
•

•

•

Microsoft® Windows™
Version 3.1

ProgrammingTools

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright © 1991 International Typeface
Corporation. All rights reserved.

Copyright© 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, Times
and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.
UNIX is a registered trademark of UNIX Systems Laboratories.
P ANOSE is a trademark of ElseW are Corporation.
Epson and FX are registered trademarks of Epson America, Inc.
Hewlett-Packard, HP, and LaserJet are registered trademarks of Hewlett-Packard Company.
Lotus is a registered trademark of Lotus Development Company.
IBM and Personal System/2 are registered trademarks of International Business Machines

Corporation.
ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface

Corporation.
Helvetica, Palatino, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Intel is a registered trademark of Intel Corporation.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.
Okidata is a registered trademark of Oki America, Inc.

Document No. PC28918-0492

Contents

Introduction.. ix

Organization of This Manual.. ix
Document Conventions x

Chapter 1 Creating and Editing Resources... 1
1.1 Designing Images: Image Editor.. 3
1.2 Designing Dialog Boxes: Dialog Editor .. 4
1.3 Designing Fonts: Font Editor... 5

Chapter 2 Compiling Resources: Resource Compiler.. 7
2.1 Including Resources in an Application 9
2.2 Creating a Resource-Definition File.. 9

2.2.1 Single-Line Statements ... 10
2.2.2 Multiline Statements... 10

2.3 Using Resource Compiler.. 12
2.3.1 Command-Line Syntax... 12
2.3.2 Compiling Resources Separately.. 15
2.3.3 Defining Names for the Preprocessor.. 16
2.3.4 Renaming the Compiled Resource File.. 16
2.3.5 Controlling Which Directories the Resource Compiler Searches.... 17
2.3.6 Displaying Progress Messages ... 18

2.4 Related Topics .. 18

Chapter 3 Creating Help Files .. 19
3.1 About Windows Help Files.. 21
3.2 Creating Topic Files... 21

3.2.1 Declaring Character Set, Fonts, and Colors 22
3.2.2 Defining Individual Topics... 23
3.2.3 Setting Font Size and Name ... 24
3.2.4 Setting Space Before and After Paragraphs 24
3 .2.5 Setting the Left and Right Indents.. 24
3.2.6 Setting Tab Stops.. 25
3.2.7 Breaking Lines .. 25
3.2.8 Creating Links and Pop-up Topics... 26

iv Microsoft Windows Programming Tools

3.2.9 Creating a Keyword List... 27
3.2.10 Creating Browse Sequences ... 27

3.3 Using Graphics Files .. 28
3.3.1 Inserting a Bitmap in Text.. 29
3.3.2 Wrapping Text Around a Bitmap... 29
3.3.3 Using a Bitmap as a Hot Spot... 30
3.3.4 Using a Bitmap on Different Displays ... 30

3.4 Creating Help Project Files .. 32
3.4.1 Project File Sections ... 32
3.4.2 Using Macros in Project Files... 33
3.4.3 Sample Project File... 33

3.5 Using Help in a Windows Application .. 34
3.5.1 Choosing Help from the Help Menu .. 34
3.5.2 Choosing Help with the Keyboard... 36
3.5.3 Choosing Help with the Mouse .. 39
3.5.4 Searching for Help with Keywords.. 42
3.5.5 Displaying Help in a Secondary Window .. 43
3.5.6 Canceling Help.. 44

3.6 Project File Sections and Options Reference... 45

Chapter 4 Debugging: CodeView for Windows... 67
4.1 Requirements for Using Code View for Windows 69

4.1.1 Using CVW with a Single Monitor.. 70
4.1.2 Using CVW with a Secondary Monitor 70

4.2 Comparing Code View for Windows with Other
Microsoft Debuggers.. 71

4.2.1 Differences Between CVW and SYMDEB 71
4.2.2 Differences Between CVW and Code View for MS-DOS 72

4.3 Preparing Windows Applications for Debugging...................................... 73
4.4 Setting Up the Debugging Version of Windows 73
4.5 Starting a Debugging Session... 74

4.5.1 Display Options .. 75
4.5.2 Starting a Debugging Session for a Single Application................... 75
4.5.3 Starting a Debugging Session for Multiple Instances

of an Application... 76
4.5.4 Starting a Debugging Session for Multiple Applications................. 76
4.5 .5 Starting a Debugging Session for Dynamic-Link Libraries............. 77
4.5.6 Command-Line Options ... 78

4.6 Saving Session Information.. 80

Contents v

4.7 Working with the Code View for Windows Screen................................... 80
4.7.1 Using CVW Display Windows .. 80
4.7.2 Using the Menu Bar.. 83

4.8 Accessing Help ... 85
4.9 Displaying Application Data.. 85

4.9.1 Displaying Variables .. 86
4.9.2 Displaying Expressions.. 87
4.9.3 Displaying Arrays and Structures... 87
4.9.4 Using the Quick Watch Command... 91
4.9.5 Tracing Windows Messages ... 91
4.9.6 Displaying Memory.. 92
4.9.7 Displaying the Contents of Registers... 97
4.9.8 Displaying Windows Modules ... 98

4.10 Modifying Application Data.. 98
4.11 Controlling Execution of Your Application... 99

4.11.1 Continuous Execution... 99
4.11.2 Single-Step Execution 103
4.11.3 Animated Execution ... 104
4.11.4 Jumping to a Particular Location.. 104
4.11.5 Interrupting Your Application.. 104

4.12 Handling Abnormal Termination of the Application............................... 106
4.12.1 Handling a Fatal Exit.. 106
4.12.2 Handling a General Protection Fault.. 107

4.13 Ending a Session .. 108
4.14 Advanced Techniques .. 108

4.14.1 Using Multiple Source Windows... 108
4.14.2 Checking for Undefined Pointers 108
4.14.3 Handling Register Variables... 109
4.14.4 Redirecting Code View for Windows Input and Output................. 109

4.15 Modifying the TOOLS.IN! File... 110
4.16 Related Topics .. 110

Chapter 5 Advanced Debugging: 80386 Debugger ... 111
5.1 Preparing Symbol Files for 80386 Debugger .. 113
5.2 Starting 80386 Debugger... 114
5.3 Entering 80386 Debugger.. 116
5.4 CommandSyntax ... 118

5.4.1 Command Keys .. 118
5.4.2 CommandParameters ... 118

vi Microsoft Windows Programming Tools

5.4.3 Binary and Unary Operators ... 121
5.4.4 Regular Expressions... 122

5.5 Common Commands .. 123
5.6 Reference of 80386 Debugger Commands .. 125
5.7 RelatedTopics .. 170

Chapter 6 Analyzing System Failures: Dr. Watson ... 171
6.1 Configuring Dr. Watson from the WIN .INI File 173

6.1.1 The Skip Info Entry 173
6.1.2 TheShowlnfoEntry .. 174
6.1.3 TheDisLenEntry .. 174
6.1.4 The TrapZero Entry .. 175
6.1.5 TheGPContinueEntry .. 175
6.1.6 The DisStack Entry... 176
6.1.7 TheLogFileEntry ... 176

6.2 Sample Dr. Watson Log File.. 177
6.3 Sample Dr. Watson Log File with Comments... 179

Chapter 7 Monitoring Messages: Spy.. 183
7.1 Selecting Options: The Options! Menu .. 185

7 .1.1 Selecting Message Types.. 185
7 .1.2 Selecting the Output Device 186
7 .1.3 Selecting Frequency of Output... 186

7.2 Selecting a Window: The Window Menu .. 187
7.3 Starting and Stopping Spy: The Spy Menu .. 187
7.4 Related Topics.. 188

Chapter 8 Monitoring Dynamic Data Exchange Activity: DDESpy 189
8.1 TheOutputMenu .. 191
8.2 The Monitor Menu ... 191

8.2.1 Monitoring String-Handle Data.. 192
8.2.2 Monitoring Sent or Posted DDE Messages.................................... 192
8.2.3 Monitoring Callbacks... 193
8.2.4 Monitoring Errors 193

8.3 Tracking Options.. 193
8.3.1 Tracking String Handles... 194
8.3.2 Tracking Active Conversations.. 194
8.3.3 Tracking Active Links.. 194
8.3.4 Tracking Registered Servers... 194

Contents vii

Chapter 9 Viewing the Heap: Heap Walker ... 195
9 .1 The Heap Walker Window... 197
9.2 Performing File Operations: The File Menu.. 198
9.3 Walking the Heap: The Walk Menu.. 199
9.4 Sorting Memory Objects: The Sort Menu.. 199
9.5 Displaying Memory Objects: The Object Menu...................................... 200

9.5.1 The Show Command .. 200
9.5.2 TheLocalWalkCommands .. 201

9.6 Allocating Memory: The Alloc Menu.. 203
9.7 Determining Memory Size: The Add! Menu ... 203
9.8 Suggestions for Using Heap Walker.. 204
9.9 Related Topics .. 204

Chapter 10 Analyzing Performance: Profiler ... 205
10.1 Overview of Profiler ... 207
10.2 Preparing to Run Profiler 208
10.3 Using Profiler Functions.. 208
10.4 Sampling Code... 209
10.5 Displaying Samples.. 209

Chapter 11 Compressing and Decompressing Files .. 213
11.1 Compressing Files: Compress.. 215
11.2 Decompressing Compressed Files: Expand... 216

Appendix A Resource Compiler Diagnostic Messages... 217

Appendix B Help Compiler Error Messages... 229
B .1 Interpreting Error Messages . 231
B.2 Error Message Categories 231
B.3 File Errors... 232
B.4 Project-File Errors.. 233
B.5 Macro Errors ... 237
B.6 Context-String Errors... 237
B.7 Topic-File Errors.. 239
B.8 Miscellaneous Errors .. 240

viii Microsoft Windows Programming Tools

Appendix C Windows Debugging Version .. 243
C.1 Debugging Programs.. 245

C.1.1 Logging Debugging Messages 246
C.1.2 Interpreting Debugging Messages .. 247

C.2 Debugging Functions and the WINDEBUGINFO Structure 249
C.2.1 WIN.IN! Debugging Options ... 250

C.3 Debugging Messages.. 251
C.4 Common Programming Errors 254

Index ... 257

Introduction

The Microsoft® Windows™ operating system is a single-user system for personal
computers. Microsoft provides a variety of tools you'll find useful as you develop
Windows applications. This manual, Microsoft Windows Programming Tools, ex
plains how to use these tools.

Organization of This Manual
Following are brief descriptions of the chapters and appendixes in this manual:

• Chapter 1, "Creating and Editing Resources," introduces three tools you can
use to create and edit resources for Windows applications. These tools are
Microsoft Image Editor (IMAGEDIT.EXE), Microsoft Dialog Editor
(DLGEDIT.EXE), and Microsoft Windows Font Editor (FONTEDIT.EXE).

• Chapter 2, "Compiling Resources: Resource Compiler," describes how to use
Microsoft Windows Resource Compiler (RC) to compile application resources
and add them to an executable Windows application.

• Chapter 3, "Creating Help Files," describes how to use Microsoft Help Com
piler, Microsoft Multiple Resolution Bitmap Compiler, and Microsoft Hotspot
Editor to develop help files.

• Chapter 4, "Debugging: Code View for Windows," explains how to use
Microsoft Code View® for Windows (CVW) to test the execution of your
Windows applications and examine your data simultaneously.

• Chapter 5, "Advanced Debugging: 80386 Debugger," shows how to use
Microsoft Windows 80386 Debugger (WDEB386.EXE) to test and debug
Windows applications and dynamic-link libraries (DLLs).

• Chapter 6, "Analyzing System Failures: Dr. Watson," discusses how to use
Microsoft Windows Dr. Watson (DRW ATSON.EXE) to detect and analyze
failures caused by Windows applications.

• Chapter 7, "Monitoring Messages: Spy," shows how to use Microsoft Windows
Spy (SPY.EXE) to monitor messages sent to one or more windows in your
Windows application.

• Chapter 8, "Monitoring Dynamic Data Exchange Activity: DDESpy," explains
how to use Microsoft Windows DDESpy (DDESPY.EXE) to monitor dynamic
data exchange (DDE) activity in the Windows operating system.

x Microsoft Windows Programming Tools

• Chapter 9, "Viewing the Heap: Heap Walker," shows how to use Microsoft
Windows Heap Walker (HEAPW ALK.EXE) to examine local and global heaps
used by applications and DLLs in the Windows operating system.

• Chapter 10, "Analyzing Performance: Profiler," explains how to use Microsoft
Windows Profiler to analyze and optimize the performance of applications run
ning with the Windows operating system in 386 enhanced mode.

• Chapter 11, "Compressing and Decompressing Files," discusses how to use
Microsoft File Compression Utility (COMPRESS.EXE) and Microsoft File
Expansion Utility (EXPAND.EXE) to compress and decompress files.

• Appendix A, "Resource Compiler Diagnostic Messages," describes diagnostic
messages produced by Microsoft Resource Compiler (RC).

• Appendix B, "Help Compiler Error Messages," lists error messages that Help
Compiler can display if errors occur while you are building a help file.

• Appendix C, "Windows Debugging Version," presents information about Win
dows diagnostic messages to help you debug applications you develop for the
Windows operating system.

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a
resource-definition statement or function name (MENU or
Create Window), a command, or a command-line option
(/nod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the
actual value. For example, the statement SetCursorPos(X, Y)
requires you to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

Introduction xi

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key combina
tions-for example, ALT +SPACEBAR.

Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

Creating and Editing Resources

Chapter 1

1.1 Designing Images: Image Editor 3
1.2 Designing Dialog Boxes: Dialog Editor.. 4
1.3 Designing Fonts: Font Editor... 5

Chapter 1 Creating and Editing Resources 3

This chapter introduces three tools you can use to create and edit resources for
your Microsoft Windows applications. These tools are Microsoft Image Editor,
Microsoft Dialog Editor, and Microsoft Windows Font Editor. You can find full
documentation for these tools in Help.

1.1 Designing Images: Image Editor
With Image Editor (IMAGEDIT.EXE), you can create graphical images to repre
sent files, windows, cursors, and other objects in your Windows applications.
Image Editor provides you with a set of drawing tools for creating commonly used
shapes.

Image Editor contains context-sensitive Help that includes information about how
to create the following kinds of images:

• Cursors, which represent the position the mouse is pointing to. They are also
called pointers.

• Bitmaps, which represent static graphical images.

• Icons, which represent files or windows.

The following illustration shows the Image Editor window after a user has opened
an icon file.

You must use a mouse or similar pointing device with Image Editor.

4 Microsoft Windows Programming Tools

1.2 Designing Dialog Boxes: Dialog Editor
With Dialog Editor (DLGEDIT.EXE), you can design and test a dialog box on
your screen instead of defining DIALOG statements in a resource-definition file.
Using Dialog Editor, you can add, modify, and delete controls in a dialog box.
Dialog Editor saves the changes you make as resource-definition statements. You
then compile these statements into a binary resource file that is linked to your ap
plication's executable file.

Dialog Editor contains context-sensitive Help that includes information about the
following topics:

• How Dialog Editor works with files

• Viewing the Dialog Editor window

• Opening resource files, header files, and dialog boxes

• Working with dialog boxes

• Editing individual controls

• Working with groups of controls

• Moving a dialog box between resources

• Working with header files

• Installing custom controls

Chapter 1 Creating and Editing Resources 5

The following illustration shows the Dialog Editor window after a user has chosen
the New command from the File menu.

You must use a mouse or similar pointing device with Dialog Editor.

1.3 Designing Fonts: Font Editor
With Font Editor (FONTEDIT.EXE), you can modify existing fonts to create new
fonts for your applications. The Font Editor Help describes how to use Font Editor
to do the following:

• Edit letters, numbers, and other characters in a font

• Modify the height, width, and character mapping of a font

• Change information in the font-file header

To view Help for Font Editor, start Microsoft Windows Help (WINHELP.EXE)
and open FONTEDIT.HLP.

You can use Font Editor to create and edit raster fonts. Font Editor cannot create
or modify vector or TrueType fonts.

You must use a preexisting font file to create a new font file with Font Editor.
Two font files are supplied with Font Editor: ARTMl 111.FNT and
VGASYS.FNT. For a fixed-pitch (monospace) font, you can edit
ATRMl 111.FNT; for a variable-pitch font, you can edit VGASYS.FNT.

6 Microsoft Windows Programming Tools

The following illustration shows the Font Editor window after a user has opened
VGASYS.FNT from the Open File dialog box.

After creating a new font with Font Editor, you must add the new font to a font re
source file. For information about adding a customized font to a font resource file
and using it in a Windows application, see the Microsoft Windows Guide to Pro
gramming.

You must use a mouse or similar pointing device with Font Editor.

Compiling Resources:
Resource Compiler

Chapter 2

2.1 Including Resources in an Application.. 9
2.2 Creating a Resource-Definition File.. 9

2.2.1 Single-Line Statements.. 10
2.2.2 Multiline Statements .. 10

2.2.2.1 Directives .. 10
2.2.2.2 Sample Resource-Definition File............................ 11

2.3 Using Resource Compiler.. 12
2.3.1 Command-Line Syntax .. 12

2.3.1.1 Specifying Options .. 13
2.3.1.2
2.3.1.3
2.3.1.4

Specifying the Resource-Definition File................ 15
Specifying the Executable File 15
Renaming the Executable File 15

2.3.2 Compiling Resources Separately... 15
2.3.3 Defining Names for the Preprocessor....................................... 16
2.3.4 Renaming the Compiled Resource File..................................... 16
2.3.5 Controlling Which Directories the Resource Compiler

Searches . 1 7
2.3.5.1 Adding a Directory to Search 17
2.3.5.2 Suppressing the INCLUDE

Environment Variable... 18
2.3.6 Displaying Progress Messages.. 18

2.4 Related Topics .. 18

Chapter 2 Compiling Resources: Resource Compiler 9

Microsoft Windows Resource Compiler (RC) is a tool for the Microsoft Windows
operating system. This chapter describes how to create a resource-definition file
and how to compile your application's resources and add them to the application's
executable file.

2.1 Including Resources in an Application
To include resources in your Windows application, do the following:

1. Create individual resource files for cursors, icons, bitmaps, dialog boxes,
and fonts. To do this, you can use Microsoft Image Editor and Dialog Editor
(IMAGEDIT.EXE and DLGEDIT.EXE) and Microsoft Windows Font Editor
(FONTEDIT.EXE).

2. Create a resource-definition file that describes all the resources used by the ap
plication.

3. Use RC to compile the resource-definition file.

4. Add the compiled resource files to the application's compiled executable file.

2.2 Creating a Resource-Definition File
After creating individual resource files for your application's icon, cursor, font bit
map, and dialog box resources, you create a resource-definition file. A resource
definition file is an ASCII text file with the file extension .RC.

The .RC file lists every resource in your application and describes some types of
resources in great detail. For a resource that exists in a separate file, such as an
icon or cursor, the .RC file simply names the resource and the file that contains it.
For some resources, such as a menu, the entire definition of the resource exists
within the .RC file.

An .RC file can contain either or both of the following types of information:

• Statements, which name and describe resources.

• Directives, which instruct RC to perform actions on the resource-definition file
before compiling it. Directives can also assign values to names.

The following sections describe the statements and directives you can use in a
resource-definition file. For detailed descriptions and syntax, see the Microsoft
Windows Programmer's Reference, Volume 4.

10 Microsoft Windows Programming Tools

2.2.1 Single-Line Statements
A single-line resource-definition statement can begin with any of the following
keywords:

Keyword

BITMAP

CURSOR

FONT

ICON

2.2.2 Multiline Statements

Description

Defines a bitmap by naming it and specifying the name of the file that
contains it. (To use a particular bitmap, the application requests it by
name.)

Defines a cursor by naming it and specifying the name of the file that
contains it. (To use a particular cursor, the application requests it by
name.)

Specifies the name of a file that contains a font.

Defines an icon by naming it and specifying the name of the file that
contains it. (To use a particular icon, the application requests it by
name.)

A multiline resource-definition statement can begin with any of the following key
words:

Keyword Description

ACCELERATORS
DIALOG

Defines menu accelerator keys.

Defines a template that an application can use to create dialog
boxes.

MENU

RCDATA
Defines the appearance and function of an application menu.

Defines data resources. Data resources let you include binary
data directly into the executable file.

STRING TABLE Defines string resources. String resources are null-terminated
ASCII strings that can be loaded from the executable file.

2.2.2.1 Directives
The following directives can be used as needed in the resource-definition file to in
struct RC to perform actions or to assign values to names:

Keyword

#define
#elif

#else

#endif

Description

Defines a specified name by assigning it a given value.

Marks an optional clause of a conditional compilation block.

Marks the last optional clause of a conditional compilation block.

Marks the end of a conditional compilation block.

Keyword

#if

#if def

#ifndef

#include

#undef

Chapter 2 Compiling Resources: Resource Compiler 11

Description

Carries out conditional compilation if a specified expression is true.

Carries out conditional compilation if a specified name is defined.

Carries out conditional compilation if a specified name is not defined.

Copies the contents of a file into the resource-definition file before RC
processes the latter.

Removes the current definition of the specified name.

2.2.2.2 Sample Resource-Definition File
The following example shows an .RC file that defines the resources for an applica
tion named Shapes:

#include "SHAPES.H"

ShapesCursor CURSOR SHAPES.CUR
Shapesicon ICON SHAPES.ICO

ShapesMenu MENU
BEGIN

POPUP "&Shape"

END

BEGIN

END

MENU ITEM "&Cl ear", ID_ CLEAR
MENU ITEM "&Rectangle", ID_RECT
MENU ITEM "&Triangle", ID_ TRIANGLE
MENU ITEM "&Star", ID_ STAR
MENUITEM "&Ellipse", ID_ELLIPSE

The CURSOR statement names the application's cursor resource ShapesCursor
and specifies the cursor file SHAPES.CUR, which contains the image for that
cursor.

The ICON statement names the application's icon resource Shapeslcon and speci
fies the icon file SHAPES.ICO, which contains the image for that icon.

The MENU statement defines an application menu named ShapesMenu, a pop-up
menu with five menu items.

The menu definition, enclosed by the BEGIN and END keywords, specifies each
menu item and the menu identifier that is returned when the user selects that item.
For example, the first item on the menu, Clear, returns the menu identifier
ID_CLEAR when the user selects it. The menu identifiers are defined in the appli
cation header file, SHAPES.H.

12 Microsoft Windows Programming Tools

For more information about resource-definition files, the syntax of resource state
ments, and how to define your own resources, see the Microsoft Windows Pro
grammer's Reference, Volume 4.

2.3 Using Resource Compiler
Resource Compiler (RC) serves the following functions:

• It compiles the resource-definition file and the resource files (such as icon and
cursor files) into a binary resource (.RES) file.

• It combines the .RES file with the executable (.EXE) file created by the linker;
the result is an executable Windows application.

• It marks the Windows application as a Windows version 3.0 or Windows 3.1
application.

Note Each Windows application and dynamic-link library (DLL) must be iden
tified with a Windows version number. For this reason, use RC on each Windows
application or DLL you build, even if it uses no resources. For more information
about Windows versions, see the descriptions of the /30 and /31 options in Section
2.3.1.1, "Specifying Options."

2.3.1 Command-Line Syntax
To start RC, use the re command. What you need to specify on the command line
depends on whether you are compiling resources, adding compiled resources to an
executable file, or both.

The following line shows re command-line syntax:

re [options] definition-file [executable-file]

Following are several ways you can use the re command:

• To compile resources separately, use the re command in the following form:

re Ir [options] definition-file

When you use this form, RC ignores any executable file you specify.

• To compile an .RC file and add the resulting .RES file to the executable file,
use the re command in the following form:

re [options] definition-file [executable-file]

Chapter 2 Compiling Resources: Resource Compiler 13

• To compile an application or DLL that does not have a .RES file, use the re
command in the following form:

re [options] dll-or-executable-file

When you use this form, the filename must explicitly have an .EXE, .DRV, or
.DLL extension.

• To simply add a compiled resource (.RES) file to an executable file, use the re
command in the following form:

re [options] res-file.res [executable-file]

2.3.1.1 Specifying Options
The re command's options parameter can include one or more of the following op
tions:

130
Marks the executable file so it will run with Windows version 3.0 or Windows
version 3.1. By default, RC marks the executable file to run only with Windows
3.1.

131

I?

Id

le

Marks the executable file so it will run only with Windows 3.1. This is the de
fault condition.

Displays a list ofre command-line options.

Defines a symbol for the preprocessor that you can test with the #ifdef directive.

Changes the default location of global memory for a DLL from below the
Expanded Memory Specification (EMS) bank line to above the EMS bank line.
This option has no effect with Windows 3.1.

lfenewname
Uses newname for the name of the .EXE file.

lfo newname

/h

Ii

Uses newname for the name of the .RES file.

Displays a list of re command-line options.

Searches the specified directory before searching the directories specified by
the INCLUDE environment variable.

14 Microsoft Windows Programming Tools

lk
Disables the load-optimization feature of RC. If this option is not specified, the
compiler arranges segments and resources in the executable file so that all pre
loaded information is contiguous.

This feature allows Windows to load the application much more quickly. If you
do not specify the lk option, all data segments, nondiscardable code segments,
and the entry-point code segment will be preloaded, unless any segment and its
relocation information exceed 64K. If the PRELOAD attribute is not assigned
to these segments in the module-definition (.DEF) file when you link your ap
plication, RC will add the PRELOAD attribute and display a warning. Re
sources and segments will have the same segment alignment. This alignment
should be as small as possible to limit the size of the final executable file. You
can set the alignment by using the link command with the /a option.

/l[im32]
Specifies to Windows that the application uses expanded memory directly, ac
cording to the Lotus/Intel/Microsoft Expanded Memory Specification (LIM
EMS), version 3.2. This option has no effect with Windows 3.1.

/m[ultinst]

/p

Ir

It

/v

Assigns each instance of the application task to a distinct EMS bank when Win
dows is running with the EMS 4.0 memory configuration. (By default, all in
stances of a task share the same EMS bank.) This option has no effect with
Windows 3.1.

Creates a private DLL that is called by only one application. This allows Win
dows to use memory more efficiently, because only one application (or multi
ple instances of the same application) calls the DLL. For example, in the
large-frame EMS memory model, the DLL is loaded above the EMS bank line,
freeing memory below the bank line. This option has no effect with Windows
3.1.

Creates an .RES file from an .RC file. Use this option when you do not want to
add the compiled .RES file to the .EXE file.

Creates an application that runs with Windows only in protected (standard or
386 enhanced) mode. If the user attempts to run the application in real mode,
Windows will display a message that the application cannot run in real mode.
This option has no effect with Windows 3.1.

Displays messages that report on the progress of the compiler.

/x
Prevents RC from checking the INCLUDE environment variable when search
ing for header files or resource files.

/z

Chapter 2 Compiling Resources: Resource Compiler 15

Prevents RC from checking for RCINCLUDE statements. When you have not
used RCINCLUDE statements, using this option can greatly improve the speed
of RC.

Options are not case-sensitive, and a hyphen (-) can be used in place of a slash
mark(/). You can combine single-letter options if they do not require any addi
tional parameters.

2.3.1.2 Specifying the Resource-Definition File
The re command's definition-file parameter specifies the name of the resource
definition file that contains the names, types, filenames, and descriptions of the re
sources to be added to the .EXE file. It can also specify the name of a compiled
.RES file, in which case RC adds the compiled resources to the executable file.

2.3.1.3 Specifying the Executable File
The re command's executable-file parameter specifies the name of the executable
file that the compiled resources should be added to. If you do not specify an
executable file, RC uses the executable file with the same name as the resource
definition file (excluding the filename extension).

2.3.1.4 Renaming the Executable File
The re command's /fe option makes it possible for you to specify the name of the
final executable file. The following example combines MYEXE.EXE with
MYRES.RES to produce the final executable file FINAL.EXE:

re /fe final .exe myres.res myexe.exe

2.3.2 Compiling Resources Separately
By default, RC adds the compiled resources to the specified executable file. Some
times you might want to first compile the resources and then add them to the ex
ecutable file in separate steps. This can be useful because resource files typically
change little after initial development. You can save time by compiling your appli
cation's resources separately and then adding the compiled .RES file to your ex
ecutable file each time you recompile the .EXE file.

You can use the Ir option to compile the resources separately without adding them
to the executable file. When you use this option, RC compiles the .RC file and
creates a compiled resource (.RES) file.

16 Microsoft Windows Programming Tools

For example, the following command reads the resource-definition file
SAMPLE.RC and creates the compiled resource file SAMPLE.RES:

re -r sample.re

In this case, RC does not add SAMPLE.RES to the executable file.

2.3.3 Defining Names for the Preprocessor
You can specify conditional branching in a resource-definition file, based on
whether a term is defined on the re command line with the /d option.

For example, suppose your application has a pop-up menu, the Debug menu, that
should appear only during debugging. When you compile the application for nor
mal use, the Debug menu is not included. The following example shows the state
ments that can be added to the resource-definition file to define the Debug menu:

MainMenu MENU
BEGIN

1ti fdef DEBUG
PO PUP
BEGIN

END
1tend if
END

"&Debug"

MENU ITEM
MENU ITEM

"&Memory usage", ID_MEMORY
"&Walk data heap", ID_ WALK_ HEAP

When compiling resources for a debugging version of the application, you could
include the Debug menu by using the following re command:

re -r -d debug myapp.re

To compile resources for a normal version of the application-one that does not in
clude the Debug menu-you could use the following re command:

re -r myapp.re

2.3.4 Renaming the Compiled Resource File
By default, when compiling resources, RC names the compiled resource (.RES)
file with the same name as the .RC file (but not the same extension) and places it
in the same directory as the .RC file. The following example compiles

Chapter 2 Compiling Resources: Resource Compiler 17

MY APP.RC and creates a compiled resource file named MY APP.RES in the
same directory as MY APP.RC:

re -r myapp.re

The lfo option lets you give the resulting .RES file a name that differs from the
name of the corresponding .RC file. For example, to name the resulting .RES file
NEWFILE.RES, you would type the following command:

re -r -fo newfile.res myapp.re

The lfo option can also place the .RES file in a different directory. For example,
the following command places the compiled resource file MY APP.RES in the
directory C:\SOURCE\RESOURCE:

re -r -fo e:\souree\resouree\myapp.res myapp.re

2.3.5 Controlling Which Directories the Resource Compiler Searches
By default, RC searches for header files and resource files (such as icon and cursor
files) first in the current directory and then in the directories specified by the
INCLUDE environment variable. (The PATH environment variable has no effect
on which directories RC searches.)

2.3.5.1 Adding a Directory to Search
You can use the Ii option to add a directory to the list of directories RC searches.
The compiler then searches the directories in the following order:

1. The current directory

2. The directory or directories you specify by using the Ii option, in the order in
which they appear on the re command line

3. The list of directories specified by the INCLUDE environment variable, in the
order in which the variable lists them, unless you specify the Ix option

The following example compiles the resource-definition file MY APP.RC and adds
the compiled resources to MY APP.EXE:

re /i e:\souree\stuff /i d:\resourees myapp.re

When compiling the resource-definition file MY APP.RC, RC searches for header
files and resource files first in the current directory, then in C:\SOURCE\STUFF
and D:\RESOURCES, and then in the directories specified by the INCLUDE en
vironment variable.

18 Microsoft Windows Programming Tools

2.3.5.2 Suppressing the INCLUDE Environment Variable
You can prevent RC from using the INCLUDE environment variable when deter
mining the directories to search. To do so, use the /x option. The compiler then
searches for files only in the current directory and in any directories you specify
by using the /i option.

The following example compiles the resource-definition file MY APP.RC and adds
the compiled resources to MY APP.EXE:

re /x /i e:\souree\stuff myapp.re

When compiling the resource-definition file MY APP.RC, RC searches for
header files and resource files first in the current directory and then in
C:\SOURCE\STUFF. It does not search the directories specified by the INCLUDE
environment variable.

2.3.6 Displaying Progress Messages
By default, RC does not display messages that report on its progress as it com
piles. You can, however, specify that RC is to display these messages. To do so,
use the /v option.

The following example causes RC to report on its progress as it compiles the
resource-definition file SAMPLE.RC, creates the compiled resource file
SAMPLE.RES, and adds the .RES file to the executable file SAMPLE.EXE:

re /v sample.re

2.4 Related Topics
For information about creating icons, cursors, bitmaps, dialog boxes, and fonts,
see Chapter 1, "Creating and Editing Resources."

For an introduction to menus, controls, and dialog boxes, see the Microsoft Win
dows Guide to Programming.

For the syntax and description of each resource statement and directive, see the
Microsoft Windows Programmer's Reference, Volume 4.

Creating Help Files

Chapter 3

3.1 About Windows Help Files .. 21
3.2 Creating Topic Files... 21

3.2.1 Declaring Character Set, Fonts, and Colors 22
3.2.2 Defining Individual Topics.. 23
3.2.3 Setting Font Size and Name.. 24
3.2.4 Setting Space Before and After Paragraphs.............................. 24
3.2.5 Setting the Left and Right Indents... 24
3.2.6 Setting Tab Stops... 25
3.2.7 Breaking Lines ... 25
3.2.8 Creating Links and Pop-up Topics.. 26
3.2.9 Creating a Keyword List.. 27
3.2.10 Creating Browse Sequences .. 27

3.3 Using Graphics Files.. 28
3.3.1 Inserting a Bitmap in Text... 29
3.3.2 Wrapping Text Around a Bitmap.. 29
3.3.3 Using a Bitmap as a Hot Spot.. 30
3.3.4 Using a Bitmap on Different Displays...................................... 30

3.4 Creating Help Project Files.. 32
3.4.1 Project File Sections .. 32
3.4.2 Using Macros in Project Files... 33
3.4.3 Sample Project File.. 33

3.5 Using Help in a Windows Application .. 34
3.5.1 Choosing Help from the Help Menu ... 34
3.5.2 Choosing Help with the Keyboard.. 36
3.5.3 Choosing Help with the Mouse ... 39

20 Microsoft Windows Programming Tools

3.5.4 Searching for Help with Keywords ... 42
3.5.5 Displaying Help in a Secondary Window 43
3.5.6 Canceling Help ... 44

3.6 Project File Sections and Options Reference ... 45

Chapter 3 Creating Help Files 21

Microsoft Windows Help provides online help for users working with a Windows
application. Windows Help provides a practical way to present information about
your application in a format users can access easily.

This chapter introduces the tools you can use to develop Windows Help files and
to incorporate Help in Windows applications.

3 .1 About Windows Help Files
Windows Help files can display information by using the following elements:

• Text in multiple fonts, sizes, and colors

• Bitmaps and metafiles with up to 16 colors

• Segmented-graphics bitmaps with embedded hot spots

• Cross-reference jumps for links to additional information

• Pop-up windows to present text and graphics

• Secondary windows to present information without the full menus and buttons
of Windows Help

• Keywords to help users find the information they need

You create help files by creating topic and graphics files and a Help project file. A
topic file contains the text for the help topic and contains the Help statements and
macros that define the format of the text and the position of graphics in each topic.
The graphics files contain the bitmaps and metafiles you want to display in the top
ics. The project file contains a description of how to build the help file.

You use the Microsoft Help Compiler to build the final help file. Combining the
topic, graphics, and project files, the compiler creates a single help file (with the
filename extension .HLP) that you can open and view by using Windows Help.

3.2 Creating Topic Files
A topic file contains the text for the help file, as well as the statements and macros
that define the format of the text and the position of the graphics. Every topic file
consists of one or more topics. A topic is any distinct unit of information, such as
a contents screen, a conceptual description, a set of instructions, a keyboard table,
a glossary definition, a list of jumps, a picture, and so on.

Windows Help displays only one topic at a time, but a user can view any topic in a
help file by using a link to the topic or searching for keywords associated with the
topic.

22 Microsoft Windows Programming Tools

You create topic files directly by using a text editor and inserting Help statements.
You can create them indirectly by using a word processor that generates rich-text
format (RTF) files. The Help statements are an extended subset of the RTF state
ments, which provide a wide variety of formatting capabilities. For a complete list
of Help statements, see the Microsoft Windows Programmer's Reference,
Volume4.

3.2.1 Declaring Character Set, Fonts, and Colors
When you create a topic file, you must ensure that the entire contents of the file
are enclosed in braces ({ }). The first statement in the file must be the \rtf state
ment; it immediately follows the first opening brace. You should follow the \rtf
statement with a \ansi statement (or a similar statement) that specifies the charac
ter set used in the file. The following example shows the general form for a topic
file:

{\rtfl\ansi

}

You must declare the names of the fonts you use in the file by using a \fonttbl
statement. The \fonttbl statement, enclosed in braces, contains a list of font and
family names and specifies a unique number for each font. You use these numbers
with \f statements later in the file to set specific fonts. The following \fonttbl state
ment assigns font numbers 0, 1, and 2 to the TrueType fonts Times New Roman®,
Courier New®, and Arial®, respectively:

{\fonttbl
\f0\froman Times New Roman;
\fl\fdecor Courier New;
\f2\fswiss Arial;}

You should also use the \deft' statement to set the default font for the file. Win
dows Help uses this default font if no other font is specified. The following ex
ample sets the default font number to zero, corresponding to the Times New
Roman font specified in the previous \fonttbl statement:

\deff0

If you use specific text colors or choose not to rely on the default text colors set by
Windows, you must define your colors by using a \colortbl statement. The
\colortbl statement, enclosed in braces, defines each color by specifying the
amount of each primary color (red, green, and blue) used in it. The statement im
plicitly numbers the colors consecutively starting from zero. You use these color
numbers with \cf statements later in the file to set the color. The following ex
ample creates four colors (black, red, green, and blue):

{\colortbl
\red0\green0\blue0;
\red255\green0\blue0;
\red0\green128\blue0;
\red0\green0\blue255;}

Chapter 3 Creating Help Files 23

Although it is not shown here, you can put a semicolon immediately after the
\colortbl statement to define the default color as color 0.

3.2.2 Defining Individual Topics
A topic starts with one or more \footnote statements and ends with a \page state
ment. All text and graphics specified between these statements belong to the topic.

Every topic must have a context string. Windows Help uses the context string to
locate the topic when the user requests to view it. You assign a context string to a
topic by using the \footnote statement and the number sign(#) footnote character.
Context strings can consist of letters, digits, and the underscore character(_). To
prevent conflicts, each context string in a help file must be unique.

You can also assign a title to the topic by using the \footnote statement and the
dollar sign ($) footnote character. Windows Help uses the title to identify the topic
in the History and Search dialog boxes. You must provide a title if you assign key
words to the topic.

The following example defines a small topic having the context string "topicl"
and the title My Topic:

#{\footnote topicl}
${\footnote My Topic}
This is my first topic.
\par
\page

In general, you use the \par statement to mark the end of each paragraph. In this
example, the \par statement marks the end of the only paragraph in the topic.

You can add a macro to a topic by using the \footnote statement and the exclama
tion point(!) as the footnote character. For example, the following \footnote state
ment adds the CopyTopic macro to the topic:

!{\footnote CopyTopic()}

Windows Help executes the macro each time it displays the topic.

The total size of text and graphics data stored in a topic must not exceed 64K. (Bit
maps included by using the bmc, bml, and bmr statements do not contribute to
this total.)

24 Microsoft Windows Programming Tools

3.2.3 Setting Font Size and Name
You can set the font name and size by using the \f and \fs statements. The name is
set by using a font number specified in the \fonttbl statement. The size of the font
is specified in half-points. The following example sets the text to 10-point Times
New Roman (if the \fonttbl statement matches the example given earlier):

\f0\fs20

Once you set the font name and size, the settings apply to all subsequent text up to
the next \plain statement or until you change the name or size by using the \for \fs
statement again. The \plain statement resets the name and font to the defaults. The
default font name is as set by the \deff statement; the default font size is 12 points.

3.2.4 Setting Space Before and After Paragraphs
You can set the amount of space before and after each paragraph by using the \sb
and \sa statements. These statements let you control the amount of space that ap
pears between paragraphs. You specify the space in twips. (A twip is 1/1440 inch,
or 1/20 of a printer's point.) The following example sets the space before a para
graph to 360 twips:

\sa360
This paragraph has 360 twips space immediately before it.
\par
This paragraph also has 360 twips before it.
\par

Once you set the space before or after a paragraph, the spacing applies to all sub
sequent paragraphs up to the next \pard statement or until you change the spacing
by using the \sa and \sb statements again. The \pard statement restores the default
spacing.

3.2.5 Setting the Left and Right Indents
When Windows Help displays its window, it automatically creates left and right
margins and wraps text to fit within these margins. The margins are positioned
slightly within the left and right edges of the window to prevent text in the topic
from being clipped by the window.

You can override these margins by setting the left and right indents for a para
graph. The \Ii and \ri statements set an indent to a position relative to the corre
sponding left and right margins. For example, the following paragraph is indented
1 inch (1440 twips) from the left margin:

\\li1440
This paragraph is indented 1 inch.
\par
\pa rd
This paragraph is not indented.

Chapter 3 Creating Help Files 25

Once indents are set, they apply to all subsequent paragraphs up to the next \pard
statement. Note that the \pard statement must follow the \par statement that ends
the paragraph to be indented.

You can set an indent for the first line in a paragraph by using the \fl statement.
This allows you to create paragraphs with hanging indents. It is also useful for
creating two-column lists.

3. 2. 6 Setting Tab Stops
You can set tab stops by using the \tx statement. You can use one or more \tx state
ments, each setting a specific position in twips relative to the left margin. Once
you have set tab stops, you can use the \tab statement to align subsequent text
with the next tab. The tab settings remain active until you use the \pard statement.
The following example creates a two-column list by using a tab stop and para
graph indenting:

\fi-1440\lil440\tx1440
left
\tab
right
\par
left
\tab
right
\par
\pa rd

3.2. 7 Breaking Lines
Ordinarily, Windows Help wraps all lines in a paragraph, fitting as many words on
a line as will fit between the current left and right indents. You can force Windows
Help to break a line at a given place by using the \line statement. You can also
direct Windows Help to forego wrapping by using the \keep statement. You can
control wrapping by using the \keep and \pard statements.

26 Microsoft Windows Programming Tools

The following example uses the \keep statement to tum off word wrapping for
three short lines and uses the \pard statement to restore the default properties:

\keep
3 pairs black socks\line
5 pairs blue socks\line
2 pairs brown socks\line
\par
\pa rd

The following example uses the \keep and \pard statements to create three non
wrapping paragraphs:

\keep
3 pairs black socks
\par
5 pairs blue socks
\par
2 pairs brown socks
\par
\pa rd

3.2.8 Creating Links and Pop-up Topics
Windows Help displays only one topic at a time. To enable users to view other top
ics, you must create hot spots that link your topics to other topics. You create a hot
spot by using the \strike, \ul, or \uldb statement and a corresponding \v statement.
When you create a link, you provide the text for the hot spot and the context string
for the topic that is to be jumped to or displayed. The following example creates a
hot spot named Glossary and establishes a link from the hot spot to the topic hav
ing the context string "glol ":

You can find a list of terms used in this
help file in the {\uldb Glossary}{\v glol}.

When Windows Help displays the topic with this hot spot, it places a line under
the word Glossary and colors the word green. The context string is not shown, but
if the user clicks on the hot spot, Windows Help jumps to and displays the corre
sponding topic.

The \strike and \uldb statements are used to create jumps to other topics. The \ul
statement creates a link to a pop-up topic. Windows Help displays pop-up topics
in a pop-up window and leaves the current topic in the main window.

You can also associate a Help macro with a hot spot in a topic. For example, the
following \uldb and \v statements create a hot spot for the ExecProgram macro:

{\uldb Clock}{\v !ExecProgram("clock.exe", 1)}

Chapter 3 Creating Help Files 27

Windows Help executes the macro whenever the user chooses the hot spot. Win
dows Help continues displaying the topic while it executes the macro, unless the
macro causes a jump to another topic.

3.2.9 Creating a Keyword List
You can also enable users to find and view topics by assigning keywords to the
topics. You assign a keyword by using the \footnote statement and the letter K as
the footnote character. Windows Help collects all keywords in a help file and dis
plays them in its Search dialog box. Using this dialog box, a user can select a key
word and view the help topics associated with it. The following example assigns
the keyword "Sample Topics" to the current topic:

#{\footnote topicl}
${\footnote My Topic}
K{\footnote Sample Topics}
This is my first topic.
\par
\page

If a keyword begins with the letter K, you must place an extra space before the
word. Multiple keywords for a topic are separated by semicolons.

A keyword can be assigned to any number of topics. When the user selects the key
word in the Search dialog box, Windows Help displays all topics associated with
the keyword. The user then picks the one to view.

You can also create alternative keywords for a help file for use with the WinHelp
function.

3. 2 .10 Creating Browse Sequences
You can enable users to browse through a sequence of help topics by creating a
browse sequence and adding browse buttons to your help file. A browse sequence
typically consists of two or more related topics that are intended to be read sequen
tially. You create a browse sequence by using the \footnote statement and the plus
sign (+) footnote character to assign a sequence identifier. The following example
assigns a sequence identifier to the topic titled A Topic:

#{\footnote topic5}
${\footnote A Topic}
+{\footnote shorttopics}
This is one topic in a browse sequence.
\par
\page

28 Microsoft Windows Programming Tools

Windows Help adds topics with sequence identifiers to the browse sequence and
determines the order of topics in the sequence by sorting the identifiers alphabeti
cally. If two topics have the same identifier, Windows Help assumes that the topic
that was compiled first is to be displayed first.

Windows Help uses the sequence only ifthe browse buttons have been enabled.
You can enable the buttons by placing the following in the Help project file:

[CONFIGJ
BrowseButtons()

For more information about the project file, see Section 3.4, "Creating Help Pro
ject Files."

You can create more than one browse sequence in a help file by using sequence
numbers with sequence identifiers. The sequence number consists of a colon(:)
followed by an integer. Windows Help combines all topics having the same se
quence identifier (but different sequence numbers) into a single browse sequence
and determines the order of the topics by sorting them alphabetically. To ensure
that numerals are sorted correctly, they should have the same number of digits. For
example, the numerals 1 through 10 should be 01 through 10.

#{\footnote topic10}
${\footnote Alpha Topic #3}
+{\footnote alpha:3}
This topic is part of the alpha browse sequence.
\par
\page

3.3 Using Graphics Files
You can add bitmaps and metafiles to your help files by using the bml, bmc, and
bmr statements. These statements take the name of a graphics file and insert the
corresponding bitmap or metafile into the help file at the specified position.

Windows Help requires graphics files to be in one of the following formats:

• Windows bitmap (.BMP)

• Placeable Windows metafile (.WMF)

• Multiple-resolution bitmap (.MRB)

• Segmented-graphics bitmap (.SHG)

Multiple-resolution bitmaps can be created by using the Microsoft Multiple
Resolution Bitmap Compiler (MRBC). Segmented-graphics bitmaps can be
created by using Microsoft Windows Hotspot Editor. Only 16-color and mono
chrome bitmaps may be used. Windows Help does not support 256-color bitmaps.

Chapter 3 Creating Help Files 29

Although the \pict statement can also be used to add bitmaps and metafiles to a
help file, the bitmap or metafile data must be inserted into the topic file rather than
specified as a separate file.

3.3.1 Inserting a Bitmap in Text
You can insert a bitmap into a paragraph as if it were a character by using the bmc
statement. The statement aligns the bottom of the bitmap with the base line of the
current line of text and places the left edge of the bitmap at the next character posi
tion. The following example inserts a bitmap into a line of text:

Press the \{bmc enter.bmp\} key to complete the task and return to
the main window.

Since the bitmap is treated as text, any paragraph properties assigned to the para
graph also apply to the bitmap. Windows Help places text following the bitmap on
the same base line at the next available character position.

In general, bitmaps inserted as characters should be clipped to the smallest
possible size. Any extra white space at the top or bottom of the bitmap image af
fects the alignment of the bitmap with the text and may affect the spacing between
lines.

You must not specify negative line spacing for paragraphs that contain bmc state
ments. Doing so might cause the bitmap to appear on top of the paragraph.

3.3.2 Wrapping Text Around a Bitmap
You can place a bitmap at the left or right margin of the Help window and have
subsequent text wrap around the bitmap by using the bml or bmr statement. The
bml statement inserts a bitmap at the left margin; bmr inserts it at the right.

If you want text to wrap around a bitmap, you must place the bml or bmr state
ment at the beginning of a paragraph. Windows Help aligns the start of the para
graph with the top of the bitmap and wraps around the left or right edge of the
bitmap. The following example places the bitmap at the left margin and sub
sequent text wraps around its right edge:

\{bml mybitmap.bmp\}
The text in this paragraph wraps around the right edge of the bitmap.
\par

If you place a bml or bmr statement at the end of a paragraph, Windows Help
places the bitmap under the paragraph instead of wrapping the text around the bit
map. If you do not want text to wrap around a bitmap, place \par statements imme
diately before and after the bml or bmr statement.

30 Microsoft Windows Programming Tools

3.3.3 Using a Bitmap as a Hot Spot
You can use bitmaps as hot spots. This enables you to create graphics, such as
icons or buttons, and use them as "jumps" to particular topics or as hot spots for
macros. The following example uses the bitmap in the MYBUTTON.BMP file to
create a link. When the user clicks the bitmap, Windows Help jumps to the topic
identfied by the context string "topic15":

{\strike \{bml mybutton.bmp\}}{\v topic15}

You can also divide a single bitmap into several hot spots and assign a different
link or macro to each hot spot. Such bitmaps, called segmented-graphics bitmaps,
are created by using Hotspot Editor. For example, if you have a bitmap of a dialog
box, you can assign links to each of the control windows in the dialog box, en
abling the user to click a control window and view information about it. Seg
mented-graphics bitmaps already contain the context strings needed for the links;
only a bml or bmr statement is needed to insert the bitmap. The \strike and \v
statements must not be used.

\{bml mydialog.shg\}

3.3.4 Using a Bitmap on Different Displays
A multiple-resolution bitmap is a single bitmap file that contains one or more bit
maps that have been marked for use with specific displays, such as the CGA,
EGA, VGA, or 8514 displays. You use multiple-resolution bitmaps to avoid prob
lems associated with displaying bitmaps designed for a single type of display.
Single-resolution bitmaps can have the following problems:

• Appear too big or too small on displays having different resolutions

• Appear stretched or compressed on displays with different aspect ratios

• Lack colors or use unintended colors on displays with different color capabili
ties.

You create multiple-resolution bitmaps by using MRBC. The compiler, an
MS-DOS program, has the following command-line syntax:

mrbc [/s]filename ...

The filename parameter specifies the name of a Windows bitmap file. Typically,
you specify several filenames, one for each type of display. Wildcards can be
used. The compiler uses the filename of the first bitmap file as the name of the out
put file but gives the output file the filename extension .MRB. The following ex
ample combines the bitmap files MYBUTTON.EGA, MYBUTTON.VGA, and
MYBUTTON.854 into the multiple-resolution bitmap file MYBUTTON.MRB:

mrbc mybutton.ega mybutton.vga mybutton.854

Chapter 3 Creating Help Files 31

In this example, the compiler checks the biXPelsPerMeter and biYPelsPerMeter
members of the BITMAPINFOHEADER structure in each bitmap file to deter
mine the display type for the bitmap. (For a description of the BITMAPINFO
HEADER structure, see the Microsoft Windows Programmer's Reference,
Volume 3.) If these members are set to zero, the compiler prompts for the display
type with a message such as the following:

Please enter the monitor type for the bitmap mybutton.ega:

You must enter at least the first character of one of the following display-type
names: CGA, EGA, VGA, or 8514. The compiler sets the display type you
specify, but it does not check that the type is valid. For example, if you specify
VGA for an EGA bitmap, the compiler marks it as a VGA bitmap. The result may
be undesirable.

The /s option, specifying silent mode, speeds up compilation if the names of the
bitmap files conform to the MRBC filename convention. If you use the /s option,
the compiler uses the first character of the filename extension to determine the dis
play type for the bitmap, as described in the following list:

Letter Meaning

c CGA bitmap

E EGA bitmap

v VGA bitmap

8 8514 bitmap

If the filename extension starts with any other character, MRBC assumes a VGA
bitmap. The following example creates the multiple-resolution bitmap file
MYBUTTON.MRB, containing bitmaps for EGA, VGA, and 8514 displays:

mrbc Is mybutton.ega mybutton.vga mybutton.854

The compiler never writes over existing multiple-resolution bitmap files. If the out
put file already exists, the compiler displays an error message.

You insert multiple-resolution bitmaps into your help file by using the same state
ments as for Windows bitmaps. For example, the following bmc statement inserts
the bitmaps from the MYBUTTON.MRB file:

Click the \{bmc mybutton.mrb\} button to complete the task and
return to the main window.

Before displaying a multiple-resolution bitmap, Windows Help checks the display
type for the computer and then selects the bitmap that has the closest matching res
olution, aspect ratio, and color capabilities. Windows Help never displays more
than one bitmap from a multiple-resolution bitmap file.

32 Microsoft Windows Programming Tools

3.4 Creating Help Project Files
This section describes the format and contents of the Help project file (.HPJ) used
to build the help file. The project file contains all the information the Microsoft
Help Compiler needs to combine topic files and other elements into a help file.

3.4.1 Project File Sections
Every project file consists of one or more sections. Each section has a section
name, enclosed in brackets([]), that defines the purpose and format of statements
and options in the section. Following are the sections used in project files:

Section

[OPTIONS]

[FILES]

[BUILDTAGS]

[CONFIG]

[BITMAPS]

[MAP]

[ALIAS]

[WINDOWS]

[BAGGAGE]

Description

Specifies options that control the build process. This section is op
tional. If this section is used, it should be the first section listed in
the project file, so that the options will apply during the entire
build process.

Specifies topic files to be included in the build. This section is re
quired.

Specifies valid build tags. This section is optional.

Specifies Help macros that define nonstandard menus, buttons, and
macros used in the help file. This section is required if the help file
uses any of these features. This section is new for Windows 3 .1.

Specifies bitmap files to be included in the build. This section is
not required if the project file lists a path for bitmap files by using
the BMROOT or ROOT option.

Associates context strings with context numbers. This section is op
tional.

Assigns one or more context strings to the same topic. This section
is optional.

Defines the characteristics of the primary Help window and the
secondary-window types used in the help file. This section is re
quired if the help file uses secondary windows. This section is new
for Windows 3.1.

Lists files that are to be placed within the help file (which contains
its own file system). This section is optional.

Every project file requires a [FILES] section. This section names the topic files.
Most project files also have an [OPTIONS] section that specifies how to build the
help file. A very useful option in the [OPTIONS] section is the COMPRESS op
tion, which specifies whether the help file should be compressed or uncompressed.
Compressing a help file reduces its size considerably and saves valuable disk
space.

Chapter 3 Creating Help Files 33

The following example creates a compressed help file from two topic files,
MAIN.RTF and MENUS.RTF:

[OPTIONS]
COMPRESS= TRUE

[FILES]
MAIN.RTF
MENUS. RTF

3.4.2 Using Macros in Project Files
You can add macros to the [CONFIG] section of a project file. Since Windows
Help executes the macros when it first opens the help file, macros that create
menus, menu items, and buttons are typically placed in this section. If there is
more than one macro listed in the [CONFIG] section, Windows Help executes
them in the order in which they are listed.

You can create new menu items and buttons for Windows Help by using such mac
ros as CreateButton and InsertMenu. These macros define other Help macros
and associate them with the menu items and buttons. Windows Help executes
these macros when the user chooses a corresponding menu item or button. Macros
that create Help buttons, menus, or menu items remain in effect until the user quits
Windows Help or opens a new help file.

You can extend the capabilities of Windows Help by developing your own
dynamic-link libraries (DLLs) and defining Help macros that call functions in the
libraries. To define Help macros that call DLL functions, you must register each
function and its corresponding library by using the Register Routine macro in the
[CONFIG] section of the project file.

For a complete list of Help macros, see the Microsoft Windows Programmer's Ref
erence, Volume 4.

3.4.3 Sample Project File
The following example is a sample project file for the Cardfile application. Com
ments, marked by a beginning semicolon(;), indicate the purpose of each section
in the file:

34 Microsoft Windows Programming Tools

; Options used to define the Help title bar and icon
[OPTIONS]
ROOT=C:\HELP
BMROOT=C:\HELP\ART
CONTENTS=cont_idx_card
TITLE=Cardfile Help
ICON=CARDHLP.ICO
COMPRESS=OFF
WARNING=3
REPORT=ON
ERRORLOG=CARD.BUG

; Files used to build Cardfile Help
[FILES]
RTFTXT\COMMANDS.RTF
RTFTXT\HOWTO.RTF
RTFTXT\KEYS. RTF
RTFTXT\GLOSSARY.RTF

; Button macros and Using Help file
[CONFIGJ
Create Button ("b t n_ up" , " & Up" , "J ump Contents (' H 0 ME . H LP ') ")
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")

; Secondary-window characteristics
[WINDOWS]
picture= "Samples", (123, 123, 256, 256), 0, (0, 255, 255), (255, 0, 0)

3.5 Using Help in a Windows Application
Windows applications can offer help to their users by using the WinHelp function
to start Windows Help and display topics in the application's help file. The Win
Help function gives a Windows application complete access to the help file, as
well as to the menus and commands of Windows Help. Many applications use
WinHelp to implement context-sensitive Help. Context-sensitive Help enables
users to view topics about specific windows, menus, menu items, and control win
dows by selecting the item with the keyboard or the mouse. For example, a user
can learn about the Open command on the File menu by selecting the command
(using the direction keys) and pressing the Fl key.

3.5.1 Choosing Help from the Help Menu
Every application should provide a Help menu to allow the user to open the help
file with either the keyboard or the mouse. The Help menu should contain at least
one Contents menu item that, when chosen, displays the contents or the main topic
in the help file. To support the Help menu, the application's main window proce-

Chapter 3 Creating Help Files 35

dure should check for the Contents menu item and call the WinHelp function, as
in the following example:

case WM_ COMMAND:
switch (wParam) {
case IDM_HELP_CONTENTS:

WinHelp(hwnd, "myhelp.hlp", HELP_CONTENTS, 0L);
return 0L;

break;

You can add other menu items to the Help menu for topics containing general in
formation about the application. For example, if your help file contains a topic that
describes how to use the keyboard, you can place a Keyboard menu item on the
Help menu. To support additional menu items, your application must specify
either the context string or the context identifier for the corresponding topic when
it calls the WinHelp function. The following example uses a Help macro to
specify the context string IDM_HELP _KEYBOARD for the Keyboard topic:

case IDM_HELP_KEYBOARD:
WinHelp(hwnd, "myhelp.hlp", HELP_COMMAND,

(LPSTR) "Jump ID(\ "myhel p. hl p\", \" IDM_HELP _KEYBOARD\")");
return 0L;

A better way to display a topic is to use a context identifier. To do this, the help
file must assign a unique number to the corresponding context string, in the
[MAP] section of the project file. For example, the following section assigns the
number 101 to the context string IDM_HELP _KEYBOARD:

[MAP]
IDM_HELP_KEYBOARD 101

An application can display the Keyboard topic by specifying the context identifier
in the call to the WinHelp function, as in the following example:

#define IDM_HELP_KEYBOARD 101

WinHelp(hwnd, "myhelp.hlp", HELP_CONTEXT, (DWORD)IDM_HELP_KEYBOARD);

To make maintenance of an application easier, most programmers place their de
fined constants (such as IDM_HELP _KEYBOARD in the previous example) in a
single header file. As long as the names of the defined contants in the header file
are identical to the context strings in the help file, you can include the header file
in the [MAP] section to assign context identifiers, as shown in the following ex
ample:

36 Microsoft Windows Programming Tools

[MAP]
#include <myhelp.h>

If a help file contains two or more Contents topics, the application can assign one
as the default by using the context identifier and the HELP _SETCONTENTS
value in a call to the WinHelp function.

3.5.2 Choosing Help with the Keyboard
An application can enable the user to choose a help topic with the keyboard by in
tercepting the Fl key. Intercepting this key lets the user select a menu, menu item,
dialog box, message box, or control window and view Help for it with a single
keystroke.

To intercept the Fl key, the application must install a message-filter procedure by
using the SetWindowsHook function. This allows the application to examine all
keystrokes for the application, regardless of which window has the input focus. If
the filter procedure detects the Fl key, it posts a WM_FlDOWN message (applica
tion-defined) to the application's main window procedure. The procedure then de
termines which help topic to display.

The filter procedure should have the following form:

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;
{

LPMSG lpmsg = (LPMSG)lParam;

if ((nCode == MSGF_DIALOGBOX 11 nCode == MSGF_MENU) &&
lpmsg->message == WM_KEYDOWN && lpmsg->wParam VK_Fl) {

PostMessage(hWnd, WM_FlDOWN, nCode, 0L);

DefHookProc(nCode, wParam, lParam, &lpFilterFunc);

return 0;

Chapter 3 Creating Help Files 37

The application should install the filter procedure after creating the main window,
as shown in the following example:

lpProcinstance = MakeProcinstance(FilterFunc, hlnstance);
if (lpProclnstance == NULL)

return FALSE;

lpFilterFunc = SetWindowsHookCWH_MSGFILTER, lpProcinstance);

Like all callback functions, the filter procedure must be exported by the applica
tion.

The filter procedure sends a WM_FlDOWN message only when the Fl key is
pressed in a dialog box, message box, or menu. Many applications also display the
Contents topic if no menu, dialog box, or message box is selected when the user
presses the Fl key. In this case, the application should define the Fl key as an accel
erator key that starts Help.

To create an accelerator key, the application's resource-definition file must define
an accelerator table, as follows:

1 ACCELERATORS
BEGIN

VK_Fl, IDM_HELP_CONTENTS, VIRTKEY
END

To support the accelerator key, the application must load the accelerator table by
using the LoadAccelerators function and translate the accelerator keys in the
main message loop by using the TranslateAcceleratorfunction.

In addition to installing the filter procedure, the application must keep track of
which menu, menu item, dialog box, or message box is currently selected. In other
words, when the user selects an item, the application must set a global variable in
dicating the current context. For dialog and message boxes, the application should
set the global variable immediately before calling the DialogBox or MessageBox
function. For menus and menu items, the application should set the variable when
ever it receives a WM_MENUSELECT message. As long as identifiers for all
menu items and controls in an application are unique, an application can use code
similar to the following example to monitor menu selections:

38 Microsoft Windows Programming Tools

case WM_MENUSELECT:
/*
* Set dwCurrentHelpld to the Help ID of the menu item that is
* currently selected.
*/

if (HIWORD(lParam) 0) /* no menu selected
dwCurrentHelpld = ID_NONE;

else if (lParam & MF_POPUP) { /*pop-up selected */

}

else

if ((HMENU)wParam == hMenuFile)
dwCurrentHelpld = ID_FILE;

else if ((HMENU)wParam == hMenuEdit)
dwCurrentHelpld = ID_EDIT;

else if ((HMENU)wParam == hMenuHelp)
dwCurrentHelpld ID_HELP;

else
dwCurrentHelpld = ID_SYSTEM;

/*menu item selected */
dwCurrentHelpld wParam;

break;

In this example, the hMenuFile, hMenuEdit, and hMenuHelp parameters must pre
viously have been set to specify the corresponding menu handles. An application
can use the GetMenu and GetSubMenu functions to retrieve these handles.

When the main window procedure finally receives a WM_FlDOWN message, it
should use the current value of the global variable to display a help topic. The ap
plication can also provide Help for individual controls in a dialog box by det~rmin
ing which control has the focus at this point, as shown in the following example:

case WM_FlDOWN:

* If there is a current Help context, display it.

if CdwCurrentHelpld != ID_NONE) {
DWORD dwHelp = dwCurrentHelpld;

* Check for context-sensitive Help for individual dialog
* box controls.
*/

if (wParam == MSGF_DIALOGBOX) {

}

WORD wID = GetWindowWord(GetFocus(), GWW_ID);
if CwID != !DOK && wID != IDCANCEL)

dwHelp = (DWORD) wID;

Chapter 3 Creating Help Files 39

WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelp);

}

* This call is used to remove the highlighting from the
* System menu, if necessary.
*f

DrawMenuBar(hWnd);

break;

When the application ends, it must remove the filter procedure by using the
UnhookWindowsHook function and free the procedure instance for the function
by using the FreeProclnstance function.

3.5.3 Choosing Help with the Mouse
An application can enable the user to choose a help topic with the mouse by inter
cepting mouse input messages and calling the WinHelp function. To distinguish
requests to view Help from regular mouse input, the user must press the SHIFT +Fl

key combination. In such cases, the application sets a global variable when the
user presses the key combination and changes the cursor shape to a question-mark
pointer to indicate that the mouse can be used to choose a help topic.

To detect the SHIFT+Fl key combination, an application checks for the VK_Fl
virtual-key value in each WM_KEYDOWN message sent to its main window pro
cedure. It also checks for the VK_ESCAPE virtual-key code. The user presses the
ESC key to quit Help and restore the mouse to its regular function. The following
example checks for these keys:

40 Microsoft Windows Programming Tools

case WM_KEYDOWN:
if (wParam == VK_Fl) {

}

/* If Shift-Fl, turn Help mode on and set Help cursor. *f

if (GetKeyState(VK_SHIFT)) {
bHelp =TRUE;
SetCursor(hHelpCursor);
return (DefWindowProc(hwnd, message, wParam, lParam));

}

f* If Fl without shift, call Help main index topic. */

else {
Wi nHel p(hwnd, "myhel p. hl p", HELP_ CONTENTS, 0L);

}

else if CwParam == VK_ESCAPE && bHelp) {

f* Escape during Help mode: turn Help mode off. */

bHelp = FALSE;
SetCursor((HCURSQR) GetClassWord(hWnd, GCW_HCURSOR));

}

break;

Until the user clicks the mouse or presses the ESC key, the application responds to
WM_SETCURSOR messages by resetting the cursor to the arrow and question
mark combination.

case WM_SETCURSOR:
/*
* In Help mode, it is necessary to reset the cursor in response
* to every WM_SETCURSOR message. Otherwise, by default, Windows
*will reset the cursor to that of the window class.
*/

if (bHelp)
SetCursor(hHelpCursor);
break;

}

return (DefWindowProc(hwnd, message, wParam, lParam));

case WM_INITMENU:
if (bHel p) {

SetCursor(hHelpCursor);
}

return (TRUE);

Chapter 3 Creating Help Files 41

If the user clicks the mouse button in a nonclient area of the application window
while in Help mode, the application receives a WM_NCLBUTTONDOWN mes
sage. By examining the wParam value of this message, the application can deter
mine which context identifier to pass to WinHelp.

case WM_NCLBUTTONOOWN:

*If in Help mode (Shift+Fl), display context-sensitive
* Help for nonclient area.
*/

if (bHel p) {

}

dwHelpContextid
(wParam HTCAPTION) ?(DWORD) HELPID_TITLE_BAR:
(wParam HTSIZE) ? (DWQRD) HELPID_SIZE_BOX:
(wParam HTREDUCE) ? (DWORD) HELPID_MINIMIZE_ICON:
(wParam HTZOOM) ? (DWORD) HELPID_MAXIMIZE_ICON:
(wParam HTSYSMENU) ?(DWORD) HELPID_SYSTEM_MENU:
(wParam HTBOTTOM) ? (DWORD) HELPID_SIZING_BORDER:
(wParam HTBOTTOMLEFT) ? (DWORD) HELPID_SIZING_BORDER:
(wParam HTBOTTOMRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam HTTOPJ ?(DWORD) HELPID_SIZING_BORDER:
(wParam HTLEFT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam HTRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam HTTOPLEFT) ?(DWORD) HELPID_SIZING_BORDER:
(wParam HTTOPRIGHT) ? (DWORD) HELPID_SIZING_BORDER:
CDWORD) 0L;

if (!((BOOL) dwHelpContextid))
return (DefWindowProc(hwnd, message, wParam, lParam));

bHelp = FALSE;
WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelpContextid);
break;

return (DefWindowProc(hWnd, message, wParam, lParam));

If the user clicks a menu item while in Help mode, the application intercepts the
WM_ COMMAND message and sends the Help request:

case WM_COMMAND:

/* In Help mode (Shift-Fl)? */

if (bHel p) {

}

bHelp = FALSE;
WinHelp(hWnd,szHelpFileName,HELP_CONTEXT, (DWORDlwParam);
return NULL;

42 Microsoft Windows Programming Tools

3.5.4 Searching for Help with Keywords
An application can enable the user to search for help topics based on full or partial
keywords. This method is similar to employing the Search dialog box in Windows
Help to find useful topics. The following example searches for the keyword "Key
board" and displays the corresponding topic, if found:

WinHelp(hwnd, "myhelp.hlp", HELP_KEY, "Keyboard");

If the topic is not found, Windows Help displays an error message. If more than
one topic has the same keyword, Windows Help displays only the first topic.

An application can give the user more options in a search by specifying partial key
words. When a partial keyword is given, Windows Help usually displays the
Search dialog box to allow the user to continue the search or return to the applica
tion. However, if there is an exact match and no other topic exists with the given
keyword, Windows Help displays the topic. The following example opens the
Search dialog box and selects the first keyword in the list starting with the letters
Ke:

WinHelp(hwnd, "myhelp.hlp", HELP_PARTIALKEY, "Ke");

When the HELP _KEY and HELP _PAR TIALKEY values are specified in the
WinHelp function, Windows Help searches the K keyword table. This table con
tains keywords generated by using the letter K with \footnote statements in the
topic file. An application can search alternative keyword tables by specifying the
HELP _MUL TIKEY value in the WinHelp function. In this case, the application
must specify the footnote character and the full keyword in a MULTIKEYHELP
structure, as follows:

HANDLE hmkh;
MULTIKEYHELP far *mkh;
char *szKeyword = "Frame";
WORD wSize;

wSize = sizeof(MULTIKEYHELP) + lstrlen(szKeyword);

hmkh = GlobalAlloc(GHND, (DWORD)wSize);
if (hmkh == NULL)

break;
mkh = (MULTIKEYHELP far*) GlobalLock(hmkh);

mkh->mkSize = wSize;
mkh->mkKeylist = 'L';
lstrcpy(mkh->szKeyphrase, szKeyword);

WinHelpChwnd, "myhelp.hlp", HELP_MULTIKEY, (DWORD)mkh);

GlobalUnlockChmkh);
Globalfree(hmkh);

Chapter 3 Creating Help Files 43

If the keyword is not found, Windows Help displays an error message. If more
than one topic has the keyword, Windows Help displays only the first topic. (For a
full description of the MUL TIKEYHELP structure, see the Microsoft Program
mer's Reference, Volume 3.)

Applications cannot use alternative keyword tables unless the MUL TIKEY op
tion is specified in the [OPTIONS] section of the project file.

3.5.5 Displaying Help in a Secondary Window
An application can display help topics in secondary windows instead of in Win
dows Help's main window. Secondary windows are useful whenever the user does
not need the full capabilities of Windows Help. The Windows Help menus and but
tons are not available in secondary windows.

To display Help in a secondary window, the application specifies the name of the
secondary window along with the name of the help file. The following example
displays the help topic having the context identifier IDM_FILE_SA VE in the sec
ondary window named wnd_menu:

WinHelp(hwnd, "myhelp.hlp>wnd_menu", HELP_CONTEXT, IDM_FILE_SAVE);

The name and characteristics of the secondary window must be defined in the
[WINDOWS] section of the project file, as in the following example:

[WINDOWS]
wnd_menu ="Menus", (128, 128, 256, 256), 0

Windows Help displays the secondary window with the initial size and position
specified in the [WINDOWS] section. However, an application can set a new size
and position by specifying the HELP _SETWINPOS value in the WinHelp func
tion. In this case, the application sets the members in a HELPWININFO structure
to specify the window size and position. The following examples sets the second
ary window wnd_menu to a new size and position:

HANDLE hhwi;
LPHELPWININFO lphwi;
WORD wSize;
char •szWndName = "wnd_menu";

44 Microsoft Windows Programming Tools

wSize = sizeof(HELPWININFO) + lstrlen(szWndName);
hhwi = GlobalAlloc(GHNO, wSize);
lphwi = CLPHELPWININFO)Globallock(hhwi);

lphwi->wStructSize = wSize;
lphwi->x 256;
lphwi->y 256;
lphwi->dx = 767;
lphwi->dy = 512;
lphwi->wMax = 0;
lstrcpy(lphwi->rgchMember, szWndName);

WinHelp(hwnd, "myhelp.hlp", HELP_SETWINPOS, lphwi);

GlobalUnlock(hhwi);
GlobalFree(hhwi);

3.5.6 Canceling Help
Windows Help requires an application to explicitly cancel Help so that Windows
Help can free any resources it used to keep track of the application and its help
files. The application can do this at any time.

An application cancels Windows Help by calling the WinHelp function and speci
fying the HELP _QUIT value, as shown in the following example:

WinHelp(hwnd, "myhelp.hlp", HELP_QUIT, NULL);

If the application has made any calls to the WinHelp function, it must cancel Help
before it closes its main window (for example, in response to the WM_DESTROY
message in the main window procedure). An application needs to call WinHelp
only once to cancel Help, no matter how many help files it has opened. Windows
Help remains running until all applications or dynamic-link libraries that have
called the WinHelp function have canceled Help.

Chapter 3 Creating Help Files 45

3. 6 Project File Sections and Options Reference

[ALIAS]

Parameters

Comments

This section describes the different sections and options in a project file and gives
examples of their use. The entries are in alphabetic order.

[ALIAS]
context_string = alias

The [ALIAS] section assigns one or more context strings to the same topic alias.
This section is optional.

context_string
Specifies the context string that identifies a particular topic.

alias
Specifies the alternative string or alias name. An alias string has the same form
and follows the same conventions as the topic context string. That is, it is not
case-sensitive and may contain the alphabetic characters A through Z, the
numeric characters 0 through 9, and the period and underscore characters.

Because context strings must be unique for each topic and cannot be used for any
other topic in the Help project, the [ALIAS] section provides a way to delete or
combine help topics without recoding your files. For example, if you create a topic
that replaces information in three other topics, you could manually search through
your files for invalid cross-references to the deleted topics. The easier approach,
however, would be to use the [ALIAS] section to assign the name of the new topic
to the deleted topics.

The [ALIAS] section can also be used when your application has multiple context
identifiers for one help topic. This situation occurs in context-sensitive Help.

Alias names can be used in a [MAP] section, but only if the [ALIAS] section
precedes the [MAP] section.

46 Microsoft Windows Programming Tools

Example

See Also

[BAGGAGE]

Parameters

Comments

The following example creates several aliases:

[ALIAS]
sm_key=key_shrtcuts
cc_key=key_shrtcuts
st_key=key_shrtcuts
clskey=us_dlog_bxs
maakey=us_dlog_bxs
chk_ key=dl ogprts
drp_key=dl ogprts
l st_ key=dl ogprts
opt_key=dlogprts
tbx_key=dlogprts
frmtxt=edittxt
wrptxt=edittxt
se ltxt=ed ittxt

[MAP]

[BAGGAGE]
filename

combined into Keyboard Shortcuts topic

covered in Using Dialog Boxes topic.

combined into Parts of Dialog Box topic.

covered in Editing Text topic.

The [BAGGAGE] section lists files (typically multimedia elements) that the
Microsoft Help Compiler stores within the help file's internal file system. Win
dows Help can access data files stored in the help file more efficiently than it can
access files in the normal MS-DOS file system, since it doesn't have to read the
file allocation table from CD-ROM.

filename
Specifies the full path of a file. If a file cannot be found, the compiler reports an
error.

A maximum of 1,000 bitmap files can be stored as baggage files.

If a file is listed in the [BAGGAGE] section, you refer to that file in the topic file
by prefixing the filename with an exclamation point(!). The filename must appear
exactly the same in the topic file as it appears in the [BAGGAGE] section. To

See Also

[BITMAPS]

Parameters

Comments

Example

See Also

Chapter 3 Creating Help Files 47

avoid having to specify a full path, use the ROOT option in the [OPTIONS] sec
tion to specify the path. All filenames that you give in the topic file are relative to
the ROOT path.

ROOT

[BITMAPS]
filename

The [BITMAPS] section specifies the names and locations of the bitmap files
specified in the bmc, bml, and bmr statements.

filename
Specifies the full path of a bitmap file. If a file cannot be found, the compiler re
ports an error.

The [BITMAPS] section is not required if the bitmaps are located in the Help pro
ject directory or if the path containing the bitmaps is listed in the BMROOT or
ROOT option. If the project file does not include either of these options, each bit
map filename must be listed in the [BITMAPS] section of the project file.

The following example specifies three bitmap files:

[BITMAPS]
BMP01.BMP
BMP02.BMP
BMP03.BMP

BMROOT, ROOT

48 Microsoft Windows Programming Tools

BM ROOT

Parameters

Comments

Example

See Also

BUILD

Parameters

BMROOT =path[, path] ...

The BMROOT option specifies the directory containing the bitmap files specified
in the bmc, bml, and bmr statements.

path
Specifies a drive and full path.

If the project file has a BMROOT option, you do not need to list the bitmap files
in the [BITMAPS] section.

If the project file does not have a BMROOT option, the Help compiler looks for
bitmaps in the directories specified by the ROOT option. If the project file does
not have a ROOT option or if the ROOT option does not specify the directory
containing the bitmap files, the filename for each bitmap must be specified in the
[BITMAPS] section.

The following example specifies that bitmaps are in the \HELP\BMP directory on
drive C: and the \GRAPHICS\ART directory on drive D:

[OPTIONS]
BMROOT=C:\HELP\BMP, D:\GRAPHICS\ART

[BITMAPS], [OPTIONS], ROOT

BUILD = expression

The BUILD option specifies which topics containing build tags are included in a
build. The BUILD option does not apply to topics that do not contain build tags.

A topic contains a build tag if it contains a build-tag \footnote statement. Topics
without build tags are always compiled, regardless of the current build expression.

expression
Specifies the build expression. This parameter consists of a combination of
build tags (specified in the [BUILDTAGS] section) and the following
operators:

Comments

Example

See Also

Operator

&

Chapter 3 Creating Help Files 49

Description

Applies the NOT operator to a single tag. The Help compiler com
piles a topic only if the tag is not present. This operator has the
highest precedence; the compiler applies it before any other opera
tor.

Combines two tags by using the AND operator. The Help compiler
compiles a topic only if it contains both tags. The compiler applies
this operator only after the - operator has been applied.

Combines two tags by using the OR operator. The Help compiler
compiles a topic if it has at least one tag. This operator has the
lowest precedence; the compiler applies it only after all other opera
tors have been applied.

Parentheses may be used to override operator precedence. Expressions enclosed
in parentheses are always evaluated first.

Only one BUILD option can be given per project file.

The Help compiler evaluates all build expressions from left to right, using the
specified precedence rules.

The following examples assume that the [BUILDTAGS] section in the project file
defines the build tags DEMO, MASTER, and TEST_BUILD. Although the follow
ing examples show several BUILD options on consecutive lines, only one BUILD
option per project file is allowed.

BUILD DEMO
BUILD = DEMO & MASTER
BUILD = DEMO I MASTER
BUILD -DEMO
BUILD = (DEMO I MASTER)

compile topics that have the DEMO tag
compile topics with both DEMO and MASTER
compile topics with either DEMO or MASTER
compile topics that do not have DEMO

& TEST_BUILD
compile topics that have TEST_BUILD and
either DEMO or MASTER

[BUILDTAGS], [OPTIONS]

50 Microsoft Windows Programming Tools

[BUILDTAGS]

Parameters

Comments

Example

See Also

[BUILDTAGS]
tag

The [BUILDTAGS] section defines the build tags for the help file. The Help com
piler uses these tags to determine which topics to include when building the help
file.

This section is used in conjunction with the build-tag \footnote statements. These
\footnote statements associate a build tag with a given topic. If the build tag is
also defined in the [BUILDTAGS] section, the Help compiler compiles the topic;
otherwise, it ignores the topic.

tag
Specifies a build tag consisting of any combination of characters except spaces.
The Help compiler strips any space characters from the tag. Also, the compiler
treats uppercase and lowercase characters as the same characters (that is, it is
case-insensitive).

The [BUILDTAGS] section is optional. If given, it can contain up to 30 build tags.

The following example shows the form of the [BUILDTAGS] section in a sample
project file:

[BUILDTAGSJ
DEMO topics to include in demo build
MASTER topics to include in master help file
DEBUGBUILD topics to include in debugging build
TESTBUILD topics to include in a mini-build for testing

BUILD

COMPRESS

Parameters

Comments

See Also

Chapter 3 Creating Help Files 51

COMPRESS = compression-level

The COMPRESS option specifies the level of compression to be used when build
ing the help file. Compression levels indicate either no compression, medium com
pression (approximately 40%), or high compression (approximately 50%).

compression-level
Specifies the level of compression. This parameter can be one of the following
values:

Value Meaning

0 No compression

1 High compression

FALSE No compression

HIGH High compression

MEDIUM Medium compression

NO No compression

TRUE High compression

YES High compression

Depending on the degree of compression requested, the build uses either block
compression or a combination of block and key-phrase compression. Block com
pression compresses the topic data into predefined units known as blocks. Key
phrase compression combines repeated phrases found within the source file(s).
The compiler creates a phrase-table file with the .PH extension if one does not al
ready exist. If the compiler finds a file with the .PH extension, it uses that file for
the current compilation. Because the .PH file speeds up the compression process
when little text has changed since the last compilation, you might want to keep the
phrase file if you compile the same Help file several times with compression. How
ever, you will get maximum compression if you delete the .PH file before starting
each build.

[OPTIONS]

52 Microsoft Windows Programming Tools

[CON FIG]

Parameters

Comments

Example

CONTENTS

[CONFIG]
macro

The [CONFIG] section contains one or more macros that carry out actions, such
as enabling browse buttons and registering dynamic-link library (DLL) functions.
Windows Help executes the macros when it opens the help file.

macro
Specifies a Windows Help macro. For more information about these macros,
see the Microsoft Windows Programmer's Reference, Volume 4.

The [CONFIG] section may include any number of lines. Each line of the
[CONFIG] section may be up to 254 characters long.

The following example registers a DLL, creates a button, enables the browse but
tons, and sets the name of the help file containing information about how to use
Help:

[CON FIG]
RegisterRoutine("bmp","HDisplayBmp","USSS"l
RegisterRoutine("bmp","CopyBmp", "v=USS"l
CreateButton("btn_up", "&Up", "JumpContents('HOME.HLP'l"l
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")

CONTENTS = context-string

The CONTENTS option identifies the context string of the highest-level or Con
tents topic. This topic is usually a table of contents or index within the help file.
Windows Help displays the Contents topic whenever the user clicks the Contents
button.

Parameters

Comments

Example

See Also

COPYRIGHT

Parameters

See Also

Chapter 3 Creating Help Files 53

context-string
Specifies the context string of a topic in the help file. The string can be any
combination of characters, except spaces, and must also be specified in a
context-string \footnote statement in some topic in the help file.

If the [OPTIONS] section does not include a CONTENTS option, the compiler
assumes that the Contents topic is the first topic encountered in the first listed
topic file in the [FILES] section of the project file.

The following example sets the topic containing the context string
"main_contents" as the Contents topic:

CONTENTS=main_contents

[FILES], [OPTIONS]

COPYRIGHT= copyright-notice

The COPYRIGHT option places a custom copyright notice in the About dialog
box of Windows Help. Windows Help displays the notice immediately below the
Microsoft copyright notice.

copyright-notice
Specifies the copyright notice. The notice can be any combination of charac
ters; its length must be in the range 35 through 75 characters.

[OPTIONS]

54 Microsoft Windows Programming Tools

ERRORLOG

Parameters

Example

See Also

[FILES]

Parameters

Comments

ERRORLOG = error-filename

The ERRORLOG option directs the Help compiler to write all error messages to
the specified file. The compiler also displays the error messages on the screen.

error-filename
Specifies the name of the file to receive the error messages. This parameter can
be a full or partial path if the error file should be written to a directory other
than the project root directory.

The following example writes all errors during the build to the HLPBUGS.TXT
file in the Help project root directory.

ERRORLOG=HLPBUGS.TXT

[OPTIONS]

[FILES]
filename

The [FILES] section lists all topic files used to build the help file. Every project
file requires a [FILES] section.

filename
Specifies the full or partial path of a topic file. If a partial path is given, the
Help compiler uses the directories specified by the ROOT option to construct a
full path. If a file cannot be found, the compiler reports an error.

The #include directive can also be used in the [FILES] section to specify the topic
files indirectly by designating a file that contains a list of the topic files.

Example

See Also

FORCEFONT

Parameters

See Also

The following example specifies four topic files:

[FILES]
rtftxt\COMMANOS.RTF
rtftxt\HOWTO.RTF
rtftxt\KEYS.RTF
rtftxt\GLOSSARY.RTF

Chapter 3 Creating Help Files 55

The following example uses the #include directive to specify the topic files in
directly. In this case, the file RTFFILES.H must be in the project file (the Help
compiler does not use the INCLUDE environment variai::>le to search for files).

[FILES]
#include <rtffiles.h>

ROOT

FORCEFONT = fontname

The FORCEFONT option forces the specified font to be substituted for all re
quested fonts. The option is used to create help files that can be viewed on systems
that do not have all fonts available.

fontname
Specifies the name of an available font. Font names must be spelled the same as
they are in the Fonts dialog box in Control Panel. Font names cannot exceed 20
characters. If an invalid font name is given, the Help compiler uses the MS
Sans Serif font as the default.

[OPTIONS]

56 Microsoft Windows Programming Tools

ICON

Parameters

See Also

LANGUAGE

Parameters

Comments

See Also

ICON = icon-file

The ICON option identifies the icon file to display when the user minimizes Win
dows Help.

icon-file
Specifies the name of the icon file. This file must have the standard Windows
icon-file format.

[OPTIONS]

LANGUAGE = language-name

The LANGUAGE option sets the sorting order for keywords in the Search dialog
box.

language-name
Specifies the language on which to base sorting. This parameter can be the fol
lowing:

Value Meaning

scandanavian Sets the sorting order to the Scandavanian-language order.

The default sorting order is the English-language order.

Microsoft Windows Help version 3.1 supports only English and Scandanavian
sorting.

[OPTIONS]

[MAP]

Parameters

Comments

Chapter 3 Creating Help Files 57

[MAP]
context-string context-number

The [MAP] section associates context strings (or aliases) with context numbers for
context-sensitive Help. The context number corresponds to a value the parent ap
plication passes to Windows Help in order to display a particular topic. This sec
tion is optional.

context-string
Specifies the context string of a topic in the help file. The string can be any
combination of characters, except spaces, and must also be specified in a
context-string \footnote statement in some topic in the help file.

context-number
Specifies the context number to associate with the context string. The number
can be in either decimal or standard C hexadecimal format. Only one context
number may be assigned to a context string or alias. Assigning the same num
ber to more than one context string generates a compiler error. At least one
space must separate the context number from the context string.

If you do not explicitly assign context numbers to topics, the Help compiler gener
ates default values by converting topic context strings into context numbers.

You can define the context strings listed in the [MAP] section either in a help
topic or in the [ALIAS] section. The compiler generates a warning message if a
context string appearing in the [MAP] section is not defined in any of the topic
files or in the [ALIAS] section.

If you use an alias name, the [ALIAS] section must precede the [MAP] section in
the Help project file.

The [MAP] section supports two additional statements for specifying context
strings and their associated context numbers. The first statement has the following
form:

#define context-string context-number

The context-string and context-number parameters are as described in the Parame
ters section.

58 Microsoft Windows Programming Tools

Example

See Also

The second statement has the following form:

#include ''filename"

The filename parameter, which can be enclosed in either double quotation marks
or angle brackets(<>), specifies the name of a file containing one or more #define
statements. The file may contain additional #include statements as well, but files
may not be nested in this way more than five deep.

The following example assigns hexadecimal context numbers to the context
strings:

[MAP]
Edit_ Window 0x0001
Control Menu 0x0002 -
Maximize_ Icon 0x0003
Minimize_ Icon 0x0004
Split_ Bar 0x0005
Scroll Bar 0x0006 -
Titl e_Bar 0x0007
Wi ndow_Border 0x0008

[ALIAS]

MAPFONTSIZE
MAPFONTSIZE = m:p

The MAPFONTSIZE option maps font sizes specified in topic files to different
sizes when they are displayed in the Help window. This option is especially useful
if there is a significant size difference between the authoring display and the in
tended user display.

Parameters m

Comments

p

Specifies the size of the source font. This parameter is either a single point size
or a range of point sizes. A range of point sizes consists of the low and high
point sizes separated by a hyphen (-). If a range is specified, all fonts in the
range are changed to the size specified by the p parameter.

Specifies the size of the desired font for the help file.

Although the [OPTIONS] section can contain up to five font ranges, only one
font size or range is allowed with each MAPFONTSIZE statement. If more than

Example

See Also

MULTI KEY

Parameters

Comments

Example

See Also

Chapter 3 Creating Help Files 59

one MAPFONTSIZE statement is included, the source font size or range
specified in subsequent statements cannot overlap previous mappings.

The following examples illustrate the use of the MAPFONTSIZE option:

MAPFONTSIZE=8:12 ; display all 8-pt. fonts as 12-pt.
MAPFONTSIZE=12-24:16 ; display fonts from 12 to 24 pts. as 16 pts.

[OPTIONS]

MULTIKEY = footnote-character

The MULTIKEY option specifies the footnote character to use for an alternative
keyword table. This option is intended to be used in conjunction with topic files
that contain \footnote statements for alternative keywords.

footnote-character
Specifies the case-sensitive letter to be used for the keyword footnote.

Since keyword footnotes are case-sensitive, you should limit your keyword-table
footnotes to one case, usually uppercase. If an uppercase letter is specified, the
compiler will not include footnotes with the lowercase form of the same letter in
the keyword table.

You may use any alphanumeric character for a keyword table except K and k,
which are reserved for Help's standard keyword table. There is an absolute limit
of five keyword tables, including the standard table. However, depending upon
system configuration and the structure of your Help system, a practical limit of
only two or three tables may be more realistic. If the compiler cannot create an ad
ditional keyword table, the additional table is ignored in the build.

The following example illustrates how to enable the letter L for a keyword-table
footnote:

MULTIKEY=L

[OPTIONS]

60 Microsoft Windows Programming Tools

OLDKEYPHRASE

Parameters

See Also

OPTCDROM

Parameters

See Also

OLDKEYPHRASE = onoff

The OLDKEYPHRASE option specifies whether an existing key-phrase file
should be used to build the help file.

onoff
Specifies whether the existing file should be used. This parameter can be one of
the following values:

Value Meaning

0 Recreate the file
1 Use the existing file
FALSE Recreate the file
NO Recreate the file
OFF Recreate the file

ON Use the existing file
TRUE Use the existing file
YES Use the existing file

[OPTIONS]

OPTCDROM = yesvalue

The OPTCDROM option optimizes a help file for display on CD-ROM by align
ing topic files on predefined block boundaries.

yesvalue
Specifies that the file should be optimized for CD-ROM. This parameter can be
any of the following values:

YES
TRUE
1
ON

[OPTIONS]

[OPTIONS]

Parameters

[OPTIONS]
option

Chapter 3 Creating Help Files 61

The [OPTIONS] section includes options that control how a help file is built and
what feedback the build process displays. If this section is included in the project
file, it should be the first section listed, so that the options will apply during the en
tire build process.

option
Specifies one of the following project-file options:

Option Description

BMROOT Specifies the directory containing the bitmap files named in
the bmc, bml, and bmr statements in topic files.

BUILD Specifies which topics to include in the build.

COMPRESS Specifies the type of compression to use during the build.

CONTENTS Specifies the context string of the Contents topic for a help
file.

COPYRIGHT Adds a unique copyright message for the help file to the
About dialog box.

ERRORLOG Puts compilation errors in a file during the build.

FORCEFONT Forces all authored fonts in the topic files to appear in a
different font when displayed in the Help window.

ICON Specifies the icon file to be displayed when the help file is
minimized.

LANGUAGE Specifies a different sorting order for help files authored in
a Scandanavian language.

MAPFONTSIZE Maps a font size in the topic file to a different font size in
the compiled help file.

MULTIKEY Specifies an alternative keyword table to use for mapping
topics.

OLDKEYPHRASE Specifies whether the compiler should use the existing key-
phrase table or create a new one during the build.

OPTCDROM Optimizes the help file for CD-ROM use.

REPORT Controls the display of messages during the build process.

ROOT Specifies the directories containing the topic and data files
listed in the project file.

62 Microsoft Windows Programming Tools

Comments

REPORT

See Also

ROOT

Parameters

Comments

Option

TITLE

WARNING

Description

Specifies the text displayed in the title bar of the Help win
dow when the file is open.

Specifies the level of error-message reporting the compiler
is to display during the build.

These options can appear in any order within the [OPTIONS] section. The
[OPTIONS] section is not required.

REPORT=ON

The REPORT option displays messages on the screen during the build. These
messages indicate when the Help compiler is performing the different phases of
the build, including compiling the file, resolving jumps, and verifying browse
sequences.

[OPTIONS], [WARNING]

ROOT =pathname[, pathname] ...

The ROOT option specifies the directories where the Help compiler looks for
files listed in the project file.

pathname
Specifies either a drive and full path or a relative path from the project
directory. If the project file has a ROOT option, all relative paths in the project
file refer to one of these paths. If the project file does not have a ROOT option,
all paths are relative to the directory containing the project file.

If the project file does not have a BMROOT option, the compiler looks in the
directories specified in the ROOT option to find bitmaps positioned by using the
bmc, bml, and bmr statements. If none of these directories contains these bit
maps, the bitmap filenames must be listed in the [BITMAPS] section of the pro
ject file.

Example

See Also

TITLE

Parameters

Comments

Example

See Also

Chapter 3 Creating Help Files 63

The following example specifies that the project root directory is
C:\WINHELP\HELPDIR and is found on drive C:

[OPTIONS]
ROOT=C:\WINHELP\HELPDIR

Given this root directory, if the [FILES] section contains the entry
TOPICS\FILE.RTF, the full path for the topic file is
C:\WINHELP\HELPDIR\TOPICS\FILE.RTF.

[BITMAPS], BMROOT, [OPTIONS]

TITLE = titlename

The TITLE option sets the title for the help file. Windows Help displays the title
in its title bar whenever it displays the help file.

titlename
Specifies the title displayed in the Windows Help title bar. The title must not
exceed 50 characters.

If no title is specified by using the TITLE option, Windows Help displays the title
Windows Help in the title bar.

The following example sets the help-file title to ABC Help.

[OPTIONS]
TITLE=ABC Help

[OPTIONS]

64 Microsoft Windows Programming Tools

WARNING
WARNING = level

The WARNING option specifies the amount of debugging information the Help
compiler is to report.

Parameters level

Example

See Also

[WINDOWS]

Parameters

Specifies the warning level. This parameter may be one of the following values:

Value Meaning

Report only the most severe errors.

2 Report an intermediate number of errors.

3 Report all errors and warnings.

The following example specifies an intermediate level of error reporting:

[OPTIONS]
WARNING=2

[OPTIONS], REPORT

[WINDOWS]
type= "caption", (x, y, width, height), sizing,

(clientRGB), (nonscrollRGB)

The [WINDOWS] section defines the size, location, and colors for the primary
Help window and any secondary-window types used in a help file.

The secondary windows defined in this section are intended to be used with Win
dows applications that specify secondary windows when calling the WinHelp
function.

type
Specifies the type of window that uses the defined attributes. For the primary
Help window, this parameter is main. For a secondary window, this parameter

Chapter 3 Creating Help Files 65

may be any unique name of up to 8 characters. Any jumps that display a topic
in a secondary window give this type name as part of the jump.

caption

x

y

Specifies the title for a secondary window. Windows Help places the title in the
title bar of the window. To set the title for the primary Help window, use the
TITLE option in the [OPTIONS] section.

Specifies the x-coordinate, in help units, of the window's upper-left corner.
Windows Help always assumes the screen is 1024 help units wide, regardless
of resolution. For example, if the x-coordinate is 512, the left edge of the Help
window is in the middle of the screen.

Specifies they-coordinate, in help units, of the window's upper-left corner.
Windows Help always assumes the screen is 1024 help units high, regardless of
resolution. For example, if the x-coordinate is 512, the top edge of the Help win
dow is in the middle of the screen.

width
Specifies the default width, in help units, for a secondary window.

height
Specifies the default height, in help units, for a secondary window.

sizing
Specifies the relative size of a secondary window when Windows Help first
opens the window. This parameter can be one of the following values:

Value

0

clientRGB

Meaning

Set the window to the size specified by the x, y, width, and height
parameters.

Maximize the window; ignore the x, y, width, and height parameters.

Specifies the background color of the window. This parameter is an RGB color
value consisting of three 8-bit hexadecimal numbers enclosed in parentheses
and separated by commas. If this parameter is not given, Windows Help uses
the default window color specified by Control Panel.

nonscrollRGB
Specifies the background color of the non-scrolling region (if any) in the Help
window. This parameter is an RGB color value consisting of three 8-bit hex
adecimal numbers enclosed in parentheses and separated by commas. If this par
ameter is not given, Windows Help uses the default window color specified by
Control Panel.

66 Microsoft Windows Programming Tools

Example

See Also

The following example defines two windows, the main window and a secondary
window named "picture". The main-window definition sets the background color
of non-scrolling regions in the main Help window to (128, 0, 128) but leaves
several other values empty (for which Windows Help will supply its own default
values). The secondary-window definition sets the caption to "Samples" and sets
the width and height of the window to about one-quarter of the width and height of
the screen. The background colors for the window and non-scrolling region are (0,
255, 255) and (255, 0, 0), respectively. The sizing parameter for both the main and
secondary windows is zero.

[WINDOWS]
main=, (, , ,), 0, (, ,), (128, 0, 128)
picture= "Samples", (123, 123, 256, 256), 0, (0, 255, 255), (255, 0, 0)

[Options], TITLE

Debugging: CodeView for Windows

Chapter 4

4.1 Requirements for Using Code View for Windows..................................... 69
4.1.1 Using CVW with a Single Monitor.. ... 70
4.1.2 Using CVW with a Secondary Monitor 70

4.2 Comparing Code View for Windows with Other
Microsoft Debuggers 71
4.2.1 Differences Between CVW and SYMDEB 71
4.2.2 Differences Between CVW and Code View for MS-DOS........ 72

4.3 Preparing Windows Applications for Debugging..................................... 73
4.4 Setting Up the Debugging Version of Windows....................................... 73
4.5 Starting a Debugging Session.. 7 4

4.5.1 Display Options... 75
4.5.2 Starting a Debugging Session for a Single Application 75
4.5.3 Starting a Debugging Session for Multiple Instances of an

Application... 76
4.5.4 Starting a Debugging Session for Multiple Applications......... 76
4.5.5 Starting a Debugging Session for Dynamic-Link Libraries...... 77
4.5.6 Command-Line Options.. 78

4.6 Saving Session Information ... 80
4.7 Working with the Code View for Windows Screen 80

4.7.l UsingCVWDisplayWindows ... 80
4. 7 .1.1 Opening Display Windows..................................... 81
4. 7 .1.2 Selecting Display Windows.................................... 81
4. 7 .1.3 Adjusting Display Windows................................... 82

4.7.2 Using the Menu Bar. .. 83
4.8 Accessing Help .. 85
4.9 Displaying Application Data 85

4.9.1 Displaying Variables ... 86
4.9.2 Displaying Expressions ... 87

68 Microsoft Windows Programming Tools

4.9.3 Displaying Arrays and Structures.. 87
4.9.3.l Displaying Character Arrays 88
4.9.3.2
4.9.3.3

Displaying Multidimensional Arrays...................... 89
Displaying Dynamic Array Elements 90

4.9.4 Using the Quick Watch Command .. 91
4.9.5 Tracing Windows Messages .. 91
4.9.6 Displaying Memory ... 92

4.9.6.1 Displaying Local and Global Memory Objects 93
4.9.6.2
4.9.6.3

Displaying Variables with a Live Expression 95
Dereferencing Memory Handles............................. 96

4.9.7 Displaying the Contents of Registers .. 97
4.9.8 Displaying Windows Modules.. 98

4.10 Modifying Application Data.. 98
4.11 Controlling Execution of Your Application 99

4.11.1 Continuous Execution.. 99
4.11.1.1 Selecting Breakpoint Lines 99
4.11.1.2 Setting Breakpoint Values 101
4.11.1.3 Setting Breakpoints on Windows Messages 101
4.11.1.4 UsingBreakpoints ... 102

4.11.2 Single-Step Execution.. 103
4.11.3 Animated Execution 104
4.11.4 Jumping to a Particular Location... 104
4.11.5 Interrupting Your Application... 104

4.12 Handling Abnormal Termination of the Application 106
4.12.1 Handling a Fatal Exit... 106
4.12.2 Handling a General Protection Fault....................................... 107

4.13 Ending a Session 108
4.14 Advanced Techniques .. 108

4.14.1 Using Multiple Source Windows .. 108
4.14.2 Checking for Undefined Pointers.. 109
4.14.3 Handling Register Variables.. 109
4.14.4 Redirecting Code View for Windows Input and Output.......... 109

4.15 Modifying the TOOLS.IN! File... 110
4.16 Related Topics .. 110

Chapter 4 Debugging: CodeView for Windows 69

The Microsoft Code View for Windows (CVW) debugger is a powerful, easy-to
use tool for the Microsoft Windows operating system. With CVW, you have the
power to test the execution of your application and examine your data simul
taneously. You can isolate problems quickly because you can display any combina
tion of variables-global or local-while you interrupt or trace an application's
execution.

CVW provides a variety of ways to analyze an application. You can use the debug
ger to examine source code, disassemble machine code, or examine a mixed dis
play that shows you precisely which machine instructions correspond to each of
your C-language statements. You can also monitor the occurrence of specific Win
dows messages.

CVW is similar to Microsoft Code View (CV) version 3.0 for Microsoft®
MS-DOS®. If you are familiar with CV for MS-DOS, see Section 4.2.2, "Differ
ences Between CVW and Code View for MS-DOS" for a concise description of
the unique features of CVW.

This chapter serves as a complement to the CVW Help system. A significant por
tion of the CVW documentation is online. For information about using the CVW
Help system, see Section 4.8, "Accessing Help."

Note CVW supports the Microsoft Mouse or any fully compatible pointing
device. This chapter describes both mouse and keyboard procedures.

4.1 Requirements for Using CodeView for Windows
Following are the system requirements for using CVW:

• Your system must have at least 384K of extended memory. For applications
compiled with many symbols, 1 megabyte or more of extended memory is re
quired.

• For 80386-based systems, the following required entry is automatically added
to the [386enh] section of your SYSTEM.IN! file when you install CVW:

device=windebug.386

• Your PATH environment variable must include the directory (or directories)
containing CVW.EXE, CVWIN.DLL, WINDEBUG.386, and CV.HLP.

70 Microsoft Windows Programming Tools

4.1.1 Using CVW with a Single Monitor
It is possible to use CVW version 3.07 with a single monitor. For single-monitor
debugging, you must have one of the following:

• A VGA display. CVW directly supports single-monitor debugging with a VGA
display in both 386 enhanced and standard modes. No additional driver is
needed.

• An EGA or other display with an 80386-based or 80486-based system running
in 386 enhanced mode (you must use a VGA display in standard mode). With a
non-VGA (or nonstandard VGA) display, you must install the VCV .386 driver.
Place the driver in your Windows \SYSTEM directory and add the following
entry to the [386enh] section of your Windows SYSTEM.IN! file:

device=vcv.386

4.1.2 Using CVW with a Secondary Monitor
You may find it more convenient to use a dual-monitor configuration. With the
secondary monitor connected to your system, you can view CVW output and Win
dows output simultaneously. (CVW version 3.07 does not support a serial termi
nal.)

If you are using a secondary monochrome monitor for your CVW display, you
need a monochrome adapter card and monochrome display monitor.

To set up a secondary monitor for debugging, do the following:

1. Install a secondary monochrome adapter card in a free slot in your computer,
and connect the monochrome monitor to the port in the back.

2. Set the switches for the secondary display adapter to the appropriate settings, ac
cording to the display adapter and computer manufacturers' recommendations.

To use the secondary monochrome monitor, you must specify the /2 option on the
command line when you start CVW.

If your system is an IBM Personal System/2, it must be configured with an IBM
8514/a display as the primary monitor and a VGA display as the secondary moni
tor. To use this configuration, specify the /8 (8514/a) option on the cvw command
line when you choose the Run command from the File menu in Program Manager.
If your VGA display is monochrome, you must also use the /b (black-and-white)
option. The 8514/a display serves as the Windows screen and the VGA display as
the debugging screen.

Do not attempt to run non-Windows applications or MS-DOS Shell while running
CVW with the /8 option.

Chapter 4 Debugging: CodeView for Windows 71

By default, the debugging screen operates in 50-line mode in this configuration. If
you specify the /8 option, you can optionally specify the /25 or /43 option for 25-
or 43-line mode, respectively, on the VGA debugging screen.

For more information about the command-line display options for CVW, see Sec
tion 4.5.1, "Display Options."

4.2 Comparing CodeView for Windows with Other
Microsoft Debuggers

If you have programmed in the Windows environment, you may have used the
Microsoft Symbolic Debugger (SYMDEB) to debug Windows applications. You
may also be familiar with Code View (CV) for MS-DOS. This section describes
the features and functions of CVW that are different from the features and func
tions of these other Microsoft debugging tools.

4.2.1 Differences Between CVW and SYMDEB
CVW has all the capabilities of SYMDEB and a number of features that
SYMDEB does not provide. Following is a summary of the differences between
SYMDEB and CVW:

SYMDEB feature

Debugs applications in real mode.

Examines only global (static)
variables.

Examines memory only when you
specify simple memory addresses
or symbol names.

Provides only breakpoints to inter
rupt execution.

Does not set breakpoints or trace
points on Windows messages.

Works through command line.

CVWfeature

Debugs applications in protected mode.

Examines both global and local variables.

Examines memory directly, but also uses the C
language expression evaluators to combine any
variables with higher-level-language syntax.

Provides breakpoints, tracepoints, and watch
points to set Boolean conditions and then break
execution whenever these conditions become
true.

Sets breakpoints and tracepoints on Windows
messages.

Works through command line or menus.

72 Microsoft Windows Programming Tools

4.2.2 Differences Between CVW and CodeView for MS-DOS
With CVW, as with CV for MS-DOS, you can display and modify any variable,
section of addressable memory, or processor register; monitor the path of execu
tion; and precisely control where execution pauses. However, CV for MS-DOS
and CVW differ in the following ways:

CV feature

Starts from the MS-DOS prompt.

Repeats a search when you press ALT+/.

Returns to MS-DOS upon termination.

CVWfeature

Starts from within Windows.

Repeats a search when you press CTRL+R.

Returns to Windows under normal termina
tion conditions. An abnormal termination
of CVW may cause the Windows session to
be terminated.

In addition to these differences, CVW includes the following unique features:

• The ability to track your application's segments and data as Windows moves
their locations in memory. As items are moved, the debugger readjusts its sym
bol table accordingly.

• The (lh) and (gh) type casts, which you can use to dereference local and global
handles of a memory object into near and far pointer addresses. For a more
detailed description, see Section 4.9.6.3, "Dereferencing Memory Handles."

• Windows-specific commands. CVW has the following six new commands:

Command

wdl (Windows Display Local Heap)

wdg (Windows Display Global Heap)

wdm (Windows Display Modules)

wwm (Windows Watch Message)

Action

Displays a list of the memory objects in
the local heap. For more information, see
Section 4.9 .6.1, "Displaying Local and
Global Memory Objects."

Displays a list of the memory objects in
the global heap. For more information,
see Section 4.9.6.1, "Displaying Local
and Global Memory Objects."

Displays a list of the application and li
brary modules available to Windows. For
more information, see Section 4.9.8,
"Displaying Windows Modules."

Displays a Windows message or class of
messages in the CVW Command win
dow. For more information, see Section
4.9.5, "Tracing Windows Messages."

Chapter 4 Debugging: CodeView for Windows 73

Command

wbm (Windows Breakpoint Message)

wka (Windows Kill Application)

Action

Sets a breakpoint on a Windows message
or class of messages. For more informa
tion, see Section 4.11.1.3, "Setting Break
points on Windows Messages."

Terminates the task that is running. You
should use this command with caution.
For more information, see Section 4.11.5,
"Interrupting Your Application."

4.3 Preparing Windows Applications for Debugging
If you want to use symbolic information and access source files with CVW, pre
paration depends on your compiler and linker.

Suppose, for example, that you were using Microsoft C Optimizing Compiler
(CL), version 5.1 or later, and Microsoft Segmented Executable Linker (LINK).
You would compile with the /Zi option to produce object files containing sym
bolic information and the /Od (disable optimization) option to ensure that code
generated by the compiler would match the statements in the C-language source
code. You would link with the /co option to produce an executable file containing
symbolic information.

For further information about the settings you need to use, see the documentation
that accompanied your compiler and linker.

4.4 Setting Up the Debugging Version of Windows
You can run CVW with either the debugging or retail version of Windows. The de
bugging version performs error checking that is not available with the retail ver
sion.

For example, the debugging version of Windows checks whether a window handle
passed to a Windows function is valid. When the debugging version of Windows
detects such an error, it reports a fatal exit. If this happens while you are running
CVW, the fatal exit is reported in the CVW Command window. For details about
this error handling, see Section 4.12, "Handling Abnormal Termination of the Ap
plication."

When you use the debugging version of Windows with CVW, the Windows core
dynamic-link libraries (DLLs) provide debugging support. These DLLs
(KRNL286.EXE, KRNL386.EXE, GDI.EXE, and USER.EXE) contain symbol in
formation that makes it easier to determine the cause of an error. For example, if
your application were to cause a general protection (GP) fault while running with

74 Microsoft Windows Programming Tools

the debugging version, Windows would display symbol information for the Win
dows code that was running when the GP fault was detected. If, instead, your ap
plication were running with the retail version of Windows, Windows would be
able to display only CS:IP address values of the code that was being executed
when the fault occurred.

CVW does not automatically use these Windows core DLL symbols. To provide
CVW access to these symbols, you must specify one or more of the core DLLs
either by using the /I command-line option or in response to the DLL prompt
within CVW. If you are running CVW with Windows in standard mode, specify
KRNL286.EXE. In 386 enhanced mode, specify KRNL386.EXE. For an explana
tion of how to load symbols from a DLL, see Section 4.5.5, "Starting a Debugging
Session for Dynamic-Link Libraries."

To install the debugging version of Windows, run the batch program N2D.BAT
from your Windows system directory. This batch program replaces the nondebug
ging Windows core files with the debugging versions. (It copies both symbol files
and executable files.) When the batch program has finished running, you start the
debugging version of Windows by typing the win command. No special command
line options are required. To restore the nondebugging version of Windows, fol
low the same procedure using the batch program D2N.BAT.

4.5 Starting a Debugging Session
As with Windows applications, you can start CVW in any of several ways. For a
complete description of how to start Windows applications, see the Microsoft Win
dows User's Guide. To specify CVW options and parameters, you must choose
the Run command from the File menu in Program Manager. For more information
about CVW options, see Section 4.5.6, "Command-Line Options."

You can run CVW to debug any of the following:

• A single application

• Multiple instances of an application

• Multiple applications

• DLLs

This section describes the methods you use to perform these tasks and summarizes
the display options you can specify when you start CVW from the Run dialog box.
This dialog box appears when you choose the Run command from the File menu
in Program Manager.

Chapter 4 Debugging: CodeView for Windows 75

4.5.1 Display Options
You must specify your display selection on the command line when you start
CVW. The following list describes the display options:

Option Display configuration

None VGA; debugging on single monitor

Non-VGA; debugging on single monitor

Any; debugging on secondary monochrome
monitor

/v (VCV.386 must be installed)

12

/8 8514/a; debugging on secondary VGA monitor

4.5.2 Starting a Debugging Session for a Single Application
After you start CVW from Windows, CVW displays the Command Line dialog
box. To start debugging a single application, do the following:

1. In the Command Line dialog box, type the name of the application. If you do
not include an extension, CVW assumes the .EXE extension by default. You
can also include any arguments that the application recognizes. Following is the
syntax of the command to start debugging a single application:

app_name[.exe] [app_arguments]

2. Press ENTER, or choose the OK button.

CVW displays a dialog box with the following message:

Name any other DLL or executable with debug info.

3. Because you are debugging only one application and no DLLs, press ENTER or
choose the OK button. CVW loads the application and displays on the debug
ging screen the source code for the application's WinMain function.

4. Set any breakpoints you want in the code.

5. To continue running the application, choose the <F5=Go> button on the status
line or press the F5 key.

You can avoid startup dialog boxes and start CVW more quickly by specifying the
application name as an argument on the command line, as follows:

1. From the Program Manager File menu, choose un.

2. Type the application name and any application guments on the command line.
Following is the command syntax to start debugg· g a single application:

cvw [cvw_options] app_name[.exe] [app_arguments]

3. Press ENTER, or choose the OK button.

76 Microsoft Windows Programming Tools

4.5.3 Starting a Debugging Session for Multiple Instances of an Application
Windows can run multiple instances of an application simultaneously, which can
cause a problem for your application. For example, two instances of an application
might interfere with each other, or one application might corrupt the data of the
other.

To help you solve problems associated with running multiple instances of an appli
cation, CVW allows you to debug multiple instances of an application at the same
time. You can determine which instance of an application you are looking at by ex
amining the DS register at any breakpoint.

To debug multiple instances of an application, perform the following steps:

1. Start CVW as usual for your application.

2. Run one or more additional instances of your application by choosing Run from
the Program Manager File menu.

Specifying your application name more than once when starting CVW does not
have the effect of loading multiple instances of the application.

The breakpoints you set in your application apply to all instances of the applica
tion. To determine which instance of the application has the current focus in
CVW, examine the DS register.

4.5.4 Starting a Debugging Session for Multiple Applications
You can debug two or more applications at the same time, such as a dynamic data
exchange (DDE) client and server. However, when global symbols are shared by
applications (such as the symbol name WINMAIN), CVW resolves symbol refer
ences to the first application named when you started CVW.

Perform the following steps to debug two applications at the same time:

1. Start CVW as usual for a single application.

2. Type the name of the second application when CVW displays a dialog box with
the following message:

Name any other DLL or executable with debug info.

You must include the .EXE extension after the filename of the second applica
tion.

3. Set breakpoints in either or both applications, choosing Open Module from the
CVW File menu to display the source code for the different modules.

4. Press FS to continue running the first application.

Chapter 4 Debugging: CodeView for Windows 77

5. From the Program Manager File menu, choose Run, type the application name
and any application arguments, and press ENTER or choose the OK button to start
execution of the second application.

An alternative way to load the symbols for a second application is to use the /1 op
tion on the command line when you start CVW, as follows:

cvw /l second.exe first.exe

The /I option and the name of the second application must precede the name of the
first application on the command line in the Run dialog box. You can repeat the /I
option for each application to be included in the debugging session. Once CVW
starts, choose the Run command from the Program Manager File menu to start the
second application.

4.5.5 Starting a Debugging Session for Dynamic-Link Libraries
You can debug one or more DLLs while you are debugging an application. How
ever, no distinction is made between global symbols shared by the applications
and any DLLs.

Perform the following steps to debug a DLL at the same time as an application:

1. Start CVW as usual for the application.

2. Type the name of the DLL when CVW displays a dialog box with the follow
ing message:

Name any other DLL or executable with debug info.

CVW assumes the .DLL extension if you do not supply an extension with the
filename. If your DLL has another extension (such as .DRY), you must specify
it explicitly.

3. From the File menu, choose Open Module to display the source code for the
different modules. Set breakpoints in either the application or the DLL.

4. Press F5 to continue running the application.

Alternatively, you can use the /I option to specify the DLL on the command line in
the Run dialog box, as follows:

cvw /l appdll appname.exe

The /I option and the name of the DLL must precede the name of the first applica
tion on the command line. You can repeat the /I option for each DLL to be in
cluded in the debugging session. The .DLL extension is the default extension for
the /I option.

78 Microsoft Windows Programming Tools

CVW allows you to debug the LibEntry initialization routine of a DLL. If your ap
plication implicitly loads the library, a special technique is required to debug the
LibEntry routine. An application implicitly loads a DLL if the library routines are
imported in the application's module-definition (.DEF) file or if your application
imports library routines through an import library when you link the application.
An application explicitly loads a DLL by calling the LoadLibrary function.

If you type in the Command Line dialog box the name of an application that impli
citly loads a DLL, CVW automatically loads the DLL and executes the DLL's
LibEntry routine when CVW loads the application. In this case, you have no op
portunity to debug the LibEntry routine. To avoid this problem, perform the fol
lowing steps:

1. Instead of typing the name of your application in the Command Line dialog
box, type the name of a dummy application that does not implicitly load the li
brary.

2. Type the name of your DLL, being sure to include the extension if it is not
.DLL, when the following message is displayed:

Name any other DLL or executable with debug info.

3. From the File menu, choose Open Module to display the source code for the li
brary module containing the LibEntry routine. Set breakpoints in the LibEntry
routine.

4. From the File menu, choose Open Module to display the source code for other
library or application modules. Set breakpoints.

5. Press FS to start running the dummy application.

6. Run the application that implicitly loads the DLL by choosing Run from the
Program Manager File menu. CVW will resume control when the breakpoint in
the LibEntry routine is encountered.

Alternatively, you can use a command line of the following form to specify the
dummy application, your application, and the DLL:

cvw /l appdll dummyapp

After this command starts CVW, you need to perform steps 5 and 6 of the preced
ing procedure.

4.5.6 Command-Line Options
Following is the command-line syntax to start CVW from the Run dialog box,
which is displayed when you choose the Run command from the Program
Manager File menu:

Chapter 4 Debugging: CodeView for Windows 79

cvw [cvw_options] app_name[.exe] [app_arguments]

Parameters are not case-sensitive. Following are the command-line parameters:

cvw _options
Specifies one or more options that modify how CVW runs. Options are not
case-sensitive. Valid options are as follows:

Option

/b

le command

fl dll_or _exe

Im

/tsf

/v

12

/8

/25

/43

/50

app_name[.exe]

Purpose

Specifies a monochrome VGA display used as the secondary dis
play with an 8514/a display. This option is valid only in conjunc
tion with the /8 option.

Specifies one or more commands that CVW is to carry out when it
loads the application specified by the app_name parameter. The
group of commands must be enclosed in double quotation marks
("). Commands must be separated with semicolons (;).

Specifies the name of an application or DLL that has been com
piled and linked with CVW symbols. CVW assumes the default
filename extension .DLL if no extension is supplied. You can use
the fl option more than once to specify multiple DLLs or execu
table files.

Disables the use of the mouse on the debugging screen. You should
use this option when you set breakpoints in code that is responsive
to mouse movements on the Windows application screen.

Inverts save-state-file status for the current session. For more infor
mation, see Section 4.6, "Saving Session Information."

Allows single-monitor debugging on a non-VGA display.

Allows CVW to use a secondary monochrome monitor for debug
ger output while displaying Windows output on your primary
monitor.

Allows CVW to use an 8514/a display as the Windows display and
a VGA display for debugger output.

Specifies 25-line mode for the secondary VGA display. This option
is valid only in conjunction with the /8 option.

Specifies 43-line mode for the secondary VGA display. This option
is valid only in conjunction with the /8 option.

Specifies 50-line mode for the secondary VGA display. This option
is valid only in conjunction with the /8 option. The /50 option is
not required, because 50-line mode is the default for the dual
monitor configuration.

Specifies the location and name of the application for which CVW is to load
symbols and issue an initial breakpoint. The .EXE extension is optional.

app _arguments
Specifies one or more arguments recognized by the application that CVW loads.

80 Microsoft Windows Programming Tools

4.6 Saving Session Information
After your session, CVW stores session information in a file called
CURRENT.STS, which is located in the directory pointed to by the INIT
environment variable or in the current directory. If this file does not already exist,
CVW automatically creates it. Session information includes the following:

• CVW display windows that were opened

• Breakpoint locations

CVW saves this information, which becomes the default session information the
next time you run a CVW session for that application.

By default, this feature is enabled. You can disable this feature by placing the fol
lowing entry in your TOOLS.IN! file:

[cvw]
StateFileRead: n

The /tsf option temporarily inverts this setting when you run CVW. That is, if
TOOLS.IN! disables this feature, running CVW with the /tsf option saves session
information for that session only.

If your Windows session abnormally terminates while CVW is running, the
CURRENT.STS file may be corrupted. This may cause CVW to fail when it first
tries to execute the application you are debugging. If this happens, delete the
CURRENT.STS file before attempting to run CVW again.

Note Microsoft Programmer's WorkBench (PWB) version 2.0 modifies the
CURRENT.STS file. Once PWB has modified this file, CVW cannot read the
command settings.

4. 7 Working with the CodeView for Windows Screen
When you start CVW, the CVW menu bar and three display windows-the Local
window, the Source window, and the Command window-appear.

4. 7 .1 Using CVW Display Windows
CVW divides the screen into logically separate sections called display windows,
so that a large amount of information can be displayed in an organized and easy-to
read presentation. Each CVW display window is a distinct area on your monitor
that operates independently of the other display windows. The name of each dis
play window appears in the window's title bar. The following list describes the
eight types of CVW display windows:

CVW display window

Source window

Command window

Watch window

Local window

Memory window

Reg window

8087 window

Help window

Chapter 4 Debugging: CodeView for Windows 81

Purpose

Displays the source code. You can open a second
source window to view a header file, another source
file, or the same source file at a different location.

Accepts debugging commands.

Displays the current values of selected variables.

Lists the values of all variables local to the current
function or block.

Shows the contents of memory. You can open a second
Memory window to view a different section of memory.

Displays the contents of the microprocessor's registers,
including flags.

Displays the registers of the coprocessor or its software
emulator.

Displays the Help options or any Help information that
you request.

4. 7 .1.1 Opening Display Windows
Following are the two ways to open CVW display windows:

• Choose a window from the View menu. (Note that you can open two Source
windows and two Memory windows.)

• Perform an operation that automatically opens a window if it is not already
open. For example, selecting a Watch variable automatically opens the Watch
window.

CVW continually and automatically updates the contents of all its display win
dows.

4. 7 .1.2 Selecting Display Windows
To select a window, click anywhere in it. You can also press F6 or SHIFr+F6 to
move the focus from one window to the next.

The selected window is called the active window and is marked in three ways:

• The window's name is displayed in reverse video.

• The cursor appears in the window.

• Vertical and horizontal scroll bars appear in the window.

Typing commands in the Source window causes CVW to temporarily shift its
focus to the Command window. Whatever you type is appended to the last line in

82 Microsoft Windows Programming Tools

the Command window. If the Command window is closed, CVW beeps in re
sponse to your input and ignores the input.

4. 7 .1.3 Adjusting Display Windows
CVW display windows often contain more information than they can display on
the screen. Although you cannot change the relative positions of the display win
dows, you can manipulate a selected window by using the mouse, as follows:

• To scroll through the information in the window, use the vertical or horizontal
scroll bar.

• To maximize a window so that it fills the screen, click the Maximize arrow at
the right end of the window's top border. To restore the window to its previous
size and position, click the Maximize arrow again.

• To change the size of a window:

1. Position the cursor anywhere on the border between two windows.

2. Press and hold down the left mouse button.

Two double-headed arrows appear on the line.

3. Drag the mouse to enlarge or reduce the window.

• To close a window, click the Close box at the left end of the top border.

The adjacent windows automatically expand to recover the empty space.

You can also use the following keyboard commands:

Keyboard command

PAGE UP or PAGE DOWN

CTRL+FlO

CTRL+F8

CTRL+F4

Description

Scrolls through the text vertically.

Maximizes a selected display window.

Enables the arrow keys to resize the active window.

Removes a selected display window.

You can also choose the Maximize, Size, and Close commands from the View
menu to manipulate a selected display window.

The different CVW display windows can help you to conduct a variety of debug
ging activities simultaneously. These activities are initiated and controlled with
CVW debugging commands, which you can type on the command line when you
start CVW or choose from CVW menus.

Chapter 4 Debugging: CodeView for Windows 83

4. 7 .2 Using the Menu Bar
In addition to display windows, the CVW screen includes a menu bar, which con
tains the following menus. For a more detailed description of CVW menus and
commands, see CVW Help.

Menu

File

Contents

This menu contains the following commands:

Command

Open Source

Open Module

Exit

Description

Opens any text file, and reads it into the active Source
window.

Opens the source file of any module for which CVW in
formation has been loaded, and reads it into the active
Source window.

Ends your CVW session, and returns you to Windows.

Edit This menu contains the following commands:

Command

Undo

Copy

Paste

Description

Retracts the most recent edit, and restores the current
line to its previous condition.

Copies selected text to the paste buffer.

Inserts text from the paste buffer into the active window
at the present cursor location, if that location is valid (for
example, text cannot be pasted into the Source window).

View This menu contains the following commands:

Command

Source

Memory

Register

8087

Local

Watch

Command

Help

Maximize

Size

Close

Description

Opens a new Source window.

Opens a new Memory window.

Acts as a switch to open and close the Reg window.

Acts as a switch to open and close the 8087 window.

Acts as a switch to open and close the Local window.

Acts as a switch to open and close the Watch window.

Acts as a switch to open and close the Command win
dow.

Acts as a switch to open and close the Help window.

Enlarges the active window so that it fills the screen.

Enables the arrow keys to resize the active window.

Closes the active window.

84 Microsoft Windows Programming Tools

Menu

Search

Contents

This menu contains the following commands:

Command

Find

Selected Text

Repeat Last Find

Label/Function

Description

Searches for the next occurrence of a text string or a
regular expression that you supply in the Find dialog
box.

Searches for the next occurrence of a string of
selected text.

Searches for the next occurrence of the string or regu
lar expression specified in the previous Find dialog
box.

Searches for a label definition or function in the ac
tive Source window; if one is found, moves the input
focus to the found label definition or function in the
active Source window.

Run This menu contains the following command:

Watch

Command

Animate

Description

Continues running an application while displaying the
execution path in the Source window. This type of dis
play is called an animated trace display.

This menu contains the following commands:

Command

Add Watch

Delete Watch

Set Breakpoint

Edit Breakpoints

Quick Watch

Description

Adds an expression to the Watch window.

Deletes an expression from the Watch window.

Specifies where to interrupt execution of an applica
tion. You can set breakpoints on lines of source code,
variables, expressions, and Windows messages.

Performs editing functions on breakpoints; they can
be added, removed, modified, enabled, or disabled.

Selects one expression for the Quick Watch dialog
box. For a description of the Quick Watch window,
see Section 4.9.4, "Using the Quick Watch Com
mand."

Chapter 4 Debugging: CodeView for Windows 85

Menu Contents

Options This menu contains the following commands:

Command

Source Window

Memory Window

Trace Speed

Case Sensitivity

386 Instructions

Description

Sets the display characteristics of the active Source
window.

Sets the display characteristics of the active
Memory window.

Sets the speed of tracing and execution of an appli
cation.

Turns case sensitivity on or off.

Reads all 80386 instructions as 32-bit values when
this command is checked; otherwise, reads all in
structions as 16-bit values.

Calls The contents and size of this menu change as your application runs. The
Calls menu shows the currently executing routine and the trail of routines
from which it was called. Your application must execute at least the begin
ning of the WinMain function before CVW will display the current
routine. When you select one of the lines in the Calls menu, CVW displays
the source code corresponding to the calling location in the active source
window.

Help This menu can be used to access Help.

4.8 Accessing Help
CVW Help contains detailed information and examples not found in this chapter.
You can access Help by choosing a command from the Help menu described in
the preceding section or by selecting an item on your screen and pressing Fl. Help
is available on such items as commands, menus, dialog boxes, and error messages.

4.9 Displaying Application Data
CVW offers a variety of ways to display variables, processor registers, and
memory. You can also modify the values of any of these items as the application
runs. This section describes how to display the following:

• Variables in the Watch window

• Expressions in the Watch window

• Arrays and structures in the Watch window

• A single expression in the Quick Watch dialog box

86 Microsoft Windows Programming Tools

• Windows messages in the Command window

• Memory in the Memory window

• Contents of registers in the Reg window

4. 9.1 Displaying Variables
You can use the Watch window to monitor the value of a given variable
throughout the execution of your application. For example, do, for, and while
loops can cause problems when they don't terminate correctly. By displaying loop
variables in the Watch window, you can determine whether a loop variable
achieves its proper value.

To add a variable to the Watch window, perform the following steps:

1. In the Source window, use the mouse or the arrow keys to position the cursor
on the name of the variable you want to watch.

2. From the Watch menu, choose Add Watch, or press CTRL+W.

An Add Watch dialog box appears with the selected variable's name displayed
in the Expression field.

3. Choose the OK button or press ENTER to add the variable to the Watch window.

If you want to add a variable other than the one shown in the dialog box, type
its name over the one displayed and press ENTER.

Adding a Watch variable opens the Watch window automatically if it is not al
ready open. The Watch window appears at the top of the screen.

When you add a local variable, the following message may be displayed:

Watch Expression Not in Context

This message appears when execution has not yet reached the C-language function
that defines the local variable. Global variables (those declared outside C-language
functions) never cause CVW to display this message; you can watch them from
anywhere in the application.

If any two or more applications or DLLs you are debugging contain global varia
bles with the same name, CVW displays the variable of only the first application
or DLL containing that variable name.

For example, if you are debugging Appl and App2, which both contain a global
variable named hlnst, CVW always displays the value of hlnst in App 1-even if
CVW stopped at a breakpoint in App2.

The Watch window can display as many variables as you like; the quantity is
limited only by available memory. You can scroll through information in the

Chapter 4 Debugging: CodeView for Windows 87

Watch window to view other variables. CVW automatically updates all watched
variables as the application runs, including those not currently visible.

To remove a variable from the Watch window, do the following:

1. From the Watch menu, choose Delete Watch.

2. Scroll through information in the Delete Watch dialog box, and select the varia
ble you want to remove.

Alternatively, you can position the cursor on any line in the Watch window and
press CTRL+ Y to delete the line.

4.9.2 Displaying Expressions
You may have noticed that the Add Watch dialog box prompts for an expression,
not simply a variable name. You can add any valid combination of variables, con
stants, or operators as an expression for CVW to evaluate and display in the Watch
window.

The advantage of evaluating expressions is that you can reduce several variables to
a single value, which may be easier to interpret than the components that make it
up. For example, imagine a for loop in which the ratio between two variables,
varl and var2, should remain constant. You suspect that one of these variables
sometimes has the wrong value. To see when the quotient changes, without having
to mentally divide two numbers, you can specify the following expression for dis
play in the Watch window:

(varl I var2)

You can also display Boolean expressions. For example, if the variable var is
never supposed to be greater than 100 or less than 25, the following expression
evaluates to 1 (TRUE) when var exceeds its limits:

(var < 25 11 var > 100)

4.9.3 Displaying Arrays and Structures
An application variable is usually a scalar quantity (a single character, integer, or
floating-point value). The variable appears in the Watch window with the variable
name to the left, followed by an equal sign (=) and the current value.

The Watch window provides a different way to display aggregate data items, such
as arrays and structures. Arrays and structures contain multiple values that can be
arranged in one or more layers. You can control how these variables appear in the
Watch window-whether all, part, or none of their internal structure is displayed.

88 Microsoft Windows Programming Tools

For example, the array WordHolder initially appears in the Watch window in the
following form:

+WordHolder[J = [...]

The brackets indicate that this variable contains more than one element. The plus
sign (+) indicates that the variable has more elements than are displayed on the
screen. You can expand the variable to display any or all of its components; this
technique is called dereferencing.

To dereference (expand) the array, you can double-click anywhere on the dis
played line or you can position the cursor on the line and press ENTER. For ex
ample, if WordHolder is a six-character array containing the word Basic, the
Watch window display changes to the following:

-WordHolder[J
[0] 66 'B'
[1] 97 'a'
[2] 115 's'
[3] 105 'i'
[4] 99 'c'
[5] 0 "

Note that both the individual character values and their ASCII decimal equivalents
are listed. The minus sign (-) indicates that no further expansion is possible. To
contract the array, you can double-click its line again or you can position the cur
sor on the line and press ENTER.

4.9.3.1 Displaying Character Arrays
If viewing a character array in this form is inconvenient, use either of the follow
ing methods to specify the watchpoint:

• Type the variable name, a comma (,), and the letters, as shown in the following
example:

WordHolder,s

CVW displays the contents of the array, as follows:

WordHolder,s[J = "Basic"

Chapter 4 Debugging: CodeView for Windows 89

• Cast the variable's name to a character pointer, as shown in the following ex
ample:

(char *)WordHolder

CVW displays the address of the array and its contents, as follows:

(char *)WordHolder = 0x8C7:0x0010 "Basic"

4.9.3.2 Displaying Multidimensional Arrays
You can display an array with more than one dimension. For example, imagine an
integer array (5 by 5) named Matrix, whose diagonal elements are the numbers 1
through 5 and whose other elements are zero. Unexpanded, the array is displayed
like this:

+Matrix [J = [... J

Double-click on the word Matrix (or position the cursor on that line and press
ENTER) to change the display to the following:

-Matrix[]
+[0][] [...]
+[l][] [...]
+[2][] [...]
+[3][] [...]
+[4][] [...]

The actual values of the elements are not shown yet. You have to descend one
more level to see them. For example, to view the elements of the third row of the
array, position the cursor anywhere on its subscript line (the +[2] line) and press
ENTER. The following example shows the third row of the array dereferenced:

-Matrix[]
+[0][]
+[l] []
-[2][]

[0]
[l]
[2]
[3]
[4]

+[3][]
+[4][]

0
0
3
0
0

[...]
[...]

[...]
[...]

90 Microsoft Windows Programming Tools

Dereferencing the fifth row (+[4]) of the array produces this display:

-Matrix[]
+[0][] [...]
+[l][] [...]
-[2][]

[0] 0
[l] 0
[2] 3
[3] 0
[4] 0

+[3][] [...]
-[4][]

[0] 0
[1] 0
[2] 0
[3] 0
[4] 5

Any element of an array or structure can be independently expanded or contracted;
you need not display every element of the variable. If you want to view only one
or two elements of a large array, specify the particular array or structure elements
in the Expression field of the Add Watch dialog box.

You can dereference a pointer in the same way as an array or structure. The Watch
window displays the pointer address, followed by all the elements of the variable
to which the pointer currently refers. You can display multiple levels of indirec
tion (that is, pointers referencing other pointers) simultaneously.

4.9.3.3 Displaying Dynamic Array Elements
An array may have dynamic elements that change as some other variable changes.
Just as you can display a particular element of an array by selecting its subscript,
you can also display a dynamic array element by specifying its variable subscript.
For example, suppose that the loop variable p is a subscript for the array variable
Catalogprice. The Watch window expression Catalogprice[p] displays only the
array element currently specified by the variable p, not the entire array.

You can mix constant and variable subscripts. For example, the expression
BigArray[3] [i] displays only the element in the third row of the array to which the
index variable i points.

Chapter 4 Debugging: CodeView for Windows 91

4.9.4 Using the Quick Watch Command
Using the Quick Watch command is a convenient way to take a quick look at a
variable or expression. Because the Quick Watch dialog box can display only one
variable at a time, it's best to use the Watch window to view most variables.

Selecting the Quick Watch command from the Watch menu (or pressing SHIFT+F9)

displays the Quick Watch dialog box. If the cursor is in the Source, Local, or
Watch window, the variable at the current cursor position appears in the Quick
Watch dialog box.

The Quick Watch display automatically expands arrays and structures to their first
level. For example, an array with three dimensions expands to the first dimension.
You can expand or contract an element just as you would in the Watch window;
position the cursor on the appropriate line and press ENTER. If the array has more
lines than the Quick Watch dialog box can display, you can view the rest of the
array either by using the scroll bar or by pressing the DOWN ARROW or PAGE DOWN

key.

To add a Quick Watch item to the Watch window, choose the Add Watch button.
Arrays and structures appear in the Watch window expanded as they were dis
played in the Quick Watch dialog box.

You can also display a Quick Watch dialog box for a variable by typing two ques
tion marks and the variable name in the Command window. For example, the fol
lowing command shows the contents of the Index variable:

?? Index

4.9.5 Tracing Windows Messages
You can trace occurrences of a Windows message or an entire class of Windows
messages by using the wwm (Windows Watch Message) command. CVW dis
plays the messages in the CVW Command window.

To trace a Windows message or message class, type the wwm command in the
Command window. The syntax for the command is as follows:

wwm winproc msgname I msgclasses

The winproc parameter is the symbol name or address of an application's window
procedure. The msgname parameter is the name of a Windows message, such as
WM_PAINT. The msgclasses parameter is a string of characters that identify one
or more classes of messages to be traced. If msgclasses is not specified, CVW
traces all message classes. The class, if specified, is consistent with those defined
in Microsoft Windows Spy (SPY.EXE); they are as follows:

92 Microsoft Windows Programming Tools

Message class

c

d

m

n

s
w

z

Type of Windows message

Clipboard

DDE

Initialization

Mouse

Input

System

Window management

Nonclient

For example, the following command traces all mouse and input messages sent to
the Main WndProc procedure:

wwm MainWndProc mn

The following example illustrates how the CVW Command window displays a
Windows message:

HWND:lc00 wParm:0000 1Parm:000000 msg:000F WM_PAINT

4.9.6 Displaying Memory
Selecting the Memory command from the View menu opens a Memory window.
You can have two CVW Memory windows open at a time.

By default, memory is displayed as byte values in hexadecimal format, with 16
bytes per line. At the end of each line is a second display of the same memory in
ASCII form. Values that correspond to printable ASCII characters (decimal values
32 through 127) are displayed in decimal format. Values outside that range are rep
resented by periods(.).

Byte values are not always the most convenient way to view memory. If the area
of memory you are examining contains character strings or floating-point values,
you might prefer to view them in a directly readable form. The Memory Window
command on the Options menu displays a dialog box with the display options in
the following categories:

• ASCII characters

• Byte, word, or doubleword binary values

• Signed or unsigned integer decimal values

• Short (32-bit), long (64-bit), or IO-byte (80-bit) floating-point values

Chapter 4 Debugging: CodeView for Windows 93

You can also cycle through these display formats directly by pressing SHIFT +F3.

If a section of memory cannot be displayed as a valid floating-point number, the
value shown includes the characters NAN (not a number).

4.9.6.1 Displaying Local and Global Memory Objects
CVW is also useful for displaying global and local memory objects in their respec
tive Windows heaps. You can use the wdg (Windows Display Global Heap) com
mand to display the entire heap of global memory objects in the Command
window, or you can use the wdl (Windows Display Local Heap) command to dis
play the entire heap of local memory objects in the Command window.

For the wdg command, you can specify a global handle to display a partial list of
the global heap. The Command window displays the first five memory objects in
the global heap, starting at the handle rather than at the beginning of the heap. The
following example illustrates the wdg output format:

0 f) @) e 0 0
047E (0A7Dl 00000020b MY APP PRIV MOVEABLE DISCARDABLE

@

0A6D 00000134b MY APP DATA FIXED PGLOCKED=0001

@

0806 (0805) 00000600b PDB (0465)

0
FREE 000000A0b

The following table describes the indicated fields:

Field Description

O The value of the handle of a global memory object. Global memory objects
are displayed in the order in which Windows manages them, which is typi
cally not in ascending handle order.

f) A memory selector. This value is not displayed if the selector value is the
same as the global handle, as is the case for DATA objects.

@) The length, in bytes, of the global memory object.

0 The name of the application or library module that allocated the object.

0 The type of global memory object, which can be the following:

94 Microsoft Windows Programming Tools

Field Description

Type

PRIV

CODE
DATA
FREE

Meaning

Application or DLL global data, or system object

Code segment

Data segment of application or DLL

Free memory object in the global heap

0 One of the following memory allocation attributes:

MOVEABLE
MOVEABLE DISCARDABLE
FIXED

One of the following dispositions if the object is movable:

Disposition

LOCKED=number

PGLOCKED=number

Meaning

Number of times the object has been locked
with any of the Windows functions that lock
data

Number of times Windows has locked the ob
ject in its linear address space

0 The handle of the application or library module that allocated the process de
scriptor block (PDB).

0 A free memory object, followed by the size of the free object, in bytes.

The following example shows sample output of the wdl (Windows Display Local
Heap) command:

0 @ @)

190A: 000A BUSY
0

(16DA)

Chapter 4 Debugging: CodeView for Windows 95

The following table describes the indicated fields:

Field Description

0 The offset of the local memory object in the local data segment

f) The length of the object, in bytes

@ One of the following dispositions:

Disposition

BUSY
FREE

Meaning

A currently allocated object

A free object in the local heap

0 A local memory handle

4.9.6.2 Displaying Variables with a Live Expression
Section 4.9.4, "Using the Quick Watch Command," explains how to display a
specific array element by adding the appropriate expression to the Watch window.
It is also possible to view a particular array element or structure element in the
Memory window. This CVW display feature is called a live expression, because
the displayed area of memory changes to reflect the value of a pointer or subscript.
For example, if Buffer is an array and pBuf is a pointer to that array, then *pBuf
points to the array element currently referenced. A live expression displays the sec
tion of memory beginning with this element.

CVW displays live expressions in a Memory window. To create a live expression:

1. From the Options menu, choose Memory Window.

2. Select the Live Expression check box, and type the name of the element you
want to view.

For example, if pszMsg is a pointer to a null-terminated array of characters and
you want to see what it currently points to, type the following:

*pszMsg

3. Choose the OK button, or press ENTER.

A new Memory window opens. The first memory location in the window is the
first memory location of the live expression. The section of memory displayed
changes to the section the pointer currently references.

96 Microsoft Windows Programming Tools

You can use the Memory Window command on the Options menu to display the
value of the live expression in a readable form. This is especially convenient when
the live expression represents strings or floating-point values, which are difficult
to interpret in hexadecimal form.

It is usually more convenient to view an item in the Watch window than as a live
expression. However, you might find some items easier to view as live expres
sions. For example, you can examine what is currently at the top of the stack by
specifying SS:SP as the live expression.

4.9.6.3 Dereferencing Memory Handles
In a Windows application, the LocalLock and GlobalLock functions are used to
dereference memory handles into near or far pointers. In a debugging session, you
may know the handle of the memory object, but might not know which near or far
address it dereferences to, unless you are debugging in an area where the applica
tion has just completed a LocaILock or GlobalLock function call. To get the near
and far pointer addresses for your local and global handles, use the (lh) and (gh)
type casts. For example, you could use (lh) to dereference the array in the follow
ing code:

HANDLE hlocalMem;
PBYTE pbArray;

hlocalMem = LocalAlloc(LMEM_MOVEABLE, 100);
pbArray = CPBYTE)LocalLock(hLocalMem);

f* Use the array. */

LocalUnlock(hlocalMem);

To properly display this array in CVW, you can use the following command:

dw ClhlhlocalMem

If you set a breakpoint immediately after the LocalLock function, you could find
out where the local object was allocated in the application's data segment by look
ing at the value of the pbArray variable. To display the value of pbArray, use the
following CVW command:

dw pbArray

Note that you cannot rely on the value of pbArray anywhere else in the applica
tion, because it may change or the memory object may move.

Chapter 4 Debugging: CodeView for Windows 97

In the following example, the memory object lpszTest is a string:

HANDLE hGlobalMem;
LPSTR lpszTest;

hGlobalMem = GlobalAlloc(GMEM_MOVEABLE, 10L)
lpszTest = Globallock(hGlobalMem);

lstrcpy(lpszTest, "ABCDEF");

GlobalUnlock(hGlobalMem);

To display the contents of the string, you could use double type casting, as follows:

? *(char far*) (gh)lpszTest,s

The (gh) type cast returns a pointer to the far address of the global memory object.

4.9.7 Displaying the Contents of Registers
Selecting the Register command from the View menu (or pressing F2) opens a Reg
window on the right side of the screen. The current values of the microprocessor's
registers appear in this window.

At the bottom of the window are a group of mnemonics representing the processor
flags. When your application first starts running, all values are shown in normal
intensity video. Any subsequent changes are marked in high-intensity video. For
example, suppose the overflow flag is not set when the application starts. The
corresponding mnemonic is NV, and it appears in normal-intensity video. If the
overflow flag is subsequently set, the mnemonic changes to OV and appears in
high-intensity video.

Selecting the 386 Instructions command from the Options menu displays the con
tents of the registers as 32-bit values. This command is valid only if your com
puter uses an 80386 processor. Selecting this command a second time changes the
registers back to 16-bit values.

You can also display the registers of an 8087 /80287 /80387 coprocessor in a sepa
rate window by choosing the 8087 command from the View menu. If your applica
tion uses a coprocessor emulator, the emulated registers are displayed instead.

98 Microsoft Windows Programming Tools

4.9.8 Displaying Windows Modules
The wdm (Windows Display Modules) command displays a list of all the DLL
and task modules that Windows has loaded. For each module, the list shows the
module handle, the type of module (DLL or task), the name of the module, and the
path of the module.

4.10 Modifying Application Data
You can easily change the values of variables, memory locations, or registers dis
played in the Watch, Memory, Reg, or 8087 window. Simply position the cursor at
the value you want to change, and type the appropriate value. If you change your
mind, press ALT+BACKSPACE to undo the last change you made.

The Memory window displays the starting address of each line in segment:offset
form. Altering the address automatically shifts the display to the corresponding
section of memory. If that section is not used by your application, memory loca
tions are displayed as double question marks (??). You cannot change memory
that is displayed as question marks.

You can also change the values of memory locations by modifying the right side
of the memory display, which shows memory values in ASCII form. For example,
you can change a byte from decimal value 75 (ASCII value for uppercase K) to
decimal value 85 (ASCII value for uppercase U). To do so, place the cursor over
the letter K, which corresponds to the position where the memory value is 75, and
type U.

To change a processor flag, you can click its mnemonic or you can position the
cursor on a mnemonic and press any key (except TAB or SPACEBAR). Repeat these
operations to restore the flag to its previous setting.

Although you can alter most items from the Watch window, sometimes it is useful
to modify a register or memory directly. For example, if a function returns a value
in the AX register, you can modify the AX register to change a returned value
without executing the function.

Caution You should be especially cautious when altering machine-level values.
The effect of changing a register, flag, or memory location may vary from having
no effect at all to causing the operating system to crash.

Chapter 4 Debugging: CodeView for Windows 99

4.11 Controlling Execution of Your Application
This section describes how you can use CVW to control the execution of your ap
plication.

Following are the three possible forms of execution in CVW:

Application execution

Continuous

Single-step

Animated

4.11.1 Continuous Execution

Description

The application runs until either a previously specified
breakpoint has been reached or the application termi
nates normally.

The application pauses after each line of code has
been executed.

The application pauses after each line of code has
been executed, but execution continues after a short
pause. The application continues to run until you press
a key.

With continuous execution, you can quickly execute bug-free sections of code. To
initiate continuous execution, either you can click the right mouse button on the
line of code you want to debug or examine in more detail or you can position the
cursor on this line and then press F7. Execution proceeds at full speed and pauses
when it reaches the selected line.

You can also use a breakpoint to cause execution to pause at a specific line of
code. CVW provides you with several types of breakpoints to control your applica
tion's execution. The sections that follow describe how to use breakpoints.

4.11.1.1 Selecting Breakpoint Lines
By specifying one or more lines as breakpoints, you can skip over the parts of the
application that you don't want to examine. Execution of the application proceeds
at full speed up to the first breakpoint, at which execution is interrupted; pressing
FS causes execution to continue up to the next breakpoint; and so on. You can set
as many breakpoints as you want, provided that you have available memory.

Following are several ways to set breakpoints:

• Double-click anywhere on the desired breakpoint line. The selected line is
highlighted to show that it is a breakpoint. To remove the breakpoint, double
click on the line a second time.

100 Microsoft Windows Programming Tools

• Position the cursor anywhere on the line at which you want execution to pause.
Press F9 to select the line as a breakpoint and to highlight it. Press F9 a second
time to remove the breakpoint and highlighting.

• Display the Set Breakpoint dialog box by choosing the Set Breakpoint com
mand from the Watch menu. Select one of the breakpoint options that permits
you to specify a line (location). The line on which the cursor rests is the default
breakpoint line in the Location field. If this line is not the location you want, re
place it by typing another line number in the Location field. When you type a
new line number, make sure that you precede it with a period.

• Your application can call the Windows DebugBreak function to interrupt ex
ecution and return control to CVW. When your application calls the Debug
Break function, execution may stop within the DebugBreak code rather than
in your application. You may have to single-step out of the DebugBreak code
and back into your application.

A breakpoint line must contain executable code. You cannot select a blank line, a
comment line, or a declaration line (such as a variable declaration or a preproces
sor statement) as a breakpoint.

To set a breakpoint on a multiline statement, you must position the cursor on the
last line of the statement. If you try to set a breakpoint on any other line of the
statement, CVW does not accept it.

If your compiler optimizes your code, some lines of code may be repositioned or
reorganized for more efficient execution. These changes can prevent CVW from
recognizing the corresponding lines of source code as breakpoints. Therefore, it is
a good idea to disable optimization during development. You can restore optimiza
tion once debugging is completed.

A breakpoint can also be set at a function or an explicit address. To set a break
point at a function, simply enter the name of the function in the Set Breakpoint
dialog box. To set a breakpoint at an address, enter the address in CS:IP form.

If any of the applications or DLLs you are debugging share names for certain win
dow procedures (such as MainWndProc), you can refer by name only to the proce
dure that is defined in the first application or DLL.

You can remove a breakpoint by choosing the Edit Breakpoints command from
the Watch menu or by selecting the breakpoint in the Source window and pressing
F9. When your application pauses at a breakpoint, you can continue execution by
pressing F5. You cannot remove a breakpoint set by an application calling the
DebugBreak function.

Chapter 4 Debugging: Code View for Windows 101

4.11.1.2 Setting Breakpoint Values
Breakpoints are not limited to specific lines of code. CVW can also break execu
tion when an expression changes value or reaches a particular value. Use one of
the following methods to set a breakpoint value:

• To interrupt execution when an expression changes value, type the name of the
expression in the Expression field of the Set Breakpoint dialog box.

• To interrupt execution when an expression reaches a particular value, use that
value in the expression you type in the Expression field of the Set Breakpoint
dialog box.

For example, if you want the application to pause when a variable named
looptest equals 17, type the following in the Expression field:

looptest==17

The application pauses when this statement becomes true.

You can also use the Set Breakpoint dialog box to combine value breakpoints with
line breakpoints so that execution stops at a specified line only if an expression has
simultaneously changed value or reached a specified value.

For large variables (such as arrays and character strings), you can specify the num
ber of bytes you want checked (up to 32K) in the Length field.

Note When a breakpoint is tied to a variable, CVW must check the variable's
value after each machine instruction is executed. This computational overhead
slows execution greatly. For maximum speed when debugging, either tie value
breakpoints to specific lines or set value breakpoints only after you have reached
the section of code that needs to be debugged.

4 .11.1.3 Setting Breakpoints on Windows Messages
You can also set a breakpoint on a Windows message or an entire class of Win
dows messages. By using this feature, you can track your application's response to
user input and window-management messages.

To set a breakpoint on a Windows message or message class, type the wbm (Win
dows Breakpoint Message) command in the Watch window. The syntax for the
command is:

wbm winproc msgname I msgclasses

The winproc parameter is the symbol name or address of an application's window
procedure. The msgname parameter is the name of a Windows message, such as
WM_PAINT. The msgclasses parameter is a string of characters that identify one
or more classes of messages. If msgclasses is not specified, CVW traces all

102 Microsoft Windows Programming Tools

message classes. If it is specified, the classes are consistent with those defined in
Microsoft Windows Spy (SPY.EXE); they are as follows:

Message class Type of Windows message

c Clipboard

d DDE

Initialization

m Mouse

n Input

s System

w Window management

z Nonclient

For example, if your application is failing to refresh the client area of a window,
you might set a breakpoint on the WM_P AINT message so that you can watch
your application's behavior as it processes the message. The following command
interrupts execution whenever the application's Main WndProc procedure receives
a WM_PAINT message:

wbm MainWndProc WM_PAINT

4 .11.1.4 Using Breakpoints
This section shows how breakpoints can help you find the cause of a problem.

One of the most common bugs is a for loop that executes too many or too few
times. If you set a breakpoint that encloses the loop statements, the application
pauses after each iteration. You can then monitor the loop variable or critical pro
gram variables in the Watch or Local window to find the error in loop processing.

You can specify that a breakpoint is to be ignored. To set the number of times a
breakpoint is to be ignored before execution is interrupted, perform the following
steps:

1. From the Watch menu, choose Set Breakpoint.

2. In the Pass Count field of the Set Breakpoint dialog box, type the decimal num
ber.

For example, suppose your application repeatedly calls a function to create a bi
nary tree. You suspect that something goes wrong approximately halfway through
the process. You could mark the line that calls the function as the breakpoint, then
specify how many times this line is to be executed before execution pauses. Run
ning the application creates a representative (but unfinished) tree structure that can
be examined from the Watch window. You can then continue your analysis by
using single-step execution, which is described in the next section.

Chapter 4 Debugging: CodeView for Windows 103

Another programming error is assignment of the wrong value to a variable. If you
enter a variable in the Expression field of the Set Breakpoint dialog box, execution
is interrupted every time the variable changes value.

Breakpoints make it possible for you to interrupt execution of an application so
that you can assign new values to variables. For example, if a limit value is set by
a variable, you can change the value to see if it affects the application's execution.
Similarly, you can pass a variety of values to a switch statement to see if they are
correctly processed. This ability to alter variables provides an especially con
venient way to test new functions without having to write a stand-alone test appli
cation.

When your application reaches a breakpoint and you change a variable, you might
want to watch each step be executed while you check the value of that variable.
This technique is called single-stepping.

4.11.2 Single-Step Execution
When single-stepping, CVW pauses after each line of code is executed. If a line
contains more than one executable statement, CVW executes all the statements on
the line before pausing. The next line to be executed is displayed in reverse video.
You can use either the Trace command or the Step command to single-step
through an application.

To use Trace, press PS. Trace displays each step of every function for which CVW
has symbolic information. Each line of the function is a separate step. If CVW
does not have symbolic information for a function, the function runs in a single
step.

To use Step, press FlO. Step displays each step of the current function but does not
step into function calls. Instead, the called function runs as a single step.

You can alternate between Trace and Step as you like. Which method you should
use depends on whether you want to see what happens within a particular function.

Attempting to step or trace through Windows startup code while viewing
assembly-language instructions causes unpredictable results. To step through your
application while viewing assembly-language instructions, set a breakpoint at the
WinMain function and begin stepping through the application only after the break
point has been reached.

Using the Trace command to step out of a window procedure causes CVW to step
into Windows system code.

104 Microsoft Windows Programming Tools

4.11.3 Animated Execution
To trace through the application continuously without having to press F8, choose
the Animate command from the Run menu. The speed of execution is controlled
by the Trace Speed command on the Options menu. You can interrupt animated
execution at any time by pressing any key.

4.11.4 Jumping to a Particular Location
At times, you may wish to force the system to jump to a particular location in your
application during execution. For example, you may want to avoid executing code
that you know has bugs, or you may want to repeatedly execute a particularly
troublesome portion of your application.

To jump to a specific location in your application, do the following:

1. From the Options menu, choose Source. Select the Mix Source and Assembly
radio button and the Show Machine Code check box.

2. In the Source window, view the line of source code to which you want to jump.

3. Examine the code offset of the first machine instruction for the assembled state
ment.

4. To change the IP register to this code offset, type the rip (Register IP) com
mand in the command window, supplying the value in hexadecimal format.

CVW highlights the line to which you have jumped.

Caution Do not jump from one procedure to another. Jumping from one procedure
to another disrupts the stack.

Assembled source code for a given statement may rely on memory values and reg
isters set in previous instructions. If you cause execution to jump to a specific
point in your application, values and registers may not be correctly set, particularly
if optimization was not disabled during compiling.

4.11.5 Interrupting Your Application
There may be times when you want to interrupt your application immediately.
You can force an immediate interruption of a CVW session by pressing
CTRL+ALT+SYS RQ. You then have the opportunity to change debugging options; for
example, you can add breakpoints and modify variables. To resume continuous ex
ecution, just press F5; to single-step, press FlO.

You should take care when you interrupt the CVW session. For example, if you in
terrupt the session while Windows code or other system code is being executed,

Chapter 4 Debugging: CodeView for Windows 105

attempting to use the Step command or the Trace command could produce unpre
dictable results. When you interrupt the CVW session, it is usually safer to set
breakpoints in your code and resume continuous execution than to use Step or
Trace.

An infinite loop in your code presents a special problem. Again, because you
should avoid using Step or Trace after interrupting your application, you should
try to locate the loop by setting breakpoints in places you suspect are in the loop.

Whether or not you locate the infinite loop, you will have to terminate your appli
cation. The wka (Windows Kill Application) command terminates the task that is
currently running. You should use the wka command only when your application
is the one being executed.

If your application is currently executing a module that contains symbol informa
tion, the CVW Source window highlights the current instruction. However, if your
application contains modules without symbolic information, it is more difficult to
determine whether the assembly-language code displayed in the Source window
belongs to your application or to another task.

In this case, use the wdg (Windows Display Global Heap) command, supplying
the value in the CS register as the parameter. CVW displays a listing that indicates
whether the code segment belongs to your application. If the code segment does
belong to your application, you can use the wka command without affecting other
tasks. The wka command does not perform all the cleanup tasks associated with
the normal termination of a Windows application. For example, graphics device in
terface (GDI) objects created during the execution of the application but not de
stroyed before you terminated the application remain allocated in the systemwide
global heap. This reduces the amount of memory available during your Windows
session. Because of this, you should use the wka command to terminate the appli
cation only if you cannot terminate it normally.

The wka command simulates a fatal error in your application. Because of this,
when you use the wka command, Windows displays an error message. After you
close the message box, Windows may not release subsequent mouse input mes
sages from the system queue until you press a key. If this happens, the cursor
moves on the Windows screen, but Windows does not appear to respond to the
mouse. After you press any key, Windows responds to all mouse events that oc
curred before you pressed the key.

106 Microsoft Windows Programming Tools

4.12 Handling Abnormal Termination of the Application
Your application can terminate abnormally in one of two ways while you are de
bugging it with CVW. It can cause a fatal exit, or it can cause a GP fault. In both
cases, CVW regains control, giving you the opportunity to examine the state of the
system when your application terminated. In particular, you can often determine
the location in your application's code where the error occurred or which call
caused the error. CVW makes it possible for you to view registers, display the
global heap, display memory, and examine the source code.

Once you have determined where the error occurred, type the q (Quit) command
in the Command window to terminate CVW. In most cases, control returns to Win
dows.

4.12.1 Handling a Fatal Exit
If the abnormal termination was a fatal exit and the application was running with
the retail version of Windows, CVW displays a fatal exit code and the CS:IP regis
ter contains an address in the Windows code itself. This small amount of informa
tion provides little to help you locate the last call that your application made
before the error was detected.

If, however, your application was running with the debugging version of Win
dows, the CVW Command window displays a stack trace that is much more useful
for finding the error in your source code.

After the stack trace appears in the CVW Command window, Windows prompts
you with the following message:

Abort, Break, or Ignore?

To locate the cause of the error, press the B key. This allows CVW to regain con
trol from Windows.

In most cases, the stack trace will have been scrolled past the top of the CVW
Command window; but once CVW regains control, you can scroll the information
in the window to examine the entire stack trace. The following information ap
pears at the top of the stack trace:

• A fatal exit number. For more information about Windows debugging mes
sages, see Appendix C, "Windows Debugging Version."

• The CS :IP address, the name of the Windows function where the error was
detected, or the name of the last Windows function called before the error was
detected.

Chapter 4 Debugging: CodeView for Windows 107

Following this information, additional Windows functions may be listed in the
stack trace. Somewhere near the top of the stack trace, a CS:IP address is listed
without a Windows function name. In most cases, this is the location in the source
code of your application at which the call to a Windows function occurred, trigger
ing the fatal exit.

To examine this location in your source code, open or switch to a Source window
and use the v (View) command followed by the CS:IP address; be sure to precede
both the segment and the offset with the hexadecimal prefix Ox. For example, if
CVW indicates that the error occurred at 07DA:0543 in your application, type the
following command:

v 0x07DA:0x0543

If the module at which the error occurred was compiled to produce object files con
taining symbolic information, the CVW Source window displays the location in
your code at which the errant call to a Windows function occurred.

The first CS:IP address without a name in the stack trace may point to a location in
your code without symbols. For example, the code may be in a DLL you didn't
specify with the /I command-line option or when CVW prompted you for a DLL,
or the address might be in a module that was not compiled to produce symbolic in
formation. In such cases, CVW reports that no source code is available. If this hap
pens, continue down the stack trace, using the v command to examine each
unnamed CS:IP address. You are likely to find a location in a module that was
compiled to produce symbolic information and to find this location made a call
into one of your modules that was not compiled to produce symbolic information.

4.12.2 Handling a General Protection Fault
When a general protection (GP) fault occurs, CVW displays a message in the
Command window to notify you of the event. If the GP fault occurred at an in
struction in one of your modules, CVW displays the corresponding source code if
the module was compiled to produce symbolic information. You can obtain infor
mation about the chain of calls leading up to the GP fault by using the CVW Call
menu. This menu displays a backtrace of calls in the form of a series of segments
and offsets, starting at the most recent call.

If your application was running with the debugging version of Windows, the back
trace shows function names next to some of the segment: offset pairs. By examin
ing the function names, you may be able to determine where in your code the error
occurred.

108 Microsoft Windows Programming Tools

4.13 Ending a Session
To terminate a CVW session, you can choose the Exit command from the File
menu or type the q (Quit) command in the Command window.

You can also terminate your application without terminating CVW. While Win
dows is terminating the application, it notifies CVW. CVW then displays the fol
lowing message:

Program terminated normally (0)

The value in parentheses is the return value of the WinMain function. This value
is usually the wParam parameter of the WM_ QUIT message, which in turn is the
value of the nExitCode parameter passed to the PostQuitMessage function.

If you were debugging more than one application or DLL, you can press FS to con
tinue the debugging session.

4.14 Advanced Techniques
Once you are comfortable displaying variables, changing variables, and control
ling the execution of your application, you may want to experiment with the fol
lowing advanced techniques:

• Using multiple Source windows

• Checking for undefined pointers

• Handling register variables

• Redirecting CVW input and output

4.14.1 Using Multiple Source Windows
You can have two Source windows open at the same time. The windows can dis
play two different sections of source code for the same application. They can both
track CS:IP addresses, or one can display a high-level listing and one can display
an assembly-language listing. You can move freely between the Source windows,
executing a single line of source code or a single assembly-language instruction at
a time.

4.14.2 Checking for Undefined Pointers
Until a pointer has been explicitly assigned a value, its value is undefined. Its
value can be completely random, or it can be some consistent value (such as 1)
that does not point to a useful data address.

Chapter 4 Debugging: CodeView for Windows 109

Accessing a value through an uninitialized pointer address can cause inexplicable
or erratic application behavior, because the data is not being read from or written
to the intended location. For example, suppose that varl is mistakenly written to
the address specified by an uninitialized pointer and that then var2 is written there.
When varl is read back, it does not have its original value, having been replaced
by var2.

4.14.3 Handling Register Variables
A register variable is stored in one of the microprocessor's registers, rather than in
random-access memory (RAM). This speeds up access to the variable.

A conventional variable can become a register variable in either of the following
ways:

• The variable is declared as a register variable. If a register is free, the compiler
stores the variable there.

• The compiler stores a frequently used variable (such as a loop variable) in a reg
ister during optimization to speed up execution.

Register variables can cause problems during debugging. As with local variables,
they are visible only within the function where they are defined. In addition, a reg
ister variable may not always be displayed with its current value.

Usually, it is a good idea to turn off all optimization and to avoid declaring register
variables until the application has been fully debugged. Any side effects produced
by optimization or register variables can then be easily isolated.

4.14.4 Redirecting CodeView for Windows Input and Output
You can cause CVW to receive input from an input file and generate output to an
output file. To redirect CVW input and output, you can use the /c option on a com
mand line of the following form to start CVW:

cvw /c "<in.file; t >outfile"

When you redirect input in this way, CVW carries out any commands in in.file
during startup. When CVW exhausts all commands in the input file, focus auto
matically shifts to the Command window.

When you redirect output, it is sent to both outfile and the Command window.
You can use the t parameter before the right angle bracket (>) on the command
line to send output to the Command window. You can also redirect output from
the command line after CVW has started.

110 Microsoft Windows Programming Tools

Redirection is a useful way to automate CVW startup. Although redirection makes
it possible for you to keep a viewable record of command-line input and output,
you cannot record mouse operations. Some applications-particularly interactive
ones-may need modification to allow for redirection of input to the application
itself.

4.15 Modifying the TOOLS.INI File
To customize the behavior and user interface of CVW, modify the [cvw] section
of your TOOLS.IN! file. The TOOLS.IN! file is an ASCII text file. You should
place it in a directory pointed to by the INIT environment variable. (If you do not
use the INIT environment variable, CVW looks for TOOLS.IN! only in the CVW
source directory.)

Most TOOLS.IN! customizations control screen colors, but you can also specify
startup commands or the name of the file that receives CVW output. The Help sys
tem contains complete information about all the TOOLS.IN! entries for CVW.

4.16 Related Topics
For more information about CVW commands, consult CVW Help.

For an introduction to programming Windows applications, see the Microsoft Win
dows Guide to Programming.

For more information about Windows debugging messages, see Appendix C,
"Windows Debugging Version."

Advanced Debugging:
80386 Debugger

Chapter 5

5.1 Preparing Symbol Files for 80386 Debugger.. 113
5.2 Starting 80386 Debugger... 114
5.3 Entering 80386 Debugger.. 116
5.4 Command Syntax ... 118

5.4.1 Command Keys ... 118
5 .4.2 Command Parameters.. 118
5.4.3 Binary and Unary Operators.. 121
5.4.4 Regular Expressions.. 122

5.5 Common Commands ... 123
5.6 Reference of 80386 Debugger Commands.. 125
5.7 Related Topics.. 170

Chapter 5 Advanced Debugging: 80386 Debugger 113

Microsoft Windows 80386 Debugger (WDEB386.EXE) is used to test and debug
Windows applications and dynamic-link libraries (DLLs) running with the
Microsoft Windows operating system in standard or 386 enhanced mode. With
80386 Debugger commands, you can inspect and manipulate test code and en
vironment status, install breakpoints, and perform other debugging operations.

Although 80386 Debugger offers debugging features not available in Code View
for Windows (CVW), 80386 Debugger lacks the convenient window interface of
CVW and does not provide source-level debugging.

To use 80386 Debugger, you must have a serial terminal connected to the com
puter on which you are running the debugger and test application.

The terminal connection requirements are described in Section 5.2, "Starting
80386 Debugger."

This chapter describes the following:

• Preparing symbol files for 80386 Debugger

• Starting 80386 Debugger

• Entering 80386 Debugger

• Command format for 80386 Debugger

• List of common commands

It also contains a reference of 80386 Debugger commands.

5.1 Preparing Symbol Files for 80386 Debugger
To prepare application symbol files, perform the following steps:

1. Compile your C-language source files, using the appropriate command-line op
tion to generate object files with line-number information for use by 80386
Debugger. For more information about compiler options, see the documentation
that accompanied your compiler.

2. Link the compiled code with the standard Windows libraries, using the appro
priate command-line option to prepare a symbol map (.MAP) file that includes
PUBLIC symbols. The map file is required by Microsoft Symbol File Gener
ator (MAPSYM).

You may also want to use the linker option for display of line-number informa
tion. For more information about linker options, see the documentation that ac
companied your linker.

3. Run MAPSYM to create a symbol file for symbolic debugging. MAPSYM con
verts the contents of your application's symbol map (.MAP) file into a form

114 Microsoft Windows Programming Tools

suitable for loading with 80386 Debugger; then MAPSYM copies the result to
a symbol (.SYM) file.

Following is the command-line syntax for MAPSYM:

mapsym [n][/n] mapfilename

/1

In

Directs MAPSYM to display information on the screen about the conver
sion. The information includes the names of groups defined in the applica
tion, the application start address, the number of segments, and the number
of symbols per segment.

Directs MAPSYM to ignore line-number information in the map file. The re
sulting symbol file contains no line-number information.

mapfilename
Specifies the filename for a symbol map file that was created during linking.
If you do not give a filename extension, .MAP is assumed. If you do not give
a full path, the current directory and drive are assumed. MAPSYM creates a
new symbol file having the same name as the map file but with the .SYM ex
tension.

In the following example, MAPSYM uses the symbol information in
FILE.MAP to create FILE.SYM in the current directory on the current drive:

mapsym /1 file.map

Information about the conversion is sent to the screen.

Note MAPSYM always places the new symbol file in the current directory on
the current drive.

MAPSYM can process up to 10,000 symbols for each segment in the applica
tion and up to 1024 segments.

5.2 Starting 80386 Debugger
A three-wire null modem cable is the minimum cable requirement for the serial ter
minal. In a three-wire null modem cable, the TxD (transmit data) and RxD (re
ceive data) lines are in opposite positions at the two ends of the cable, but the
signal ground is connected straight through.

The command-line syntax is as follows:

wdeb386 [/C:comport] [ID:"commands"] [/Fifilename] [/N] [/T:hhhh]
[/S:symfile] [/V[P]] [X] win.file [parameters]

Chapter 5 Advanced Debugging: 80386 Debugger 115

Following are the command-line options and parameters:

IC: comport
Specifies a COM port for debugger output. If this option is not specified, 80386
Debugger checks first for COM2. If COM2 is not found, the debugger then
checks for COMl. If neither COMl nor COM2 exists, the debugger checks for
any other COM port in the read-only memory (ROM) data area (40:0). A three
wire null modem cable is all that is needed for terminal connection; no DTR
(data-terminal-ready) and CTS (clear-to-send) handshaking is used.

ID:" commands"
Carries out the 80386 Debugger command line specified by the string enclosed
in quotation marks. Spaces, semicolons(;), and other punctuation can be in
cluded in the command string. To use a single quote (') on the command line,
use double quotation marks (") before and after the single quotation mark.

The commands specified in this option are carried out after symbols are loaded.
This means you can set breakpoints in code even before the code has been
loaded. Before a segment or module has been loaded or defined, breakpoints
can be set on the logical address (a combination of map number and group num
ber) until the segment or module is defined, at which point the breakpoint turns
into a real breakpoint.

IF: filename

IN

Specifies a file containing command-line options for 80386 Debugger. Maxi
mum file size is 4K, and the input file cannot contain the IF option.

Sets the following options:

dislwr
code bytes
symaddrs
int3line
newvec
newreg
newprompt

For information about these options, see they command in Section 5.6, "Refer
ence of 80386 Debugger Commands."

IS: symfile
Specifies a symbol file to be loaded. This option can be repeated to load more
than one symbol file. If the symbol files are not in your current directory, you
must supply a full path, because 80386 Debugger does not use the PATH en
vironment variable to locate any of the files supplied on the command line.

When memory is low, you can use more symbol files by running 80386 Debug
ger in the Windows directory and specifying the full path ofWIN386.EXE
(such as \WINDOWS\SYSTEM\WIN386.EXE) instead of WIN.COM.

116 Microsoft Windows Programming Tools

IT:hhhh

N
Sets the port number for the timing card. (The default number is 250h.)

Enables verbose mode, which displays messages indicating which segments are
being being loaded. This option displays the messages for both Windows in 386
enhanced mode and Windows applications.

NP

IX

Enables verbose mode, which displays messages indicating which segments are
being loaded. This option displays the messages for applications only.

Causes symbols to be loaded into Extended Memory Specification (XMS)
memory. This option has no effect with Windows version 3.1.

winfile
Specifes the Windows application to run under 80386 Debugger control. You
will usually specify WIN.COM.

parameters
Specifies any parameters to be passed to the application.

Note The length of the command line cannot exceed 128 characters.

Following are two examples of valid commands:

wdeb386 /V /S:\windows\system\krnl286.sym /S:myapp.sym \windows\win.com Is myapp

wdeb386 /C:l /S:krnl386.sym /s:user.sym /S:\myapp\myapp.sym \windows\win.com /3
my a pp

You can start 80386 Debugger as a device driver by placing the following line in
your CONFIG.SYS file:

device=c:\windev\wdeb386.exe

You must specify the full path to the WDEB386.EXE file. You can specify any
command-line options on the line with device= (for example, you can load symbol
files).

5.3 Entering 80386 Debugger
To enter 80386 Debugger at any time interrupts are not disabled, press the CTRL+C

key combination on the debugging terminal. A nonmaskable interrupt (NMI) can
be used to enter the debugger even when interrupts are disabled.

An int 3 instruction or a call to the Windows DebugBreak function passes control
to the 80386 Debugger.

Chapter 5 Advanced Debugging: 80386 Debugger 117

When a Windows application running in standard or 386 enhanced mode attempts
to read or write memory with a bad selector, beyond a selector limit, or with a
selector set to 0, a general protection (GP) fault occurs.

In such cases, Windows displays a dialog box notifying the user of a problem.
When 80386 Debugger is loaded, the dialog box has a Cancel button. If the user
chooses the Cancel button, Windows passes control to the debugger at the instruc
tion that caused the fault with a display of the following form:

GENERAL PROTECTION VIOLATION
AX=00000000 BX=00002136 CX=06040079 OX=00001EF5 SI=000000C3 DI=00002283
IP=00000028 SP=80012126 BP=0000212C CR2=80501FFC CR3=0293 IOPL=0 F=-- -
CS=0915 SS=091D DS=091D ES=0000 FS=0000 GS=0000 -- NV UP EI PLZR NA PE
NC
00AD:00000FA0 MDV BX, WORD PTR ES:[BXJ
ES:65DF=INV:0003#

For more information about commands shown in the remaining examples in this
section, see Section 5.4.2, "Command Parameters," and Section 5.6, "Reference of
80386 Debugger Commands."

You can determine the cause of the GP fault by looking at the value and the limit
of the selector. To dump the local descriptor table (LDT) entry, you can use a com
mand of the following form:

di selector

The ability to continue execution depends on the cause of the fault. If the fault was
caused by reading or writing beyond the selector limit, it may be possible to skip
the instruction by incrementing the IP register.

To determine how many bytes the instruction contains, you may need to display
the actual code bytes when disassembling the instruction. To do this, use the fol
lowing commands:

y codebytes
r

If the fault is caused by a critical logic error, such as trying to use a selector for a
temporary variable, there probably is no way to continue execution of the applica
tion. You may need to restart the computer.

118 MicrosoH Windows Programming Tools

5.4 Command Syntax
To enter 80386 Debugger commands, you use a debugging terminal rather than
your computer's keyboard.

Commands and parameters are not case-sensitive.

If a syntax error occurs in a debugger command, 80386 Debugger redisplays the
command line and indicates the error with a caret (A) and the word Error, as in the
following example:

A100
" Error

5.4.1 Command Keys
Following are the command keys:

Key Action

CTRL+A Repeats the previous command.

CTRL+C Halts 80386 Debugger output, and returns to the debugger prompt.

CTRL+S Freezes an 80386 Debugger display.

CTRL+Q Restarts the display.

If the target system is executing code, CTRL+S and CTRL+Q are ignored.

5.4.2 Command Parameters
You can separate 80386 Debugger command parameters with delimiters (spaces
or commas), but a delimiter is required only between two consecutive hexadeci
mal values. The following commands are equivalent:

dCS:100 110
d CS:100 110
d,CS:100,110

Following are the parameters you can use with 80386 Debugger commands:

addr
Represents an address parameter in one of four forms. For more information
about the operators shown in the following address forms, see Section 5.4.3,
"Binary and Unary Operators."

Address

#lf:02CO

%31020

%%31020

&0100:02FF

Chapter 5 Advanced Debugging: 80386 Debugger 119

Mode

Protected-mode address (selector:offset)

Linear address

Physical address

Real-mode address (segment:offset)

Any of these specified address forms overrides the current address type.

byte
Specifies a two-digit hexadecimal value.

cmds
Specifies an optional set of debugger commands to be executed with the hp
(Set Breakpoint) or j (Conditionally Execute) command.

count
Specifies a count. Valid values depend on the command with which this
parameter is being used.

dword
Represents an eight-digit (4-byte) hexadecimal value. The DWORD data type
is most commonly used as a physical address.

expr
Represents a combination of parameters and operators that evaluates to an 8-bit,
16-bit, or 32-bit value. An expr parameter can be used as a value in any com
mand. An expr parameter can combine any symbol, number, or address with
any of the binary and unary operators.

flags
Specifies one or more conditions. Valid conditions depend on the command
with which this parameter is being used.

group-name
Specifies the name of a group that contains the map symbols you want to dis
play.

list
Specifies a series of byte values or a string. The list parameter must be the last
parameter on the command line. Following is an example of the f (Fill) com
mand with a list parameter:

fCS:100 42 45 52 54 41

map-name
Specifies the name of a symbol map file.

name-chars
Specifies one or more characters.

120 Microsoft Windows Programming Tools

number
Specifies a numeric value. Valid values depend on the command with which
this parameter is being used.

object
Specifies a handle, a selector, or (in 386 enhanced mode) a heap address.

option
Specifies an option. Valid options depend on the command with which this
parameter is being used.

range
Specifies the block of memory on which the command should operate. The
range parameter can be two addresses (addr addr); or it can be one address and
a length (addr L word, where word is the number of items on which the com
mand should operate; 80h is the default value). Following are three valid ex
amples:

CS:100 110
CS:100 L 10
CS:100

The limit for range is lOOOOh. To specify a word of lOOOOh using only four
digits, use OOOOh or Oh.

reg
Specifies the name of a microprocessor register.

string
Represents any number of characters enclosed in single quotation marks (') or
double quotation marks("). For quotation marks that must appear within string,
you must use two sets of quotation marks. For example, the following strings
are valid:

'This "string" is OK.'
\"This \"\"string\"\" is OK.\"

However, the following strings are not valid:

\"This \"string\" is not OK.\"
\"This 'string' is not OK.\"

The ASCII values of the characters in the string are used as a list of byte values.

word
Specifies a four-digit (2-byte) hexadecimal value.

Chapter 5 Advanced Debugging: 80386 Debugger 121

5.4.3 Binary and Unary Operators
Following, in descending order of precedence, are the binary operators that can be
used in 80386 Debugger commands:

Operator

()

*
I

MOD

+

>
<
>=
<=

!=
AND

XOR

OR

&&

Meaning

Parentheses

Address binder

Multiplication

Integer division

Modulus (remainder)

Addition

Subtraction

Greater-than relational operator

Less-than relational operator

Greater-than/equal-to relational operator

Less-than/equal-to relational operator

Equal-to relational operator

Not-equal-to relational operator

Bitwise Boolean AND

Bitwise Boolean exclusive OR

Bitwise Boolean OR

Logical AND

Logical OR

Following, in descending order of precedence, are the unary operators that can be
used in 80386 Debugger commands:

Operator

&(seg)

#(sel)

%%(phy)

%(Zin)

NOT

SEO

OFF

BY

WO

Meaning

Address of segment value

Address of selector value

Address as a physical value

Address as a linear value

Two's complement

Logical NOT operator

One's complement

Segment address of operand

Address offset of operand

Low-order byte from given address

Low-order word from given address

122 Microsoft Windows Programming Tools

Operator

DW

POI

PORT

WPORT

5.4.4 Regular Expressions

Meaning

Doubleword from given address

Pointer (4 bytes) from given address-this operator works only with
16:16 addresses

1 byte from given port

Word from given port

The set of regular expressions that 80386 Debugger supports for matching sym
bols is similar to the set supported by UNIX grep. The 80386 Debugger set in
cludes a few enhancements.

Following are the 80386 Debugger wildcards:

Wild card

[]

Description

Matches any single character.

Defines a character class; matches a set or range of characters.

Negates a character class.

Following are the 80386 Debugger postfix operators:

Operator

*

+

Description

Causes the previous wildcard or single character to match zero or more
characters.

Matches zero or one.

Plus sign, matches one or more.

Anywhere a symbol is accepted, a regular expression can be used. If there is more
than one match, a list of matching symbols is displayed and you must select the
proper symbol. The symbol match is not case-sensitive.

The asterisk(*), number sign(#), and plus sign (+) are already math expression
operators. To be recognized as a regular expression operator, each of these charac
ters must be immediately preceded by an escape character-the backslash(\). The
period(.), opening bracket([), and closing bracket(]) do not require escape charac
ters. Anything inside the brackets of a character class does not have to be escaped.
Following are valid character classes:

[a-z]
[;*+#]

Characters are escaped at two levels: in the expression evaluator and in the regular
expression parser. A character special to the expression evaluator(*,#,+, or\)

Chapter 5 Advanced Debugging: 80386 Debugger 123

must be escaped to make it to the regular expression parser. If a character special
to the regular expression parser must be escaped (for example, to match symbols
with* or# in them), it must be escaped twice. If a backslash is needed in an ex
pression, it must be double escaped.

Following are sample regular expressions:

Regular expression Description

sym. *

sym*

. *Sym.*
sym[0-9J
sym*
sym\\\\

sym\\\\.*

Matches any symbols beginning with the string sym.

Matches sym alone and sym followed by any characters.

Matches any symbols containing the string sym .

Matches symO, syml, sym2, and so on.

Matches sym *.

Matches sym\.

Matches any symbols beginning with the string sym\.

5.5 Common Commands
This section documents the commands available in all environments in which you
can use 80386 Debugger. A command that begins with a period(.) is called a dot
command.

Command

?

. ?

. b

.df

. dg

. dh

.dm

.dq

. du

.reboot

be

bd

be

bl

hp

hr

c

Description

Display expression, or display help menu.

Display external commands .

Set baud rate for COM port .

Display global free list.

Display global heap .

Display local heap .

Display global module list.

Dump task queues.

Display list of least recently used (LRU) global memory objects .

Restart target system.

Clear breakpoint.

Disable breakpoint.

Enable breakpoint.

List breakpoints.

Set breakpoint.

Set breakpoint on debug register.

Compare memory locations.

124 Microsoft Windows Programming Tools

Command

d
db
dd

dg

di

di

dp

dt

dw

dx
e

f

g

h

j
k

ka

kt

la

lg

Im
In
ls

m

0

p
r

s
t

u
v

vc

vi

VO

vs

vt

w

Description

Display memory.

Display bytes.

Display doublewords.

Display global descriptor table (GDT).

Display interrupt descriptor table (IDT).

Display local descriptor table (LDT).

Display page directory and page tables.

Display task state segment (TSS).

Display words.

Dump loadall buffer.

Enter byte.

Fill memory.

Go.

Perform hexadecimal arithmetic.

Display 1 byte of input.

Conditionally execute command.

Display current stack frame.

Set backtrace argument.

Display stack frame of task.

List absolute symbols.

List groups.

List maps.

List nearest symbol.

List symbols.

Move memory.

Write output to a port.

Execute instruction, returning from any call or interrupt.

Display register.

Search for a byte.

Execute instruction.

Disassemble bytes.

Display debugger version.

Clear interrupt vector.

List debugger interrupt vectors.

List debugger interrupt vectors in specified format.

Add debugger interrupt vector (not at ring 0).

Add debugger interrupt vector.

Change active map list.

Command

wa

wr

y

z

zd

zl

ZS

Chapter 5 Advanced Debugging: 80386 Debugger 125

Description

Add map to active list.

Remove map from active list.

Change debugger configuration.

Zap embedded int 1 or int 3 instruction.

Execute default command string.

Display default command string.

Change default command string.

5.6 Reference of 80386 Debugger Commands

? .
? [option.]expr]

This section describes the common commands that can be used with 80386
Debugger.

? ["string", expr, expr, [...]

Parameters

The ? command evaluates an expression and displays the result.

The? command with no arguments displays a list of commands and syntax recog
nized by the debugger.

option
Specifies the format in which to display the expression specified by expr. The
option parameter can be one of the following characters:

Character Format

h Hexadecimal

d Decimal

t Decimal

0 Octal

q Octal

y Binary

If option is given, a period(.) must be used to separate option and expr. If
option is not given, the command displays all formats, an ASCII character rep
resentation, and whether the expression is TRUE or FALSE.

126 Microsoft Windows Programming Tools

expr
Specifies an expression consisting of one or more addresses, numbers, and oper
ators. The operators in the expression can be any of the 80386 Debugger opera
tors listed in Section 5.4.3, "Binary and Unary Operators." The addresses in the
expression can be 32-bit physical addresses or protected-mode addresses
(selector:offset). The number sign(#) operator overrides the current address
type.

string
Specifies a printf formatting string. Supported printf format characters are as
follows:

Format character

%%
%c

%[-][+][][O][width][.precision][p][n]d

%[-][O][width][.precision] [p] [n]u

%[-][#] [0] [width][.precision][p][n]x

%[-][#][OJ [width][.precision][p][n]X

%[-][0] [width][.precision][p][n]o

%[-] [0] [width] [.precision] [p] [n]b

%[-][width] [.precision] r a]s

%[-][width] [.precision] [a][p][n][L] [H][N]S

% [-] [width] [.precision] [a] [p] [n] [L] [H] [N]G

%[-][width][.precision][a][p][n] [L][H][N]M

%[-][width][.precision][a][p][n] [L][H][N]A

Meaning

%
Character

Decimal

Unsigned decimal

Hexadecimal

Hexadecimal

Octal

Binary

String

Symbol

Group:symbol

Map:group:symbol

Address

Specifying an asterisk (*) for the width or precision parameter causes the field
width or precision, respectively, to be picked up from the next parameter. Deci
mal values can also be specified for the width and precision parameters.

The following escape sequences are supported:

Escape sequence

\a

\b

\n

\r

\t

Description

Alert (bell) character

Backspace

New line

Carriage return

Horizontal tab

Example

Chapter 5 Advanced Debugging: 80386 Debugger 127

The following table describes the optional prefixes:

Prefix Format character(s) Meaning

a s,S,G,M,A Address argument size

H S,G,M,A 16-bit offset

L S,G,M,A 32-bit offset

N S,G,M,A Offset only

p S,G,M Get the previous symbol

n S,G,M Get the next symbol

p A Get the previous symbol address

n A Get the next symbol address

p d,u,x,X,o,b Get the previous symbol offset

n d,u,x,X,o,b Get the next symbol offset

The following example looks up the physical address of selector lFh in the current
local descriptor table (LDT) and adds 220h to it:

?%(1f001F: 0220)

The following example displays the value of the expression DS:SI +BX:

? ds:si+bx

The debugger returns a display similar to the following:

987A:000001B3 %00098953 %%00098953

The following example displays the value of the arithmetic expression 3*4:

The debugger returns the following display:

0Ch 12T 140 00001100Y TRUE

128 Microsoft Windows Programming Tools

? ..
. ?

. b
.b number [addr]

Parameters

Example

.df
.df

The • ? command displays a list of external commands. These commands are part
of 80386 Debugger, but they are specific to the environment in which the debug
ger is running .

The .b command sets the baud rate for the debugging port (COM2).

number
Specifies the baud rate. It can be one of the following values: 150, 300, 600,
1200, 2400, 4800, 9600, or 19200. Because the default radix for the debugger is
16, you must type t after the number to indicate a decimal value.

addr
Specifies 1 for COMl or 2 for COM2; anything else is taken as a base port
address. If there is no COM2, 80386 Debugger checks for COMl and then for
any other COM port address in the read-only memory (ROM) data area to use
as the console.

The following example sets the baud rate to 1200:

11.b 1200t

The .df command displays a list of the free global memory objects in the global
heap.

The list has the following form:

address: size owner [chain]

. dg
.dg [object]

Parameters

Chapter 5 Advanced Debugging: 80386 Debugger 129

address
Specifies the selector of the memory in standard mode. In 386 enhanced mode,
the address field specifies physical and heap addresses.

size
Specifies the size, in paragraphs (multiples of 16 bytes), of the object in stan
dard mode. In 386 enhanced mode, the size field specifies the size of the object,
in bytes.

owner
Always specifies that the module is free.

chain
Specifies the previous and next addresses in the list of least recently used
(LRU) objects. 80386 Debugger displays the addresses only if the segment is
movable and discardable .

The .dg command displays a list of the global memory objects in the global heap.

object
Specifies the first object to be listed. The object parameter can be a handle, a
selector, or (in 386 enhanced mode) a heap address.

The list has the following form:

address: size segment-type owner [handle flags chain]

address
Specifies the selector of the memory in standard mode. In 386 enhanced mode,
the address field specifies physical and heap addresses.

size
Specifies the size, in paragraphs (multiples of 16 bytes), of the object in stan
dard mode. In 386 enhanced mode, the size field specifies the size of the object,
in bytes.

130 Microsoft Windows Programming Tools

segment-type
Specifies the type of object. The type can be any one of the following:

Segment type

CODE

DATA

FREE

PRIV

SENTINAL

owner

Meaning

Segment contains application code.

Segment contains application data and possible stack and
local heap data.

Segment belongs to pool of free memory objects ready for al
location by an application.

Segment contains private data.

Segment marks the beginning or end of the global heap.

Specifies the module name of the application or library that allocated the
memory object. The acronym PDB is used for memory objects that represent
process descriptor blocks. These blocks contain execution information about ap
plications.

handle
Specifies the handle of the global memory object. If 80386 Debugger displays
no handle, the segment is fixed.

flags
Specifies either of the following:

Flag Meaning

D The segment is movable and discardable.

L The segment is locked. If the segment is locked, the lock count appears to
the right of the flag.

If 80386 Debugger displays a handle but no flag, the segment is movable but
not discardable.

chain
Specifies the previous and next addresses in the list of least recently used
(LRU) objects. Addresses are displayed only if the segment is movable and dis
cardable (specified by the D flag).

.dh
.db

. dm
.dm

Chapter 5 Advanced Debugging: 80386 Debugger 131

The .db command displays a list of the local memory objects in the local heap (if
any) belonging to the current data segment. The command uses the current value
of the DS register to locate the data segment and check for a local heap.

The list of memory objects has the following form:

offset: size { BUSY I FREE }

offset
Specifies the address offset from the beginning of the data segment to the local
memory object.

size
Specifies the size of the object, in bytes.

If BUSY is displayed, the object has been allocated and is currently in use. If
FREE is displayed, the object is in the pool of free objects ready to be allocated
by the application. A special memory object, SENTINAL, may also be displayed .

The .dm command displays a list of the global modules in the global heap.

The list has the following form:

module-handle module-type module-name filename

module-handle
Specifies the handle of the module.

module-type
Specifies either a dynamic-link library (DLL) or the name of the application
you are debugging.

module-name
Specifies the name of the module.

filename
Specifies the name of the file from which you loaded the application.

132 Microsoft Windows Programming Tools

.dq
.dq

. du
.du

The .dq command displays a list containing information about the various task
queues supported by the system.

The list has the following form:

task-descriptor-block stack-segment:stack-pointer number-of-events
priority internal-messaging-information module

task-descriptor-block
Specifies the selector or segment address.

The task descriptor block is identical to the process descriptor block (PDB).

stack-segment: stack-pointer
Specifies the stack segment and pointer.

number-of-events
Specifies the number of events waiting for the segment.

priority
Specifies the priority of the segment.

internal-messaging-information
Specifies information about internal messages.

module
Specifies the module name .

The .du command displays a list of the least recently used (LRU) global memory
objects in the global heap.

The list has the following form:

address: size segment-type owner [handle flags chain]

address
Specifies the selector of the memory in standard mode. In 386 enhanced mode,
the address field specifies physical and heap addresses.

.reboot
.reboot

Chapter 5 Advanced Debugging: 80386 Debugger 133

size
Specifies the size, in paragraphs (multiples of 16 bytes), of the object in stan
dard mode. In 386 enhanced mode, the size field specifies the size of the object,
in bytes.

segment-type
Specifies the type of object. The type can be any one of the following:

Segment type

CODE

DATA

FREE

PRIV

SENTINAL

owner

Meaning

Segment contains application code.

Segment contains application data and possible stack and
local heap data.

Segment belongs to pool of free memory objects ready for al
location by an application.

Segment contains private data.

Segment marks the beginning or end of the global heap.

Specifies the module name of the application or library that allocated the
memory object. The acronym PDB is used for memory objects that represent
process descriptor blocks. These blocks contain execution information about ap
plications.

handle
Specifies the handle of the global memory object.

flags
Specifies D, which means the segment is movable and discardable.

chain
Specifies the previous and next addresses in the LRU list.

The .reboot command causes the target system to restart.

134 Microsoft Windows Programming Tools

be
be list I*

Parameters

Example

bd
bd list I*

The be command removes one or more defined breakpoints.

list

*

Specifies any combination of integer values in the range 0 through 9. If you
specify list, the debugger removes the specified breakpoints.

Clears all breakpoints.

The following example removes breakpoints 0, 4, and 8:

be 0 4 8

The following example removes all breakpoints:

be *

The bd command temporarily disables one or more breakpoints. To restore break
points disabled by the bd command, use the be (Enable Breakpoints) command.

Parameters list

Example

*

Specifies any combination of integer values in the range 0 through 9. If you
specify list, the debugger disables the specified breakpoints.

Disables all breakpoints.

The following example disables breakpoints 0, 4, and 8:

bd 0 4 8

The following example disables all breakpoints:

bd *

be
be list I *

Chapter 5 Advanced Debugging: 80386 Debugger 135

The be command restores (enables) one or more breakpoints that have been tem
porarily disabled by a bd (Disable Breakpoints) command.

Parameters list

Example

bl
bl

Example

*

Specifies any combination of integer values in the range 0 through 9. If you
specify list, the debugger enables the specified breakpoints.

Enables all breakpoints.

The following example enables breakpoints 0, 4, and 8:

be 0 4 8

The following example enables all breakpoints:

be *

The bl command lists current information about all breakpoints created by the bp
(Set Breakpoints) command.

If no breakpoints are currently defined, the debugger displays nothing. Otherwise,
the breakpoint number, enabled status, breakpoint address, number of passes re
maining, initial a umber of passes (in parentheses), and any optional debugger com
mands to be executed when the breakpoint is reached are displayed on the screen,
as in the following example:

0 e 04BA:0100
4 d 04BA:0503 4 (10)
8 e 0020:0001 3 (3) "R;OB OS:SI"
9 e xxxx:0012

In this example, breakpoints 0 and 8 are enabled (e) and 4 is disabled (d). Break
point 4 had an initial pass count of lOh and has four remaining passes to be taken
before the breakpoint. Breakpoint 8 had an initial pass count of 3 and must make

136 Microsoft Windows Programming Tools

bp

all three passes before it halts execution and forces the debugger to execute the op
tional debugger commands enclosed in quotation marks. Breakpoint 0 shows no
initial pass count, which means it was set to 1. Breakpoint 9 shows a virtual break
point (a breakpoint set in a segment that has not been loaded into memory).

bp[number]addr [count] [" cmds"]

Parameters

The hp command creates a software breakpoint at an address. When the applica
tion is running, software breakpoints stop execution and force the debugger to ex
ecute the default or optional command string. Unlike breakpoints created by the g
(Go) command, software breakpoints remain in memory until you remove them
with the be (Clear Breakpoints) command or temporarily disable them with the bd
(Disable Breakpoints) command.

The debugger allows up to 10 software breakpoints (0 through 9). If you specify
more than 10 breakpoints, the debugger returns the following message:

Too Many Breakpoints

The addr parameter is required for all new breakpoints.

number
Specifies which breakpoint is being created. No space is allowed between the
hp and number. If number is omitted, the first available breakpoint number is
used.

addr
Specifies any valid instruction address-the first byte of an operation code
(opcode).

count
Specifies the number of times the breakpoint is to be ignored before being ex
ecuted. It can be any 16-bit value.

cmds
Specifies an optional list of debugger commands to be executed in place of the
default command when the breakpoint is reached. You must enclose optional
commands in quotation marks and separate optional commands with semi
colons(;).

Example

br

Chapter 5 Advanced Debugging: 80386 Debugger 137

The following example creates a breakpoint at address CS:123:

bp 123

The following example creates breakpoint 8 at address 400:23 and executes a db
(Display Bytes) command:

bpB 400:23 "db DS:SI"

The following example creates a breakpoint at address 100 in the current CS selec
tor and displays the registers before comparing a block of memory. The breakpoint
is ignored 16 (lOh) times before being executed.

bp 100 10 "r;c100 L 100 300"

br[number]flags [count] ["cmds"]

Parameters

The br command sets an 80386 debug register breakpoint. Debug registers can be
used to break on data reads and writes and instruction execution. Up to four debug
registers can be set and enabled at one time.

number
Specifies which breakpoint is being created. No space is allowed between the
br command and the number parameter. If number is omitted, the first availa
ble breakpoint number is used.

flags
Specifies the length and break conditions for the breakpoint. This parameter can
be some combination of the following values:

Value

1
2

4
E

w
R

count

Meaning

Set I-byte length (default value).

Set word length on word boundary.

Set doubleword length on doubleword boundary.

Break on instruction execution only (I-byte length only).

Break on writes only.

Break on reads and writes.

Specifies the number of times the breakpoint is to be ignored before being ex
ecuted. It can be any 16-bit value.

138 Microsoft Windows Programming Tools

c
c range addr

Parameters

Example

cmds
Specifies an optional list of debugger commands to be executed in place of the
default command when the breakpoint is reached. You must enclose the group
of optional commands in quotation marks and separate optional commands
with semicolons(;).

The c command compares one memory location with another memory location.

If the two memory areas are identical, the debugger displays nothing and returns
the debugger prompt. Differences, when they exist, are displayed in the following
form:

addrl byte] byte2 addr2

range
Specifies the block of memory that is to be compared with a block of memory
starting at addr.

addr
Specifies the starting address of the second block of memory.

This section shows two forms of the c command that have the same effect. Each
compares the block of memory from 1 OOh to lFFh with the block of memory from
300h to 3FFh.

The first example specifies a range with a starting address of lOOh and an ending
address of lFFh. This block of memory is compared with a block of memory of
the same size starting at 300h.

c100 lFF 300

The second example compares the same block of memory but specifies the range
by using the L (length) option.

c100 L 100 300

d
d [range]

Parameters

Example

db
db [range]

Chapter 5 Advanced Debugging: 80386 Debugger 139

The d command displays the contents of memory at a given address or in a range
of addresses. The d command displays one or more lines, depending on the range
given. Each line displays the address of the first item displayed. The command al
ways displays at least one value. The memory display is in the format defined by a
previously executed db (Display Bytes), dd (Display Doublewords), or dw (Dis
play Words) command. Each subsequent d (typed without parameters) displays
the bytes immediately following those last displayed.

range
Specifies the block of memory to display. If you omit range, the d command
displays the next byte of memory after the last one displayed. The d command
must be separated by at least one space from any range value.

The following example displays 20h bytes at CS: 100:

d CS:100 L 20

The following example displays all the bytes in the range lOOh to l 15h in the CS
selector:

d CS:l00 115

The db command displays the values of the bytes at a given address or in a given
range.

The display is in two portions: a hexadecimal display (each byte is shown in hexa
decimal format) and an ASCII display (the bytes are shown as ASCII characters).
A nonprinting character is denoted by a period (.) in the ASCII portion of the dis
play. Each display line shows 16 bytes, with a hyphen between the eighth and
ninth bytes. Each displayed line begins on a 16-byte boundary.

140 Microsoft Windows Programming Tools

Parameters

Example

dd
dd [range]

Parameters

range
Specifies the block of memory to display. If you omit range, 128 bytes are dis
played beginning at the first address after the address displayed by the previous
db command.

The following example displays OAh bytes of memory, beginning at the specified
address:

db CS:100 0A

This example displays lines in a format similar to the following:

04BA:0100 54 4F 4D 20 53 ... 45 52 TOM SAWYER

Each line of the display begins with an address, incremented by 1 Oh from the
address on the previous line.

The dd command displays the hexadecimal values of the doublewords at the
address specified or in the specified range of addresses.

The dd command displays one or more lines, depending on the range given. Each
line displays the address of the first doubleword in the line, followed by up to four
hexadecimal doubleword values. The hexadecimal values are separated by spaces.
The dd command displays values up to the end of the range or until the first 32
doublewords have been displayed.

Typing dd displays 32 doublewords at the current dump address. For example, if
the last byte in the previous dd command was 04BA:Ol 10, the display starts at
04BA:Ol 1 l.

range
Specifies the block of memory to display. If you omit range, 32 doubleword
values are displayed beginning at the first address after the address displayed by
the previous dd command.

Example

dg
dg[a] [range]

Parameters

Example

Chapter 5 Advanced Debugging: 80386 Debugger 141

The following example displays the doubleword values from CS:lOO to CS:l 10:

dd cs: 100 110

The resulting display is similar to the following:

04BA:0100 7473:2041 676E:6972 5405:0104 0A0D:7865
04BA:0110 0000:002E

No more than four values per line are displayed.

The dg command displays the specified range of entries in the global descriptor
table (GDT).

range
Specifies the range of entries in the GDT. If you omit range, the debugger dis
plays the entire contents of the GDT.

a
Causes all entries in the table to be displayed, not just the valid entries. By de
fault, only the valid GDT entries are displayed. If the command is passed a
local descriptor table (LDT) selector, it displays the appropriate LDT entry.

The following example displays only the valid entries from Oh to 40h in the GDT:

dg 0 40

The resulting display is similar to the following:

0008 Data Seg Base=01D700 Limit=3677 DPL=0 Present ReadWriteAccessed
0010 TSS Desc Base=007688 Limit=002B DPL=0 Present Busy
0018 Data Seg Base=020D7A Li mit=03FF DPL=0 Present ReadWrite
0020 Data Seg Base=000000 Li mit=03FF DPL=0 Present ReadWrite
0028 LDT Desc Base=000000 Limit=0000 DPL=0 Present
0030 Data Seg Base=000000 Limit=0000 DPL=0 Present ReadWrite
0040 Data Seg Base=000400 Limit=03BF DPL=3 Present ReadWrite

142 Microsoft Windows Programming Tools

di
di[a] [range]

The di command displays the specified range of entries in the interrupt descriptor
table (IDT).

Parameters a

Example

Causes all entries in the table to be displayed, not just the valid ones. The de
fault is to display just the valid IDT entries.

range
Specifies the range of entries to be displayed. If you omit range, the debugger
displays all IDT entries.

The following example displays the valid IDT entries in the range Oh through lOh:

di 0 10

The resulting display is similar to the following:

0000 Int Gate Sel=1418 Off st=03D8 DPL=3 Present
0001 Int Gate Sel=2D38 Offst=0049 DPL=3 Present
0002 Int Gate Sel=1418 Offst=03E4 DPL=3 Present
0003 Int Gate Sel=2D38 Offst=006F DPL=3 Present
0004 Int Gate Sel=1418 Offst=0417 DPL=3 Present
0005 Int Gate Sel=l418 Offst=041D DPL=3 Present
0006 Int Gate Sel=1418 Offst=0423 DPL=3 Present
0007 Int Gate Sel=2D38 Offst=00A3 DPL=3 Present
0008 Int Gate Sel=l418 Offst=042F DPL=3 Present
0009 Int Gate Sel=2D38 Offst=00CA DPL=3 Present
000A Int Gate Sel=2D38 Off st=00D3 DPL=3 Present
000B Int Gate Sel=2D38 Offst=0156 DPL=3 Present
000C Int Gate Sel=2D38 Off st=01A4 DPL=3 Present
0000 Int Gate Sel=2D38 Offst=01C6 DPL=3 Present

Chapter 5 Advanced Debugging: 80386 Debugger 143

di
dl[a Ip Is I h] [range]

The di command displays the specified range of entries in the local descriptor
table (LDT).

Parameters a

Example

Causes all entries in the table to be displayed, not just the valid ones. By de
fault, only the valid LDT entries are displayed. If the command is passed a
global descriptor table (GDT) selector, it displays the appropriate GDT entry.

p
Causes private segment selectors to be displayed.

s
Causes shared segment selectors to be displayed.

h
Causes huge segment selectors to be displayed. To display the huge segment
selectors, give the shadow selector followed by the maximum number of selec
tors reserved for that segment plus 1.

range
Specifies the range of entries to be displayed. If you omit range, the entire table
is displayed.

The following example displays all the LDT entries:

dla 4 57

The command produces a display similar to the following:

0014 Call Gate Sel=1418 Offst=0417 DPL=0 Not Pres WordCount=lD
001C Code Seg Base=051418 Limit=0423 DPL=0 Not Pres ExecOnly
0027 Reserved Base=87F000 Limit=FEA5 DPL=3 Present
0034 Code Seg Base=05F000 Limit=1805 DPL=0 Not Pres ExecOnly
003C Code Seg Base=05F000 Limit=EF57 DPL=0 Not Pres ExecOnly
0047 Code Seg Base=4DC000 Limit=0050 DPL=3 Present ExecOnly
0040 Reserved Base=71F000 Limit=F841 DPL=l Not Pres
0057 Code Seg Base=59F000 Limit=E739 DPL=3 Present ExecOnly

144 Microsoft Windows Programming Tools

dp
dp[ald] [range]

The dp command displays the page directory and page tables. Page tables are al
ways skipped if the corresponding page directory entry is not present. Page
directory entries appear with an asterisk next to the page frame.

Parameters a

Example

d

Displays all present page directory and page table entries; by default, page
directory and page table entries that are zero are skipped.

Displays only page directory entries. If a count is given as part of the optional
range, it will be interpreted as a page directory entry count.

range
Specifies the range of linear addresses for page tables.

The following example displays the page directory and page table in the range 0
through 12h:

dp 0 12

The resulting display is similar to the following:

%00000000 *frame=00FCE state=3 res=0 c A pbl=0 pb0=0 U W P
%00000000 frame=00000 state=3 res=0 c u pbl=0 pb0=0 U W P
%00001000 frame=00001 state=3 res=0 c u pb1=0 pb0=0 U W P

The display produced by the dp command can contain flags that have the follow-
ing meanings:

Bit set Bit clear Meaning

D c Dirty/clean

A u Accessed/unaccessed

u s User/supervisor

w r Writable/read-only
p n Present/not-present

di
dt [addr]

Chapter 5 Advanced Debugging: 80386 Debugger 145

The dt command displays the current task state segment (TSS) or the selected TSS
if you specify the optional address.

Parameters addr

Example

dw
dw [range]

Parameters

Specifies the address of the TSS to display. If no addr is given, dt displays the
current TSS pointed to by the TR register.

The following example displays the current TSS:

dt

The resulting display is similar to the following:

AX=0000 BX=0000 CX=0000 DX=0000 SP=0000 BP=0000 SI=0000 01=0000
IP=0000 CS=0000 DS=0000 ES=0000 SS=0000 NV UP DI PL NZ NAPD NC
SS0=0038 SP0=08DE SS1=0000 SP1=0000 SS2=0000 SP2=0000
IDPL=0 LDTR=0028 LINK=0000

The dw command displays the hexadecimal values of the words at a given address
or in a given range of addresses.

The command displays one or more lines, depending on the range given. Each line
displays the address of the first word in the line, followed by up to eight hexadeci
mal word values. The hexadecimal values are separated by spaces. The command
displays values until the end of the range or until the first 64 words have been dis
played.

Typing dw displays 64 words at the current dump address. For example, if the last
word in the previous dw command was displayed at address 04BA:Ol 10, the next
display will start at 04BA:Ol 12.

range
Specifies the range of addresses to display. If you omit range, 64 words are dis
played beginning at the first address after the address displayed by the previous
dwcommand.

146 Microsoft Windows Programming Tools

Example The following example displays the word values from CS:lOO to CS:llO:

dw CS: 100 110

e
e addr [list]

The resulting display is similar to the following:

04BA:0100 2041 7473 6972 676E 0104 5404 7865 0A0D
04BA:0110 002E

The e command enters byte values into memory at a specified address. You can
specify the new values on the command line or let the debugger prompt you for
values. If the debugger prompts you, it displays the address and its contents and
then waits for you to perform one of the following actions:

• Replace a byte value with a value you type. Type the value after the current
value. If the byte you type is an invalid hexadecimal value or contains more
than two digits, the system does not echo the illegal or extra character.

- • Press the SPACEBAR to advance to the next byte. To change the value, type the
new value after the current value. If, when you press the SPACEBAR, you move
beyond an 8-byte boundary, 80386 Debugger starts a new display line with the
address displayed at the beginning.

• Type a hyphen (-) to return to the preceding byte. If you decide to change a byte
before the current position, typing the hyphen returns the current position to the
previous byte. When you type the hyphen, a new line is started with its address
and byte value displayed.

• Press ENTER to terminate the e command. You can press ENTER at any byte posi
tion.

Parameters addr
Specifies the address of the first byte to be entered.

list
Specifies the byte values used for replacement. These values are inserted auto
matically. If an error occurs when you are using the list form of the command,
no byte values are changed.

Example

f
f range list

Parameters

Example

Chapter 5 Advanced Debugging: 80386 Debugger 147

The following example prompts you to change the value EB at CS:lOO:

eCS:100
04BA:0100 EB.

To step through the subsequent bytes without changing values, press the SPACE

BAR. In the following example, the SPACEBAR is pressed three times:

04BA:0100 EB.41 10. 00. BC.

To return to a value at a previous address, type a hyphen, as shown in the follow
ing example:

04BA:0100 EB.41
04BA:0102 00.-
04BA:0101 10.

10. 00. BC.-

This example returns to the address CS: 101.

The f command fills the addresses in a specified range with the values in the
specified list.

range
Specifies the block of memory to be filled. If range contains more bytes than
the number of values in list, the debugger uses list repeatedly until all bytes in
range are filled. If any of the memory in range is not valid (bad or nonexistent),
an error occurs in all succeeding locations.

list
Specifies the list of values to fill the given range. If list contains more values
than the number of bytes in range, the debugger ignores the extra values in list.

The following example fills memory locations 04BA:100 through 04BA:1FF with
the bytes specified, repeating the five values until it has filled all lOOh bytes:

f04BA:100 L 100 42 45 52 54 41

148 Microsoft Windows Programming Tools

g
g[slhltlz] [=addr [addr[•••]]

The g command executes the application currently in memory. If you type the g
command by itself, the current application runs as if it had been run outside the de
bugger. If you specify =addr, execution begins at the specified address.

Specifying an optional breakpoint address causes execution to halt at the first
address encountered, regardless of the position of the address in the list of
addresses that halts execution or application branching. When execution of the ap
plication reaches a breakpoint, the default command string is executed.

The stack (SS:SP) must be valid and have 6 bytes available for this command. The
g command uses an iret instruction to cause a jump to the application being tested.
The stack is set, and the user flags, CS register, and IP register are pushed on the
user stack. (If the user stack is not valid or is too small, the operating system may
crash.) An interrupt code (OCCh) is placed at the specified breakpoint addresses.

When the debugger encounters an instruction with the breakpoint code, it restores
all breakpoint addresses listed with the g command to their original instructions. If
you do not halt execution at one of the breakpoints, the interrupt codes are not re
placed with the original instructions.

Parameters s

h

Shows the time, in microseconds, from when the system is started with gs until
the next entry to the debugger. No attempt is made to calculate and remove de
bugger overhead from the measurement. Requires a timing card.

Displays the approximate debugger overhead in the s option. Requires a timing
card.

tor z
Allows trapped exceptions to resume at the original trap handler address
without having to unhook the exception. Use these options instead of the vcp d;
t; vsp d command.

=addr
Specifies the address at which execution is to begin. The equal sign (=) is
needed to distinguish the starting address from the breakpoint address.

addr
Specifies one or more breakpoint addresses where execution is to halt. You can
specify up to 10 breakpoints, but only at addresses containing the first byte of
an operation code (opcode). If you attempt to set more than 10 breakpoints, an
error message is displayed.

Example

h
h word word

Parameters

Example

Chapter 5 Advanced Debugging: 80386 Debugger 149

The following example executes the application currently in memory until address
7550 in the CS selector is executed. The debugger then executes the default com
mand string, removes the int 3 trap from this address, and restores the original in
struction. When you resume execution, the original instruction is executed.

gCS:7550

The h command performs hexadecimal arithmetic on the two specified parame
ters.

The debugger adds, subtracts, and multiplies the two parameters; divides the sec
ond parameter by the first; and then displays the results on one line. The debugger
does 32-bit multiplication and displays the result as doublewords. The debugger
displays the result of division as a 16-bit quotient and a 16-bit remainder.

word
Specifies a 16-bit word parameter.

The following example performs the calculations on 300h and lOOh:

h 300 100

The resulting display is the following:

+0400 -0200 *0000 0003 /0003 0000

150 Microsoft Windows Programming Tools

i word

Parameters

Example

.
J

j expr ["cmds"]

Parameters

Example

The i command accepts and displays 1 byte from a specified port.

word
Specifies the 16-bit port address.

The following example displays the byte at port address 2F8h:

i 2F8

The j command executes the specified commands when the specified expression is
TRUE. If expr is FALSE, the debugger continues to the next command line (ex
cluding the commands in cmds).

The j command is useful in breakpoint commands to conditionally break execu
tion when an expression becomes TRUE.

expr
Evaluates to a Boolean TRUE or FALSE.

cmds
Specifies a list of debugger commands to be executed when expr is TRUE. The
list must be enclosed in single or double quotation marks. You must separate
optional commands with semicolons(;). Single commands do not require quota
tion marks.

The following example causes execution to break if AX does not equal zero when
the breakpoint is reached:

bp 167:1454 "J AX == 0;G"

The following example displays the registers and continues execution when the
byte pointed to by DS:SI +3 is equal to 40h; otherwise, it displays the descriptor
table:

bp 167:1462 "J BY (0S:SI+3) == 40 'R;G';DG OS"

Chapter 5 Advanced Debugging: 80386 Debugger 151

k
k[blslv] [addr] [addr]

This command displays the current stack frame. Each line shows the name of a
procedure, its arguments, and the address of the statement that called it. The com
mand displays four 2-byte arguments by default. The ka command changes the
number of arguments displayed by this command.

Using the k command at the beginning of a function (before the function pro log
has been executed) gives incorrect results. The command uses the BP register to
compute the current backtrace, and this register is not correctly set for a function
until its prolog has been executed.

Parameters b

ka
ka count

Parameters

s

v

Indicates the stack frame is 32 bits wide.

Indicates the stack frame is 16 bits wide.

Displays the verbose version of stack information-that is, information about
stack location and frame pointer values for each frame.

addr
Specifies an optional stack-frame address (SS:BP) or an optional code address
(CS:IP).

The ka command sets the number of arguments displayed for all subsequent stack
trace commands. The initial default value is 4.

count
Specifies the number of arguments to be displayed. The count parameter must
be in the range 0 through lFh.

152 Microsoft Windows Programming Tools

kt
k[blslv]t [addr]

This command displays the stack frame of the current task or the task specified by
the addr parameter. Each line shows the name of a procedure, its arguments, and
the address of the statement that called it. The command displays four 2-byte argu
ments by default. The ka command changes the number of arguments displayed
by this command.

Parameters b

la
la

s

v

Indicates the stack frame is 32 bits wide.

Indicates the stack frame is 16 bits wide.

Displays the verbose version of stack information-that is, information about
stack location and frame pointer values for each frame.

addr
Specifies the segment address of the process descriptor block (PDB) for the
task to be traced. To obtain the addrvalue, use the .dq (Dump Task Queue)
command. If addr is not supplied, the kt command displays the stack frame of
the current task.

The la command lists the absolute symbols in the active map.

lg
lg

Example

Im
lm

Example

Chapter 5 Advanced Debugging: 80386 Debugger 153

The lg command lists the selector (or segment) and the name of each group in the
active map.

The lg command produces a display similar to the following:

#0090:0000 DOSCODE
#0828:0000 DOSGROUP
#1290:0000 DBGCODE
#16C0:0000 DBGDATA
#1A38:0000 TASKCODE
#1AD8:0000 DOSRING3CODE
#1AE0:0000 DOSINITCODE
#2018:0000 DOSINITRMCODE
#20A8:0000 DOSINITDATA
#23F8:0000 DDSMTE
#2420:0000 DOSHIGHDATA
#2800:0000 DOSHIGHCODE
#3628:0000 DOSHIGH2CODE
#0090:0000 DOSCODE

The lm command lists the symbol files currently loaded and indicates which one is
active.

The last symbol file loaded is made active by default. Use thew (Change Map)
command to change the active file.

The lm command returns a display similar to the following:

COMSAM2D is active.
DISK01D.

154 Microsoft Windows Programming Tools

In
In [addr]

The In command lists the symbol nearest the specified address. The command lists
the nearest symbol before and after the specified addr parameter. This command
also shows line-number information if it is available in the symbol file.

Parameters addr

Example

Is

Specifies any valid instruction address. The default value is the current dis
assembly address.

The In command without the addr parameter displays the nearest symbols before
and after the current disassembly address. The output is similar to the following:

6787 VerifyRamSemAddr + 10
67AA PutRamSemID - 13

ls group-name I name-chars I *

Parameters

Example

The ls command lists the symbols in the specified group or lists names that match
the search specification in all groups. The only valid wildcard is a single asterisk
(*) as the last character on the command line; all other characters are ignored.

group-name
Names the group that contains the symbols you want to list.

name-chars
Specifies the beginning characters of the symbols you want to list.

The following example displays all the symbols in the DOSRING3CODE group:

ls DOSRING3CODE

Symbols are displayed in a format similar to the following:

0000 Sigdispatch
001A LibinitDisp

The following example displays all the symbols that begin with the string vkd:

l s v kd *

m
m range addr

Parameters

Example

Chapter 5 Advanced Debugging: 80386 Debugger 155

Group names are displayed as they are searched, in a form similar to the following:

GROUP: [0028] CODE
60003A74 VKO_Control_Debug

GROUP: [0030] DATA
6001DFFC VKD_ CB_ Offset

GROUP: [0030} IDATA

The following example displays the address and group for the symbol VMM_base:

1 s vmm_base

The m command moves a block of memory from one memory location to another.

Overlapping moves-those in which part of the block overlaps some of the current
addresses-are always performed without loss of data. Addresses that could be
overwritten are moved first. For moves from higher to lower addresses, the
sequence of events is first to move the data at the block's lowest address and then
to work toward the highest. For moves from lower to higher addresses, the
sequence is first to move the data at the block's highest address and then to work
toward the lowest.

Note that ifthe addresses in the block being moved will not have new data written
to them, the data that was in the block before the move will remain. The m com
mand copies the data from one area into another, in the sequence described, and
writes over the new addresses-hence, the importance of the moving sequence.

To review the results of a memory move, use the d (Display Memory) command,
specifying the same address you used with the m command.

range
Specifies the block of memory to be moved.

addr
Specifies the starting address at which the memory is to be relocated.

The following example first moves the data at address CS: 110 to CS:510 and then
moves the data at CS:IOF to CS:50F, and so on, until the data at CS:IOO is moved
to CS:500:

mCS:l00 110 CS:500

156 Microsoft Windows Programming Tools

0

o word byte

Parameters

Example

p
p[n] [=addr][count]

The o command writes a byte to a 16-bit port address.

word
Specifies the 16-bit port address to be written to.

byte
Specifies the 8-bit value to be written to the port.

The following example writes the byte value 4Fh to output port 2F8h:

o 2F8 4F

The p command executes the instruction at a specified address and displays the
current values of all the registers and flags (whatever the zd command has been
set to). It then executes the default command string, if any.

The p command is identical to the t (Trace Instructions) command, except that it
automatically executes and returns from any calls or software interrupts it encoun
ters. The t command always stops after executing into the call or interrupt, leaving
execution control inside the called routine.

Parameters n
Suppresses the register display so just the assembly line is displayed. The sup
pression results only if the default command, zd, is set to a normal setting, r.

addr
Specifies the starting address at which to begin execution. If you omit the op
tional addr parameter, execution begins at the instruction pointed to by the CS
and IP registers. Use the equal sign(=) only if you specify addr.

count
Specifies the number of instructions to execute before stopping and executing
the default command string. The command executes the default command
string for each instruction before executing the next.

Example

r
r reg=word

Parameters

Chapter 5 Advanced Debugging: 80386 Debugger 157

The following example executes the instruction pointed to by the current CS and
IP register values before it executes the default command string:

p

The following example executes the instruction at address CS: 120 before it ex
ecutes the default command string:

p=l20

The r command displays the contents of one or more central processing unit
(CPU) registers and allows the contents to be changed to new values. If you
specify the reg parameter with the r command, the 16-bit value of that register is
displayed in hexadecimal format followed by a colon(:) prompt on the next line.
You can then enter a new word value for the specified register or press ENTER if
you do not want to change the register value.

If you specify f for reg, the debugger displays the flags in a row at the beginning
of a new line and displays a hyphen (-) after the last flag.

You can type new flag values in any order as alphabetic pairs. You do not have to
leave spaces between these values. To terminate the r command, press ENTER. Any
flags for which you did not specify new values remain unchanged.

If you type more than one value for a flag or enter an invalid flag name, the flags
up to the error in the list are changed and those flags at and after the error are not
changed. In addition, 80386 Debugger returns the following error message:

Bad Flag

reg
Specifies the register to be displayed. If you omit reg, the debugger displays the
contents of all registers and flags along with the next executable instruction.

word
Specifies the new value for the register. For the Flags register, set or clear a flag
by using one of the following names:

Flag code Meaning

ov Overflow set

158 Microsoft Windows Programming Tools

Comments

Flag code Meaning

NV Overflow clear

DN Direction decrement

UP Direction increment

EI Interrupt enabled

DI Interrupt disabled

NG Sign negative

PL Sign positive

ZR Zero set

NZ Zero clear

AC Auxiliary carry set

NA Auxiliary carry clear

PE Parity even

PO Parity odd

CY Carry set

NC Carry clear

NT Nested task switch (on and off)

For the machine status word (MSW) register, use the following names to set a
flag:

Flag name

TS

EM

MP

PM

Action

Sets the task switch bit.

Sets the emulation processor extension bit.

Sets the monitor processor extension bit.

Sets the protected-mode bit.

Setting the protected-mode bit from within the debugger does not set the target sys
tem to run in protected mode. The debugger simulates the setting. To configure the
target system to run in protected mode, you would have to set the PM bit in the
MSW register and reset the target system to restart in protected mode.

Example

s
s range list I "string"

Chapter 5 Advanced Debugging: 80386 Debugger 159

The r command without parameters produces a display similar to the following:

AX=0698 BX=2008
IP=0450 CS=18B0
GDTR=01BE80 3687
18B0:0450 C3

CX=2C18 DX=18AB SP=1B7A BP=00FF SI=0020 DI=10CD
DS=1BE8 ES=0DA8 SS=0048 NV UP DI PL NZ NA PONC
IDTR=01F508 03FF TR=0010 LDTR=0028 IOPL=3 MSW=PM

RET

The following example displays each flag with a two-letter code. To change any
flag, type the two-letter code that inverts the setting. The flags are either set or
cleared.

rf

The example produces a display similar to the following:

NV UP DI NG NZ AC PE NC -

To change the value of a flag's setting, type the two-letter code that inverts the set
ting for that flag. The following example changes the sign flag to positive, enables
interrupts, and sets the carry flag:

NV UP DI NG NZ AC PE NC - PLEICY

The following command modifies the MSW bits:

rmsw

Then 80386 Debugger displays the status of the MSW register and prints a colon
on the next line.

The s command searches an address range for a specified list of bytes or an ASCII
character string.

You can include one or more bytes in list, but multiple bytes must be separated by
a space or comma. When you search for more than one byte, the command returns
the address of only the first byte in the string. When list contains only one byte,
the debugger displays the addresses of all occurrences of the byte in range.

160 Microsoft Windows Programming Tools

Parameters

Example

t

range
Specifies the block of memory to be searched.

list
Specifies one or more byte values to search for.

string
Specifies an ASCII character string to be searched for. The string must be en
closed in quotation marks.

The following example searches for byte 41h in the address range CS:lOO to
CS:llO:

sCS:l00 110 41

If it finds the value, this command produces a display similar to the following:

04BA:0104
04BA:010D

t[alclnlslxlz][=start_addr][count][addr]

The t command executes one or more instructions along with the default com
mand string and then displays the decoded instruction. If you include the
start_addr parameter, tracing starts at the specified address. Otherwise, the com
mand steps through the next machine instruction and then executes the default
command string.

The t command uses the hardware trace mode of the Intel microprocessor. Con
sequently, you can also trace instructions stored in read-only memory (ROM).

Parameters a

c

n

Indicates that an ending address is specified for the trace. Instructions are traced
until the address in addr is reached.

Suppresses all output and counts instructions traced. An ending address is re
quired for this command. Instructions are traced until the address in addr is
reached.

Suppresses the register display so just the assembly line is displayed. This
works only if the default command, zd, is set tor (the normal setting).

Example

s

x

z

Chapter 5 Advanced Debugging: 80386 Debugger 161

Suppresses output; the instruction and count are displayed for each call and the
return from that call.

Forces the debugger to trace regions of code known to be untraceable
(_PGSwitchContext, for example).

Allows original trap handler address to be traced into without having to unhook
the exception. Use this option instead ofvcp d; t; vsp d.

start_addr
Specifies the instruction address at which to start tracing. The equal sign(=) is
required.

count
Specifies the number of instructions to execute and trace.

addr
Specifies the instruction address at which to stop tracing.

The following example traces the current position (04BA:Ol 1A) and uses the de
fault command string (r command) to display registers:

t

The resulting output is similar to the following:

AX=0E00 BX=00FF
IP=011A CS=04BA
GDTR=01D700 3677
04BA:011A CD21

CX=0007 DX=01FF SP=039D BP=0000 SI=005C 01=0000
DS=04BA ES=04BA SS=04BA NV UP DI NG NZ AC PENC
IDTR=02007A 03FF TR=0010 LDTR=0028 IOPL=3 MSW=PM

PUSH 21

The following command causes the debugger to execute 16 (lOh) instructions
beginning at 01 IA in the current selector:

t=011A 10

The debugger executes and displays the results of the default command string for
each instruction. The display is scrolled until the last instruction is executed. Press
the CTRL+S key combination to stop the scrolling and CTRL+Q to resume.

162 Microsoft Windows Programming Tools

u
u [range]

Parameters

Example

v
v

The u command disassembles bytes and displays the source statements, with
addresses and byte values, that correspond to them.

The display of disassembled code looks similar to a code listing for an assembled
file. If you type the u command by itself, 20h bytes are disassembled at the first
address after the one displayed by the previous u command.

range
Specifies the block of memory in which instructions are to be disassembled. If
no range is given, the command disassembles the next 20h bytes.

The following example disassembles and displays 20h bytes from the specified
address:

uCS:046C

The resulting display is similar to the following:

1A60:046C C3
1A60:046D 9A6B3E100D
1A60:0472 33C0
1A60:0474 50
1A60:0475 9D
1A60:0476 9C
1A60: 0477 58
1A60:0478 2500F0
1A60:047B 3D00F0
1A60:047E 7508
1A60:0480 689C26
1A60:0483 9AF105100D

RET
CALL 0D10:3E6B
XOR AX,AX
PUSH AX
POPF
PUSHF
POP AX
AND AX,F000
CMP AX,F000
JNZ 0488
PUSH 269C
CALL 0Dl0:05Fl

If the bytes at some addresses are altered, the disassembler alters the instruction
statements. You can also use the u command for the changed locations, for the
new instructions viewed, and for the disassembled code used to edit the source file.

The v command displays the current 80386 Debugger version number and date.

Chapter 5 Advanced Debugging: 80386 Debugger 163

vc
vc[n Ip I r Iv] number[,number [, •••]

The vc command clears the specified interrupt vector and reinstalls the previous in
terrupt vector.

Parameters n

vi
vl[n I p I r I v]

p

r

v

Removes the beep from traps that beep when encountered; does not clear the
traps.

Clears protected-mode vectors only.

Clears real-mode vectors only.

Clears virtual 8086 (V86) mode vectors only.

number
Specifies the interrupt vector to clear.

Lists the interrupt vectors that the debugger intercepts. Vectors that have been set
with the vt command (as opposed to vs) are listed with an asterisk(*) following
the vector number.

Parameters n
Lists the traps that beep when encountered.

p
Lists the protected-mode vectors only.

r
Lists the real-mode vectors only.

v
Lists the virtual 8086 (V86) mode vectors only.

164 Microsoft Windows Programming Tools

VO

vo[n Ip Ir Iv]

The vo command lists interrupt vectors in the display format based on the newvec
option. For details, see the y command.

Parameters n
Lists the traps that beep when encountered.

p
Lists the protected-mode vectors only.

r
Lists the real-mode vectors only.

v
Lists the virtual 8086 (V86) mode vectors only.

vs
vs[n Ip Ir Iv] number[,number[, .••]

The vs command adds a new interrupt vector to the list of intercepted vectors. Vec
tors set by this command do not intercept interrupts that occur at ring 0.

Parameters n
Lists the traps that beep when encountered.

p
Lists the protected-mode vectors only.

r
Lists the real-mode vectors only.

v
Lists the virtual 8086 (V86) mode vectors only.

number
Specifies the interrupt vector to intercept.

Chapter 5 Advanced Debugging: 80386 Debugger 165

vt
vt[n Ip Ir Iv] number[,number[, ...]J

The vt command adds a new interrupt vector to the list of intercepted vectors.

Parameters n

w
w [map-name]

Parameters

Example

Lists the traps that beep when encountered.

p
Lists the protected-mode vectors only.

r
Lists the real-mode vectors only.

v
Lists the virtual 8086 (V86) mode vectors only.

number
Specifies the interrupt vector to intercept.

Thew command changes the active map file.

map-name
Specifies the name of the map file you want to make active. Use the Im (List
Map) command to display a list of available map files.

If map-name is not specified, the loaded maps are displayed and the user is
prompted to select a map by pressing its corresponding number.

The Im command can be used to display the loaded map files in a form similar to
the following:

COMSAM2D is active.
DISK01D.

Then the following command can be used to change the active map file to
DISKOlD:

w DISK01D

166 Microsoft Windows Programming Tools

wa
wamap-name

Parameters

wr
wrmap-name

Parameters

The following command displays the list of loaded maps:

w

The resulting display is similar to the following, prompting the user to type the
number corresponding to the map to activate:

1. KERNEL
2. Win386 is active
activate which map?

In this case, pressing 1 activates the KERNEL map; pressing 2 leaves the Win386
map activated; and pressing the SPACEBAR leaves the current map activated. Any
other key is ignored, and the debugger will continue to wait for input.

The wa command adds the specified map to the list of active maps.

map-name
Specifies the map to add to the list of active maps.

The wr command removes the specified map from the list of active maps.

map-name
Specifies the map to remove from the list of active maps.

y
y[? I option]

Chapter 5 Advanced Debugging: 80386 Debugger 167

The y command changes the debugger configuration. The following list describes
the available configuration options. All settings are toggles.

Parameters ?
Displays a list of supported options.

option
Following are the available configuration options:

/a

/n

/v

Controls automatic symbol loading. If this option is set, Windows will not
load symbols automatically.

Sets the following options:

code bytes
dislwr
int3line
newprompt
newreg
newvec
symaddrs

Controls segment load notification messages. If this option is set, all seg
ment load notifications will be displayed.

386env
Controls the size of addresses, registers, and so on when displayed. When
this option is on, addresses, registers, and so on are shown in 32-bit format;
otherwise, they are shown in 16-bit format.

code bytes
Causes the disassembler to display the code bytes along with the disas
sembled instructions.

disaddr
Causes the disassembler to display the disassembly address.

dis line
Causes the disassembler to display the filename and line number of each
operation code (opcode).

dislwr
Controls the disassembler's lowercase option. When the flag is on, dis
assembly is in lowercase.

168 Microsoft Windows Programming Tools

z
z

int31ine
Causes the disassembler to display the filename and line number on int 3 in
structions.

newprompt
Causes 80386 Debugger to produce a double prompt when paging is enabled
and a nesting level if the debugger is reentered.

newreg
Controls the format of the register display.

newvec
Controls the display format for the intercepted interrupt vectors.

regterse
Controls the number of registers displayed by the r (Register Dump) com
mand. In the 80386 environment, when regterse is on, only the first three
lines are displayed (instead of the normal six lines plus disassembly line). In
the 80286 environment (386env off), only the first two lines are displayed
(instead of the normal three lines plus disassembly line).

scrncols
Sets the number of screen columns in the debug display. The default is 79
columns.

scrnlines
Sets the number of screen lines in the debug display. The default is 24 lines.

skipint3s
Causes the debugger to ignore inline int 3 instructions.

symaddrs
Causes the disassembler to display symbol values along with the symbols.

teftibase
Sets the base port address for the timing card.

Replaces the instruction bytes of the current int 3 instruction or the previous int 1
instruction with nop instructions. This allows the user to avoid int 1 or int 3 in
structions that were assembled into the executable file by breaking into the debug
ger more than once.

zd
zd

zl
zl

Example

Chapter 5 Advanced Debugging: 80386 Debugger 169

The zd command executes the default command string.

The default command string is initially set to the r (Display Registers) command
by the debugger. The default command string is executed every time a breakpoint
is encountered during execution of the application or whenever a p (Program
Trace) or t (Trace Instructions) command is executed.

Use the zl command to display the default command string and the zs command to
change the default command string.

The zl command displays the default command string.

The following example displays the default command string:

zl

The resulting output is similar to the following:

"R"

170 Microsoft Windows Programming Tools

ZS
zs "string"

Parameters

Example

The zs command makes it possible for you to change the default command string.

string
Specifies the new default command string. The string must be enclosed in
single or double quotation marks. You must separate the debugger commands
within the string with semicolons.

The following example changes the current default command string to an r (Dis
play Register) command followed by a c (Compare Memory) command:

ZS "r;cl00 L 100 300"

The following example begins execution whenever an int 3 instruction is executed
in your test application. This example executes a g (Go) command every time an
int 3 instruction is executed.

zs "j (by cs:ip) == cc 'g"'

You can use zs as follows to set up a watchpoint:

ZS "j (WO 40:1234) == 0eeed;t"

This command traces until the word at 40: 1234 is not equal to OEEED. This does
not work if you are tracing through the mode switching code in MS-DOS or other
sections of code that cannot be traced.

5. 7 Related Topics
For information about programming Windows applications, see the Microsoft Win
dows Guide to Programming.

Analyzing System Failures:
Dr. Watson

Chapter 6

6.1 Configuring Dr. Watson from the WIN.IN! File..................................... 173
6.1.1 The Skiplnfo Entry.. 173
6.1.2 The Show Info Entry .. 174
6.1.3 TheDisLenEntry .. 174
6.1.4 The TrapZero Entry... 175
6.1.5 The GPContinue Entry .. 175
6.1.6 The DisStack Entry.. 176
6. 1. 7 The LogFile Entry.. 17 6

6.2 Sample Dr. Watson Log File ... 177
6.3 Sample Dr. Watson Log File with Comments... 179

Chapter 6 Analyzing System Failures: Dr. Watson 173

Microsoft Windows Dr. Watson is a diagnostic tool for the Microsoft Windows
operating system. It detects system and application failures caused by Windows ap
plications and can store information in a disk file. This file can help you find and
fix problems in your applications.

Only a single instance of Dr. Watson can be run at a time. Dr. Watson uses the
dynamic-link library TOOLHELP.DLL, so it runs only in standard or 386 en
hanced mode. Dr. Watson cannot trap faults in a Windows MS-DOS session.

6.1 Configuring Dr. Watson from the WIN.INI File
You can configure Dr. Watson to meet your needs by including settings for any of
the following entries in the [Dr. Watson] section of your WIN.INI file (note the
space between Dr. and Watson):

Skiplnfo
Show Info
DisLen
Trap Zero
GPContinue
DisStack
LogFile

The following sections describe the Dr. Watson WIN.IN! entries.

6 .1.1 The Skip Info Entry
The Skiplnfo entry controls which parts of the failure report are actually written to
disk. Following are the values you can set to disable parts of the failure report:

Value

32bitregs

clues

information

registers

segments

stack

summary

tasks

time

Meaning

Disable values of 32-bit registers and of the FS and GS registers on
80386/80486 processors.

Disable the dialog box titled "Dr. Watson's Clues."

Disable system information, such as the Windows version number, pro
cessor type, and memory available.

Disable 16-bit registers.

Disable segment contents, base addresses, length, and flags.

Disable stack backtrace.

Disable four-line summary at beginning of error report.

Disable list of all active tasks (running applications).

Disable Dr. Watson start and stop times.

174 Microsoft Windows Programming Tools

Each of the Skiplnfo values can be abbreviated to its first three letters. The follow
ing example disables the Dr. Watson's Clues dialog box and the stack backtrace:

[Dr. Watson]

Skipinfo=clu sta

6.1.2 The Showlnfo Entry
Some parts of the Dr. Watson failure report are disabled by default. They can be
enabled with the Show Info entry. Following are the values you can set to enable
parts of the failure report:

Value

disassembly

errorlog

locals

modules

paramlog

sound

Meaning

Enable separate disassembly of the fault address. This does not affect
disassembly of stack frames. (See Section 6.1.3, "The DisLen Entry.")

Enable error logging.

Enable stack dump of local variable and parameter values.

Enable list of all loaded modules, including dynamic-link libraries
(DLLs) and font files.

Enable parameter-validation error logging.

Enable audible warnings.

Each of the Show Info values can be abbreviated to its first three letters. The fol
lowing example sets all six values for the Show Info entry, enabling those six parts
of the failure report:

[Dr. Watson]

Showinfo=dis err lac mod par sou

6.1.3 The Dislen Entry
The DisLen entry controls how many instructions are disassembled in stack traces
and the disassembly portion of the failure report. The default value is 8. The fol
lowing example sets the value to 4:

[Dr. Watson]

Dislen=4

Chapter 6 Analyzing System Failures: Dr. Watson 175

6.1.4 The TrapZero Entry
By default, Dr. Watson does not trap divide overflow exceptions, because many
applications provide their own handling. The TrapZero entry can be used to enable
trapping of divide overflow exceptions, as shown in the following example:

[Dr. Watson]

Trapzero=l

6.1.5 The GPContinue Entry
One of the most advanced features of Dr. Watson enables an application to con
tinue even after a general protection (GP) fault occurs. Because a GP fault means
that a bug has been encountered, continuing is dangerous. However, some applica
tion developers requested the ability to continue running an application even after
a GP fault. If the GPContinue entry is used, Dr. Watson performs the following
tests when a GP fault occurs. If each of the following four conditions is true, Dr.
Watson allows the application to continue:

1. Bit 0 of GPContinue is set.

2. The faulting instruction is one that can be allowed to continue.

The following example, which happens to be beyond the end of a segment,
would be allowed to continue:

mov ax,[ffff]

The following instruction, which involves an invalid address, would not be al
lowed to proceed:

jmp seg:offs

3. The fault is not in KERNEL or USER. (Or the fault is in KERNEL or USER,
and you have set the appropriate bit in the GPContinue value to continue in
spite of the risk.)

4. The user wants to continue. Dr. Watson displays the following dialog box so
that the user can decide.

BICHO

An error has occurred in your application.
If you choose Ignore. you should save your work in a new file.

If you choose Close. your application will terminate. - -

176 Microsoft Windows Programming Tools

If the user chooses the Close button, an error message box appears.

Although it is very risky, you can also allow continuation in KERNEL or USER
by setting GPContinue as required. Following are the bits and values for the
GPContinue entry:

Bit Value Meaning

0 1 Allow continuation. (This is the default setting.)

2 Write only three-line reports.

2 4 Continue even if the fault is in KERNEL.

3 8 Continue even if the fault is in USER.

You must combine these values. The following example permits continuation after
a GP fault in USER:

set GPContinue=9

6.1.6 The DisStack Entry
The DisStack entry controls how many levels back on the stack are to be dis
assembled. The default value is 2. The following example sets the value to 100:

[Dr. Watson]

DisStack=100

6.1. 7 The Logfile Entry
By default, the Dr. Watson log file is named DRWATSON.LOG and placed in the
Windows directory. The filename can be changed to any valid filename, even the
name of a printer or debugging terminal. For example, to write to a terminal on
COMl, use the following setting:

[Dr. Watson]

LogFile=coml

Chapter 6 Analyzing System Failures: Dr. Watson 177

6.2 Sample Dr. Watson Log File
To save disk space, Dr. Watson generates a complete report for only the first three
errors. The next 17 errors generate a report summary. After 20 errors, Dr. Watson
stops writing to the log file. If you close Dr. Watson and rerun it, writing to the log
file resumes. You can determine the number of error reports generated in the cur
rent session by double-clicking the Dr. Watson icon.

When the log file reaches IOOK, Dr. Watson displays a warning message. After
you have analyzed the error reports in the log file, you should delete the log file.

The following example shows a typical Dr. Watson log file.

Start Dr. Watson 0.80 - Thu Sep 26 10:51:28 1991
**
Dr. Watson 0.80 Failure Report - Thu Sep 26 10:51:36 1991
BICHO had a 'Exceed Segment Bounds (Read)' fault at BICHO

DoCommand+006b
tagBICHO$Exceed Segment Bounds (Read)$BICHO DoCommand+006b

$push word ptr [fffe]$Thu Sep 26 10:51:36 1991

CPU Registers (regs)
ax=le54 bx=0014 CX=0d7f dx=0111
ip=02fd sp=230c bp=237a 0- 0- I+
cs 0e57 8059fbc0:083f Code Ex/R
SS 0d7f 8059d5e0:25df Data R/W
ds 0d7f 8059d5e0:25df Data R/W
es 0d7f 8059d5e0:25df Data R/W

CPU 32 bit Registers (32bit)
eax = 00001e54 ebx = 00000014 ecx
esi = 00001e54 edi = 00000111 ebp
fs = 0000 0: 0000 Null Ptr
gs = 0000 0:0000 Null Ptr
efl ag = 00000002

System Info (info)
Windows version 3.10
Debug build
Windows Build 3.1.048
Username Unknown User
Organization Unknown Organization
System Free Space 7131008

Si=le54 di=0111
S- Z- A+ P+ C-

ffff0d7f edx
0000237a esp

Stack base 1122, top 9164, lowest 7504, size 8042

00000111
800422f c

System resources: USER: 87% free, seg 0777 GDI: 85% free, seg 05d7
LargestFree 6594560, MaxPagesAvail 1610, MaxPageslockable 267
Totallinear 1948, TotalUnlockedPages 274, FreePages 52
TotalPages 614, FreelinearSpace 1611, SwapFilePages 7158
Page Size 4096
4 tasks executing.
WinFlags -

178 Microsoft Windows Programming Tools

Math coprocessor
80386 or 80386 SX
Enhanced mode
Protect mode

Stack Dump (stack)
Stack Frame 0 is BICHO
0e57:02f0 e9 02b9
0e57:02f3 6a 00
0e57:02f5 9a 8db0 0477
0e57:02fa e9 02af
(BICHO:_DoCommand+006b)
0e57:02fd ff 36 fffe
0e57:0301 68 0110
0e57:0304 e8 fe5d
0e57:0307 83 c4 04

Stack Frame 1 is BI CHO
0e57:0670 eb 16
0e57:0672 ff 76 0a
0e57:0675 56
0e57:0676 e8 fc19

DoCommand+006b
jmp
push
callf
jmp

push
push
ca 11
add

MAINWNDPROC+0027
jmp
push
push
ca 11

(BICHO:MAINWNDPROC+0027)
0e57:0679 83 c4 04 add
0e57:067c 99 cwd
0e57:067d eb lf jmp
0e57:067f 6a 00 push

ss:bp 0d7f:237a
near 05ac
00
0477:8db0
near 05ac

word ptr [fffeJ
0110
near 0164
sp, 04

ss:bp 0d7f:2388
short 0688
word ptr [bp+0a]
si
near 0292

sp, 04

short 069e
00

Stack Frame 2 is USER IDISPATCHMESSAGE+007e ss:bp 0d7f:239e
Stack Frame 3 is BICHO WINMAIN+0050 ss:bp 0d7f:23bc
Stack Frame 4 is BICHO 1:00a3 ss:bp 0d7f:23ca

System Tasks (tasks)
Task WINEXIT, Handle 0daf, Flags 0001, Info 9248 08-09-90

FileName C:\MS\WIN\DON\WINEXIT.EXE
Task DRWATSON, Handle 0ea7, Flags 0001, Info 26256 09-23-91

FileName C:\WIN31\DRWATSON.EXE

16:52

12:00

Task PROGMAN, Handle 060f, Flags 0001, Info 110224 09-23-91 12:02
FileName C:\WIN31\PROGMAN.EXE

Task BICHO, Handle 0da7, Flags 0001, Info 16537 09-11-91 8:45
FileName D:\BICHO.EXE

1> I ran a test app that accessed a value
2> beyond the limits of the segment bounds.
Stop Dr. Watson 0.80 - Thu Sep 26 10:52:10 1991

Chapter 6 Analyzing System Failures: Dr. Watson 179

6.3 Sample Dr. Watson Log File with Comments
The following version of the Dr. Watson log file includes comments. These com
ments do not appear in the normal Dr. Watson log. They have been added here to
explain the sections of the log.

Start Dr. Watson 0.80 - Thu Sep 26 10:51:28 1991
#This line is inserted each time you start Dr. Watson.
#You can disable it with Skipinfo=time.

**
#This line marks the beginning of a Dr. Watson report.

Dr. Watson 0.80 Failure Report - Thu Sep 26 10:51:36 1991
Version 0.80 of Dr. Watson - date report was generated

BICHD had a 'Exceed Segment Bounds (Read)' fault at BICHO
DoCommand+006b

#Application 'BICHO' had an 'Exceed Segment Bounds' fault
#while reading memory. The actual code that failed
#was also in BICHO, 0x6b bytes past the start of the
DoCommand function.

tagBICHO$Exceed Segment Bounds (Read)$BICHO DoCommand+006b
$push word ptr [fffe]$Thu Sep 26 10:51:36 1991

#This line repeats the previous information in a format
#easier for automatic code to parse. It also includes
#the actual faulting instruction (a push instruction here).

CPU Registers (regs)
ax=le54 bx=0014 cx=0d7f dx=0111 si=le54 di=0111

The 16-bit CPU registers. This can be useful for decoding
#what address an instruction was modifying.

ip=02fd sp=230c bp=237a 0- D- I+ S- Z- A+ P+ C-
The IP is the instruction pointer (Program Counter).
#SP and BP are the stack pointer and base pointer.
#The last 8 items show the states of the flag bits.
#In this case, Overflow, Direction, Sign, Zero, and Carry
#bits are clear (0); the Interrupt, AuxCarry, and Parity
#bits are set (1).

cs 0e57 8059fbc0:083f Code Ex/R
#Code segment selector is 0E57, linear address is 8059FBC0
(enhanced-mode linear addresses often start with 8xxx),
#and the limit is 083F. Accessing code and data segments
#beyond their limits is a common cause of GP faults.

SS 0d7f 8059d5e0:25df Data R/W
Stack selector

180 Microsoft Windows Programming Tools

ds 0d7f 8059d5e0:25df Data R/W
Data selector--note that the limit is 25DF, and we
#tried to read the value at FFFE, beyond the limit.

es = 0d7f 8059d5e0:25df Data R/W

CPU 32 bit Registers (32bit)
eax = 00001e54 ebx = 00000014 ecx ffff0d7f edx 00000111
esi = 00001e54 edi = 00000111 ebp 0000237a esp 800422f c
fs = 0000 0:0000 Null Ptr

ff If the selector is 0, it indicates a NULL pointer.
ff to use a NULL pointer is another common cause of GP

gs = 0000 0: 0000 Null Ptr
efl ag = 00000002

System Info (info)
Windows version 3.10
Debug build

The debugging version of Windows was running.

Windows Build 3.1.048
#This is an internal Microsoft build of Windows, #48.

Username Unknown User
ff Your name here

Organization Unknown Organization
#Your organization here

System Free Space 7131008
Stack base 1122, top 9164, lowest 7504, size 8042

#Stack size of current task

Trying
faults.

System resources: USER: 87% free, seg 0777 GDI: 85% free, seg 05d7
LargestFree 6594560, MaxPagesAvail 1610, MaxPagesLockable 267

#These statistics are almost useless.

TotalLinear 1948, TotalUnlockedPages 274, FreePages 52
TotalPages 614, FreeLinearSpace 1611, SwapFilePages 7158
Page Size 4096
4 tasks executing.
WinFlags -

Math coprocessor
80386 or 80386 SX
Enhanced mode
Protect mode

Stack Dump (stack)
#We dump the stack to see what called the routine that failed.

Chapter 6 Analyzing System Failures: Dr. Watson 181

Stack Frame 0 is BICHO DoCommand+006b ss:bp 0d7f:237a
#The failure occurred in BICHO, 0x6B bytes past the
start of DoCommand.

0e57:02f0 e9 02b9 jmp near 05ac
0e57:02f3 6a 00 push 00
0e57:02f5 9a 8db0 0477 cal lf 0477: 8db0
0e57:02fa e9 02af jmp near 05ac
(BICHO:_DoCommand+006b)

The failure happened on the following instruction:

0e57:02fd

ff 36 fffe push word ptr [fffe]
We tried to read a value from memory at DS:FFFE and
push it on the stack. However, the limit of the OS
segment is 25DF.

0e57:0301 68 0110 push
0e57:0304 e8 fe5d ca 11
0e57:0307 83 c4 04 add

Stack Frame 1 is BI CHO MAINWNDPROC+0027
The Bicho MainWndProc probably

0e57:0670 eb 16 jmp
0e5 7: 0672 ff 76 0a push
0e57:0675 56 push
0e57:0676 e8 fc19 ca 11
(BICHO:MAINWNDPROC+0027)
0e57:0679 83 c4 04 add
0e57:067c 99 cwd
0e57:067d eb 1f jmp
0e57: 067f 6a 00 push

0110
near 0164
sp, 04

ss:bp 0d7f:2388
called DoCommand.

short 0688
word ptr [bp+0a]
si
near 0292

sp, 04

short 069e
00

Stack Frame 2 is USER IDISPATCHMESSAGE+007e ss:bp 0d7f:239e
#USER is the Windows USER.EXE. It is what calls your
#window and dialog box procedures. In this case,
#it called the BICHO MainWndProc.

Stack Frame 3 is BICHO WINMAIN+0050 ss:bp 0d7f:23bc
Here is the BICHO WinMain, which called
DispatchMessage, which called MainWndProc.

Stack Frame 4 is BICHO 1:00a3 ss:bp 0d7f:23ca
#Here is where the startup code calls WinMain.

System Tasks (tasks)
Task WINEXIT, Handle 0daf, Flags 0001, Info

FileName C:\MS\WIN\DON\WINEXIT.EXE
Task DRWATSON, Handle 0ea7, Flags 0001, Info

FileName C:\WIN31\DRWATSON.EXE
#This task will always be listed.

9248 08-09-90 16:52

26256 09-23-91 12:00

182 Microsoft Windows Programming Tools

Task PROGMAN, Handle 060f, Flags 0001, Info 110224 09-23-91 12:02
FileName C:\WIN31\PROGMAN.EXE

#This task (or whatever shell you use) will always be listed.

Task BICHO, Handle 0da7, Flags 0001, Info 16537 09-11-91 8:45
FileName D:\BICHO.EXE

#This is the name of the program that caused the failure.

1> ran a test app that accessed a value
2> beyond the limits of the segment bounds.

#Anything you type in the Dr. Watson's Clues dialog box
is added to the log file, so you can type what you
#want to remember.

Stop Dr. Watson 0.80 - Thu Sep 26 10:52:10 1991
#This line is written each time Dr. Watson terminates.

Monitoring Messages: Spy

Chapter 7

7 .1 Selecting Options: The Options! Menu... 185
7 .1.1 Selecting Message Types... 185

7.1.2 Selecting the Output Device.. 186

7 .1.3 Selecting Frequency of Output.. 186
7.2 Selecting a Window: The Window Menu ... 187
7.3 Starting and Stopping Spy: The Spy Menu... 187
7.4 Related Topics.. 188

Chapter7 Monitoring Messages: Spy 185

Microsoft Windows Spy (SPY.EXE) is a tool for the Microsoft Windows operat
ing system. Spy makes it possible for you to monitor messages sent to one or more
windows and to examine the values of message parameters.

Note If you are using the Microsoft Code View for Windows (CVW) debugger to
debug your application, you can use CVW instead of Spy to trace messages.

This chapter describes how to use the Options!, Window, and Spy menus to
specify how Spy is to operate.

7 .1 Selecting Options: The Options! Menu
The Options! menu displays a dialog box in which you make selections about the
following:

• Which message types Spy is to monitor

• Which output device Spy is to send messages to

• Whether Spy is to send output synchronously or asynchronously

You make your selections from items displayed under Messages, Output, and
Display.

7 .1.1 Selecting Message Types
Under Messages, you can select any of the following message types you want Spy
to monitor:

Message

Mouse

Input

System

Window

Init

Clipboard

Other

Description

Mouse messages, such as WM_MOUSEMOVE and WM_SETCURSOR

Input messages, such as WM_ CHAR and WM_ COMMAND

Systemwide messages, such as WM_ENDSESSION and
WM_ TIMECHANGE

Window manager messages, such as WM_SIZE and
WM_SHOWWINDOW

Initialization messages, such as WM_INITMENU and
WM_INITDIALOG

Clipboard messages, such as WM_RENDERFORMAT

Messages other than the types explicitly listed

186 Microsoft Windows Programming Tools

Message

DDE

Non Client

Description

Dynamic data exchange (DDE) messages, such as
WM_DDE_REQUEST

Windows nonclient messages, such as WM_NCDESTROY and
WM_NCHITTEST

By default, Spy monitors all messages.

7 .1.2 Selecting the Output Device
Under Output, you can select which of the following output devices you want Spy
to send messages to:

Device

Window

Coml

File

Description

Spy displays messages in the Spy window. You can specify how many
messages Spy stores in its buffer. By default, Spy stores up to 100 lines of
messages, which you can view by scrolling through the Spy window. You
can also change the maximum number of lines that can be stored in the
buffer.

Spy sends messages to the COM! port.

Spy sends messages to the specified file. The default output file is
SPY.OUT.

7 .1.3 Selecting Frequency of Output
Under Display, you can select which of the following frequency options you want
Spy to use:

Option

Synchronous

Asynchronous

Description

Spy displays messages as it receives them.

Spy queues messages for display.

By default, Spy sends messages synchronously.

Chapter7 Monitoring Messages: Spy 187

7. 2 Selecting a Window: The Window Menu
Use the Window menu to select the window you want Spy to monitor. The Win
dow menu contains the following commands:

Command

Window

All Windows

Clear Window

Description

Specifies the window that Spy is to monitor. When you choose the
Window command, Spy displays the Spy Window dialog box. This
dialog box displays information about the window in which the cur
sor is located. As you move the cursor from window to window, the
following information is updated:

Item

Window

Class

Module

Parent

Rect

Style

Description

Handle of the window.

Window class.

Program that created the window.

Handle of the parent window and the name of the pro
gram that created the parent window.

Upper-right and lower-left coordinates of the window
and the window size in screen coordinates.

Style bits of the window in which the cursor is located,
the principal style of the window, and an identifier if
the window is a child window. The principal style can
be WS_POPUP, WS_ICONIC, WS_OVERLAPPED,
or WS_CHILD.

Specifies that Spy is to display messages received by all windows.

Clears the Spy window.

7 .3 Starting and Stopping Spy: The Spy Menu
After using the Options! and Window menus to make your selections, start Spy by
clicking the window you selected and choosing the OK button in the dialog box.

To stop monitoring messages, resume monitoring messages, or close Spy, use the
Spy menu. The Spy menu contains the following commands:

Command

Spy On/Off

Exit

About Spy

Description

Starts and stops message monitoring.

Closes Spy.

Provides information about the version of Spy you are using.

188 Microsoft Windows Programming Tools

7 .4 Related Topics
For information about monitoring DDE messages, see Chapter 8, "Monitoring Dy
namic Data Exchange Activity: DDESpy."

For an introduction to input messages, see the Microsoft Windows Guide to Pro
gramming.

For information about message syntax and content, see the Microsoft Windows
Programmer's Reference, Volume 3.

Monitoring Dynamic Data
Exchange Activity: DDESpy

Chapter 8

8.1 The Output Menu ... 191
8.2 The Monitor Menu... 191

8.2.1 Monitoring String-Handle Data... 192
8.2.2 Monitoring Sent or Posted DDE Messages............................. 192
8.2.3 Monitoring Callbacks .. 193
8.2.4 Monitoring Errors.. 193

8.3 Tracking Options.. 193
8.3.1 Tracking String Handles.. 194
8.3.2 Tracking Active Conversations... 194
8.3.3 Tracking Active Links... 194
8.3.4 Tracking Registered Servers.. 194

Chapter 8 Monitoring Dynamic Data Exchange Activity: DDESpy 191

Microsoft Windows DDESpy (DDESPY.EXE) is a monitoring application for dy
namic data exchange (DDE) activity in your Microsoft Windows operating sys
tem.

This chapter describes how to use DDESpy. For more information about dynamic
data exchange, see the Microsoft Windows Programmer's Reference, Volume 1.

DDESpy is a typical DDE monitoring application. Because DDE is a cooperative
activity, DDE monitoring applications must follow certain guidelines for your
Windows system to operate properly while they are in use. In particular, DDE
monitoring applications should not perform DDE server or client communica
tions-problems may arise when the monitoring application intercepts its own
communications.

8.1 The Output Menu
DDESpy can display DDE information in a window or on your debugging termi
nal or can save the displayed information in a file for later use.

You use the Output menu to select where DDESpy is to send output. If you choose
the File command, you must specify the name of an output file. After you have
chosen the File command once, DDESpy prompts you for an output filename
every time you restart the application.

From the Output menu, you can choose the Clear Screen command to clear the dis
play window. You can choose the Mark command to add text to the display as a
marker-for example, before a DDE event to make it easier to find the event in
the output file.

8.2 The Monitor Menu
You use the Monitor menu to specify one or more types of DDE information that
DDESpy is to display. The following information can be displayed:

• String handle data

• Sent DDE messages

• Posted DDE messages

• Callbacks

• Errors

The Dynamic Data Exchange Management Library (DDEML) passes information
by using shared memory. The contents of the shared memory depend on the type
of DDE transaction. Several structures have been defined to allow applications

192 Microsoft Windows Programming Tools

using ODE to access the information in the shared memory. DDESpy displays the
contents of the appropriate structure for the DOE activity being monitored.

8.2.1 Monitoring String-Handle Data
The DDEML uses the MONHSZSTRUCT structure to pass string-handle data.
DDESpy displays the following information from this structure:

• Task (application instance)

• Time, in milliseconds, since you started Windows

• Activity type (create, destroy, or increment)

• String handle

• String contents

The following example shows a typical DDESpy display of string-handle data:

Task:0x94f, Time:519700, String Handle Created: c4a4(this is a test)
Task:0x94f, Time:526126, String Handle Created: c4aa(another test)

8.2.2 Monitoring Sent or Posted ODE Messages
The DDEML uses the MONMSGSTRUCT structure to send and post DOE mes
sages. DDESPY displays the following information from this structure:

• Task

• Time

• Handle of receiving window

• Transaction type (sent or posted)

• Message type

• Handle of sending application

• Other message-specific information

The following example shows a typical DDESpy display of DOE message activity:

Task:0x8df Time:642402 hwndTo=0x38dc Message(Sent)=Initiate:
hwndFrom=9224, App=0xc35d("Server")
Topic=*

Task:0x94f Time:642457 hwndTo=0x2408 Message(Sent)=Ack:
hwndFrom=9396, App=0xc35d("Server")status=c35d(fAck fBusy)
Topic=Item=0xc36l("System")

Chapter 8 Monitoring Dynamic Data Exchange Activity: DDESpy 193

8.2.3 Monitoring Callbacks
The DDEML uses the MONCBSTRUCT structure to pass information to applica
tion callback functions. DDESpy displays the following information from this
structure:

• Task

• Time

• Transaction type

• Exchanged-data format, if any

• Conversation handle

• String handles and their referenced strings

• Transaction-specific data

The following example shows a typical DDESPY display of callback activity:

Task:0x8df Time:2882628 Callback:
Type=Advsta rt, fmt=0xl("CF_ TEXT"), hConv=0xc24b4,
hsz1=0xc36l("System") hsz2=0xc4df("xxcall"), hData=0x0,
1Data1=0x83f0000, 1Data2=0x0
return=0x0

8.2.4 Monitoring Errors
When an error occurs during a DDE transaction, the DDEML places the error
value and associated information in a MONERRSTRUCT structure. DDESpy
uses this structure to display the following information about the error:

• Task (the handle of the application that caused the error)

• Time

• Error value and name

8.3 Tracking Options
DDESPY can also display information about aspects of DDE communication in
your Windows system:

• String handles

• Active conversations

• Active links

• Registered servers

194 Microsoft Windows Programming Tools

You use the Track menu to specify which DDE activity DDESpy is to track. When
you choose a command from the Track menu, DDESpy creates a separate window
for the display of information in conjunction with the DDE functions. For each
window created, DDESpy updates the displayed information as DDE activity oc
curs. Events that occurred prior to creation of the tracking window are not dis
played in the tracking window.

DDESpy can sort the displayed information in the tracking window. If you select
the heading for a particular column in the tracking window, DDESpy will sort the
displayed information based on the column you selected. This can be useful if you
are searching for a particular event or handle.

8.3.1 Tracking String Handles
Windows maintains a systemwide string table containing the string handles appli
cations use in DDE transactions. To display the system string table so that the
string, the string handle, and the string usage count are shown, choose the String
Handles command from the Track menu.

8.3.2 Tracking Active Conversations
To see a display of all active DDE conversations in your Windows system, choose
the Active Conversations command from the Track menu. The Active Conversa
tions window shows the server name, the current topic, and the server and client
handles for each active conversation.

8.3.3 Tracking Active Links
To see a display of all active DDE advise loops, choose the Active Links com
mand from the Track menu. The Active Links window shows the server name,
topic, item format, transaction type, client handle, and server handle for every ac
tive advise loop in your Windows system.

8.3.4 Tracking Registered Servers
Server applications use the DdeNameService function to register with the
DDEML. When the DDEML receives the DdeNameService function call, it adds
the server name and an instance-specific name to a list of registered servers. To
see a list of registered servers, choose the Registered Servers command from the
Track menu.

Viewing the Heap: Heap Walker

Chapter g

9 .1 The Heap Walker Window 197
9.2 Performing File Operations: The File Menu... 198

9.3 Walking the Heap: The Walk Menu .. 199

9.4 Sorting Memory Objects: The Sort Menu... 199
9.5 Displaying Memory Objects: The Object Menu..................................... 200

9.5.l TheShowCommand ... 200
9.5.2 TheLocalWalkCommands ... 201

9.5.2.l Local Walk: The Heap Menu................................ 202
9.5.2.2
9.5.2.3

Local Walk: The Sort Menu.................................. 202
Local Walk: The Add! Menu 203

9.6 Allocating Memory: The Alloc Menu... 203
9.7 Determining Memory Size: The Add! Menu .. 203
9. 8 Suggestions for Using Heap Walker.. 204

9.9 Related Topics .. 204

Chapter 9 Viewing the Heap: Heap Walker 197

Microsoft Windows Heap Walker (HEAPWALK.EXE) lets you examine the
global heap (the system memory that the Microsoft Windows operating system
uses) and local heaps used by active applications and dynamic-link libraries
(DLLs) in your Windows system. Heap Walker is useful for analyzing the effects
your application has when it allocates memory from the global heap or when it
creates user interface objects or graphics objects.

9.1 The Heap Walker Window
When you start Heap Walker, it scans the global heap and displays information
about the allocated and free memory objects.

The following illustration shows a Heap Walker window.

1 0 0 en tine
000234EO 085E 64 LL Pl GDI Private Bitmap
00023520 OC97 32 Pl F PROGMAN Private
00023540 OC9F 32 Pl F PROGMAN Private
00023560 OD67 512 Pl F llINPOPUP Task
00023760 OD7F 288 Pl F USER Private
00023880 ODE7 512 Pl F DRllATSON Task
00023A80 OE37 1696 Pl F SOUND Code 1
00024120 ODFF 288 Pl F USER Private
00024240 OE7F 512 Pl F llINDUMP Task
00024440 OE97 288 Pl F USER Private
00024560 OFB7 512 Pl F HEAPllALK Task
00024760 OFCF 288 Pl F USER Private
00024880 lOCE 192 D HEAPllALK Resource String
00024940 10D6 64 D HEAPWALK Resource Group_Icon
00024980 OF66 288 D llINDUMP Resource Cursor
00024AAO 96 Free
00024BOO 03F6 320 D DISPLAY Resource Icon
00024C40 097E 768 GDI Private Bitmap
00024F40 OCA6 896 PMSPL Module Database
000252CO ODlE 32 GDI Private
000252EO 07A6 32 D USER Resource Group_Cursor
00025300 012F 6976 Pl F KERNEL CodelDGROUP (4)
00026E40 046E 3808 GDI Module Database

Heap Walker displays the following information about each object:

Column heading

ADDRESS

HANDLE

SIZE

Information displayed

Address of the memory object (displayed in hexadecimal
format).

Handle of the memory object (displayed in hexadecimal
format).

Size of the memory object, in bytes (displayed in decimal
format).

198 Microsoft Windows Programming Tools

Column heading

LOCK

FLG

HEAP

OWNER

TYPE

Information displayed

Lock count of the object. There are two types oflock counts:
page-locked (P) and object-locked (L). Page-locked means
that virtual memory will not be used to page the object
(pieces of the object will not be written to the swap file);
object-locked means the entire object will not be discarded.

D if the object is discardable; F if the object is fixed (not mov
able or discardable).

Y if the object has a local heap.

Owner of the object (name of the module that allocated the
object).

Type of object (code segment, data segment, resource, and so
on). Heap Walker searches for symbol files and lists names
for segments whenever corresponding symbol files are found.

9.2 Performing File Operations: The File Menu
The following commands are on the File menu:

Command

Save

Exit

About

Action

Saves in a file the current listing of objects in the heap. Heap Walker
writes the first listing you save to the file HWGOO.TXT and numbers
subsequent files consecutively (HWGOl .TXT, HWG02.TXT, and
so on).

Closes Heap Walker.

Displays information about the current version of Heap Walker.

When you save a current heap listing to a file, Heap Walker includes all the infor
mation shown in the HeapWalker-[Main Heap] window, the number of free blocks
in the heap, the size of the largest free block, the total free global heap space, and
the following information about each module that has allocated memory from the
global heap:

• Module name

• Number of discardable segments loaded in memory

• Number of bytes in discardable segments

• Number of bytes in nondiscardable segments

• Total number of bytes used by the module

Chapter 9 Viewing the Heap: Heap Walker 199

9.3 Walking the Heap: The Walk Menu
The following commands are on the Walk menu:

Command

Walk Heap

Walk LRU List

Walk Free List

GC(O) and Walk

GC(-1) and Walk

GC(-1) and HitA:

Set Swap Area

Segmentation Test

Action

Displays all objects in the global heap.

Displays only discardable objects. Heap Walker lists objects
from the least recently used to the most recently used. The ob
ject at the top of the list has been least recently used and, there
fore, is most eligible for discarding.

Displays only free blocks of memory.

Compacts the global heap, asking for 0 bytes, and then displays
the heap.

Attempts to discard all discardable objects and then displays the
heap.

Attempts to discard all discardable objects and then accesses
drive A. This command is used to test critical error handling.

Resets the code fence. The code fence defines an area of
memory reserved for discardable code.

Dumps the heap to a file called HWG.xx.TXT and then compacts
the heap.

9.4 Sorting Memory Objects: The Sort Menu
The Sort menu is useful for sorting memory objects in a variety of ways. The fol
lowing commands are on the Sort menu:

Command

Address

Module

Size

Type

Refresh Seg Names

Action

Sorts numerically by address.

Sorts alphabetically by the owning module's name and sorts al
phabetically by object type within each owner name.

Sorts numerically by object size.

Sorts alphabetically by object type and sorts alphabetically by
owner name within each object type.

Searches for symbol files and lists segment names. This com
mand can be used to list segment names for applications loaded
after you start Heap Walker.

200 Microsoft Windows Programming Tools

9.5 Displaying Memory Objects: The Object Menu
The Object menu is useful for viewing objects selectively. The following com
mands are on the Object menu:

Command

Show

Discard

Oldest

Newest

Local Walk

LC(-1) and LocalWalk

GDI Loca!Walk

User LocalWalk

9.5.1 The Show Command

Action

Displays the contents of a selected object in hexadecimal
format and ASCII format. When possible for resources, this
command displays the resource (such as an icon, menu, or
dialog box).

Discards a selected object.

Marks a selected object as the next candidate for discarding.

Marks a selected object as the last candidate for discarding.

Displays the local heap of the currently selected object, if it
has one.

Compacts the selected local heap and then displays the heap.

Displays the GDI local heap and provides information
about the objects in the heap.

Displays the USER local heap and provides information
about the objects in the heap.

To display a hexadecimal dump of an object, select the object in the HeapWalker
[Main Heap] window and either double-click the left mouse button or choose the
Show command from the Object menu. In addition to the hexadecimal dump, the
Show command can display the following kinds of resources:

• Bitmaps

• Cursors

• Dialog boxes

• Icons

• Menus

For example, the following illustration shows how the Show command displays
the memory and icon associated with the selected memory object.

806963CO
0006CA60
806DB020
00067340
806DAAEO
000659CO
806DA5AO
00052280
00023380
8068DECO
0007B8CO
00078780
000523(0
000755CO

9.5.2 The LocalWalk Commands

D
D
D
D
D
D
D
D

Chapter 9 Viewing the Heap: Heap Walker 201

DISPLAY Resource Group_Icon
DISPLAY Resource Group_Icon
DISPLAY Resource Group_Icon

672 0 OOEPRINT Resource le
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

0 00 00

DI y
DISPLAY
DISPLAY
DISPLAY Resource
DISPLAY Resource
DISPLAY Resource
DISPLAY Resource
DISPLAY Resource

Icon
Icon
Icon
Icon
Icon

LAY Resource Icon
LAY Resource Icon Resource Icon
LAY Resource Icon
LAY Resource Icon
TSON Resource Icon

D FROGMAN Resource Icon

You can choose the LocalW alk command from the Object menu to view the local
heap for a selected object. You can also choose the GDI Local Walk or User Local
Walk command to view the GDI or USER local heap, respectively, at any time.
Local Walk windows show the following information:

Window heading

OFFSET

HANDLE

SIZE

FLAGS

LCK

TYPE

Information displayed

Offset of the object from the beginning of the heap. You can
use this information to locate the contents of the object
within the hexadecimal display of the heap.

Handle of the object.

Size of the object, in bytes.

Whether the object is movable, fixed, or free.

Lock count for the object.

Object type (shown only for GDI and USER heaps).

202 Microsoft Windows Programming Tools

The following illustration shows a Local Walk window.

12
1B62
1C36
1C4E
1CB6
1D3E
lDO.
20EA lCBA
2112 1CB6

ixed
206 Fixed

18 Fixed
98 Fixed

130 Fixed
6 Fixed

922 Free
34 Moveable

514 Moveable

Windows allocates the first object in the local heap, so there are always at least
two objects in a local heap.

9.5.2.1 Local Walk: The Heap Menu
Following are the commands on the Heap menu:

Command

Info

Save

Action

Displays a message box showing the number of free, movable, and
fixed objects; the number of bytes they use; the total number of allo
cated objects; and the number of bytes they use.

Saves the Local Walk display to a file. The first file saved is
named HWLOO.TXT; subsequent files are numbered sequentially
(HWLOl.TXT, HWL02.TXT, and so on). The file contains all the in
formation shown in the Local Walk window and a summary of local
objects by type (free, movable, fixed, and total allocated).

9.5.2.2 Local Walk: The Sort Menu
Following are the commands on the Sort menu:

Command

Address

Flags

Size

Action

Sorts the Local Walk display numerically by address.

Sorts the Local Walk display alphabetically by flags (fixed, free, or
movable).

Sorts the Local Walk display numerically by object size.

Chapter 9 Viewing the Heap: Heap Walker 203

9.5.2.3 Local Walk: The Add! Menu
The Add! menu displays a message box showing the total number of bytes used by
selected objects.

9.6 Allocating Memory: The Alloc Menu
The Alloc menu is useful for allocating memory for test purposes. You can allo
cate all free memory and then run your program to see how it behaves when no
memory is available. You can free all or a specified part of the allocated memory.

The following commands are available from the Alloc menu:

Command

Allocate All of Memory

Free All

Free lK

Free 2K

Free 5K

Free lOK

Free 25K

Free 50K

Free XK

Action

Allocates all free memory. This command is useful for test
ing out-of-memory conditions in applications.

Frees memory allocated by the Allocate All of Memory
command.

Frees 1 K of the memory allocated by the Allocate All of
Memory command.

Frees 2K of the memory allocated by the Allocate All of
Memory command.

Frees 5K of the memory allocated by the Allocate All of
Memory command.

Frees 1 OK of the memory allocated by the Allocate All of
Memory command.

Frees 25K of the memory allocated by the Allocate All of
Memory command.

Frees 50K of the memory allocated by the Allocate All of
Memory command.

Frees a specified number of kilobytes of the memory allo
cated by the Allocate All of Memory command. A dialog
box is displayed, in which you can specify the number.

The last eight commands apply only to memory allocated when you chose the first
command-it is not possible to free memory allocated by another program.

9. 7 Determining Memory Size: The Add! Menu
The Add! menu on the Heap Walker menu bar adds the total number of bytes of
selected memory objects. Opening this menu displays a dialog box that shows the
number of selected segments and total segment sizes.

204 Microsoft Windows Programming Tools

9.8 Suggestions for Using Heap Walker
One error that frequently occurs in applications is the failure to free memory ob
jects when they are no longer needed. This can cause Windows to fail when one of
its data segments grows beyond the 64K limit.

You can use Heap Walker to help determine if your application is not freeing
memory objects. With Heap Walker, you can view changes in the sizes of all Win
dows data segments to observe the effect your application has on these segments.

To check how your application changes the sizes of the Windows data segments,
follow these steps:

1. Make sure that your application does not generate fatal exits.

2. Start the debugging version of Windows.

3. Start Heap Walker, and note the sizes of the GDI and USER data segments.
This establishes the reference for comparing the size of the data segments later.

4. From the Object menu, choose the GDI LocalWalk command to display the
GDI Heap (Local Walk) window, which lists the different objects in the GDI
data segment. Then choose the Save command from the Heap menu to copy
this list to a file; the file will also contain a summary of GDI objects.

5. Run your application, and exercise it fully over a long period of time, noting the
changes in the size of the GDI and USER data segments that Heap Walker dis
plays as your application runs. While your application is running, repeat step 4
a number of times to take "snapshots" of the effect your application has on the
GDI data segment.

6. Close your application, take a final snapshot of the GDI data segment, and note
the total sizes of the GDI and USER data segments.

As you analyze the data that you've recorded, you should look for GDI objects
that your application creates but does not delete when they are no longer needed.

9.9 Related Topics
For more information about heaps and memory management, see the Microsoft
Windows Guide to Programming.

Analyzing Performance: Profiler

Chapter 1 O

10.1 Overview of Profiler .. 207
10.2 Preparing to Run Profiler... 208
10.3 Using Profiler Functions.. 208
10.4 Sanipling Code ... 209
10.5 Displaying Saniples ... 209

Chapter 10 Analyzing Performance: Profiler 207

Microsoft Windows Profiler is an analytical tool that helps you optimize the per
formance of Windows applications. Profiler lets you determine the amount of time
the Microsoft Windows operating system spends executing sections of code.

Profiler analyzes applications running with Windows in 386 enhanced mode; how
ever, it cannot analyze applications running with Windows in standard mode.

· 10.1 Overview of Profiler
Profiler contains the following:

• A sampling utility

• A reporting utility

• A set of functions your application can call

The sampling utility gathers information about the time spent between adjacent
labels and records memory addresses of code. The utility is a special device driver,
VPROD.386. To run Profiler, install VPROD.386 and then run Windows directly.

Profiler stores the information it gathers in a buffer. It writes the buffer to disk
when Windows terminates, producing a CSIPS.DAT file and a SEGENTRY.DAT
file in the directory that was your current directory when you started Windows.
The CSIPS.DAT file contains statistical samplings of the code segment (CS) and
instruction pointer (IP) registers. The SEGENTRY.DAT file contains information
about the movement of code segments. Because code segments can be located at
different physical addresses during the execution of the program, information from
both the CSIPS.DAT and SEGENTRY.DAT files is required to prepare the profil
ing report.

After the sampling utility has finished gathering information, the
SHOWHITS.EXE reporting utility organizes and displays the results.

With Profiler's functions, you start and stop examining code, manage the output of
code samples, and get information about Profiler. All applications that Profiler ex
amines must include the two functions that start and stop the sampling of code.
Other Profiler functions are optional.

208 Microsoft Windows Programming Tools

10.2 Preparing to Run Profiler
To profile an application running with Windows in 386 enhanced mode, you can
use any system that is capable of running Windows in 386 enhanced mode.

In addition to ensuring that your system is compatible with Profiler, you must do
the following:

1. Ensure that the Windows directory is defined in your PATH environment varia
ble.

2. Include in your application at least the two mandatory Profiler functions
ProfStart and ProfStop.

ProfStart indicates when you want Profiler to start sampling code; ProfStop
indicates when you want Profiler to stop sampling. Other Profiler functions are
optional.

3. Compile your application. Then link the compiled code with the standard Win
dows libraries, using the appropriate command-line option to prepare a symbol
map (.MAP) file that includes PUBLIC symbols. The .MAP file is required by
Microsoft Symbol File Generator (MAPSYM). For information about how to
create the .MAP file during linking, see the documentation that accompanied
your linker. For more information about MAPSYM, see Chapter 5, "Advanced
Debugging: 80386 Debugger."

4. Use MAPSYM to convert the .MAP file to a symbol (.SYM) file.

10.3 Using Profiler Functions
In addition to the mandatory ProfStart and ProfStop functions, Profiler includes
functions that determine whether Profiler is installed, specify a rate for sampling,
and control the output buffer. Following are the available Profiler functions:

Function

ProfClear

ProfFinish
ProfFlush

ProflnsChk

ProfSampRate

ProfSetup
ProfStart
ProfStop

Description

Discards all buffered Profiler samples.

Stops profile sampling and flushes profile buffer.

Flushes the Profiler sampling buffer to disk.

Detennines whether Profiler is installed.

Sets the Profiler sampling rate.

Sets Profiler buffer size and sample quantity.

Starts Profiler sampling.

Stops Profiler sampling.

Chapter 10 Analyzing Performance: Profiler 209

10.4 Sampling Code
To use the Profiler functions, you must first install VPROD.386, a virtual device
driver. Your application can call the ProfSetup function to set the size of the out
put buffer (up to 1064K).

Profiler sampling uses memory that is otherwise available to Window~. Therefore,
using Profiler may decrease the performance of the application you are analyzing.
By specifying a small output buffer for Profiler, you can reduce the amount of
memory used. However, a small output buffer may cause sample loss.

Profiler can write samples to disk only when Windows indicates it is safe to do so.
When the sampling buffer is full, Profiler ignores additional samples until the buff
er is flushed to disk. To minimize sample loss, either increase the buffer size or
periodically call the ProfFlush function.

To profile applications, do the following:

1. Install the VPROD.386 driver by adding the following setting to the [386enh]
section of your SYSTEM.IN! file:

device=vprod.386

2. Run Windows in 386 enhanced mode.

3. Run the application you want to profile.

4. When you have finished profiling your application, remove the SYSTEM.IN!
file setting you added in step 1.

10.5 Displaying Samples
To display the data Profiler gathers, run the SHOWHITS.EXE application
from the MS-DOS command line. This reporting utility reads CSIPS.DAT,
SEGENTRY.DAT, and .SYM files and then organizes and displays the data. The
CSIPS.DAT and SEGENTRY.DAT files are located where the sampling utility
placed them-that is, in the directory that was your current directory when you
started Windows. To ensure that SHOWHITS.EXE can locate these files, either
run SHOWHITS.EXE from the same directory or specify full paths for the
CSIPS.DAT and SEGENTRY.DAT files. If the .SYM files are not in the current
directory, use the lipath option on the showhits command line to specify the
directory or directories containing them.

SHOWHITS.EXE reads .SYM files to match instruction pointer samples with
global symbols in the application. When you run SHOWHITS.EXE, the utility
searches for .SYM files that contain symbolic names identical to the names of
modules that Profiler sampled. Each match is called a hit. If the sampled program

210 Microsoft Windows Programming Tools

is written in the C language, the symbolic names are typically function names. If
the sampled program is written in assembly language, the symbolic names can be
either procedure names or PUBLIC symbols within procedures.

SHOWHITS.EXE reports the number of times sampling occurred between adja
cent symbols.

The syntax for the showhits command line is as follows:

showhits [/ipath [/ipath [...]]] [cs_file] [seg_file]

Following are the command-line options and parameters:

lipath
Specifies one or more directories to search for .SYM files. SHOWHITS.EXE
loads all .SYM files from the specified directories, regardless of their relevance
to the application you are profiling. The default value is the current directory.

cs_file
Specifies the full path of the CSIPS.DAT file. Ifno path is specified,
SHOWHITS.EXE looks for the file in the current directory.

seg_file
Specifies the full path of the SEGENTRY.DAT file. Ifno path is specified,
SHOWHITS.EXE looks for the file in the current directory.

SHOWHITS.EXE displays information about hits, which are instruction pointer
samples, in the following four categories:

Category

Unrecognized segments

Known segments

Breakdown

Summary

Description

A list of instruction pointer values that occur within seg
ments for which there are no symbols of module names.
Unrecognized segments are typically code for device
drivers, terminate-and-stay-resident (TSR) programs, and
other code that Windows does not use.

The number of hits that occur within known modules. Hits
on known segments typically include counts for the appli
cation and counts for such Windows modules as KERNEL,
GDI, and DISPLAY. Profiler also counts hits in MS-DOS
and the read-only memory (ROM) basic input-and-
output system (BIOS). In addition to displaying hits,
SHOWHITS.EXE lists the total number of hits and the seg
ment's percentage of total hits.

A detailed breakdown of the hits between labels of the
modules for which SHOWHITS.EXE finds .SYM files.
SHOWHITS.EXE also displays the total number of hits
and the percentage of the total number.

A list of the top hits.

Chapter 10 Analyzing Performance: Profiler 211

The following example illustrates a profiling-report display:

Here are the Hits for Unrecognized Segments

Here are the Hits for Known Segments

0.3% 3 Hits on SYSTEM!
0.5% 5 Hits on HELLO!

76.5% 786 Hits on DISPLAY!
11. 3% 116 Hits on GDI !
11. 5% 118 Hits on KERNEL!

1028 TOTAL HITS

HELLO!_ TEXT

0.4% 4 Hits between labels HelloPaint and Hellolnit
0.1% 1 Hits between labels cintDIV and __ fptrap

Profiler Summary (Top 10 Hits):

0.4% 4 HELLO! TEXT! HelloPaint - Hellolnit
0.1% 1 HELLO! TEXT! cintDIV - __ fptrap

Compressing and Decompressing
Files

Chapter 11

11.1 Compressing Files: Compress... 215
11.2 Decompressing Compressed Files: Expand .. 216

Chapter 11 Compressing and Decompressing Files 215

Microsoft File Compression Utility (Compress) and Microsoft File Expansion
Utility (Expand) are two tools for the Microsoft Windows operating system. These
utilities are useful when you prepare your application files for distribution and as
part of the installation process for your application. Compress compresses files to
a smaller size, so you can fit more files on a disk. Expand decompresses files after
they have been compressed, expanding them to their original sizes. You run these
utilities from the MS-DOS command line.

The following sections describe these utilities.

11.1 Compressing Files: Compress
Compress (COMPRESS.EXE) creates compressed versions of one or more files.
The resulting files are typically 25 to 45 percent smaller than the original files.

Command-line syntax for Compress is as follows:

compress [/?J[/r] source destination

Following are command-line options and parameters for Compress:

I?
Displays information about how to use Compress.

Ir
Specifies that compressed files should be renamed.

source
Specifies the source filename. The name can include a drive letter, a directory
path, or both; and it can contain wildcards.

destination
Specifies the destination. This parameter can consist of a directory (with op
tional drive letter), a filename, or any combination of the two.

If the source parameter contains wildcards and the destination parameter does
not specify only a directory, the Ir option must be used.

If the destination parameter does not contain a filename, Compress uses the
filename or filenames specified by the source parameter when Compress copies
the file or files to the location specified by the destination parameter.

216 Microsoft Windows Programming Tools

11.2 Decompressing Compressed Files: Expand
Expand (EXPAND.EXE) decompresses files previously compressed by Com
press. Expand restores these files to their original sizes.

Command-line syntax for Expand is as follows:

expand [/?][/r] source destination

Following are command-line options and parameters for Expand:

I?
Displays information about how to use Expand.

Ir
Specifies that compressed files should be renamed.

source
Specifies the source filename. The name can include a drive letter, a directory
path, or both; and it can contain wildcards.

destination
Specifies the destination. This parameter can consist of a directory (with op
tional drive letter), a filename, or any combination of the two.

If the source parameter contains wildcards and the destination parameter does
not specify only a directory, the Ir option must be used.

If the destination parameter does not contain a filename, Expand uses the
filename or filenames specified by the source parameter when Expand copies
the file or files to the location specified by the destination parameter.

The following example shows how to create decompressed versions of all the files
on drive A, writing them to a directory on drive C:

expand a:*.* c:\mydir

Resource Compiler
Diagnostic Messages

Appendix A

Alphabetic Reference 219

Appendix A Resource Compiler Diagnostic Messages 219

This appendix contains descriptions of diagnostic messages produced by
Microsoft Windows Resource Compiler (RC). Many of these messages appear
when RC is not able to compile resources properly. The descriptions in this appen
dix clarify the causes. The messages are listed in alphabetic order.

A capital V in parentheses (V) at the beginning of a message description indicates
that the message is displayed only if RC is run with the -V (verbose) option.
These messages are generally informational and do not necessarily indicate errors.

For information on the keywords and fields specified in this appendix, see the
Microsoft Windows Programmer's Reference, Volume 4.

A

Accelerator Type required (ASCII or VIRTKEY)

The type parameter in the ACCELERATORS statement must contain either the
ASCII or VIRTKEY value.

B

BEGIN expected in Accelerator Table

An ACCELERATORS statement was not followed by the BEGIN keyword.

BEGIN expected in Dialog

A DIALOG statement was not followed by the BEGIN keyword.

BEGIN expected in menu

A MENU statement was not followed by the BEGIN keyword.

BEGIN expected in RCData

An RCDATA statement was not followed by the BEGIN keyword.

BEGIN expected in String Table

A STRING TABLE statement was not followed by the BEGIN keyword.

BEGIN expected in VERSIONINFO resource

A VERSIONINFO statement was not followed by the BEGIN keyword.

Bitmap file resource-file is not in version-number format.

Use Microsoft Image Editor (IMAGEDIT.EXE) to convert version 2.x resource
files to the version 3.1 format.

220 Microsoft Windows Programming Tools

c

Cannot Re-use String Constants

You are using the same value twice in a STRING TABLE statement. Make sure
that you have not mixed overlapping decimal and hexadecimal values.

Control Character out of range [A - z]

A control character in the ACCELERATORS statement is invalid. The character
following the caret (A) must be in the range A through Z.

Copying segment id (size bytes)

(V) Microsoft Windows Resource Compiler (RC) is copying the specified seg
ment to the executable (.EXE) file.

Could not find RCPP.EXE

The preprocessor (RCPP.EXE) must be in the current directory or in a directory
specified in the PA TH environment variable.

Could not open in-file-name

Microsoft Windows Resource Compiler (RC) could not open the specified file.
Make sure that the file exists and that you typed the filename correctly.

Couldn't open resource-name

Microsoft Windows Resource Compiler (RC) could not open the specified file.
Make sure that the file exists and that you typed the filename correctly.

Creating resource-name

(V) Microsoft Windows Resource Compiler (RC) is creating a new binary re
source (.RES) file.

E

Empty menus not allowed

An END keyword appears before any menu items are defined in the MENU state
ment. Empty menus are not permitted by Microsoft Windows Resource Compiler
(RC). Make sure that you do not have any opening quotation marks within the
MENU statement.

END expected in Dialog

The END keyword must appear at the end of a DIALOG statement. Make sure
that there are no opening quotation marks left from the preceding statement.

Appendix A Resource Compiler Diagnostic Messages 221

END expected in menu

The END keyword must appear at the end of a MENU statement. Make sure that
there are no mismatched BEGIN and END statements.

Error Creating resource-name

Microsoft Windows Resource Compiler (RC) could not create the binary resource
specified (.RES) file. Make sure that it is not being created on a read-only drive.
Use the IV option to find out whether the file is being created.

Errors occurred when linking file.

The linker failed. For more information, see the documentation for your linker.

EXE file too large; relink with higher /ALIGN value

The executable (.EXE) file is too large. Relink the .EXE file with a larger value.
For more information, see the documentation for your linker.

Expected Comma in Accelerator Table

Microsoft Windows Resource Compiler (RC) requires a comma between the event
and idvalue parameters in the ACCELERATORS statement.

Expected control class name

The class parameter of a CONTROL statement in the DIALOG statement
must be one of the following control types: BUTTON, COMBO BOX, EDIT,
LISTBOX, SCROLLBAR, STA TIC, or user-defined. Make sure that the class is
spelled correctly.

Expected font face name

The typeface parameter of the FONT statement in the DIALOG statement must
be an ASCII character string enclosed in double quotation marks. This parameter
specifies the name of a font.

Expected ID value for Menuitem

The MENU statement must contain a MENUITEM statement, which contains
either an integer or a symbolic constant in the MenuID parameter.

Expected Menu String

Each MENUITEM and PO PUP statement must contain a text parameter. This
parameter is a string enclosed in double quotation marks that specifies the name of
the menu item or pop-up menu. A MENUITEM SEPARATOR statement re
quires no quoted string.

222 Microsoft Windows Programming Tools

Expected numeric command value

Microsoft Windows Resource Compiler (RC) was expecting a numeric idvalue
parameter in the ACCELERATORS statement. Make sure that you have used a
#define constant to specify the value and that the constant used is spelled correctly.

Expected numeric constant in string table

A numeric constant, defined in a #define statement, must immediately follow the
BEGIN keyword in a STRING TABLE statement.

Expected numeric point size

The pointsize parameter of the FONT statement in the DIALOG statement must
be an integer point-size value.

Expected Numerical Dialog constant

A DIALOG statement requires integer values for the x, y, width, and height
parameters. Make sure that these values, which are included after the DIALOG
keyword are not negative.

Expected String in STRING TABLE

A string is expected after each numeric stringid parameter in a STRING TABLE
statement.

Expected String or Constant Accelerator command

Microsoft Windows Resource Compiler (RC) was not able to determine
which key was being set up for the accelerator. The event parameter in the
ACCELERATORS statement might be invalid.

Expected VALUE, BLOCK, or END keyword.

The VERSIONINFO structure requires a VALUE, BLOCK, or END keyword.

Expecting number for ID

A number is expected for the id parameter of a control statement in the DIALOG
statement. Make sure that you have a number or a #define statement for the con
trol identifier.

Expecting quoted string for key

The key string following the BLOCK or VALUE keyword should be enclosed in
double quotation marks.

Expecting quoted string in dialog class

The class parameter of the CLASS statement in the DIALOG statement must be
an integer or a string enclosed in double quotation marks.

Appendix A Resource Compiler Diagnostic Messages 223

Expecting quoted string in dialog title

The captiontext parameter of the CAPTION statement in the DIALOG statement
must be an ASCII character string, enclosed in double quotation marks.

F

Fast-load area is [size] bytes at offset Ox[address]

(V) This is the size, in bytes, of all the following segments:

• Segments with the PRELOAD attribute

• Segments with the DISCARDABLE attribute

• Code segments that contain the entry point, WinMain

• Data segments (which should not be discardable)

To disable fast loading, use the -k option. Fast loading is the placement of seg
ments in a contiguous area in the executable (.EXE) file for quicker loading. The
offset is from the the beginning of the file.

File not created by LINK

You must create the executable (.EXE) file with an appropriate version of the
linker.

File not found: filename

The file specified in the re command was not found. Make sure that the file has
not been moved to another directory and that the filename or path is typed cor
rectly.

Font names must be ordinals

The pointsize parameter in the FONT statement must be an integer, not a string.

I

Insufficient memory to spawn RCPP.EXE

There wasn't enough memory to run the preprocessor (RCPP.EXE). Try disabling
any memory-resident software that might be taking up too much memory. To
verify the amount of memory you have, use the chkdsk command.

Invalid Accelerator

An event parameter in the ACCELERATORS statement was not recognized or
was more than two characters long.

224 Microsoft Windows Programming Tools

Invalid Accelerator Type (ASCII or VIRTKEY)

The type parameter in the ACCELERATORS statement must contain either the
ASCII or VIRTKEY value.

Invalid control character

A control character in the ACCELERATORS statement is invalid. A valid con
trol character consists of a caret (") followed by a single letter.

Invalid Control type

The control statement in a DIALOG statement must be one of the following:
CHECKBOX, COMBOBOX, CONTROL, CTEXT, DEFPUSHBUTTON,
EDITTEXT, GROUPBOX, ICON, LISTBOX, LTEXT, PUSHBUTTON,
RADIOBUTTON, RTEXT, or SCROLLBAR.

Invalid directive in preprocessed RC file

The specified filename has an embedded newline character.

Invalid .EXE file

The executable (.EXE) file is invalid. Make sure that the linker created it correctly
and that the file exists.

Invalid switch, option

An option used was invalid. For a list of the command-line options, use the re-?
command.

Invalid type

The resource type was not among the types defined in the include file.

Invalid usage. Use re-? for Help

Make sure that you have at least one filename to work with. For a list of the
command-line options, use the RC-? command.

I/O error reading file.

Read failed. Since this is a generic routine, no specific filename is supplied.

I/O error seeking in file

Seeking in file failed. Since this is a generic routine, no specific filename is sup
plied.

I/O error writing file.

Write failed. Since this is a generic routine, no specific filename is supplied.

Appendix A Resource Compiler Diagnostic Messages 225

N

No executable filename specified.

The -FE option was used, but no executable (.EXE) file was specified.

No resource binary filename specified.

The -FO option was used, but no binary resource (.RES) file was specified.

Not a Microsoft Windows format .EXE file

Make sure that the linker created the executable (.EXE) file correctly and that the
file exists.

0

Old DIB in resource-name. Pass it through IMAGEDIT.

The resource file specified is not compatible with Windows version 3.1. Make
sure you have read and saved this file using the latest version of Microsoft Image
Editor (IMAGEDIT.EXE). (Image Editor has replaced SDK Paint.)

Out of far heap memory

There wasn't enough memory. Try disabling any memory-resident software that
might be taking up too much space. To find out how much memory you have, use
the chkdsk command.

Out of memory, needed n bytes

Microsoft Windows Resource Compiler (RC) was not able to allocate the
specified amount of memory.

R

RC: Invalid swap area size: -S string

Invalid swap area size. Check your syntax for the -S option on the command line
for the Microsoft Windows Resource Compiler (RC). The following examples
show acceptable command lines:
RC Sl23
RC Sl23K
RC Sl23p

where K is kilobytes
where p is paragraphs

RC: Invalid switch: option

An option used was invalid. For a list of the command-line options, use the re-?
command.

226 Microsoft Windows Programming Tools

RC: RCPP.ERR not found

The RCPP.ERR file must be in the current directory or in a directory specified in
the PA TH environment variable.

RC terminated by user

A CTRL+C key combination was pressed, exiting Microsoft Windows Resource
Compiler (RC).

RC terminating after preprocessor errors

For information about preprocessor errors, see the documentation for the pre
processor.

RCPP.EXE command line greater than 128 bytes

The command line for the preprocessor (RCPP.EXE) was too long.

RCPP.EXE is not a valid executable

The preprocessor (RCPP.EXE) may have been altered. Try copying the file again
from the Microsoft Windows Software Development Kit (SDK) disks.

Resource file resource-name is not in version-number format.

Make sure your icons and cursors have been read and saved using the latest ver
sion of Microsoft Image Editor (IMAGEDIT.EXE).

Resources will be aligned on number byte boundaries

(V) The alignment is determined by an option on the command line for the linker.

s

Sorting preload segments and resources into fast-load section

(V) Microsoft Windows Resource Compiler (RC) is sorting the preloaded seg
ments into a contiguous area in the executable (.EXE) file (the fast-load section)
so that they can be loaded quickly.

T

Text string or ordinal expected in Control

The text parameter of a CONTROL statement in the DIALOG statement must be
either a text string or an ordinal reference to the type of control that is expected. If
using an ordinal, make sure that you have a #define statement for the control.

Appendix A Resource Compiler Diagnostic Messages 227

The EXE TYPE of this program is not Windows

The EXETYPE WINDOWS statement did not appear in the module-definition
(.DEF) file. Since the linker might make optimizations that are not appropriate for
Windows, the EXETYPE WINDOWS statement must be specified.

u

Unable to create destination

Microsoft Windows Resource Compiler (RC) was not able to create the destina
tion file. Make sure that there is enough disk space.

Unable to open exe-file

Microsoft Windows Resource Compiler (RC) could not open the executable
(.EXE) file. Make sure that the linker created it correctly and that the file exists.

Unbalanced Parentheses

Make sure that you have closed every opening parenthesis in the DIALOG state
ment.

Unexpected value in RCData

The values for the raw-data parameter in the RCDATA statement must be in
tegers or strings, separated by commas. Make sure that you did not leave out a
comma or a quotation mark around a string.

Unexpected value in value data

A statement contained information whose format or size was different from the ex
pected value for that parameter.

Unknown DIB header format

The device-independent bitmap (DIB) header is not a BITMAPCOREHEADER
or BITMAPINFOHEADER structure.

Unknown error spawning RCPP.EXE

For an unknown reason, the preprocessor (RCPP.EXE) has not started. Try copy
ing the file again from the SDK disks and use the chkdsk command to verify the
amount of available memory.

Unknown Menu SubType

The item-definitions parameter of the MENU statement can contain only
MENUITEM and POPUP statements.

228 Microsoft Windows Programming Tools

Unrecognized VERSIONINFO field; BEGIN or comma expected

The format of the information following a VERSIONINFO statement is incorrect.

v

Version WORDs separated by commas expected

Values in an information block for a VERSIONINFO statement should be sepa
rated by commas.

w

Warning: ASCII character not equivalent to virtual key code

An invalid virtual-key code exists in the ACCELERATORS statement. The
ASCII values for some characters (such as*, A, or&) are not equivalent to the
virtual-key codes for the corresponding keys. (In the case of the asterisk([*]), the
virtual-key code is equivalent to the ASCII value for 8, the numeric character on
the same key. Therefore, the statement VIRTKEY '* ' is invalid. For informa
tion about these values, see the Microsoft Windows Programmer's Reference,
Volume 3.

Warning: SHIFT or CONTROL used without VIRTKEY

The ALT, SHIFT, and CONTROL options apply only to virtual keys in the
ACCELERATORS statement. Make sure that the VIRTKEY option is used with
one of these other options.

Warning: string segment number set to PRELOAD

Microsoft Windows Resource Compiler (RC) displays this warning when it copies
a segment that must be preloaded but is not marked PRELOAD in the module
definition (.DEF) file for the linker. All nondiscardable segments should be pre
loaded, including automatic data segments, fixed segments, and the entry point of
the code (WinMain). (The attributes of code segments are set by the .DEF file.)

Writing resource resource-name or ordinal-id. resource type (resource size)

(V) Microsoft Windows Resource Compiler (RC) is writing the resource name or
ordinal identifier, followed by a period and the resource type and size, in bytes.

Help Compiler Error Messages

Appendix B

B .1 Interpreting Error Messages... 231
B. 2 Error Message Categories 231
B.3 File Errors... 232
B.4 Project-File Errors.. 233
B.5 Macro Errors.. 237
B.6 Context-String Errors ... 237
B.7 Topic-File Errors .. 239
B.8 Miscellaneous Errors... 240

Appendix B Help Compiler Error Messages 231

This appendix lists the error messages displayed by the Microsoft Help Compiler
when it encounters errors in building a help file. Whenever possible, the compiler
displays the name of the file that contains the error, as well as the number used to
identify the specific line of the project file or the topic that produced the error.
Since topics are not actually numbered, the topic number given with an error mes
sage refers to that topic's sequential position in the topic file.

B .1 Interpreting Error Messages
The Microsoft Help Compiler displays either warning or fatal-error messages. A
warning message indicates a problem during compilation that was not severe
enough to prevent the help file from being created. Microsoft Windows Help
should be able to open the file but may encounter problems when displaying some
topics. A fatal error indicates a problem that prevents the compiler from creating a
help file. The compiler always reports fatal errors, regardless of the current warn
ing level or reporting option.

While the Microsoft Help Compiler processes the project file, it ignores lines that
contain errors and attempts to continue. This means that errors encountered early
in the file may result in many more errors being reported as the compiler continues.

When the Microsoft Help Compiler processes topic files, it reports any errors it en
counters and, if the errors are not fatal, compilation continues. A single error in a
topic file may result in more than one error message being displayed by the com
piler. For example, a typographic mistake in a topic's context string will cause an
error to be reported every time the compiler encounters a reference to the correct
topic identifier.

B.2 Error Message Categories
Error-message numbers have four digits; the first one or two of those digits iden
tify the message category. The message-number prefixes and the categories they
identify are defined as follows:

Prefix

2

30-31
35-36
40-41

Error

Problems with files used to build the help file

Problems with the project file

Problems with build tags or build-tag expressions

Problems with Help macros

Problems with context strings

232 Microsoft Windows Programming Tools

Prefix

42-45

46-47

5

B.3 File Errors

Error

Problems with footnotes

Problems with the topic file

Other problems

The following messages result from problems with files used to build a help file.
A description is given for messages that are not self-explanatory.

Number

1019

1030

1079

File error message

Project file extension cannot be .HLP or .PH.

File name exceeds limit of 259 characters.

The combined length of the path and filename must not be more than the
MS-DOS limit of 259 characters.

Out of file handles.
The compiler does not have enough available file handles to continue. If
possible, increase the FILES setting in the CONFIG.SYS file.

1100 Cannot open file filename: permission denied.
Requested files must have at least read privilege to be opened.

1150 Cannot overwrite file filename.

Files with the read-only attribute cannot be overwritten.

1170 File filename is a directory.
A directory in the project directory has the same name as the requested
help file.

1190 Cannot use reserved DOS file name filename.

Do not use reserved MS-DOS filenames, such as COMl, LPT2, or PRN,
when specifying topic or other data files.

1230 File filename not found.

The specified file could not be found or is unreadable.

1292 File filename is not a valid bitmap.

The specified bitmap file could not be found or is not in a recognizable
bitmap format.

1319 Disk full.

1513 Bitmap name filename duplicated.

The [BITMAPS] section contains duplicate bitmap names. The compiler
uses the first occurrence of the name.

1536 Not enough memory to compress bitmap filename.

The specified bitmaps cannot be compressed due to insufficient
memory.

Appendix B Help Compiler Error Messages 233

B.4 Project-File Errors
The following messages result from errors in the Help project file (with the .HPJ
filename extension) used to build a help file. A description is given for messages
that are not self-explanatory.

Number

2010

2030

2050

2091

2111

2131

2141

2151

2171

2191

2214

2273

Project-file error message

Include statements nested more than 5 deep.

The #include statement on the specified line has exceeded the maxi
mum of five include levels.

Comment starting at line linenumber of file filename unclosed at end
of file.

The compiler has unexpectedly come to the end of the project file. There
may be an open comment in the project file or in an include file.

Invalid #include syntax.

The #include statement requires a filename.

Bracket missing from section heading [sectionname].

Section heading missing.

The section heading on the specified line is not complete. This error is
also reported if the first entry in the project file is not a section heading.

Invalid OPTIONS syntax: 'option=value' expected.

Invalid ALIAS syntax: 'context=context ' expected.

Incomplete line in [sectionname] section

Unrecognized text.

Section heading [sectionname] unrecognized.

Line in .HPJ file exceeds length limit of 2047 characters.

[OPTIONS] should precede [FILES] and [BITMAPS] for all options
to take effect.

The [OPTIONS] section should be the first section in the project file.
Also, if the ERRORLOG option is used, that option should be the first
line in the [OPTIONS] section.

2291 Section sectionname previously defined.

The compiler ignores the lines under the duplicated section and con
tinues from the next valid section heading.

2305 No valid files in [FILES] section.

The file section is empty or contains only invalid files.

2322 Context string context_name cannot be used as alias string.

A context string that has been assigned an alias cannot be used later as
an alias for another context string. That is, you cannot map a=b and
then c=a in the [ALIAS] section. The compiler ignores the attempted
reassignment.

234 Microsoft Windows Programming Tools

Number

2331

Project-file error message

Context number already used in [MAP] section.
The context number on the specified line in the project file was pre
viously mapped to a different context string.

2341 Invalid or missing context string.
The specified line is missing a context string before an equal sign.

2351 Invalid context identification number.
The context number on the specified line is empty or contains invalid
characters.

2362 Context string context_name already assigned an alias.
A context string can have only one alias. That is, you cannot map a=b
and then a=c in the [ALIAS] section. The specified context string has al
ready been assigned an alias in the [ALIAS] section. The compiler ig
nores the attempted reassignment.

2372 Alias string aliasname already assigned.
You cannot alias an alias. That is, an alias string cannot, in tum, be as
signed another alias. You cannot map a=b and then b=c in the [ALIAS]
section. The compiler ignores the attempted reassignment.

2391 Limit of 6 window definitions exceeded.
The maximum number of window definitions is one main-window defi
nition and five secondary-window definitions.

2401 Window maximization state must be 0 or 1.
The sizing parameter in a window definition must be either zero or 1.

2411 Invalid syntax in window color.
A window color in a window definition consists of three decimal num
bers enclosed in parentheses and separated by commas.

2421 Invalid window position.
The window position in a window definition consists of four decimal
numbers enclosed in parentheses and separated by commas.

2431 Missing quote in window caption.
The window caption in a window definition must be enclosed in quota
tion marks.

2441 Window name windowname is too long.
The window name exceeds the maximum length of 8 characters.

2451 Window position value out of range 0 ... 1023.
One or more of the window-position coordinates exceed the maximum
limit of 1023.

2461 Window name missing.
A window definition in the project file is missing the window name.

2471 Invalid syntax in [WINDOWS] section.

Number

2481

Appendix B Help Compiler Error Messages 235

Project-file error message

Secondary-window position required.

A window definition for a secondary window must specify the four
window-position parameters.

2491 Duplicate window name windowname.

Window names must be unique.

2501 Window caption windowcaption exceeds limit of SO characters.

2511 Unrecognized option optionname in [OPTIONS] section.

2532 Option optionname previously defined.

The compiler ignores the attempted redefinition.

2550 Invalid path pathname in optionname option.

The compiler cannot find the path specified by the ROOT or
BMROOT option. The compiler uses the current working directory.

2570 Path in optionname option exceeds number of characters.

The specified root path exceeds the maximum limit for MS-DOS. The
compiler ignores the path and uses the current working directory.

2591 Invalid MAPFONTSIZE option.

The font range syntax used is invalid. A font range consists of a low and
high point size, separated by a hyphen(-).

2612 Maximum of S font ranges exceeded.

The compiler ignores additional ranges.

2632 Current font range overlaps previously defined range.

The compiler ignores the second mapping.

2651 Font name exceeds limit of 20 characters.

2672 Unrecognized font name fontname in FORCEFONT option.

The compiler ignores the font name and uses the default Helvetica font.

2691 Invalid MULTIKEY syntax.

The MULTIKEY option must specify a single capital letter other than
the letter K.

2711 Maximum of S keyword tables exceeded.

The compiler ignores the additional tables.

2732 Character already used.
A character used for indicating the keyword table was previously used.
The compiler ignores the line.

2752 Characters 'K' and 'k' cannot be used.

These characters are reserved for Help's standard keyword table.

2771 REPORT option must be 'ON' or 'OFF'.

2811 OLDKEYPHRASE option must be 'ON ' or 'OFF'.

2832 COMPRESS option must be 'OFF', 'MEDIUM' or 'HIGH'.

2842 OPTCDROM option must be 'TRUE' or 'FALSE'.

236 Microsoft Windows Programming Tools

Number

2852

Project-file error message

Invalid TITLE option.

The TITLE option defines a string that is empty or contains more than
32 characters.

2872 Invalid LANGUAGE option.

You have specified an ordering that is not supported by the compiler.
The compiler uses English sorting order.

2893 Warning option must be 1, 2, or 3.

The compiler uses full reporting (level 3).

2911 Invalid icon file filename.

The compiler cannot find the icon file specified in the ICON option, or
the file is not a valid icon file.

2932 Copyright string exceeds limit of 50 characters.

The maximum length of the copyright string in the About box is limited
to 50 characters.

3011 Maximum of 32 build tags exceeded.

The compiler ignores the additional tags.

3031 Build tag length exceeds 32 characters.

The compiler ignores the build tag.

3051 Build tag tagname contains invalid characters.

Build tags can contain only alphanumeric characters or the underscore
(_) character.

3076 [BUILDTAGS] section missing.

The BUILD option declared a conditional build, but there is no
[BUILDTAGS] section in the project file. The compiler includes all top
ics in the build.

3096 Build expression too complex.

The build expression has too many expressions ("-", "I'', or"&") or is
too deeply nested.

3116 Invalid build expression.

The syntax used in the build expression on the specified line contains
one or more logical or syntax errors.

3133 Duplicate build tag in [BUILDTAGS] section.

3152 Build tag tagname not defined in [BUILDTAGS] section.

The specified build tag has been assigned to a topic but not declared in
the project file. The compiler ignores the tag for the topic.

3178 Build expression missing from project file.

The topics have build tags, but there is no build expression in the pro
ject file. The compiler includes all topics in the build.

Appendix B Help Compiler Error Messages 237

B. 5 Macro Errors
The following messages result from errors in the use of Help macros in footnotes,
hot spots, and the [CONFIG] section of the Help project file. A description is
given for messages that are not self-explanatory.

Number

3511

3532

3552

3571

3591

3611

3631

Macro error message

Macro macrostring exceeds limit of 254 characters.

Undefined function in macro macroname.

The specified macro is not on the list of macros supported by the com
piler, nor is it specified in the RegisterRoutine macro. The compiler
passes the macro to the help file, however.

Undefined variable in macro macroname.

Wrong number of parameters to function in macro macroname.

Syntax error in macro macroname.

Function parameter type mismatch in macro macroname.

There is a type mismatch (string or numeric) in the function call.

Bad macro prototype.

The prototype string passed to the RegisterRoutine macro is invalid.

3652 Empty macro string.

The ! footnote or a hidden text starting with "!" does not contain a
macro.

3672 Macro macroname nested too deeply.

Macro strings that contain macro strings as parameters may not nest
more than three deep.

B.6 Context-String Errors
The following messages are caused by problems with context-string footnotes or
context strings specified in jumps or in Help project-file options. A description is
given for messages that are not self-explanatory.

Number

4011

4031

Context-string error messages

Context string contextname already used.

The specified context string was previously assigned to another topic.
The compiler ignores the latter string and the topic has no identifier.

Invalid context string contextname.

The context string footnote contains non-alphanumeric characters or is
empty. The compiler does not assign the topic an identifier.

238 Microsoft Windows Programming Tools

Number

4056

4072

4098

4113

4131

Context-string error messages

Unresolved context string specified in CONTENTS option.
The Contents topic defined in the project file could not be found. The
compiler uses the first topic in the build as the Contents topic.

Context string exceeds limit of 255 characters.

The compiler ignores the context string.

Context string(s) in [MAP] section not defined in any topic.
The compiler cannot find a context string listed in the [MAP] section in
any of the topics in the build.

Unresolved jump or popup contextname.

The specified topic contains a context string that identifies a nonexistent
topic.

Hash conflict between contextname and contextname.

The hash algorithm has generated the same hash value for both of the
listed context strings. Change one of the context strings and recompile.

4151 Invalid secondary window name windowname.

4171

The window name for the secondary window is "main" or another dis
allowed member name.

Cannot use secondary window with popup.
The hidden text defining the pop-up identifier contains a secondary
window name.

4196 Jumps and lookups not verified.

Due to low memory conditions, the build continues without verifying
the validity of jumps and popups. (The reference to "lookups" in the
error message is incorrect.)

4211 Footnote text exceeds limit of 1023 characters.

Footnote text cannot exceed the limit of 1,023 characters. The compiler
ignores the footnote.

4231 Footnote text missing.

The specified topic contains a footnote that has no characters.

4251 Browse sequence not in first paragraph.
The browse-sequence footnote is not in the first paragraph of the topic.
The compiler ignores the browse sequence.

4272 Empty browse sequence string.
The browse-sequence footnote for the specified topic contains no
sequence characters.

4292 Missing sequence number.

A browse-sequence number ends in a colon(:) for the specified topic.
Remove the colon or enter a "minor" sequence number and then recom
pile.

Number

4312

4331

4352

4372

4393

Appendix B Help Compiler Error Messages 239

Context-string error messages

Browse sequence already defined.
A browse-sequence footnote already exists for the specified topic. The
compiler ignores the latter sequence.

Title not in first paragraph.

The title footnote ($) is not in the first paragraph of the topic. The topic
will not have a topic title string.

Empty title string.

The title footnote for the specified topic contains no characters. The com
piler does not assign the topic a title.

Title defined more than once.
There is more than one title footnote in the specified topic. The compiler
uses the first title string.

Title exceeds limit of 128 characters.

The compiler ignores the additional characters.

4412 Keyword string exceeds limit of 255 characters.

4433 Empty keyword string.

There are no characters in the keyword footnote.

4452 Keyword(s) defined without title.
The topic has a keyword assigned to it, but no title.

4471 Build tag footnote not at beginning of topic.

The build-tag footnote marker, if used, must be the first character in the
topic.

4492 Build tag exceeds limit of 32 characters.
The compiler ignores the tag for the topic.

4551 Entry macro not in first paragraph.

B. 7 Topic-File Errors

The ! footnote (for executing a macro) is not in the first paragraph of the
topic. The compiler ignores the macro.

The following messages result from problems in rich-text format (RTF) formatting
in one or more topic files. A description is given for messages that are not self
explanatory.

Number

4616

4639

Topic-file error message

File filename is not a valid RTF topic file.

Error in file filename at byte offset Oxoffset.

The specified file contains unrecognized RTF at that byte offset.

4649 File filename contains more than 32767 topics.

240 Microsoft Windows Programming Tools

Number

4652

Topic-file error message

Table formatting too complex.

The compiler encountered a table with borders, shading, or right justifi
cation.

4662 Side by side paragraph formatting not supported.

The side-by-side paragraph formatting is not supported in Microsoft
Windows Help 3.1.

4671 Table contains more than 32 columns.

4680 Font fontname in file filename not in RTF font table.

The compiler uses the default system font.
4692 Unrecognized graphic format.

The compiler supports only Windows bitmaps, Windows metafiles, seg
mented graphics, and multi-resolution graphics. The compiler ignores
the graphic.

4733 Hidden page break.
A page break is a part of the hidden text. A page break formatted as hid
den text will not separate two topics.

4753 Hidden paragraph.

A paragraph marker is part of the hidden text. The compiler ignores the
paragraph marker.

4763 Hidden carriage return.
A carriage return is part of the hidden text. The compiler ignores the car
riage return.

4774 Paragraph exceeds limit of 64K.

A single paragraph has more than 64K of text or 64K of graphics. (This
limit does not include graphics stored separately from the data, using the
bmc, bml, or bmr statements.)

4792 Non-scrolling region defined after scrolling region.

A \keepn statement precedes a paragraph that is not the first paragraph
in the topic. The compiler ignores the statement; the paragraph is treated
as regular text and is part of the regular topic text.

4813 Non-scrolling region crosses page boundary.

A \pard statement must appear before the \page statement in a topic con
taining a \keepn statement.

B.8 Miscellaneous Errors
The following messages are caused by conditions such as MS-DOS file errors or
out-of-memory conditions. A description is given for messages that are not self
explanatory.

Number

5035

5059

5075

5098

Appendix B Help Compiler Error Messages 241

Error message

File filename not created.

There are no topics to compile or the build expression is false for all top
ics. The compiler does not create a help file.

Not enough memory to build help file.

To free memory, unload any unneeded applications, device drivers, and
memory-resident programs.

Help Compiler corrupted. Please reinstall HC.EXE.

Virus-checking code has detected a corruption in the compiler. Reinstall
the compiler.

Using old key-phrase table.
Maximum compression can result only by deleting the .PH file before
each recompilation of the Help topics or by setting the OLDKEY
PHRASE option to "O".

5115 Write failed.
Write-to-disk operation failed. Contact Microsoft Product Support
Services.

5139 Aborted by user.

Compilation was terminated when the user pressed CTRL+C.

Windows Debugging Version

Appendix C

C.1 Debugging Programs 245
C.1.1 Logging Debugging Messages .. 246

C.1.1.1 Settings Command 246
C.1.1.2 Alloc Break Command .. 247

C.1.2 Interpreting Debugging Messages... 24 7
C.2 Debugging Functions and the WINDEBUGINFO Structure.................. 249

C.2.1 WIN.IN! Debugging Options.. 250
C.3 Debugging Messages... 251
C.4 Common Programming Errors .. 254

Appendix C Windows Debugging Version 245

The debugging version of the Microsoft Windows operating system generates
diagnostic messages whenever it encounters an error that would otherwise cause
the system to fail. You use the debugging version by itself or in conjunction with a
debugger to debug Windows applications and dynamic-link libraries (DLLs). The
debugging functions described in this appendix are not available in the retail ver
sion of the system: The API elements exist, but they have no effect. However, the
retail version of Windows version 3.1 contains parameter-validation capabilities
that an application can use with the Tool Helper library (TOOLHELP.DLL) to re
trieve system errors and information about invalid parameters. For more informa
tion about the Tool Helper library, see the Microsoft Windows Programmer's
Reference, Volume I.

The debugging version of Windows consists of the executable and symbol files for
the GDI, KERNEL, and USER modules. These modules are identical to those pro
vided with standard Windows except that they contain extra code that checks for
errors and then reports them.

The best way to use the debugging version of Windows is to install it on a com
puter you use for testing and debugging and use a second computer for develop
ment. Output from the debugging system and debugger can be directed to a
debugging terminal.

Developers who write and debug applications on a single computer often place
copies of the standard and debugging versions of Windows in separate directories.
When they need to switch from one system to the other, they use batch files to
copy the appropriate files to the Windows system directory. (Switching between
systems is a good idea because the standard Windows system is faster that the de
bugging version-it is a better environment for compilers and editors.) You can
use the installation program supplied for the Microsoft Windows Software
Development Kit (SDK) to set up this two-directory system and then use the batch
files D2N.BAT and N2D.BAT to switch between the debugging and standard ver
sions of Windows.

C .1 Debugging Programs
The Microsoft Windows System Debugging Log Application (DBWIN.EXE) al
lows you to see messages produced by the debugging version of Windows even if
you are not using a debugging terminal or debugging application. DBWIN.EXE al
lows you to control the kinds of messages that are displayed and to save your pref
erences in the WIN.IN! file. DB WIN.EXE also provides a feature that allows you
to test the performance of your application during out-of-memory failures.

The Microsoft Windows Dr. Watson application detects system and application
failures and can store information in a disk file. This program can help you find
and fix problems in your applications. For more information about it, see Chapter
6, "Analyzing System Failures: Dr. Watson."

246 Microsoft Windows Programming Tools

C.1.1 Logging Debugging Messages
You can log messages to the DBWIN window, to a debugging monitor, or to the
device attached to the COMl port. The Options menu allows you to change the
destination of debugging messages.

C.1.1.1 Settings Command
Choosing the Settings command from the Options menu produces a dialog box
that allows you to control the display of debugging messages produced by the de
bugging system. This dialog box contains the following check boxes:

Check box

Break

Trace

Debugging

Description

Controls whether and how a message causes a break to the debugger
with a stack trace.

Controls whether certain kinds of informational messages are pro
duced.

Controls the kind of debugging features enabled in the system.

Following is a selected list of debugging options:

Option

Validate Heap

Check Free Blocks

Buffer Fill

Break with INT 3

Meaning

Check the consistency of global and local
heaps before every call to a memory
management function. This option affects the
global heap only when it is one of the default
start-up settings (that is, when it is saved by
choosing the Save Settings command from
the File menu). This option affects local
heaps only if it is set before the application is
started.

Ensure that freed local blocks are not written
into. The value OxFB is written into free
blocks and when the heap is validated, a
check is performed to ensure that the blocks
are still filled with this value. This option
works only with local heaps. It must be used
with the Validate Heap option.

Fill buffers that are passed to Windows func
tions with the value OxF9. This option en
sures that all of the supplied buffer is
writable and helps detect overwrite problems
that can occur when the buffer is too small.

Break to the debugger with an int 3 instruc
tion, instead of a fatal exit. This option does
not display a stack back-trace.

Appendix C Windows Debugging Version 247

Note Some applications will not run when the Buffer Fill option is turned on. If
the supplied buffer is smaller than the size specified in the count parameter of the
calling function, the application data is overwritten.

C.1.1.2 Alloc Break Command
The Alloc Break command on the Options menu ensures that an application deals
properly with out-of-memory conditions. This command displays a dialog box
into which you can enter the module name of your application and the number of
memory allocations you want to succeed before subsequent allocations fail.

The system counts each global or local memory allocation performed by your ap
plication. When the number of allocations reaches the allocation break count, that
allocation and all subsequent allocations fail. Because memory allocations made
by the system fail once the break count is reached, calls to certain functions (such
as Create Window, CreateBrush, and SelectObject) will fail as well. Only alloca
tions made within the context of the application you specify are affected by the al
location break count.

The module name is limited to 8 characters. In some cases the module name may
be different from the filename. (The module name is specified in the module
definition file for the application.) You cannot specify the module name of a DLL.

If you set the break count to zero, no allocation break is set, but the system counts
allocations made by the specified application. You can choose the Show Count
button to display the current allocation count.

You can set an allocation break before the named application is run. The allocation
count is then set to zero and allocations are counted as soon as the application
starts. If you run more than one instance of an application, the allocation break ap
plies only to the most recent instance.

The allocation count is also reset to zero when you choose the Set command or the
Inc & Set command. You can set an allocation break before performing an opera
tion, to ensure that your application handles the problem effectively, and then
choose Inc & Set and repeat the operation, to ensure that the next allocation failure
is also handled properly.

C.1.2 Interpreting Debugging Messages
Windows debugging messages are the primary feature of the debugging version of
Windows. These messages identify errors caused by applications and report the
type of each error and the information you need to locate the error in your applica
tion.

248 Microsoft Windows Programming Tools

Windows debugging messages have the following form:

FatalExit Code = fatalexit-code

Stack trace:
module-name!segment-name: [function-name+]address

Abort, Break or Ignore?

Thefatalexit-code parameter identifies the type of error. For a complete set of
possible error codes, see Section C.3, "Debugging Messages."

The stack trace consists of one or more addresses representing a chain of return
addresses from the function that detected the error to the application that made the
original function call.

Windows displays the "Abort, Break or Ignore?" prompt at the end of each debug
ging message.

The following variables are found in Windows debugging messages:

Variable

fatalexit-code

module-name

segment-name

function-name

Description

Identifies the type of error (a hexadecimal value).

Specifies the name of the application or of a Windows module (such
as USER, GDI, or KERNEL).

Specifies the name of a segment in the application or module.

Specifies the name of a function in the segment.

Note The segment and function names are available only if a symbol file (.SYM
extension) exists for the given module. Otherwise, Windows displays addresses in
stead of names.

The following example shows a typical debugging message:

FatalExit Code= 0x6040

Stack trace:
USER!_FFFE:SHOWCURSOR+0389
USER!_MSGBOX:08D7
USER!_ FFFE: 9220
MYAPP!_TEXT:WINMAIN+001B
MYAPP!_TEXT: astart+0060

Abort, Break or Ignore?

Appendix C Windows Debugging Version 249

In this example, the stack trace shows that the ShowCursor function in the USER
module (USER.EXE) detected the error. The error type is Ox6040. This value is as
sociated with the ERR_BAD_HWND constant; it means that the window handle
passed to the function is not valid. The MY APP application initially called the
USER module at the address WINMAIN+OOIB in its _TEXT segment. A check of
the application code at that location will probably reveal the error.

The "Abort, Break or Ignore?" prompt gives you the opportunity to terminate Win
dows, pass control to the debugger, or ignore the error. When you receive this
prompt, you must type one of the following responses:

Response

A

B

I

SPACE or
NEWLINE

Action

Terminates Windows, returning control to the MS-DOS prompt or to
the debugger (if one was running).

Generates a breakpoint interrupt. If no debugger is running, this re
sponse terminates Windows as if you had typed A. If a debugger is
running, control passes to the debugger as if you had set a breakpoint
in the application. In this case, the CS:IP registers point to an int 3 in
struction. To continue execution or to enable single-stepping, you
must change the IP register to the address of the next instruction.

Ignores the error and continues running the application that caused
the error.

Directs Windows to redisplay the debugging message. This is helpful
if the stack trace for the message is exceptionally long.

Note Not all debuggers support the same type of stack trace that Windows dis
plays. If you use the B response to enter a debugger that does not support stack
tracing, there is no way to regenerate the trace.

C.2 Debugging Functions and the WINDEBUGINFO Structure
Applications can use the DebugOutput function to display information on either
the debugging terminal or the current debugging computer. The function is espe
cially useful for displaying the full details of calls to functions that generate debug
ging messages.

DebugOutputincludes formatting and message-filtering features that are not
available with the OutputDebugString function.

250 Microsoft Windows Programming Tools

Debugging-system options and filters are provided in the WINDEBUGINFO
structure. The WINDEBUGINFO structure has the following form:

typedef struct tagWINDEBUGINFO {

UINT flags; /* valid WINDEBUGINFO members
DWORD dwOptions; /* debugging options
DWORD dwFilter; /* filter for trace messages
char achAllocModule[8J; /* module for alloc break
DWORD dwAllocBreak; /* a 11 ocs to succeed before break
DWORD dwAllocCount; /* number of successful allocs

} WINDEBUGINFO;

The values in WINDEBUGINFO can be set and retrieved by using the
SetWinDebuglnfo and GetWinDebuglnfo functions.

*/
*/
*/
*/
*/
*/

You can generate your own debugging messages by using the FatalExit function.
This function displays a message that has the same form as a debugging message
generated by Windows, using the error value supplied as its only parameter. This
function is especially useful for debugging DLLs.

In general, you should remove calls to debugging functions when compiling the
final version of your application or library.

C.2.1 WIN.INI Debugging Options
Applications use the GetWinDebuglnfo and SetWinDebuglnfo functions to re
trieve or set debugging options or filter values at run time. To control the same op
tions and filter values in a system-wide, persistent manner, you can use two entries
in the [WINDOWS] section of the WIN.IN! file. These entries are DebugOptions
and DebugFilter. They have the following form:

[WINDOWS]
DebugOptions = hexadecimal value
DebugFilter = hexadecimal value

The setting for the DebugOptions entry corresponds to the values for the
dwOptions member of the WINDEBUGINFO structure. The setting for the
DebugFilter entry corresponds to the values for the dwFilter member of
WINDEBUGINFO. To determine the proper hexadecimal value for a setting, add
the values of the options to be set. For example, to specify DBO_CHECKHEAP
and DBO_FREEFILL, the setting for the DebugOptions entry would be Ox0021
(OxOOOl + Ox0020). For information about the possible values for these options
and a full description of the WINDEBUGINFO structure, see the Microsoft Win
dows Programmer's Reference, Volume 3.

Appendix C Windows Debugging Version 251

C.3 Debugging Messages
The following table gives the possible error values in a Windows debugging mes
sage. For a list that includes the strings that are associated with these error values,
see the "Debugging Messages" topic in the online reference.

Value Constant Meaning

OxOOOl ERR_GALLOC GlobalAlloc failed. This error
value is sent by KERNEL.

Ox0002 ERR_GREALLOC GlobalReAlloc failed. This error
value is sent by KERNEL.

Ox0003 ERR_ GLOCK GlobalLock failed. This error
value is sent by KERNEL.

Ox0004 ERR_LALLOC LocalAlloc failed. This error value
is sent by KERNEL.

Ox0005 ERR_LREALLOC LocalReAlloc failed. This error
value is sent by KERNEL.

Ox0006 ERR_LLOCK LocalLock failed. This error value
is sent by KERNEL.

Ox0007 ERR_ALLOCRES AllocResource failed. This error
value is sent by KERNEL.

Ox0008 ERR_LOCKRES LockResource failed. This error
value is sent by KERNEL.

Ox0009 ERR_LOADMODULE LoadModule failed. This error
value is sent by KERNEL.

Ox0040 ERR_ CREATED LG Dialog box could not be created be-
cause LoadMenu failed. This error
value is sent by USER.

Ox0041 ERR_CREATEDLG2 Dialog box could not be created be-
cause CreateWindow failed. This
error value is sent by USER.

Ox0042 ERR_REGISTERCLASS RegisterClass failed because the
class is already registered. This
error value is sent by USER.

Ox0043 ERR_DCBUSY Device-context cache is full. This
error value is sent by USER.

Ox0044 ERR_CREATEWND Window could not be created be-
cause the class was not found. This
error value is sent by USER.

Ox0045 ERR_STRUCEXTRA Program is using unallocated space.
This error value is sent by USER.

Ox0046 ERR_LOADSTR LoadString failed. This error value
is sent by USER.

252 Microsoft Windows Programming Tools

Value Constant Meaning

Ox0047 ERR_LOADMENU LoadMenu failed. This error value
is sent by USER.

Ox0048 ERR_NESTEDBEGINPAINT Program contains nested Begin-
Paint functions. This error value is
sent by USER.

Ox0049 ERR_BADINDEX Index to GetCiassLong, GetCiass-
Word, GetWindowLong, Get-
WindowWord, SetClassLong,
SetCiassWord, SetWindowLong,
or SetWindowWord is invalid.
This error value is sent by USER.

Ox004A ERR_CREATEMENU Menu could not be created. This
error value is sent by USER.

Ox0080 ERR_CREATEDC CreateCompatibleDC, CreateDC,
or CreateIC failed. This error
value is sent by GDI.

Ox0081 ERR_CREATEMETA CreateMetaFile failed. This error
value is sent by GDI.

Ox0082 ERR_DELOBJSELECTED Program is trying to delete a bitmap
that is selected into the device con-
text. This error value is sent by
GDI.

Ox0083 ERR_SELBITMAP Program is trying to select a bitmap
that is already selected. This error
value is sent by GDI.

Ox6001 ERR_BAD_ VALUE A 16-bit signed or unsigned value
is invalid.

Ox6002 ERR_BAD _FLAGS One or more bit flags are invalid.

Ox6003 ERR_BAD _INDEX Index is invalid or out of range.

Ox6009 ERR_BAD_SELECTOR Selector is invalid.

Ox600B ERR_BAD_HANDLE Generic handle is invalid.

Ox6020 ERR_BAD _HINSTANCE Instance handle is invalid. This
error value is sent by KERNEL.

Ox6021 ERR_BAD _HMODULE Module handle is invalid. This
error value is sent by KERNEL.

Ox6022 ERR_BAD_GLOBAL_HANDLE Global handle is invalid. This error
value is sent by KERNEL.

Ox6023 ERR_BAD_LOCAL_HANDLE Local handle is invalid. This error
value is sent by KERNEL.

Ox6024 ERR_BAD _ATOM Atom is invalid. This error value is
sent by KERNEL.

Ox6025 ERR_BAD _HFILE File handle is invalid. This error
value is sent by KERNEL.

Appendix C Windows Debugging Version 253

Value Constant Meaning

Ox6040 ERR_BAD_HWND Window handle is invalid. This
error value is sent by USER.

Ox6041 ERR_BAD_HMENU Menu handle is invalid. This error
value is sent by USER.

Ox6042 ERR_BAD_HCURSOR Cursor handle is invalid. This error
value is sent by USER.

Ox6043 ERR_BAD_HICON Icon handle is invalid. This error
value is sent by USER.

Ox6044 ERR_BAD_HDWP Handle to a window-position struc-
ture is invalid. This error value is
sent by USER.

Ox6045 ERR_BAD_CID Communications identifier (CID) is
invalid. This error value is sent by
USER.

Ox6046 ERR_BAD _HDRVR Installable-driver handle is invalid.
This error value is sent by USER.

Ox6061 ERR_BAD _GDI_OBJECT GDI object is invalid. This error
value is sent by GDI.

Ox6062 ERR_BAD _HDC Device-context handle is invalid.
This error value is sent by GDI.

Ox6063 ERR_BAD_HPEN Pen handle is invalid. This error
value is sent by GDI.

Ox6064 ERR_BAD_HFONT Font handle is invalid. This error
value is sent by GDI.

Ox6065 ERR_BAD_HBRUSH Brush handle is invalid. This error
value is sent by GDI.

Ox6066 ERR_BAD _HBITMAP Bitmap handle is invalid. This error
value is sent by GDI.

Ox6067 ERR_BAD_HRGN Region handle is invalid. This error
value is sent by GDI.

Ox6068 ERR_BAD_HPALETTE Palette handle is invalid. This error
value is sent by GDI.

Ox6069 ERR_BAD_HMETAFILE Metafile handle is invalid. This
error value is sent by GDI.

Ox7004 ERR_BAD_DVALUE A 32-bit signed or unsigned value
is invalid.

Ox7005 ERR_BAD _DFLAGS One or more 32-bit flags are invalid.

Ox7006 ERR_BAD_DINDEX A 32-bit index is invalid or out of
range.

Ox7007 ERR_BAD_PTR Pointer is invalid.

Ox7008 ERR_BAD_FUNC_pTR Function pointer is invalid.

254 Microsoft Windows Programming Tools

Value Constant

Ox700A ERR_BAD _STRING_PTR

Ox7060 ERR_BAD_COORDS

Meaning

Zero-terminated string pointer is in
valid.
X- and y-coordinates are invalid.
This error value is sent by GDI.

The following error values may have been combined with other values in the pre
ceding table to identify the type of error:

Value Constant

Ox4000 ERR_PARAM

Ox8000 ERR_ WARNING

Meaning

Parameter is invalid. This flag is always set for
parameter-validation error messages.
Nonfatal error occurred. An invalid parameter was
detected, but the error was not serious enough to
cause the function to fail. The invalid parameter is
reported, but the function executes as usual.

To determine the size of an invalid parameter, you can combine
ERR_SIZE_MASK (Ox3000) with other error values by using the AND
operator. The following table gives the possible results of this operation:

Value

OxlOOO
Ox2000

Ox3000

Constant

ERR_BYTE

ERR_ WORD

ERR_DWORD

Meaning

An 8-bit parameter is invalid.

A 16-bit parameter is invalid.

A 32-bit parameter is invalid.

C.4 Common Programming Errors
The following list describes programming errors that sometimes appear in Win
dows applications:

• Passing invalid parameters.

• Accessing nonexistent window words. (In Windows 3.0, a call to the Set
WindowWord or Set Window Long function past the end of the allocated win
dow words, as defined by the RegisterClass function, would damage internal
window-management structures.)

• Using handles after they have been deleted or destroyed.

• Using a device context after it has been released.

• Deleting GDI objects before they are selected out of a device context.

• Neglecting to delete GDI or USER objects when an application terminates.

Appendix C Windows Debugging Version 255

• Writing past the end of an allocated memory block.

• Reading or writing using a memory pointer after it has been freed.

• Neglecting to export window procedures and other callback functions.

• Neglecting to use the MakeProclnstance function with dialog procedures and
other callback functions.

Many of these programming errors can cause unrecoverable application errors in
Windows version 3.0. The debugging system can help you locate these types of
problems.

Index

! (footnote character) in Help files, 23
#(footnote character) in Help files, 23
$(footnote character) in Help files, 23
.? command, 80386 Debugger, 128
? command, 80386 Debugger, 125
386 Instructions command, CVW, 85
80386 Debugger

command keys, 118
command parameters, 118-120
command reference, 125-170
common commands, listed, 123-125
entering, 1 I 6-117
MAPSYM command-line syntax, 114
operators

binary and unary, 121-122
postfix, 122

regular expressions, 122-123
starting, 1 I 4
symbol files, preparing, 113-114
wdeb386 command-line syntax, 114-116
wildcards, 122

8087 command, CVW, 83
CTRL+A key combination, 80386 Debugger, I 18
CTRL+C key combination, 80386 Debugger, 118
CTRL+Q key combination, 80386 Debugger, 118
CTRL+S key combination, 80386 Debugger, 118
FI key for choosing Help, 36
\bmc Help statement, 29
\bml Help statement, 29
\cf Help statement, 22
\colortbl Help statement, 22
\deff Help statement, 22
\f Help statement, 24
\fi Help statement, 24
\fonttbl Help statement, 22
\footnote Help statement

defining help topics, 23
keyword list, 27

\fs Help statement, 24
\keep Help statement, 25
\li Help statement, 24
\line Help statement, 25
\mbr Help statement, 29
\page Help statement, 23
\par Help statement, 23

\pard Help statement, 24
\pict Help statement, 28
\plain Help statement, 24
\ri Help statement, 24
\rtf Help statement, 22
\sa Help statement, 24
\sb Help statement, 24
\strike Help statement, 26
\tab Help statement, 25
\tx Help statement, 25
\ul Help statement, 26
\uldb Help statement, 26
\v Help statement, 26
\windows Help statement, 22

A
Accelerator key, creating, 37
ACCELERATORS statement, described, 10
Active Conversations command, DDESpy, 194
Active Links command, DDESpy, 194
Add command, CVW, 84
Add Watch command, CVW, 86
Address command, Heap Walker, 199, 202
Advise loops (DDE), tracking, 194
ALIAS section, Help project files, 45
Alloc Break command, DBWIN application, 247
Allocate All of Memory command, Heap Walker,

203
Animate command, CVW, 84, 104
Application performance, analyzing, 207
Arrays, displaying in CVW

B

character arrays, 88
described, 87
dynamic array elements, 90
multidimensional arrays, 89

.b command, 80386 Debugger, 128
BAGGAGE section, Help project files, 46
Bar, as a document convention, x
be command, 80386 Debugger, 134
bd command, 80386 Debugger, 134
be command, 80386 Debugger, 135

258 Index

Binary operators, 80386 Debugger, 121
BITMAP statement, described, 10
Bitmaps in Help files

formats, 28
hot spots, using as, 30
inserting in text, 29
multiple-resolution bitmaps, creating, 30-31
wrapping text around, 29

BITMAPS section, Help project files, 47
bl command, 80386 Debugger, 135
BMROOT option, Help project files, 48
Bold type, as a document convention, x
bp command, 80386 Debugger, 136
hr command, 80386 Debugger, 137
Brackets, as a document convention, x
Breakpoints

selecting, 99
setting on Windows messages, 101
setting values, 101
using when debugging, 102

Browse sequence, help topics, 27
BUILD option, Help project files, 48
BUILDTAGS section, Help project files, 50

c
c command, 80386 Debugger, 138
Callback activity, monitoring, 193
Case Sensitivity command, CVW, 85
Close command, CVW, 83
Code View for MS-DOS (CV), 72
Code View for Windows (CVW)

advanced techniques
multiple source windows, 108
redirecting input and output, 109
register variables, 109
undefined pointers, 108

animated application execution, 104
vs. Code View for MS-DOS, 72
continuous application execution

selecting breakpoint lines, 99
setting breakpoint values, 101
setting breakpoints on messages, 101
using breakpoints, 102

core DLLs, specifying, 74
customizing, 110
debugging version of Windows, 73
display windows

adjusting, 82
opening, 81

Code View for Windows (CVW) (continued)
display windows (continued)

selecting, 81
types of, described, 80

displaying application data
arrays and structures, 87
character arrays, 88
dynamic array elements, 90
expressions, 87
heap, global or local, 93
live expressions, 95
memory, 92
memory handles, dereferencing, 96
modules, 98
multidimensional arrays, 89
Quick Watch command, using, 91
register contents, 97
tracing Windows messages, 91
variables, 86

ending a session, 108
fatal exits, handling, 106
general protection fault, handling, 107
Help, accessing, 85
interrupting application execution, 104
jumping to a location, 104
menu bar, using, 83
modifying application data, 98
monitors, using with CVW

secondary monitor, 70
single monitor, 70

preparing applications for debugging, 73
requirements for using, 69
saving session information, 80
single-step application execution, 103
starting a debugging session

command-line options, 78-79
display options, 75
dynamic-link libraries, 77
multiple application instances, 76
multiple applications, 76
single application, 75

vs. SYMDEB, 71
TOOLS.IN! file, modifying, 110

Color, specifying in Help files, 22
Command command, CVW, 83
COMPRESS option, Help project files, 51
COMPRESS.EXE (File Compression Utility), 215
Compressing files, 215
CONFIG section, Help project files, 52
CONTENTS option, Help project files, 52

Context-sensitive Help, defined, 34
Context-string error messages, Help Compiler, 237
Conversations (DDE), tracking, 194
Copy command, CVW, 83
COPYRIGHT option, Help project files, 53
Core dynamic-link libraries, debugging support, 73
CreateButton macro, 33
CSIPS.DAT file, 207, 209
CURRENT.STS file, CVW session information, 80
CURSOR statement, described, 10
CV (Code View for MS-DOS), 72
CVW. See Code View for Windows
cvw command options, CVW, 78-79

D
d command, 80386 Debugger, 139
D2N.BAT batch program, 74, 245
db command, 80386 Debugger, 139
DBWIN application, 245-247
dd command, 80386 Debugger, 140
DDE activity, monitoring. See DDESpy
DDESpy

callback activity, monitoring, 193
DDE errors, monitoring, I 93
DDE messages, monitoring, 192
Monitor menu, I 9 I
Output menu, 191
string-handle data, monitoring, 192
tracking options

active conversations, 194
active links, I 94
registered servers, 194
string handles, 194

DDESPY.EXE, Windows DDESpy, 191
DebugBreak function, 100
Debugger. See 80386 Debugger
Debugging. See Code View for Windows;

80386 Debugger
Debugging version of Windows

common programming errors, 254
debugging functions, 249-250
debugging messages

error codes, listed, 251-254
interpreting, 247-249
logging, 245-247

described, 245
WIN.IN! debug options, 250

DebugOutput function, 249
Decompressing files, 2 I 6
#define directive, 10

Delete Watch command, CVW, 87
Delete Watch, CVW, 84
.df command, 80386 Debugger, 128
.dg command, 80386 Debugger, 129
dg command, 80386 Debugger, 141
.dh command, 80386 Debugger, 131
di command, 80386 Debugger, 142
Dialog box, designing, 4
Dialog Editor

described, 4
illustrated, 5

DIALOG statement, described, 10
Directives, resource-definition files, 10
Discard command, Heap Walker, 200
DisLen entry, WIN.IN! file, 174
DisStack entry, WIN.IN! file, 176
dl command, 80386 Debugger, 143
DLGEDIT.EXE, Dialog Editor, 4
.dm command, 80386 Debugger, 131
Document conventions, x
dp command, 80386 Debugger, 144
.dq command, 80386 Debugger, 132
Dr. Watson

configuring from the WIN.IN! file
DisLen entry, 174
DisStack entry, 176
GPContinue entry, 175
LogFile entry, 176
Show Info entry, 174
Skip Info entry, 173
TrapZero entry, 175

sample log file
with comments, 179-182
without comments, 177-178

DRWATSON.LOGfile, 176
dt command, 80386 Debugger, 145
.du command, 80386 Debugger, 132
dw command

80386 Debugger, 145
CVW,96

Index 259

Dynamic-link libraries, debugging support, 73

E
e command, 80386 Debugger, 146
Edit Breakpoints command, CVW, 84
#elif directive, 10
Ellipses, as a document convention, x
#else directive, 10
#endif directive, I 0
Error messages. See Messages

260 Index

Error report, Dr. Watson, 173
ERRORLOG option, Help project files, 54
Executable file

renaming, 15
specifying in the re command, 15

EXPAND.EXE (File Expansion Utility), 216
Expanding files, 216
Expressions, displaying in CVW, 87

F
f command, 80386 Debugger, 147
Fatal exit, handling in CVW, 106
FatalExit function, 250
File Compression Utility, 215
File error messages, Help Compiler, 232
File Expansion Utility, 216
FILES section, Help project files, 54
Find command, CVW, 84
Flags command, Heap Walker, 202
Font

designing, 5-6
in Help files

declaring, 22
size, setting, 24

Font Editor
designing fonts, 5-6
Help, accessing, 5
illustrated, 6

FONT statement, described, 10
FONTEDIT.EXE, Font Editor, 5
Footnote characters in Help files, 23
FORCEFONT option, Help project files, 55
Free memory commands, Heap Walker, 203
FreeProcinstance function, 39

G
g command, 80386 Debugger, 148
GC(-1) and Hit A command, Heap Walker, 199
GC(-1) and Walk command, Heap Walker, 199
GDI LocalWalk command, Heap Walker, 200
General protection (GP) fault

continuing an application, 175
handling in CVW, 107

GetWinDebuglnfo function, 250
Global memory objects, displaying in CVW, 93
GPContinue entry, WIN.IN! file, 175
Graphics files, using in Help files, 28

H
h command, 80386 Debugger, 149
Heap Walker

described, 197
displaying memory objects

Object menu commands, 200
Show command, 200

illustrated, 197
local heap, viewing

Add! menu, 203
Heap menu commands, 202
Local Walk window, 201-203
Sort menu commands, 202

memory, allocating, 203
saving heap listings in files, 198
sorting memory objects, 199
suggestions for using, 204
walking the heap, 199

HEAPW ALK.EXE, Windows Heap Walker, 197
Help command, CVW, 83
Help Compiler

building help files, 21
error messages

context string errors, 237-239
file errors, 232
interpreting, 231
macro errors, 237
miscellaneous errors, 240-241
project-file errors, 233-236
topic-file errors, 239-240

Help file
Fl key for choosing Help, 36
SHTFT+FI key, detecting, 39
bitmaps

hot spots, using as, 30
inserting in text, 29
multiple-resolution, creating, 30-31
wrapping text around, 29

building, 21
canceling Help, 44
context-sensitive Help, defined, 34
error messages, 231-241
filter procedure, 36
footnote characters, 23
graphics files, required formats, 28
Help menu, 34-36
keywords

creating, 26-27
searching for Help, 42

Help file (continued)
menu selections, monitoring, 37
mouse input, intercepting, 39-41
overview, 21
project files

ALIAS section, 45
BAGGAGE section, 46
BITMAPS section, 47
BMROOT option, 48
BUILD option, 48
BUILDTAGS section, 50
COMPRESS option, 51
CONFIG section, 52
CONTENTS option, 52
COPYRIGHT option, 53
ERRORLOG option, 54
FILES section, 54
FORCEFONT option, 55
ICON option, 56
LANGUAGE option, 56
macros in, 33
MAP section, 57
MAPFONTSIZE option, 58
MULTIKEY option, 59
OLDKEYPHRASE option, 60
OPTCDROM option, 60
OPTIONS section, 61
REPORT option, 62
ROOT option, 62
sample file, 33
sections, described, 32
TITLE option, 63
WARNING option, 64
WINDOWS section, 64

secondary windows, 43
topic files

browse sequence, creating, 27
character set, specifying, 22
colors, specifying, 22
context string, assigning, 23
described, 21
font size, setting, 24
fonts, declaring, 22
hot spots, creating, 26
indents, setting, 24
line breaks, controlling, 25
links, creating, 26
paragraph spacing, setting, 24
paragraphs, separating, 23
pop-up topics, creating, 26

Help file (continued)
topic files (continued)

tab stops, setting, 25
topic title, assigning, 23

HELPWININFO structure, 43
Hot spots in Help files

creating, 26
using bitmaps, 30

Hotspot Editor, 28

i command, 80386 Debugger, 150
ICON option, Help project files, 56
ICON statement, described, 10
#if directive, 11
#ifdef directive, 11
#ifndef directive, 11
Image Editor, 3
IMAGEDIT.EXE, Image Editor, 3
Images, designing, 3
#include directive, 11

Index 261

INCLUDE environment variable, suppressing, 18
Indents, setting in Help files, 24
Infinite loop, locating, 104
Info command, Heap Walker, 202
InsertMenu macro, 33
Italic, as a document convention, x

J
j command, 80386 Debugger, 150
Jumps in Help files

creating, 26
using bitmaps, 30

K
K (footnote character) in Help files, 26-27
k command, 80386 Debugger, 151
ka command, 80386 Debugger, 151
Keywords for help topics

creating, 26-27
searching for Help, 42

kt command, 80386 Debugger, 152

L
la command, 80386 Debugger, 152
Label/Function command, CVW, 84
LANGUAGE option, Help project files, 56

262 Index

LC(-1) and LocalWalk command, Heap Walker,
200

lg command, 80386 Debugger, 153
Line breaks in Help files, controlling, 25
Links in Help files

creating, 26
using bitmaps, 30

Live expression, creating in CVW, 95
lm command, 80386 Debugger, 153
In command, 80386 Debugger, 154
LoadAccelerators function, 37
Local command, CVW, 83
Local heap, viewing, 201-203
Local memory objects, displaying in CVW, 93
LocalWalk command, Heap Walker, 200-203
Log file, Dr. Watson, 173
LogFile entry, WIN.INI file, 176
ls command, 80386 Debugger, 154

M
m command, 80386 Debugger, 155
Macros, in Help files

adding, 23
bitmaps, using as hotspots, 30
error messages, Help Compiler, 237
project files, using in, 33

MAP file, 113
MAP section, Help project files, 57
MAPFONTSIZE option, Help project files, 58
MAPSYM, command-line syntax, 114-116
Margins, overriding in Help files, 24
Maximize command, CVW, 83
Memory

allocating by using Heap Walker, 203
displaying in CVW

display options, 92
heap, global or local, 93
live expressions, 95
memory handles, dereferencing, 96
modifying memory locations, 98

size, determining, 203
Memory command, CVW, 83, 92
Memory object

displaying information about, 199
failure to delete objects, tracing, 204
hexadecimal dump, displaying, 200
local heap, viewing, 201, 203
sorting memory objects, 199
viewing selectively, 200

Memory Window command, CVW, 85

MENU statement, described, 10
Messages

debugging messages
error codes, listed, 251-254
interpreting, 247-249
logging, 245-247

Help Compiler error messages
context string errors, 237-239
file errors, 232
interpreting, 231
macro errors, 237
miscellaneous errors, 240-241
project-file errors, 233-136
topic-file errors, 239-240

monitoring
DDE messages, 192
frequency of message output, 186
message types, selecting, 185
output device, selecting, 186
window to be monitored, selecting, 187

Resource Compiler diagnostic messages, 219-228
setting breakpoints on, 101
tracing, 91

Metafile, using in Help files, 28
Module command, Heap Walker, 199
Modules, displaying in CVW, 98
MONCBSTRUCT structure, 193
MONERRSTRUCT structure, 193
MONHSZSTRUCT structure, 192
MONMSGSTRUCT structure, 192
MRBC (Multiple Resolution Bitmap Compiler), 30
mrbc command-line syntax, 30
MULTIKEY option, Help project files, 59
MUL TIKEYHELP structure, 42
Multiple Resolution Bitmap Compiler (MRBC), 30

N
N2D.BAT batch program, 74, 245

0
o command, 80386 Debugger, 156
Oldest command, Heap Walker, 200
OLDKEYPHRASE option, Help project files, 60
Open Module command, CVW, 83
Open Source command, CVW, 83
Operators, 80386 Debugger

binary and unary operators, 121
postfix operators, 122

OPTCDROM option, Help project files, 60

Optimizing application performance, 207
OPTIONS section, Help project files, 61

p
p command, 80386 Debugger, 156
Paste command, CVW, 83
Performance analysis, 207
Placeable metafile, using in Help files, 28
Pop-up help topics, creating, 26
ProfClear function, Profiler, 208
ProfFinish function, Profiler, 208
ProfFlush function, Profiler, 208
Profiler

displaying sampled data, 209
functions, described, 208
overview, 207
preparing to run, 208
sampling code, 209
VPROD.386 device driver, installing, 209

ProflnsChk function, Profiler, 208
ProfSampRate function, Profiler, 208
ProfSetup function, Profiler, 208
ProfStart function, Profiler, 208
ProfStop function, Profiler, 208
Project file, Help

error messages, Help Compiler, 233-236
macros in, 33
options

BMROOT,48
BUILD,48
COMPRESS, 51
CONTENTS, 52
COPYRIGHT, 53
ERRORLOG, 54
FORCEFONT, 55
ICON, 56
LANGUAGE, 56
MAPFONTSIZE, 58
MULTIKEY, 59
OLDKEYPHRASE, 60
OPTCDROM, 60
REPORT,62
ROOT,62
TITLE, 63
WARNING,64

sample file, 33
sections

ALIAS, 45
BAGGAGE,46
BITMAPS,47

Project file, Help (continued)

a

sections (continued)
BUILDT AGS, 50
CONFIG, 52
described, 32
FILES, 54
MAP, 57
OPTIONS, 61
WINDOWS,64

q command, CVW, 106, 108
Quick Watch command, CVW, 84, 91

R
r command, 80386 Debugger, 157
re command, Resource Compiler

compiling resources separately, 15
conditional branching, specifying, 16
messages, displaying, 18
options, described, 13-15

Index 263

renaming compiled resource files, 17
renaming the executable file, 15
resource-definition file, specifying, 15
searching directories

adding a directory, 17
INCLUDE variable, suppressing, 18

specifying the executable file, 15
syntax, 12

RCDATA statement, described, 10
.reboot command, 80386 Debugger, 133
Refresh Seg Names command, Heap Walker, 199
Register command, CVW, 83, 97
Register variables, handling in CVW, 109
Registered Servers command, DDESpy, 194
RegisterRoutine macro, 33
Registers

displaying contents in CVW, 97
modifying the values of, 98

Regular expression, 80386 Debugger, 122-123
Repeat Last Find command, CVW, 84
REPORT option, Help project files, 62
Resource Compiler (RC)

compiling resources separately, 15
conditional branching, specifying, 16
described, 12
messages

diagnostic, 219-228
displaying, 18

264 Index

Resource Compiler (RC) (continued)
rccommand

executable file, specifying, 15
options, described, 13-15
resource-definition file, specifying, 15
syntax, 12

renaming compiled resource files, 16-17
resource-definition files, creating

described, 9
directives, 10
multiline statements, 10
sample file, I 1
single-line statements, I 0

resources, including in applications, 9
searching directories

adding a directory, I 7
INCLUDE variable, suppressing, 18

Resource-definition file. See Resource Compiler
Resource file

compiling resources separately, 15
renaming, I 6-17

Resources
dialog boxes, designing, 4
fonts, designing, 5
images, designing, 3
including in applications, 9

Rich-text format (RTF) for help topics, 22
rip command, CVW, 104
ROOT option, Help project files, 62
RTF (rich-text format) for help topics, 22

s
s command, 80386 Debugger, 159
Save command, Heap Walker, 198, 202
SEGENTRY.DAT file, 207, 209
Segmentation Test command, Heap Walker, 199
Segmented-graphics bitmap, 28
Selected Text command, CVW, 84
Set Breakpoint command, CVW, 84, 100, 102
Set Swap Area command, Heap Walker, 199
Settings command, DBWIN application, 246
SetWinDebuginfo function, 250
SetWindowsHook function, 36
Show command, Heap Walker, 200
SHOWHITS.EXE application

command-line syntax, 210
described, 209
information categories, described, 210

Showfnfo entry, WIN.IN! file, 174

Size command
CVW,83
Heap Walker, 199, 202

Skiplnfo entry, WIN.IN! file, I 73
Sorting memory objects, 199
Source command, CVW, 83, 104
Spy

See also Code View for Windows
frequency of message output, 186
message types, selecting, 185
output device, selecting, 186
starting and stopping, 187
window to be monitored, selecting, I 87

SPY.EXE, Windows Spy, 185
Step command, CVW, 103
String Handles command, DDESpy, 194
String-handle data, monitoring, 192
STRINGTABLE statement, described, 10
Structures, displaying in CVW, 87
Symbol File Generator (MAPSYM), I I 3
Symbol file, preparing for 80386 Debugger, 1I3
Symbolic Debugger (SYMDEB), 71

T
t command, 80386 Debugger, 160
Tab stops, setting in Help files, 25
TITLE option, Help project files, 63
TOOLHELP.DLL library, used by Dr. Watson, 173
TOOLS.IN! file, customizing CVW, I 10
Topic file

See also Help file
creating, 21-28
error messages, Help Compiler, 239-240

Trace command, CVW, 103
Trace Speed command, CVW, 85
TranslateAccelerator function, 37
Trap Zero entry, WIN .INI file, 17 5
Type command, Heap Walker, 199

u
u command, 80386 Debugger, 162
Unary operators, 80386 Debugger, 121
#undef directive, I I
Undo command, CVW, 83
UnhookWindowsHook function, 39
Unrecoverable application errors, debugging, 254
User LocalWalk command, Heap Walker, 200

v
vcommand

CVW, 106
80386 Debugger, 162

Variables
displaying in CVW, 86
modifying the values of, 98

vc command, 80386 Debugger, 163
Version stamp, 12
Vertical bar, as a document convention, x
VGASYS.FNT file, 5
vl command, 80386 Debugger, 163
vo command, 80386 Debugger, 164
VPROD.386 device driver, installing, 209
vs command, 80386 Debugger, 164
vt command, 80386 Debugger, 165

w
w command, 80386 Debugger, 165
wa command, 80386 Debugger, 166
Walk Free List command, Heap Walker, 199
Walk Heap command, Heap Walker, 199
Walk LRU List command, Heap Walker, 199
WARNING option, Help project files, 64
Watch command, CVW, 83
wbm command, CVW, 101
wdeb386 command, 80386 Debugger, 114-116
WDEB386.EXE. See 80386 Debugger
wdg command, CVW, 93, 105
wdl command, CVW, 93
wdm command, CVW, 98
Wildcards, 80386 Debugger, 122
WIN.IN! debug options, 250
WIN.IN! file, configuring Dr. Watson

DisLen entry, 174
DisStack entry, 176
GPContinue entry, 175
LogFile entry, 176
Show Info entry, 174
Skiplnfo entry, 173
TrapZero entry, 175

WINDEBUGINFO structure, 250
Windows debugging version

common programming errors, 254
debugging functions, 249-250
debugging messages

error codes, listed, 251-254
interpreting, 247-249
logging, 245

Windows debugging version (continued)
described, 245-247
WIN.IN! debug options, 250

Windows messages
setting breakpoints on, 10 I
tracing by using CVW, 91

Index 265

WINDOWS section, Help project files, 64
WinHelp function

canceling Help, 44
context-sensitive Help, 34
mouse input, 39
searching keyword tables, 42
secondary Help windows, 43
supporting the Help menu, 35

wka command, CVW, 105
wr command, 80386 Debugger, 166
wwm command, CVW, 91

y
y command, 80386 Debugger, 167

z
z command, 80386 Debugger, 168
zd command, 80386 Debugger, 169
zl command, 80386 Debugger, 169
zs command, 80386 Debugger, 170

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-63S

0392 Part No. 28918

