NCCALCSIZE

Parameters

Return Value

WM_NCCALCSIZE
fCalcValidRects = (BOOL) wParam;
lpncsp = (NCCALCSIZE_PARAMS FAR*) lParam;

/*valid-area flag */
/* address of data */

The WM_NCCALCSIZE message is sent when the size and position of a win
dow's client area needs to be calculated. By processing this message, an applica
tion can control the contents of the window's client area when the size or position
of the window changes.

/Cale ValidReets
Value of wParam. Specifies whether the application should specify which part
of the client area contains valid information. Windows will copy the valid infor
mation to the specified area within the new client area. If this parameter is
TRUE, the application should specify which part of the client area is valid.

lpnesp
Value of lParam. Points to an NCCALCSIZE_PARAMS data structure that
contains information an application can use to calculate the new size and posi
tion of the client rectangle. The NCCALCSIZE_PARAMS structure has the
following form:

typedef struct tagNCCALCSIZE_PARAMS
RECT rgrc[3];
WINDOWPOS FAR* lppos;

} NCCALCSIZE_PARAMS;

Regardless of the value offCaleValidReets, the first rectangle in the array
specified by the rgrc member contains the coordinates of the window. For a
child window, the coordinates are relative to the parent window's client area.
For top-level windows, the coordinates are screen coordinates. An application
should process WM_NCCALCSIZE by modifying the rgrc[O] rectangle to re
flect the size and position of the client area.

The rgrc[l] and rgrc[2] rectangles are valid only iffCaleValidReets is TRUE.
In this case, the rgrc[l] rectangle contains the coordinates of the window
before it was moved or resized. The rgrc[2] rectangle contains the coordinates
of the window's client area before the window was moved. All coordinates are
relative to the parent window or screen.

An application should return zero iffCaleValidReets is FALSE.

An application can return zero or a valid combination of the following values if
/Cale ValidReets is TRUE:

Comments

See Also

Value

WVR_ALIGNTOP, WVR_ALIGNLEFT,
WVR_ALIGNBOTTOM,
WVR_ALIGNRIGHT

WVR_HREDRAW,
WVR_VREDRAW

WVR_REDRAW

WVR_VALIDRECTS

WM_NCCALCSIZE 161

Meaning

These values, used in combination,
specify that the client area of the window
is to be preserved and aligned appro
priately relative to the new location of the
client window. For example, to align the
client area to the lower-left, return
WVR_ALIGNLEFT I WVR_ALIGNTOP.

These values, used in combination with
any other values, cause the window to be
completely redrawn if the client rectangle
changed size horizontally or vertically.
These values are similar to the
CS_HREDRAW and CS_ VREDRAW
class styles.

This value causes the entire window
to be redrawn. It is a combination
ofWVR_HREDRAW and
WVR_ VREDRAW.

This value indicates that, upon return from
WM_NCCALCSIZE, the rgrc[l] and
rgrc[2] rectangles contain valid source
and destination area rectangles, respec
tively. Windows combines these rectan
gles to calculate the area of the window
that can be preserved. Windows copies
any part of the window image that is
within the source rectangle and clips the
image to the destination rectangle. Both
rectangles are in parent-relative or screen
relative coordinates.

This return value allows an application to
implement more elaborate client-area pre
servation strategies, such as centering or
preserving a subset of the client area.

IffCalcValidRects is TRUE and an application returns zero, the old client area is
preserved and is aligned with the upper-left corner of the new client area.

Redrawing of the window may occur, depending on whether CS_HREDRA W or
CS_ VREDRA W was specified. This is the default, backward-compatible Def
WindowProc processing of this message (in addition to the usual client rectangle
calculation described in the preceding table).

DefWindowProc, MoveWindow, SetWindowPos

162 WM_NCCREATE

WM_NCCREATE lliJ

Parameters

Return Value

Comments

See Also

WM_ NCC REA TE
lpcs = CCREATESTRUCT FAR*) lParam; /*address of initialization data*/

The WM_NCCREATE message is sent prior to the WM_CREATE message when
a window is first created.

lpcs
Value of lParam. Points to the CREATESTRUCT data structure for the win
dow. The CREATESTRUCTstructure has the following form:

typedef struct tagCREATESTRUCT
void FAR* lpCreateParams;
HINSTANCE hlnstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int ex;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

} CREATESTRUCT;

/* cs */

The return value is nonzero if the nonclient area is created. It is zero if an error
occurs; in this case, the Create Window or CreateWindowEx function will return
NULL.

Scroll bars are initialized (the scroll bar position and range are set), and the win
dow text is set. Memory used internally to create and maintain the window is allo
cated.

Create Window, WM_ CREATE

WM_NCHITTEST 163

WM_NCDESTROY IT!]

Parameters

Return Value

Comments

See Also

WM_ NC DESTROY

The WM_NCDESTROY message informs a window that its nonclient area is
being destroyed. The DestroyWindow function sends the WM_NCDESTROY
message to the window following the WM_DESTROY message.
WM_NCDESTROY is used to free the allocated memory object associated with
the window.

This message has no parameters.

An application should return zero if it processes this message.

This message frees any memory internally allocated for the window.

Destroy Window, WM_NCCREA TE

WM_NCHITTEST

Parameters

Return Value

WM_NCHITTEST
xPos (int) LOWORD(lParam);
yPos = (int) HIWORDClParam);

/* horizontal position of cursor */
/* vertical position of cursor */

The WM_NCHITTEST message is sent to the window that contains the cursor or
to the window that used the SetCapture function to capture the mouse input. It is
sent every time the mouse is moved.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, in screen coordinates.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, in screen coordinates.

The return value of the DefWindowProc function is one of the following values
indicating the position of the cursor:

164 WM_ NCHITIEST

Comments

Example

Value

HTBORDER

HTBOTTOM

HTBOTTOMLEFT

HTBOTTOMRIGHT

HTCAPTION

HT CLIENT

HTERROR

HTGROWBOX

HTHSCROLL

HTLEFT

HTMAXBUTTON

HTMENU

HTMINBUTTON

HTNOWHERE

HTREDUCE

HTRIGHT

HT SIZE

HTSYSMENU

HTTOP

HTTOPLEFT

HTTOPRIGHT

HTTRANSPARENT

HTVSCROLL

HTZOOM

Meaning

In the border of a window that does not have a sizing border

In the lower horizontal border of a window

In the lower-left comer of a window border

In the lower-right comer of a window border

In a title bar area

In a client area

On the screen background or on a dividing line between win
dows (same as HTNOWHERE except that the DefWindow
Proc function produces a system beep to indicate an error)

In a size box (same as HTSIZE)

In the horizontal scroll bar

In the left border of a window

In a Maximize button

In a menu area

In a Minimize button

On the screen background or on a dividing line between
windows

In a Minimize button

In the right border of a window

In a size box (same as HTGROWBOX)

In a System menu (sometimes referred to as a Control menu)
or in a close button in a child window

In the upper horizontal border of a window

In the upper-left corner of a window border

In the upper-right corner of a window border

In a window currently covered by another window

In the vertical scroll bar

In a Maximize button

The MAKEPOINT macro can be used to convert the lParam parameter to a
POINT structure.

This example shows a portion of a subclass procedure that detects mouse mes
sages in a static window:

See Also

WM_NCLBUTIONDBLCLK 165

LONG l RetVal;

case WM_NCHITTEST:
lRetVal = DefWindowProc(hwnd, msg, wParam, lParam);
if ClRetVal == HTTRANSPARENT) {

}

break;

default:

/* Process mouse events in static window. */

CallWindowProc(lpStaticProc, hwnd, msg, wParam, lParam);

DefWindowProc, GetCapture

WM_ NCLBUTTONDBLCLK

Parameters

Return Value

Comments

See Also

WM_NCLBUTTONDBLCLK
nHittest = wParam; I* hit-test code */
xCursor LOWORDClParam); I* cursor horizontal position */
yCursor = HIWORDClParam); /*cursor vertical position */

The WM_NCLBUTTONDBLCLK message is sent when the user double-clicks
the left mouse button while the cursor is within a nonclient area of the window.

nHittest
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xCursor
Value of the low-order word of lParam. Specifies the horizontal position of the
cursor, in screen coordinates.

yCursor
Value of the high-order word of lParam. Specifies the vertical position of the
cursor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

166 WM_ NCLBUTTONDOWN

WM_ NCLBUTIONDOWN

Parameters

Return Value

Comments

See Also

WM_ NC LBUTTONDOWN
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* hit-test code
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCLBUTTONDOWN message is sent to a window when the user
presses the left mouse button while the cursor is within a nonclient area of the win
dow.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, in screen coordinates.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cur
sor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_ NCLBUTTONUP

Parameters

WM_ NCLBUTTONUP
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* hit-test code
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCLBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

Return Value

Comments

See Also

WM_NCMBUTTONDBLCLK 167

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, in screen coordinates.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDOWN, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_ NCMBUTIONDBLCLK

Parameters

Return Value

See Also

WM_NCMBUTTONDBLCLK
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORDClParam);

/* hit-test code */
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
double-clicks the middle mouse button while the cursor is within a nonclient area
of the window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDOWN, WM_NCMBUTTONUP

168 WM_NCMBUTTONDOWN

WM_ NCMBUTTONDOWN

Parameters

Return Value

See Also

WM_NCMBUTTONDOWN
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* hit-test code *I
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCMBUTTONDOWN message is sent to a window when the user
presses the middle mouse button while the cursor is within a nonclient area of the
window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP

WM_ NCMBUTTONUP

Parameters

WM_ NCMBUTTONUP
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

I* hit-test code
I* horizontal cursor position */
/* vertical cursor position */

The WM_NCMBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

Return Value

See Also

WM_NCMOUSEMOVE 169

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN

WM_ NCMOUSEMOVE

Parameters

Return Value

Comments

See Also

WM_NCMOUSEMOVE
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

f* hit-test code
f* horizontal cursor position */
f* vertical cursor position */

The WM_NCMOUSEMOVE message is sent to a window when the cursor is
moved within a nonclient area of the window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

170 WM_ NCPAINT

WM_NCPAINT

Parameters

Return Value

Comments

See Also

WM_NCPAINT

The WM_NCPAINT message is sent to a window when its frame needs painting.

This message has no parameters.

An application should return zero if it processes this message.

The DetwindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame.
The clipping region for a window is always rectangular, even if the shape of the
frame is altered.

DetwindowProc

WM_ NCRBUTTONDBLCLK

Parameters

WM_NCRBUTTONDBLCLK
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* hit-test code */
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCRBUTTONDBLCLK message is sent to a window when the user
double-clicks the right mouse button while the cursor is within a nonclient area of
the window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

WM_NCRBUTTONDOWN 171

Return Value An application should return zero if it processes this message.

See Also WM_NCHITTEST, WM_NCRBUTTONDOWN, WM_NCRBUTTONUP

WM_ NCRBUTTONDOWN

Parameters

Return Value

See Also

WM_NCRBUTTONDOWN
wHitTestCode = wParam;
xPos LOWORDClParam);
yPos = HIWORDClParam);

f* hit-test code
f* horizontal cursor position */
f* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
presses the right mouse button while the cursor is within a nonclient area of the
window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP

172 WM_NCRBUTTONUP

WM_ NCRBUTTONUP

Parameters

Return Value

See Also

WM_ NCRBUTTONUP
wHitTestCode = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* hit-test code */
/* horizontal cursor position */
/* vertical cursor position */

The WM_NCRBUTTONUP message is sent to a window when the user releases
the right mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value ofwParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of !Param. Specifies the x-coordinate of the cur
sor, as a screen coordinate.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cur
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN

WM_ NEXTDLGCTL

Parameters

WM_NEXTDLGCTL
wCtlFocus = wParam; /* identifies control for focus */
fHandle = (BOOL) LOWORD(lParam); /* wParam handle flag */

An application sends the WM_NEXTDLGCTL message to a dialog box procedure
to set the focus to a different control in a dialog box.

wCtlFocus
Value of wParam. If the fHandle parameter is nonzero, the wCtlF ocus parame
ter is the handle of the control that receives the focus. IfJHandle is zero,
wCtlFocus is a flag that indicates whether the next or previous control with the
WS_TABSTOP style receives the focus. IfwCtlFocus is zero, the next control
receives the focus; otherwise, the previous control with the WS_TABSTOP
style receives the focus.

Return Value

Comments

WM_ PAINT 173

fHandle
Low-order word of lParam. Indicates how Windows uses the wParam parame
ter. IffHandle is nonzero, wParam is a handle associated with the control that
receives the focus; otherwise, wParam is a flag that indicates whether the next
or previous control with the WS_TABSTOP style receives the focus.

An application should return zero if it processes this message.

The effect of this message differs from that of the SetFocus function because
WM_NEXTDLGCTL modifies the border around the default button.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if
your application will concurrently process other messages that set the control
focus. In this case, use the PostMessage function instead.

See Also PostMessage, SendMessage, SetFocus

WM_ PAINT CEJ

Parameters

Return Value

Comments

WM_ PAINT

The WM_PAINT message is sent when Windows or an application makes a re
quest to repaint a portion of an application's window. The message is sent when
the Update Window or RedrawWindow function is called or by the Dispatch
Message function when the application obtains a WM_PAINT message by using
the GetMessage or PeekMessage function.

This message has no parameters.

An application should return zero if it processes this message.

The DispatchMessage function sends this message when there are no other mes
sages in the application's message queue.

A window may receive internal paint messages as a result of calling the Redraw
Window function with the RDW _INTERNALPAINT flag set. In this case, the
window may not have an update region. An application should call the Get
UpdateRect function to determine whether the window has an update region. If
GetUpdateRect returns zero, the application should not call the BeginPaint and
EndPaint functions.

174 WM_PAINTCLIPBOARD

See Also

It is an application's responsibility to check for any necessary internal repainting
or updating by looking at its internal data structures for each WM_P AINT mes
sage, because a WM_P AINT message may have been caused by both an invalid
area and a call to the RedrawWindow function with the
RDW _INTERNALPAINT flag set.

An internal WM_PAINT message is sent only once by Windows. After an internal
WM_P AINT message is returned from the GetMessage or PeekMessage function
or is sent to a window by the Update Window function, no further WM_P AINT
messages will be sent or posted until the window is invalidated or until the
RedrawWindow function is called again with the RDW _INTERNALPAINT flag
set.

BeginPaint, DispatchMessage, EndPaint, GetMessage, PeekMessage, Redraw
Window, UpdateWindow

WM_ PAINTCLIPBOARD

Parameters

WM_PAINTCLIPBOARO
hwndViewer = (HWND) wParam; /* handle of viewer */
pps = (PAINTSTRUCT FAR*) LOWORD(lParam); /*points to paint data*/

The WM_PAINTCLIPBOARD message is sent by a clipboard viewer to the
clipboard owner when the owner has placed data on the clipboard in the
CF _OWNERDISPLAY format and the clipboard viewer's client area needs
repainting.

hwndViewer
Value of wParam. Specifies a handle to the clipboard viewer window.

pps
Value of the low-order word of ZParam. Points to a PAINTSTRUCT data
structure that defines which part of the client area to paint. The PAINT
STRUCT structure has the following form:

typedef struct tagPAINTSTRUCT
HOC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fincUpdate;
BYTE rgbReserved[16];

} PAINTSTRUCT;

/* ps */

Return Value

Comments

See Also

WM_PALETIECHANGED 175

An application should return zero if it processes this message.

To determine whether the entire client area or just a portion of it needs repainting,
the clipboard owner must compare the dimensions of the drawing area given in the
rcPaint member of the PAINTSTRUCT structure to the dimensions given in the
most recent WM_SIZECLIPBOARD message.

An application must use the GlobalLock function to lock the memory that con
tains the PAINTSTRUCT data structure. The application should unlock that
memory by using the GlobalUnlock function before it yields or returns control.

GlobalLock, GlobalUnlock, WM_SIZECLIPBOARD

WM_ PALETTE CHANGED

Parameters

Return Value

Comments

WM_PALETTECHANGED
hwndPalChg = CHWND) wParam; /* handle of window that changed palette */

The WM_PALETTECHANGED message is sent to all top-level and overlapped
windows after the window with the input focus has realized its logical palette,
thereby changing the system palette. This message allows a window without the
input focus that uses a color palette to realize its logical palette and update its
client area.

hwndPalChg
Value of wParam. Specifies the handle of the window that caused the system
palette to change.

An application should return zero if it processes this message.

This message is sent to all top-level and overlapped windows, including the one
that changed the system palette and caused this message to be sent. If any child
windows use a color palette, this message must be passed on to them.

To avoid an infinite loop, a window that receives this message should not realize
its palette unless it determines that wParam does not contain its own window
handle.

176 WM_PALETTECHANGED

Example This example shows how an application selects and realizes its logical palette:

See Also

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i;

f*
* If this application changed the palette, ignore the message.
*f

case WM_PALETTECHANGED:
if (wParam == hwnd)

return 0L;

/* Otherwise, fall through to WM_OUERYNEWPALETTE. */

case WM_QUERYNEWPALETTE:

f*
* If realizing the palette causes the palette to change,
* redraw completely.
*f

hdc GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i ==entries that changed */

SelectPalette (hdc, hpalT, FALSE);
ReleaseDC(hwnd, hdc);

f* If any palette entries changed, repaint the window. */

if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);

return i;

WM_PALETTEISCHANGING, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY 177

WM_PALETTEISCHANGING [IT]

Parameters

Return Value

See Also

WM_PALETTEISCHANGING
hwndRealize = (HWND) wParam; /* handle of window to realize palette*/

The WM_PALETTEISCHANGING message informs applications that an applica
tion is going to realize its logical palette.

hwndRealize
Value of wParam. Specifies the handle of the window that is going to realize its
logical palette.

An application should return zero if it processes this message.

WM_PALETTECHANGED, WM_QUERYNEWPALETTE

WM_ PARENTNOTIFY

Parameters

WM_ PARENTNOTI FY
fwEvent = wParam; /* event flags */
wValuel LOWORD(lParam); /*child handle/cursor x-coordinate */
wValue2 = HIWDRD(lParam); /*child ID/cursory-coordinate */

The WM_PARENTNOTIFY message is sent to the parent of a child window
when the child window is created or destroyed or when the user clicks a mouse
button while the cursor is over the child window. When the child window is being
created, the system sends WM_PARENTNOTIFY just before the Create Window
or CreateWindowEx function that creates the window returns. When the child
window is being destroyed, the system sends the message before any processing to
destroy the window takes place.

fwEvent
Value ofwParam. Specifies the event for which the parent is being notified. It
can be any of the following values:

Value

WM_ CREATE

WM_DESTROY

WM_LBUTTONDOWN

Description

The child window is being created.

The child window is being destroyed.

The user has placed the mouse cursor over the child
window and clicked the left mouse button.

178 WM_ PASTE

Return Value

Comments

Value

WM_MBUTIONDOWN

WM_RBUTTONDOWN

wValuel

Description

The user has placed the mouse cursor over the child
window and clicked the middle mouse button.
The user has placed the mouse cursor over the child
window and clicked the right mouse button.

Value of the low-order word of lParam. If the fwEvent parameter is
WM_ CREATE or WM_DESTROY, the wValuel parameter specifies the
handle of the child window. Otherwise, wValuel specifies the x-coordinate of
the cursor.

wValue2
Value of the high-order word of lParam. IfjwEventis WM_ CREATE or
WM_DESTROY, the wValue2 parameter specifies the identifier of the child
window. Otherwise, wValue2 specifies they-coordinate of the cursor.

An application should return zero if it processes this message.

This message is also sent to all ancestor windows of the child window, including
the top-level window.

All child windows except those that have the WS_EX_NOPARENTNOTIFY send
this message to their parent windows. By default, child windows in a dialog box
have the WS_EX_NOPARENTNOTIFY style unless the CreateWindowExfunc
tion was called to create the child window without this style.

See Also CreateWindow, CreateWindowEx, WM_CREATE, WM_DESTROY,
WM_LBUTTONDOWN, WM_MBUTTONDOWN, WM_RBUTTONDOWN

WM_ PASTE CI!:"J
WM_ PASTE
wParam = 0;
l Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero */

An application sends the WM_PASTE message to an edit control or combo box to
insert the data from the clipboard into the edit control at the current cursor posi
tion. Data is inserted only if the clipboard contains data in CF_ TEXT format.

Parameters

Return Value

Example

See Also

WM_ POWER 179

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

This example pastes data from the clipboard to an edit control:

SendDlgitemMessage(hdlg, IDD_MYEDITCONTROL, WM_PASTE, 0, 0L);

WM_CLEAR, WM_COPY, WM_CUT

WM_ POWER

Parameters

Return Value

WM POWER
fwPowerEvt = wParam; f* power-event notification message */

The WM_POWER message is sent when the system, typically a battery-powered
personal computer, is about to enter the suspended mode.

fwPowerEvt
Value of wParam. Specifies a power-event notification message. This parame
ter may be one of the following values:

Value

PWR_S USPENDREQUEST

PWR_SUSPENDRESUME

PWR_CRITICALRESUME

Meaning

Indicates that the system is about to enter the sus
pended mode.

Indicates that the system is resuming operation
after entering the suspended mode normally-that
is, the system sent a PWR_SUSPENDREQUEST
notification message to the application before the
system was suspended. An application should per
form any necessary recovery actions.

Indicates that the system is resuming operation
after entering the suspended mode without first
sending a PWR_SUSPENDREQUEST notifica
tion message to the application. An application
should perform any necessary recovery actions.

The value an application should return depends on the value of the wParam para
meter, as follows:

180 WM_QUERYDRAGICON

Comments

See Also

Value of w Param

PWR_SUSPENDREQUEST

PWR_SUSPENDRESUME

PWR_CRITICALRESUME

Return Value

PWR_FAIL to prevent the system from entering the
suspended state; otherwise PWR_OK

0

0

This message is sent only to an application that is running on a system that con
forms to the advanced power management (APM) basic input-and-output system
(BIOS) specification. The message is sent by the power-management driver to
each window returned by the Enum Windows function.

The suspended mode is the state in which the greatest amount of power savings
occurs, but all operational data and parameters are preserved. Random-access
memory (RAM) contents are preserved, but many devices are likely to be turned
off.

En um Windows

WM_ OUERYDRAGICON

Parameters

Return Value

Comments

WM_OUERYDRAGICON

The WM_QUERYDRAGICON message is sent to a minimized (iconic) window
that does not have an icon defined for its class. The system sends this message
whenever it needs to display an icon for the window.

This message has no parameters.

An application should return a doubleword value that contains a cursor or icon
handle in the low-order word. The cursor or icon must be compatible with the dis
play driver's resolution. If the application returns NULL, the system displays the
default cursor. The default return value is NULL.

If an application returns the handle of an icon or cursor, the system converts the
icon or cursor to black-and-white.

The application can call the LoadCursor or Loadlcon function to load a cursor or
icon from the resources in its executable file and to obtain this handle.

Example

See Also

WM_QUERYENDSESSION 181

This example returns an icon handle in response to the WM_QUERYDRAGICON
message. The icon is loaded from the resources in the application's executable file.

static HICON hicon;

switch(msg) {
case WM_CREATE:

/* Load icon resource. */

hicon = Loadicon(hinstance, (LPCSTR) "Myicon"l;

/* Initialize other variables. */

return 0L;

case WM_QUERYDRAGICON:

/* Icon is about to be dragged. Return handle to custom icon. */

return (hicon);

/* Process other messages. *I

LoadCursor, Loadlcon

WM_ QUERYENDSESSION
WM_QUERYENDSESSION

The WM_QUERYENDSESSION message is sent when the user chooses to end
the Windows session, or when an application calls the ExitWindows function. If
any application returns zero, the Windows session is not ended. Windows stops
sending WM_QUERYENDSESSION messages as soon as one application returns
zero and sends WM_ENDSESSION messages, with the wParam parameter set to
FALSE, to any applications that have already returned nonzero.

182 WM_QUERYNEWPALETTE

Parameters

Return Value

Comments

See Also

This message has no parameters.

An application should return nonzero if it can conveniently terminate; otherwise, it
should return zero.

The DetWindowProc function returns nonzero when it processes this message.

DetWindowProc, ExitWindows, WM_ENDSESSION

WM_ QUERYNEWPALETTE

Parameters

Return Value

Example

WM_QUERYNEWPALETTE

The WM_QUERYNEWPALETTE message informs an application that it is about
to receive the input focus, giving the application an opportunity to realize its logi
cal palette when it receives the focus.

This message has no parameters.

An application should return nonzero if it realizes its logical palette; otherwise, it
should return zero.

This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i;

* If this application changed the palette, ignore the message.

case WM_PALETTECHANGED:
if (wParam == hwnd)

return 0L;

/* Otherwise, fall through to WM_QUERYNEWPALETTE. */

See Also

WM_ QUERYOPEN 183

case WM_QUERYNEWPALETTE:

f*
* If realizing the palette causes the palette to change,
* redraw completely.
*f

hdc GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i ==entries that changed */

SelectPalette (hdc, hpalT, FALSE); /
ReleaseDC(hwnd, hdc);

/* If any palette entries changed, repaint the window. */

if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);

return i;

WM_PALETTECHANGED, WM_PALETTEISCHANGING

WM_ QUERYOPEN

Parameters

Return Value

Comments

WM_OUERYOPEN

The WM_QUERYOPEN message is sent to a minimized window when the user
requests that the window be restored to its preminimized size and position.

This message has no parameters.

An application that processes this message should return a nonzero value if the
icon can be opened or zero to prevent the icon from opened.

While processing this message, the application should not perform any action that
would cause an activation or focus change (for example, creating a dialog box).

The DefWindowProc function returns nonzero when it processes this message.

184 WM_ QUEUESYNC

WM_ QUEUESYNC
WM_QUEUESYNC

The WM_QUEUESYNC message is sent by a computer-based training (CBT) ap
plication to separate user-input messages from other messages sent through the
journal playback hook (WH_JOURNALPLA YBACK).

Parameters This message has no parameters.

Return Value A CBT application should return zero if it processes this message.

Comments Whenever a CBT application uses the journal playback hook, the first and last mes
sages rendered are WM_QUEUESYNC. This allows the CBT application to inter
cept and examine user-initiated messages without doing so for events that it sends.

WM_ QUIT IT!J

Parameters

Return Value

See Also

WM_ QUIT
wExit = wParam; /* exit code */

The WM_ QUIT message indicates a request to terminate an application and is
generated when the application calls the PostQuitMessage function. It causes the
GetMessage function to return zero.

wExit
Value of wParam. Specifies the exit code given in the PostQuitMessage func
tion.

This message does not have a return value, because it causes the message loop to
terminate before the message is sent to the application's window procedure.

GetMessage, PostQuitMessage

WM_RBUTTONDBLCLK 185

WM_RBUTIONDBLCLK lliJ

Parameters

Return Value

Comments

See Also

WM_ RBUTTONDB LCLK
fwKeys = wParam;
xPos LOWORDClParam);
yPos = HIWORDClParam);

/* key flags */
/* horizontal position of cursor */
/* vertical position of cursor */

The WM_RBUTTONDBLCLK message is sent when the user double-clicks the
right mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_RBUTTONDBLCLK messages. Windows generates a
WM_RBUTTONDBLCLK message when the user presses, releases, and again
presses the right mouse button within the system's double-click time limit.
Double-clicking the right mouse button actually generates four messages: a
WM_RBUTTONDOWN message, a WM_RBUTTONUP message, the
WM_RBUTTONDBLCLK message, and another WM_RBUTTONUP message.

WM_RBUTTONDOWN, WM_RBUTTONUP

186 WM_RBUTTONDOWN

WM_ RBUTTONDOWN

Parameters

Return Value

See Also

WM_ RBUTTONDOWN
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* key flags */
/* horizontal position of cursor */
/* vertical position of cursor */

The WM_RBUTTONDOWN message is sent when the user presses the right
mouse button.

fwKeys
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MK_ CONTROL

MK_LBUTTON

MK_MBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_RBUTTONDBLCLK, WM_RBUTTONUP

WM_RBUTTONUP
WM_ RBUTTONUP
fwKeys = wParam;
xPos LOWORD(lParam);
yPos = HIWORD(lParam);

/* key flags */
f* horizontal position of cursor */
/* vertical position of cursor */

The WM_RBUTTONUP message is sent when the user releases the right mouse
button.

Parameters

Return Value

See Also

WM_RENDERALLFORMATS 187

fwKeys
Value ofwParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value

MK_ CONTROL

MK_LBUTION

MK_MBUTTON

MK_SHIFT

xPos

Description

Set if CTRL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if SHIFT key is down.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor. The coordinate is relative to the upper-left comer of the window.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_RBUTTONDBLCLK, WM_RBUTTONDOWN

WM_ RENDERALLFORMATS

Parameters

Return Value

Comments

WM_RENDERALLFORMATS

The WM_RENDERALLFORMA TS message is sent to the clipboard owner when
the owner application is being destroyed.

This message has no parameters.

An application should return zero if it processes this message.

The clipboard owner should render the data in all the formats it is capable of gener
ating and pass a data handle for each format to the clipboard by calling the Set
ClipboardData function. This ensures that the clipboard contains valid data even
though the application that rendered the data is destroyed. The application should
call the OpenClipboard function before calling SetClipboardData and should
call the CloseClipboard function afterward.

188 WM_RENDERFORMAT

Example In this example, the application sends a WM_RENDERFORMAT message to it
self for each clipboard format that the application supports:

See Also

case WM_RENDERALLFDRMATS:
OpenClipboard(hwnd);
SendMessage(hwnd, WM_RENDERFORMAT, CF_DIB, 0L);
SendMessage(hwnd, WM_RENDERFDRMAT, CF_BITMAP, 0L);
CloseClipboard();
break;

CloseClipboard, OpenClipboard, SetClipboardData, WM_RENDERFORMAT

WM_ RENDERFORMAT

Parameters

Return Value

Comments

Example

See Also

WM_ RENDERFDRMAT
uFmt = (UINT) wParam; /*clipboard data format*/

The WM_RENDERFORMAT message is sent to the clipboard owner when a par
ticular format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the clipboard by calling the Set
ClipboardData function.

uFmt
Specifies the data format. It can be any one of the formats described with the
SetClipboardData function.

An application should return zero if it processes this message.

The application should not call the OpenClipboard and CloseClipboard func
tions while processing this message.

This example uses an application-defined function to render clipboard data. The
function returns a data handle that is passed to the clipboard by the SetClipboard
Data function.

HANDLE hData;

case WM_RENDERFORMAT:
if ChData = RenderFormat(wParam))

SetClipboardData(wParam, hData);
break;

CloseClipboard, OpenClipboard, SetClipboardData,
WM_RENDERALLFORMATS

WM_SETCURSOR 189

WM_SETCURSOR CI!J

Parameters

Return Value

Comments

See Also

WM_SETCURSOR
hwndCursor = (HWNO) wParam;
nHittest = LOWORO(lParam);
wMouseMsg = HIWORD(lParam);

/* handle of window with cursor */
/* hit-test code */
f* mouse-message number */

The WM_SETCURSOR message is sent to a window if mouse input is not cap
tured and the mouse causes cursor movement within the window.

hwndCursor
Value of w Param. Specifies a handle to the window that contains the cursor.

nHittest
Value of the low-order word of lParam. Specifies the hit-test area code.

wMouseMsg
Value of the high-order word of lParam. Specifies the number of the mouse
message.

An application should return TRUE to halt further processing or FALSE to con
tinue.

If the nHittest parameter is HTERROR and the wMouseMsg parameter is a mouse
button-down message, the MessageBeep function is called.

The DetwindowProc function passes the WM_SETCURSOR message to a
parent window before processing. If the parent window returns TRUE, further
processing is halted. Passing the message to a window's parent window gives the
parent window control over the cursor's setting in a child window. The Def
WindowProc function also uses this message to set the cursor to a pointer if it is
not in the client area or to the registered-class cursor if it is in the client area.

For a standard dialog box to set the cursor for one of its child window controls, it
must force the DetDlgProc function to return TRUE in response to the WM_SET
CURSOR message. (DetDlgProc provides default processing for the standard
dialog box class.) When DetDlgProc returns TRUE, the dialog box procedure re
tains control over the cursor. When the dialog box procedure processes WM_SET
CURSOR, it can return TRUE by using the SetWindowLong function and the
DWL_MSGRESUL T offset, as shown in the following example:

SetWindowlong(hwndDlg, DWL_MSGRESULT, MAKELONG(TRUE, 0));

DetwindowProc, MessageBeep, SetWindowLong

190 WM_SETFOCUS

WM_SETFOCUS CI!J

Parameters

Return Value

Comments

WM_ SET FOCUS
hwnd = (HWNDl wParam; /* handle of window losing focus */

The WM_SETFOCUS message is sent after a window gains the input focus.

hwnd
Value ofwParam. Contains the handle of the window that loses the input focus.
(This parameter may be NULL.)

An application should return zero if it processes this message.

To display a caret, an application should call the appropriate caret functions at this
point.

WM_SETFONT

Parameters

Return Value

WM_SETFONT
wParam = CWPARAM) hfont; /* handle of the font */
lParam = (LPARAM) MAKELONG((WORD) fRedraw, 0); /* redraw flag */

An application sends the WM_SETFONT message to specify the font that a con
trol is to use when drawing text.

hfont
Value of w Param. Specifies the handle of the font. If this parameter is NULL,
the control will use the default system font to draw text.

fR.edraw
Value of the low-order word of lParam. Specifies whether the control should
be redrawn immediately upon setting the font. Setting the fR.edraw parameter to
TRUE causes the control to redraw itself.

An application should return zero if it processes this message.

Comments

Example

WM_SETFONT 191

The WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog box to set the font of the control is when it
receives the WM_INITDIALOG message. The application should call the
DeleteObject function to delete the font when it is no longer needed-for ex
ample, after the control is destroyed.

The size of the control is not changed as a result of receiving this message. To pre
vent Windows from clipping text that does not fit within the boundaries of the con
trol, the application should correct the size of the control window before changing
the font.

Before Windows creates a dialog box with the DS_SETFONT style, Windows
sends the WM_SETFONT message to the dialog box window before creating the
controls. An application creates a dialog box with the DS_SETFONT style by
calling any of the following functions:

• CreateDialoglndirect

• CreateDialoglndirectParam

• DialogBoxlndirect

• DialogBoxlndirectParam

The DialogBoxHeader structure that the application passes to these functions
must have the DS_SETFONT style set and must contain the wPointSize and
szFaceName members that define the font the dialog box will use to draw text.

For more information about the DialogBoxHeader structure, see Chapter 7,
"Resource Formats Within Executable Files," in the Microsoft Windows
Programmer's Reference, Volume 4.

This example changes the font used by controls in a dialog box to a font that is not
bold.

HFONT hDlgFont;
LOG FONT 1 Font;

case WM_INITDIALOG:

/* Get dialog box font and create version that is not bold. */

192 WM_SETREDRAW

See Also

hDlgFont = CHFONT) NULL;
if ((hDlgFont = CHFONT) SendMessage(hdlg, WM_GETFONT, 0, 0L))) {

if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR) &lFontll {
lFont.lfWeight = FW_NORMAL;

}
}

if (hDlgFont = CreateFontindirect((LPLOGFONT) &lFont)) {
SendDlgitemMessage(hdlg, ID_CTRLl, WM_SETFONT,

}

hDl gFont, 0Ll;
SendDlgitemMessage(hdlg, ID_CTRL2, WM_SETFONT,

hDl gFont, 0L);

/*Set font for remaining controls. *f

return TRUE;

CreateDialoglndirect, CreateDialoglndirectParam, DeleteObject, DialogBox
lndirect, DialogBoxlndirectParam

WM_SETREDRAW IT!:]

Parameters

Return Value

Comments

WM_SETREDRAW
wParam (WPARAM) fRedraw; /* state of redraw flag */
lParam = 0L; /*not used, must be zero*/

An application sends a WM_SETREDRA W message to a window to allow
changes in that window to be redrawn or to prevent changes in that window from
being redrawn.

fRedraw
Value ofwParam. Specifies the state of the redraw flag. If this parameter is
nonzero, the redraw flag is set. If this parameter is zero, the flag is cleared.

An application should return zero if it processes this message.

This message sets or clears the redraw flag. If the redraw flag is cleared, the con
tents of the specified window will not be updated after each change, and the win
dow will not be repainted until the redraw flag is set. For example, an application
that needs to add several items to a list box can clear the redraw flag, add the
items, and then set the redraw flag. Finally, the application can call the
InvalidateRect function to cause the list box to be repainted.

WM_SHOWWINDOW 193

WM_ SETTEXT [li]

Parameters

Return Value

Comments

See Also

WM_SETTEXT
wParam 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) pszText; /*address of window-text string*/

An application sends a WM_SETTEXT message to set the text of a window.

pszText
Value of lParam. Points to a null-terminated string that is the window text.

The return value is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a
combo box) if insufficient space is available to set the text in the edit control. It is
CB_ERR if this message is sent to a combo box without an edit control.

For an edit control, the text to be set is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title.

This message does not change the current selection in the list box of a combo box.
An application should use the CB_SELECTSTRING message to select the item in
the list box that matches the text in the edit control.

WM_GETTEXT

WM SHOWWINDOW

Parameters

WM_ SHOWW IND OW
fShow = (BOOL) wParam;
fnStatus = LOWORD(lParam);

/* show/hide flag */
/* status flag */

The WM_SHOWWINDOW message is sent to a window when it is about to be
hidden or shown. A window is hidden or shown when the ShowWindow function
is called; when an overlapped window is maximized or restored; or when an
overlapped or pop-up window is minimized or displayed on the screen. When an
overlapped window is minimized, all pop-up windows associated with that win
dow are hidden.

JS how
Value ofwParam. Specifies whether a window is being shown. It is TRUE if
the window is being shown; it is FALSE if the window is being hidden.

194 WM_ SIZE

Return Value

Comments

See Also

WM_ SIZE

Parameters

fnStatus
Value of the low-order word of lParam. Specifies the status of the window
being shown. The fnStatus parameter is zero if the message is sent because of a
Show Window function call; otherwise,fnStatus is one of the following values:

Value

SW _PARENTCLOSING

SW _pARENTOPENING

Description

Parent window is being minimized, or a pop-up
window is being hidden.

Parent window is opening (being displayed) or a pop
up window is being shown.

An application should return zero if it processes this message.

The DefWindowProc function hides or shows the window as specified by the
message.

The WM_SHOWWINDOW message is not sent under the following circum
stances:

• When a main window is created with the WS_MAXIMIZE or WS_MINIMIZE
style

• When the SW _SHOWNORMAL flag is specified in the call to the Show
Window function

DefWindowProc, ShowWindow

WM_ SIZE
fwSizeType = wParam; /* sizing-type flag */
nWidth = LOWORD(lParam); /*width of client area */
nHeight = HIWORD(lParam); /*height of client area*/

The WM_SIZE message is sent to a window after its size has changed.

fwSizeType
Value of wParam. Specifies the type of resizing requested. This parameter can
be one of the following values:

Return Value

Comments

See Also

Value

SIZE_MAXIMIZED

SIZE_MINIMIZED

SIZE_RESTORED

SIZE_MAXHIDE

SIZE_MAXSHOW

nWidth

Description

Window has been maximized.

Window has been minimized.

WM_SIZECLIPBOARD 195

Window has been resized, but neither SIZE_MINIMIZED
nor SIZE_MAXIMIZED applies.

Message is sent to all pop-up windows when some other
window is maximized.

Message is sent to all pop-up windows when some other
window has been restored to its former size.

Value of the low-order word of !Param. Specifies the new width of the client
area.

nHeight
Value of the high-order word of lParam. Specifies the new height of the client
area.

An application should return zero if it processes this message.

If the SetScrollPos or Move Window function is called for a child window as a re
sult of the WM_SIZE message, the ft?epaint parameter should be nonzero to cause
the window to be repainted.

Move Window, SetScrollPos

WM_ SIZECLIPBOARD

Parameters

WM_SIZECLIPBOARD
hwndViewer = (HWND) wParam; /*handle of clipboard viewer*/
hglb = (HGLOBAL) LOWORD(lParam); /*handle of global object */

The WM_SIZECLIPBOARD message is sent by the clipboard viewer to the clip
board owner when the clipboard contains data with the CF _OWNERDISPLAY
attribute and the size of the client area of the clipboard-viewer window has
changed.

hwndViewer
Value ofwParam. Identifies the clipboard-application window.

196 WM_SPOOLERSTATUS

Return Value

Comments

See Also

hglb
Value of the low-order word of lParam. Identifies a global memory object that
contains a RECT data structure. The structure specifies the area that the clip
board owner should paint. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

An application should return zero if it processes this message.

A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as the
new size when the clipboard application is about to be destroyed or minimized.
This permits the clipboard owner to free its display resources.

An application must use the GlobalLock function to lock the memory that con
tains the RECT data structure. The application should unlock that memory by
using the GlobalUnlock function before it yields or returns control.

GlobalLock, GlobalUnlock, SetClipboardData, SetClipboardViewer

WM_ SPOOLERSTATUS

Parameters

Return Value

Comments

WM_SPOOLERSTATUS
fwJobStatus = wParam; /* job-status flag */
cJobsleft = LOWORDClParam); /*number of jobs remaining */

The WM_SPOOLERST ATVS message is sent from Print Manager whenever a
job is added to or removed from the Print Manager queue.

fwJobStatus
Value of wParam. Specifies the SP _JOBSTATUS flag.

cJobsLeft
Value of the low-order word of lParam. Specifies the number of jobs remaining
in the Print Manager queue.

An application should return zero if it processes this message.

This message is for informational purposes only.

WM_ SYSCHAR 197

WM_ SYSCHAR ~

Parameters

Return Value

Comments

WM_SYSCHAR
wKeyCode = wParam;
dwKeyData = lParam;

f* ASCII key code */
/* key data */

The WM_SYSCHAR message is sent to the window with the input focus when a
WM_SYSKEYUP and a WM_SYSKEYDOWN message are translated. It speci
fies the virtual-key code of the System-menu key. (The System menu is some
times referred to as the Control menu.)

wKeyCode
Value of wParam. Specifies the ASCII-character key code of a System-menu
key.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

24

25-26
27-28
29

30

31

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.
Not used.
Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.
Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate
Accelerator function, which will handle it as though it were a normal key mes
sage instead of a System-menu key message. This allows accelerator keys to be
used with the active window even if the active window does not have the input
focus.

198 WM_ SYSCOLORCHANGE

See Also

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the lParam parameter.

TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP

WM_ SYSCOLORCHANGE

Parameters

Return Value

Comments

See Also

WM_SYSCOLORCHANGE

The WM_SYSCOLORCHANGE message is sent to all top-level windows when a
change is made in the system color setting.

This message has no parameters.

An application should return zero if it processes this message.

Windows sends a WM_P AINT message to any window that is affected by a sys
tem color change.

Applications that have brushes that use the existing system colors should delete
those brushes and re-create them by using the new system colors.

SetSysColors, WM_P AINT

WM_ SYSCOMMAND
WM_ SYSCOMMAND
wCmdType = wParam;
xPos LOWORDClParam);
yPos = HIWORDClParam);

/* command value
f* horizontal position of cursor */
f* vertical position of cursor */

The WM_SYSCOMMAND message is sent when the user selects a command
from the System menu (sometimes referred to as the Control menu) or when the
user selects the Maximize button or the Minimize button.

Parameters

Return Value

Comments

WM_SYSCOMMANO 199

wCmdType
Value ofwParam. Specifies the type of system command requested. This
parameter can be one of the following values:

Value

SC_ CLOSE

SC_HOTKEY

SC_HSCROLL

SC_KEYMENU

SC_MAXIMIZE (or SC_ZOOM)

SC_MINIMIZE (or SC_ICON)

SC_MOUSEMENU

SC_MOVE

SC_NEXTWINDOW

SC_PREVWINDOW

SC_RESTORE

SC_SCREENSAVE

SC_SIZE

SC_TASKLIST

SC_VSCROLL

xPos

Meaning

Close the window.

Activate the window associated with the
application-specified hot key. The low-order
word of lParam identifies the window to
activate.

Scroll horizontally.

Retrieve a menu through a keystroke.

Maximize the window.

Minimize the window.

Retrieve a menu through a mouse click.

Move the window.

Move to the next window.

Move to the previous window.

Restore window to normal position and size.

Execute the screen-saver application specified
in the [boot] section of the SYSTEM.IN! file.

Size the window.

Execute or activate the Windows Task
Manager application.

Scroll vertically.

Value of the low-order word of lParam. Specifies the x-coordinate of the cur
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

yPos
Value of the high-order word of lParam. Specifies they-coordinate of the cur
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

An application should return zero if it processes this message.

The DefWindowProc function carries out the System-menu request for the prede
fined actions specified in the preceding table.

In WM_SYSCOMMAND messages, the four low-order bits of the wCmdType
parameter are used internally by Windows. When an application tests the value of
wCmdType, it must combine the value OxFFFO with the wCmdType value by using
the bitwise AND operator to obtain the correct result.

200 WM_ SYSDEADCHAR

See Also

The menu items in a System menu can be modified by using the GetSystem
Menu, AppendMenu, InsertMenu, and ModifyMenu functions. Applications
that modify the System menu must process WM_SYSCOMMAND messages.
Any WM_SYSCOMMAND messages not handled by the application must be
passed to the DetwindowProc function. Any command values added by an appli
cation must be processed by the application and cannot be passed to Detwindow
Proc.

An application can carry out any system command at any time by passing a
WM_SYSCOMMAND message to the DetwindowProc function.

Accelerator keystrokes that are defined to select items from the System menu are
translated into WM_SYSCOMMAND messages; all other accelerator key strokes
are translated into WM_ COMMAND messages.

AppendMenu, DetwindowProc, GetSystemMenu, lnsertMenu, ModifyMenu,
WM_ COMMAND

WM_ SYSDEADCHAR

Parameters

Return Value

See Also

WM_ SYSDEADCHAR
wDeadKey = wParam; /* dead-key character */
cRepeat = (int) LOWORD(lParam); /* repeat count */
cAutoRepeat = HIWORD(lParam); /* autorepeat count */

The WM_SYSDEADCHAR message is sent to the window with the input focus
when WM_SYSKEYUP and WM_SYSKEYDOWN messages are translated. It
specifies the character value of a dead key.

wDeadKey
Value of wParam. Specifies the dead-key character value.

cRepeat
Value of the low-order word of lParam. Specifies the repeat count.

cAutoRepeat
Value of the high-order word of lParam. Specifies the auto-repeat count.

An application should return zero if it processes this message.

WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSKEYDOWN 201

WM_SVSKEVDOWN CI!J

Parameters

Return Value

WM_ SYS KEY DOWN
wVkey = wParam;
dwKeyData = lParam;

/* virtual-key code */
/* key data */

The WM_SYSKEYDOWN message is sent to the window with the input focus
when the user holds down the ALT key and then presses another key. If no window
currently has the input focus, the WM_SYSKEYDOWN message is sent to the ac
tive window. The window that receives the message can distinguish between these
two contexts by checking the context code in the dwKeyData parameter.

wVkey
Value ofwParam. Specifies the virtual-key code of the key being pressed.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

24

25-26
27-28
29

30

31

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

For WM_SYSKEYDOWN messages, the value of bit 29 (context code) is 1 if
the ALT key is down while the key is pressed; it is 0 if the message is sent to the
active window because no window has the input focus. The value of bit 31 (key
transition state) is 0.

An application should return zero if it processes this message.

202 WM_SYSKEYUP

Comments

See Also

When the context code is zero, the message can be passed to the Translate
Accelerator function, which will handle it as though it were a normal key mes
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

Because of the autorepeat feature, more than one WM_SYSKEYDOWN message
may occur before a WM_SYSKEYUP message is sent. The previous key state (bit
30) can be used to determine whether the WM_SYSKEYDOWN message indi
cates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division ({) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the lParam parameter.

TranslateAccelerator, WM_SYSKEYUP

WM_SYSKEYUP

Parameters

WM_SYSKEYUP
wVkey = wParam;
dwKeyData = lParam;

/* virtual-key code*/
/* key data */

The WM_SYSKEYUP message is sent to the window with the input focus when
the user releases a key that was pressed while the ALT key was held down. If no
window currently has the input focus, the WM_SYSKEYUP message is sent to
the active window. The window that receives the message can distinguish between
these two contexts by checking the context code in the lParam parameter.

wVkey
Value ofwParam. Specifies the virtual-key code of the key being pressed.

dwKeyData
Value of lParam. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit

0-15

16-23

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Return Value

Comments

See Also

Bit

24

25-26
27-28
29

30

31

WM_ SYSKEYUP 203

Description

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

For WM_SYSKEYUP messages, the value of bit 29 (context code) is 1 if the
ALT key is down while the key is pressed; it is 0 if the message is sent to the
active window because no window has the input focus. The value of bit 31
(key-transition state) is 1.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate
Accelerator function, which will handle it as though it were a normal key mes
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the ZParam parameter.

For non-U.S. Enhanced 102-key keyboards, the right ALT key is handled as the
CTRL+ALT key combination. The following list shows the messages that result
when the user presses and releases this key, in the sequence they occur:

2

3

4

WM_KEYDOWN

WM_KEYDOWN

WM_KEYUP

WM_SYSKEYUP

VK_CONTROL

VK_MENU

VK_CONTROL

VK_MENU

TranslateAccelerator, WM_SYSKEYDOWN

204 WM_ SYSTEM ERROR

WM_ SYSTEMERROR

Parameters

Return Value

Comments

WM_ SYSTEM ERROR
wErrSpec = wParam; /* specifies when error occurred */

The WM_SYSTEMERROR message is sent when the Windows kernel encounters
an error but cannot display the system-error message box.

wErrSpec
Value ofwParam. Specifies when the error occurred. Currently, the only valid
value is 1, indicating that the error occurred when a task or library was terminat
ing.

An application should return zero if it processes this message.

A shell application should process this message, displaying a message box that in
dicates an error has occurred.

WM_ TIMECHANGE

Parameters

Return Value

Comments

See Also

WM_ TIMECHANGE
wParam 0;
l Pa ram = 0L;

f* not used, must be zero */
f* not used, must be zero */

An application sends the WM_TIMECHANGE message to all top-level windows
after changing the system time.

This message has no parameters.

An application should return zero if it processes this message.

Any application that changes the system time should send this message to all top
level windows. To send the WM_TIMECHANGE message to all top-level win
dows, an application can use the SendMessage function with the hwnd parameter
set to HWND_BROADCAST.

SendMessage

WM_ TIMER 205

WM TIMER lliJ

Parameters

Return Value

Comments

Example

See Also

WM_ TIMER
wTimerID = wParam;
tmprc = CTIMERPROC FAR*) lParam;

/* timer identifier
/*address of timer callback

The WM_ TIMER message is posted to the installing application's message queue
or sent to the appropriate TimerProc callback function after each interval
specified in the SetTimer function used to install a timer.

wTimerID
Value of wParam. Specifies the identifier of the timer.

tmprc
Value of lParam. Points to a callback function that was passed to the SetTimer
function when the timer was installed. If the tmprc parameter is not NULL, the
system passes the WM_ TIMER message to the specified callback function
rather than posting the message to the application's message queue.

An application should return zero if it processes this message.

The DispatchMessage function sends this message when no other messages are in
the application's message queue.

This example uses the WM_ TIMER message to create a blinking effect for a line
of text:

DWORD dwXYVal;
WORD wXVal, wYVal;
char szMessage[16];

case WM_ TIMER:
hdc = GetDCChwnd);
dwXYVal = GetTextExtent(hdc, CLPCSTR) szMessage,

lstrlen(szMessage));
wXVal = LOWORD(dwXYVal);
wYVal = HIWORDCdwXYVal);
PatBlt(hdc, 10, 10, (int) wXVal, (int) wYVal, PATINVERT);
ReleaseDC(hwnd, hdc);
ValidateRect(hwnd, NULL);
break;

SetTimer, TimerProc

206 WM_ UNDO

WM_ UNDO

Parameters

Return Value

WM_ UNDO

An application sends the WM_ UNDO message to an edit control to undo the last
operation. When this message is sent to an edit control, the previously deleted text
is restored or the previously added text is deleted.

This message has no parameters.

The return value is nonzero if the operation is successful, or it is zero if an error
occurs.

See Also WM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

WM_ USER lliJ

Comments

WM_ USER

WM_ USER is a constant used by applications to help define private messages.

The WM_ USER constant is used to distinguish between message values that are
reserved for use by Windows and values that can be used by an application to send
messages within a private window class. There are four ranges of message num
bers:

Range

0 through WM_ USER - 1

WM_ USER through Ox7FFF

Ox8000 through OxBFFF

OxCOOO through OxFFFF

Meaning

Messages reserved for use by Windows.

Integer messages for use by private window classes.

Messages reserved for use by Windows.

String messages for use by applications.

Message numbers in the first range (0 through WM_ USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_ USER through Ox7FFF) can be de
fined and used by an application to send messages within a private window class.
These values cannot be used to define messages that are meaningful throughout an
application, because some predefined window classes already define values in
this range. For example, such predefined control classes as BUTTON, EDIT,

See Also

WM_ VKEYTOITEM 207

LISTBOX, and COMBOBOX may use these values. Messages in this range
should not be sent to other applications unless the applications have been designed
to exchange messages and to attach the same meaning to the message numbers.

Message numbers in the third range (Ox8000 through OxBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (OxCOOO through OxFFFF) are defined at run
time when an application calls the RegisterWindowMessage function to obtain a
message number for a string. All applications that register the same string can use
the associated message number for exchanging messages. The actual message
number, however, is not a constant and cannot be assumed to be the same in differ
ent Windows sessions.

Register Window Message

WM_ VKEYTOITEM

Parameters

Return Value

WM_ VKEYTO ITEM
wVkey = wParam;
hwndLB = (HWND) LDWDRD(lParam);
nCaretPos = HIWORD(lParam);

/* virtual-key code *f
/* handle of the list box*/
/* caret position */

The WM_ VKEYTOITEM message is sent by a list box with the
LBS_ W ANTKEYBOARDINPUT style to its owner in response to a
WM_KEYDOWN message.

wVkey
Value ofwParam. Specifies the virtual-key code of the key that the user
pressed.

hwndLB
Value of the low-order word of lParam. Identifies the list box.

nCaretPos
Value of the high-order word of lParam. Specifies the current position of the
caret.

The return value specifies the action that the application performed in response to
the message. A return value of -2 indicates that the application handled all aspects
of selecting the item and requires no further action by the list box. A return value
of -1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an

208 WM_ VSCROLL

Comments

See Also

item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

Only list boxes that have the LBS_HASSTRINGS style can receive this message.

WM_CHARTOITEM, WM_KEYDOWN

WM_VSCROLL

Parameters

WM_ VSCROLL
wScrollCode = wParam; /* scroll bar code */
nPos = LOWORD(lParam); /*current scroll box position*/
hwndCtl = (HWND) HIWORD(lParam); /* handle of the control */

The WM_ VSCROLL message is sent to a window when the user clicks the win
dow's vertical scroll bar.

wScrollCode
Value of wParam. Specifies a scroll bar code that indicates the user's scrolling
request. This parameter can be one of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_THUMBPOSITION

SB_THUMBTRACK

SB_TOP

nPos

Description

Scroll to bottom.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position. The current position is
specified by the nPos parameter.

Drag scroll box (thumb) to specified position. The
current position is specified by the nPos parameter.

Scroll to top.

Value of the low-order word of lParam. Specifies the curre.nt position of the
scroll box ifwScrollCode is SB_THUMBPOSITION or SB_THUMBTRACK;
otherwise, this parameter is not used.

Return Value

Comments

See Also

WM_ VSCROLLCLIPBOARD 209

hwndCtl
Value of the high-order word of lParam. Identifies the control if
WM_ VSCROLL is sent by a scroll bar. If WM_ VSCROLL is sent as a result of
the user clicking a pop-up window's scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK message typically is used by applications that give
some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_HSCROLL

WM_ VSCROLLCLIPBOARD

Parameters

WM_VSCROLLCLIPBOARD
hwndViewer = (HWND) wParam;
wScrollCode = LOWORD(lParam);
wThumbPos = HIWORD(lParam);

/* handle of clipboard viewer */
/* scroll bar code */
/*scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF_ OWNERDISPLA Y format
and there is an event in the clipboard viewer's vertical scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndViewer
Value ofwParam. Specifies a handle to a clipboard-viewer window.

wScrollCode
Value of the low-order word of lParam. Specifies one of the following scroll
bar values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_pAGEUP

Description

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

210 WM_ WINDOWPOSCHANGED

Return Value

Comments

See Also

Value

SB_ THUMBPOSITION

SB_TOP

wThumbPos

Description

Scroll to absolute position.

Scroll to upper left.

Value of the high-order word of lParam. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word is
not used.

An application should return zero if it processes this message.

The clipboard owner should use the InvalidateRect function or repaint the win
dow as needed. The scroll bar position should also be reset.

InvalidateRect, WM_HSCROLLCLIPBOARD

WM_ WINDOWPOSCHANGED

Parameters

Return Value

WM_WINDDWPOSCHANGED
pwp = (canst WINDOWPOS FAR*) lParam; /* structure address

The WM_ WINDOWPOSCHANGED message is sent to a window whose size,
position, or z-order has changed as a result of a call to SetWindowPos or another
window-management function.

pwp
Value of lParam. Points to a WINDOWPOS data structure that contains infor
mation about the window's new size and position. The WINDOWPOS struc
ture has the following form:

typedef struct tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndinsertAfter;
int
int

x·
' y;

int ex;
int cy;
UINT flags;

} WINDOWPOS;

An application should return zero if it processes this message.

Comments

See Also

WM_ WINDOWPOSCHANGING 211

The DetwindowProc function, when it processes the
WM_ WINDOWPOSCHANGED message, sends the WM_SIZE and
WM_MOVE messages to the window. These messages are not sent if an
application handles the WM_ WINDOWPOSCHANGED message without calling
DetwindowProc. It is more efficient to perform any move or size change pro
cessing during the WM_ WINDOWPOSCHANGED message without calling
DetwindowProc.

WM_MOVE, WM_SIZE, WM_ WINDOWPOSCHANGING

WM_ WINDOWPOSCHANGING

Parameters

Return Value

Comments

WM_WINDOWPOSCHANGING
pwp = (WINDOWPOS FAR*) lParam; /*address of WINDOWPOS structure*/

The WM_ WINDOWPOSCHANGING message is sent to a window whose size,
position, or z-order is about to change as a result of a call to SetWindowPos or
another window-management function.

pwp
Value of lParam. Points to a WINDOWPOS data structure that contains infor
mation about the window's new size and position. The WINDOWPOS struc
ture has the following form:

typedef struct tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndinsertAfter;
int x;
int y;
int ex;
int cy;
UINT flags;

WINDOWPOS;

An application should return zero if it processes this message.

During this message, modifying any of the values in the WINDOWPOS structure
affects the new size, position, or z-order. An application can prevent changes to
the window by setting or clearing the appropriate bits in the flags member of the
WINDOWPOS structure.

For a window with the WS_OVERLAPPED orWS_THICKFRAME style, the
DetwindowProc function handles a WM_ WINDOWPOSCHANGING message
by sending a WM_GETMINMAXINFO message to the window. This is

212 WM_ WININICHANGE

See Also

done to validate the new size and position of the window and to enforce the
CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. An application
can override this by not passing the WM_ WINDOWPOSCHANGING message
to the DetwindowProc function.

WM_ WINDOWPOSCHANGED

WM_ WININICHANGE

Parameters

Return Value

Comments

See Also

WM_WININICHANGE
wParam 0; /* not used, must be zero */
lParam = (LPARAM) (LPCSTR) pszSection; /*address of string */

An application sends the WM_ WININICHANGE message to all top-level win
dows after making a change to the Windows initialization file, WIN.INI. The
SystemParameterslnfo function sends the WM_ WININICHANGE message
after an application uses the function to change a setting in the WIN.IN! file.

pszSection
Value of lParam. Points to a string that specifies the name of the section that
has changed (the string does not include the square brackets that enclose the sec
tion name).

An application should return zero if it processes this message.

To send the WM_ WININICHANGE message to all top-level windows, an appli
cation can use the SendMessage function with the hwnd parameter set to
HWND_BROADCAST.

If an application changes many different sections in WIN.IN! at the same time,
the application should send the WM_ WININICHANGE message once with the
pszSection parameter set to NULL. Otherwise, an application should send a sepa
rate WM_ WININICHANGE message for each change it makes to WIN.INI.

If an application receives a WM_ WININICHANGE message with the pszSection
parameter set to NULL, the application should check all sections in WIN.IN! that
affect the application.

SendMessage, SystemParameterslnfo

BN_DISABLE 213

2. 2 Notification Messages
Notification messages notify a control's parent window of actions that occur
within the control. Controls use the WM_ COMMAND message to notify the
parent window of actions that occur within the control. The wParam parameter of
the WM_ COMMAND message contains the control identifier; the low-order word
of the lParam parameter contains the handle of the control; and the high-order
word of lParam contains the control notification message.

This section lists notification messages in alphabetic order.

BN_CLICKED

See Also

BN_CLICKED

The BN_CLICKED notification message is sent when the user clicks a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRA W but
ton style and the DRA WITEMSTRUCT structure for this task.

DRA WITEMSTRUCT, WM_DRA WITEM

BN_DISABLE

See Also

BN_DISABLE

The BN_DISABLE notification message is sent when a button is disabled. This
notification is provided for compatibility with applications written prior to Win
dows version 3.0. New applications should use the BS_OWNERDRA W button
style and the DRA WITEMSTRUCT structure for this task.

DRA WITEMSTRUCT, WM_DRA WITEM

214 BN_DOUBLECLICKED

BN_ DOUBLECLICKED
BN_DOUBLECLICKED

The BN_DOUBLECLICKED notification message is sent when the user double
clicks a button. This notification is provided for compatibility with applications
written prior to Windows version 3.0. New applications should use the
BS_OWNERDRA W button style and the DRA WITEMSTRUCT structure for
this task.

See Also DRA WITEMSTRUCT, WM_DRA WITEM

BN_HILITE CI!J
BN_HILITE

The BN_HILITE notification message is sent when the user highlights a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRA W but
ton style and the DRA WITEMSTRUCT structure for this task.

See Also DRA WITEMSTRUCT, WM_DRA WITEM

BN_ PAINT CI!J

See Also

BN_PAINT

The BN_PAINT notification message is sent when a button should be painted.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRA W but
ton style and the DRA WITEMSTRUCT structure for this task.

DRA WITEMSTRUCT, WM_DRA WITEM

CBN_CLOSEUP 215

BN_ UNHILITE lliJ

See Also

BN_UNHILITE

The BN_UNHILITE notification message is sent when the highlight should be re
moved from a button. This notification is provided for compatibility with applica
tions written prior to Windows version 3.0. New applications should use the
BS_OWNERDRA W button style and the DRA WITEMSTRUCT structure for
this task.

DRA WITEMSTRUCT, WM_DRA WITEM

CBN_ CLOSEUP

Parameters

Comments

See Also

The CBN_CLOSEUP notification message is sent when the list box of a combo
box is hidden. The control's parent window receives this notification message
through a WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_CLOSEUP notification message in the high-order word.

This notification message is not sent to a combo box that has the CBS_SIMPLE
style.

The order in which notifications will be sent cannot be predicted. In parti
cular, a CBN_SELCHANGE notification may occur either before or after a
CBN_ CLOSEUP notification.

CBN_DROPDOWN, CBN_SELCHANGE, WM_ COMMAND

216 CBN_ DBLCLK

CBN_DBLCLK

Parameters

Comments

See Also

The CBN_DBLCLK notification message is sent when the user double-clicks a
string in the list box of a combo box. The control's parent window receives this
notification message through a WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word and the
CBN_DBLCLK notification message in the high-order word.

This notification message can occur only for a combo box with the CBS_SIMPLE
style. For a combo box with the CBS_DROPDOWN or CBS_DROPDOWNLIST
style, a double-click cannot occur because a single click hides the list box.

CBN_SELCHANGE, WM_COMMAND

CBN_DROPDOWN

Parameters

Comments

See Also

The CBN_DROPDOWN notification message is sent when the list box of a
combo box is about to be dropped down (made visible). The parent window of the
combo box receives this notification message through a WM_ COMMAND mes
sage.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_DROPDOWN notification message in the high-order word.

This notification message can occur only for a combo box with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

CBN_CLOSEUP, WM_COMMAND

CBN_EDITUPDATE 217

CBN_ EDITCHANGE ITIJ

Parameters

Comments

See Also

The CBN_EDITCHANGE notification message is sent after the user has taken an
action that may have altered the text in the edit-control portion of a combo box.
Unlike the CBN_EDITUPDATE notification message, this notification message is
sent after Windows updates the screen. The parent window of the combo box re
ceives this notification message through a WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITCHANGE notification message in the high-order word.

This message does not occur if the combo box has the CBS_DROPDOWNLIST
style.

CBN_EDITUPDATE, WM_COMMAND

CBN_ EDITUPDATE

Parameters

Comments

See Also

The CBN_EDITUPDATE notification message is sent when the edit-control por
tion of a combo box is about to display altered text. This notification is sent after
the control has formatted the text, but before it displays the text. The parent win
dow of the combo box receives this notification message through a
WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITUPDATE notification message in the high-order word.

This message does not occur ifthe combo box has the CBS_DROPDOWNLIST
style.

CBN_EDITCHANGE, WM_COMMAND

218 CBN_ERRSPACE

CBN_ERRSPACE

Parameters

See Also

The CBN_ERRSPACE notification message is sent when a combo box cannot
allocate enough memory to meet a specific request. The parent window of the
combo box receives this notification message through a WM_ COMMAND mes
sage.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_ERRSPACE notification message in the high-order word.

WM_ COMMAND

CBN_ KILLFOCUS

Parameters

See Also

The CBN_KILLFOCUS notification message is sent when a combo box loses the
input focus. The parent window of the combo box receives this notification mes
sage through a WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_KILLFOCUS notification message in the high-order word.

CBN_SETFOCUS, WM_COMMAND

CBN_ SELCHANGE
The CBN_SELCHANGE notification message is sent when the selection in the
list box of a combo box is about to be changed as a result of the user either click
ing in the list box or changing the selection by using the arrow keys. The parent
window of the combo box receives this code through a WM_ COMMAND
message.

Parameters

See Also

CBN_SELENDOK 219

wParam
Specifies the identifier of the combo box.

ZParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELCHANGE notification message in the high-order word.

CBN_DBLCLK, CB_SETCURSEL, WM_ COMMAND

CBN_SELENDCANCEL

Parameters

Comments

See Also

The CBN_SELENDCANCEL notification message is sent when the user clicks an
item and then clicks another window or control to hide the list box of a combo
box. This notification message is sent before the CBN_CLOSEUP notification
message to indicate that the user's selection should be ignored.

wParam
Specifies the identifier of the combo box.

ZParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDCANCEL notification message in the high-order word.

The CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent
even if the CBN_ CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

CBN_SELENDOK, WM_COMMAND

CBN_SELENDOK
The CBN_SELENDOK notification message is sent when the user selects an
item and then either presses the ENTER key or clicks the DOWN ARROW key to
hide the list box of a combo box. This notification message is sent before the
CBN_CLOSEUP notification message to indicate that the user's selection should
be considered valid.

220 CBN_ SETFOCUS

Parameters

Comments

See Also

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDOK notification message in the high-order word.

The CBN_SELENDOK or CBN_SELENDCANCEL notification message is sent
even if the CBN_CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

CBN_SELENDCANCEL, WM_ COMMAND

CBN_SETFOCUS

Parameters

The CBN_SETFOCUS notification message is sent when a combo box receives
the input focus. The parent window of the combo box receives this notification
message through a WM_ COMMAND message.

wParam
Specifies the identifier of the combo box.

lParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SETFOCUS notification message in the high-order word.

See Also CBN_KILLFOCUS, WM_ COMMAND

EN_ CHANGE Cfil

Parameters

The EN_ CHANGE notification message is sent when the user has taken an action
that may have altered text in an edit control. Unlike the EN_ UPDATE notification
message, this notification message is sent after Windows updates the display. The
control's parent window receives this notification message through a
WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

See Also

EN_HSCROLL 221

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ CHANGE notification message in the high-order word.

EN_UPDATE, WM_COMMAND

EN_ ERRSPACE

Parameters

See Also

The EN_ERRSPACE notification message is sent when an edit control cannot allo
cate enough memory to meet a specific request. The control's parent window re
ceives this notification message through a WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ERRSPACE notification message in the high-order word.

WM_ COMMAND

EN_HSCROLL

Parameters

See Also

EN_HSCROLL

The EN_HSCROLL notification message is sent when the user clicks an edit con
trol's horizontal scroll bar. The control's parent window receives this notification
message through a WM_ COMMAND message. The parent window is notified
before the screen is updated.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_HSCROLL notification message in the high-order word.

EN_ VSCROLL, WM_ COMMAND

222 EN_ KILLFOCUS

EN_ KILLFOCUS

Parameters

See Also

The EN_KILLFOCUS notification message is sent when an edit control loses the
input focus. The control's parent window receives this notification message
through a WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_KILLFOCUS notification message in the high-order word.

EN_SETFOCUS, WM_COMMAND

EN_MAXTEXT

Parameters

See Also

The EN_MAXTEXT notification message is sent when the current insertion has
exceeded the specified number of characters for the edit control. The insertion has
been truncated.

This message is also sent when an edit control does not have the
ES_AUTOHSCROLL style and the number of characters to be inserted
would exceed the width of the edit control.

This message is also sent when an edit control does not have the
ES_AUTOVSCROLL style and the total number oflines resulting from
a text insertion would exceed the height of the edit control.

The control's parent window receives this notification message through a
WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_MAXTEXT notification message in the high-order word.

EM_LIMITTEXT, WM_COMMAND

EN_ UPDATE 223

EN_SETFOCUS [[!]

Parameters

EN_SETFOCUS

The EN_SETFOCUS notification message is sent when an edit control receives
the input focus. The control's parent window receives this notification message
through a WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_SETFOCUS notification message in the high-order word.

See Also EN_KILLFOCUS, WM_ COMMAND

EN_ UPDATE [[!]

Parameters

See Also

EN_ UPDATE

The EN_ UPDATE notification message is sent when an edit control is about to
screen altered text. This notification is sent after the control has formatted the text
but before it screens the text. This makes it possible to alter the window size, if
necessary. The control's parent window receives this notification message through
a WM_ COMMAND message.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ UPDATE notification message in the high-order word.

EN_CHANGE, WM_COMMAND

224 EN_ VSCROLL

EN_VSCROLL

Parameters

See Also

EN_VSCROLL

The EN_ VSCROLL notification message is sent when the user clicks an edit con
trol's vertical scroll bar. The control's parent window receives this notification
message through a WM_ COMMAND message. The parent window is notified
before the screen is updated.

wParam
Specifies the identifier of the edit control.

lParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ VSCROLL notification message in the high-order word.

EN_HSCROLL, WM_COMMAND

LBN_DBLCLK

Parameters

Comments

See Also

LBN_DBLCLK

The LBN_DBLCLK notification message is sent when the user double-clicks a
string in a list box. The parent window of the list box receives this notification
message through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_DBLCLK notification message in the high-order word.

Only a list box that has LBS_NOTIFY style will send this notification message.

LBN_SELCHANGE, WM_COMMAND

LBN_KILLFOCUS 225

LBN_ERRSPACE ~

Parameters

See Also

LBN_ERRSPACE

The LBN_ERRSPACE notification message is sent when a list box cannot allo
cate enough memory to meet a specific request. The parent window of the list box
receives this notification message through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_ERRSP ACE notification message in the high-order word.

WM_ COMMAND

LBN_ KILLFOCUS

Parameters

See Also

The LBN_KILLFOCUS notification message is sent when a list box loses the
input focus. The parent window of the list box receives this notification message
through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_KILLFOCUS notification message in the high-order word.

LBN_SETFOCUS, WM_COMMAND

226 LBN_SELCANCEL

LBN_ SELCANCEL

Parameters

Comments

See Also

LBN_SELCANCEL

The LBN_SELCANCEL notification message is sent when the user cancels the
selection in a list box. The parent window of the list box receives this notification
message through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SELCANCEL notification message in the high-order word.

This notification applies only to a list box that has the LBS_NOTIFY style.

LBN_DBLCLK, LBN_SELCHANGE, LB_SETCURSEL, WM_ COMMAND

LBN_ SELCHANGE

Parameters

Comments

See Also

LBN_SELCHANGE

The LBN_SELCHANGE notification message is sent when the selection in a list
box is about to change. The parent window of the list box receives this notification
message through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SELCHANGE notification message in the high-order word.

This notification is not sent if the selection is changed by the LB_SETCURSEL
message.

This notification applies only to a list box that has the LBS_NOTIFY style.

The LBN_SELCHANGE notification is sent for a multiple-selection list box when
ever the user presses an arrow key, even if the selection does not change.

LBN_DBLCLK, LBN_SELCANCEL, LB_SETCURSEL, WM_ COMMAND

LBN_SETFOCUS 227

LBN_SETFOCUS []]]

Parameters

See Also

The LBN_SETFOCUS notification message is sent when a list box receives the
input focus. The parent window of the list box receives this notification message
through a WM_ COMMAND message.

wParam
Specifies the identifier of the list box.

lParam
Specifies the handle of the list box in the low-order word, and specifies the
LBN_SETFOCUS notification message in the high-order word.

LBN_KILLFOCUS, WM_ COMMAND

Structures

Chapter 3

Alphabetic Reference .. 231

Members

Comments

See Also

ABC 231

This chapter defines the sizes and meanings of the structures associated with func
tions for the Microsoft Windows operating system, version 3.1.

Following are the Windows structures, in alphabetic order.

typedef struct tagABC { /* abc */
int abcA;
UINT abcB;
int abcC;

} ABC;

The ABC structure contains the width of a character in a TrueType font.

abcA
Specifies the "A" spacing of the character. A spacing is the distance to add to
the current position before drawing the character glyph.

abcB
Specifies the "B" spacing of the character. B spacing is the width of the drawn
portion of the character glyph.

abcC
Specifies the "C" spacing of the character. C spacing is the distance to add to
the current position to provide white space to the right of the character glyph.

The total width of a character is the sum of the A, B, and C spaces. Either the A or
the C space can be negative, to indicate underhangs or overhangs.

GetCharABCWidths

232 "BlTMAP

BITMAP CI!J

Members

Comments

typedef struct tagBITMAP { /* bm */
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

} BITMAP;

The BITMAP structure defines the height, width, color format, and bit values of a
logical bitmap.

bmType
Specifies the bitmap type. For logical bitmaps, this member must be zero.

bmWidth
Specifies the width of the bitmap, in pixels. The width must be greater than
zero.

bmHeight
Specifies the height of the bitmap, in raster lines. The height must be greater
than zero.

bm WidthBytes
Specifies the number of bytes in each raster line. This value must be an
even number since graphics device interface (GDI) assumes that the bit
values of a bitmap form an array of integer (two-byte) values. In other words,
bm WidthBytes * 8 must be the next multiple of 16 greater than or equal to the
value obtained when the bm Width member is multiplied by the bmBitsPixel
member.

bmPlanes
Specifies the number of color planes in the bitmap.

bmBitsPixel
Specifies the number of adjacent color bits on each plane needed to define a
pixel.

bmBits
Points to the location of the bit values for the bitmap. The bmBits member
must be a long pointer to an array of one-byte values.

The currently used bitmap formats are monochrome and color. The monochrome
bitmap uses a one-bit, one-plane format. Each scan is a multiple of 16 bits.

See Also

BITMAPCOREHEADER 233

Scans are organized as follows for a monochrome bitmap of height n:

Scan 0
Scan 1

Scan n-2
Scan n-1

The pixels on a monochrome device are either black or white. If the corresponding
bit in the bitmap is 1, the pixel is turned on (white). If the corresponding bit in the
bitmap is zero, the pixel is turned off (black).

All devices support bitmaps that have the RC _BITBLT bit set in the
RASTERCAPS index of the GetDeviceCaps function.

Each device has its own unique color format. In order to transfer a bitmap from
one device to another, use the GetDIBits and SetDIBits functions.

CreateBitmaplndirect, GetDIBits, GetObject, SetDIBits

BITMAPCOREHEADER

Members

typedef struct tagBITMAPCOREHEADER {
DWORD bcSize;
short bcWidth;
short bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER;

/* bmch */

The BITMAPCOREHEADER structure contains information about the
dimensions and color format of a device-independent bitmap (DIB). Windows ap
plications should use the BITMAPINFOHEADER structure instead of BITMAP
COREHEADER whenever possible.

bcSize
Specifies the number of bytes required by the BITMAPCOREHEADER
structure.

be Width
Specifies the width of the bitmap, in pixels.

bcHeight
Specifies the height of the bitmap, in pixels.

234 BITMAPCOREINFO

Comments

See Also

bcPlanes
Specifies the number of planes for the target device. This member must be set
to 1.

bcBitCount
Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

The BITMAPCOREINFO structure combines the BITMAPCOREHEADER
structure and a color table to provide a complete definition of the dimensions and
colors of a DIB. See the description of the BITMAPCOREINFO structure for
more information about specifying a DIB.

An application should use the information stored in the bcSize member to locate
the color table in a BITMAPCOREINFO structure with a method such as the fol
lowing:

pColor = ((LPSTR) pBitmapCorelnfo + (WORD) CpBitmapCorelnfo -> bcSize))

BITMAPCOREINFO, BITMAPINFOHEADER, BITMAPINFOHEADER

BITMAPCOREINFO [ill

Members

Comments

typedef struct tagBITMAPCOREINFO { /* bmci */
BITMAPCOREHEAOER bmciHeader;
RGBTRIPLE bmciColors[l];

} BITMAPCOREINFO;

The BITMAPCOREINFO structure fully defines the dimensions and color infor
mation for a device-independent bitmap (DIB). Windows applications should use
the BITMAPINFO structure instead of BITMAPCOREINFO whenever
possible.

bmciHeader
Specifies a BITMAPCOREHEADER structure that contains information
about the dimensions and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the colors in the bit
map.

The BITMAPCOREINFO structure describes the dimensions and colors of a bit
map. It is followed immediately in memory by an array of bytes which define the
pixels of the bitmap. The bits in the array are packed together, but each scan line

See Also

BITMAPCOREINFO 235

must be zero-padded to end on a LONG boundary. Segment boundaries, however,
can appear anywhere in the bitmap. The origin of the bitmap is the lower-left
comer.

The bcBitCount member of the BITMAPCOREHEADER structure determines
the number of bits that define each pixel and the maximum number of colors in the
bitmap. This member may be set to any of the following values:

Value Meaning

The bitmap is monochrome, and the bmciColors member must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmciColors table.
If the bit is set, the pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the bmciColors member con
tains 16 entries. Each pixel in the bitmap is represented by a four-bit index
into the color table.

For example, if the first byte in the bitmap is OxlF, the byte represents two
pixels. The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmciColors member
contains 256 entries. In this case, each byte in the array represents a single
pixel.

24 The bitmap has a maximum of 224 colors. The bmciColors member is
NULL, and each 3-byte sequence in the bitmap array represents the relative
intensities of red, green, and blue, respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an
array of 16-bit unsigned integers that specify an index into the currently realized
logical palette instead of explicit RGB values. In this case, an application
using the bitmap must call DIB functions with the wUsage parameter set to
DIB_P AL_ COLORS.

Note The bmciColors member should not contain palette indexes if the bitmap is
to be stored in a file or transferred to another application. Unless the application
uses the bitmap exclusively and under its complete control, the bitmap color table
should contain explicit RGB values.

BITMAPINFO, BITMAPCOREHEADER, RGBTRIPLE

236 BITMAPFILEHEADER

BITMAPFILEHEADER

Members

typedef struct tagBITMAPFILEHEADER
U I NT bfType;
DWDRD bfSize;
UINT bfReservedl;
UINT bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;

/* bmfh */

The BITMAPFILEHEADER structure contains information about the type, size,
and layout of a device-independent bitmap (DIB) file.

bfType
Specifies the type of file. This member must be BM.

bfSize
Specifies the size of the file, in bytes.

bfReservedl
Reserved; must be set to zero.

bfReserved2
Reserved; must be set to zero.

bfOffBits
Specifies the byte offset from the BITMAPFILEHEADER structure to the
actual bitmap data in the file.

Comments A BITMAPINFO or BITMAPCOREINFO structure immediately follows the
BITMAPFILEHEADER structure in the DIB file.

See Also BITMAPCOREINFO, BITMAPINFO

BITMAPINFO [ill

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

The BITMAPINFO structure fully defines the dimensions and color information
for a Windows 3.0 or later device-independent bitmap (DIB).

Members

Comments

BITMAPINFO 237

bmiHeader
Specifies a BITMAPINFOHEADER structure that contains information about
the dimensions and color format of a DIB.

bmiColors
Specifies an array ofRGBQUAD structures that define the colors in the bitmap.

A Windows 3.0 or later DIB consists of two distinct parts: a BITMAPINFO struc
ture, which describes the dimensions and colors of the bitmap, and an array of
bytes defining the pixels of the bitmap. The bits in the array are packed together,
but each scan line must be zero-padded to end on a LONG boundary. Segment
boundaries, however, can appear anywhere in the bitmap. The origin of the bitmap
is the lower-left comer.

The biBitCount member of the BITMAPINFOHEADER structure determines
the number of bits which define each pixel and the maximum number of colors in
the bitmap. This member may be set to any of the following values:

Value Meaning

The bitmap is monochrome, and the brnciColors member must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the brnciColors table.
If the bit is set, the pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the brnciColors member con
tains 16 entries. Each pixel in the bitmap is represented by a four-bit index
into the color table.

For example, if the first byte in the bitmap is OxlF, the byte represents two
pixels. The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the brnciColors member
contains 256 entries. In this case, each byte in the array represents a single
pixel.

24 The bitmap has a maximum of 224 colors. The brnciColors member is
NULL, and each 3-byte sequence in the bitmap array represents the relative
intensities ofred, green, and blue, respectively, of a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If the
biClrUsed member is set to zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an array
of 16-bit unsigned integers that specify an index into the currently realized logical
palette instead of explicit RGB values. In this case, an application using the

238 BITMAPINFOHEADER

See Also

bitmap must call DIB functions with the wUsage parameter set to
DIB_PAL_COLORS.

Note The bmiColors member should not contain palette indexes if the bitmap is
to be stored in a file or transferred to another application. Unless the application
uses the bitmap exclusively and under its complete control, the bitmap color table
should contain explicit RGB values.

BITMAPINFOHEADER, RGBQUAD

BITMAPINFOHEADER

Members

typedef struct tagBITMAPINFOHEADER {
DWORD biSize;
LONG bi Width;
LONG bi Height;
WORD bi Planes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeimage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPINFOHEADER;

/* bmih */

The BITMAPINFOHEADER structure contains information about the dimen
sions and color format of a Windows 3.0 or later device-independent bitmap
(DIB).

biSize
Specifies the number of bytes required by the BITMAPINFOHEADER
structure.

biWidth
Specifies the width of the bitmap, in pixels.

biHeight
Specifies the height of the bitmap, in pixels.

biPlanes
Specifies the number of planes for the target device. This member must be set
to 1.

biBitCount
Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.

BITMAPINFOHEADER 239

bi Compression
Specifies the type of compression for a compressed bitmap. It can be one of the
following values:

Value

BI_RGB

BI_RLES

BI_RLE4

biSizelmage

Meaning

Specifies that the bitmap is not compressed.

Specifies a run-length encoded format for bitmaps with 8 bits per
pixel. The compression format is a 2-byte format consisting of a count
byte followed by a byte containing a color index. For more informa
tion, see the following Comments section.

Specifies a run-length encoded format for bitmaps with 4 bits per
pixel. The compression format is a 2-byte format consisting of a count
byte followed by two word-length color indexes. For more informa
tion, see the following Comments section.

Specifies the size, in bytes, of the image. It is valid to set this member to zero if
the bitmap is in the BI_RGB format.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for
the bitmap. An application can use this value to select a bitmap from a resource
group that best matches the characteristics of the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

bi Cir Used
Specifies the number of color indexes in the color table actually used by the bit
map. If this value is zero, the bitmap uses the maximum number of colors corre
sponding to the value of the biBitCount member. For more information on the
maximum sizes of the color table, see the description of the BITMAPINFO
structure earlier in this chapter.

If the bi Cir Used member is nonzero, it specifies the actual number of colors
that the graphics engine or device driver will access if the biBitCount member
is less than 24. If biBitCount is set to 24, biClrUsed specifies the size of the
reference color table used to optimize performance of Windows color palettes.

If the bitmap is a.packed bitmap (that is, a bitmap in which the bitmap array im
mediately follows the BITMAPINFO header and which is referenced by a
single pointer), the biClrUsed member must be set to zero or to the actual size
of the color table.

biClrlmportant
Specifies the number of color indexes that are considered important for display
ing the bitmap. If this value is zero, all colors are important.

240 BITMAPINFOHEADER

Comments The BITMAPINFO structure combines the BITMAPINFOHEADER structure
and a color table to provide a complete definition of the dimensions and colors of
a Windows 3.0 or later DIB. For more information about specifying a Windows
3.0 DIB, see the description of the BITMAPINFO structure.

An application should use the information stored in the biSize member to locate
the color table in a BITMAPINFO structure as follows:

pColor = ((LPSTR) pBitmaplnfo + (WORD) (pBitmaplnfo->bmiHeader.biSize))

Windows supports formats for compressing bitmaps that define their colors with 8
bits per pixel and with 4 bits per pixel. Compression reduces the disk and memory
storage required for the bitmap. The following paragraphs describe these formats.

Bl RLE8 When the biCompression member is set to BI_RLE8, the bitmap is
compressed using a run-length encoding format for an 8-bit bitmap. This format
may be compressed in either of two modes: encoded and absolute. Both modes
can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of con
secutive pixels to be drawn using the color index contained in the second byte. In
addition, the first byte of the pair can be set to zero to indicate an escape that
denotes an end of line, end of bitmap, or a delta. The interpretation of the escape
depends on the value of the second byte of the pair. The following list shows the
meaning of the second byte:

Value

0

2

Meaning

End of line.

End of bitmap.

Delta. The two bytes following the escape contain unsigned values indicat
ing the horizontal and vertical offset of the next pixel from the current posi
tion.

Absolute mode is signaled by the first byte set to zero and the second byte set to a
value between Ox03 and OxFF. In absolute mode, the second byte represents the
number of bytes that follow, each of which contains the color index of a single
pixel. When the second byte is set to 2 or less, the escape has the same meaning as
in encoded mode. In absolute mode, each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bit
map:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
02 78 00 00 09 lE 00 01

This bitmap would expand as follows (two-digit values represent a color index for
a single pixel):

See Also

04 04 04
06 06 06 06 06
45 56 67
78 78
move current position 5 right and 1 down
78 78
end of line
lE lE lE lE lE lE lE lE lE
end of RLE bitmap

BITMAPINFOHEADER 241

Bl_RLE4 When the biCompression member is set to BI_RLE4, the bitmap is
compressed using a run-length encoding (RLE) format for a 4-bit bitmap, which
also uses encoded and absolute modes. In encoded mode, the first byte of the pair
contains the number of pixels to be drawn using the color indexes in the second
byte. The second byte contains two color indexes, one in its high-order nibble (that
is, its low-order four bits) and one in its low-order nibble. The first of the pixels is
drawn using the color specified by the high-order nibble, the second is drawn
using the color in the low-order nibble, the third is drawn with the color in the
high-order nibble, and so on, until all the pixels specified by the first byte have
been drawn.

In absolute mode, the first byte contains zero, the second byte contains the number
of color indexes that follow, and subsequent bytes contain color indexes in their
high- and low-order nibbles, one color index for each pixel. In absolute mode,
each run must be aligned on a word boundary. The end-of-line, end-of-bitmap, and
delta escapes also apply to BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed bit
map:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 lE 00 01

This bitmap would expand as follows (single-digit values represent a color index
for a single pixel):

0 4 0
0 6 0 6 0
4 5 5 6 6 7
7 8 7 8
move current position 5 right and 1 down
7 8 7 8
end of line
1 E 1 E 1 E 1 E 1
end of RLE bitmap

BITMAPINFO

242 CBT_CREATEWND

CBT_ CREATEWND

Members

See Also

typedef struct tagCBT_CREATEWND { /* cbtcw */
CREATESTRUCT FAR* lpcs;
HWND hwndinsertAfter;

} CBT_CREATEWND;

The CBT_CREATEWND structure contains information passed to a WH_CBT
hook function before a window is created.

lpcs
Points to a CREATESTRUCT structure that contains initialization parameters
for the window about to be created.

hwndlnsertAfter
Identifies a window in the window manager's list that will precede the window
being created. If this parameter is NULL, the window being created is the top
most window. If this parameter is 1, the window being created is the bottom
most window.

CBTProc, SetWindowsHook

CBTACTIVATESTRUCT mJ

Members

See Also

typedef struct tagCBTACTIVATESTRUCT { /* cas */
BOOL fMouse;
HWND hWndActive;

} CBTACTIVATESTRUCT;

The CBTACTIVATESTRUCT structure contains information passed to a
WH_CBT hook function before a window is activated.

fMouse
Specifies whether the window is being activated as a result of a mouse click.
This value is nonzero if a mouse click is causing the activation. Otherwise, this
value is zero.

hWndActive
Identifies the currently active window.

SetWindowsHook

CHOOSECOLOR 243

CHOOSECOLOR CIIJ

Members

#include <commdlg.h>

typedef struct tagCHOOSECOLOR /* cc *f
DWORD lStructSize;
HWND hwndOwner;
HWND hlnstance;
COLORREF rgbResult;
COLORREF FAR* lpCustColors;
DWORD Flags;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} CHOOSECOLOR;

The CHOOSECOLOR structure contains information that the system uses to ini
tialize the system-defined Color dialog box. After the user chooses the OK button
to close the dialog box, the system returns information about the user's selection
in this structure.

lStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the CC_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

hlnstance
Identifies a data block that contains the dialog box template specified by the
lpTemplateName member. This member is used only if the Flags member
specifies the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

rgbResult
Specifies the color that is initially selected when the dialog box is displayed,
and specifies the user's color selection after the user has chosen the OK button
to close dialog box. If the CC_RGBINIT flag is set in the Flags member before
the dialog box is displayed and the value of this member is not among the
colors available, the system selects the nearest solid color available. If this

244 CHOOSECOLOR

member is NULL, the first selected color is black. This member is filled on
input and output.

lpCustColors
Points to an array of 16 doubleword values, each of which specifies the intensi
ties of the red, green, and blue (RGB) components of a custom color box in the
dialog box. If the user modifies a color, the system updates the array with the
new RGB values. This member is filled on input and output.

Flags
Specifies the dialog box initialization flags. This member may be a combination
of the following values:

Value

CC_ENABLEHOOK

CC_ENABLETEMPLATE

CC_ENABLETEMPLATEHANDLE

CC_FULLOPEN

cc_pREVENTFULLOPEN

CC_RGBINIT

CC_SHOWHELP

Meaning

Enables the hook function specified in the
lpfnHook member.

Causes the system to use the dialog box
template identified by the hlnstance
member and pointed to by the
lpTemplateName member.

Indicates that the hlnstance member iden
tifies a data block that contains a pre
loaded dialog box template. If this flag is
specified, the system ignores the
lpTemplateName member.

Causes the entire dialog box to appear
when the dialog box is displayed, includ
ing the portion that allows the user to
create custom colors. Without this flag,
the user must select the Define Custom
Color button to see that portion of the
dialog box.

Disables the Define Custom Colors
button, preventing the user from creating
custom colors.

Causes the dialog box to use the color
specified in the rgbResult member as the
initial color selection.

Causes the dialog box to show the Help
button. If this flag is specified, the
hwndOwner member must not be NULL.

These flags are used when the structure is initialized.

Comments

See Also

CHOOSECOLOR 245

lCustData
Specifies application-defined data that the system passes to the hook
function pointed to by the lpfnHook member. The system passes a pointer
to the CHOOSECOLOR structure in the lParam parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the
lCustData member.

lpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
CC_ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce
dure in COMMDLG.DLL from processing a message it has already processed.
This member is filled on input.

lpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem
ber specifies the CC_ENABLETEMPLATE flag; otherwise, this member is ig
nored. This member is filled on input.

Some members of this structure are filled only when the dialog box is created, and
some have an initialization value that changes when the user closes the dialog box.
Whenever a description in the Members section does not specify how the value of
a member is assigned, the value is assigned only when the dialog box is created.

ChooseColor

246 CHOOSE FONT

CHOOSEFONT

Members

#include <commdlg.h>

typedef struct tagCHOOSEFONT { /* cf */
DWORD lStructSize;
HWND hwndOwner;
HOC hDC;
LOGFONT FAR* lpLogFont;
int iPointSize;
DWORD Flags;
COLORREF rgbColors;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;
HINSTANCE hinstance;
LPSTR lpszStyle;
UINT nFontType;
int nSizeMin;
int nSizeMax;

} CHOOSEFONT;

The CHOOSEFONT structure contains information that the system uses to initial
ize the system-defined Font dialog box. After the user chooses the OK button to
close the dialog box, the system returns information about the user's selection in
this structure.

IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the CF _SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

hDC
Identifies either the device context or the information context of the printer for
which fonts are to be listed in the dialog box. This member is used only if the
Flags member specifies the CF _FRINTERFONTS flag; otherwise, this mem
ber is ignored.

This member is filled on input.

CHOOSEFONT 247

lpLogFont
Points to a LOGFONT structure. If an application initializes the
members of this structure before calling ChooseFont and sets the
CF _INITTOLOGFONTSTRUCT flag, the ChooseFont function initializes
the dialog box with the font that is the closest possible match. After the user
chooses the OK button to close the dialog box, the ChooseFont function sets
the members of the LOGFONT structure based on the user's final selection.

This member is filled on input and output.

iPointSize
Specifies the size of the selected font, in tenths of a point. The ChooseFont
function sets this value after the user chooses the OK button to close the dialog
box.

Flags
Specifies the dialog box initialization flags. This member can be a combination
of the following values:

Value

CF_APPLY

CF _ANSIONLY

CF_BOTH

CF_TTONLY

CF_EFFECTS

Meaning

Specifies that the ChooseFont function
should enable the Apply button.

Specifies that the ChooseFont function
should limit font selection to those fonts
that use the Windows character set. (If this
flag is set, the user cannot select a font
that contains only symbols.)

Causes the dialog box to list the available
printer and screen fonts. The hDC mem
ber identifies either the device context or
the information context associated with
the printer.

Specifies that the ChooseFont function
should enumerate and allow the selection
of only TrueType fonts.

Specifies that the ChooseFont function
should enable strikeout, underline, and
color effects. If this flag is set, the
lfStrikeOut and lfUnderline members of
the LOGFONT structure and the
rgbColors member of the
CHOOSEFONT structure can be set
before calling ChooseFont. And, if this
flag is not set, the ChooseFont function
can set these members after the user
chooses the OK button to close the
dialog box.

248 CHOOSEFONT

Value

CF _ENABLEHOOK

CF_ENABLETEMPLATE

CF_ENABLETEMPLATEHANDLE

CF _FIXEDPITCHONLY

CF _FORCEFONTEXIST

CF _INITTOLOGFONTSTRUCT

CF _LIMITSIZE

CF _NOFACESEL

CF _NOOEMFONTS

CF _NOSIMULATIONS

CF _NOSIZESEL

CF _NOSTYLESEL

Meaning

Enables the hook function specified in the
lpfnHook member of this structure.

Indicates that the hlnstance member
identifies a data block that contains the
dialog box template pointed to by
lpTemplateName.
Indicates that the hlnstance member
identifies a data block that contains a pre
loaded dialog box template. If this flag is
specified, the system ignores the
lpTemplateName member.

Specifies that the ChooseFont function
should select only monospace fonts.

Specifies that the ChooseFont function
should indicate an error condition if the
user attempts to select a font or font style
that does not exist.

Specifies that the ChooseFont function
should use the LOGFONT structure
pointed to by lpLogFont to initialize the
dialog box controls.

Specifies that the ChooseFont function
should select only font sizes within the
range specified by the nSizeMin and
nSizeMax members.

Specifies that there is no selection in the
Font (face name) combo box. Applica
tions use this flag to support multiple font
selections. This flag is set on input and
output.

Specifies that the ChooseFont function
should not allow vector-font selections.
This flag has the same value as
CF _NOVECTORFONTS.

Specifies that the ChooseFont function
should not allow graphics-device
interface (GDI) font simulations.

Specifies that there is no selection in the
Size combo box. Applications use this
flag to support multiple size selections.
This flag is set on input and output.

Specifies that there is no selection in the
Font Style combo box. Applications use
this flag to support multiple style selec
tions. This flag is set on input and output.

Value

CF_NOVECTORFONTS

CF _pRINTERFONTS

CF _SCALABLEONLY

CF _SCREENFONTS

CF _SHOWHELP

CF_ USESTYLE

CF_WYSIWYG

CHOOSE FONT 249

Meaning

Specifies that the ChooseFont function
should not allow vector-font selections.
This flag has the same value as
CF _NOOEMFONTS.

Causes the dialog box to list only the fonts
supported by the printer associated with
the device context or information context
that is identified by the hDC member.

Specifies that the ChooseFont function
should allow the selection of only scalable
fonts. (Scalable fonts include vector fonts,
some printer fonts, TrueType fonts, and
fonts that are scaled by other algorithms
or technologies.)

Causes the dialog box to list only the
screen fonts supported by the system.

Causes the dialog box to show the Help
button. If this option is specified, the
hwndOwner must not be NULL.

Specifies that the lpszStyle member
points to a buffer that contains a style
description string that the ChooseFont
function should use to initialize the Font
Style box. When the user chooses the OK
button to close the dialog box, the
ChooseFont function copies the style
description for the user's selection to this
buffer.

Specifies that the ChooseFont function
should allow the selection of only fonts
that are available on both the printer and
the screen. If this flag is set, the
CF _BOTH and CF _SCALABLEONLY
flags should also be set.

These flags may be set when the structure is initialized, except where specified.

rgbColors
If the CF _EFFECTS flag is set, this member contains the red, green, and blue
(RGB) values the ChooseFont function should use to set the text color. After
the user chooses the OK button to close the dialog box, this member contains
the RGB values of the color the user selected.

This member is filled on input and output.

250 CHOOSEFONT

lCustData
Specifies application-defined data that the application passes to the hook func
tion. The system passes a pointer to the CHOOSEFONT data structure in the
lParam parameter of the WM_INITDIALOG message; the lCustData member
can be retrieved using this pointer.

lpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
CF _ENABLEHOOK value in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce
dure in COMMDLG.DLL from processing a message it has already processed.

This member is filled on input.

lpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem
ber specifies the CF _ENABLETEMPLATE flag; otherwise, this member is ig
nored.

This member is filled on input.

hlnstance
Identifies a data block that contains the dialog box template specified by the
lpTemplateName member. This member is used only if the Flags member
specifies the CF _ENABLETEMPLATE or the
CF _ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.

This member is filled on input.

lpszStyle
Points to a buffer that contains a style-description string for the font. If the
CF _USESTYLE flag is set, the ChooseFont function uses the data in this buff
er to initialize the Font Style box. When the user chooses the OK button to
close the dialog box, the ChooseFont function copies the string in the Font
Style box into this buffer.

The buffer pointed to by lpszStyle must be at least LF _F ACESIZE bytes long.

This member is filled on input and output.

See Also

CHOOSEFONT 251

nFontType
Specifies the type of the selected font. This member can be one or more of the
values in the following list:

Value

BOLD_FONTTYPE

ITALIC_FONTTYPE

PRINTER_FONTTYPE

REGULAR_FONTTYPE

SCREEN_FONTTYPE

SIMULATED _FONTTYPE

nSizeMin

Meaning

Specifies that the font is bold. This value applies
only to TrueType fonts. This value corresponds to
the value of the ntmFlags member of the
NEWTEXTMETRIC structure.

Specifies that the font is italic. This value applies
only to TrueType fonts. This value corresponds to
the value of the ntmFlags member of the
NEWTEXTMETRIC structure.

Specifies that the font is a printer font.

Specifies that the font is neither bold nor italic.
This value applies only to TrueType fonts. This
value corresponds to the value of the ntmFlags
member of the NEWTEXTMETRIC structure.

Specifies that the font is a screen font.

Specifies that the font is simulated by GDI. This is
not set if the CF _NOSIMULATIONS flag is set.

Specifies the minimum point size that a user can select. The ChooseFont func
tion will recognize this member only if the CF _LIMITSIZE flag is set.

This member is filled on input.

nSizeMax
Specifies the maximum point size that a user can select. The ChooseFont func
tion will recognize this member only if the CF _LIMITSIZE flag is set.

This member is filled on input.

ChooseFont

252 CLASS ENTRY

CLASS ENTRY

Members

See Also

#include <toolhelp.h>

typedef struct tagCLASSENTRY { /* ce */
DWDRD dwSize;
HMODULE hinst;
char szClassName[MAX_CLASSNAME + 1];
WORD wNext;

} CLASSENTRY;

The CLASSENTRY structure contains the name of a Windows class and a near
pointer to the next class in the list. For more information about Windows classes,
see the GetClasslnfo function in the Microsoft Windows Programmer's
Reference, Volume 2.

dwSize
Specifies the size of the CLASSENTRY structure, in bytes.

hlnst
Identifies the instance handle of the task that owns the class. An application
needs this handle to call GetClasslnfo. The hlnst member is really a handle to
a module, since Windows classes are owned by modules. Therefore, this hlnst
will not match the hlnst passed as a parameter to the WinMain function of the
owning task.

szClassName
Specifies the null-terminated string that contains the class name. An application
needs this name to call GetClasslnfo.

wNext
Specifies the next class in the list. This member is reserved for internal use by
Windows.

ClassFirst, ClassNext

CLIENTCREATESTRUCT 253

CLIENTCREATESTRUCT [IT]

Members

See Also

typedef struct tagCLIENTCREATESTRUCT { /* ccs */
HANDLE hWindowMenu;
UINT idFirstChild;

} CLIENTCREATESTRUCT;

The CLIENTCREATESTRUCT structure contains information about the menu
and first multiple document interface (MDI) child window of an MDI client win
dow. An application passes a long pointer to this structure as the lpParam parame
ter of the Create Window function when creating an MDI client window.

h Window Menu
Identifies the menu handle of the application's Window menu. An application
can retrieve this handle from the menu of the MDI frame window by using the
GetSubMenu function.

idFirstChild
Specifies the child window identifier of the first MD I child window created.
Windows increments the identifier for each additional MDI child window that
the application creates, and reassigns identifiers when the application destroys a
window to keep the range of identifiers continuous. These identifiers are used
in WM_ COMMAND messages to the application's MDI frame window when a
child window is selected from the Window menu; they should not conflict with
any other command identifiers.

Create Window, GetSubMenu

254 COMPAREITEMSTRUCT

COMPAREITEMSTRUCT [ill

Members

typedef struct tagCOMPAREITEMSTRUCT { /* cis */
UINT CtlType;
UINT Ctl ID;
HWND hwndltem;
UINT itemIDl;
DWORD itemDatal;
UINT itemIDZ;
DWORD itemData2;

COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure supplies the identifiers and applica
tion-supplied data for two items in a sorted owner-drawn combo box or list box.

Whenever an application adds a new item to an owner-drawn combo or list box
created with the CBS_SORT or LBS_SORT style, Windows sends the owner a
WM_COMPAREITEM message. The lParam parameter of the message contains
a long pointer to a COMPAREITEMSTRUCT structure. When the owner re
ceives the message, it compares the two items and returns a value indicating which
item sorts before the other. For more information, see the description of the
WM_COMPAREITEM message in Chapter 2, "Messages."

CtlType
Specifies ODT_LISTBOX (which identifies an owner-drawn list box) or
ODT_COMBOBOX (which identifies an owner-drawn combo box).

CtllD
Specifies the identifier of the list box or combo box.

hwndltem
Identifies the control.

itemIDl
Specifies the index of the first item in the list box or combo box being com
pared.

itemDatal
Specifies application-supplied data for the first item being compared. (This
value was passed as the lParam parameter of the message that added the item to
the combo box or list box.)

itemID2
Specifies the index of the second item in the list box or combo box being com
pared.

itemData2
Specifies application-supplied data for the second item being compared. This
value was passed as the lParam parameter of the message that added the item to
the combo box or list box.

CO MST AT 255

COM STAT [}I]

Members

See Also

typedef struct tagCOMSTAT {
BYTE status;

/* cmst
/* status of transmission */
/* count of characters in Rx Queue */
/* count of characters in Tx Queue */

UINT cbinQue;
U INT cbOutQue;

} COMSTAT;

The CO MST AT structure contains information about a communications device.

status
Specifies the status of the transmission. This member can be one or more of the
following flags:

Flag

CSTF _CTSHOLD

CSTF _DSRHOLD

CSTF _RLSDHOLD

CSTF _XOFFHOLD

CSTF _XOFFSENT

CSTF_EOF

CSTF_TXIM

cblnQue

Meaning

Specifies whether transmission is waiting for the CTS
(clear-to-send) signal to be sent.

Specifies whether transmission is waiting for the DSR
(data-set-ready) signal to be sent.

Specifies whether transmission is waiting for the RLSD
(receive-line-signal-detect) signal to be sent.

Specifies whether transmission is waiting as a result of the
XOFF character being received.

Specifies whether transmission is waiting as a result of the
XOFF character being transmitted. Transmission halts
when the XOFF character is transmitted and used by sys
tems that take the next character as XON, regardless of the
actual character.

Specifies whether the end-of-file (EOF) character has been
received.

Specifies whether a character is waiting to be transmitted.

Specifies the number of characters in the receive queue.

cbOutQue
Specifies the number of characters in the transmit queue.

GetCommError

256 CONVCONTEXT

CONVCONTEXT

Members

See Also

#include <ddeml .h>

typedef struct
UINT

tagCONVCONTEXT { /* cc
cb;

UINT
UINT
int
DWORD
DWORD

wFlags;
wCountryID;
iCodePage;
dwLangID;
dwSecurity;

} CONVCONTEXT;

The CONVCONTEXT structure contains information that makes it possible for
applications to share data in several different languages.

ch
Specifies the size, in bytes, of the CONVCONTEXT structure.

wFlags
Specifies conversation-context flags. Currently, no flags are defined for this
member.

wCountryID
Specifies the country-code identifier for topic-name and item-name strings.

iCodePage
Specifies the code page for topic-name and item-name strings. Unilingual
clients should set this member to CP _WINANS!. An application that uses the
OEM character set should set this member to the value returned by the GetKB
CodePage function. For more information about the OEM character set, see the
Microsoft Windows Guide to Programming.

dwLangID
Specifies the language identifier for topic-name and item-name strings.

dwSecurity
Specifies a private (application-defined) security code.

GetKBCodePage

CONVINFO 257

CONVINFO lliJ

Members

#include <ddeml .h>

typedef struct tagCONVINFO { /* ci */
DWORD cb;
DWORD hUser;
HCONV hConvPartner;
HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;
HSZ hszitem;
UINT wFmt;
UINT wType;
UINT wStatus;
UINT wConvst;
UINT wlastError;
HCONVLIST hConvList;
CONVCONTEXT ConvCtxt;

} CONVINFO;

The CONVINFO structure contains information about a dynamic data exchange
(DOE) conversation.

cb
Specifies the length of the structure, in bytes.

hUser
Identifies application-defined data.

hConvPartner
Identifies the partner application in the DOE conversation. If the partner has not
registered itself (by using the Ddelnitialize function) to make DOE Manage
ment Library (DDEML) function calls, this member is set to 0. An application
should not pass this member to any DDEML function except DdeQuery
Convlnfo.

hszSvcPartner
Identifies the service name of the partner application.

hszServiceReq
Identifies the service name of the server application that was requested for con
nection.

hszTopic
Identifies the name of the requested topic.

hszltem
Identifies the name of the requested item. This member is transaction-specific.

258 CONVINFO

wFmt
Specifies the format of the data being exchanged. This member is transaction
specific.

wType
Specifies the type of the current transaction. This member is transaction
specific and can be one of the following values:

Value

XTYP _ADVDATA

XTYP _ADVREQ

XTYP _ADVSTART

XTYP _ADVSTOP

XTYP _CONNECT

XTYP _CONNECT_CONFIRM

XTYP _DISCONNECT

XTYP_ERROR

XTYP _EXECUTE

XTYP _MONITOR

XTYP_POKE

XTYP _REGISTER

XTYP _REQUEST

XTYP _UNREGISTER

XTYP_WILDCONNECT

XTYP _XACT_COMPLETE

Meaning

Informs a client that advise data from a server
has arrived.

Requests that a server send updated data to the
client during an advise loop. This transaction re
sults when the server calls the DdePostAdvise
function.

Requests that a server begin an advise loop
with a client.

Notifies a server that an advise loop is ending.

Requests that a server establish a conversation
with a client.

Notifies a server that a conversation with a
client has been established.

Notifies a server that a conversation has termi
nated.

Notifies a DDEML application that a critical
error has occurred. The DDEML may have in
sufficient resources to continue.

Requests that a server execute a command sent
by a client.

Notifies an application registered as
APPCMD_MONITOR of DDE data being
transmitted.

Requests that a server accept unsolicited data
from a client.

Notifies other DDEML applications that a
server has registered a service name.

Requests that a server send data to a client.

Notifies other DDEML applications that a
server has unregistered a service name.

Requests that a server establish multiple con
versations with the same client.

Notifies a client that an asynchronous data
transaction has completed.

See Also

CONVINFO 259

wStatus
Specifies the status of the current conversation. This member can be a combina
tion of the following values:

ST_ADVISE ST_INLIST
ST_BLOCKED ST_ISLOCAL
ST_BLOCKNEXT ST_ISSELF
ST_CLIENT ST_TERMINATED
ST_CONNECTED

wConvst
Specifies the conversation state. This member can be one of the following
values:

XST_ADVACKRCVD
XST_ADVDATAACKRCVD
XST_ADVDATASENT
XST_ADVSENT
XST_CONNECTED
XST_DATARCVD
XST_EXECACKRCVD
XST_EXECSENT
XST_INCOMPLETE

wLastError

XST_INITI
XST_INIT2
XST_NULL
XST_POKEACKRCVD
XST_POKESENT
XST_REQSENT
XST_UNADVACKRCVD
XST_UNADVSENT

Specifies the error value associated with the last transaction.

hConvList
If the handle of the current conversation is in a conversation list, identifies the
conversation list. Otherwise, this member is NULL.

ConvCtxt
Specifies the conversation context.

CO NV CONTEXT

260 CPLINFO

CPLINFO

Members

#include <cpl .h>

typedef struct tagCPLINFO { /* cpli */
int id!con;
int idName;
int idlnfo;
LONG 1 Data;

} CPLINFO;

The CPLINFO structure contains resource information and a user-defined value
for an extensible Control Panel application.

idlcon
Specifies an icon resource identifier for the application icon. This icon is dis
played in the Control Panel window.

idName
Specifies a string resource identifier for the application name. The name is the
short string displayed below the application icon in the Control Panel window.
The name is also displayed on the Settings menu of Control Panel.

idlnfo
Specifies a string resource identifier for the application description. The descrip
tion is the descriptive string displayed at the bottom of the Control Panel win
dow when the application icon is selected.

IData
Specifies user-defined data for the application.

CREATESTRUCT 261

CREATESTRUCT [I!]

Members

typedef struct tagCREATESTRUCT {
void FAR* lpCreateParams;
HINSTANCE hinstance;

/* cs */

HMENU hMenu;
HWND hwndParent;
int cy;
int ex;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWDRD dwExStyle;

} CREATESTRUCT;

The CREATESTRUCT structure defines the initialization parameters passed to
the window procedure of an application.

lpCreateParams
Points to data to be used for creating the window.

hlnstance
Identifies the module-instance handle of the module that owns the new window.

hMenu
Identifies the menu to be used by the new window.

hwndParent

cy

ex

y

x

Identifies the window that owns the new window. This member is NULL if the
new window is a top-level window.

Specifies the height of the new window.

Specifies the width of the new window.

Specifies they-coordinate of the upper-left corner of the new window. Coordi
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

Specifies the x-coordinate of the upper-left corner of the new window. Coordi
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

style
Specifies the style for the new window.

262 CTLINFO

See Also

CTLINFO

Members

lpszName
Points to a null-terminated string that specifies the name of the new window.

lpszClass
Points to a null-terminated string that specifies the class name of the new win
dow.

dwExStyle
Specifies extended style for the new window.

Create Window

#include <custcntl .h>

typedef struct tagCTLINFO {

UINT wVersion; f* control version *f
UINT wCtlTypes; /* control types */
char szClass[CTLCLASS]; f* control class name */
char szTitle[CTLTITLE]; f* control title *f
char szReserved[10]; /* reserved for future use */
CTLTYPE Type[CTLTYPES]; f* control type list *f

} CTLINFO;

The CTLINFO structure defines the class name and version number for a custom
control. The CTLINFO structure also contains an array of CTLTYPE structures,
each of which lists commonly used combinations of control styles (called vari
ants), with a short description and information about the suggested size.

wVersion
Specifies the control version number. Although you can start your numbering
scheme from one digit, most implementations use the lower two digits to repre
sent minor releases.

wCtlTypes
Specifies the number of control types supported by this class. This value should
always be greater than zero and less than or equal to the CTLTYPES value.

szClass
Specifies a null-terminated string that contains the control class name supported
by the dynamic-link library (DLL). This string should be no longer than the
CTLCLASS value.

Comments

See Also

CTLSTYLE

CTLSTYLE 263

szTitle
Specifies a null-terminated string that contains various copyright or author in
formation relating to the control library. This string should be no longer than
the CTL TITLE value.

Type
Specifies an array of CTL TYPE structures containing information that relates
to each of the control types supported by the class. There should be no more ele
ments in the array than specified by the CTLTYPES value.

An application calls the Classlnfo function to retrieve basic information about the
control library. Based on the information returned, the application can create in
stances of a control by using one of the supported styles. For example, Dialog
Editor calls this function to query a library about the different control styles it can
display.

The return value of the Class Info function identifies a CTLINFO structure if the
function is successful. This information becomes the property of the caller, which
must explicitly release it by using the GlobalFree function when the structure is
no longer needed.

CTLSTYLE,CTLTYPE

#include <custcntl. h>

typedef struct tagCTLSTYLE {

UINT wX; /* x-origin of control */
UINT wY; /* y-origin of control */
UINT wCx; /* width of control */
UINT wCy; /* height of control */
UINT wid; /* control child id */
DWDRD dwStyle; /* control style */
char szClass[CTLCLASSJ; /* name of control class */
char szTitle[CTLTITLEJ; /* control text */

} CTLSTYLE;

The CTLSTYLE structure specifies the attributes of the selected control, includ
ing the current style flags, location, dimensions, and associated text.

264 CTLSTYLE

Members

Comments

See Also

wX
Specifies the x-origin, in screen coordinates, of the control relative to the client
area of the parent window.

wY
Specifies they-origin, in screen coordinates, of the control relative to the client
area of the parent window.

wCx
Specifies the current control width, in screen coordinates.

wCy
Specifies the current control height, in screen coordinates.

wld
Specifies the current control identifier. In most cases, you should not allow the
user to change this value because Dialog Editor automatically coordinates it
with a header file.

dwStyle
Specifies the current control style. The high-order word contains the control
specific flags, and the low-order word contains the Windows-specific flags.
You may let the user change these flags to any values supported by your control
library.

szClass
Specifies a null-terminated string representing the name of the current control
class. You should not allow the user to edit this member, because it is provided
for informational purposes only. This string should be no longer than the
CTLCLASS value.

szTitle
Specifies with a null-terminated string the text associated with the control.
This text is usually displayed inside the control or may be used to store other
associated information required by the control. This string should be no longer
than the CTL TITLE value.

An application calls the ClassStyle function to display a dialog box to edit the
style of the selected control. When this function is called, it should display a
modal dialog box in which the user can edit the CTLSTYLE members. The user
interface of this dialog box should be consistent with that of the predefined con
trols that Dialog Editor supports.

CTLINFO, CTLTYPE

CTLTYPE 265

CTLTYPE [II]

Members

See Also

/finclude <custcntl .h>

typedef struct tagCTLTYPE
UINT wType; /* type style */
UINT wWidth; /* suggested width */
UINT wHeight; /* suggested height */
DWORD dwStyle; /* default style */
char szDescr[CTLDESCR]; /* menu name */

} CTLTYPE;

The CTLTYPE structure contains information about a control in a particular
class. The CTLINFO structure includes an array of CTLTYPE structures.

wType
Reserved; must be zero.

wWidth
Specifies the suggested width of the control when created with Dialog Editor.
The width is specified in resource-compiler coordinates.

wHeight
Specifies the suggested height of the control when created using Dialog Editor.
The height is specified in resource-compiler coordinates.

dwStyle
Specifies the initial style bits used to obtain this control type. This value in
cludes the control-defined flags in the high-order word and the Windows
defined flags in the low-order word.

szDescr
Defines the name to be used by other development tools when referring to this
particular variant of the base control class. Dialog Editor does not refer to this
information. This string should not be longer than the CTLDESCR value.

CTLINFO,CTLSTYLE

266 DCB

DCB

Members

lliJ
typedef struct tag DCB f* deb *f
{

BYTE Id; f* internal device identifier *f
UINT BaudRate; f* baud rate *f
BYTE ByteSize; f* number of bits/byte, 4-8 *f
BYTE Parity; /* 0-4=none,odd,even,mark,space *f
BYTE Stop Bits; f* 0,1,2 = 1, 1. 5' 2 *f
UINT RlsTimeout; f* timeout for RLSD to be set */
UINT CtsTimeout; f* timeout for CTS to be set */
UINT DsrTimeout; f* timeout for DSR to be set *f

UINT fBinary : 1; f* binary mode (skip EOF check) *f
UINT fRtsDisable : 1; /* don't assert RTS at init time *f
UINT f Parity : 1; /* enable parity checking *f
UINT fOutxCtsFlow : 1; /* CTS handshaking on output *f
UINT fOutxDsrFlow : 1; f* DSR handshaking on output *f
UINT fDummy : 2; f* reserved */
UINT fDtrDisable : 1; /* don't assert DTR at init time */

UINT fOutX : 1; f* enable output XON/XOFF *f
UINT finX : 1; f* enable input XON/XOFF *f
UINT fPeChar : 1; f* enable parity err replacement *f
UINT fNull : 1; /* enable null stripping *f
UINT fChEvt : 1; f* enable Rx character event */
UINT fDtrfl ow : 1; f* DTR handshake on input */
UINT fRtsfl ow : 1; f* RTS handshake on input/ *f
UINT fDummy2 : 1;

char XonChar; f* Tx and Rx XON character *f
char XoffChar; /* Tx and Rx XOFF character *f
UINT Xonlim; f* transmit XON threshold */
UINT Xofflim; /* transmit XOFF threshold */
char Pechar; f* parity error replacement char *f
char EofChar; /* end of Input character *f
char EvtChar; f* received event character *f
UINT TxDelay; f* amount of time between chars *f

} DCB;

The DCB structure defines the control setting for a serial communications device.

Id
Specifies the communication device. This value is set by the device driver. If
the most significant bit is set, the DCB structure is for a parallel device.

BaudRate
Specifies the baud rate at which the communications device operates. If the
value of the high-order byte is equal to OxFF, the low-order byte specifies a
baud-rate index. The index can be one of the following values:

CBR_llO
CBR_4400
CBR_9200
CBR_8400
CBR_6000
CBR_28000
CBR_9600

CBR_14400
CBR_19200
CBR_38400
CBR_56000
CBR_128000
CBR_256000

DCB 267

If the high-order byte is not equal to OxFF, this parameter specifies the actual
baud rate.

ByteSize
Specifies the number of bits in the characters transmitted and received. This
member can be any number from 4 through 8.

Parity
Specifies the parity scheme to be used. This member can be any one of the fol
lowing values:

V aloe Meaning

EVENPARITY

MARK.PARITY

NO PARITY

ODDPARITY

StopBits

Even

Mark

No parity

Odd

Specifies the number of stop bits to be used. This member can be any one of the
following values:

Value

ONESTOPBIT

ONE5STOPBITS

TWOSTOPBITS

RlsTimeout

Meaning

1 stop bit

1.5 stop bits

2 stop bits

Specifies the maximum amount of time, in milliseconds, the device should wait
for the RLSD (receive-line-signal-detect) signal. RLSD is also known as the
carrier-detect (CD) signal.

CtsTimeout
Specifies the maximum amount of time, in milliseconds, the device should wait
for the CTS (clear-to-send) signal.

DsrTimeout
Specifies the maximum amount of time, in milliseconds, the device should wait
for the DSR (data-set-ready) signal.

268 DCB

ffiinary
Specifies binary mode. In nonbinary mode, the EofChar character is recog
nized on input and remembered as the end of data.

tRtsDisable
Specifies whether or not the RTS (request-to-send) signal is disabled. If this
member is set, RTS is not used and remains low. If this member is clear, RTS is
sent when the device is opened and turned off when the device is closed.

fParity
Specifies whether parity checking is enabled. If this member is set, parity check
ing is performed and errors are reported.

fOutxCtsFlow
Specifies that CTS (clear-to-send) signal is to be monitored for output flow con
trol. If this member is set and CTS is turned off, output is suspended until CTS
is again sent.

fOutxDsrFlow
Specifies that the DSR (data-set-ready) signal is to be monitored for output
flow control. If this member is set and DSR is turned off, output is suspended
until DSR is again sent.

fDummy
Reserved.

tDtrDisable
Specifies whether the DTR (data-terminal-ready) signal is disabled. If this mem
ber is set, DTR is not used and remains low. If this member is clear, DTR is
sent when the device is opened and turned off when the device is closed.

fOutX
Specifies that XON/XOFF flow control is used during transmission. If this
member is set, transmission stops when the XoffChar character is received and
starts again when the XonChar character is received.

flnX
Specifies that XON/XOFF flow control is used during reception. If this mem
ber is set, the XonChar character is sent when the reception queue comes
within XoflLim characters of being full and the XonChar character is sent
when the reception queue comes within XonLim characters of being empty.

fPeChar
Specifies that characters received with parity errors are to be replaced with the
character specified by this member. This member must be set for the replace
ment to occur.

tNull
Specifies that received null characters are to be discarded.

See Also

DCB 269

fChEvt
Specifies that reception of the EvtChar character is to be flagged as an event.

IDtrflow
Specifies that the DTR (data-terminal-ready) signal is to be used for reception
flow control. If this member is set, DTR is turned off when the reception queue
comes within XoftLim characters of being full and sent when the reception
queue comes within XonLim characters of being empty.

fRtsflow
Specifies that the RTS (ready-to-send) signal is to be used for reception flow
control. If this member is set, RTS is turned off when the reception queue
comes within XoffLim characters of being full, and sent when the reception
queue comes within XonLim characters of being empty.

IDummy2
Reserved.

XonChar
Specifies the value of the XON character for both transmission and reception.

XotTChar
Specifies the value of the XOFF character for both transmission and reception.

XonLim
Specifies the minimum number of characters allowed in the reception queue
before the XON character is sent.

XoffLim
Specifies the maximum number of characters allowed in the reception queue
before the XOFF character is sent. The value of the XoffLim member is sub
tracted from the size of the reception queue, in bytes, to calculate the maximum
number of characters allowed.

PeChar
Specifies the value of the character used to replace characters received with a
parity error.

EofChar
Specifies the value of the character used to signal the end of data.

EvtChar
Specifies the value of the character used to signal an event.

TxDelay
Not currently used.

BuildCommDCB, GetCommState, SetCommState

270 DDEACK

DDEACK

Members

See Also

#include <dde.h>

typedef struct tagDDEACK { /* ddeack */
WORD bAppReturnCode:8,

reserved:6,
fBusy:l,
fAck:l;

} DDEACK;

The DDEACK structure contains status flags that a DDE application passes to its
partner as part of the WM_DDE_ACK message. The flags provide details about
the application's response to a WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_REQUEST, WM_DDE_POKE, or
WM_DDE_UNADVISE message.

bAppReturnCode
Specifies an application-defined return code.

musy
Indicates whether the application was busy and unable to respond to the part
ner's message at the time the message was received. A nonzero value indicates
the server was busy and unable to respond. The ffiusy member is defined only
when the fAck member is zero.

fAck
Indicates whether the application accepted the message from its partner. A non
zero value indicates the server accepted the message.

WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_REQUEST, WM_DDE_POKE,
WM_DDE_UNADVISE,

DDEADVISE 271

DDEADVISE lliJ

Members

See Also

#include <dde.h>

typedef struct tagDDEADVISE { /* ddeadv */
WORD reserved:l4,

fDeferUpd:l,
fAckReq: 1;

short cfFormat;
} DDEADVISE;

The DDEADVISE structure contains flags that specify how a server should
send data to a client during an advise loop. A client passes the handle of a
DDEADVISE structure to a server as part of a WM_DDE_ADVISE message.

IDeferUpd
Indicates whether the server should defer sending updated data to the client. A
nonzero value tells the server to send a WM_DDE_DATA message with a
NULL data handle whenever the data item changes. In response, the client can
post a WM_DDE_REQUEST message to the server to obtain a handle to the
updated data.

fAckReq
Indicates whether the server should set the fAckReq flag in the
WM_DDE_DATA messages that it posts to the client. A nonzero value tells the
server to set the fAckReq bit.

cfFormat
Specifies the client application's preferred data format. The format must be a
standard or registered clipboard format. The following standard clipboard for
mats may be used:

CF_BITMAP
CF _DCF _OEMTEXT
CF _DCF _PALETTE
CF _DCF _PENDATA
CF _DCF _SYLK
CF _DCF _TEXT
CF _METAFILEPICT

CF_OEMTEXT
CF_PALETTE
CF_PENDATA
CF_SYLK
CF_TEXT
CF_TIFF

WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_UNADVISE

272 DDEDATA

DDEDATA

Members

See Also

/finclude <dde.h>

typedef struct tagDDEDATA { /* ddedat */
WORD unused:l2,

fResponse:l,
fRelease:l,
reserved:l,
fAckReq:l;

short cfFormat;
BYTE Value[l];

} DDEDATA;

The DDEDATA structure contains the data and information about the data sent as
part of a WM_DDE_DATA message.

fResponse
Indicates whether the application receiving the WM_DDE_DATA message
should acknowledge receipt of the data by sending a WM_DDE_ACK mes
sage. A nonzero value indicates the application should send the acknow
ledgment.

fRelease
Indicates if the application receiving the WM_DDE_POKE message should
free the data. A nonzero value indicates the data should be freed.

fAckReq
Indicates whether the data was sent in response to a WM_DDE_REQUEST
message or a WM_DDE_ADVISE message. A nonzero value indicates the data
was sent in response to a WM_DDE_REQUEST message.

cfFormat
Specifies the format of the data. The format should be a standard or registered
clipboard format. The following standard clipboard formats may be used:

CF_BITMAP CF_OEMTEXT
CF _DCF _OEMTEXT CF _pALETTE
CF _DCF _PALETTE CF _pENDATA
CF _DCF _PENDATA CF _SYLK
CF _DCF _SYLK CF _TEXT
CF _DCF _TEXT CF _TIFF
CF _METAFILEPICT

WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_POKE,
WM_DDE_REQUEST

DOE POKE 273

DDEPOKE lliJ

Members

See Also

#include <dde.h>

typedef struct tagDDEPDKE { /* ddepok */
WORD unused:l3,

fRelease:l,
fReserved:2;

short cfFormat;
BYTE Value[l];

DDEPOKE;

The DDEPOKE structure contains the data and information about the data sent as
part of a WM_DDE_POKE message.

!Release
Indicates if the application receiving the WM_DDE_POKE message should
free the data. A nonzero value specifies the data should be freed.

cfFormat
Specifies the format of the data. The format should be a standard or registered
clipboard format. The following standard clipboard formats may be used:

CF _BI1MAP CF _OEMTEXT
CF _DCF _OEMTEXT CF _pALETTE
CF _DCF _PALETTE CF _pENDATA
CF _DCF _PENDATA CF _SYLK
CF_DCF_SYLK CF_TEXT
CF _DCF _TEXT CF _TIFF
CF _METAFILEPICT

Value
Contains the data. The size of this array depends on the value of the cfFormat
member.

WM_DDE_POKE

274 DEBUGHOOKINFO

DEBUGHOOKINFO

Members

See Also

typedef struct tagDEBUGHOOKINFO {
HMODULE hModuleHook;
LPARAM reserved;
LPARAM l Pa ram;
WPARAM wParam;
int code;

} DEBUGHOOKINFO;

The DEBUGHOOKINFO structure contains debugging information.

hModuleHook
Identifies the module containing the filter function.

reserved
Not used.

lParam
Specifies the value to be passed to the hook in the lParam parameter of the
DebugProc callback function.

wParam
Specifies the value to be passed to the hook in the wParam parameter of the
DebugProc callback function.

code
Specifies the value to be passed to the hook in the code parameter of the Debug
Proc callback function.

DebugProc, SetWindowsHook

DELETEITEMSTRUCT
typedef struct tagDELETEITEMSTRUCT {

UINT CtlType;
UINT Ctl ID;
UINT itemID;
HWND hwnditem;
DWORD itemData;

} DELETEITEMSTRUCT;

f* deli*/

The DELETEITEMSTRUCT structure describes a deleted owner-drawn
list-box or combo-box item. When an item is removed from the list box or
combo box or when the list box or combo box is destroyed, Windows sends the

Members

See Also

DEVMODE

DEVMODE 275

WM_DELETEITEM message to the owner for each deleted item. The lParam
parameter of the message contains a pointer to this structure.

CtlType
Contains ODT_LISTBOX (which specifies an owner-drawn list box) or
ODT_COMBOBOX (which specifies an owner-drawn combo box).

CtlID
Contains the control identifier for the list box or combo box.

itemID
Contains the index of the item in the list box or combo box being removed.

hwndltem
Contains the window handle of the control.

itemData
Contains the value passed to the control in the lParam parameter of the
LB_INSERTSTRING, LB_ADDSTRING, CB_INSERTSTRING, or
CB_ADDSTRING message when the item was added to the list box.

WM_DELETEITEM

#include <print.h>

typedef struct tagDEVMODE { /* dm *f
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

} DEVMODE;

276 DEVMODE

Members

The DEVMODE structure contains information about a printer driver's initializa
tion and environment data. An application passes this structure to the Device
Capabilities and ExtDeviceMode functions.

dmDeviceName
Specifies the name of the device the driver supports-for example, "PCL/HP
LaserJet" in the case of the Hewlett-Packard LaserJet. Each driver has a unique
string.

dmSpec Version
Specifies the version number of the DEVMODE structure. For Windows ver
sion 3.1, this value should be Ox30A.

dmDriver Version
Specifies the printer driver version number assigned by the printer driver
developer.

dmSize
Specifies the size, in bytes, of the DEVMODE structure. (This value does not
include the optional dmDriverData member for device-specific data, which
can follow the structure.) If an application manipulates only the driver-inde
pendent portion of the data, it can use this member to find out the length of the
structure without having to account for different versions.

dmDriverExtra
Specifies the size, in bytes, of the optional dmDriverData member for device
specific data, which can follow the structure. If an application does not use
device-specific information, it should set this member to zero.

dmFields
Specifies a set of flags that indicate which of the remaining members in the
DEVMODE structure have been initialized. It can be any combination (or it
can be none) of the following values:

Constant Value

DM_ORIENTATION OxOOOOOOlL
DM_pAPERSIZE Ox0000002L

DM_PAPERLENGTH Ox0000004L

DM_PAPERWIDTH Ox0000008L
DM_SCALE OxOOOOOlOL

DM_COPIES OxOOOOlOOL

DM_DEFAULTSOURCE Ox0000200L

DM_PRINTQUALITY Ox0000400L
DM_COLOR Ox0000800L
DM_DUPLEX OxOOOlOOOL

DM_ YRESOLUTION Ox0002000L
DM_TTOPTION Ox0004000L

DEVMODE 277

A printer driver supports only those members that are appropriate for the
printer technology.

dmOrientation
Specifies the orientation of the paper. It can be either
DMORIENT_PORTRAIT or DMORIENT_LANDSCAPE.

dmPaperSize
Specifies the size of the paper to print on. This member may be set to zero
if the length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. Otherwise, the dmPaperSize member
can be set to one of the following predefined values:

Value

DMPAPER_FIRST

DMPAPER_LETTER

DMPAPER_LETTERSMALL

DMPAPER_TABLOID

DMPAPER_LEDGER

DMPAPER_LEGAL

DMPAPER_STATEMENT

DMPAPER_EXECUTIVE

DMPAPER_A3

DMPAPER_A4

DMPAPER_A4SMALL

DMPAPER_A5

DMPAPER_B4

DMPAPER_B5

DMPAPER_FOLIO

DMPAPER_QUARTO

DMPAPER_lOXl 4

DMPAPER_l lXl 7

DMPAPER_NOTE

DMPAPER_ENV _9

DMPAPER_ENV _10

DMPAPER_ENV _11

DMPAPER_ENV _12

DMPAPER_ENV_14

DMPAPER_CSHEET

DMPAPER_DSHEET

DMPAPER_ESHEET

DMPAPER_ENV _DL

Meaning

DMPAPER_LETTER

Letter, 8 112 x 11 in.

Letter Small, 8 112 x 11 in.

Tabloid, 11 x 17 in.

Ledger, 17 x 11 in.

Legal, 8 112 x 14 in.

Statement, 5 1/2 x 8 112 in.

Executive, 7 1/2 x 10 112 in.

A3, 297 x 420 mm

A4, 210 x 297 mm

A4 Small, 210 x 297 mm

A5, 148 x 210 mm

B4, 250 x 354 mm

B5, 182 x 257 mm

Folio, 8 1/2 x 13 in.

Quarto, 215 x 275 mm

10 x 14 in.

11x17 in.

Note, 8 1/2 x 11 in.

Envelope #9, 3 7/8 x 8 7/8 in.

Envelope #10, 4 118 x 9 112 in.

Envelope #11, 4 1/2 x 10 3/8 in.

Envelope #12, 4 1/2 x 11 in.

Envelope #14, 5 x 11 112 in.

C size sheet

D size sheet

E size sheet

Envelope DL, 110 x 220 mm

278 DEVMODE

Value

DMPAPER_ENV _C3

DMPAPER_ENV _C4

DMPAPER_ENV _C5

DMPAPER_ENV _C6

DMPAPER_ENV _C65

DMPAPER_ENV _B4

DMPAPER_ENV _B5

DMPAPER_ENV _B6

DMPAPER_ENV _ITALY

DMPAPER_ENV _MONARCH

DMPAPER_ENV _PERSONAL

DMPAPER_FANFOLD_US

DMPAPER_FANFOLD_STD_GERMAN

DMPAPER_FANFOLD _LGL_GERMAN

DMPAPER_LAST

DMPAPER_USER

dmPaperLength

Meaning

Envelope C3, 324 x 458 mm

Envelope C4, 229 x 324 mm

Envelope C5, 162 x 229 mm

Envelope C6, 114 x 162 mm

Envelope C65, 114 x 229 mm

Envelope B4, 250 x 353 mm

Envelope B5, 176 x 250 mm

Envelope B6, 176 x 125 mm

Envelope, 110 x 230 mm

Envelope Monarch, 3 7 /8 x 7 1/2 in.

Envelope, 3 5/8 x 6 112 in.

U.S. Standard Fanfold,
14 7/8 x 11 in.

German Standard Fanfold,
8 1/2 x 12 in.

German Legal Fanfold, 8 1/2 x 13 in.

German Legal Fanfold, 8 1/2 x 13 in.

User-defined

Specifies a paper length, in tenths of a millimeter. This parameter overrides the
paper length specified by the dmPaperSize member, either for custom paper
sizes or for such devices as dot-matrix printers that can print on a variety of
page sizes.

dmPaperWidth
Specifies a paper width, in tenths of a millimeter. This parameter overrides the
paper width specified by the dmPaperSize member.

dmScale
Specifies the factor by which the printed output is to be scaled. The apparent
page size is scaled from the physical page size by a factor of dmScale/ 100. For
example, a letter-size paper with a dmScale value of 50 would contain as much
data as a page of size 17 by 22 inches because the output text and graphics
would be half their original height and width.

dmCopies
Specifies the number of copies printed if the device supports multiple-page co
pies.

dmDefaultSource
Specifies the default bin from which the paper is fed. The application can over
ride this value by using the GETSETP APERBINS escape. This member can be
one of the following values:

DMBIN_AUTO
DMBIN_CASSETTE
DMBIN_ENVELOPE
DMBIN_ENVMANUAL
DMBIN_FIRST
DMBIN_LARGECAPACITY
DMBIN_LARGEFMT
DMBIN_LAST

DMBIN_LOWER
DMBIN_MANUAL
DMBIN_MIDDLE
DMBIN_ONLYONE
DMBIN_SMALLFMT
DMBIN_TRACTOR
DMBIN_UPPER

DEVMODE 279

A range of values is reserved for device-specific bins. To be consistent with in
itialization information, the GETSETP APERBINS and ENUMPAPERBINS
escapes use these values.

dmPrintQuality
Specifies the printer resolution. Following are the four predefined device
independent values:

DMRES_HIGH (-4)
DMRES_MEDIUM (-3)
DMRES_LOW (-2)
DMRES_DRAFT (-1)

If a positive value is given, it specifies the number of dots per inch (DPI) and is
therefore device-dependent.

If the printer initializes the dm YResolution member, the dmPrintQuality
member specifies the x-resolution of the printer, in dots per inch.

dmColor
Specifies whether a color printer is to render color or monochrome output.
Possible values are:

DMCOLOR_COLOR (1)
DMCOLOR_MONOCHROME (2)

dmDuplex
Specifies duplex (double-sided) printing for printers capable of duplex printing.
This member can be one of the following values:

DMDUP _SIMPLEX (1)
DMDUP _HORIZONTAL (2)
DMDUP _VERTICAL (3)

dm YResolution
Specifies they-resolution of the printer, in dots per inch. If the printer initializes
this member, the dmPrintQuality member specifies the x-resolution of the
printer, in dots per inch.

dmTTOption
Specifies how True Type fonts should be printed. It can be one of the following
values:

280 DEVNAMES

Comments

Value

DMTT_BITMAP

DMTT_DOWNLOAD

DMTT_SUBDEV

Meaning

Print TrueType fonts as graphics. This is the default
action for dot-matrix printers.

Download TrueType fonts as soft fonts. This is the
default action for Hewlett-Packard printers that use
Printer Control Language (PCL).

Substitute device fonts for TrueType fonts. This is the
default action for Postscript printers.

Only drivers that are fully updated for Windows versions 3.0 and later and that
export the ExtDeviceMode function use the DEVMODE structure.

An application can retrieve the paper sizes and names supported by a printer by
calling the DeviceCapabilities function with the DC_PAPERS, DC_P APERSIZE,
and DC_PAPERNAMES values.

Before setting the value of the dmTTOption member, applications should find
out how a printer driver can use TrueType fonts by calling the DeviceCapabilities
function with the DC_TRUETYPE value.

Drivers can add device-specific data immediately following the DEVMODE
structure.

See Also DeviceCapabilities, ExtDeviceMode

DEVNAMES [IT]

#include <commdlg.h>

typedef struct tagDEVNAMES { /* dn *f
UINT wDriverOffset;
UINT wDeviceOffset;
UINT wOutputOffset;
UINT wDefault;
f* optional data may appear here */

} DEVNAMES;

The DEVNAMES structure contains offsets to strings that specify the driver,
name, and output port of a printer. The PrintDlg function uses these strings to ini
tialize controls in the system-defined Print dialog box. When the user chooses the
OK button to close the dialog box, information about the selected printer is re
turned in this structure.

Members

See Also

DOCINFO

DOCINFO 281

wDriverOffset
Specifies the offset from the beginning of the structure to a null-terminated
string that specifies the Microsoft MS-DOS® filename (without extension) of
the device driver. On input, this string is used to set which printer to initially
display in the dialog box.

wDeviceOffset
Specifies the offset from the beginning of the structure to the null-terminated
string that specifies the name of the device. This string cannot exceed 32
bytes in length, including the null character, and must be identical to the
dmDeviceName member of the DEVMODE structure.

wOutputOffset
Specifies the offset from the beginning of the structure to the null-terminated
string that specifies the MS-DOS device name for the physical output medium
(output port).

wDefault
Specifies whether the strings specified in the DEVNAMES structure identify
the default printer. It is used to verify that the default printer has not changed
since the last print operation. On input, this member can be set to
DN_DEFAULTPRN. If the DN_DEFAULTPRN flag is set, the other values in
the DEVNAMES structure are checked against the current default printer.

On output, the wDefault member is changed only if the Print Setup dialog box
was displayed and the user chose the OK button to close it. If the default printer
was selected, the DN_DEFAULTPRN flag is set. If a printer is specifically
selected, the flag is not set. All other bits in this member are reserved for inter
nal use by the dialog box procedure of the Print dialog box.

PrintDig

typedef struct { /* di */
int cbSize;
LPCSTR lpszDocName;
LPCSTR lpszOutput;

DOC INFO;

The DOCINFO structure contains the input and output filenames used by the
StartDoc function.

282 DRAWITEMSTRUCT

Members

See Also

ch Size
Specifies the size of the structure, in bytes.

lpszDocName
Points to a null-terminated string specifying the name of the document. This
string must not be longer than 32 characters, including the null terminating char
acter.

lpszOutput
Points to a null-terminated string specifying the name of an output file. This al
lows a print job to be redirected to a file. If this value is NULL, output goes to
the device for the specified device context.

StartDoc

DRAWITEMSTRUCT ~

Members

typedef struct tagDRAWITEMSTRUCT { /* ditm */
UINT CtlType;
UINT CtlID;
UINT itemID;
UINT itemAction;
UINT itemState;
HWND hwndltem;
HOC hDC;
RECT re Item;
DWORD itemData;

} DRAWITEMSTRUCT;

The DRA WITEMSTRUCT structure provides information the owner needs to
determine how to paint an owner-drawn control. The owner of the owner-drawn
control receives a pointer to this structure as the lParam parameter of the
WM_DRA WITEM message.

CtlType
Specifies the control type. The values for control types follow:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT_LISTBOX

ODT_MENU

Meaning

Owner-drawn button

Owner-drawn combo box

Owner-drawn list box

Owner-drawn menu

DRAWITEMSTRUCT 283

CtlID
Specifies the control identifier for a combo box, list box or button. This mem
ber is not used for a menu.

itemID
Specifies the menu-item identifier for a menu or the index of the item in a list
box or combo box. For an empty list box or combo box, this member is a nega
tive value. This allows the application to draw only the focus rectangle at the
coordinates specified by the rcltem member even though there are no items in
the control. This indicates to the user whether the list box or combo box has
input focus. The itemAction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

itemAction
Specifies the drawing action required. This member is one or more of the fol
lowing values:

Value

ODA_DRAWENTIRE

ODA_FOCUS

ODA_SELECT

itemState

Meaning

Bit is set when the entire control needs to be drawn.

Bit is set when the control gains or loses input focus.
The itemState member should be checked to determine
whether the control has focus.

Bit is set when only the selection status has changed.
The itemState member should be checked to determine
the new selection state.

Specifies the visual state of the item after the current drawing action takes
place; that is, if a menu item is to be grayed, the state flag ODS_GRAYED will
be set. Following are the state flags:

Value

ODS_CHECKED

ODS_DISABLED

ODS_FOCUS

ODS_GRAYED

ODS_SELECTED

hwndltem

Meaning

Bit is set if the menu item is to be checked. This bit is used
only in a menu.

Bit is set if the item is to be drawn as disabled.

Bit is set if the item has input focus.

Bit is set if the item is to be grayed. This bit is used only in a
menu.

Bit is set if the item's status is selected.

Specifies the window handle of the control for combo boxes, list boxes, and but
tons. For menus, it contains the handle of the menu (HMENU) containing the
item.

hDC
Identifies a device context; this device context must be used when performing
drawing operations on the control.

284 DRIVERINFOSTRUCT

rcltem
Specifies a rectangle in the device context identified by the hDC member that
defines the boundaries of the control to be drawn. Windows automatically clips
anything the owner draws in the device context for combo boxes, list boxes,
and buttons, but it does not clip menu items. When drawing menu items, it must
ensure that the owner does not draw outside the boundaries of the rectangle de
fined by the rcltem member.

itemData
Contains the value last assigned to the list box or combo box by an LB_SET
ITEMDATA or CB_SETITEMDATA message. If the list box or combo box
has the LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is ini
tially zero. Otherwise, this value is initially the value that was passed to the list
box or combo box in the lParam parameter of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

DRIVERINFOSTRUCT

Members

See Also

typedef struct tagDRIVERINFOSTRUCT { /* drvinfst */
UINT length;
HDRVR hDriver;
HINSTANCE hModule;
char szAliasName[l28J;

} DRIVERINFOSTRUCT;

The DRIVERINFOSTRUCT structure contains basic information about an
installable device driver.

length
Specifies the size of the DRIVERINFOSTRUCT structure.

hDriver
Identifies an instance of the installable driver.

hModule
Identifies an installable driver module.

szAliasName
Points to a null-terminated string that specifies the driver name or an alias
under which the driver was loaded.

GetDriverlnfo

EVENTMSG 285

DRVCONFIGINFO [IT]

Members

typedef struct tagDRVCDNFIGINFD {
DWORD dwDCISize;
LPCSTR lpszDCISectionName;
LPCSTR lpszDCIAliasName;

} DRVCONFIGINFO;

The DRVCONFIGINFO structure contains information about the entries for an
installable device driver in the SYSTEM.IN! file. This structure is sent in the
lParam parameter of the DRY _CONFIGURE and DRY _INSTALL installable
driver messages.

dwDCISize
Specifies the size of the DRVCONFIGINFO structure.

lpszDCISectionN ame
Points to a null-terminated string that specifies the name of the section in the
SYSTEM.IN! file where driver information is recorded.

lpszDCIAliasName
Points to a null-terminated string that specifies the driver name or an alias
under which the driver was loaded.

See Also DRY _CONFIGURE, ORV _INSTALL

EVENTMSG CI!J

Members

typedef struct tagEVENTMSG {
UINT message;
UINT paramL;
UINT paramH;
DWORD time;

} EVENTMSG;

/* em *f

The EVENTMSG structure contains information from the Windows application
queue. This structure is used to store message information for the Journal
PlaybackProc callback function.

message
Specifies the message number.

paramL
Specifies additional information about the message. The exact meaning de
pends on the message value.

286 FIND REPLACE

See Also

paramH
Specifies additional information about the message. The exact meaning de
pends on the message value.

time
Specifies the time at which the message was posted.

JournalPlaybackProc, SetWindowsHook

FIND REPLACE

Members

#include <commdlg.h>

typedef struct tagFINDREPLACE /* fr */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hlnstance;
DWORD Flags;
LPSTR lpstrFindWhat;
LPSTR lpstrReplaceWith;
UINT wFindWhatLen;
UINT wReplaceWithLen;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} FINDREPLACE;

The FINDREPLACE structure contains information that the system uses to ini
tialize a system-defined Find dialog box or Replace dialog box. After the user
chooses the OK button to close the dialog box, the system returns information
about the user's selections in this structure.

lStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, but it must not be NULL.

If the FR_SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRlNG is passed as its argument.)

This member is filled on input.

FIND REPLACE 287

hlnstance
Identifies a data block that contains a dialog box template specified by the
lpTemplateName member. This member is only used if the Flags member
specifies the FR_ENABLETEMPLATE or the
FR_ENABLETEMPLATEHANDLE flag; otherwise, this member is ignored.
This member is filled on input.

Flags
Specifies the dialog box initialization flags. This member can be a combination
of the following values:

Value

FR_DIALOGTERM

FR_DOWN

FR_ENABLEHOOK

FR_ENABLETEMPLATE

FR_ENABLETEMPLATEHANDLE

FR_FINDNEXT

FR_HIDEMATCHCASE

Meaning

Indicates the dialog box is closing. The
window handle returned by the FindText
or ReplaceText function is no longer
valid after this bit is set. This flag is set by
the system.

Sets the direction of searches through a
document. If the flag is set, the search
direction is down; if the flag is clear, the
search direction is up. Initially, this flag
specifies the state of the Up and Down
buttons; after the user chooses the OK but
ton to close the dialog box, this flag speci
fies the user's selection.

Enables the hook function specified in the
lpfnHook member of this structure. This
flag can be set on input.

Causes the system to use the dialog box
template identified by the hlnstance and
lpTemplateName members to display the
dialog box. This flag is used only to initial
ize the dialog box.

Indicates that the hlnstance member iden
tifies a data block that contains a pre
loaded dialog box template. The system
ignores the lpTemplateName member if
this flag is specified. This flag can be set
on input.

Indicates that the application should
search for the next occurrence of the
string specified by the lpstrFindWhat
member. This flag is set by the system.

Hides and disables the Match Case check
box. This flag can be set on input.

288 FIND REPLACE

Value

FR_HIDEWHOLEWORD

FR_HIDEUPDOWN

FR_MATCHCASE

FR_NOMATCHCASE

FR_NOUPDOWN

FR_NOWHOLEWORD

FR_REPLACE

FR_REPLACEALL

FR_SHOWHELP

FR_ WHOLEWORD

lpstrFindWhat

Meaning

Hides and disables the Match Only Whole
Word check box. This flag can be set on
input.

Hides the Up and Down radio buttons that
control the direction of searches through a
document. This flag can be set on input.

Specifies that the search is to be case sen
sitive. This flag is set when the dialog box
is created and may be changed by the sys
tem in response to user input.

Disables the Match Case check box. This
flag is used only to initialize the dialog
box.

Disables the Up and Down buttons. This
flag is used only to initialize the dialog
box.

Disables the Match Whole Word Only
check box. This flag is used only to initial
ize the dialog box.

Indicates that the application should re
place the current occurrence of the string
specified in the lpstrFindWhat member
with the string specified in the lpstr
Replace With member. This flag is set by
the system.

Indicates that the application should
replace all occurrences of the string
specified in the lpstrFindWhat member
with the string specified in the lpstr
Replace With member. This flag is set by
the system.

Causes the dialog box to show the Help
button. If this flag is specified, the
hwndOwner must not be NULL. This
flag can be set on input.

Checks the Match Whole Word Only
check box. Only whole words that match
the search string will be considered. This
flag is set when the dialog box is created
and may be changed by the system in re
sponse to user input.

Specifies the string to search for. If a string is specified when the dialog box is
created, the dialog box will initialize the Find What edit control with this string.

FINDREPLACE 289

If the FR_FINDNEXT flag is set when the dialog box is created, the application
should search for an occurrence of this string (using the FR_DOWN,
FR_ WHOLEWORD, and FR_MATCHCASE flags to further define the direc
tion and type of search). The application must allocate a buffer for the string.
This buffer should be at least 80 bytes long. This flag is set when the dialog box
is created and may be changed by the system in response to user input.

lpstrReplace With
Specifies the replacement string for replace operations. The FindText function
ignores this member. The ReplaceText function uses this string to initialize the
Replace With edit control. This flag is set when the dialog box is created and
may be changed by the system in response to user input.

wFindWhatLen
Specifies the length, in bytes, of the buffer to which the lpstrFindWhat mem
ber points. This member is filled on input.

wReplaceWithLen
Specifies the length, in bytes, of the buffer to which the lpstrReplace With
member points. This member is filled on input.

lCustData
Specifies application-defined data that the system passes to the hook function
identified by the lpfnHook member. The system passes a pointer to the
CHOOSECOLOR structure in the lParam parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the
lCustData member.

lpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
FR_ENABLEHOOK flag in the Flags member; otherwise, the system ignores
this structure member. The hook function must return zero to pass a message
that it didn't process back to the dialog box procedure in COMMDLG.DLL.
The hook function must return a nonzero value to prevent the dialog box proce
dure in COMMDLG.DLL from processing a message it has already processed.

This member is filled on input.

lpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem
ber specifies the FR_ENABLETEMPLATE flag; otherwise, this member is ig
nored.

This member is filled on input.

290 FIXED

Comments

See Also

FIXED

Members

Comments

See Also

Some members of this structure are filled only when the dialog box is created,
some are filled only when the user closes the dialog box, and some have an initiali
zation value that changes when the user closes the dialog box. Whenever a descrip
tion in the Members section does not specify how the value of a member is
assigned, the value is assigned only when the dialog box is created.

FindText, ReplaceText

typedef struct tagFIXED { /* fx */
UINT fract;
int value;

} FIXED;

The FIXED structure contains the integral and fractional parts of a fixed-point real
number.

fract
Specifies the fractional part of the number.

value
Specifies the integer part of the number.

The FIXED structure is used to describe the elements of the MA T2 and
POINTFX structures.

GetGlyphOutline

FIXED 291

FMS_ GETDRIVEINFO

Members

See Also

#include <wfext.h>

typedef struct tagFMS_GETDRIVEINFO { /* fmsgdi */
DWORD dwTotalSpace;
DWORD dwFreeSpace;
char szPath[260];
char szVolume[l4J;
char szShare[l28J;

} FMS_GETDRIVEINFO, FAR *LPFMS_GETDRIVEINFO;

The FMS_GETDRIVEINFO structure contains information about the drive that
is selected in the currently active File Manager window.

dwTotalSpace
Specifies the total amount of storage space, in bytes, on the disk associated with
the drive.

dwFreeSpace
Specifies the amount of free storage space, in bytes, on the disk associated with
the drive.

szPath
Specifies a null-terminated string that contains the path of the current directory.

szVolume
Specifies a null-terminated string that contains the volume label of the disk
associated with the drive.

szShare
Specifies a null-terminated string that contains the name of the sharepoint (if
the drive is being accessed through a network).

FMExtensionProc, FM_GETDRIVEINFO

292 FIXED

FMS_ GETFILESEL

Members

See Also

#include <wfext.h>

typedef struct tagFMS_GETFILESEL { /* fmsgfs */
UINT wTime;
UINT wDate;
DWDRD dwSize;
BYTE bAttr;
char szName[260J;

} FMS_GETFILESEL;

The FMS_GETFILESEL structure contains information about a selected file in
File Manager's directory window or Search Results window.

wTime
Specifies the time when the file was created.

wDate
Specifies the date when the file was created.

dwSize
Specifies the size, in bytes, of the file.

bAttr
Specifies the attributes of the file.

szName
Specifies a null-terminated string (an OEM string) that contains the fully
qualified path of the selected file. Before displaying this string, an extension
should use the OemToAnsi function to convert the string to a Windows ANSI
string. If a string is to be passed to the MS-DOS file system, an extension
should not convert it.

FMExtensionProc

FMS_LOAD

Members

See Also

#include <wfext.h>

typedef struct tagFMS_LOAD { /* fmsld */
DWORD dwSize;
char szMenuName[MENU_TEXT_LEN];
HMENU hMenu;
UINT wMenuDelta;

FMS_ LOAD;

FIXED 293

The FMS_LOAD structure contains information that File Manager uses to add a
custom menu provided by a File Manager extension dynamic-link library (DLL).
The structure also provides a delta value that the extension DLL can use to
manipulate the custom menu after File Manager has loaded the menu.

dwSize
Specifies the length of the structure, in bytes.

szMenuName
Contains a null-terminated string for a menu item that appears in File
Manager's main menu.

hMenu
Identifies the pop-up menu that is added to File Manager's main menu.

wMenuDelta
Specifies the menu-item delta value. To avoid conflicts with its own menu
items, File Manager renumbers the menu-item identifiers in the pop-up menu
identified by the hMenu member by adding this delta value to each identifier.
An extension DLL that needs to modify a menu item must identify the item to
modify by adding the delta value to the menu item's identifier. The value of
this member can vary from session to session.

FMExtensionProc

294 GLOBALENTRY

GLOBALENTRY

Members

#include <toolhelp.h>

typedef struct tagGLOBALENTRY { /* ge */
DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;
WORD wclock;
WORD wcPagelock;
WORD wFlags;
BOOL wHeapPresent;
HGLOBAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBALENTRY;

The GLOBALENTRY structure contains information about a memory object on
the global heap.

dwSize
Specifies the size of the GLOBALENTRY structure, in bytes.

dwAddress
Specifies the linear address of the global-memory object.

dwBlockSize
Specifies the size of the global-memory object, in bytes.

hBlock
Identifies the global-memory object.

wcLock
Specifies the lock count. If this value is zero, the memory object is not locked.

wcPageLock
Specifies the page lock count. If this value is zero, the memory page is not
locked.

wFlags
Specifies additional information about the memory object. This member can be
the following value:

Value

GF _PDB_OWNER

Meaning

The process data block (PDB) for the task is the owner of
the memory object.

GLOBALENTRY 295

wHeapPresent
Indicates whether a local heap exists within the global-memory object.

hOwner
Identifies the owner of the global-memory object.

wType
Specifies the memory type of the object. This type can be one of the following
values:

Value

GT_UNKNOWN

GT_DGROUP

GT_DATA

GT_CODE

GT_TASK

GT_RESOURCE

GT_MODULE

GT_FREE

GT_INTERNAL

GT_SENTINEL

GT_BURGERMASTER

wData

Meaning

The memory type is not known.

The object contains the default data segment and the
stack segment.

The object contains program data. (It may also contain
stack and local heap data.)

The object contains program code. If GT_CODE is
specified, the wData member contains the segment
number for the code.

The object contains the task database.

The object contains the resource type specified in
wData.

The object contains the module database.

The object belongs to the free memory pool.

The object is reserved for internal use by Windows.

The object is either the first or the last object on the
global heap.

The object contains a table that maps selectors to arena
handles.

If the wType member is not GT_CODE or GT_RESOURCE, wData is zero.

IfwType is GT_CODE, GT_DATA, or GT_DGROUP, wData contains the
segment number for the code.

IfwType is GT_RESOURCE, wData specifies the type of resource. The type
can be one of the following values:

Value

GD_ACCELERATORS

GD_BITMAP

Meaning

The object contains data from the accelerator
table.

The object contains data describing a bitmap.
This includes the bitmap color table and the bit
map bits.

296 GLOBALENTRY

See Also

Value

GD_CURSOR

GD_CURSORCOMPONENT

GD_DIALOG

GD_ERRTABLE

GD_FONT

GD_FONTDIR

GD_ICON

GD_ICONCOMPONENT

GD_MENU

GD_NAMETABLE

GD_RCDATA

GD_STRING

GD_USERDEFINED

dwNext

Meaning

The object contains data describing a group of
cursors. This includes the height, width, color
count, bit count, and ordinal identifier for the cur
sors.

The object contains data describing a single cur
sor. This includes bitmap bits and bitmasks for
the cursor.

The object contains data describing controls
within a dialog box.

The object contains data from the error table.

The object contains data describing a single font.
This data is identical to data in a Windows font
file (.FNT).

The object contains data describing a group of
fonts. This includes the number of fonts in the re
source and a table of metrics for each of these
fonts.

The object contains data describing a group of
icons. This includes the height, width, color
count, bit count, and ordinal identifier for the
icons.

The object contains data describing a single icon.
This includes bitmap bits and bitmaps for the
icon.

The object contains menu data for normal and
pop-up menu items.

The object contains data from the name table.

The object contains data from a user-defined re
source.

The object contains data from the string table.

The resource has an unknown resource identifier
or is an application-specific named type.

Reserved for internal use by Windows.

dwNextAlt
Reserved for internal use by Windows.

GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext,
GLOBALINFO

GLYPHMETRICS 297

GLOBALINFO lliJ

Members

See Also

#include <toolhelp.h>

typedef struct tagGLOBALINFO
DWORO dwSize;
WORD wcitems;
WORD wcitemsFree;
WORD wcitemsLRU;

GLOBALINFO;

The GLOBALINFO structure contains information about the global heap.

dwSize
Specifies the size of the GLOBALINFO structure, in bytes.

wcltems
Specifies the total number of items on the global heap.

wcltemsFree
Specifies the number of free items on the global heap.

wcltemsLRU
Specifies the number of "least recently used" (LRU) items on the global heap.

Globallnfo, GLOBALENTRY

GLYPHMETRICS

Members

typedef struct tagGLYPHMETRICS { /* gm */
UINT gmBlackBoxX;
UINT gmBlackBoxY;
POINT gmptGlyphOrigin;
int gmCellincX;
int gmCellincY;

} GLYPHMETRICS;

The GL YPHMETRICS structure contains information about the placement and
orientation of a glyph in a character cell.

gmBlackBoxX
Specifies the width of the smallest rectangle that completely encloses the glyph
(its "black box").

298 HANDLETABLE

Comments

See Also

gmBlackBoxY
Specifies the height of the smallest rectangle that completely encloses the glyph
(its "black box").

gmptGlyphOrigin
Specifies the x- and y-coordinates of the upper-left comer of the smallest
rectangle that completely encloses the glyph.

gmCelllncX
Specifies the horizontal distance from the origin of the current character cell to
the origin of the next character cell.

gmCelllncY
Specifies the vertical distance from the origin of the current character cell to the
origin of the next character cell.

Values in the GL YPHMETRICS structure are specified in logical units.

GetGlyphOutline

HANDLETABLE

Members

See Also

typedef struct tagHANDLETABLE {
HGDIOBJ objectHandle[l];

} HANDLETABLE;

f* ht */

The HAND LET ABLE structure is an array of handles, each of which identifies a
graphics device interface (GDI) object.

objectHandle
Contains an array of handles.

EnumMetaFile, PlayMetaFileRecord

HELPWININFO 299

HARDWAREHOOKSTRUCT [IT]

Members

typedef struct tagHARDWAREHOOKSTRUCT { /* hhs */
HWND hWnd;
UINT wMessage;
WPARAM wParam;
LP A RAM l Pa ram;

HARDWAREHOOKSTRUCT;

The HARDW AREHOOKSTRUCT contains information about a hardware mes
sage placed in the system message queue.

hWnd
Identifies the window that will receive the message.

wMessage
Specifies the message identifier.

wParam
Specifies additional information about the message. The exact meaning de
pends on the wMessage parameter.

IP a ram
Specifies additional information about the message. The exact meaning de
pends on the wMessage parameter.

HELPWININFO
typedef struct {

int wStructSize;
int x·

' int y;
int dx;
int dy;
int wMax;
char rgchMember[2];

} HELPWININFO;

The HELPWININFO structure contains the size and position of a secondary help
window. An application can set this size by calling the WinHelp function with the
HELP _SETWINPOS value.

300 HELPWININFO

Members

Comments

See Also

wStructSize
Specifies the size of the HELPWININFO structure.

x
Specifies the x-coordinate of the upper-left comer of the window.

y
Specifies they-coordinate of the upper-left comer of the window.

dx
Specifies the width of the window.

dy
Specifies the height of the window.

wMax
Specifies whether the window should be maximized or set to the given position
and dimensions. If this value is 1, the window is maximized. If it is zero, the
size and position of the window are determined by the x, y, dx, and dy mem
bers.

rgchMember
Specifies the name of the window.

Microsoft Windows Help divides the display into 1024 units in both the x- and y
directions. To create a secondary window that fills the upper-left quadrant of the
display, for example, an application would specify zero for the x and y members
and 512 for the dx and dy members.

WinHelp

KERNINGPAIR 301

HSZPAIR [IT]

Members

#include <ddeml .h>

typedef struct tagHSZPAIR { /* hp */
HSZ hszSvc;
HSZ hszTopic;

} HSZPAIR;

The HSZPAIR structure contains a dynamic data exchange (DDE) service name
and topic name. A DDE server application can use this structure during an
XTYP _ WILDCONNECT transaction to enumerate the service/topic name pairs
that it supports.

hszSvc
Identifies a service name.

hszTopic
Identifies a topic name.

KERNING PAIR

Members

See Also

typedef struct tagKERNINGPAIR {
WORD wFirst;
WORD wSecond;
int i KernAmount;

} KERNINGPAIR;

The KERNINGPAIR structure defines a kerning pair.

wFirst
Specifies the character code for the first character in the kerning pair.

wSecond
Specifies the character code for the second character in the kerning pair.

iKernAmount
Specifies the amount that this pair will be kerned if they appear side by side in
the same font and size. This value is typically negative, because pair-kerning
usually results in two characters being set more tightly than normal. The value
is given in logical units-that is, it depends on the current mapping mode.

GetKerningPairs

302 LOCALENTRY

LOCALENTRY

Members
\

#include <toolhelp.h>

typedef struct tagLOCALENTRY { /* le */
DWORD dwSize;
HLOCAL hHandle;
WORD wAddress;
WORD wSize;
WORD wFlags;
WORD wclock;
WORD wType;
WORD hHeap;
WORD wHeapType;
WORD wNext;

} LOCALENTRY;

The LOCALENTRY structure contains information about a memory object on
the local heap.

dwSize
Specifies the size of the LOCALENTRY structure, in bytes.

hHandle
Identifies the local-memory object.

wAddress
Specifies the address of the local-memory object.

wSize
Specifies the size of the local-memory object, in bytes.

wFlags
Specifies whether the memory object is fixed, free, or movable. This member
can be one of the following values:

Value

LF_FIXED

LF_FREE

LF _MOVEABLE

wcLock

Meaning

The object resides in a fixed memory location.

The object is part of the free memory pool.

The object can be moved in order to compact memory.

Specifies the lock count. If this value is zero, the memory object is not locked.

LOCALENTRY 303

wType
Specifies the content of the memory object. This member can be one of the fol
lowing values:

V aloe Meaning

LT_FREE

LT_GDI_BITMAP

LT_GDI_BRUSH

LT_GDI_DC

LT_GDI_DISABLED_DC

LT_GDI_FONT

LT_GDI_MAX

LT_GDI_METADC

LT_GDI_METAFILE

LT_GDI_PALETTE

LT_GDI_PEN

LT_GDI_RGN

LT_NORMAL

LT_USER_ATOMS

LT_USER_BWL

LT_USER_CBOX

LT_USER_CHECKPOINT

LT_USER_CLASS

LT_USER_CLIP

LT_USER_DCE

LT_USER_ED

LT_USER_HANDLETABLE

LT_USER_HOOKLIST

LT_USER_HOTKEYLIST

The object belongs to the free memory pool.

The object contains a bitmap header.

The object contains a brush.

The object contains a device context.

The object is reserved for internal use by Windows.

The object contains a font header.

The object is reserved for internal use by Windows.

The object contains a metafile device context.

The object contains a metafile header.

The object contains a palette.

The object contains a pen.

The object contains a region.

The object is reserved for internal use by Windows.

The object contains an atom structure.

The object is reserved for internal use by Windows.

The object contains a combo-box structure.

The object is reserved for internal use by Windows.

The object contains a class structure.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object contains an edit-control structure.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

LT_USER_LBIV The object contains a list-box structure.

LT_USER_LOCKINPUTSTATE

LT_USER_MENU

LT_USER_MISC

LT_USER_MWP

LT_USER_OWNERDRAW

LT_USER_PALETTE

LT_USER_POPUPMENU

LT_USER_PROP

The object is reserved for internal use by Windows.

The object contains a menu structure.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

The object contains a window-property structure.

304 LOCALENTRY

Comments

See Also

Value

LT_USER_SPB

LT_USER_STRING

Meaning

The object is reserved for internal use by Windows.

The object is reserved for internal use by Windows.

LT_USER_USERSEEUSERDOALLOC

The object is reserved for internal use by Windows.

LT_USER_WND The object contains a window structure.

hHeap
Identifies the local-memory heap.

wHeapType
Specifies the type of local heap. This type can be one of the following values:

Value

NORMAL_HEAP

USER_HEAP

GDI_HEAP

wNext

Meaning

The heap is the default heap.

The heap is used by the USER module.

The heap is used by the GDI module.

Specifies the next entry in the local heap. This member is reserved for internal
use by Windows.

The wType values are for informational purposes only. Microsoft reserves the
right to change or delete these tags at any time. Applications should never directly
change items on the system heaps, as this information will change in future ver
sions. The wType values for the USER module are included only in the debugging
versions of USER.EXE.

LocalFirst, LocalNext, LOCALINFO

LOGBRUSH 305

LOCALINFO [IT]

Members

#include <toolhelp.h>

typedef struct tagLOCALINFO { /* li */
DWORD dwSize;
WORD wcitems;

LOCALI N FO;

The LOCALINFO structure contains information about the local heap.

dwSize
Specifies the size of the LOCALINFO structure, in bytes.

wcltems
Specifies the total number of items on the local heap.

See Also Locallnfo, LOCALENTRY

LOG BRUSH CI!J

Members

typedef struct tagLOGBRUSH
UINT lbStyle;
COLORREF lbColor;

/* lb */

int lbHatch;
} LOGBRUSH;

The LOGBRUSH structure defines the style, color, and pattern of a physical
brush to be created by using the CreateBrushlndirect function.

lbStyle
Specifies the brush style. This member can be one of the following values:

Value

BS_DIBPATTERN

BS_HATCHED

BS_HOLLOW

BS_pATTERN

BS_NULL

BS_SOLID

Meaning

Specifies a pattern brush defined by a device-independent
bitmap (DIB) specification.

Specifies a hatched brush.

Specifies a hollow brush.

Specifies a pattern brush defined by a memory bitmap.

Equivalent to BS_HOLLOW.

Specifies a solid brush.

306 LOG BRUSH

See Also

lbColor
Specifies the color in which the brush is to be drawn. If the lbStyle member is
the BS_HOLLOW or BS_PATTERN value, lbColor is ignored.

If lpStyle is the BS_DIBPATTERN value, the low-order word of lbColor
specifies whether the bmiColors members of the BITMAPINFO structure con
tain explicit RGB values or indexes into the currently realized logical palette.
The lbColor member must be one of the following values:

Value

DIB_pAL_COLORS

DIB_RGB_COLORS

lb Hatch

Meaning

Color table consists of an array of 16-bit indexes into the
currently realized logical palette.

Color table contains literal RGB values.

Specifies a hatch style. The meaning depends on the brush style.

If the lbStyle member is the BS_DIBPATTERN style, the lbHatch member
contains a handle to a packed DIB. To obtain this handle, an application calls
the GlobalAlloc function to allocate a global memory object and then fills the
memory with the packed DIB. A packed DIB consists of a BITMAPINFO
structure immediately followed by the array of bytes which define the pixels of
the bitmap.

If the lbStyle member is the BS_HATCHED style, the lbHatch member speci
fies the orientation of the lines used to create the hatch. This member can be
one of the following values:

Value

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

Meaning

45-degree upward hatch (left to right)

Horizontal and vertical cross-hatch

45-degree cross-hatch

45-degree downward hatch (left to right)

Horizontal hatch

Vertical hatch

If the lbStyle member is the BS_PATTERN style, lbHatch must be a handle to
the bitmap that defines the pattern.

If the lbStyle member is the BS_SOLID or the BS_HOLLOW style, lbHatch
is ignored.

BITMAPINFO, CreateBrushlndirect, CreateBrushlndirect, GlobalAlloc

LOG FONT 307

LOG FONT CI!J

Members

typedef struct tagLOGFONT /* lf */
int lfHeight;
int lfWi dth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfltalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE l ffaceName[LF_ FACESIZE];

LOG FONT;

The LOGFONT structure defines the attributes of a font, a drawing object used to
write text on a display surface.

lfHeight
Specifies the desired height, in logical units, for the font. If this value is greater
than zero, it specifies the cell height of the font. If it is less than zero, it speci
fies the character height of the font. (Character height is the cell height minus
the internal leading. Applications that specify font height in points typically use
a negative number for this member.) If this value is zero, the font mapper uses a
default height. The font mapper chooses the largest physical font that does not
exceed the requested size (or the smallest font, if all the fonts exceed the re
quested size). The absolute value of the lfHeight member must not exceed
16,384 after it is converted to device units.

ltWidth
Specifies the average width, in logical units, of characters in the font. If this
value is zero, the font mapper chooses a reasonable default width for the
specified font height. (The default width is chosen by matching the aspect ratio
of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.) The widths
of characters in TrueType fonts are scaled by a factor of this member divided
by the width of the characters in the physical font (as specified by the
tmA veCharWidth member of the TEXTMETRIC structure).

ltEscapement
Specifies the angle, in tenths of degrees, between the base line of a character
and the x-axis. The angle is measured in a counterclockwise direction from the
x-axis for left-handed coordinate systems (that is, MM_ TEXT, in which they
direction is down) and in a clockwise direction from the x-axis for right-handed
coordinate systems (in which they direction is up).

308 LOG FONT

lfOrientation
Specifies the orientation of the characters. This value is ignored.

lfWeight
Specifies the font weight. This member can be one of the following values:

Constant Value

FW _DONTCARE 0
FW_THIN 100
FW _EXTRALIGHT 200
PW _ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW _SEMIBOLD 600
FW _DEMIBOLD 600
FW_BOLD 700
FW _EXTRABOLD 800
FW _ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actual appearance of the font depends on the type face. Some fonts
have only FW _NORMAL, FW _REGULAR, and FW _BOLD weights. If
FW _DONTCARE is specified, a default weight is used.

lfltalic
Specifies an italic font if nonzero.

lfUnderline
Specifies an underlined font if nonzero.

lfStrikeOut
Specifies a strikeout font if nonzero.

lfCharSet
Specifies the character set of the font. The following values are predefined:

Constant Value

ANSI_CHARSET 0
DEFAULT_CHARSET

SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

LOG FONT 309

The DEFAULT_CHARSET value is not used by the font mapper. An applica
tion can use this value to allow the name and size of a font to fully describe the
logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font; applications should use the
DEFAULT_CHARSET value sparingly to avoid unexpected results.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or inter
pret strings that are to be rendered with that font.

IfOutPrecision
Specifies the desired output precision. The output precision defines how closely
the output must match the height, width, character orientation, escapement, and
pitch of the requested font. This member can be one of the following values:

OUT_CHARACTER_pRECIS
OUT_DEFAULT_PRECIS
OUT_DEVICE_pRECIS
OUT _RASTER_PRECIS

OUT_STRING_PRECIS
OUT_STROKE_PRECIS
OUT_TT_PRECIS
OUT_TT_ONLY _PRECIS

Applications can use the values OUT_DEVICE_PRECIS,
OUT_RASTER_PRECIS, and OUT_TT_PRECIS to control how the
font mapper chooses a font when the system contains more than one font
with a given name. For example, if a system contains a font named "Symbol"
in raster and TrueType form, specifying OUT_TT_PRECIS would force the
font mapper to choose the TrueType version. (Specifying OUT_TT_PRECIS
forces the font mapper to choose a TrueType font whenever the specified font
name matches a device or raster font, even when there is no TrueType font with
the same name.)

An application can use TrueType fonts exclusively by specifying
OUT_TT_ONLY_PRECIS. When this value is specified, the system
chooses a TrueType font even when the name specified in the ltFaceName
member matches a raster or vector font.

IfClipPrecision
Specifies the desired clipping precision. The clipping precision defines how to
clip characters that are partially outside the clipping region. This member can
be any one of the following values:

CLIP _CHARACTER_PRECIS CLIP _MASK
CLIP _DEFAULT_PRECIS CLIP _STROKE_PRECIS
CLIP _EMBEDDED CLIP _TT_ALWAYS
CLIP _LH_ANGLES

To use an embedded read-only font, applications must specify the
CLIP _EMBEDDED value.

To achieve consistent rotation of device, TrueType, and vector fonts, an applica
tion can use the OR operator to combine the CLIP _LH_ANGLES value with

310 LOGFONT

any of the other lfClipPrecision values. If the CLIP _LH_ANGLES bit is set,
the rotation for all fonts is dependent on whether the orientation of the coordi
nate system is left-handed or right-handed. If CLIP _LH_ANGLES is not set,
device fonts always rotate counter-clockwise, but the rotation of other fonts is
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
lfEscapement member.)

If Quality
Specifies the output quality of the font, which defines how carefully the
graphics device interface (GDI) must attempt to match the logical-font
attributes to those of an actual physical font. This member can be one of the
following values:

Value

DEFAULT_QUALITY

DRAFT_QUALITY

PROOF _QUALITY

lfPitchAndFamily

Meaning

Appearance of the font does not matter.

Appearance of the font is less important than when the
PROOF _QUALITY value is used. For GDI raster fonts,
scaling is enabled. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI
raster fonts, scaling is disabled and the font closest in
size is chosen. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Specifies the pitch and family of the font. The two low-order bits, which
specify the pitch of the font, can be one of the following values:

DEFAULT _FITCH
FIXED _PITCH
V ARIABLE_PITCH

The four high-order bits of the member, which specify the font family, can be
one of the following values:

Value

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

FF_ROMAN

Meaning

Novelty fonts. Old English is an example.

Don't care or don't know.

Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

Fonts with variable stroke width and with serifs. Times
New Roman® and New Century Schoolbook® are ex
amples.

Comments

See Also

Value

FF_SCRIPT

FF_SWISS

LOGPALETTE 311

Meaning

Fonts designed to look like handwriting. Script and Cursive
are examples.

Fonts with variable stroke width and without serifs.
MS® Sans Serif is an example.

An application can specify a value for the lfPitchAndFamily member by using
the Boolean OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface desired is not available.

lfFaceName
Specifies the typeface name of the font. The length of this string must not
exceed LF _FACESIZE - 1. The EnumFontFamilies function can be used to
enumerate the typeface names of all currently available fonts. If lfFaceName is
NULL, GDI uses a device-dependent typeface.

Applications can use the default settings for most of these members when creating
a logical font. The members that should always be given specific values are
lfHeight and lfFaceName. If lfHeight and lfFaceName are not set by the applica
tion, the logical font that is created is device-dependent.

CreateFontlndirect, EnumFontFamilies

LOG PALETTE ITIJ

Members

typedef struct tagLOGPALETTE { /* lgpl */
WORD pal Version;
WORD palNumEntries;
PALETTEENTRY palPalEntry[l];

LOGPALETTE;

The LOGPALETTE structure defines a logical color palette.

palVersion
Specifies the Windows version number for the structure. This value should be
Ox300 for Windows 3.0 and later.

palNumEntries
Specifies the number of palette color entries.

palPalEntry
Specifies an array of PALETTEENTRY structures that define the color and
usage of each entry in the logical palette.

312 LOGPEN

Comments

See Also

LOG PEN

Members

The colors in the palette entry table should appear in order of importance, because
entries earlier in the logical palette are most likely to be placed in the system
palette.

This structure is passed as a parameter to the CreatePalette function.

CreatePalette, PALETTEENTRY

typedef struct tagLOGPEN /* lgpn */
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

The LOGPEN structure defines the style, width, and color of a pen, a drawing ob
ject used to draw lines and borders. The CreatePenlndirect function uses the
LOGPEN structure.

lopnStyle
Specifies the pen type. This member can be one of the following values:

Value

PS_SOLID

PS_DASH

PS_DOT

PS_DASHDOT

PS_DASHDOTDOT

PS_NULL

PS_INSIDEFRAME

Meaning

Creates a solid pen.

Creates a dashed pen. (Valid only when the pen width is 1.)

Creates a dotted pen. (Valid only when the pen width is 1.)

Creates a pen with alternating dashes and dots. (Valid only
when the pen width is 1.)

Creates a pen with alternating dashes and double dots.
(Valid only when the pen width is 1.)

Creates a null pen.

Creates a pen that draws a line inside the frame of closed
shapes produced by graphics device interface (GDI) out
put functions that specify a bounding rectangle (for ex
ample, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this style is used with GDI out
put functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
pen is not limited by a frame.

Comments

See Also

MAT2

Members

MAT2 313

If a pen has the PS_INSIDEFRAME style and a color that does not match a
color in the logical color table, the pen is drawn with a dithered color. The
PS_SOLID pen style cannot be used to create a pen with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less
than or equal to 1.

When the PS_INSIDEFRAME style is used with GDI objects produced by
functions other than Ellipse, Rectangle, and RoundRect, the line may not be
completely inside the specified frame.

lopnWidth
Specifies the pen width, in logical units. If the lopn Width member is zero, the
pen is one pixel wide on raster devices regardless of the current mapping mode.

lopnColor
Specifies the pen color.

They value in the POINT structure for the lopnWidth member is not used.

CreatePenlndirect, POINT

typedef struct tagMAT2
FIXED eMll;
FIXED eM12;
FIXED eM21;
FIXED eM22;

MAT2;

f* mat2 *f

The MA T2 structure contains the values for a transformation matrix.

eMll
Specifies a fixed-point value for the Ml I component of a 2-by-2 transformation
matrix.

eM12
Specifies a fixed-point value for the M 12 component of a 2-by-2 transformation
matrix.

eM21
Specifies a fixed-point value for the M21 component of a 2-by-2 transformation
matrix.

314 MDICREATESTRUCT

Comments

See Also

eM22
Specifies a fixed-point value for the M22 component of a 2-by-2 transformation
matrix.

The identity matrix produces a transformation in which the transformed graphical
object is identical to the source object. In the identity matrix, the value of eMll is
1, the value of eM12 is zero, the value of eM21 is zero, and the value of eM22 is 1.

GetGiyphOutline

MDICREATESTRUCT

Members

typedef struct tagMDICREATESTRUCT { /* mdic */
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;
int
int

x·
' y;

int ex;
int cy;
DWORD style;
LPARAM lParam;

} MDICREATESTRUCT;

The MDICREATESTRUCT structure contains information about the class, title,
owner, location, and size of a multiple document interface (MDI) child window.

szClass
Contains a long pointer to the application-defined class of the MDI child win
dow.

szTitle
Contains a long pointer to the window title of the MDI child window.

hOwner

x

Identifies the instance handle of the application creating the MDI child window.

Specifies the initial position of the left side of the MDI child window. If this
member is set to CW _USEDEFAULT, the MDI child window is assigned a de
fault horizontal position.

Comments

See Also

y

ex

cy

MDICREATESTRUCT 315

Specifies the initial position of the top edge of the MDI child window. If this
member is set to CW _USEDEFAULT, the MDI child window is assigned a de
fault vertical position.

Specifies the initial width of the MDI child window. If this member is set to
CW _USEDEFAULT, the MDI child window is assigned a default width.

Specifies the initial height of the MDI child window. If this member is set to
CW _USEDEFAULT, the MDI child window is assigned a default height.

style
Specifies additional styles for the MDI child window. If the window was
created with the MDIS_ALLCHILDSTYLES window style, the style member
may be any combination of the window styles documented with the
Create Window function. Otherwise, it may be one or more of the following
values:

Value

WS_MINIMIZE

WS_MAXIMIZE

WS_HSCROLL

WS_VSCROLL

lParam

Meaning

MDI child window is created in a minimized state.

MDI child window is created in a maximized state.

MDI child window is created with a horizontal scroll bar.

MDI child window is created with a vertical scroll bar.

Specifies an application-defined 32-bit value.

When the MDI child window is created, Windows sends the WM_ CREATE
message to the window. The lParam parameter of the WM_CREATE message
contains a pointer to a CREATESTRUCT structure. The lpCreateParams mem
ber of CREATESTRUCT contains a pointer to the MDICREATESTRUCT
structure passed with the WM_MDICREATE message that created the MDI child
window.

CREATESTRUCT

316 MEASUREITEMSTRUCT

MEASUREITEMSTRUCT 0J

Members

typedef struct tagMEASUREITEMSTRUCT { /* mi */
U INT Ct lType;
UINT CtlID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;

} MEASUREITEMSTRUCT;

The MEASUREITEMSTRUCT structure informs Windows of the dimensions
of an owner-drawn control. This allows Windows to process user interaction with
the control correctly. The owner of an owner-drawn control receives a pointer to
this structure as the lParam parameter of an WM_MEASUREITEM message. The
owner-drawn control sends this message to its owner window when the control is
created. The owner then fills in the appropriate members in the structure for the
control and returns. This structure is common to all owner-drawn controls.

CtlType
Specifies the control type. The values for control types are as follows:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT_LISTBOX

ODT_MENU

CtlID

Meaning

Owner-drawn button

Owner-drawn combo box

Owner-drawn list box

Owner-drawn menu

Specifies the control identifier for a combo box, list box, or button. This mem
ber is not used for a menu.

itemID
Specifies the menu-item identifier for a menu or the list-box item identifier for
a variable-height combo box or list box. This member is not used for a fixed
height combo box or list box or for a button.

item Width
Specifies the width of a menu item. The owner of the owner-drawn menu item
must fill this member before returning from the message.

itemHeight
Specifies the height of an individual item in a list box or a menu. Before return
ing from the message, the owner of the owner-drawn combo box, list box, or
menu item must fill out this member. The maximum height of a list box item is
255.

Comments

MEMMANINFO 317

itemData
Contains the value that was passed to the combo box or list box in the lParam
parameter of one of the following messages:

CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

Failure to fill out the proper members in the MEASUREITEMSTRUCT struc
ture will cause improper operation of the control.

MEMMANINFO

Members

#include <toolhelp.h>

typedef struct tagMEMMANINFO { /* mmi */
DWORD dwSize;
DWORD dwlargestFreeBlock;
DWORD dwMaxPagesAvailable;
DWORD dwMaxPageslockable;
DWORD dwTotalLinearSpace;
DWORD dwTotalUnlockedPages;
DWORD dwFreePages;
DWORD dwTotalPages;
DWORD dwFreelinearSpace;
DWORD dwSwapFilePages;
WORD wPageSize;

} MEMMANINFO;

The MEMMANINFO structure contains information about the status and per
formance of the virtual-memory manager. If the memory manager is running in
standard mode, the only valid member of this structure is the dwLargestFree
Block member.

dwSize
Specifies the size of the MEMMANINFO structure, in bytes.

dwLargestFreeBlock
Specifies the largest free block of contiguous linear memory in the system, in
bytes.

dwMaxPagesAvailable
Specifies the maximum number of pages that could be allocated in the system
(the value of dwLargestFreeBlock divided by the value of wPageSize).

318 MENUITEMTEMPLATE

See Also

dwMaxPagesLockable
Specifies the maximum number of pages that could be allocated and locked.

dwTotalLinearSpace
Specifies the size of the total linear address space, in pages.

dwTotalUnlockedPages
Specifies the number of unlocked pages in the system. This value includes free
pages.

dwFreePages
Specifies the number of pages that are not in use.

dwTotalPages
Specifies the total number of pages the virtual-memory manager manages. This
value includes free, locked, and unlocked pages.

dwFreeLinearSpace
Specifies the amount of free memory in the linear address space, in pages.

dwSwapFilePages
Specifies the number of pages in the system swap file.

wPageSize
Specifies the system page size, in bytes.

MemManlnfo

MENUITEMTEMPLATE

Members

typedef struct { /* mit */
UINT mtOption;
UINT mtID;
char mtString[lJ;

} MENUITEMTEMPLATE;

The MENUITEMTEMPLATE structure defines a menu item.

mtOption
Specifies a mask of one or more predefined menu options that specify the
appearance of the menu item. The menu options follow:

Value Meaning

MF_CHECKED

MF_GRAYED

MF_HELP

Item has a check mark next to it.

Item is initially inactive and drawn with a gray effect.

Item has a vertical separator to its left.

See Also

Value

MF _MENUBARBREAK

MF _MENUBREAK

MF _OWNERDRAW

MF_POPUP

mtID

MENUITEMTEMPLATEHEADER 319

Meaning

Item is placed in a new column. The old and new
columns are separated by a bar.

Item is placed in a new column.

Owner of the menu is responsible for drawing all
visual aspects of the menu item, including
highlighted, checked and inactive states. This option
is not valid for a top-level menu item.

Item displays a sublist of menu items when selected.

Specifies an identification code for a non-pop-up menu item. The MENU
ITEMTEMPLATE structure for a pop-up menu item does not contain the
mtlD member.

mtString
Specifies a null-terminated string that contains the name of the menu item.

LoadMenulndirect, MENUITEMTEMPLATEHEADER

MENUITEMTEMPLATEHEADER

Members

Comments

See Also

typedef struct { /* mith */
UINT versionNumber;
UINT offset;

} MENUITEMTEMPLATEHEADER;

A complete menu template consists of a header and one or more menu-item lists.

versionNumber
Specifies the version number. This member should be zero.

offset
Specifies the offset from the end of the header, in bytes, where the menu-item
list begins.

One or more MENUITEMTEMPLATE structures are combined to form the
menu-item list.

MENUITEMTEMPLATE

320 METAFILEPICT

METAFILEPICT

Members

See Also

typedef struct tagMETAFILEPICT { /* mfp */
int mm;
int xExt;
int yExt;
HMETAFILE hMF;

} METAFILEPICT;

The METAFILEPICT structure defines the metafile picture format used for ex
changing metafile data through the clipboard.

mm
Specifies the mapping mode in which the picture is drawn.

xExt
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The x-extent
specifies the width of the rectangle within which the picture is drawn.
The coordinates are in units that correspond to the mapping mode.

yExt
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. They-extent
specifies the height of the rectangle within which the picture is drawn.
The coordinates are in units that correspond to the mapping mode.

For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be
scaled, the xExt and yExt members contain an optional suggested size in
MM_HIMETRIC units. For MM_ANISOTROPIC pictures, xExt and yExt can
be zero when no suggested size is supplied. For MM_ISOTROPIC pictures, an
aspect ratio must be supplied even when no suggested size is given. (If a sug
gested size is given, the aspect ratio is implied by the size.) To give an aspect
ratio without implying a suggested size, set xExt and yExt to negative values
whose ratio is the appropriate aspect ratio. The magnitude of the negative xExt
and yExt values will be ignored; only the ratio will be used.

hMF
Identifies a memory metafile.

SetClipboardData

MET AHEAD ER 321

METAHEADER CIIJ

Members

See Also

typedef struct tagMETAHEADER { /* mh */
UINT mtType;
UINT mtHeaderSize;
UINT mtVersion;
DWDRD mtSize;
UINT mtNoObjects;
DWORD mtMaxRecord;
UINT mtNoParameters;

} METAHEADER;

The METAHEADER structure contains information about a metafile.

mtType
Specifies whether the metafile is in memory or recorded in a disk file. This
member can be one of the following values:

Value

2

Meaning

Metafile is in memory.

Metafile is in a disk file.

mtHeaderSize
Specifies the size, in words, of the metafile header.

mt Version
Specifies the Windows version number. The version number for metafiles that
support device-independent bitmaps (DIBs) is Ox0300. Otherwise, the version
number is OxOlOO.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that exist in the metafile at the same
time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Reserved.

METARECORD

322 METARECORD

METARECORD [ill

Members

See Also

typedef struct tagMETARECORD { /* mr */
DWORD rdSize;
UINT rdFunction;
UINT rdParm[l];

} METARECORD;

The METARECORD structure contains a metafile record.

rd Size
Specifies the size, in words, of the record.

rdFunction
Specifies the function number.

rd Parm
Specifies an array of words containing the function parameters, in the reverse
order in which they are passed to the function.

METAHEADER

MINMAXINFO [ill

Members

typedef struct tagMINMAXINFO { /* mmi */
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

} MINMAXINFO;

The MINMAXINFO structure contains information about a window's maximized
size and position and its minimum and maximum tracking size.

ptReserved
Reserved for internal use.

ptMaxSize
Specifies the maximized width (point.x) and the maximized height (point.y) of
the window.

See Also

MOOULEENTRY 323

ptMaxPosition
Specifies the position of the left side of the maximized window (point.x) and
the position of the top of the maximized window (point.y).

ptMinTrackSize
Specifies the minimum tracking width (point.x) and the minimum tracking
height (point.y) of the window.

ptMaxTrackSize
Specifies the maximum tracking width (point.x) and the maximum tracking
height (point.y) of the window.

POINT, WM_GETMINMAXINFO

MODULEENTRY

Members

#include <toolhelp.h>

typedef struct tagMOOULEENTRY { /* me */
OWORO dwSize;
char szModule[MAX_MOOULE_NAME + 1];
HMOOULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

} MODULEENTRY;

The MODULEENTRY structure contains information about one module in the
module list.

dwSize
Specifies the size of the MODULEENTRY structure, in bytes.

szModule
Specifies the null-terminated string that contains the module name.

hModule
Identifies the module handle.

we Usage
Specifies the reference count of the module. This is the same number returned
by the GetModuleUsage function.

324 MONCBSTRUCT

See Also

szExePath
Specifies the null-terminated string that contains the fully-qualified executable
path for the module.

wNext
Specifies the next module in the module list. This member is reserved for inter
nal use by Windows.

ModuleFindHandle, ModuleFindName, ModuleFirst, ModuleNext

MONCBSTRUCT
#include <ddeml .h>

typedef struct tagMONCBSTRUCT { /* mcbst */
UINT cb;
WORD wReserved;
DWORD dwTime;
HANDLE hTask;
DWORD dwRet;
UINT wType;
UINT wFmt;
HCONV hConv;
HSZ hszl;
HSZ hsz2;
HDDEDATA hData;
DWORD dwDatal;
DWORD dwData2;

} MONCBSTRUCT;

The MONCBSTRUCT structure contains information about the current dynamic
data exchange (ODE) transaction. A DOE debugging application can use this struc
ture when monitoring transactions that the system passes to the DOE callback
functions of other applications.

Members

See Also

cb
Specifies the length, in bytes, of the structure.

wReserved
Reserved.

dwTime

MONCBSTRUCT 325

Specifies the Windows time at which the transaction occurred. Windows time
is the number of milliseconds that have elapsed since the system was started.

hTask
Identifies the task (application instance) containing the DOE callback function
that received the transaction.

dwRet
Specifies the value returned by the DOE callback function that processed the
transaction.

wType
Specifies the transaction type.

wFmt
Specifies the format of the data (if any) exchanged during the transaction.

hConv
Identifies the conversation in which the transaction took place.

hszl
Identifies a string.

hsz2
Identifies a string.

hData
Identifies the data (if any) exchanged during the transaction.

dwDatal
Specifies additional data.

dwData2
Specifies additional data.

MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

326 MONCONVSTRUCT

MONCONVSTRUCT

Members

See Also

#include <ddeml.h>

typedef struct tagMONCONVSTRUCT { /* mcvst */
UINT cb;
BOOL fConnect;
DWORD dwTime;
HANDLE hTask;
HSZ hszSvc;
HSZ hszTopic;
HCONV hConvClient;
HCONV hConvServer;

} MONCONVSTRUCT;

The MONCONVSTRUCT structure contains information about a conversation.
A dynamic data exchange (DOE) monitoring application can use this structure to
obtain information about an advise loop that has been established or terminated.

cb
Specifies the length, in bytes, of the structure.

fConnect
Indicates whether the conversation is currently established. A value of TRUE
indicates the conversation is established; FALSE indicates it is not.

dwTime
Specifies the Windows time at which the conversation was established or termi
nated. Windows time is the number of milliseconds that have elapsed since the
system was started.

hTask
Identifies a task (application instance) that is a partner in the conversation.

hszSvc
Identifies the service name on which the conversation is established.

hszTopic
Identifies the topic name on which the conversation is established.

hConvClient
Identifies the client conversation.

hConvServer
Identifies the server conversation.

MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

MONERRSTRUCT 327

MONERRSTRUCT [IT]

Members

See Also

#include <ddeml .h>

typedef struct tagMONERRSTRUCT { /* mest */
UINT cb;
UINT wLastError;
DWORD dwTime;
HANDLE hTask;

} MONERRSTRUCT;

The MONERRSTRUCT structure contains information about the current dy
namic data exchange (ODE) error. A DOE monitoring application can use this
structure to monitor errors returned by DOE Management Library functions.

ch
Specifies the length, in bytes, of the structure.

wLastError
Specifies the current error.

dwTime
Specifies the Windows time at which the error occurred. Windows time is the
number of milliseconds that have elapsed since the system was started.

hTask
Identifies the task (application instance) that called the DOE function that
caused the error.

MONCBSTRUCT, MONCONVSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

328 MONHSZSTRUCT

MONHSZSTRUCT

Members

#include <ddeml .h>

typedef struct tagMONHSZSTRUCT { /* mhst */
UINT cb;
BOOL fsAction;
DWORD dwTime;
HSZ hsz;
HANDLE hTask;
WORD wReserved;
char str[l];

} MONHSZSTRUCT;

The MONHSZSTRUCT structure contains information about a dynamic data
exchange (DOE) string handle. A DOE monitoring application can use this struc
ture when monitoring the activity of the string-manager component of the DOE
Management Library (DDEML).

ch
Specifies the length, in bytes, of the structure.

fsAction
Specifies the action being performed on the string handle identified by the hsz
member.

Value

MH_CLEANUP

MH_CREATE

MH_DELETE

MH_KEEP

dwTime

Meaning

An application is freeing its DDE resources, causing the sys
tem to delete string handles that the application had created.
(The application called the DdeUninitialize function.)

An application is creating a string handle. (The application
called the DdeCreateStringHandle function.)

An application is deleting a string handle. (The application
called the DdeFreeStringHandle function.)

An application is increasing the use count of a string handle.
(The application called the DdeKeepStringHandle function.)

Specifies the Windows time at which the action specified by the fsAction mem
ber takes place. Windows time is the' number of milliseconds that have elapsed
since the system was booted.

hsz
Identifies the string.

hTask
Identifies the task (application instance) performing the action on the string
handle.

See Also

wReserved
Reserved.

str
Points to the string identified by the hsz member.

MONLINKSTRUCT 329

MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

MONLINKSTRUCT

Members

#include <ddeml .h>

typedef struct tagMONLINKSTRUCT { /* mlst */
UINT cb;
DWORD dwTime;
HANDLE hTask;
BOOL fEstablished;
BOOL fNoData;
HSZ hszSvc;
HSZ hszTopic;
HSZ hsz Item;
UINT wFmt;
BOOL fServer;
HCONV hConvServer;
HCONV hConvClient;

MONLINKSTRUCT;

The MONLINKSTRUCT structure contains information about a dynamic data
exchange (DDE) advise loop. A DDE monitoring application can use this structure
to obtain information about an advise loop that has started or ended.

cb
Specifies the length, in bytes, of the structure.

dwTime
Specifies the Windows time at which the advise loop was started or ended. Win
dows time is the number of milliseconds that have elapsed since the system was
started.

hTask
Identifies a task (application instance) that is a partner in the advise loop.

!Established
Indicates whether an advise loop was successfully established. A value of
TRUE indicates an advise loop was established; FALSE indicates an advise
loop was not established.

330 MONMSGSTRUCT

See Also

fNoData
Indicates whether the XTYPF _NODATA flag was set for the advise loop. A
value of TRUE indicates the flag is set; FALSE indicates the flag was not set.

hszSvc
Identifies the service name of the server in the advise loop.

hszTopic
Identifies the topic name on which the advise loop is established.

hszltem
Identifies the item name that is the subject of the advise loop.

wFmt
Specifies the format of the data exchanged (if any) during the advise loop.

fServer
Indicates whether the link notification came from the server. If the notification
came from the server, this value is TRUE. Otherwise, it is FALSE.

hConvServer
Identifies the server conversation.

hConvClient
Identifies the client conversation.

MONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONMSGSTRUCT

MONMSGSTRUCT
#include <ddeml.h>

typedef struct tagMONMSGSTRUCT { /* mmst */
UINT cb;
HWND hwndTo;
DWORD dwTime;
HANDLE hTask;
UINT wMsg;
WPARAM wParam;
LPARAM l Pa ram;

} MONMSGSTRUCT;

The MONMSGSTRUCT structure contains information about a dynamic data ex
change (DDE) message. A DDE monitoring application can use this structure to
obtain information about a DDE message that was sent or posted.

Members

See Also

ch
Specifies the length, in bytes, of the structure.

hwndTo

MOUSEHOOKSTRUCT 331

Identifies the window that receives the DDE message.

dwTime
Specifies the Windows time at which the message was sent or posted. Windows
time is the number of milliseconds that have elapsed since the system was
started.

hTask
Identifies the task (application instance) containing the window that receives
the DOE message.

wMsg
Specifies the identifier of the DOE message.

wParam
Specifies the wParam parameter of the ODE message.

IP a ram
Specifies the lParam parameter of the DOE message.

MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONHSZSTRUCT, MONLINKSTRUCT

MOUSEHOOKSTRUCT ITU

Members

typedef struct tagMOUSEHOOKSTRUCT { /* ms */
POINT pt;
HWND hwnd;
UINT wHitTestCode;
DWORD dwExtrainfo;

} MOUSEHOOKSTRUCT;

The MOUSEHOOKSTRUCT structure contains information about a mouse
event.

pt
Specifies a POINT structure that contains the x- and y-coordinates of the
mouse cursor, in screen coordinates.

hwnd
Identifies the window that will receive the mouse message that corresponds to
the mouse event.

332 MSG

See Also

MSG

Members

See Also

wHitTestCode
Specifies the hit-test code.

dwExtralnfo
Specifies extra information associated with the mouse event. An application
can set this information by calling the hardware_ event function and retrieve
this information by calling the GetMessageExtralnfo function.

GetMessageExtralnfo, SetWindowsHook

typedef struct tagMSG { f* msg */
HWND hwnd;
UINT message;
WP A RAM wPa ram;
LP A RAM l Pa ram;
DWORD time;
POINT pt;

} MSG;

The MSG structure contains information from the Windows application queue.

hwnd
Identifies the window that receives the message.

message
Specifies the message number.

wParam
Specifies additional information about the message. The exact meaning de
pends on the message value.

IParam
Specifies additional information about the message. The exact meaning de
pends on the message value.

time

pt

Specifies the time at which the message was posted.

Specifies the position of the cursor, in screen coordinates, when the message
was posted.

EVENTMSG, GetMessage

NCCALCSIZE_PARAMS 333

MULTIKEYHELP [ill

Members

See Also

typedef struct tagMULTIKEYHELP
UINT mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[l];

} MULTIKEYHELP;

/* mkh */

The MULTIKEYHELP structure specifies a keyword table and an associated
keyword to be used by the Windows Help application.

mkSize
Specifies the length, in bytes, of the MUL TIKEYHELP structure.

mkKeylist
Contains a single character that identifies the keyword table to be searched.

szKeyphrase
Contains a null-terminated text string that specifies the keyword to be located in
the keyword table.

WinHelp

NCCALCSIZE_ PARAMS

Members

typedef struct tagNCCALCSIZE_PARAMS {
RECT rgrc[3];
WINDOWPOS FAR* lppos;

} NCCALCSIZE_PARAMS;

The NCCALCSIZE_PARAMS structure contains information that an applica
tion can use while processing the WM_NCCALCSIZE message to calculate the
size, position, and valid contents of the client area of a window.

rgrc
Specifies an array of rectangles. The first contains the new coordinates of a win
dow that has been moved or resized. The second contains the coordinates of the
window before it was moved or resized. The third contains the coordinates of
the client area of a window before it was moved or resized. If the window is a
child window, the coordinates are relative to the client area of the parent win
dow. If the window is a top-level window, the coordinates are relative to the
screen.

334 NEWCPLINFO

See Also

lppos
Points to a WINDOWPOS structure that contains the size and position values
specified in the operation that caused the window to be moved or resized. The
WINDOWPOS structure has the following form:

typedef struct tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndlnsertAfter;
int
int

x·
' y;

int ex;
int cy;
UINT flags;

} WINDOWPOS;

MoveWindow, SetWindowPos, RECT, WINDOWPOS, WM_NCCALCSIZE

NEWCPLINFO
#include <cpl .h>

typedef struct tagNEWCPLINFO { /* ncpli */
DWORD dwSize;
DWORD dwFlags;
DWORD dwHelpContext;
LONG lData;
HICON hlcon;
char szName[32J;
char szlnfo[64J;
char szHelpFile[128];

} NEWCPLINFO;

The NEWCPLINFO structure contains resource information and a user-defined
value for a Control Panel application.

Members

NEWCPLINFO 335

dwSize
Specifies the length of the structure, in bytes.

dwFlags
Specifies Control Panel flags.

dwHelpContext
Specifies the context number for the topic in the help project (.HPJ) file that dis
plays when the user selects help for the application. For more information on
help, see Microsoft Windows Programming Tools.

IData
Specifies data defined by the application.

hi con
Identifies an icon resource for the application icon. This icon is displayed in the
Control Panel window.

szName
Specifies a null-terminated string that contains the application name. The name
is the short string displayed below the application icon in the Control Panel win
dow. The name is also displayed in the Settings menu of Control Panel.

szlnfo
Specifies a null-terminated string containing the application description. The de
scription displayed at the bottom of the Control Panel window when the applica
tion icon is selected.

szHelpFile
Specifies a null-terminated string that contains the path of the help file, if any,
for the application.

336 NEWTEXTMETRIC

NEWTEXTMETRIC IT!]

Members

typedef struct tagNEWTEXTMETRIC { /* ntm */
int tmHeight;
int tmAscent;
int tmDescent;
int tminternalleading;
int tmExternalleading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmlastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;

} NEWTEXTMETRIC;

The NEWTEXTMETRIC structure contains basic information about a physical
font. The last four members of the NEWTEXTMETRIC structure are not in
cluded in the TEXTMETRIC structure; in all other respects, the structures are
identical. The additional members are used for information about TrueType fonts.

tmHeight
Specifies the height of character cells. (The height is the sum of the tmAscent
and tmDescent members.)

tmAscent
Specifies the ascent of character cells. (The ascent is the space between the base
line and the top of the character cell.)

tmDescent
Specifies the descent of character cells. (The descent is the space between the
bottom of the character cell and the base line.)

tmlnternalLeading
Specifies the difference between the point size of a font and the physical
size of the font. For True Type fonts, this value is equal to tmHeight minus
(s * ntmSizeEM), where s is the scaling factor for the TrueType font. For

NEWTEXTMETRIC 337

bitmap fonts, this value is used to determine the point size of a font; when an ap
plication specifies a negative value in the lffieight member of the LOGFONT
structure, the application is requesting a font whose height equals tmHeight
minus tmlnternalLeading.

tmExternalLeading
Specifies the amount of extra leading (space) that the application adds between
rows. Since this area is outside the character cell, it contains no marks and will
not be altered by text output calls in either opaque or transparent mode. The
font designer sometimes sets this member to zero.

tmAveCharWidth
Specifies the average width of characters in the font. For ANSI_CHARSET
fonts, this is a weighted average of the characters "a" through "z" and the space
character. For other character sets, this value is an unweighted average of all
characters in the font.

tmMaxCharWidth
Specifies the "B" spacing of the widest character in the font. For more informa
tion about "B" spacing, see the description of the ABC structure.

tmWeight
Specifies the weight of the font. This member can be one of the following
values:

Constant Value

FW _DONTCARE 0
FW_THIN 100
FW _EXTRALIGHT 200
FW _ULTRALTGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW _SEMIBOLD 600
FW _DEMIBOLD 600
FW_BOLD 700
FW _EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

tmltalic
Specifies an italic font if it is nonzero.

tmUnderlined
Specifies an underlined font if it is nonzero.

338 NEWTEXTMETRIC

tmStruckOut
Specifies a "struckout" font if it is nonzero.

tmFirstChar
Specifies the value of the first character defined in the font.

tmLastChar
Specifies the value of the last character defined in the font.

tmDefaultChar
Specifies the value of the character that will be substituted for characters not in
the font.

tmBreakChar
Specifies the value of the character that will be used to define word breaks for
text justification.

tmPitchAndFamily
Specifies the pitch and family of the selected font. The four low-order bits iden
tify the type of font, as follows:

Value

TMPF_PITCH

TMPF _VECTOR

TMPF _TRUETYPE

TMPF _DEVICE

Meaning

Designates a fixed-pitch font.

Designates a vector or TrueType font.

Designates a TrueType font.

Designates a device font.

Some fonts are identified by several of these bits-for example, the bits
TMPF _PITCH, TMPF _VECTOR, and TMPF _TRUETYPE would be set for
the monospace TrueType font, Courier New. The TMPF _DEVICE bit could be
set for a TrueType font as well, because this bit is set for both downloaded and
device-resident fonts.

When the TMPF _TRUETYPE bit is set, the font is usable on all output devices.
For example, if a TrueType font existed on a printer but could not be used on
the display, the TMPF _TRUETYPE bit would not be set for that font.

The four high-order bits specify the font family. The tmPitchAndFamily mem
ber can be combined with the hexadecimal value OxFO by using the bitwise
AND operator and can then be compared with the font family names for an
identical match. The following font families are defined:

Value

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

FF_ROMAN

Meaning

Novelty fonts. Old English is an example.

Don't care or don't know.

Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New are examples.

Fonts with variable stroke width and with serifs. Times
New Roman and New Century Schoolbook are examples.

Value

FF_SCRIPT

FF_SWISS

tmCharSet

NEWTEXTMETRIC 339

Meaning

Fonts designed to look like handwriting. Script and Cursive
are examples.
Fonts with variable stroke width and without serifs. MS
Sans Serif is an example.

Specifies the character set of the font. The following values are defined:

Constant Value

ANSI_CHARSET 0
DEFAULT_CHARSET
SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

tmOverhang
Specifies the extra width that is added to some synthesized fonts. When synthe
sizing some attributes, such as bold or italic, graphics-device interface (GDI) or
a device adds width to a string on both a per-character and per-string basis. For
example, GDI makes a string bold by expanding the intracharacter spacing and
overstriking by an offset value and italicizes a font by skewing the string. In
either case, the string is wider after the attribute is synthesized. For bold strings,
the overhang is the distance by which the overstrike is offset. For italic strings,
the overhang is the amount the top of the font is skewed past the bottom of the
font.

The tmOverhang member is zero for many italic and bold TrueType fonts be
cause many TrueType fonts include italic and bold faces that are not synthe
sized. For example, the overhang for Courier New Italic is zero.

An application that uses raster fonts can use the overhang value to determine
the spacing between words that have different attributes.

tmDigitizedAspectX
Specifies the horizontal aspect of the device for which the font was designed.

tmDigitizedAspect Y
Specifies the vertical aspect of the device for which the font was designed. The
ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is the
aspect ratio of the device for which the font was designed.

ntmFlags
Specifies some elements of the font style. This member can be one or more of
the following values:

NTM_REGULAR
NTM_BOLD
NTM_ITALIC

340 NFYLOADSEG

Comments

See Also

The NTM_BOLD and NTM_IT ALIC flags could be combined with the OR
operator to specify a bold italic font.

ntmSizeEM
Specifies the size of the em square for the font, in the units for which the font
was designed (notional units).

ntmCellHeight
Specifies the height of the font, in the units for which the font was designed
(notional units). This value should be compared against the value of the
ntmSizeEM member.

ntmAvgWidth
Specifies the average width of characters in the font, in the units for which the
font was designed (notional units). This value should be compared against the
value of the ntmSizeEM member.

The sizes in the NEWTEXTMETRIC structure are typically given in logical
units; that is, they depend on the current mapping mode of the display context.

EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics

NFYLOADSEG

Members

#include <toolhelp.h>

typedef struct tagNFYLOAOSEG { /* nfyls */
DWORD dwSize;
WORD wSelector;
WORD wSegNum;
WORD wType;
WORD we Instance;
LPCSTR lpstrModuleName;

} NFYLOAOSEG;

The NFYLOADSEG structure contains information about the segment being
loaded when the kernel sends a load-segment notification.

dwSize
Specifies the size of the NFYLOADSEG structure, in bytes.

wSelector
Contains the selector of the segment being loaded.

wSegNum
Contains the executable-file segment number.

See Also

NFYLOGERROR 341

wType
Indicates the type of information in the segment. Only the low bit of wType is
used. This type can be one of the following values:

Value

0

wclnstance

Meaning

The segment contains code.

The segment contains data.

Specifies the number of instances that share this segment. This value is valid
only for data segments.

lpstrModuleName
Points to a null-terminated string containing the name of the module that owns
the segment being loaded.

Notify Register

NFYLOGERROR

Members

See Also

#include <toolhelp.h>

typedef struct tagNFYLOGERROR { /* nfyle */
DWORD dwSize;
UINT wErrCode;
void FAR* lpinfo;

} NFYLOGERROR;

The NFYLOGERROR structure contains information about a validation error
that caused the kernel to send an NFY _LOGERROR notification.

dwSize
Specifies the size of the NFYLOGERROR structure, in bytes.

wErrCode
Identifies the error value that caused the notification to be sent.

lplnfo
Points to additional information, dependent on the error value.

Notify Register

342 NFYLOGPARAMERROR

NFYLOGPARAMERROR

Members

See Also

NFYRIP

#include <toolhelp.h>

typedef struct tagNFYLOGPARAMERROR { /* nfylpe */
DWORD dwSize;
UINT wErrCode;
FARPROC lpfnErrorAddr;
void FAR* FAR* lpBadParam;

} NFYLOGPARAMERROR;

The NFYLOGPARAMERROR structure contains information
about a parameter-validation error that caused the kernel to send an
NFY _LOGPARAMERROR notification.

dwSize
Specifies the size of the NFYLOGPARAMERROR structure, in bytes.

wErrCode
Identifies the error value that caused the notification to be sent.

lpfnError Addr
Points to the address of the function with the invalid parameter.

lpBadParam
Points to the name of the invalid parameter.

Notify Register

#include <toolhelp.h>

typedef struct tagNFYRIP { /* nfyr */
DWORD dwSize;
WORD wIP;
WORD wCS;
WORD wSS;
WORD wBP;
WORD wExitCode;

} NFYRIP;

The NFYRIP structure contains information about the system when a system de
bugging error (RIP) occurs.

Members

Comments

See Also

NFYSTARTDLL 343

dwSize
Specifies the size of the NFYRIP structure, in bytes.

wIP
Contains the value in the IP register at the time of the RIP.

wCS
Contains the value in the CS register at the time of the RIP.

wSS
Contains the value in the SS register at the time of the RIP.

wBP
Contains the value in the BP register at the time of the RIP.

wExitCode
Contains an exit code that describes why the RIP occurred.

The StackTraceCSIPFirstfunction uses the CS:IP and SS:BP values presented in
this structure. The first frame in the stack identified by these values points to the
FatalExit function. The next frame points to the routine that called FatalExit, usu
ally in USER.EXE, GDI.EXE, or either KRNL286.EXE or KRNL386.EXE.

FatalExit, NotifyRegister, StackTraceCSIPFirst

NFYSTARTDLL

Members

#include <toolhelp.h>

typedef struct tagNFYSTARTDLL { /* nfysd */
DWORD dwSize;
HMODULE hModule;
WORD wCS;
WORD wIP;

} NFYSTARTDLL;

The NFYSTARTDLL structure contains information about the dynamic-link
library (DLL) being loaded when the kernel sends a load-DLL notification.

dwSize
Specifies the size of the NFYSTARTDLL structure, in bytes.

hModule
Identifies the library module being loaded.

344 OFSTRUCT

wCS
Contains the value in the CS register at load time. This value is used with the
value of the w IP member to determine the load address of the library.

wIP
Contains the value in the IP register at load time. This value is used with the
wCS value to determine the load address of the library.

See Also NotifyRegister

OFSTRUCT CI!J

Members

Comments

typedef struct tagOFSTRUCT {
BYTE cBytes;
BYTE fFixedDisk;
UINT nErrCode;
BYTE reserved[4];
BYTE szPathName[l28J;

} OFSTRUCT;

f* of */

The OFSTRUCT structure contains file information which results from opening
that file.

cBytes
Specifies the length, in bytes, of the OFSTRUCT structure.

fFixedDisk
Specifies whether the file is on a fixed disk. The fFixedDisk member is non
zero if the file is on a fixed disk.

nErrCode
Specifies the MS-DOS error value if the OpenFile function returns -1 (that is,
OpenFile fails). For a list of possible error values, see the following Comments
section.

reserved
Reserved member. Four bytes reserved for future use.

szPathName
Specifies 128 bytes that contain the path of the file. This string consists of char
acters from the OEM character set.

The error values that may be specified in the nErrCode parameter follow:

OFSTRUCT 345

Value Meaning

OxOOOl Invalid function

Ox0002 File not found

Ox0003 Path not found

Ox0004 Too many open files

Ox0005 Access denied

Ox0006 Invalid handle

Ox0007 Arena trashed

Ox0008 Not enough memory

Ox0009 Invalid block

OxOOOA Bad environment

OxOOOB Bad format

OxOOOC Invalid access

OxOOOD Invalid data

OxOOOF Invalid drive

OxOOIO Current directory

OxOOll Not same device

Ox0012 No more files

Ox0013 Write protect error

Ox0014 Bad unit

Ox0015 Not ready

Ox0016 Bad command

Ox0017 CRC error

Ox0018 Bad length

Ox0019 Seek error

OxOOlA Not MS-DOS disk

OxOOlB Sector not found

OxOOlC Out of paper

OxOOlD Write fault

OxOOlE Read fault

OxOOlF General failure

Ox0020 Sharing violation

Ox0021 Lock violation

Ox0022 Wrong disk

Ox0023 File control block unavailable

Ox0024 Sharing buffer exceeded

Ox0032 Not supported

Ox0033 Remote not listed

Ox0034 Duplicate name

346 OFSTRUCT

Value Meaning

Ox0035 Badnetpath

Ox0036 Network busy

Ox0037 Device does not exist

Ox0038 Too many commands

Ox0039 Adaptor hardware error

Ox003A Bad network response

Ox003B Unexpected network error

Ox003C Bad remote adaptor

Ox003D Print queue full

Ox003E No spool space

Ox003F Print canceled

Ox0040 N etname deleted

Ox0041 Network access denied

Ox0042 Bad device type

Ox0043 Bad network name

Ox0044 Too many names

Ox0045 Too many sessions

Ox0046 Sharing paused

Ox0047 Request not accepted

Ox0048 Redirection paused

Ox0050 File exists

Ox0051 Duplicate file control block

Ox0052 Cannot make

Ox0053 Interrupt 24 failure

Ox0054 Out of structures

Ox0055 Already assigned

Ox0056 Invalid password

Ox0057 Invalid parameter

Ox0058 Net write fault

See Also OpenFile

OLECLIENTVTBL 347

OLECLIENT [ill

Members

Comments

#include <ole.h>

typedef struct _OLECLIENT { /* oc */
LPOLECLIENTVTBL lpvtbl;

I* any client-supplied state information*/

OLECLIENT;

The OLECLIENT structure points to an OLECLIENTVTBL structure and can
store state information for use by the client application.

lpvtbl
Points to a table of function pointers for the client.

Servers and object handlers should not attempt to use any state information sup
plied in the OLECLIENT structure. The use and meaning of this information is
entirely dependent on the client application. Because a pointer to this structure is
supplied as a parameter to the client's callback function, this is the preferred
method for the client application to store private object-state information.

OLECLIENTVTBL

Comments

#include <ole.h>

typedef struct _OLECLIENTVTBL { /* ocv */
int (CALLBACK* CallBack)(LPOLECLIENT, OLE_NOTIFICATION,

LPOLEOBJECT);
} OLECLIENTVTBL;

The OLECLIENTVTBL structure contains a pointer to a callback function for
the client application.

The address passed as the CallBack member must be created by using the Make
Proclnstance function.

348 OLECLIENTVTBL

Function ClientCallback

INT ClientCallback(lpclient, notification, lpobject)
LPOLECLIENT lpclient;
OLE_NOTIFICATION notification;
LPOLEOBJECT lpobject;

Parameters

The ClientCallback function rnust use the Pascal calling convention and rnust be
declared FAR.

lpclient
Points to the client structure associated with the object. The library retrieves
this pointer frorn its object structure when a notification occurs, uses it to locate
the callback function, and passes the pointer to the client structure for the client
application's use.

notification
Specifies the reason for the notification. This parameter can be one of the fol
lowing values:

Value

OLE_ CHANGED

OLE_ CLOSED

OLE_QUERY_PAINT

OLE_QUERY_RETRY

OLE_ RELEASE

Meaning

The linked object has changed. (This notification is
not sent for embedded objects.) A typical action to
take with this notification is either to redraw or to
save the object.

The object has been closed in its server. When the
client receives this notification, it should not call any
function that causes an asynchronous operation until
it regains control of program execution.

A lengthy drawing operation is occurring. This notifi
cation allows the drawing to be interrupted.

The server has responded to a request by indicating
that it is busy. This notification requests the client to
determine whether the library should continue to
make the request. If the callback function returns
FALSE, the transaction with the server is discon
tinued.

The object has been released because an asynchro
nous operation has finished. The client should not quit
until all objects have been released. The client applica
tion can call the OleQueryReleaseError function to
determine whether the operation succeeded. It can
also call the OleQuery ReleaseMethod function, if
necessary, to verify that that operation has ended

Return Value

Comments

See Also

Value

OLE_ RENAMED

OLE_SAVED

OLECLIENTVTBL 349

Meaning

The linked object has been renamed in its server. This
notification is for information only, because the
library automatically updates its link information.

The linked object has been saved in its server. The
client receives this notification when the server calls
the OleSavedServerDoc function in response to the
user choosing the Update command in the server's
File menu.

When the client receives the OLE_ CLOSED notification, it typically stores
the condition and returns to the client library, taking action only when the client
library returns control of program execution to the client application. If the
client application must take action before regaining control, it should not call
any functions that could result in an asynchronous operation.

lpobject
Points to the object that caused the notification to be sent. Applications that use
the same client structure for more than one object use the lpobject parameter to
distinguish between notifications.

When the notification parameter specifies either OLE_ QUERY _PAINT or
OLE_ QUERY _RETRY, the client should return TRUE if the library should
continue, or FALSE to terminate the painting operation or discontinue the
server transaction. When the notification parameter does not specify either
OLE_QUERY_PAINT or OLE_QUERY_RETRY, the return value is ignored.

The client application should act on these notifications at the next appropriate
time; for example, as part of the main event loop or when closing the object. The
updating of an object can be deferred until the user requests the update, if the
client provides that functionality. The client may call the library from a notifica
tion callback function (the library is reentrant). The client should not attempt an
asynchronous operation while certain other operations are in progress (for ex
ample, opening or deleting an object). The client also should not enter a message
dispatch loop inside the callback function. When the client application calls a
function that would cause an asynchronous operation, the client library returns
OLE_ WAIT_FOR_RELEASE when the function is called, notifies the application
when the operation completes by using OLE_RELEASE, and returns OLE_BUSY
if the client attempts to invoke a conflicting operation while the previous one is in
progress. The client can determine if an asynchronous operation is in progress by
calling OleQueryReleaseStatus, which returns OLE_BUSY if the operation has
not yet completed.

OleQueryReleaseStatus

350 OLEOBJECT

OLEOBJECT

Members

1tinclude <ole.h>

typedef struct _OLEOBJECT {
LPOLEOBJECTVTBL lpvtbl;

/* 00 *'

/*any server-supplied state information*/

} OLEOBJECT;

The OLEOBJECT structure points to a table of function pointers for an object.
This structure is initialized and maintained by servers for the server library.

lpvtbl
Points to a table of function pointers for the object.

OLEOBJECTVTBL
1tinclude <ole.h>

typedef struct _OLEOBJECTVTBL { /* oov */
void FAR* (CALLBACK* QueryProtocol)(LPOLEOBJECT, OLE_LPCSTR);
OLESTATUS (CALLBACK* Release)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Show)(LPOLEOBJECT, BOOL);
OLESTATUS (CALLBACK* DoVerb)(LPOLEOBJECT, UINT, BOOL, BOOL);
OLESTATUS (CALLBACK* GetData)(LPOLEOBJECT, OLECLIPFORMAT,

HANDLE FAR*);
OLESTATUS (CALLBACK* SetData)(LPOLEOBJECT, OLECLIPFORMAT, HANDLE);
OLESTATUS (CALLBACK* SetTargetDevice)(LPOLEOBJECT, HGLOBAL);
OLESTATUS (CALLBACK* SetBounds)(LPOLEOBJECT, OLE_CONST RECT FAR*);
OLECLIPFORMAT (CALLBACK* EnumFormats)(LPOLEOBJECT, OLECLIPFORMAT);
OLESTATUS (CALLBACK* SetColorScheme)(LPOLEOBJECT,

OLE_CONST LOGPALETTE FAR*);

'* * Server applications implement only the functions listed above.
* Object handlers can use any of the functions in this structure
* to modify default server behavior.

*'

OLEOBJECTVTBL 351

OLESTATUS (CALLBACK* Oelete)(LPOLEOBJECT);
OLESTATUS (CALLBACK* SetHostNames)(LPOLEOBJECT, OLE_LPCSTR,

OLE_ LPCSTR);
OLESTATUS (CALLBACK* SaveToStream)(LPOLEOBJECT, LPOLESTREAM);
OLESTATUS (CALLBACK* Clone)CLPOLEOBJECT, LPOLECLIENT, LHCLIENTOOC,

OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* CopyFromLink)(LPOLEOBJECT, LPOLECLIENT,

LHCLIENTOOC, OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* Equal)(LPOLEOBJECT, LPOLEOBJECT);
OLESTATUS (CALLBACK* CopyToClipboard)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Oraw)CLPOLEOBJECT, HOC, OLE_CONST RECT FAR*,

OLE_CONST RECT FAR*, HOC);
OLESTATUS (CALLBACK* Activate)(LPOLEOBJECT, UINT, BOOL, BOOL, HWNO,

OLE_CONST RECT FAR*);
OLESTATUS (CALLBACK* Execute)(LPOLEOBJECT, HGLOBAL, UINT);
OLESTATUS (CALLBACK* Close)(LPOLEOBJECT);
OLESTATUS (CALLBACK* Update)CLPOLEOBJECT);
OLESTATUS (CALLBACK* Reconnect)(LPOLEOBJECT);
OLESTATUS (CALLBACK* ObjectConvert)(LPOLEOBJECT, OLE_LPCSTR,

LPOLECLIENT, LHCLIENTOOC, OLE_LPCSTR, LPOLEOBJECT FAR*);
OLESTATUS (CALLBACK* GetLinkUpdateOptions)(LPOLEOBJECT,

OLEOPT_UPOATE FAR*);
OLESTATUS (CALLBACK* SetLinkUpdateOptions)(LPOLEOBJECT,

OLEOPT_UPOATE);
OLESTATUS (CALLBACK* Rename)CLPOLEOBJECT, OLE_LPCSTR);
OLESTATUS (CALLBACK* QueryName)(LPOLEOBJECT, LPSTR, UINT FAR*);
OLESTATUS (CALLBACK* QueryType)(LPOLEOBJECT, LONG FAR*);
OLESTATUS (CALLBACK* QueryBounds)(LPOLEOBJECT, RECT FAR*);
OLESTATUS (CALLBACK* QuerySize)(LPOLEOBJECT, OWORO FAR*);
OLESTATUS (CALLBACK* QueryOpen)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryOutOfOate)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryReleaseStatus)(LPOLEOBJECT);
OLESTATUS (CALLBACK* QueryReleaseError)(LPOLEOBJECT);
OLE_RELEASE_METHOO (CALLBACK* QueryReleaseMethod)CLPOLEOBJECT);
OLESTATUS (CALLBACK* RequestOata)(LPOLEOBJECT, OLECLIPFORMAT);
OLESTATUS (CALLBACK* ObjectLong)(LPOLEOBJECT, UINT, LONG FAR*);

} OLEOBJECTVTBL;

The OLEOBJECTVTBL structure points to functions that manipulate an object.
A server application creates this structure and an OLEOBJECT structure to give
the server library access to an object.

Server applications do not need to implement functions beyond the SetColor
Scheme function. Object handlers can provide specialized treatment for some or
all of the functions in the OLEOBJECTVTBL structure.

The following list of structure members does not document all the functions
pointed to by the OLEOBJECTVTBL structure. For information about the func
tions not documented here, see the documentation for the corresponding function
for object linking and embedding (OLE). For example, for more information about
the QueryProtocol member, see the OleQueryProtocolfunction.

352 OLEOBJECTVTBL

Comments

Function

The following functions in OLEOBJECTVTBL should return OLE_BUSY when
appropriate:

Activate
Close
CopyFromLink
Delete
Do Verb
Execute
ObjectConvert
Reconnect
RequestData

Release

SetBounds
SetColorScheme
SetData
SetHostNames
SetLinkUpdateOptions
SetTargetDevice
Show
Update

OLESTATUS (FAR PASCAL *Release)(lpObject)
LPOLEOBJECT lpObject;

Parameters

Return Value

Comments

Function

The Release function causes the server to free the resources associated with the
specified OLEOBJECT structure.

Ip Object
Points to the OLEOBJECT structure to be released.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server application should not destroy data when the library calls the Release
function. The library calls the Release function when no clients are connected to
the object.

Show

OLESTATUS (FAR PASCAL *Show)(lpObject,fI'akeFocus)
LPOLEOBJECT lpObject;
BOOLfI'akeFocus;

Parameters

The Show function causes the server to show an object, displaying its window and
scrolling (if necessary) to make the object visible.

lpObject
Points to the OLEOBJECT structure to show.

fI'akeFocus
Specifies whether the server window gets the focus. If the server window is to
get the focus, this value is TRUE. Otherwise, this value is FALSE.

Return Value

Comments

Function

OLEOBJECTVTBL 353

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The library calls the Show function when the server application should show the
document to the user for editing or to request the server to scroll the document to
bring the object into view.

Do Verb

OLESTATUS (FAR PASCAL *DoVerb)(lpObject, iVerb,jShow,frakeFocus);
LPOLEOBJECT lpObject;
UINT iVerb;
BOOLJShow;
BOOLfrakeFocus;

Parameters

Return Value

Comments

The Do Verb function specifies what kind of action the server should take when a
user activates an object.

lpObject
Points to the object to activate.

iVerb
Specifies the action to take. The meaning of this parameter is determined by the
server application.

/Show
Specifies whether to show the server window. This value is TRUE to show the
window; otherwise, it is FALSE.

frakeFocus
Specifies whether the server window gets the focus. If the server window is to
get the focus, this value is TRUE. Otherwise, it is FALSE. This parameter is rel
evant only ifthefShow parameter is TRUE.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

All servers must support the editing of objects. If a server does not support any
verbs except Edit, it should edit the object no matter what value is specified by the
iVerb parameter.

354 OLEOBJECTVTBL

Function GetData

OLESTATUS (FAR PASCAL *GetData)(lpObject, cfFormat, lphdata)
LPOLEOBJECT lpObject;
OLECLIPFORMAT cfFormat;
HANDLE FAR* lphdata;

Parameters

Return Value

Function

The GetData function retrieves data from an object in a specified format. The
server application should allocate memory, fill it with the data, and return the data
through the lphdata parameter.

lpObject
Points to the OLEOBJECT structure from which data is requested.

cfFormat
Specifies the format in which the data is requested.

lphdata
Points to the handle of the allocated memory that the server application returns.
The library frees the memory when it is no longer needed.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_FORMAT
OLE_ERROR_OBJECT

Seto a ta
OLESTATUS (FAR PASCAL *SetData)(lpObject, cfFormat, hdata)
LPOLEOBJECT lpObject;
OLECLIPFORMAT cfFormat;
HANDLE hdata;

Parameters

The SetData function stores data in an object in a specified format. This function
is called (with the Native data format) when a client opens an embedded object for
editing. This function is also used if the client calls the OleSetData function with
some other format.

lpObject
Points to the OLEOBJECT structure in which data is stored.

cfFormat
Specifies the format of the data.

hdata
Identifies a place in memory from which the server application should extract
the data. The server should delete this handle after it uses the data.

Return Value

Comments

Function

OLEOBJECTVTBL 355

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server application is responsible for the memory identified by the hdata
parameter. The server must delete this data even if it returns OLE_BUSY or if an
error occurs.

SetTargetDevice

OLESTATUS (FAR PASCAL *SetTargetDevice)(lpObject, hotd)
LPOLEOBJECT lpObject;
HGLOBAL hotd;

Parameters

Return Value

Comments

See Also

Function

The SetTargetDevice function communicates information about the client's target
device for the object. The server can use this information to customize output for
the target device.

lpObject
Points to the OLEOBJECT structure for which the target device is specified.

hotd
Identifies an OLETARGETDEVICE structure.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server application is responsible for the memory identified by the hotd
parameter. The server must delete this data even if it returns OLE_BUSY or if an
error occurs.

The library passes NULL for the hotd parameter to indicate that the rendering is
necessary for the screen.

OleSetTargetDevice

Objectlong

OLESTATUS (FAR PASCAL *ObjectLong)(lpObject, wFlags, lpData)
LPOLEOBJECT lpObject;
UINT wFlags;
LONG FAR* lpData;

The ObjectLong function allows the calling application to store data with an ob
ject. This function is typically used by object handlers.

356 OLEOBJECTVTBL

Parameters

Return Value

Function

lpObject
Points to the OLEOBJECT structure for which the data is stored.

wFlags
Specifies the method used for setting and retrieving data. It can be one or more
of the following values:

Value

OF_SET

OF_GET

OF_HANDLER

Meaning

Data is written to the location specified by the lpData parame
ter, replacing any data already there.

Data is read from the location specified by the lpData parame
ter.

Data is written or read by an object handler. This value pre
vents data from an object handler from being replaced by other
applications.

If the calling application specifies OF _SET and OF_ GET, the function returns a
pointer to the previous data and replaces the data pointed to by the lpData
parameter with the data specified by the calling application.

lpData
Points to data to be written or read.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

SetColorScheme

OLESTATUS SetColorScheme(lpObject, lpPal)
LPOLEOBJECT lpObject;
OLE_ CONST LOGPALETTE FAR* lpPal;

Parameters

Return Value

Comments

The SetColorScheme function sends the server application the color palette rec
ommended by the client application.

lpObject
Points to an OLEOBJECT structure for which the client application recom
mends a palette.

lpPal
Points to a LOGPALETTE structure specifying the recommended palette.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

Server applications are not required to use the palette recommended by the client
application.

OLESERVER

Members

OLESERVER 357

Before returning from the SetColorScheme function, the server application
should use the palette pointed to by the lpPal parameter in a call to the Create
Palette function to create the handle of the palette:

hpal = CreatePaletteClpPal);

The server can then use the palette handle to refer to the palette.

The first palette entry in the LOG PALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies
the background color. The first half of the remaining palette entries are fill colors,
and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there
is an uneven number of entries, the server should interpret the odd entry as a fill
color; that is, if there are five entries, three should be interpreted as fill colors and
two as line and text colors.

1fainclude <ole.h>

typedef struct _OLESERVER {
LPOLESERVERVTBL l pvtbl;

f* OS *f

/* any server-supplied state information */

} OLESERVER;

The OLESERVER structure points to a table of function pointers for the server.
This structure is initialized and maintained by servers for the server library.

lpvtbl
Points to a table of function pointers for the server.

358 OLESERVERDOC

OLESERVERDOC

Members

#include <ole.h>

typedef struct _OLESERVERDOC { /* osd */
LPOLESERVERDOCVTBL l pvtbl;

/*any server-supplied document-state information*/

} OLESERVERDOC;

The OLESERVERDOC structure points to a table of function pointers for a docu
ment. This structure is initialized and maintained by servers for the server library.

lpvtbl
Points to a table of function pointers for the document.

OLESERVERDOCVTBL
#include <ole.h>

typedef struct _OLESERVERDOCVTBL { /* odv */
OLESTATUS (CALLBACK* Save)(LPOLESERVERDOC);
OLESTATUS (CALLBACK* Close)(LPOLESERVERDOC);
OLESTATUS (CALLBACK* SetHostNames)CLPOLESERVERDOC, OLE_LPCSTR,

OLE_ LPCSTR);
OLESTATUS (CALLBACK* SetDocDimensions)(LPOLESERVERDOC,

OLE_CONST RECT FAR*);
OLESTATUS (CALLBACK* GetObject)(LPOLESERVERDOC, OLE_LPCSTR,

LPOLEOBJECT FAR*, LPOLECLIENTJ;
OLESTATUS (CALLBACK* Release)(LPOLESERVERDOCJ;
OLESTATUS (CALLBACK* SetColorScheme)(LPOLESERVERDOC,

OLE_CONST LOGPALETTE FAR*);
OLESTATUS (CALLBACK* Execute)(LPOLESERVERDOC, HGLOBAL);

OLESERVERDOCVTBL;

The OLESERVERDOCVTBL structure points to functions that manipulate a
document. A server application creates this structure and an OLESERVERDOC
structure to give the server library access to a document.

Documents opened or created on request from the library should not be shown to
the user for editing until the library requests that they be shown.

Every function except Release can return OLE_BUSY.

OLESERVEROOCVTBL 359

Function Save

OLESTATUS Save(lpDoc)
LPOLESERVERDOC lpDoc;

Parameters

Return Value

Function

The Save function instructs the server to save the document.

lpDoc
Points to an OLESERVERDOC structure corresponding to the document to
save.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

Close

OLESTATUS Close(lpDoc)
LPOLESERVERDOC lpDoc;

Parameters

Return Value

Comments

The Close function instructs the server application to unconditionally close the
document. The library calls this function when the client application initiates the
closure.

lpDoc
Points to an OLESERVERDOC structure corresponding to the document to
close.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The library always calls the Close function before calling the Release function in
the OLESERVERVTBL structure.

The server application should not prompt the user to save the document or take
other actions; messages of this kind are handled by the client application.

When the library calls the Close function, the server should respond by calling the
OleRevokeServerDoc function. The resources for the document are freed when
the library calls the Release function. The server should not wait for the Release
function by entering a message-dispatch loop after calling OleRevokeServerDoc.
(A server should never enter message-dispatch loops while processing any of
these functions.)

When a document is closed, the server should free the memory for the
OLESERVERDOCVTBL structure and associated resources.

360 OlESERVERDOCVTBL

Function SetHostNames

OLESTATUS SetHostNames(lpDoc, lpszClient, lpszDoc)
LPOLESERVERDOC lpDoc;
OLE_LPCSTR lpszClient;
OLE_LPCSTR lpszDoc;

Parameters

Return Value

Function

The SetHostNames function sets the name that should be used for a window title.
This name is used only for an embedded object, because a linked object has its
own title. This function is used only for documents that are embedded objects.

lpDoc
Points to an OLESERVERDOC structure corresponding to a document that is
the embedded object for which a name is specified.

lpszClient
Points to a null-terminated string specifying the name of the client.

lpszDoc
Points to a null-terminated string specifying the client's name for the object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

SetDocDimensions

OLESTATUS SetDocDimensions(lpDoc, lpRect)
LPOLESERVERDOC lpDoc;
OLE_ CONST RECT FAR* lpRect;

Parameters

Return Value

The SetDocDimensions function gives the server the rectangle on the target
device for which the object should be formatted. This function is relevant only for
documents that are embedded objects.

lpDoc
Points to the OLESERVERDOC structure corresponding to the document that
is the embedded object for which the target size is specified.

lpRect
Points to a RECT structure containing the target size of the object, in
MM_HIMETRIC units. (In the MM_HIMETRIC mapping mode, the positive y
direction is up.)

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

OLESERVERDOCVTBL 361

Function GetObject

OLESTATUS GetObject(lpDoc, lpszltem, lplpObject, lpClient)
LPOLESERVERDOC lpDoc;
OLE_LPCSTR lpszltem;
LPOLEOBJECT FAR* lplpObject;
LPOLECLIENT lpClient;

Parameters

Return Value

Comments

The GetObject function requests the server to create an OLEOBJECT structure.

lpDoc
Points to an OLESERVERDOC structure corresponding to this document.

lpszltem
Points to a null-terminated string specifying the name of an item in the
specified document for which an object structure is requested. If this string is
set to NULL, the entire document is requested. This string cannot contain a
slash mark(/).

lplpObject
Points to a variable of type LPOLEOBJECT in which the server application
should return a long pointer to the allocated OLEOBJECT structure.

lpClient
Points to an OLECLIENT structure allocated by the library. The server should
associate the OLECLIENT structure with the object and use it to notify the
library of changes to the object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server application should allocate and initialize the OLEOBJECT structure,
associate it with the OLECLIENT structure pointed to by the lpClientparameter,
and return a pointer to the OLEOBJECT structure through the lplpObject argu
ment.

The library calls the GetObject function to associate a client with the part of the
document identified by the lpszltem parameter. When a client has been associated
with an object by this function, the server can send notifications to the client.

Applications should be prepared to handle multiple calls to GetObject for a given
object. This entails creating multiple OLECLIENT structures and sending notifi
cations to each of these structures when appropriate. Multiple calls to GetObject
are possible because some client applications that implement object linking and
embedding (OLE) by using dynamic data exchange (DDE) rather than the OLE
dynamic-link libraries may use both NULL and an actual item name for the
lpszltem parameter.

362 OLESERVERDOCVTBL

Function Release
OLESTATUS Release(lpDoc)
LPOLESERVERDOC lpDoc;

Parameters

Return Value

Function

The Release function notifies the server when a revoked document has terminated
conversations and can be destroyed.

lpDoc
Points to an OLESERVERDOC structure for which the handle was revoked
and which can now be released.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

SetColorScheme
OLESTATUS SetColorScheme(lpDoc, lpPal)
LPOLESERVERDOC lpDoc;
OLE_ CONST LOGPALETTE FAR* lpPal;

Parameters

Return Value

Comments

The SetColorScheme function sends the server application the color palette rec
ommended by the client application.

lpDoc
Points to an OLESERVERDOC structure for which the client application rec
ommends a palette.

lpPal
Points to a LOGPALETTE structure specifying the recommended palette.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

Server applications are not required to use the palette recommended by the client
application.

Before returning from the SetColorScheme function, the server application
should create a handle to the palette. To do this, the server application should use
the palette pointed to by the lpPal parameter in a call to the CreatePalette func
tion, as shown in the following example.

hpal = CreatePalette(lpPall;

Function

OLESERVERDOCVTBL 363

The server can then use the palette handle to refer to the palette.

The first palette entry in the LOGPALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies
the background color. The first half of the remaining palette entries are fill colors,
and the second half are colors for lines and text.

Client applications typically specify an even number of palette entries. When there
is an uneven number of entries, the server should interpret the odd entry as a fill
color; that is, if there are five entries, three should be interpreted as fill colors and
two as line and text colors.

Execute
OLESTATUS Execute(lpDoc, hCommands)
LPOLESERVERDOC lpDoc;
HGLOBAL hCommands;

Parameters

Return Value

Comments

The Execute function receives WM_DDE_EXECUTE commands sent by client
applications. The applications send these commands by calling the OleExecute
function.

Ip Doc
Points to an OLESERVERDOC structure to which the dynamic data exchange
(DDE) commands apply.

hCommands
Identifies memory containing one or more DDE execute commands.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server should never free the handle specified in the hCommands parameter.

364 OLESERVERVTBL

OLESERVERVTBL

Function

#include <ole.h>

typedef struct _OLESERVERVTBL { /* osv */
OLESTATUS (CALLBACK* Open)(LPOLESERVER, LHSERVERDOC,

OLE_LPCSTR, LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* Create)(LPOLESERVER, LHSERVERDOC,

OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*);
OLESTATUS (CALLBACK* CreateFromTemplate)(LPOLESERVER,

LHSERVERDOC, OLE_LPCSTR, OLE_LPCSTR, OLE_LPCSTR,
LPOLESERVERDOC FAR*);

OLESTATUS (CALLBACK* Edit)(LPOLESERVER, LHSERVERDOC,
OLE_LPCSTR, OLE_LPCSTR, LPOLESERVERDOC FAR*);

OLESTATUS (CALLBACK* Exit)(LPOLESERVER);
OLESTATUS (CALLBACK* Release)(LPOLESERVER);
OLESTATUS (CALLBACK* Execute)(LPOLESERVER, HGLOBAL);

} OLESERVERVTBL;

The OLESERVERVTBL structure points to functions that manipulate a server.
After a server application creates this structure and an OLESERVER structure,
the server library can perform operations on the server application.

Every function except Release can return OLE_BUSY.

Open

OLESTATUS Open(lpServer, lhDoc, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

Parameters

The Open function opens an existing file and prepares to edit the contents. A
server typically uses this function to open a linked object for a client application.

lpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

lpszDoc
Points to a null-terminated string specifying the permanent name of the docu
ment to be opened. Typically this string is a path, but for some applications it
might be further qualified. For example, the string might specify a particular
table in a database.

Return Value

Comments

Function

OLESERVERVTBL 365

lplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica
tion returns a long pointer to the OLESERVERDOC structure it has created in
response to this function.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

When the library calls this function, the server application opens a specified docu
ment, allocates and initializes an OLESERVERDOC structure, associates the
library's handle with the document, and returns the address of the structure. The
server does not show the document or its window.

Create
OLESTATUS Create(lpServer, lhDoc, lpszClass, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

Parameters

Return Value

The Create function makes a new object that is to be embedded in the client appli
cation. The lpszDoc parameter identifies the object but should not be used to
create a file for the object.

lpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

lpszClass
Points to a null-terminated string specifying the class of document to create.

lpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name can be used to identify the document in window titles.

lplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica
tion should return a long pointer to the created OLESERVERDOC structure.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

366 OLESERVERVTBL

Comments

Function

When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ
ates the library's handle with the document, and returns the address of the struc
ture. This function opens the created document for editing and embeds it in the
client when it is updated or closed.

Server applications often track changes to the document specified in this function,
so that the user can be prompted to save changes when necessary.

CreateFromTemplate

OLESTATUS CreateFromTemplate(lpServer, lhDoc, lpszClass, lpszDoc, lpszTemplate, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
OLE_LPCSTR lpszTemplate;
LPOLESERVERDOC FAR* lplpDoc;

Parameters

The CreateFromTemplate function creates a new document that is initialized
with the data in a specified file. The new document is opened for editing by this
function and embedded in the client when it is updated or closed.

lpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

lpszClass
Points to a null-terminated string specifying the class of document to create.

lpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name need not be used by the server application but can be used
in window titles.

lpszTemplate
Points to a null-terminated string specifying the permanent name of the docu
ment to use to initialize the new document. Typically this string is a path, but
for some applications it might be further qualified. For example, the string
might specify a particular table in a database.

lplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica
tion should return a long pointer to the created OLESERVERDOC structure.

Return Value

Comments

Function

OLESERVERVTBL 367

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ
ates the library's handle with the document, and returns the address of the struc
ture.

A server application often tracks changes to the document specified in this func
tion, so that the user can be prompted to save changes when necessary.

Edit

OLESTATUS Edit(lpServer, lhDoc, lpszClass, lpszDoc, lplpDoc)
LPOLESERVER lpServer;
LHSERVERDOC lhDoc;
OLE_LPCSTR lpszClass;
OLE_LPCSTR lpszDoc;
LPOLESERVERDOC FAR* lplpDoc;

Parameters

Return Value

The Edit function creates a document that is initialized with data retrieved by a
subsequent call to the SetData function. The object is embedded in the client appli
cation. The server does not show the document or its window.

lpServer
Points to an OLESERVER structure identifying the server.

lhDoc
Identifies the document. The library uses this handle internally.

lpszClass
Points to a null-terminated string specifying the class of document to create.

lpszDoc
Points to a null-terminated string specifying a name for the document to be
created. This name need not be used by the server application but may be
used-for example, in a window title.

lplpDoc
Points to a variable of type LPOLESERVERDOC in which the server applica
tion should return a long pointer to the created OLESERVERDOC structure.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

368 OLESERVERVTBL

Comments

Function

When the library calls this function, the server application creates a document of a
specified class, allocates and initializes an OLESERVERDOC structure, associ
ates the library's handle with the document, and returns the address of the struc
ture.

The document created by the Edit function retrieves the initial data from the client
in a subsequent call to the SetData function. The user can edit the document after
the data has been retrieved and the library has used either the Show function in the
OLEOBJECTVTBL structure or the Do Verb function with an Edit verb to show
the document to the user.

Exit

OLESTATUS Exit(lpServer)
LPOLESERVER lpServer;

Parameters

Return Value

Comments

Function

The Exit function instructs the server application to close documents and quit.

lpServer
Points to an OLESERVER structure identifying the server.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

The server library calls the Exit function to instruct a server application to termi
nate. If the server application has no open documents when the Exit function is
called, it should call the OleRevokeServer function.

Release

OLESTATUS Release(/pServer)
LPOLESERVER lpServer;

Parameters

Return Value

The Release function notifies a server that all connections to it have closed and
that it is safe to quit.

lpServer
Points to an OLESERVER structure identifying the server.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

Comments

Function

OLESERVERVTBL 369

The server library calls the Release function when it is safe for a server to quit.
When a server application calls the OleRevokeServer function, the application
must continue to dispatch messages and wait for the library to call the Release
function before quitting.

When the server is invisible and the library calls Release, the server must exit.
(The only exception is when an application supports multiple servers; in this case,
an invisible server is sometimes not revocable when the library calls Release.) If
the server has no open documents and it was started with the /Embedding option
(indicating that it was started by a client application), the server should exit when
the library calls the Release function. If the user has explicitly loaded a document
into a single-instance multiple document interface server, however, the server
should not exit when the library calls Release. Typically, a single-instance server
is a multiple document interface (MDI) server.

All registered server structures must be released before a server can quit.

A server can call the PostQuitMessage function inside the Release function.

Execute

OLESTATUS Execute(lpServer, hCommands)
LPOLESERVER lpServer;
HGLOBAL hCommands;

Parameters

Return Value

Comments

The Execute function receives WM_DDE_EXECUTE commands sent by client
applications. The applications send these commands by calling the OleExecute
function.

lpServer
Points to an OLESERVER structure identifying the server.

hCommands
Identifies memory containing one or more dynamic data exchange (DDE) ex
ecute commands.

The return value is OLE_OK if the function is successful. Otherwise, it is an error
value.

The server should never free the handle specified in the hCommands parameter.

. 370 OLESTREAM

OLESTREAM

Members

#include <ole.h>

typedef struct _OLESTREAM {
LPOLESTREAMVTBL lpstbl;

} OLESTREAM;

/* ostr */

The OLESTREAM structure points to an OLESTREAMVTBL structure that
provides stream input and output functions. These functions are used by the client
library for stream operations on objects. The OLESTREAM structure is allocated
and initialized by client applications.

lpstbl
Points to an OLESTREAMVTBL structure.

OLESTREAMVTBL

Comments

#include <ole.h>

typedef struct _OLESTREAMVTBL { /* ostrv */
DWORD (CALLBACK* Get)(LPOLESTREAM, void FAR*, DWORD);
DWORD (CALLBACK* Put)(LPOLESTREAM, OLE_CONST void FAR*, DWORD);

} OLESTREAMVTBL;

The OLESTREAMVTBL structure points to functions the client library uses for
stream operations on objects. This structure is allocated and initialized by client ap
plications.

The stream is valid only for the duration of the function to which it is passed. The
library obtains everything it requires while the stream is valid.

The return values for the stream functions may indicate that an error has occurred,
but these values do not indicate the nature of the error. The client application is re
sponsible for any required error-recovery operations.

A client application can use these functions to provide variations on the standard
stream procedures; for example, the client could change the permanent storage of
some objects so that they were stored in a database instead of the client document.

OLESTREAMVTBL 371

Function Get

DWORD Get(lpstream, lpszBuf, cbbuj)
LPOLESTREAM lpstream;
void FAR* lpszBuf;
DWORD cbbuf;

Parameters

Return Value

Comments

Function

The Get function gets data from the specified stream.

lpstream
Points to an OLESTREAM structure allocated by the client.

lpszBuf
Points to a buffer to fill with data from the stream.

cbbuf
Specifies the number of bytes to read into the buffer.

The return value is the number of bytes actually read into the buffer if the function
is successful. If the end of the file is encountered, the return value is zero. A nega
tive return value indicates that an error occurred.

The value specified by the cbbufparameter can be larger than 64K. If the client ap
plication uses a stream-reading function that is limited to 64K, it should call that
function repeatedly until it has read the number of bytes specified by cbbuf When
ever the data size is larger than 64K, the pointer to the data buffer is always at the
beginning of the segment.

Put
DWORD Put(lpstream, lpszBuf, cbbuj)
LPOLESTREAM lpstream;
OLE_ CONST void FAR* lpszBuf;
DWORD cbbuf;

The Put function puts data into the specified stream.

Parameters lpstream
Points to an OLESTREAM structure allocated by the client.

lpszBuf
Points to a buffer from which to write data into the stream.

cbbuf
Specifies the number of bytes to write into the stream.

372 OLETARGETDEVICE

Return Value

Comments

The return value is the number of bytes actually written to the stream. A return
value less than the number specified in the cbbufparameter indicates that either
there was insufficient space in the stream or an error occurred.

The value specified by the cbbuf parameter can be greater than 64 K. If the client
application uses a stream-writing function that is limited to 64K, it should call that
function repeatedly until it has written the number of bytes specified by cbbuf
Whenever the data size is greater than 64K, the pointer to the data buffer is always
at the beginning of the segment.

OLETARGETDEVICE

Members

#include <ole.h>

typedef struct _OLETARGETDEVICE {
UINT otdDeviceNameOffset;
UINT otdDriverNameOffset;
UINT otdPortNameOffset;
UINT otdExtDevmodeOffset;
UINT otdExtDevmodeSize;
UINT otdEnvironmentOffset;
UINT otdEnvironmentSize;
BYTE otdData[l];

} OLETARGETDEVICE;

The OLETARGETDEVICE structure contains information about the target
device that a client application is using. Server applications can use the informa
tion in this structure to change the rendering of an object, if necessary. A client ap
plication provides a handle to this structure in a call to the OleSetTargetDevice
function.

otdDeviceNameOffset
Specifies the offset from the beginning of the array to the name of the device.

otdDriverNameOffset
Specifies the offset from the beginning of the array to the name of the device
driver.

Comments

See Also

OLETARGETDEVICE 373

otdPortNameOffset
Specifies the offset from the beginning of the array to the name of the port.

otdExtDevmodeOffset
Specifies the offset from the beginning of the array to a DEVMODE structure
retrieved by the ExtDeviceMode function.

otdExtDevmodeSize
Specifies the size of the DEVMODE structure whose offset is specified by the
otdExtDevmodeOffset member.

otdEnvironmentOffset
Specifies the offset from the beginning of the array to the device environment.

otdEnvironmentSize
Specifies the size of the environment whose offset is specified by the
otdEnvironmentOffset member.

otdData
Specifies an array of bytes containing data for the target device.

The otdDeviceNameOffset, otdDriverNameOffset, and otdPortNameOffset
members should be null-terminated.

In Windows 3.1, the ability to connect multiple printers to one port has made
the environment obsolete. The environment information retrieved by the
GetEnvironment function can occasionally be incorrect. To ensure that the
OLETARGETDEVICE structure is initialized correctly, the application
should copy information from the DEVMODE structure retrieved by a
call to the ExtDeviceMode function to the environment position of the
OLETARGETDEVICE structure.

OleSetTargetDevice

374 OPENFILENAME

OPEN FILENAME

Members

#include <commdlg.h>

typedef struct tagOPENFILENAME { /* ofn */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hinstance;
LPCSTR lpstrFilter;
LPSTR lpstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterindex;
LPSTR lpstrFile;
DWORD nMaxFile;
LPSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCSTR lpstrinitialDir;
LPCSTR lpstrTitle;
DWORD Flags;
UINT nFileOffset;
UINT nFileExtension;
LPCSTR lpstrDefExt;
LPARAM lCustData;
UINT (CALLBACK *lpfnHook) (HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} OPENFILENAME;

The OPENFILENAME structure contains information that the system uses to ini
tialize the system-defined Open dialog box or Save dialog box. After the user
chooses the OK button to close the dialog box, the system returns information
about the user's selection in this structure.

IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the OFN_SHOWHELP flag is set, hwndOwner must identify the window
that owns the dialog box. The window procedure for this owner window re
ceives a notification message when the user chooses the Help button.
(The identifier for the notification message is the value returned by the
RegisterWindowMessage function when HELPMSGSTRING is passed
as its argument.)

This member is filled on input.

OPENFILENAME 375

hlnstance
Identifies a data block that contains a dialog box template specified
by the lpTemplateName member. This member is used only if the
Flags member specifies the OFN_ENABLETEMPLATE or the
OFN_ENABLETEMPLATEHANDLE flag; otherwise, this member
is ignored.

This member is filled on input.

lpstrFilter
Points to a buffer containing one or more pairs of null-terminated strings speci
fying filters. The first string in each pair describes a filter (for example, "Text
Files"); the second specifies the filter pattern (for example, "*.txt"). Multiple fil
ters can be specified for a single item; in this case, the semicolon(;) is used to
separate filter pattern strings-for example, "* .txt; *.doc;*. bak". The last string
in the buffer must be terminated by two null characters. If this parameter is
NULL, the dialog box does not display any filters. The filter strings must be in
the proper order-the system does not change the order.

This member is filled on input.

lpstrCustomFilter
Points to a buffer containing a pair of user-defined strings that specify a filter.
The first string describes the filter, and the second specifies the filter pattern
(for example, "Win Word", "*.doc"). The buffer is terminated by two null char
acters. The system copies the strings to the buffer when the user chooses the
OK button to close the dialog box. The system uses the strings as the initial fil
ter description and filter pattern for the dialog box. If this parameter is NULL,
the dialog box lists (but does not save) user-defined filter strings.

nMaxCustFilter
Specifies the size, in bytes, of the buffer identified by the lpstrCustomFilter
member. This buffer should be at least 40 bytes long. This parameter is ignored
if the lpstrCustomFilter member is NULL.

This member is filled on input.

nFilterlndex
Specifies an index into the buffer pointed to by the lpstrFilter member. The
system uses the index value to obtain a pair of strings to use as the initial filter
description and filter pattern for the dialog box. The first pair of strings has an
index value of 1. When the user chooses the OK button to close the dialog box,
the system copies the index of the selected filter strings into this location.
If the nFilterlndex member is 0, the filter in the buffer pointed to by the
lpstrCustomFilter member is used. If the nFilterlndex member is 0 and the
lpstrCustomFilter member is NULL, the system uses the first filter in the
buffer pointed to by the lpstrFilter member. If each of the three members is
either 0 or NULL, the system does not use any filters and does not show any
files in the File Name list box of the dialog box.

376 OPENFILENAME

lpstrFile
Points to a buffer that specifies a filename used to initialize the File Name edit
control. If initialization is not necessary, the first character of this buffer must
be NULL. When the GetOpenFileName or GetSaveFileName function re
turns, this buffer contains the complete location and name of the selected file.

If the buffer is too small, the dialog box procedure copies the required size into
this member and returns 0. To retrieve the required size, cast the lpstrFile mem
ber to type LPWORD. The buffer must be at least three bytes to receive the
required size. When the buffer is too small, the CommDlgExtendedError
function returns the FNERR_BUFFERTOOSMALL value.

nMaxFile
Specifies the size, in bytes, of the buffer pointed to by the lpstrFile member.
The GetOpenFileName and GetSaveFileName functions return FALSE if the
buffer is too small to contain the file information. The buffer should be at least
256 bytes long. If the lpstrFile member is NULL, this member is ignored.

This member is filled on input.

lpstrFileTitle
Points to a buffer that receives the title of the selected file. This buffer receives
the filename and extension but no path information. An application should use
this string to display the file title. If this member is NULL, the function does
not copy the file title. This member is filled on output.

nMaxFileTitle
Specifies the maximum length, in bytes, of the string that can be copied into the
lpstrFileTitle buffer. This member is ignored iflpstrFileTitle is NULL. This
member is filled on input.

lpstrlnitialDir
Points to a string that specifies the initial file directory. If this member is
NULL, the system uses the current directory as the initial directory. (If the
lpstrFile member contains a string that specifies a valid path, the common
dialog box procedure will use the path specified by this string instead of the
path specified by the string to which lpstrlnitialDir points.)

This member is filled on input.

lpstrTitle
Points to a string to be placed in the title bar of the dialog box. If this member is
NULL, the system uses the default title (that is, Save As or Open). This mem
ber is filled on input.

Flags
Specifies the dialog box initialization flags. This member may be a combination
of the following values:

Value

OFN_ALLOWMULTISELECT

OFN_CREATEPROMPT

OFN_ENABLEHOOK

OPENFILENAME 377

Meaning

Specifies that the File Name list box is to allow mul
tiple selections. When this flag is set, the IpstrFile
member points to a buffer containing the path to the
current directory and all filenames in the selection.
The first filename is separated from the path by a
space. Each subsequent filename is separated by
one space from the preceding filename. Some of the
selected filenames may be preceded by relative
paths; for example, the buffer could contain some
thing like this:

c:\files filel.txt file2.txt .. \bin\file3.txt

Causes the dialog box procedure to generate a
message box to notify the user when a specified
file does not currently exist and to make it
possible for the user to specify that the file
should be created. (This flag automatically
sets the OFN_PATHMUSTEXIST and
OFN_FILEMUSTEXIST flags.)

Enables the hook function specified in the
lpfnHook member.

OFN_ENABLETEMPLATE Causes the system to use the dialog box template
identified by the hlnstance and lpTemplateName
members to create the dialog box.

OFN_ENABLETEMPLATEHANDLE

OFN_EXTENSIONDIFFERENT

OFN_FILEMUSTEXIST

OFN_HIDEREADONLY

Indicates that the hlnstance member identifies a
data block that contains a pre-loaded dialog box
template. The system ignores the lpTemplateName
member if this flag is specified.

Indicates that the extension of the returned filename
is different from the extension specified by the
lpstrDefExt member. This flag is not set if
lpstrDefExt is NULL, if the extensions match, or if
the file has no extension. This flag can be set on out
put.

Specifies that the user can type only the names of
existing files in the File Name edit control. If this
flag is set and the user types an invalid filename in
the File Name edit control, the dialog box proce
dure displays a warning in a message box. (This
flag also causes the OFN_PATHMUSTEXIST flag
to be set.)

Hides the Read Only check box.

378 OPENFILENAME

Value Meaning

OFN_NOCHANGEDIR Forces the dialog box to reset the current directory
to what it was when the dialog box was created.

OFN_NOREADONLYRETURN

Specifies that the file returned will not have the
Read Only attribute set and will not be in a write
protected directory.

OFN_NOTESTFILECREATE Specifies that the file will not be created before the
dialog box is closed. This flag should be set if the
application saves the file on a create-no-modify net
work share point. When an application sets this
flag, the library does not check against write protec
tion, a full disk, an open drive door, or network pro
tection. Therefore, applications that use this flag
must perform file operations carefully-a file can
not be reopened once it is closed.

OFN_NOVALIDATE Specifies that the common dialog boxes will
allow invalid characters in the returned filename.
Typically, the calling application uses a hook
function that checks the filename using the
FILEOKSTRING registered message. If the text in
the edit control is empty or contains nothing but
spaces, the lists of files and directories are updated.
If the text in the edit control contains anything else,
the nFileOffset and nFileExtension members are
set to values generated by parsing the text. No de
fault extension is added to the text, nor is text
copied to the lpstrFileTitle buffer.

If the value specified by the nFileOffset mem
ber is negative, the filename is invalid. If the
value specified by nFileOffset is not negative,
the filename is valid, and nFileOffset and
nFileExtension can be used as if the
OFN_NOVALIDATE flag had not been set.

OFN_OVERWRITEPROMPT Causes the Save As dialog box to generate a mes
sage box if the selected file already exists. The user
must confirm whether to overwrite the file.

OFN_pATHMUSTEXIST Specifies that the user can type only valid paths. If
this flag is set and the user types an invalid path in
the File Name edit control, the dialog box proce
dure displays a warning in a message box.

OFN_READONLY Causes the Read Only check box to be initially
checked when the dialog box is created. When the
user chooses the OK button to close the dialog box,
the state of the Read Only check box is specified by
this member. This flag can be set on input and
output.

Value

OFN_SHAREAWARE

OFN_SHOWHELP

OPENFILENAME 379

Meaning

Specifies that if a call to the OpenFile function has
failed because of a network sharing violation, the
error is ignored and the dialog box returns the given
filename. If this flag is not set, the registered mes
sage for SHAREVISTRING is sent to the hook
function, with a pointer to a null-terminated string
for the path name in the lParam parameter. The
hook function responds with one of the following
values:

Value Meaning

OFN_SHAREFALLTHROUGH

Specifies that the filename is re
turned from the dialog box.

OFN_SHARENOWARN

Specifies no further action.

OFN_SHAREWARN

Specifies that the user receives the
standard warning message for this
error. (This is the same result as if
there were no hook function.)

This flag may be set on output.

Causes the dialog box to show the Help push but
ton. The hwndOwner must not be NULL if this op
tion is specified.

These flags may be set when the structure is initialized, except where specified.

nFileOffset
Specifies a zero-based offset from the beginning of the path to the filename
specified by the string in the buffer to which lpstrFile points. For example, if
lpstrFile points to the string, "c:\dirl\dir2 \file.ext'', this member contains the
value 13.

This member is filled on output.

nFileExtension
Specifies a zero-based offset from the beginning of the path to the filename
extension specified by the string in the buffer to which lpstrFile points. For
example, iflpstrFile points to the following string, "c:\dirl \dir2 \file.ext'',
this member contains the value 18. If the user did not type an extension and
lpstrDetExt is NULL, this member specifies an offset to the terminating null
character. If the user typed a period (.) as the last character in the filename, this
member is 0.

This member is filled on output.

380 OPENFILENAME

See Also

lpstrDefExt
Points to a buffer that contains the default extension. The GetOpenFileName
or GetSaveFileName function appends this extension to the filename if the
user fails to enter an extension. If the filename with the default extension is not
found, GetOpenFileName or GetSaveFileName attempts to find the file by
using the name exactly as the user typed it. This string can be any length, but
only the first three characters are appended. The string should not contain ape
riod(.). If this member is NULL and the user fails to type an extension, no ex
tension is appended. This member is filled on input.

ICustData
Specifies application-defined data that the system passes to the hook function
pointed to by the lpfnHook member. The system passes a pointer to the OPEN
FILENAME structure in the lParam parameter of the WM_INITDIALOG
message; this pointer can be used to retrieve the ICustData member.

lpfnHook
Points to a hook function that processes messages intended for the
dialog box. To enable the hook function, an application must specify the
OFN_ENABLEHOOK flag in the Flags member; otherwise, the system
ignores this structure member. The hook function must return zero to
pass a message that it didn't process back to the dialog box procedure in
COMMDLG.DLL. The hook function must return a nonzero value to prevent
the dialog box procedure in COMMDLG.DLL from processing a message it
has already processed.

This member is filled on input.

lpTemplateName
Points to a null-terminated string that specifies the name of the resource file for
the dialog box template that is to be substituted for the dialog box template in
COMMDLG.DLL. An application can use the MAKEINTRESOURCE macro
for numbered dialog box resources. This member is used only if the Flags mem
ber specifies the OFN_ENABLETEMPLATE flag; otherwise, this member is
ignored.

This member is filled on input.

GetOpenFileName, GetSaveFileName

OUTLINETEXTMETRIC 381

OUTLINETEXTMETRIC [IT]

Members

typedef struct tagOUTLINETEXTMETRIC {
UINT otmSize;
TEXTMETRIC otmTextMetrics;
BYTE otmFiller;
PANOSE otmPanoseNumber;
UINT otmfsSelection;
UINT otmfsType;
UINT otmsCharSlopeRise;
UINT otmsCharSlopeRun;
UINT otmitalicAngle;
UINT otmEMSquare;
INT otmAscent;
INT otmDescent;
UINT otmLineGap;
UINT otmsXHeight;
UINT otmsCapEmHeight;
RECT otmrcFontBox;
INT otmMacAscent;
INT otmMacDescent;
UINT otmMacLineGap;
UINT otmusMinimumPPEM;
POINT otmptSubscriptSize;
POINT otmptSubscriptOffset;
POINT otmptSuperscriptSize;
POINT otmptSuperscriptOffset;
UINT otmsStrikeoutSize;
INT otmsStrikeoutPosition;
INT otmsUnderscorePosition;
UINT otmsUnderscoreSize;
PSTR otmpFamilyName;
PSTR otmpFaceName;
PSTR otmpStyleName;
PSTR otmpFullName;

} OUTLINETEXTMETRIC;

The OUTLINETEXTMETRIC structure contains metrics describing a TrueType
font.

otmSize
Specifies the size, in bytes, of the OUTLINETEXTMETRIC structure.

otmTextMetrics
Specifies a TEXTMETRIC structure containing further information about the
font.

otmFiller
Specifies a value that causes the structure to,be byte-aligned.

382 OUTLINETEXTMETRIC

otmPanoseNumber
Specifies the Panose number for this font.

otmfsSelection
Specifies the nature of the font pattern. This member can be a combination of
the following bits:

Bit Meaning

0 Italic

1 Underscore

2 Negative

3 Outline

4 Strikeout

5 Bold

otmfsType
Specifies whether the font is licensed. Licensed fonts may not be modified or
exchanged. If bit 1 is set, the font may not be embedded in a document. If bit 1
is clear, the font can be embedded. If bit 2 is set, the embedding is read-only.

otmsCharSlopeRise
Specifies the slope of the cursor. This value is 1 if the slope is vertical. Applica
tions can use this value and the value of the otmsCharSlopeRun member to
create an italic cursor that has the same slope as the main italic angle (specified
by the otmltalicAngle member).

otmsCharSlopeRun
Specifies the slope of the cursor. This value is zero if the slope is vertical. Ap
plications can use this value and the value of the otmsCharSlopeRise member
to create an italic cursor that has the same slope as the main italic angle
(specified by the otmltalicAngle member).

otmltalicAngle
Specifies the main italic angle of the font, in counterclockwise degrees from
vertical. Regular (roman) fonts have a value of zero. Italic fonts typically have a
negative italic angle (that is, they lean to the right).

otmEMSquare
Specifies the number of logical units defining the x- or y-dimension of the em
square for this font. (The number of units in the x- and y-directions are always
the same for an em square.)

otmAscent
Specifies the maximum distance characters in this font extend above the base
line. This is the typographic ascent for the font.

otmDescent
Specifies the maximum distance characters in this font extend below the base
line. This is the typographic descent for the font.

OUTLINETEXTMETRIC 383

otmLineGap
Specifies typographic line spacing.

otmsXHeight
Not supported.

otmsCapEmHeight
Not supported.

otmrcFontBox
Specifies the bounding box for the font.

otmMacAscent
Specifies the maximum distance characters in this font extend above the base
line for the Macintosh.

otmMacI>escent
Specifies the maximum distance characters in this font extend below the base
line for the Macintosh.

otmMacLineGap
Specifies line-spacing information for the Macintosh.

otmusMinimumPPEM
Specifies the smallest recommended size for this font, in pixels per em-square.

otmptSubscriptSize
Specifies the recommended horizontal and vertical size for subscripts in this
font.

otmptSubscriptOffset
Specifies the recommended horizontal and vertical offset for subscripts in this
font. The subscript offset is measured from the character origin to the origin of
the subscript character.

otmptSuperscriptSize
Specifies the recommended horizontal and vertical size for superscripts in this
font.

otmptSuperscriptOffset
Specifies the recommended horizontal and vertical offset for superscripts in this
font. The subscript offset is measured from the character base line to the base
line of the superscript character.

otmsStrikeoutSize
Specifies the width of the strikeout stroke for this font. Typically, this is the
width of the em-dash for the font.

otmsStrikeoutPosition
Specifies the position of the strikeout stroke relative to the base line for this
font. Positive values are above the base line and negative values are below.

otmsUnderscorePosition
Specifies the position of the underscore character for this font.

384 PAINTSTRUCT

Comments

See Also

otmsUnderscoreSize
Specifies the thickness of the underscore character for this font.

otmpFamilyName
Specifies the offset from the beginning of the structure to a string specifying the
family name for the font.

otmpFaceName
Specifies the offset from the beginning of the structure to a string specifying the
face name for the font. (This face name corresponds to the name specified in
the LOGFONT structure.)

otmpStyleName
Specifies the offset from the beginning of the structure to a string specifying the
sty le name for the font.

otmpFullName
Specifies the offset from the beginning of the structure to a string specifying the
full name for the font. This name is unique for the font and often contains aver
sion number or other identifying information.

The sizes returned in OUTLINETEXTMETRIC are given in logical units; that
is, they depend on the current mapping mode of the specified display context.

GetOutlineTextMetrics

PAINTSTRUCT

Members

typedef struct tagPAINTSTRUCT {
HOC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL flncUpdate;
BYTE rgbReserved[16];

} PAINTSTRUCT;

/* ps */

The PAINTSTRUCT structure contains information for an application. This infor
mation can be used to paint the client area of a window owned by that application.

hdc
Identifies the display context to be used for painting.

fErase
Specifies whether the background needs to be redrawn. This value is nonzero if
the application should redraw the background. The application is responsible

See Also

PALETTEENTRY 385

for drawing the background if a window class is created without a background
brush. For more information, see the description of the hbrBackground mem
ber of the WNDCLASS structure.

rcPaint
Specifies the upper-left and lower-right comers of the rectangle in which the
painting is requested.

tRestore
Reserved; used internally by Windows.

flncUpdate
Reserved; used internally by Windows.

rgbReserved
Reserved (reserved memory object used internally by Windows).

BeginPaint, WNDCLASS

PALETTE ENTRY

Members

typedef struct tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTE ENTRY;

The PALETTEENTRY structure specifies the color and usage of an entry in a
logical color palette. A logical palette is defined by a LOGPALETTE structure.

peRed
Specifies the intensity of red for the palette entry color.

peGreen
Specifies the intensity of green for the palette entry color.

peBlue
Specifies the intensity of blue for the palette entry color.

peFlags
Specifies how the palette entry is to be used. The peFlags member may be set
to NULL or to one of the following values (specifying NULL informs Win
dows that the palette entry contains an RGB value and that it should be mapped
normally):

386 PANOSE

See Also

PANO SE

Value

PC_EXPLICIT

PC_NOCOLLAPSE

PC_RESERVED

AnimatePalette

Meaning

Specifies that the low-order word of the logical palette
entry designates a hardware palette index. This flag allows
the application to show the contents of the palette for the
display device.

Specifies that the color will be placed in an unused entry in
the system palette instead of being matched to an existing
color in the system palette. Once this color is in the system
palette, colors in other logical palettes can be matched to
this color. If there are no unused entries in the system
palette, the color is matched normally.

Specifies that the logical palette entry will be used for
palette animation. Because the color will frequently
change, using this flag prevents other windows from
matching colors to this palette entry. If an unused system
palette entry is available, this color is placed in that entry.
Otherwise, the color will not be available for animation.

typedef struct tagPANOSE {
BYTE bFamilyType;

f* panose */

BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bletterform;
BYTE bMidline;
BYTE bXHeight;

} PANOSE;

The PANOSE structure describes the Panose font-classification values for a True
Type font.

Members

PANO SE 387

bFamilyType
Specifies the font family. This member can be one of the following values:

Value Meaning

0 Any

No fit

2 Text and display

3 Script

4 Decorative

5 Pictorial

bSerifStyle
Specifies the style of serifs for the font. This member can be one of the follow
ing values:

Value Meaning

0 Any

No fit

2 Cove

3 Obtuse cove

4 Square cove

5 Obtuse square cove

6 Square

7 Thin

8 Bone

9 Exaggerated

10 Triangle

11 Normal sans

12 Obtuse sans

13 Perp sans

14 Flared

15 Rounded

388 PANOSE

bWeight
Specifies the weight of the font. This member can be one of the following
values:

Value Meaning

0 Any

No fit

2 Very light

3 Light

4 Thin

5 Book

6 Medium

7 Demi

8 Bold

9 Heavy

10 Black

11 Nord

bProportion
Specifies the proportion of the font. This member can be one of the following
values:

Value Meaning

0 Any

No fit

2 Old style

3 Modern

4 Even width

5 Expanded

6 Condensed

7 Very expanded

8 Very condensed

9 Monospaced

PANOSE 389

bContrast
Specifies the contrast of the font. This member can be one of the following
values:

Value Meaning

0 Any

No fit

2 None

3 Very low

4 Low

5 Medium low

6 Medium

7 Medium high

8 High

9 Very high

bStroke Variation
Specifies the stroke variation for the font. This member can be one of the fol
lowing values:

Value Meaning

0 Any

1 No fit

2 Gradual/diagonal

3 Gradual/transitional

4 Gradual/vertical

5 Gradual/horizontal

6 Rapid/vertical

7 Rapid/horizontal

8 Instant/vertical

390 PANOSE

bArmStyle
Specifies the style for the arms in the font. This member can be one of the fol
lowing values:

Value Meaning

0 Any

1 No fit

2 Straight arms/horizontal

3 Straight arms/wedge

4 Straight arms/vertical

5 Straight arms/single serif

6 Straight arms/double serif

7 Non-straight arms/horizontal

8 Non-straight arms/wedge

9 Non-straight arms/vertical

10 Non-straight arms/single serif

11 Non-straight arms/double serif

bLetterform
Specifies the letter form for the font. This member can be one of the following
values:

Value Meaning

0 Any

No fit

2 Normal/contact

3 Normal/weighted

4 Normal/boxed

5 Normal/flattened

6 Normal/rounded

7 Normal/off-center

8 Normal/square

9 Oblique/contact

10 Oblique/weighted

11 Oblique/boxed

12 Oblique/flattened

13 Oblique/rounded

14 Oblique/off-center

15 Oblique/square

PANO SE 391

bMidline
Specifies the sty le of the midline for the font. This member can be one of the
following values:

Value Meaning

0 Any

No fit

2 Standard/trimmed

3 Standard/pointed

4 Standard/serifed

5 High/trimmed

6 High/pointed

7 High/serifed

8 Constant/trimmed

9 Constant/pointed

10 Constant/serifed

11 Low /trimmed

12 Low/pointed

13 Low/serifed

bXHeight
Specifies the x-height of the font. This member can be one of the following
values:

Value Meaning

0 Any

No fit

2 Constant/small

3 Constant/standard

4 Constant/large

5 Ducking/small

6 Ducking/standard

7 Ducking/large

392 POINT

POINT CEJ

Members

See Also

POINTFX

Members

See Also

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

The POINT structure defines the x- and y-coordinates of a point.

x
Specifies the x-coordinate of a point.

y
Specifies they-coordinate of a point.

ChildWindowFromPoint, PtlnRect, WindowFromPoint

typedef struct tagPOINTFX {
FIXED x;
FIXED y;

} POINTFX;

The POINTFX structure contains the coordinates of points that describe
the outline of a character in a True Type font. POINTFX is a member of the
TTPOLYCURVE and TTPOLYGONHEADER structures.

x
Specifies the x-component of a point on the outline of a TrueType character.

y
Specifies they-component of a point on the outline of a TrueType character.

FIXED, TTPOLYCURVE, TTPOLYGONHEADER

PRINTDLG 393

PRINTDLG [IT]

Members

#include <commdlg.h>

typedef struct tagPD /* pd */
DWORD lStructSize;
HWND hwndOwner;
HGLOBAL hDevMode;
HGLOBAL hDevNames;
HOC hDC;
DWORD Flags;
UINT nFromPage;
UINT nToPage;
UINT nMinPage;
UINT nMaxPage;
UINT nCopies;
HINSTANCE hlnstance;
LPARAM lCustData;
UINT (CALLBACK* lpfnPrintHook)(HWND, UINT, WPARAM, LPARAM);
UINT (CALLBACK* lpfnSetupHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpPrintTemplateName;
LPCSTR lpSetupTemplateName;
HGLOBAL hPrintTemplate;
HGLOBAL hSetupTemplate;

PRINTDLG;

The PRINTDLG structure contains information that the system uses to initialize
the system-defined Print dialog box. After the user chooses the OK button to close
the dialog box, the system returns information about the user's selections in this
structure.

IStructSize
Specifies the length of the structure, in bytes. This member is filled on input.

hwndOwner
Identifies the window that owns the dialog box. This member can be any valid
window handle, or it should be NULL if the dialog box is to have no owner.

If the PD _SHOWHELP flag is set, hwndOwner must identify the window that
owns the dialog box. The window procedure for this owner window receives a
notification message when the user chooses the Help button. (The identifier for
the notification message is the value returned by the RegisterWindowMessage
function when HELPMSGSTRING is passed as its argument.)

This member is filled on input.

394 PRINTDLG

hDevMode
Identifies a movable global memory object that contains a DEVMODE struc
ture. Before the PrintDlg function is called, the members in this structure may
contain data used to initialize the dialog box controls. When the PrintDlg func
tion returns, the members in this structure specify the state of each of the dialog
box controls.

If the application uses the structure to initialize the dialog box controls, it must
allocate space for and create the DEVMODE structure. (The application should
allocate a movable memory object.)

If the application does not use the structure to initialize the dialog box controls,
the hDevMode member may be NULL. In this case, the PrintDlg function allo
cates memory for the structure, initializes its members, and returns a handle that
identifies it.

If the device driver for the specified printer does not support extended device
modes, the hDevMode member is NULL when PrintDlg returns.

If the device name (specified by the dmDeviceName member of the
DEVMODE structure) does not appear in the [devices] section of WIN.IN!,
the PrintDlg function returns an error.

The value of hDevMode may change during the execution of the PrintDlg
function. This member is filled on input and output.

hDevNames
Identifies a movable global memory object that contains a DEVNAMES struc
ture. This structure contains three strings; these strings specify the driver name,
the printer name, and the output-port name. Before the PrintDlg function is
called, the members of this structure contain strings used to initialize the dialog
box controls. When the PrintDlg function returns, the members of this struc
ture contain the strings typed by the user. The calling application uses these
strings to create a device context or an information context.

If the application uses the structure to initialize the dialog box controls, it must
allocate space for and create the DEVMODE data structure. (The application
should allocate a movable global memory object.)

If the application does not use the structure to initialize the dialog box controls,
the hDevNames member can be NULL. In this case, the PrintDlg function allo
cates memory for the structure, initializes its members (using the printer name
specified in the DEVMODE data structure), and returns a handle that identifies
it. When the PrintDlg function initializes the members of the DEVNAMES
structure, it uses the first port name that appears in the [devices] section of
WIN.IN!. For example, the function uses "LPTl" as the port name if the follow
ing string appears in the [devices] section:

PCL I HP LaserJet=HPPCL,LPTl:,LPT2:

If both the hDevMode and hDevNames members are NULL, PrintDlg speci
fies the current default printer for hDevNames.

PRINTDLG 395

The value of hDevNames may change during the execution of the PrintDlg
function. This member is filled on input and output.

hDC
Identifies either a device context or an information context, depending on
whether the Flags member specifies the PD _RETURNDC or the
PD _RETURNIC flag. If neither flag is specified, the value of this member is
undefined. If both flags are specified, hDC is PD_RETURNDC.

This member is filled on output.

Flags
Specifies the dialog box initialization flags. This member may be a combination
of the following values:

Value

PD_ALLPAGES

PD_COLLATE

PD_DISABLEPRINTTOFILE

PD_ENABLEPRINTHOOK

PD_ENABLEPRINTTEMPLATE

Meaning

Indicates that the All radio button was selected
when the user closed the dialog box. (This value
is used as a placeholder, to indicate that the
PD_PAGENUMS and PD_SELECTION flags
are not set. This value can be set on input and
output.)

Causes the Collate Copies check box to be
checked when the dialog box is created. When
the PrintDlg function returns, this flag indicates
the state in which the user left the Collate
Copies check box. This flag can be set on input
and output.

Disables the Print to File check box.

Enables the hook function specified in the
lpfnPrintHook member of this structure.

Causes the system to use the dialog box tem
plate identified by the hlnstance and lpPrint
TemplateName members to create the Print
dialog box.

PD_ENABLEPRINTTEMPLATEHANDLE

PD_ENABLESETUPHOOK

PD_ENABLESETUPTEMPLATE

Indicates that the hPrintTemplate member iden
tifies a data block that contains a pre-loaded
dialog box template. The system ignores the
hlnstance member if this flag is specified.

Enables the hook function specified in the
lpfnSetupHook member of this structure.

Causes the system to use the dialog box tem
plate identified by the hlnstance and lpSetup
TemplateName members to create the Print
Setup dialog box.

396 PRINTDLG

Value Meaning

PD_ENABLESETUPTEMPLATEHANDLE

PD_HIDEPRINTTOFILE

PD_NOPAGENUMS

PD_NOSELECTION

PD_NOWARNING

PD_PAGENUMS

PD_PRINTSETUP

PD_PRINTTOFlLE

PD _RETURNDC

PD_RETURNDEFAULT

Indicates that the hSetupTemplate member
identifies a data block that contains a pre-loaded
dialog box template. The system ignores the
hlnstance member if this flag is specified.

Hides and disables the Print to File check box.

Disables the Pages radio button and the
associated edit controls.

Disables the Selection radio button.

Prevents the warning message from being dis
played when there is no default printer.

Causes the Pages radio button to be selected
when the dialog box is created. When the
PrintDlg function returns, this flag is set if the
Pages button is in the selected state. If neither
PD_PAGENUMS norPD_SELECTIONis
specified, the All radio button is in the selected
state.

This flag can be set on input and output.

Causes the system to display the Print Setup
dialog box rather than the Print dialog box.

Causes the Print to File check box to be checked
when the dialog box is created.

This flag can be set on input and output.

Causes the PrintDlg function to return a device
context matching the selections that the user
made in the dialog box. The handle to the
device context is returned in the hDC
member. If neither PD _RETURNDC nor
PD_RETURNIC is specified, the hDC parame
ter is undefined on output.

Causes the PrintDlg function to return
DEVMODE and DEVNAMES structures that
are initialized for the system default printer.
PrintDlg does this without displaying a dialog
box. Both the hDevNames and the hDevMode
members should be NULL; otherwise, the func
tion returns an error. If the system default
printer is supported by an old printer driver
(earlier than Windows version 3.0), only the
hDevNames member is returned-the
hDevMode member is NULL.

Value

PD_RETURNIC

PD_SELECTION

PD_SHOWHELP

PD_USEDEVMODECOPIES

PRINTDLG 397

Meaning

Causes the PrintDlg function to return an infor
mation context matching the selections that the
user made in the dialog box. The information
context is returned in the hDC member. If
neither PD_RETURNDC nor PD_RETURNIC
is specified, the hDC parameter is undefined on
output.

Causes the Selection radio button to be selected
when the dialog box is created. When the
PrintDlg function returns, this flag is set if the
Selection button is in the selected state. If
neither PD_PAGENUMS nor PD_SELECTION
is specified, the All radio button is in the
selected state.

This flag can be set on input and output.

Causes the dialog box to show the Help button.
If this flag is specified, the hwndOwner must
not be NULL.

Disables the Copies edit control if a printer
driver does not support multiple copies. If a
driver does support multiple copies, setting this
flag indicates that the PrintDlg function should
store the requested number of copies in the
dmCopies member of the DEVMODE struc
ture and store the value 1 in the nCopies mem
ber of the PRINTDLG structure.

If this flag is not set, the PRINTDLG structure
stores the value 1 in the dmCopies member of
the DEVMODE structure and stores the re
quested number of copies in the nCopies
member of the PRINTDLG structure.

These flags may be set when the structure is initialized, except where specified.

nFromPage
Specifies the initial value for the starting page in the From edit control. When
the PrintDlg function returns, this member specifies the page at which to begin
printing. This value is valid only ifthe PD_PAGENUMS flag is specified. The
maximum value for this member is OxFFFE; if OxFFFF is specified, the From
edit control is left blank.

This member is filled on input and output.

398 PRINTDLG

nToPage
Specifies the initial value for the ending page in the To edit control. When the
PrintDlg function returns, this member specifies the last page to print. This
value is valid only ifthe PD_PAGENUMS flag is specified. The maximum
value for this member is OxFFFE; if OxFFFF is specified, the To edit control is
left blank.

This member is filled on input and output.

nMinPage
Specifies the minimum number of pages that can be specified in the From and
To edit controls. This member is filled on input.

nMaxPage
Specifies the maximum number of pages that can be specified in the From and
To edit controls. This member is filled on input.

nCopies
Before the PrintDlg function is called, this member specifies the value to be
used to initialize the Copies edit control if the hDevMode member is NULL;
otherwise, the dmCopies member of the DEVMODE structure contains the
value used to initialize the Copies edit control.

When PrintDlg returns, the value specified by this member depends on the ver
sion of Windows for which the printer driver was written. For printer drivers
written for Windows versions earlier than 3.0, this member specifies the num
ber of copies requested by the user in the Copies edit control. For printer
drivers written for Windows versions 3.0 and later, this member specifies the
number of copies requested by the user if the PD_USEDEVMODECOPIES
flag was not set; otherwise, this member specifies the value 1 and the actual
number of copies requested appears in the DEVMODE structure.

This member is filled on input and output.

hlnstance
Identifies a data block that contains the pre-loaded dialog box template
specified by the lpPrintTemplateName or the lpSetupTemplateName
member. This member is used only if the Flags member specifies the
PD_ENABLEPRINTTEMPLATE or PD _ENABLESETUPTEMPLATE flag;
otherwise, this member is ignored.

This member is filled on input.

ICustData
Specifies application-defined data that the system passes to the hook function
identified by the lpfnPrintHook or the lpfnSetupHook member. The system
passes a pointer to the PRINTDLG structure in the lParam parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the ICust
Data member.

See Also

PRINTDLG 399

lpfnPrintHook
Points to the exported hook function that processes dialog box messages if the
application customizes the Print dialog box. This member is ignored unless the
PD_ENABLEPRINTHOOK flag is specified in the Flags member.

This member is filled on input.

lpfnSetupHook
Points to the exported hook function that processes dialog box messages if the
application customizes the Print Setup dialog box. This member is ignored un
less the PD_ENABLESETUPHOOK flag is specified in the Flags member.

This member is filled on input.

lpPrintTemplateName
Points to a null-terminated string that specifies the dialog box template that is to
be substituted for the standard dialog box template in COMMDLG. An applica
tion must specify the PD _ENABLEPRINTTEMPLA TE constant in the Flags
member to enable the hook function; otherwise, the system ignores this struc
ture member.

This member is filled on input.

lpSetupTemplateName
Points to a null-terminated string that specifies the dialog box template that is to
be substituted for the standard dialog box template in COMMDLG. An applica
tion must specify the PD_ENABLEPRINTTEMPLATE constant in the Flags
member to enable the hook function; otherwise, the system ignores this struc
ture member.

This member is filled on input.

hPrintTemplate
Identifies the handle of the global memory object that contains the pre
loaded dialog box template to be used instead of the default template in
COMMDLG.DLL for the Print dialog box. To use the dialog box template,
the PD_ENABLEPRINTTEMPLATEHANDLE flag must be set.

This member is filled on input.

hSetupTemplate
Identifies the handle of the global memory object that contains the pre
loaded dialog box template to be used instead of the default template in
COMMDLG.DLL for the Print Setup dialog box. To use the dialog box tem
plate, the PD_ENABLEPRINTTEMPLATEHANDLE flag must be set.

This member is filled on input.

CreateDC, CreateIC, PrintDlg, DEVMODE, DEVNAMES

400 RASTERIZER_STATUS

RASTERIZER_ STATUS

Members

See Also

RECT

typedef struct tagRASTERIZER_STATUS {
int nSize;
int wFlags;
int nlanguageID;

} RASTERIZER_STATUS;

f* rs */

The RASTERIZEILSTATUS structure contains information about whether
TrueType is installed. This structure is filled when an application calls the
GetRasterizerCaps function.

nSize
Specifies the size, in bytes, of the RASTERIZEILSTATUS structure.

wF1ags
Specifies whether at least one TrueType font is installed and whether TrueType
is enabled. This value is TT_AV AILABLE and/or TT_ENABLED ifTrueType
is on the system.

nLanguagelD
Specifies the language in the system's SETUP.INF file. For more information
about Microsoft language identifiers, see the StringTable structure.

GetRasterizerCaps

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

f* re */

The RECT structure defines the coordinates of the upper-left and lower-right
comers of a rectangle.

Members

Comments

RGBQUAD

Members

RGBQUAD 401

left
Specifies the x-coordinate of the upper-left corner of a rectangle.

top
Specifies they-coordinate of the upper-left corner of a rectangle.

right
Specifies the x-coordinate of the lower-right corner of a rectangle.

bottom
Specifies they-coordinate of the lower-right corner of a rectangle.

The width of the rectangle defined by the RECT structure must not exceed 32, 767
units.

When the RECT structure is passed to the FilIRect function, graphics device inter
face (GDI) fills the rectangle up to, but not including, the right column and bottom
row of pixels.

typedef struct tagRGBQUAD { f* rgbq */
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;

The RGBQUAD structure describes a color consisting of relative intensities of
red, green, and blue. The bmiColors member of the BITMAPINFO structure con
sists of an array of RGBQUAD structures.

rgbBlue
Specifies the intensity of blue in the color.

rgbGreen
Specifies the intensity of green in the color.

rgbRed
Specifies the intensity of red in the color.

rgbReserved
Not used; must be set to zero.

402 RGBTRIPLE

RGBTRIPLE [IT]

Members

SEGINFO

Members

typedef struct tagRGBTRIPLE { /* rgbt */
BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;

} RGBTRIPLE;

The RGBTRIPLE structure describes a color consisting of relative intensities of
red, green, and blue. The bmciColors member of the BITMAPCOREINFO struc
ture consists of an array of RGBTRIPLE structures.

Windows applications should use the BITMAPINFO structure instead of
BITMAPCOREINFO whenever possible. The BITMAPINFO structure uses
an RGBQUAD structure instead of the RGBTRIPLE structure.

rgbtBlue
Specifies the intensity of blue in the color.

rgbtGreen
Specifies the intensity of green in the color.

rgbtRed
Specifies the intensity of red in the color.

typedef struct tagSEGINFO {
UINT offSegment;
UINT cbSegment;
UINT flags;
UINT cbAlloc;
HGLOBAL h;
UINT alignShift;
UINT reserved[2J;

} SEGINFO;

The SEGINFO structure contains information about a data or code segment. This
structure is filled in by the GetCodelnfo function.

offSegment
Specifies the offset, in sectors, to the contents of the segment data, relative to
the beginning of the file. (Zero means no file data is available.) The size of the
sector is determined by shifting left by 1 the value given in the alignShift
member.

See Also

SEGINFO 403

cbSegment
Specifies the length of the segment in the file, in bytes. Zero means 64 K.

flags
Contains flags which specify attributes of the segment. The following list de
scribes these flags:

Bit

0-2

3

4

5-6
7

8

9

10-15

Meaning

Specifies the segment type. If bit 0 is set to 1, the segment is a data seg
ment. Otherwise, the segment is a code segment.

Specifies whether segment data is iterated. When this bit is set to 1, the
segment data is iterated.

Specifies whether the segment is movable or fixed. When this bit is set to
1, the segment is movable. Otherwise, it is fixed.

Reserved.

Specifies whether the segment is a read-only data segment or an execute
only code segment. If this bit is set to 1 and the segment is a code seg
ment, the segment is an execute-only segment. If this bit is set to zero and
the segment is a data segment, it is a read-only segment.

Specifies whether the segment has associated relocation information. If
this bit is set to 1, the segment has relocation information. Otherwise, the
segment does not have relocation information.

Specifies whether the segment has debugging information. If this bit is
set to 1, the segment has debugging information. Otherwise, the segment
does not have debugging information.

Reserved.

cbAlloc

h

Specifies the total amount of memory allocated for the segment. This amount
may exceed the actual size of the segment. Zero means 64K.

Identifies the global memory for the segment.

alignShift
Specifies the size of the addressable sector as an exponent of 2. An executable
file pads the application's code, data, and resource segments with zero bytes so
that the segments are always a multiple of the file-segment size. Windows dis
cards the extra bytes when it loads the segments from the file.

reserved
Specifies two reserved UINT values.

GetCodelnfo

404 SIZE

SIZE ITIJ

Members

See Also

typedef struct tagSIZE {
int ex;
int cy;

} SIZE;

The SIZE structure contains viewport extents, window extents, text extents, bit
map dimensions, and the aspect-ratio filter for some extended functions for Win
dows 3.1.

ex
Specifies the x-extent when a function returns.

cy
Specifies they-extent when a function returns.

GetAspectRatioFilterEx, GetBitmapDimensionEx, GetTextExtentPoint,
GetViewportExtEx, GetWindowExtEx, ScaleViewportExtEx,
Scale WindowExtEx, SetBitmapDimensionEx, Set ViewportExtEx,
SetWindowExtEx

STACKTRACEENTRY
#include <toolhelp.h>

typedef struct tagSTACKTRACEENTRY { /* ste */
DWORD dwSize;
HTASK hTask;
WORD wSS;
WORD wBP;
WORD wCS;
WORD wIP;
HMODULE hModule;
WORD wSegment;
WORD wFlags;

} STACKTRACEENTRY;

The STACKTRACEENTRY structure contains information about one stack
frame. This information enables an application to trace back through the stack of a
specific task.

Members

See Also

STACKTRACEENTRY 405

dwSize
Specifies the size of the STACKTRACEENTRY structure, in bytes.

hTask
Identifies the task handle for the stack.

wSS
Contains the value in the SS register. This value is used with the value of the
wBP member to determine the next entry in the stack-trace table.

wBP
Contains the value in the BP register. This value is used with the wSS value to
determine the next entry in the stack-trace table.

wCS
Contains the value in the CS register on return. This value is used with the
value of the wIP member to determine the return value of the function.

wIP
Contains the value in the IP register on return. This value is used with the wCS
value to determine the return value of the function.

hModule
Identifies the module that contains the currently executing function.

wSegment
Contains the segment number of the current selector.

wFlags
Indicates the frame type. This type can be one of the following values:

Value

FRAME_FAR

FRAME_NEAR

Meaning

The CS register contains a valid code segment.

The CS register is null.

StackTraceCSIPFirst, StackTraceNext, StackTraceFirst

406 SYSHEAPINFO

SYSHEAPINFO

Members

See Also

#include <toolhelp.h>

typedef struct tagSYSHEAPINFO { /* shi */
DWORD dwSize;
WORD wUserFreePercent;
WORD wGDIFreePercent;
HGLOBAL hUserSegment;
HGLOBAL hGDISegment;

} SYSHEAPINFO;

The SYSHEAPINFO structure contains information about the USER and GDI
modules.

dwSize
Specifies the size of the SYSHEAPINFO structure, in bytes.

wUserFreePercent
Specifies the percentage of the USER local heap that is free.

wGDIFreePercent
Specifies the percentage of the GDI local heap that is free.

hUserSegment
Identifies the DGROUP segment of the USER local heap.

hGDISegment
Identifies the DGROUP segment of the GDI local heap.

SystemHeaplnfo

TASKENTRY 407

TASKENTRY [II]

Members

#include <toolhelp.h>

typedef struct tagTASKENTRY { /* te *f
DWORD dwSize;
HTASK hTask;
HTASK hTaskParent;
HINSTANCE hlnst;
HMODULE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;
WORD wcEvents;
HGLOBAL hQueue;
char szModule[MAX_MODULE_NAME + 1];
WORD wPSPOffset;
HANDLE hNext;

} TASKENTRY;

The TASKENTRY structure contains information about one task.

dwSize
Specifies the size of the TASKENTRY structure, in bytes.

hTask
Identifies the task handle for the stack.

hTaskParent
Identifies the parent of the task.

hlnst
Identifies the instance handle of the task. This value is equivalent to the task's
DGROUP segment selector.

hModule
Identifies the module that contains the currently executing function.

wSS
Contains the value in the SS register.

wSP
Contains the value in the SP register.

wStackTop
Specifies the offset to the top of the stack (lowest address on the stack).

wStackMinimum
Specifies the lowest segment number of the stack during execution of the task.

408 TEXTMETRIC

See Also

wStackBottom
Specifies the offset to the bottom of the stack (highest address on the stack).

wcEvents
Specifies the number of pending events.

hQueue
Identifies the task queue.

szModule
Specifies the name of the module that contains the currently executing function.

wPSPOffset
Specifies the offset from the program segment prefix (PSP) to the beginning of
the executable code segment.

hNext
Identifies the next entry in the task list. This member is reserved for internal use
by Windows.

TaskFindHandle, TaskFirst, TaskNext

TEXTMETRIC [I!]

typedef struct tagTEXTMETRIC { /* tm */
int tmHeight;
int tmAscent;
int tmDescent;
int tmlnternalleading;
int tmExternalleading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmlastChar;
BYTE tmDefaultCha r;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

} TEXTMETRIC;

Members

TEXTMETRIC 409

The TEXTMETRIC structure contains basic information about a physical font.
For Windows version 3.1, the EnumFonts and EnumFontFamiliesfunctions
return information about TrueType fonts in a NEWTEXTMETRIC structure.

tmHeight
Specifies the height of character cells. (The height is the sum of the tmAscent
and tmDescent members.)

tmAscent
Specifies the ascent of character cells. (The ascent is the space between the base
line and the top of the character cell.)

tmDescent
Specifies the descent of character cells. (The descent is the space between the
bottom of the character cell and the base line.)

tmlnternalLeading
Specifies the difference between the point size of a font and the physical
size of the font. For True Type fonts, this value is equal to tmHeight minus
(s * ntmSizeEM), where s is the scaling factor for the TrueType font and
ntmSizeEM is a value from the NEWTEXTMETRIC structure. For bitmap
fonts, this value is used to determine the point size of a font. When an applica
tion specifies a negative value in the lfHeight member of the LOGFONT struc
ture, the application is requesting a font whose height equals tmHeight minus
tmlnternalLeading.

tmExternalLeading
Specifies the amount of extra leading (space) that the application adds between
rows. Since this area is outside the character cell, it contains no marks and will
not be altered by text output calls in either opaque or transparent mode. The
font designer sometimes sets this member to zero.

tmAveCharWidth
Specifies the average width of characters in the font. For ANSI_CHARSET
fonts, this is a weighted average of the characters "a" through "z" and the space
character. For other character sets, this value is an unweighted average of all
characters in the font.

tmMaxCharWidth
Specifies the "B" spacing of the widest character in the font. For more informa
tion about "B" spacing, see the description of the ABC structure.

tmWeight
Specifies the weight of the font. This member can be one of the following
values:

Constant

FW _DONTCARE

FW_THIN

FW _EXTRALIGHT

Value

0
100

200

410 TEXTMETRIC

Constant Value

FW _ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW _SEMIBOLD 600
FW _DEMIBOLD 600
FW_BOLD 700
FW _EXTRABOLD 800
FW _ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

tmltalic
Specifies an italic font if it is nonzero.

tmUnderlined
Specifies an underlined font if it is nonzero.

tmStruckOut
Specifies a "struckout" font if it is nonzero.

tmFirstChar
Specifies the value of the first character defined in the font.

tmLastChar
Specifies the value of the last character defined in the font.

tmDefaultChar
Specifies the value of the character that will be substituted for characters that
are not in the font.

tmBreakChar
Specifies the value of the character that will be used to define word breaks for
text justification.

tmPitchAndFamily
Specifies the pitch and family of the selected font.

The four low-order bits identify the type of font, as shown in the following list:

Value

TMPF_PITCH

TMPF _VECTOR

TMPF _ TRUETYPE

TMPF _DEVICE

Meaning

Designates a fixed-pitch font.

Designates a vector or TrueType font.

Designates a TrueType font.

Designates a device font.

TEXTMETRIC 411

Some fonts are identified by several of these bits-for example, the bits
TMPF _PITCH, TMPF _VECTOR, and TMPF _TRUETYPE would be set for
the monospace TrueType font, Courier New. The TMPF _DEVICE bit could be
set for a TrueType font as well, because this bit is set for both downloaded and
device-resident fonts.

When the TMPF _TRUETYPE bit is set, the font is usable on all output devices.
For example, if a TrueType font existed on a printer but could not be used on
the display, the TMPF _TRUETYPE bit would not be set for that font.

The four high-order bits of this member designate the font family. The
tmPitchAndFamily member can be combined with the value OxFO by using
the bitwise AND operator and can then be compared with the font family
names for an identical match. The following font families are defined:

Value

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

FF_ROMAN

FF_SCRIPT

FF_SWISS

tmCharSet

Meaning

Novelty fonts. Old English is an example.

Don't care or don't know.

Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New are examples.

Fonts with variable stroke width and with serifs. Times
New Roman and New Century Schoolbook are examples.

Fonts designed to look like handwriting. Script and Cursive
are examples.

Fonts with variable stroke width and without serifs. MS
Sans Serif is an example.

Specifies the character set of the font. The following values are defined:

Constant Value

ANSI_CHARSET 0

DEFAULT_CHARSET

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

tmOverhang
Specifies the extra width that is added to some synthesized fonts. When synthe
sizing some attributes, such as bold or italic, GDI or a device sometimes adds
width to a string on both a per-character and per-string basis. For example, GDI
makes a string bold by expanding the intracharacter spacing and overstriking by
an offset value and italicizes a font by skewing the string. In either case, the
string is wider after the attribute is synthesized. For bold strings, the overhang
is the distance by which the overstrike is offset. For italic strings, the overhang
is the amount the top of the font is skewed past the bottom of the font.

412 TIMERINFO

The tmOverhang member is zero for many italic and bold TrueType fonts be
cause many TrueType fonts include italic and bold faces that are not synthe
sized. For example, the overhang for Courier New Italic is zero.

An application that uses raster fonts can use the overhang value to determine
the spacing between words that have different attributes.

tmDigitizedAspectX
Specifies the horizontal aspect of the device for which the font was designed.

tmDigitizedAspectY
Specifies the vertical aspect of the device for which the font was designed. The
ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is the
aspect ratio of the device for which the font was designed.

Comments All sizes are given in logical units; that is, they depend on the current mapping
mode of the display context.

See Also EnumFontFamilies, EnumFonts, GetDeviceCaps, GetTextMetrics

TIMERINFO [IT]

Members

Comments

See Also

#include <toolhelp.h>

typedef struct tagTIMERINFO { /* ti */
DWORD dwSize;
DWORD dwmsSinceStart;
DWORD dwmsThisVM;

} TIMERINFO;

The TIMERINFO structure contains the elapsed time since the current task be
came active and since the virtual machine (VM) started.

dwSize
Specifies the size of the TIMERINFO structure, in bytes.

dwmsSinceStart
Contains the amount of time, in milliseconds, since the current task became
active.

dwmsThisVM
Contains the amount of time, in milliseconds, since the current VM started.

In standard mode, the dwmsSinceStart and dwmsThisVM values are the same.

TimerCount

TTPOLYCURVE 413

TTPOLYCURVE ITIJ

Members

Comments

See Also

typedef struct tagTTPOLYCURVE {
UINT wType;
UINT cpfx;
POINTFX apfx[l];

} TTPOLYCURVE;

The TTPOL YCURVE structure contains information about a curve in the outline
of a TrueType character.

wType
Specifies the type of curve described by the structure. This member can be one
of the following values:

Value

TT_PRIM_LINE

TT_PRIM_QSPLINE

cpfx

Meaning

Curve is a polyline.

Curve is a quadratic spline.

Specifies the number of POINTFX structures in the array.

apfx
Specifies an array of POINTFX structures that define the polyline or quadratic
spline.

When an application calls the GetGlyphOutline function, a glyph outline for a
True Type character is returned in a TTPOL YGONHEADER structure followed
by as many TTPOL YCURVE structures as are required to describe the glyph.
All points are returned as POINTFX structures and represent absolute positions,
not relative moves. The starting point given by the pfxStart member of the
TTPOL YGONHEADER structure is the point at which the outline for a contour
begins. The TTPOL YCURVE structures that follow can be either polyline
records or spline records.

Polyline records are a series of points; lines drawn between the points describe the
outline of the character. Spline records represent the quadratic curves used by
TrueType (that is, quadratic b-splines).

POINTFX, TTPOLYGONHEADER

414 TTPOLYGONHEADER

TTPOLYGONHEADER

Members

Comments

See Also

typedef struct tagTTPOLYGONHEADER {
DWORD cb;
DWORD dwType;
POINTFX pfxStart;

} TTPOLYGONHEADER;

The TTPOL YGONHEADER structure specifies the starting position and type of
a contour in a TrueType character outline.

ch
Specifies the number of bytes required by the TTPOL YGONHEADER struc
ture and TTPOL YCURVE structure or structures required to describe the con
tour.

dwType
Specifies the type of character outline that is returned. Currently, this value
must be TT_POLYGON_TYPE.

pfxStart
Specifies the starting point of the contour in the character outline.

Each TTPOLYGONHEADER structure is followed by one or more TTPOLY
CURVE structures.

POINTFX,TTPOLYCURVE

VS_FIXEDFILEINFO 415

VS_ FIXEDFILEINFO lliJ

Members

//include <ver.h>

typedef struct tagVS_FIXEDFILEINFO {
DWORD dwSignature;
DWORD dwStrucVersion;
DWORD dwFileVersionMS;
DWORD dwFileVersionLS;
DWORD dwProductVersionMS;
DWORD dwProductVersionLS;
DWORD dwFileFlagsMask;
DWORD dwFileFlags;
DWORD dwFileOS;
DWORD dwFileType;
DWORD dwFileSubtype;
DWORD dwFileDateMS;
DWORD dwFileDateLS;

} VS_FIXEDFILEINFO;

/* vsffi */

The VS_FIXEDFILEINFO structure contains version information about a file.

dwSignature
Specifies the value OxFEEF04BD.

dwStruc Version
Specifies the binary version number of this structure. The high-order word con
tains the major version number, and the low-order word contains the minor ver
sion number. This value must be greater than Ox00000029.

dwFile VersionMS
Specifies the high-order 32 bits of the binary version number for the file. The
value of this member is used with the value of the dwFile VersionLS member
to form a 64-bit version number.

dwFile VersionLS
Specifies the low-order 32 bits of the binary version number for the file. The
value of this member is used with the dwFile VersionMS value to form a 64-bit
version number.

dwProductVersionMS
Specifies the high-order 32 bits of the binary version number of the product
with which the file is distributed. The value of this member is used with the
value of the dwProductVersionLS member to form a 64-bit version number.

dwProductVersionLS
Specifies the low-order 32 bits of the binary version number of the product
with which the file is distributed. The value of this member is used with the
dwProductVersionMS value to form a 64-bit version number.

416 VS_FIXEDFILEINFO

dwFileFlagsMask
Specifies which bits in the dwFileFlags member are valid. If a bit is set, the
corresponding bit in the dwFileFlags member is valid.

dwFileFlags
Specifies the Boolean attributes of the file. The attributes can be a combination
of the following values:

Value

VS_FF _DEBUG

VS_FF _INFOINFERRED

VS_FF _PATCHED

VS_FF_PRERELEASE

VS_FF _PRIVATEBUILD

VS_FF _SPECIALBUILD

dwFileOS

Meaning

File contains debugging information or is compiled
with debugging features enabled.

File contains a dynamically created version-informa
tion resource. Some of the blocks for the resource
may be empty or incorrect. This value is not intended
to be used in version-information resources created
by using the VERSIONINFO statement.

File has been modified and is not identical to the
original shipping file of the same version number.

File is a development version, not a commercially re
leased product.

File was not built using standard release procedures.
If this value is given, the StringFilelnfo block must
contain a PrivateBuild string.

File was built by the original company using stan
dard release procedures but is a variation of the
standard file of the same version number. If this
value is given, the StringFilelnfo block must con
tain a SpecialBuild string.

Specifies the operating system for which this file was designed. This member
can be one of the following values:

Value

VOS_ UNKNOWN

VOS_DOS

VOS_NT

VOS_WINDOWS16

VOS_ WINDOWS32

VOS_DOS_ WINDOWS16

VOS_DOS_ WINDOWS32

VOS_NT_ WINDOWS32

Meaning

Operating system for which the file was designed is
unknown to Windows.

File was designed for MS-DOS.

File was designed for Windows NT.

File was designed for Windows version 3.0 or later.

File was designed for 32-bit Windows.

File was designed for Windows version 3.0 or later
running with MS-DOS.

File was designed for 32-bit Windows running with
MS-DOS.

File was designed for 32-bit Windows running with
Windows NT.

VS_FIXEDFILEINFO 417

The values Ox00002L, Ox00003L, Ox20000L and Ox30000L are reserved.

dwFileType
Specifies the general type of file. This type can be one of the following values:

Value Meaning

VFf_UNKNOWN

VFf_APP

VFT_DLL

VFf_DRV

File type is unknown to Windows.

File contains an application.

File contains a dynamic-link library (DLL).

File contains a device driver. If the dwFileType member is
VFf_DRV, the dwFileSubtype member contains a more
specific description of the driver.

VFT_FONT File contains a font. If the dwFileType member is
VFf_FONT, the dwFileSubtype member contains a more
specific description of the font.

VFf_VXD

VFf_STATIC_LIB

File contains a virtual device.

File contains a static-link library.

All other values are reserved for use by Microsoft.

dwFileSubtype
Specifies the function of the file. This member is zero unless the dwFileType
member is VFT_DRV, VFT_FONT, or VFT_ VXD.

If dwFileType is VFT_DRV, dwFileSubtype may be one of the following
values:

Value

VFf2_UNKNOWN

VFf2_DRV _COMM

VFf2_DRV_PRINTER

VFf2_DRV_KEYBOARD

VFf2_DRV _LANGUAGE

VFf2_DRV _DISPLAY

VFf2_DRV _MOUSE

VFf2_DRV _NETWORK

VFf2_DRV _SYSTEM

VFf2_DRV_INSTALLABLE

VFf2_DRV _SOUND

Meaning

Driver type is unknown to Windows.

File contains a communications driver.

File contains a printer driver.

File contains a keyboard driver.

File contains a language driver.

File contains a display driver.

File contains a mouse driver.

File contains a network driver.

File contains a system driver.

File contains an installable driver.

File contains a sound driver.

418 VS_FIXEDFILEINFO

Comments

See Also

If dwFileType is VFT_FONT, dwFileSubtype may be one of the following
values:

Value

VFT2_UNKNOWN

VFT2_FONT_RASTER

VFT2_FONT_ VECTOR

VFT2_FONT_TRUETYPE

Meaning

Font type is unknown to Windows.

File contains a raster font.

File contains a vector font.

File contains a TrueType font.

If dwFileType is VFT_ VXD, dwFileSubtype contains the virtual-device iden
tifier included in the virtual-device control block.

All dwFileSubtype values not listed here are reserved for use by Microsoft.

dwFileDateMS
Specifies the high-order 32 bits of a binary date/time stamp for the file. The
value of this member is used with the value of the dwFileDateLS member to
form a 64-bit number representing the date and time the file was created.

dwFileDateLS
Specifies the low-order 32 bits of a binary date/time stamp for the file. The
value of this member is used with the dwFileDateMS value to form a 64-bit
number representing the date and time the file was created.

The binary version numbers specified in this structure are intended to be integers
rather than character strings. For a file or product that has decimal points or letters
in its version number, the corresponding binary version number should be a
reasonable numeric representation.

A third-party developer can use the file-version values to reflect a private version
numbering scheme, as long as each new version of the product has a higher num
ber than the previous version. The File Installation library functions use these
values when comparing the ages of files.

Microsoft Windows Resource Compiler sets the dwFileDateMS and
dwFileDateLS members to zero.

V erQueryValue

WINDEBUGINFO 419

WINDEBUGINFO [ill

Members

typedef struct tagWINDEBUGINFO {
UINT flags;
DWORD dwOptions;
DWORD dwFilter;
char achAllocModule[8];
DWORD dwAllocBreak;
DWORD dwAllocCount;

WINDEBUGINFO;

The WINDEBUGINFO structure contains current system-debugging information
for the debugging version of Windows 3 .1.

flags
Specifies which members of the WINDEBUGINFO structure are valid. This
member can be one or more of the following values:

Value

WDI_OPTIONS

WDI_FILTER

WDI_ALLOCBREAK

dwOptions

Meaning

dwOptions member is valid.

dwFilter member is valid.

achAllocModule, dwAllocBreak, and dwAllocCount
members are valid.

Specifies debugging options. This member is valid only if WDI_OPTIONS is
specified in the flags member. It can be one or more of the following values:

Constant

DBO_CHECKHEAP

DBO _BUFFERFILL

DBO _DISABLEGPTRAPPING

Value

OxOOOl

Ox0004

Ox0010

Meaning

Performs local heap checking after
all calls to functions that manipu
late local memory.

Fills buffers passed to API func
tions with OxF9. This ensures that
the supplied buffer is completely
writable and helps detect overwrite
problems when the supplied buffer
size is not large enough.

Disables hooking of the fault inter
rupt vectors. This option is not
typically used by application
developers, because parameter
validation can cause many spurious
traps that are not errors.

420 WINDEBUGINFO

Constant Value Meaning

DBO_CHECKFREE Ox0020 Fills all freed local memory with
OxFB. All newly allocated memory
is checked to ensure that it is still
filled with OxFB-this ensures that
no application has written into a
freed memory object. This
option has no effect if
DBO_CHECKHEAP is not
specified.

DBO_INT3BREAK OxOIOO Breaks to the debugger with simple
INT 3 rather than a call to the
FatalExit function. This option
does not generate a stack backtrace.

DBO_NOFATALBREAK Ox0400 Does not break with the "abort,
break, ignore" prompt if a
DBF _FATAL message occurs.

DBO_NOERRORBREAK Ox0800 Does not break with the "abort,
break, ignore" prompt if a
DBF _ERROR message occurs.
This option also applies to invalid
parameter errors.

DBO_WARNINGBREAK OxlOOO Breaks with the "abort, break, ig-
nore" prompt if a
DBF_WARNING
message occurs. (Normally,
DBF _WARNING messages are
displayed but no break occurs).
This option also applies to invalid
parameter warnings.

DBO_TRACEBREAK Ox2000 Breaks with the "abort, break,
ignore" on any DBF _TRACE
message that matches the value
specified in the dwFilter member.

DBO_SILENT Ox8000 Does not display warning, error, or
fatal messages except in cases
where a stack trace and "abort,
break, ignore" prompt would occur.

dwFilter
Specifies filtering options for DBF _TRACE messages. (Normally, trace mes
sages are not sent to the debug terminal.) This member can be one or more of
the following values:

Comments

Constant

DBF _KRN_MEMMAN

DBF _KRN_LOADMODULE

DBF _KRN_SEGMENTLOAD

DBF _APPLICATION

DBF_DRIVER

DBF_PENWIN

DBF _MMSYSTEM

DBF_GDI

DBF_USER

DBF_KERNEL

achAllocModule

Value

OxOOOl

Ox0002

Ox0004

Ox0008

Ox0010

Ox0020

Ox0040

Ox0400

Ox0800

OxlOOO

WINDEBUGINFO 421

Meaning

Enables KERNEL messages related
to local and global memory manage
ment.

Enables KERNEL messages related
to module loading.

Enables KERNEL messages related
to segment loading.

Enables trace messages originating
from an application.

Enables trace messages originating
from device drivers.

Enables trace messages originating
from PENWIN.

Enables trace messages originating
from MMSYSTEM.

Enables trace messages originating
from GDI.

Enables trace messages originating
from USER.

Enables any trace message originat
ing from KERNEL. (This is a combi-
nation of DBF _KRN_MEMMAN,
DBF _KRN_LOADMODULE, and
DBF _KRN_SEGMENTLOAD.)

Specifies the name of the application module. (This can be different from the
name of the executable file.) This cannot be the name of a dynamic-link library
(DLL). The name is limited to 8 characters.

dwAllocBreak
Specifies the number of global or local memory allocations to allow before fail
ing allocation requests. When the count of allocations reaches the number
specified in this member, that allocation and all subsequent allocations fail. If
this member is zero, no allocation break is set, but the system counts allocations
and reports the current count in the dwAllocCountmember.

dwAllocCount
Current count of allocations. (This information is typically retrieved by calling
the GetWinDebuglnfo function.)

Developers can use the achAllocModule, dwAllocBreak, and dwAllocCount
members to ensure that an application performs correctly in out-of-memory condi
tions. Because memory allocations made by the system fail once the break count is

422 WINDOWPLACEMENT

See Also

reached, calls to functions such as Create Window, CreateBrush, and Select
Object will fail as well. Only allocations made within the context of the applica
tion specified by the achAllocModule member are affected by the allocation
break count.

DebugOutput, GetWinDebuglnfo, SetWinDebuglnfo

WINDOWPLACEMENT

Members

typedef struct tagWINDOWPLACEMENT {
UINT length;

/* wndpl *f

UINT flags;
U INT s howCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

} WINDOWPLACEMENT;

The WINDOWPLACEMENT structure contains information about the place
ment of a window on the screen.

length
Specifies the length, in bytes, of the structure. (The GetWindowPlacement
function returns an error if this member is not specified correctly.)

flags
Specifies flags that control the position of the minimized window and the
method by which the window is restored. This member can be one or both of
the following flags:

Value

WPF _SETMINPOSITION

WPF _RESTORETOMAXIMIZED

Meaning

Specifies that the x- and y-positions of the
minimized window may be specified. This
flag must be specified if the coordinates are
set in the ptMinPosition member.

Specifies that the restored window will be
maximized, regardless of whether it was
maximized before it was minimized. This
setting is valid only the next time the win
dow is restored. It does not change the de
fault restoration behavior. This flag is valid
only when the SW _SHOWMINIMIZED
value is specified for the showCmd member.

See Also

WINDOWPLACEMENT 423

showCmd
Specifies the current show state of the window. This member may be one of the
following values:

Value

SW_HIDE

SW _MINIMIZE

SW_RESTORE

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

SW_SHOWNA

SW _SHOWNOACTIVATE

SW _SHOWNORMAL

ptMinPosition

Meaning

Hides the window and passes activation to
another window.

Minimizes the specified window and activates the
top-level window in the system's list.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _SHOWNORMAL).

Activates a window and displays it in its current
size and position.

Activates a window and displays it as a maxi
mized window.

Activates a window and displays it as an icon.

Displays a window as an icon. The window that is
currently active remains active.

Displays a window in its current state. The win
dow that is currently active remains active.

Displays a window in its most recent size and
position. The window that is currently active re
mains active.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _RESTORE).

Specifies the position of the window's top-left corner when the window is min
imized.

ptMaxPosition
Specifies the position of the window's top-left corner when the window is maxi
mized.

rcNormalPosition
Specifies the window's coordinates when the window is in the normal
(restored) position.

POINT, RECT, ShowWindow

424 WINDOWPOS

WINDOWPOS

Members

typedef struct tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndinsertAfter;
int
int

x·
' y;

int ex;
int cy;
UINT flags;

WINDOWPOS;

The WINDOWPOS structure contains information about the size and position of
a window.

hwnd
Identifies the window.

hwndlnsertAfter
Identifies the window behind which this window is placed.

x
Specifies the position of the left edge of the window.

y
Specifies the position of the right edge of the window.

ex
Specifies the window width.

cy
Specifies the window height.

flags
Specifies window-positioning options. This member can be one of the follow
ing values:

Value

SWP _DRAWFRAME

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOMOVE

SWP _NOOWNERZORDER

SWP_NOSIZE

Meaning

Draws a frame (defined in the class description for
the window) around the window. The window re
ceives a WM_NCCALCSIZE message.

Hides the window.

Does not activate the window.

Retains current position (ignores the x and y mem
bers).

Does not change the owner window's position in
the Z order.

Retains current size (ignores the ex and cy mem
bers).

Value

SWP _NOREDRAW

SWP _NOREPOSITION

SWP _NOZORDER

SWP _SHOWWINDOW

WNDCLASS 425

Meaning

Does not redraw changes.

Same as SWP _NOOWNERZORDER.

Retains current ordering (ignores the hwnd
InsertAfter member).

Displays the window.

See Also EndDeferWindowPos

WNDCLASS Cfil

Members

typedef struct tagWNDCLASS /* WC */
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hlnstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;

} WNDCLASS;

The WNDCLASS structure contains the class attributes that are registered by the
RegisterCiass function.

style
Specifies the class style. These styles can be combined by using the bitwise OR
operator. This can be any combination of the following values:

Value

CS_BYTEALIGNCLIENT

CS_BYTEALIGNWINDOW

CS_CLASSDC

CS_DBLCLKS

Meaning

Aligns the client area of a window on the byte
boundary (in the x-direction).

Aligns a window on the byte boundary (in the x
direction). This flag should be set by applications
that perform bitmap operations in windows by
using the BitBlt function.

Gives the window class its own display context
(shared by instances).

Sends double-click messages to a window.

426 WNDCLASS

Value

CS_GLOBALCLASS

CS_HREDRAW

CS_NOCLOSE

CS_OWNDC

cs_pARENTDC

CS_SAVEBITS

CS_VREDRAW

lpfn WndProc

Meaning

Specifies that the window class is an application
global class. An application global class is created
by an application or library and is available to all
applications. The class is destroyed when the ap
plication or library that created the class exits; it is
essential, therefore, that all windows created with
the application global class be closed before this
occurs.

Redraws the entire window if the horizontal size
changes.

Inhibits the close option on the System menu.

Gives each window instance its own display con
text. Note that although the CS_OWNDC style is
convenient, it must be used with discretion be
cause each display context occupies approxi
mately 800 bytes of memory.

Gives the display context of the parent window to
the window class.

Specifies that the system should try to save the
screen image behind a window created from this
window class as a bitmap. Later, when the win
dow is removed, the system uses the bitmap to
quickly restore the screen image. This style is use
ful for small windows that are displayed briefly
and then removed before much other screen activ
ity takes place (for example, menus or dialog
boxes). This style increases the time required to
display the window since the system must first al
locate memory to store the bitmap.

Redraws the entire window if the vertical size
changes.

Points to the window procedure. For more information, see the description of
the WindowProc callback function.

cbClsExtra
Specifies the number of bytes to allocate following the window-class structure.
These bytes are initialized to zero.

cbWndExtra
Specifies the number of bytes to allocate following the window instance. These
bytes are initialized to zero. If an application uses the WNDCLASS structure to
register a dialog box created with the CLASS directive in the resource file, it
must set this member to DLGWINDOWEXTRA.

WNDCLASS 427

hlnstance
Identifies the class module. This member must be an instance handle and must
not be NULL.

hlcon
Identifies the class icon. This member must be a handle to an icon resource. If
this member is NULL, the application must draw an icon whenever the user
minimizes the application's window.

hCursor
Identifies the class cursor. This member must be a handle to a cursor resource.
If this member is NULL, the application must explicitly set the cursor shape
whenever the mouse moves into the application's window.

hbrBackground
Identifies the class background brush. This member can be either a handle to
the physical brush that is to be used for painting the background, or it can be a
color value. If a color value is given, it must be one of the standard system
colors listed below, and the value 1 must be added to the chosen color (for ex
ample, COLOR_BACKGROUND + 1 specifies the system background color).
If a color value is given, it must be converted to one of the following HBRUSH
types:

COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT

COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_INACTIVECAPTIONTEXT
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_ WINDOW
COLOR_ WINDOWFRAME
COLOR_ WINDOWTEXT

The system automatically deletes class background brushes when the class is
freed. An application should not delete these brushes, because a class may be
used by multiple instances of the application.

When this member is NULL, the application must paint its own background
whenever it is requested to paint in its client area. The application can deter
mine when the background needs painting by processing the message
WM_ERASEBKGND or by testing the fErase member of the PAINT
STRUCT structure filled by the BeginPaint function.

428 WNDCLASS

See Also

lpszMenuName
Points to a null-terminated string that specifies the resource name of the class
menu (as the name appears in the resource file). If an integer is used to identify
the menu, the MAKEINTRESOURCE macro can be used. If this member is
NULL, windows belonging to this class have no default menu.

lpszClassName
Points to a null-terminated string that specifies the name of the window class.

PAINTSTRUCT

Macros

Chapter 4

Alphabetic Reference .. 431

DECLARE_HANDLE32 431

This chapter describes the purpose and defines the parameters of macros
associated with functions and structures for the Microsoft Windows operating
system, version 3.1. It lists the Windows macros in alphabetic order.

DECLARE_ HANDLE
DECLARE_HANDLE(name)

Parameters

Comments

See Also

The DECLARE_ HANDLE macro creates a data type that can be used to define
16-bit handles.

name
Specifies the name of the new data type.

The DECLARE_ HANDLE macro is defined in WINDOWS.Has follows:

#define DECLARE_HANDLE(namel struct name## __ { int unused; }; \
typedef canst struct name## __ NEAR* name

DECLARE_HANDLE32

DECLARE_ HANDLE32
#include <ddeml.h>

DECLARE_HANDLE32(name)

Parameters

The DECLARE_HANDLE32 macro creates a data type that can be used to de
fine 32-bit handles.

name
Specifies the name of the new data type.

432 FIELD OFFSET

Comments The DECLARE_HANDLE32 macro is defined in DDEML.H as follows:

#define DECLARE_HANDLE32(name) struct name## __ { int unused; }; \
typedef const struct name## ___ far* name

See Also DECLARE_ HANDLE

FIELDOFFSET
int FIELDOFFSET(type,field)

Parameters

Return Value

Comments

The FIELDOFFSET macro computes the address offset of the specified member
in the structure specified by the type parameter.

type
Specifies the name of the structure.

field
Specifies the name of the member defined within the given structure.

The return value is the address offset of the given structure member.

The FIELDOFFSET macro is defined in WINDOWS.Has follows:

#define FIELDOFFSET(type, field) ((int)(&((type NEAR*)l)->field)-1)

GetGValue 433

GetBValue CIIJ
BYTE GetBValue(rgb)
DWORD rgb; /* RGB color value */

Parameters

Return Value

Comments

The GetBValue macro extracts the intensity value of the blue color field from the
32-bit integer value specified by the rgb parameter.

rgb
Specifies the RGB color value.

The return value specifies the intensity of the blue color field.

The GetBValue macro is defined in WINDOWS.H as follows:

#define GetBValue(rgb) CCBYTE)((rgb)>>16))

See Also GetGValue, GetRValue, RGB

GetGValue CIIJ
BYTE GetGValue(rgb)
DWORD rgb; I* RGB color value */

Parameters

Return Value

Comments

See Also

The GetG Value macro extracts the intensity value of the green color field from
the 32-bit integer value specified by the rgb parameter.

rgb
Specifies the RGB color value.

The return value specifies the intensity of the green color field.

The GetGValue macro is defined in WINDOWS.Has follows:

#define GetGValue(rgb) ((BYTE)(((WORD)(rgb)) >> 8))

GetBValue, GetRValue, RGB

434 GetRValue

GetRValue
BYTE GetRValue(rgb)
DWORD rgb; I* RGB color value *I

Parameters

Return Value

Comments

See Also

The GetRValue macro extracts the intensity value of the red color field from the
32-bit integer value specified by the rgb parameter.

rgb
Specifies the RGB color value.

The return value specifies the intensity of the red color field.

The GetRValue macro is defined in WINDOWS.Has follows:

#define GetRValueCrgb) CCBYTE)(rgb))

GetBValue, GetGValue, RGB

Global Discard
HG LO BAL GlobalDiscard(hglb)
HGLOBAL hglb; I* handle of object to discard */

Parameters

Return Value

Comments

The GlobalDiscard macro discards the given global memory object. The lock
count of the memory object must be zero.

hglb
Identifies the global memory object to be discarded.

The return value is a handle of the discarded object if the macro is successful.
Otherwise, it is NULL.

The GlobalDiscard macro discards only global objects that an application allo
cated with the GMEM_DISCARDABLE and GMEM_MOVEABLE flags set.
The macro fails if an application attempts to discard a fixed or locked object.

Although GlobalDiscard removes the global memory object from memory, the
object's handle remains valid. An application can subsequently pass the handle to
the GlobalReAlloc function to allocate another global memory object identified
by the same handle.

HIWORD 435

The GlobalDiscard macro is defined in WINDOWS.Has follows:

#define GlobalDiscard(h) GlobalReAlloc(h, 0L, GMEM_MOVEABLE)

See Also GlobalReAlloc

HI BYTE
BYTE HIBYTE(wlnteger)
WORD wlnteger; /* value from which high byte is retrieved */

Parameters

Return Value

Comments

The HIBYTE macro retrieves the high-order byte from the integer value specified
by the wlntegerparameter.

wlnteger
Specifies the value to be converted.

The return value specifies the high-order byte of the given value.

The HIBYTE macro is defined in WINDOWS.Has follows:

#define HIBYTE(w) ((BYTE)(((WORD)(w) >> 8) & 0xFF))

HIWORD C0
WORD HIWORD(dwlnteger)
DWORD dwlnteger; /* value from which high word is retrieved */

Parameters

Return Value

Comments

The HIWORD macro retrieves the high-order word from the 32-bit integer value
specified by the dwlnteger parameter.

dwlnteger
Specifies the value to be converted.

The return value specifies the high-order word of the given 32-bit integer value.

The HIWORD macro is defined in WINDOWS.H as follows:

#define HIWORD(l) ((WORD)((((DWORD)(l)) >> 16) & 0xFFFF))

436 LO BYTE

LO BYTE
BYTE LOBYTE(wVal)
WORD wVal; I* value from which low byte is retrieved */

The LOBYTE macro extracts the low-order byte from the short-integer value
specified by the wVal parameter.

Parameters w Val
Specifies the value to be converted.

Return Value The return value specifies the low-order byte of the value.

Comments The LOBYTE macro is defined in WINDOWS.H as follows:

#define LOBYTE(w) ((BYTE)(w))

See Also LO WORD

Local Discard
HLOCAL LocalDiscard(hloc)
HLOCAL hloc; I* handle of object to discard *I

The LocalDiscard macro discards the given local memory object. The lock count
of the memory object must be zero.

Parameters hloc

Return Value

Comments

Identifies the local memory object to be discarded.

The return value is equal to the hloc parameter if the macro is successful. Other
wise, it is NULL.

Although the LocalDiscard macro removes the local memory object from
memory, the object's handle remains valid. An application can subsequently pass
the handle to the LocalReAlloc function to allocate another local memory object
identified by the same handle.

See Also

LockData

LO WORD 437

The LocalLock function increments (increases by one) a memory object's lock
count. The LocalUnlock function decrements (decreases by one) the lock count.

The LocalDiscard macro is defined in WINDOWS.Has follows:

#define LocalDiscard(h) LocalReAlloc(h, 0, LMEM_MOVEABLE)

LocalLock, LocalReAlloc, LocalUnlock

HANDLE LockData(dummy)

Parameters

Return Value

Comments

See Also

LOWORD

The LockData macro locks the current data segment in memory. It is intended to
be used in modules that have movable data segments.

dummy
This parameter is ignored.

The return value identifies the locked data segment if the function is successful.
Otherwise, it is NULL.

The LockData macro is defined in WINDOWS.H as follows:

#define LockData(dummy) LockSegment((UINT)-1)

LockSegment

WORD LOWORD(dwVal)
DWORD dwVal; /*value from which low word is retrieved */

Parameters

The LOWORD macro extracts the low-order word from the 32-bit integer value
specified by the dwVal parameter.

dwVal
Specifies the value to be converted.

438 MAKEINTATOM

Return Value

Comments

See Also

The return value specifies the low-order word of the 32-bit integer value.

The LOWORD macro is defined in WINDOWS.H as follows:

1fdefine LOWORD(l) ((WORD)(DWORD)(l))

LO BYTE

MAKEINTATOM
LPCSTR MAKEINTATOM(wlnteger)
WORD wlnteger; I* integer to make into atom */

Parameters

Return Value

Comments

Example

The MAKEINTATOM macro creates an integer atom that represents a character
string of decimal digits.

Integer atoms created by this macro can be added to the atom table using the
AddAtom function.

wlnteger
Specifies the numeric value to be made into an integer atom.

The return value is a pointer to the atom created for the given integer.

Although the return value of the MAKEINT A TOM macro is cast as an
LPCSTR, the return value cannot be used as a string pointer, except when it is
passed to atom-management functions that require an LPCSTR parameter.

The DeleteAtom function always succeeds for integer atoms, even though it does
nothing. The string returned by the GetAtomName function for an integer atom
will be a null-terminated string where the first character is a pound sign(#) and the
remaining characters are the word used in the MAKEINTATOM macro.

The MAKEINTATOM macro is defined in WINDOWS.Has follows:

#define MAKEINTATOM(i) ((LPCSTR)MAKELP(NULL, (i)))

The following example uses the MAKEINTATOM macro to convert the number
32,565 into an integer atom. The atom is then added to the local atom table by the
AddAtom function:

See Also

ATOM at;
char szMsg[80];
LPCSTR lpszAtom;

lpszAtom = MAKEINTATOM(32565);
at= AddAtom(lpszAtom);

if (at== 0)

MAKEINTRESOURCE 439

MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOP);
else {

sprintf(szMsg, "AddAtom returned %u", at);
MessageBox(hwnd, szMsg, "", MB_OK);

AddAtom, DeleteAtom, GetAtomName

MAKEINTRESOURCE
LPCSTR MAKEINTRESOVRCE(idResource)
WORD idResource; /* resource identifier to convert */

Parameters

Return Value

Comments

See Also

The MAKEINTRESOURCE macro converts an integer resource identifier into a
value compatible with Windows resource-management functions. This macro is
used in place of a string containing the name of the resource.

idResource
Specifies the integer resource identifier to be converted.

The return value contains the idResource parameter in the low-order word and
zero in the high-order word.

The MAKEINTRESOURCE macro is defined in WINDOWS.Has follows:

#define MAKEINTRESOURCE(i) ((LPCSTRJMAKELP(NULL, (i)))

MA KELP

440 MAKE LONG

MAKELONG
DWORD MAKELONG(wLow, wHigh)
WORD wLow; /* low-order word of long value */

/ WORD wHigh; / high-order word of long value

Parameters

Return Value

Comments

MAKE LP

The MAKELONG macro creates an unsigned long integer by concatenating two
integer values, specified by the wLow and wHigh parameters.

wLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

The return value specifies an unsigned long-integer value.

The MAKELONG macro is defined in WINDOWS.H as follows:

#define MAKELONG(low, high) \
CCLONGlCCCWORD)(low)) I CCCDWORD)((WORD)(high))) << 16)))

void FAR* MAKELP(wSel, wOff)
WORD wSel; I* selector */
WORD wOjf; I* offset */

The MAKELP macro combines a segment selector and an address offset to create
a long (32-bit) pointer to a memory address.

Parameters wSel
Specifies a segment selector.

wOff
Specifies an offset from the beginning of the given segment to the desired byte.

Return Value The return value is a long pointer to an unspecified data type.

Comments The MAKELP macro is defined in WINDOWS.Has follows:

#define MAKELP(sel, off) ((void FAR*)MAKELONG((off), (sel)))

See Also MAKELONG

MAKELRESULT 441

MAKELPARAM ITIJ
LPARAM MAKELPARAM(wLow, wHigh)
WORD wLow; /* low-order word */
WORD wHigh; I* high-order word */

Parameters

Return Value

Comments

See Also

The MAKELPARAM macro creates an unsigned long integer for use as an
lParam parameter in a message. The macro concatenates two integer values,
specified by the wLow and wHigh parameters.

wLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

The return value specifies an unsigned long-integer value.

The MAKELPARAM macro is defined in WINDOWS.Has follows:

#define MAKELPARAM(low, high) ((LPARAMJMAKELONG(low, high))

MAKELONG, MAKELRESULT

MAKELRESULT
LRESULT MAKELRESULT(wLow, wHigh)
WORD wLow; I* low-order word */
WORD wHigh; I* high-order word */

Parameters

Return Value

The MAKELRESULT macro creates an unsigned long integer for use as a return
value from a window procedure. The macro concatenates two integer values,
specified by the wLow and wHigh parameters.

wLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

The return value specifies an unsigned long-integer value.

442 MAKE POINT

Comments The MAKELRESULT macro is defined in WINDOWS.H as follows:

#define MAKELRESULT(low, high) ((LRESULT)MAKELONG(low, high))

See Also MAKELONG, MAKELPARAM

MAKE POINT CI!J
POINT MAKEPOINT(lval)
DWORD lval; /* coordinates of a point */

The MAKEPOINT macro converts a long value that contains the x- and y-coordi
nates of a point into a POINT structure. This macro is useful for converting the
long value returned by the GetMessagePos function into a POINT structure and
for converting the lParam value passed with mouse messages into a POINT struc
ture containing the mouse coordinates.

Parameters lval

Return Value

Comments

See Also

Specifies the coordinates of a point. The x-coordinate is in the low-order word,
and they-coordinate is in the high-order word.

The return value is a pointer to a POINT structure.

The MAKEPOINT macro is defined in WINDOWS.H as follows:

#define MAKEPOINT(l) (*((POINT FAR*)&(l)))

The POINT structure has the following form:

typedef struct tagPOINT
int x;
int y;

l POINT;

/* pt */

The MAKEPOINT macro is not compatible with the Windows 32-bit application
programming interface (API).

GetMessagePos

min 443

max [li]

int max(value I, value2)

Parameters

Return Value

Comments

See Also

min

The max macro compares two values and returns the value of the larger one. The
data type can be any numerical data type, signed or unsigned. The type of the argu
ments and the return value is the same.

value I
Specifies the first of two values.

value2
Specifies the second of two values.

The return value is value I or value2, whichever is greater.

The max macro is defined in WINDOWS.Has follows:

#define max(a, bl (((a) > (bll ? (al : (bl)

min

int min(value I, value2)

Parameters

Return Value

The min macro compares two values and returns the value of the smaller one. The
data type can be any numerical data type, signed or unsigned. The type of the argu
ments and the return value is the same.

value I
Specifies the first of two values.

value2
Specifies the second of two values.

The return value is value I or value2, whichever is smaller.

444 OFFSETOF

Comments The min macro is defined in WINDOWS.H as follows:

#define min(a, b) (((a) < (b)) ? (a) : (b))

See Also max

OFFSETOF ITIJ
WORD OFFSETOF(lp)
void FAR* lp; /*long pointer */

The OFFSETOF macro retrieves the address offset of the specified long pointer.

Parameters lp
Specifies a long pointer.

Return Value The return value is the offset address.

Comments The OFFSETOF macro is defined in WINDOWS.H as follows:

#define OFFSETOF(lp) LOWORD(lp)

See Also LOWORD, SELECTOROF

PALETTEINDEX
COLORREF PALETTEINDEX(wPalettelndex)
WORD wPalettelndex; /*index to palette entry *I

The PALETTEINDEX macro accepts an index to a logical-color palette entry
and returns a value consisting of 1 in the high-order byte and the palette-entry
index in the low-order byte. This is called a palette-entry specifier. An application
using a color palette can pass this specifier instead of an explicit RGB value to
functions that expect a color. This allows the function to use the color in the
specified palette entry.

Parameters

Return Value

Comments

See Also

PALETTERGB 445

wPalettelndex
Specifies an index to the palette entry containing the color to be used for a
graphics operation.

The return value is a logical-palette index specifier. When using a logical palette,
an application can use this specifier in place of an explicit RGB value for graphics
device interface (GDI) functions that require a color.

The PALETTEINDEX macro is defined in WINDOWS.H as follows:

#define PALETTEINDEX(i) ((COLORREF)(0x01000000L I (DWORD)(WORD)(i)))

PALETTERGB, RGB

PALETIERGB
COLORREF PALETTERGB(cRed, cGreen, cBlue)
BYTE cRed; I* red component of palette-relative RGB *I

*I
*I

BYTE cGreen; I* green component of palette-relative RGB
BYTE cBlue; I* blue component of palette-relative RGB

The PALETTERGB macro accepts three values representing relative intensities
of red, green, and blue and returns a value consisting of 2 in the high-order byte
and an RGB value in the three low-order bytes. This is called a palette-relative
RGB specifier. An application using a color palette can pass this specifier instead
of an explicit RGB value to functions that expect a color.

For output devices that support logical palettes, Windows matches a palette-rela
tive RGB value to the nearest color in the logical palette of the device context as
though the application had specified an index to that palette entry. If an output dev
ice does not support a system palette, then Windows uses the palette-relative RGB
as though it were a conventional RGB doubleword returned by the RGB macro.

Parameters cRed
Specifies the intensity of the red color field.

cGreen
Specifies the intensity of the green color field.

cBlue
Specifies the intensity of the blue color field.

Return Value The return value specifies a palette-relative RGB value.

446 RGB

Comments

See Also

RGB

The PALETTERGB macro is defined in WINDOWS.Has follows:

#define PALETTERGB(r,g,b) (0x02000000L I RGB(r,g,b))

PALETTEINDEX,RGB

COLORREF RGB(cRed, cGreen, cBlue)
BYTE cRed; /* red component of color */
BYTE cGreen; /* green component of color */
BYTE cBlue; I* blue component of color */

The RGB macro selects an RGB color based on the parameters supplied and the
color capabilities of the output device.

Parameters cRed

Return Value

Comments

Comments

See Also

Specifies the intensity of the red color field.

cGreen
Specifies the intensity of the green color field.

cBlue
Specifies the intensity of the blue color field.

The return value specifies the resultant RGB color.

The intensity for each argument can range from 0 through 255. If all three intensi
ties are specified as zero, the result is black. If all three intensities are specified as
255, the result is white.

For information on using color values in a color palette, see the descriptions of the
PALETTEINDEX and PALETTERGB macros earlier in this chapter.

The RGB macro is defined in WINDOWS.Has follows:

#define RGB(r,g,b) ((COLORREF)(((BYTE)(rllCCWORO)(g)<<Blll \
(((OWORO)(BYTE)(b)J<<16)))

GetBValue, GetGValue, GetRValue, PALETTEINDEX, PALETTERGB

UnlockData 447

SELECTOR OF [}I]

WORD SELECTOROF(lp)
void FAR* Ip; I* long pointer */

Parameters

Return Value

Comments

The SELECTOROF macro retrieves the segment selector from the specified long
pointer.

Ip
Specifies a long pointer.

The return value is the segment selector.

The SELECTOROF macro is defined in WINDOWS.H as follows:

#define SELECTOROF(lp) HIWORD(lp)

See Also HIWORD, OFFSETOF

UnlockData IT!J
HANDLE UnlockData(dummy)

Parameters

Return Value

Comments

See Also

The UnlockData macro unlocks the current data segment. It is intended to be used
by modules that have movable data segments.

dummy
This parameter is ignored.

The return value specifies the outcome of the UnlockSegment function. It is zero
if the segment's lock count was decreased to zero. Otherwise, the return value is
nonzero.

The UnlockData macro is defined in WINDOWS.H as follows:

#define UnlockData(dummy) UnlockSegment((UINT)-1)

LockData, UnlockSegment

448 UnlockResource

UnlockResource
BOOL UnlockResource(hResData)
HGLOBAL hResData; I* handle of memory object to unlock *I

Parameters

Return Value

Comments

See Also

The UnlockResource macro unlocks the resource specified by the hResData
parameter and decreases the reference count of the resource by one.

hResData
Identifies the global memory object to be unlocked.

The return value is zero if the object's reference count is decreased to zero.
Otherwise, it is nonzero.

The UnlockResource macro is defined in WINDOWS.H as follows:

#define UnlockResource(h) GlobalUnlock(h)

GlobalUnlock

Printer Escapes

Chapter 5

Alphabetic Reference .. 451

ABORTDOC

ABORTDOC 451

This chapter contains an alphabetic list of printer escapes for the Microsoft Win
dows operating system, version 3.1. The printer escapes allow applications to
access certain facilities of output devices that are not directly available through the
graphics device interface (GDI). The escape calls are made by an application,
translated by Windows, and then sent to the printer driver.

short Escape(hdc, ABORTDOC, NULL, NULL, NULL)

The ABORTDOC printer escape is maintained for backwards compatibility.
Applications written for Windows 3.1 should use the AbortDoc function.

This escape stops the current job and erases everything the application has written
to the device since the last ENDDOC escape.

The ABORTDOC escape should be used to stop:

• Printing operations that do not specify an Abort function by using the
SETABORTPROC escape.

• Printing operations that have not yet reached their first call to the
NEWFRAME or NEXTBAND escape.

Parameters hdc

Return Value

Comments

See Also

HOC Identifies the device context.

This escape does not return a value.

If an application encounters a printing error, it should not try to stop the operation
by using the Escape function with either the ENDDOC or ABORTDOC escape.
Graphics device interface (GDI) automatically terminates the operation before re
turning the error value.

If the application displays a dialog box to allow the user to cancel the print opera
tion, it must send the ABORTDOC escape before destroying the dialog box.

The application must send the ABORTDOC escape before freeing the procedure
instance address of the Abort function, if any.

Escape

452 BANDINFO

BANDINFO
short Escape(hdc, BANDINFO, sizeof(BANDINFOSTRUCT), lplnData, lpOutData)

The BANDINFO printer escape is maintained for backwards compatibility. Appli
cations written for Windows 3.1 should send both text and graphics in every band.

This escape copies information about a device with banding capabilities to a struc
ture pointed to by the lpOutData parameter. It is implemented only for devices
that use banding to send output to the printer.

Banding is the property of an output device that allows a page of output to be
stored in a metafile and divided into bands, each of which is sent to the device to
create a complete page.

The information copied to the structure pointed to by the lpOutData parameter in
cludes:

• A value that indicates whether there are graphics in the next band.

• A value that indicates whether there is text on the page.

• A RECT structure that contains a bounding rectangle for all graphics on the
page.

If no data is returned, the lpOutData parameter is NULL.

The lplnData parameter specifies information sent by the application to the
printer driver. This information is read by the driver only on the first call to the
BANDINFO escape on a page.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnData
BANDINFOSTRUCT FAR* Points to a BANDINFOSTRUCT structure
that contains information to be passed to the driver. For more information about
this structure, see the following Comments section.

lpOutData
BANDINFOSTRUCT FAR* Points to a BANDINFOSTRUCT structure
that contains information returned by the driver. For more information about
this structure, see the following Comments section.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the function fails or is not implemented by the driver.

Comments

BANDINFO 453

The BANDINFOSTRUCT structure contains information about the contents of a
page and supplies a bounding rectangle for graphics on the page. This structure
has the following form:

typedef struct tagBANDINFOSTRUCT {
BOOL fGraphics;
BOOL fText;
RECT rcGraphics;

} BANDINFOSTRUCT;

Following are the members in the BANDINFOSTRUCT structure:

fGraphics
Specifies nonzero if graphics are or are expected to be on the page or in the
band. Otherwise, it is zero.

ff ext
Specifies nonzero if text is or is expected to be on the page or in the band.
Otherwise, it is zero.

rcGraphics
Contains a RECT structure that supplies a bounding region for all graphics on
the page.

The meaning of these members depends on which parameter contains the struc
ture, as follows.

Member

fGraphics

ff ext

rcGraphics

When used in lplnData

Nonzero if the application in
forms the driver that graphics are
on the page

Nonzero if the application in
forms the driver that text is on
the page

Bounding rectangle supplied for
all graphics on the page

When used in lpOutData

Nonzero ifthe driver informs
the application that it expects
graphics in this band

Nonzero ifthe driver informs the
application that it expects text in
this band

No valid return data

An application should call this escape immediately after each call to the NEXT
BAND escape. The BANDINFO escape is in reference to the band that the driver
returned to the NEXTBAND escape.

An application should use this escape in the following manner:

• On the first band, the driver may give the application a full-page band and ask
for text only (the fGraphics member is set to zero and the IText member is set
to nonzero). Then the application sends only text to the driver.

454 BEGIN_ PATH

• If in the first band the application indicates that it has graphics (the fGraphics
member is set to nonzero) or the driver encounters vector fonts, the driver
bands the rest of the page.

• If there are no graphics or vector fonts, the next NEXTBAND escape returns
an empty rectangle to indicate that the application should move on to the next
page.

• If there are graphics but no vector fonts (the application sets the fGraphics
member to nonzero, but there are no graphics in the first full-page text band),
the driver may optionally band only into the rectangle the application passes for
subsequent bands. This rectangle bounds all graphics on the page.

• If there are vector fonts, the driver bands the entire width and depth of the page
with the IText member set to nonzero. It also sets the fGraphics flag to non
zero if the application has set it.

The driver assumes that an application using the BANDINFO escape only sends
text in the first full-page text band because that is all the driver has requested.
Therefore, if the driver encounters a vector font or graphics in the band, it assumes
they were generated by a text primitive and sets the IText member to nonzero for
all subsequent graphics bands, so they can be output as graphics. If the application
does not meet this expectation, the image still generates properly, but the driver
spends time sending spurious text primitives to graphics bands.

Older drivers written before the BANDINFO escape was designed use full-page
banding for text. If a particular driver does not support the BANDINFO escape
but sets the RC_BANDING raster capability, the application can detect full-page
banding for text by determining if the first band on the page covers the entire page.

BEGIN_ PATH
short Escape(hdc, BEGIN_ PATH, NULL, NULL, NULL)

The BEGIN_ PA TH printer escape opens a path. A path is a connected sequence
of primitives drawn in succession to form a single polyline or polygon. Paths
enable applications to draw complex borders, filled shapes, and clipping regions
by supplying a collection of other primitives to define the desired shape.

CLIP_ TO_ PATH 455

Printer escapes supporting paths enable applications to render images on sophisti
cated devices, such as PostScript printers, without generating huge polygons to
simulate the images.

To draw a path, an application first issues the BEGIN_PATH escape. Then it
draws the primitives defining the border of the desired shape and issues an
END_ PATH escape, which includes a parameter specifying how the path is to be
rendered.

Parameters hdc

Return Value

Comments

HOC Identifies the device context.

The return value specifies the current path nesting level. This value is the number
of calls to the BEGIN_PATH escape without a corresponding call to the
END_ PATH escape if the escape is successful. Otherwise, the return value is
zero.

This escape is used only by Postscript printer drivers.

An application may begin a subpath within another path. If the subpath is closed, it
is treated just like a polygon. If it is open, it is treated just like a polyline.

An application may use the CLIP_ TO_PATH escape to define a clipping region
corresponding to the interior or exterior of the currently open path.

CLIP_ TO_ PATH
short Escape(hdc, CLIP_ TO_ PATH, sizeof(int), lpClipMode, NULL)

The CLIP_ TO_ PATH printer escape defines a clipping region bounded by the
currently open path. It enables the application to save and restore the current clip
ping region and to set up an inclusive or exclusive clipping region bounded by the
currently open path. If the path defines an inclusive clipping region, portions of
primitives falling outside the interior bounded by the path are clipped. If the path
defines an exclusive clipping region, portions of primitives falling inside the inte
rior are clipped.

456 DEVICEDATA

Parameters hdc

Return Value

Comments

DEVICE DATA

HDC Identifies the device context.

Ip Clip Mode
LPINT Points to a short integer that specifies the clipping mode. It can be one
of the following values:

Value

CLIP _SAVE (0)

CLIP _RESTORE (1)

CLIP _INCLUSIVE (2)

CLIP _EXCLUSIVE (3)

Meaning

Saves the current clipping region.

Restores the previous clipping region.

Sets an inclusive clipping region.

Sets an exclusive clipping region.

The return value specifies the outcome of the escape. This value is nonzero if the
escape is successful. Otherwise, it is zero.

This escape is used only by Postscript printer drivers.

To clip a set of primitives against a path, an application should follow these steps:

1. Save the current clipping region by using the CLIP_ TO_ PATH escape.

2. Begin a path with the BEGIN_PATH escape.

3. Draw the primitives bounding the clipping region.

4. Close the path with the END_PATH escape.

5. Set the clipping region by using the CLIP_ TO_PATHescape.

6. Draw the primitives to be clipped.

7. Restore the original clipping region by using the CLIP_ TO_PATHescape.

short Escape(hdc, DEVICEDATA, nCount, lplnData, lpOutData)

The DEVICEDATA printer escape is identical to the PASSTHROUGH escape.
For further information, see the description of PASSTHROUGH.

DRAWPATTERNRECT 457

DRAFTMODE
short Escape(hdc, DRAFTMODE, sizeof(int), lpDraftMode, NULL)

The DRAFTMODE printer escape turns draft mode off or on. Turning draft mode
on instructs the driver to print faster and with lower quality, if necessary. The draft
mode can be changed only at page boundaries (for example, after a NEWFRAME
escape directing the driver to advance to a new page).

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpDraftMode
LPINT Points to a short integer that specifies the draft mode. It can be one of
the following values:

Value

0

Meaning

Specifies draft mode off.

Specifies draft mode on.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is zero or negative.

The default draft mode is off.

DRAWPATTERNRECT
short Escape(hdc, DRAWPATTERNRECT, sizeof(PRECTSTRUCT), lplnData, NULL)

The DRA WPATTERNRECT printer escape creates a pattern, gray scale, or
solid black rectangle by using the pattern and rule capabilities of Page Control
Language (PCL) on Hewlett-Packard LaserJet or LaserJet-compatible printers.
A gray scale is a gray pattern that contains a specific mixture of black and white
pixels.

Parameters hdc
HDC Identifies the device context.

lp/nData
PRECT_STRUCT FAR* Points to a PRECT_STRUCT structure that de
scribes the rectangle. For more information on this structure, see the following
Comments section.

458 DRAWPATTERNRECT

Return Value

Comments

Comments

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. Otherwise, it is zero.

The lplnData parameter points to a PRECT_STRUCT structure that defines the
rectangle to be created. This structure has the following form:

struct PRECT_STRUCT {

} ;

POINT ptPosition;
POINT ptSize;
WORD wStyle;
WORD wPattern;

Following are the members in the PRECT_STRUCT structure:

ptPosition
Specifies the upper-left corner of the rectangle.

ptSize
Specifies the lower-right corner of the rectangle.

wStyle
Specifies the type of pattern. It can be one of the following values:

Value

0

1

2

3

wPattern

Meaning

Black rule

White rule that erases bitmap data previously written to same area (avail
able on the HP LaserJet IIP only)

Gray scale

HP-defined

Specifies the pattern. It is ignored for a black rule. It specifies the percentage of
gray for a gray-scale pattern. It represents one of six patterns defined by
Hewlett-Packard.

The output of the DRA WPATTERNRECT escape does not go through the
graphics banding bitmap; it is sent to the printer in the text band. An application
can use this escape to print line and block graphics without using graphics banding
at all. Because many applications use only horizontal and vertical lines or blocks
in graphic output, this is a significant optimization.

An application should use the QUERYESCSUPPORT escape to determine
whether a device is capable of drawing patterns and rules before using the DRAW
PATTERNRECT escape. If an application uses the BANDINFO escape, all pat
terns and rectangles sent by using DRA WPATTERNRECT should be treated as
text and sent on a text band.

ENABLEDUPLEX 459

Applications that use the DRA WPA TTERNRECT escape must observe two
limitations. First, rules drawn with DRA WPATTERNRECT are not subject to
clipping regions in the device context. Second, applications should not try to erase
patterns and rules created with DRA WP A TTERNRECT by placing opaque ob
jects over them. If the printer supports white rules, these can be used to erase pat
terns created by DRA WPATTERNRECT. If the printer does not support white
rules, there is no method for erasing these patterns.

If an application cannot use the DRA WPATTERNRECT escape, it should gener
ally use the PatBlt function instead. (If PatBlt is used to print a black rectangle,
the application should use the BLACKNESS raster operator.) If the device is a
plotter, the application should use the Rectangle function.

ENABLEDUPLEX
short Escape(hdc, ENABLEDUPLEX, sizeof(WORD), lplnData, NULL)

The ENABLEDUPLEX printer escape is maintained for backwards compati
bility. Applications written for Windows 3 .1 should use the ExtDeviceMode
function. An application can determine whether an output device is capable of
creating duplex output by checking the DM_DUPLEX bit of the dmFields mem
ber in the DEVMODE structure.

This escape enables the duplex printing capabilities of a printer. A device that
possesses duplex printing capabilities is able to print on both sides of the output
medium.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnData
LPWORD Points to an unsigned 16-bit integer that specifies whether duplex or
simplex printing is used. It can be one of the following values:

Value

0

2

Meaning

Simplex

Duplex with vertical binding

Duplex with horizontal binding

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. Otherwise, it is zero.

460 ENABLEPAIRKERNING

Comments An application should use the QUERYESCSUPPORT escape to determine
whether an output device is capable of creating duplex output. If QUERY
ESCSUPPORT returns a nonzero value, the application should send the
ENABLEDUPLEX escape even if simplex printing is desired. This procedure
guarantees replacement of any values set in the driver-specific dialog box. If
duplex printing is enabled and an uneven number of NEXTFRAME escapes are
sent to the driver prior to the ENDDOC escape, the driver ejects an additional
page before ending the print job.

ENABLEPAIRKERNING
short Escape(hdc, ENABLEPAIRKERNING, sizeof(int), lpNewKernFlag, lpOldKernFlag)

The ENABLEPAIRKERNING printer escape enables or disables the ability of
the driver to kern character pairs automatically. Kerning is the process of adding
or subtracting space between characters in a string of text.

When pair kerning is enabled, the driver automatically kerns those pairs of charac
ters that are listed in the character-pair kerning table for the font. The driver re
flects this kerning both on the printer and in the GetTextExtent function calls.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpNewKernFlag
LPINT Points to a short-integer value that specifies whether automatic pair
kerning is to be enabled (1) or disabled (zero).

lpOldKernFlag
LPINT Points to a short-integer value that receives the previous automatic pair
kerning value.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or not implemented.

The default state of this escape is zero; automatic character-pair kerning is dis
abled.

A driver does not have to support the ENABLEPAIRKERNING escape just be
cause it supplies the character-pair kerning table to the application by using the
GETPAIRKERNTABLE escape. When the GETPAIRKERNTABLE escape is
supported but the ENABLEPAIRKERNING escape is not, the application must
properly space the kerned characters on the output device by using the Ext
TextOut function.

ENABLERELATIVEWIDTHS 461

ENABLERELATIVEWIDTHS
short Escape(hdc, ENABLERELATIVEWIDTHS, sizeof(int), Ip New WidthFlag, lpOldWidthFlag)

The ENABLERELATIVEWIDTHS printer escape enables or disables relative
character widths. When relative widths are disabled (the default), the width of
each character can be expressed as a number of device units. This method
guarantees that the extent of a string will equal the sum of the extents of the char
acters in the string. This allows applications to build an extent table by using one
character GetTextExtent function calls.

When relative widths are enabled, the sum of a string may not equal the sum of the
widths of the characters. Applications that enable this feature are expected to re
trieve the extent table for the font and compute relatively scaled string widths.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpNewWidthFlag
LPINT Points to a short integer that specifies whether relative widths are to be
enabled (1) or disabled (zero).

lpOldWidthFlag
LPINT Points to a short integer that receives the previous relative character
width value.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or not implemented.

The default state of this escape is zero; relative character widths are disabled.

When the ENABLERELATIVEWIDTHS escape is enabled, the values specified
as font units and accepted and returned by the escapes described in this chapter are
returned in the relative units of the font.

It is assumed that only linear-scaling devices are dealt with in a relative mode.
Nonlinear-scaling devices do not implement this escape.

462 END DOC

END DOC
short Escape(hdc, ENDDOC, NULL, NULL, NULL)

The ENDDOC printer escape is maintained for backwards compatibility. Applica
tions written for Windows 3.1 should use the EndDoc function.

This escape ends a print job started by a STARTDOC escape.

Parameters hdc

Return Value

Comments

END_ PATH

HDC Identifies the device context.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is zero or negative.

The ENDDOC escape should not be used inside metafiles.

short Escape(hdc, END_PATH, sizeof(PATH_INFO), lplnData, NULL)

The END_PATH printer escape ends a path. A path is a connected sequence of
primitives drawn in succession to form a single polyline or polygon. Paths enable
applications to draw complex borders, filled shapes, and clipping regions by sup
plying a collection of other primitives to define the desired shape.

Printer escapes that support paths enable applications to render images on sophisti
cated devices, such as PostScript printers, without generating huge polygons to
simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. Then it
draws the primitives defining the border of the desired shape and issues an
END_PATHescape.

The END_ PATH escape takes, as a parameter, a pointer to a structure specifying
the manner in which the path is to be rendered. The structure specifies whether or
not the path is to be drawn and whether it is open or closed. Open paths define
polylines, and closed paths define fillable polygons.

Parameters hdc
HDC Identifies the device context.

Return Value

Comments

END_PATH 463

lplnData
PATH_ INFO FAR * Points to a PA TH_ INFO structure that defines how the
path is to be rendered. For more information about this structure, see the follow
ing Comments section.

The return value specifies the current path nesting level. This value is the number
of BEGIN_ PATH escape calls without a corresponding END_ PA TH call if the
escape is successful. Otherwise, it is -1.

This escape is used only by Postscript printer drivers.

An application may begin a subpath within another path. If the subpath is closed, it
is treated just like a polygon. If it is open, it is treated just like a polyline.

An application may use the CLIP_ TO_PATH escape to define a clipping region
corresponding to the interior or exterior of the currently open path.

The lp/nData parameter points to a PATH_INFO structure that specifies how to
render the path. This structure has the following form:

struct PATH_INFO {

} ;

short RenderMode;
BYTE Fill Mode;
BYTE BkMode;
LOGPEN Pen;
LOGBRUSH Brush;
DWORD BkColor;

Following are the members in the PA TH_ INFO structure:

Render Mode
Specifies how the path is to be rendered. It can be one of the following values:

Value

NO_DISPLAY (0)

OPEN (1)

CLOSED (2)

FillMode

Meaning

Path is not drawn.

Path is drawn as an open polygon.

Path is drawn as a closed polygon.

Specifies how the path is to be filled. It can be one of the following values:

Value

ALTERNATE (1)

WINDING (2)

Meaning

Fill is done using the alternate fill algorithm.

Fill is done using the winding fill algorithm.

464 ENUMPAPERBINS

BkMode
Specifies the background mode for filling the path. It can be one of the follow
ing values:

Value

OPAQUE

TRANSPARENT

Pen

Meaning

Background is filled with the background color before the
brush is drawn.

Background is not changed.

Specifies the pen with which the path is to be drawn. If the RenderMode func
tion is set to the NO_DISPLAY value, the pen is ignored.

Brush
Specifies the brush with which the path is to be filled. If the Render Mode func
tion is set to the NO_DISPLA Y or OPEN value, the brush is ignored.

Bk Color
Specifies the color with which the path is filled if the BkMode function is set to
the OPAQUE value.

ENUMPAPERBINS
short Escape(hdc, ENUMPAPERBINS, sizeof(int), lpNumBins, lpOutData)

The ENUMPAPERBINS printer escape is maintained for backwards compati
bility. Applications written for Windows 3.1 should call the DeviceCapabilities
function with the DC_BINNAMES index to retrieve the number of available paper
bins and the name of each bin.

This escape retrieves attribute information about a specified number of paper bins.
The GETSETPAPERBINS escape retrieves the number of bins available on a
printer.

Parameters hdc
HDC Identifies the device context.

lpNumBins
LPINT Points to an integer that specifies the number of bins for which informa
tion is to be retrieved.

lpOutData
LPSTR Points to a structure to which information about the paper bins is
copied. The size of the structure depends on the number of bins for which infor-

Return Value

Comments

ENUMPAPERMETRICS 465

mation was requested. For a description of this structure, see the following
Comments section.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or not implemented.

The structure to which the lpOutData parameter points consists of two arrays. The
first is an array of short integers containing the paper-bin identifier numbers in the
following form:

short Binlist[cBinMax]

The number of integers in the array (the cBinMax value) is equal to the value
pointed to by the lpNumBins parameter.

The second array in the structure to which lpOutData points is an array of charac
ters in the following form:

char PaperNames[cBinMaxJ[cchBinNameJ

The cBinMax value is equal to the value pointed to by the lpNumBins parameter.
The cchBinName value is the length of each string (currently 24).

ENUMPAPERMETRICS
short Escape(hdc, ENUMPAPERMETRICS, sizeof(int), lpMode, lpOutData)

The ENUMPAPERMETRICS printer escape performs one of two functions
according to the mode:

• It determines the number of paper types supported and returns this value, which
can then be used to allocate an array of RECT structures.

• It returns one or more RECT structures that define the areas on the page that
can receive an image.

This escape is provided only for backward compatibility. An application should
call the DeviceCapabilities function with the DC_P APERSIZE index to discover
the number of available paper sizes and the dimensions of each size.

Parameters hdc
HOC Identifies the device context.

466 EPSPRINTING

Return Value

lpMode
LPINT Points to an integer that specifies the mode for the escape. It can be one
of the following values:

Value

0

lpOutData

Meaning

Return value indicates how many RECT structures are required to con
tain the information about the available paper types.

Array of RECT structures to which the lpOutData parameter points is
filled with the information.

LPRECT Points to an array of RECT structures that return all the areas
capable of receiving an image.

The return value is positive if the escape is successful. The value is zero if the
escape is not implemented and negative if an error occurred.

EPSPRINTING
short Escape(hdc, EPSPRINTING, sizeof(BOOL), lpBool, NULL)

The EPSPRINTING printer escape suppresses the output of the Windows Post
Script header control section, which is about 7K. If an application uses this escape,
no graphics device interface (GDI) calls are allowed.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpBool
BOOL FAR* Points to a Boolean value that indicates whether downloading
should be enabled (nonzero) or disabled (zero).

The return value is positive if the escape is successful. This value is zero if the
escape is not implemented and negative if an error occurred.

This escape is used only by PostScript printer drivers.

EXT_DEVICE_CAPS 467

EXT_ DEVICE_ CAPS
short Escape(hdc, EXT_DEVICE_CAPS, sizeof(int), lplndex, lpCaps)

The EXT_DEVICE_ CAPS printer escape retrieves information about device
specific capabilities. It supplements the GetDeviceCaps function.

Parameters hdc
HDC Identifies the device context.

lplndex
LPINT Points to a short integer that specifies the index of the capability to be
retrieved. It can be any one of the following values:

Value

R2_CAPS (1)

PATTERN_CAPS (2)

PATH_CAPS (3)

POLYGON_CAPS (4)

Meaning

The lpCaps parameter indicates which of the 16
binary raster operations the device driver sup
ports. A bit will be set for each supported raster
operation. For further information, see the de
scription of the SetROP2 function in the
Microsoft Windows Programmer's Reference,
Volume 2.

The lpCaps parameter returns the maximum di
mensions of a pattern brush bitmap. The low
order word of the capability value contains the
maximum width of a pattern brush bitmap, and
the high-order word contains the maximum
height.

The lpCaps parameter indicates whether the
device is capable of creating paths by using
alternate and winding interiors, and whether the
device can do exclusive or inclusive clipping to
path interiors. The path capabilities are ob
tained by using the logical OR operation on the
following values:

PATH_ALTERNATE (1)
PATH_ WINDING (2)
PATH_INCLUSIVE (4)
PATH_EXCLUSIVE (8)

The lpCaps parameter returns the maximum
number of polygon points supported by the
device. The capability value is an unsigned
value specifying the maximum number of
points.

468 EXT_DEVICE_CAPS

Return Value

Comments

Value

PATTERN_COLOR_CAPS (5)

R2_TEXT_CAPS (6)

POLYMODE_CAPS (7)

lpCaps

Meaning

The lpCaps parameter indicates whether the
device can convert monochrome pattern bit
maps to color. The capability value is 1 if the
device can do pattern bitmap color conversions
and zero if it cannot.

The lpCaps parameter indicates whether the
device is capable of performing binary raster
operations on text. The low-order word of the
capability value specifies which raster opera
tions are supported for text. A bit is set for each
supported raster operation, as in the R2_CAPS
escape. The high-order word specifies the type
of text to which the raster capabilities apply. It
is obtained by applying the logical OR opera
tion to the following values together:

RASTER_ TEXT (1)
DEVICE_ TEXT (2)
VECTOR_ TEXT (4)

The lpcaps parameter indicates which poly
modes are supported by the printer driver. The
capability value is obtained by using the bitwise
OR operator to combine a bit in the correspond
ing position for each supported poly mode. For
example, if the printer supports the
PM_POLYSCANLINE and PM_BEZIER poly
modes, the capability value would be:

(1 « PM_POLYSCANLINE) I (PM_BEZIER)

LPDWORD Points to a 32-bit integer to which the capabilities will be copied.

The return value is nonzero if the specified extended capability is supported. This
value is zero if the capability is not supported.

This escape is used only by PostScript printer drivers.

EXTTEXTOUT 469

EXTTEXTOUT
short Escape(hdc, EXTTEXTOUT, sizeof(EXTTEXT_STRUCT), lplnData, NULL)

The EXTTEXTOUT printer escape provides an efficient way for an application
to call the graphics device interface (GDI) TextOut function when justification,
letter spacing, or kerning is involved.

This function is provided only for backward compatibility. New applications
should use the GDI ExtTextOut function instead.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lplnData
EXTTEXT_STRUCT FAR* Points to an EXTTEXT_STRUCT structure
that specifies the initial position, characters, and character widths of the string.
For more information about this structure, see the following Comments section.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or not implemented.

The EXTTEXT_STRUCT structure has the following form:

struct EXTTEXT_STRUCT {
WORD x;
WORD y;
LPWDRD lpText;
LPWORD lpWidths;

} ;

Following are the members in the EXTTEXT_STRUCT structure:

x
Specifies the x -coordinate of the upper-left comer of the string's starting point.

y
Specifies they-coordinate of the upper-left comer of the string's starting point.

Ip Text
Points to an array of cch character codes, where cch is the number of bytes in
the string (cch is also the number of words in the width array).

470 FLUSH OUTPUT

Ip Widths
Points to an array of cch character widths to use when printing the string. The
first character appears at (x,y), the second at (x + lpWidths[O],y), the third at
(x + lpWidths[O] + lpWidths[l],y), and so on. These character widths are
specified in the font units of the currently selected font. (The character widths
are always equal to device units, unless the applic<1tion has enabled relative
character widths.)

The units contained in the width array are specified as font units of the device.

FLUSH OUTPUT
short Escape(hdc, FLUSHOUTPUT, NULL, NULL, NULL)

The FLUSHOUTPUT printer escape clears all output from the device's buffer.

Parameters hdc

Return Value

HDC Identifies the device context.

The return value specifies the outcome of the escape. This value is greater than
zero if the escape is successful. Otherwise, it is less than zero.

GETCOLORTABLE
short Escape(hdc, GETCOLORTABLE, sizeof(int), lplndex, lpColor)

The GETCOLORTABLE printer escape retrieves an RGB color-table entry and
copies it to the location specified by the lpColorparameter.

GETEXTENDEDTEXTMETRICS 471

Parameters fulc

Return Value

HDC Identifies the device context.

lplndex
LPINT Points to a short integer that specifies the index of a color-table entry.
Color-table indexes start at zero for the first table entry.

lpColor
LPDWORD Points to the long integer that will receive the RGB color value
for the given entry.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is negative.

GETEXTENDEDTEXTMETRICS
short Escape(hdc, GETEXTENDEDTEXTMETRICS, sizeof(WORD), lplnData, lpOutData)

The GETEXTENDEDTEXTMETRICS printer escape fills the buffer pointed to
by the lpOutData parameter with the extended text metrics for the selected font.

Parameters fulc

Return Value

HDC Identifies the device context.

lplnData
LPWORD Points to an unsigned 16-bit integer that specifies the number of
bytes pointed to by the lpOutData parameter.

lpOutData
EXTTEXTMETRIC FAR* Points to an EXTTEXTMETRIC structure. For
more information about this structure, see the following Comments section.

The return value specifies the number of bytes copied to the buffer pointed to by
the lpOutData parameter. This value will never exceed that specified in the nSize
member pointed to by the lplnData parameter. The return value is zero if the
selected font does not have the extended text metrics or if the escape fails or is not
implemented.

472 GETEXTENDEDTEXTMETRICS

Comments The lpOutData parameter points to an EXTTEXTMETRIC structure, which has
the following form:

struct EXTTEXTMETRIC {

} ;

short etmSize;
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
WORD
WORD

etmPointSize;
etmOrientation;
etmMasterHeight;
etmMinScale;
etmMaxScale;
etmMasterUnits;
etmCapHeight;
etmXHeight;
etmLowerCaseAscent;
etmlowerCaseDescent;
etmSlant;
etmSuperScript;
etmSubScript;
etmSuperScriptSize;
etmSubScriptSize;
etmUnderlineOffset;
etmUnderlineWidth;
etmDoubleUpperUnderlineOffset;
etmDoublelowerUnderlineOffset;
etmDoubleUpperUnderlineWidth;
etmDoublelowerUnderlineWidth;
etmStrikeOutOffset;
etmStrikeOutWidth;
etmKernPai rs;
etmKernTracks;

Following are the members in the EXTTEXTMETRIC structure:

etmSize
Specifies the size of the structure, in bytes.

etmPointSize
Specifies the nominal point size of this font, in twips (1/20 of a point, or 1/1440
inch). This is the intended size of the font; the actual size may differ slightly de
pending on the resolution of the device.

etmOrientation
Specifies the orientation of the font. The etmOrientation member may be any
of the following values:

Value

0

1

2

Meaning

Either orientation

Portrait

Landscape

GETEXTENDEDTEXTMETRICS 473

These values refer to the ability of this font to be placed on a page with the
given orientation. A portrait page has a height that is greater than its width. A
landscape page has a width that is greater than its height.

etmMasterHeight
Specifies the font size, in device units, for which the values in this font's extent
table are exact.

etmMinScale
Specifies the minimum valid size for this font. The following equation illus
trates how the minimum point size is determined:

smallest point size= (etmMinScale * 72) I djVertRes

The value 72 represents the number of points per inch. The djV ertRes value is
the number of dots per inch.

etmMaxScale
Specifies the maximum valid size for this font. The following equation illus
trates how the maximum point size is determined:

largest point size= (etmMaxScale * 72) I djVertRes

The value 72 represents the number of points per inch. The djV ertRes value is
the number of dots per inch.

etmMasterUnits
Specifies the integer number of units per em where an em equals the value of
the etmMasterHeight member. (That is, etmMasterUnits is emtMaster
Height expressed in font units instead of device units.)

etmCapHeight
Specifies the height, in font units, of uppercase characters in the font. Typically,
this is the height of capital H.

etmXHeight
Specifies the height, in font units, oflowercase characters in the font. Typically,
this is the height oflowercasex.

etmLowerCaseAscent
Specifies the distance, in font units, that the ascender of lowercase letters ex
tends above the base line. Typically, this is the height of lowercased.

etmLowerCaseDescent
Specifies the distance, in font units, that the descender oflowercase letters ex
tends below the base line. Typically, this is specified for the descender oflower
case p.

etmSlant
Specifies, for an italic or slanted font, the angle of the slant measured in tenths
of a degree clockwise from the upright version of the font.

474 GETEXTENDEDTEXTMETRICS

etmSuperScript
Specifies, in font units, the recommended amount to offset superscript charac
ters from the base line. This is typically a negative value.

etmSubScript
Specifies, in font units, the recommended amount to offset subscript characters
from the base line. This is typically a positive value.

etmSuperScriptSize
Specifies, in font units, the recommended size of superscript characters for this
font.

etmSubScriptSize
Specifies, in font units, the recommended size of subscript characters for this
font.

etmU nderlineOffset
Specifies, in font units, the offset downward from the base line where the top of
a single underline bar should appear.

etmUnderline Width
Specifies, in font units, the thickness of the underline bar.

etmDoubleUpperUnderlineOffset
Specifies the offset, in font units, downward from the base line where the top of
the upper double-underline bar should appear.

etmDoubleLowerUnderlineOffset
Specifies the offset, in font units, downward from the base line where the top of
the lower double-underline bar should appear.

etmDoubleU pper Underline Width
Specifies, in font units, the thickness of the upper underline bar.

etmDoubleLowerUnderlineWidth
Specifies, in font units, the thickness of the lower underline bar.

etmStrikeOutOffset
Specifies, in font units, the offset upward from the base line where the top of a
strikeout bar should appear.

etmStrikeOutWidth
Specifies the thickness, in font units, of the strikeout bar.

etmKernPairs
Specifies the number of character kerning pairs defined for this font. An appli
cation can use this value to calculate the size of the pair-kern table returned by
the GETPAIRKERNTABLE escape. It will not be greater than 512 kerning
pairs.

GETEXTENTTABLE 475

etmKernTracks
Specifies the number of kerning tracks defined for this font. An application can
use this value to calculate the size of the track-kern table returned by the GET
TRACKKERNTABLE escape. It will not be greater than 16 kerning tracks.

The values returned in many of the members of the EXTTEXTMETRIC struc
ture are affected by whether relative character widths are enabled or disabled. For
more information, see the description of the ENABLERELA TIVEWIDTHS
escape earlier in this chapter.

GETEXTENTTABLE
short Escape(hdc, GETEXTENTTABLE, sizeof(CHAR_RANGE_STRUCT), lplnData,

lpOutData)

The GETEXTENTTABLEprinter escape retrieves the width (extent) of in
dividual characters from a group of consecutive characters in the character set for
the selected font.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lplnData
LPSTR Points to a CHAR_RANGE_STRUCT structure that defines the
range of characters for which the width is to be retrieved. For more information
about this structure, see the following Comments section.

lpOutData
LPINT Points to an array of short integers that receives the character widths.
The size of the array must be at least (chLast - chFirst + 1).

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful. If the escape is not imple
mented, the return value is zero.

The lplnData parameter points to a CHAR_RANGE_STRUCT structure that de
fines the range of characters for which the width is to be retrieved. This structure
has the following form:

struct CHAR_RANGE_STRUCT {

} ;

CHAR chFirst;
CHAR chlast;

476 GETFACENAME

Following are the members in the CHAR_RANGE_STRUCT structure:

chFirst
Specifies the character code of the first character whose width is to be retrieved.

ch Last
Specifies the character code of the last character whose width is to be retrieved.

How an application uses the retrieved values depends upon whether relative char
acter widths are enabled or disabled. For more information, see the description of
the ENABLERELATIVEWIDTHS escape, earlier in this chapter.

GETFACENAME
short Escape(hdc, GETFACENAME, NULL, NULL, lpFaceName)

The GETFACENAME printer escape retrieves the face name of the current physi
cal font.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpFaceName
LPSTR Points to a buffer of characters to receive the face name. This buffer
must be at least 60 bytes in length.

The return value is positive if the escape was successful. This value is zero if the
escape is not implemented or negative if an error occurred.

This escape is used only by PostScript printer drivers.

GETPAIRKERNTABLE
short Escape(hdc, GETPAIRKERNTABLE, NULL, NULL, lpOutData)

The GETPAIRKERNTABLE printer escape fills the buffer pointed to by the
lpOutData parameter with the character-pair kerning table for the selected font.

GETPAIRKERNTABLE 477

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpOutData
KERNPAIR FAR * Points to an array of KERNPAIR structures. This
array must be large enough to accommodate the entire character-pair
kerning table for the font. The number of character-kerning pairs in the
font can be obtained from the EXTTEXTMETRIC structure returned by the
GETEXTENDEDTEXTMETRICS escape. For more information about this
structure, see the following Comments section.

The return value specifies the number of KERNPAIR structures copied to the
buffer. This value is zero if the font does not have kerning pairs defined or the
escape fails or is not implemented.

The KERNPAIR structure has the following form:

struct KERNPAIR {

} ;

union {
BYTE each [2]; /* 'each' and 'both' share same memory*/
WORD both;

} kpPair;
short kpKernAmount;

Following are the members in the KERNPAIR structure:

each
Specifies the character codes for the kerning pair.

both
Specifies a 16-bit value in which the first character in the kerning pair is in the
low-order byte and the second character is in the high-order byte.

kpKernAmount
Specifies the signed amount that this pair will be kerned if they appear side by
side in the same font and size. This value is typically negative because pair
kerning usually results in two characters being set tighter than normal.

The array of KERNPAIR structures is sorted in increasing order by the
kpPair.both member.

The values returned in KERNPAIR structures are affected by whether relative
character widths are enabled or disabled. For more information, see the description
of the ENABLERELA TIVEWIDTHS escape earlier in this chapter.

478 GETPHYSPAGESIZE

GETPHYSPAGESIZE
short Escape(hdc, GETPHYSPAGESIZE, NULL, NULL, lpDimensions)

The GETPHYSPAGESIZE printer escape retrieves the physical page size and
copies it to the location pointed to by the lpDimensions parameter.

Parameters hdc

Return Value

HDC Identifies the device context.

Ip Dimensions
LPPOINT Points to a POINT structure that will receive the physical page di
mensions (in the current orientation). The x member of the POINT structure re
ceives the horizontal size, in device units, and the y member receives the
vertical size, in device units.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is zero or negative.

GETPRINTINGOFFSET
short Escape(hdc, GETPRINTINGOFFSET, NULL, NULL, lpOffset)

The GETPRINTINGOFFSET printer escape retrieves the offset from the upper
left comer of the physical page where the actual printing or drawing begins. This
escape is generally not useful for devices that allow the user to set the origin of the
printable area directly.

Parameters hdc

Return Value

HDC Identifies the device context.

lpOffset
LPPOINT Points to a POINT structure that will receive the printing offset (in
the current orientation). The x member of the POINT structure receives the
horizontal coordinate of the printing offset, in device units, and the y member
receives the vertical coordinate of the printing offset, in device units.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is zero or negative.

GETSETPAPERBINS 479

GETSCALINGFACTOR
short Escape(hdc, GETSCALINGFACTOR, NULL, NULL, lpFactors)

The GETSCALINGFACTOR printer escape retrieves the scaling factors for the
x-axis and y-axis of a printing device. For each scaling factor, the escape copies an
exponent of 2 to the location pointed to by the lpFactors parameter. For example,
the value 3 is copied to lpFactors if the scaling factor is 8.

Scaling factors are used by printing devices that support graphics at a smaller reso
lution than text.

Parameters hdc

Return Value

HDC Identifies the device context.

lpFactors
LPPOINT Points to the POINT structure that will receive the scaling factor.
The x member of the POINT structure receives the scaling factor for the x-axis
and they member receives the scaling factor for the y-axis.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is zero or negative.

GETSETPAPERBINS
short Escape(hdc, GETSETPAPERBINS, nCount, lplnData, lpOutData)

The GETSETPAPERBINS printer escape is maintained for backwards compati
bility. Applications written for Windows 3.1 should call the DeviceCapabilities
function with the DC_BINS index to retrieve the number of available paper bins
and use the ExtDeviceMode function to set the current paper bin.

This escape retrieves the number of paper bins available on a printer and sets the
current paper bin. For more information about actions performed by this escape,
see the following Comments section.

Parameters hdc
HDC Identifies the device context.

nCount
int Specifies the number of bytes pointed to by the lplnData parameter.

480 GETSETPAPERBINS

Return Value

Comments

lplnData
Binlnfo FAR * Points to a Binlnfo structure that specifies the new paper bin.
It may be set to NULL. For more information about this structure, see the fol
lowing Comments St1Ction.

lpOutData
Binlnfo FAR * Points to a Binlnfo structure that contains information about
the current or previous paper bin and the number of bins available. For more in
formation about this structure, see the following comments section.

The return value is positive if the escape is successful. Otherwise, this value is
zero or negative.

There are three possible actions for this escape, depending on the values passed in
the lplnData and lpOutData parameters:

lplnData lpOutData Action

NULL Binlnfo

Binlnfo Binlnfo

Binlnfo NULL

Retrieves the number of bins and the number of the current
bin.

Sets the current bin to the number specified in the
BinNumber member of the structure to which the
lplnData parameter points and retrieves the number
of the previous bin.

Sets the current bin to the number specified in the
BinNumber member of the structure to which the
lplnData parameter points.

The Binlnfo structure has the following form:

struct Binlnfo {
int BinNumber;
int cBins;

} ;

int Reserved;
int Reserved;
int Reserved;
int Reserved;

Following are the members of the Binlnfo structure:

BinNumber
Identifies the current or previous paper bin.

cBins
Specifies the number of paper bins available.

Once a new bin is set, the selection takes effect immediately; the next page printed
comes from the new bin.

GETSETPRINTORIENT 481

GETSETPAPERMETRICS
short Escape(hdc, GETSETPAPERMETRICS, sizeof(RECT), lpNewPaper, lpPrevPaper)

The GETSETPAPERMETRICS printer escape sets the paper type according to
the given paper metrics information. It also retrieves the paper metrics information
for the current printer.

This escape is obsolete. Printer drivers written for Windows version 3.0 and later
may not support this escape. Applications can use the DeviceCapabilities and
ExtDeviceModefunctions to achieve the same functionality.

This escape expects a RECT structure representing the imageable area of the
physical page and assumes the origin is situated in the upper-left comer.

Parameters hdc

Return Value

HDC Identifies the device context.

lpNewPaper
LPRECT Points to a RECT structure that defines the new imageable area.

lpPrevPaper
LPRECT Points to a RECT structure that receives the previous imageable area.

The return value is positive if the escape is successful. The value is zero if the
escape is not implemented and negative if an error occurs.

GETSETPRINTORIENT
short Escape(hdc, GETSETPRINTORIENT, nCount, lplnData, NULL)

The GETSETPRINTORIENT printer escape returns or sets the current paper
orientation. This escape is obsolete. Printer drivers written for Windows version
3.0 and later may not support this escape. An application should call the
ExtDeviceMode function instead.

Parameters hdc
HDC Identifies the device context.

nCount
short Specifies the number of bytes pointed to by the lplnData parameter.

482 GETSETSCREENPARAMS

Return Value

Comments

lplnData
ORIENT FAR* Points to an ORIENT structure that specifies the new paper
orientation. For a description of this structure, see the following Comments sec
tion. It may be set to NULL, in which case the GETSETPRINTORIENT
escape returns the current paper orientation.

The return value specifies the current orientation if lplnData is NULL. Otherwise,
this value is the previous orientation. This value is -1 if the escape fails.

This escape is provided only for backward compatibility. New applications should
use the graphics device interface (GDI) DeviceCapabilities and ExtDeviceMode
functions instead.

The ORIENT structure has the following form:

struct ORIENT {

} ;

DWORD Orientation;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

The Orientation member can be one of these values:

Value

1

2

Meaning

New orientation is portrait.

New orientation is landscape.

GETSETSCREENPARAMS
short Escape(hdc, GETSETSCREENPARAMS, sizeof(SCREENPARAMS), lplnData, lpOutData)

The GETSETSCREENPARAMS printer escape retrieves or sets the current
screen information for rendering halftones.

Parameters hdc
HDC Identifies the device context.

lplnData
SCREENP ARAMS FAR* Points to a SCREENP ARAMS structure that con
tains the new screen information. For more information about this structure, see
the following Comments section. This parameter may be NULL.

Return Value

Comments

GETTECHNOLOGY 483

lpOutData
SCREENPARAMS FAR * Points to a SCREENPARAMS structure that re
trieves the previous screen information. For more information about this struc
ture, see the following Comments section. This parameter may be NULL.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is negative.

This escape affects how device-independent bitmaps (DIBs) are rendered and how
color objects are filled.

The SCREENPARAMS structure has the following form:

typedef struct tagSCREENPARAMS
int angle;
int frequency;

} SCREENPARAMS;

Following are the members of the SCREENPARAMS structure:

angle
Specifies, in degrees, the angle of the halftone screen.

frequency
Specifies, in dots per inch, the screen frequency.

GETTECHNOLOGY
short Escape(hdc, GETTECHNOLOGY, NULL, NULL, lpTechnology)

The GETTECHNOLOGYprinter escape retrieves the general technology type
for a printer, which allows an application to perform technology-specific actions.

Applications should avoid using this escape. Printer drivers written for Windows
version 3.0 and later may not support this escape.

Parameters hdc

Return Value

HDC Identifies the device context.

Ip Technology
LPSTR Points to a buffer to which the driver copies a null-terminated string
containing the printer technology type, such as "PostScript".

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or is not implemented.

484 GETTRACKKERNTABLE

GETTRACKKERNTABLE
short Escape(hdc, GETTRACKKERNTABLE, NULL, NULL, lpOutData)

The GETTRACKKERNTABLE printer escape fills the buffer pointed to by the
lpOutData parameter with the track-kerning table for the currently selected font.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpOutdata
KERNTRACK FAR* Points to an array ofKERNTRACK structures.
This array must be large enough to accommodate all the kerning tracks for the
font. The number of tracks in the font can be obtained from the EXTTEXT
METRIC structure which is returned by the GETEXTENDEDTEXT
METRICS escape. For more information about this structure, see the
following Comments section.

The return value specifies the number of KERNTRACK structures copied to the
buffer. This value is zero if the font does not have kerning tracks defined or if the
escape fails or is not implemented.

The KERNTRACK structure has the following form:

struct KERNTRACK {
short Degree;
short MinSize;
short MinAmount;
short MaxSize;
short MaxAmount;

} ;

Following are the members in the KERNTRACK structure:

Degree
Specifies the amount of track kerning. Increasingly negative values represent
tighter track kerning, and increasingly positive values represent looser track
kerning.

MinSize
Specifies, in device units, the minimum font size for which linear track kerning
applies.

MinAmount
Specifies, in font units, the amount of track kerning to apply to font sizes less
than or equal to the size specified by the MinSize member.

GETVECTORBRUSHSIZE 485

MaxSize
Specifies, in device units, the maximum font size for which linear track kerning
applies.

MaxAmount
Specifies, in font units, the amount of track kerning to apply to font sizes
greater than or equal to the size specified by the MaxSize member.

Between the MinSize and MaxSize font sizes, track kerning is a linear
function from MinAmount to MaxAmount. The values returned in the
KERNTRACK structures are affected by whether relative character widths
are enabled or disabled. For more information, see the description of the
ENABLERELATIVEWIDTHS escape earlier in this chapter.

GETVECTORBRUSHSIZE
short Escape(hdc, GETVECTORBRUSHSIZE, sizeof(LOGBRUSH), lplnData, lpOutData)

The GETVECTORBRUSHSIZE printer escape retrieves, in device units, the
size of a plotter pen used to fill closed figures. Graphics device interface (GDI)
uses this information to prevent the plotter pen from writing over the borders of
the figure when filling closed figures.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnData
LOGBRUSH FAR* Points to a LOGBRUSH structure that specifies the
brush for which data is to be returned.

lpOutData
LPPOINT Points to a POINT structure whose y member contains the width of
the pen, in device units.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. It is zero if the escape is not successful or is not implemented.

486 GETVECTORPENSIZE

GETVECTORPENSIZE
short Escape(hdc, GETVECTORPENSIZE, sizeof(LOGPEN), lplnData, lpOutData)

The GETVECTORPENSIZE printer escape retrieves the size, in device units, of
a plotter pen. Graphics device interface (GDI) uses this information to prevent
hatched brush patterns from overwriting the border of a closed figure.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnData
LOG PEN FAR * Points to a LOG PEN structure that specifies the pen for
which the width is to be retrieved.

lpOutData
LPPOINT Points to a POINT structure that contains in its second word the
width of the pen, in device units.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful and zero if the escape is not successful or if it is not implemented.

MFCOMMENT
BOOL Escape(hdc, MFCOMMENT, nCount, lpComment, NULL)

The MFCOMMENT printer escape adds a comment to a metafile.

Parameters hdc

Return Value

HDC Identifies the device context for the device on which the metafile appears.

nCount
short Specifies the number of characters in the string pointed to by the
lpComment parameter.

lpComment
LPSTR Points to a string that contains the comment that will appear in the
metafile.

The return value specifies the outcome of the escape. This value is -1 if an error,
such as insufficient memory or an invalid port specification, occurs. Otherwise, it
is positive.

MOUSETRAILS 487

MOUSETRAILS
short Escape(hdc, MOUSETRAILS, sizeof(WORD), lpTrailSize, NULL)

Parameters

Return Value

The MOUSETRAILS escape enables or disables mouse trails for display devices.

hdc
HDC Identifies the device context.

lpTrailSize
LPINT points to a 16-bit variable containing a value specifying the action to
take and the number of mouse cursor images to display (trail size). The variable
can be one of the following values:

Value

1 through 7

0

-1

-2

-3

Meaning

Enables mouse trails and sets the trail size to the specified number.
A value of 1 requests a single mouse cursor. A value of 2 requests
that one extra mouse cursor be drawn behind the current mouse cur
sor, and so on, up to a maximum of 7 total cursor images. The
escape sets the MouseTrails entry in the WIN.IN! file to the given
value and returns the new trail size.

Disables mouse trails. The escape sets the MouseTrails entry to the
negative value of the current trail size (if positive) and returns the
negative value.

Enables mouse trails. The display driver reads the MouseTrails entry
from the [windows] section of the WIN .INI file. If the value of the
entry is positive, the escape sets the trail size to the given value. If
the entry is negative, the escape sets the trail size to the entry's abso
lute value and writes the positive value back to WIN.IN!. If the
MouseTrails entry is not found, the escape sets the trail size to 7 and
writes a new MouseTrails entry to the WIN.IN! file, setting its value
to 7. The escape then returns the new trail size.

Disables mouse trails but does not cause the display driver to update
the WIN.IN! file.

Enables mouse trails but does not cause the display driver to update
the WIN.IN! file.

The return value specifies the new trail size if the escape is successful. The return
value is zero if the escape is not supported.

488 NEWFRAME

NEWFRAME
short Escape(hdc, NEWFRAME, NULL, NULL, NULL)

The NEWFRAME printer escape is maintained for backwards compatibility.
Applications written for Windows 3.1 should use the StartPage and EndPage
functions.

This escape informs the device that the application has finished writing to a page.
It is typically used with a printer to direct the device driver to advance to a new
page.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is one of the following values:

Value

SP _APPABORT

SP_ERROR

SP _OUTOFDISK

SP _OUTOFMEMORY

SP _USERABORT

Meaning

Job was terminated because the application's Abort func
tion returned zero.

General error.

Not enough disk space is currently available for spooling,
and no more space will become available.

Not enough memory is available for spooling.

User terminated the job through Print Manager.

Do not use the NEXTBAND escape with the NEWFRAME escape. For banding
device drivers, graphics device interface (GDI) replays a metafile to the printer,
simulating a sequence of NEXTBAND escapes.

The NEWFRAME escape restores the default values of the device context. Con
sequently, if a font other than the default font is selected when the application calls
the NEWFRAME escape, the application must select the font again following the
NEWFRAME escape.

The NEWFRAME escape should not be used inside metafiles.

NEXTBAND 489

NEXTBAND
short Escape(hdc, NEXTBAND, NULL, NULL, lpBandRect)

The NEXTBAND printer escape informs the device driver that the application has
finished writing to a band, causing the device driver to send the band to Print
Manager and return the coordinates of the next band. Applications that process
banding themselves use this escape.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpBandRect
LPRECT Points to the RECT structure that will receive the next band coordi
nates. The device driver copies the device coordinates of the next band into this
structure.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. A return value of zero indicates that an error occurred. In ad
dition, the following error values are defined:

Value

SP _APPABORT

SP_ERROR

SP _OUTOFDISK

SP _OUTOFMEMORY

SP _USERABORT

Meaning

Job was terminated because the application's Abort func
tion returned zero.

General error.

Not enough disk space is currently available for spooling,
and no more space will become available.

Not enough memory is available for spooling.

User terminated the job through Print Manager.

The NEXTBAND escape sets the band rectangle to the empty rectangle when
printing reaches the end of a page.

Do not use the NEWFRAME escape with the NEXTBAND escape.

The NEXTBAND escape should not be used inside metafiles.

490 PASSTHROUGH

PASSTHROUGH
short Escape(hdc, PASSTHROUGH, NULL, lplnData, NULL)

The PASSTHROUGH printer escape allows the application to send data directly
to the printer, bypassing the standard print-driver code.

Note To use this escape, an application must have complete information about
how the particular printer operates.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lplnData
LPSTR Points to a structure whose first word (16 bits) contains the number of
bytes of input data. The remaining bytes of the structure contain the data itself.

The return value specifies the number of bytes transferred to the printer if the
escape is successful. This value is less than or equal to zero if the escape is not
successful or not implemented.

There may be restrictions on the kinds of device data an application can send to
the device without interfering with the operation of the driver. In general, applica
tions must avoid resetting the printer or causing the page to be printed.

It is strongly recommended that applications do not perform actions that consume
printer memory, such as downloading a font or a macro.

An application can avoid corrupting its data stream when issuing multiple, con
secutive PASSTHROUGH escapes by not accessing the printer any other way
during the sequence.

An application can guarantee that the PASSTHROUGH escape will be successful
if it uses a "save" Postscript operator before sending PASSTHROUGH data and
a "restore" operator after. Avoiding graphics device interface (GDI) functions be
tween calls to the PASSTHROUGH escape and avoiding commands that cause a
page to eject are other means to ensure that the escape will be successful.

QUERYESCSUPPORT 491

POSTSCRIPT_ DATA
The POSTSCRIPT_DATAprinter escape is identical to the PASSTHROUGH
escape.

POSTSCRIPT_ IGNORE
short Escape(hdc, POSTSCRIPT_IGNORE, NULL, lpfOutput, NULL)

The POSTSCRIPT_IGNORE printer escape sets a flag indicating whether or
not to suppress output.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpfOutput
BOOL FAR* Points to a flag indicating whether output should be suppressed.
This value is nonzero to suppress output and zero otherwise.

The return value specifies the previous setting of the output flag.

Applications that generate their own Postscript code can use the
POSTSCRIPT_ IGNORE escape to prevent the Postscript device
driver from generating output.

QUERYESCSUPPORT
short Escape(hdc, QUERYESCSUPPORT, sizeof(int), lpEscNum, NULL)

The QUERYESCSUPPORT printer escape determines whether a particular
escape is implemented by the device driver.

Parameters hdc
HDC Identifies the device context.

lpEscNum
LPINT Points to a short integer that specifies the escape function to be checked.

492 RESTORE_CTM

Return Value The return value specifies whether a particular escape is implemented. This value
is nonzero for implemented escape functions. Otherwise, it is zero.

If the lpEscNum parameter is set to DRAWPATTERNRECT, the return value is
one of the following values:

Value

0

2

Meaning

DRAWPATTERNRECT is not implemented.

DRAWPATTERNRECT is implemented for a printer other than the HP
LaserJet IIP; this printer supports white rules.

DRAWPATTERNRECT is implemented for the HP LaserJet IIP.

RESTORE_ CTM
short Escape(hdc, RESTORE_ CTM, NULL, NULL, NULL)

The RESTORE_ CTM printer escape restores the previously saved current trans
formation matrix.

The current transformation matrix controls the manner in which coordinates are
translated, rotated, and scaled by the device. By using matrices, an application can
combine these operations in any order to produce the desired mapping for a partic
ular picture.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

The return value specifies the number of SA VE_ CTM escape calls without a
corresponding RESTORE_ CTM call. The return value is -1 if the escape is un
successful.

This escape is used only by PostScript printer drivers.

Applications should not make any assumptions about the initial contents of the cur
rent transformation matrix.

SELECTPAPERSOURCE 493

SAVE_CTM
short Escape(hdc, SAVE_CTM, NULL, NULL, NULL)

The SA VE_ CTM printer escape saves the current transformation matrix.

The current transformation matrix controls the manner in which coordinates are
translated, rotated, and scaled by the device. By using matrices, an application can
combine these operations in any order to produce the desired mapping for a partic
ular picture.

An application can restore the matrix by using the RESTORE_ CTM escape.

An application typically saves the current transformation matrix before changing
it. This allows the application to restore the previous state upon completion of a
particular operation.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

The return value specifies the number of SA VE_ CTM escape calls without a
corresponding RESTORE_ CTM call. The return value is zero if the escape is un
successful.

This escape is used only by Postscript printer drivers.

Applications should not make any assumptions about the initial contents of the cur
rent transformation matrix.

Applications are expected to restore the contents of the current transformation
matrix.

SELECTPAPERSOURCE
The SELECTPAPERSOURCE printer escape has been superseded by the
DeviceCapabilities function (using the DC_BINS value). SELECTPAPER
SOURCE is provided only for backward compatibility.

494 SETABORTPROC

SETABORTPROC
short Escape(hdc, SETABORTPROC, NULL, lpAbortFunc, NULL)

The SETABORTPROC printer escape is maintained for backwards compati
bility. Applications written for Windows 3 .1 should use the SetAbortProc func
tion.

This escape sets the Abort function for the print job.

To allow a print job to be canceled during spooling, an application must set the
Abort function before the print job is started with the STARTDOC escape. Print
Manager calls the Abort function during spooling to allow the application to can
cel the print job or to take appropriate action for such errors as running out of disk
space. If no Abort function is set, the print job will fail if there is not enough disk
space for spooling.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpAbortFunc
F ARPROC Points to the application-supplied Abort function. For details, see
the following Comments section.

The return value specifies the outcome of the escape. This value is greater than
zero if the escape is successful. Otherwise, it is less than zero.

The address passed as the lpAbortFunc parameter must be created by using the
MakeProclnstance function.

The callback function must use the Pascal calling convention and must be declared
FAR. The Abort function must have the following form:

short FAR PASCAL AbortFunc(hPr,code)
HDChPr;
short code;

AbortFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the module
definition (.DEF) file for the application.

Return Value

SETALLJUSTVALUES 495

Following are the parameters in the Abort function:

hPr
Identifies the device context.

code
Specifies whether an error has occurred. This parameter is zero if no error has
occurred. It is SP_ OUTOFDISK if Print Manager is currently out of disk space
and more disk space will become available ifthe application waits.

If code is SP _OUTOFDISK, the application does not have to abort the print
job. If it does not abort the print job, it must yield to Print Manager by calling
the PeekMessage or GetMessage function.

The return value should be nonzero if the print job is to continue and zero if it is
canceled.

SETALLJUSTVALUES
short Escape(hdc, SETALLJUSTVALUES, sizeof(EXTTEXTDATA), lplnData, NULL)

The SETALLJUSTVALUES printer escape is not recommended. Applications
should use the ExtTextOut function instead of this escape. This escape sets all of
the text-justification values that are used for text output in Windows 3.0 and
earlier.

Text justification is the process of inserting extra pixels among break characters in
a line of text. The space character is normally used as a break character.

Parameters hdc

Return Value

HDC Identifies the device context.

lplnData
EXTTEXTDATA FAR * Points to an EXTTEXTDATA structure that de
fines the text-justification values. For more information about this structure, see
the Comments section.

The return value specifies the outcome of the escape. This value is 1 if the escape
is successful. Otherwise, it is zero.

496 SETALLJUSTVALUES

Comments The lplnData parameter points to an EXTTEXTDATA structure that describes
the text-justification values used for text output. The EXTTEXTDATA structure
has the following form:

typedef struct {
short nSize;
LPALLJUSTREC lpinData;
LPFDNTINFD lpFont;
LPTEXTXFDRM lpXForm;
LPDRAWMDDE lpDrawMode;

} EXTTEXTDATA;

This structure contains a JUST_ VALUE_STRUCT structure that has the follow
ing form:

typedef struct {
short nCharExtra;
WDRD cch;
short nBreakExtra;
WDRD nBreakCount;

} JUST_VALUE_STRUCT;

Following are the members of JUST_ VALUE_STRUCT structure:

nCharExtra
Specifies the total extra space, in font units, that must be distributed over cch
characters.

cch
Specifies the number of characters over which the nCharExtra member is dis
tributed.

nBreakExtra
Specifies the total extra space, in font units, that is distributed over nBreak
Count characters.

nBreakCount
Specifies the number of break characters over which the nBreakExtra member
is distributed.

The units used for the nCharExtra and nBreakExtra members are the font units
of the device and are dependent on whether relative character widths were enabled
with the ENABLERELA TIVEWIDTHS escape.

The values set with this escape apply to subsequent calls to the TextOut function.
The driver stops distributing the extra space specified in the nCharExtra member
when it has output the number of characters specified in the nCharCount

SET _ARC_ DIRECTION 497

member. Likewise, it stops distributing the space specified by the nBreakExtra
member when it has output the number of characters specified by the nBreak
Count member. A call on the same string to the GetTextExtent function made
immediately after the call to the TextOut function will be processed in the same
manner.

To reenable justification with the SetTextJustification and SetTextCharacterEx
tra functions, an application should call the SETALLJUSTVALUES escape and
set the nCharExtra and nBreakExtra members to zero.

SET _ARC_ DIRECTION
short Escape(hdc, SET_ARC_DIRECTION, sizeof(int), lpDirection, NULL)

The SET_ARC_DIRECTION printer escape specifies the direction in which
elliptical arcs are drawn using the graphics device interface (GDI) Arc function.

By convention, elliptical arcs are drawn counterclockwise by GDI. This escape
lets an application draw paths containing arcs drawn clockwise.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpDirection
LPINT Points to a short integer specifying the arc direction. It can be one of
the following values:

COUNTERCLOCKWISE (0)
CLOCKWISE (1)

The return value is the previous arc direction.

This escape maps to PostScript language elements and is intended for PostScript
line devices.

498 SET_BACKGROUND_COLOR

SET_BACKGROUND_COLOR
short Escape(hdc, SET_BACKGROUND_COLOR, nCount, lpNewColor, lpOldColor)

The SET_BACKGROUND_ COLOR printer escape sets and retrieves the cur
rent background color for the device.

The background color is the color of the screen surface before an application
draws anything on the device. This escape is particularly useful for color printers
and film recorders.

This escape should be sent before the application draws anything on the current
page.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

nCount
int Specifies the number of bytes pointed to by the lpNewColorparameter.

lpNewColor
LPDWORD Points to a 32-bit integer specifying the desired background color.
This parameter can be NULL if the application is merely retrieving the current
background color.

lpOldColor
LPDWORD Points to a 32-bit integer that receives the previous background
color. This parameter can be NULL if the application does not use the previous
background color.

The return value is nonzero if the escape is successful. This value is zero if it is un
successful.

The default background color is white.

The background color is reset to the default when the device driver receives an
ENDDOC or ABORTDOC escape.

SET_CLIP _BOX 499

SET_BOUNDS
short Escape(hdc, SET_BOUNDS, sizeof(RECT), lplnData, NULL)

The SET_ BOUNDS printer escape sets the bounding rectangle for the picture
being produced by the device driver supporting the given device context. This
escape is used when creating images in a file format such as Encapsulated Post
Script (EPS) and Hewlett-Packard Graphics Language (HPGL) for which there is
a device driver.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lp/nData
LPRECT Points to a RECT structure that specifies in device coordinates a
rectangle that bounds the image to be output.

The return value is nonzero if the escape was successful. Otherwise, it is zero.

An application should issue this escape before each page in the image. For single
page images, this escape should be issued immediately before the STARTDOC
escape.

When an application uses coordinate-transformation escapes, device drivers may
not perform bounding box calculations correctly. When an application uses the
SET_BOUNDS escape, the driver does not have to calculate the bounding box.

Applications should always use this escape to ensure support for the Encapsulated
PostScript (EPS) printing capabilities.

SET_ CLIP_ BOX
short Escape(hdc, SET_ CLIP _BOX, sizeof(RECT), lpClipBox, (LPSTR) NULL)

The SET_ CLIP _BOX printer escape sets the clipping rectangle or restores the
previous clipping rectangle. This escape is implemented by printer drivers that use
the coordinate-transformation escapes TRANSFORM_ CTM, SA VE_ CTM, and
RESTORE_ CTM.

500 SETCOLORTABLE

When an application calls a graphics device interface (GDI) output function, GDI
calculates a clipping rectangle bounding the primitive and passes both the primi
tive and the clipping rectangle to the printer driver. The printer driver is expected
to clip the primitive to the specified bounding rectangle. However, when an appli
cation uses the coordinate-transformation escapes, the clipping rectangle calcu
lated by GDI is usually invalid. An application can use the SET_ CLIP _BOX
escape to specify the correct clipping rectangle when coordinate transformations
are used.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

Ip Clip Box
LPRECT Points to a RECT structure containing the bounding rectangle of the
clipping region. If lpClipBox is not NULL, the previous clipping rectangle is
saved and the current clipping rectangle is set to the specified bounds. If
lpClipBox is NULL, the previous clipping rectangle is restored.

The return value is nonzero if the clipping rectangle was properly set. Otherwise,
it is zero.

This escape is used only by PostScript printer drivers.

SETCOLORTABLE
short Escape(hdc, SETCOLORTABLE, sizeof(COLORTABLE_STRUCT), lplnData, lpColor)

The SETCOLORTABLE printer escape sets an RGB color-table entry. If the
device cannot supply the exact color, the function sets the entry to the closest
possible approximation of the color.

Parameters hdc
HDC Identifies the device context.

lplnData
COLORTABLE_STRUCT FAR* Points to a structure that contains the
index and RGB value of the color-table entry. For more information about the
COLORTABLE_STRUCT structure, see the following Comments section.

lpColor
LPDWORD Points to the long integer that is to receive the RGB color value
selected by the device driver to represent the requested color value.

Return Value

Comments

SETCOLORTABLE 501

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is negative.

The COLORTABLE_STRUCT structure has the following form:

struct COLORTABLE_STRUCT {
WORD Index;
DWORD rgb;

} ;

Following are the members of the COLORTABLE_STRUCTstructure:

Index
Specifies the color-table index. Color-table entries start at zero for the first
entry.

rgb
Specifies the desired RGB color value.

The color table for a device is a shared resource; changing the system display
color for one window changes it for all windows. Only application developers who
have a thorough knowledge of the display driver should use this escape.

The SETCOLORTABLE escape has no effect on devices with fixed color tables.

This escape is intended for use by both printer and display drivers. However, the
EGA and VGA color drivers do not support it.

This escape changes the palette used by the display driver. However, because the
color-mapping algorithms for the driver will probably no longer work with a differ
ent palette, an extension has been added to this function.

If the color index pointed to by the lplnData parameter is OXFFFF, the driver is to
leave all color-mapping functionality to the calling application. The application
must use the proper color-mapping algorithm and take responsibility for passing
the correctly mapped physical color to the driver (instead of the logical RGB
color) in such device-driver functions as RealizeObject and Colorlnfo.

For example, if the device supports 256 colors with palette indexes of 0 through
255, an application determines which index contains the color that it wants to use
in a certain brush. It then passes this index in the low-order byte of the double
word logical color passed to the RealizeObject device-driver function. The driver
uses this color exactly as passed instead of performing its usual color-mapping al
gorithm. If the application wants to reactivate the driver's color-mapping algo
rithm (that is, if it restores the original palette when switching from its window
context), then the color index pointed to by lplnData should be OxFFFE.

502 SETCOPYCOUNT

SETCOPYCOUNT
short Escape(hdc, SETCOPYCOUNT, sizeof(int), lpNumCopies, lpActualCopies)

The SETCOPYCOUNT printer escape is maintained for backwards compati
bility. Applications written for Windows 3 .1 should use the ExtDeviceMode func
tion.

This escape specifies the number of uncollated copies of each page that the printer
is to print.

Parameters hdc

Return Value

HDC Identifies the device context.

lpNumCopies
LPINT Points to a short integer that contains the number of uncollated copies
to be printed.

lpActualCopies
LPINT Points to a short integer that will receive the number of copies to be
printed. This may be less than the number requested if the requested number is
greater than the maximum copy count for the device.

The return value specifies the outcome of the escape. It is 1 if the escape is
successful and zero if the escape is not successful. The return value is zero if the
escape is not implemented.

SETKERNTRACK
short Escape(hdc, SETKERNTRACK, sizeof(int), lpNewTrack, lpOldTrack)

The SETKERNTRACK printer escape specifies which kerning track to use for
drivers that support automatic track kerning. A kerning track of zero disables auto
matic track kerning.

When track kerning is enabled, the driver will automatically kern all characters
according to the specified track. The driver will reflect this kerning both on the
printer and in GetTextExtent function calls.

SETLINECAP 503

Parameters lulc

Return Value

Comments

SETLINECAP

HDC Identifies the device context.

lpNewTrack
LPINT Points to a short integer that specifies the kerning track to use. A value
of zero disables this feature. Values in the range 1 through the value of the
etmKernTracks member correspond to positions in the track-kerning table
(using 1 as the first item in the table). For more information, see the description
of the EXTTEXTMETRIC structure provided in the description of the
GETEXTENDEDTEXTMETRICS escape earlier in this chapter.

lpOldTrack
LPINT Points to a short integer that will receive the previous kerning track.

The return value specifies the outcome of the escape. It is 1 if the escape is
successful and zero if the escape is not successful or not implemented.

Automatic track kerning is disabled by default.

A driver does not have to support the SETKERNTRACK escape just because it
supplies the track-kerning table to the application by using the GETTRACK
KERNTABLE escape. In a case where GETTRACKKERNTABLE is sup
ported but the SETKERNTRACK escape is not, the application must properly
space the characters on the output device.

short Escape(hdc, SETLINECAP, sizeof(int), lpNewCap, lpOldCap)

The SETLINECAP printer escape sets the line end cap.

A line end cap is that portion of a line segment that appears on either end of the
segment. The cap may be square or circular. It can extend past or remain flush
with the specified segment endpoints.

504 SETLINEJOIN

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpNewCap
LPINT Points to a short integer that specifies the end-cap type. Following are
the possible values and their meanings:

Value

-1

0

2

lpOldCap

Meaning

Line segments are drawn by using the default graphics device interface
(GDI) end cap.

Line segments are drawn with a squared end point that does not project
past the specified segment length.

Line segments are drawn with a rounded end point; the diameter of this
semicircular arc is equal to the line width.

Line segments are drawn with a squared end point that projects past the
specified segment length. The projection is equal to half the line width.

LPINT Points to a short integer that specifies the previous end-cap setting.

The return value specifies the outcome of the escape. It is positive if the escape is
successful. Otherwise, it is negative.

This escape is used only by Postscript printer drivers.

The interpretation of this escape varies with page-description languages (PD Ls).
For its exact meaning, consult the PDL documentation.

This escape is also known as SETENDCAP.

SETLINEJOIN
short Escape(hdc, SETLINEJOIN, sizeof(int), lpNewJoin, lpOldJoin)

The SETLINEJOIN printer escape specifies how a device driver will join two in
tersecting line segments. The intersection can form a rounded, squared, or mitered
comer.

Parameters hdc
HOC Identifies the device context.

lpNewJoin
LPINT Points to a short integer that specifies the type of intersection. Follow
ing are the possible values and their meanings:

Return Value

Comments

Value

-1

0

SETMITERLIMIT 505

Meaning

Line segments are joined by using the default graphics device interface
(GDT) setting.

Line segments are joined with a mitered comer; the outer edges of the
lines extend until they meet at an angle. This is referred to as a miter
JOlll.

Line segments are joined with a rounded corner; a semicircular arc with
a diameter equal to the line width is drawn around the point where the
lines meet. This is referred to as a round join.

2 Line segments are joined with a squared end point; the outer edges of
the lines are not extended. This is referred to as a bevel join.

lpOldloin
LPINT Points to a short integer that specifies the previous line join setting.

The return value specifies the outcome of the escape. It is positive if the escape is
successful. Otherwise, it is negative.

This escape is used only by Postscript printer drivers.

The interpretation of this escape varies with page-description languages (PD Ls).
For its exact meaning, consult the PDL documentation.

If an application specifies a miter join but the angle of intersection is too small, the
device driver ignores the miter setting and uses a bevel join instead.

SETMITERLIMIT
short Escape(hdc, SETMITERLIMIT, sizeof(int), lpNewMiter, lpOldMiter)

Parameters

The SETMITERLIMIT printer escape sets the miter limit for a device. The miter
limit controls the angle at which a device driver replaces a miter join with a bevel
join.

hdc
HDC Identifies the device context.

506 SET_POLY_MODE

Return Value

Comments

lpNewMiter
LPINT Points to a short integer that specifies the desired miter limit. Only
values greater than or equal to -1 are valid. If the value is -1, the driver will
use the default graphics device interface (GDI) miter limit.

lpOldMiter
LPINT Points to a short integer that specifies the previous miter-limit setting.

The return value specifies the outcome of the escape. This value is positive if the
escape is successful. Otherwise, it is negative.

This escape is used only by PostScript printer drivers.

The miter limit is defined as follows:

miter length I line width= 1 I sin(x/2)

where xis the angle of the line join, in radians.

The interpretation of this escape varies with page-description languages (PDLs).
For its exact meaning, consult the PDL documentation.

SET_POLY_MODE
short Escape(hdc, SET_POLY_MODE, sizeof(int), lpMode, NULL)

The SET_POLY _MODE printer escape sets the poly mode for the device driver.
The poly mode is a state variable indicating how to interpret calls to graphics
device interface (GDI) Polygon and Polyline functions.

The SET_POLY _MODE escape enables a device driver to draw shapes (such as
Bezier curves) not directly supported by GDI. This permits applications that draw
complex curves to send the curve description directly to a device without having
to simulate the curve as a polygon with a large number of points.

Parameters hdc
HDC Identifies the device context.

lpMode
LPINT Points to a short integer specifying the desired poly mode. The poly
mode is a state variable indicating how points in Polygon or Polyline function
calls should be interpreted. Device drivers are not required to support all
possible modes. A device driver returns zero if it does not support the specified
mode. The lpMode parameter may be one of the following values:

Return Value

Comments

Value

PM_POLYLINE (1)

PM_BEZIER (2)

PM_POLYLINESEGMENT (3)

PM_pOLYSCANLINE (4)

SET_POLY_MODE 507

Meaning

Points define a conventional polygon or poly
line.

Points define a sequence of 4-point Bezier
spline curves. The first curve passes through
the first four points, with the first and fourth
points as endpoints and the second and third
points as control points. Each subsequent curve
in the sequence has the endpoint of the pre
vious curve as its start point, the next two
points as control points, and the third as its
endpoint.

The last curve in the sequence is permitted to
have fewer than four points. If the curve has
only one point, it is considered a point. If it has
two points, it is a line segment. If it has three
points, it is a parabola defined by drawing a
Bezier curve with the first and third points as
endpoints and the two control points equal to
the second point.

Points specify a list of coordinate pairs. Line
segments are drawn connecting each succes
sive pair of points.

Points specify a list of coordinate pairs. Line
segments are drawn connecting each succes
sive pair of points. Each line segment is a nomi
nal-width line drawn with the current brush.
Each line segment must be strictly vertical or
horizontal, and scan lines must be passed in
strictly increasing or decreasing order. This
mode is only used for polygon calls.

The return value is the previous poly mode. If the return value is zero, the device
driver did not handle the request.

This escape is used only by PostScript printer drivers.

An application should issue the SET_POLY _MODE escape before it draws a
complex curve. It should then call the Polyline or Polygon function with the
desired control points defining the curve. After drawing the curve, the application
should reset the driver to its previous state by issuing the SET_POLY _MODE
escape.

Polyline calls draw using the currently selected pen.

508 SET_SCREEN_ANGLE

Polygon calls draw using the currently selected pen and brush. If the start point
and endpoint are not equal, a line is drawn from the start point to the endpoint
before the polygon (or curve) is filled.

GDI treats Polygon calls using PM_POL YLINESEGMENT mode exactly the
same as Polyline calls.

Four points define a Bezier curve. GDI generates the curve by connecting the first
and second, second and third, and third and fourth points. GDI then connects the
midpoints of these consecutive line segments. Finally, GDI connects the midpoints
of the lines connecting the midpoints, and so forth.

The line segments drawn in this way converge to a curve defined by the following
parametric equations, expressed as a function of the independent variable t.

X(t) = (1-t) 3 X 1 + 3(1-t) 2 tx2 + 3(1-t)t 2 X 3 + t 3 X4

Y(t) = (1-t) 3 y1 + 3(1-t) 2 % + 3(1-t)t 2 y3 + t 3 y4

The points (xp y1), (x2 , y2), (x3 , y3) and (x4, y4) are the control points defining the
curve. The independent variable t varies from 0 to 1.

Primitive types other than PM_BEZIER and PM_POL YLINESEGMENT may be
added to this escape in the future. Applications should check the return value from
this escape to determine whether the driver supports the specified poly mode.

SET_ SCREEN_ANGLE
short Escape(hdc, SET_SCREEN_ANGLE, sizeof(int), lpAngle, NULL)

The SET_SCREEN_ANGLE printer escape sets the current screen angle to the
desired angle and enables an application to simulate the tilting of a photographic
mask in producing a color separation for a particular primary.

Parameters hdc

Return Value

HDC Identifies the device context.

lpAngle
LPINT Points to a short integer specifying the desired screen angle in tenths of
a degree. The angle is measured counterclockwise.

The return value is the previous screen angle.

Comments

SET_ SPREAD 509

Four-color process separation is the process of separating the colors comprising an
image into four component primaries: cyan, magenta, yellow, and black. The
image is then reproduced by overprinting each primary.

In traditional four-color process printing, half-tone images for each of the four pri
maries are photographed against a mask tilted to a particular angle. Tilting the
mask in this manner minimizes unwanted moire patterns caused by overprinting
two or more colors.

The device driver defines the default screen angle.

SET_SPREAD
short Escape(hdc, SET_SPREAD, sizeof(int), lpSpread, NULL)

The SET_SPREAD printer escape sets the amount that nonwhite primitives are
expanded for a given device to provide a slight overlap between primitives to com
pensate for imperfections in the reproduction process.

Spot color separation is the process of separating an image into each distinct color
used in the image. The image is reproduced by overprinting each successive color
in the image.

When reproducing a spot-separated image, the printing equipment must be cali
brated to align each page exactly on each pass. However, differences in tempera
ture, humidity, and so forth between passes often cause images to align
imperfectly on subsequent passes. For this reason, lines in spot separations are
often widened (spread) slightly to make up for problems in registering subsequent
passes through the printer. This process is called trapping. The SET_SPREAD
escape implements this process.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

lpSpread
LPINT Points to a short integer that specifies the amount, in pixels, by which
all nonwhite primitives are to be expanded.

The return value is the previous spread value.

The default spread is zero.

The current spread applies to all bordered primitives (whether or not the border is
visible) and text.

510 STARTDOC

STARTDOC
short Escape(hdc, STARTDOC, nCount, lpDocName, NULL)

The STARTDOC printer escape is maintained for backwards compatibility.
Applications written for Windows 3.1 should use the StartDoc function.

This escape informs the device driver that a new print job is starting and that all
subsequent NEWFRAME escape calls should be spooled under the same job until
an ENDDOC escape call occurs. This ensures that documents longer than one
page will not be interspersed with other jobs.

Parameters hdc

Return Value

Comments

HDC Identifies the device context.

nCount
short Specifies the number of characters in the string pointed to by the
lpDocName parameter.

lpDocName
LPSTR Points to a null-terminated string that specifies the name of the docu
ment. The document name is displayed in the Print Manager window. The maxi
mum length of this string is 31 characters plus the terminating null character.

The return value specifies the outcome of the escape. It is -1 if an error such as in
sufficient memory or an invalid port specification occurs. Otherwise, it is positive.

Following is the correct sequence of events in a printing operation:

1. Create the device context.

2. Set the Abort function to keep out-of-disk-space errors from terminating a print
ing operation.

An Abort procedure that handles these errors must be set by using the
SETABORTPROC escape.

3. Begin the printing operation with the STARTDOC escape.

4. Begin each new page with the NEWFRAME escape or each new band with the
NEXTBAND escape.

5. End the printing operation with the ENDDOC escape.

6. Destroy the Cancel dialog box, if any.

7. Free the procedure-instance address of the Abort function.

TRANSFORM_ CTM 511

If an application encounters a printing error or a canceled print operation, it must
not attempt to terminate the operation by using the Escape function with either the
ENDDOC or ABORTDOC escape. Graphics device interface (GDI) automat
ically terminates the operation before returning the error value.

The ST ARTDOC escape should not be used inside metafiles.

STRETCH BLT

See Also

The STRETCHBL T printer escape is provided for backwards compatibility.
Applications should use the StretchBlt function instead of this escape.

StretchBlt

TRANSFORM_ CTM
short Escape(hdc, TRANSFORM_ CTM, 36, lpMatrix, NULL)

The TRANSFORM_ CTM printer escape modifies the current transformation
matrix. The current transformation matrix controls the manner in which coordi
nates are translated, rotated, and scaled by the device. By using matrices, you can
combine these operations in any order to produce the desired mapping for a partic
ular picture.

The new current transformation matrix will contain the product of the matrix refer
enced by the lpMatrix parameter and the previous current transformation matrix
(CTM = M * CTM).

Parameters hdc
HDC Identifies the device context.

lpMatrix
LPSTR Points to a 3-by-3 array of 32-bit integer values specifying the new
transformation matrix. Entries in the matrix are scaled to represent fixed-point
real numbers. Each matrix entry is scaled by 65,536. The high-order word of
the entry contains the whole integer portion, and the low-order word contains
the fractional portion.

512 TRANSFORM_CTM

Return Value

Comments

The return value is nonzero if the escape was successful and zero if it was un
successful.

This escape is used only by Postscript printer drivers.

When an application modifies the current transformation matrix, it must specify
the clipping rectangle by issuing the SET_ CLIP _BOX escape.

Applications should not make any assumptions about the initial value of the cur
rent transformation matrix.

Dynamic Data Exchange
Transactions

Chapter 6

Alphabetic Reference .. 515

XTYP_ADVDATA 515

The Dynamic Data Exchange Management Library (DDEML) notifies an applica
tion of dynamic data exchange (DDE) activity that affects the application by send
ing transactions to the application's DDE callback function. A transaction is
similar to a message-it is a named constant accompanied by other parameters
that contain additional information about the transaction.

This chapter lists the DDE transactions in alphabetic order.

XTYP _ADVDATA

Parameters

Return Value

Comments

See Also

#include <ddeml .h>

XTYP_ADVDATA
hszTopic = hszl; /* handle of topic-name string*/
hszltem = hsz2; /* handle of item-name string */
hDataAdvise = hData; /* handle of the advise data */

A client's DDE callback function can receive this transaction after the client has
established an advise loop with a server. This transaction informs the client that
the value of the data item has changed.

hszTopic
Value of hszl. Identifies the topic name.

hszJtem
Value of hsz2. Identifies the item name.

hDataAdvise
Value of hData. Identifies the data associated with the topic/item name pair. If
the client specified the XTYPF _NODATA flag when it requested the advise
loop, this parameter is NULL.

A DDE callback function should return DDE_FACK if it processes this
transaction, DDE_FBUSY if it is too busy to process this transaction, or
DDE_FNOTPROCESSED if it denies this transaction.

An application need not free the data handle obtained during this transaction. If the
application needs to process the data after the callback function returns, however,
it must copy the data associated with the data handle. An application can use the
DdeGetData function to copy the data.

DdeClientTransaction, DdePostAdvise

516 IDP_ADVREQ

XTYP _ADVREQ

Parameters

Return Value

Comments

See Also

#include <ddeml .h>

XTYP_ADVREQ
hszTopic = hszl; /* handle of topic-name string */
hsz!tem hsz2; /* handle of item-name string */
cAdvReq = LOWORD(dwDatal); /*count of remaining transactions */

The system sends this transaction to a server after the server calls the DdePost
Advise function. This transaction informs the server that an advise transaction is
outstanding on the specified topic/item name pair and that data corresponding to
the topic/item name pair has changed.

hszTopic
Value of hszl. Identifies the topic name.

hsz/tem
Value of hsz2. Identifies the item name that has changed.

cAdvReq
Value of the low-order word of dwDatal. Specifies the count of
XTYP _ADVREQ transactions that remain to be processed on the same
topic/item/format name set, within the context of the current call to the
DdePostAdvise function. If the current XTYP _ADVREQ transaction is the
last one, the count is zero. A server can use this count to determine whether
to create an HDAT A_APPOWNED data handle for the advise data.

If the DDEML issued the XTYP _ADVREQ transaction because of a late
arriving DDE_F ACK transaction flag from a client, the low-order word is set to
CADV _LATEACK. The DDE_FACK transaction flag arrives late when a serv
er is sending information faster than a client can process it.

The server should call the DdeCreateDataHandle function to create a data handle
that identifies the changed data and then should return the handle. If the server is
unable to complete the transaction, it should return NULL.

A server cannot block this transaction type; the CBR_BLOCK return value is ig
nored.

DdeCreateDataHandle, Ddelnitialize, DdePostAdvise

XTYP _ADVSTART 517

XTYP_ADVSTART [}IJ

Parameters

Return Value

Comments

See Also

#include <ddeml .h>

XTYP_ADVSTART
hszTopic = hszl;
hszitem = hsz2;

/* handle of topic-name string */
/* handle of item-name string */

A server's DOE callback function receives this transaction when a client specifies
XTYP _ADVST ART for the wType parameter of the DdeClientTransaction func
tion. A client uses this transaction to establish an advise loop with a server.

hszTopic
Value of hszl. Identifies the topic name.

hszltem
Value of hsz2. Identifies the item name.

To allow an advise loop on the specified topic/item name pair, a server's DOE call
back function should return a nonzero value. To deny the advise loop, it should re
turn zero. If the callback function returns a nonzero value, any subsequent call by
the server to the DdePostAdvise function on the same topic/item name pair will
cause the system to send a XTYP _ADVREQ transaction to the server.

If a client requests an advise loop on a topic/item/format name set for which an ad
vise loop is already established, the DDEML does not create a duplicate advise
loop. Instead, the DDEML alters the advise loop flags (XTYPF _ACKREQ and
XTYPF _NODATA) to match the latest request.

If the server application specified the CBF _FAIL_ADVISES flag in the
Ddelnitialize function, this transaction is filtered.

DdeClientTransaction, Ddelnitialize, DdePostAdvise

518 XTYP_ADVSTOP

XTYP _ADVSTOP

Parameters

Return Value

Comments

See Also

#include <ddeml.h>

XTYP_ADVSTOP
hszTopic = hszl;
hszitem = hsz2;

/* handle of topic-name string */
/* handle of item-name string */

A server's DDE callback function receives this transaction when a client specifies
XTYP _ADVSTOP for the wType parameter of the DdeClientTransaction func
tion. A client uses this transaction to end an advise loop with a server.

hszTopic
Value of hszl. Identifies the topic name.

hszltem
Value of hsz2. Identifies the item name.

This transaction does not return a value.

If the server application specified the CBF _FAIL_ADVISES flag in the
Ddeinitialize function, this transaction is filtered.

DdeClientTransaction, Ddelnitialize, DdePostAdvise

XTYP _CONNECT

Parameters

#include <ddeml .h>

XTYP_CONNECT
hszTopic = hszl;
hszService = hsz2;
pee = (CONVCONTEXT
fSameinst = (BOOL)

/* handle of topic-name string */
/* handle of service-name string */

FAR *)dwDatal; /* address of CONVCONTEXT structure */
dwData2; /* same instance flag */

A server's DDE callback function receives this transaction when a client specifies
a service name that the server supports and a topic name that is not set to NULL in
a call to the DdeConnect function.

hszTopic
Value of hszl. Identifies the topic name.

hszService
Value of hsz2. Identifies the service name.

Return Value

Comments

See Also

XTYP_CONNECT_CONFIRM 519

pee
Value of dwDatal. Points to a CONVCONTEXT data structure that contains
context information for the conversation. If the client is not a DDEML applica
tion, this parameter should be set to zero.

fSamelnst
Value of dw Data2. Specifies whether the client is the same application instance
as the server. If this parameter is TRUE, the client is the same instance; if this
parameter is FALSE, the client is a different instance.

To allow the client to establish a conversation on the specified service/topic name
pair, a server's DDE callback function should return a nonzero value. To deny the
conversation, it should return zero. If the callback function returns a nonzero value
and a conversation is successfully established, the system passes the conversation
handle to the server by issuing an XTYP _CONNECT_CONFIRM transaction
to the server's DDE callback function (unless the server specified the
CBF _FAIL_CONNECT_CONFIRMS flag in the Ddelnitialize function).

If the server application specified the CBF _FAIL_ CONNECTIONS flag in the
Ddelnitialize function, this transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value is ig
nored.

DdeConnect, Ddelnitialize

XTYP _CONNECT_CONFIRM

Parameters

#include <ddeml. h>

XTYP_CONNECT_CONFIRM
hszTopic = hszl; /* handle of topic-name string */
hszService = hsz2; /* handle of service-name string */
fSamelnst = CBOQL) dwData2; /* same instance flag */

A server's DDE callback function receives this transaction to confirm that a con
versation has been established with a client and to provide the server with the con
versation handle. The system sends this transaction as a result of a previous
XTYP _CONNECT or XTYP _ WILDCONNECT transaction.

hszTopie
Value of hszl. Identifies the topic name on which the conversation has been
established.

520 XTYP _DISCONNECT

Return Value

Comments

See Also

hszService
Value of hsz2. Identifies the service name on which the conversation has been
established.

fSamelnst
Value of dwData2. Specifies whether the client is the same application instance
as the server. If this parameter is a nonzero value, the client is the same in
stance. If this parameter is zero, the client is a different instance.

This transaction does not return a value.

If the server application specified the CBF _FAIL_CONFIRMS flag in the
Ddelnitialize function, this transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return value is ig
nored.

DdeConnect, DdeConnectList, Ddelnitialize

XTYP _DISCONNECT

Parameters

Return Value

Comments

#include <ddeml. h>

XTYP_DISCONNECT
fSameinst = (BOOL) dwData2; /* same instance flag */

An application's DDE callback function receives this transaction when the applica
tion's partner in a conversation uses the DdeDisconnect function to terminate the
conversation.

fSamelnst
Value of dwData2. Specifies whether the partners in the conversation are the
same application instance. If this parameter is TRUE, the partners are the same
instance. If this parameter is FALSE, the partners are different instances.

This transaction does not return a value.

If the application specified the CBF _SKIP _DISCONNECTS flag in the
Ddelnitialize function, this transaction is filtered.

See Also

XTYP _EXECUTE 521

The application can obtain the status of the terminated conversation by calling the
DdeQueryConvlnfo function while processing this transaction. The conversation
handle becomes invalid after the callback function returns.

An application cannot block this transaction type; the CBR_BLOCK return value
is ignored.

DdeDisconnect, DdeQueryConvlnfo

XTYP_ERROR

Parameters

Return Value

Comments

#include <ddeml .h>

XTYP_ERROR
wErr = LOWORO(dwDatal); /*error value*/

A DDE callback function receives this transaction when a critical error occurs.

wErr
Value of dwDatal. Specifies the error value. Currently, only the
DMLERR_LOW _MEMORY error value is supported. It means that memory
is low-advise, poke, or execute data may be lost, or the system may fail.

This transaction does not return a value.

An application cannot block this transaction type; the CBR_BLOCK return value
is ignored. The DDEML attempts to free memory by removing noncritical re
sources. An application that has blocked conversations should unblock them.

XTYP_EXECUTE
fli ncl ude <ddeml . h>

XTYP _EXECUTE
hszTopic = hszl; /* handle of the topic-name string */
hDataCmd = hData; /* handle of the command string */

A server's DDE callback function receives this transaction when a client specifies
XTYP _EXECUTE for the wType parameter of the DdeClientTransaction func
tion. A client uses this transaction to send a command string to the server.

522 XTYP_MONITOR

Parameters

Return Value

Comments

See Also

hszTopic
Value of hszl. Identifies the topic name.

hDataCmd
Value of hData. Identifies the command string.

A server's DDE callback function should return DDE_FACK if it processes this
transaction, DDE_FBUSY if it is too busy to process this transaction, or
DDE_FNOTPROCESSED if it denies this transaction.

If the server application specified the CBF _F AIL_EXECUTES flag in the
Ddelnitialize function, this transaction is filtered.

An application need not free the data handle obtained during this transaction. If the
application needs to process the string after the callback function returns, however,
the application must copy the command string associated with the data handle. An
application can use the DdeGetData function to copy the data.

DdeClientTransaction, Ddelnitialize

XTYP _MONITOR

Parameters

#include <ddeml .h>

XTYP_MONITOR
hDataEvent = hData;
fwEvent = dwData2;

I* handle of event data */
/* event flag */

The DDE callback function of a DDE debugging application receives this transac
tion whenever a DDE event occurs in the system. An application can receive this
transaction only if it specified the APPCLASS_MONITOR flag when it called the
Ddelnitialize function.

hDataEvent
Value of hData. Identifies a global memory object that contains information
about the DDE event. The application should use the DdeAccessData function
to obtain a pointer to the object.

fwEvent
Value of dwData2. Specifies the DDE event. This parameter may be one of the
following values:

Value

MF _CALLBACKS

MF_CONV

MF_ERRORS

MF _HSZ_INFO

MF_LINKS

MF _POSTMSGS

MF _SENDMSGS

XTYP _POKE 523

Meaning

The system sent a transaction to a DDE callback function.
The global memory object contains a MONCBSTRUCT
structure that provides information about the transaction.

A DDE conversation was established or terminated. The
global memory object contains a MONCONVSTRUCT
structure that provides information about the conversation.

A DDE error occurred. The global memory object contains
a MONERRSTRUCT structure that provides information
about the error.

A DDE application created or freed a string handle or
incremented the use count of a string handle, or a string
handle was freed as a result of a call to the DdeUninitialize
function. The global memory object contains a
MONHSZSTRUCT structure that provides infor-
mation about the string handle.

A DDE application started or ended an advise loop. The
global memory object contains a MONLINKSTRUCT
structure that provides information about the advise loop.

The system or an application posted a DDE message. The
global memory object contains a MONMSGSTRUCT
structure that provides information about the message.

The system or an application sent a DDE message. The
global memory object contains a MONMSGSTRUCT
structure that provides information about the message.

Return Value The callback function should return zero if it processes this transaction.

See Also DdeAccessData, Ddelnitialize

XTYP_POKE [}I]

#include <ddeml.h>

XTYP_POKE
hszTopic = hszl;
hszitem = hsz2;
hDataPoke = hData;

/* handle of topic-name string */
/* handle of item-name string */
/* handle of data for server */

A server's DOE callback function receives this transaction when a client specifies
XTYP _POKE as the wType parameter of the DdeClientTransaction function. A
client uses this transaction to send unsolicited data to the server.

524 XTYP _REGISTER

Parameters

Return Value

Comments

See Also

hszTopic
Value of hszl. Identifies the topic name.

hszltem
Value of hsz2. Identifies the item name.

hDataPoke
Value of hData. Identifies the data that the client is sending to the server.

A server's DDE callback function should return DDE_FACK if it processes this
transaction, DDE_FBUSY if it is too busy to process this transaction, or
DDE_FNOTPROCESSED if it denies this transaction.

If the server application specified the CBF _FAIL_POKES flag in the
Ddelnitialize function, this transaction is filtered.

DdeCiientTransaction, Ddelnitialize

XTYP _REGISTER

Parameters

Return Value

Comments

#include <ddeml .h>

XTYP_REGISTER
hszBaseServName hszl; /* handle of base service-name string */
hszinstServName hsz2; /* handle of instance service-name string */

A DDE callback function receives this transaction type whenever a DDEML serv
er application uses the DdeNameService function to register a service name or
whenever a non-DDEML application that supports the System topic is started.

hszBaseServName
Value of hszl. Identifies the base service name being registered.

hszlnstServName
Value of hsz2. Identifies the instance-specific service name being registered.

This transaction does not return a value.

If the application specified the CBF _SKIP _REGISTRATIONS flag in the
Ddelnitialize function, this transaction is filtered.

An application cannot block this transaction type; the CBR_BLOCK return value
is ignored.

See Also

XTYP _REQUEST 525

An application should use the hszBaseServName parameter to add the service
name to the list of servers available to the user. An application should use the
hsz/nstServName parameter to identify which application instance has started.

Ddelnitialize, DdeNameService

XTYP _REQUEST

Parameters

Return Value

Comments

See Also

#include <ddeml.h>

XTYP_REOUEST
hszTopic = hszl;
hszitem = hsz2;

/* handle of topic-name string */
/* handle of item-name string */

A DDE server callback function receives this transaction when a client specifies
XTYP _REQUEST for the wType parameter of the DdeClientTransaction func
tion. A client uses this transaction to request data from a server.

hszTopic
Value of hszl. Identifies the topic name.

hsz/tem
Value of hsz2. Identifies the item name that has changed.

The server should call the DdeCreateDataHandle function to create a data handle
that identifies the changed data and then should return the handle. The server
should return NULL if it is unable to complete the transaction. If the server returns
NULL, the client receives a DDE_FNOTPROCESSED acknowledgment flag.

If the server application specified the CBF _FAIL_ REQUESTS flag in the
Ddelnitialize function, this transaction is filtered.

If responding to this transaction requires lengthy processing, the server can return
CBR_BLOCK to suspend future transactions on the current conversation and then
process the transaction asynchronously. When the server has finished and the data
is ready to pass to the client, the server can call the DdeEnableCallback function
to resume the conversation.

DdeClientTransaction, DdeCreateDataHandle, DdeEnableCallback,
Ddelnitialize

526 XTYP _UNREGISTER

XTYP _UNREGISTER

Parameters

Return Value

Comments

See Also

#include <ddeml .h>

XTYP _UN REG I STER
hszBaseServName hszl; /* handle of base service-name string */
hszinstServName = hsz2; /* handle of instance service-name string */

A DDE callback function receives this transaction type whenever a DDEML serv
er application uses the DdeNameService function to unregister a service name or
whenever a non-DDEML application that supports the System topic is terminated.

hszl3aseServName
Value of hszl. Identifies the base service name being unregistered.

hszlnstServName
Value of hsz2. Identifies the instance-specific service name being unregistered.

This transaction does not return a value.

If the application specified the CBF _SKIP _REGISTRATIONS flag in the
Ddelnitialize function, this transaction is filtered.

An application cannot block this transaction type; the CBR_BLOCK return value
is ignored.

An application should use the hszl3aseServName parameter to remove the service
name from the list of servers available to the user. An application should use the
hszlnstServName parameter to identify which application instance has terminated.

Ddelnitialize, DdeNameService

XTYP _ WILDCONNECT
#include <ddeml.h>

XTYP_WILDCDNNECT
hszTopic = hszl;
hszService = hsz2;
pee = CCDNVCONTEXT FAR *)dwDatal;
fSameinst = (BOOL) dwData2;

/* handle of topic-name string */
/* handle of service-name string */
/* address of CONVCONTEXT structure */
/* same-instance flag */

Parameters

Return Value

Comments

See Also

XTYP _ WILDCONNECT 527

A server's DDE callback function receives this transaction when a client specifies
a service name that is set to NULL, a topic name that is set to NULL, or both in a
call to the DdeConnect function. This transaction allows a client to establish a
conversation on each of the server's service/topic name pairs that matches the
specified service name and topic name.

hszTopie
Value of hszl. Identifies the topic name. If this parameter is NULL, the client is
requesting a conversation on all topic names that the server supports.

hszServiee
Value of hsz2. Identifies the service name. If this parameter is NULL, the client
is requesting a conversation on all service names that the server supports.

pee
Value of dwDatal. Points to a CO NV CONTEXT data structure that contains
context information for the conversation. If the client is not a DDEML applica
tion, this parameter is set to zero.

jSamelnst
Value of dwData2. Specifies whether the client is the same application instance
as the server. If this parameter is TRUE, the client is same instance. If this
parameter is FALSE, the client is a different instance.

The server should return a data handle that identifies an array of HSZPAIR
structures. The array should contain one structure for each service/topic
name pair that matches the service/topic name pair requested by the client.
The array must be terminated by a NULL string handle. The system sends the
XTYP _CONNECT_CONFIRM transaction to the server to confirm each conversa
tion and to pass the conversation handles to the server. If the server specified the
CBF _SKIP_ CONNECT_ CONFIRMS flag in the Ddelnitialize function, it cannot
receive these confirmations.

To refuse the XTYP _ WILDCONNECT transaction, the server should return
NULL.

If the server application specified the CBF _FAIL_ CONNECTIONS flag in the
Ddelnitialize function, this transaction is filtered.

A server cannot block this transaction type; the CBR_BLOCK return code is ig
nored.

DdeConnect, Ddelnitialize

528 XTYP_XACT_COMPLETE

XTYP _XACT _COMPLETE

Parameters

Return Value

Comments

See Also

#include <ddeml . h>

XTYP_XACT_COMPLETE
hszTopic = hszl;
hszltem = hsz2;
hDataXact = hData;
dwXactID dwDatal;
fwStatus = dwData2;

/*
/*
/*
/*
/*

handle of topic-name string */
handle of item-name string */
handle of transaction data */
transaction i dent ifi er *f
status flag */

A DOE client callback function receives this transaction when an asynchronous
transaction, initiated by a call to the DdeClientTransaction function, has con
cluded.

hszTopic
Value of hszl. Identifies the topic name involved in the completed transaction.

hszltem
Value of hsz2. Identifies the item name involved in the completed transaction.

hDataXact
Value of hData. Identifies the data involved in the completed transaction, if ap
plicable. If the transaction was successful but involved no data, this parameter
is TRUE. If the transaction was unsuccessful, this parameter is NULL.

dwXactID
Value of dwDatal. Contains the transaction identifier of the completed transac
tion.

fwStatus
Value of dwData2. Contains any applicable DOE_ status flags in the low-order
word. This provides support for applications dependent on DDE_APPSTATUS
bits. It is recommended that applications no longer use these bits-future ver
sions of the DDEML may not support them.

This transaction does not return a value.

An application need not free the data handle obtained during this transaction. If the
application needs to process the data after the callback function returns, however,
the application must copy the data associated with the data handle. An application
can use the DdeGetData function to copy the data.

DdeClientTransaction

File Manager Events and Messages

Chapter 7

7.1 File Manager Events .. 531
7.2 File Manager Messages.. 534

FMEVENT_INITMENU 531

File Manager communicates with a File Manager extension dynamic-link library
(DLL) by sending events and menu commands to the DLL's FMExtensionProc
function. While processing an event or command, the DLL can retrieve informa
tion from File Manager by sending File Manager messages using the Send
Message function. This chapter provides complete descriptions of both the
events and messages for File Manager in Microsoft Windows operating system,
version 3.1

7 .1 File Manager Events
This section lists File Manager events in alphabetic order.

FMEVENT_INITMENU

Parameters

Return Value

Comments

See Also

The FMEVENT_INITMENU message is sent to an extension dynamic-link
library (DLL) when the user selects the menu for the extension from File
Manager's menu bar. The extension can use this notification to initialize menu
items in the menu.

lParam
Specifies the menu handle in the high-order word. The low-order word speci
fies the delta value for the menu item.

This message does not return a value.

An extension receives this message only when the user selects the top-level menu.
If the extension contains submenus, it must initialize them at the same time as the
top-level menu.

FMExtensionProc

532 FMEVENT _LOAD

FM EVENT_ LOAD

Parameters

Return Value

Comments

See Also

The FMEVENT_LOAD message is sent to an extension dynamic-link library
(DLL) when File Manager is loading the DLL.

lParam
Points to an FMS_LOAD structure that specifies the menu-item delta value.
An extension DLL should save the menu-item delta value and fill the other
structure members with information about the extension. The FMS_LOAD
structure has the following form:

#include <wfext.h>

typedef struct tagFMS_LOAD { /* fmsld */
DWORD dwSize;
char szMenuName[MENU_TEXT_LENJ;
HMENU hMenu;
UINT wMenuDelta;

} FMS_ LOAD;

This message does not return a value.

An application should fill the dwSize, szMenuName, and hMenu members. It
should also save the value of the wMenuDelta member and use it to identify
menu items when modifying the menu. For more information, see the description
of the FMS_LOAD structure.

FMExtensionProc

FMEVENT_SELCHANGE

Parameters

Return Value

The FMEVENT_SELCHANGE message is sent to an extension dynamic-link
library (DLL) when the user selects a filename in File Manager's directory win
dow or Search Results window.

lParam
Not used.

This message does not return a value.

Comments

See Also

FM EVENT_ USER_ REFRESH 533

Changes in the tree half of the directory window do not produce this message.

Because the user can change the selection many times, the extension DLL must re
turn promptly after processing this message to avoid slowing the selection process
for the user.

FMExtensionProc

FM EVENT_ UNLOAD

Parameters

Return Value

Comments

See Also

The FMEVENT_UNLOAD message is sent to an extension dynamic-link library
(DLL) when File Manager is unloading the DLL.

lParam
Not used.

This message does not return a value.

The hwnd and hMenu values passed with the FMEVENT_LOAD and
FMEVENT _INITMENU messages may not be valid at the time of this message.

FMExtensionProc

FM EVENT_ USER_ REFRESH

Parameters

Return Value

See Also

The FMEVENT_USER_REFRESH message is sent to an extension dynamic-link
library (DLL) when the user invokes File Manager's Refresh command in the Win
dow menu. The extension can use this notification to update its menu.

ZParam
Not used.

This message does not return a value.

FMExtensionProc

534 FM_GETDRIVEINFO

7 .2 File Manager Messages
This section lists File Manager messages in alphabetic order.

FM_ GETDRIVEINFO

Parameters

Return Value

See Also

A File Manager extension sends an FM_GETDRIVEINFO message to retrieve
drive information from the active File Manager window.

wParam
Not used.

lParam
Points to an FMS_ GETDRIVEINFO structure that receives drive informa
tion. The FMS_GETDRIVEINFO structure has the following form:

#include <wfext.h>

typedef struct tagFMS_GETDRIVEINFO { /* fmsgdi */
DWORD dwTotalSpace;
DWORD dwFreeSpace;
char szPath[260];
char szVolume[14];
char szShare[128]; .

} FMS_GETDRIVEINFO, FAR *LPFMS_GETDRIVEINFO;

The return value is always nonzero.

FMExtensionProc

FM_ GETFILESEL
A File Manager extension sends an FM_GETFILESEL message to retrieve infor
mation about a selected file from the active File Manager window (either the
directory window or the Search Results window).

Parameters

Return Value

Comments

See Also

FM_GETFILESELLFN 535

wParam
Specifies the zero-based index of the selected file to retrieve.

!Param
Points to an FMS_ GETFILESEL structure that receives information about the
selection. The FMS_ GETFILESEL structure has the following form:

#include <wfext.h>

typedef struct tagFMS_GETFILESEL { /* fmsgfs */
UINT wTime;
UINT wDate;
DWORD dwSize;
BYTE bAttr;
char szName[260];

} FMS_GETFILESEL;

The return value is the zero-based index of the selected file that was retrieved.

An extension can use the FM_ GETSELCOUNT message to obtain the count of
selected files.

The szName member of the FMS_ GETFILESEL structure consists of an OEM
character string. Before displaying this string, an extension should use the Oem
ToAnsi function to convert the string to a Windows ANSI character string. If a
string is to be passed to the file system (MS-DOS), an extension should not con
vert it.

FMExtensionProc, FM_GETFILESELLFN, FM_GETSELCOUNT,
FM_GETSELCOUNTLFN, OemToAnsi

FM_ GETFILESELLFN
A File Manager extension sends an FM_GETFILESELLFN message to retrieve in
formation about a selected file from the active File Manager window (either the
directory window or the Search Results window). The selected file can have a
long filename.

536 FM_ GETFOCUS

Parameters

Return Value

Comments

See Also

wParam
Specifies the zero-based index of the selected file to retrieve.

lParam
Points to an FMS_ GETFILESEL structure that receives information about the
selection. The FMS_GETFILESEL structure has the following form:

#include <wfext.h>

typedef struct tagFMS_GETFILESEL { /* fmsgfs */
UINT wTime;
UINT wDate;
DWDRD dwSize;
BYTE bAttr;
char szName[260];

} FMS_GETFILESEL;

The return value is the zero-based index of the selected file that was retrieved.

Only extensions that support long filenames (for example, network-aware exten
sions) should use this message.

An extension can use the FM_GETSELCOUNT message to obtain the count of
selected files.

The szName member of the FMS_ GETFILESEL structure consists of an OEM
character string. Before displaying this string, an extension should use the Oem
ToAnsi function to convert the string to a Windows ANSI character string. If a
string is to be passed to the file system (MS-DOS), an extension should not con
vert it.

FMExtensionProc, FM_GETFILESEL, FM_GETSELCOUNT,
FM_GETSELCOUNTLFN, OemToAnsi

FM_ GETFOCUS

Parameters

A File Manager extension sends a FM_GETFOCUS message to retrieve the type
of the File Manager window that has the input focus.

wParam
Not used.

lParam
Not used.

Return Value

FM_ GETSELCOUNTLFN 537

The return value indicates the type of File Manager window that has input focus. It
can have one of the following values:

Value

FMFOCUS_DIR

FMFOCUS_TREE

FMFOCUS_DRIVES

FMFOCUS_SEARCH

Meaning

Directory portion of a directory window

Tree portion of a directory window

Drive bar of a directory window

Search Results window

FM GETSELCOUNT

Parameters

Return Value

See Also

A File Manager extension sends a FM_GETSELCOUNT message to retrieve a
count of the selected files in the directory or the Search Results window, depend
ing on which is the active window.

wParam
Not used.

lParam
Not used.

The return value is the number of selected files.

FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_ GETSELCOUNTLFN

Parameters

A File Manager extension sends an FM_GETSELCOUNTLFN message to re
trieve the number of selected files in the directory or the Search Results window,
depending on which is the active window. The count includes files that have long
filenames.

wParam
Not used.

lParam
Not used.

538 FM_ REFRESH_ WINDOWS

Return Value

Comments

See Also

The return value is the number of selected files.

Only extensions that support long filenames (for example, network-aware exten
sions) should use this message.

FM_ GETFILESEL, FM_ GETFILESELLFN, FM_GETSELCOUNT

FM_ REFRESH_ WINDOWS

Parameters

Return Value

Comments

See Also

A File Manager extension sends an FM_REFRESH_ WINDOWS message to
cause File Manager to repaint either its active window or all of its windows.

wParam
Specifies whether File Manager repaints its active window or all of its win
dows. If this parameter is nonzero, File Manager repaints all of its windows. If
this parameter is zero, File Manager repaints only its active window.

lParam
Not used.

This message does not return a meaningful value.

File system changes caused by an extension are automatically detected by File
Manager. An extension should use this message only in situations where drive con
nections are made or canceled.

FMExtensionProc

FM_ RELOAD_ EXTENSIONS
A File Manager extension (or another application) sends an
FM_RELOAD_EXTENSIONS message to cause File Manager to reload
all extension dynamic-link libraries (DLLs) listed in the [AddOns] section
of the WINFILE.INI file.

Parameters

Return Value

Comments

See Also

wParam
Not used.

!Pa ram
Not used.

This message does not return a meaningful value.

FM_ RELOAD_ EXTENSIONS 539

Other applications can use the PostMessage function to send this message to File
Manager. To obtain the appropriate File Manager window handle, an application
can specify WFS_Frame as the lpszClassName parameter in a call to the Find
Window function.

FindWindow, FMExtensionProc, PostMessage

Control Panel Messages

Chapter 8

Alphabetic Reference .. 543

CPL_ DBLCLK 543

Control Panel communicates with a Control Panel dynamic-link library (DLL)
through messages it sends to the CPIApplet entry-point function. A message con
sists of three parts: a message number and two 32-bit parameters. Message num
bers are identified by predefined message names. The two 32-bit parameters
contain message-dependent values.

This chapter contains an alphabetic list of all messages that can be received by the
CPIApplet entry-point function. To use these messages, you must include the
CPL.H header file.

CPL_DBLCLK

Parameters

Return Value

Comments

See Also

The CPL_DBLCLK message is sent to a Control Panel dynamic-link library
(DLL) when the user double-clicks the icon of an application supported by the
DLL.

lParaml
Specifies the application number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT
message (CPL_GETCOUNT - 1).

lParam2
Specifies the value loaded into the IData member for the application.

The Control Panel DLL returns zero if it processes this message successfully.

In response to this message, a Control Panel DLL should display the dialog box
for the application.

CPL_GETCOUNT

544 CPL_ EXIT

CPL_ EXIT

Parameters

Return Value

Comments

The CPL_EXIT message is sent once to a Control Panel dynamic':.link library
(DLL) before Control Panel calls the FreeLibrary function to free the DLL.

!Paraml
Not used.

!Param2
Not used.

The Control Panel DLL returns zero if it processes this message successfully.

In response to this message, a Control Panel DLL should free any memory that it
has allocated and perform global-level cleanup.

CPL_ GETCOUNT

Parameters

Return Value

Comments

See Also

The CPL_GETCOUNT message retrieves the number of applications a Control
Panel dynamic-link library (DLL) services.

!Paraml
Not used.

!Param2
Not used.

The Control Panel DLL returns the number of applications it services.

This message is sent immediately after the CPL_INIT message.

CPL_INIT

CPL_INIT 545

CPL_ INIT [IT]

Parameters

Return Value

Comments

The CPL_INIT message prompts a Control Panel dynamic-link library (DLL) to
perform global initialization, especially memory allocation.

lParaml
Not used.

lParam2
Not used.

The Control Panel DLL returns nonzero if initialization is successful. Otherwise, it
returns zero. If the DLL returns zero, Control Panel calls the FreeLibrary func
tion and ends communication with the DLL.

Because this is the only way a Control Panel DLL can signal an error condition,
the DLL should allocate memory in response to this message.

This message is sent immediately after the DLL is loaded.

CPL_ INQUIRE

Parameters

The CPL_INQUIRE message is sent to a Control Panel dynamic-link library
(DLL) to request information about an application that the DLL supports.

This message is provided for backward compatibility with the Microsoft Windows
operating system, version 3.1. An application should use the CPL_NEWINQUIRE
message instead of the CPL_INQUIRE message.

lParaml
Specifies the application number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT
message (CPL_GETCOUNT - 1).

546 CPL_INIT

Return Value

Comments

See Also

lParam2
Specifies a far pointer to a CPLINFO structure. The DLL should fill this struc
ture with resource identifiers for the icon, short name, description, and any user
defined value associated with the application. The CPLINFO structure has the
following form:

#include <cpl .h>

typedef struct tagCPLINFO { /* cpli */
int idicon;
int idName;
int idinfo;
LONG 1 Data;

} CPLINFO;

The Control Panel DLL returns zero if it processes this message successfully.

This message is sent once for each application serviced by the DLL. It is sent im
mediately after the CPL_GETCOUNT message. A DLL can perform application
level initialization when it receives this message. Memory should be allocated in
response to the CPL_INIT message.

CPL_GETCOUNT, CPL_INIT, CPL_NEWINQUIRE

CPL_ NEWINQUIRE

Parameters

The CPL_NEWINQUIRE message is sent to a Control Panel dynamic-link library
(DLL) to request information about an application that the DLL supports.

lParaml
Specifies the application number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT
message (CPL_GETCOUNT- 1).

1Param2
Specifies a far pointer to a NEWCPLINFO structure. The DLL should fill this
structure with information about the application. The NEWCPLINFO struc
ture has the following form:

Return Value

Comments

See Also

#include <cpl .h>

typedef struct tagNEWCPLINFO { /* ncpli */
DWORD dwSize;
DWORD dwFlags;
DWORD dwHelpContext;
LONG l Data;
HICON hlcon;
char szName[32J;
char szinfo[64J;
char szHelpFile[l28J;

} NEWCPLINFO;

CPL_INIT 547

The Control Panel DLL returns zero if it processes this message successfully.

This message is sent once for each application serviced by the DLL. It is sent im
mediately after the CPL_GETCOUNT message. A DLL can use the switch block
for this message to do application-level initialization when it receives this mes
sage. Memory should be allocated in response to the CPL_INIT message.

CPL_GETCOUNT, CPL_INIT, CPL_INQUIRE

CPL_ SELECT

Parameters

Return Value

The CPL_SELECT message is sent to a Control Panel dynamic-link library (DLL)
when the user selects the icon of an application supported by the DLL from
Control Panel.

lParaml
Specifies the application number.

lParam2
Specifies the application-defined value loaded in the IData member for the ap
plication.

The Control Panel DLL returns zero if it processes this message successfully.

548 CPL_ IN IT

CPL_ STOP

Parameters

Return Value

Comments

See Also

The CPL_STOP message is sent once for each application when Control Panel
ends.

lParaml
Specifies the application number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT
message (CPL_GETCOUNT - 1).

lParam2
Specifies the application-defined value loaded in the IData member for the ap
plication.

The Control Panel DLL returns zero ifit processes this message successfully.

In response to this message, a Control Panel DLL should perform application
specific cleanup.

CPL_GETCOUNT

WM_ CPL_ LAUNCH

Parameters

Return Value

Comments

See Also

An application sends the WM_CPL_LAUNCH message to Control Panel to re
quest that a Control Panel application be started.

wParam
Specifies the handle of the window sending the message. The
WM_CPL_LAUNCHED message is sent to this window.

lParam
Specifies a far pointer to a string containing the name of the application to open.

The return value is nonzero if the application was launched. Otherwise, it is zero.

The string referenced by the lParam parameter must be contained in a global
memory object allocated with the GMEM_NOT_BANKED flag.

WM_CPL_LAUNCHED

CPL_ INIT 549

WM_ CPL_ LAUNCHED

Parameters

Return Value

See Also

The WM_CPL_LAUNCHED message is sent when a Control Panel
application, started by the WM_CPL_LAUNCH message, has ended.
The WM_CPL_LAUNCHED message is sent to the window identified by
the wParam parameter of the WM_CPL_LAUNCH message that started the
application.

wParam
Specifies whether the application was started. If the application was started, this
parameter is nonzero. Otherwise, it is zero.

lParam
Not used.

The value returned by the application is ignored for this message.

WM_CPL_LAUNCH

Common Dialog Box Messages

Chapter g

Alphabetic Reference .. 553

COLOROKSTRING 553

A common dialog box sends a message to notify applications that the user has
made or changed a selection in the dialog box. Applications can use these mes
sages to carry out custom actions, such as rejecting certain user selections or set
ting custom colors.

Before an application can use a common dialog box message, it must register that
message by using the RegisterWindowMessage function and the message con
stants given in this chapter and defined in the COMMDLG.H header file.

This chapter describes the common dialog box messages. The messages appear in
alphabetic order.

COLOROKSTRING

Parameters

Return Value

Comments

See Also

The COLOROKSTRING message is sent by the Color dialog box to the appli
cation's hook function immediately before the dialog box is closed. This message
allows more control over custom colors by giving the application the opportunity
to leave the Color dialog box open when the user presses the OK button.

wParam
Not used.

lParam
Points to a CHOOSECOLOR structure that specifies the currently selected
color.

If the application returns a nonzero value when it processes this message, the
dialog box is not dismissed.

To use this message, the application must create a new message identifier by call
ing the RegisterWindowMessage function and passing the COLOROKSTRING
constant as the single parameter.

Register Window Message

554 FILEOKSTRING

FILEOKSTRING

Parameters

Return Value

Comments

See Also

The FILEOKSTRING message is sent by the Open dialog box or Save As dialog
box to the application's hook function when the user has selected a filename and
chosen the OK button. The message lets the application accept or reject the user
selected filename.

wParam
Not used.

lParam
Points to an OPENFILENAME structure containing information about the
user's selection. (This information includes the filename for the selection.)

The hook function should return 1 if it rejects the user-selected filename. In this
case, the dialog box remains open and the user must select another filename. The
hook function should return 0 if it accepts the user-selected filename or does not
process the message.

To use this message, the application must create a message identifier by using the
RegisterWindowMessage function and passing the FILEOKSTRING constant as
the function's single parameter.

Register Window Message

FINDMSGSTRING

Parameters

The FINDMSGSTRING message is sent to the application by the Find dialog box
or Replace dialog box whenever the user has typed selections and chosen the OK
button. This message contains data specified by the user in the dialog box controls,
such as the direction in which the application should search for a string, whether
the application should match the case of the specified string, or whether the appli
cation should match the string as an entire word.

wParam
Not used.

lParam
Points to a FINDREPLACE structure containing information about the user's
selections.

Return Value

Comments

See Also

HELPMSGSTRING 555

The application should return zero.

To use the FINDMSGSTRING message, the application must create a
message identifier by using the RegisterWindowMessage and passing the
FINDMSGSTRING constant as the function's only parameter.

Register Window Message

HELPMSGSTRING

Parameters

Return Value

Comments

See Also

The HELPMSGSTRING message is sent by a common dialog box to its owner's
window procedure whenever the user chooses the Help button. This message lets
an application provide custom Help for the common dialog boxes.

wParam
Not used.

lParam
Points to the structure that describes the common dialog box.

The application returns zero.

To use the HELPMSGSTRING message, the application must create a message
identifier by using the RegisterWindowMessage function and passing the
HELPMSGSTRING constant as the function's single parameter.

In addition to creating a new message identifier, the application must set the
hwndOwner member in the appropriate data structure for the common dialog
box. This member must contain the handle of the window to receive the
HELPMSGSTRING message.

The application can also process the request for Help in a hook function. The hook
function would identify this request by checking whether the wParam parameter
of the WM_COMMAND message was equal to psh 15.

Register Window Message

556 LBSELCHSTRING

LBSELCHSTRING

Parameters

Return Value

Comments

See Also

The LBSELCHSTRING message is sent to an application's hook function by the
Open or Save As dialog box whenever the user makes or changes a selection in the
File Name list box. This message lets an application identify a new selection and
carry out any application-specific actions, such as updating a custom control in the
dialog box.

wParam
Identifies the list box in which the selection occurred.

lParam
Identifies the list box item and type of selection. The low-order word of the
lParam parameter identifies the list box item. The high-order word of the
lParam parameter is one of the following values:

Value

CD_LBSELCHANGE

CD_LBSELSUB

CD_LBSELADD

CD_LBSELNOITEMS

The application returns zero.

Meaning

Specifies that the item identified by the low-order word
of lParam was the item in a single-selection list box.

Specifies that the item identified by the low-order word
of lParam is no longer selected in a multiple-selection
list box.

Specifies that the item identified by the low-order word
of lParam was selected from a multiple-selection list
box.

Specifies that no items exist in a multiple-selection list
box.

To use the LBSELCHSTRING message, the application must create a message
identifier by using the Register Window Message function and passing the
LBSELCHSTRING constant as the function's single parameter.

Register Window Message

SHAREVISTRING 557

SETRGBSTRING [IT]

Parameters

Return Value

Comments

See Also

The SETRGBSTRING message is sent by an application's hook function to a
Color dialog box to set a custom color.

wParam
Not used.

lParam
Specifies the color to set. This parameter must be a red, green, blue (RGB)
value.

This message has no return value.

To use the SETRGBSTRING message, the application must create a message
identifier by using the RegisterWindowMessage function and passing the
SETRGBSTRING constant as the function's single parameter.

Register Window Message

SHAREVISTRING

Parameters

Return Value

Comments

The SHAREVISTRING message is sent to the application's hook function by the
Open or Save As dialog box if a sharing violation occurs when the dialog box tries
to open a file on the network.

wParam
Not used.

lParam
Points to a string identifying the path and filename that caused the sharing viola
tion. This string is the szPathName member of the OFSTRUCT structure that
is pointed to by the second parameter of the OpenFile function.

The return value is described in the following Comments section.

To use the SHAREVISTRING message, the application must create a message
identifier by using the RegisterWindowMessage function and passing the
SHAREVISTRING constant as the function's single parameter.

558 SHAREVISTRING

See Also

This message is sent by the OpenFile function. The message is not sent
when the OFN_SHAREA WARE flag is set in the Flags member of the
OPENFILENAME structure.

When the hook function receives SHAREVISTRING, it should
return OFN_SHAREW ARN, OFN_SHARENOW ARN, or
OFN_SHAREFALLTHROUGH. For more information about these
flags, see the description of the OPENFILENAME structure in
Chapter 3, "Structures."

OpenFile, RegisterWindowMessage

Installable Driver Messages

Chapter 1 O

Alphabetic Reference .. 561

DRV_CLOSE

Parameters

Return Value

Comments

See Also

DRV_CLOSE 561

Installable driver messages notify installable drivers of specific events, such as
loading or unloading the driver, or direct the driver to carry out some action, such
as displaying a configuration dialog box. The Microsoft Windows operating sys
tem, version 3.1, sends installable driver messages to the DriverProc function of
an installable driver whenever an application calls functions, such as OpenDriver,
SendDriverMessage, and CloseDriver.

This chapter lists the installable driver messages in alphabetic order.

The DRY _CLOSE message is the first message sent by Windows to an installable
driver after an application calls the CloseDriver function.

dttJ!Jriverldentifier
Specifies the unique 32-bit identifier returned by the OpenDriver function.

h!Jriver
Identifies the instance of the installable driver that should be closed.

!Paraml
Specifies driver-specific data.

lParam2
Specifies driver-specific data.

An installable driver returns nonzero if its DriverProc function successfully
closes the driver. Otherwise, it returns zero.

The !Paraml and !Param2 parameters specify the same values as the !Paraml and
lParam2 parameters for the CloseDriver function.

Each time a driver processes this message, it must decrement a private use-count
variable. When the value of this variable is zero, Windows closes the driver.

DRV_OPEN

562 DRV_CONFIGURE

ORV_ CONFIGURE

Parameters

Return Value

Comments

See Also

The DRY _CONFIGURE message is sent to inform an installable driver that it
should display its private configuration dialog box.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

hDriver
Identifies an instance of the installable driver.

lParaml
Specifies the handle of the parent window for the configuration dialog box.
This handle is in the parameter's low-order word.

lParam2
Points to an optional DRVCONFIGINFO structure. An installable driver
should verify that this pointer is valid before using it.

This structure has the following form:

typedef struct tagDRVCDNFIGINFO {
DWORD dwDCISize;
LPCSTR lpszDCISectionName;
LPCSTR lpszDCIAliasName;

} DRVCONFIGINFO;

An installable driver returns nonzero if it processes this message. Otherwise, it re
turns zero.

An installable driver that supports the DRY _CONFIGURE message must
provide its own dialog box template and dialog box procedure. It must also
record the user's configuration requests in an appropriate file. (This may be the
SYSTEM.IN! file or some other file used by the driver for this purpose.)

DRY _QUERYCONFIGURE

ORV_ ENABLE 563

ORV_ DISABLE [IT]

Parameters

Return Value

See Also

The DRV _DISABLE message is the second message sent by Windows to an in
stallable driver after an application calls the CloseDriver function.

dwDriverldentifier
Not used.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Not used.

An installable driver returns zero if it processes this message.

DRV_CLOSE

DRV_ENABLE

Parameters

The DRV _ENABLE message is sent to an installable driver when it is loaded or
reloaded or whenever Windows is reinstalled after switching to an MS-DOS appli
cation.

dwDriverldentifier
Not used.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Not used.

564 DRV_EXITAPPLICATION

Return Value

Comments

See Also

An installable driver returns zero if it processes this message.

When the DriverProc function receives this message, it should initialize all of the
driver-specific structures with default values.

DRV_OPEN

DRV _ EXITAPPLICATION

Parameters

Return Value

See Also

The ORV _EXIT APPLICATION message is sent to all installable drivers when an
application exits.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

lParaml
Specifies the type of application exit. This parameter can be one of the follow
ing values:

Value

DRVEA_NORMALEXIT

DRVEA_ABNORMALEXIT

lParam2
Not used.

Meaning

Set if the application terminated normally.

Set if the application terminated abnormally
(because of an application or system error).

The value returned by the application is ignored for this message.

ORV _EXITSESSION

DRV_FREE 565

DRV_ EXITSESSION [ill

Parameters

The DRV _EXITSESSION message is sent to all installable drivers when Win
dows prepares to exit.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

lParaml
Reserved.

lParam2
Reserved.

Return Value The value returned by the application is ignored for this message.

Comments The user interface and all other drivers are still enabled when this message is sent.

See Also DRV _EXITAPPLICATION

DRV_FREE [ill

Parameters

Return Value

Comments

The DRV _FREE message is the third message sent by Windows to an installable
driver after an application calls the CloseDriver function.

dwDriverldentifier
Not used.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Not used.

An installable driver returns zero if it processes this message.

When an installable driver's DriverProc function receives this message, it should
free the memory that was allocated for all driver-specific structures.

566 DRV_INSTALL

DRV_INSTALL

Parameters

The DRY _INSTALL message is sent to an installable driver during the driver in
itialization process.

dwDriver/dentifier
Specifies a unique 32-bit value that identifies the installable driver.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Points to an optional DRVCONFIGINFO structure. An installable driver
should verify that this pointer is valid before using it.

This structure has the following form:

typedef struct tagDRVCONFIGINFO {
DWORD dwDCISize;
LPCSTR lpszDCISectionName;
LPCSTR lpszDCIAliasName;

} DRVCONFIGINFO;

Return Value An installable driver returns nonzero if it processes this message. Otherwise, it re
turns zero.

Comments When the driver receives this message, it creates an entry for the driver in the
SYSTEM.IN! file and performs other necessary configuration operations.

DRV_LOAD ITIJ

Parameters

The DRY _LOAD message is sent to an installable driver to notify the driver that it
has been loaded.

dwDriverldentifier
Not used.

hDriver
Identifies an instance of the installable driver.

!Paraml
Not used.

1Param2
Not used.

DRV _OPEN 567

Return Value An installable driver returns nonzero if its DriverProc function successfully loads
the driver. Otherwise, it returns zero.

DRV_OPEN [ill

Parameters

Return Value

Comments

See Also

The DRY _OPEN message is sent to an installable driver each time it is opened.

dwDriver/dentifier
Specifies a unique 32-bit value that identifies the installable driver.

hDriver
Identifies an instance of the installable driver.

!Paraml
Points to a null-terminated string containing any ASCII characters that followed
the driver name in the SYSTEM.IN! file.

!Param2
Contains the data specified by the !Param parameter, the third argument in the
OpenDriver function.

An installable driver returns nonzero if it processes this message. Otherwise, it re
turns zero.

If no characters follow the driver name in SYSTEM.IN!, the !Paraml parameter is
a NULL pointer.

DRV_CLOSE

568 DRV_POWER

DRV_POWER

Parameters

Return Value

The DRV _POWER message is sent to an installable driver each time the power
supply to the associated device is about to be turned on or off.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Not used.

An installable driver returns nonzero if it processes this message. Otherwise, it re
turns zero.

DRV_ QUERYCONFIGURE

Parameters

Return Value

See Also

The DRV _QUERYCONFIGURE message is sent to an installable driver to deter
mine whether it can be configured by the user.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

hDriver
Identifies an instance of the installable driver.

lParaml
Not used.

lParam2
Not used.

An installable driver returns nonzero if it supports custom configuration and is
capable of displaying a configuration dialog box. Otherwise, it returns zero.

DRV _CONFIGURE

DRV_USER 569

DRV_REMOVE CID

Parameters

The ORV _REMOVE message is sent by an application to an installable driver to
notify the driver that it is about to be removed from the system.

dwDriverldentifier
Specifies a unique 32-bit value that identifies the installable driver.

lParaml
Not used.

lParam2
Not used.

Return Value An installable driver returns nonzero if it processes this message. Otherwise, it re
turns zero.

Comments When an installable driver receives this message, it should remove necessary en
tries from the SYSTEM.IN! file.

DRV_USER CID
The ORV _USER message is a user-defined or driver-dependent message.

Parameters dwDriverldentifier
This parameter is not predefined; the value is driver dependent.

hDriver
This parameter is not predefined; the value is driver dependent.

lParaml
This parameter is not predefined; the value is driver dependent.

lParam2
This parameter is not predefined; the value is driver dependent.

Return Value The return value is driver dependent.

Binary and Ternary
Raster-Operation Codes

Appendix A

A.1 Binary Raster Operations... 573
A.2 Ternary Raster Operations... 576

Appendix A Binary and Ternary Raster-Operation Codes 573

This appendix lists and describes the binary and ternary raster operations used
by graphics device interface (GDI). A binary raster operation involves two oper
ands: a pen and a destination bitmap. A ternary raster operation involves three
operands: a source bitmap, a brush, and a destination bitmap. Both binary and
ternary raster operations use Boolean operators.

A.1 Binary Raster Operations
This section lists the binary raster-operation codes used by the GetROP2 and
SetROP2 functions. Raster-operation codes define how GDI combines the bits
from the selected pen with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of
the pixels in the selected pen and the destination bitmap are combined. Following
are the two operands used in these operations:

Operand

p

D

Meaning

Selected pen

Destination bitmap

The Boolean operators used in these operations follow:

Operator

a
n

0

x

Meaning

Bitwise AND

Bitwise NOT (inverse)

Bitwise OR

Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the values of the pixels in the destination bitmap with
a combination of the pixel values of the pen and the selected brush:

DPo

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean
operation index and whose low-order word is the operation code. The 16-bit opera
tion index is a zero-extended 8-bit value that represents all possible outcomes

574 Microsoft Windows Programmer's Reference

resulting from the Boolean operation on two parameters (in this case, the pen and
destination values). For example, the operation indexes for the DPo and DPan
operations are shown in the following list:

p D

0 0

0 1
1

1

0

DPo

0

DPan

1

0

The following list outlines the drawing modes and the Boolean operations that
they represent:

Raster operation Boolean operation

R2_BLACK 0
R2_COPYPEN p

R2_MASKNOTPEN DPna

R2_MASKPEN DPa

R2_MASKPENNOT PDna

R2_MERGENOTPEN DPno

R2_MERGEPEN DPo

R2_MERGEPENNOT PD no

R2_NOP D

R2_NOT Dn

R2_NOTCOPYPEN Pn

R2_NOTMASKPEN DPan

R2_NOTMERGEPEN DPon

R2_NOTXORPEN DPxn

R2_WHITE 1
R2_XORPEN DPx

For a monochrome device, GDI maps the value zero to black and the value 1 to
white. If an application attempts to draw with a black pen on a white destination
by using the available binary raster operations, the following results occur:

Raster operation

R2_BLACK

R2_COPYPEN

R2_MASKNOTPEN

R2_MASKPEN

R2_MASKPENNOT

Result

Visible black line

Visible black line

No visible line

Visible black line

Visible black line

Appendix A Binary and Ternary Raster-Operation Codes 575

Raster operation Result

R2_MERGENOTPEN No visible line

R2_MERGEPEN Visible black line

R2_MERGEPENNOT Visible black line

R2_NOP No visible line

R2_NOT Visible black line

R2_NOTCOPYPEN No visible line

R2_NOTMASKPEN No visible line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Visible black line

R2_WHITE No visible line

R2_XORPEN No visible line

For a color device, GDI uses RGB values to represent the colors of the pen and the
destination. An RGB color value is a long integer that contains a red, a green, and
a blue color field, each specifying the intensity of the given color. Intensities range
from 0 through 255. The values are packed in the three low-order bytes of the long
integer. The color of a pen is always a solid color, but the color of the destination
may be a mixture of any two or three colors. If an application attempts to draw
with a white pen on a blue destination by using the available binary raster opera
tions, the following results occur:

Raster operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible white line

R2_MASKNOTPEN Visible black line

R2_MASKPEN Invisible blue line

R2_MASKPENNOT Visible red/green line

R2_MERGENOTPEN Invisible blue line

R2_MERGEPEN Visible white line

R2_MERGEPENNOT Visible white line

R2_NOP Invisible blue line

R2_NOT Visible red/green line

R2_NOTCOPYPEN Visible black line

R2_NOTMASKPEN Visible red/green line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Invisible blue line

R2_WHITE Visible white line

R2_XORPEN Visible red/green line

576 Microsoft Windows Programmer's Reference

A.2 Ternary Raster Operations
This section lists the ternary raster-operation codes used by the BitBlt, PatBlt, and
StretchBlt functions. Ternary raster-operation codes define how GDI combines
the bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of
the pixels in the source, the selected brush, and the destination are combined. Fol
lowing are the three operands used in these operations:

Operand

D
p

s

Meaning

Destination bitmap

Selected brush (also called pattern)

Source bitmap

Boolean operators used in these operations follow:

Operator

a
n

0

x

Meaning

Bitwise AND

Bitwise NOT (inverse)

Bitwise OR

Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the values of the pixels in the destination bitmap with
a combination of the pixel values of the source and brush:

PSo

The following operation combines the values of the pixels in the source and brush
with the pixel values of the destination bitmap (there are alternative spellings of
the same function, so although a particular spelling may not be in the list, an
equivalent form would be):

DPSoo

Appendix A Binary and Ternary Raster-Operation Codes 577

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean
operation index and whose low-order word is the operation code. The 16-bit opera
tion index is a zero-extended, 8-bit value that represents the result of the Boolean
operation on predefined brush, source, and destination values. For example, the
operation indexes for the PSo and DPSoo operations are shown in the following
list:

p

0
0

0

0

Operation index:

s
0
0

1

0
0

D

0

0

1

0
1

0

PSo DPSoo

0 0
0

OOFCl:l OOFEh

In this case, PSo has the operation index OOFC (read from the bottom up); DPSoo
has the operation index OOFE. These values define the location of the correspond
ing raster-operation codes, as shown in Ta,ble A.1, "Raster-Operation Codes." The
PSo operation is in line 252 (OOFCh) of the table; DPSoo is in line 254 (OOFEh).

The most commonly used raster operations have been given special names in the
Windows include file, WINDOWS.H. You should use these names whenever
possible in your applications.

When the source and destination bitmaps are monochrome, a bit value of zero
represents a black pixel and a bit value of 1 represents a white pixel. When the
source and the destination bitmaps are color, those colors are represented with
RGB values. For more information about RGB values, see the RGB structure in
Chapter 3, "Structures."

578 Microsoft Windows Programmer's Reference

TableA.1 Raster-Operation Codes

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

00 00000042 0 BLACKNESS

01 00010289 DPSoon

02 00020C89 DPSona

03 000300AA PS on

04 00040C88 SDPona

05 000500A9 DPon

06 00060865 PDS:xnon

07 000702C5 PDSaon

08 00080F08 SDPnaa

09 00090245 PDSxon

OA OOOA0329 DPna

OB OOOBOB2A PSDnaon

oc OOOC0324 SPna

OD OOODOB25 PDSnaon

OE OOOE08A5 PDSonon

OF OOOFOOOl Pn

10 00100C85 PD Sona

11 001100A6 DSon NOTSRCERASE

12 00120868 SDP:xnon

13 001302C8 SDPaon

14 00140869 DPSxnon

15 001502C9 DPSaon

16 00165CCA PSDPSanaxx

17 00171D54 SSPxDSxaxn

18 00180D59 SPxPDxa

19 00191CC8 SDPSanaxn

lA 001A06C5 PDSPaox

1B 001B0768 SDPSxaxn

lC 001C06CA PSDPaox

1D 001D0766 DSPDxaxn

1E 001E01A5 PD Sox

lF 001F0385 PDSoan

20 00200F09 DPSnaa

21 00210248 SDPxon

22 00220326 DSna

Appendix A Binary and Ternary Raster-Operation Codes 579

Table A.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

23 00230B24 SPDnaon

24 00240D55 SPxDSxa

25 00251CC5 PDSPanaxn

26 002606C8 SDPSaox

27 00271868 SDPSxnox

28 00280369 DPSxa

29 002916CA PSDPSaoxxn

2A 002AOCC9 DPSana

2B 002B1D58 SSPxPDxaxn

2C 002C0784 SPDSoax

2D 002D060A PSDnox

2E 002E064A PSDPxox

2F 002FOE2A PSDnoan

30 0030032A PSna

31 00310B28 SDPnaon

32 00320688 SDPSoox

33 00330008 Sn NOTSRCCOPY

34 003406C4 SPDSaox

35 00351864 SPDSxnox

36 003601A8 SD Pox

37 00370388 SDPoan

38 0038078A PSDPoax

39 00390604 SPDnox

3A 003A0644 SPDSxox

3B 003BOE24 SPDnoan

3C 003C004A PSx

3D 003D18A4 SPDSonox

3E 003E1B24 SPDSnaox

3F 003FOOEA PS an

40 00400FOA PSDnaa

41 00410249 DPSxon

42 00420D5D SDxPDxa

43 00431CC4 SPDSanaxn

44 00440328 SDna SRCERASE

45 00450B29 DPSnaon

580 Microsoft Windows Programmer's Reference

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

46 004606C6 DSPDaox

47 0047076A PSDPxaxn

48 00480368 SDPxa

49 004916CS PDSPDaoxxn

4A 004A0789 DPSDoax

4B 004B060S PDSnox

4C 004COCC8 SD Pana

4D 004D19S4 SSPxDSxoxn

4E 004E064S PDSPxox

4F 004FOE2S PDSnoan

so OOS0032S PDna

Sl OOS10B26 DSPnaon

S2 OOS206C9 DPSDaox

S3 OOS30764 SPDSxaxn

S4 OOS408A9 DPSonon

SS OOSS0009 Dn DSTINVERT

S6 OOS601A9 DPSox

S7 OOS70389 DPSoan

S8 OOS8078S PDSPoax

S9 OOS90609 DPSnox

SA OOSA0049 DPx PATINVERT

SB OOSB18A9 DPSDonox

SC OOSC0649 DPSDxox

SD OOSDOE29 DPSnoan

SE OOSE1B29 DPSDnaox

SF OOSFOOE9 DPan

60 0060036S PDSxa

61 006116C6 DSPDSaoxxn

62 00620786 DSPDoax

63 00630608 SDPnox

64 00640788 SDPSoax

6S 006S0606 DSPnox

66 00660046 DSx SRCINVERT

67 006718A8 SDPSonox

68 0068S8A6 DSPDSonoxxn

Appendix A Binary and Ternary Raster-Operation Codes 581

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

69 00690145 PDSxxn

6A 006AOIE9 DPSax

6B 006B178A PSDPSoaxxn

6C 006COIE8 SD Pax

6D 006D1785 PDSPDoaxxn

6E 006EIE28 SDPSnoax

6F 006FOC65 PDSxnan

70 00700CC5 PDSana

71 00711D5C SSDxPDxaxn

72 00720648 SDPSxox

73 00730E28 SDPnoan

74 00740646 DSPDxox

75 00750E26 DSPnoan

76 00761B28 SDPSnaox

77 007700E6 DSan

78 007801E5 PDSax

79 00791786 DSPDSoaxxn

7A 007AIE29 DPSDnoax

7B 007BOC68 SDPxnan

7C 007CIE24 SPDSnoax

7D 007DOC69 DPSxnan

7E 007E0955 SPxDSxo

7F 007F03C9 DPSaan

80 008003E9 DPSaa

81 00810975 SPxDSxon

82 00820C49 DPSxna

83 00831E04 SPDSnoaxn

84 00840C48 SDPxna

85 00851E05 PDSPnoaxn

86 008617A6 DSPDSoaxx

87 008701C5 PDSaxn

88 008800C6 DSa SRCAND

89 00891B08 SDPSnaoxn

8A 008AOE06 DSPnoa

8B 008B0666 DSPDxoxn

582 Microsoft Windows Programmer's Reference

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

SC OOSCOEOS SDPnoa

SD OOSD066S SDPSxoxn

SE OOSE1D7C SSDxPDxax

SF OOSFOCE5 PDSanan

90 00900C45 PDSxna

91 00911EOS SDPSnoaxn

92 009217A9 DPSDPoaxx

93 009301C4 SPDaxn

94 009417AA PSDPSoaxx

95 009501C9 DPSaxn

96 00960169 DPS xx

97 00975SSA PSDPSonoxx

9S 009S1SSS SDPSonoxn

99 00990066 DSxn

9A 009A0709 DPSnax

9B 009B07AS SDPSoaxn

9C 009C0704 SPDnax

9D 009D07A6 DSPDoaxn

9E 009E16E6 DSPDSaoxx

9F 009F0345 PDSxan

AO OOAOOOC9 DPa

Al OOA11B05 PDSPnaoxn

A2 OOA20E09 DPSnoa

A3 OOA30669 DPSDxoxn

A4 OOA41SS5 PDSPonoxn

A5 OOA50065 PDxn

A6 OOA60706 DSPnax

A7 OOA707A5 PDSPoaxn

AS OOAS03A9 DPSoa

A9 OOA901S9 DPSoxn

AA OOAA0029 D

AB OOABOSS9 DPSono

AC OOAC0744 SPDSxax

AD OOAD06E9 DPSDaoxn

AE OOAEOB06 DSPnao

Appendix A Binary and Ternary Raster-Operation Codes 583

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

AF OOAF0229 DPno

BO OOBOOEOS PDSnoa

Bl OOB1066S PDSPxoxn

B2 OOB21974 SSPxDSxox

B3 OOB30CES SDPanan

B4 OOB4070A PSDnax

BS OOBS07A9 DPSDoaxn

B6 OOB616E9 DPSDPaoxx

B7 OOB7034S SDPxan

BS OOBS074A PSDPxax

B9 OOB906E6 DSPDaoxn

BA OOBAOB09 DPSnao

BB OOBB0226 DSno MERGEPAINT

BC OOBC1CE4 SPDSanax

BD OOBDOD7D SDxPDxan

BE OOBE0269 DPSxo

BF OOBFOSC9 DPSano

co OOCOOOCA PS a MERGECOPY

Cl OOC11B04 SPDSnaoxn

C2 OOC21SS4 SPDSonoxn

C3 OOC3006A PSxn

C4 OOC40E04 SPDnoa

cs OOCS0664 SPDSxoxn

C6 OOC6070S SDPnax

C7 OOC707AA PSDPoaxn

cs OOCS03AS SDPoa

C9 OOC901S4 SPDoxn

CA OOCA0749 DPSDxax

CB OOCB06E4 SPDSaoxn

cc OOCC0020 s SRCCOPY

CD OOCDOSSS SD Pono

CE OOCEOBOS SDPnao

CF OOCF0224 SPno

DO OODOOEOA PSDnoa

DI OOD1066A PSDPxoxn

584 Microsoft Windows Programmer's Reference

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

D2 OOD20705 PDSnax

D3 OOD307A4 SPDSoaxn

D4 OOD41D78 SSPxPDxax
D5 OOD50CE9 DPSanan
D6 OOD616EA PSDPSaoxx

D7 OOD70349 DPSxan
D8 OOD80745 PDSPxax

D9 OOD906E8 SDPSaoxn
DA OODA1CE9 DPSDanax

DB OODBOD75 SPxDSxan

DC OODCOB04 SPDnao
DD OODD0228 SDno
DE OODE0268 SDPxo

DF OODF08C8 SD Pano

EO OOE003A5 PDSoa

El OOE10185 PDSoxn
E2 OOE20746 DSPDxax

E3 OOE306EA PSDPaoxn

E4 00£40748 SDPSxax

ES OOE506E5 PDSPaoxn
E6 OOE61CE8 SDPSanax
E7 OOE70D79 SPxPDxan

E8 OOE81D74 SSPxDSxax

E9 OOE95CE6 DSPDSanaxxn
EA OOEA02E9 DPSao

EB OOEB0849 DPSxno

EC OOEC02E8 SD Pao
ED OOED0848 SDPxno
EE OOEE0086 DSo SRCPAINT
EF OOEFOA08 SDPnoo

FO OOF00021 p PATCOPY

Fl OOF10885 PDSono
F2 OOF20B05 PDSnao

F3 OOF3022A PS no

F4 OOF40BOA PSDnao

Appendix A Binary and Ternary Raster-Operation Codes 585

TableA.1 Raster-Operation Codes (continued)

Boolean function Raster operation Boolean function Common name
(hexadecimal) (hexadecimal) in reverse Polish

FS OOF50225 PDno

F6 OOF60265 PDSxo

F7 OOF708C5 PDSano

F8 OOF802E5 PDSao

F9 OOF90845 PDSxno

FA OOFA0089 DPo

FB OOFBOA09 DPSnoo PATPAINT

FC OOFC008A PSo
FD OOFDOAOA PSDnoo

FE OOFE02A9 DPSoo

FF OOFF0062 1 WHITENESS

Virtual-Key Codes

Appendix B

Numeric Key Codes ... 589

Appendix B Virtual-Key Codes 589

The following table shows the symbolic constant names, hexadecimal values, and
keyboard equivalents for the virtual-key codes used by the Microsoft Windows
operating system version 3.1. The codes are listed in numeric order.

Symbolic constant name Value (hexadecimal) Mouse or keyboard
equivalent

VK_LBUTTON 01 Left mouse button

VK_RBUTTON 02 Right mouse button

VK_CANCEL 03 Used for control-break
processing

VK_MBUTION 04 Middle mouse button
(three-button mouse)

05-07 Undefined

VK_BACK 08 BACKSPACE key

VK_TAB 09 TAB key

OA-OB Undefined

VK_CLEAR oc CLEAR key

VK_RETURN OD ENTER key

OE-OF Undefined

VK_SHIFT 10 SHIFT key

VK_CONTROL 11 CTRLkey

VK_MENU 12 ALT key

VK_PAUSE 13 PAUSE key

VK_CAPITAL 14 CAPS LOCK key

15-19 Reserved for Kanji systems

IA Undefined

VK_ESCAPE 1B ESC key

lC-lF Reserved for Kanji systems

VK_SPACE 20 SPACEBAR

VK_PRIOR 21 PAGE UP key

VK_NEXT 22 PAGE DOWN key

VK_END 23 END key

VK_HOME 24 HOME key

VK_LEFT 25 LEFT ARROW key

VK_UP 26 UPARROW key

VK_RIGHT 27 RIGHT ARROW key

VK_DOWN 28 DOWN ARROW key

VK_SELECT 29 SELECT key

2A OEM specific

VK_EXECUTE 2B EXECUTE key

590 Microsoft Windows Programmer's Reference

Symbolic constant name Value (hexadecimal) Mouse or keyboard
equivalent

VK_SNAPSHOT 2C PRINT SCREEN key for
Windows 3.0 and later

VK_INSERT 2D INS key

VK_DELETE 2E DEL key

VK_HELP 2F HELP key

VK_O 30 Okey

VK_l 31 1 key

VK_2 32 2key

VK_3 33 3key

VK_4 34 4key

VK_5 35 Skey

VK_6 36 6key

VK_7 37 7key

VK_8 38 8key

VK_9 39 9key

3A-40 Undefined

VK_A 41 Akey

VK_B 42 Bkey

VK_C 43 ckey

VK_D 44 Okey

VK_E 45 Ekey

VK_F 46 Fkey

VK_G 47 Gkey

VK_H 48 Hkey

VK_I 49 Ikey

VK_J 4A J key

VK_K 4B Kkey

VK_L 4C Lkey

VK_M 4D Mkey

VK_N 4E Nkey

VK_O 4F Okey

VK_P 50 Pkey

VK_Q 51 Qkey

VK_R 52 Rkey

VK_S 53 Skey

VK_T 54 Tkey

VK_U 55 ukey

Appendix B Virtual-Key Codes 591

Symbolic constant name Value (hexadecimal) Mouse or keyboard
equivalent

VK_V S6 vkey

VK_W S7 Wkey

VK_X S8 Xkey

VK_Y S9 Ykey

VK_Z SA Zkey

SB-SF Undefined

VK_NUMPADO 60 Numeric keypad O key

VK_NUMPADl 61 Numeric keypad 1 key

VK_NUMPAD2 62 Numeric keypad 2 key

VK_NUMPAD3 63 Numeric keypad 3 key

VK_NUMPAD4 64 Numeric keypad 4 key

VK_NUMPADS 6S Numeric keypad 5 key

VK_NUMPAD6 66 Numeric keypad 6 key

VK_NUMPAD7 67 Numeric keypad 7 key

VK_NUMPAD8 68 Numeric keypad 8 key

VK_NUMPAD9 69 Numeric keypad 9 key

VK_MULTIPLY 6A Multiply key

VK_ADD 6B Add key

VK_SEPARATOR 6C Separator key

VK_SUBTRACT 6D Subtract key

VK_DECIMAL 6E Decimal key

VK_DIVIDE 6F Divide key

VK_Fl 70 Fl key

VK_F2 71 F2key

VK_F3 72 F3 key

VK_F4 73 F4key

VK_FS 74 F5key

VK_F6 7S F6key

VK_F7 76 Fl key

VK_F8 77 F8key

VK_F9 78 F9key

VK_FlO 79 FlOkey

VK_Fll 7A Fll key

VK_Fl2 7B F12 key

VK_F13 7C F13 key

VK_F14 7D F14 key

VK_FlS 7E F15 key

592 Microsoft Windows Programmer's Reference

Symbolic constant name

VK_F16

VK_F17

VK_F18

VK_F19

VK_F20

VK_F21

VK_F22

VK_F23

VK_F24

VICNUMLOCK

VK_SCROLL

Value (hexadecimal) Mouse or keyboard
equivalent

7F
80H

81H

82H

83H
84H

85H

86H

87H
88-8F

90

91

92-B9

BA-CO

Cl-DA

DB-E4

ES

E6

E7-E8

E9-F5

F6-FE

F16 key

F17 key

F18 key

F19 key

F20key

F21 key

F22key

F23 key

F24key

Unassigned

NUMLOCKkey

SCROLL LOCK key

Unassigned
OEM specific

Unassigned

OEM specific

Unassigned

OEM specific

Unassigned

OEM specific

Unassigned

Character Sets

Appendix C

C.1 ANSI Character Set 596
C.2 Symbol Character Set 597
C.3 OEM Character Set 598

Appendix C Character Sets 595

The Microsoft Windows operating system, version 3.1 supports multiple character
sets, allowing for customization. Among the character sets that Windows 3.1 pro
vides are the Windows, Symbol, and OEM character sets, shown in the following
sections.

596 Microsoft Windows Programmer's Reference

C .1 ANSI Character Set

o I

1 I
2 I

3 I
4 I
5 I

6 I

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 I
23 I

24 I
25 I
26 I

27 I
28 I
29 I
30 I
31 I

32

33 !
34 ..

35 u
36 $
37 %
38 &

39

40 (

41)

42 *
43 ..

44

45 -

46 •

47 I
48 0

49 1
50 2
51 3
52 4
53 5
54 6
55 1
56 8
57 9
58

59

60 <
61

62 >
63 ?

64 I!!

65 A
66 B
67 c
68 D
69 E
70 F
71 G
72 H

73 I

74 J
75 K
76 L

77 M
78 H
79 0
80 p
81 Q
82 R

83 s
84 T
85 u
86 u
87 w
88 x
89 y
90 z
91 [

92 \

93]

94 ,..

95

96 ..

97 a

98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 I

109 Ill

110 n
111 0

112 p
113 q
114 r
115 s
116 t
117 u
118 u
119 w
120 x
121 y
122 z
123 {

124 I
125 }

126

127 I

Tr

128 I
129 I

130 '

Tpl f
Tr 132 "

133 ..•

::134 t
Tp5 :t:
Tr136 ,..

Tr137 %0
rP8 s
Tr139 (

Tr140 CE

Tr

TT

Tr

141 I
142 I

143 I

144 I
145 •

146 •

147 "

148 "

149 •

Tr150

TT151 -

Ty 152 -

Tr153 TM

TT154 s
TT155 >

r)56 ce
157 I
158 I

Tyl59 y
I Indicates that this character is not supported by Windows.

160

161 i
162 (:

163 £
164 !1:1

165 ¥
166

167 §
168

169 ©

170 :ii!

171 «

172 ...

173 -

174 ®

175

176 °
177 :t

178 i!:

179 ~

180

181 J.l
182 ,

183 •

184 ~

185 1

186 Q

187 »

188 %
189 %:
190 %
191 ;,

TT Indicates that this character is available only in TrueType fonts.

192 fl
193 il
194 ii
195 ii
196 fi
197 l!I
198 IE
199 c
200 E:
201 E:

202 E
203 E
204 i
205 i
206 I
207 "i
208 D
209 f.i

210 0
211 Ci
212 0
213 fi
214 ij
215 x
216 H
217 u
218 ii
219 a
220 u
221 y
222 I>
223 I\

224 a
225 .a
226 a
221 a
228 a
229 :a
230 ~

231 ~

232 e
233 e
234 e
235 e
236 i
237 i
238 i
239 1
240 ti

241 n
242 0
243 6
244 a
245 0
246 i:i
247

248 e
249 u
250 u
251 (l

252 li
253 y
254 I:>

255 !i

C.2 Symbol Character Set

o I
1 I

2 I

3 I
4 I
5 I
6 I
7 I

8 I

9 I

10 I
11 I

12 I

13 I
14 I

15 I

16 I

17 I

18 I

19 I
20 I
21 I

22 I

23 I
24 I
25 I
26 I
27 I
28 I

29 I

30 I

31 I

32 I

33

34 '.;/

35 #
36 3
37 %
38 &
39 3

40

41

42 *
43 +

44 '

45 -

46

47 I
48 0
49

50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58

59

60 <
61 =
62 >
63 ?

64 -

65 A
66 B

67 x
68 /J,.

69 E
70 cp
71 r
72 H
73 I
74 J
75 K
76 /\.

n M
78 N
79 0
80 IT
81 e
82 p
83 :z
84 T
85 y
86 ~

87 Q
88

89 '¥
90 z
91 [

92

93 I
94 1
95 -

96

97 0:

98 f3
99 x

100 6
101 z
102 .p
103 "I
104 T/
105

106 ip

107 I-!

108 "A
109 /1
110 1J

111 0

112 ll

m e
114 p
115 a
116 r
117 1J

118 w
119 w
120 ~
121 i.p

122 t
123 {

124 I
125 }

126 ~

127 I

128 I

129 I
130 I

131 I
132 I
133 I
134 I

135 I

136 I

137 I

138 I
139 I

140 I

141 I
142 I
143 I

144 I

145 I

146 I

147 I
148 I

149 I

150 I
151 I
152 I
153 I

154 I

155 I
156 I
157 I
158 I
159 I

I Indicates that this character is not supported by Windows.

Appendix C Character Sets 597

160 I

161 T
162

163 ::;_

164 I
165 00

166 f
167 +
168 •

169 •

170 •

171 B

172 f-

173 i
174 --+
175 J,
176 °
177 :!:

178 N

179 2:
180 x

181 "'

182 a
183 •

184

185 "f.

186 -

187 :::;

188

189

190

191 ~

192 ~

193 ~

194 y
195 p

196 0
197 ©
198 0
199 ,..-..,

200 u
201 ::i

202 ~

203 ¢:.
204 c
205 ~

206 E

207 o$.
208 L.
209 v
210 ®
211 @

212 TM

213 TI
214 ../

215

216 --,

217 A

218 v

219 #

220 *='
221 1f
222 ==;.

223 JJ.

224 0

225 <
226 @

227 ©
228 "TM

229

230

231

232

I
(
I
l

233 r
234 I
235 l
236 f
237 ~
238 l
239 I
240 I

241 >
242 f
243 r
244 I
245 J
246)

247 I
248)

249 l
250 I
251 J
252 1
253 ~
254 J
255 I

598 Microsoft Windows Programmer's Reference

C.3 OEM Character Set

0

1 0
2 e
3 •

4 •

5 '°'
6 +
7 •

8 a
9 0

10 I
11 (J

12 !j!

13 r
14 fJ
15 $

16 ~

17 ~

18 t
19 !!
20 11
21 §

22 -

23 l
24 t
25 l
26 -i-

27 +-

28 L

29 #

30 ...

31 .,.

32

33 !
34 "

35 tt
36 $
37 %

38 a
39 J

40 (

41)

42 *
43 +

44 J

45

46

47 /

48 0
49 1
50 z
51 3
52 1
53 s
54 6
55 7
56 B
57 9
58

59

60 <
61 =
62 >
63 ?

64 @
65 A
66 B
67 c
68 D
69 E
10 F
11 G
n H
73 I
74 J
75)(

76 L
n M
78 l't
79 0
80 p
81 Q
82 R
83 s
84 T
85 u
86 IJ
87 w
88 x
89 y
90 z
91 [

92 '
93]

94 A

95

96 •

97 d

98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 I
109 I'll

110 n
111 0

112 p
113 q
114 r
115 s
116 t
117 u
118 u
119 w
120 x
121 y
122 z
123 {

124

125 }

126

127 0

128 ~

129 ti
130 e
131 a.
132 a.
m a.
134 d
135 ~

136 e
m e
138 e
139 'i
140 i
141 l
142 Fi
143 Fi
144 t
145 <e

146 ff
147 Ci
148 i::i

149 0
150 il
151 il
152 ij
153 ij

154 Li
155 ¢

156 £
157 ¥
158 ll
159 I

160 a.
161 1
162 6
163 u
164 ii
165 R
166 !!

167 !!

168 l
169 r

170 ,

171 ~
172 ~
173 i
174 «

175 »

176 mi
m I
178 I
119 I
180 1
181 1
182 11
183 ll
184 ,

185 11
186 11

187 11
188 JI

189 JI

190 J

191 1

192 L

193 .L

194 T

195 ~
196

197 t
198 ~
199 IJ
200 I!

201 If
202 !!

203 'if
204 n
205

206 u
207 "=
208 JI

209 f
210 lT
211 11

212 b

213 r
214 IT

215 -ff
216 t
217 J

218 r
219 I
220 •

221 I
222 I
223 •

224 0:

225 B
226 r
227 1T

228 :E
229 If

230 J-1

231 T

232 ~

233 e
234 R
235 jj

236 m

237 9S
238 E
239 n
240 -

241 .:!:.

242 ~

243 i

244 r
245 J
246

247 :::

248 °
249

250

251 ,J
252 n
253 z

254 I

255

Index

A
ABC structure, 231
ABORTDOC printer escape, 451
ANSI character set, 596

B
BANDINFO printer escape, 452
BANDINFOSTRUCT structure, 453
Bar, as a document convention, vi
BEGIN_P ATH printer escape, 454
Binary raster-operation codes, 573-575
Bininfo structure, 480
BITMAP structure, 232
BITMAPCOREHEADER structure, 233
BITMAPCOREINFO structure, 234
BITMAPFILEHEADER structure, 236
BITMAPINFO structure, 236
BITMAPINFOHEADER structure, 238
BM GETCHECKmessage, 14
BM - GETSTATE message, 15
BM - SETCHECK message, 16
BM - SETSTATE message, 17
BM - SETSTYLE message, 18
BN -CLICKED message, 213
BN - DISABLE message, 213
BN-DOUBLECLICKED message, 214
BN-HILITE message, 214
BN=PAINT message, 214
BN UNHILITE message, 215
Bold type, as a document convention, vi
Brackets, as a document convention, vi

c
CB ADDSTRING message, 19
CB - DELETESTRING message, 20
CB=DIR message, 21
CB FINDSTRING message, 22
CB - FINDSTRINGEXACT message, 23
CB - GETCOUNT message, 24
CB - GETCURSEL message, 24
CB - GETDROPPEDCONTROLRECT message, 25
CB - GETDROPPEDSTATE message, 26
CB= GETEDITSEL message, 26

CB GETEXTENDEDUI message, 27
CB - GETITEMDATA message, 28
CB - GETITEMHEIGHT message, 28
CB - GETLBTEXT message, 29
CB - GETLBTEXTLEN message, 30
CB -INSERTSTRING message, 31
CB - LIMITTEXT message, 32
CB - RESETCONTENT message, 32
CB - SELECTSTRING message, 33
CB - SETCURSEL message, 34
CB - SETEDITSEL message, 35
CB - SETEXTENDEDUI message, 35
CB - SETITEMDATA message, 36
CB - SETITEMHEIGHT message, 37
CB - SHOWDROPDOWN message, 38
CBN CLOSEUP message, 215
CBN - DBLCLK message, 216
CBN - DROPDOWN message, 216
CBN - EDITCHANGE message, 217
CBN-EDITUPDATE message, 217
CBN-ERRSPACE message, 218
CBN - KILLFOCUS message, 218
CBN-SELCHANGE message, 218
CBN - SELENDCANCEL message, 219
CBN - SELENDOK message, 219
CBN - SETFOCUS message, 220
CBT-CREATEWND structure, 242
CBT ACTIV ATESTRUCT structure, 242
CHAR_RANGE_STRUCT structure, 476
Character tables

ANSI character set, 596
OEM character set, 598
Symbol character set, 597

CHOOSECOLOR structure, 243
CHOOSEFONT structure, 246
CLASSENTRY structure, 252
ClientCallback function,

OLECLEINTVTBL structure, 348
CLIENTCREATESTRUCT structure, 253
CLIP _TO_PATH printer escape, 455
Close function,

OLESERVERDOCVTBL structure, 359
COLOROKSTRING message, 553
COLORTABLE_STRUCT structure, 501
COMPAREITEMSTRUCT structure, 254

600 Index

COMSTAT structure, 255
CONVCONTEXT structure, 256
CONVINFO structure, 257
CPL_DBLCLK message, 543
CPL_EXIT message, 544
CPL_GETCOUNT message, 544
CPL_INIT message, 545
CPL_INQUIRE message, 545
CPL_NEWINQUIRE message, 546
CPL_SELECT message, 547
CPL_STOP message, 548
CPLINFO structure, 260
Create function,

OLESERVERVTBL structure, 365
CreateFromTemplate function,

OLESERVERVTBL structure, 366
CREATESTRUCT structure, 261
CTLINFO structure, 262
CTLSTYLE structure, 263
CTL TYPE structure, 265

D
Data types, defined, 3-10
DCB structure, 266
DDEACK structure, 270
DDEADVISE structure, 271
DDEDATA structure, 272
DDEPOKE structure, 273
DEBUGHOOKINFO structure, 274
DECLARE_HANDLE macro, 431
DECLARE_HANDLE32 macro, 431
DELETEITEMSTRUCT structure, 274
DEVICEDAT A printer escape

See PASSTHROUGH printer escape
DEVMODE structure, 275
DEVNAMES structure, 280
DM_GETDEFID message, 38
DM_SETDEFID message, 39
DOCINFO structure, 281
Document conventions, vi
Do Verb function,

OLEOBJECTVTBL structure, 353
DRAFTMODE printer escape, 457
DRA WITEMSTRUCT structure, 282
DRA WPATTERNRECT printer escape, 457
DRIVERINFOSTRUCT structure, 284
DRY _CLOSE message, 561
DRY _CONFIGURE message, 562
DRV _DISABLE message, 563
DRV _ENABLE message, 563

DRY _EXIT APPLICATION message, 564
DRY _EXITSESSION message, 565
DRY _FREE message, 565
DRY _INSTALL message, 566
DRY _LOAD message, 566
DRY _OPEN message, 567
DRY _POWER message, 568
DRY _QUERYCONFIGURE message, 568
DRY _REMOVE message, 569
DRY _USER message, 569
DRVCONFIGINFO structure, 285

E
Edit function, OLESERVERVTBL structure, 367
Ellipses, as a document convention, vi
EM_ CANUNDO message, 39
EM_EMPTYUNDOBUFFER message, 40
EM_FMTLINES message, 41
EM_GETFIRSTVISIBLELINE message, 42
EM_GETHANDLE message, 42
EM_GETLINE message, 43
EM_GETLINECOUNT message, 44
EM_GETMODIFY message, 45
EM_GETPASSWORDCHAR message, 46
EM_GETRECT message, 46
EM_GETSEL message, 47
EM_GETWORDBREAKPROC message, 48
EM_LIMITTEXT message, 48
EM_LINEFROMCHAR message, 49
EM_LINEINDEX message, 50
EM_LINELENGTH message, 50
EM_LINESCROLL message, 51
EM_REPLACESEL message, 52
EM_SETHANDLE message, 53
EM_SETMODIFY message, 55
EM_SETPASSWORDCHAR message, 55
EM_SETREADONL Y message, 56
EM_SETRECT message, 57
EM_SETRECTNP message, 58
EM_SETSEL message, 59
EM_SETT AB STOPS message, 60
EM_SETWORDBREAKPROC message, 61
EM_ UNDO message, 62
EN_ CHANGE message, 220
EN_ERRSPACE message, 221
EN_HSCROLL message, 221
EN_KILLFOCUS message, 222
EN_MAXTEXT message, 222
EN_SETFOCUS message, 223
EN_ UPDATE message, 223

EN_ VSCROLL message, 224
ENABLEDUPLEX printer escape, 459
ENABLEP AIRKERNING printer escape, 460
ENABLERELATIVEWIDTHS printer escape, 461
END _PATH printer escape, 462
ENDDOC printer escape, 462
ENUMP APERBINS printer escape, 464
ENUMP APERMETRICS printer escape, 465
EPSPRINTING printer escape, 466
EVENTMSG structure, 285
Execute function

OLESERVERDOCVTBL structure, 363
OLESERVERVTBL structure, 369

Exit function, OLESERVERVTBL structure, 368
EXT_DEVICE_CAPS printer escape, 467
EXTTEXT_STRUCT structure, 469
EXTTEXTMETRIC structure, 472
EXTTEXTOUT printer escape, 469

F
FIELDOFFSET macro, 432
FILEOKSTRING message, 554
FINDMSGSTRING message, 554
FINDREPLACE structure, 286
FIXED structure, 290
FLUSHOUTPUT printer escape, 470
FM_GETDRIVEINFO message, 534
FM_GETFILESEL message, 534
FM_GETFILESELLFN message, 535
FM_GETFOCUS message, 536
FM_GETSELCOUNT message, 537
FM_GETSELCOUNTLFN message, 537
FM_REFRESH_ WINDOWS message, 538
FM_RELOAD_EXTENSIONS message, 538
FMEVENT _INITMENU message, 531
FMEVENT_LOAD message, 532
FMEVENT_SELCHANGE message, 532
FMEVENT_UNLOAD message, 533
FMEVENT_USER_REFRESH message, 533
FMS_GETDRIVEINFO structure, 291
FMS_GETFILESEL structure, 292
FMS_LOAD structure, 293

G
Get function, OLESTREAMVTBL structure, 371
GetBValue macro, 433
GETCOLORTABLE printer escape, 470
GetData function,

OLEOBJECTVTBL structure, 354

Index 601

GETEXTENDEDTEXTMETRICS printer escape,
471

GETEXTENTTABLE printer escape, 475
GETFACENAME printer escape, 476
GetGV alue macro, 433
GetObject function,

OLESERVERDOCVTBL structure, 361
GETPAIRKERNTABLE printer escape, 476
GETPHYSP AGESIZE printer escape, 4 78
GETPRINTINGOFFSET printer escape, 478
GetRValue macro, 434
GETSCALINGFACTOR printer escape, 479
GETSETPAPERBINS printer escape, 479
GETSETP APERMETRICS printer escape, 481
GETSETPRINTORIENT printer escape, 481
GETSETSCREENP ARAMS printer escape, 482
GETTECHNOLOGY printer escape, 483
GETTRACKKERNT ABLE printer escape, 484
GETVECTORBRUSHSIZE printer escape, 485
GETVECTORPENSIZE printer escape, 486
GlobalDiscard macro, 434
GLOBALENTRY structure, 294
GLOBALINFO structure, 297
GL YPHMETRICS structure, 297

H
HANDLETABLE structure, 298
HARDW AREHOOKSTRUCT structure, 299
HELPMSGSTRING message, 555
HELPWININFO structure, 299
HIBYTE macro, 435
HIWORD macro, 435
HSZPAIR structure, 301

Italic, as a document convention, vi

J
JUST_ V ALUE_STRUCT structure, 496

K
KERNINGPAIR structure, 301
KERNPAIR structure, 477
KERNTRACK structure, 484
Keys, virtual-key codes, 589-592

602 Index

L M
LB_ADDSTRING message, 62
LB_DELETESTRING message, 63
LB_DIR message, 64
LB_FINDSTRING message, 65
LB_FINDSTRINGEXACT message, 66
LB_GETCARETINDEX message, 67
LB_GETCOUNT message, 68
LB_ GETCURSEL message, 68
LB_GETHORIZONT ALEXTENT message, 69
LB_GETITEMDATA message, 70
LB_ GETITEMHEIGHT message, 71
LB_GETITEMRECT message, 71
LB_GETSEL message, 72
LB_GETSELCOUNT message, 73
LB_GETSELITEMS message, 73
LB_GETTEXT message, 74
LB_GETTEXTLEN message, 75
LB_GETTOPINDEX message, 75
LB_INSERTSTRING message, 76
LB_RESETCONTENT message, 76
LB_SELECTSTRING message, 77
LB_SELITEMRANGE message, 78
LB_SETCARETINDEX message, 79
LB_SETCOLUMNWIDTH message, 79
LB_SETCURSEL message, 80
LB_SETHORIZONTALEXTENTmessage, 81
LB_SETITEMDATA message, 82
LB_SETITEMHEIGHT message, 83
LB_SETSEL message, 84
LB_SETTABSTOPS message, 84
LB_SETTOPINDEX message, 85
LBN_DBLCLK message, 224
LBN_ERRSP ACE message, 225
LBN_KILLFOCUS message, 225
LBN_SELCANCEL message, 226
LBN_SELCHANGE message, 226
LBN_SETFOCUS message, 227
LBSELCHSTRING message, 556
LOBYTE macro, 436
LocalDiscard macro, 436
LOCALENTRY structure, 302
LOCALINFO structure, 305
LockData macro, 437
LOGBRUSH structure, 305
LOGFONT structure, 307
LOGP ALETTE structure, 311
LOGPEN structure, 312

' LOWORD macro, 437

MAKEINTATOM macro, 438
MAKEINTRESOURCE macro, 439
MAKELONG macro, 440
MAKELP macro, 440
MAKELPARAM macro, 441
MAKELRESULT macro, 441
MAKEPOINT macro, 442
MAT2 structure, 313
max macro, 443
MDICREATESTRUCT structure, 314
MEASUREITEMSTRUCT structure, 316
MEMMANINFO structure, 317
MENUITEMTEMPLATE structure, 318
MENUITEMTEMPLATEHEADER structure, 319
Message numbers, list of ranges, 13
METAFILEPICT structure, 320
METAHEADER structure, 321
MET ARECORD structure, 322
MFCOMMENT printer escape, 486
min macro, 443
MINMAXINFO structure, 322
MODULEENTRY structure, 323
MONCBSTRUCT structure, 324
MONCONVSTRUCT structure, 326
MONERRSTRUCT structure, 327
MONHSZSTRUCT structure, 328
MONLINKSTRUCT structure, 329
MONMSGSTRUCT structure, 330
MOUSEHOOKSTRUCT structure, 331
MOUSETRAILS printer escape, 487
MSG structure, 332
MULTIKEYHELP structure, 333

N
NCCALCSIZE_p ARAMS structure, 333
NEWCPLINFO structure, 334
NEWFRAME printer escape, 488
NEWTEXTMETRIC structure, 336
NEXTBAND printer escape, 489
NFYLOADSEG structure, 340
NFYLOGERROR structure, 341
NFYLOGPARAMERROR structure, 342
NFYRIP structure, 342
NFYSTARTDLL structure, 343

0
ObjectLong function,

OLEOBJECTVTBL structure, 355

OEM character set, 598
OFFSETOF macro, 444
OFSTRUCT structure, 344
OLECLIENT structure, 347
OLECLIENTVTBL structure, 347
OLEOBJECT structure, 350
OLEOBJECTVTBL structure, 350
OLESERVER structure, 357
OLESERVERDOC structure, 358
OLESERVERDOCVTBL structure, 358
OLESERVERVTBL structure, 364
OLESTREAM structure, 370
OLESTREAMVTBL structure, 370
OLET ARGETDEVICE structure, 372
Open function, OLESERVERVTBL structure, 364
OPENFILENAME structure, 374
ORIENT structure, 482
OUTLINETEXTMETRIC structure, 381

p
P AINTSTRUCT structure, 384
PALETTEENTRY structure, 385
P ALETTEINDEX macro, 444
P ALETTERGB macro, 445
P ANOSE structure, 386
PASSTHROUGH printer escape, 490
P ATH_INFO structure, 463
POINT structure, 392
POINTFX structure, 392
POSTSCRIPT_DATA printer escape

See PASSTHROUGH printer escape
POSTSCRIPT_IGNORE printer escape, 491
PRECT_STRUCT structure, 458
PRINTDLG structure, 393
Put function, OLESTREAMVTBL structure, 371

a
QUERYESCSUPPORT printer escape, 491

R
Ranges of message numbers, 13
Raster-operation codes, 573-585
RASTERIZER_ST ATUS structure, 400
RECT structure, 400
Release function

OLEOBJECTVTBL structure, 352
OLESERVERDOCVTBL structure, 362
OLESERVERVTBL structure, 368

RESTORE_CTM printer escape, 492

RGB macro, 446
RGBQUAD structure, 401
RGBTRIPLE structure, 402

s
Save function,

Index 603

OLESERVERDOCVTBL structure, 359
SAVE_CTM printer escape, 493
SEGINFO structure, 402
SELECTOROF macro, 447
SELECTP APERSOURCE printer escape, 493
SET_ARC_DIRECTION printer escape, 497
SET_BACKGROUND_COLOR printer escape,

498
SET_BOUNDS printer escape, 499
SET_CLIP _BOX printer escape, 499
SET _POLY _MODE printer escape, 506
SET_SCREEN_ANGLE printer escape, 508
SET_SPREAD printer escape, 509
SET ABORTPROC printer escape, 494
SET ALLJUSTV ALUES printer escape, 495
SetColorScheme function

OLEOBJECTVTBL structure, 356
OLESERVERDOCVTBL structure, 362

SETCOLORT ABLE printer escape, 500
SETCOPYCOUNT printer escape, 502
SetData function,

OLEOBJECTVTBL structure, 354
SetDocDimensions function,

OLESERVERDOCVTBL structure, 360
SETENDCAP printer escape

See SETLINECAP printer escape
SetHostNames function,

OLESERVERDOCVTBL structure, 360
SETKERNTRACK printer escape, 502
SETLINECAP printer escape, 503
SETLINEJOIN printer escape, 504
SETMITERLIMIT printer escape, 505
SETRGBSTRING message, 557
SetTargetDevice function,

OLEOBJECTVTBL structure, 355
SHAREVISTRING message, 557
Show function, OLEOBJECTVTBL structure, 352
SIZE structure, 404
ST ACKTRACEENTRY structure, 404
STARTDOC printer escape, 510
STM_GETICON message, 86
STM_SETICON message, 87
STRETCHBL T printer escape, 511

604 Index

Symbol character set, 597
SYSHEAPINFO structure, 406

T
TASKENTRY structure, 407
Ternary raster-operation codes, 576-585
TEXTMETRIC structure, 409
TIMERINFO structure, 412
TRANSFORM_ CTM printer escape, 511
TTPOLYCURVE structure, 413
TTPOL YGONHEADER structure, 414

u
UnlockData macro, 447
UnlockResource macro, 448

v
Vertical bar, as a document convention, vi
Virtual-key codes, 589-592
VS_FIXEDFILEINFO structure, 415

w
WINDEBUGINFO structure, 419
WINDOWPLACEMENT structure, 422
WINDOWPOS structure, 424
Windows data types, defined, 3-10
WM_ACTIV ATE message, 87
WM_ACTIV ATEAPP message, 88
WM_ASKCBFORMATNAME message, 89
WM_CANCELMODE message, 90
WM_CHANGECBCHAIN message, 90
WM_ CHAR message, 91
WM_CHARTOITEM message, 92
WM_CHILDACTIVATE message, 93
WM_CHOOSEFONT_GETLOGFONT message,

93
WM_ CLEAR message, 94
WM_ CLOSE message, 95
WM_ COMMAND message, 95
WM_COMMNOTIFY message, 97
WM_ COMPACTING message, 98
WM_COMPAREITEM message, 98
WM_ COPY message, 100
WM_CPL_LAUNCH message, 548
WM_CPL_LAUNCHED message, 549
WM_ CREATE message, 100
WM_CTLCOLOR message, 101
WM_ CUT message, 103

WM_DDE_ACK message, 104
WM_DDE_ADVISE message, 106
WM_DDE_DATA message, 108
WM_DDE_EXECUTE message, 110
WM_DDE_INITIATE message, 111
WM_DDE_pOKE message, 113
WM_DDE_REQUEST message, 115
WM_DDE_TERMINATEmessage, 116
WM_DDE_UNADVISE message, 117
WM_DEADCHAR message, 118
WM_DELETEITEM message, 119
WM_DESTROY message, 120
WM_DESTROYCLIPBOARD message, 120
WM_DEVMODECHANGE message, 121
WM_DRA WCLIPBOARD message, 121
WM_DRA WITEM message, 122
WM_DROPFILES message, 124
WM_ENABLE message, 124
WM_ENDSESSION message, 125
WM_ENTERIDLE message, 125
WM_ERASEBKGND message, 126
WM_FONTCHANGE message, 127
WM_GETDLGCODE message, 127
WM_GETFONT message, 128
WM_GETMINMAXINFO message, 129
WM_GETTEXT message, 130
WM_ GETTEXTLENGTH message, 131
WM_HSCROLL message, 132
WM_HSCROLLCLIPBOARD message, 133
WM_ICONERASEBKGND message, 134
WM_INITDIALOG message, 134
WM_INITMENU message, 135
WM_INITMENUPOPUP message, 136
WM_KEYDOWN message, 137
WM_KEYUP message, 138
WM_KILLFOCUS message, 140
WM_LBUTTONDBLCLKmessage, 140
WM_LBUTTONDOWN message, 141
WM_LBUTTONUP message, 142
WM_MBUTTONDBLCLK message, 143
WM_MBUTTONDOWN message, 144
WM_MBUTTONUP message, 144
WM_MDIACTIV ATE message, 145
WM_MDICASCADE message, 146
WM_MDICREATE message, 147
WM_MDIDESTROY message, 148
WM_MDIGET ACTIVE message, 149
WM_MDIICONARRANGE message, 149
WM_MDIMAXIMIZE message, 150
WM_MDINEXT message, 150
WM_MDIRESTORE message, 151

WM_MDISETMENU message, 151
WM_MDITILE message, 152
WM_MEASUREITEM message, 153
WM_MENUCHAR message, 154
WM_MENUSELECT message, 155
WM_MOUSEACTIV ATE message, 156
WM_MOUSEMOVE message, 157
WM_MOVE message, 158
WM_NCACTIV ATE message, 159
WM_NCCALCSIZE message, 160
WM_NCCREATE message, 162
WM_NCDESTROY message, 163
WM_NCHITTEST message, 163
WM_NCLBUTTONDBLCLK message, 165
WM_NCLBUTTONDOWN message, 166
WM_NCLBUTTONUP message, 166
WM_NCMBUTTONDBLCLK message, 167
WM_NCMBUTTONDOWN message, 168
WM_NCMBUTTONUP message, 168
WM_NCMOUSEMOVE message, 169
WM_NCP AINT message, 170
WM_NCRBUTTONDBLCLK message, 170
WM_NCRBUTTONDOWN message, 171
WM_NCRBUTTONUP message, 172
WM_NEXTDLGCTL message, 172
WM_P AINT message, 173
WM_pAINTCLIPBOARD message, 174
WM_PALETTECHANGED message, 175
WM_P ALETTEISCHANGING message, 177
WM_p ARENTNOTIFY message, 177
WM_p ASTE message, 178
WM_POWER message, 179
WM_QUERYDRAGICON message, 180
WM_QUERYENDSESSION message, 181
WM_QUERYNEWPALETTEmessage, 182
WM_QUERYOPEN message, 183
WM_QUEUESYNC message, 184
WM_QUIT message, 184
WM_RBUTTONDBLCLK message, 185
WM_RBUTTONDOWN message, 186
WM_RBUTTONUP message, 186
WM_RENDERALLFORMATS message, 187
WM_RENDERFORMAT message, 188
WM_SETCURSOR message, 189
WM_SETFOCUS message, 190
WM_SETFONT message, 190
WM_SETREDRA W message, 192
WM_SETTEXT message, 193
WM_SHOWWINDOW message, 193
WM_SIZE message, 194
WM_SIZECLIPBOARD message, 195

Index 605

WM_SPOOLERSTATUS message, 196
WM_SYSCHAR message, 197
WM_SYSCOLORCHANGE message, 198
WM_SYSCOMMAND message, 198
WM_SYSDEADCHAR message, 200
WM_SYSKEYDOWN message, 201
WM_SYSKEYUP message, 202
WM_SYSTEMERROR message, 204
WM_TIMECHANGE message, 204
WM_ TIMER message, 205
WM_ UNDO message, 206
WM_USER message, 206
WM_ VKEYTOITEM message, 207
WM_ VSCROLL message, 208
WM_ VSCROLLCLIPBOARD message, 209
WM_ WINDOWPOSCHANGED message, 210
WM_ WINDOWPOSCHANGING message, 211
WM_ WININICHANGE message, 212
WNDCLASS structure, 425

x
XTYP _ADVDATA transaction, 515
XTYP _ADVREQ transaction, 516
XTYP _ADVST ART transaction, 517
XTYP _ADVSTOP transaction, 518
XTYP _CONNECT transaction, 518
XTYP _CONNECT_CONFIRM transaction, 519
XTYP _DISCONNECT transaction, 520
XTYP _ERROR transaction, 521
XTYP _EXECUTE transaction, 521
XTYP _MONITOR transaction, 522
XTYP _po KE transaction, 523
XTYP _REGISTER transaction, 524
XTYP _REQUEST transaction, 525
XTYP _UNREGISTER transaction, 526
XTYP _ WILDCONNECT transaction, 526
XTYP _XACT_COMPLETE transaction, 528

MictOsott®

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-639

0392 Part No. 28917

