
In a s"
n erna s

The Implementation of the
Windows Operating Environment

Windows™ Internals

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Pietrek, Matt.
Windows internals : the implementation of the Windows

operating environment / Matt Pietrek.
p. cm.

Includes index.
ISBN 0-201-62217-3
1. Wmdows (Computer programs)

file) I. Title
2. Microsoft Windows (Computer

QA76.76.W56P55 1993
005.4'3--dc20

Copyright © 1993 by Matt Pietrek

92-46133
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Series Editor: Andrew Schulman
Managing Editor: Amorette Pedersen
Puppy illustration by Lynn Hunt Illustration, Capitola, CA.
Interior Design by Richard DeFeo, Hamlet Studios, Hamilton, MA.
Set in 10.5-point Galliard by Benchmark Productions

1 2 3 4 5 67 89-MA-9796959493
First Printing, April 1993

Contents

FOREWORD xiii
The Series xv

INTRODUCTION xvii
It's Just Code .. xvii
What We'll Cover .. xviii
Methods of Investigation ... xix
On Modes xxi
Relationship to Undocumented Windows xxii
Thank Yous .. xxii

CHAPTER 1
The Big Bang: Starting Up and Shutting Down Windows 1

A Word or Two About Protected Mode and DOS Extenders 2
The First Step: WIN.COM .. 3
The Next Step: Loading the DPMI Hosts ... 8
The Fun Begins: Loading the KERNEL Module 10
The KERNEL BootStrapO Routine ... 13
SlowBootO .. 41
USER Initialization 56
LoadWi ndowsO 57
The LoadWindowsO Helper Routines ... 61

LW_LoadSomeStringsO ... 62
LW_LoadResourcesO ... 62

v

WINDOWS INTERNALS

CHAPTER 1 (Cont.)

LW_RegisterWindowsO .. 64
EnablelnputO .. 65
LWJnitWndMgrO ... 66
GlobalinitAtomO ... 68
LW_DisplayDriverlnitO ... 69
LW_LoadTaskmanAndScreenSaverO .. 69

Shutting Things Down ... 70
Shutting Down USER ... 71

QueryQuitEnumO .. 72
DisablelnputO ... 73

Exiting KERNEL-The Last Hurrah .. 74
DisableKernelO .. 75
InternalDisableDOSO ... 77
Summary ... 78

CHAPTER 2
Windows Memory Management 79

Outline of the Memory Management Functions 80
Two Kinds of Heaps ... 84
Memory Attributes 85
The Selector Functions 86

AllocSelectorO 88
AllocSelectorArrayO 89
Get_SeiO 90
FreeSelectorO .. 93
FreeSelArrayO .. 93
FreeSelO 94
GetSelectorLimitO ... 95
SetSelectorLimitO .. 95
GetSelectorBaseO 96
GeCPhysicaLAddressO 96
SetSelectorBaseO ... 97
PrestoChangoSelectorO ... 97
AllocDStoCSAliasO ... 98
AKAO ... 99
AllocCSoDSAliasO .. 100

The Global Heap 100
Memory Ownership ... 102
The Layout of the Global Heap .. 103

Never Too Big or Too Small ... 103
The Components of the Global Heap .. 104

CONTENTS

CHAPTER 2 (Cont.)

Burgermaster .. 104
The Globallnfo Header 105
The Global Heap Arenas .. 108
The Selector Table ... 110

HEAPFUN Example .. 111
The Global Memory Blocks 114

Segment Attributes in the Global Heap ... 115
FIXED Versus MOVEABLE Segments 115
DISCARDABLE Segments 11 7
The Code Fence .. 118

The Global Heap Functions ,. 11 8
GlobalinitO ... 118
GlnitO ... 121
GlobalAliocO ... 124
GbTopO .. 126
GAliocO ... 128
GSearchO 1 32
GrowHeapO .. 139
GCompactO 140
GlobalFreeO .. 143
GFreeO .. 145

Free_ObjectO .. 145
GlobalLockO ... 147
GlobalUnlockO .. 149
GlobalHandleO ... 150
MyLockO 150
XHandleO ... 151
GlobalReAliocO ... 151
GlobalDOSAliocO .. 153
GlobalDOSFreeO ... 153
GlobalCompactO .. 154
InnerShrinkHeapO ... 155
UniinkWin386BlockO .. 156
GlobalFixO .. 157
GlobalUnfixO .. 157
GUnLockO .. 158
LockSegmentO 158
UnlockSegmentO .. 159
GlobalPageLockO .. 159
GlobalPageUnlockO .. 160
GlobalWireO ... 161

WINDOWS INTERNALS

CHAPTER 2 (Cont.)

GWireO ... 162
GlobalUnwireO .. 163
LRUSweepO 163
GlobalLRUNewestO ... 166
GlobalLRUOldestO ... 166
GlobalFlagsO ... 167
GlobalSizeO ... 167
GlobalNotifyO ... 168
GetFreeSpaceO 168
GetDPMIFreeSpaceO ... 170
GetFreeMemlnfoO ... 172
SetSwapAreaSizeO 1 73
CaicMaxNRSegO ... 174
GReserveO ... 175

The Local Heap 1 77
The Locallnfo Structure ... 178
The Local Heap Arenas 1 79
The First Local Heap Block ... 180
The Local Handle Entry .. 180

The LHEAP Example ... 181
LocalAliocO ... 187
LAliocO .. 189
LocalFreeO ... 193
LocalRealiocO .. 193
LocalLockO 196
LocalUnlockO .. 197

LocalHandleO 198
LocalSizeO 198
LocalFlagsO 199
LocalinitO .. 199
LocalHeapSizeO 202
LocalHandleDeltaO 202
LocalShrinkO ... 203
LocalCompactO 204
Local NotifyO 204
LocalNotifyDefaultO .. 205

Memory Management at the Application Level............................. 207
The Windows Address Space ... 207

Use the Runtime Libraries! ... 208
The Large Model is Bad Myth 209
The Mapping Myth ... 210

CHAPTER 2 (Cont.)

What About New and Delete?
Suballocation
Sharing Memory

Use the Debug KERNEL

CHAPTER 3

CONTENTS

210
210
211
212

Starting a Process: Modules and Tasks ... 213

Modules 21 3
Tasks 224
From a File to a Process, in 28 Easy Steps 229
LoadModule .. 231
The LOADMODULE Helper Routines ... 239

LMAlreadyLoadedO ... 239
LMLoadExeFileO .. 241
LoadExeHeaderO 242
LMCheckHeaderO 250
OpenApplEnvO ... 252
CreateTaskO .. 252
BuildPDBO .. 255
LMRamNModsO ... 256
LMlmportsO .. 259
LMSegsO 260
LMLetsGoO ... 262
StartModuleO 263
StartTaskO ... 264
StartLibraryO ... 266
CloseApplEnvO .. 267
LMCleanUpO .. 269

Loading a Second Instance of an EXE or DLL 270
LMPrevlnstanceO .. 270

The Application Startup Code ... 273
Windows EXE Startup Code 273
Windows DLL Startup Code .. 274
InitTaskO ... 275
InitAppO ... 278

Application Shutdown ... 281
ExitCaliO .. , 282
AppExitO 286
ModuleUnloadO ... 289
FreeModuleO and FreeLibraryO ... 290
DelModuleO 291

WINDOWS INTERNALS

CHAPTER 3 (Cont.)
What About Win32s Programs? 292

ExecPEO .. 293
Self-Loading Windows Applications ... 294

BootApplO 296
LoadApplSegmentO .. 297
Summary ... 298

CHAPTER 4
The Windowing System 299

Window Classes 300
Format of the WNDCLASS Structure. ... 301

Class Registration ... 303
RegisterClassO•...............•.................................. 303
GetClassPtrO ... 307
GetClassPtrAsmO 308

Windows and the WND Data Structure ... 310
Windows Styles 31 3
The Window Hierarchy: The Parent/Child/Sibling Relationships 31 3
Window Ownership ... 315
Window Creation .. 316

CreateWindowO .. 316
CreateWindowExO .. 316

Window Manipulation ... 329
ShowWindowO•.. 329
MoveWindowO ... 334
SetWindowPosO .. 335

The DeferWindowPosO APls .. 337
Begin DeferWindowPosO ... 338
DeferWindowPosO .. 339
EndDeferWindowPosO .. 340

Window Focus ... 342
SetFocusO ... 342
SendFocusMessagesO .. 344

Message Processing ... 345
BeginPaintO .. 345
EndPaintO ... 349
DefWindowProcO .. 349
DestroyWindowO .. 350
DestroyOwnedWindowsO ... 356
SendDestroyMessagesO .. 357
FreeWindowO ... (........... 358

Summary ... 363

CONTENTS

CHAPTERS
The Graphics Device Driver Interface (GDI) 365

GDI Device Drivers .. 367
GDI Objects .. 369
Device Contexts (DCs) .. 371
The GDI Logical Device ... 374
The GDI Physical Device Block ... 376
Pseudocode for Selected GDI Functions .. 377

Parameter Validation ... 377
CreateDCO .. 377
InternalCreateDCO .. 380
GetLogO ... 385
ICreatePenO 389
ICreatePenlndirectO .. 389
MoveObjectO 390
CreateSolidBrushO 391
CreateBrushO .. 392
ICreateBrushlndirectO ... 392
ISelectObjectO .. 395
ISetPixelO .. 399
A Word or Two About Names

CHAPTER 6

The Windows Scheduler

Fundamentals of the Windows Scheduler

401

403

404
Nonpreemptive Scheduling .. 404
Events ... 404
Task Priorities .. 405

Yielding: How You End Up in the Scheduler 411
GetMessageO and PeekMessageO ... 411
SendMessageO ... 412
YieldO ... 412
UserYieldO 41 2
OldYieldO 41 3
DirectedYieldO 414
WaitEventO 414

The Core Scheduling Routine-RescheduleO 415
RescheduleO Entry Code 416
Searching for a Task to Schedule, and the Idle Loop 418
We've Found a Task. So Now What? ... 420
IsUserldleO 425
SaveStateO 426

WINDOWS INTERNALS

CHAPTER 7
The Windows Messaging System

A Quick Review of the MSG Structure
The Different Kinds of Messages
The Application Message Queue .. .
The QUEUE Sample Program .. .
The System Message Queue

WakeSomeoneO
Wake bits, WaitEvent, and the Scheduler

SetWakeBit20
Bringing It All Together-GetMessageO,
PeekMessageO and DispatchMessageO .. .

GetMessageO and PeekMessageO .. .
CheckForNewlnputO .. .
DispatchMessageO

Advanced Study: Anatomy of a SendMessageO Call
SendMessageO
ReceiveMessageO
ReplyMessageO .. .

Problems with the Windows Input System

CHAPTERS
Dynamic Linking

429

430
431
432
437
443
444
446
449

450
450
452
454
457
457
459
460
461

463

What is Dynamic Linking? 464
Requirements for Intermodule Dynamic Linking 467
Resolving Dynamic Links .. 471

GetProcAddressO .. 471
GetExePtrO .. 474
FindOrdinalO ... 476
EntProcAddressO 479

Import Libraries ... 482
Exporting and Exportable Functions .. 484

What About Exporting and DLLs? .. 488
FIXDS and Smart Callbacks 488
Compiler Code Generation Options .. 490

The PASCAL and C Calling Conventions Are Both OK 490
C++ Name Mangling 490
The _export Modifier ... 491

Making Your Code Optimally Efficient ... 492

BIBLIOGRAPHY 495

INDEX 499

Foreword

The Microsoft Windows operating environment is used by millions, and programmed by
thousands, every day. And thousands of Windows programmers have to ask themselves several
times each day how Windows will behave in a given situation. Windows is such a large, com
plex, and flexible environment that Microsoft's documentation can only scratch the surface of
how this beast behaves.

Is there some way to learn the answer to every possible question about how Windows will
behave in a given circumstance? Of course thereis: in the odd world of UNIX this is known as
UTSL or "Use the Source, Luke":

"UTSL. On-line acronym for 'Use the Source, Luke' (a pun on Obi-Wan
Kenobi's 'Use the Force, Luke!' in Star Wars) ... This is a common way of sug
gesting that someone would be best off reading the source code that supports
whatever feature is causing confusion, rather than making yet another futile pass
through the manuals or broadcasting questions that haven't attracted wizards
to answer them." -:1'he New Hacker)s Dictionary

Truly, any question you c()uld possibly have about Windows is· answered in the source
code for Wind()ws, that is, in files such as krnl386\winexec.c (or is it winexec.asm?), user\wm
visrgn.c, and gdi\meta.c.

The problem is, the source code resides somewhere on Microsoft's "campus" in Red
mond, WA, and, most likely, you don't. While Microsoft has been talking about releasing the
source code to its new Windows NT operating system to universities, there never has· been
much discussion of making the Windows source code available to anyone outsiqe a small
handful of OEMs (original equipment manufacturers) and ISVs (independent software ven
dors). Two small pieces. of Windows source code (user\defwnd.c and user\defdlg.c) are
included with the Windows software development kit (SDK), and the source code for many
Windows device drivers is included with the device development kit (DDK), but that's it.

I

xiii

WINDOWS INTERNALS

This is unfortunate, but it is not an enormous obstacle. Anyone can walk into their
friendly neighborhood software store, buy a copy of Windows, take it home, and reverse-engi
neer or disassemble it. As almost any textbook on computer law or trade secrets will tell you
(see Raymond T. Nimmer's The Law of Computer Technology, for example), a purchaser is
free to disassemble a computer program; this "capability of discovery through reverse-engi
neering" is particularly strong when there is the kind of widespread mass-market distribution
we've seen with Windows. Microsoft even provides tools such as EXEHDR, CodeView, and
debug versions of Windows , that make disassembly easy and almost unavoidable.

In Windows Internals, Matt has provided a kind of Windows source code "for the rest of
us." Matt doesn't have the Windows source code, but he has used the time-honored tech
nique of reverse-engineering to provide us with a rare inside look at what really goes on in
Windows. This book gives detailed (and I mean detailed!) pseudocode for many of the key
functions that make up the Windows API. For example, while most Windows programming
books will tell you what parameters the function CreateWindow expects, will tell you what
values it returns, and will tell you roughly what the function does, Matt shows you exactly
what it does, in about 500 lines ofC-like pseudocode. (See Chapter 4.)

The big question, I suppose, is "Do I need this information?" Certainly, it would be very
nice if you didn)t need to know what goes on under the hood when you do Windows pro
gramming. "Information hiding" is one of the key principles of what is optimistically called
software engineering. Unfortunately, the software industry is still very far from being able to
say that programming interfaces like the Windows API can be used as black-box components.
Time and again, Windows programmers find themselves having to ask what CreateWindow or
GetMessage or GlobaWloc will do in a given situation. With Matt's book, they now have a
good shot at finding the answers.

To take one example, . look at Microsoft's documentation for the GlobalAlloc function.
Notice that you can call GlobalAlloc with a GMEM_FIXED option, to tell Windows that the
newly allocated block of memory shouldn't be moved around in the linear address space. Now
turn to Chapter 2 and look at the psuedocode for GbTop, which is called by GlobalAlloc. The
pseudocode shows, as plain as day, that in Windows 3.1 GbTop will simply turn this flag off if
it's coming from something other than a DLL. Period. As Matt puts it in one of his com
ments to the pseudocode, "KERNEL knows best!" Do you still feel safe programming for
Windows without knowing this sort of thing?

I think there is another reason to examine Windows at this level. In the arcane language
of the law, computer programs are regarded as "literary works," but unfortunately this idea is
never taken to its logical conclusion: that the source code for computer programs such as
Windows should be available to read as books. The fact is, only a handful of large computer
programs have ever been publicly examined or subjected to what literary critics call "close
reading." This handful includes the UNIX operating system, which has been examined (in
psuedocode form) in books such as Bach's Design of the UNIX Operating System and Leffie~
et al.'s Design and Implementation of the 4.3BSD UNIX Operating System. Donald Knuth
has treated two of his own large programs this way in TEX: The Program and METAFONT:
The Program, and in fact Knuth has put forward a whole methodology called "literate pro
gramming," which takes seriously this idea of the computer programs as essentially books to
be read. In Windows Internals, Matt has for the first time subjected one of Microsoft's messy

FOREWORD

mass-market operating environments to such examination and dissection. His book should
move the understanding of, and writing about, Windows to a new level.

Since Matt was, along with David Maxey and myself, one of the coauthors of the infa
mous book Undocumented Windows, it is natural to ask how Windows Internals differs from
Undocumented Windows. In fact, there is surprisingly little overlap between the two books.
Where the books do overlap, Windows Internals is more accurate because it reflects the many
things Matt has discovered about Windows since we finished Undocumented Windows.

Mostly, though, the two books cover very different subjects: Undocumented Windows
focuses on those functions that Windows happens to export, yet the Windows documentation
does not mention. This is a motley crew, combining functions that are absolutely essential to

Windows programming with ones that are of no earthly use to anyone. They are all included
in Undocumented Windows because they happen to be exported from some DLL (making
them at least potentially callable from your programs). Windows Internals in contrast covers
the core documented functions that Windows programmers use many times every single day,
and shows how these functions are actually implemented. This is an entirely different topic
from the one that Matt, David, and I smashed our heads against in Undocumented Windows.

This distinction between "Internals" and "Undocumented" is important, because there
will be more "Internals" and "Undocumented" books in this series. Geoff Chappell's DOS
Internals is quite different from Matt's book, yet it shares the perspective that, to understand
programs like DOS or Windows, you have to look at the code. Use the Source, Luke!

Interestingly, Chappell's DOS Internals includes a lot of new material on Windows, and
provides even more detailed coverage of some of the topics that Matt discusses in Chapter 1
of this book ("The Big Bang: Starting Up and Shutting Down Windows"). Increasingly, DOS
is being used as a platform from which to boot Windows, so if you are looking for more infor
mation on some of the topics that Matt covers, particularly in Chapter 1, you will definitely
want to look at Geoff's book. Likewise, the second edition of Undocumented DOS has a
lengthy new chapter on DOS/Windows interaction. This is a fascinating, important topic that
has not been adequately covered before. It is also such a large topic that, surprisingly, there is
little overlap between what Matt, Geoff, and myself say about it. But this merely reflects the
increasing complexity of programming for DOS, Windows, and the Pc. Which brings me to ...

The Series
You may have noticed on the cover that this book is part of what we are calling, for want of a
better name, "The Andrew Schulman Programming Series." The goal of this series is to pres
ent information or approaches that weren't in the manuals. The increasing complexity of pro
gramming for DOS, Windows, and the PC, makes this type of book more necessary than ever.
In some cases, the information is of the "Undocumented" or "Internals" type, and is the
product of disassembly. In other cases, the book puts forward an approach to programming
that the manuals and all the other books have missed.

For example, Woody Leonhard's irreverent and wacky Windows 3.1 Programming for
Mere Mortals and Paul DiLascia's beautifully written Windows++ both present methods of
programming Windows that are radically different from the "look, I can write a fourteen-page
switch statement" method put forward in the Windows SDK and in most books on Windows

WINDOWS INTERNALS

programming. Woody shows how simple tools like WordBasic (the macro language in a word
processor, for heaven's sake!) can be used to accomplish serious work in Windows. Paul shows
how to write your own C++ application framework-not how to use an existing one like
Borland's OWL or Microsoft's MFC, mind you, but how to write your own. Even if you are
using OWL or MFC, Paul's book will show you how these things really work. "No myster
ies!" is one of the slogans for this series.

Of course, books like Undocumented Windows, Windows Internals, DOS Internals, and
the forthcoming Undocumented PC by Frank van Gilluwe (of Sourcer fame), provide crucial
programming information you won't find anywhere else. Why aren't there more books like
this? Because it's hard work! It is difficult finding talented programmers masochistic enough
to commit to reverse-engineering some enormous system, and then writing up their findings
in a useful form. But somehow we at the Addison-Wesley test kitchens manage to find these
programmer/writers and we put them to work, sifting through mountains of disassembly list
ings to cook up useful and unique books.

Another useful type of book in this series gathers together previously disparate material
into one easy-to-reach volume. For example, Ralph Davis's Windows Network Programming:
How to Survive in a World of Windows, DOS, and Networks brings together just about
everything you would want to know about network programming under Windows, including
lengthy chapters on Windows for Workgroups, the Windows network device drivers, ~etBios,
Novell NetWare, the Windows Sockets API, LAN Manager, the Win32 networking API in
Windows NT, and Banyan Vines. There's even a very nice chapter on API translation with
DPMI, for those times when you have to "roll your own" Windows programming interface.

Similarly, AI Williams's DOS and Windows Protected Mode covers many topics that
haven't made it into other books on DOS or Windows programming (not even the excellent
collection Extending DOS). These topics include protected mode interrupt handling, real
mode callbacks, exception handling, calling real mode code from protected mode, virtual
memory, mixing 16-bit and 32-bit code, protected mode performance issues, and so on. AI
treats Windows as essentially a big DPMI server and protected mode DOS extender.

My role in this series is to act as an advocate for the reader. I read the manuscript for
each book several times, and push the authors to go into more detail (I love details), to cover
more topics (I hate the phrase "outside the scope of this book"), and to anticipate the read
er's questions (I can't stand when a book leaves me asking "But wait a minute, what
about ... ?" without even trying to answer the question-I figure it's the author's job to know
what questions I'm going to have). I also sometimes try to inject my own feeble sense of
humor into the books. Each book goes through several iterations of this process, with me
pounding on the author, the author doing a great job of supplying the new material I've
asked for, and then me asking for yet more, until we're all exhausted, and the book is done.

Please let me know what you think of this book, other books in the series, and other
books you would like to see. !

Andrew Schulman
Series Editor
March 1993

Addison-Wesley Publishing
One Jacob Way

Reading, MA 01867

Introduction

It's Just Code

Despite the phenomenal success of Microsoft Windows, its inner workings remain a mystery
to most programmers. At an intellectual level, we know that Windows uses data structures and
algorithms, just like our own code. However; when faced with the sheer number of MIs,
messages, handles, callback functions, etc., there's a tendency to forget that. Windows can
seem like a monolithic entity that you deliver your handles to on command, and if you do
well, Windows rewards you by carrying out your small request. If you anger Windows, it con
demns your program with an Unrecoverable Application Error (UAE). In other words, the
mental model that many Windows programmers work with is that Windows is a beast, rather
than just a big library of code that you call, and that calls you.

In this book, I will attempt to strip away the layers and reveal how Windows works. The
goal is to provide you with some degree of orderliness and predictability. If you can see and
understand how Windows creates and maintains its objects, you can often think through
problems, rather than trying different approaches until something works.

There are now numerous books available on how to write Windows programs. Although
there are many good ones, they almost all concentrate on giving you inputs to a "black box."
You want to put pictures on your buttons? Well, you plug this in here, that in there, turn the
crank, and there's your button. This book has a different approach. The focus is on opening
the black box to reveal what's inside, and to let you see how and why the techniques described
in other books work.

A coworker of mine is of the opinion that you shouldn't need to know what's inside the
black box. The assumption is that if you design a black box well, the users don't need to know
what's happening under the hood. While we differ on the validity of this premise, we both
agree that the Windows black box doesn't work very well. To do anything of significance, you

xvii

WINDOWS INTERNALS

have to understand things at a deeper level than the documentation provides. This is not to
denigrate the work of the documentation writers at Microsoft. Instead, it's a by-product of
the incredible number of applications that "push the limit," along with a slightly eccentric
CPU architecture.

What We'll Cover

In the chapters that follow, we'll select a few broad operating system concepts, and discuss in
detail how Windows implements them. For example, we'll see how an executable file on disk
becomes a running process with windows that you interact with. The chapter on memory
management is especially lengthy, as this particular area underpins almost everything else in
Windows.

When I set out to write this book, I knew there was absolutely no way to cover all the var
ious aspects of Windows. I therefore had to select just a few areas I felt were especially critical,
which I knew the most about, and which would be of use to the largest number of program
mers. Even with this narrowed down topic list, there was still too much to cover. Specifically,
there are numerous "varieties" of Windows that are available. Consider the following list:

• Windows 3.0 versus Windows 3.1

• Standard versus Enhanced mode

• Far East editions of Windows

• WINOS2 (the version of Windows included with OS/2 2.0)

• Windows for Workgroups

• Win32s (runs 32-bit applications on top of Windows 3.1)

It would be nearly impossible to include all the possible permutations. I therefore made a
conscious decision to base the book on Enhanced mode Windows 3.1, as released in March,
1992. Where appropriate, I do discuss some of the other permutations (e.g., the discussion of
what the Windows 3.1 loader does when it encounters a Win32 application). Although Win
dows for Workgroups is not specifically mentioned in the chapters that follow, all of the dis
cussions apply equally as well to it, as to Windows 3.1. The "core" of Windows that this book
focuses on is unchanged between Windows 3.1 and Windows for Workgroups.

Because Windows is such a huge topic, there's quite a list of things that there just wasn't
time to cover. For instance, there's the entire area of Virtual Device Drivers, the Virtual
Machine Manager, and running DOS applications under Windows. At a higher level, I had to
forgo discussions of the inner workings of dialogs, custom controls, DDE, and OLE. Nor was
I able to cover the network APIs, the multimedia extensions, and many of the new functional
ity added to Windows 3.1 and Windows for Workgroups. This book focuses on the core of
Windows that's beneath all of these areas. Fortunately, there are other books planned for this
series that will encompass some of the topics I couldn't cover in this book.

INTRODUCTION

In order to do justice to the topics that I was able to cover, I built in a set of assumptions
about you, the reader. In writing the book, I assumed that you were at least somewhat famil
iar with the concepts of segmentation, selectors, and protected mode. Rather .than trying to
provide yet .another tutorial on these topics, I decided that I would rather use the space to
cover more topics, and give you more details. The bibliography lists some books I feel are
helpful if you're not familiar with these topics.

Another assumption I made is that you either have the Windows SDK documentation, or
some reasonably complete substitution(e.g., the. Windows documentation that comes with
Borland C++). For instance, in the description of the implementation of GlobaWlocO, in the
memory management chapter, I don't repeat all the details that can be found in the SDK doc-

, umentation. The goal is to provide you with new information.
Lastly, it will help if you understand the basic concepts of operating systems (e.g., what

multitasking is, an idea of how virtual memory works at a high level, etc.) You certainly don't
need a degree in computer science to read this book, but we won't be dwelling for too long
on general operating system concepts. The implementation of those concepts in Windows is
our objective. If you're interested inlearning more about general operating-system principles,
check out Andrew Tanenbaum's book Modern Operating Systems, or any of the numerous
books available on Unix internals.

In short, this book won't teach you how to write Windows programs. Instead, it should
teach you about how Windows works, and how you can apply it to your current knowledge.

Methods of Investigation
Unlike operating systems like Unix (or its variations), the source for Windows is generally
kept under wraps within Microsoft. Thus, finding out how Windows works took some effort
on my part (along with some wonderful assistance from people we'll mention later). As with
the previous book I coauthored (Undocumented Windows), I used two methods of breaking
Windows apart and determining how it works.

The primary method used was analysis of assembly language listings of the Windows files.
These listings)Were generated by a program of my own devising called WINDIS. (Little did I
know how much my life would change when I concocted it several years ago!)

To give an example of what WIND IS produces, consider the following excerpt from the
IsTaskO function in KRNL386.EXE. The IsTaskO function is a documented Windows 3.1
function that takes an hTask argument, and determines if the argument really is a task handle:

ISTASK proc
881E: MOV
8820: MOV

8824:
8826:

OR
JE

BX,SP
AX,WORD PTR SS:[BX+04J ; Get the parameter off

; the stack, and into AX

AX,AX
8840

; Is the parameter == 0 ?
; 8840 is where faiLures jump to

8828:
882B:

882D:
8831:

8833:
8835:
883C:

883E:

8840:

8842:

LSL
JNE

CMP
JL

MOV
CMP
JNE

JMP

XOR

RETF
ISTASK endp

WINDOWS INTERNALS

BX,AX
8840

BX,OOFC
8840

ES,AX

; Get the selector limit into BX.
; Return 0 if not a valid selector

; Make sure the segment limit is big
; enough to allow the read below

; Look for the TDB
WORD PTR ES:[00FAJ,4454 ; signature ('TD') at
8840 ; offset OOFA. Return 0

; if not found

8842 ; AX still contains the parameter. Jump
; over the next instruction, which puts
; 0 in AX to make IsTask() return FALSE

AX,AX ; All failed tests jump to here

0002 ; Return whatever's in AX (a TDB, or 0)

While it would be nice ifWINDIS 'were able to add the very verbose comments, it cur
rently doesn't. What you see above is the raw output from WIND IS, with some comments
and line feeds I added to make it more readable.

Since very little Windows programming is done in assembler these days, I felt the book
would be more accessible if I translated my assembler listings into C pseudocode. For the
IsTaskO code above, I would translate it into the following C pseudocode:

Pseudo code for IsTask() - CONTEXT.OBJ
/I
/I
/I

Parameters:
WORD hTask

Locals:
WORD segLimit

if (hTask == 0)
return 0

segLimit = LSL hTask

/I A potential hTask (a TDB selector)

/I Limit of the passed selector

II Get the segment limit using LSL

if (LSL returned failure because of an invalid selector)
return 0

if (segLimit < OxFC)
return 0

II Make sure we won't GP fault by
II trying to read past the limit

if (hTask->TDBsig != 'TD'

INTRODUCTION

return 0;

return hTask

Translating into C pseudocode also has the advantage of cutting out a lot of repetitive
code such as function prologues, segment register loads, and so on. Additionally, much of
Windows appears to be written in highly optimized assembler, or in C with the optimizer
turned on. Following all the conditional jumps is very tedious. There's also heavy use of regis
ter variables and parameters that are passed in registers. In my C pseudocode, I've placed
more emphasis on showing the algorithms and steps, rather than exact adherence to the
binary code as it exists in the Windows DLLs.

Chapter 3 of Undocumented Windows has a comprehensive discussion of how you can
methodically work a disassembly listing into something that's readable, with regards to deter
mining what the code does at a high level. While my WIND IS program is not currently avail
able, the tool Andrew Schulman wrote and uses (Windows Source, from V Communications)
is. Chapter 3 of Undocumented Windows uses Windows Source for its examples, but in my
experience, listings from either disassembler are usually identical in content.

Crucial to the success of the assembly listings. was the availability of comprehensive
CodeView debug information. Certain versions of the core Windows DLLs (e.g., USER,
KRNLx86, and GDI) have the names and addresses of all public symbols in the module.
Knowing descriptive symbolic names for internal (i.e., non-exported) functions and global
variables made analysis several orders of magnitude easier. It was much easier to guess what
the code was doing when I saw variables called names like "NUM_TASKS", rather than
"[026A]". .

In the pseudocode that's presented in this book, the names of functions and global vari
ables ate taken straight out of the CodeView information (with a little bit of "case" translation
to make them more readable). I made up the names of all local variables, and almost all labels,
as they were not included in the debugging information in most cases.

The second method of inquiry involved the wonderful Soft-ICE/W debugger, from Nu
Mega Technologies. Unlike more traditional de buggers like Turbo Debugger, CodeView, or
Multiscope, Soft-ICE/W is a kernel debugger. It trades a flashy user interface for the ability
to get at the lowest level of the operating system, where .traditional debuggers can't·dream of
going. When an assembly listing wasn't revealing the true nature of the code, stepping
through it in Soft-ICE/W, and examining registers and memory was just the ticket. There's
no other way I could have figured out the Windows scheduler, for instance. And since Soft
ICE/W recognizes the aforementioned Code View debug info, it was a double dose of a good

. thing.

On Modes

When discussing modes of the Intel architecture, 1 have used lowercase (e.;g., real mode, pro
tectedmode, and virtual 86 mode). I have <;:apitalized the modes of Windows in discussion
(e.g., Standard, Enhanced and, in the case of Windows 3.0, Real mode).

WINDOWS INTERNALS

Relationship to Undocumented Windows

In the ensuing chapters, there are many spots where I refer to Undocumented Windows. The
goal of T.Jndocumented Windows was to provide a guide to the functions that were both
undocumented and exported from the Windows DLLs. The goal of this book is to examine
how Windows works without restricting the discussion to the undocumented functions.

To give an example, Undocumented Windows describes the SetPriority() function.
Unfortunately, Undocumented Windows didn't have the time or space to show you in any
detail how a task's priority affects its execution. I can do that here. I had the freedom to
examine how Windows works, without being bound by whether a function was documented,
undocumented, exported, or internal. They're all treated equally.

Both Andrew Schulman (the editor of this book) and I (along with David Maxey) were
coauthors of Undocumented Windows. The frequent mentions are not intended as "plugs" of
Undocumented Windows. Instead, the intent was to offer you additional sources of informa
tion for paths I didn't have the time or space to travel down.

In writing this book, I've tried to make it stand alone as much as possible. It was a very
tough balancing act deciding what areas that were covered in Undocumented Windows abso
lutely had to be repeated here. Since this book was written after Undocumented Windows, I
was generally able to improve in some manner the small amount of material that originally
appeared in the prior book.

To sum up this section, I consider Undocumented Windows and this book to be comple
mentary. Neither one needsthe other, but the combination can be greater than the sum of the
individual parts.

Thank Yous
This is my favorite part of the entire book. Here I have the opportunity to thank the many
people who helped and encouraged me along the way.

For starters, there's my editor, Andrew Schulman. This book would not have been possi
ble without him. When we dreamed up this book, it looked impossibly daunting. Only
because I knew he'd help me through it did I take it on. In addition to being tremendously
knowledgeable in almost everything I wrote about, he has an attention to detail that boggles
the imagination. Every time I thoughtI'd covered a chapter in exhaustive detail, he'd send me
back literally hundreds of comments, pushing for even more details. I can't imagine having a
better editor.

The fine folks at Benchmark, including Chris Williams, Amy Pedersen, and Andrew Wil
liams. They've gone out of their way to show me the ropes and make things easy for me.
Judging from their previous books, I know I've gone top of the line with this book.

My technical reviewers: Orin Eman, Mike Geary, Scott Kliger, Eli Boling, and of course,
Andrew Schulman. Every one of them is unquestionably one of the experts in their particular
field(s). The insights and technical corrections provided by them were invaluable. It would be
virtually impossible to select a more qualified and helpful group of programmers to review this
book.

INTRODUCTION

The journal editors: Ron Burk ("Windows/DOS Developers Journal"), Jon Erickson and
Ray Valdes ("Dr. Dobb's Journal"), and Gretchen Bilsen ("Microsoft Systems Journal"). Not
only did they encourage me to write, they put up with the fact that I'm more of a program
mer than a writer. They also put in a tremendous amount of work to help me adapt and con
dense certain chapters into articles. Chapter 6 (the scheduler) appeared in an earlier form in
the August 1992 "Dr. Dobb's Journal." Chapter 7 (the messaging system) is condensed in
the February 1993 "Dr. Dobb's Journal," and portions of Chapter 2 (memory management)
are in the March 1993 "Microsoft Systems Journal."

My family, especially my mother and father, my mother- and father-in-law, and my grand
mother-in-law. They all Were overwhelmingly supportive, even though they understand about
.001% of what I wrote. (Listening to my mother try to read one of my chapters aloud is hilari
ous!)

My "boys," Theodore and Gunther (they're really twin Dachshund brothers). It may
seem a bit strange to thank a pair of dogs, but they were critical to my completing this book.
Too many times to count, I would look over from my writing, and see them flopped out on
the sofa, a perfect demonstration of entropy. I had no choice but to stop what I was doing,
and go play with them. They really helped keep things in perspective.

Finally, and most importantly of all, my wife April. I could never hope to repay her for
putting up with me while I wrote this book. It was a rare night indeed when she didn't go to
bed by herself (with Gunther and Theodore at her feet). She essentially ran the house single
handedly while I worked seven days a week on the book (on top of my real job at Borland).
She's threatened to write a book on computer widowhood, so I'm especially looking forward
to spending time with her, now that the book is finished. Mere words cannot express my grat
itude to her.

Matt Pietrek
March, 1993

(CIS ID: [71774,362])
Capitola, CA

The Big Bang:
Starting Up and
Shutting Down Windows

Among most astronomers and astrophysicists, there is consensus that the universe as we know
it was once an infinitely dense, infinitely small point. This point exploded, sending out matter
and energy and creating the galaxies and stars. What astronomers know is that the state of the
universe underwent a transition from one form to another. What they don't know, however, is
what occurred at the very moment of the explosion.

In contrast, DOS and Windows allow the programmer to uncover in detail what goes on
when the computer transforms itself from a mild-mannered DOS machine to a protected
mode, event-driven, multitasking, graphical user interface computer.

This chapter strips away the mystique of what goes on during those seconds after you
type WIN, but before you can begin work in Windows. On a more general level, this chapter
serves as a road map for the subsequent chapters of the book. The discussion of what happens
when you boot Windows includes mention of things that are examined in more detail in their
own chapters. You'll cover all the major bases by studying the following Windows subsystems.

• Tasks and Modules: Explains how they're related to each other. In addition, this sec
tion shows how the Windows loader creates a new task, and how it dynamically links to
dynamic link libraries (D LLs).

• Windows memory management: Examines the structure of the global and local heaps
and looks at what the various memory attributes mean. This chapter includes detailed
descriptions of all memory management functions. Best of all, real mode is not
included.

1

WINDOWS INTERNALS

• Dynamic linking: Discusses how applications and DLLs link up to routines that aren't
present at linle time. This chapter covers both implicit (load time) loading and runtime
dynamic linking (GetProcAddress()). In addition, it covers such topics as MakeProc
Instance() and function exports.

• The Windows messaging system: Looks at the various kinds of messages and their rela
tive priorities. This chapter discusses the application and system message queues and
the way messages move through the system.

• The windowing system: Shows the relationship between parent and child windows, be
tween parents and owners, and between windows and classes. This chapter takes an in
depth look at the process of creating and destroying windows, as well as at registering
new classes in the system.

• The Graphics Device Interface: Looks into the data structures and the methods by
which Windows can output text, lines, bitmaps, and so forth, in a device-independent
manner.

• The Windows Scheduler: Examines how Windows decides which task will run next
while keeping all other tasks in a suspended state.

This chapter's discussion of these areas includes references to the appropriate chapters so
that you can do further investigation.

The goal of this chapter is to focus on the link between real mode DOS and protected
mode Windows. It is by far the most conceptual chapter in the book.

A Word or Two About Protected Mode and DOS Extenders

Before beginning this journey into the caverns of Windows, you might want to read through
this overview of what lies ahead.

Speaking in the most general terms, Windows consists of two major parts: A DOS
extender and an operating environment. This book primarily focuses on the operating envi
ronment aspect of Windows. However, it's unavoidable to encounter portions of Windows
that are unquestionably part of the DOS extender. Severalchapters (but especially this chapter
and Chapter 2 which deals with memory management assume that you're at least somewhat
familiar with concepts of protected mode on the Intel CPU, including such areas as the differ
ences between real and protected mode, the DOS Protected Mode Interface (DPMI), and
DOS extenders in general. It also helps if you're familiar with operating system concepts such
as virtual memory.

Quite a few good books discuss these topics. Rather than give you yet another five-page
tutorial on protected mode, selectors, Local Descriptor Tables (LDTs), and so on, this book
assumes that the mention of these terms doesn't bring you to a quiver, preferring to use the
available space to explore new and uncharted territories in Windows. If you're not familiar
with these topics, read Extending DOS, Second Edition) edited by Ray Duncan (Addison-

CHAPTER 1 ,- THE BIG BANG

Wesley, 1992) or another book on the topic, DOS and Windows Protected Mode: Program
ming with DOS Extenders in C, by Al Williams (Addison-Wesley, 1993). Several other books
in our bibliography also cover these topics.

Although most developers are vaguely aware that Windows runs on top of DOS, the
extent to which Windows relies on DOS and is structured around DOS cannot be emphasized
enough. To put it simply, Windows is not an operating system in the true sense of the word.
You cannot yet boot a PC with just Windows on the hard drive. Windows relies on the under
lying DOS to perform all file operations (Windows 3.1 FastDisk and the forthcoming
VFAT.386 notwithstanding). The vague techspeak of marketing calls Windows an "operating
environment," but only the combination of DOS capabilities with Windows results in a genu
ine operating system. In fact, some people contend that DOS is the operating system and that
Windows is just an unusually fancy DOS extender that runs in graphics mode. On the other
hand, Windows provides many services traditionally associated with operating systems, includ
ing memory management, task management, dynamic linking, and so on; from this perspec
tive, Windows looks much more like a genuine operating system than does DOS. This chapter
shows how Windows bootstraps itself up from a DOS program, and later returns things back
to normal, malting it appear that just another DOS program has run.

The First Step: WIN.COM

The initial step of bringing Windows up is to type WIN, followed optionally by additional
parameters. This command invokes WIN. COM, an exclusively real mode program.
WIN.COM is created when SETUP.EXE combines three files in the WINDOWS\SYSTEM
directory: WIN.CNF, VGALOGO.RLE, and VGALOGO.LGO. (The latter two files may
have different names, based upon your video configuration and the settings in the
SETUP.INF file.) WIN.COM serves three primary purposes:

1. It pokes around in your system and decides in which mode to run Windows
(Standard or Enhanced). Once it decides upon a mode, WIN.COM invokes the
appropriate programs to start up Windows in the selected mode. The WIN.CNF
file, which is really just a .COM file without the .COM extension, contains all of
this code. More on the WIN.CNF code in a moment.

2. WIN.COM hangs around in the DOS memory space to provide certain real
mode services-discussed in detail in a later section. Windows cannot perform
these services itself, because there is no real mode code after the initial start up
section of Windows. These services are not related to the real mode DOS file
I/O that KERNEL manages.

3. WIN.COM puts up the initial splash screen-typically the Windows logo-that
you see before WIN.COM initializes the Windows desktop. The VGA
LOGO.LGO and VGALOGO.RLE files (or whatever they happen to be named
on your particular machine) perform this job. VGALOGO.LGO, a short binary

WINDOWS INTERNALS

image similar to a .COM file, switches the screen into graphics mode and displays
the VGALOGO.RLE file. The .RLE extension stands for "run length encoded."
Programs such as WINGIF can produce .RLE files.

The WIN.CNF portion of WIN. COM performs several tasks:
It processes the WIN command line switches and acts accordingly. For instance /s sets a

flag that indicates that Windows should run in Standard mode, even if it's possible for the
machine to run in Enhanced mode. On the other hand, a /r causes an INT 21h, function 9
(write string to standard output) that tells DOS to print out an error message saying that this
version of Windows can't run in real mode, before INT 21h, function 4Ch terminates the
program. The /r switch is a holdover from the dark ages of Windows 3.0, which for some
perverse reason lets you run Windows in real mode.

WIN.COM encounters and processes its own switches (leaving alone switches that KER
NEL will later process) replacing each slash and the following character with two spaces. This
step allows WIN.COM to pass the original command line buffer to the subsequently launched
programs (WIN386, DOSX, or KRNLx86) rather than having to create a separate command
line buffer for them.

WIN. COM determines what type of CPU the machine has. Windows 3.1 can run in
Standard or Enhanced mode, with Standard mode requiring at least an 80286, and Enhanced
mode requiring an 80386 or better. The CPU test involves moving values into the flags regis
ter using PUSH and POP, and then testing which bits are set in the CPU flags register. The
only distinction the test malces between CPUs at this point is between 8086/8, 80286, and
80386 machines. Much later on in the startup process, KERNEL obtains the real CPU type
using a DPMI function. The results from the DPMI call, rather than the value obtained here
in WIN.COM, determine the values of the WF_xxx flags returned by the Windows function
GetWinFlags() .

WIN.COM determines what memory management system is on the machine and the
amount of available and total memory. Windows requires an Extended Memory Specification
(XMS) driver, either HIMEM.SYS or a more advanced memory manager that provides XMS
services, such as QEMM386 or 386MAX. If WIN. COM doesn't find an XMS driver, it uses
INT 15h, function 88h (Get Extended Memory Size) to determine if there is any extended
memory at all on the machine. If extended memory is present, the function displays the mes
sage, "Missing HIMEM.SYS ... " If no extended memory is present, the message instead reads,
"Your computer cannot run Windows in either Standard or 386 Enhanced mode."
WIN.COM also checks for the presence of Virtual Control Program Interface (VCPI) services
using INT 67h, function ODEOOh (VCPI Installation Check). Oddly enough, this test has
nothing to do with the availability ofVCPI services for Standard mode Windows. Instead, the
presence of VCPI services plays a role in determining whether to reduce the SMARTDRV
cache size. If you're wondering about all these INT functions, see the book PC Interrupts by
RalfBrown and Jim Kyle (Addison-Wesley, 1991).

CHAPTER 1 - THE BIG BANG

Also included in th~ memory checks is a test for Global EMM Importation, a Microsoft
interface that allows WfN386 to import the page mapping tables from a virtual 8086 memory
manager, such as QEMM386 or 386MAX. Without this specification, trying to run Windows
on top of a 386 memory manager would be a horrendous mess because both programs want
complete control of the 80386 page tables.

A smaller disk cache is often advantageous in freeing extended memory for the Wmdows
global heap. To facilitate the creation of a smaller disk cache, the Microsoft disk cache,
. SMARTDRV, allows the user to specifY a minimum and maximum cache size on its command
line. SMARTDRV provides an application programming interface (API) for adjusting these
values dynamically. WIN.COM uses this API to shrink the SMARTDRV cache down to its
mi,nimum size before starting the protected mode portion of Windows. WIN.COM starts this
process by attempting to open the DOS file SMARTAAR, which is the device name that
SMARTDRV uses. (DOS device drivers can be opened as files, for example, CON, LPTI, or
PRN.) If WIN .COM finds SMARTAAR, it queries its status and modifies it, using IOCTL
functions (INT 21h, functions 4402h and 4403h). In order to be compatible with
SMARTDRV, other disk caches, such as HyperDisk, have taken to responding to WIN.COM
as if they too were SMARTDRV.

WIN. COM counts the number of files in the system file table, using the still undocu
mented INT 21h, function 52h (Get List ofLists)to find the first block of entries inthesys
tern file table. WIN .COM then walks the list of file entry blocks, keeping a running total as it
goes. If the total number of file entry blocks is less than 30, WIN. COM displays an error,
"Insufficient file handles available; increase file= statement in config.sys to 30 or greater."
Windows needs as many file handles-up to 255-as it can get its hands on because Wmdows
can run several programs simultaneously. Each of these programs might want to open llP
numerous files .. Later on, you'll see that KERNEL actually grows the number of available file
handles. Real operating systems like OS/2 or Windows NT don't have this problem because
they don't sit on top of DOS, the way Windows does.

Every time WIN.COM is run, it checks to see if Windows is already running. The initial
test for this is with INT 2Fh, function I60Ah (Get Windows Mode). This interrupt subfunc
tionis new for Windows 3.land works as follows. WIN. COM hooks INT 2Fh, and when it
sees a call to· this subfunction, it returns a value in ex that indicates the current Windows
mode. If you try to run.WIN.COM a second time from inside a DOS box, the first instance of
WIN.COM will respond to this interrupt, indicating to the second instance of WIN.COM
that Windows is already running. Under Windows 3.0, this check wasn't made, so it was pos
sible to start another real mode copy of Windows while running in a DOS box. If there is no
response to the INT 2Fh, function I60Ah subfunction call, the code falls back to the INT
2Fh calls that were present in Windows 3.0. INT 2Fh, function I600h tests for Enhanced
mode operation, while INT 2Fh, function 4680hdetects Real and Standard modes. In addi
tion, INT 2Fh, function 4B02h checks for the presence of the DOS 5 task switcher. If
responses to any of these subfunction calls indicate Windows is loaded, WIN.COM refuses to
load Windows again.

WIN.COM looks for the presence of network software. First, it examines the interrupt
5Ch vector to see ifit is nonzero. If the vector isnpnzero, WIN.COM generates an INT 5Ch
(NetBIOS interface), with ES:BX pointing to a Ne'tworkControl Block(NCB). The first byte

WINDOWS INTERNALS

in the buffer, the command code, is set to 7Fh (a NetBIOS invalid command code). A return
code of anything besides 3 (the N etBios invalid -command error code) indicates that some
thing besides NetBIOS has taken over the interrupt.

Most important, WIN.COM uses INT 21h, function 4Bh (EXEC) to load the DPMI
servers that Windows is based upon. In Standard mode, WIN.COM spawns WSWAP.EXE,
the Standard mode task switcher, which is very similar to the DOS 5.0 DOSSHELL task
switcher. WSWAP in turn loads DOSX.EXE, the Standard mode DPMI host and DOS
extender. DOSX then runs either KRNL286.EXE or KRNL386.EXE, which switches the
machine into protected mode, and sets up the Windows environment. In Enhanced mode,
WIN.COM runs WIN386.EXE, which in turn loads KRNL386.EXE. We'll come back to the
task switchers in a moment.

Besides the chore of checking out the system in preparation for running protected mode
Windows, WIN.COM, along with WSWAP.EXE in Standard mode, remains behind to mind
the real mode store. The most obvious use of WIN. COM is to assist Windows in restarting
itself after exiting. (See the SDK documentation for ExitWindows (EW_RESTART
WINDOWS)). For example, an install program may wish to exit Windows, run a DOS pro
gram, and then start up Windows again (ExitWindowsExec()).

How does WIN.COM assist in this process of restarting Windows? Exiting Windows
causes a series of program terminations, which eventually culminates in the completion of the
INT 21h, function 4Bh (EXEC) that WIN.COM performed to start the ball rolling. It is a
simple matter for WIN.COM to check the return (exit) code from the EXEC. An exit code of
Ox42 (Ox42 is the value of EW_RESTARTWINDOWS, or the answer to life, the universe,
and everything) alerts WIN.COM to execute the appropriate program again. An exit code of
Ox44 tells WIN.COM to first execute the program specified in the ExitWindowsExec() call
and then restart Windows.

How does WIN.COM get that other program's filename? Simple. WIN. COM hooks INT
2Fh, and when it sees a 4B20h subfunction code, it returns the address of a buffer inside
WIN.COM. When WIN.COM sees a return code of Ox44 from the INT 21h, function 4Bh
call that started protected mode Windows, WIN.COM uses the contents of the buffer as a
program name that it should run. Thus, the code for ExitWindowsExec() simply calls INT
2Fh, function 4B20h, and copies the passed filename into the real mode buffer that's returned
by WIN.COM. It then exits Windows (KERNEL) with an exit code ofOx44. Pseudocode for
this process looks like this:

II -- In reaL mode WIN.COM --

INT 21h, fn. 4Bh to start WIN386 or WSWAP. This interrupt
doesn't return untiL KERNEL shuts down.

II - In protected mode KERNEL (ExitWindowsExec)

Invoke INT 2Fh, fn. 4B20h. When it returns, the registers
contain the address of a reaL mode buffer. Copy the
fiLename to execute in reaL mode into the buffer.

CHAPTER 1 - THE BIG BANG

II - In INT 2Fh handLer of reaL mode WIN.COM --

Receive INT 2F, fn. 4B20h. Return the address of a buffer
in a register pair.

II - In reaL mode WIN. COM

Return from INT 21h, fn. 4Bh. Examine the return code. If
it's 42h, exec WIN386 or WSWAP again. If it's 44h, exec
the fiLename in the buffer, then exec WIN386
or WSWAP again.

In addition to providing support for restarting Windows, the INT 2Fh handler that
WIN. COM installs performs other useful tasks. There are actually two different INT 2Fh han
dlers in WIN.COM. Depending on which mode Windows will run in, WIN. COM installs one
handler or the other. In Enhanced mode, the INT 2Fh handler processes sub functions 160Ah
and 4B20h, both discussed previously.

When WIN.COM starts Windows in Standard mode, the INT 2Fh handler deals with the
above two subfunctions and adds a few more as well. For instance, INT 2Fh provides the
4A05h subfunction as an interface to the Standard mode task switcher. The 4B06h subfunc
tion gives an entry point for a function that can manipulate DOS memory control blocks
(MCBs) in real mode. For a further discussion of these subfunctions, see Geoff Chappell's
forthcoming book, DOS Internals.

The last bits of the WIN.COM startup to discuss are theswappers. To support the DOS 5
task switching interface (see Microsoft's MS-DOS Programmer)s Reference), Standard mode
Windows uses two programs, WSW AP and DSW AP, both which are remarkably free of any
sort of documentation. Some good old trial and error experimentation yields the following
observations:

• WIN. COM loads WSWAP.EXE for Standard mode. If WIN. COM can't find the pro
gram, it displays an error message to the effect of, "can't find executable," and returns
to a DOS prompt.

• You can rename WSW AP and still run Standard mode if, rather than running
WIN. COM, you invoke SYSTEM\DOSX.EXE directly (described below). Once in
Standard mode however, you can't run a DOS box. You receive a dialog box with the
message, "Standard-mode switcher is not running. Cannot start application."

• DSWAP appears to run as part of the startup of the Standard mode DOS box. You can
rename DSWAP so that startup can't find it, and still start Windows in Standard mode.
However if you try to start a DOS box, the screen switches to text mode and shows
you the faintest glimmer ofa prompt before the screen switches back to Windows.
Windows generates no error messages in this situation.

WINDOWS INTERNALS

The Next Step: Loading the DPMI Hosts

At this point, WIN.COM has determined that there's a suitable CPU, that Windows isn't
already running and that XMS services are present. WIN. COM has done its preflight checkout
of the system and has decided that all systems are GO! It now loads the appropriate DPMI
host program.

DPMI is not a DOS extender. Instead, DPMI is a set of services that DOS extenders can
use to coexist. DPMI provides core memory management, interrupt and exception handling,
and real/protected mode transitions for DOS extenders that adhere to the DPMI specifica
tion. (See Chapter 2 for more detail.) In the case of Windows, there are actually two layers of
DOS extenders resting on top of the DPMI services. DOSX.EXE and WIN386.EXE provide
the DPMI services, hence the term DPMI host. In addition, DOSX and WIN386 also have
DOS extender portions. These DOS extenders take care of things like switching back and
forth between real and protected mode in order to pass things to DOS. They provide reason
able default handling for the various INT 21h calls that a protected mode program might
malee. On top of this layer rest KRNL286 and KRNL386, which are the 286 and 386 versions
of the Windows KERNEL. These programs selectively handle exceptions and interrupt calls
that KERNE~ needs to handle differently than the default DOSXjWIN386 handlers would.
You can think of this selective handling as a form of subclassing, or in Object-Oriented Pro
gramming (OOP) parlance, derivation.

It's important to note that DPMI is not tied to Windows, although it came about as a
result of needing a more flexible and secure environment for DOS extenders under Windows
than VCPI could provide. WIN386 and DOSX are the most prominent examples of DPMI
hosts, but there are numerous other DPMI implementations as well. Current versions of
386MAX from Qualitas are DPMI hosts, as is QDPMI for use with QEMM386, from Quar
terdeck. The Borland language compilers ship with a DPMI server (DPMIl6BI.OVL) since
some of the tools run only in protected mode. And don't forget OS/2 2.0 and Windows NT,
which provide DPMI services in their DOS boxes.

As mentioned earlier, one of the tasks of WIN. COM is to determine which DPMI host to
run. The algorithm WIN.COM uses is simple: If the machine is a 386 with 2Mb or more of
memory, WIN.COM selects WIN386 as the DPMI host. If the machine is a 286, or if it has
less than 2Mb of memory, then WIN. COM selects DOSX. You can force the selection of
DOSX as the DPMI host by using /S or /2 on the WIN.COM command line. An important
point to remember here is that it is not whether Windows 3.1 uses KRNL286 or KRNL386
that determines which mode Windows 3.1 runs in. Instead, it's which DPMI host Windows
uses, WIN386.EXE for Enhanced mode or DOSX.EXE for Standard mode. Under Windows
3.0, the story is different because Standard mode Windows 3.0 always used KRNL286, even
on 386 machines.

Both DOSX and WIN386 start out executing as real mode programs, doing whatever ini
tialization needs to be done and then invoking the appropriate Windows KRNLx86 file while
still in real mode (in Enhanced mode, it is actually virtual-8086 mode). Under Windows 3.1,
the switch to protected mode occurs inside the KRNLx86 files and is one of the highlights of
our later tour through the KRNLx86 startup sequence. In Windows 3.0, KRNLx86 began life
already running in protected mode.

CHAPTER 1 - THE BIG BANG

On an 80286, DOSX uses INT 21h, function 4Bh to load KRNL286. On a 386, DOSX
first tries to load KRNL386. If unsuccessful, DOSX tries again, using KRNL286. WIN386,
on the other hand, only loads KRNL386, and aborts if it cannot find the file. For the remain
der of this chapter, KRNLx86 refers to both KRNL286 and KRNL386.

It is easy to prove the above assertions with a couple of experiments. First, to see that
WIN.COM really does in fact run WIN386 or (eventually) DOSX, go to the WINDOWS
directory (for example, C:\WINDOWS). Try running Wind,ows in either Standard or
Enhanced mode by giving the command SYSTEM\DOSX.EXE or SYSTEM\WIN386.EXE,
respectively. No need to run WIN.COM anymore, right? Not so fast. Using SYS
TEM\DOSX.EXE to start Windows prevents you from running a DOS box once you're in
Windows. Why? Because this command bypassed the loading ofWSWAP by WIN.COM.

To prove that DOSX first tries to load KRNL386 before settling for KRNL286, rename
KRNL286 to something else temporarily (this experiment assumes you have at least a 386).
Then, run SYSTEM\DOSX.EXE. Windows loads normally. Now run HEAPW ALK, or a pro
gram that lists system modules, such as WINMOD from the book Undocumented Windows
(Schulman, Pie trek, Maxey, Addison-Wesley, 1992), and note that KRNL386 has run, rather
than KRNL286. To prove that DOSX settles for running KRNL286, on the other hand, just
restore the renamed KRNL286 to its original name; then rename KRNL386 to something
else. Running SYSTEM\DOSX.EXE still works, but notice that KRNL286 is now the KER
NEL file, rather than KRNL386. Who cares? Well, this is the only way to test your programs
under 286-style Standard mode in Windows 3.1 without a 286 machine.

Finally, to show that there's no special magic between the DPMI host and KRNLx86
(besides DPMI services), temporarily rename KRNL286 and KRNL386. Then, copy another
program to the WINDOWS\SYSTEM directory (COMMAND.COM does nicely) and rename
that file KRNL386.EXE. Last, run WIN .COM. Your program should run just as if it were run
from the DOS prompt. But running COMMAND.COM, or the DOS shell of your choice,
this way gives it DPMI services!

If WIN386 and DOSX are both DPMI hosts, what's the difference ~etween them?
DOSX weighs in at around 32K, while WIN386 takes up somewhere in the neighborhood of
530K. The key difference is that DOSX is predominantly a DPMI server and a minimal DOS
extender, with very little code devoted to other things. Microsoft claims that there are only
seven DPMI functions that DOSX supports. Don't you believe it. The fact is, DOSX is almost /
a complete DPMI 0.9 implementation. It lacks the ability to do paged virtual memory, so it's
not as complete as WIN386. However, DOSX does support enough of the DPMI specifica-
tion so that KRNL386 can run on top of it. . .

The roughly 500K difference between DOSX andWtN386 c.an't all be due to code for
supporting virtual memory, can it? Luckily,the answer is no. The vast majority ofWIN386
consists of virtual device drivers (VxDs) and support of multiple DOS sessions on the same
CPU.

The real mode DOS stub of WIN386 switches into protected mode after loading all the
VxDs. After the VxDs load, the stub jumps to the Windows VIrtual Machine Manager
(VMM), which begins execution in protected mode. In addition to managing the virtual.
machines, the VMM is also where the Enhanced mode DPMI server code resides. Both
KRNL286 and KRNL386 in Windows 3.1 start out running in real mode and must call

WINDOWS INTERNALS

DPMI to switch into protected mode. How then, does the CPU switch back to real mode
before loading KRNLx86?

It doesn't. As it turns out, the Virtual Machine Manager creates a virtual 8086 (V86) ses
sion, which simulates real mode. This session is called the System Virtual Machine (VM). A
VM is a virtual 8086 session as implemented on 80386s and higher. All Windows programs
run in the same virtual machine, the System VM. Each DOS session started within Windows
in Enhanced mode runs in its own distinctVM.

Once VMM has created the System VM, it runs the WINSTART.BAT file. Mterwards, it
runs KRNL386 just like any other real mode program, though it is in fact running in V86
mode. Since this book focuses on the 16-bit code in the Windows DLLs (KERNEL, USER,
and GDI), the book doesn't cover WIN386 or VxDs any further, except in passing. VxDs are
extremely important, but it's not necessary to go into the details ofVxDs to understand how
Windows starts itself up. For the purposes of this book, DOSX and WIN386 are functionally
equivalent. The book ignores the incredible wealth of additional functionality in WIN386.
For those interested in VxDs, there's no substitute for having the Microsoft Windows Device
Driver Kit (DDK), although books and articles on VxDs are slowly coming forth. Look for
Dan Norton's book, Writing Windows Device Drivers (Addison-Wesley, 1992).

The Fun Begins: Loading the KERNEL Module
At this juncture, the DPMI server has done the required initialization. IfWIN386 is running,
it has set up a virtual machine and initialized the VMM.

With the DOS extender and virtual machine initialization out of the way, WIN386 or
DOSX loads the KERNEL module into memory. The remainder of this chapter focuses on
what goes on in the KRNLx86 file as it builds the Windows environment from just some real
mode code and DPMI services.

In Windows 3.0, the DPMI host switches the CPU into protected mode before the code
in KRNLx86 begins running. In Windows 3.1, the KERNEL module begins execution in real
(or V86) mode. Even though the two KRNLx86 files look like New Executable (NE) files
(see Chapter 3 on modules) and quack like NE files, they are not loaded like normal NE files.
If you think about it, the KERNEL module provides NE loading services for the other Win
dows modules through the WinExec() and LoadModule() APIs. How can it load itself?
There must be an NE loader in the DPMI hosts, right? Not so. The process just involves
some bootstrap code.

In all NE files, there is a real mode stub program that precedes the actual new executable
portion of the file. In most programs, the stub program just prints out a message like, "This
program requires Microsoft Windows." The stub programs in the KRNLx86 files are com
pletely different. Simply put, in Windows 3.1, KRNL286 and KRNL386 begin life as ordi
nary, real mode DOS programs. This point should be emphasized again because it is critical to
understanding the early stages of Windows' bootstraps activity. The DOS loader loads
KRNL286 and KRNL386) which begin execution as DOS programs. In fact, rumor has it
that a non-Windows DPMI server, which can handle all the DPMI functions that WIN386
handles (including the undocumented and obsolete ones), makes it possible to run KRNL386

. directly from the DOS command line without WIN386!

CHAPTER 1 - THE BIG BANG

The following pseudocode for the KRNL386 real mode stub shows the first steps of
KERNEL's journey to protected mode nirvana. The code uses details of the NE file format. If
you're not at least somewhat familiar with the NE format, see the Programmer)s Reference,
Volume 4: Resources in the Windows 3.1 Software Development Kit (SDK). In the following
example, notice how the DOS MZ portion of KRNL386.EXE (all DOS executables have an
'MZ' signature, the initials of Microsoft's legendary Mark Zbikowski) loads the Windows NE
portion of the same file.

pseudocode for the KRNL386 reaL mode Loader
II LocaLs:
II NEW_EXE *ne-ptr II points at KRNL386's 'NE' header

II Index of the DGROUP segment II WORD DGROUP_index
II
/I
II
/I
II

WORD
WORD
WORD
WORD
WORD

*DGROUP_segtabLe-ptr
DGROUP_sector II Sector offset of DGROUP start
EntrySeR-index II Index of the entry point segment
*EntrySeR-segtabLe-ptr
EntrySeR-sector II Sector offset of entry segment

/I The reaL mode stub "Loader" has its Load image size set
II in the DOS 'MZ' header to a vaLue Large enough to cause
II the entire KRNLx86.EXE fiLe to be read into memory.
II Thus, execution begins with the contents of the. entire
II KRNLx86.EXE fiLe residing in a DOS memory bLock.

II point "ne-ptr" at the 'NE' header read in by the DOS Loader
II (aLong with everything eLse in the fiLe). The header shouLd
II be immediateLy after the code for this reaL mode stub.
ne-ptr = MK_FP(CS, Ox200)

if .(ne-ptr->ne_magic != 'NE') /I Found the 'NE' header
go to LoadingError II in memory?

SS = DS
SP = Ox0160

II Point SS:SP at a region after the end of
1/ the reaL mode code. A Temporary stack.

II Get the segment number of the DGROUP segment out of the
II 'NE' header. Subtract 1 because segment numbering
II starts at 1, and we'LL be Looking up the segment's
1/ information in a tabLe that's 0 based.
DGROUP_index = ne-ptr':'>ne_autodata - 1

if (DGROUP_index)
{

II Is there a DGROUP segment?

II Convert DGROUP index to an offset into the segment tabLe
II (each segment-tabLe entry ;s 8 bytes).

DGROUP_segtabLe-ptr = DGROUP_index « 3

}

WI N DOWS INTERNALS

II Add in the offset of the segment table itself
DGROUP_segtable~tr += ne~tr->ne_segtab

II Get the file sector of the DGROUP segment
DGROUP_sector = DGROUP_segtable~tr->ns_sector

II Set alignment shift count to 9 (512) bytes, if none
II specified in the 'NE' header
if (ne~tr->ne_align == 0)

ne~tr->ne_align = 9

II Set D1 to the paragraph address in memory of the
II DGROUP segment. Subtract Ox20 from the current CS
II because the first Ox20 paragraphs (512 bytes) of the
II file weren't loaded into memory. The first 512 bytes
II of the file are the old EXE header & fixup table.
D1 = (CS-Ox20) + DGROUP_sector « (ne~tr->ne_align - 4)

II Now start the process of finding the entry point
II segment, which is just the initial CS value given in the
II header of the 'NE' file. See DGROUP segment above for
II why we subtract 1.
EntrySeR-index = FP_SEG(ne~tr->ne_csip) - 1

if (EntrySeR-index < 0) II -There must be an entry point
goto LoadingError

II Convert EntrySeg index to an offset in the segment table
EntrySeR-segtable~tr = EntrySeR-index « 3

II Add in the offset of the segment table itself
EntrySeR-segtable~tr += ne~tr->ne_segtab

II Get the file sector of the EntrySeg segment
EntrySeR-sector = EntrySeR-segtable~tr->ns_sector

II Point DX at the paragraph"address in memory of the
II EntrySeg segment. See above for the (CS-Ox20) term.
DX = (CS-Ox20) + EntrySeR-sector « (ne~tr->ne_align - 4)

/I Push the entry point address (from the 'NE' header) onto
II the stack. Note: the address put on the stack is an actual,
II real mode address. Then, set up the DS segment to point
II at the DGROUP segment (as loaded by DOS).

CHAPTER 1 - THE BIG BANG

PUSH OX
PUSH FP_OFF(ne-ptr->ne_csip)

OS = 01 II Point OS at the OGROUP segment (see above)
ex = ne-ptr + Ox200 II ex = offset of 'NE' header in file

II Put a signature word in AX, and RETF, thereby causing
II execution to transfer to the 'NE' file entry point. We're
II still running in real mode at this point.
mov AX, 4B4Fh I I 4B4Fh -> "OK"
RETF II "JMP" to KERNEL Entry point

LoadingError:

1NT 21h, fn. 9, to print out: "KERNSTUB: Error during boot"

1NT 21h, fn. 4e, AL =1. Terminate with exit code 1.

Notice that the program uses the DOS loader as a convenient mechanism for bringing the
entire KRNL386 file into memory. The DOS loader blindly reads NE fixups, padding, debug
information, in fact, everything into memory before transferring control to the stub at the
beginning of the code. The stub program has some smarts and knows where to find the NE
header amongst the raw image. The stub can therefore do some calculations, based on knowl
edge of the NE format, and find the location of the Windows portion's entry point, as speci
fied in the NE header. Besides the entry point, the stub also calculates where the KERNEL
data segment was loaded and sets DS to point at that paragraph. Finally, the stub transfers
control to the real NE header entry point, which will be known hereafter as BootStrap.

The KERNEL BootStrap() Routine
After receiving control from the KRNLx86 stub loader, the BootStrapO routine has a real
mode code segment in CS, a real mode data segment in DS, and a small stack. Keeping in
mind that Windows is still running in real mode, see Figure 1-1 for the layout of memory at
this time.

Figure 1-1: The Low Memory Layout, Real Mode.

OOOOh

KRNL386
PSP

(TopPDB)

??? DOS stub
program
ancfstack

'NEt
Header
and
tables

Last DOS MeB

AOOOh

KRNL386 code
and data
segments

WINDOWS INTERNALS

It's now time for KERNEL to go out into the real (or should we say, protected?) world
and make its fortune. The BootStrapO routine is quite large in scope, and calls a few interest
ing functions that we will want to examine. Thus, the BootStrapO pseudocode is broken up
into manageable chunks that we'll discuss individually. The first section of BootStrapO is as
follows:

pseudocode for BootStrap() - LOBOOT.OBJ

if (debug KERNEL)
if (real INT 68h vector != 0)
{

ES:SI = "Windows Kernel Entry\r\n"
INT 68h, AH = 47H II Tell the KERNEL debugger that

} II we're starting up

if (AX != Ox4B4F) /I Verify the signature word (from
{

AX = 0
RETF

}

MyCSSeg = CS
MyOSSeg = OS

/I WIN.COM) in AX, and abort if not
/I "OK". Ox4B4F = "OK"

II Store the real mode CS & OS values into
II MyCSSeg & MyOSSeg (KERNEL global variables)

SwitchToPmode() II Switch into protected mode via OPMI

First the BootStrapO routine informs the system level debugger, such as WDEB386
or Soft-ICE/W, that the KERNEL BootStrapO routine is running. This procedure only
occurs with the debugging versions of KERNEL and presumably allows the system
debugger to stop very early on in the KERNEL initialization. The interface for this pro
cedure uses INT 68h.

The real mode stub portion of KERNEL sets AX to a special value, the characters for
"0 K". KERNEL now checks the value in AX to see if it contains this value, a form of validity
testing that ensures the KERNEL stub code executed properly. For instance, this test prevents
problems when curious people run the Windows File Manager and double click on the
KRNL386 file to see what happens.

N ext, the BootStrap() routine saves the original real mode values of CS and DS into vari
ables in the KERNEL data segment. These values will be needed later. With this very minimal
setup out of the way, KERNEL switches the CPU into protected mode and improves its lot in
life by an order of magnitude:

CHAPTER 1 - THE BIG BANG

pseudocode for SwitchToPMode() - 3PROTECT.OBJ
II LocaLs
II LPFN LpProc() II A utiLity function pointer

INT 2Fh, AX = 1687 II DPMI get entry point address

if (AX != 0)
goto NoPMode

if (CL < 3)
goto NoPMode

if (CL == 3)

II CouLdn't get DPMI entry point

II Is it at least a 3861
II CL < 2 for KRNL286.EXE

II Set the WinFLags gLobaL
WinFLags = WF_CPU386 II to an appropriate vaLue

eLse II See GetWinFLags() API.
WinFLags = WF_CPU486 II What about Pentium aka P5 aka

LpProc = ES:DI II ES:DI is DPMI "switch to pmode"addr from

II The DPMI spec says that ES points to a reaL mode buffer
II for DPMI host's private data. ApparentLy the first portion
II of the program (after the PSP) wiLL be used as the buffer.
II SI contains the number of paragraphs need for the host
ES = (PSP at KERNEL entry + 10h)

5861

2F/1687

SI = (PSP at KERNEL entry + 10h) + SI II First segment after
II DPMI host buffer

AX = 0 II Windows is a 16 bit program. Bit 0 on for 32 bit program

LpProc() I I Ca L L the DPMI "swi tch to protected mode entry
II point. When we return, we're in protected
II mode (if everything went according to pLan!)

if (carry fLag set after calL)
goto NoPMode II StiLL in reaL mode. Time to complain

II From this point on, we're running in protected mode. The
II DPMI host has graciousLy provided us with seLectors that
II we can use while setting up shop in protected mode.

if (bottom 3 bits of CS '= 7) II Our seLector must be a ring
goto DPMI_is_screwy II 3 seLector in the LocaL

II Descriptor TabLe (LDT)
BX = CS II Create a writeabLe DS alias for the read-onLy CS segment
AX = OOOAh II and store away in MyCSALias
MyCSALias = DPMIProc() II A wrapper around an INT 31h caLL

WINDOWS INTERNALS

II Use the newLy created writeabLe CS aLias to store the DS vaLue (from
II DPM1) into a variabLe in the protected mode code segment.

BX = DS
DS = MyCSALias
MyCSDS = BX
DS = BX

II Save vaLue of DS into BX
II Load DS with CS aLias
II PLug MyCSDS variabLe with the originaL DS vaLue
II Put the originaL DS vaLue back

1NT 2Fh, fn. 168A, DS:S1 = "MS-DOS" II Get DPM1 vendor extensions
if (AL = 8Ah) II Did the caLL faiL?

go to DPM1_is_screwy

LpProc = ES:D1

AX = Ox100
LpProc()

II Save the "Extensions" address. The oLd
II vaLue (the PMode entry point) is Lost

II Get LDT seLector into AX

II If the caLL succeeded, store away the LDT selector where
II we can get at it Later so that we can manipuLate the LDT.
II Note that GDTDsc is the seLector of the _LOCAL_
II descriptor tabLe. What a confusing name!!!
II VERW verifies that seLector is writeabLe
if (Carry fLag not set, and VERW AX returns Zero fLag)

GDTDsc = AX

II Convert the start of the usabLe DOS memory region to a
II Linear address for a subsequent DPM1 caLL. A typicaL
II paragraph address wouLd be 0948h.
II Note use of 32-bit registers (EBX, ES1)

EBX = (First paragraph address after DPM1 host buffer) « 4

ES1 = ES:bLock_end « 4 II ES is the PSP bLock. Convert the
II bLock end vaLue from paragraphs to a
II byte offset. The bLock_end vaLue
II is usua L Ly AOOOh.

ES1 -= EBX II Subtract the starting address from the ending
II address, Leaving the bLock Length in ES1

II Mark the region above where Windows starts, to the
II end of DOS memory, as pageabLe (not Locked).
Convert ES1 to be in S1:Dl II Put the size in SI:Dl
Convert EBX to be in CX:DX II Put the start address in CX:DX

1NT 31h, 0602 II DPM1 mark region as pageabLe.

CHAPTER 1 - THE BIG BANG

II Get protected-mode selector to real mode (conventional) memory.
SI = First paragraph address after the DPMI host private data
INT 31h, AX = 2 II Allocate seLector to real mode seg

SI = AX II Put "real mode" seLector in SI for return

return to caLler

II Only error states come through here

II There's a static buffer that acts as a DPMI reaL mode caLL
II structure. Here we caLL it "ReaLModeCalLStruc"
ReaLModeCalLStruc._DS_ = MyCSSeg
ReaLModeCaLLStruc._ES_ = 0
ReaLModeCaLLStruc._CS_ = MyCSSeg
ReaLModeCaLLStruc._IP_ = do_error_ms~in_reaL_mode II BeLow
ES:DI = &ReaLModeCaLLStruc

INT 31h, 0301h II DPMI caLL real mode procedure

INT 21h, fn. 4CFFh II Terminate program

do_error_ms~in_reaL_mode: II This executes in reaL mode via 31/0301!

DX = KERNEL: "Inadequate DPMI Server\r\n"
INT 21h, fn. 9 II Print out above error message
retf II Return to protected mode caLLer

NoPMode: II This executes in reaL mode!

DX = KERNEL: "KERNEL: UnabLe to enter protected mode\r\n"
INT 21h, fn. 9 II Print out above error message

INT 21h, fn. 4CFFh II Terminate program

The SwitchToPMode() function does a bit more than its name implies. The code begins
by calling the requisite DPMI INT 2Fh, 1687h function to get the address that
SwitchToPMode() calls to switch into protected mode. A program can switch into protected
mode simply by making a FAR CALL to this address. Besides returning a function pointer,
the interrupt returns the CPU type as well. SwitchToPMode() checks the returned CPU type
to ensure that Windows is running on at least a 386 and stores the CPU type as the initial
value for the WinFlags global variable. As the bootstrapping process continues, it turns on
other bits in WinFlags.

WINDOWS INTERNALS

INT 2Fh, function 1687h also returns the value for the number of paragraphs the DPMI
host needs for a private data area. SwitchToPModeO uses the region starting immediately
after KRNL286's or KRNL386's real mode PSP as the data area. You might be thinking that
the region right after the PSP is program code and that using the space for the DPMI data
area overwrites the code. As it turns out, the KRNLx86 image loads at the very high end of its
MCB block through the little known trick of setting to zero both the min and max para
graphs required fields in KRNLx86's MZ header. Unless the DPMI private data area is truly
huge, the start of the KRNLx86 image is safe from being overwritten. Figure 1-1 shows the
situation graphically. This function call also calculates and remembers the next available para
graph after the private data area, using it later as the base address of the global heap.

Assuming everything checks out, the SwitchToPModeO function's next step is to make a
FAR CALL to the DPMI "switch to protected mode" entry point described above. Although
many interesting things go on when switching to protected mode, this section focuses on
KERNEL. So just take it on faith that, unless something went wrong inside the DPMI host,
the function call completes its task and KERNEL begins running in protected mode. If the
DPMI host is able to switch to protected mode, it also changes the CS and DS values, creat
ing protected mode descriptors and selectors. These descriptors map to the same memory
locations that CS and DS referenced before the switch to protected mode. In other words, the
DPMI host changes CS and DS right out from under the program.

One of the fun things that KERNEL does is store certain global variables in its code seg
ment. In order to write to these variables, KERNEL needs an alias selector for the code seg
ment (remember, Windows is in protected mode now). Very soon after switching into
protected mode, SwitchToPModeO creates an alias descriptor for KERNEL's first code seg
ment using DPMI function OOOAh (Create Alias Descriptor). SwitchToPModeO then uses
this alias descriptor to store the value of the DS selector into a code segment variable. Now,
no matter what happens, KERNEL can gain access to its data segment selector simply by
looking up the value in its code segment.

After a relatively wholesome stretch of code that got us into protected mode, the monkey
business begins. The DPMI specification allows for vendor-specific extensions to the DPMI
servers. In this case, the Microsoft DPMI hosts, DOSX and WIN386, have an extension that
allows them to obtain the selector of the protected mode local descriptor table (LDT), a hor
rifying development from a purist'S point of view. The whole point of DPMI was so that
DPMI servers would provide a well-rounded API, which would prevent the need for DOS
extenders to muck about with extremely sensitive system resources such as the LDT. The
DPMI interface purposefully does not give you direct access to the LDT. Here, we have KER
NEL willfully violating this rule. Chapter 2 explains in more detail the reasons why the devel
opers at Microsoft did this. In short, the reason was performance. The selector of the LDT is
saved into a wonderfully confusing variable called GDTDSC, perhaps named this because the
selector of the LDT must be a selector in the Global Descriptor Table (GDT).

Before returning to BootStrapO, assuming things are still going well, SwitchToPModeO
calculates the base address and length of the region that starts at the end of the DPMI host
area and extends to the end of contiguous DOS memory (for example, AOOOh).
SwitchToPModeO sends this address to the DPMI server as part of a command to mark the
region as page able. Paging is a joint project between the WIN386 memory manager and the

CHAPTER 1 - THE BIG BANG

80386 hardware that allows Windows to create virtual memory. Chapter 2 discusses this sub
ject in more detail.

At the end of SwitchToPModeO, an interesting section of code deals with the case in
which SwitchToPModeO discovers something wrong only after switching the CPU into ero
tected mode. In this situation, the KERNEL hasn't yet had a chance to initialize all of its
DOS extender components. Thus, to print out an error message, it switches back into real
mode. INT 31h, function 0301h (DPMI Call Real Mode Procedure with FAR Return Frame)
performs this chore. After displaying the error message in real mode, SwitchToPModeO
doesn't just terminate the program on the spot. Instead, SwitchToPModeO returns to pro
tected mode and calls INT 21h, function 4C (DOS Exit), in protected mode. This is the only
way to prevent the DPMI host from getting completely confused.

Continuation of code for Boot5trap() - LOBOOT.OBJ

BaseOsc = 51 II 51 contains a selector that references the
II region between where KRNL386 was loaded,
II and AOOOh

II Initialize the LOT free list, and get some
II selectors that KERNEL will use for various
II purposes .later on.

After SwitchToPModeO executes, the SI register in the KERNEL data segment contains
a selector that references the large free memory block between the positions of WIN.COM
and paragraph AOOOh. KERNEL will use this selector later to initialize the global heap. After
the switch into protected mode, memory below 1Mb looks like Figure 1-2. '

Figure 1-2: The Low Memory Layout, Proteded Mode.

OOOOh

KRNL386 DPMI
PSP host

(TopPDB) private
data
area

i
BaseDsc

(Start of Global heap)

i

'NE'
Header
and
tables

AOOOh

KRNL386 code
and data
segments

SegLoadBlock,
HLoadBlock

WINDOWS INTERNALS

In theLDT_InitO routine KERNEL uses the "illicitly" obtained LDT selector to set up
its own private domain in the Local Descriptor Table:

pseudocode for LOT_Init() - 3PROTECT.OBJ

if (GOTOsc == a) I I If we didn't get the LOT
goto allocate_kerneL_seLectors II seLector, we can't pLay

II with the LOT!

INT 31h, AX=O, CX = 1 II ALLocate 1 seLector from OPMI

ANO AL, NOT 8 II CLear out LOT and priviLege LeveL bits,
II since we're going to use it as a near ptr
II into the LOT. Each LOT entry is 8 bytes.

FirstFree5eL = AX II InitiaLize the head ptr of the free
II seLector List maintained by KERNEL

51 = AX II Copy ptr into 51 for accessing the LOT

Turn on bits 16-19 in the Limit fieLd of the descriptor
referenced by FirstFree5eL. This indicates that the seLector
is in use, and shouLd not be aLLocated again.

Use L5L to get the Limit of the LOT segment into CX

while (51 < CX)
{

II WhiLe not at the end of the LOT segment

}

51 += 8 II Advance to the next descriptor

if (the 8 bytes pointed to by 51 are aLL a's)
{

}

II The descriptor is free. Take it for ourseLves

Turn on bits 16-19 of the Limit fieLd of the
descriptor pointed to by E5:5I, indicating that it's
free for use by KERNEL, but not by WIN386

CountFree5eL++ II Another seLector for ourseLves!

Update the "next" fieLd (AKA the "Limit" fieLd) of
the previous free seLector to point to the seLector
we just grabbed for ourseLves.

CHAPTER 1 - THE BIG BANG

allocate_kernel_selectors:

CX = 1

OR S1, 7
KR1Dsc = S1

GeCSelO
OR S1, 7
KR2Dsc = S1

Get_Sel()
OR S1, 7
BlotDsc = S1

II Get_Sel() takes the count parameter in CX

II returns selector value (no Table or
II privilege level bits) in S1
II Turn on the LDT bit and ring level 3 bits
II used as a "utility" descriptor in
II MakeProc1nstance() I FreeProc1nstance()

II Do the same thing for KR2Dsc
II Turn on the LDT bit and ring level 3 bits
II Seems to be a "utility" descriptor in
II Get_Rover_2xx() heap routines

. II Do the same thing for BlotDsc
II Turn on the LDT bit and ring level 3 bits
II used to zero out allocated memory bLocks

Get_Sel() II Do the same thing for DemandLoadSel
OR S1, 7 II Turn on the LDT bit and ring level 3 bits
DemandLoadSeL=S1 II Demand Loading of not present segments

LDT_InitO initializes the local descriptor table by checking every descriptor, looking for
entries that are all zeros. This function adds each free descriptor it finds to a linked list of free
descriptors. Since each descriptor haS a bit which indicates if it's in use or .not, the fields of a
descriptor that would normally be used for things like the segment limits are available for use
by the operating system. In this case, the lower 16 bits of the limit field serve as a 16-bit offset
to the next free descriptor. As described in Chapter 2 on memory management, various rou
tines in KERNEL use the free list to grab a selector, rather than always allocating from the
slower DP.MI services.

After tweaking the LDT to its liking, LDT_InitO wastes no time in using the LDT.
LDT_InitO calls the GecSelO routine (see Chapter 2) several times to obtain permanent util
ity selectors that KERNEL uses for various things, such as code segments for demand loading.

The next portion of the BootStrap() process relates to KERNEL debugging support:

Continuation of code for BootStrap() - LDBOOT.OBJ

Debug1nit 0 II Look for a system level debugger

II Tell the KERNEL debugger about the CS and DS segment
DebugDefineSegment("KERNEL", 0, CS, 0, 0)
DebugDefineSegment("KERNEL", 3, DS, 0, 1)

The DebugInitO function (see the pseudocode on the following page) looks for the pres
ence of a system-level debugger, such as WDEB386 or Soft-ICE/W, and sets some internal

WINDOWS INTERNALS

~its accordingly. The two DebugDefineSegmentO calls tell the debugger about the presence
of the first KERNEL code segment and the KERNEL data segment by using the INT 41h
interface. This interface is virtually identical to the RegisterPtraceO and ToolhelpHookO noti
fications described in Chapter 5 of Undocumented Windows.

pseudocode for DebugInit() - LDDEBUG.OBJ

int 41h, AX = 4Fh
if (AX == OF386h) " AX set to OF386h if debugger present
{

}

Increment a static variable used in DebugSysReq()
Turn on bit Ox0008 of [Kernel_Flags + 2]

Continuation of code for BootStrap() - LDBOOT.OBJ

if (!InitDosVarP())
{

" If couldn't initialize, abort

KOutDSstr("KERNEL: InitDosVarP failed");
AX = Ox4CFF "Terminate with exit code OxFF
INT 21h

}

BootStrap() now turns its attention toward the task of poking around in DOS to obtain
and save critical values. At the same time, BootStrapO saves the original vectors for the inter
rupts that KERNEL manages on a per-task basis. The following pseudocode is ample evidence
that Windows really does. rest on top of DOS. The code also demonstrates that the Microsoft
programmers use many of the same tricks that the rest of the programming world has to find
out about in books like Undocumented DOS:

pseudocode for InitDosVarP() - DOSINIT.OBJ

" On entry, ES contains a selector for the PSP of KRNL386.EXE
" TopPDB and HeadPDB are heavily used KERNEL variables.
" In Windows, a PDB is the same thing as a PSP. Chapter 3
" covers this in detail.

TopPDB = HeadPDB = ES

ES:[OQ42] = 0 "Offset 42h in the PSP is not documented

Cur_DOS_PDB = Win_PDB = ES "Save PSP in a few more places.

CurDTA = ES:80h " Save the current Disk Transfer Area

CHAPTER 1 - THE BIG BANG

INT 21h, AX = 3300h II Get Ctrl-C state into DL
FBreak = DL II ... and remember it for later

II Set Ctrl-C & Ctrl-Bk handling to only check console funcs.
INT 21h, AX = 3301, DL = 0

INT 21h, AH = 34h
InDOS = ES:BX

INT 21h, AH = 19h
CurDOSDrive = AL

DL = AL
INT 21h, AH = OEh
DOSDrives = AL

II Get InDOS pointer into ES:BX

II Get current drive into AL

II Log into the current drive
II Gets number of drives (LASTDRIVE) in AL

INT 21h, AX = 3521h
PrevInt21Proc =, ES:BX

II Get INT 21h vector into ES:BX
II Windows calls through this often,
II rather than using INT 21h.

II Use our new method of ca II i ng DOS (Prevlnt21 Proc ()) to
II save off the original values of some other INT handlers
II that will be changed. Each of these interrupts, with the
II exception of 2Fh, is managed on a per-task basis. Each
II Windows task can set these vectors, with the resulting
II handler address being stored in.its Task Database.
II Interrupts not in this list (as well as INT 2Fh), are
II handled by the standard, system'wide interrupt handlers.
PrevInt02Proc = Prevlnt21Proc(AX = 3502h), II NMI
PrevInt04Proc = PrevInt21Proc(AX = 3504h), II INTO
PrevInt06Proc = PrevInt21Proc(AX = 3506h), II Invalid Opcode
PrevInt07Proc = PrevInt21Proc(AX = 3507h), II No 80x87
PrevInt3EProc = PrevInt21Proc(AX = 353Eh), II 80x87 emulator
PrevInt75Proc = PrevInt21Proc(AX = 3575h},. II 80x87 error
PrevInt2FProc = PrevInt21Proc(AX = 352Fh), II MultipLex

INT 21h, AH = ODCh
FNovell = AL

II Novell Get Station # in AL. Nonzero
II if running under Novell. This flag
II affects how file opens are performed.

INT 21h, AH = 30h JI Get DOS version # in AL:AH. There are
II more accurate ways to get the version
II number, such as INT 21h, fn. 3306h

II This next section is related to finding the size of an
II entry il'l the System FHe Table (SFT). Since this value

WINDOWS INTERNALS

II changes from version to version of DOS, the foLLowing
II code is fairLy convoLuted, and goes to some Lengths
II to deaL with the case of Windows running atop OS/2.
II We want to know t~e size of an SFT entry so that we can
II grow the system fiLe tabLe. TypicaLLy, a user running DOS
II onLy needs to have 30-40 fiLe handLes avaiLabLe. When you
II start muLtitasking appLications Like Windows does, the need
II for avaiLabLe fiLe handLes can increase dramaticaLLy.

II The first step is to make sure we're running on at Least
II DOS 3.1.
if (AL > 10) I I OS/2 1.X returns 10

goto store_DOS_version II OS/2 2.0 returns 20
II NT returns 30

if (AL > 4) II DOS version> 4.0?
go to store_DOS_version

if ((AL < 3) I I (AH = 10)) II Windows requires at Least 3.1
go to incorrect_DOS_version II Abort now if this isn't so

store_DOS_version: II We get here if the DOS version is O.K.

DOS_Version = AL, DOS_Revision = AH II GLobaL variabLes

BX = 0 II DefauLt file entry size is 0 ("Don't know")

if (DOS_Version >= 10) II Can't do anything for OS/2
goto Store_FiLeEntrySize

if (DOS_Version -- 3)
{

}

BX = 56
if (AH == 0)

II FiLe entry size is 56 bytes
I I DOS 3.0???

goto Store_FiLeEntrySize

BX = 53 II FiLe entry size is 53 bytes
if (AH <= 31) II DOS 3.31 and beLow???

goto Store_FiLeEntrySize

II Get the fiLe entry size by poking around in DOS. DOS
II versions> 3.31 come through this code. GetFiLeSize()
II is a functibn that opens the CON fiLe
II severaL times, then searches through memory Looking for
II successive "CON" strings. The difference between
II successive "CON"s is the SFT entry size. Brrrr! !!!!

CHAPTER 1 - THE BIG BANG

BX = GetFileSize(AX) // Pass the DOS version.
if (BX == -1)

goto. incorrect_DOS_version

Store_FileEntrySize:

FileEntrySize = BX // Used to grow the number of system file
// table entries. Used by GrowSFTToMax().

AX = -1
return to caller

INT 21h, AH = 9, OX = // DOS writes to standard output.
"Incorrect MS-DOS version. MS-DOS 3.1 or greater required.\r\n"

AX = 0
return to caller

After InitDOSVarpO finishes, BootStrapO resumes execution and sets some more general
purpose global variables:

Continuation of code for BootStrapO - LDBOOT .OBJ

// We start out this section by setting some more flags in
// the WinFlags global variable (See GetWinFlags() API)

INT 11h
if (bit 1 set in AX
{

all Get Equipment List bits into AX
// This is not the most reliable way
// to check for an 80x87!

turn on WF_80x87 flag in WinFlags
}

INT 2Fh, AX = 1600 // Enhanced mode installation check

if (AL == 3)
{

}

else
{

}

turn on bit Ox0100 of Kernel_Flags
turn on WF_PMODE and WF_ENHANCED bits in WinFlags

turn on bi t Ox0020 of [Kernel.:...Flags+2J
turn on WF_PMODE and WF_STANDARD bits in WinFlags

WINDOWS INTERNALS

II Initialize WOAname[] with the name of the program that
II will be used to create and manage DOS applications. WOA=WinOldAp.
if (running under Standard mode)

strcpy(WOAname, "WINOLDAP.MOD"); II in 3.0, WINOA286.MOD
else

strcpy(WOAname, "WINOA386.MOD")

The next step is for BootStrapO to start getting its memory act together.

Continuation of code for BootStrap() - LDBOOT.OBJ

II Get a selector for the memory that starts at the current
II SS:SP. This selector is called the SegLoadBlock selector.
II At the SS:SP, it seems you will find the 'NE' header
II of KRNL386.EXE that was read in by the DOS loader. This
II happened when all of KRNL386.EXE was loaded into memory
II earlier. Later on, the SegLoadBlock selector will be used
II to reference the values in the KRNL386.EXE 'NE' header so
II that a "proper" Windows module table can be built for it.
DX:AX = Get_Physical_Address(SS) + SP
SegLoadBlock = Alloc_Data_Sel(DX:AX, OFFFFh)

A sequence of steps related to creating a new SS selector,
and switching stacks around. The "GMove" stack, which is
a small KERNEL stack, comes into play here.

II It's now time to initialize the global heap
AX = BaseDsc II Selector for region between the

II KRNL386 load point & AOOOh.
BX = SegLoadBlock II Block used to access 'NE' header
CX = TopPDB.end_of_block II Offset 2 in the PSP. TopPDB
DX = Ox200 II was set in InitDosVarPO

GlobalInit(DX, BX, AX, CX) II See Chapter 2

if (GlobalInit() returned with carry flag set or AX -- 0)
{

INT 21h, fn. 9, to print out:
"KERNEL: Unable to initialize heap\r\n"

INT 21h, fn. 4Ch, AL = FFh. IIExit with error code FFh
}

HLoadBlock = AX II AX returned from GlobalInit(). This is the
II handle associated with the SegLoadBlock
II selector, which points to the 'NE' header
II for KRNL386 in memory.

CHAPTER 1 - THE BIG BANG

The preceding portion of BootStrap() starts out by calculating where the NE header is in
memory. Remember, the DOS loader loaded it along with KRNLx86. BootStrapO then
assigns a selector to the region where the NE header starts. Later on, KERNEL officially loads
its segments using the standard NE loader mechanisms that load regular Windows EXEs and
DLLs. The selector pointing to the NE header is a sort of foundation that the BootStrapO
code builds everything else upon. After finding the NE header, the code switches stacks away
from the stack that was in use when KERNEL started up. The new stack is a small stack
within the KERNEL data segment.

Things are now sufficiently set up and stabilized that the GloballnitO function can initial
ize the global heap. Chapter 2 on memory management gives the pseudocode for
GlobalInitO. When GloballnitO returns, it has established the global heap, which encom
passes the conventional memory region between the KRNL386.EXE P$P and the end of the
contiguous DOS memory (typically, paragraph OAOOOh)., Memory allocated by
GlobalDOSAlloc() comes from this region. As KERNEL allocates more memory from the
global heap, the global heap code starts allocating additional memory from the DPMI server.
GloballnitO marks the region starting with the NE header as an in-use block, so that it
doesn't get overwritten while in use. The global heap handle for the block is saved into the
global variable HLoadBlock.

Continuation of code for BootStrapO - LDBOOT .OBJ
II Locals:
/I OFSTRUCT KernelOFStruct /IAn OFSTRUCT
II WORD Final,--CS, Fillal_DS II protected mode selectors

PExitProc = CS: ExitKernel /I Set up the KERNEL exitfn. ptr

Scan though the envi ronment of TopPDB, looki ng for the. double
D's. The double D's indicate the end of the environment, and
the start of the complete path for the program (KRNLx86.EXE
in this case). If success, DS:SI point at KRNL386 path
at the end of the environment.

II Scans through the KRNL386 environment,
/I looking for the string "windir=". The
II environment variabLe was put there by
II either DOSX orWIN386.

if (Get_WinDir() returned DI !=O)
{

}

LpWindowsDir = ES:DI II Found it!!! Now remember it.
CBytesW.inDir = CX /I length of Windows dir string

copy LpWindowsDir to SZUserPro, thenCidd on "\WIN.IN!"

WINDOWS INTERNALS

II Try to open the KRNL386.EXE fiLe (ourseLves: argv[O]) with OpenFiLe()
if (OpenFiLe(path to KRNL386.EXE, &KerneLOFStruct,

{

}

OF_EXIST) == -1) II -1 indicates an error.

TextMode() II Switches back to text mode, either via
II caLLing PDisabLeProc (if it's != 0),
II or using INT 10h, fn. 0003 (set to
II video mode 3)

INT 21h, fn. 9, to print out:
"KERNEL: UnabLe to open KERNEL executabLe\r\n"

INT 21h, fn. 4Ch, AL = FFh. IIExit with error code FFh

II BuiLd a moduLe tabLe for the KERNEL moduLe. Every other
II moduLe that wiLL be subsequentLy Loaded wiLL have a moduLe
II tabLe created for it. So KERNEL shouLd have one as weLL. The
II LkExeHeader() moduLe Looks Like a very stripped down version
II of LoadExeHeader(), which is a heLper function for
/I LoadModuLeO (see Chapter 3>' LkExeHeaderO (Load KerneL EXE Header?)
II makes many assumptions about the KERNEL moduLe (to eLiminate
II code that's not necessary for Loading KERNEL?) For exampLe,
II instead of reading in KERNEL's information from the .EXE fiLe,
II it uses the memory image of KRNLx86.EXE that was read in
II by the DOS Loader before transferring to the KERNEL stub.
HExeHead = LkExeHeader(SegLoadBLock, &KerneLOFStruct)

if (HExeHead == 0) /I CouLdn't "Load" KERNEL
{

TextMode() II See above description

INT 21h, fn. 9, to print out:
"KERNEL: UnabLe to Load KERNEL EXE header\r\n"

INT 21h, fn. 4Ch, AL = FFh. IIExit with error code FFh
}

LPSystemDir = pathname of KRNL386.EXE stored in the OFSTRUCT
of the newLy created KERNEL moduLe tabLe.

II GetPureNameO returns a pointer to just the filename.ext
/I portion of a fuLL pathname. By subtracting the start of
II th~ path from the filename.ext part, you can obtain the
/I length of just the path portion. Store in CBytesSysDir.
CBytesSysDir = GetPureName() - LPSystemDir

CHAPTER 1 - THE BIG BANG

Add OxEOO bytes to the ns_minalloc field of the 4th segment
in KERNEL's module table. This is the DGROUP segment.

Loop through all of the KERNEL's segments, looking for the
largest discardable segment. If its size is greater than
the ne_swaparea field in KERNEL's module table, then put
the size into the ne_swaparea field.

II LkAllocSegs() allocates the segments for the KERNEL module,
II via GlobalAlloc(). It uses SetOwner() to associate each of
II the segments with thc KERNEL module. The first segment
II is allocated LOW (and hence fixed). The other 2 code
II segments are MOVEABLE, DISCAROABLE, and SHAREABLE. The
II OATA segment is FIXED (allocation flags == 0)
LkAllocSegs(ES) lIES = HExeHead = module table of KERNEL

DebugFreeSegment(CS, -1)
OebugFreeSegment(MyCSDS, -1)

II Tell KERNEL debugger that
II the original segs given to
II us by DPMI are being freed.

/I The 3rd argument to LoadSegmentO can either be a file
II handle from which to load the segment, or a selector whose
II data will be used to create the new segment. The 4th
II parameter indicates if it's a file handle or selector.
II Final_CS and Final_OS are the selectors that KERNEL
II ends up using after all the bootstrap ~ork is out of
II the way.
Final_CS = LoadSegment(HExeHead, 1, CS, -1)
if(!Final_CS) II If we couldn't create the segment,

ExitKernel(1) II get out now!
/

Final_OS = LoadSegmentCHExeHead, 4, OS, -1)
if(! Final_OS) /I If we couldn't create the s.egment,

ExitKernel(1) /I get out now!

OX:AX = Get_Physical_Address(AX) II Get physical address of
II segment just loaded

II Some more mucking about with the stack. Maybe where the
/I "final" SS:SP is established?

Add and subtract some values from DX:AX (above). Why???
Prev_GMove_SS = SS II Get the currentSS into a global var
SS = OS II Now switch away to another stack
SP = &GMove_Stack

WINDOWS INTERNALS

II The original SS selector will now be modified to have a
/I new base and limit. SetJhysical_AddressO uses the DX:AX
II calculated above as the new base address of the segment.
Set_Physical..,:.Address< Prev_GMove_SS) II New linear address
Set_Sel_Limit< Prev_GMove_SS) II New segment limit
SS = Prev_GMove_SS II Put the modified selector back

Prev_GMove_SS = 0
SP = SI II Ox200 + OxEOO

After GlobalInitO initializes the global heap, KERNEL can be reloaded into memory, just
as any other NE file would be. Why is it necessary to reload KERNEL if it's already in mem
ory and already running? Because once Windows is up and running, it must be able to treat
KERNEL just like any other EXE or DLL module. For instance, programs can use exported
functions from KERNEL, just like they can use exported functions from USER, GDI, or any
other DLL. It wouldn't do for the dynamic linking mechanism to work one way for KER
NEL and another way for all other DLLs. Therefore, KERNEL needs a module table just like
all the other DLLs (Chapter 8 describes dynamic linking and the module table in more
detail). The simplest way to make KERNEL look like any other DLL is to load it like any
other DLL. In the preceding pseudocode, the original copy of the KERNEL code, which was
loaded by the DOS loader, loads another copy of KERNEL. This time however, KRNLx86 is
loaded as a Windows NE file, rather than as a DOS MZ file.

The first step of reloading KRNLx86 is to find the complete path to the KRNLx86.EXE
file. Gee WinDirO scans the environment segment, looking for the windir= variable, which
the DPMI host placed there before EXEC'ing. KRNLx86. OpenFileO then opens the
KRNLx86 file and passes the resulting OFSTRUCT to LkExeHeaderO. LkExeHeaderO
seems to be a stripped down version of the LoadExeHeaderO function. The Windows loader
uses this function to transform an NE header on disk into an in-memory module table (see
Chapter 3). Using the new KERNEL module table, BootStrapO now allocates selectors for
the KERNEL segments with LkAllocSegsO.With the selectors firmly in place in the module
table, LoadSegment() reads in the first KERNEL segment (the same code that Windows is
currently executing in), as well as the KERNEL data segment. In the last portion of this sec
tion the stack switches to another location in the final KERNEL data segment.

Continuation of code for· BootStrapO - LDBOOT.OBJ
II Locals:
II WORD TDB_sel II Selector for a Task database

II Get physical address of KERNEL segment 4 <DGROUP) in memory.
II AX currently contains the "final" KERNEL DS selector
DX:AX = Get_Physical_Address< AX)
DX:AX += some value stored in a KERNEL static variable

II The selector allocated here is used to create some
II sort of a "dummy" task database.
TDB_sel = Alloc_Data_SelCDX:AX, 0, 100h)

CHAPTER 1 - THE BIG BANG

Zero out the memory referenced by the seLector just aLLocated.

BP = 0
SS:[PStackBot] = SP
SS:[PStackMin] = SP
SS:[PStackTop] = 10h
SS:[O] = BP
SS:[OOLdSP] = BP
SS:[HOLdSS] = BP

SP -= Ox16

TDB seL.TDB_taskSS = SS
TDB_seL.TDB_taskSP = SP
TDB_seL.TDB_PDB = TopPDB
TDB_seL.TDB_DTA = Ox80
TDB_seL.TDB_DTA = TopPDB
TDB_seL.TDB_nEvents = 1
TDB_seL.TDB-pModuLe = -1
TDB_seL. TDB_ExpWi.nVer =
TDB_seL.TDB_sig = 'TD'

II InitiaLize the variabLes at the
II base of aLL segments containing
II a LocaL heap

II BP is 0

WinVer

II Set up fieLds in the
II dummy Task Database
II that's being created.

The above section of BootStrapO creates what appears to be a dummy task database
(TDB), described in Chapter 3. A TDB is necessary, since many KERNEL routines assume
that there is always at least one task running in the system. A bit later, the shell program (usu
ally PROGMAN.EXE) will be loaded and a TDB created for it. Once the shell program is up
and running, the dummy TDB's mission is accomplished, and BootStrapO is free to delete it.

Continuation of code for BootStrap() - LDBOOT.OBJ

push CS on stack

push FinaL_CS
push OFFSET New_Code
RETF

II Start using DS from LoadSegment()

II Save originaL CS on stack

II Push far return address on stack,
II then RETF to it, th~reby Loading
II the FinaL_CS seLector into CS

POP AX /I Get the originaL CS vaLue into AX

Free_SeL(AX) II Free the originaL CS seLector
PrestoChangoSeLector(CS, MyCSALias) II Create an aLias seL

WINDOWS INTERNALS

AX = MyCSOS
MyCSOS = OS
Free_Sel(AX}

II Free the original OS->CS alias selector,
II and replace with the new OS

OebugOebug(} II TelL the system debugger what version of
II Windows we're using, as weLL as giving it
II a pointer to internal KERNEL variables.

II We've changed the CS selector we're running on. However,
/I the PExitProc function pointer we initiaLized earlier
II still contains the old CS value. We therefore need to
II update the segment portion of it to contain the new CS
II selector that we're using.
FP_SEG(PExitProc } = CS

II Store off the real mode segment addresses of our CS and OS
II selectors. SelToSeg(} uses Get_Physical_Address(} to get
II the linear address that the seLector references. It then
II divides by 16 to get a reaL mode paragraph vaLue.
MyOSSeg = SelToSeg(OS }
MyCSSeg = SelToSeg(CS }

MaxCodeSwapArea = OxFFFFFFFF II Maximum swap area size?
AX = GlobalAlloc(GMEM_SHAREIGMEM_MOVEABLE, O} II ALLocate
if (AX != 0) II OISCAROABLE
{ II block

BX = AX
AX = HExeHead

II Uses AX and BX
II Sets "owner" of bLock BX

WinIniInfo = OS:SZUserPro
}

AX = G loba LA lloC< GMEM_SHARE I GMEM_MOVEABLE, O} /I A L locate
if (AX != 0) II OISCAROABLE
{ II block

BX = AX
AX = HExeHead

II See above
}

Some non-understood code. It appears to have something to
do with "shrinking" the memory usage of KERNEL in memory.

AX = MyLock(HLoadBLock } II Get selector from handle

II Load a segment from the KERNEL module, using the KERNEL

CHAPTER 1 - THE'BIG BANG

II Loader. SI aLways appears to contain 2 here. A seg number?
if (!LoadSegment(HExeHead, SI, AX, -1))

ExitKerneL(1) II Abort out of Windows

This phase of the KERNEL bootstrap process starts by switching to the final CS and DS
selectors obtained when LoadSegmentO officially brought the KERNEL segments into mem
ory. Mter switching to the new selectors, the code frees the old selectors that were assigned
when the code switched into protected mode. BootStrapO then calls DebugDebugO to give
system level de buggers critical information needed to probe the system effectively. Pseudo
code for DebugDebugO follows. Pressing on for a moment, BootStrapO allocates two DIS
CARDABLE segments from the global heap. One of them appears to be related to the
WIN.INI file. It is not known conclusively what Windows uses the other segment for,
although it may be for private profile data. BootStrap() finishes this section by calling
LoadSegmentO to load the second CODE segment from the KRNLx86 file.

pseudocode for DebugDebug() - LDDEBUG.OBJ

II The Ox0010 bit indicates if the RegisterPtrace/TooLheLpHook
II notifications shouLd be sent out, rather than swaLLowed.
if (Ox0010 or Ox0008 bits are set in [KerneL_FLags + 2])
{

BX = WinVer
DX:CX = &THHOOK II DX:CX is a far pointer to THHOOK

INT 41h, AX = OxSA II System Debugger interrupt
}

THHOOK is the starting address of a block of KERNEL variables that are critical for a
system debugger to know. Presumably, the variables are fixed in their ordering, otherwise the
KERNEL debugger would become thoroughly confused. THHOOK gets its name from the
ToolHelp DLL, which gets the address ofTHHOOK and uses it to access the variables in the
following list.

Chapters 2 and 3 cover these variables in more detail.

HGLobaLHeap II HandLe of the Burgermaster segment
PGLobaLHeap II SeLector of the Burgermaster segment
HExeHead II Head of the List of moduLes (i.e., KERNEL)
HExeSweep II Appears to be unused. For LRU sweeping???
TopPDB II The PSP of KRNLx86.EXE
HeadPDB II First PDB in Linked List of PDBs
TopSizePDB II Size of KRNLx86.EXE's PDB
HeadTDB II First Task Database in the List (highest priority)
CurTDB II CurrentLy running task

WINDOWS· INTERNALS

LoadTDB
LockTDB

II Nonzero if a task
II Contains TDB if a

II Length of the
II Offset of the

SelTableLen
SelTableStart

is loading. Contains its TDB.
task has "locked" itself.
selector table in Burgermaster.
selector table in Burgermaster.

Continuation of code for BootStrap() - LDBOOT.OBJ

GEnterO II "Lock" the global heap. See Chapter 2.

CurTDB = DS
HeadTDB = DS

/1 Set the "current" task
II The head of the task (TDB) list.

DI = Ox32 II start of interrupt table in the TDB

INT 21h, fn. 3500h
*(DWORD *)DS:DI = ES:BX
DI += 4

INT 21h, fn. 3502h
*(DWORD *)DS:DI = ES:BX
DI += 4

/1 Get INT OOh vector (Divide by Zero)
II Save in TDB int vector table
II Move DI to next slot

// Get INT 02h vector (NMI)
II Save in TDB int vector table
II Move DI to next slot

II Continue this same sequence with:
II INT 4h (INTO)
II INT 6h (Invalid Opcode)
II INt 7h (80x87 Not Available)
II INT 3Eh (SOx87 Emulator)
II INT 75h (SOx87 Error)

SaveState(DS) II Save the current Drive/Directory and 80xS7
II state in the "fake" TDB that we're making.
II See Chapter 6 (scheduler) for details.

GLeaveO II Unlock the global heap.

SetHandleCount(Ox20) II Bump the MS-DOS handles up to Ox20

LPInt21 = CS:Int21Handler II LPInt21 is a global fn. ptr

II We now start a strange sequence that culminates by
II intentionally generating an invalid opcode, and handling
II the exception ourselves.
INT 31h, fn 0202h, BL = 6 // DPMI call. Return exception

II 6 handler in CX:DX

CHAPTER 1 - THE BIG BANG

PUSH CX, DX II Save originaL handLer address on stack

CX:DX = CS:ExceptionLabeL II Point the Exception 6 handLer
INT 31h, fn. D2D3h, BL = 6 II At 'ExceptionLabeL' (beLow)

POP DX, CX II Restore originaL handLer address to CX:DX

DB DFh, FFh II Cause an exception 6 (invaLid opcode)

ExceptionLabeL: II Exception 6 is handLed here

INT 31h, fn. D2D3h, BL = 6 II First, restore the originaL
II exception 6 handLer (stiLL
II in CX:DX)

Patch the return CS:IP on the DPMI exception frame with the
address of ExceptionLabeL_2

SS:[PStackBotJ = BP + Dx1D
SS:[PSt~ckMinJ = SP
SS:[PStackTopJ = DxDDA4

RETF II Returns controL to ExceptionLabeL_2 (beLow)

ExceptionLabeL_2:

II Save and hook Exception DBh (Segment not present)
INT 31h, fn. D2D2h, BL = DBH
Save oLd handLer (CX:DX) into PrevInt3FProc II Note: 3Fh, not DBh!
CX:DX = CS:SegmentNotPresentFauLt
INT 31h, fn. D2D3h, BL = DBH

II Save and hook Exception DDh (GeneraL Protection)
INT 31h, fn. D2D2h, BL = DDH
Save oLd handLer (CX:DX) into PrevIntDDProc
CX:DX = CS:GPFauLt
INT 31h, fn. D2D3h, BL = DDH

Ditto for INT D6h (InvaL i d_Op_Code_Excepti on)
Ditto for INT Dch (Stack FauLt)
Ditto for INT OEh (Page_FauLt)

This section of BootStrapO continues the initialization of the dummy task database
started earlier. First, INT 21h, function 35xxh, obtains the interrupt handler addresses for the
interrupts/exceptions that are handled on a per-task basis. The code stores each of these han
dler addresses in the appropriate slot in the dummy task database. SaveStateO then fills in the

WINDOWS INTERNALS

current drive and directory fields, as well as the 80x87 state. Chapter 6, which discusses the
scheduler, gives pseudocode for SaveStateO.

The next sequence of code is somewhat strange because it sets the DPMI invalid opcode
exception handler to a label just past the executing code. BootStrapO then intentionally
causes an exception 6, which causes execution to begin at the label while running on a DPMI
exception handler stack. The exception 6 handler resets the exception 6 vector back to its
original address and then mucks with the return address on the DPMI exception stack frame.
The exception handler then RETFs, causing execution to begin at yet another label, just past
the exception handler code. The reason for jumping through these hoops is not clear,
although it may have something to do with setting up stack limits for the DPMI stack used
during exceptions.

With these DPMI contortions behind us, the BootStrapO code now revectors several
exceptions KERNEL does not deal with on a per-task basis. For instance, BootStrap() sets
Exception OBh (segment not present) to the routine that demand loads segments which are
not present (discarded). For every exception that BootStrapO revectors, the exception's origi
nal handler address is saved in a KERNEL global variable. KERNEL will handle each of these
exceptions the same way, regardless of which task the exception occurred in.

Before we go on, let's digress for a few moments to talk about the Exception OBh han
dler. With protected mode comes the ability to demand load segments, particularly discarded
code segments, as necessary. When the CPU executes an instruction that would transfer con
trol to a segment that's not present in memory, the CPU generates an Exception OBh. The
Windows KERNEL handler handles this exception by loading the segment and restarting the
instruction. The Exception OBh handler has to determine which module the segment belongs
to by using the non-present CS value. (Chapter 3 discusses the structures that allow KERNEL
to map a CS value into a module handle and logical segment.) The exception handler then
calls routines to load the segment from the module's NE file and perform any needed fixups,
before restarting the instruction.

You might be wondering why the old Exception OBh handler is stored in a global variable
named PrevInt3FProc. What does INT 3Fh have to do with this? The answer involves a bit of
history. Before Windows could use protected mode (that is, before Windows 3.0), there was
still a need to demand load segments as needed. Real mode DOS just didn't have enough
memory to do what Windows asked of it. The solution was to use far-call thunks. In this
scheme, far calls didn't go directly to the intended destination segment. Instead, they went
through a thunk that just JMP'ed to the real destination. These far-call thunks are completely
unrelated to the instance thunks created by MakeProcInstance(). If the destination segment of
the thunk wasn't in memory, KERNEL replaced the JMP in the thunk with an INT 3Fh
instruction. The INT 3Fh handler did the same thing as the Exception OBh handler does
now. It loads the segment and patches the thunk back to a JMP instruction. You can think of
this scheme as a poor man's protected mode. The DOS overlay managers available from Bor
land and Microsoft work in a very similar way, even down to their usage of INT 3Fh.

The next section ofBootStrapO pseudocode puts runtime dynamic linking to the test:

CHAPTER 1 - TH E BIG BAN G

Continuation of code for BootStrap() - LDBOOT.OBJ

// Now "fix up" the "constant" values such as _WINFLAGS,
// _OOOOH, etc. This section of code relies on the
// undocumented fact that GetProcAddress() can return a far
// pointer (ES:BX) to the entry in the module's entry table.
/I This is only true for "constants" (those with segment
/I values of OFEh>' Using the far pointer to the entry,
/I BootStrapO "plugs"selector values into the "offset"
// portion of the entry point. GetProcAddress() returns these values
II when an application calls GetProcAddress() for
/1 one of the constant entry points.

GetProcAddress(HExeHead, 0, 178) /I KERNEL.178 = _WINFLAGS
*(ES:BX) = WinFlags

GetProcAddress(HExeHead, 0, 183) 1/ KERNEL.183 = _OOOOH
SI = BX II Put BX into SI, since BX is needed below
BX = OOOOh II Segment value -> OOOOh
AX = 2 // DPMI create selector for real ·mode segment
INT 31h
*(ES:SI) = AX 1/ Selector returned in AX

continue this process for these other "constant" exported
. symbols:

KERNEL.193 = _0040H
KERNEL.173 = _ROMBIOS
KERNEL.194 = _FOOOH
KERNEL.174 = _AOOOH
KERNEL.181 = _BOOOH
KERNEL.182 = _B800H
KERNEL.195 = _COOOH
KERNEL.179 = _DOOOH
KERNEL.190 = _EOOOH

This section of BootStrapO sets up the constant values, for example, the _AOOOH selec
tor. Chapter 2 on memory management covers constant selectors in a bit more detail. For
now, it will suffice to say that KERNEL needs to patch things so that when an application
calls GetProcAddressO for one of the predefined selectors, the returned. offset is actually a
selector or constant value.

Getting the selector values for the real mode segments (for example, the segment AOOOh
for _AOOOH) is the easy part. DPMI function 0002h returns a selector for a real mode seg
ment with a minimum of fuss. The sneaky part is that ES:BX in GetProcAddressO can, in this
situation, return a pointer to the offset portion of the address of the symbol in EERNEL's
entry table. Thus, it's a simple matter of using ES:BX as a far pointer and writing the selector
returned from DPMI to that location.

WI N DOWS INTERNALS

Continuation of code for BootStrap() - LDBOOT.OBJ

II Look for the string "WININI=" in the environment. If
II found, overwrite the defauLt string in SZUserPro with the
II portion after the '=' character. The defauLt string in
/I SZUserPro is "WIN.INI". By setting the WININI variabLe
II in the environment, you can seLect which WIN.INI fiLe
II you want to use.
SetUserPro()

II Free up the bLock of memory (SegLoadBLock/HLoadBLock) that
II was used to reference the KRNL386.EXE 'NE' header Loaded
II by the reaL mode DOS Loader. The return vaLue from the
II GLobaLFree() caLL shouLd be 0, so HLoadBLock shouLd end
/I up set to O.
HLoadBLock = GLobaLFree(HLoadBLock)

FS = GS = 0 II ActuaLLy set to AX, which is 0 from the
II caLL to the above GLobaLFree().

II If there's no Windows directory string yet, retrieve it
II from the path to the WIN.INI fiLe.
if (FP_SEG(LpWindowsDir) == 0)
{

}

OpenFiLe(SZUserPro, &some_OFSTRUCT, OF_PARSE)

FP_SEG(LpWindowsDir) = DS
FP_OFF(LpWindowsDir) = &some_OFSRUCT.szPathName

II GetPureName() returns a pointer to just the fiLename
II portion of a fuLL pathname. See the above usage for
II CBytesSysDir for more detaiLs on this.
CBytesWinDir = GetPureName() - &some_OFSRUCT.szPathName

/I Start scanning the command Line, Looking for ":" and
/I "/b". Remember, WIN.COM extracted its command Line, and
II removed the things it was interested in before passing it
II to KRNLx86.EXE
DS:SI = TopPDB:80h II First byte is command Line Length

Scan the command Line, Looking for a "/b" or "-b"
argument. If found, repLace the argument with" ", and
caLL Diaglnit(). Diaglnit() creates (if necessary) the
BOOTLOG.TXT fiLe, and sets the FDiagMode gLobaL variabLe
to 1 <TRUE) .

CHAPTER 1 - THE BIG BANG

I I GrowSFTToMax() appears to "grow" the system fi Le tabLe by
II adding a new cLuster of fiLe tabLe entries to the end
II of the List. WaLking the system fiLe tabLe, and mucking
II about with it is described in "Undocumented DOS." If
II the amount of memory returned by GetFreeSpace() is
II Less than 512K, then the system fiLe tabLe is grown to
II 100 entries. If more than 512K, then it's grown to 127
II entries. As described in "Undocumented DOS," the system
II fiLe tabLe is found via INT 21h, fn. 52h. The memory
II for the new handLe tabLe entries is aLLocated via
II GLobaLDOSALLoc(), thereby ensuring that it is beLow
111Mb, and accessibLe to reaL mode DOS.
GrowSFTToMax() II Grow the DOS system fiLe tabLe

DS:SI = TopPDB:80h II First byte is command Line Length

LODSB II Get the first byte, and increment SI
if (AL == 0) II Any command Line at aLL???

goto set-9raphics

CL = AL II CL now has command Line Length

II If "::" is specified on the command Line after WIN.COM,
II the variable Graphics gets set to O. This causes KERNEL
II to Load differentLy than normaL. It's not understood
II what the reas'on for this command Line argument is.
if (string pointed to by DS:SI != " ::")
{

AX = 0
go to set-9raphics

}

copy the remaining portion of the string (after "::") to a
static buffer. When done, AX != 0 (see beLow)

set-9raph i cs:

if (AX != 0)
Graphics = 0

goto SLowBoot

II Graphics starts out == 1. It wiLL be
II set to 0 onLy if appears on the
II command Line.

II Continue on with more startup code

This last portion of BootStrap() consists of miscellaneous other initializations before
BootStrap() jumps to the SlowBoot() routine. The first major highlight of this portion is the
processing of the command-line arguments to KRNLx86. As you recall, WIN.COM has

WINDOWS INTERNALS

already parsed the original command line and replaced any options that it handles with spaces.
Thus, KRNLx86 doesn't have to look for much. First off, there is the /B switch, which causes
a diagnostic file to be written. The routine that creates this diagnostic file is called DiagInitO,
(see the pseudocode below). In addition, KRNLx86 checks for two colons in a row (::). There
is no known information on this option, but it does seem to have a rather dramatic impact on
what happens later on in the bootstrapping process. The switch appears to be tied to the vari
able "Graphics".

The other major highlight is to call GrowSFTToMaxO, which adds additional System File
Table (SFT) entries to the linked list of SFT entry blocks. This function is similar to programs
like Quarterdeck's FILES. Before BootStrapO calls GrowSFTToMaxO, it gets the number of
SFT entries (the FILES= line in the CONFIG.SYS file). Undocumented DOS describes the
layout and use of the System File Table.

pseudocode for Diaglnit() - DIAG.OBJ
II LocaLs:
II WORD fiLeHandLe
II Statics:
II char LogFileName[] II Stores path to BOOTLOG.TXT

copy the LpWindowsDir string into LogFileName[], and
append a '\' to it.

Append "BOOTLOG.TXT" to LogFiLeName[]. The resulting string
in LogFiLeName[] is typically: "C:\WINDOWS\BOOTLOG.TXT"

if debug KERNEL
{

OutputDebugString
("Diagnostic mode startup. Log file is: ")

}

OutputDebugString(LogFiLeName
OutputDebugString("\r\n") II Append a Linefeed

II CalL the Windows INT 21h routine directly. The command
II is to open the fiLe (given in DS:DX) for readlwrite, and
II deny writing to others.
Int21Handler(AX = 3D22h, CX = 0, DS:DX = LogFileName)

if (carry flag not set)
{

fiLeHandle = AX

II Seek to the end of the file
Int21Handler(AX = 4202h, BX = fileHandLe, CX:DX = 0)

}

CHAPTER 1 THE BIG BANG

eLse II Carry fLag is set. We need to create the fiLe
{

Int21HandLer(AH = 3Ch, CX = 0, DX = LogFiLeName)

fiLeHandLe = AX
if (carry fLag set) II If we couLdn't create the fiLe

return II return, and don't set FDiagMode
}

FDiagMode = 1 II GLobaL variabLe indicating diagnostic mode

Int21HandLer(AH = 3Eh, BX = fiLeHandLe) II CLose fiLe

II DiagOutput() is the method by which diagnostic strings
II are written to BOOTLOG.TXT. The fiLe is aLways opened
II before writing the string, and cLosed afterwards,
II thereby guaranteeing that the fiLes wiLL be fLushed to
II disk. This saves any strings that wouLd
II be Lost if Windows crashed during the boot process.
DiagOutput< H[boot]\r\nH);

DiagInitO first determines where the BOOTLOG.TXT file will be written to (for exam
ple, into the C:\WINDOWS directory), then DiagInit() opens or creates the file in this loca
tion. Next, a series ofINT 2Ih calls opens BOOTLOG.TXT, seeks to the end of the file, and
then closes the file. The final step is to call DiagOutputO, which writes a header for the file
([BOOT]). To be as safe as possible, DiagInitO always opens, writes to, and then closes the
BOOTLOG.TXT file during each call to DiagOutputO. This is an attempt to prevent data
from being lost if it is still in the DOS buffers, rather than safely on disk, when the machine
crashes.

SlowBootO

After BootStrapO, the next part of booting KERNEL is the SlowBootO function. The
SlowBoot name is a relic from pre-Windows 3.0 days. In order to speed up the loading of
Windows, early versions combined the USER, KERNEL, and GDI modules into one big file.
However, there were good reasons, such as needing symbol table information, to have sepa
rate USER, KERNEL, and GDI files. The option of having separate Windows modules was
termed "slow boot." Since version 3.0, Windows always uses this slow boot option.

For the most part, the code in SlowBoot() operates at a slightly higher level than Boot
StrapO. It seems more focused on the goal of getting the rest of the Windows DLLs into
memory. However, it's not immediately obvious why BootStrapO and SlowBoot() are two
different procedures. If you look at BootStrap() and SlowBoot() as one uninterrupted blob of
code it's difficult to see why it was broken into two pieces. Keep in mind as we dive back into
more pseudocode that, in general, the code, like much of the Windows code, looks like it has

WINDOWS INTERNALS

been created piecemeal over the years. Code that is obviously new for Windows 3.1 appears
intermixed with code that must be much older. For the most part, there doesn't appear to be
any sort of natural order for these various steps.

pseudocode for SLowBoot() - LDBOOT.OBJ

II ShouLd Dr. Watson aLLow fauLting instructions to be skipped
II over? DefauLt vaLue for GPEnabLe is 1. OnLy in KRNL386
GPEnabLe = GetProfiLeInt<"KERNEL", "GPCONTINUE", GPEnabLe)

II Get fiLename to send debugging messages to instead of AUX.
II "buffer" is a static array of 80 characters in KERNEL.
GetPrivateProfiLeString("DEBUG", "OUTPUTTO",

buffer, Ox50, "SYSTEM.INI"

II If we got a fiLename, open it, then force AUX to be a
II dupLicate of it. This aLLows the KERNEL to write to AUX,
II whiLe DOS handLes the redirection.
if (return vaLue != 0)
{

}

if (return vaLue != Ox4E)
{

II ??

}

II Createltruncate new fiLe with the name in "buffer"
INT 21h, fn. 3Ch, DX = buffer

INT 21h, fn. 3Eh II CLose the fiLe

INT 21h, fn. 3Dh, AL = 42 II Open existing fiLe.
II ReadlWrite, DENYNONE

II Force AUX fiLe handLe to be a dupLicate of the
II opened fiLe. ALL writes to AUX wiLL now go to
II whatever fiLe was specified in OUTPUTTO=.
INT 21h, fn. 4h, CX = 3

INT 21h, fn. 3Eh II CLose the fiLe

WDefRip = 'i' II DefauLt RIP response -> i(gnore)?

II Get the number of open fiLe handLes that KERNEL shouLd keep
II cached. These are fiLe handLes for EXEs/DLL, and heLp
II speed up demand Loading of segments and resources.

CHAPTER 1 - THE BIG BANG

AX = GetPrivateProfiLeInt("BOOT", "CACHEDFILEHANDLES", axc,
"SYSTEM.INI")

if (AX < 2)
AX = 2

II Ensure that the vaLue is at Least 2

if (AX > axc
AX = axc

II Ensure that the vaLue is at most 12

FHCacheLen = AX
FHCacheEnd = AX « 2

II Store away the vaLue
II Each entry is 4 bytes???

II ShouLd boot time segments be Loaded when idLing inside
II the scheduLer? DefauLt is 1 (yes).

FPokeAtSegment = GetPrivateProfi LeInt("BOOT",
"LOADSEGMENTSATIDLE",1,"SYSTEM.INI")

SlowBootO begins by using the GetPrivateProfileXXXO functions to read various config
uration options from the SYSTEM.INI file. Of particular interest is the OUTPUTTO= setting
in the [DEBUG] section. The debugging version of Windows sends quite a bit of diagnostic
information to the AUX file. Traditionally, developers using the debug version of Windows
would need a terminal connected to the serial port to receive this information. Without this
connection, the debug KERNEL would complain early on in the startup and go no further.
Simply put, the debug KERNEL was useless without another terminal or a device driver that
redirected the AUX file to something such as a monochrome monitor. OX.SYS, by Michael
Geary, is the prototypical example of this. With the growing popularity of Windows, quite a
few developers wish to use the debug KERNEL, but don't have the additional hardware. A
minimalist solution to this problem sets the OUTPUTTO= section of the SYSTEM.INI file
to a valid DOS filename, even a file on disk, that can receive the diagnostic information. Per
haps to minimize its effect on existing Windows code, the author(s) of this section of
SlowBootO implemented the OUTPUTTO= feature in a rather clever way. Since the existing
code for KERNEL diagnostics assumes that AUX is the output device, the easiest way to redi
rect this stream is to cause the AUX device to be a duplicate file handle of whatever file the
OUTPUTTO= line specified. DOS does all the hard work of redirecting the data, and the
KERNEL code blissfully writes to AUX, unaware of what's really happening.

The preceding section of SlowBoot() pseudocode also sets the number of cached file han
dles. KERNEL keeps around a certain number of open file handles for the most recently used
NE files in order to speed up demand loading. Chapter 3 discusses the open file handles in
more detail. Another KERNEL global variable set at this point is FPokeAtSegments.
FPokeAtSegments determines if segments from the. boot time modules should be loaded into
memory during times when the system is idle (a performance enhancement). Chapter 6 on the
scheduler covers this topic in more detail. .

WINDOWS INTERNALS

Monochrome Monitors
and Windows Diagnostics

As a side note to the topic of the debug version and diagnostics, I consider having a
secondary monochrome monitor for your system to be an extremely worthwhile invest
ment. For less than $100 (usually), a secondary monochrome monitor setup makes life
much easier. Besides using it to display diagnostic messages, you can use it with debug
gers such as TDW, CVW, and Soft-ICE/W, thereby eliminating the annoying switches
between the text-mode debugger and graphics-mode Windows. For anyone who's had
to debug on a single monitor system for more than five minutes, it's money well spent.

The following section of SlowBoot() is where Windows really comes alive. The
LoadNewExeO routine takes the module name of a Windows DLL and loads it into memory.
This is how KERNEL brings the SYSTEM, USER and GDI modules, the hardware device
drivers, and fonts into memory. In the case of the hardware device drivers, the DLL file may
have a different name than the standard module name. For instance, most machines use the
SYSTEM.DRV DLL. However, Hewlett-Packard machines use HPSYSTEM.DRV instead.
LoadNewExeO talces care of these details, as shown in the pseudocode after this section of the
SlowBootO code. Also, loading the USER module involves quite a bit of interesting initializa
tion in its own right, which this chapter discusses in detail later on.

Continuation of code for SlowBoot() - LDBOOT.OBJ

II Set up an EXEC Block for loading the boot time DLLs.
II Win_Show is initialized to { 2, 1 }, where 1==SW_SHOWNORMAL
II See the LoadModule() documentation for details.
BootExecBlock.lpCmdShow = DS:Win_Show
BootExecBlock.lpCmdLine = TopPDB:80h II points at our cmd line

if (graphics == 1)
LpBootApp = "PROGMAN.EXE"

II Normally, graphics == 1
II PROGMAN can be overridden with
/I the "shell=" option in
II SYSTEM.INI (shown later).

II Load the SYSTEM module into memory, via LoadNewExe().
II LoadNewExe() loads the specified module into memory, after
II first looking it up in SYSTEM.INI to see if it has been
II renamed. See the pseudocode for details.
LoadNewExe("SYSTEM.DRV")

if (graphics == 1)
{

II graphics normally --

LoadNewExe("KEYBOARD.DRV")

}

CHAPTER 1 - THE BIG BANG

II ImmediateLy after Loading KEYBOARD.DRV, do the
II foLLowing fixups, before Loading the other moduLes:
II #5 = AnsiToOem() #6 = OemToAnsi()
PKeyProc = GetProcAddress(hInstKEYBOARD, "#5")
PKeyProc1 = GetProcAddress(hInstanceKEYBOARD, "#6")

II Continue Loading the rest of the boot moduLes
II via LoadNewExe(). Each one of these is reaLLy
II a DLL, and may contain an initiaLization routine.
II Later on, we'LL cover the USER initiaLization.

"MOUSE.DRV"
"DISPLAY.DRV"
"SOUND.DRV"
"COMM.DRV"
"FONTS.FON"
"OEMFONTS.FON"
"GDI.EXE"
"USER.EXE" II USER needs many of the previous DLLs,

II which might be why it Loads Last.

pseudocode for LoadNewExe() - LDBOOT.OBJ
II Parameters:
II NPSTR fiLename II Near *. Assumes current DS
II LocaLs:
II WORD LoadModuLeReturnCode

II Get the actuaL name of the DLL from the [boot] section of
II the SYSTEM.INI fiLe. The. resuLt ends up in a static buffer
II that we caLL "static_buffer" here.
II
II For instance, when LoadNewExe() is caLLed with the
II "SYSTEM.DRV" string, it caLLs GetPrivateProfiLeStringO
II with "SYSTEM.DRV" as the key. If the SYSTEM.INI has
II some other string (say, "SYSTEM.DRV=HPSYSTEM.DRV"), then
II stati c_buffer wiL L be fiL Led with e.g. "HPSYSTEM. DRV". If
II there is no string for the passed-in key, then
II static_buffer is fiLLed with the defauLt string (the
II string that was passed to LoadNewExe(»
II
II This is the mechanism that aLLows KERNEL to "hardcode" in
II driver DLL names, whiLe stiLL aLLowing the names to be
II overridden in the SYSTEM.INI fiLe. For exampLe, DISPLAY.DRV=VGA.DRV.

GetPrivateProfiLeString("BOOT", fiLenarne, fiLename,
&static_buffer, Ox50, "SYSTEM.INI"

WINDOWS INTERNALS

II Use LoadModuLe() to bring the driver DLL into memory
LoadModuLeReturnCode = LoadModuLe(static_buffer, 0)

II If the LoadModuLe() faiLed, print out different error
II messages for different error conditions. See the
II LoadModuLe() documentation for the List of error codes.
if (LoadModuLeReturnCode == 2)
{

_KRDebugTest< "KerneL: Can't find @DS:DI")
goto LoadModuLe_faiLed

}

if LoadModuLeReturnCode == 11)
{

_KRDebugTest("KerneL: InvaLid EXE fiLe @DS:DI")
goto LoadModuLe_faiLed

}

if (LoadModuLeReturnCode -- 15)
{

_KRDebugTest("KerneL: InvaLid protect mode EXE file @DS:DI")
goto LoadModuLe_faiLed

}

if LoadModuLeReturnCode -- 4)
{

_KRDebugTest(
"KerneL: Out of fiLes (set FILES=30 in CONFIG.SYS) @DS:DI")
go to LoadModuLe_faiLed

}

if (LoadModuLeReturnCode >= 32)
return to caLLer

II Success!

LoadModuLe_faiLed:

LoadFaiL(static_buffer)

ExitKerneL(1)

II CaLL TextMode(), and dispLay:
II "Error Loading <filename>"
II Abort out of Windows

If you've ever wondered about the entries in the [BOOT] section of SYSTEM.INI,
LoadNewExeO is where they're put to use. Instead of forcing a name on certain DLLs (for
example, MOUSE.DRV for mouse drivers), the boot section defines the boot time DLLs and
what their actual filenames are. Once LoadNewExeO knows the real name of the DLL file, it
uses LoadModuleO to bring the DLL into memory. If LoadModuleO fails for some reason,
the debug KERNEL examines the return code and print out a meaningful message before
aborting the bootstrap process. Chapter 3 discusses the inner workings of LoadModule() in
more detail.

CHAPTER 1 - THE BIG BANG

Continuation of code for SlowBoot() - LDBOOT.OBJ

Init FwdRef 0 II Initialize function pointers that KERNEL
II uses to call routines in other modules.
II KERNEL can't implicitly link to them, since
II KERNEL loads before the other modules.

InternalEnableDOS() II Hook exceptions for the DOS layer

Chec!LTempO

II and grow the System File Table (SFT)

II Examines the TEMP= environment string,
II and creates the TEMP file, which is used
II by the print spooler.

Despite its name, KERNEL is not really as self-sufficient as you might think. In the nor
mal course of events, the KERNEL module needs to call routines in USER, the DISPLAY
driver, the SYSTEM driver, and so on. For instance, when the global heap management code
in KERNEL is spending too much time compacting segments, it needs to send a message to
all the running programs, directing them to free up whatever memory they can. Since the
message posting routines are in the USER module, KERNEL needs to link to the USER
module. However, because KERNEL loads before any of the other DLLs, it would be
extremely difficult to fix up KERNEL's calls to the USER module at the time that KERNEL
loads. To circumvent this problem, KERNEL maintains a collection of global variables. These
variables are function pointers and are initial~zed by the InitFwdRefO routine, which in turn
relies on the KERNEL run-time dynamic linking function, GetProcAddress(). The Windows
SDK documentation fails to note it, but the string representation of an ordinal number, such
as "# 1", can be passed to GetProcAddress() just like DosGetProcAddr() in OS/2.

pseudocode for InitFwdRefO - DOSINIT.OBJ
II Locals:
II
II
II
/I

WORD hModSystem II Module handle for "SYSTEM"
WORD hModDisplay II Module handle for "DISPLAY"
WORD hModMouse /I Module handle for "MOUSE"
WORD hModKeyboard II Module handle for "KEYBOARD"

PrevInt21Proc(AX = 352Fh) II Get the INT 2Fh vector in ES:BX
MyInt2F = ES:BX II Store away in a global variable

PrevIntOOProc = PrevInt21Proc(AX = 3502h) II Div by zero
PrevInt24Proc = PrevInt21Proc(AX = 3502h II Critical error

II Get the address of SYSTEM.InquireSystem()
hModSystem = GetModuleHandle("SYSTEM")
PSysProc= GetProcAddress(hModSystem, "#1")

WINDOWS INTERNALS

II The foLLowing is a rather convoLuted way to caLL
II Get80x87SaveSize(), which returns the size of the coprocessor
II "save state" buffer. The code starts out by pushing
II a far address (inside this routine) on the stack.
II It then gets the address of Get80x87SaveSize(), and
II pushes it on the stack as weLL, before RETF'ing to it.
II When Get80x87SaveSize() returns, it wiLL RETF to the
II "After_80x87_check" LabeL. Is aLL this worth avoiding a
II function pointer LocaL variabLe for???
push CS II Push a far return address (the LabeL beLow)
push offset After_80x87_check
GetProcAddress(hModSystem, "#7")
push DX:AX II Address of Get80x87SaveSize()
retf II EssentiaLLy a JMP to Get80x87SaveSize()

After_80x87_check:
F8087 = AX II Set to return vaLue from Get80x87SaveSize()

II The next section of code invoLve numerous caLLs to
II GetModuLeHandLe() to get the moduLe handLes of the DLLs
II that were Loaded earLier. GetProcAddress() is used
II repeatedLy to get the address of routines that KERNEL
II needs, and store them in KERNEL gLobaL variabLes.
II The foLLowing moduLes are needed by KERNEL:
II SYSTEM, DISPLAY, MOUSE, GDI, USER, and KEYBOARD

II System.2 = CreateSystemTimer()
PTimerProc = GetProcAddress(hModSystem, "#2")

II System.5 = DisabLeSystemTimers()
PSystemTermProc = GetProcAddress(hModSystem, "#5"

if (graphics == 0)
goto graphics_O

II UsuaLLy, graphics == 1
II Skip many of these if not.

hModDispLay = GetModuLeHandLe("DISPLAY"

II DISPLAY.500 = UserRepaintDisabLe()
PDispLayCritSec = GetProcAddress(hModD;spLay, "#500")

hModMouse = GetModuLeHandLe("MOUSE")
PMouseTermProc = GetProcAddress(hModMouse, "#3") II DisabLeO

HGDI = GetModuLeHandLe("GDI")
HUser = GetModuLeHandLe("USER")

II HGDI is a gLobaL var
II HUser is a gLobaL var

CHAPTER 1 - THE BIG BANG

PMBoxProc = GetProcAddress(HUser, "#1") II USER.1=MessageBox()

II USER.320 = SysErrorBox()
PSErrProc = GetProcAddress(HUser, "#320")
II USER.7=ExitWindows()

PExitProc = GetProcAddress(HUser, "#7")

II USER.4 = DisableOEMLayer()
PDisableProc = GetProcAddress(HUser, "#4")

II USER.332 = UserYield()
PYieldProc = GetProcAddress(HUser, "#332")

II USER.400 = FinalUserlnit()
PUserlnitDone = GetProcAddress(HUser, "#400")

II USER.110 = Pos tMessage ()
PPostMessage = GetProcAddress(HUser, "#110")

II USER.314 = SignalProc()
PSignalProc = GetProcAddress(HUser, "#314")

II USER.333 = IsUser Id le ()
PIsUserldle = GetProcAddress(HUser, "#333")

II USER.284 = GetFreeSystemResources()
PGetFreeSystemResources = GetProcAddress(HUser, "#284")

II USER.470 = StringFunc()
PStringFunc = GetProcAddress(HUser, "#470")

II USER.23 = GetFocus()
PUserGetFocus() = GetProcAddress(HUser, "#23")

II USER.224 = GetWindowTask()
PUserGetWinTask = GetProcAddress(HUser, "#224")

II USER.47 = IsWindow()
PUserIsWindow = GetProcAddress(HUser, "#47")

hModKeyboard = GetModuleHandle("KEYBOARD");

II KEYBOARD.3 = Disable()
PKeyboardTermProc = GetProcAddress(hModKeyboard, "#3")

II KEYBOARD.136 = EnableKBSysReq()
PKeyboardSysReq = GetProcAddress(hModKeyboard, "#136")

WINDOWS INTERNALS

PKeyboardSysReq(4) II Enable CTRL-ALT-SYSREQ processing

II Another instance of the strange calling method
II described earlier. See Get80x87SaveSize(), above
push CS
push offset After_KEYBOARD_inquire
GetProcAddress(hModKeyboard, "#1") /I KEYBOARD InquireO
push DX:AX
retf

After_KEYBOARD_inquire:
Reads some WORDS starting at the "KeyInfo" label in the KERNEL
data segment. Depending on the values there, KERNEL may
increment the FFarEast flag, indicating a Japanese, Korean,
or Chinese version of Windows. (For more information on Far
East versions of Windows, see Microsoft's developer white paper,
"Microsoft Windows Far East Editions," available from Microsoft Far
East Developer Services in Redmond.) In all cases, control jumps
past the graphics_O: label, to the call_DebugSysReq: label.

II Never reached normally (Graphics must be 0)

PYieldProc = CS:OldYield II Set to OldYield() in KERNEL

call_DebugSysReq:

DebugSysReq() II If PKeybpardSysReq is nonzero, and if not
II running under a system debugger,
II DebugSysReq() calls PKeyboardSysReq(1),
II (meaning: Don't generate INT 2's (NMI»

The second important task in the preceding SlowBootO pseudocode is to call Internal
EnableDOSO. During this process, KERNEL hooks into the standard DOS layer so that
KERNEL can perform the tricky task of running multiple, protected mode applications on an
operating system that was intended to run real mode applications one at a time.

pseudocode for InternalEnableDOS() - ENABLE.OBJ

if (FInt21 != 0) II FInt21 starts out == O.
return /I Don't "enable" DOS if it already is!

FInt21 = 1 II KERNEL INT 21h hooks are now installed

if (FP_SEG(LpWinSFTLink) != 0
*PSFTLink = *(LpWinSFTLink)

II Something having to do
II with the SFT chain

CHAPTER 1 -THE BIG BANG

II Real_DOS() is a way to call INT 21h at a low level.
II It bypasses much of KERNEL's normal INT 21h handler code
II that "multiplexes" INT 21h calls from multiple protected
II mode applications. This is so that they can run atop one
// copy of real mode DOS.
Real_DOS(AX =Ox3301, DL = 0) II Disable Ctrl-C checking

Real_DOS(AH = Ox50, BX = TopPDB) II Set current PSP

// Empty out the keyboard buffer

Real_DOS(AH = 6, DL = OFFh) II Read a char from STDIN

if (zero flag not set)
goto key_loop

II Keep looping until there are no
II no more chars left. Empty the
/1 keyboard buffer so we don't
1/ get "typeahead" problems with
// the KEYBOARD driver.

BX = CurTDB.TOB_PDB // Set BX to the PDB of the current task
INT 21h, fn. 50h II Set PSP to BX

DS:DX = MyInt2F // Set INT 2Fh handler to old INT 2Fh
INT 21h, AX = 252Fh /1 handler obtained in InitFWDRef()

// Install default KERNEL handlers for the interrupts that
// can be overridden on a per-task basis. Each task starts
II out with a sma.ll "interrupt table" in its TDB. The
// default handler addresses are those set below.
PrevInt21Proc(AX = 2524h, DX = Int24Handler)
PrevInt21Proc(AX = 2500h, DX = IntOOHandler)
PrevInt21Proc(AX = 2502h, DX = Int02Handler)
PrevInt21Proc(AX = 2504h, DX = Int04Handler)
PrevInt21 Proc(AX = 2506h, DX = Int06Handler)
PrevInt21Proc(AX = 2507h, DX = Int07Handler)
PrevInt21Proc(AX = 253Eh, DX = Int3EHandler)
PrevInt21Proc(AX = 2575h, DX = Int75Handler)

PSysProc(2, 0) II PSyProc = InquireSystem: Disable "one-drive" logic

loop backwards though the 26 possible drive letters,
calling PSysProc(1, drive_number). This function
returns whether the drive physically exists. The results
are stored in an array called the "PHantArray". p.syProc is
actually InquireSystem (see the earlier dis.cussion of InitFwdref).
DS:DX = LPInt21 1/ LPInt21 was initialized to CS:lnt21Handler

II previously, in BootStrapO.

INT 21h, AX = 2521h // Set INT 21h vector to DS:DX

WINDOWS INTERNALS

Continuing along in the SlowBootO code, we finally come to the spot where Windows
loads its shell program. This program's name is normally PROGMAN.EXE, but to load a dif
ferent shell, modifY the SHELL= line in the SYSTEM.INI file.

Continuation of code for SlowBoot() - LDBOOT.OBJ

II Get the name of the Windows "shell". Normally PROGMAN.EXE
GetPrivateProfileString("BOOT", "SHELL", LpBootApp,

DS:some static buffer, Ox50, "SYSTEM.INI")

II Set up the command line for the shell program. If
II possible, use OemToAnsi() to convert the command line
I I to its "proper" form.
if (FP_SEG(PKeyProc1) != 0) II PKeyProc1 -> OemToAnsi()
{

Null terminate the command line string pointed at by
BootExecBlock.lpCmdLine

PKeyProc1(BootExecBlock.lpCmdLine) II call OemToAnsi()
}

II Now that we have a program name and a command line, it's
II time to load the first program (e.g., PROGMAN)
if (! graphi cs)
{

II Normally, this isn't executed

}

else
{

}

AX = LoadModule(LpBootApp, &BootExecBlock)
FBooting = 0

II This code usually is executed

II We no longer needs USER's file handle around in the
II filelmodule cache, so get rid of it (close it)
FlushCachedFileHandle(HUser) II USER's module handle

II Set in InitFwdRef()

II Load the first program (usually PROGMAN.EXE)
AX = LoadModule(LpBootApp, some buffer) IISee Chapter 3.

if (return value from LoadModule() > 32
{

II Loaded OK?

}

HShell = GetExePtr(AX)
go to BootDone

II Store the shell's hModule

CHAPTER 1 - TH E BIG BAN G

II If we get here, the SHELL couldn't be loaded.
if debug KERNEL

output a message: "Kernel: BOOT: unable to load @ES:BX",
where ES:BX are replaced by the LpBootApp string.

LoadFail(LpBootApp

ExitKernel(1)

II Call TextMode(), and display:
II "Error loading <filename>"
II Abort out of Windows

II The LoadNewExe() procedure sits here, in the middle of
II the bootstrap code. Why???

BootDone:

The preceding section of SlowBoot() gets the name of the SHELL application from the
SYSTEM.INI file and loads it. Although PROGMAN is the default shell program, there is
quite a growing market for replacement shells, such as the Norton Desktop. If for some rea
son, the shell program did not load, SlowBootO aborts the loading process and kicks Win
dows back to a DOS prompt.

Further Windows initialization occurs in this call to LoadModule() for what will become
the first task in the system. (See the discussion ofInitAppO in Chapter 3.)

SlowBootO now continues initializing various KERNEL variables, setting a few values
related to the debug KERNEL and debugging first. Next comes a small section of code relat
ing to the math coprocessor and Windows 8Ox87 emulator. Afterwards, SlowBootO sets up
the LRU sweeping, if needed. As described in Chapter 2 on memory management, LRU
sweeping uses a system timer to periodically scan all thediscardable segments in memory and
mark which ones were recently used. These marks enable the global heap management code
to be more intelligent when it comes time to discard memory.

Continuation of code for SlowBoot() - LDBOOT.OBJ

DebugOptions = GetProfileInt("WINDOWS", "DebugOptions",
DebugOptions) II DebugOptions defaults to 0

DebugFil ter = GetProfileInt("WINDOWS", "DebugFil tern,
DebugFiLter) 1/ DebugFilter defaults to 0

if (DBO_CHECKHEAP flag set in DebugOptions)
increment hi_check field in the GlobalInfo structure

if (DBO_DISABLEGPTRAPPING flag set in DebugOptions)
{

INT 31h, fn. D2D3h, 1/ Undo exception DDh handler
BL = DDh, CX:DX = PrevIntDDproc

WINDOWS INTERNALS

INT 31h, fn. 0203h, II Undo exception 06h handLer
BL = 06h, CX:DX = PrevIntx6proc

INT 31h, fn. 0203h, II Undo exception OEh handLer
BL = OEh, CX:DX = PrevIntOEproc

}

II Get the vaLue of FChkSum, which presumabLy has something
II to do with the reaL mode VaLidateCodeSegments(). It does
II not appear to be used anywhere in the 3.1 KERNEL.
FChkSum = GetProfiLeInt("KERNEL", "EnabLeSegmentChecksum", 1)

II See if the user wants to use the 80x87 emuLator, even if
II an 80x87 chip is present. UsefuL for testing; simiLar to the
II N087 = environment variabLe.
if (GetProfiLeInt<"KERNEL", "NoUse80x87", 0) != 0)
{

F8087 = 0;
Turn off WF_80x87 in WinFLags

}

II FastFP affects how 80x87 fixups are appLied when segments
II are Loaded. If nonzero, the FWAIT instruction preceding
II an 80x87 instruction wfLL be NOP'ed out, since it's not
II needed on 80287s and greater. This setting onLy has an
II effect if there is an 80x87 instaLLed in the system.
FastFP = GetProfiLeInt("KERNEL", "FastFP", 1)

II Get the LRU sweep frequency rate.
if debug KERNEL

AX = GetProfi LeInt("KERNEL", "LRUSweepFrequency", 500>
eLse

AX = 500 II 500 MiLLiseconds

II OnLy do LRU sweeping if not paging, and there's a
II nonzero sweep frequency. No paging in Standard mode,
II or if SYSTEM.INI Paging = off in Enhanced Mode.
if ((AX != 0) && (WF_PAGING bit not set in WinFLags)
{

}

II CaLL CreateSystemTimer() to set up a hardware timer
II that caLLs LRUSweep() at intervaLs specified by AX
PTimerProc(AX, LRUSweep)

II "EnabLeEMSDebug" is presumabLy dead code from the reaL
II mode KERNEL.EXE. EMS is irreLevant in protected mode

CHAPTER 1 - THE BIG BANG

if GetProfileInt("KERNEL", "EnableEMSDebug", 0) != 0)
turn on a bit in the Kernel_Flags

FCheckFree = 0 II FCheckFree Starts out with a value of 1.
II Used inside the check_free_list() routine
II in 3GALLOC.OBJ. If the value is 0, it
II appears that check_free_list() will walk
II the global heap free list, probably to
II verify its integrity.

II Get the name of the "386GRABBER" from the SYSTEM.INI file.
II The grabber is essential to running DOS apps in a window.
GetPrivateProfileString("BOOT", "386GRABBER", "386GRABBER",

Grab_Name, Ox80, "SYSTEM.INI")

The last section of SlowBoot() makes final preparations for jumping into the main sched
uler loop, to be described in Chapter 6. The initial dummy task, described previously, is no
longer necessary, so DeleteTaskO removes it from the list of tasks, leaving the shell program
as the only task. SlowBootO then switches the stack yet again, and shrinks the main KERNEL
code segment, as well as its data segment down to the final size. The last act of the KERNEL
bootstrap process is a somewhat funny jump into the scheduler loop. Once this happens, Win
dows never needs the bootstrap code again. Windows is now up and running, putting a
graphical, protected mode, multitasking operating environment at your disposal. Now you
can begin that game of Solitaire!

Continuation of code for SlowBoot() - LDBOOT.OBJ

DeleteTask(CurTDB) II Kill the fake task created earlier

CurTDB = 0

SP = Gmove_Stack
Free_Sel(SS)

II No more current task

II Switch the stack. Unclear as to
II why the SS selector is deleted.

GlobalRealloc(DS, Ox2610, 0) II Shrink the DGROUP

push CS
push 00
push OxCC80
push 00

II Put arguments to GlobalRealloc()
lion the stack, just as if we were to
II call it normally. We're going to
II be resizing the main KERNEL code segment.

II Make BootScheduleO the "return address" on the stack.
II Instead of coming back to this code, GlobalRealloc() will
II "return" into the scheduler. Thus begins the normal
II process of waiting for events and scheduling tasks.
push offset BootSchedule

jmp near GlobalRealloc /1 Jump to GlobalRealloc().

WINDOWS INTERNALS

USER Initialization

The preceding code for BootStrapO and SlowBootO highlights the protected mode, DOS
extending, multitasking aspect of Windows. What Windows is most known for, however, is
the graphical face that it puts on top of character mode DOS. The USER module is the cen
tral component of this aspect of Windows. For instance, the USER startup sequence sets up
the window manager, which keeps track of all windows, visible and invisible. Therefore, to
learn even more about Windows, examine now in more detail some of the highlights of USER
initialization. This sequence started with the call to LoadNewExe ("USER.EXE"), that
SlowBootO performed.

Like almost every other DLL, USER has an entry point that Windows calls when loading
the DLL. In normal programs, this function's name is LibMainO. However, the name
LibMain is nothing special. The USER version of LibMainO is USEREntryO, and the pseu
docode is presented below. Like any standard DLL, USER first initializes its local heap (see
Chapter 2 for the details ofLocalInitO). In the case of both USER and GDI, the local heap is
especially important because many of the Windows handles are just handles for the USER and
GDI local heaps. After USEREntryO initializes the USER local heap, USEREntryO uses
GlobalWireO, GlobalFixO, and GlobalPageLockO to move the second USER data segment
down as low as possible and pagelock it (again, see Chapter 2). This is necessary because the
code inside an interrupt handler may call USER functions, and it's important that none of this
segment's memory be paged out (not present) at a critical moment. Then the LoadWindowsO
routine does the real work of setting up USER. This routine is examined in the next section.
After the LoadWindowsO routine, USEREntry() GlobalUnlocks the DGROUP segment,
which is another standard step in DLL startup code. Finally, if running under Enhanced
mode, INT 2Fh, function 1684h, obtains the entry point for the VDD (virtual display driver)
enable/disable routine.

pseudocode for USEREntry() - 1NENTRY.OBJ
lIOn entry, ex = heap size, ES:S1 = command line offset,
II DS = library data segment, D1 = instance handle

if (heap size == 0)
return 0

II We must have a heap!

if (!Local1nit(0, heap size)) II Did Local1nit() succeed?
return 0

AX = USER's second data segment (not the DGROUP segment)

GlobalWire(AX) II Wire down and fix the segment, possibly
GlobalFix(AX) II because it's used at interrupt time?

II Pagelock the segment if running in Enhanced mode
if (WF_W1N386 bit set in WinFlags)

GlobalPageLock(AX) II AX still the non DGROUP data seg

CHAPTER 1 - THE BIG BANG

LoadWindows(01) II Do the real work of initializing USER.
II 01 is the USER hInstance

GlobalUnlock(OS) II Unlock the OGROUP segment

if (WF_WIN386 bit set in WinFlags)
{

GlobalPageLock(OS) II Pagelock the OGROUP as well

INT 2Fh, AX=1684h, BX = 17h II Get device API entry
LpWin386ShellCritSection = ES:OI II point for SHELL device

}

return 1 II Successful load

LoadWindows()

LoadWindows() is a top level routine that invokes more specific routines to perform the
desired initializations. Some additional initialization is done inline as well. Mter covering
LoadWindowsO as a whole, this section examines pseudocode for some of the more interest
ing subfunctions.

LoadWindowsO first checks for the presence of the Edsun chip set. Presumably,
Microsoft felt the Edsun chip set important enough to implement special code for it, although
this special code appears to occur in only one spot. After LoadWindows() checks for the chip,
LW _LoadSomeStringsO initializes various global string variables needed by USER. In the
pseudocode for this function, and in numerous other spots, notice the heavy use of LoadStr
ingO. LoadStringO obtains a string from a stringtable resource in the DLL file. Why go
through this hassle? The most compelling answer is to make internationalization easier. Put
ting strings that require internationalization into resources makes creating a foreign language
version of USER almost trivial. This trick makes it unnecessary to recompile the source code.
Just run a different .RC file, customized for the desired language, through the resource com
piler and bind it to the USER DLL.

LoadWindows() next obtains the default number of entries in the system and message
queues. Chapter 7 on the messaging system discusses both types of queues. The default for
the shared system queue is 120 entries, while each application gets its own queue of eight
entries. As described in Chapter 7, changing entries in the WIN.INI file allows you to over
ride these values at boot time. Once LoadWindowsO establishes the queue sizes, it creates an
application message queue, thus allowing the creation of windows (each window is associated
with a queue).

LoadWindowsO uses a helper function, UT_GetIntFromProfileO, to obtain the afore
mentioned queue sizes, as well as many other values. UT_GetIntFromProfileO accepts a
stringtable ID as a parameter and extracts the string from USER with LoadStringO.

WINDOWS INTERNALS

UT_GetIntFromProfileO uses this string as a key value in a call to GetProfileIntO. The sec
ond parameter to UT_GetIntFromProfileO is the default value, if there is no corresponding
entry in the .INI file.

Following the queue initialization section, LoadWindows() determines the minimum bor
der width of a window. Then a long sequence of calls to t'\mctions constructs individual pieces
of the USER machinery. For instance, LW_DriveisInitO sets up the system message queue
(Chapter 7) and then calls the inquire routines of the various drivers, like KEYBOARD or
MOUSE. Later chapters examine some of these routines. For now, it's sufficient to say that
these routines register the system windows classes, and enable the various input/output
devices, like the mouse and keyboard. After these routines run, LoadWindows() creates the
global atom table and adds two atoms to it. The EnumPropsO API uses these atoms.

A major problem in 3.0, and to some extent in 3.1, is that Windows runs out of the badly
named Free System Resources. A better name (at least for programmers) would be "Space
Left in the USER and GDI Heaps." Since the 16-bit segments that Windows runs in limit
these heaps to at most 64K in size, the amount of free memory in the heaps often shrinks
down to where no more applications can run. To alleviate this problem, Windows 3.1
distributes the items that would normally go into the single USER heap across three
separate heaps. The first heap is the USER DGROUP. LoadWindowsO uses Global
AllocO to allocate memory for two more heaps and then uses the LocalInitO function
to create heaps in both segments.

After LoadWindows() sets up the additional USER heaps, it calls a second set of initializa
tion functions. Of particular interest is the LW _LoadTaskmanAndScreenSaverO function.
Despite its name, it does not actually load these modules. Instead, LW _LoadTaskmanAnd
ScreenSaverO simply obtains the default configuration values each Windows program uses.

pseudocode for LoadWindows() - INLOADW.OBJ
II Parameters:
II WORD hInstance II hInstance of USER

II Save the module and instance handles away in global vars
HInstanceWin = hInstance II The USER DGROUP
HModuleWin = GetModuleHandle(0, hInstance)

II Is there an Edsun chip installed? The Edsun chip set is a
II video chip that uses anti-aliasing techniques to get better
II display quality.
FEdsunChipSet = GetProfileInt("Windows, "Edsun", Q)

LW_LoadSomeStrings() II Loads USER strings variables
II from resources

II Get the number of entries in the system message queue
CQEntries = Ut_GetIntFromProfile(7, Ox3C) « 1

II Get the default number of messages in a task queue

CHAPTER 1 - THE BIG BANG

DefQueueSize = Ut_GetIntFromProfileCOxF, 8)

CreateQueueC DefQueueSize) II Create an application message
II queue. This is needed to
II create windows Cchapter 7).

II Get the default border width for a window. Default is 3.
ClBorder = Ut_GetIntFromProfileCOxE, 3)
if C ClBorder < 1) II Make sure it'~ got a reasonable

ClBorder = 1 II value.
if C ClBorder > Ox32)

ClBorder = Ox32

LW_DriversInitC) II Setup and initialize the Keyboard,
II mouse, and COMM drivers. The system
II message queue is created here Cin
II DI_EventInit(), which is called from
II LW_DriversInit(».

II LW_DCInitC) is where the 5 DISPLAY device contexts are
II created. Chapter 5 covers device contexts CDCs) in
II detail. LW_DCInitC) also calls @InitCreateRgnC),
II GetDCStateC), CreateCompatibleDC(), and" GetStockObjectC).
II The HFontSys and HFontSysFixed global vars are set here.
LW_DCInitC)

LW_BrushInit() II Calls GetStockObject() to set the variables
II HBrWhite and HBrBlack. Calls CreateBitmapC),
II CreatePatternBrush(), DeleteObjectC),
II and MakeObjectPrivate().

II Perform various initialization required by the DISPLAY
II driver. Sets HInstanceDisplay variable by calling
II GetModuleHandle(HDISPLAYH). LW_OemDependentInitO is a very
II large function, with numerous calls to routines such as
II GetDeviceCaps(), GetStockObjectC), SetResourceHandlerC),
II FindResourceC), ODI_CreateBitsC), and so on.
LW_OEMDependentInit()

LW_OEMCursorInitC) II Sets HBmCursorBitmap and
II HPermanentCursor variables.

II Set the global variables: CLBorder, CXBorder, CXSzBorder,
II CXSzBorderPlus1, CYBorder, CYSzBorder, CYSzBorderPlus1,

WINDOWS INTERNALS

II CXCwMargin, and CYCwMargin. Presumably these deal with
II the size of the borders around Windows.
InitSizeBorderDimensions()

LW_LoadResources() II Loads lots of icons and cursors. See
II the pseudocode for more details.

HWndFocus = 0 II Start out with no focus

LW_InitSysMetrics() II Loads values into the RGWSYSMet array.

LW_RegisterWindows()

II These values can be retrieved via the
II GetSystemMetrics() API

II Register the windows classes for
II "predefined" windows, such as
II edit controls, etc. We'll come
II back to this routine later.

II Allocate some memory for an internal buffer.
II UserLocalAlloc() is a special version of LocalAlloc().
/I The first parameter "marks" each item in the USER local
II heap with a value that indicates what it is. This
II "tagging" of blocks only occurs in the debug version of
II USER. See the TOOLHELP LocalEntry documentation for
II a list of the various "tag" values.
PState = UserLocalAlloc(LT_USER_STRING, Ox40, some_static_var + Ox10)

LW_Mouselnit() II Sets X_Mickey_Rate, Y_Mickey_Rate, and
II calls ClipCursor(0)

EnablelnputO /I Call the "enable" routine for various
II inputloutput devices. We'll look at this
II routine a bit later on.

SetCursor(some x, some y)
AX = LoadCursor(0, IDC_WAIT
SetCursor(AX)

LW_InitWndMgr(hlnstance

II Middle of the screen???
II Get the hourglass cursor
/I show it

II Register the Desktop and
II switch windows classes, and
II create the windows. We'll
II come back to this routine
/I in a bit.

SelectObject(HDCBits, some value
SelectObject(HDCMonoBits, some value

II ???

CHAPTER 1 - THE BIG BANG

WMaxBtnSize = MB_FindLongestString() II Max button size???

GlobalInitAtom() II Create the global atom table.

AtomCheckPointProp = GlobalAddAtom("SysCP") /I Used by
AtomBwlProp = GlobalAddAtom("SysBW") II EnumProps()

MsgWinHelp = RegisterWindowMessage("WM_WINHELP"

II Allocate another local heap for menus
MenuBase = HMenuHeap = GlobalAlloc(GMEM_DDESHARE I

GME~MOVEABLE I GMEM_ZEROINIT, Ox418)

II Allocate another local heap for menu strings
MenuStringBase = HMenuStringHeap = GlobalAlloc(GMEM_DDESHARE

GMEM_MOVEABLE I GMEM_ZEROINIT, Ox418)

II Initialize the menu and menu string heaps. The heaps
/I start out small (Ox417 bytes), but can grow as needed.
LocalInit(HMenuHeap, Ox12, Ox417)
LocalInit(HMenuStringHeap, Ox12, Ox417)

II Load the "system" menu ("Restore", "Move", "Size", etc.)
HSysMenu = LoadMenu(HInstanceWin, MK-FP(O,1)

LW_DisplayDriverInit() II Gets entry points in display driver

LW_LoadFonts() II Uses AddFontResource() to load all the
/I fonts in the "fonts" section of WIN.INI

LW_DesktopIconInit(0) II Initialize things related to
II desktop icons/fonts

LW_DrawI conIni t() II Initializes HBmDrawIconMono and
II HMbDrawIconColor

LW_LoadTaskmanAndScreenSaver() II Doesn't _load_ them. Just
II gets configuration values.

return 1

The LoadWindows() Helper Routines

As you can see from the LoadWindowsO code, the function uses a variety of helper functions.
The following sections of pseudocode present some of the more interesting helper routines.

WINDOWS INTERNALS

L W _LoadSomeStrings()
LW _LoadSomeStrings() does precisely what its name implies. The second parameter to
LoadString() is a stringtable resource ID in USER. You can see these strings yourself by using
programs such as Borland's Resource Workshop or RESDUMP from Undocumented Win
dows. The third parameter is a buffer that holds the string. For the most part, the names of
the buffers are self-explanatory.

pseudocode for LW_LoadSomeStrings() - INLOADW.OBJ

LoadString(HlnstanceWin, Ox4B, SzSysError, Ox14)

Continue making calLs simiLar to the above, to Load the
foLLowing message strings: SzDivZero, SzUntitLed, SzError,
SzOK, SzCanceL, SzAbort, SzRetry, SzIgnore, SzYYes, SzNo,
SzCLose, SzAM, SzPM.

L W_LoadResources()
LW _LoadResources() does more than what its name suggests. The initial sequence of code is
a hodgepodge of variable initializations unrelated to resources. For instance, this function es
tablishes the cursor blink rate and double click threshold. The Control Panel applet normally
sets these values. Other variables this function sets include the amount of slop when double
clicking. The slop establishes how many pixels the mouse can move between double clicks, yet
still be considered a double click.

After LW _LoadResources() establishes all the various configuration values, it finally gets
down to the business of loading resources. It loads commonly used cursors, such as the
default arrow cursor and the sizing cursors. These cursor resources reside in the display driver
DLL. Then the Loadlcon() function call pulls in the standard set of icons in for system dialog
boxes. This set includes, for example, the hand icon.

pseudocode for LW_LoadResources() - INLOADW.OBJ
II LocaLs:
II
II
II

char
char
char

szWindows[Qx14J
szBeep[Ox14J
szSwapMouseButtons[Ox14J

II Get some strings out of the USER resources, for use as
II section and key strings in GetProfilelnt() calLs
LoadString(HlnstanceWin, 0, szWindows, Ox14);
LoadString(HlnstanceWin, 5, szSwapMouseButtons, Ox14);
LoadString(HlnstanceWin, 9, szBeep, Ox14);

AX = Ut_GetIntFromProfile(4, Ox1F4) II 4 = "CursorBLinkRate"
SetCaretBlinkTime(AX)

AX = Ut_GetlntFromProfiLe(6, 0)
SetDoubLeCLickTime(AX)

II 6 = "DoubLeCLickSpeed"

CHAPTER 1 - THE BIG BANG

II The next three fetched vaLues are stored in static vars
Ut_GetIntFromProfiLe(Ox61,4) II Ox61 = "DoubLeCLickWidth"
Ut_GetIntFromProfiLe(Ox62,4) II Ox62 = "DoubLeCLickHeight"
Ut_GetIntFromProfiLe(Qx60, 0) II Ox62 = "MenuDropALignment"

II Get the deLay times reLated to dispLaying menus.
II Ox5E = "MenuShowDeLay", Ox5F = "MenuHideDeLay". The
II defauLt vaLue is seemingLy reLated to whether the
II WF_CPU286 fLag is set. Perhaps there's some sort of
II timing issue?
IDeLayMenuShow = Ut_GetlntFromProfiLe(Ox5E, defauLtVaL)
IDeLayMenuHide = Ut_GetlntFromProfiLe(Ox5F, defauLtVaL)

II Set the vaLue of FSwapButtons, which indicates if the Left
II and right mouse buttons shouLd be swapped
GetProfiLeString(szWindows, szSwapMouseButtons,

szNuLLString, &someLocaLVar, 2)
FSwapButtons = some caLcuLation invoLving szYes, the buffer

fiLLed by GetProfiLeString(), and a caLL to AnsiLower().

II Set the vaLue of FBeep. Used by MessageBeep() to
II determine if a sound shouLd be produced~
GetProfiLeString(szWindows, szBeep, szNuLLString,

&someLocaLVar, 2)
FBeep = some caLcuLation invoLving szYes, the buffer

fiLLed by GetProfiLeString(), and a caLL to AnsiLower().

II Ox6B = "DragFuLLWindows". Drag around the entire window
II contents, rather than just the frame???
FDragFuLlWindows = Ut_GetIntFromProfi Le(Ox6B, 0)

II Ox6F = "CooLSwitch". This has to do with fast ALT-TAB
II switching between different tasks.
FFastALtTab = Ut_GetlntFromProfiLe(Ox6F, 1)

II Get the Grid granuLarity of the desktop. Ox50 = "Desktop"
II 8 = "GridGranularity". It appears that szBeep[] and
II szWindows[] are being reused, rather than creating
II additionaL char arrays on the stack.
LoadString(HlnstanceWin, Ox50, sZWindows, Ox14)
LoadString(HlnstanceWin, 8,szBeep, Ox14)
CXYGranuLarity =

GetProfiLelnt("Desktop", "GridGranuLarity", 0) « 3
if (!CXYGranuLarity) II Make sure CXYGranuLarity is at

CXYGranuLarity++ II least 1.

WINDOWS INTERNALS

II Load some heaviLy used cursors
HCursNormaL = LoadCursor(0, IDC_ARROW
HCurslBeam = LoadCursor(0, IDC_IBEAM
HCursUpArrow= LoadCursor(0, IDC_UPARROW
HlconSampLe = Loadlcon(0, IDI_APPLICATION

II Set the "resource handLer" address for cursors & icons.
SetResourceHandLer(HlnstanceWin, 1, LoadDIBCursorHandLer)
SetResourceHandLer(HlnstanceWin, 3, LoadDIBlconHandLer)

HlconWindows = Loadlcon(HlnstanceWin, II The Windows Logo
MAKEINTRESOURCE(0, OCR_ICOCUR))

II Load the "resizing" cursors (when cursor is over a border)
LoadCursor(0, IDC_SIZENWSE)
LoadCursor(0, IDCSIZENESW)

LoadCursor(0, IDCSIZENS)

LoadCursor(0, IDCSIZEWE)

II Load some icons used by various diaLog boxes
HlconHand = Loadlcon(0, MAKEINTRESOURCE(OICHAND)

HlconHand = Loadlcon(0, MAKEINTRESOURCE(OICQUES)

HlconHand = Loadlcon(0, MAKEINTRESOURCE(OIC_BANG
HlconHand = Loadlcon(0, MAKEINTRESOURCE(OIC_NOTE

HCursSizeALL = I I The "4 di rections" icon
LoadCursor(HlnstanceWin, MAKEINTRESOURCE(OCR_SIZEALL»

L W _RegisterWindows()
If you've ever snooped around in Windows with such tools as WinSight or SPY from the
SDK, you may have noticed that all of the standard windows like buttons and listboxes have
their own classes, just like any other window. These classes are not hardcoded into USER.
Instead, LW _RegisterWindowsO registers them just like any other class. A small helper rou
tine registers each of the predefined windows classes by simply filling in a WNDClASS struc
ture before passing the structure to RegisterClass(). Of special interest are the menu and
dialog box classes. Rather than having standard string names, they use integer resource ID
naming, wherein the segment portion of the string is zero, and the offset portion is an ordinal
value that is greater than or equal to Ox8000. The MAKEINTATOM macro makes it easy to
create integer resource IDs.

pseudocode for LW_RegisterWindows() - INLOADW.OBJ

RW_RegisterMenus()
RW_RegisterButton()

II CLass = MAKELP(O, Ox8000)
II CLass = "Button"

CHAPTER 1 - THE BIG BANG

RW_RegisterStatic() II Class = "Static"
RW_RegisterDlg() II CLass = MAKELP(O, Ox8002)
RW_RegisterEdit() II Class = "Edit"
RW_RegisterLBoxCtl() II Class = "ListBox"
RW_RegisterSB() II Class = "ScrollBar"
RW_RegisterComboLBoxCtl() II Class = "ComboLBox"
RW_RegisterCBoxCtl() II Class = "ComboBox"
RW_RegisterMDIClient() II Class = "MDIClient"

Enab/e/nputO
EnableInputO brings the various hardware drivers to life so that Windows is more than just a
pretty picture on the screen. The first task is to turn on the undocumented system timers that
are critical to much of Windows (see EnableSystemTimerO in the SYSTEM DLL). Then
EnableInputO initializes the keyboard driver followed by the mouse driver. If a sound driver
was loaded previously, EnableInputO brings it to life as well. The last driver it initializes, if
one exists, is the network driver. When EnableInputO has initialized all drivers, it calls Inter
nalBroadcastDriverMessageO. From its name, this function apparently has something to do
with broadcasting some sort of message to all installed drivers in the system.

code for EnableInput() - INENABLE.OBJ
II Locals:
II WORD HModSound
II LPFN lpfnSoundEnable

EnabLeSystemTimers() II See "Undocumented Windows"

Initialize some memory starting at RGBKeyState to O. Maybe
some sort of an array. Do the same for RGBAsyncKeyState.

Enable(Keybd_Event, RGBKeyState) II KEYBOARD.2. See the
II DDK examples for
II source code for the
II Enable() routines.

CopyKeyState () II copies keyboard state tables?

if (some static variabLe)
Enable(Mouse_Event) II MOUSE.2

II Look for the presence of a SOUND driver. If found, get
II the address of its enabLe() function, and calL it.
HModSound = GetModuLeHandle("SOUND")
if (HModSound)

LpfnSoundEnabLe = GetProcAddress(HModSound, "enabLe")
if (LpfnSoundEnabLe)

LpfnSoundEnable()

WINDOWS INTERNALS

II Call WNetEnable() to initialize the network module,
II if a network is present. See FarCallNetDriver() entry
II in "Undocumented Windows," and "Windows Network
II Programming" by Ralph Davis.
if (PNetlnfo && *(&PNetlnfo + Ox50))

(&PNetlnfo + Ox50)() II Call through a functi~n pointer

II Broadcast a message to the installable device drivers?
II 2 = DRV_ENABLE??
InternalBroadcastDriverMessage(O, 2, 0, 0, 0, 0, 0, 4)

LW_lnitWndMgr()
LW _InitWndMgr() is a key player in bringing up the windowing system. The first task is to
assign values to variables related to screen widths, border sizes, and so on. The fun part begins
with registering the classes for the desktop and switch windows. The desktop window is the
granddaddy of all windows. All other windows in the system are its descendants (see Chapter
4 for details). The switch window is normally an invisible window that resides in the center of
the screen and its job is to switch between various tasks in the system. It is visible when you
repeatedly ALT-TAB between the mnning Windows programs. At the same time,
LW _InitWndMgr() creates the window class for icon title windows. The descriptive text you
see beneath each icon on the Windows desktop is an instance of an icon title window. This
function call registers each of the window classes described here with the name of an integer
resource ID form. (See the description of this process in LW_RegisterWindowsO above.)

LW _InitWndMgrO next creates instances of the windows classes it just registered by
using CreateWindowExO. CreateWindowExO creates the desktop window, as you might
expect, with a size equal to the entire screen. After creating the switch window, the
CreateWindowExO moves the switch window to the center of the screen and gives it attri
butes that maintain the window's size and position.

Now that there is a desktop, LW_InitWndMgrO sets the desktop wallpaper and pattern.
Normally, you use the Control Panel applet to select the bitmaps. The parameter to both
functions is -1, indicating that the Control Panel applet should retrieve the bitmap names
from WIN.IN!. After the Control Panel applet selects the wallpaper, the code sends a
WM_SYSCOLORCHANGE message to the desktop window because the wallpaper bitmap
may have a different palette than the default system palette. The LW _InitWndMgrO's last step
is to invalidate the entire desktop window, and call UpdateWindow(), which draws the
selected wallpaper.

pseudocode for LWInitWndMgrO - INLOADW.OBJ
/I Parameters:
II WORD hlnstance
II Locals:
II WNDCLASS * pWndClass II For use in registering classes

CHAPTER 1 - THE BIG BANG

InitiaLize the foLLowing variabLes from static variabLes:
CXSize, CYSize, CYCaption, CXBorder, CYBorder, CYHScroLL,
and CXVScroLL

SetMinMaxInfo() II Appears to initiaLize some static vars.
II Uses CXScreen, CYScreen, CXBorder, etc ...

pWndCLass = UserLocaLALLoc< LT_USER_CLASS, Ox40, Ox1A

pWndCLass->LpszCLassName = MAKELP(0, Ox8001)
pWndCLass->hCursor = LoadCursor(O, IDC_ARROW)
pWndCLass->LpfnWndProc = DeskTopWndProc
pWndCLass->hInstance = hInstance
pWndCLass->styLe = CS_DBLCLKS
pWndCLass->hBrBackground = 2

II ALLocate Ox1A
II bytes.

RegisterCLass(pWndCLass) II Register the DeskTop cLass

II Register the "switch window" class
pWndCLass->LpszCLassName = MAKELP(0, Ox8003)
pWndCLass->hCursor = LoadCursor(O, IDC_ARROW)
pWndCLass->LpfnWndProc = SwitchWndProc
pWndCLass->hInstance = hInstance
pWndCLass->styLe = CS_SAVEBITS I CS_VREDRAW CS_HREDRAW
pWndCLass->hBrBackground = 2
RegisterCLass(pWndCLass)

II Register the icon titLe cLass
pWndCLass->LpszCLassName = MAKELP(0, Ox8004)
pWndCLass->hCursor = LoadCursor<O, IDC_ARROW)
pWndCLass->LpfnWndProc = TitLeWndProc
pWndCLass->hInstance = hInstance
pWndCLass->styLe = 0
pWndCLass->hBrBackground = 0
RegisterCLass(pWndCLass)

LocaLFree(pWndCLass) II Don't need WNDCLASS anymore!

II Create the desktop and switch windows
HWndDesktop = CreateWindowEx(0, MAKELP(O, Ox8001),

0, WS_CLIPCHILDREN I WS_POPUP, 0, 0,
CXScreen, CYScreen, 0, 0, hInstance, 0)

HWndSwitch = CreateWindowEx(0, MAKELP(O, Ox8003),
0, WS_DISABLED I WS_POPUP, 0, 0, OxA, OxA,
0, 0, hInstance, 0)

WINDOWS INTERNALS

II Move the switch window to the center of the screen
SetWindowPos(HWndSwitch, OxFFFF, 0, 0, 0, 0,

SWP_NOSIZE I SWP_NOMOVE I SWP_NOREDRAW I SWP_NOACTIVATE

HWndReaLPopup = CreateWindowEx(0, MAKELP(O, Ox8000), 0,
WS_POPUP, 0, 0, Ox64, Ox64, 0, 0,
hInstance, 0) II Pop-up menu???

SetDeskPattern(-1)
SetDeskWaLLpaper(-1)

II Set the waLLpaper and pattern
II Read names from the WIN.INI fiLe

II TeLL the desktop that the paLette may have changed from
II Loading the wallpaper image.
SendMessage(HWndDesktop, WM_SYSCOLORCHANGE, 0, 0)

Toggle a bit in the HWndDesktop flags II?

InvalidateDCCache(HWndDesktop, 0
InvaLidateRect(HWndDesktop, 0, 1
UpdateWindow(HWndDesktop)

GloballnitA tom ()

II Force the entire
II desktop to be
II refreshed

Atom tables are a quick way to store a string in a hash table and then reference it by an integer
handle. The USER module stores window class names, registered using RegisterClassO (see
Chapter 4) in an atom table. Each application can have its own local atom table. However,
class names are at system level scope, so a global atom table is necessary, as well. Global
lnitAtomO creates the global atom table.

GlobalInitAtomO starts by allocating a global memory block to hold the table and then
stores the block's selector value into a USER global variable, HWinAtom. LocalInit() then
creates a local heap within the HWinAtom memory block. Finally, InitAtomTableO sets up
the atom table's internal data.

pseudocode for GlobalInitAtom() - WINATOM.OBJ

HWinAtom = GlobalAlloc(GMEM_MOVABLE I GMEM_ZEROINIT
GMEM_DDESHARE, OxFA)

if (HWinAtom == 0)
return 0

HWinAtom = HIWORD(GlobalLock(HWinAtom)

Call a function that sets DS to HWinAtom, if it's nonzero.

LocalInit(0, 0, OxEA) II First 0 means use current DS
II See Chapter 2 for LocalInit()

CHAPTER 1 - THE BIG BANG

InitAtomTable(Ox25) II 37 entries in atom table. 37 is a
II prime number, which increases hash
II efficiency. (See Knuth.)

GlobalUnlock(HWinAtom II does nothing, since the memory
II is MOVABLE. See Chapter 2.

L W _DispiayDriverinitO
LW_DisplayDriverInitO gets the addresses of two routines in the DISPLAY driver. If the
DISPLAY driver knows how to save bitmaps internally, LW_DisplayDriverInitOsets the
LpSaveBitmap global variable to point at the routine. The other function pointer LW _Dis
playDriverInitO initializes here is for the DISPLAY function, which turns screen repainting on
or off. The Windows scheduler calls this function when exiting the scheduling routine. Some
times doing screen updates causes serious stability problems. To circumvent this, the DIS
PLAY driver exports a function that allows you to enable/disable screen repainting as
necessary.

pseudocode for LW_DisplayDriverInit() - INLOADW.OBJ
II Locals:
II HDC hDC

hDC = GetScreenDC() II Need a device context below

II If the display driver can save bits, get a function ptr
II to the routine that does it. The function has an entry
II ordinal of 92 (Ox5C)
FOnBoardBitmap = GetDeviceCaps(hDC, RASTERCAPS) & Ox0040
if (FOnBoardBitmap)

LpSaveBitmap=GetProcAddress(HInstanceDisplay,MAKELP(O,92»

ReleaseCacheDC(hDC, 0) II Done with the device context

II DISPLAY.500 -> UserRepaintDisable(). This function
II tells the display driver when screen updates should be
II enabled or disabled.
LpD;splayCriticalSection =

GetProcAddress(HInstanceDisplay, MAKELP(O, 500))

L W _LoadTaskmanAndScreenSaverO
LW _LoadTaskmanAndScreenSaverO loads neither TASKMAN.EXE nor a screen saver mod
ule (Windows 3.1 has a documented API for writing screen savers). The function starts by
retrieving the name of the TASKMAN file, or its replacement, from the SYSTEM.INI file.
Double clicking on the desktop window or hitting CTRL-ESC loads TASKMAN. The func
tion also gets the length of idle time that's required before activating the screensaver, as well
as the status (enabled/disabled) of screensaving. When it's time to invoke the screensaver,
USER loads the saver program's name (for example, SSMYST.SCR) from SYSTEM.INI and

WI N DOWS INTERNALS

passes it as the argument to WinExecO. This process happens deep inside the default message
handling code in USER.

pseudocode for
II Locals:

LW_LoadTaskmanAndScreenSaver() - INLOADW.OBJ

II char
II char
II char

szBoot[OxAJ
szTaskMan[OxDJ
szSysIni[Qx14J

II Get some strings out of the USER string tables.
II Ox48 -> "BOOT", Ox4F -> "TASKMAN.EXE, Ox4A -> "SYSTEM.INI"
LoadString(HInstanceWin, Ox48, szBoot, OxA)
LoadString(HInstanceWin, Ox4F, szTaskMan, OxD
LoadString(HInstanceWin, Ox4A, szSysIni, Ox14

II Get Ox82 bytes for use as the string buffer in the call to
II GetPrivateProfileString(), below.
PTaskManName = UserLocalAlloc(LT_USER_STRING, Ox40, Ox82)

II Get the "final" name of TASKMAN.EXE from the boot section
II of the SYSTEM.INI file. The default is taskman.exe=taskman.exe.
GetPrivateProfileString(szBoot, szTaskMan, szTaskMan,

pTaskManName, Ox82, szSysIni)
II Get rid of the excess memory that was allocated previously.
LocalRealloc(PTaskManName, lstrlen(PTaskManName)+1, 0)

II The screen saver timeout value. Ox63 = "ScreenSaveTimeOut"
IScreenSaveTimeOut = Ut_GetIntFromProfile(Ox63, 0)

II Screen saver active? Ox64 = "ScreenSaveActive"
if (Ut_GetlntFromProfile(Ox64, 0) == 0)
{

}

if (IScreenSaveTimeOut > 0)
IScreenSaveTimeOut = -IScreenSaveTimeOut II???

This concludes the brief tour through the USER initialization. Although many routines
and areas weren't touched upon, hopefully you now have an idea of Windows' incredible
complexity, flexibility, and configurability, and can use it to your advantage.

Shutting Things Down

So far, this chapter has focused on the steps involved in turning a real mode DOS machine
into a protected mode, multitasking, GUI environment. It has been said that the designers of
the 286 chip felt it wasn't necessary to go back to real mode once the chip was in protected
mode. The designers of Windows didn't have this luxury. Windows starts out from the DOS

CHAPTER 1 - THE BIG BANG

prompt and must return gracefully to the DOS prompt, whereupon the user may turn off the
machine. The next few sections examine the mercifully shorter journey back to real mode
DOS.

Shutting Down USER

You now know that the USER initialization code concentrates on the graphical user interface
aspect of Windows, while KERNEL specializes in areas related to memory management, task
ing, and so on. The shutdown process is no different. Except for when you ignominiously
leave Windows with CTRL-ALT-DELETE (also known as the Big Red Switch or Vulcan
Nerve Pinch), you normally exit Windows through the ExitWindowsO API. ExitWindowsO is
usually invoked using PROGMAN, but your own programs can call ExitWindows() as well.

ExitWindows() starts by enumerating all the top-level windows, using EnumWindowsO.
The. enumeration callback function sends a message to each window, which either asks ifit's
OK to shut down, or which says that things are shutting down. See the pseudocode for the
callback function after the ExitWindowsO code.

Assuming that nobody vetoes the idea of shutting down, ExitWindows() broadcasts
another message to all the installed drivers. After this, it destroys the data in the clipboard and
turns the cursor off. Also, at this point ExitWindows() changes the KERNEL fault handler
from the standard handler to a different, exit time handler. This special handler just displays a
message, "Fault at Exit Time!!!'; in the debug KERNEL. Presumably there's little else that
can be done for the patient at this stage. ..

In the next step, ExitWrndowsO disables input from the hardware drivers, using Dis
ableInput(). The pseudocode for DisableInputO follows the other pseudocode below; With
the drivers disabled, it's safe to free them as well. Nearing the end of the USER shutdown,
DeathO, a GDI function described in Undocumented Windows, puts the screen back into text
mode. In a final dying gasp USER. calls ExitKemelO, which is the KERNEL equivalent of
ExitWindows().

pseudocode for ExitWindows() - ENABLE.OBJ

if (FEndSession) II Prevent ExitWindowsO from being
return 0; II re-entered???

FEndSession = 1;

@fQueryQuitO II Calls EnumWindows(), with QueryQuitEnum()
II as the callback function

if (@fQueryQuit() -- 0)
{

}

FEndSession = FALSE
SetSysModalWindow(0)
return 0

II Undo system modal window if
tI there is one.

WINDOWS INTERNALS

II Broadcast a message to installable drivers?
II OxB = DRV_EXITSESSION???
InternalBroadcastDriverMessage(0, OxB, 0, 0, 0, 0, 0, 6)

DestroyClipboardData() II Trash the clipboard

ShowCursor< 0) II Turn off the cursor

BunnL3510 II Changes the KERNEL interrupt handler to
II a different, exit-time, exception handler.

DisableInput() II Do the opposite of EnableInput()

while (IDLastDriver != OxFF) II Free all installed drivers?
InternalFreeDriver(IDLastDriver + 1, 0)

Death(PdceFirst->hDC) II GDI function that switches the
II display back to text mode.

ExitKernel(ExitCode) II Do KERNEL cleanup before
II returning to DOS.

QueryQuitEnumO
ExitWindows() calls QueryQuitEnum() for every top-level window in the system. Depending
on the value of each window's IParam, QueryQuitEnumO sends either a WM_QUERY
ENDSESSION or a WM_ENDSESSION to the window specified by the HWND parameter.
When this function sends the WM_ QUERYENDSESSION message, it returns the value
returned by the window. If an application window handles that message and returns zero,
QueryQuitEnum() returns zero, causing the enumeration of windows to stop and
ExitWindows() to abandon the shutdown procedure.

pseudocode for QueryQuitEnum() - INEXIT.OBJ
I I Parameters:
II HWND hwnd
II LPARAM lparam

if (hwnd->hq == HQCurrent(» II Don't bother with windows
return 1 II in the current task/queue

if (LOWORD(lparam) == 2)
{

}

/1 Be nice and ask the window if it's O.K. to quit
1/ REvalSendMessageO is just a "wrapper" routine around
/1 a SendMessage() call in the debug KERNEL. In the
1/ retail KERNEL, it's just a SendMessageO.
return REvalSendMessage(hWnd, WM_QUERYENDSESSION, 0, 0)

CHAPTER 1 - THE BIG BANG

else
{

II Be firm, and tell the window that it will be shut down.
REvalSendMessage(hwnd, WM_ENDSESSION, LOWORD(lparam), 0)
return 1

}

DisablelnputO
DisableInputO is almost identical to EnableInputO, but in reverse. First, DisableInputO
broadcasts a message (DR V _DISABLE?) to all the installed drivers. Then, it disables the net
work and sound drivers, ifpresent. Next in line is the mouse driver, followed by the keyboard
driver. The system timer is the last driver disabled. The final bit of cleanup is to read in and
toss all the messages in the system queue, thereby ensuring that it's empty.

pseudocode for Disablelnput() - INENABLE.OBJ
II Locals
I I WORD
I I LPFN
II MSG

HSoundDriver
lpfnSoundDisable
msg

I I Broadcast message to i.nstaUable drivers.
II 5 = DRV-PISABLE???
InternalBroadcastDriverMessage(0, 5, 0, 0, 0, 0, 0, 6)

II Call WNetDisable(). See the entry for FarCallNetDriver()
II in Undocumented Windows.
if (PNetInfo && (*(DWORD *)(PNetInfo + Ox54)))

(PNetlnfo + Ox54)() II Call through a function pointer

HSoundDriver = GetModuleHandle("sound")
if (HSoundDriver)
{

II Disable the
II SOUND driver,
II if present.

lpfnSoundDisable = GetProcAddress(HSoundDriver, "disable")
if (lpfnSoundDisable)

lpfnSoundDisable()
}

if (some static var)
DisableMouse()

II Say goodbye to the mQuse

Di sableO II Disable the keyboard driver

DisableSystemTimers() II See "Undocumented Windows"

EmptyMessages: II Keep reading system messages till the system
II message queue is empty.

if (ReadMessage(HQSysQueue, &msg, 0, 0, OxFFfF, 1 »
goto EmptyMessages

\

WINDOWS INTERNALS

Exiting KERNEL-The Last Hurrah

The first major task of ExitKernel() is to call the WEP (Windows Exit Procedure) routine for
each DLL in the system. KilILibrariesO handles this chore and calls the WEP routines.
KillLibrariesO does not actually unload the DLLs however. ExitKernelO next calls the disable
routine for the mouse, keyboard, and system drivers. This is somewhat strange because USER
has already called these routines in its DisableInput() function. Perhaps this code exists in case
a program calls ExitKernel() directly, instead of through an intervening call to ExitWindows().

The next step is for ExitKernel() to write out any profile (.INI) buffers that are not
up-to-date with what's in the disk file. ExitKernelO then calls DisableKernelO to reset all the
interrupt handlers that KERNEL installed, as well as to close file handles that various Win
dows tasks may have opened.

The final sequence of ExitKernel() is related to the way KERNEL should terminate itself
In most cases, KERNEL does a simple !NT 21h, function 4Ch. Since KERNEL is running as
a protected mode DPMI client, this function call does not cause the machine to immediately
return to the DOS prompt. Instead, the DPMI host (WIN386 or DOSX) receives the inter
rupt and cleans up its own internal state of affairs. After completing this task, the DPMI host
switches the machine back to either real or virtual 8086 mode, and you wind up back at the
DOS prompt. The other way of leaving ExitKernelO is to reboot the machine (for example,
call ExitWindowsO with the EW_REBOOTSYSTEM return code). Depending on which
mode Windows is running in, this function either calls the REBOOT VxD or it invokes !NT
19h. The REBOOT VxD is responsible for the local reboot option in Windows 3.1. (!NT
19h is discussed in detail in Geoff Chapell's forthcoming DOS Internals.)

pseudocode for ExitKernel() - ENABLE.OBJ
II Parameters:
II WORD exitCode

Set a bit in [Kernel_Flags + 2] II Exiting bit???

II Loop through all the modules in the system, invoking
II CallWEP() for each one (even for program modules). The
II first module (KERNEL) is skipped.
Ki llL ibrariesO

if (PMouseTermProc) /I Call mouse driver DisableO, if
PMouseTermProc() /I we've got a valid ptr to it.

if (PKeyboardTermProc) II Call keyboard driver Di sab.le(),
PKeyboardTermProc() 1/ if we've got a valid ptr to it.

if (PSystemTermProc) /I Call system driver Disable(),
PSystemTermProc() /I if we've got a valid ptr to it.

CHAPTER 1 - THE BIG BANG

WriteOutProfiles() II Write out any profiles that are
II out of date with the disk

FProfileMayBeStale = 1 II We just wrote it out???

Enter_Gmove_Stack() II Switches to a different stack

DisableKernel() II Reset the exception handlers back to their
II original address, and close down open
II files in running tasks.

if (exitCode !=Ox43)
goto exit_via~DOS

II Ox43 = EW_REBOOTSYSTEM

INT2F, AX = 1600 II Enhanced mode Windows running?
if ,(the bottom 7 bits in AL are zero)

goto exit_via_INT_19

if ((AL == 1) I I (AL == OxFF)) II Windows/386 2.x running???
goto exit_via_DOS

II Get the REBOOT VxD (9) API entry point in ES:DI
INT 2Fh, AX = 1684h, BX = 9, ES:DI = 0:0
if (ES:DI == 0) /I Couldn't get the entry point

goto exit_via_DOS

Call through ES:DI, with AX = Ox0100 II Reboot ourselves

goto exit_via_DOS II If we're still alive, exit to DOS

INT 21h, AH = ODh II DOS Disk reset. Flushes buffers.

AX = OxFE03, SI = Ox4346, DI = Ox4E55 II Signature WORDS?
STC
INT 2Fh II Unknown what this is for

INT 19h II Reboot the system.

AH = 4CH, AX = exitCode
INT 21h /I Exit "to DOS".

DisableKernel()
Disable Kernel 0 is the complementary function to EnableKernelO, resetting all of the excep
tion handlers that KERNEL installed in EnableKernelO back to their original values. In addi
tion, DisableKernelO iterates through the list ofPSPs (PDBs), closing every file in each PSP's

WINDOWS INTERNALS

job file table that's not one of the standard files, such as CON. The last portion of Dis
ableKernel() appears to have something to do with unlinking entries in the system file tables.
This code is probably undoing the work done at startup time by GrowSFTToMax().

In addition to DisableKernel(), there's a corresponding EnableKernel() function in KER
NEL. However, if you try to invoke it, the debug KERNEL displays the message, "Don't call
EnableKernel." Nothing else is done in EnableKernel(). In the Windows 3.0 KERNEL, the
function does the opposite ofDisableKernel().

pseudocode for OisabLeKerneL() - ENABLE.OBJ

Turn on bit Ox0002 in [KerneL_FLags+2J

II Restore some interrupt handLers (0, 24h, 2Fh, 2,
II 4, 6, 7, 3E and 75h) to their previous handLers.
if (FP_SEG(PrevInt21Proc) != 0)

InternaLOisabLeOOS()

CX:OX = PrevInt3FProc II Set the oLd INT 3Fh handLer back
INT 31h, AX = 0203h, BL = OBh

CX:OX = PrevIntOCProc II Set the oLd Exc. OCh handLer back
INT 31h, AX = 0203h, BL = OCh

CX:OX = PrevIntOOProc II Set the oLd Exc. DOh handLer back
INT 31h, AX = 0203h, BL = DOh

CX:OX = PrevIntx6Proc II Set the oLd Exc. 06h handLer back
INT 31h, AX = 0203h, BL = 06h

CX:OX = PrevIntOEProc II Set the oLd Exc. OEh handLer back
INT 31h, AX = 0203h, BL = OEh

Iterate through the TOB List (HeadPOB is the head ptr). CaLL
TerminatePOB() for each task besides the TopPOB (the KERNEL
boot time PSP). TerminatePOB() cLoses any fiLe handLes that
the POB has open.

INT 21h, AH=50h, BX = TopPOB II Switch the current POB to
II the KERNEL startup PSP

Turn off bit Ox0002 in [KerneL_FLags+2J, which was turned
on when we entered the function.

Iterate through aLL of the fiLes in KERNEL's PSP (TopPOB).
If the fiLe handLe is greater than 5, cLose it via INT 21h,

CHAPTER 1 - THE BIG BANG

fn. 3Eh. This leave all the "standard" file handles open.

II Do something related to unlinking additional system file
II table entries that may have been added by GrowSFTToMax()
if (PSFTLink != 0)
{

}

CX:DX = *PSFTLink
*PSftLink = O:OxFFFF
LpWinSFTLink = CX:DX

InternalDisableDOSO
InternalDisableDOSO resets several values to their pre-InternalEnableDOSO settings. The
first job is to reset the "one-drive logic" for floppy drives to its original state. Next, Inter
nalDisableDOSO restores the original value of the INT 2lh handler, as well as several more
exception handlers that were hooked by InternalEnableDOSO. The final bit o{ ,S:ode in the
routine sets the CTRL-C checking state back to its pre-Windows setting.

pseudocode for InternalDisableDOS() - ENABLE.OBJ

AX = FInt21
FInt21 = 0

if (AX == 0)
return

II Indicating that we've "disabled" DOS?

II Was DOS "disabled" already???

PSysProc(2, t) II Enable 1 drive logic, via InquireSystemC)

PrevInt21Proc(AX = 3301h, DL = 0) II Disable CTRL-C checking

II Set the INT 21h handler address back to its old value
PrevInt21Proc(AX = 2521, DS:DX = PrevInt21Proc)

INT 21h, AX = 352Fh
MyInt2F = ES:BX

II Get the current INT 2Fh handler

II Restore the original interrupt/exception handlers for
II the usual cast of hooked vectors.
INT 21h, AX = 2500h, DS:DX = PrevIntOOProc
INT 21h, AX = 2524h, DS:DX = PrevInt24Proc
INT 21h, AX = 252Fh, DS:DX = PrevInt2FProc
INT 21h, AX = 2502h, DS:DX = PrevInt02Proc
INT 21h, AX = 2504h, DS:DX = PrevInt04Proc
INT 21h, AX = 2506h, DS:DX = PrevInt06Proc
INT 21h, AX = 2507h, DS:DX = PrevInt07Proc
INT 21h, AX = 253Eh, DS:DX = PrevInt3EProc

WINDOWS INTERNALS

INT 21h, AX = 2575h, DS~DX = PrevInt75Proc

II Set the CTRL-C checking state back to what it was when
II KERNEL started (in InitDOSVarP()).
INT .21h, AX = 3301h, DL = FBreak

Summary
Working through the mechanics of a Windows startup and shutdown exposes many different
aspects of Windows. To describe the inner workings of each aspect would be a truly enormous
task. This chapter is intended to serve as a sort of rOl}.d map to the rest of this book. Don't
hesitate to go off and study the parts of Windows that this book does cover and then come
back to this chapter. Understanding Windows is not an all or nothing proposition. Rather, the
purpose of reading this book is to continually refine your working model of Windows.

Windows Memory
Management

The most fundamental function of any operating system is memory management, which is the
foundation of almost all other operating systems services. Poorly written memory manage
ment code results in operating systems that are both unreliable and difficult to program for.
Just look at the state of MS-DOS programming today! Large portions of the KERNEL code
address the complex task of managing memory on a CPU architecture that can at best be
described as quirky. A fair amount of the KERNEL memory management code deals with the
restrictions of the Intel80x86 CPU's segmented architecture.

This chapter examines in detail how KERNEL orchestrates all the complex actions that go
on in the global and local heaps, emphasizing Windows 3.1 Enhanced mode, but mentioning
Standard mode and Windows 3.0 where appropriate. This chapter starts out with an overview
of Windows memory management. Next, it dives into the low level selector APIs that support
the higher level memory management. After that it goes through the heap functions in detail
and gives the pseudocode for the various functions, including documented, undocumented
and internal functions. This chapter is not a substitute for the actual documentation, but
instead, shows you what actually goes on inside the heap functions. The functions' use deter
mine their order, rather than their alphabetical order. The chapter finishes with a look at
memory management at the application level.

79

WINDOWS INTERNALS

Outline of the Memory Management Functions

A quick glance at the table of contents tells you that this chapter is well over 100 pages in
length. It covers a phenomenal amount of information, mainly because Windows provides
dozens of memory management APIs. There is definitely more going on here than mallocO
and freeO calls! Because there are so many functions, it's not absolutely necessary to read this
chapter from beginning to end. Consider much of this chapter to be a reference to use when
you need to know the details of a particular memory management API.

Many of the functions covered here call helper functions. In many cases, this chapter pro
vides pseudocode for those functions as well. Because paper is a two-dimensional medium, it
is necessary to stdng the function descriptions one after the other. This increases the difficulty
of seeing the surrounding context of a function when you're several layers deep inside a func
tion call hierarchy. To attempt to remedy this, Table 2-1 shows the functions and data struc
tures in outline form. Note that many of the routines are called by several different routines.
In each case, however, the routine only appears once in the outline. The top level function
entries appear in a logical order, working from most to least important (although you might
have grouped them differently).

You may be wondering why the selector functions come first, before the more familiar
global heap functions. Ordering the chapter in this manner allows each section to build upon
the previous section. The global heap functions absolutely depend on the selector functions.
The local heap functions depend on the global heap functions. The idea, while not 100%
achievable, is to avoid as many forward references as possible.

Table 2·1: Outline of Functions and Data Structures.

The selector functions
AllocSelector()
AllocSelectorArray()

GeCSel()
FreeSelector()

FreeSelArrayO
Free_SelO

GetSelectorLimitO
SetSelectorIimit()
GetSelectorBase()

GeCPhysical_Address()
SetSelectorBase()
PrestoChangoSelector()
AllocDStoCSAlias()

AKA()
AllocCStoDSAlias()

The global heap data structures
The Burgermaster segment

GlobalInfo structure
GlobalInfo structure
Global heap arenas
Selector table (not the LDT)

Memory blocks

CHAPTER 2 .,....- WINDOWS MEMORY MANAGEMENT

Table 2-1: Outline of Fundions and Data Strudures. (continued)

The global heap functions The local heap data strudures
GlobalInitO The LocalInfo structure

GInit() Arenas
GlobalAlloc() handle tables

GbTopO
GAlloc()

GSearch()
GrowHeap()
GCompact()

GlobalFree()
GFreeO

Free_ObjectO
GlobalLock()
GlobalUnlockO
GlobalHandle()

MyLockO
XHandle()

GlobalReAlloc()
GlobalDOSAlloc()
GlobalDOSFree()
GlobalCompact()

InnerShrinkHeap()
UnlinkWm386BlockO

GlobalFix()
GlobalUnfixO

GUnLockO
LockSegment()
U nl6ckSegment()
GlobalPageLock()
GlobalPage U nlock()
GlobalWrre()

GWrreO
GlobalU nwireO
LRUSweep()

, GlobalLRUNewestO
GlobalLRUOldestO
GlobalFlags()
GlobalSize()
GlobalNotifyO
(JetFreeSpaceO

GetDPMIFreeSpace()
GetFreeMemInfo()
SetSwapAreaSize()

CalcMaxNRSegO
GReserve()

The local heap functions
LocalAllocO

LAlloc()
LocalFreeO
LocalRealloc()
LocalLock()
LocalU nlock()
LocalHandle()
LocalSize()
LocalFlags()
LocalInit()
LocalHeapSizeO
LocalHandleDelta()
LocalShrink()
LocalCompact()
LocalN otifY()

LocalNotifyDefaultO

WINDOWS INTERNALS

This chapter assumes that you are at least passingly familiar with 80x86 protected mode,
for example with such concepts as segments, selectors, descriptors, and privilege levels. If not,
you might want to find a book or two on these concepts (see the bibliography for some sug
gestions), and become familiar with them. This book doesn't cover these topics, as they've
already been done to death in other books; it uses the available space to cover memory man
agement, rather than CPU architecture.

Windows 3.1 works on both 80286s and 80386s. (From this point on, references to 386s
also include the 486s. and above.) Because the 386 has vastly improved memory capabilities
like 32-bit addressing and paging, the designers of Windows felt that it was important to have
two interchangeable KERNEL modules to take advantage of both chips, rather than one
KERNEL module for the lowest common denominator, the 286. The two different KERNEL
DLL files are KRNL286.EXE and KRNL386.EXE. Examine the debuggingC information
that's included with the debugging versions of the two KRNLx86 files and note that there are
entirely different source files for the memory management code in· KRNL286 and in
KRNL386. The local heap code and all other files unrelated to memory management (for
example, the program loader) are the same in each DLL. The memory management source
files have names like 2GINTERF.ASM for KRNL286 and 3GINTERF.ASM for KRNL386.
The functions inside the various files have the same names in both the 286 and 386 versions.
The idea is that the code provides one consistent memory management API to the rest of
Windows, but optimizes the internals of each routine for the particular CPU it runs on.

The first thing to note when discussing Windows memory management is that Windows
is just a DOS extender with a graphical user interface. During the design of Windows 3.0,
Microsoft and various other companies hammered out an interface that would allow the Win
dows DOS extender, KERNEL, to coexist with other DOS extenders. This agreement
resulted in the DOS Protected Mode Interface (DPMI) specification. It is important to realize
that DPMI itselfis nota DOS extender. Instead, it is a common foundation on which to build
DOS extenders. A device driver or program that provides DPMI services is henceforth called a
DPMI server. Protected mode Windows is a DPMIclient. We won't dwell on the specifics of
DPMI here because numerous good magazine articles and sample programs cover this sub
ject. However, because of the crucial role DPMI plays in Windows memory management, it is
highly recommended that you at least be somewhat familiar with it.

Windows ships with two different DPMI servers. The DOSX.EXE file in the Windows
SYSTEM directory is a fairly simple DPMI server that works on 286s and above. Standard
mode Windows uses DOSX, which provides a subset of the DPMI 0.9 specification and no
support for virtual memory or paging. Windows 3.0 Standard mode loads DOSX first and
then loads KRNL286 on top of it (see Chapter 1). In Windows 3.1, specifYing Standard
mode with the /S switch to WIN.COM, while running on a 386 or higher, loads DOSX, but
KRNL386 loads instead of KRNL286. In this case, the memory management is the same as
Windows 3.1 Enhanced mode, but there is no virtual memory available. To get Standard
mode KERNEL memory management in Windows 3.1 (such as for testing), either run on a
286 machine or delete or rename KRNL386.EXE so that DOSX cannot find it.

The other DPMI server provided with Windows is inside the Virtual Machine Manager
(VMM) , which in turn is inside WIN386.EXE. It provides a full 32-bit DPMI 0.9 implemen
tation-minus a few bugs-and supports disk-based virtual memory by utilizing the paging

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

architecture of the 386. Setting "Paging=O" in the [386Enh] section of the SYSTEM.INI dis
ables the virtual memory feature, which you might consider doing for performance reasons if
you have enough RAM in your machine. .

Later examples show that many ofWIN386's DPMI functions are implemented in termS
of functions in the VMM. The Windows Device Driver Kit (DDK) documents these func
tions, which allows you to dig even deeper into the memory management mechanics. A good
source of information on these issues is Andrew Schulman's article on demand-paged virtual
memory in the December 1992 Microsoft Systems Journal. Besides 386 memory manage
ment, WIN386 provides other services, but this book only discusses memory management,
not DOS extenders.

It is very important to note that WIN386's and DOSX's memory management is entirely
distinct from the KERNEL memory manager and is not dependent on KERNEL for any
thing. In general, KERNEL itself does not manipulate the global descriptor table or handle
page faults, things which DOSX or WIN386 handle entirely. KERNEL leaves almost all of the
really low level contortions to DOSX and WIN386 and usually uses the DPMI interface. to
direct them what to do. Proof of this separation is evidenced by. the fact that KRNL386 can
run on top of either DOSX or WIN386, using INT 31h, the DPMI interrupt, to communi
cate with them.

The discussion of the modes of Windows would not be complete without at least men
tioning Windows 3.0 real mode. Real mode Windows deserves no more than a mention
because it was a complete waste of time. Hardly anyone used it, mostly b~cause it was unus
able. Unfortunately, many of the idiosyncrasies and horrible things that real mode Windows
required carried over to new Windows programmers as the gospel truth. This' generation of
programmers' knowledge of Windows memory management is, therefore, a hodge-podge of
myths and lore picked up from various books and from conversations with other program
mers. Programmers often overlook the fact that Standard and Enhanced mode don't require
most of these atrocious practices; realizing that real mode Windows no longer exists facilitates
a true understanding of what goes on under the hood.

A source of confusion among many programmers is the distinction between paging and
segmentation, and how this distinction affects their program. Many of their questions presup
pose that KERNEL plays with both pages and segments. This is quite simply not true. KER
NEL deals with memory in terms of segments and blocks of memory allocated by using
DPMI. WIN386 provides the necessary DPMI services and deals with memory in terms of
pages. The virtual memory WIN386 provides is exactly ~hat the name implies, virtual. Using
the paging mechanism of the 386, WIN386 creates large spans of linear memory addresses
that mayor may not have physical memory mapped. to them. It is important to understand
that a linear address which KERNEL deals with does not necessarily correspond to the physi
cal address that the CPU puts on the' address bus. WIN386 and the paging unit of the CPU
handle all of the address translations in order to provide large contiguous blocks of linear~
not necessarily physical-memory. KERNEL in turn allocates large blocks of linear memory
from DOSX or WIN386, through DPMI, and manages them with fairly standard heapalgo
rithms. The fact that the memory allocated from WIN386 may not all be physically present is
not important to KERNEL.

WINDOWS INTERNALS

Think of physical memory as a sandbox that Windows and your programs play in. The vir
tual memory WIN386 provides simply creates a bigger sandbox, but it contains no more sand
(physical memory). Put another way, physical memory is the amount of sand you have, while
linear memory is the size of the sandbox. The virtual memory manager of WIN386 makes
sure that there is adequate sand in the spots where play is going on (that is, in the most
recently used memory). In the areas where nobody is playing (the least recently used mem
ory), there's no sand (the memory is paged to disk). At any given time, there are regions of
linear memory (the sandbox) that don't have any physical memory (sand) associated with
them. A linear memory address, which corresponds to a particular spot in the sandbox, never
changes. On the other hand, a physical address (the sand) needs to move around in order to
be in the most recently used spots in the sandbox. The physical address moves around
through the paging mechanism of the 386 architecture, which allows a physical address to
map to any given logical address.

To stretch the analogy a bit further, for spots where you want to always have sand,
regardless of where you're currently playing, you can prevent the paging mechanism from
moving sand away from that area (pagelock the memory). The point is that the KERNEL
memory management layer doesn't really care about the mechanisms of paging and virtual
memory. It just knows that wherever it goes, there will be sand.

Two Kinds of Heaps

KERNEL allocates large regions of memory, typically 64K or 128K each, from the DPMI
layer and maintains a global heap that divides these regions up into smaller areas, accessible by
selectors. As we'll see later, a similar process happens on a smaller scale when global heap
blocks are carved up for the local heap. For each global heap block that is carved out of the
larger DPMI block, there is' an associated selector. Your program sees these smaller blocks as
segments and manipulates them with APIs such as GlobalAlloc() and GlobalFree().

Unfortunately, this process by itself is insufficient. Due to the architecture of the 80x86
cPUs, KERNEL needs to provide two kinds of memory management. Specifically, the seg
mented architecture and descriptor tables only allow for a maximum of 8,192 segments,
which is prohibitively small. A program that allocated all of its memory from the global heap
would use a new selector each time. WIN386 or DOSX would very quickly run out of avail
able selectors. To remedy this situation, your program can allocate memory in small chunks
from within a global heap block, without allocating a new selector for it. In Windows this is
called a local heap. KERNEL provides a full set oflocal heap functions that are very similar to
the global heap functions, and that allow you to create and manage local heaps within global
heap blocks.

In DOS, INT 21h, function 48h allocates memory which is the equivalent of a global
heap block. DOS has no equivalent for a local heap block, but the run-time libraries of many
compilers provide functions (like the C mallocO function) that create and manage heaps
within a block allocated from DOS. The main reason for doing this is because of the much
higher overhead associated with allocating a system block than with maintaining a sub-heap.
The same is true in Windows. Blocks allocated from a Windows local heap do not cause the

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

allocation of a new selector; and the maintenance of each block requires much less space than
a global heap allocated block would.

Surprisingly, OS/2 2.0 maintains this notion of global and local heaps, even though it's a
flat model operating system and doesn't use selectors at the application level. Instead,. the
operating system allocate global heap blocks in chunks that are multiples of 4K for paging
purposes. Each of these blocks has a fairly large administrative overhead. When your program
needs to make numerous small allocations, it uses suballocation functions like DosSub
SetMemO to manage local heaps within the larger global heap blocks.

Memory Attributes
The 80x86 architecture allows (nay, forces) protected mode segments to specifY whether they
contain code or data. While a good start, KERNEL needs more information to manage seg
ments and local heap blocks effectively. Thus, each block that's allocated from a global or
local heap has additional attributes associated with it.

One of the problems with most heap schemes, including KERNEL's, is that many alloca
tions and de allocations can fragment the heap. To help alleviate this situation, KERNEL uses
MOVEABLE blocks. When you allocate a block of memory or specify a segment attribute in a
.DEF file, MOVEABLE is one of the possible attributes. However, if a block is MOVEABLE,
its address can't be given to you when you allocate the block. Instead, you need to tell the
operating system when you want to use' the memory by calling a function (GlobalLockO or
LocalLockO). The operating system at this point gives you back an actual address for the
block and promises not to move it (at least, not in a way that will affect you) until you call the
corresponding unlock function. Early programming guides for Windows recommend that you
lock and unlock your block each time you use 'it, suggesting that keeping a block locked
across different Windows messages is risky. Obviously this major inconvenience causes maj()r
headaches for new Windows programmers. Fortunately, this advice was written withreal
mode Windows in mind, so programmers can now ignore it. Assuming that your program
only runs in protected mode (Standard or Enhanced), forget most of the advice and dramati
cally simplifY your code by keeping your MOVEABLE blocks locked. In the vast majority of
programs, you can mark the code and data segments as MOVEABLE; and that's all you need
to think about. More on this later.

The opposite of a MOVEABLE block is a FIXED block. A block that does not have the
MOVEABLE attribute set is implicitly FIXED. ,FIXED blocks do not move in linear memory.
Therefore, when KERNEL allocates a FIXED block it returns the block's address to you at
that time. A global heap allocation returns a selector to reference the memory. A local heap
allocation returns the offset of the block within the segment. The downside to FIXED blocks
is that because Windows cannot move them around, they can become "sandbars" in linear
memory, preventing heap compaction from freeing up the maximum possible memory.
Except in a few special cases, discussed a bit later, there's really no reason to use, FIXED
global heap blocks.

Another attribute available to heap blocks in Windows isDISCARDABLE. DISCARD
ABLE memory can be thrown away, when the local or global heap manager needs to free up
some space. When the previously discarded memory is needed <;I.gain, it must be reloaded from

WINDOWS INTERNALS

disk or somehow be re-created. The most common use of DISCARDABLE memory is in
application code segments and resources. Since code segments and resources are typically
never written to, the program can reload them from the original .EXE or .DLL file as needed.
KERNEL takes advantage of the "segment not present" fault to detect when it needs to
reload a segment or resource from disk, thereby relieving you of the need to worry about dis
carded code or resources.

It is possible to have DISCARDABLE data in both the local and global heap. However,
KERNEL does not swap anything to disk when it discards memory, as many people assume.
Whatever was in the segment is simply gone, and it is up to you, the programmer, to some
how re-create the memory in the segment when you need it. For this reason, most program
mers forgo using DISCARDABLE data, as it's not worth the effort. If you do want to use
DISCARDABLE memory, you can take advantage of the KERNEL facilities that notifY you
when KERNEL is about to discard a block of memory. More on this subject later.

One wrinkle in the above discussion bears examination. Don't confuse the tact that KER
NEL does not swap memory segments to disk with the virtual memory paging in Enhanced
mode Windows. Previously, we mentioned the two separate layers of memory management,
WIN386 and KERNEL. The KERNEL memory manager never swaps segments to disk. It
may discard segments in tight memory conditions, but it does not write anything out to the
disk. The PageSwap VxD in WIN386, on the other hand, copies memory out to its swap file
for later retrieval, as needed. The key point is that there is almost no coordination going on
here between KERNEL and WIN386. Thus, using virtual memory in Enhanced mode allows
Page Swap to be able to swap your memory to disk, even if the memory is not marked as
MOVEABLE or DISCARDABLE. Just remember, it's not KERNEL that's doing it. And if
you run your application either in Enhanced mode without virtual memory or in Standard
mode, then KERNEL will never swap your data to disk. Since it's not safe to assume that
everyone runs Enhanced mode Windows with a large swap file, understanding these concepts
will help you design your application to be memory friendly.

The Selector Functions
Later on, this chapter examines the functions and workings of the global heap, including such
familiar faces as the GlobaWlocO and GlobalLockO API calls. In order to really understand
the global heap, it's important to have a firm grounding in the selector functions. Allocating
memory from the global heap, actually allocates two things, the actual memory and the selec
tor for referencing the memory. The selector corresponds to a descriptor in the LDT; it is this
space in the LDT which must be allocated. In the beginning, there is no implicit connection
between memory in the global heap and any given selector. As you'll see later, a fair amount
of global heap code works to weld a usable block of memory and a selector together. Because
this is so important, you need to be familiar with the selector functions before taclding the
global heap.

Windows was supposed to be a break from the "bad old days" of DOS programming,
when every part of the program was somehow tied to the architecture of the machine. The
idea was that Windows programs would use the nice set of global and local heap allocation
functions, and would never need to know about selectors and such. As has happened time and

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

again, Microsoft underestimated the need to provide programmers with documented methods
for getting at the lower levels of things. The selector functions are one such example.

The global heap manager in KERNEL needs to allocate and manipulate selectors and
descriptors. Unfortunately, Microsoft overlooked the need for certain classes of application
programs to do the same thing. Thus, several extremely useful selector manipulation functions
in KERNEL were not documented until Windows 3.1.

Besides the selector manipulation functions, KERNEL also provides access to certain
commonly accessed spaces within the lower 1Mb of memory. For instance, there is the ROM
BIOS data area at real mode segment 40h, or the machine ID byte at the end of the real
mode segment FOOOh. In fact, text-based Windows debuggers, such as TDWand CVW, use
these selectors to write to their text mode screen. KERNEL allows access to this memory by
creating a selector that maps the memory, starting at the desired address. The selectors have
symbolic names associated with the region they map to. KERNEL provides (or exports) the
following predefined selectors:

__ ROMBIOS II Maps to segment OFOOOh
__ OOOOH
__ 0040H
__ AOOOH
__ BOOOH
__ COOOH
__ B800H
__ DOOOH
__ EOOOH
__ FOOOH

II Limit is 2FFh (300h bytes), rather than FFFFh {64K) Like the others

The offset of the address obtained by calling GetProcAddress() on these symbols isthe
selector value. For instance, to get the selector for _FOOOH, you could use:

seLector = LOWORD{ GetProcAddress{ hModKerneL, " __ FOOOH" »;

where hModuleKernel is the module handle for KERNEL. You can obtain other techniques
and details from the Windows 3.1 SDK documentation or from books like Undocumented
Windows.

When studying the selector functions-as well as the global heap functions later on-it is
important to understand selector tiling. Tiling is a convention that allows KERNEL and your
programs to access spans of memory greater than 64K, even though they only can access 64K
at a time. When a program reaches the end of a 64K block of memory, it switches to another
selector to aCCeSS the memory beyond that. How does it know which selector to usd The
answer is selector tiling. Each successive 64K region of a memory block is accessed by the next
descriptor in the LDT. Since the bottom three bits of a selector value aren't used to index the
descriptor, simply adding one to the selector value doesn't work. Instead, you must add at
least eight, which is the next value that has the same bottom three bits. For instance, allocat
ing a 200K block of memory, with the first selector being 097Fh, would result in the follow
ing tiling layout:

Selector
097Fh
0987h
098Fh
0997h

WINDOWS INTERNALS

Memory Region
0-> (64K -1)
64K ->: (128K: 1)
128K ~> (192IZ-l)
192K-> (200K-l)

Most compilers for Wmdows automatically load the right selector value because they have
knowledge of this selector tiling scheme. In C and C++, declaring arrays with the _huge mod
ifier causes selector tiling to be used. It's important to note that the value of 8 is not hard
coded, but is instead obtained from the value of _AHINCR, which is a KERNEL constant
similar to the predefined selector values just mentioned. Bear in mind that you must be careful
when using huge arrays. If you have an array of structures, and one of the structure elements
straddles the boundary between two 64K regions, a GP fault results when you try to access
the element doing the straddling. Make sure that your data elements are always a power of
two in size, thereby ensuring that they never straddle the boundary.

A final note before jumping into the discussion of the selector functions; Microsoft has
warned repeatedly that future operating systems, such as Windows NT, will not support these
functions, mostly because they allow your program to violate system security. Therefore, if
you use these functions, it's probably a good idea to design your code so as to isolate these
functions in a specific module. If you have to port your program, you should only need to
change the isolated code.

AllocSelectorO
AllocSelectorO, a top level routine, uses GeCSelO (see below) to actually allocate one or
more tiled selectors. When AllocSelector() receives a valid selector handle, the routine uses the
80x86 Load Segment Limit (LSL) instruction to determine how big the segment is and allo
cate an appropriate numbers of selectors. The routine then copies the passed segments' attri
butes to the descriptors for the newly allocated selectors, and tiles the base address of each
selector so that it comes directly after the end of the preceding selector's 64K memory range.

pseudocode for AllocSelector() - 3PROTECT.OBJ
II Parameters:

II WORD copy_sel II Selector to copy, or 0
II Locals:
II DWORD l imi t II segment limit of copy_sel
II WORD selectors_needed II actually in CX register
II WORD return_selector II Selector we'LL return
II char copy_descriptorCSJ

selectors_needed = 1 II default to just 1 selector

limit = 'LSL copy_sel II Sets Zero flag is successful

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if (not Zero flag)
{

II passed selector was 0 or no good

}

else
{

}

II Get just 1, "raw" selector. The attributes and RPL
II fields will be filled in later.
return_selector = Get_Sel(selectors_needed

selectors_needed = (limit » 16) + 1 II 1 selector=64K
return_selector = Get_Sel(selectors_needed)
if (return_selector) II Make sure we got the selectors
{

}

make a copy of copy_sel's descriptor table into the
copy_descriptor local variable

II Fill in the 1 or more new descriptors, using the
II data in copy_descriptor as the model
Fill_In_Selector_Array(return_selector

return return_selector

A"ocSe'ectorArray()
AllocSelectorArray(), an undocumented function, uses the same Get_SelO routine that
AllocSelector() uses, and which this chapter covers below. After obtaining the desired number
of tiled selectors, AllocSelectorArrayO fills in their associated descriptors with the DATA and
PRESENT attributes.

pseudocode for AllocSelectorArray() - 3PROTECT.OBJ
II Parameters:
II WORD selectors_needed
II Locals:
II WORD selector

II Get_Sel() will try and find 'selectors_needed' free
II contiguous selectors. It's important that the selectors
II be contiguous so that they can be "tiled" for blocks> 64K
selector = Get_Sel(selectors_needed)

Starting with 'selector', and continuing for
'selectors_needed' descriptors, fill in each LDT descriptor
with the DATA and PRESENT attributes
return selector; Ilreturn first selector in array

WI N DOWS INTERNALS

CeCSelO
GecSelO, a low level internal routine that is at the core of the selector management system, is
a strange routine, in thatit bypasses some of the DPMI services and does its own thing.

The low level KERNEL routines are not shy about considering the LDT to be their own
little playpen. GeCSelO allocates large blocks of selectors from DPMI and maintains them in
a linked free-list, storing the link pointers in the descriptors themselves. See the pseudocode
for details on this.

Why does KERNEL bypass DPMI? Wasn't DPMI created to prevent this kind of muck
ing with sensitive system resources? The answer is yes. However, there often comes a point
where proper code and performance clash head to head. The KERNEL developers built and
tested a version of KERNEL that allocated each and every selector from DPMI. The develop
ers saw enough of a performance hit with this KERNEL that they felt hacking the code to
access the LDT directly was worth it. The code is compatible with DOSX and WIN386, in
that it still allows other programs to allocate selectors from the DPMI server. Unfortunately,
this version of KERNEL creates a hidden assumption about the way the DPMI host manages
the LDT. If another DPMI host wishes to replace WIN386 or DOSX, it must organize the
LDT in the same manner. However, the DPMI specification doesn't tell a DPMI host to
manage the LDT in a particular manner, which creates another ambiguity between the written
and real DPMI specifications.

If just one selector is required, Get_SelO grabs the first entry in the free list. If the caller
requests more than one selector, Get_SelO must find a block of contiguous selectors, so that
they can later be tiled to access memory blocks greater than 64K In this case, GeCSelO
searches the free list of selectors for a block of contiguous selectors that's big enough. If for
some reason Get_SelO cannot allocate a selector or selectors, GeCSelO makes a request to the
DPMI server for the desired number of selectors.

Once GeCSelO finds a selector, there's still some housekeeping to do. If the number of
free selectors drops below 256 in Enhanced mode, GeCSelO calls DPMI to allocate another
256 selectors and adds them to the free list.

Finally, GeCSelO makes sure that the highest selector allocated is mappable by the selec
tor table. The global heap discussion covers details of the selector table. For now, just say that
it's an array of offsets to information about each allocated selector/segment. The selector
value is an index into this array. If the selector value indexes to a location past the end of the
array, GecSelO gives up and frees the selectors back to DPMI.

A selector returned by Get_SelO has none of its attributes (for example, code or data),
descriptor tables, or privilege level bits set; the selector and corresponding descriptor is a clean
slate. The higher level routines that call GecSelO are responsible for setting the bits to appro
priate values before returning the selector to the application.

pseudocode for Get_Sel() - 3PROTECT.OBJ
II Parameters:
II WORD selectors_needed
II Locals:
/1 WORD Return_Selector

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II FirstFreeSel is a pointer to the first free
II selectorldescriptor in the LDT. For a non-present selector,
II most of the 8 bytes in a descriptor are available for
II whatever the operating system wants. KERNEL uses the first
II 2 bytes (bit 0-15 of the limit field) to maintain a linked
/I list of the free selectors. The "first" free selector
II doesn't really get allocated. Instead, the selector that
II comes next in the list is the one that's allocated and
II removed from the free list.
if (*FirstFreeSel == -1)

go to try_DPMI

if (selectors_needed -- 1)
{

}

II Mark the selector as "in-use" by KERNEL
Put OFh into the "type" bits of the "access rights" field

II remove the allocated selector from the free list
Return_Selector = FirstFreeSel->next
FirstFreeSel->next = Return_Selector->next

lIse lectors needed> 1
Walk the free list of selectors. For each selector, see
if there are enough contiguous free selectors to satisfy
the requested number of selectors.

If (large enough block of selectors is not found)
goto try_DPMI

else
Return_Selector = first selector of contiguous block

loop through each of the selectors in the contiguous group
that was found, and put OFh into the "type" portion of the
"access rights" field. KERNEL uses this to indicate an
in-use selector

call INT 31h, fn. OOOOh to allocate the number of selectors
given by 'selectors_needed'. Store the selector that DPMI
gives back into Return_Selector.

WINDOWS INTERNALS

if (couldn't allocate selectors from OPMI)
{

}

Return_Selector = 0

if debug KERNEL
output a message: "Out of selectors"

have_a_selector:

CountFreeSel -= selectors_needed II Update global variable

II If we're in Enhanced mode, and we start getting low on
II free selectors in our list, go allocate some more and
II put them in the list
if (WF_ENHANCEO bit set in WinFlags)
{

}

if (CountFreeSel < o1ooh)
{

}

II If the LOT hasn't been grQwn to its fullest
II size yet, then allocate more selectors
if (segment limit of LOT < oFOooh)
{

}

INT 31h, fn. 0000 to allocate 100h selectors

II put the new selectors in the free list
if (allocation succeeded)

call Free_Sel() for each of the 256 selectors

check_selector_table_len:

if (SelTableLen != 0)
{

}

II Make sure the handle->arena mapping table is big
II enough to hold the data for the most recently
II allocated selectors
if (address of selector table entry for the highest

numbered selector is greater than SelTableLen)
{

}

loop through all the allocated selectors, calling
INT 31h, fn. oo01h.to free it up to OPMI, since it
won't be mappable by the selector table.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

return Return_SeLector

FreeSelectorO
This documented API is just a wrapper around the FreeSelArrayO routine, described below.

pseudocode for freeSeLector() - 3PROTECT.OBJ
II Parameters:
II WORD SeLTofree

freeSeLArray(SeLTofree

FreeSelArroyO
FreeSelArrayO takes the first selector in an array of tiled selectors and frees up the whole array.
It first does some sanity checking, including the 80x86 Load Access Rights (LAR) instruction,
on the passed-in selector. A strange selector catches the attention of FreeSelArrayO, which
calls Free_Sel() on just that one selector. On the other hand, if the selector looks good,
FreeSelArrayO calculates the number of selectors in the group and then calls Free_SelO on
each selector in turn. Free_Sel() is described below.

pseudocode for FreeSe LArrayO - 3PROTECT.OBJ
II
II
II
II

Parameters:
WORD SeLTofree

LocaLs:
WORD freeUpCount (in CX)

freeUpCount = 1

OR on bottom bit of SeLTofree, to convert to a seLector vaLue
in case it's a handLe.

if (using LAR on SeLTofree faiLed (Zf set» II VaLid selector?
go to caLL_free_SeL II Just 1 seLector

if (SelTofree's seLector indicates it's a "system" segment)
goto caLL_free_SeL II Just 1 selector

II CaLcuLate the number of selectors to be freed
if (SetTofree's segment is present in memory)
{

Length = LSL SeLTofree
if (LSL failed)

go to caLL_free_SeL

II first selector has 32-bit Limit
II Something bad happened ...

}

WINDOWS INTERNALS

II CaLcuLate how many tiLed seLectors there are by
II assuming 64K per seLector.
freeUpCount = (Length » 16) + 1

eLse II segment not present. Get number of seLs via DPMI
{

}

INT31, fn. 0006 on SeLToFree -> Linear address of segment

II The number of seLectors for a discarded segment is
II kept in the base address fieLd of descriptor
freeUpCount = LOWORD(Linear address) » 8

ca L L F ree_Se L :

II Iterate though each of the seLectors in the array, freeing
II each up in turn.
for (i=O; i < freeUpCount; i++
{

Free_SeL(SeLToFree)
SeLToFree+= 8 II Point at next seLector in array

II __ AHINCR == 8
}

FreeSelO
FreeSel() examines the passed-in selector. If the selector's value is too high for it to have been
mapped through the selector table, it must have been allocated directly from DPMI. Thus,
FreeSel() frees the selector back to DPMI. Otherwise, the function simply adds the selector to
the front of the free list of selectors in the LDT.

pseudocode for Free_SeL() - 3PROTECT.OBJ
II Parameters:
II WORD SeLToFree

if (GDTOsc == 0)
goto Free_to_DPMI

II GOTOsc is the seLector for the
II memory containing the LDT.
II What a confusing name!

II Convert SeLToFree into a seLector tabLe offset
turn off bottom 3 bits of SeLToFree. WARNING! This assumes
that the seLector is from the LOT, and not from the GOT.

II Determine if the seLector is a "normaL" one that has its
II arena pointer stored in the seLector tabLe. If not, free
II the seLector to OPMI, rather than putting it back in
II the seLector free-List.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if ((SelToFree » 1) > SelTableLen)
go to Free_to_DPMI

CountFreeSel++ II We have 1 more free selector!

Insert SelToFree in the LDT free list. FirstFreeSel->next
now points at SelToFree's descriptor entry. Set bits
in the descriptor entry to indicate that the selector is
now available for reuse.

return to caller

OR on the bottom bit of SelToFree to make sure it's a
selector, rather than a handle

INT 31h, fn. 0001 on SelToFree II Free it to DPMI server

return to caller

GetSelectorLimltO
A selector's limit is its last valid byte offset. For example, a 16-byte segment has a limit of 15,
reading a byte from offset 15 is fine, but reading a two-byte word causes a GP fault. Although
there is a DPMI function to set the selector limit, no DPMI function just gets the selector
limit. However, the Intel protected mode architecture provides a Load Segment Limit (LSL)
instruction, and the KERNEL GetSelectorLimitO function is essentially just a wrapper around
this. Note that both GetSelectorLimit() and SetSelectorLimitO ignore the page granularity
bit. The 32-bit limit is stuffed into DX:AX for the benefit of 16-bit code.

pseudocode for GetSelectorLimit() - 3PROTECT.OBJ
II Parameters:
II WORD selector

XOR EAX, EAX ; If LSL fai ls, return a
LSL EAX, selector ; Get the limit in EAX

MOV EDX, EAX ; Put the high WORD in EDX,
SHR EDX, 16 ; then shift it down to DX

return DX:AX

SetSelectorLimltO
Rather than call the DPMI function to set the limit of a selector, the code instead directly
bashes the new limit into the Local Descriptor Table (LDT) entry, yet another example of
performance taking precedence over correct code.

WINDOWS INTERNALS

pseudocode for SetSelectorLimit() - 3PROTECT.OBJ
II Parameters:
II WORD selector
II DWORD newLimit

AND off the bottom three bits of selector to get the offset
of the descriptor in the LDT. Each descriptor is 8 bytes, so
ANDing off the bottom 3 bits of a selector turns it into a
descriptor-table offset. This trick is used throughout KERNEL.
WARNING! This assumes that the selector is from the LDT, and
not from the GDT. Bit number 2 determines if the selector is for
the LDT or the GDT. Since it's not being paid attention to
here, someone could pass in a GDT selector, and the code would
blindly bash an innocent selector in the LDT.

AND selector, not 7

II Store the bottom 16 bits of the limit
AX = LOWORD(newLimit)
WORD at (GDTDsc + selector) = AX

II Get the high 16 bits of newLimit. Since limits are only 20
II bits long, only the bottom 4 bits matter here
AX = HIWORD(newLimit)

II Leave only the bottom 4 bits of the HIWORD() portion of
II the selector's limit.
AND AL,OF

II Zero out bits 16-19 in the limit portion of the descriptor
AND WORD at (GDTDsc + selector + 6), FO

II Use OR to copy the high 4 bits of limit, rather than MOV
OR WORD at (GDTDsc + selector + 6), AL

return AX = 0

CetSelectorBaseO
GetSelectorBaseO is just a direct call to the Get_Physical_AddressO routine, below.

Cet_Physica,-AddressO
This internal workhorse routine, which is used throughout the memory management code,
takes a selector and returns the base address stored in its descriptor-once again, an example
of a routine that bypasses the DPMI services. Note that the word physical in the function's
name is misleading, since in fact it returns linear addresses, which aren't equivalent to physi
cal memory locations if paging is enabled.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

pseudocode for Get_Physical_AddressC) - 3PROTECT.OBJ
II Parameters:
II WORD theSe lector

AND off the bottom three bits of theSe lector. See the warning
in SetSelectorLimitC). AND theSe lector, NOT 7

II The base address for a segment is stored in three different
II parts of the descriptor. Extract the 3 fields, and put
II into DX:AX Cwhich is the convention for returning DWORDs)
AX = WORD at C GDTDsc + theSe lector + 2)
DL = BYTE at GDTDsc + theSe lector + 4
DH = BYTE at C GDTDsc + theSe lector + 7)

return DX:AX

SetSelectorBase()
This code is almost the mirror image of the GeCPhysical_Address() routine. It bypasses
DPMI in favor of plugging the new base address directly into the fields of the designated
descriptor .

pseudocode for SetSelectorBaseC) - 3PROTECT.OBJ
II Parameters:
II WORD theSe lector
II DWORD baseAddress

AND off the bottom three bits of theSelector. See the warning
in SetSelectorLimitC). AND theSe lector, NOT 7

CX = HIWORDCbaseAddress)
DX = LOWORDCbaseAddress)

II The base address for a segment is stored in three different
II parts of the descriptor.
WORD at C GDTDsc + theSe lector + 2) = DX
BYTE at C GDTDsc + theSe lector + 4) = CL
BYTE at C GDTDsc + theSe lector + 7) = CH

peturn AX = theSe lector

PrestoChangoSelector()
This function has a somewhat interesting story behind it. The Windows 3.0 documentation
describes the function ChangeSelector() as toggling a descriptor between CODE and DATA.
Unfortunately, KERNEL exported no such function. Strangely enough, however, an undocu
mented function called PrestoChangoSelector() did the things which were described in the ,

WINDOWS INTERNALS

ChangeSelectorO documentation. But wait, there's more! The arguments to PrestoChango
SelectorO were reversed from the ChangeSelector description. Eventually, Microsoft 'fessed
up and admitted that you could use the undocumented PrestoChangoSelector() function.
Most likely, in the mad rush to get Windows 3.0 out the door, the coders at Microsoft forgot
to change the name of PrestoChangoSelectorO to ChangeSelectorO; and the documentation
people probably thought that this name change had occurred. On the other hand, developers
often like to personalize their code, so perhaps they didn't forget! In Windows 3.1,
ChangeSelectorO has mysteriously disappeared, while PrestoChangoSelectorO has taken its
place.

The rather simple code for PrestoChangoSelectorO copies the source selector's descriptor
into the destination selector's descriptor, and then XORs the CODE bit in the destination
descriptor. This has the effect of creating a segment with a code or data attribute which is the
opposite of the source segment's.

pseudocode for PrestoChangoSeLector() - 3PROTECT.OBJ
II Parameters:
II WORD srcSeLector, destSeLector

AND off the bottom three bits of srcSeLector & destSeLector.
See the warning in SetSeLectorLimit().

copy the src descriptor to the destination descriptor (MOVSD)

ToggLe the CODEIDATA bit in the destination descriptor,
using the XOR instruction. presto chango!

OR on the bottommost bit in destSeLector, thereby converting
it to a seLector if it started out as a handLe.

return AX = destSeLector

AllocDStoCSAliasO
Besides PrestoChangoSelector, another Windows function that plays code and data tricks is
AllocDStoCSAlias(). AllocDStoCSAlias() does some setting up and then jumps to the AKA()
routine, described on the next page. AKAO does the real work of allocating the alias descrip
tor. Primarily programs that generate code into a data segment and then wish to execute it
use AllocDStoCSAliasO. Because KERNEL can move segments around in linear memory, the
possibility exists for a code segment alias to get out of synch with its data segment.
AllocDStoCSAlias() checks to see if the data segment is FIXED, which prevents problems
with moving memory around. lfthe segment is not FIXED, AllocDStoCSAlias() checks to see
if the segment has been locked to prevent it from moving, calling GlobalFixO to lock the
memory down, if necessary. Finally, AllocDStoCSAliasO calls AKAO to actually create the
alias selector and descriptor.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

pseudocode for AllocDStoCSAlias() - 3PROTECT.OBJ
II Parameters:
II WORD dataSel
II Locals:
II WORD dataHandle

setup standard stack frame

if debug KERNEL
dataHandle = GlobalHandleNoRip(dataSel)

else
dataHandle = GlobalHandle(dataSel)

if (low bit of dataHandle is set)
goto block_is_fixed

II LOBYTE of GlobalFlags() is the lock count
if (LOBYTE(GlobalFlags(dataHandle)) > 0)

goto block_is_fixed

II Fix the block if not FIXED already, or at least locked
I I This prevents the block fr'om moving. This is probably
II done so that Windows can't move the block, and thereby
II invalidate any alias selectors.
GlobalFix(dataHandle)

remove standard stack frame

DL = 1 II register parameter to AKA()

goto AKA()

AKAO
AllocDStoCSAlias() and AllocCStoDSAlias() use AKAO. The name. is a theatrical term that
stands for "also known as." AKAO allocates a new descriptor, using the Get_SelO routine
described earlier, and copies the source selector into the descriptor for the destination selec
tor. Then, based upon the value of the DL register passed to it, AKAO either sets or turns off
the CODE bit in the descriptor, thereby creating a code segment alias for a data segment, or
VIce versa.

pseudocode for AKA() - 3PROTECT.OBJ
II Parameters:
II .WORD srcSelector
I I BYTE

WINDOWS INTERNALS

II Locals:
II BYTE isData II True if srcSelector is DATA
II WORD aliasSelector

isData = DL

aliasSelector = Get_Sel(1) II Get a new selector for alias

OR on bottom 3 bits of aliasSelector II Make ring 3, LDT sel

Save aliasSelector in ax

AND off the bottom three bits of srcSelector & aliasSelector.
See the warning in SetSelectorLimit().

copy the src descriptor to the alias descriptor (MOVSD)

Turn off the CODE bit in the alias descriptor

if (isData
Turn on the CODE bit in the alias descriptor

DX = srcSelector

return AX = ax II ax = the alias descriptor

AllocCStoDSAlias()
AllocCStoDSAlias() is an undocumented function, a strange state of affairs since its corre
sponding function, AllocDStoCSAlias(), is documented. Perhaps it's because part of the Win
dows "religion" is that code segments are pure and can be shared between multiple instances
of a program. Writing into a code segment puts this idea on very shaky ground, also causing
problems with the idea that the contents of a code segment are read-only and can be dis
carded and then reloaded from the executable file.

The AllocCStoDSAlias() function, only one instruction long, sets DL to zero, and then
falls through to the AKA() function, which expects the same arguments on the stack. Setting
DL to zero indicates to AKAO that it should create a data segment that's aliased to the passed
code segment.

The Global Heap

The most significant portion of the Windows memory management code involves the global
heap code. The global heap code allocates and manipulates memory in terms of 16-bit global
handles. It is now fairly common knowledge that some relationship exists between a global
handle and the actual selector it represents. However, programmers often misunderstand the

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

relationship. Thus, a lot of half-truths and mythical information float freely around; This section
puts these issues to rest and takes advantage of the glorious freedom that arises from not having
to contend with real mode Wmdows. Afterwards, we'll examine the global heap in detail.

Every block allocated from the global heap has a selector associated with it. The handle of
a FIXED block is exactly the same as the selector. The internals of the global heap depend on
this. However, a block that is MOVEABLE, which most blocks are, has a mathematical rela
tionship between the handle and the selector. It is not safe, though, to assume what the rela
tionship is without completely understanding the entire situation.

What then, is the relationship between a selector and its handle? To answer this question,
let's first do a very quick review of what a selector looks like. The bottom two bits are the
requested privilege level (or RPL) of the selector. The bit above those, bit 2, defines which
descriptor table, local or global, that the selector references. The remaining top 13 bits are an
index into the descriptor table.

Windows 3.0 runs the application code and data segments at ring levell, making the bot
tom two bits of the selectors 01. All selectors from the global heap are from the local descrip
tor table (represented by a value of'l' in bit 2). Thus, the bottom most three bits of a normal
Windows 3.0 selector are always 101. Translating these bits into hex numbering means that
the values of all selectors end with a 5 or a D, for instance, Ox0835 or Ox097D. In Windows
3.0, the handle for a MOVEABLE block is the selector value plus one. In the above examples,
the corresponding handles would be Ox0836 and Ox097E. Some applications took advantage
of this relationship and simply subtracted one from the returned global handles to get the cor~
responding selector value, rather than calling the GlobalLockO function.

When Windows 3.1 came out, this bad practice came back to haunt them. In Windows
3.1, an application runs at RPL 3. Thus, all three of the bottommost bits are .set to 1. Typical
selector values in Windows 3.1 would be Ox0837 and Ox097F. It's.no longer possible to have
the handle· of a segment be the selector plus one, because the bottom three bits would roll
over, and the top 13 bits would index a different descriptor than the selector value does. To
accommodate this change in ring levels, Microsoft changed the handle-to-selector algorithm
so that you subtract one from the selector value to get the handle value. In the above exam
ples, the handle values would be Ox0836 and Ox097E.

The moral of the story here is that it's not a good idea to assume relationships between
handles and selectors. To safely deal with this situation, allocate your global memory and then
call GlobalLockO to obtain a far pointer to the memory. Conventional wisdom at this point
says, go ahead, keep the memory locked, and then unlock it before you free the handle. But
this can be a nuisance because you need to keep around both the original handle and the far
pointer for accessing the memory. To handle this situation in an easier, entirely safe way, allo
cate the memory, lockit, and then forget about the global handle, if convenient. To release
the memory, first call the GlobalHandleO API, discussed later in this chapter, which retrieves
the original handle value from a passed-in far pointer. Pass this handle to GlobalFree.The
Windows 3.1 WINDOWSX.H file provides some nice macros, like GlobalPtrHandleO, for
automating this process.

To further optimize the program, GlobalLockO the handle to get the selector, and then
GlobalUnlockO the handle immediately afterwards. Why does this work? Doesn't a block
have to be locked to keep it from moving around in memory? The answer is no. Windows can

WINDOWS INTERNALS

move MOVEABLE blocks around in linear memory to its heart's content. It always updates
the base address field in the Local Descriptor Table so that once you get a pointer to the
memory, you can use it whenever, regardless of whether it's locked or not. In fact, we'll see in
this chapter that locking a MOVEABLE block has no effect) other than to return the associ
ated selector value. KERNEL only maintains lock counts for DISCARDABLE objects. In
other words:

HANDLE h = GLobaLALLoc (GMEM_MOVABLE, size);
void far * fp = GLobaLLock{h);
GLobaLUnLock{h);
ffuse fp to your heart's content ...
GLobaLFree {GLobaLHandLe (SELECTOROF (fp));

Memory Ownership
Along with the FIXED, MOVEABLE, and DISCARDABLE attributes, the global heap man
ager maintains information on the ownership of a memory block. The owner of a block is typ
ically itself a memory handle. A module table handle owns blocks allocated for sharing by all
users of a module, for example, USER or PROGMAN. These blocks include code segments
and resources. You can also allocate shareable memory with the GMEM_SHARE or
GMEM_DDESHARE flags. Blocks that are allocated this way are also owned by an hModule
remain in memory until KERNEL unloads the module, at which point it also discards the
memory blocks.

When a specific instance of an application uses memory objects, for example, memory
allocated by GlobalAllocO, the PDB of the task that allocated the memory objects owns the
memory. PDBs, which are just DOS PSPs under another name, are discussed in detail in
Chapter 3. The termination of the task and its PDB frees all segments the terminating task
owns.

An important point that many programmers stumble across bears drawing out here.
Memory allocated inside of a D LL belongs to the PD B of the current task, that is, to the task
that made the call to the DLL function. When the task terminates, KERNEL walks through
the global heap and frees up any global blocks that the task forgot to free. If another task then
comes along and uses the DLL, the allocated block is no longer valid, resulting in a GP fault.
The WEP() routine of c++ DLLs suffers especially with this problem. Windows doesn't call
the WEPO function until after KERNEL has freed memory owned by a task. The only way to
force KERNEL to associate the block with the DLL, rather than to the current task, is to allo
cate the memory as GMEM_SHARE, alternatively known as GMEM_DDESHARE. Byallo
cating memory this way, KERNEL will not free up the block until after the DLL unloads
from memory.

To keep ownership straight, remember this rule: Blocks that are allocated as
GMEM_SHARE/GMEM_DDESHARE are owned by the calling module. The calling mod
ule is the module that owns the code segment which called GlobalAlloc(). Memory that isn't
allocated as GMEM_SHARE/GMEM_DDESHARE is owned by the current task at the time
of the allocation.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

In addition to global heap objects that modules or PDBs own, the global heap also con
tains a few objects which KERNEL uses to manage· the heap. For instance, when KERNEL
allocates a new block of memory from DPMI, it also creates global heap blocks that reference
the beginning and end of the block. KERNEL uses these beginning and end blocks to deter
mine if any portion of the main block is in use, as well as to do other housekeeping chores.
The WINKERN.INC file from the DDK defines the special predefined constants with names
such as "BurgerMaster," "Phantom," and "Wraith" which "own" these blocks. More on this
later.

The Layout of the Global Heap
When KERNEL allocates a block of memory from the global heap, it takes into account the
type of memory it's allocating, in order to keep its options free for as long as possible. KER
NEL allocates MOVEABLE and FIXED blocks from the lowest free address in the heap that
will hold the block; and it allocates DISCARDABLE blocks from the highest possible free
address. DISCARDABLE takes precedence over MOVEABLE. The global heap starts some
where below 1Mb, in the DOS transient program area and extends up to the limit of physical
or virtual memory.

There are a couple of reasons for allocating FIXED blocks as low as possible. First,
GlobalDOSAllocO allocates memory that is FIXED, and must be below 1Mb so that real
mode DOS can access. it. Second, the high end of the global heap expands as KERNEL allo
cates more memory from the DPMI layer. It wouldn't do to have FIXED blocks be at the
high end of the heap because as the high end of the heap grew, the FIXED blocks still
wouldn't be moveable. The result would be a lower heap and an upper heap, with the FIXED
blocks wedged in between. This is quite obviously not the same as having one big free area.

To get the feel of the global heap, run HEAPWALKfromthe SDK, or one of the several
equivalent programs. Have the program sort the heap by address, and then take a look at the
bottom portion of the heap. Notice that the heap is not as tidy as described above. For
instance, you might see a group of FIXED blocks, a MOVEABLE segment or two, and then
some more FIXED blocks, which seems at odds with the heap description above, but it's
really not. In this case, a request fora FIXED allocation that would fit the space currently
occupied by the MOVEABLE block would cause KERNEL to place the MOVEABLE block
higher up in memory. This is precisely what the MOVEABLE attribute means .. Put another
way, a block may not start out in the best possible spot, but as applications come and go, and
as segments get allocated and freed, the entropy of the system causes blocks to shift and even
tually settle in a satisfactory manner. The one fly in the ointment here is the presence of
FIXED segments. Where KERNEL allocates them is where they stay. Allocation of FIXED
segments in spots tharMOYBABtE blocks would ordinarily use (high up in the heap) frag
ments the heap until the blocks are freed. Fortunately, Windows 3.1 goes to some length$ to
make sure this fragmentati~n doesn't happen. \

Never Too Big or Too Small
In Enhanced mode, KERNEL attempts to keep the global heap just slightly bigger than the
actual amount of memory WindoWs is actually using at the moment. When a request for more

WINDOWS INTERNALS

memory than is currently available in the global heap is made, KERNEL first tries to grow the
heap by allocating a new, larger block of memory from the DPMI server. If the DPMI server
comes up with this requested larger block (possibly from non-physical virtual memory), KER
NEL sets up two boundary markers that point to the beginning and end of the block in linear
memory. KERNEL then links the new block into the linked list of heap objects (see below).

If KERNEL cannot grow the heap via DPMI allocations, only then will KERNEL start to
move MOVEABLE blocks around in memory in an attempt to coalesce enough free space to
satisfY the memory request. Finally, if growing the heap and moving blocks around still
doesn't yield enough memory, KERNEL starts discarding DISCARDABLE segments until it
frees enough memory. This process leads to a rather startling conclusion. The virtual memory
system in Enhanced mode may be maxed out and oftentimes thrashing wildly before KER
NEL even starts to think about discarding segments. In a way, KERNEL is a pack rat, adding
more and more rooms to its house, rather than getting rid of the junk filling up the rooms.
Only when the house can't get any bigger does KERNEL start hauling things to the dump.

On the other hand, the global heap can shrink in size as well. When a a global heap object
is freed, KERNEL checks the surrounding heap objects for the boundary markers that demar
cate a block allocated from DPMI. If KERNEL finds these markers, it frees the entire block
back to the DPMI server. In other words, if KERNEL has an entire six-pack of empties, it
brings it back to the store. Doing this makes KERNEL a good neighbor to other DOS
extenders that run in DOS boxes and depend on DPMI services, as well.

The Components of the Global Heap
The global heap is composed of several different components. Because you'll be examining
detailed pseudocode for the global heap functions, now is a good time to become familiar
with the data of the global heap.

Burgermoster
The key to the global heap kingdom is Burgermaster. To dispense with the obvious question,
Burgermaster refers to a hamburger restaurant near Microsoft in Redmond that was popular
with the early Windows developers. In the context of KERNEL, Burgermaster refers to the
segment that contains all the vital statistics used to maintain the global heap. The undocu
mented GlobalMasterHandleO API returns with the Burgermaster selector in DX and the less
useful handle in AX. The Burgermaster selector allows you to construct far pointers to the
various pieces of data in the Burgermaster segment, as well as to dissect the global heap quite
nicely, thank you. The WINKERN.INC file that comes with the Windows 3.1 DDK
demonstrates the Burgermaster segment, and all the wonderful data in it. WINKERN .INC,
however, is very dense in information content and not well commented. This section tries to
remedy that situation. The Burgermaster segment contains three sections, which are discussed
on the following pages. Figure 2-1 shows its layout so you can refer to it during discussion.

The Globollnfo Header
The first item in the Burgermaster segment, the GlobalInfo structure, is the master database
for the global heap and well worth taking the time to understand. The GlobalInfo STRUC

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Figure 2-1: The Burgermaster Segment.

The Burgermaster Segment diagram is reprinted with permission from Microsoft Systems Journal, March
1993, © M&T Publishing, Inc. All rights reserved,

definition in WINKERN.INC (see below) gives the layout of the structure. The first portion
of the GlobalInfo structure contains a HeapInfo STRUC. Both the global and local heaps use
the HeapInfo structure, so some fields are used in the global heap but not in the local heap,
and vice versa. Other than the size of various fields, the KRNL286 and KRNL386 HeapInfo
structures are very similar. For those who don't have access to the 3.1 DDK, the 386 version
of the HeapInfo structure is shown in Table 2-2.

Table 2-2: Heaplnfo Structure (386).
OOh WORD hi_check. If this value is nonzero, the debug version of KERNEL veri-

02h WORD

04h WORD
06h DWORD

fies the heap. This field appears to be used only for the local heap, not
for the global heap.
hi_freeze. If this is nonzero, KERNEL should not compact the heap. F.or
the global heap, this value appears to be set only while inside the !NT 24h
handler. The local heap is frozen during LocaWlocO and Loca1ReallocO.
hi_count. The total numper of blocks in the heap.
hi_first. A far pointer to the arena header for the first block in the heap.
The first block is always a sentinel and points to itself

WINDOWS INTERNALS

Table 2-2: Heaplnfo Structure (386). (continued)

OAh DWORD hUast. A far pointer to the arena header for the last block in the heap.
The last block is always a sentinel and points to itself.

OEh BYTE hi_ncompact. The number of compactions that have been performed on
the heap to try and free up memory for a particular allocation. Some
code appears to use this field as a count, while other code seems to use
it as bitfields.

OFh BYTE

lOh DWORD

14h WORD

16h WORD
18h WORD

lA WORD

lCh WORD

hi_dislevel. According to WINKERN.INC, it is the current discard
level. Both the local and global heaps use it. The global heap treats the
value as a bitfield, using it with flags such as GA_NODISCARD. See
the CMP_FLAGS equate in WINKERN.INC.
hi_distotal. Only used by the global heap. When discarding begins, this
field contains the number of bytes that need to be discarded. As the
global heap discards blocks, it subtracts their sizes from this field. When
the field reaches zero or below, discarding stops.
hi_htable. This field contains a near pointer to a handle table for the
heap. Only the local heap uses this field. To get the equivalent informa
tion for the global heap, you have to read the values from the KERNEL
data segment values contained in the KERNEL data segment, using
THHOOK to find where to read from. See Undocumented Windows
and the HEAPFUN program (below) for details.
hi_hfree. Near pointer to the free handle table. Only local heap uses it.
hi_hdelta. When the local heap needs to increase the number of handles
it has, it allocates the number of handles specified in this field. The
default value is 20h. KRNL286 also initializes this field to 20h, but does
not appear to use it.
hi_hexpand. A near pointer to the function that KERNEL uses to
increase the number of handles for the local heap. Because it's a near
pointer, the function must reside in the KERNEL code segment. Thus,
there's no way to hook this function. The Global heap does not use it.
hi_pstats. A near pointer to a LocalStats structure which the local heap
uses in the debug KERNEL. As the local heap does various things, such
as search for free blocks, it increments fields in the structure. The struc
ture is defined in WINKERN.INC.

After the HeapInfo structure, the GlobalInfo structure contains the additional fields
shown in Table 2-3.

Table 2-3: Global Structure Additional Fields (386).
lEh WORD gUrulock. If this value is nonzero, KERNEL doesn't perform LRU

sweeping on DISCARDABLE segments. Almost all global heap func
tions increment this value when they start and decrement it when they
finish. The heap is locked while inside the scheduler and during critical
times. The section on global arenas discusses the LRU list and sweeping.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Table 2-3: Clobal Structure Additional Fields (386). (continued)

20h DWORD gUruchain. A 32-bit offset in the Burgermaster segment to the first

24h WORD
26h DWORD

2Ah DWORD

2Eh WORD
30h WORD
32h WORD
34h WORD
36h WORD
38h WORD
3Ah WORD
3Ch WORD
3Eh WORD
40h WORD
42h WORD

44h WORD

46h DWORD

arena in the LRU list. In KRNL386, the Burgermaster segment is
greater than 64K in size.
gUrucount. The number of blocks in the LRU list.
gi_reserve. The number of bytes of memory required for D IS CARD
ABLE code segments at the high end of the heap. In KRNL286, the
equivalent field contains the value in paragraphs.
gi_disfence. This is a 32-bit linear address. The code fence occupies the
memory between this address and the end of the heap. KERNEL
appears to use only the least significant word from this field. The most
significant word of the address comes from the gi_disfence_hi field at
offset 42h.
giJree_count. The number of free blocks in the heap.
gi_alt_first. Initialized but apparently not used.
gi_alt_Iast. Initialized but apparently not used.
gi_alccount. Initialized but apparently not used.
gi_alUruchain. Initialized but apparently not used.
gi_alclruc9unt. Initialized but apparently not used.
gi_alcreserve. Initialized but apparently not used.
g(. ..:alcdisfence. Initialized but apparently not used.
gi_alCfree_count. Initialized but apparently not used.
gi_alt_pPhantom. Initialized but apparently not used.
gi_disfence_hi. The high half of the 32-bit linear address of the code
fence. Combine this value with the bottom word of gi_disfence to get
the linear address of the code fence.
gi_flags. In CVWBreakO, if the gUrulock value is not equal to one,
KERNEL sets a bit in this field. The GLeave() routine (called when a
global heap function is fmishing up) checks this field, and if a bit is set,
generates an INT 2 (NMI). This process appears to be a method of for
cibly stopping the system when an unexpected condition arises, for
example, if gUrulock is not equal to one. Since the INT 2 is generated
in the GLeaveO routine, the heap isn't in a critical section of code, and
it's therefore safe for the debugger to poke around in it.
gi_stats. The start of an array of DWORD values that are incremented
when certain global heap functions are called in KRNL286. ,.

A final note on the GlobalInfo structure before moving on. Upon entry to almost all the
global heap functions, the functions call GEnter(). Besides locking the heap by increasing the
value of the gUrulock field, GEnterO also setS the DS:EDI registers to the base of the
GlobalInfo structure. Many of the internal functions then rely on these registers· to contain
the Burgermaster address, rather than loading the address each time they need it. You can
think of it as a register variable that extends across many functions.

WINDOWS INTERNALS

The Global Heap Arenas
KERNEL tags each block of memory in the global heap, be it an in-use segment or i free
block, with a block arena. These arenas are a sort of miniature database of information about
each heap block. A global heap arena contains information such as the block's size, its owner,
its attributes, pointers to the next and previous arenas in the list (the global heap is a doubly
linked list), and so on.

Despite what some writers seem to think, all of this information about a segment is not
storable in a descriptor entry in the LDT. There's just too much information that KERNEL
needs to keep track of. These arenas, along with the selector table (below), are auxiliary data
structures to the Local Descriptor Table. When KERNEL allocates a new block of memory, it
searches through the arenas, rather than through the actual blocks themselves. The format of
a KRNL386 arena block is shown in Table 2-4.

Table 2-4: Format of KRNL386 Arena Block.

OOh DWORD

04h DWORD

08h DWORD

OCh DWORD
10h WORD

12h WORD

14hBYTE

pga_next. The 32-bit offset in the Burgermaster segment of the next
arena in the list. In the first heap arena, this field points to itself
pga_prev. The 32-bit offset in the Burgermaster segment of the pre
vious arena in the list. In the last heap arena, this field points to itself.
pga_address. The 32-bit linear address of the memory block that this
arena belongs to. The Alloc_Sel() routine sets the base address of the
returned descriptor to the value of this field.
pga_size. The size of the block. This is always a multiple of 32 bytes.
pga_handle. The global handle that was allocated for this memory
block, or zero if the block is free.
pga_owner. The owner of this memory block. Usually the owner is a
module handle or a PDB selector. However, there are certain other
reserved values:
-1 GA_SENTINEL
-3 GA_BURGERMASTER

-4

Either the first or last block.
The CheckGlobalHeap() routine tests
for this value, but in 3.1 no heap
blocks ever appear with this value.
For every block allocated from the
DPMI layer, there are two
GA_NOT_THERE blocks at either
end of the block, that have pga_address
fields that point at the block ends.

pga_count. The number of times GlobalLockO has operated on the
block. A value of nonzero prevents the compaction routines from dis
carding the block and prevents MOVEABLE blocks from moving in lin
ear memory. GlobalLockO wonJtincrement this field for MOVEABLE
blocks, but GlobalFix() will.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Table 2-4: Format of KRNL386 Arena Block. (continued)

I5h BYTE pga_pglock. The number of times that GlobalPageLockO has
pagelocked the block in physical memory.

I6hBYTE

I7h BYTE

I8h DWORD

lCh. DWORD

pga_flags. Various flags that describe the block. Note the similarity of
these flags to the GMEM_ flags in WINDOWS.H.
OOOlh
0002h
0004h
0008h
OOOCh
OOIOh
0020h
0040h
0080h

GA_ALLOCHIGH
GA_MOVEABLE
GA_DGROUP
GA_DISCCODE
GA_SEGTYPE
GA_NOCOMPACT
GA_NODISCARD
GA_ZEROINIT
GA_MODIFY

From the top end of the heap.
A MOVEABLE block.
Block is a data segment.
Discardable code block.
GA_DGROUP I GA_DISCODE
Don't compact to free space.
Don't discard this block.
Initialize block with zeros.
Just modifY the other flags.

pga_selcount. The number of tiled selectors needed to access all of this
block's memory.
pga_lruprev, pga_freeprev. The 32-bit offset in the Burgermaster seg
ment of the first arena in the LRU list. In the first heap arena, this field
points to itself When an arena is not in use, pgaJruprev is one of the
fields that maintain the free list.
pga_lrunext, pga_freenext. The 32-bit offiet in the Burgermaster seg
ment of the next arena in the LRU list. In the last heap arena, this field
points to itsel£ When an arena is not in use, pga_lrunext is one of the
fields that maintain the free· list ..

In KRNL386, the arenas are in 8K corrals inside the Burgermaster segment; they physi
cally adjoin other arenas. However, instead of treating the arenas as an array, KERNEL
accesses the arenas as a dc:mbly-linked list. The head and tail pointers are stored in the
GlobalInfo structure at the beginning of Burgermaster. The arenas are completely separate
from the memory blocks themselves, which improves performance when paging is enabled
because otherwise, if arenas were contiguous to their blocks, not-present blocks would have to
be paged in, just to use their arenas (for example, to walk the linked list of arenas, looking for
a free block).Therefore, in the traditional computer science sense of the word, they really
aren't arenas, because arenas precede the actual memory they manage. However, KRNL386
refers to them as arenas, so this book does, as well.

The first 8K of arenas comes immediately after the GlobalInfo structure in the Burger
master segment. If necessary, KERNEL allocates more arenas in 8K chunks, 256 at a time,
and inserts them into the list of arenas.

In KRNL286, the arenas take a slightly different form (see WINKERN.INC) and come
immediately in memory before the block that they refer to. Thus; the arenas are not located in
chunks inside of the Burgermaster segment, but instead, are scattered through()ut the linear
memory space. This is somewhat akin to the way the DOS INT 21h, function 48h, memory

WINDOWS INTERNALS

allocation works, though in fact DOS memory blocks are contiguous, rather than arranged in
a true linked list.

We've mentioned the LRU list several times, and now we can finally explain it. LRU is an
acronym for Least Recently Used, a concept that predated Windows. A system that supports
any kind of virtual memory can use more memory than is actually present in main memory.
Obviously some of this "memory" must be somewhere else beside in main memory-on a
hard disk, for instance. When the program needs this memory, it has to bring it from the sec
ondary storage into main memory. This in turn forces the memory management to take some
thing that's currently in main memory and either discard it or swap it to the hard disk, as the
case may be. The trick here is to figure out what to toss. It doesn't take a doctorate in com
puter science to know that you probably don't want to swap out something that's being heav
ily used, at least not if performance is important to you. By that reasoning, the ideal candidate
for discarding or swapping is the least recently used block-hopefully! The thinking here is
that if the program hasn't used a block for a while, it hopefully won't need to again for a
while, and so it can toss that block out of main memory if needed. In most cases, the LRU al
gorithm yields good performance results and is easy to implement.

In KRNL286, and in KRNL386 when paging is not enabled, the LRUSweepO function is
called every 1/2 a second. LRUSweepO iterates through the DISCARDABLE heap blocks
(segments). If the program has accessed (touched) a segment since the last time LRUSweep()
was invoked, the function puts the segment at the head of the LRU list, thereby making the
segment the least likely to be discarded if KERNEL needs to free up memory. In 386
Enhanced mode with paging enabled, there is no need to go through this process because
WIN386 already uses an LRU scheme with the memory pages themselves. LRU sweeping is
discussed in more detail in the pseudocode for LRUSweep().

In order to speed up searching for an available block of memory during allocation, the
global heap code maintains a free list of arenas. In a clever move, the designer(s) of the global
heap take advantage of the fact that a DISCARDABLE block cannot also be free. Thus, the
pga_lrunext and pga_lruprev fields are used as the previous and next pointers for the free list.
In fact, WINKERN.INC equates pgajreeprev and pgajreenext to pga_lruprev and pga_lru
next, respectively. A question immediately arises at this point. Since there's no hi_firscfree
field in the GlobalInfo structure, how does KERNEL find the start of the free list? As it hap
pens, the free arena list starts with the pga_freenext field of the first block in the heap (which
is never free itself).

The Selector Table
One of the tasks that the KERNEL memory manager needs to perform quickly and efficiently
is to obtain the vital statistics of a selector or handle for a segment. In other words, KERNEL
needs an efficient method to go from a handle to the associated arena. Towards this end,
KERNEL maintains a selector table in the Burgermaster segment. The starting offset and
length of the selector table is given in two KERNEL variables, SelTableLen and SelTableStart.
To get at these variables in Windows 3.1, you need to know about the undocumented
THHOOK entry point. In Windows 3.0, ToolHelp uses hard coded offsets in the KERNEL
module to obtain the valueLThe HEAPFUN example shows how to use THHOOK to
obtain the values in 3.1.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Note that the selector table is not the same thing as the Local Descriptor Table, or LDT
for short. Instead, the selector table operates in parallel with the descriptors in the LDT. For
each in-use descriptor in the LDT, a corresponding selector table entry points to an arena.
The arena contains KERNEL-specific information about the segment referenced by the
descriptor table entry.

In KRNL386, the selector table is up to 32K in size (8,192 selectors in the LDT times
four bytes per entry in the table). Each entry in the table is simply the 32-bit offset of the
associated arena from the base of the Burgermaster segment. Because all the arenas are in a
contiguous block, KRNL386 can quickly map a selector handle to its corresponding entry in
the selector table. Since the bottom three bits of a selector aren't used to index the descriptor,
KERNEL simply masks off those bits and then shifts that value right by one to get an offset
into the selector table. Once KERNEL knows the offset in the selector table, a simple mem
ory dereference gives the address of the desired arena.

In KRNL286 under Windows 3.1, the selector table is 8K in size (4,096 selectors times
two bytes per entry in the table). Each entry in the table is a selector value for the arena of the
memory block. The arenas for each KRNL286 memory block immediately precede the block
in memory, which explains why there are only 4,096 selectors 'available in Standard mode.
Each block in the heap takes up two selectors, one to reference the block itself, and one to
reference the arena. If you were to try to reference the arena and the memory block with the
same selector, you couldn't use the full64K of each segment. The first part of the segment
would need to be reserved for the arena portion.

In Windows 3.0, there was no selector table in KRNL286. In order to find the arenas
therefore, ToolHelp determines the base address of the memory block from its sClector and
then subtracts 10h to get the address of the associated arena. Remember, in KRNL286, are
nas immediately precede their blocks. To access the arena, ToolHelp sets the base address of a
temporary selector to the calculated base address of the arena.

HEAPFUN Example

The following program demonstrates some of the concepts of arenas and selector tables. It
starts out by allocating a HUGE block of memory, more than 64K, and then uses the block's
global handle to :find the appropriate entry in the selt:ctor table. With that, BEAPFUN creates
a pointer to the arena for the block and then shows selected values in the arena, along with
the same information obtained through different means. This display proves that the arena we
found is really the correct one. The program is written in Borland C++ 3.1 small model. It
requires no special .DEF files or .RC files to build it.

11=================================
II HEAP FUN, by Matt Pietrek, 1992
II File: HEAPFUN.C
11=================================
#include <windows.h>
#include <stdlib.h>

WINDOWS INTERNALS

#include <stdio.h>
#include <dos.h>

typedef struct
{

DWORD pga_next; /I 00
DWORD pga""'prev; /I 04
DWORD pga_address; II 08
DWORD pga_size; /I DC
WORD pga_handle; /I 10
WORD pga_owner; I I 12
BYTE pga_count; I I 14
BYTE pga""'pg lock; I I 15
BYTE flags; I I 16
BYTE pga_seLcount; /I 17
DWORD pga_l ruprev; /I 18
DWORD pga_l runext; I I 1C

} ARENA32;

II An undocumented function, so we must prototype it ourselves.
II If the linker complains about an undefined symbol, you'll
II need to add it (KERNEL.28) to the IMPORTS in the .DEF file
DWORD FAR PASCAL GLobalMasterHandle(void);

I I Called when something unexpected happens. Tells the user
II why the program isn't going to procede before exiting.
void Failure(char *reason)
{

}

MessageBox(O, reason, "Uh-Oh!", MB_OK);
exit(1);

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{

DWORD far * SelTable;
DWORD far * SeLTableStart;
DWORD far * THHookStart;
ARENA32 far *arena;
WORD hMaster;
WORD hKernel;
WORD ourBLock;
WORD ourBlockIndex;
char buffer[256J;

II The "array" of arena offsets
II For extracting a KERNEL var.
II For extracting a KERNEL var.
II WilL point at an arena
II The handle of the heap segment
II KERNEL's moduLe handLe
II Handle of a GLobalAlloc block
II Index into arena offset array
II For displaying info

if !(GetWinFlags() & WF_ENHANCED))
Failure("Cannot run in Standard mode");

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II The selector of the global info block is returned in DX.
II Save that value away, as well as KERNEL's module handle
hMaster = HIWORD(GlobalMasterHandle());
hKernel = GetModuleHandle("KERNEL");

II The 32-bit offset of the selector table is kept in a DWORD
II that's Ox18 bytes past the address of THHOOK. This is
II the same method that TOOLHELP uses, so don't complain ...
THHookStart = (DWORD far*)GetProcAddress(hKernel, "THHOOK");
if (!THHookStart)

Fai lure("Couldn' t find THHOOK");

II Add Ox18' to the THHookStart to obtain a pointer to the
II SelTableStart variable.
SelTableStart =

(DWORD far *)«char far*)THHookStart + Ox18);

II We can't generate 32-bit pointers easily with normaL C
II compiLers, so give up if the start of the seLector table
II exceeds the Limit reachable with a 16~bit offset
if (*SeLTabLeStart > OxFFFF)

Fai Lure(,'SeL TabLeStart > 64K");

II Make a far pointer to the selector tabLe
SeLTable = MK_FP(hMaster, *SeLTabLeStart);

II ALLocate a huge bLock of memory for our demonstration.
ourBLock = GLobaLALLoc(GMEM_FIXED, Ox1FOOOL);
if (!ourBLock)

FaiLure("CouLdn't ALLocate gLobaL block");

II The upper 13 bits of a seLector are the index into the
II seLector tabLe. Thus, we shift right by 3 to get rid of
II the bottom 3 bits.
ourBLocklndex = ourBLock » 3;

II Verify that we won't be trying to read offsets> 64K
if «(DWORD)FP_OFF(SeLTabLe) + ourBLocklndex*4) > OxFFFF)

Fai Lure("SeLector tabLe entry> 64K");
if (SeLTabLe[ourBLocklndex] > OxFFFF)

FaiLure("Arena offset> 64K");

II Point "arena" at the address in the seLector table
arena = MK-FP(hMaster, (WORD)SeLTabLe[ourBLocklndex]);

}

WINDOWS INTERNALS

II We now display various pieces of information from the
II arena structure, validating it by obtaining the same
II values by different means.

II Verify that the base address in the arena matches the
II base address given in the descriptor
sprintf<buffer, "GetSelectorBaseO: %08lX\r"

"arena->pga_address: %08lX",
GetSelectorBase(ourBlock),
arena->pga_address);

MessageBox(O, buffer, "Results", MB_OK);

II Verify that the block handle we got back from GlobalAlloc()
II matches what's in the arena
sprintf<buffer, "ourBlock: %04X\r"

"arena->pga_handle: %04X",
ourBlock, arena->pga_handle);

MessageBox(O, buffer, "Results", MB_OK);

II Verify that the owner of the block as given in the arena
II is the same as the PDB of the current task.
sprintf(buffer, "GetCurrentPDBO: %04X\r"

"arena->pga_owner: %04X",
GetCurrentPDB(), arena->pga_owner);

MessageBox(O, buffer, "Results", MB_OK);

II Since the block is > 64K, more than 2 selectors are
II "tiled" to allow offsets> 64K to be read. Verify
II that the size and number of selectors jive with what
II we allocated.
sprintf(buffer, "Size: %08lX Selectors: %04X",

arena->pga_size, arena->pga_selcountl;
MessageBox<O, buffer, "Results", MB_OK);

GlobalFree(ourBlock); II Done with our demo block

return 0;

The Global Memory Blocks
The actual memory blocks that your program uses are managed at two different levels. At the
lower level, KERNEL allocates large regions of memory from the DPMI server. At startup
time, the DPMI server either allocates all available memory from an XMS provider
(HIMEM.SYS) or from a 386 memory manager, such as QEMM386. In the latter case, a
fairly obscure interface allows the Windows DPMI server to import the paging tables from the
memory manager.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

At a higher level, KERNEL takes these large DPMI blocks and subdivides them into
smaller regions that are accessible with selectors. We know these regions as segments. The
aforementioned Globallnfo structure, global arenas, and selector table are necessary elements
of the bookkeeping for the segments.

When KERNEL allocates a memory region from DPMI, it initially takes up three arenas,
marking the first and third arenas as owned by GA_NOT_THERE. They point to the begin
ning and end of the DPMI block. KERNEL marks the second arena as free. It starts out
encompassing the entire region. The three arenas are linked into the normal and free global
heap lists. Subsequently, when the allocation routine looks for a block, it comes across the
second (free) block and decides to use it. However, it would be wasteful to use up the whole
block of memory if the routine needs only a small portion of it. In this case, the routine splits
the free block into two blocks. The first block occupies the amount of space the allocation
needs and the second block contains the remaining memory. The allocation routine then
marks the original arena as busy, allocates a new arena, initializes it for the left over block, and
marks the remainder block as free.

If memory needs to shrink later on, the original DPMI block can be released back to the
DPMI layer. When KERNEL frees a segment, it examines the surrounding arenas. If the pre
ceding and next arenas are both owned by GA_NOT...:.THERE, there aren't any in-use seg
ments contained within the larger DPMI block. In this case, KERNEL frees the block back to
the DPMI layer.

Although Windows is thought of as a 16-bit operating system, there is oftentimes a need
to use memory regions greater than 64K. As was mentioned earlier, the selector tiling mecha
nisms can reference HUGE segments. What is not well known, is that in KRNL386, the 64K
blocks of memory that make up a huge segment are contiguous in memory. Thus, if you have
a compiler that can generate 32-bit code, or if you don't mind using some assembler, you can
call GlobaWlocO to allocate huge blocks and ignore the seleCtor tiling mechanism. You don't
need to create a 32-bit selector that has the same base address of the allocated segment
because the first selector for the first 64Kregion isa 32-bit selector. You can see this yourself
using the HEAP function in Soft-Ice/W in conjunction with the HEAPFUN program. The
segment limit for the ourBlock handle is lEFFFh, definitely more than 64K.

Segment Attributes in the Global Heap

Perhaps the easiest way to get a group of Wmdows programmers to disagree is to ask them
about segment attributes. There are many different stories about the way things work, many
of them contradictory. The following description disregards real mode and discusses attributes
as they are currently implemented.

FIXED Versus MOVEABLE Segments
The most important thing to state right off the bat is that there is really no reason for FIXED
memory, with. one exception. Because of the.level of indirection prm;ided by the protected
mode descriptors, KERNEL could move your segments around continuously, and your pro
gram would continue ~o use the same selector, blissfully unaware of the segment's movement

WINDOWS INTERNALS

in linear memory. In fact, in Windows 3.1, it is impossible (or at least very difficult) to allocate
FIXED memory in your program. (FIXED memory in DLLs is okay.)

When the KERNEL loader brings your program's segments into memory, it turns off the
FIXED flag in all the segments before allocating the segments' memory. You can specifY
FIXED for all your segments in the .DEF file, but you won't get it. KERNEL also guards the
back gate as well. We will see below that, when GlobaWlocO allocates some memory, it turns
the GMEM_FIXED flag off if it was originally on. KERNEL really does not want you to allo
cate FIXED memory. In Windows 3.0, too many programs (including the Microsoft C run
time library) indiscriminately used FIXED segments, which used up all the low memory below
1Mb very quickly. Remember, FIXED memory comes from the lowest possible address in the
heap. Windows was then unable to load more programs, because there was no conventional
memory below 1Mb from which to allocate a Task Database. See Chapter 3 for more infor
mation on why it's important to have memory below 1Mb. There was also a bug in the Win
dows 3.0 KERNEL that forced all writeable data segments to be FIXED if there was more
than one such segment in the program, a situation that added to the problem, needless to say,

Since we now know why FIXED memory is typically not necessary and should be used
sparingly, when do we need it? The primary reason for FIXED memory is for protected mode
interrupt handlers in DLLs. An interrupt can occur at any time, which may leave the operating
system in an unstable state. If the code for an interrupt handler were currently paged out to
disk by WIN386, it would cause a "page not present" fault, which in turn would require DOS
to read in the appropriate page from disk. Doing this when the operating system is in an
unstable state to begin with is not the best of ideas and leads to system crashes. The obvious
solution is to make sure that the interrupt handler code can)t be paged out. Ever. The way to
do this is to pagelock the memory using DPMI services. Pagelocking the memory tells the
DPMI server that you always want the page to be physically present in memory; that is, the
page should map to real physical memory.

So what does this have to do with FIXED memory? As it turns out, any memory that
KERNEL does allow to be allocated as FIXED is also pagelocked. For some dubious reasons
of portability, Microsoft strongly urges that the program place all interrupt handlers in DLLs.
To "assist" you in coming to this decision, only DLLs can have FIXED segments. The loader
and memory allocation functions leave the GA_MOVEABLE bit alone if the memory request
comes from a DLL.

Another reason for having FIXED memory in a DLL is to work around the Windows 3.0
WEP problem. Windows 3.0 calls the WEP (DLL termination) procedure while running on a
very small KERNEL stack. If the segment containing the WEP procedure had been previously
discarded, a "segment not present" fault would occur when WEP was called, leading to a situ
ation similar to the interrupt handler problem described above. The Microsoft approved solu
tion is to locate your WEP in a FIXED segment in the DLL. In Wmdows 3.1, the KERNEL
stack is larger, so WEP doesn't have to b~ in a FIXED segment. According to Microsoft, it's
OK to have WEP in a MOVEABLE, but not DISCARl)ABLE segment.

Besides using a DLL, there are other methods for getting FIXED memory.
GlobalDOSAllocO is a special case and can allocate FIXED memory, below 1Mb, for an appli
cation program. If you want pagelocked memory, and it's not important that it be low, the
GlobalPageLockO API may be a better choice.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

When using KRNL286, the above pagelocking discussion is moot because KRNL286
never pages or swaps memory. A segment that's been allocated is always present in memory,
unless allocated as DISCARDABLE. Remember, the 286 doesn't support paging.

DISCARDABLE Segments
DISCARDABLE segments have only a few, narrowly defined uses. Although you can use
GlobaWloc() to obtain DISCARDABLE memory for things like bitmaps, you rarely want to,
due to the hassle of not knowing whether your segment's data is present or not. The KER
NEL code is willing to cope with this situation, and it stores resources, as well as profile data
in DISCARDABLE data segments. For application programmers, the only real reason to be
aware of DISCARDABLE memory is for code segments. Because protected mode offers a
method for demand loading application segments when needed, there's really no need to have
all of a program's segments always in memory. Thus, in most cases, you can specify in the
.DEF file that all of your program's code segments are DISCARDABLE. For DLLs, the same
applies, with the one exception-the segment containing WEP shouldn't be DISCARD
ABLE.

To be evenhanded on this issue, some people will argue that it's better to malce the most
heavily used segments NONDISCARDABLE for the reason that you talce a performance hit
by having to constantly reload the segment from disk. However, memory is discarded on a
least recently used basis. Therefore, if a segment really is being heavily used, it will be far
down on the list of segments that get discarded. The only time KERNEL would discard the
segment before its time is in low memory situations. And in this case, having the memory be
NONDISCARDABLE just makes the situation worse for other applications, since even less
memory is available. Incidentally, if you're running in Enhanced mode, but without virtual
memory and paging enabled, running a DOS box causes all your DISCARDABLE segments
to be discarded. WINOA386.MOD, the DOS shell program, does a Global Compact
(OxFFFFFFFF) in this situation. The reason for this is unknown.

If you do choose to work with DISCARDABLE data segments in your program, you
have a few facilities at your disposal. First, GlobalLockO prevents a segment from being dis
carded. DISCARDABLE segments are the only segments that have lock counts maintained for
them. You typically would GlobalLock() a segment before you start working with it and then
GlobalUnlockO it when you're done.

Another facility for dealing with DISCARDABLE segments is the GlobalNotifyO call
back. When KERNEL is about to discard a segment, GlobalNotifyO gives you the option of
choosing not to discard the memory. The GlobalNotifyO pseudocode later in this chapter
describes GloballNotifyO in more detail.

Because DISCARDABLE segments can be tossed out at any time, there's no guarantee
that the original linear address of a segment will be available when you reload. So any segment
that is DISCARDABLE is also implicitly MOVEABLE. It's hard to envision any reason why
you'd ever want a DISCARDABLE FIXED block.

With all this in mind, your typical .DEF file should have a section that looks something
like this:

CODE MOVEABLE DrSCARDABLE
DATA MOVEABLE

WINDOWS INTERNALS

If you have certain segments to PRELOAD, specify them separately. The idea is that the
default for segments should be the preceding values. Unfortunately, these are not the linker
defaults. Thy really should be.

The Code Fence
In order to ensure that there is always enough memory to run any program that's currently
loaded, KERNEL maintains a swap area at the high end of the global heap. The swap area is
for DISCARDABLE code segments and is at least twice the size of the largest DISCARD
ABLE code segment in any of the currently loaded modules. By doing this, KERNEL ensures
that there will always be enough memory to load a segment that was called, but is currently
discarded. The address in memory where the swap area starts is called the code fence. KER
NEL recalculates the swap area size and code fence every time a module loads or unloads. The
SetSwapAreaSizeO function also sets them.

The Global Heap Functions

Now that we've examined the global heap from a high level perspective, let's look at the indi
vidual functions that deal with the global heap. Those of you who are familiar with run-time
libraries or operating system internals may notice that quite a bit of code in the global heap is
fairly stock code and not specific to Windows. If you're interested in generic heap manage
ment code, an often cited book is K&R's The C Programming Language, which includes an
example storage allocator. Another place to look is in the source code for the run-time library
of your favorite compiler.

Throughout the pseudocode, notice .a variable called GlobalInfo, which refers to the
GlobalInfo structure at the beginning of the Burgermaster segment, discussed previously.

GloballnitO
In order for any of the global heap functions to do anything, there first has to be a global heap
to act upon. The GlobalInitO function creates the data structures necessary to maintain the
global heap. The initialization of the KERNEL module calls GlobalInitO early because so
many subsequent actions depend on the presence of a global heap. Chapter 1 shows where
this occurs.

GlobalInitO first grabs its parameters off the stack and calls GInitO. The parameters to
GlobalInitO specify the starting and ending addresses for the heap. In addition, GlobalInitO
passes a selector for the memory containing KERNEL's NE header, as originally loaded by
the DOS loader (see Chapter 1). GInitO is covered after the discussion of GlobalInitO. After
returning from GInitO, which has allocated the Burgermaster segment and the other initial
blocks, all that remains is to connect the wires and tighten down some screws.

The first step of this process is to fill in various fields of the GlobalInfo structure, such as
the first and last block fields. These values depend on the results from the GInitO routine.
Next, KERNEL sets up selected elements in the first and last arenas to establish the free list.
Remember, there are no free list fields in the GlobalInfo structure, so the free list has to be
found by examining the first and last blocks in the main list. Perhaps the free list code was

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

added after the initial global heap code was written, and the programmers were loathe to
modify the format of the GlobalInfo structure. Before GloballnitO returns, KERNEL tries to
grow the heap. Up to this point, the global heap contains only the conventional memory be
tween the position of WIN. COM and the beginning of video memory (see Chapter 1 for
details). Growing the heap now forces the heap to start allocating memory from the DPMI
server.

After GlobalInitO finishes, the global heap looks like Figure 2-2.

Figure 2-2: Initial Layout of the Global Heap.

o

First block (sentinel, 0 bytes)

Initial free block

Burgermaster Segment
(allocated as a separate
block from DPMI)

AOOOH

Block containing
the image of
KRNlx86.EXE
as loaded by the
DOS loader.

/
Last block (sentinel, 0 bytes)

pseudocode for G loba LIni t<) - 3GMEMINI.OBJ
II
1/
1/
1/
1/
1/
1/

Parameters:
WORD unknown 1/ Set to Ox200 in BootStrap()
WORD SegLoadBLock 1/ Selector to 'NE' header region
WORD StartSelector 1/ Selector to region above WIN. COM
WORD EndSegment 1/ Typi ca lly AOOOH

Locals:
DWORD arenaPointer

II Load the parameters into registers, and call GInit(),
II which does much of the real work. Pseudocode for
II GInit() follows this code.
if (! GInitO)

retur"n with carry flag set

WINDOWS INTERNALS

II GInit() returns DS pointing to the Burgermaster segment
II The GLobaLInfo structure is at the base of this segment
GLobaLInfo.hi_first = EBX II Ginit() returned first bLock
GLobaLInfo.hi_Last = EDX II Ginit() returned Last bLock
GLobaLInfo.hi_count = 4 II 4 items in the gLobaL heap
GLobaLInfo.gi_Lruchain = 0
GLobaLInfo.gi_Lrucount = 0
GLobaLInfo.gi_LruLock = 0
GLobaLInfo.gi_reserve = 0

II Set the "code fence" to point at the Last bLock in the heap
GLobaLInfo.gi_disfence =

LOWORD(GLobaLInfo.hi_Last->pga_address
GLobaLInfo.gi_disfence_hi =

(GLobaLInfo.hi_Last->pga_address) » 16

GLobaLInfo.gi_aLt_first = -1
GLobaLInfo.gi_aLt_Last =-1
GLobaLInfo.gi_aLt_count = 0
GLobaLInfo.gi_aLt_Lruchain = 0
GLobaLInfo.gi_aLt_Lrucount = 0
GLobaLInfo.gi_aLt_free_count = 0
GLobaLlnfo.gi_aLt_reserve = 0
GLobaLInfo.gi_aLt_disfence = 0
GLobaLlnfo.gi_aLt-pPhantom = -1

II InitiaLize some Less
II commonLy used fieLds in
II the GLobaLInfo structure

II Set the gLobaL variabLe used by GLobaLMasterHandLe()
II ESI contains the arena pointer to the Burgermaster bLock
HGLobaLHeap = ESI->pga_handLe

ESI->pga_count = 0
ESI->pga_seLcount =

II Set Lock count on Bugermaster to 0
II Burgermaster segment uses 1 seLector
II (it is a 32 bit seLector, however)

II Point at the Large free bLock that's before the Last,
II "sentineL" bLock in the gLobaL heap. Decrement the
II seLector vaLue in the pga_handLe fieLd of its arena
arenaPointer = GLobaLInfo.hi_Last->pga-prev
BX = arenaPointer->pga_handLe II Get seLector for bLock
BX--

arenaPointer->pga_handLe = BX
arenaPointer->pga_count = 0

II decrement it to make it
II a handLe
II Store back in the arena
II set Lock count to zero

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II Now building the "free" list in the global heap.
Globallnfo.gi_free_count = 1

II Get pointers to the first, last, and "free" blocks in
II EAX, ECX, and EBX respectively
EAX = Globallnfo.hi_first II EAX is pointer to first arena
ECX = Globallnfo.hi_last II ECX is pointer to last arena
EBX = EAX->pga_next II EBX is pointer to 2nd arena

II Tweak the first block's "free list" fields
EAX->pga_freeprev = -1 II First block has no "freeprev"
EAX->pga_freenext = EBX II "next" free block is 2nd block

II Tweak the last block's "free list" fields
ECX->pga_freeprev = EBX II "freeprev" of last block is 2nd

II block
ECX->pga_freenext = -1 II No "freenext" for last block

II Tweak the free blocks "free list" fields
EBX->pga_freeprev = EAX II Previous block is first block
EBX->pga_freenext = ECX II Next block is last block

}

ClnltO
GInitO is called by GlobalInitO and has the responsibility for allocating memory from DPMI
for the Burgermaster segment. Additionally, GInitO creates the arenas for the sentinel blocks
that indicate the start and end of the heap. To use an analogy, GInitO cuts up the fabric
pieces (the initial memory blocks) and stitches them together. After returning from the
GInitO call, GlobalInitO sews on the buttons (sets up the GlobalInfofields and so forth).

GlobalInitO passes GInitO the starting and ending addresses for the heap. The initial
global heap is located in the memory between WIN. COM and the start of the video memory,
typically paragraph AOOOh. New sections of cloth (DPMI memory blocks) will be sewn onto
the heap later, as needed.

The first portion of GInit() figures out how big the Burgermaster segment should be and
then allocates an appropriately sized block of memory from DPMI. The size of the
Burgermaster segment depends on the size of the arena pool, as well as on the size of the

WINDOWS INTERNALS

selector table. Based upon how much memory is available, GlnitO assigns sizes for those two
tables. Using those values, GlnitO determines the size of the Burgermaster segment and allo
cates memory for it from the DPMI server. The 32-bit selector that references the Burgermas
ter memory has its base address and limit updated accordingly.

The second part of GlnitO is devoted to allocating and initializing arenas for the bare
minimum global heap. Most significantly, GlnitO creates the blocks that indicate the starting,
ending, and free blocks of the heap. This routine is also where KERNEL makes the
SegLoadBlock segment (see the parameters to Globallnit, in the pseudocode for Globallnit(»
into an official segment in the global heap. Chapter 1 describes how the DOS loader reads
KRNL386.EXE into memory in one shot. Loaded along with everything else was the NE
header portion of the file. The BootStrapO routine sets up a selector to this section of mem-
0ry. Later on, KERNEL uses this segment as the initial module table. GloballnitO sends this
selector to Glnit() with the intent that GInit() will allocate an arena for the segment.

pseudocode for GIni t () - 3GMEMINI. OBJ
II Parameters:
II WORD
II WORD

startAddressSel II Selector of heap start <BX)
endAddressPara II End of heap, in paras <DX)

/I Locals:
II WORD BurgermasterSel
II DWORD BurgermasterArena

II Get the real mode address from startAddressSel
EAX = Get_Selector_Address32< startAddressSel)
Round EAX up to nearest 32 byte boundary

II Now store the new base address back into startAddressSel
Set_Selector_Address<startAddressSel, EAX)

ArenaSel = startAddressSel
BurgermasterSel = startAddressSel

II ArenaSel is a global

II Ask DPMI to see how much memory is available. If there's
II less than 1Mb free, we don't want to create a full sized
II selector table. Function fills DPMI_buff.
INT 31 h, AX = 0500h /I DPMI get free mem info

if < carry flag set)
{

/I call failed

BX = 0 II Number of pages
EAX = 16384 II Size of selector table

}

else II Call returned success
{

BX = DPMI_buff.total_unlocked-pages

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

}

if (BX < Ox100
EAX = 16384

else
EAX = 32768

InitialPages = BX

II Less than Ox100 pages free (1Mb)?
II EAX = size of selector tabLe

II Another globaL variable

if (DPMI_buff.pagin~file_size is not 0 or - 1)
turn on WF_PAGING bit in WinFLags

II Now establishing the initial size of the arena pooL.
ECX = DPMI_buff.largest_free_block
ECX » 7 II Divide by 32. Why?
ECX++
ECX += 31 II Round up to nearest 32 byte boundary
ECX &= FFFFFFEO

II EAX still contains the size of the sel~ctor table
Round EAX up to nearest 32 byte boundary
SelTableLen = AX II Store the size of the selector table

if (ECX > Ox8000) II If arena pool size> Dx8000 bytes,
ECX = Ox8000 II reduce to Ox8000

II The Burgermaster segment is comprised of the GlobalInfo
II structure, the arena pool, and the selector table. Here
II we calculate the total size of the Burgermaster segment,
II along with the starting offset of the selector table.
EBX = 80h
ECX += EBX II start of Arena pool + Arena pool
SelTableStart = ECX
ECX += EAX /1 Start of Selector table + SelTableLen =

II end of the Burgermaster segment

II Now that we know how big Burgermaster must be, it's time
II to allocate some memory for it. An important note: The
II memory for the Burgermaster segment is allocated directly
II from the DPMI server. In 3.1, the Burgermaster segment is _not_
II included in the global heap list, even though an arena
II will be built for it below. In Windows 3.0, Burgermaster
II was part of the Global heap, and showed up if you ran the
II HEAPWALK program.
Convert ECX into BX:CX for DPMI call

WINDOWS INTERNALS

1NT 31h, fn. 0501h. II ALLocate memory bLock for Burgermaster
if (carry fLag set)

return with carry fLag set

HBmDPM1 = S1:D1 II Store DPM1 handLe into a gLobaL var

II Set up the seLector and Limit for the Burgermaster segment
Convert returned Linear address of bLock (in BX:CX) to EBX

Set_SeLector_Address32(BurgermasterSeL, EBX

Convert ECX (the end of the Burgermaster segment) to CX:DX
1NT 31h, fn. OOOBh. II DPM1 set segment Limit
if (carry fLag set)

return with carry fLag set

DS = BurgermasterSeL II DS points at Burgermaster segment

1nitiaLiseArenas() II Create the initiaL state of the arena
II pooL, with each entry Linked with
II its immediate neighbors

ES1 = ALLoc Arena_Header(ES1
EAX = ALLoc_Arena_Header(ED1

BurgermasterArena = EAX

II ES1 is first bLock in List
II ED1 is Burgermaster address

BurgermasterArena->pga_handLe = DS
BurgermasterArena->pga_size = ECX II ECX ->Burgermaster size

Zero out the SeLector tabLe

II Insert the Burgermaster seLector into its arena
AssociateSeLector32(BurgermasterSeL, BurgermasterArena)

Allocate seLectors and arenas for the other bLo'cks in the
heap (the free bLock, the Last sentineL bLock, etc.) and
initiaLize them. This is a fair amount of fairLy routine
code, and not worth going into expLicit detaiL here.

II Set the other gLobaL variabLe used by GLobaLMasterHandLe()
II GLobaL1nit() sets HGLobaLHeap
PGLobaLHeap = BurgermasterSeL

G/obalAllocO
Even though the GlobaWloc() function is very important for Windows programming, the
code for GlobaWloc() is uninteresting. Its helper functions, which we'll come to shortly, do

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

the real work of allocating a block of memory. GlobalAllocO goes through the standard
motions of calling GEnter() to set up the registers so that the internal KERNEL functions can
do the actual work. Next, GlobalAllocO examines and modifies any passed-in allocation flags
that weren't proper. For instance, application programs aren't allowed to. allocate FIXED
memory. If the FIXED flag is set in this case, the GbTopO helper routine turns off the
FIXED flag before the memory is allocated. The task of finding the memory falls to the
GAllocO function, which is described later on. Upon return from GAlloc(), the GLeave()
function resets things to the way they were upon entry to the routine.

pseudocode for GlobalAlloc() - 3GINTERF.OBJ
II Parameters:
II WORD flags
II DWORD cBytes

GEnter() II Prevent LRU (Least Recently Used) sweeping.
II Point registers at the Globallnfo struct.

II Get the "compatibility" flags for the current task. These
II flags tell Windows 3.1 which 3.0 behaviors should be
II retained because an applicqtion relies on them.
MyGetAppCompatFlags() II Described in "Undocumented Windows"

if (GACF_IGNORENODISCARD flag is set in compatability flags)
{

/1 For modules that have the above compatability flag set,
II turn off the GA_NODISCARD flag, unless it is KERNEL
II itself that is allocating the memory. The allocator
II of the memory is determined by looking at the return
II CS value on the stack.
if (!IsKernelCalling())

turn off G~NODISCARD bit in flags
}

GbTopO II Tweaks the allocation flags to be "proper,"
II rounds the block size up to a paragraph
II boundary, and determines who is going to "own"
II the new block

II GAlloc() is a wrapper routine around GSearch(), which
II does whatever it can to get a block from the global heap,
II subject to the allocation flags. (GSearch() is really the
II heart of global heap memory allocation, and is discussed
II below.) Returns a handlelselector to the allocated block
GAllocO

if(!CheckGlobalHeap()
{

II Only does this in debug KERNEL

AX 1= Ox0200 II An error code ???
NearKerne l Error(,'G loba LA lloc: Inva lid globa l heap")

}

WI N DOWS INTERNALS

GLeaveO II Reenable LRU sweeping

if (the Galloc() failed) II Only does this in debug KERNEL
{

}

II #bx#AX gets filled in with real values from BX and AX
_KRDebugTest

("Kernel: GlobalAlloC<#bx#AX) fal led for %ss2")

GbTopO
GbTop() is an internal routine that has three tasks to perform. First, it takes the block size as
given in the GlobalAlloc() or GlobalRealloc() call, and rounds the size up to a multiple of 16
bytes. GbTopO then checks to see if the requested size is some impossibly high value (greater
than 16Mb); if the size is too big, the function sets the requested size to an even larger value,
which guarantees that the memory request will fail.

Next, GbTop() roughs up the allocation flags that were passed to it, especially if the caller
was an application program, rather than a DLL. GbTop() has very definite ideas about what
kind of attributes your segment can have. If GbTop() doesn't think you really need a particu
lar attribute, it tosses it.

Finally, GbTop() determines and returns the handle that becomes the owner of the block
that's under construction. A piece of Windows folk wisdom says, "Memory allocated in a
DLL is owned by the calling application, unless allocated as shareable." The actual rule that
applies here is as follows. If the block is shareable, then its owner is the module handle of the
calling segment. Otherwise, the owner is the PDB of the current task. In other words, the
heap code doesn't ask, "Is this allocation in a DLL?" Instead, it always applies the above rule
about shareable blocks, and the above DLL folk wisdom drops out as a result.

pseudocode for GbTop() - 3GINTERF.OBJ
II Parameters:
II AX = allocation flags (GlobalCompact() calls with -1)
II BX = DWORD near * (pointer to requested allocation size)
II DX = handle to reallocate, if called from GlobalReAlloc()
II DS:DI pointer to global heap's Globallnfo block
II Returns:
II AX = allocation flags after modification
II EBX = rounded allocation size
II CX = handle of the owner of the block
II DX = reallocated handle, if called from GLobalReAlloc()
II
II Locals:
/ I DWORD arenaPointer II the ESI register in reality

Dereference BX to get the allocation size. Put into EBX

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

EBX += 15 II first part of rounding up to a paragraph

Round the size (in EBX) up to the nearest paragraph. If it overflows (i.e.,
it's a really BIG size!), goto GBTop1

II The largest block you can allocate in Enhanced mode is
II slightly less than 16 Mb.
II 256 selectors * 64K per selector = = -16Mb
if (EBX < OxOOFFOOOO) 1116Mb - 64K Is block small

Ilenough???

II Come here if the allocation should fail

EBX = 7FFFFFFFh II A huge value, guaranteed to fail

GbTop2: II We now have a rounded up block size to allocate

if (flags == - 1)
go to GbTop_done

I I Is thi saG loba lCompact 0 ca II ?

arenaPointer = Get_Arena_Pointer32(return CS on stack)

II Here, we're going to start playing around with the
II allocation flags, to make sure that you don't ask for
1/ something that you really don't need (KERNEL knows best!>
if (!fBooting) II Don't do this while booting
{

II HExeHead is always the KERNEL module handle, so this
II block only executes if the owner isn't the KERNEL
if (arenaPointer·>pga_owner !=HExeHead)
{

Turn off GA_ALLOCHIGH, GA_DGROUP, GA_DISCODE, GA_CODE_DATA,
and GA_ALLOC_DOS bits in allocation flags

Turn off GA-ALLOCHIGH bit in allocation flags II ?
if (no "NE" signature in arenaPointer->pga_owner)

{

}

IIOwner is a PDB handle (i.e., a task)
Turn on GA_MOVEABLE bit in flags

else IIOwner is a module handle
{

II IMPORTANT POINT!!! This· code prevents an
II application from allocating FIXED memory
II (except v.ia GLobalDOSAllocO>' If you want
II FIXED memory, the code either must be in a
I l DLL, or you have to "FIX" it with GlobalFixO

}

}

}

WINDOWS INTERNALS

if (arenaPointer->pga_owner isn't a DLL moduLe)
Turn on GA_MOVEABLE bit in fLags

AND the aLLocation fLags with GA_SEGTYPE bits. Store the
resuLt in GLobaLInfo.hi_disLeveL

GLobaLInfo.hi_disLeveL 1= 40h II ???

if (handLe to reaLLoc != 0) II Is it a GLobaLReaLLoc()?
{ II Yes? Muck with more fLags

if (GA_MOVEABLE && GA_DISCARDABLE bits set in

{

}

}

the aLLocation fLags)

Turn on GA_ALLOCHIGH bit in flags
GLobaLInfo.hi_disLeveL 1= GA_ALLOCHIGH

1/ Some fiddLing about with discardabLe bits

II If the bLock is being aLLocated as SHAREABLE, then the
II owner of the bLock is the current moduLe. If the bLock
II is not shared, then GBTob() branches to a piece of code
II that returns the same things as GbTop, but with the bLock
II owner fieLd set to the PDB of the current task.
if (GA_SHAREABLE bit not set in aLLocation fLags)

go to GetDefOwner()
arenaPointer = Get_Arena_Pointer32(return CS on stack)

II Set cx to contain the handLe that wiLL own the bLock
CX = arenaPointer->pga_owner

return

GAlloc()
GAllocO is a middle level internal routine. While it is not directly responsible for finding a free
block of memory, it does perform other vital tasks. The first important thing it does is call
GSearchO, which searches for a free block. Once GSearchO finds a free block, however, there
is still work to be done. GAllocO next calls Alloc_SelO to allocate the selector which eventu
ally becomes the handle returned to your program when it calls GlobaWlocO. When GAllocO
calls Alloc_SelO, it passes it the address of the memory block it just allocated with GSearchO.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Inside Alloc_Sel(), the address of the memory block is stored into an allocated descriptor table
entry, thus welding the memory to a particular selector. The important point being stressed is
that memory blocks and selectors/descriptors are allocated separately, and then joined
together to form a usable segment.

After creating the new segment from the two distinct parts (the memory block and the
selector), GAllocO stores the address of the arena in the appropriate slot in BurgerMaster's
selector table. This is important for later on when KERNEL needs to know the attributes of
the segment, given just its selector. It's a simple matter to take the selector value and convert
it to an offset in the selector table. At that offset is the address of the segment's arena. From
the segment arena, you can find out just about anything you need to know about the seg
ment.

What happens next in GAllocO depends on the attributes of the allocated memory. If the
memory is FIXED (after passing through GbTopO's gauntlet to see if you really should get
FIXED), GAlloc() calls DPMI to pagelock the block into physical memory. If the memory is
MOVEABLE, its lock count is set to zero, enabling the segment to be moved around in
memory. Also, GAlloc() subtracts one from the selector value for MOVEABLE segments to
convert the selector to a handle. Finally, GAlloc() adds the new block to the LRU list.

At the end of GAllocO is code for handling the special case of allocating a zero length
segment. Although you might consider this strange, this actually happens when a segment is
discarded. The segment simply becomes a zero length segment, and there is no arena pointer
stored in the selector table.

pseudocode for GAlloc() - 3GMEM.OBJ
II Parameters:
II AX = allocation flags after modification
II
II
II
II
II
II
II
II
II
II

EBX = rounded allocation size
ex = handle of the owner of the block
DS:EDI pointer to global heap's Globa LInfo block

Returns:
AX = handle to allocated object
BX = largest block size if ca II fails

Locals:
DWORD arenaPointer
WORD newSelector
WORD newBlockFlags

II If the segment being allocated is not discardable code,
II then call CheckGAllocBreak{), which tells Galloc() to fail
II after being called a certain number of times in the
II context of a particular task.
if (GA_DISeODE not set in allocation flags)

if (eheckGAllocBreak() returns carry flag set)
goto GAlloc_failure_3

if (EBX > OOFFOOOOh)
goto GAlloc failure_3

II is size » (16Mb - 64K)?

WINDOWS INTERNALS

if (EBX == 0)
go to GaLLoc_zero_Length_bLock

arenaPointer = GSearch()

newBLockFLags = DX

if (arenaPointer == 0)
goto GALLoc_done

II Find an avaiLabLe bLock

II Set by GSearch()

II GSearch() didn't find anything?

EDX = arenaPointer->pga_address II Get information on the
ECX = arenaPointer->pga_size II bLock out of its arena

II Get a seLector to reference the new memory bLock
newSeLector = ALLoc_SeL(EDX, ECX)

if (!newSeLector) II FaiL if no seLector avaiLabLe
goto GALLoc_faiLure_2

II Determine how many 64K bLocks were aLLocated
ECX = (ECX + OFFFFh) » 16

arenaPointer->pga_seLcount = CL II Save # of seLectors used
II into the arena header

II Copy the arena's address into the correct spot in the
II seLector tabLe.
AssociateSeLector32(newSeLector, arenaPointer)

II We now have to do different things, based upon what kind
II of bLock was aLLocated (MOVEABLE, FIXED, or DISCARDABLE).
II ALL three bLock kinds end up going through the code for
II DISCARDABLE bLocks.
if (GA_MOVEABLEfLag set in newBLockFLags)

go to GALLoc_moveabLe

if (GA_DISCARDABLE fLag set in newBLockFLags)
go to GALLoc_discardabLe

II If the segment ;s not MOVEABLE or DISCARDABLE, then it
II must be FIXED. ALL FIXED bLocks are page-Locked in
II Enhanced mode, so page Lock it now.
BX = newSeLector II SupposedLy obsoLete DPMI function.
INT 31h, AX = 0004 II Locks the pages of the seLector
if (carry fLag set) II specified by BX

goto GALLoc_faiLure_1

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II Indicate that the block is pagelocked
arenaPointer->pga-pglock++

goto Galloc_discardable

GAlloc_moveable:

arenaPointer->pga_count = 0 II lock count is 0

II The handle for a FIXED memory block is the same as its
II selector. The handle for a MOVEABLE memory block is
II one less than the selector value
newSelector-- II Convert a selector to a handle

GAlloc_discardable:

arenaPointer->pga_handle = newSelector

II Add the block to the LRU list. All block types come
II through here, but GLRUAdd() is smart enough to only
II add DISCARDABLE blocks to the LRU list.
GLRUAdd()

return to caller IINormally exit here.

GAlloc_zero_length_block:
If the block is DISCARDABLE, it must also be MOVEABLE

if (GA_MOVEABLE flag not set in aLlocation flags)
goto GAlloc_failure_3

Calculate the selector attribute byte for a zero-length,
non-present selector

newSelector = Alloc_Sel(O, 0) II Address & length == 0

if (!newSelector)
go to GAlloc_failure_3

II Copy the arena's address into the correct spot in the
II selector table. MK_FP(0, CX) part is supposed to be
II a 32 bit offset for an arena. Strange!
AssociateSelector32(newSeLector, MK_FP(O, CX))

newSelector-- II Convert selector to a handle

WINDOWS INTERNALS

ex = AX
return to caLLer

GALLoc_faiLure_1:

FreeSeLArray() II Page-Locking faiLed. Free seLectors

GALLoc_faiLure_2:

GMarkFree() II Mark the bLock's arena as free again

_KRDEBUGTESH"GLobaLALLoc fai Led"s)

DX = AX = 0

goto GALLoc_done

GSearchO
GSearch() is the low level internal routine that performs all the nasty work of finding a free
block of memory, taking into consideration the allocation flags. This is one of the most criti
cal, workhorse routines of the entire global heap system, so we'll dwell on it for a bit.

GSearch() starts by checking to see if there are any free blocks at all. If there are, it next
looks to see if any of them are large enough in size to accomodate the request. If either of
these conditions is not met, GSearch() goes straight to the heap reorganization code, which
we'll discuss momentarily.

Having verified that it's even worth looking for a free block in the heap as it currently
exists, GSearch() looks at the allocation flags to see what kind of block is being requested. If
the block is DISCARD ABLE, GSearch() starts searching at the high end of the heap, working
backwards (downwards in memory) until it encounters a sufficiently large block. If the flags
indicate a MOVEABLE block, there's no need to search any further. The first block found
during the initial scan will do just fine.

The most complex type of memory to find is a FIXED block. The search starts at the low
end of the heap, working towards higher memory addresses. When GSearch() finds a free
block, the routine attempts to slide the block downwards in linear memory to exchange places
with a MOVEABLE block that is even lower in memory. The reason for this is that it's impor
tant to pack every FIXED block as low in memory as possible. Once the block has been
moved to the lowest possible address, it remains at that address for its entire life. When the
FIXED block is in its final resting place, GSearch() tests the GA_ALLOC_DOS flag. If the
flag is set, GSearch() examines the address of the block to see if it falls below 1Mb in linear
address space. If it is not below 1Mb, GSearch() fails the request because the block must be
below 1Mb so that DOS programs can access it. As you can see, there's no need for KERNEL
to call DPMI function 0100h to allocate conventional memory. All memory below 1Mb is
already in the global heap, so it's a simple matter of finding the lowest address block and veri
£)ring that it's below 1Mb in the linear address space.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Once a block is found by any of the above three methods, GSearchO determines if the
found block is bigger than the allocation request. If so, the polite thing to do is to take only
what it needs, and return the excess to the global heap. GSearchO handles this by creating a
new, free arena header for the excess portion of the block and initializing it appropriately.
Mterwards, GSearch() returns the address of the arena describing the found block. The calling
function eventually binds the address of the found block to a selector to create a complete
segment.

As mentioned earlier, KERNEL can reorganize the global heap if there's not enough
memory to fulfill the allocation request. You can think of this phase as the implementation of
increasingly drastic measures. The first and least painful course of action is to attempt to grow
the heap by allocating additional memory blocks from the DPMI server. If the DPMI server
comes through with more memory (actually, just more linear address space), GSearchO starts
over again at the top of its code, looking for a free memory block. In KRNL286, the global
heap starts out at its maximum size. Therefore, this step of growing the heap does not occur
inKRNL286.

If growing the heap does not help the situation, the GCompactO routine (described in
more detail below) takes over. It shuffies around MOVEABLE blocks in an attempt to
coalesce enough free blocks to fill the request. Finally, if that still doesn't do anything to
improve the situation, this routine undertalces the most drastic step, the discarding of DIS
CARDABLE segments. These last two steps occur inside GCompactO.

pseudocode for GSearch() - 3GALLOC.OBJ
II Parameters:
II AX = allocation flags
II EBX = rounded allocation size
II CX = .handle of the owner of the block
II DS:DI pointer to global heap's Globallnfo block
II Returns:
II EAX = address of the allocated block
II EDX = largest free block, if failure
II Locals:
II DWORD arenaPointer
II Static:
II NEARPROC npfnNextSearchAction II Near function pointer

II npfnNextSearchAction is a function pointer that always
II points at the function to be called when the current steps
II don't work. After each usage, it's set to the code that
II takes the next most "drastic" action.
npfnNextSearcAction = Grow_Heap II Grow_Heap() is a function

Start_GSearch: II Start searching through the heap

GAlign() II Rounds a size request up to nearest paragraph

WINDOWS INTERNALS

if GLobaLInfo.gi_free_count == 0) II Any free bLocks?
go to Space~ot_Found

1/ Start iterating through the entire free List, Looking
II to see if there's any bLock that big enough to satisfy
II the memory request. If not, compact immediateLy
arenaPointer = GLobaLInfo.hi_first II Point at first bLock

whiLe (not at end of free List)
{

}

if (a big enough bLock found)
goto found_a_free_bLock

/1 point at next free bLock in List
arenaPointer = arenaPointer->pga_freenext

II No bLock found. Time to compact

II The GA_ALLOCHIGH bit is set for discardabLe aLLocations,
II and indicates that the bLock shouLd be aLLocated from
II the high end of the gLobaL heap. If GA_ALLOCHIGH is
II not set, then the bLock is MOVEABLE or FIXED, so it
II shouLd be aLLocated from the Low end of the heap.

II Decide which end of the heap we're going to start
II Looking from:
if (GA_ALLOCHIGH bit not set in fLags)

go to ALLoc_Low II eLse, faLL through to ALLoc_High

II Point at the Last entry in the heap. DISCARDABLE bLocks
II are at the high end of the heap, so we start at the end,
/1 and work backwards, Looking for a free bLock
arenaPointer = GLobaLInfo.hi_Last

whiLe (not at end of free List)
{

}

if (a big enough bLock found
go to found_a_free_bLock_2

II point at the preceding free bLock
arenaPointer = arenaPointer->pga_freeprev

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

// Nothing good found. Time to compact
goto space_not_found

// if the GA_MOVEABLE bit is set in the flags, then we can
// just use the block that was found at the beginning of the
// GSearch(). Otherwise, we go through the special code to
// allocate a fixed block.
if (GA_MOVEABLE bit not set in flags)

go to Alloc_Fixed

// Make sure block fits underneath the code fence, if
// it's not a DISCARDABLE code segment

if (!GCheckFree())
goto Space_Not_found

else
goto found_a_free_bloc~2

/I Point at the FIRST entry in the heap. FIXED blocks
// are at the low end of the heap, so we start at the
// beginning, and work forwards, looking for a free block
arenaPointer = GlobalInfo.hi_first

// Skip the first block, because it's a sentinel
arenaPointer = arenaPointer->pga_next

// Iterate through all of the blocks in the global heap,
// looking for a block that is either free, o~·that
// can be made free by shuffling things around.
/f Yes, these are really function names in the loop!
while (not at end of heap list)
{

if (Is_There_Theoretically_Enough~Space() is less than
the allocation size)
goto next_a lloc_fi xed

if· (!Can_We_Clear_This_SpaceO)
goto next_alloc_fixed

// Make sure block fits underneath the code fence, if
// it's not a DISCARDABLE code segment

WINDOWS INTERNALS

if (!GCheckFree())
goto next_alloc_fixed

if (!PreAllocArena()) II Allocate arena for GSlide()?
goto alloc_fixed_done_sliding

alloc fixed_slide:

1/ If possible, GSl ideO will "slide" a block downwards
II in the heap, exchanging places with blocks that are
II at lower address. This loop moves the block down
II a far as possible
if (GSlideO)

goto alloc_fixed_slide

II If we're being called from GlobalDOSAlloc(), then the
/1 GA_ALLOC_DOS bit is set in the allocation flags. Make
/1 sure that the block we found is below 1Mb.
if (GA_ALLOC_DOS bit not set in flags)

goto found_a_free_block_2

if (arenaPointer->pga_address > 1Mb)
goto GSearch_Fail

else
go to found a free_block_2

next alloc_fixed:

arenaPointer = arenaPointer->pga_next

} II End of while() loop

II Go do whatever the next course of action is, i.e.,
II Grow_Heap(), Do_Compact(), or GSearch_Fail()
npfnNextSearchAction() II Call through the function pointer

II The first time through, GrowHeap()
II is what's called. IMPORTANT:
II Only after this fails is the heap compacted.

II The heap couldn't be grown. Try to compact the heap
II by removing free blocks between in-use blocks, and by
II getting rid of discardable blocks.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II If the compaction fails, the next thing to do is fail the
II allocation request
npfnNextSearchAction = GSearch_Fail

GCompactO II Compact the global heap

goto Start_Gsearch II Start looking through the heap again

II If the heap can't be grown (i.e., by paging), the next
II thing to do is to compact the global heap
npfnNextSearchAction = Do_Compact

II Try to allocate memory from
II expand the global heap.
if (GrowHeap())

goto start_again_at_top

DPMI (function 0501h) to

II If heap can be grown,
II start searc~ anew

II Free blocks to the DPMI server. If this doesn't
II work, then go straight to the compaction step. Perhaps
/1 this is to help out with large allocations???
if(!InnerShrinkHeap(» II Discussed with GlobalCompact()

goto Do_Compact()

II If blocks could be freed by InnerShrinkHeap(), try
II to expand the global heap agai~
if (GrowHeap())

goto start_again_at_top

II GSearch_Fail is reached when the allocation request
II still fails after attempting to grow the global heap
II and compacting the heap.

GSearch_Fai l:

II Iterate through the free list, storing the size of the
II largest free block in EDX. The intent is to find the size of
II the Largest free block, which is r~turned if the call fails.
arenaPointer = GlobalInfo.hi_first II Point at first block

WINDOWS INTERNALS

while (not at end of free list)
{

}

if (EDX < arenaPointer->pga_size)
EDX = arenaPointer->pga_size

II point at next free block in list
arenaPointer = arenaPointer->pga_freenext

EAX = 0
return to caller

II We get here if a block big enough to satisfy the
II request is found. The block may be too big, in which
II case it will need to be split into 2 pieces.

found_a_free_block_2:

if (size of allocated block> requested size
{

}

II Create an arena header for the soon to be created
II "remainder" block
if (PreAllocArena() == 0)
{

}

II If the arena couldn't be allocated, take
II appropriate corrective action
if (npfnNextSearchAction -- GSearch_Fail

goto GSearch_Fail

Turn off GA_NODISCARD and GA_NOCOMPACT flags in
the GlobalInfo compaction flags.

Turn on the COMPACT_ALLOC flag in the GlobalInfo
compaction flags.

II Discard everything

GDel_Free(arenaPointer) II Remove the block from the free list

if (size of allocated block> requested size)
{

GSpl i ceO

}

II Split the block into 2 blocks, one being
II big enough for the requested allocation~
II The unneeded portion will be added to the
/I free list.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

GMarkFreeO /I Mark the "remainder" block as free
II .Store away the blocks flags. They can later
II be retrieved
II via the GlobalFlags() API

arenaPointer->pga_flags = AL

if (GA_ZEROINIT flag)
{

Get_Blotto() /I Gets the "blotto" selector,
/I zero out memory segments.

GZeroO /I Zero out the new block
}

used to

OR EAX with EAX to set the Zero flag, indicating success
or failure

return arenaPoniter to caller

CrowHeapO
GrowHeapO is the low level KERNEL routine responsible for allocating additional memory
from the DPMI server and adding it into the global heap. GrowHeapO initially tries to allo
cate at least 64K (usually 128K) from DPMI. If that fails, GrowHeap() falls back and tries to
allocate the amount of memory actually needed, if less than 64K. If it successfully allocated a
DPMI block, GrowHeapO creates the two bounding GA_NOT_THERE arenas that mark the
ends of the block. It also creates the free arena that the higher level functions allocate from .

. pseudocode for GrowHeapO - 3GALLOC.OBJ
II Parameters:
II DWORD growSize II Actually in EDX

if (FreeArenaCount < 4) II At least 4 arenas are needed
Set the carry flag and return

Save growSize on the stack

if (growSi ze < 64K) II A lways a Llocate at least 64K from DPMI
growSize = 128K II 128K is usually the case.

round growSize to a multiple of 4K

INT 31h, fn. 0501h II DPMI allocate memory

WINDOWS INTERNALS

if (allocation failed)
{

}

growSize = original growSize from the stack

/I Find out if DPMI is holding memory "in reserve". If
II so, go allocate some now. GetDPMIFreeSpace() is
II discussed later.
if (GetDPMIFreeSpace() < growSize

set carry flag and return

INT 31h, fn. 0501h II DPMI allocate memory

if (allocation failed)
set carry flag and return

II If we get here, we were able to get enough memory
II to satisfy the allocation request.
Alloc_Arena_Header() II Allocate the 1st bracket arena
Set GA_NOT_THERE bit in the pga_owner field

Alloc_Arena_Header() II Allocate the usable arena
Set GA_NOT_THERE bit in the pga_owner field

Alloc_Arena_Header() II Allocate the 2st bracket arena
Set GA-NOT_THERE bit in the pga_owner field

Add the new arenas into the linked list of arenas

GMarkFree() II Mark the middle arena as being free

GCompact()
GCompactO is a low level internal routine that, besides being called from GSearchO, is also
called from GlobalCompactO (via the GAvailO function). The code starts out by obtaining
the timer tick count. This might seem a bit strange, unless you know that GCompact() sends
a WM_COMPACTING message to all tasks when an excessive amount of time is spent com
pacting the global heap. .

Next GCompactO calls GCmpHeapO, another low level routine, but we won't go into its
details. It is sufficient to say that it shuftles MOVEABLE blocks around in memory and tries
to create the largest possible free memory block. If the act of reorganizing the MOVEABLE
blocks frees up enough space, GCompactO skips the next and most drastic step of discarding
segments.

For the work of discarding segments,GCompactO calls GDiscardO, yet another low level
routine that we won't examine here because of its length and complexity. In brief, GDiscardO
starts discarding the least recently used segments until it has freed up enough space. Then,

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

since the act of discarding segments may have created additional opportumt:J.es for
GCmpHeapO to free up even more space, GCompactO calls GCmpHeapO yet again.

All routes of exit from GCompactO lead through a code sequence at the end of the func
tion, where GCompactO calculates the amount of time spent compacting the global heap. If
more than 1/8 of the time is spent compacting, the WM_COMPACTING message is broad
cast to all tasks in the system. As described in Chapter 1, KERNEL is not quite as self-suffi
cient as you might think because it has tq know about USER routines in order to broadcast
the message.

pseudocode for GCompactC) - 3GCOMPAC.OBJ
II Parameters:
II DWORD bytes_requested

Get timer tick count from BIOS segment area C0040H:006Ch),
and save the value in GCompact_Timer global variable

Save the original value of GlobalInfo.gi_cmpflags on stack

II Set flags to not compact the heap when looking for memory.
II This flag may be turned off in subsequent passes through
II the global heap, if the initial pass fails.
if C WF_PAGING bit set in WinFlags)

Turn on GA_NOCOMPACT flag in GlobalInfo.gi_cmpflags

GCompact_start:

if debug KERNEL
ValidateFreeSpacesC) /I Just RETF's.

II If there is a discardable code segment reserve area,
II compact the bottom portion of the heap
if C Globallnfo.gi_reserve != 0)
{

}

ESI = GlobaLInfo.hi_first /I First block in heap
EBX = offset of pga_next field in GlobalInfo

GCmpHeapCESI; EBX) II compact the bottom portion of the
II heap. Move around MOVEABLE blocks
II to coalesce free spaces

II compact the top portion of the heap and see if enough
II space was created.
ESI = GlobalInfo.hi_last II Last block in heap
EBX = offset of pga-prev field in GlobalInfo
GCmpHeapCESI, EBX)

WINDOWS INTERNALS

if (GCmpHeap() was able to compact anything)
{

}

if (GCheckFree() > bytes_requested)
goto GCompact_do_timer_check

II Enough freed?
II Yes? All done.

if (Globallnfo.hi_freeze != a)
goto GCompact_do_timer_check

Il if the heap is "frozen"
II it can't be compacted

Il Did the memory request say "Don't discard to satisfy"?
II If so, skip over the discarding step
if (G~NODISCARD bit set in Globallnfo.gi_cmpflags)

goto GCompact_no_discard

if (WF_PAGING bit set in WinFlags)
goto GCompact_do_discard

if (GA_NOCOMPACT bit set in Globallnfo.gi_cmpflags)
goto GCompact_no_discard

II We couldn't come up with enough space by moving around
II segments and coalescing blocks. It's finally time to
II start discarding segments until there's enough room
II left. GDiscard() does this.
if (GDiscard()) II If segments were discarded,

goto GCompact_start II then the heap may also now be
II amenable to coalescing again,
II so go try it again

Il This section appears to be some sort of state machine.
II Based upon the values of various flags, it either gives
II up on the allocation request, or changes some flags and
II starts anew the process of coalescing and discarding
II memory blocks to meet the request.
if (WF_PAGING bit not set in WinFlags)

goto GCompact_do_timer_check

restore original gi_cmpflags on stack to GlobaLInfo

push Globallnfo.gi_cmpflags on stack, and turn on the
GA_NOCOMPACT and GA_NODISCARD bits in the compaction
flags that are saved on the stack

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if (GA_NOCOMPACT bit not set in Globallnfo.gCcmpflags)
goto GCompact_start

II See if the address of PostMessage() has been obtained
II yet (KERNEL startup does this>' If it's still 0, then
II we don't have a function pointer to call PostMessage()
II with. Thus, don't calculate the compaction time ratio
if (FP_SEG(PPostMessage) == 0)

goto GCompact_done

Get timer tick count from BIOS segment area (0040H:006Ch)

Calculate how much time is spent compacting the heap

II If more that 1/8 of the recent time has been spent
II compacting the heap, broadcast a me~sage to all programs
II advising them that memory is low, and that they should
II free up any unneeded memory. The call is done via the
II function pointer obtained during KERNEL startup.
if (time threshold has been reached (12.5%))

PostMessage(-1, WM_COMPACTING, AX, OL)

Set GCompact_Start from t.he current ti ck count

GCompact_done:

restore GlobaLInfo.gi-,-cmpflags off the stack

return to caller

G/obalFreeO
Like GlobalAllocO, the code for GlobalFreeO is mostly uninteresting. It has the standard
GEnterO prologue and GLeave 0 epilogue code. GlobalFreeO checks the handle being freed
for a few special conditions and undertakes appropriate remedies if necessary (see the pseudo
code). The real work is done insideGFreeO, which we cover next.

pseudocode for GlobalFreeO - 3GINTERF .OBJ
II Parameters:
II WORD handle

push DS on the stack after setting up stack frame

GEnterO II Prevent LRU sweeping~ point at Globallnfo

WINDOWS INTERNALS

if (handle == 0)
goto GLeave()

II Can't free a NULL handle!

II Some programs written for Windows 3.0 converted a selector
II to a handle by just adding 1 to the selector value. In
II Windows 3.1, the privilege level changed, and hence, the
II bottom 3 bits should always be on. If a program uses
II the 3.0 hack, the bits will "wrap" around, and become O's.
II If this is the case, GlobalFree() tries to correct the
II situation by decrementing the value back to (hopefully)
II its correct value. The debug KERNEL prints out a message:
II "A program has attempted an invalid selector-to-handle
II conversion\r\nAttempting to correct this error."
if (bottom 3 bits of handle are 0)

handle--

PDref(handle) II Returns AX = selector, DX = handle
II (or 0 if the segment is fixed)

II The WORD at [BP-2J is the DS that was pushed upon entry
II to GlobalFree(). Check to see if that selector is the
II one being freed. If so, set the DS value on the stack
II to zero, so that we don't GP fault when we restore the
II value from the stack
if (AX .or DX equal the WORD at [BP-2J)

set the WORD at [BP-2J to 0

if (running the debug KERNEL)
If handle being freed is locked, emit an error message

GFree() /I Takes care of the details of deallocation

GLobalFree_done:

if(!CheckGlobalHeap())
{

II Only does this in debug KERNEL

AX 1= Ox0200 II An error code ???
NearKernelError("GlobalFree: Invalid global heap")

}

GLeaveO

pop DS from the stack

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

GFree()
GFreeO is a middle level internal routine. If the segment being freed has not been discarded,
then Free_ ObjectO handles the details of freeing the block and releasing its associated selec
tor. If the object has been discarded, there's no block to worry about freeing up; all that
remains is setting the selector table entry to zero, and releasing the selector(s) that referenced
the block back to the LDT free list.

pseudocode for
II Parameters:

GFree() - 3GMEM.OBJ

II WORD handLe II handLe to free (in DX register)
II Locals:
II DWORD arenaPointer

owner
II These two vars are reaLLy
II in registers /I WORD

PDref() II Returns the address of the seLector's arena and the
II bLock owner's handLe. These vaLues are used as
/I the "arenaPointer", and "owner" LocaL variables.
II The Zero fLag is set if object has been discarded.

if object has been discarded)
go to Object_Discarded

Free_Object(owner, arenaP6inter)

return to caLLer

II ReLease the object
II from the globaL heap

Object_Discarded:

II ApparentLy, if the bLock has been discarded, the bottom
/I WORD of its "arena pointer" in the selector tab~e is a
II seLector vaLue of some kind. Here, we nuLL out the entry
II in the selector tabLe.
AssociateSeLector32(LOWORD(arenaPointer), 0)

FreeSeLArray(LOWORD(arenaPointer)) II Free up the seLector

Free_ Object()
Free_ObjectO, called from GFree(), is a low level internal routine. It begins by removing the
memory object from the LRU list. If the block is pagelocked, Free_ObjectO repeatedly
invokes the supposedly obsolete DPMI function 0005h until it un-pagelocks the block. After
wards, Free_ ObjectO examines the surrounding arenas and, if the conditions are right, frees
the entire DPMI block back to the DPMI server. If this isn't the case, Free_Object() informs
the DPMI server that the memory for the block is no longer needed and can be discarded,
rather than paged to disk. The final two bits of housekeeping involves NULLing out the arena
pointer in the selector table and freeing up the selector(s) that were used to reference the
block.

WINDOWS INTERNALS

pseudocode for Free_Object() -3GMEM.OBJ
II Parameters:
II WORD owner (in DX register)

arenaPointer (in DS:ESI) /I DWORD

/I if "owner" is nonzero, then the block will be freed
/I only if it matches the real owner of the block, as
/I specified in the "pga_owner" field in the arena
if (owner !== 0)

if (arenaPointer->pga_owner != owner)
return -1

GLRUDel() II Remove this object from the LRU list. FIXED
/I objects aren't in the LRU list.

if (arenaPointer->pga-pglock != 0)
{

}

loop arenaPointer->pga-pglock times, calling INT 31,
fn. 0005h to completely unlock the block. This DPMI
function is listed as "reserved" in the DPMI
specification. It unlocks all the pages associated with
a selector. It's similar to INT 31h, fn. 0601h, and in
fact, both functions call _LinPageUnlock in VMM.

arenaPointer->pga-pglock = 0 II No longer page locked

GMarkFree() II Mark the block's arena as free

II We now begin testing the block being free to see if it's
II an entire block previously allocated from DPMI. If so
II we will free the block back to the DPMI server.

if (owner of arenaPointer->pga-prev block isn't GA_NOT_THERE)
goto Free_Ob'ject_A

if (owner of arenaPointer->pga_next block isn't GA~OT_THERE)
goto Free_Object_A

if (block _after_ arenaPointer->pga_next block is a sentinel)
go to Free_Object_A

II Use INT 31h, fn. 0502 to free the DPMI block back to the
II DPMI server. Also removes the block from the heap list.
II pseudocode for this function is given later in the chapter.
UnlinkWin386Block(arenaPointer)

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II CaLLs DPMI function 0703h. This teLLs the DPMI server
II that the memory region is no Longer needed, and that it is
II O.K to discard the memory, rather than swap it to disk.
II The DPMI function in turn caLLs _PageDiscardPages in VMM,
II which cLears the "accessed" and "dirty" bits in the
II page tabLe entry. This teLLs the LRU mechanism that it
II doesn't have to move the memory to disk, and instead can
II just discard it.
GWin386Discard(arenaPointer->pga_size,

arenaPointer->pga_address)

II somewhere prior to this part, DX is set to the seLector
II of the segment that's being freed.
AssociateSeLector32(DX, 0) II NuLL out arena pointer in

II the seLector tabLe.

FreeSeLArray(DX) II Free up the LDT entries

G/obalLockO
GlobalLockO is probably one of the most misunderstood of the Windows APIs. The code is
actually fairly simple, so. it's somewhat surprising how much confusion arises from its use.

GlobalLockO accepts -1 as a handle value and locks whatever the current DGROUP seg
ment is. If the caller passed in -1 therefore, GlobalLockO changes the handle value to the cur
rent DS value.

Before the program enters the main body of the function, the LAR instruction obtains
the access rights bits for the passed handle. When a memory block is discarded, its "present"
bit is cleared. In this case, there's no way to lock the block. The caller must somehow be
made aware of this situation. GlobalLockO will return 0 if the segment you told it to lock has
already been discarded. When using DISCARDABLE memory, the caller is responsible for
checking the return value from GI obaILock() to see if the block has been discarded. If so, the
caller is responsible for recreating the memory block.

After the initial preprocessing that we just described, GlobalLockO copies the handle
parameter to the DX register (upon return, DX contains the selector portion of a far pointer).
Then, it turns the bottom bit of DX on. If the block is already FIXED, then its handle is its
selector value, and the bottom bit is already on. If the handle is for a MOVEABLE block, the
handle value is one less than the selector value. Turning on the bottom bit has the effect of
adding one. In all cases, DX ends up with a valid selector value. Now comes the extremely
important part. If the block is not DISCARDABLE, GlobalLockO simply returns to the caller.

WINDOWS INTERNALS

That's it! For the vast majority of your allocations, the only thing GlobalLockO does is con
vert your handle to a selector through some bit-twiddling. No lock counts are incremented.
Nothing. It's really that simple.

If the block being locked is DISCARDABLE, which is fairly rare in most programs, all
GlobalLockO does is increment the lock count in the block's arena. This prevents the block
from being discarded when the heap manager is scavenging around, looking for something it
can toss to free up a few bytes. No pagelocking or anything else fancy goes on.

pseudocode for GlobalLock() - 3GINTERF.OBJ
II Parameters:
II WORD handle

if (handle == -1) II Lock DGROUP if passed -1
handle = DS

II Return 0 if the segment has been discarded!
if (PRESENT bit not set in the LDT entry)

return NULL

DX = handle II Upon return, DX will contain the seg value

OR the bottommost bit of DX on II Converts a handle
II to its selector.

II The 1000h bit in the LDT descriptor (which is 'available'
II for use by system software) is used to mark whether the
II segment is discardable or not
if (segment is non-discardable)

return DX:AX II a usable far pointer. AX=O

II Important point: Only DISCARDABLE segments continue
II past this point. This means that for almost every
II segment that a program typically allocates, calling
II GlobalLock() does nothing but convert the handle to
/I a selector.

II Get handLe's arena pointer. DX still contains a selector
.11 version of the handle parameter.
if (Get_Arena_Pointer32(DX) == 0)

return 0
II Prevent the block from being discarded.
increment the pga_count field in the found arena

return DX:AX II a usable far pointer. AX=O

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

GiobaiUniockO
As you might expect, the GlobalUnlockO code is almost a mirror image of the GlobalLockO
code. In other words, it's extremely simple. After testing for and dealing with some special
cases (the same ones that GlobalLockO checks for), GlobalUnlockO just returns if the block is
not DISCARDABLE. Putting aside questions of aesthetics and portability, there's really no
reason to call GlobalUnlockO if the segment isn't DISCARDABLE. If the segment is DIS
CARDABLE, then you should of course call GlobalUnlockO, as appropriate. All it does in
this case is decrement the lock count in the block's arena. When the lock count reaches 0, the
segment can be discarded. .

pseudocode for GlobalUnlock() - 3GINTERF.OBJ
II Parameters:
II WORD handle

if (handle == -1) II Unlock DGROUP if passed -1
handle = DS

II Attempt to fix bad selector-> handle conversions by
II application programs. See pseudocode for GlobalFree()
II for details.
if (bottom 3 bits of handle are 0)

handle--

II Return 0 if the segment has been discarded
if (segment is not present)

return NULL

if (segment is non-discardable) II See GlobalLock() pseudo
return 0 II code for how this is

II determined

/I Important point: Only DISCARDABLE segments continue
/I past this point. This means that for almost every
/I segment that a program typically allocates, calling
/I GlobalUnlock() does nothing.
if (Get_Arena_Pointer32(handle) == 0)/1 Get handle's

return 0 /I pointer

decrement the pga_count field in the found arena, and
check to see if the lock count has "underflowed"

return the current lock count

arena

WINDOWS INTERNALS

GlobalHandleO
GlobalHandleO, which returns the Windows global heap handle that corresponds to a passed
in protected mode selector, just functions as a wrapper around MyLockO. MyLockO
(described below) returns its values in the opposite registers than GlobalHandleO, so the
GlobalHandleO code switches the values ofDX and AX before returning .

. pseudocode for GlobalHandle() - 3GINTERF.OBJ
II Parameters:
II WORD selector

MyLock(selector) II Returns handLe in DX, SeLector in AX
/I Doesn't "lock" anything.

XCHG AX, DX

MyLockO
MyLockO is a mid-level internal routine. It first verifies whether the handle passed into it is
valid and returns a zero if the handle is invalid. Then, if the block is present in memory, My
LockO retrieves the handle out of its arena. If the block isn't present, XHandleO gets the han
dle value. Since no locking goes on here, the name MyLockO is misleading. Perhaps it's
named this way because in real mode Windows, locking a handle was the same as dereferenc
ing it, which is what MyLockO really does.

pseudocode for MyLock() - 3GINTERF.OBJ
II Parameters:
II WORD selector

if (using LAR on the selector failed (ZF set))
return NULL

if (seLector is marked not-present in the LDT)
goto MyLock_XHandLe

if (Get_Arena-Pointer32(seLector)
return NULL

-- 0) II Get the arena
II pointer for the
II selector param

get pga_handLe fieLd from arena pointer, and store in AX

Copy AX to DX, and OR the bottom bit of AX on to make a
selector vaLue out of it.

return to caLLer (DX = handLe, AX = selector)

MyLock_XHandle:

XHandLeO

XCHG AX, DX

II See pseudocode below

return to caLLer

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

XHan dIe 0
XHandleO is a heavily used internal routine. It takes a global handle and returns various regis
ters that point at relevant data structures and useful values. Most of the values returned by
XHandleO are actually obtained by PDRefO, which is another internal routine.

pseudocode for XHandle() - 3GINTERF.ASM
II Parameters:
II WORD handle
II Returns:
II

if Zero flag is not set:
AX = handle
BX = pointer to the selector table entry for the handle

II
II
II
II
II

CH = lock count of block (0 if the block is FIXED)
CL = flags in arena

II DX = selector
II ES:ESI = arena for the memory block
II
II If Zero flag is set:
II AX = handle

if (handle == -1)
handle = DS

DS:EDI = &GlobalInfo II Point at the GlobalInfo structure

GlobalInfo.gi_lrulock++ II Prevent LRU sweeping

PDRef(hand le} II Sets up register to point at, or contain,
II various relevant values for the passed in
II handle. XHandle() returns these values

if (PDRef() returned with the Zero flag set
return

if (bottom bit set in AX)
Zero flag = 1 II Segment is FIXED

else
Zero flag = 0 II Segment isn't FIXED

GlobalReAllocO
GlobalReAllocO is a wrapper routine around the internal GReAllocO function. The beginning
and end of the function looks very similar to the GlobalAllocO code, with the GReAllocO
function sandwiched in between.

WINDOWS INTERNALS

The GReAlloc() routine is extremely large and convoluted. Because of its size and com
plexity, pseudocode is not included here. However, we did notice that GReAllocO uses the
same GSearchO function that's at the core of the GlobalAllocO routine. The code appears to
shift memory blocks around in memory. This may be an attempt to grow a block in place,
rather than to allocate a larger block then copy the original contents into it and free the old
block (known as the bozo-realloc algorithm). As a side note on GReAllocO, there was a bug
in the Windows 3.0 GlobalReAllocO that caused reallocations to fail when you tried to reallo
cate your memory block to a larger size. According to various sources, this was due to a bug
in the DPMI server.

pseudocode for
II Parameters:

GLobaLReALLoc() - 3GINTERF.OBJ

II WORD
II DWORD
II WORD

handLe
num_bytes
fLags

II Attempt to fix bad seLector-> handLe conversions by
/I appLication programs. See pseudocode for GLobaLFreeO
II for detaiLs.
if (bottom 3 bits of handLe are 0)

handLe--

II This section of code, down to, but not incLuding
II GReALLoc() is simiLar to the start of GLobaLALLoc()
II See the GLobaLALLoc() pseudocode for more detaiLs.
GEnter() II Prevent LRU sweeping. Point at GLobaLInfo

MyGetAppCompatFLags() II Described in Undocumented Windows

if (GACF_IGNORENODISCARD fLag is set)
{

if (!IsKerneLCaLLingO)
turnoff GA_NODISCARD bit in fLags

}

GbTopO /I Tweaks the allocation flags to be "proper"

GReALLoc() II Does aLL the hard work. A _LARGE_ function!

if(!CheckGLobaLHeap())
{

II OnLy does this in debug KERNEL

AX 1= Ox0200 II An error code ???
NearKerneLError("GLobaLReALLoc: InvaLid gLobaL heap")

}

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

GiobaiDOSAlloc()
GlobalDOSAllocO is primarily used by programs for obtaining memory below 1Mb in order
to communicate with TSRs, and by KERNEL when allocating a new Task Database. It's
important to remember that memory allocated from GlobalDOSAllocO can only be accessed
in the system Virtual Machine (VM). You cannot allocate memory with GlobalDOSAllocO for
use with DOS boxes that were invoked inside Windows. Also, when using virtual memory,
memory obtained from GlobalDOSAllocO is only located below one megabyte in the linear
address space. It's quite possible that the memory may actually be above one megabyte in
physical memory.

GlobalDOSAllocO starts out by calling GlobaWlocO, using the undocumented
GA_ALLOC_DOS flag. This flag tells GlobaWlocO that the memory needs to be below 1Mb
and FIXED. If GlobaWlocO is able to come up with the memory, GlobalDOSAlloc() calls
GeCPhysical_AddressO to obtain the linear address of the block in memory. GlobalDOS
Alloc() performs some segment arithmetic with that address in order to calculate the value of
a real mode segment that it can pass to DOS or to other real mode code that needs to access
the block. This value, as well as the protected mode selector that Windows programs use to

access the block, is returned to the caller.

pseudocode for GlobalOOSAlloc() - 3GINTERF.OBJ
II Parameters:
II OWORO num_bytes

II Allocate the memory, using an undocumented flag
if (!GlobalAlloc(GA_ALLOC_OOS, num_bytes))

return a

save handle from GlobalAlloc() on stack

II Reads the base address of the segment out of the LOT
II descriptor. Note that the returned address is not
II a physical address that can be put on the address bus.
II Instead, it's a _linear_ address.
Get_Physical_Address()

use SHR and RCR instructions to create a real mode segment
address in OX

restore handle from GlobalAlloc() into AX liOn the stack

GiobaiDOSFree()
GlobalDOSFreeO is just a shell around the GlobalFreeO API. There does not appear to be
any special reason for its existence, other than to maintain continuity of the Windows API
naming. In some versions of Windows 3.0, GlobalDOSFreeO is just an exported alias for
GlobalFree().

WINDOWS INTERNALS

pseudocode for GlobalDOSFree() - 3GINTERF.OBJ
II Parameters:
II WORD handle

GlobalFree(handle)

G/obalCompact()
GlobalCompact() starts out by determining how much free memory is available from the
DPMI server. If the amount of free memory is less than the number of bytes requested, or if
the free memory size is below 512K, GlobalCompactO calls GAvail(). GAvail(), which is not
described here, calls GCompactO, which we examined as part of GlobaWlocO. Then,
GlobalCompactO uses ShrinkHeapO to free up any DPMI blocks that don't have segments
allocated in their space. ShrinkHeapO is just a wrapper around InnerShrinkHeapO, which we
examine next.

pseudocode for GlobalCompact() - 3GINTERF.OBJ
II Parameters:
II DWORD bytes_requested
II Locals:
II DWORD bytes_free

GEnter() II Prevent LRU sweeping. Point at GlobalInfo

if(!CheckGlobalHeap())
{

II Only does this in debug KERNEL

AX 1= Ox0200 II An error code ???
NearKernelError("GlobalCompact: Invalid global heap")

}

II Figure out how much free space there is, round it down
II to a paragraph boundary, and store it. See
II GetDPMIFreeSpace() to see how DPMI is queried.
EAX = bytes_free = galign(GetDPMIFreeSpace())

if ((bytes_free < bytes_requested) II (bytes_free < 512K))
{

if in debug KERNEL, display:
"%SS2 Gt.obalCompact<#ax#BX), discarding segments"

where #ax#BX displays the value of "bytes_requested"

GBTop(-1) II Convert bytes_requested to paragraphs

GAL ignO II Rounds a size request to nearest paragraph

EAX = GAvail() II Returns the amount of available free
II space. Calls GCompact().

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if (EAX < bytes requested)
EAX = bytes_requested

II Is the amount of free
II space enough???

}

Convert EAX into DX:AX representation

GLeave() II Reenable LRU sweeping

ShrinkHeap() II Wrapper around InnerShrinkHeap() call

InnerShrinkHeap()
InnerShrinkHeap() is the function that releases blocks that were previously allocated from
DPMI back to DPMI, if no one is suballocating any of the memory in the block.
InnerShrinkHeapO iterates through the global heap arenas, and if an arena's pga_prev and
pga_next fields both point to blocks that are owned by GA_NOT_THERE, it's safe to free
the block. This task is handled by UniinkWin386BlockO (discussed momentarily). After the
entire heap has been examined, InnerShrinkHeap() checks to see if any blocks were in fact
released to DPMI and sets the ZERO flag accordingly.

pseudocode for InnerShrinkHeap() - 3GCOMPAC.OBJ
II Locals:
II DWORD arenaPointer (actually in ESI)

save value of Win386_Blocks on stack

if Win386_Blocks == 0)
return

II Win386_Blocks is a global
II variable, containing the
II number of blocks that have
II been allocated via DPMI

arenaPointer = GlobalInfo.hi_first II Start at list head

arenaPointer = arenaPointer->pga_freenext II Goto next block

II Check for the last sentinel. We kno~ it's the last block
II if its pga_next pointer points to itself
if (arenaPointer->pga_next == arenaPointer)

goto done_looping

if (arenaPointer->pga-prev != GA_NOT_THERE
go to next_arena

WINDOWS INTERNALS

if arenaPointer->pga_next!= GA~OT_THERE)
goto next_arena

if (block _after_ arenaPointer->pga_next block is a sentinel)
goto done_looping

II Use INT 31h, fn. 0502 to free the block back to the DPMI
II server. Also removes the block from the heap list
UnlinkWin386Block(arenaPointer)

goto next_arena II keep looking for more blocks to free

done_looping:

pop vaLue of Win386_Blocks of the stack, and compare to the
new value of Win386_Blocks. This causes the Zero flag to
be set if the heap didn't shrink at all.

Unlink Win 386BlockO
The KERNEL memory manager is "environmentally aware," and knows that recycling is a
good thing. Once KERNEL has determined that a block should be released back to DPMI,
U nlinkWin386Block() is responsible for undoing the scaffolding set up when the block was
first allocated. The first order of business is to remove the block from the free list. Next,
DPMI function 0502h frees the block back to the DPMI server. Then, KERNEL decrements
the global variable containing the number of allocated DPMI blocks. The three arenas for the
block (two GA_NOT_TIfEREs and one free arena) are then removed from the regular arena
chain. Finally, it releases the three arenas themselves to the free arena pool.

pseudocode for UnlinkWin386Block() - 3GCOMPAC.OBJ
II
II
II
II

Parameters:
DWORD arenaPointer (in ESI)
DWORD prevArena (in EBX)
DWORD nextArena (in ECX)

II See if we're about to do something nasty with the last
II sentinel block. Abort now, if so.
if (block _after_ nextArena points to itself)

return

if debugging version of KERNEL, display a message:
"UnlinkWin386Block: releasing .#dx#AX bytes",

where #dx#AX displays the value of arenaPointer->pga_size

GDel_Free(arenaPointer) II Remove block from the free list

Get DPMI block handle from prevArena->pga_lrunext

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

INT 31h, fn. 0502h to release the memory back to DPMI server
The DPMI server in turn calls the VMM _PageFree function.

Win386_Blocks-- II Decrement the global variable

fix-up pointers so that prevArena->pga-prev points to
nextArena->pga_next, and vice-versa. CIn other words,
remove the 3 arenas from the global heap list)

Free_Arena_HeaderCprevArena) II Free up the headers for
Free_Arena_HeaderCarenaPointer) II the 3 arenas that were
Free_Arena_HeaderCnextArena) II used to manage the block

II allocated from DPMI
GlobalInfo.hi_count -= 3

if debug KERNEL
CheckGlobalHeapC)

GlobalFixO

II Make sure heap is still correct

GlobaIFix() is a shell around the GLock() routine. GLock() itself is very simple and just incre
ments the pga_count field of the block's arena. You typically never need, or want, to call
GlobalFixO because it locks the block in linear memory. This is rarely necessary in protected
mode, and it can lead to heap fragmentation. However, you do want to fix a block in memory
when you're aliasing data segments to code segments, or vice-versa. Except, as seen in the
pseudocode for AllocDStoCSAliasO, in this situation KERNEL already takes care of calling
GlobalFixO for you.

pseudocode for GlobalFixC) - 3GINTERF.OBJ
II Parameters:
II WORD handle

if C!XHandleChandle» II Points registers at GlobalInfo
return II structure, the arena for 'handle',

II etc. Returns Zero flag set if
II not a valid block to fix

II Disallow moving of the block
GLockC) II Increments pga_count in the arena for 'handle'

GlobalUnfixO
GlobalUnfixO is the mirror image code for GlobalFixO, using the GUnLockO function,
which is slightly more interesting than the GLockO code. Thus, we'll cover it below.

pseudocode for GlobalUnfixC) - 3GINTERF.OBJ
/I Parameters:
II WORD handle

WINDOWS INTERNALS

if (!XHandLe(handLe»
return

II Points registers at GLobaLlnfo
II structure, the arena for 'handLe',
II etc. Returns Zero fLag set if
II not a vaLid bLock to fix

II ALLow bLock to be moved
GUnlock() II Decrements Lock count in the arena for 'handLe'

GUnLockO
Besides doing the obvious task of decrementing the pga_count field in the block's arena,
GUnLockO also puts in its two cents to optimize performance. If calling GUnLockO caused
the lock count to drop to zero, meaning that the block is now unlocked, and if the block is
DISCARDABLE, GUnLockO puts the block at the head of the LRU list, making it the least
likely block to be discarded. The LRU list is discussed in the section on global arenas and in
the description for LRUSweep().

pseudocode for GUnlock() - 3GMEM.OBJ
II Parameters
II DWORD' arenaPointer (in ESI)

if (arenaPointer->pga_count == 0)
return

decrement arenaPointer->pga_count II If nonzero, bLock can't
II be moved or discarded

if (arenaPointer->pga_count == 0)
{

if (GA_DISCARDBABlE bit set in arenaPointer->pga_fLags)
GlRUTop() /I Put object at head of the lRU chain

II (Least LikeLy to be discarded)
}

LockSegmentO
LockSegment() and UnlockSegment are the environmentally-aware versions of GlobalFix()
and GlobalUnfixO. The code is identical, with only one difference. These functions only lock
or unlock the segment if it's DISCARDABLE. Since DISCARDABLE segments are the only
ones you generally need to lock, LockSegmentO/UnlockSegmentO do the intelligent thing
and don't lock or unlock the segment if it's not DISCARDABLE. See the description of
AllocDStoCSAliasO for why fixing segments is sometimes (albeit rarely) necessary.

pseudocode for lockSegment() - 3GINTERF.OBJ
II Parameters:
II WORD handLe

if (!XHandLe(handLe»
return

II Points registers at GLoballnfo
II structure, the arena for 'handLe',

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II etc. Returns Zero flag set if
II not a valid block to fix

if (GA_DISCARDABLE bit not set in pga_flags)
return

II Prevent block from being discarded
GLock() II Increments pga_count in the arena for 'handle'

UnlockSegmentO
UnlockSegmentO is almost identical to GlobalUnfixO, with the exception that it calls the
GUnLockO routines only if the segment is DISCARDABLE. See LockSegmentO for more
information.

pseudocode for UnlockSegmentO - 3GINTERF.OBJ
II Parameters:
II WORD handle

if (!XHandle(handle» II Points registers at Globallnfo
return II structure, the arena for 'handle',

II etc. Returns Zero flag set if
II not.a valid block to fix

if (GA_DISCARDABLE bit not set in pga_flags)
return

IIAllow block to be discarded
GUnLock() II Decrements lock count in the arena for 'handle'

G/obalPageLockO
GlobalPageLock() is not a function that you commonly need to use. It is intended for
pagelocking dynamically allocated data segments that are accessed inside of an interrupt han
dler. If the segments are not pagelocked, a "not present" fault could occur at interrupt time
and potentially hang the system.

Because a pagelocked segment is unmoveable in memory, it makes sense that the block be
moved· down to as Iowan address as possible, that is, with the FIXED blocks. Therefore,
before calling the (supposedly obsolete) DPMI function 0004h to pagelock the memory,
GlobalPageLockO calls GWrreO to move the block down in memory (GWireO is described as
part of the GlobalWireO description below). After GWireO moves the block down and func
tion 0004L pagelocks it, GlobaPageLockO increments the pga_count and pga_pglock fields in
the block's arena.

pseudocode for GlobalPageLock() - 3GINTERF.OBJ
II Parameters:
II WORD handle
II Locals:
II DWORD arenaPointer (set by XHandle())

WINDOWS INTERNALS

if !XHandleO
return 0

II See pseudocode for XHandle()

if (arenaPointer->pga-pglock == OFFh)
{

if debug KERNEL, display a message:
"GlobalPageLock: Lock count overflow"

return 0
}

GWi reO II Move the block down as low as possible

INT 31h, AX = 0004
if (carry flag set

return AX = 0

II Supposedly obsolete DPMI function.
II Locks the pages of the selector
II specified by BX. Calls the VMM
II _LinPageLock() function.

arenaPointer->pga_count++
arenaPointer->pga-pg lock++

II Increment the two lock count
II fields for the arena

return arenaPoi nter->pga-pg lock II Return new lock count

return to caller

G/obalPageUnlockO
As its name implies, GlobalPageUnlockO undoes the work that GlobalPageLockO did by call
ing the corresponding supposedly obsolete DPMI function to unpagelock the memory.
GlobalPage UnlockO then decrements both the pga_count and pga_pglock fields to restore
them to their values before the segment was GlobalPageLockO'ed.

pseudocode for GlobalPageUnlock() - 3GINTERF.OBJ
II Parameters:
II WORD handle
II Locals:
II DWORD arenaPointer (set by XHandle())

if (!XHandle())
return 0

II See pseudocode for XHandle()

if (arenaPointer->pga-pglock == 0)
{

if debug KERNEL, display a message:
"GlobalPageUnlock: Lock count underflow"

return 0
}

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

INT 31h, AX = 0005
if (carry flag set

return AX = 0

1/ Supposedly obsolete DPMI function.
1/ Unlocks the pages of the selector
II specified by BX

arenaPointer->pga_count-
arenaPointer->pga-pg lock--

II Decrement the two lock count
1/ fields for the arena

AX = arenaPointer->pga-pglock 1/ Return the new lock count

return to caller

G/obalWire()
GlobalWireO is another function that you rarely need to use. In fact, the debug KERNEL dis
plays a warning if you use it, suggesting that you use GlobalLockO instead. GlobalWireO is a
much more potent function than GlobalLockO. Some programmers were overusing
GlobalWireO, and therefore using up precious low memory below 1Mb, when a GlobalLockO
would have been sufficient.

GlobalWireO has the net effect of making a block FIXED. However, blocks that are
GlobalWireO'ed can later be un-FIXED by calling GlobalUnwireO. Although this function is
somewhat similar to GlobalPageLockO, there are key differences. GlobalWireO does not call
the DPMI server to pagelock the segment. Additionally, if the segment being wired is a DIS
CARDABLE code segment, GLRUDelO removes the segment from the LRU list so that the
compaction routines will not try to discard it in low memory sit,uations.

pseudocode for GlobalWire() - 3GINTERF.OBJ
/I
/I
/I
/I

Parameters:
WORD handle

Locals:
DWORD arenaPointer

if debug KERNEL
if (!fBooting
{

output a message:

(set by XHandleO)

"GlobalWire(#BX of %BX2) (try GlobalLock)"
}

if (!XHandleO
return 0

II See pseudocode for XHandle()

GWi reO II Moves the block's memory down low, if possible

arenaPointer->pga_count++ /1 Lock the block in memory

WI N DOWS INTERNALS

if (GA_DISCODE flag set in arenaPointer->pga_flags)
{

GLRUDelO II Remove from the LRU list

Turn off GA_DISCODE flag in arenaPointer->pga_flags
}

AX = arenaPointer->pga_handle
OR bottom bit of AL on to convert to a selector

DX = AX
AX = 0

CWire()

II Return a far pointer

GWireO is an internal routine that's used by both GlobalWireO and GlobalPageLockO. Its
job is to find the lowestpossible address for a block in the global heap and to move the block
there if possible. GWireO does this by relying on GSearchO, the all knowing, all powerful
searching routine for the global heap that we examined earlier. If GSearchO finds a new loca
tion for the block, GMoveBusyO moves the block to the new spot. It is not considered a fail
,ure condition if GWireO cannot move the block down low. The calling routine just has to live
with the fact that the block might end' up getting locked somewhere in the middle of the
global heap, rather than down low with the FIXED blocks.

pseudocode for GWire() - 3GINTERF.OBJ
II Parameters:
II DWORD arenaPointer (In ESI)
II Locals:
II DWORD newArena

II If the block is DISCARDABLE, prevent it from being
/I discarded. This is probably because GSearchO is called
II later on in the routine, and GSearch() can cause blocks
II to be discarded. We don't want the block we're wiring
II to be discarded!
if (GA_DISCARDABLE bit set in arenaPointer->pga_flags)

arenaPointer->pga_count++

II Look for a FIXED block that 'the current block can
II be copied into.
newArena = GSearch(arenaPointer->pga_size)

if (GA_DISCARDABLE bit set in arenaPo;nter->pga_flags
arenaPo;nter->pga_count-- II Undo the preceding lock

if (newArena -- 0)
return II Couldn't allocate a new block

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

PreA L LocArena () II Create an arena for the new bLock

GMarkFree() II Make sure the new bLock is free???

GMoveBusy() II copy the oLd bLock to the new bLock,
II frees up the oLd bLock, and adjusts
II the seLector tabLe pointers

GlobalUnwire()
GlobalUnwire() starts out by determining if the object being unwired was previously a DIS
CARDABLE code segment. If it was, GlobalUnwireO turns the GA_DISCODE bit back on
in the block's arena and adds the block to the LRU list. After that, GlobalUnwire() uses
GUnLock() to decrement the pga_count field in the block's arena.

pseudocode for G Loba LUnwi reO - 3GINTERF.OBJ
II
II
II
II

Parameters:
WORD handLe

locaLs:
DWORD arenaPointer (set by XHandLe())

if (!XHandLe())
return a

II See pseudocode for XHandLe()

if (DISCARDABlE bit set in lDT descriptor for handLe
{

}

if (CODE bit set in LDT descriptor for handLe)
{

Turn on GA_DISCODE bit set in arenaPointer->pga_fLags

GLRUAdd() II Put the segment back in the LRU List
}

if debug KERNEL
if (arenaPointer->pga_count -- a)
{

dispLay a message:
"GLobaLUnWire: Object usage count underflow"

}

II ALLow bLock to move again
GUnlock() II Decrements Lock count in the arena for 'handLe'

LRUSweep()
In discussing the LRU functions, it makes more sense to first present what happens during an
LRU sweep rather than to show the exported APIs. The LRU (Least Recently Used) list is a

WINDOWS INTERNALS

list of the blocks in the global heap that are DISCARDABLE. Again, NONDISCARDABLE
segments are not in the LRU list. Most DISCARDABLE blocks are code segments, and
resources from EXEs and PLLs, but it is possible to have DISCARDABLE data segments of
your own for any data you don't mind losing.

To improve performance when discarding blocks, a very common technique is to first dis
card items that haven't been used recently, on the theory that they will hopefully continue not
to be needed anytime soon. The trick here is determining what the least recently used seg
ments were. Luckily, in protected mode there is a mechanism to help in this determination. In
each descriptor, the CPU sets a bit each time the segment is accessed. The LRUSweepO rou
tine tests and clears the accessed bit to record if a particular segment has been accessed since
the last time LRUSweepO was called. The routine then puts any segment that's been accessed
since the last sweep at the head of the LRU list where it becomes the last to be discarded. The
routine leaves segments that haven't been accessed since the last sweep in their original posi
tions in the list. It's not a highly accurate method, but it's better than just discarding blocks at
random.

Now that we know why the LRU list is maintained, how does it actually work? The first
part of the mechanism is set up at KERNEL bootstrap time. KERNEL calls CreateSystemTi
mer() in the SYSTEM driver, and tells it to call LRUSweep() every half second. Note that this
process does not happen if paging is enabled. In the debug KERNEL, you can adjust the
sweep time by setting the profile LRUSweepFrequency in the [KERNEL] section of
WIN. IN!. The time is specified in milliseconds. SpecifYing zero disables LRU sweeping.

With a method in place to sweep the LRU list periodically, the next question is what hap
pens inside the sweep routine? First LRUSweepO looks for any excuse to abort out of the rou
tine early (see the pseudocode). Then it walks the LRU list where it tests and clears the
accessed bit for each descriptor. LRUSweepO adds any segments that were accessed since the
last sweep to the head of the LRU list, while it leaves non-accessed segments alone. What's
somewhat interesting is that there are two different sequences of code that do the same proce
dure just described. One does it without using DPMI functions, while the other one does use
DPMI functions. It is not known why the coder(s) didn't just pick one method and stick with
it. Well, variety is the spice of life, and all that.

pseudocode for
II Locals:
II DWORD
II WORD

LRUSweep() - 3GLRU.OBJ

arena II Current arena under examination
handle II handle to block under examination

if (Kernel_InDOS != 0) II Don't sweep if inside DOS
go to LRUSweep_done

if (LoadTDB != 0) II Don't sweep if loading a program
goto LRUSweep_done

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if (GlobalInfo.gi_lrulock != 0)
goto LRUSweep_done

II Don't do if inside a
II memory manager routine

if (GlobalInfo.gi_lrucount -- 0)
goto LRUSweep_done II Nothing to sweep!

arena = GlobalInfo.gi_lruchain II Point at head of LRU list

II If KERNEL hasn't obtained the LDT selector for some reason,
II then use DPMI to set the access bits in the descriptor
if (GDTDsc == 0) II GDTDsc == selector of the LDT

goto use_DPMI_loop

arena = arena->pga_lrunext
handle = arena->pga_handle

II Goto next LRU list entry
II Get handle of this block

Turn off bottom 3 bits in handle to obtain the offset of
the descriptor in the LDT

test and clear "accessed" bit in /I Uses BTR instruction (386)
the descriptor for handle

II If the selector hasn't been accessed, then just leave
II the arena in its current spot in the LRU list, and
II go on to the next arena in the LRU list.
if (accessed bit not set)

go to loop_top_1

II The selector has been accessed. Put it at the head
II of the LRU list, making it least likely to be discarded.
GLRUTop(arena)

if (at end of LRU list
go to LRUSweep_done II All done. Return to caller

else
II Go on to the next arena

arena = arena->pga_lrunext
handle = arena->pga_handle

II Goto next LRU list entry
II Get handle of this block

Use LAR to get the access rights byte from the descriptor
entry for handle

WINDOWS INTERNALS

II If not accessed, just leave in its current spot
if (accessed bit not set)

goto use_DPMI_loop II Go on to next arena

II Was accessed. Clear the accessed bit in the descriptor
II via DPMI, and then put arena at the head of the LRU list
INT 31, AX = 0009 II DPMI set access rights

GLRUTop(arena) II put at head of LRU list

if (not at end of LRU list)
go to use_DPMI_loop II Go on to next arena

LRUSweep_done:

ClobalLRUNewesfO
GlobalLRUNewestO lets you play favorites with DISCARDABLE memory blocks. It's just a
wrapper around GLRUTopO. GLRUTop() deletes the block from the LRU list and then
inserts it at the beginning of the LRU list making this block the least likely to be discarded.
You might use this function on one of your code segments if you knew that it was going to be
heavily used in the near future.

pseudocode for GlobalLRUNewest() - 3GINTERF.OBJ
II Parameters
II WORD handle

if (!XHandle(handle» II Points registers at GlobalInfo
return II structure, the arena for 'handle',

II etc. Returns Zero flag set if
II not a valid block to fix

GLRUTop() II Puts the object at the head of the LRU list
II (last to be discarded)

ClobalLRUOldesfO
GlobalLRUOldestO lets you pick on particular DISCARDABLE memory blocks. It's just a
wrapper around GLRUBotO. GLRUBotO deletes the block from the LRU list and then
inserts it at the end of the LRU list, making this block the most likely to be discarded. You
might use this function on one of your code segments if you knew that it wasn't going to be
used after a certain point (for example, on a code segment used only during initialization).

pseudocode for GlobalLRUOldest() - 3GINTERF.OBJ
II Parameters
II WORD handle

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

if (!XHandle(handle»
return

II Points registers at GlobalInfo
II structure, the arena for 'handle',
II etc. Returns Zero flag set if
II not a valid block to fix

GLRUBot() II Puts the object at the tail of the LRU list
II (first to be discarded)

II Remember, none of this LRU stuff is used in 386 Enhanced mode
II when paging is enabled, which is on at least 75 percent of
II Windows machines.

C/obolFlogsO
GlobalFlags() uses the versatile XHandle() function (discussed earlier under GlobalHandle())
to extract the GA_xxx flags and the lock count of a segment from its arena header.

pseudocode for GlobalFlags() - 3GINTERF.OBJ
II Parameters
II WORD handle

XHandle() II Returns lock count in CH, flags in CL

XCHG CL, CH II reverse the flags & lock count

AX = CX 11 Return value in AX

C/obolSize()
Like GlobalFlags(), GlobalSizeO is extremely simple; it just returns. the size of the memory
block, as read out of its arena header. If for some reason performance is an issue, bypass this
function and just use the LSL instruction, which should always return the same information.
If you do use the LSL instruction, make sure to use the 32-bit form of the instruction because
the first selector in a tiled block has a 32-bit limit. It might also be a good idea to check the

. granularity bit, which reflects whether the limit is the number of bytes or the number of 4K
pages,although it's not currently necessary. It might become necessary with Win32s.

pseudocode for Globa lSi zeO - 3GINTERF .OBJ
II
II
II
II

Parameters
WORD handle

Locals:
DWORD arenaPointer (set by XHandle())

if (!XHandle())
return D.L

II See pseudocode for XHandle()
II We call it for the arena poin~er here

if (arenaPointer == 0)
returnDL

I I Make sure we got back a va lid
II arena pointer

WINDOWS INTERNALS

II Undocumented: CX returns the # of paragraphs in block
cx = arenaPointer->pga_size » 4

DX:AX = arenaPointer->pga_size

GlobalNotify()
GlobalNotifyO is of interest to you only if you use DISCARDABLE data segments.
GlobaINotify() takes the passed-in function pointer to your notification handler and stores the
pointer in the TDB of the current task. Later on, if KERNEL needs to discard a block that
belongs to your task, it calls your notification routine. If your notification routine doesn't
want the block to be discarded, it should return zero. If it's OK to discard the block, the rou
tine should return a nonzero value.

According to the SDK documentation, your notification handler should be in a FIXED
segment in a DLL. It is probably just fine to have the handler in an application, but ensure
that the code segment can't be discarded. The GlobalFixO function appears to be the most
suited for doing this. Also, your notification procedure is called in the context of the cUrrent
task (it may not be your task!). The code that calls your notification handler sets DS and ES
registers to the value in the SS register. If you do want the notification function in your appli
cation, it is important that you export your callback function and use MakeProcInstanceO. It
is not enough to use smart callbacks, FIXDS, or other methods that assume that DS == SS.

An interesting historical oddity shows up if you examine WINKERN.INC from the DDK
It actually lists two notification codes, GN_MOVE and GN_DISCARD, for the GlobalNot
ifyO callback function. The SDK documentation, on the other hand, says that you're only
called when a segment is about to be discarded. As it turns out, the internal routine responsi
ble for calling the notification function, GNotifyO, is in fact called when a segment is moved
in memory. Unfortunately, GNotifyO filters out the GN_MOVE calls, which are much more
frequent than GN_DISCARDs. There's surely some sort of performance tuning tool that
could be written if you were allowed to receive the GN_MOVE notifications.

pseudocode for GlobalNotify() - 3GINTERF.OBJ
II Parameters:
II DWORD lpfnNotifyProc

II Store the function pointer into the slot reserved for
II in in the current task's TDB. It will be called later
II when the compaction routines are about to discard a
II block (inside GDiscard()).

CurTDB.TDB_GNotifYProc = lpfnNotifyProc

GetFreeSpace()
GetFreeSpaceO determines the amount of memory available for use at the current time. The
numbers GetFreeSpaceO returns are what the Program Manager About Box displays.

GetFreeSpaceO has to take into account both memory that the DPMI server is holding in
reserve, as well as free or DISCARDABLE global heap blocks. First GetFreeSpaceO calls

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

GetDPMIFreeSpaceO to see how much more memory can be allocated from the DPMI serv
er. Second, it figures out what memory is usable in the global heap. Despite what the docu
mentation says, GetFreeSpaceO does pay attention to the value of the flag passed in, which is
typically zero. If the flag is zero, GetFreeSpaceO scans the global heap and adds in the size of
all DISCARDABLE and free blocks. The routine then subtracts the size of the reserve or swap

. area (the memory above the code fence) since the reserve area isn't really free space. Last, it
subtracts 64K from that total (a fudge factor?). The calculation looks like this:

+ GetDPMIFreeSpaceO
+ Size of all DISCARDABLE segments
+ Size of all free blocks
- size of the swap area
- 64K

If bit 1 of the flag's parameter is set (that is, the flag's value is 2), GetFreeSpaceO ignores
DISCARDABLE segments. In this case, the calculation looks like this:

. + GetDPMIFreeSpaceO
+ Size of all free blocks
- 64K

pseudocode for GetFreeSpace() - 3GINTERF.OBJ
II Parameters:
II WORD flags (0 or 2)
II Locals:
II DWORD arenaPointer
II DWORD nextArena
II DWORD freeSize

GEnterO II Prevent LRU sweeping. Point at Globallnfo

freeSize = GetDPMIFreeSpace() II Returns in EDX

arenaPointer = Globallnfo.hi_first

nextArena = arenaPo;nter->pga_next

II Look for the IZI signature, indicating the end of the
/I list. This is a carryover from DOS memory allocation
II which uses IMI and IZI signatures for arenas
if (arenaPointer->pga_sig == Ox5A)

goto loop_done

if (arenaPointer->pga_owner == GA_NOT_THERE)
goto loop_top /I Donlt bother with "internal use" blocks

WINDOWS INTERNALS

if (arenaPointer->pga_owner == a)
go to include_this_bLock

II A free bLock?

if (fLags & 2)
goto Loop_top

II 3.1 SDK documentation says the fLags
II are ignored. Doesn't Look Like it!

if (bottom bit set in arenaPointer->pga_handLe)
goto Loop_top II A FIXED bLock. Ignore it.

if (arenaPointer->pga_sig!= a)
goto Loop_top

II???

if (DISCARDABLE bit not set in bLocks descriptor)
goto Loop_top II OnLy count discardabLe bLocks

II Add the bLock size to our running totaL, and continue on
II to the next bLock
freeSize += arenaPointer->pga_size

II ALL done Looping now

II If bit 1 in fLags is set, don't count the memory above the
II code fence in the free memory totaL
if (!(fLags&2»

freeSize -= GLobaLInfo.gi_reserve

freeSize -= Ox10000 II Remove another 64K from the totaL. Why?

if (freeSize < a)
freeSize = a

DX:AX = freeSize II put return value in DX:AX

GLeaveO II ReenabLe LRU sweeping

GetDPMIFreeSpace()
GetDPMIFreeSpaceO isn't just a simple call to INT 31h, function 0500h. Instead, the call
takes into account whether the system is running with virtual memory support~ This means
that the size of the swap file needs to be added to the amount of physical memory in this sys
tem. The code is somewhat strange, in that it doesn't assume that the reported linear address
size is the sum of the swap file and physical memory sizes. Instead, the routine calculates both

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

values and uses the lesser value. A similar situation occurs at the end of the function, when the
code has calculated the number of free pages. It compares this value to the largest available
block, as reported by DPMI, and returns the lesser of the two. Totally confusing, yet the
amount of free memory displayed in the Program Manager About Box is ultimately based on
this calculation. Oh well, the returned value seems close enough for government work.

pseudocode for
II Locals:

GetDPMIFreeSpace() - 3GINTERF.OBJ

I I DWORD freePageCount
freePagesInBytes
largestBlockSize
DPMIBuff[Ox30]

I I DWORD
I I DWORD
I I char

INT 31h, AX = 0500, ES:DI = DPMIBuff
if (carry flag set) II Did DPMI call fail?

return 0

freePageCount = DPMIBuff.free-pages II Start out by trusting
II the value DPMI returns

if (DPMIBuff.paginy-file_size > 0
{

II Virtual memory???

}

II Add the space in the swap disk to the physical
II memory in the system. Note that the value of
II freePageCount is used as the _total_ page count until
II the end of this block of code, where it's adjusted
II downwards to become the actua l _free_ page count.
freePageCount = DPMIBuff.paginR-file_size +

DPMIBuff.total-physical-pages

II If DPMI reports a smaller total linear address space
II than the above calculation, use it instead.
if (freePageCount > DPMIBuff.total_linear_address-pages

freePageCount = DPMIBuff.total_linear_address-pages

II Add in the free page count, and subtract out the
II total linear address in pages. The result should
II be the number of pages available for use by KERNEL.
freePageCount += DPMIBuff.free_linear_address-pages
freePageCount -= DPMIBuff.total_linear_address-pages

II Get the largest avaiLable contiguous block size
largestBlockSize = DPMIBuff.largest_available_block

WINDOWS INTERNALS

II Convert the number of free pages into a byte total.
freePageslnBytes = freePageCount «12 II 2A12 == 4096

if (sign bit set in freePageslnBytes) II value is negative?
freePageslnBytes = 0

II Subtract out 64K from the free page size fo~ safety
freePageslnBytes -= 64K

if (freePageslnBytes < 0)
freePageslnBytes = 0

II Did it go below O?

II Return either the largest contiguous block, or the free
II page size in bytes, whichever is smaller.
if (freePageslnBytes < largestBlockSize)

return freePageslnBytes
else

return largestBlockSize

CetFreeMemlnfoO
This undocumented function uses DPMI function 0500h to get the number of free pages and
unlocked pages. It is not known why it is undocumented, since the DPMI function 0500h
from which it gets the information is fully documented. Additionally, the MemManInfoO
function in ToolHelp uses the same DPMI function, and returns all the information returned
by the DPMI call, rather than just the two pieces returned here.

This function returns OxFFFFFFFF as an error condition code if paging is disabled (in
Standard mode, or in Enhanced mode with virtual memory disabled).

pseudocode for GetFreeMemlnfo() - 3GINTERF.OBJ

DX:AX = -1 /I Set default return value to error value

if (WF1_PAGING flag set in WinFlags)
{

}

INT 31h, fn. 0500h II See DPMI doc for buffer description

if (DPMI call succeeded
{

}

AX = unlocked pages
DX. = free pages

CHAPTER 2 WINDOWS MEMORY MANAGEMENT

SetSwapAreaSize()
SetSwapAreaSizeO allows Windows to set the size of the swap area. Duh! The swap area is
described above in the section on DlSCARDABLE segments. SetSwapAreaSizeO is mainly a
performance tuning mechanism, although there is a tendency for developers to set really large
swap areas in the hope that they'll get better performance. Unfortunately, the maximum swap
size is 128K, and specifying values greater than 128K still only generates a 128K swap area.

The function starts by comparing the new desired swap size to a KERNEL global variable
containing the maxImum allowable swap area size. lfthe desired size is greater than the maxi
mum allowable, SwapSetAreaSizeO trims it down to the maximum allowable size. This value
is stored into the ne_swaparea field of the task's module database. Next the function calls
CalcMaxNRSeg(), which walks through all the modules in the system and finds the one with
the largest minimum swap size value. SetSwapArea() passes this value to GReserve() to change
the swap area size and code fence if necessary.

pseudocode for SetSwapAreaSize() - 3GMOREME.OBJ
II Parameters:
II WORD paragraphs
II Locals:
II WORD maxSwapSize

maxSwapSize = MaxCodeSwapArea II Said something once, why say it again?

if (paragraphs> MaxCodeSwapArea)
paragraphs = MaxCodeSwapArea

maxSwapSize = MaxCodeSwapArea II A KERNEL global variable

if (paragraphs> maxSwapSize)
paragraphs = maxSwapSize

point DS register at module table of current task

if (paragraphs == a)
go to set_return_vars

module_table.ne_swaparea = paragraphs

CalcMaxNRSeg() II returns maximum size in CX

if (CalcMaxNRSeg() failed
restore original value of module_table.ne_swaparea

AX = module_table.ne_swaparea

WINDOWS INTERNALS

if (CalcMaxNRSeg() return value> maxSwapSize)
DX = maxSwapSize

else
DX = CalcMaxNRSeg() return value

CalcMaxNRSeg()
CalcMaxNRSeg() is an internal function that walks through all the modules in the system and
finds the module with the largest minimum swap area size. CalcMaxNRSegO passes this value
to GReserveO, which adjusts the swap area size and code fence if necessary. An interesting
thing about CalcMaxNRSegO is that it walks through the module list twice. The first time,
CalcMaxNRSegO only examines DLL modules. The second time it only looks at task mod
ules. It's not known why the function works this way, as it seems that it would be fairly easy
to do both things in one loop.

pseudocode for CalcMaxNRSeg() - MODULE.OBJ
// Locals:
// WORD currentModule
/I
/I

WORD
WORD

currentTask
largestSwapSize

if (fBooting)
return 0 /I 0 = failure

largestSwapSize = 0

/I First walk through the module list, and get the largest
// swap size, counting just the DLLs
currentModule == HExeHead // First module in list (KERNEL)

while (not at end of module list (currentModule != 0))
{

}

if (currentModule is a DLL)
{

}

if (currentModule.ne_swaparea > largestSwapSize)
largestSwapSize = currentModule.ne_swaparea

currentModule = module.ne...,pnextexe // go to next module

// Next, walk through the task list, and get the largest swap
// size from the associated module tables. Since this
// function is called during the creation/destruction of
// modules (AddModule() / DelModule(», it is important that
/I we only consider modules that are "healthy."
currentTask = HeadTDB // Point at first task in list

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

while (not at end of task list (currentTask != 0))
{

}

currentModule = currentTask.TDB-pModule

if (LSL on currentModule is O.K.)
{

II selector limit

}

if 'NE' signature found in currentModule)
{

}

if (currentModule.ne_swaparea > largestSwapSize)
largestSwapSize = currentModule.ne_swaparea

currentTask = currentTask.TDB_next II go on to next task

II Set the size of the discardable code area (the code fence)
GReserve(largestSwapSize) II Actually in AX register

GReserveO
GReserveO is an internal routine that is passed the minimum size (in paragraphs) that the
swap area should be. In KRNL386, GReserveO immediately converts the paragraphs to bytes,
whereas in KRNL286, GReserveO deals with the swap area in terms of paragraphs. As part of
the process of converting the paragraphs to bytes, GReserve() also doubles the size, allowing
for two of the largest DISCARDABLE segments in memory to be present at the same time.
This value however, cannot be greater than 128K and is rounded down if 128K is exceeded.

The current swap area size may already be greater than the size passed into GReserveO. In
this case, GReserveO just returns the size of the current swap area size. If the swap area needs
to be increased, the hard work begins. The best thing that can happen to GReserve() is that
the code fence can just be moved downwards in memory to create a bigger swap area. The
Will_Gi_Reserve_FitO function takes care of this. WiICGi_Reserve_FitO simply scans back
wards from the end of the global heap until it finds a block that is neither free nor D ISCARD
ABLE code. If this block is above the new proposed code fence, Will_Gi_Reserve_Fit() fails. If
the block is below the new code fence, it's clear sailing to move the code fence downward.

If the code fence cannot just be moved down, GReserveO tries the opposite tactic. It calls
GrowHeapO to expand the top end of the heap upward. If growing the heap doesn't help
out, GReserve() compacts the heap, using GCompactO. Ifnone of these methods create a big
enough area for the swap space, GReserve() returns zero, indicating failure.

pseudocode for GReserve() - 3GMOREME.OBJ
II Parameters:
II WORD newDiscardParas
/I Locals:

II
II
II

DWORD
DWORD
DWORD

WINDOWS INTERNALS

newDiscardSize
lastArena
new Fence

II new minimum size of swap area
II Last arena in global heap
II address of new code fence

GEnterO II Prevent LRU sweeping. Point at GlobalInfo

newDiscardSize = newDiscardParas * 32 II 2 * number of Paras

if < newDiscardSize > Ox20000)
newDiscardSize = Ox20000

II Limit the maximum size
II to 128K

round up newDiscardSize to a 32 byte boundary

II See if the existing code fence is already sufficient
lastArena = GlobalInfo.hi_last
newFence = lastArena->pga_address - newDiscardSize

if < newDiscardSize > GlobalInfo.gi_reserve)
goto setup_return_vars II Yes! Almost done

II Call a routine to scan backwards from the end of the heap,
II checking to make sure that all blocks above the proposed
II new code fence are either FREE, or contain discardable code
if < Will_Gi_Reserve_Fit< newFence))

goto setup_return_vars II It fits! Almost done

if < ,GrowHeap< newDiscardSize))
{

II Can the heap expand up?

lastArena = GlobalInfo.hi_last
newFence = lastArena->pga_address - newDiscardSize

if < Will_Gi_Reserve_Fit< newFence))
go to setup_return_vars II It fits! Almost done

}

if < GCompact< newDiscardSize))
{

II Try compacting

GUncompact< newD;scardSize) II ???

if < Will_Gi_Reserve_Fit< newFence))
go to setup~return_vars II It fits! Almost done

}

if debug KERNEL
output a message: "greserve doesn't fit"

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

return 0 II Indicate faiLure to caLLer

GLobaLlnfo.gi_disfence_Lo = LOWORO(newFence
GLobaLlnfo.gi_disfence_hi = HIWORO(newFence)
GLobaLlnfo.gi_reserve = newDiscardSize

GLeaveO II ReenabLe LRU sweeping

The Local Heap

Besides global heap management, KERNEL also provides facilities for creating and maintain
ing local heaps. Local heaps in Windows are somewhat similar to the malloc() heap main
tained by the C runtime library. In both cases, large blocks of memory are allocated from the
operating system and parceled out in smaller blocks, as needed. The reason for having two
methods is that there's a high overhead associated with allocating blocks from the operating
system. On the other hand, the price you pay for using the "less expensive" local heap is
increased complexity. Should you allocate from the global heap or the local heap? That is the
question facing each programmer.

As explained in Chapter 3 on modules, every program contains a DGROUP segment.
Besides containing the global data and stack, the DGROUP also contains a local heap. DLLs
can optionally have their own local heap, as well. The HEAPSIZE line in the .DEF file can
specifY the minimum size of the default local heap, subject to the 64K limitation on
DGRO UP size. A local heap can expand and contract if necessary.

All allocations from the local heap are returned as two-byte (near) offsets. The segment
portion of the address is implicitly assumed to be the selector for the segment containing the
heap. In the general case, application programs set up their DS to point to the DGROUP so
that memory allocated from the local heap can be referenced by just the two-byte offset.
However, as will be explained more completely later on, an application can create multiple
local heaps. In this case, it's necessary to use far pointers when referencing the memory and
passing around pointers.

The local heap is similar to the global heap in many ways. Thus, much of what was dis
cussed in the section on global heaps applies to locals heaps as well. Like the global heap, the
local heap has the notions of FIXED, MOVEABLE, and DISCARDABLE memory. The
arrangement of memory allocations (FIXED memory from the bottom) also holds true for the
local heap. There is even an undocumented LocaINoti±y() function for DISCARDABLE
memory, similar to the GlobaINoti±y() function for the global heap.

What is slightly different about the local heap is its notion of a MOVEABLE handle. The
local heap deals with memory blocks in terms of handles to memory. Like the global heap
functions, allocating FIXED memory from the local heap gives you direct address that can be
used without any translation. However, when it comes to MOVEABLE memory, the story is

WI N DOWS INTERNALS

different. Unlike the global heap, the local heap includes no mathematical relationship be
tween a MOVEABLE handle and the actual address used to reference the memory. The han
dle for a MOVEABLE block in the local heap is just an offset to a data structure somewhere
inside the local heap. The actual address of the block is contained within this data structure,
along with the block's lock count and flags. Knowing the format of these data structures, it is
possible to get the address of the memory from its handle. In fact, LMEM_MOVEABLE han
dles in Windows are exactly like handles on the Macintosh-pointers to pointers, which the
program can doubly dereference to get to the data. Several parts of Windows rely on this
trick. However, it's easier, though slower, to just call LocalLockO and let it handle the details
oflocking the block.

Unlike the global heap, if you allocate MOVEABLE memory from the local heap, lock it
and keep it locked until finished with it. Since there's no layer of indirection provided by the
descriptor table, if the block moves around in memory, there's no way for KERNEL to make
this transparent to you. Also, unlike the global heap, your program can easily allocate FIXED
memory. The downside is that you can accidentally fragment your own local heap. You have
to decide whether to allocate FIXED memory and deal with potential fragmentation or
whether to allocate MOVEABLE memory and take care of locking and unlocking as needed.

The Locallnfo Structure
Every segment with a local heap contains an instance of a HeapInfo structure, the same struc
ture the global heap uses and that WINKERN.INC defines. Since the fields are listed above in
the global heap discussion, this section does not repeat them. The method of finding the
HeapInfo structure for a local heap is fairly straightforward. In a segment containing a local
heap, offset 6 contains a WORD value. This WORD is the offset of the HeapInfo structure in
the segment.

Immediately after the HeapInfo structure come additional fields of information about the
heap. The combination of the HeapInfo structure and these additional fields is called the
LocalInfo structure (defined in WINKERN.IN C). In the pseudocode that follows, the global
variable LocalInfo refers to this structure.

A LocalInfo structure has the format shown in Table 2-5 (see Table 2-2 for the first lEh
bytes).

Table 2-5: Locallnfo Structure.

OOh HeapInfo
Structure

lEh DWORD

(lEh bytes in length). See the description in the Global Heap section
for field descriptions,
li_notify. A far function pointer to a routine that called either when a
heap block is about to be moved or discarded or when the heap is out
of memory. This value is initialized to point at the LocalNoti£YDefaultO
procedure.

C HAP T E R 2 - WIN DOW 5 M EM 0 R Y MAN AG EM E N T

Table 2-5: Locallnfo Structure. (continued)

22h WORD Ii_lock. The lock count of the local heap. A nonzero value prevents
blocks from moving or being discarded.

24h WORD Ii_extra. When the local heap is expanded, this is the minimum amount
it should be grown by. The default is 200h.

26h WORD li_minsize. The minimum size of the local heap, as specified by the
HEAPSIZE line in the .DEF file.

28h WORD li_sig. The signature word. Set to 484Ch, which, when viewed in a hex
dump, show up as 'LH' for Local Heap. Various routines in Windows
use this signature word to verifY the integrity of the local heap.

The Local Heap Arenas
The arena for a local heap block immediately precedes the block in memory. The local heap
code thinks of each block as being in one of three categories: FIXED, MOVEABLE, or free.
There are three kinds of arenas, but two of them are just extensions to the first kind.

The simplest arena in the local heap is for a FIXED block shown in Table 2-6.

Table 2-6: FIXED Block Arena.

OOh WORD
02h WORD

la_prevo A near pointer to the preceding arena, also flags (see below).
la_next. A near pointer to the next arena.

The handle for a FIXED block is the address of the block itself. Therefore, there's no
need for a handle field in the arena. You can find the arena of a FIXED block by subtracting 4
from its address.

The next arena type is for a MOVEABLE block. It's just a slight extension of the FIXED
block arena, shown in Table 2-7.

Table 2-7: MOVEABLE Block Arena.

OOh WORD
02h WORD
04h WORD

la_prevo A near pointer to the preceding arena, also flags (see below).
la_next. A near pointer to the next arena.
la_handle. The offset of the handle table entry for this memory block.
The format of a handle table entry is discussed shortly.

The la_handle field provides for two-way mapping between a MOVEABLE block and its
handle table entry. Given the address of the block, you can find the address of the arena by
subtracting 6. The la_handle field in the arena gives the offset of the handle table entry. Given
a handle table entry, you can obtain the address of the memory block, which is the first field
of tlle handle entry.

Finally, for a free block of memory in the local heap, the arena looks like Table 2-8.

WINDOWS INTERNALS

Table 2-8: Free Memory Block Arena.

OOh WORD
02h WORD
04h WORD
06h WORD
OSh WORD

la_prevo A near pointer to the preceding arena, also flags (see below).
la_next. A near pointer to the next arena.
la_size. Size of the block, including the arena.
la_free_prev. Offset of the previous free arena.
la_free_next. Offset of the next free arena.

In all three kinds of arenas, notice the complete lack of flags that would indicate what
kind of arena it is. Hmm. As it turns out, every arena starts on a four-byte boundary. That
means that the bottom two bits of every arena address are always zero. It really would be a
pity to waste those two bits. Therefore, the designers of the local heap decided to use the bot
tom two bits of the la_prev field as flags for that arena. This means that you cannot just use
the la_prev field as is. You must first mask off the bottom two bits to get the real previous
arena address.

So what do the bottom two bits indicate? The bottommost bit is set if the block is in use
and not set if the block is free. The second bit is set if the block is MOVEABLE and not set if
it's FIXED. Thus there are four possible combinations, but only three of them are used (you
can't have a MOVEABLE block that's free). By examining these bits, KERNEL knows which
of the above arena forms to use.

The First Local Heap Block
The first block in the local heap is somewhat special. It actually precedes the LocalInfo struc
ture in memory. Although the bottommost bit of its la_prev field is set, indicating that it's a
FIXED, in-use arena, the local heap routines treat the arena as if it were a free arena. Thus,
the start of the free list is contained in the laJree_next field of the first local heap block.

The Local Handle Entry
As mentioned earlier, for MOVEABLE blocks, the block's handle gives the offset of the
block's associated data structure. These handle data structures are allocated and stored in
blocks that are themselves local heap blocks. Free handle table entries are threaded together so
that when a new handle table entry is needed, it can be found quickly. The first handle table is
found by using the hi_htable field in the HeapInfo structure (see Table 2-2 earlier in the
chapter). Each handle table starts out with a WORD indicating how many handle table entries
are to follow. The last WORD, after all the entries, is the offset of the next handle table.

The format of an in-use handle table entry is shown in Table 2-9.

Table 2-9: Format of Handle Table Entries.

In-use handle table entry:
OOh WORD lhe_address. The address of the memory block that the handle refer

ences. This field is allows the doubly dereferenced pointer trick men
tioned earlier for LMEM_MOV ABLE blocks.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Table 2-9: Format of Handle Table Entries. (continued)

In-use handle table entry:
02h BYTE lhe_flags. The flags for the memory block:

OFh LHE_DISCARDABLE

IFh LHE_ USERFIAGS

40h LHE_DISCARDED

Discard level of the object.
The meaning of this flag is
unclear. Perhaps at one time
the discardability of the block
was given by this value.
Presumably these values are
available for use by the
programmers for whatever
they want. The SDK document
ation however does not mention
them.
The block has been discarded.

03h BYTE lhe_count. The lock count of the block. Nonzero values prevent the
block from being moved or discarded if the block is DISCARDABLE.

Free handle table entry:
OOh WORD Ihe_Iink. The offset of the next free handle table entry.
02h WORD lhe_free. If this value is FFFFh, then this entry is free. Otherwise, it's in

use and described by the above structure.

The LHEAP Example

The following program demonstrates some of the local handle and arena concepts discussed
above. It also demonstrates how to find the LocalInfo structure. Bear in mind that much of
this information can be obtained through the documented ToolHelp APIs. This program
walks the heap directly in this case only to demonstrate the concepts involved.

LHEAP starts out by finding the offset of the LocalInfo structure and creating a far
pointer to it. LHEAP then allocates a MOVEABLE block to guarantee seeing all three kinds
of arenas. The main body of the program is centered around the ShowHeapO function.
ShowHeapO first calls DumpHeapHeader() to display information in the LocalInfo structure.
Then DumpNode() is called repeatedly to display information about each node in the heap.
DumpNode() returns a pointer to the next item in the heap, with NULL indicating that the
last block has been reached. The program is written in Borland C++ 3.1 small model and uses
the WINIO libraries from Undocumented Windows. If you don't have these libraries, it's
extremely easy to add a few lines of code that use fopen() to open an output file. Instead of
using printfO, use iprintf(). No special .DEF files or .RC files are required to build LHEAP.

WINDOWS INTERNALS

11=================================
II LHEAP, by Matt Pietrek, 1992
II File: LHEAP.C
11=================================
#include <windows.h>
#include "winio.h"
#include "dos.h"

typedef struct
{

WORD hi_check;
WORD hi_freeze;
WORD hi _count;
DWORD hCfirst;
DWORD hi _last;
BYTE hi_ncompact;
BYTE hi_dislevel;
DWORD hCdistotal;
WORD hi_htable;
WORD hChfree;
WORD hChdelta;
WORD hi_hexpand;
WORD hi""pstats;
DWORD lCnotify;
WORD li _lock;
WORD l i_extra;
WORD l i_mi nsi ze;
WORD li_sig;

} LHEAPINF032;

II 00
II 02
II 04
II 06
II OA
II DE
II OF
I I 10
II 14
II 16
II 18
II 1A
II 1C
II 1E
II 22
II 24
II 26
II 28

typedef struct II Arena header
{

WORD la....prev; II Bottom 2
WORD la_next;

} LOCAL-ARENA_FIXED;

typedef struct II Arena header
{

WORD l a""p rev; II Bottom 2
WORD la_next;
WORD la_handle;

} LOCAL_ARENA_MOVEABLE;

II This portion has the same
II layout as the GlobalHeap
II info structure in the
II "Burgermaster" segment

II This portion is specific
II to the local heap, and is
II not in the GlobalHeap info
II structure

for an LMEM-FIXED block

bits are arena flags

for an LMEM_FIXED block

bits are arena flags

typedef struct II Arena header for an unallocated block

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

{

WORD la-prev; II Bottom 2 bits are arena flags
WORD la_next;
WORD la_size;
WORD la_free-prev;
WORD la_free_next;

} LOCAL-ARENA_FREE;

typedef struct II A local handle is an offset to one of these
{

WORD lhe_address;
BYTE lhe_flags;
BYTE lhe_count;

} LOCALHANDLEENTRY;

#define LA_BUSY
#define LA_MOVEABLE

1 II Bit 0 on indicates in use
2 II Bit on indicates MOVEABLE

#define LA_FREE o
LA_BUSY #define LA_BUSY_FIXED

#define LA_BUSY_MOVEABLE
#define LA_FLAGS_MASK

(LA_BUSY LA_MOVEABLE
Ox0003

WORD HeapSegment; II Contains the value of our DS segment

1*==*1
II Display the information for one node in the local heap
1*==*1
void far *DumpNode(void far *node)
{

LOCAL_ARENA_FIXED far *fixedArena;
LOCAL_ARENA_MOVEABLE far *moveableArena;
LOCAL-ARENA_FREE far *freeArena;
LOCALHANDLEENTRY far *locHand;
WORD arenaType;

II we assign 'fixedArena' to 'node' so that we can extract
II the fields that are common to all three kinds of blocks
fixedArena = (LOCAL_ARENA_FIXED far *}node;

II Mask off the address portion, leaving just the arena flags
arenaType = fixedArena->la-prev & LA_FLAGS_MASK;

printf("%04X ", FP _OFF(node»;

II If this block's 'next' pointer is point to itself, then
II it's the last block. Indicate this, and return NULL,

}

WINDOWS INTERNALS

II which stops the walk of the nodes
if ((WORD)fixedArena->la_next == (WORD)fixedArena)
{

}

printf("END SENTINEL");
return NULL;

II Display relevant information, based upon the block type
switch (arenaType)
{

}

case LA_FREE:
II For free blocks, we include the size of the
II arena in its total size.
freeArena = (LOCAL_ARENA_FREE far *)node;
printf(
"FREE Size: %04X Next free: %04X\n",

freeArena->la_size, freeArena->la_free_next);
break;

case LA BUSY_FIXED:
printf("FIXED Size: %04X\n",

(WORD)fixedArena->la_next - (WORD)node
- sizeof(LOCAL_ARENA_FIXED));

break;

case LA_BUSY_MOVEABLE:
moveableArena = (LOCAL_ARENA_MOVEABLE far *)node;
printf("MOVEABLE Size: %04X Handle: %04X or,

(WORD)moveableArena->la_next - (WORD)node
- sizeof(LOCAL_ARENA_MOVEABLE),
moveableArena->la_handle);

II Moveable block arenas contain a back link to
II their handles. Use this to display the lock
II count for this block.
locHand=MK_FP(HeapSegment, moveableArena->la_handle);
printf("Locks: %04X\n", locHand->lhe_count);

• break;

default:
II There should never be a moveable block that isn't
II busy (free). Complain if we find one.
printf("Invalid arena entry");

II Return the address of the next node to display
return MK_FP(HeapSegment, fixedArena->la_next);

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

1*==*1
II Verify and display information in the local heap header
1*==*1
int DumpHeapHeader(LHEAPINF032 far *lheapinfo)
{

}

II Look for the 'LH' signature in the HeapInfo structure
if (lheapinfo->li_sig != Ox484C)
{

}

printf("Incorrect local heap signature\n");
return 0;

#define FW 20 II Width of description strings

printf("Local heap Information\n\n"};
printf("%-*s: %Fp\n" ,FW,"Starting Address",lheapinfo};
printf("%-*s: %04X\n",FW,"Items in heap",lheapinfo->hi_count};
printf("%-*s: %04X\n",FW,"Handle Delta",lheapinfo->hi_hdelta};
printf("%-*s: %04X\n",FW,"Minimum size",lheapinfo->lCminsize};

return 1;

I*=======================================~======================*1
II Displays the HeapInfo information, and then walks the nodes
1*==*1
void ShowHeap(LHEAPINF032 far *lheapinfo)

{

}

void far * node;

if DumpHeapHeader(lheapinfo) -- 0) II If the header looked
return; II bad, don't continue

printf("\nNODE TYPE\n\n");

II Get a pointer to the first node in the he~p, and then
II walk through each node until the end is r~ached
node = MK_FP(HeapSegment, (WORDHheapinfo->hCfirst);
while (node)

node = DumpNode(node);

WINDOWS INTERNALS

1*==*1
II HeLper routine to get WINIO stuff out of main program fLow
1*==*1
void WinioHeLper(int mode)
{

}

if (mode == a)
{

II DisabLe drawing (stop fLicker)

}

winio_setbusy();
winio_setpaint(winio_current(), FALSE);

eLse II Turn output back on (aLL done with output)
{

}

winio_setpaint(winio_current(), TRUE);
winio_resetbusy();
winio_home(winio_current(»;

i nt mainO
{

LHEAPINF032 far *Lheapinfo; II Pointer to HeapInfo struct
HANDLE LocaLMoveabLeHandLe; II A handLe for a moveabLe bLock
WORD heapStart; II offset of HeapInfo struct

II Set up some variabLes reLated to finding the LocaL heap
II In this program, we're working with our own LocaL heap
II This variabLes here couLd be aLtered to refer to a
II different heap, without affecting the rest of the code
asm MOV HeapSegment, DS
heapStart = *(WORD far *)MK_FP(HeapSegment, 6);
Lheapinfo = MK_FP(HeapSegment, heapStart);

II ALLocate an LMEM_MOVEABLE bLock for our demonstration.
II The heap doesn't normaLLy contain MOVEABLE bLocks unLess
II the program specificaLLy aLLocates them. WhiLe we're
II at it, we'LL Lock the moveabLe bLock twice so that we
II can see the effect when we dispLay the heap bLocks.
LocaLMoveabLeHandLe = LocaLALLoC<LMEM_MOVEABLE, 128);
LocaLLock(LocaLMoveabLeHandLe);
LocaLLock(LocaLMoveabLeHandLe);

WinioHeLper(O); II Turn off screen repainting

ShowHeap(Lheapinfo); II Go to it!!!

WinioHeLper(1); II Turn screen repainting back on

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

LocalUnlock(localMoveableHandle);
LocalUnlock(localMoveableHandle);
LocalFree(localMoveableHandle);

II Unlock the moveable
II block we allocated,
II and free it.

return 0;
}

Sample output from LHEAP is as follows:

Local heap Information

Starting Address
Items in heap
Handle Delta
Minimum size

NODE TYPE

2BAO FIXED
2BAe FIXED
2BFe FIXED
2EOO FREE
2E58 FIXED
2F10 FIXED
2F2e FREE
2F38 FIXED
2F60 FIXED
2FE8 FREE
4BOe MOVEABLE

Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:

4B94 END SENTINEL

LocalAlloc()

1A9F:2BBO
oooe
0020
1 FFE

0008
004e
0200
0058 Next free: 2F2e
00B4
0018
oooe Next free: 2FE8
0024
0084
1B24 Next free: 4B94
0082 Handle: 2F66 Locks: 0002

LocaWlocO begins by checking to see if the request is for a zero length DISCARDABLE
block. If so, it allocates a handle table entry and fills in the appropriate fields before returning.
Once past this special case, LocaWloc() either allocates a MOVEABLE block or a FIXED
block. For a FIXED block, all LocaWlocO needs to do is call the internal LAllocO routine to
find a free block. If the block is supposed to be MOVEABLE, however, LocalAlloc() calls
HAlloc() (not covered here) to allocate a handle table entry for the block. If a new handle
table entry is successfully allocated, LocalAlloc() uses LAllocO to obtain a memory block that
the new handle will refer to.

pseudocode for LocalAlloc() - LINTERF.OBJ
II Parameters:
II WORD allocFlags

WINDOWS INTERNALS

I I WORD aLLocLen
II Locals:
I I WORD handLe
II

if

if
{

}

WORD newAddress (in AX)

debug KERNEL
CheckLocalHeap()

II
(LEnter() != o) II

II
AX = 0 II
goto LocaLALLoc_return

Uses DS:[6] (see Figure 2-3)
Makes DS:DI point at the
LocaLInfo structure.
Increment Li_Lock fieLd

if (aLLocFLags & LA_NOCOMPACT
LocaLInfo.hi_freeze++

II Prevents heap from
II being compacted

if (aLlocLen == 0)
{

II ALLocating 0 Length, DISCARDABLE

}

II 0 Length bLocks are onLy useful for MOVEABLE and
II DrSCARDABLE memory. A zero Length FIXED bLock is
II meaningLess. Abort now if this is the case.
if (LA_MOVEABLE bit not set in aLLocFLags)

go to LocaLALLoc_cLeanup

if ((handLe = HaLloc(» == 0) II ALlocate a new handLe
goto LocalALLoc_cLeanup II Abort if we couLdn't

handLe->Lhe_address = LA_MOVEABLE II high 14 bits are 0
handLe->Lhe_flags = LHE_DISCARDED

goto LocaLAlLoc_cleaup

if (aLLocFLags & LA_MOVEABLE) II Allocating MOVEABLE memory.
{

II LMEM_MOVEABLE memory needs a handle aLLocated for it
if ((handLe = Halloc(» == 0) II ALLocate a new handLe

goto LocalALLoc_cleanup II Abort if we couLdn't

newAddress = LALloc(aLLocLen, aLLocFLags) II Find a block

if (newAddress -- 0) II CouLdn't find a free bLock
{

LHFree() II Free the allocated handle
go to LocaLALLoc_cLeanup

}

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

handle->lhe_address = newAddress
store handle in the arena for newAddress
turn on LA_MOVEABLE bit in the la-prev field of the arena

if allocFlags == LHE_DISCARDABLE ')
turn on LHE_DISCARDABLE in handle->lhe_flags

}

else II Allocating FIXED memory. Don't need handle
{

newAddress = LAlloc(allocLen, allocFlags)
}

LocalAlloc_cleanup:

if (allocFlags & LA_NOCOMPACT)
LocalInfo.hi_freeze--

II Unfreeze heap (OK
II to compact)

LLeave() II Decrement LocalInfo.li_lock

LocalAlloc_return:

if (newAddress == 0)
LogError("LocalAlloc fai led")

II Some functions rely on CX also containing the return value,
II because JCXZ is faster than OR AX,AX/JZ. Set CX accordingly

CX = newAddress II newAddress is really AX

LAlloc()
LAlloc() is the internal routine that knows how to walk the local heap and find a block that
satisfies an allocation request. It really is two routines in one. At first, LAllocO, conditionally
branches to code that either finds a FIXED block from the low end of the heap or a MOVE
ABLE block from the high end of the heap.

If walking the heap does not find a block that's suitably sized, LAllocO calls the
LCompactO routine. LCompactO first tries to move unlocked MOVEABLE blocks around to
coalesce enough space. If moving blocks doesn't help the situation, LCompactO discards
DISCARDABLE blocks until there's enough room. If after all this, there still isn't sufficient
memory, LAllocO invokes LNotifYO to call the LocalNotifY() callback function.

Once LAlloc() finds a suitable block, its examines it to see if it's large enough to bother
making two blocks out of, one for the allocation request, the other, a new free block. The
new free block must be at least 16 bytes long to be worth allocating. If it's not, the extra
space becomes wasted space at the end of the newly found block.

pseudocode for
II Parameters:
II WORD
II WORD
II Locals:
II NEAR *
II NEAR *

WINDOWS INTERNALS

LAlloc() - LALLOC.OBJ

allocLen
allocFlags

(in BX)
(in AX)

currentArena
nextArena, *prevArena

if (LA~OVEABLE bit set in allocFlags)
go to LAlloc_find_moveable

allocLen += 4 II 4 == size of FIXED arena header

allocLen = LAlign() II Round size up to a mUltiple of 4 bytes

currentArena = LocalInfo.hi_first II Start with first
II block in the heap

while (1)
{

}

II Work forward from the start of the heap, because
II fixed blocks belong at the beginning of the heap
nextArena == currentArena->la_free_next

II The la_free_next pointer of the last arena points
II to itself. It's time to compact if we hit it
if (nextArena =~ currentArena)

goto LAlloc_compact_fixed

if (currentArena->la_size > allocLen)
break

currentArena = nextArena

IIFound a big
Ilenough block

if debug KERNEL
if (LCheckCCO
{

II Verify debug signature still there

Output a message:
"LocalAlloc: Local free memory overwritten"

}

II We're goin~ to have to slice the found block in two. The
II first part will become the. allocated memory. The second
II part will me made a new, free block. Make sure that the

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II new free block will be at least 16 bytes long, or else
II it's not worth creating the new block.
if ((currentArena + allocLen) >

{

}

else
{

}

(currentArena->la_next - 16))

II All we have to do is mark the found block as busy
go to LAlloc_mar~block_busy

II We have to add the "new" free block to the free list
II before we can mark the found block as busy
go to LAlloc_have_two_blocks

if (LCompact() > allocLen)
go to LAlloc_found_block

II LCompact() returns number of
II bytes free after compaction

LAlloc_notify:

II If the program installed a LocalNotify() handler, call it
LNotify(LN_OUTOFMEM, allocLen)

if (LocalNotify() handler returned 0)
return 0 I I fa i lure

else
goto the top of LAlloc() II Play it again, Sam

allocLen += 6 II 6 -- size of MOVEABLE arena header

allocLen = LAlign() II Round size up to a multiple of 4 bytes

currentArena = LocalInfo.hi_last

while (1)
{

II Start with last
II block in the heap

II Work backwards from the end of the heap, because
II moveable blocks belong at the end of the heap
prevArena == currentArena->la_free-prev

II The la_free-prev pointer of the first arena points
II to itself. It's time to compact if we hit it

}

WINDOWS INTERNALS

if prevArena == currentArena)
go to LAlloc_compact_moveable

currentArena = prevArena

if (currentArena->la_size > allocLen)
goto LAlloc_found_block_moveable

LAlloc_compact_moveable:

if (LCompact() < allocLen)
goto LAlloc_notify

II LCompact() returns number of
II bytes free after compaction

II See if we need to make 2 blocks, or just 1. (See above)
if ((currentArena + allocLen) >

(currentArena->la_next - 16))
{

II All we have to do is mark the found block as busy
go to LAlloc_mark_block_busy

}

LAlloc_found_block_moveable:

if debug KERNEL
if (LCheckCC())
{

II Verify debug signature still there

Output a message:
"LocalAlloc: Local free memory overwritten"

}

LAlloc_have_two_blocks:

II First add the unused portion of the new block to the free list
LFreeAdd(currentArena + allocLen)
II Then fall through

LAlloc_mark_block_busy:

LFreeDelete(currentArena) II Remove block from free list

turn on LA_BUSY flag in currentArena->la-prev

if debug KERNEL
{

if (LA_ZEROINIT not set in allocFlags)

LAllocFi llO II Fill block with debug signature
}

if (LA_ZEROINIT set in allocFlags)
LZero() II Fill the block with D's

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

Loea/Free()
LocalFreeO starts out by calling the internal LDrefO function to load the registers with vari
ous values related to the passed-in handle. In this respect, LDrefO is similar to the XHandleO
and PDref() routines for the global heap. Next LocalFreeO uses LFree() to mark the arena for
the block as free, as well as to add it back to the free list of heap blocks. Finally, LocalFree()
calls LHFreeO to free up the handle table entry for the block. LHFreeO is smart enough to
detect if the block is FIXED, and therefore doesn't have a handle.

pseudocode for LocaLFree() - LINTERF.OBJ
I I Pa rameters:'
II WORD handLe

if (! LenterO)
return 0

II Points DS:DI at the LocaLlnfo struct
II increments the Li_Lock fieLd

if debug KERNEL
CheckLocaLHeap()

LDref<handLe) II Puts address of arena, Lock count, etc.
II in registers

if debug KERNEL
if (TDB_expWinVer >= Ox201 II Windows 2.01 or Later?

if (Lock count of handLe> 0)
{

output a message:
"LocaL Free: freeing Locked object"

LDref() II Get addresses again. Why???
}

LFree(handLe) II Free up the memory I coaLesce bLocks
LHFree(handLe) II Free up the associated handLe (if any)

LLeaveO II decrement the Li_Lock count fieLd

Loea/Real/oe()
LocalReallocO is a rather large and complex routine. After doing the usual setup by calling
LEnter(), it looks to see if just the flags need to be modified. If so, LocalRealloc() jumps to a
section of code that patches the new flags into the handle table entry and returns. If the new
requested size of the block is less than ten bytes, the size of the request is bumped up to ten
bytes. If the original requested new size was zero, however, LocalRealloc() figures that the
block is being discarded. In this situation, it jumps to code that frees up the blocks of mem
ory;then it sets the LHE_DISCARDED flag in the associated handle table entry. If on the
other hand, the handle passed in is for a block that's already been discarded, LocalReallocO
allocates new memory for it and turns on the LHE_DISCARDED bit in the handle table
entry.

WI N DOWS INTERNALS

If LocalReallocO is called for the more mundane task of simply changing the size of a
block, then it does what it can to keep the heap coherent. If the block needs to be grown, the
next block in the heap is tested to see if it's free and big enough. If so, LocalRealloc() com
bines the current block with the free block to form the new block. If this isn't possible,
MOVEABLE blocks are shuffled around in an attempt to find a way to satisty the request. If
the block is being shrunk, LocalReallocO tests to see if it's worth the effort of splitting the
block in two, with the now unneeded memory becoming a new free block.

pseudocode for LocalReallocO - LINTERF.OBJ
II
II
II
II

Parameters:
WORD reallocHandle
WORD newSize
WORD flags

if debug KERNEL
CheckLocalHeap()

if (! LenterO
return 0

II Points DS:DI at the LocalInfo struct
II increments the li_lock field

if (LA_NOCOMPACT flags set in flags)
LocalInfo.hi_freeze++

if (!LDrefO)
go to create_new_block

II prevent compaction

II Puts address of arena, lock
II count, etc. in registers.

if (LA_MODIFY bit set in flags)
goto modify_flags

if (newSize < 10)
newSize = 10

II 10 = size of free arena header???

if (newSize wasn't 0 upon entry to LocalRealloc())
goto move_things_about

II Only blocks being "reallocated" to zero bytes come
II through here. If this is the case, then the block
II should be discarded.
if (lock count of reallocHandle == 0

go to discard_block

LocalRealloc_fail:

LogError("LocalReAlloc failed"s);

return

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

discard_block: II Here if discarding a bLock

if (LA_MOVEABLE not set in fLags) II DISCARDABLE bLocks must
goto LocaLReaLLoc_faiL II aLso be MOVEABLE

if (LNotify(LN_DISCARD, reaLLocHandLe, 0) returns 0)
goto Loca LReat Loc_fai L

LFree(reaLLocHandLe) II Free up the bLock's memory

reaLLocHandLe->Lhe_address = 0

turn on LHE_DISCARDED bit in reaLLocHandLe->fLags

return reaLLocHandle II ActuaLLy, goto LocaLReaLLoc_done

modify_fLags:

if (bLock is fixed) II Can't modify FIXED bLocks
return reaLLocHandle

copy fLags to reaL LocHandle->Lhe_f Lags

return realLocHandle

create new_bLock:

if (LHE_DISCARDED bit not set in reaLLocHandLe->Lhe_fLags)
return reaLLocHandLe

turn on LA_MOVEABLE bit in fLags

if (!LALLoc(newSize, fLags))
go to LocaLReaLLoc_faiL

else
turn off LHE_DISCARDED fLag in realLocHandLe->Lhe_flags

if (newSize > size of current block)
goto grow_bLock

shrink_block:

WINDOWS INTERNALS

If the bLock wiLL be shrunk enough to create a new, free bLock
then spLit the current bLock in 2. The new, free bLock must
be at Least 16 bytes Long. If the bLock is spLit in 2, add
the new, free bLock to the free List. If there's not enough
room to spLit the bLock into 2 bLocks, then don't bother
spLitting the bLock. Just return the originaL handLe.

return reaLLocHandLe

If the next bLock is free and big enough, join the current
bLock to the free bLock. Otherwise, start shuffLing bLocks
around in memory. When bLocks get moved, caLL
LNotify(LN_MOVE).

reaLLocHandLe->Lhe_address = new bLock address

Turn on LA~OVEABLE bit in La-prev fieLd of new bLocks arena

Set the La_handLe fieLd of new bLocks arena to reaLLocHandLe

LocaLReaLLoc_done:

II ALL prior "return" statements actuaLLy come through here!!
if (LA_NOCOMPACT bit set in flags)

LocaLInfo.hi_freeze--

LLeave() II decrement the Li_Lock count fieLd

return CX = AX II CaLLer can test either CX or AX

LocalLockO
LocalLock() relies on the way handle tables are laid out to quickly determine if the value
passed in is for a MOVEABLE handle or for the address of a FIXED block. FIXED blocks
always have memory addresses that are a multiple of four. MOVEABLE blocks always have
handles with their second bit set (0002h). For instance, 2,6, OxA, OxE.

If the passed in value is for a FIXED block, LocalLockO simply returns the handle, which
is the same as the block's address. If the block is MOVEABLE, LocalLockO adds one to the
value in the handle's lhe_count field, making sure the count doesn't overflow. The address it
returns is the first field of the handle table entry.

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

pseudocode for LocaLLock() - LINTERF.OBJ
II Parameters:
II WORD handLe

II MOVEABLE block handLes are aLways vaLues Like 2, 6, 10,
II 14, etc. Thus, bit 1 is aLways set. If the handLe passed
II to us does not have this bit set, then it's an LMEM_FIXED
II bLock, in which case we just return its address.

if (! (handLe & Ox0002)) II Is it a MOVEABLE bLock?
return handLe II Not a handle. Must be an address

if (LHE_DISCARDED bit set in handLe->Lhe_fLags
return handle->Lhe_address

handLe->Lhe_count++ II Increment the Lock count

if (handLe->lhe_count -- 0) II Did it overfLow past OxFF???
handle->Lhe_count--

return handLe->Lhe_address II return address of data block

LocalUnlockO
LocalUnlockO simply decrements the lhe_count field in the handle table entry of a MOVE
ABLE block, making sure the field doesn't underflow. See the discussion of LocalLockO
above for more details on how the block type is determined. The return value is either the
new lock count for the block or zero if the block is FIXED or discarded.

pseudocode for LocaLUnLock() - LINTERF.OBJ
II Parameters:
II WORD handLe

II HandLes are aLways 4x+2 vaLues Like 2, 6, 10, 14, etc.
if (!(handLe & Ox0002» Ilreturn NULL if a FIXED bLock

return 0

if (LHE_DISCARDED bit set in handle->Lhe_fLags)
return 0

II If the handLe is aLready unLocked, or the Lock count has
II been maxed out, don't do anything, and return 0
if ((handLe->Lhe_count == 0) I I (handLe->lhe_count == OxFF)

return 0

handle->Lhe_count--

return handLe->lhe_count

WINDOWS INTERNALS

Loco/Hand/eO
LocalHandle() starts out by verifying that the address passed in is that of a MOVEABLE
block. If not, the address is a FIXED or free block, in which case LocalHandle() returns the
passed handle unchanged. Next, it subtracts six from the address to get a pointer to the
MOVEABLE arena. The handle value that it returns is extracted from the arena. As an addi
tional sanity check, LocalHandleO compares the passed address to the handle table entry, to
make sure it matches.

pseudocode for LocalHandle() - LINTERF.OBJ
II Parameters:
II WORD memPtr

II The addresses of MOVEABLE blocks are always values like 2,
II 6, 10, 14, etc. Thus, bit 1 is always set. If the address
II passed to us does not have this bit set, then it's an
II LMEM_FIXED or free block, in which case we just return
II the address passed to us.
if (!(memPtr & Ox0002))

return memPtr

memPtr -= 6 II Make it point at the MOVEABLE arena header

II Make sure the address stored in the handle structure
II matches the address passed in.
if (lhe_address field in memPtr->la_handle == memPtr)

return memPtr->la_handle
else

return 0 II Something is wrong if this happens!

Loca/SizeO
LocalSize() is extremely simple. It calculates the address of the block from the passed-in han
dle. It's then a simple matter to subtract that value from the offset of the next arena. The
result is the size of the block.

pseudocode for LocalSizeO - LINTERF. OBJ
1/ Parameters:
II WORD handle
II Locals:
1/ WORD arenaPtr
II WORD memPtr

if (!LDref() 1/ Sets arenaPtr to block's arena, and
return 0 II memPtr to address of block

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II Block size is the address of the next block minus the
II address of this block.
return (arenaPtr->la_next - memPtr) II Also sets CX

LocalFlagsO
LocalFlags() uses the LDref() function to verifY that the handle parameter is for a MOVE
ABLE block (only MOVEABLE blocks have flags). If the block is MOVEABLE, LocalFlags()
extracts the flags and lock count from the handle table entry.

pseudocode for LocalFlags() - LINTERF.OBJ
II Parameters:
II WORD handle

if (!LDrefO)
return 0

II Dereference the handle

CX = handle->lhe_flags

XCHG CL, CH II Lock count in low byte, flags in high

return AX = CX II Set both ex and AX

LocallnitO
LocalInitO, although documented, is typically not called by application programs unless
they're doing suballocation. Instead, the startup code for an EXE or .DLL calls LocalInit().

LocalInit() starts by determining if it was passed a zero as the segl11ent in which the heap
is to be initialized. If this is the case, LocalInitO assumes the current DS value. Otherwise, it
sets DS to the segment value that was passed. After some housekeeping, the next major step is
to pin down the addresses of the first block in the heap, as well as the address of the LocalInfo
structure. The LocalInfo structure always comes after the first block. As was mentioned earlier
in the chapter, the first block in the local heap is considered special and is treated differently
than the other blocks.

Once LocalInitO knows the address of the LocalInfo structure, LocalInit() zeroes out
that memory and initializes certain fields with default values (see the pseudocode). Then it
performs some validity testing to make sure that the LocalInfo structure doesn't go past the
end of the heap region. Once the LocalInfo structure passes all the tests, it sets the WORD at
offset 6 in the segment to the address of the LocalInfo structure. (See the entry for "Instance
Data" in Undocumented Windows) Chapter 5.)

The next step in initializing the local heap is to set up the arenas for the initial four blocks
in the heap. The arenas for the blocks are initialized in their order in the heap. Thus, the first
block arena is initialized, followed by the arena for the block containing the LocalInfo struc
ture. Next comes the arena for the one block containing all the free space, and finally, the sen
tinel arena, which is an arena with no associated memory. It exists only to indicate the end of
the heap. See Figure 2-3 on the next page for the initial layout of the local heap.

WINDOWS INTERNALS

Figure 2-3: Initial Layout of the Local Heap.

o

Global
Data,
Stack,
etc

First
block Locallnfo
in local structure
heap

End of segment

Initial free block

Subsequent allocations
break this block up into
smaller blocks.

Offset 6 points to the Locallnfo structure
Sentinel arena (0 bytes)

pseudocode for LocaLInitO - LINTERF.OBJ
/I
II
/I
II
II
II
II
II
II

Parameters:
WORD heapSegment
WORD heapS tart
WORD heap End

LocaLs:
DWORD gLobaLBLockLen
WORD LocaLlnfoArena II arena for LocaLlnfo
WORD freeBLockArena
WORD heapEndArena

Save DS on stack

if heapSegment!= 0
DS = heapSegment

if (heapStart == 0)
{

II use the whoLe segment?

}

gLobaLBLockLen = GLobaLSize(DS)

if (gLobaLBLockLen >= 64K)
gLobaLBLockLen = OxFFFE

heapEnd = gLobaLBLockLen

heapStart = heapEnd - gLobaLBLockLen II aLways O???

CHAPTER 2 - WINDOWS M~MORY MANAGEMENT

heapStart = LAlign(heapStart) II Round up to nearest 4 bytes

II Reserve 10 bytes for the first arena (size of a FREE
II arena???), and then round up to find the arena address
II for the Locallnfo block that we'll be creating
LocalInfoArena = LAlign(heapStart + 10)

II Make sure the LocalInfo block doesn't go past the
II specified end of the heap
if ((LocalInfoArena + 4) > heapEnd)

return 0 II Jumps to end to restore DS

Zero out the Locallnfo block

II Fill in various fields of the LocalInfo block
LocaLInfo.hi_hdelta = Ox20 II # handles to grow by (More Masters)
Locallnfo.hi_count = 4 II 4 blocks in initial heap
LocalInfo.hi_first =' heapStart II Point at first node
Loca LInfo.l i_notify = Loca lNotifyDefaul t
Locallnfo.li_hexpand = offset lhexpand
Locallnfo.li_extra = Ox0200 II Minimum amount to grow
Locallnfo.li_sig = 'LH' II Magic signature (484ch)

freeBlockArena = II Get address of the free block in heap
LAlign(LocallnfoArena + sizeof(Locallnfo))

heapEndArena = heapEnd - 10 II 10 bytes for a free arena

II Make sure the arena for the last block doesn't come before
II the start of the free block. If it does, abort
if (heapEndArena < freeBlockArena)

return 0 II Jumps to end tn restore DS

Locallnfo.hi_last = heapEndArena

II Set up the pLocalHeap pointer at the base of the segment
*(WORD far *)MK_FP(DS, 6) = &LocalInfo

II Initialize all the fields in the first heap block arena
turn on LA_BUSY flag in heapStart->la-prev
heapStart->la-prev = heapStart II Points to itself
heapStart->la_next = LocallnfoArena
heapStart->la_free-prev = heapStart II Points to itself
heapStart->la_free_next = freeBlockArena
heapStart->la_size = 10 II size of free arena

WINDOWS INTERNALS

II InitiaLize fieLds in the LocaLInfo arena
turn on LA_BUSY fLag in LocaLInfoArena
LocaLInfoArena->La-prev = heapStart
LocaLInfoArena->La_next = freeBLockArena

II InitiaLize the free bLock arena
freeBLockArena->La-prev = LocaLInfoArena
freeBLockArena->La_next = heapEndArena
freeBLockArena->La_free-prev = heapStart
freeBLockArena->La_free_next = heapEndArena
freeBLockArena->La_size = heapEndArena - freeBLockArena

if debug KERNEL
LFiLLCC() II Put debug signatures in free bLock

II InitiaLize the Last bLock (sentineL) arena
heapEndArena->La_next = heapEndArena II Point at itseLf
heapEndArena->La-prev = freeBLockArena
turn on LA_BUSY bit in heapEndArena->La-prev
heapEndArena->La_free-prev = freeBLockArena
heapEndArena->La_free_next = heapEndArena II Point at itseLf
heapEndArena->La_size = 10 II size of a free arena

II Set the "minimum allowabLe heap size" to the size of the
II current heap
LocaLInfo.Li_minsize =

LocaLInfo.hi_Last - LocaLInfo.hi_Last + 10

GLobaLLock(DS) II Lock the segment (not reaLLy needed)

restore DS from stack

return 1

LocalHeapSize()
The undocumented LocalHeapSize() function simply subtracts the address of the first block
from the address of the last block and returns the result.

pseudocode for LocalHeapSize() - LINTERF.OBJ

return LocaLInfo.hi_Last - LocaLInfo.hi_Last

LocalHandleDelta() .'
LocalHandleDeltaO is an undocumented function. It changes the number of handle table
entries to be allocated when the local heap needs to allocate more of them for MOVEABLE
blocks. LocalHandleDeltaO uses the heap in the current DS segment, so you must set DS

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

before calling it. You rarely need to use this function, as the default value of 20h seems to
work fine. If you pass it a value of zero, LocalHandle DeltaO does not set the handle delta,
but instead, returns the current value.

pseudocode for LocaLHandLeDeLta() - LINTERF.OBJ
II Parameters:
II WORD newHandLeCount (0 means return current vaLue)

if (newHandLeCount != 0)
LocaLInfo.hi_hdeLta = newHandLeCount

return LocaLInfo.hi_hdeLta

LocalShrinkO
LocalShrinkO first checks to see if the passed-in heap segment is zero. If so, LocalShrinkO
calls GlobalHandle() to get the handle of the current data segment. The real work is done
inside LShrinkO, which moves blocks around and compacts the local heap in an attempt to fit
all the NONDISCARDABLE blocks into the amount of memory specified in the
LocalShrinkO call. LShrinkO is a very long, complicated function, and it does not appear to
add much to understanding the local heap. Therefore, it is not covered here.

pseudocode for LocaLShrink() - LINTERF.OBJ
II Parameters:
II WORD heapSegment
II word newSize

Save DS on stack

if (heapSegment != 0)
{

}

if (!GLobaLHandLe(heapSegment)
return 0

DS = DX

if debug KERNEL
CheckLocaLHeap()

II Sets DX = seLector

if (! LenterO)
return 0

II Points DS:DI at the LocaLInfo struct
II increments the Li_Lock fieLd

LShrink(newSize

LLeaveO II decrement the Li Lock count fieLd

restore DS from stack

WINDOWS INTERNALS

LocalCompactO
LocalCompactO is a wrapper around the LCompact() function. LCompactO is responsible for
moving blocks around in memory and discarding DISCARDABLE blocks if necessary. The
goal is, of course, to free up a block large enough to satisfY the amount of memory needed.
Like LShrink(), LCompact() is a long and winding function and not particularly illuminating.
It is omitted here.

pseudocode for LocaLCompact() - LINTERF. OBJ
II
II
II
II

Parameters:
WORD bytesNeeded

LocaLs:
WORD bytesFreed

if debug KERNEL
CheckLocaLHeap()

if (!Lenter())
return 0

II Points DS:DI at the LocaLlnfo struct
II increments the Li_Lock fieLd

bytesNeeded = LALign(bytesNeeded) II Round up to muLtipLe of 4

bytes Freed = LCompact(bytesNeeded)
if (bytes Freed != 0)

return bytesFreed - 6 II 6 = sizeof(arena header)?
eLse

return 0

LocalNotifyO
LocalNotifYO is undocumented in Windows 3.x, but was documented in Windows 2.x. As
part of its normal duties, the local heap may need to expand or move memory around. When
it does this, it calls the address that your program specifies with LocaINotifY(). Expanding the
local heap, a tricky business, is probably the reason that this function went undocumented in
Windows 3.x. The default handler function knows how to expand a local heap, and that is
described below.

LocalNotifYO itself is extremely simple; it simply copies the address passed in to the
LocalInfo structure and returns the old handler address.

It is the responsibility of the installed callback function to indicate what action should be
taken when called. A return value of nonzero indicates it is OK to move or discard the block.
A return value of zero means the block should be left alone. If the notification indicates that
the heap'needs to be expanded, a nonzero return value indicates that the heap was expanded,
while zero means that the heap couldn't be grown.

pseudocode for LocaLNotify() -LINTERF.OBJ
II Parameters:
II LPFN newNotificationFunction
II Documented in Windows 2.x, but not in Windows 3.x

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

MOV
MOV
MOV

MOV

XCHG
XCHG

RETF

BX,SP
AX,WORD PTR SS:[BX+04J
DX,WORD PTR SS:[BX+06J

BX,WORD PTR [pLocaLHeapJ

WORD PTR [BX+Li_notifyJ,AX
WORD PTR [BX+L i_notify+2J,DX

; Get new handLer address
; off stack into DX:AX

; Point to LocaLInfo

; Switch new address
; with oLd address

0004 ; Return with oLd address in DX:AX

LocalNotifyDefaultO
LocalNotifYDefault() is the internal function that gets called when the local heap moves or
discards a block, or when the local heap needs to be grown to satisfY a memory request. It
does no handling if the condition code indicates a block move or block discard; if the
LocalNotifYDefaultO receives these "notifications," it returns to the caller immediately.

The real job of LocalNotifYDefaultO is to handle the nasty business of growing the local
heap. The function first determines if the heap can even be grown to the requested size, yet
still keep the DGROUP below 64K in size. If not, the function returns failure immediately. If
there's enough room to grow the heap, the code hopes for the best and tries for a new heap
size that is not only the size requested, but continues to have a large free block. If this wraps
around the 64K limit, then 64K minus 16 is used as the new size of the global block.

Once the new size of the encompassing global heap block is known, the function uses
GlobalReallocO to expand the block. If GlobalReallocO succeeds, LocalNotifYDefault() cre
ates a new sentinel block at the end of the heap and adds the space gained by expanding the
global heap block to the free list. Finally, the code returns 1, indicating to the caller that more
memory was successfully allocated and that it should re-attempt whatever it was doing.

pseudocode for LocaLNotifyDefauLtC) - LINTERF.OBJ
II Parameters:
II WORD mS!Lcode
II 0 = LN_OUTOFMEM
II 1 = LN_MOVE
II 2 = LN_DISCARD
II WORD arg1 for:
II LN_OUTOFMEM -> size of Largest free bLock
II LN_MOVE -> handLe
II LN_DISCARD -> handLe
II WORD arg2 for:
II LN_OUTOFMEM -> #bytes needed
II LN_MOVE -> oLd_Location
II LN_DISCARD -> discard flags
II LocaLs:
II WORD gLobaLBLockHandLe
II WORD gLobaLBLockFLags

II
II

DWORD
WORD

WINDOWS INTERNALS

globalBlockSize
reallocFlags

if (ms~code != 0)
return ms~code

II Only provide default handling for
II LN_OUTOFMEM

II Get the critical statistics that we need to know about the
II global block containing the local heap. These values are
II necessary to know if we can resize it to meet the request
globalBlockHandle = GlobalHandleCDS)

if C globalBlockHandle == 0)
return 0

globalBlockFlags = GlobalFlags(globalBlockHandle)
globalBlockSize = GlobalSizeCglobalBlockHandle)
reallocFlags = 0

II Calculate how big the global heap block must be to
II accommodate the allocation request.
globalBlockSize -= size of largest free local block
globalBlockSize += #bytes needed II Carry flag set if this

II "wraps" > 64K

if (globalBlockSize > 64K)
return 0 II We couldn't free up any memory

globalBlockSize += Ox18 II Need an additional 18h bytes
if C globalBlockSize > 64K) II to resize properly???

return 0

II Add in the mlnlmum amount to grow heap by
globalBlockSize += Locallnfo.li_extra /1 typically Ox200
if (globalBlockSize > 64K)

globalBlockSize = OxFFFO

I I Add the la rgest free block back in hopes that it'll fit
globalBlockSize += size of largest free block
if C globalBlockSize > 64K)

globalBlockSize = OxFFFO

if C bottom bit not on in globalB[ockHandle)
{

}

if C lock count in globalBlockFlags != 1)
turn on GA_MOVEABLE in reallocFlags

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

II Reallocate ,the heap block to a bigger size
GlobalRealloc(globalBlockHandle,globalBlockSize,reallocFlags)

if (GlobalRealloc() failed)
return 0;

globalBlockSize = GlobalSize(globalBlockHandle)

if (globalBlockSize >= 64K)
globalBlockSize = OxFFFF

II Do the grunt work required to add this new space to the
1/ end of the heap list. This include making a "sentinel"
II block at the end of the heap, as well as freeing up
II the original sentinel block.
Create a new LA_BUSY node at the offset given by
(globalBlockSize - 4).

newNode->la_next = newNode II Indicates it's the last block

LocaLInfo.hi_last->la_next = new_node II add new node

LocaLInfo.hi_last = newNode II Adjust "last block"s pointer

LFree() the original sentinel block

return 1 1/ Tell the caller we obtained more memory

Mt!n1ory Management at the Application Level

Having examined the inner workings of the memory managers, provided by Windows, it's
time to step back and look at the broader issues of how they relate to the application pro
grams written in high-level languages. In addition, we'll discuss some other issues that involve
memory, but aren't directly related to the heaps or selector functions.

The. Windows Address Space

An important concept in operating systems of any complexity is the notion of the address
space. Understanding address space fundamentals is often the difference between tracking
down a bug and searching for it seemingly without hope.

In simple terms, an address space is the memory that a particular program can see. On
one end of the spectrum, there is MS-DOS, which does almost nothing to maintain a formal
address space. The operating system, device drivers, applications, and TSR's all use the same
1Mb of real mode address space. Any byte belonging to one application or device driver can
easily be read from and written to by other programs. On the other end of the spectrum,
operating systems like OS/2 and Windows NT provide a separate address space for each task

WINDOWS INTERNALS

No task can see the memory of another task without its permission. Additionally, the operat
ing system kernel runs in code that's not accessible to tasks, except through very controlled
mechanisms. In theory, a properly written operating system using this model would be
uncrashable. The operating system couldn't be inadvertently overwritten, nor could one task
corrupt another task. In practice, it's not quite this simple, but that's a topic for a different
book. Windows 3.1 lies somewhere between these two extremes. In the current implementa
tion of Windows, all programs and DLLs share the same address space and run at the same
privilege level. This includes the core Wmdows DLLs (KERNEL, USER, and GDI). The
address space is shared by all programs, using the same LDT for all tasks. In opposition,
OS/2 l.x uses a separate LDT for each task, which creates a separate address space for each
task. A similar situation existed in earlier real mode versions of Windows using bank-switched
EMS memory. Every byte of memory was precious in those days, so Windows mapped the
code and data for each task into and out of an EMS bank as needed. In this situation, each
task had its own separate address space. It couldn't see the memory of another task because
that task had been bank switched out. The correct way to guarantee that your code would
always be mapped in was to put it in a DLL, which wasn't subject to EMS bank switching. If
you wanted to share data with another application, you had to specifically allocate the memory
as SHARED memory. Mercifully, those days are behind us.

The disadvantage to the current, non-EMS Windows address space scheme is that a mali
cious program can get the selector of, say, a KERNEL code segment, create a data alias for it,
and write its own code over KERNEL's. On the other hand, this shared address space allows
for easy sharing of data. You can simply pass a far pointer for some data to another applica
tion, and the receiving program can use the pointer directly. It's a mixed blessing, at best.

In Enhanced mode, multiple DOS sessions can run at the same time as Windows pro
grams and DLLs. In this situation, all the Windows programs and DLLs are considered to be
in one virtual machine and share an address space amongst themselves. Each DOS session is a
different virtual machine and has a separate address space from other DOS sessions, as well as
from the Windows virtual machine. This is the underlying reason why it's exceptionally diffi
cult to share data between a Windows program and a DOS program that is invoked after start
ing Windows. It isn't impossible, but that's a topic for a different book.

Use the Runtime L1brarlesl
One of the reasons that many programmers new to Windows have such a difficult time is due
to a simple misunderstanding. Specifically, many programmers see literally dozens of memory
management APIs and figure that they have to use them. Thus, they dutifully plow through
all the standard texts, which leave them thoroughly confused. It was so much easier under
DOS, wasn't it? You just called mallocO and freeO and you were done with it, right?

Stand back and look at the facts, however, and a different story emerges. DOS has a set of
crude memory management APIs. There are INT 21h subfunctions to allocate and free mem
ory, but almost rio one uses them. Instead, they let the C (or Pascal, or whatever language
you like) runtime library handle the messy work. That's precisely what runtime libraries are to
be used for.

The same story exists in Windows. The authors of the runtime libraries for the various
compilers have already done the hard work. In the general case, C programmers can continue

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

to call mallocO and freeO and not worry about using GlobaWlocO or LocalAllocO. Even the
memory models are essentially the same. In the small and medium memory models, you use
near pointers; and your data, stack, and heap are all in the DGROUP. In the compact and
large memory models everything is done in terms of far pointers.

The point here is that you do not have to use all the heap functions that KERNEL pro
vides. If you want to, they're there, but it's certainly not a requirement. Unless your program
makes thousands and thousands of allocations, or unless you have special memory manage
ment needs, the runtime library functions are usually just fine for the job at hand.

The Large Model is Bad Myth
Another big misconception programmers have is that the large model under windows is BAD.
Thus, they often go to great lengths to avoid having a large-model program. The reason for
this myth has to do with two situations that are now long behind us. First, the Microsoft C
6.0 large model created a separate data segment for each source module in the program. As
explained in Chapter 3 on the loader, Windows cannot run more than one instance of a proc
gram that has more than one write able data segment. Chapter 3 gives the details, but the
short story is that if there's more than one data segment, the compiler and linker must place
hard-coded selector value fix-ups into the code segments of the program. This in turn, makes
it impossible for two instances of the program to share the same code because the second
instance would be reading and writing to the data segments of the first instance. The problem
however is not the large model. Instead, the problem is having multiple data segments in your
program. It's quite easy to create multiple data segments in any memory model!

The second reason for the paranoia about large models has to do with a bug in Windows
3.0. If the Windows 3.0 loader encounters a program that has multiple data segments, it
makes each of the extra data segments FIXED and pagelocked. This causes all the low mem
ory below 1Mb to be eaten up very quickly. At the start of every program, you need a certain
amount of memory below 1Mb for the TDB of the new task (see Chapter 3). Thus,the more
large model programs you run, the less likely you are to be able to start new programs in Win
dows 3.0.

The resolution to these problems came in two forms. The first breakthrough involved a
more intelligent large model. The Borland C++ large model uses far pointers for code and
data, but it places all ordinary data in the DGROUP segment. The result is that when linked,
assuming you have less than 64K of data, there's only one data segment. Both Microsoft
C/C++ 7.0 contains an option that allows you to do the same thing. The important thing is
that you have only one data segment if you want to run multiple instances of your program.
In any memory model, you can declare far data (not the same as far pointers), with the result
being a multi-data segment program. It's important to understand the reasons for this limita
tion, rather than to try to live with sound-bite solutions.

The second part of the fix for the large model problem came about with Windows 3.1.
The loader in Windows 3.1 is much more intelligent and does not fix and pagelock multiple
data segments. Instead the segments are MOVEABLE, as they should be. Although you can't
run multiple instances of the application, at least you don't have to worry about a program
being a low memory hog.

WINDOWS INTERNALS

The Mapping Myth
Another common myth is that Windows maps malloc() to LocaWloc() in the small data mod
els and to GlobaWloc() in the large data models. This is simply not true. Windows knows
nothing about malloc() or memory models. This is a decision made entirely by the compiler
runtime library.

As it turns out, the Microsoft C 6.0 and Borland C++ 2.0 libraries do call LocaWloc() for
the small data model malloc() and GlobaWloc() for large data model malloc(). However,
these programs were certainly not bound to do this. Instead, at the time it seemed to be the
easiest and most obvious thing to do.

One of the key problems in these versions is that in the large data models, programs that
make lots of allocations run out of selectors very quickly because there are only about 8K
selectors available in the LDT (and only 4K when using KRNL286). To remedy this,
Microsoft C/C++ 7.0 and Borland C++ 3.x use a suballocator scheme in the large data mod
els so that each malloc does not turn into a GlobaWloc() and thereby chew up a selector.
We'll discuss suballocation shortly. In the small data models, these compilers still allocate
memory from the local heap, so the heaps are limited to somewhat less than 64K, but that's,
of course, always true in the small data models.

If the memory management provided with your compiler is not sufficient for your needs,
you might check out some of the many third-party memory management libraries. These
libraries often offer significant functionality above and beyond what comes with your com
piler. A glance at the ads in almost any programmers' magazine is likely to yield quite a few
alternatives.

What About New and Delete?
In the general case, the C++ operators new and delete map directly to the C malloc() and
freeO functions. Thus, the above discussion about malloc() and free() in the small and large
data models applies here as well.

Suballocation
Just as the global heap code allocates memory from DPMI and subdivides it, and just as the
local heap allocates memory from the global heap and subdivides it, so can you. The process
of allocating memory from the global heap and then managing a heap within the block is
called suballocation. Typically, a suballocator allocates multiple blocks from the global heap
as needed and then manages local heaps within them. When your program requests memory,
the suballocator checks each of the heaps to see if it can accommodate the memory request. If
so, the block is allocated in one of the local heaps, and a far pointer to the memory is returned
to the caller. If none of the heaps can fulfill the request, another global block may be allocated
for use as a new heap, thereby ensuring that the requested block size fits in it. Alternatively if
the requested size is above a certain limit, the request might be fulfilled by using
GlobalAlloc() on a block just for that request, without constructing a local heap for it.

Suballocation is so useful that even the USER module uses it. In Windows 3.0, the USER
local heap contains all sorts of items. All the window class names, resources, and other various
things are allocated from USER's local heap. Like all local heaps, the USER local heap is lim
ited to 64K. This leads to the infamous problem of the Free System Resources, which always

CHAPTER 2 - WINDOWS MEMORY MANAGEMENT

seem to dwindle away the more you use Windows. In Windows 3.1, the problem has been
alleviated somewhat because USER maintains three local heaps. It stores the menus in one
local heap, the menu strings in another, and takes the remaining things from the default
DGROUP heap. Thus, USER is suballocating.

Since suballocators have been discussed in so many other publications, we won't be build
ing our own here. If you're interested in building your own suballocator, the LocalInitO will
certainly take care of a lot of the work and is certainly worth investigating. Alternatively, you
might look at the source code from the Borland c++ runtime library, which includes a sub
allocator, as well as the many third-party Windows memory management libraries.

Sharing Memory
As in all multitasking systems, Windows oftentimes needs to communicate between different
tasks. One of the easiest ways to communicate is through shared memory, wherein more than
one task can access the same memory location(s). Windows 3.x makes it extremely easy to
share memory between applications because there is a single address space. Any program can
read and write the data segments of another program, as long as it knows which selector to
use or knows the base address of the segment so that it can synthesize a selector. However,
the proper way to share memory for future compatibility is actually a relic from the past. In
older versions of Windows that used EMS, only the current task was mapped into memory.
All the other tasks were "bank switched" out and were not available. If you wanted to share
memory between tasks, you had to make sure that it was in a memory region that wasn't
banlced out. The way to do this was to allocate the memory as GMEM_SHARE or
GMEM_DDESHARE. This memory is guaranteed to be always available to all tasks because
it is never banlc switched out. In Windows 3.x, you can still allocate memory with this attri
bute, but it doesn't gain you anything in the way of shareability. All segments are equally
accessible. Other operating systems, such as OS/2 2.0 and Windows NT are not like Win
dows 3.x, however, as they have separate address spaces for each task. If you want to share
memory between tasks, you've got to play by the rules. Future versions of Windows might
again require GMEM_SHARE.

What about sharing memory between Windows and DOS programs1 This is a little more
complicated, and there is no one answer. The easiest way to share memory between DOS and
a Windows program is to use GlobalDOSAllocO to allocate memory that's below 1Mb. This
memory is guaranteed to be accessible by real mode code in the system virtual machine (VM).
You then need to somehow communicate the real mode address to the program (TSR) in the
system virtual machine. A good way to do this is by hooking and usint~nterrupts, and passing
values in the registers. There are .several good Microsoft Knowledge Base articles that show
how to do this. An important point is that only programs that were run before Windows
started up (that is, TSR's) or run from WINSTART.BAT are visible in th~'system virtual
machine. Starting up a DOS session inside Windows and then trying to share memory with a
program in that session is a whole different can of worms that we won't go into here.

Another alternative is to have the TSR program allocate memory before it goes resident,
and before Windows is started. It can then pass the real mode address of the memory to the
Windows program or DLL (again, interrupts are a good method). The Windows program or
DLL can then use the selector functions to create a selector to access the real mode memory.

WINDOWS INTERNALS

The downside to this approach is that the memory that the TSR allocates is wasted in every
other virtual machine (DOS box) that's started.

Use the Debug KERNEL
As you may have noticed from the preceding pseudocode, the debug KERNEL does quite a
bit of checking and testing for error conditions. It can be quite verbose in its output at times.
I highly recommend that you use the debug KERNEL all the time. In addition to catching
errors in your program-and in others-it is often enlightening to watch the various diagnos
tic traces as you do your normal work in Windows. It's an interesting peek into the maze of
memory management code that we've just examined so thoroughly.

Starting a Process:
Modules and Tasks

The primary focus of any operating system is to control the execution of programs, known
more formally as tasks, or processes. This includes creating tasks, as well as terminating them.
A good operating system can manage the execution of multiple programs and allow different
instances of the same program to share code and read-only data, thereby conserving precious
memory. In this chapter, we examine in detail how Windows performs these chores. We also
examine some of the fundamental data structures used for process management.

In order to really grasp what goes on in Windows, it's essential to have a solid under
standing of modules and tasks. We discuss modules first, then tasks. Once modules and tasks
are solid in our mind, we can dive into the mechanics of how a program file on disk becomes
a running process in memory. The shutdown of a program will be covered as well. Lastly, we
peer into the poorly understood area of self-loading applications.

Modules

A "module," in Windows parlance, refers to all of the code, data, and resources that a particu
lar file "brings to the party." A module can either be an executable program or a dynamic link
library (DLL) used by a program. The term module technically does not refer to the actual
bytes on the disk or to the file itself. Rather, a module is the in-memory representation of the
information in the disk file. The information from the disk file is read into memory and the

213

WINDOWS INTERNALS

module is created from that. Much of the code for creating a new process involves translating
the disk version of the information into the in-memory version.

An executable file is one source of a module. Typically, it has code segments, data seg
ments, and resources. A DLL file can also be the basis for a module, as it can also contain
code, data, and resources. It is important to note that a DLL does not need to have a .DLL
extension. For instance, font files (.FON and .FOT) are DLLs and can be used as the basis for
modules, although they typically contain only resources. The numerous device driver files
(.DRV) in the \WINDOWS\SYSTEM directory are also DLLs. And just to make life interest
ing, the core Windows files (USER.EXE, KRNLx86.EXE, and GDI.EXE) arc also DLLs! The
important thing for EXEs and DLLs is that the file be in the standard New Executable (NE)
file format, which we discuss in a moment. Windows knows the format of NE files and uses
that knowledge to locate and read the code, data, and resources from a file.

NE files are one generation newer than the old DOS Mark Zbikowski (MZ) executable
file format, hence the New in the name. NE files are also called "segmented executables"
because the file format defines distinct segments. Each segment can easily be located and
loaded separately from the other segments. DOS MZ files, on the other hand, lump the whole
program into one blob. The result is that the DOS loader has to read in the whole file, minus
the .EXE header, at once.

Windows programs have used the NE format since version 1.0; it is also used for OS/2
Lx programs. The NE format is also the format of choice for many 16-bit DOS extended
programs. For instance, several of the executables from Borland C++ 3.0 are DOS extended
and use the NE format. The NE format is now fairly well documented, with the most up-to
date information being in the File Formats section of the Windows 3.1 documentation.

If you're interested in examining the contents of an NE file, TDUMP from Borland or
EXEHDR from Microsoft can break apart and display NE files. For an interesting experiment,
run TDUMP or EXEHDR on all the files in the \WINDOWS\SYSTEM directory and see
which ones really are NE files. Incidentally, there are even newer file formats than the NE for
mat, such as LE files (Linear Executables) used in Windows Virtual Device Drivers, LX files
for OS/2 2.0 executables and DLLs, and PE files for Win32 and Win32s executables and
DLLs. The WIN386.EXE file, which is a collection ofLE files, uses an ad hoc W3 format. All
of these formats target 32-bit operating systems, while the NE format is tied to the 16-bit
world.

The most important part of any NE file is its header. The NE header is a 40h-byte region
that acts asa database for the other sections in the file. Any valid NE file starts out with an old
style MZ header. If the WORD value at offset I8h is 40H, then the DWQRD value at offset
3Ch is an offset to a header of some kind. It might be an NE header, but it could also be an
LE, an LX, or a PE header, so check! The first two bytes in the header are a signature such as
'NE' (454Eh), 'LE' (454Ch), 'PE' (4550h), and so on.

The NE header points to information such as the number of segments, their attributes
and length, and where the segments' data can be found in the file. The header points to other
information as well, such as the location of the resources and the addresses of exported func
tions. For example, to find the file offset of a given segment, use the NE header to find the
location of the segment table. Then read the appropriate section of the segment table to find
the file offset of the desired segment.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

When Windows needs information in an NE file (that is, when you run a program or load
a DLL), KERNEL reads the NE header, and several of the tables that it refers to into an allo
cated segment. This segment is called the module table, or module database (MDB). The
global memory handle of the segment is none other than the module handle. Although the
module table is similar in format to the NE header and its associated tables, there are key dif
ferences. For instance, the entry table, where exported functions are listed, is optimized to
save space in the NE file. When the entry table is loaded into memory, it's converted to a
larger format that's optimized for quick lookup of a given entry ordinal. Another example in
which the disk image is smaller than the memory version is the segment table. In addition to
the segment information, such as attributes and lengths, the module table also remembers
which selector accesses the various segments. This applies to resources as well.

Once a module table has been created for the first instance of a program or a DLL,
there's no need to create additional module tables for a second instance of a program or for
the use of a DLL that's already in memory. As long as the module table exists in memory, it
fulfills all future requests to use information in the module. Another one is not created from
the NE file. When the last instance of a program using a module terminates, KERNEL
removes the module table , along with the segments and resources it points to, from memory.
Similarly, when the number of programs or DLLs using a particular DLL drops to zero, the
DLL's code, data, and resources are removed from memory by KERNEL. "The last one out
turns off the lights!"

If you were to run four copies of CALC.EXE, it wouldn't make sense to have four copies
of CALC's code segments in memory. The code segments should be identical for each
instance, unless modified with a data alias (see AllocCStoDSAlias() in Chapter 2). The same
argument applies to resources, such as bitmaps. This is where the idea of modules really starts
to help out. Code segments and resources can be loaded once, and then used by any number
of programs and DLLs. Windows uses the module table to coordinate the sharing. In addition
to memory savings from reusing code and resources, another benefit of modules is faster load
ing time for the second instance of a program or for the user of a DLL. When a module is
already in memory, there's no need to read the information in from the NE file again. The
one exception is writeable data segments in EXEs. These segments may have initialized data in
them, so every time another instance of a program runs, the data segment (that is DGROUP)
is read in fresh from the NE file.

Debugging in Shared Code Environments
The method of sharing code between different instances of a program in Windows
is very simple, compared to other operating systems. Windows makes the assumption
that code segments won't ever be modified, so it's OK to share them. This presents a
problem when debugging. If you load a program under a Windows debugger and set a
breakpoint, any instance of the program can hit the breakpoint, causing the debugger
to wake up. In more advanced operating systems, there's a concept called "copy on
write" that prevents this situation. On these systems, multiple instances share code

WINDOWS INTERNALS

until a section of code (for example, a page) is written to. When this happens, a copy
of the affected section is made and mapped only to the process that needs the modified
version (with the breakpoint in place).

Unfortunately, OS/2 2.0 does not have a copy on write mechanism. This makes
hook procedure debugging a show-stopping situation. Each OS/2 2.0 task has its own
separate address space, implemented by switching page tables around. However, DLL
code is in the address space of all tasks in the system (the DLL code is in pages that
map to the same address in each task). System-wide Presentation Manager hooks (for
example, an HICSENDMESSAGE hook) must be in a DLL, since the hook procedure
can be called in the context of any task. The problem is that an OS/2 2.0 debugger is
not restricted from placing a breakpoint in DLL code. If a task besides the one being
debugged hits the breakpoint, the debugger is not notified of the breakpoint excep
tion. Instead, the default system exception handler is invoked, and the task is termi
nated, along with your use of the machine until you cold reboot. So much for crash
protection!

Windows does not have copy on write, but it also doesn't have this particular prob
lem. Windows allows one task to intercept exceptions destined for another task. In the
situation above, a Windows debugger can check to see if the task that hit the break
point is the task being debugged. If it isn't, the debugger can just single step past the
breakpoint and then resume running the task.

Multiple Instances and Windows Memory Models
An unpopular restriction in Windows arises because of its fundamental assumption
that code can be shared by multiple invocations of the same program. If a program has
more than one DATA segment that's non-read-only, just one instance of the program
is allowed to run. The reason for this has to do with fixups in CODE segments. In a
typical program with one data segment, the CODE segments don't need to contain
any explicit references to the DGROUP segment. As Chapter 8 describes, the DS reg
ister in callback functions is usually set by loading it from the AX register in the pro
logue code of the function. Alternatively, the DS register can be set from the SS
register (termed Smart Callbacks by Borland). In any case, no hardwired selector values
are placed into the CODE segments as a result of a fixup. The CODE segments in this
case are called pure and can be used by multiple instances of the same program. When
a program has two or more non-read-only DATA segments, however, the CODE seg
ments might end up with hardwired selector values in them referring to the second
data segment (once the KERNEL loader loads the code segment into memory and
applies the relocations). These hardwired values are the selector values of the data seg
ments of the first instance of the program. If a second program is allowed to run, it
would use CODE segments with hardwired data segment selectors for the first

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

instance of the program, obviously a recipe for disaster. Windows disallows a second
instance of the program from running in this case.

Despite what Charles Petzold says in Programming Windows, and despite the oft
repeated Microsoft mantras, the large model is not bad and does not prevent multiple
copies of the program from running. Windows knows nothing about C compiler mem
ory models. Windows knows about CODE and DATA segments. Before Microsoft
CjC++ 7.0, all Microsoft C-compiled large model programs typically had multiple
data segments. Thus, you couldn't run multiple instances of most large model
Microsoft C programs. However, you could just as easily have created multiple data
segments in any of the other memory models by declaring some far data. The Borland
C++ large model puts all data into the DGROUP by default and, therefore, doesn't
create multiple segments unless you have more than 64K bytes of static data. Thus, a
Borland C++ large model program can run multiple times. Microsoft CjC++ 7.0
introduced a new switch to do the same thing. The key point is that it's not which
memory model you use. Instead, it's how many DATA segments you end up with in
the EXE file. You can find out how many data segments you have by looking at the
linker's .MAP file or by examining the output from TDUMP or EXEHDR.

Windows maintains a linked list of all of the modules currently loaded in the system. Each
module table holds a selector to the next module in the list. The head of the list can be found
by calling GetModuleHandleO (any valid module name will do). Although not documented,
upon return from this call, DX contains the module handle of the first module in the system.
There are several programs in Undocumented Windows which walk the module table list and
display information about each module. TOOLHELP.DLL has a set of documented functions
that allow you to obtain information about any or all of the modules in the system.

There is often a great deal of confusion between a module handle and an instance handle.
Much of this confusion comes from the fact that the Windows API asks for instance handles,
where you'd really expect it to want a module handle, or vice versa. For example, when your
program starts up, its instance handle (its DGROUP selector) is passed to WinMainO. If you
want to obtain the full pathname of your program's EXE file,· you should call
GetModuleFilenameO. Unfortunately, GetModuleFilenameO takes a module handle (or
hModule), rather than an instance handle. What do you do? You don't have the hModule of
your program. As it turns out, you can pass your hInstance to GetModuleFileName(), and it
will work just fine. Another example is that resources are shared by every user of a module.
Why then, do functions like LoadIcon() expect an instance handle, rather than a module han
dle? A good question. In any case, you can pass in either one, even though module handles
and instances are totally different.

A module handle is simply the selector of the segment containing information about the
code, data, and resources of an NE file that has been read into memory. An instance handle is
not a module handle. Instead, an instance handle is the handle of the segment containing the
EXE's or DLL's DGROUP segment. How are these two things related? How can certain
Windows functions take either a module handle or an instance handle? The answer lies in a
wonderfully useful but undocumented function, GetExePtr(), which is described in detail in

WINDOWS INTERNALS

Chapter 8. GetExePtrO takes an instance handle (or practically any other global handle) and
returns the module handle of the program or DLL that the passed handle belongs to. In this
case, the instance handle (DGROUP segment) is associated with a particular instance of a pro
gram. Since all programs are created from a module table, it's a simple matter to map an
instance handle back to a module handle.

GetExePtrO is not the only function that knows about and uses module tables. The
GetModuleFilenameO function simply returns the complete path for the NE file that's stored
in each module table. GetModuleUsageO returns the number of programs or DLLs that are
referencing a module and obtains the value by reading it directly out of the module table.

In much of Windows, Microsoft refers to module tables as EXEs, even for modules that
are DLLs. For instance, the GetExePtrO function sounds like it would return a pointer to an
EXE, whatever that means. In fact, the function teturns the selector of a module table. Once
you start mentally translating EXE to mean module, understanding the internals of Windows
becomes a bit easier.

Logical and Physical Addresses
There are two ways to refer to an address inside a code or data segment in memory.
The first method is to specify the selector and an offset. This is called a physical (or
actual) address because it refers to an address that exists inside the CPU.

What happens, however, when a physical address is required for some reason, but
the selector value is not available? Take the example of a program making a FAR call to
a function in a different code segment. When the CALL instruction is executed, an
actual selector value and offset are required as part of the instruction. When the pro
gram was compiled and linked, however, the selector value of the target segment could
not have been known. To remedy this situation, the Windows loader applies fixups or
patches to the code and data segments as they're loaded so that they contain actual
selector values and offsets that can be used by the CPU. In order to do these fixups,
some way of specifying an address without using real selector values is needed. This
form of addressing is called logical addressing. Incidentally, DOS programs also have
fixups but they're much simpler than Windows fixups, and are covered in numerous
books, including the MS-DOS Encyclopedia. (Chapter 8 describes Windows fixups.)

A complete logical address consists of a segment value, an offset in the segment,
and some way of uniquely specifying which module the segment came from. The mod
ule portion of the address can be specified by either the module name (the NAME/
LIBRARY field in the DEF file) or a module handle. The segment portion of a logical
address specifies a segment number, such as 1,2, and so on. The first segment in the
segment table of a module database is considered to be logical segment 1, not o. The
second segment in the table is logical segment 2, and so on. The offset portion of a
logical address is the offset within the specified segment and is exactly the same as its
corresponding physical address counterPart.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Let's look at a hypothetical example of logical and physical addresses. Assume a
program with one code segment, one data segment, and a module name of Faa. The
mainO procedure in this example starts at offset 235h in the code segment. This pro
gram is WinExecO'ed, causing KERNEL to load the code segment into memory and
assign it a selector value of 13C 7h. The physical memory address of main() is therefore
13C7h:0235h. The logical address of main() is Faa 000l:0235h, meaning module
Faa, 235h bytes into its first segment.

The mapping between the logical and physical addresses is done two different ways.
Given a logical address, the selector value assigned to it can be found in the segment
table inside of the module database. Going from a selector value back to a logical
address is a little trickier. The owner of a GlobaWlocO'ed block of memory can be
found in the header that precedes the data for each block (see Chapter 2 for more
details). If the block is owned by a module, the block's arena also contains its logical
segment number. It is important to note that any given logical address can be mapped
to a physical address, but the converse is not true. Blocks that were dynamically allo
cated by a program (by calling GlobaWlocO for instance) are not owned by a module.
Instead, they're owned by the DOS PSP (PDB) that's associated with each task. More
on PDBs later.

Logical addresses are most often encountered in the MAP flie of a program and in
the output from programs like TDUMP and EXEHDR. They're also used in debug
ging information and SYM files. Just as the linker can't fill in genuine selector values
when it creates the program, debug information can't be filled in with genuine segment
values. When you debug a program symbolically, there's always a series of address
translations going on to convert logical address in the debug information to physical
addresses, which can be read and shown to the user. Another place where you see logi
cal addresses is in a postmortem tool like WinSpector or Dr. Watson. These programs
often show you both the logical address and the corresponding physical address in their
LOG files.

Having discussed the module table in the abstract, we now present the module table as it
exists in memory. Since the NE file format is readily available elsewhere (such as the Windows
3.1 SDK), it will not be presented here. You may notice similarities between the file format
and the format shown in Table 3-1.

Table 3-1: Format of the In-Memory Module Table in Windows 3.1.

OOh WORD 'NE' signature (454Eh)
02h WORD Usage count of module. The number of times this module has been

used to create a program, or been linked to, or been loaded using
LoadLibraryO·

WINDOWS INTERNALS

Table 3-1: Format of the In-Memory Module Table in Windows 3.1. (conti nued)

04h WORD Near pointer to entry table inside the module table. The entry table is a
linked list of bundle headers. Each header specifies the range of entry
points that are in this bundle. They are immediately followed by an'
array of entry structures, one structure per entry, in the bundle. Note
that the structure described here is quite a bit different from the NE file
verSIOn.

06h WORD
OSh WORD

OAh WORD

OCh WORD

Entry table bundle header:
WORD First entry ordinal in bundle - l.
WORD Last entry ordinal in bundle (number of

entries = last - first).
WORD Near pointer to next bundle.

Each entry:
BYTE Type (actual segment number for fixed

entry, or OFFh for moveable entry).
(1 = exported, 2 = shared data entry).
(logical segment for entry).

BYTE Flags
BYTE SegNum
WORD Offiet (offset of entry in segment).

Selector of next module table. Zero indicates end oflist.
Near pointer to the segment table entry for DGROUP. See offset 22h
for the format of segment table entries.
Near pointer to load file information (an OFSTRUCT).

Load file info:
BYTE

BYTE
WORD
WORD
WORD
BYTE

Length ofload file information section, not
counting itself.
0= file on removable media; 1 = fixed media (hard drive).
Error .code of some kind.
File date, in MS-DOS date format.
File time, in MS-DOS time format.
Filename, in ASCIIZ format.

Module flags (based on NE file flags). Over time, there have apparently
been many different interpretations of the module flags. The NE file for
mat contains a complete list of flags. Following are the flags which Win
dows 3.1 appears to use:

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Table 3-1: Format of the In-Memory Module Table in Windows 3.1. (conti nued)

OCh WORD (cont.) Flags:

OEh WORD
IOh WORD
12h WORD
14h DWORD
ISh DWORD
ICh WORD
IEh WORD

20h WORD

22h WORD

SOOOh

4000h

2000h
OSOOh
0002h

OOOlh

Library module (O=task I=DLL). This bit is the only
thing that differentiates a program from a DLL. You
can flip this bit and fool various routines internal to
Windows, such as GetProcAddressO, which won't
work if it thinks the target is a program module.
WEP procedure should be called (different meaning
than flag for NE file).
Errors in file image.
A self-loading application.
Each instance of this module gets its own DGROUP
segment (a task).
Each instance of this module shares the DGROUP
segment (a DLL).

Logical segment number ofDGROUP (1 based).
Initial local heap size, in bytes.
Initial stack size in bytes. Loader sets to 5KifNE ftIe specifies less.
Starting CS:IP as a logical address.
Starting SS:SP as a logical address.
Number of segments in the segment table.
Number of entries in module reference table. See offset 2Sh for the for
mat of the table.
Size of non-resident names table on disk. The format of non-resident
names table is the same as the resident names table. Entry zero is the
module description specified in the .DEF file when linldng.
Near pointer to segment table in the module table. Segment table con
sists of a series of entries. The number is given by the WORD at offset
ICh. Entries are sequentially numbered, starting at one. Format of a
segment table entry is similar to the segment table entry in the NE file,
but with the addition of a WORD at the end of each entry.

Segment table entry:
WORD Offiet in the file of the segment, in sectors. A sector is

defined as one shifted left by the alignment shift. The
alignment shift is found in offset 32h. See offSet 32h

WORD
WORD

for a description of how the alignment shift works.
Size of segment on disk in bytes (65,536).
Flags: (bitfield)
OOOlh DATA segment (zero indicates CODE)
OOOSh Iterated segment
OOlOh Moveable

WINDOWS INTERNALS

Table 3-1: Format of the In-Memory Module Table in Windows 3.1. (continued)

24h WORD

WO RD Flags: (bitfield) (cont.).

WORD
WORD

0020h Shareable (should not be modified).
040h Preload (0 indicates LOADONCALL).
0080h Execute/read only (depends on code

or data bit).
0100h
1000h

Has relocations.
DISCARDABLE.

Minimum size of segment in memory (0 = 64K).
Handle or selector of segment in memory. For fixed
segments, this is the actual selector. Otherwise, it's the
global handle. 0 indicates that the segment isn't loaded.
This field is missing from the NE file on disk.

Near pointer to resource table in module table.

Resource Table Format:
WORD Alignment shift (4 = 16 byte alignment, 9 = 512 byte

alignment). This value is always supposed to be the
same as the alignment shift in offset 32h.

Immediately followed by:

Format of the resource type structure:
WORD ID

If high bit set, an ordinal resource, and the bottom
eight bits indicate the type of the resource:
Cursor 1
Bitmap 2
Icon 3
Menu 4
Dialog 5
String table 6
Font directory 7
Font 8
Accelerator 9
RC data 10 (User data)
Error table 11
Group cursor 12
Unknown 13
Group icon 14
Name table 15 (Eliminated in Windows 3.1 NE files)
Version info 16 (Used by Win 3.1 VER.DLL)
TrueType font 204

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Table 3-1: Format of the In-Memory Module Table in Windows 3.1. (continued)

Format of the resource type structure (cont.):

26h WORD

28h WORD

2Ah WORD

WORD ID

WORD
WORD

If high bit not set (a named resource), the value is the
offset of the resource name in the resource table, inside
the module table.
Number of info structs following this struct.
Far pointer to function containing resource handler.

Format of the resource info struct:
WORD Offset in file, in sectors (see offset 32h).
WORD Length in file, in sectors.

WORD

WORD

WORD
WORD

Flags:
1000h
0040h
0020h
OOlOh
0004

Discardable
Preload
Read only
Moveable
Loaded in memory

Resource identifier. If high bit is set, then the
value is treated as an integer identifier. If it's not
set, then the value is the offset of a string identifier,
relative to the resource table start.
Handle to segment containing the resource in memory.
Usage count.

Near pointer to resident name table in the module table. A series of
Pascal-style strings, one after the other. The length is found by subtract
ing the resident names table offset from the modul~ reference table off
set. Each string is suffixed by a WORD containing the associated entry
ordinal. Entry zero in the table contains the module name, as specified
in the NAME or LIBRARY entry in the .DEF ftle.
Near pointer to module reference table in the module table. Module
table reference table is an array of WORDs. Each WORD is the module
handle of a referred-to module (note the difference from the NE file on
disk). The indexing of the module handles starts with l.
Near pointer to imported names table in the module table. This always
points to a zero byte, which according to the documentation should
indicate the end of the table. However, the imported names table always
starts with a zero byte, and then follows with Pascal-style strings. The
first zero byte may be there so that the first valid offset in the table is 1,
rather than O. The imported names are usually the names of the mod
ules that this module linlcs to.

WI N DOWS INTERNALS

Table 3-1: Format of the In-Memory Module Table in Windows 3.1. (continued)

2Ch DWORD File offset of non-resident name table, in bytes.
30h WORD Number of moveable entries in the entry table.
32h WORD The alignment shift count. The file offsets for segments and resources is

given in units of sectors. The size of a sector in bytes can be found by
shifting the value 1, left by the value in this field. For example, an align
ment shift of 4 causes a sector size of 16 (1 « 4 == 16). The other com
mon sector size is 512 bytes (alignment shift = 9).

34h WORD Set to 2 if a TrueType font.

36h BYTE

37h BYTE

38h WORD

3Ah WORD
3Ch WORD
3Eh WORD

Operating system flags.
o Unknown (Windows 1.0 files use this value)
1 OS/2
2 Windows
3 EUropean DOS 4
4 Windows/386

Other flags.
0002 Windows 2.x application MARK'ed OK for proportional font.
0004 Win 2.x application MARK'ed OK for protected mode.
0008 File has gangload area (area with all preload code segments

ganged together, so they can be loaded in one read).

Contains the same value as offset 2Ah (the Imported Names Table
offset).
Contains the same value as offset 2Ah, except KERNEL.
The minimum swap area size for this module.
Expected Windows version (minimum version required).

The Windows modules are like the physical components of a computer. By themselves,
they don't do anything; but when you add electricity to the equation, they come to life. The
electricity in the world of Windows is a task, which we describe next.

Tasks
A Windows task can loosely be described as a running program. More precisely, a task is a
thread of execution through code segments loaded by Windows. As described earlier, code
segments in Windows are usually pure, allowing more than one task to use the same code seg
ments and read-only data segments at the same time. Modules are the code segments and
resources loaded from an NE file. A task is the CPU executing through the module's code. In
OOP parlance, modules are like member functions or methods, useless without data to act
upon. Tasks correspond to actual objects. They use the same code (module) for each instance
of an object, but differentiate between objects by using different 'this' or 'self' pointers. The

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

role of the 'this' pointer is played by the data segment or DGROUP segment. Each object or
task has its own 'this' pointer (DGROUP), but shares the same member function code (mod
ule code and resources).

Not all information about a process can be stored in a module table. The primary example
of this is the selector of the DGROUP (the automatic data segment). As shown in our pre
vious example, it is desirable that each of the four copies of CALC have its own data segment;
otherwise, it would be useless to run four copies of CALC. It wouldn't be a good idea to put
the DGROUP segment's selector in the module database, where it might get overwritten by a
subsequent invocation of the same program. Likewise, each instance of a program needs its
own Disk Transfer Area (DTA), separate and distinct from other instances. Information like
this is task-specific and needs to be stored on a per-task basis.

Each task in Windows has a data structure that contains its per-task data. The data struc
ture is in a globally allocated segment and is called the Task Database, or TDB, for short. The
global memory handle of a task database is known as a task handle or hTask. Contained'
within each task database is information specific to that invocation of the program, including
the handle of the module the task was created from, the handle of the task's DGROUP seg
ment (aka, the hlnstance), and the thunks created by MakeProcInstanceO.

The second half of each task database contains a DOS Program Segment Prefix (PSP) for
the task. Windows stilllives some of its life in the shadow of MS-DOS, especially with regard
to file I/O. Since each DOS program needs its own PSP, it's not surprising that each Win
dows task needs to drag along its own PSP, as a relic from the past. In fact, as discussed in
Chapter 2 on memory management, if a program uses GlobalAlloc() on a memory block, the
owner of the block is considered to be the PSP, rather than the task itself. This is a throwback
to the days of DOS, where Memory Control Blocks (MCBs) were marked with the PSP of the
program that allocated them. Why this was continued in Windows, where task handles are
much more prevalent than PSP handles, is not known. Incidentally, Microsoft refers to the
PSPs of Windows programs as Process Databases (PDBs), even though most programmers are
much more familiar with the term PSP. The Process Database term may be solely for symme
try with the Task Database (TDB) and Module Database (MDB).

At any given moment, Windows is running only one task. All other tasks in the system are
frozen. The main function of the Windows scheduler is to switch among the various tasks in
the system. All the information needed to start up a frozen task is present in its task database.
Contrary to popular belief though, the TDB for a frozen task does not contain the complete
register set of the task. Chapter 6, on the Windows scheduler, discusses these topics in much
more detail than we go into here.

There is a popular belief among programmers that each task in the system has a window.
Carrying the assumption further, each task could be found by looking at the Task Manager
window (TASKMAN.EXE) or by enumerating all the windows in the system with
EnumWindowsO. This is, quite simply, not true. A task is not required to have a window. In
fact, a task does not have to contain a GetMessageO loop either, although such a task would
hog the CPU until it ran to completion or yielded in some way.

How then can you determine all the tasks in the system? Like modules tables, the task
databases are maintained in a linked list, with each TDB containing the selector of the next
TDB. The first task in the linked list can be obtained by (yet again) some undocumented

WINDOWS INTERNALS

functionality. The handle of the Current task, meaning the hTask of your program, can be
obtained by calling GetCurrentTaskO. What's not usually documented is that upon return,
DX contains the hTask of the first TDB in the list. As mentioned in Chapter 6, the ordering
of tasks within the list is subject to change from instant to instant. ToolHelp contains a variety
of functions for examining and changing each of the tasks in the task list.

As was mentioned in the section on modules, both tasks and DLLs are based on modules.
Both tasks and DLLs can have code segments, data segments, and resources. What differenti
ates a task module from a DLL module is one bit. Offset OCh in Table 3-1 shows this differ
ence, which is the setting of a single bit in the flags field of the module header. However, it is
a very key distinction. For example, LoadModule() can be used to both create new tasks, as
well as to load DLLs into the system. It is this single bit that tells LoadModule() if a new Task
Database should be created. Remember, DLLs aren't tasks, and therefore can't have TDBs.
And as Chapter 8 on dynamic linking describes, it is this one bit that determines whether
GetProcAddressO succeeds or fails. As we already saw in Chapter 2, this bit also determines
whether Windows honors a GMEM_FlXED memory allocation request.

The format of the Task Database was finally documented, although obscurely, in the Win
dows 3.1 DDK, in the file TDB.INC. Since many people don't have this file, and since it's
terse at best, the format is given in Table 3-2, with substantially more information than will be
found in TDB.INC:

Table 3-2: Format of a Windows 3.1 Task Database.

OOh WORD
02h DWORD
06h WORD

08h BYTE

09h BYTE

OAh WORD
OCh WORD
OEh WORD
10h WORD
12h WORD
14h WORD

16h WORD

Selector of Next Task. Zero indicates end of list.
SS:SP of the task when last switched away from.
Number of events waiting for the tasks. Used by the Windows sched
uler. See Chapter 6 for more information.
Priority. The linked list ofTDBs is kept in sorted order, based on the
priority. Lower numbers are higher priority. The scheduler uses this
field.
Appears to be unused in Windows 3.1. Probably left over from OS/2.
This field and the other unused fields may be used for thread informa
tion in OS/2 l.X tasks.
Appears to be unused in Wmdows 3.1. Probably left over from OS/2.
Selector for this task database (it points to itself).
Appears to be unused in Windows 3.1. Probably left over from OS/2.
Appears to be unused in Wmdows 3.1. Probaply leftover from OS/2.
Appears to be unused in Wmdows 3.1. Probably leftover from OS/2.
80x87 control word (FLDCW /FSTCW). Saved and restored during
task switches.

Task flags. TDB.INC lists:
TDBF_WINOLDAP .
TDBF_OS2APP
TDB_WIN32S

000lh
0008h
OOlOh

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Table 3-2: Format of a Windows 3.1 Task Database. (continued)

18h WORD Error handling flags:

lAh WORD

lCh WORD
lEh WORD
20h WORD

22h WORD

24h WORD

26h DWORD

2Ah DWORD

2Eh DWORD
32h DWORD·
36h DWORD
3Ah DWORD
3Eh DWORD
42h DWORD
46h DWORD
4Ah DWORD
4Eh DWORD

52h HYTE[OEh]
60h WORD
62h DWORD
66h HYTE

OOOlh = Don't display critical error box. Return a default response.
002h = Don't put up GP fault box.
8000h = Don't display a dialog box asking for the me if it couldn't be
found.
Expected Windows version for task. The minimum version ofWmdows
required to run this program.
Instance handle (DGROUP) for task.
Module handle for task.
Selector of the task message queue. See Chapter Ton the messaging
system.
Selector ofTDH of parent task. The initial shell application (for exam
ple, PROGMAN) has a valid selector in this field, but it is not a valid
TDH.
Some sort of flag relating to the task signal handler. See offset 26h for
more information.
Application signal handler address. This field can be set by calling
SetSigHandlerO. It's used to allow a task to install its own Ctrl-Hreak
handler. See Undocumented Windows for details.
USER signal handler address. This function is called when significant
events happen. Known values:
0020h Task is terminating normally
0040h DLL is loading
0080h DLL is unloading
0666h Task is terminating by GP fault

GlobalDiscardO notification handler.
Interrupt 0 handler address (divide by zero).
Interrupt 2 handler address (NMI).
Interrupt 4r handler address (INTO).
Interrupt 6 handler address (invalid opcode).
Interrupt 7 handler address (coprocessor Nj A).
Interrupt 3Eh handler address (80x87 emulator).
Interrupt 75h handler address (80x87 error)~
Application compatibility flags. Set by calling: GetProftleInt(modName,
Compatibility, zero).
Appears to be unused in Wmdows 3.1.
Selector to PSP (PDH).
DOS Disk Transfer Address (DTA) pointer.
Current drive of task + 80h (80 = A:, 81 = H:, etc.).

WINDOWS INTERNALS

Table 3-2: Format of a Windows 3.1 Task Database. (continued)

67h BYTE[41h]

ASh WORD

AAh WORD
ACh DWORD

BOh WORD

B2h WORD

B4h WORD
B6h WORD
BSh WORD

BAh BYTE[3Sh]

F2h BYTE[OSh]

FAh WORD
lOOh BYTE[lOOh]

Current directory of task (see previous field for drive letter). Windows
maintains a separate current directory for each task.
Set to the initial value of AX in the task as a validity test for the TDB.
Does not appear to be actually used, however.
hTask of task that should be scheduled next. Set by DirectedYieldO.
Selector:Offset of referenced DLL list. Before the program calls
InitApp(), this segment contains a list of module handles for modules
that haven't had their initialization functions called.
Code segment alias selector for this task database. Used for
MakeProcInstance() thunks.
Selector to segment with additional MakeProcInstance() thunks. Con
tains zero ifnosegment necessary. Segment has the same format as off
sets B2h - F1h.
'PT' (5450h) signature for MakeProcInstance thunks.
Appears to be unused in Windows 3.l.
Next available slot for MakeProcInstance() thunk. Subtract six from this
value to get the actual offset where the next thunk will be stored.
Space for up to seven MakeProcInstanceO thunks. If more thunks are
needed, they're put in another segment (see offset B2h). Each thunk
contains the original parameters to MakeProcInstance():

mov ax,.hInstance selector
jmp far lpProc

Module name for task. No terminating zero character if the module
name is eight bytes in length.
'TD' (4454h) Task Database signature.
PSP for task. The WORD at offset 60h is a selector that points here
(lOOh bytes into the IDB segment).

A point worth taking away from the above description of the task database is that each
running process has both a task database (a Windows data structure) and a PSP/PDB (a DOS
data structure). Windows does everything it can to maintain the illusion that each running
process is really a DOS program with special capabilities. In a manner of speaking, each Win
dows process leads a dual life. Part of the time it's a graphical, protected mode program, while
other times it's just a run of the mill DOS application, which uses a. PSP and runs in real mode
to do file I/O. The separate task database and PSP reflect this dual identity. The fact that the .
PSP sits at the end of the TDB's segment appears to be just a matter of convenience. There
doesn't seem to be any reason why the PDB couldn't be in an entirely different segment. Fig
ure 3-1 shows the relationship between a TDB and a PDB.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Figure 3-1: Relationship Between a TDB and a PDB.

o 60h 1FFh

PDB (PSP) segment

1----- PDB selector (1 OOh bytes) ----I

From a File to a Process, In 28 Easy Steps
Now that we're familiar with the two key data structures relating to process management, we
can start examining how a new process is created. The Windows API manual looks like a good
place to start. WinExec() pops outs initially as the first function worth taking a closer look at.
WinExec() expects to be passed a filename and arguments, just as you would type them on a
DOS command line. In this respect, it's sort oflike the C systemO function, in that you just
pass it strings. This is much simpler to use than DOS INT 21H, function 4Bh (EXEC), which
requires a rather complicated data structure, as well as loading CPU registers with far point
ers. Let's look at pseudocode for WmExec:

Pseudocode for WinExec() - WINEXEC.OBJ

II Parameters:
II lPSTR lpCmdline, int nCmdShow
II locals:
II char localCmdline[Ox10SJ II local copy of the command line
II char near *parameters II start of parameter section in
II II localCmdLin.e buffer
II BOOl period_found II Was there a '.' in the name?
II EXECBlOCK exec_block II The standard MS-DOS exec block
II II (INT 21h, fn. 4Bh)
II WORD

period_found = 0; II No '.' in the filename so far

II Start looping through the command line string, looking

WINDOWS INTERNALS

// for the end of the filename portion.
while (1)
{

get next character from lpCmdLine

if (character == ' , I I character -- 0) // End of line?
break

if (character == '.') // period_found = TRUE
period_found = character // Why not just set to 1?

/I if we found a directory separator, the period can't be
/I part of the 8.3 filename.
if (character ; s '\ ' or '/')

period_found = 0;

copy character to next spot in localCmdLine[]
}

done with_filename:

if (!period_found // In case an extension wasn't specified
add ".EXE" to end of localCmdLine[]

null terminate the localCmdLine[] string

parameters = next character after the null terminator
in localCmdLine[].

parameters[O] = a
parameters[1] = DDh

// provide an "empty" parameter area
// in case no params were provided

if (command line params were specified in lpCmdLine)
{

}

Copy parameters from lpCmdLine to parameters[].
Add a ODh (linefeed) to the end of parameters[].
Fix parameters[O] to contain the correct length,
as required by the DOS EXEC function.

// Doc for LoadModuleO says must be 2
cmd_show[1] =nCmdShow

// Set up things like a normal DOS INT 21h, 4BOOh call.
// The difference here is that the first FCB holds the
// cmd_show info.

CHAPTER 3 --...:.. STARTING A PROCESS: MODULES AND TASKS

II Use current environment exec_block.envseg = 0
exec_block.fcb2 = NULL
exec_block.cmdline = &localCmdLine[]
exec_block.fcb1 = &cmd_show

DS:DX = &localCmdLine[]
ES:BX = &exec_block II Start the program up. This
AX = 4BOOH II INT is trapped and handled by the
INT 21H II KERNEL INT 21h handler, not DOS

WinExec() parses the passed-in command line and breaks it into a filename and, possibly,
some arguments. It then goes through the tedious process of setting up everything for a DOS
EXEC call; finally WinExec() calls INT 2Ih. Hmm. We're not much closer to an answer than
we were before. We know that when we're not running under Wmdows, DOS doesn't know
anything about Windows files. The error message, "This program requires Microsoft Win
dows," is all too familiar. Obviously, something is going on behind the scenes, but what?

One of the many roles that Windows plays is that of a DOS extender. A DOS extender is
responsible for intercepting interrupt calls that an application might make and doing the cor
rect thing in the protected mode environment. The Windows KERNEL hooks INT 2Ih.
KERNEL has. special handlers for certain INT 2Ih subfunctions, including the EXEC func
tion (4Bh). For the rest of this discussion, we'll assume that the goal is to load a Windows NE
file. DOS .EXE, .COM files, and .PIP files require different handling, which unfortunately we
don't have the space to cover in this book.

So then, what goes on inside the !NT 2Ih function 4Bh handler in Windows? Basically,
the KERNEL handler takes the parameters passed into the registers and inv()kes the
LoadModuleO function. We're still not much closer to our goal of finding out how a disk file
becomes a running program. If we 're going to really understand what goes on, we're going to
have to dive into the LoadModuleOfunction (not surprisingly). Time to strap on those air
tanks and put on the goggles!

LoadModule

Before diving into the vast chasms of code in LoadModuleO, we'd like to first comment on
the style of the LoadModule() code. From examining the disassembly listings, it is quite obvi
ous that it's highly optimized assembler code. There doesn't appear to be any consistent
structure to the code. There are JMP instructions that traverse hundreds of instructions.
Quite a few variables and buffers are used for multiple, unrelated purposes. In Windows 3.0,
LoadModuleO was one rather gargantuan function. In Windows 3.1, it appears that the 3.0
LoadModuleO code was ripped into smaller parts and placed in separate procedures. We say
ripped because it doesn't appear to be a well-thought-out rewrite of the code. The new helper
procedures do not have their own stack frames, but instead use the stack frame of
LoadModuleO, which means that LoadModule()'s local variables are also used in the helper
procedures. You'll see this reflected in the pseudocode. Another indicator that the code was

WINDOWS INTERNALS

arbitrarily ripped apart is the use of registers. At various points through the code, heavily used
values are stored in registers. Many of the new 3.1 helper procedures must be called with cer
tain values in certain registers and must exit with other values in other registers. If you were to
paste together the various 3.1 LoadModuleO helper routines into one large routine, you'd
notice that the use of register variables at critical points is almost identical to the 3.0
LoadModule() code. This code is probably a nightmare to maintain!

In retrospect, it's not terribly surprising that the LoadModule() code is a mess, at least to
the viewer of a disassembly listing. Over the years, LoadModule() has been asked to handle
many different situations. OS/2 l.x and Windows share the same executable format. It is cer
tainly possible that at some point, the LoadModule() code was used for both OS/2 and Win
dows programs. Prior to version 3.0, EMS was heavily used by Windows. This most likely
added additional requirements to the code. Windows 3.0 introduced gangload segments (dis
cussed below). As you can see from the pseudocode listings, this one change permeates most
of the LoadModuleO code and logic. In Windows 3.1, Win32 (PE) executables have to be
checked for and handled specially, in order to invoke the Win32s subsystem. On top of all
this, LoadModuleO is recursive! LoadModuleO is responsible not only for loading tasks, but
also for loading DLLs. When a new program is loading, any DLLs it uses also have to be
loaded before the program can be started. These DLLs may themselves load other DLLs.
Nasty! With all the various weird cases and requirements that LoadModuleO has, it's a won
der it works at all!

Another subject that should be investigated before examining the pseudocode is the
gangload area (also known as the fastload area, probably a name from the marketing types).
As mentioned earlier, an NE file stores the individual program segments and resources in vari
ous places in the executable. If there are numerous segments and resources that need to be
loaded upon startup (if they're PRELOAD), it can take a significant amount of time to seek
to and read each of the individual segments and resources. In Windows 3.0, the gangload area
was introduced to deal with this problem. When you invoke the resource compiler after link
ing your program, it searches the executable file and finds all the PRELOAD segments and
resources. It then rewrites the executable file, placing all PRELOAD segments and resources
into a contiguous region of the file. The executable header is updated to reflect the new posi
tion of the segments and resources and to indicate that the file has been gangload optimized.
This brings up an important point. Regardless of whether an NE file has a gangload area, it
can always be loaded by LoadModuleO. The gangload area is simply an optimization. It takes
no additional space and can be ignored if desired. If you do not wish for your file to have a
gangload area for some reason, you can use the -K switch with the resource compiler.

How does having a gangload area improve the loading time? Fairly early, the
LoadModule() code checks for the presence of a gangload area in the file. If it finds one,
LoadModuleO allocates a HUGE segment that's big enough to hold the gangload area, up to
1Mb in size. LoadModuleO then reads in the whole area with one _hreadO (huge read) call.
When it comes time to load segments or resources, LoadModule() copies the raw bytes out of
the gangload memory block, rather than seeking to and reading the data from the NE file. If a
failure occurs at any point during preparations for using the gangload area, LoadModule()
continues on as normal, reading the information from the file. The gangload area is certainly
beneficial, but LoadModuleO doesn't consider it a serious error if it fails for some reason.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

In addition to the gangload area, another optimization KERNEL performs is to cache the
open file handles for the most recently used NE files. The cache is a simple array of structures.
Each structure contains a module handle, as well as an open file handle for the module's NE
file. The handles for the open files are in the context of the PDB (PSP) that was in effect
when Windows started up (the TopPDB global variable). Windows always switches to the
TopPDB when loading segments and resources from an NE file. Mter the initial load of the
program, KERNEL can quickly obtain an open file handle for a given NE file by simply pass
ing the module handle to the GetCachedFileHandle() function. If the specified module is not
in the cache, GetCachedFileHandleO opens the file and adds it to the cache, bumping
another entry if necessary. An example of when the KERNEL might need a file handle after
the NE file has been loaded is when a LOADONCALL segment has been touched for the
first time and needs to be brought into memory. NE files that were loaded from floppies or
other removable media are not cached.

Another important point that needs to be madc about LoadModuleO is that it executes in
the task context of its caller. For instance, LoadModuleO is most often called from PROG
MAN.EXE, when the user has either double-clicked on an icon or picked the menu item
FILE I RUN. In this situation, PROGMAN (or whatever program called WinExec() or
LoadModule()) is the current task throughout the whole LoadModuleO sequence. When a
GP fault occurs, the current task is blamed by the KERNEL and terminated. In Windows 3.0,
there was a bug in the gangload code ofLoadModule() that caused a GP fault if the gangload
area was a multiple of 64K in size. When the GP fault was reported to the user, it indicted
PROGMAN as the cause of the fault and terminated PROGMAN. The result was usually a
confused programmer or user, who had no idea that therc was nothing wrong with PROG
MAN or their code.

Now that we've properly introduced the subject we can look at pseudocode for
LoadModule(). Note that LoadModule() uses several helper functions. The helper functions,
in turn, use other helper functions. In order to present the material in an orderly fashion,
there are numerous forward references to other functions. If you come across a function that
hasn't been discussed yet, don't panic. It is most likely covered further on in the discussion.

Pseudocode for LoadModule - LD.OBJ
II Parameters:
II LPSTR lpModuleName, LPVOID lpParameterBlock
II Globals:
II WORD fLMdepth II Number of nested invocations
II Locals:
II WORD
I I WORD
I I WORD
II WORD
II WORD
I I WORD
II WORD
I I WORD

file_handle
module_table
ret_value
implicit_link_failure
failure_code
font_flag
exe_flag
gang load_handle

/I
/I
/I
/I
/I
/I

WINDOWS INTERNALS

WORD allocAllSegs_ret
WORD TDB_handle
WORD old_PDB
WORD .winoldap_flag
WORD on_hard_drive
OFSTRUCT ofs_buffer II used as a scratch area

II and as an OFSTRUCT

Check KERNEL flags to see if WINOLDAP is what is being
loaded. Set winoldap_flag accordingly. Turn off WINOLDAP
flag in kernel flags. The WINOLDAP flag .is set in KERNEL
when it recognizes that it needs to load the WINOLDAP module
to run a DOS program.

II Keep track of the nesting level of LoadModule() calls
II This is necessary when there are circularly dependent
II DLLs. You have to make sure that the DLL reference count
II doesn't get incremented too many times.
fLMdepth++

II Write out some trace diagnostics. See Chapter 1.
if (fBooting and fDiagMode)

write out "LoadStart = <modulename>" string

II Zero out some of the local variables
TDB_handle = gang load_handle = exe_flag = 0
font_flag = failure_code = module_table = 0

II Some others vars need to be initialized to -1
old_PDB = file_handle =-1

II An undocumented use of LoadModule. Instead of passing
II an LPSTR to a filename, you can pass MK_FP(O, gHandle),
II where gHandle is a global memory handle. The module
II handle that owns gHandle is found, and another instance
/I of the module is started.
if (HIWORD(lpModuleName) == 0
{

}

II GetExePtr() takes a global handle, and returns
II the module handle it's associated with
if (GetExePtrC LOWORD(lpModuleName)))

goto module_already_loaded
else
{

}

AX = 2 II File not found
goto LoadModule_done

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

II Determine if there's already an instance of the module in'
II memory. LMAlreadyLoaded() returns AX = previous module
II handle if it's loaded, and < 32 if not.
if (LMAlreadyLoaded(lpModuleName) < 32)

goto module_not_loaded

II Start up another instance of a previously loaded module
II returns with AX == instance handle or error code
LMPrevInstance()
goto LoadModule_done

/I Attempts to open the exe/dll file. Sets "file_handle"
II if successful, returns "file not found" if not.
if (LMLoadExeFile() < 32)

goto LoadModule_done

II Create a module table from the "New EXE" header in
/I the exe/dll file. Also loads the "gang load" segments
if (LoadExeHeaderO < 32)

goto LoadModule_done

II Do some sanity checks on the header to see if everything
II is legal and valid. If so, create the data
II structures necessary ·for a new task to be added.
if (LMCheckHeader() < 32)

goto LoadModule_done

/I Allocate the segment selectors for the module, although the
/I segments are .not actually read in yet. Also looks for
II links to modules that require special handling.
if (LMRamNMods() < 32)

goto LoadModule_dohe'

II Load any imported libraries the module might need.
II The startup routines for the libra~ies are not called yet.
II LoadLibrary() can- be called in LMImports(), causing
/I LoadModuleO to become recursive (LoadLibraryO calls
II LoadModule())
if (LMImports() < 32)

goto LoadModule_done

WINDOWS INTERNALS

II Load the segments for the moduLe, and perform reLocations
if (LMSegs() < 32)

goto LoadModuLe_done

II Load any necessary resources, and start running
II the moduLe if it's a task (not a DLL).
LMLetsGoO

LoadModuLe_done: II When we get here, AX contains the error
II code that wiLL be returned

II Cleans up things, such as deaLlocating the gang load_handle,
II destroying the TDB if was aLLocated but something faiLed
II Later on, etc.
LMCLeanUpO

return to caller

II When any of the Abort_x Labels are caLLed, AX contains the
II error code that wilL be returned to the caller.

Abort_1 :

if (flMdepth == 1)
DecExeUsage(module_table)

II Decrement usage count for
II this moduLe, modules that
II refer to this moduLe

Abort_2:

My_LcLose(fiLe_handLe) II We don't need this file
II handle anymore!

push moduLe_table.ne_fLags

DeLModule(module_table) II Remove this moduLe from memory

module_table = 0

pop module_tabLe.ne_fLags vaLue off the stack

Abort_3:
if (moduLe_tabLe.ne_fLags indicate moduLe was a DLL)

goto Abort_4

}

Win_PDB = OLdPDB
OLd_PDB = -1

II Restore PSP variables to their
II initial vaLues.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

CloseApplEnv() II Clean up unsuccessful load.

Abort_4:
return failure_code to caller

Although the Windows SDK doesn't mention it, LoadModuleO is responsible for loading
all modules in the system, not just programs. The LoadLibraryO function uses LoadModuleO
to load DLLs by passing it -IL as the pointer to the parameter block. Throughout
LoadModuleOand its helper functions, the value of -IL for IpParameterBlock is used to test
whether LoadModuleO is loading a EXE or a DLL.

Another undocumented use of LoadModuleO is to pass it a module name pointer, with 0
in the high WORD and an instance handle in the low WORD; for example, MK_FP(O, hInst
ance). LoadModuleO maps the instance handle back to its module handle and then loads
another instance of the module. This functionality does not appear to be used in either the
KERNEL or USER modules, so it may be dead code from a previous version of Windows. On
the other hand, the KERNEL bootstrap routines (Chapter 1) use stripped down versions of
the LoadModule() function. In that code, the KERNEL module is created from the memory
image of the file, rather than by reading it in from the file.

The first order of business in LoadModule() is to determine if the application being
loaded is WINOLDAP. WINOLDAP is the Windows program responsible for running DOS
applications under Windows. Starting with the INT 21h, function 4Bh handler in KERNEL,
and throughout all of the module loading code, WINOLDAP is treated as a special case. The
WINOA386.MOD file has multiple data segments, which ordinarily would limit the program
to one executing instance. WINOA386.MOD is handled specially however, and allowed to
run multiple times.

Next, LoadModule() increments the global variable fLMdepth. This variable is used to
keep track of how many levels of recursion LoadModule() is currently in. Ordinarily, the value
offLMdepth is O. When LoadModule() is called to load a program, it increments this value to
1. If the program has implicitly linked libraries, LoadModuleO will be recursively called, and
fLMdepth increases to 2 or more. Interestingly, in many spotS in the code, the value of
fLMdepth is saved on the stack, and then fLMdepth is set to 0 before calling a function.
Afterwards, fLMdepth is restored off the stack. It's a miracle the code works at all with all
these hijinks going on.

After finishing the obligatory startup and special case code, LoadModule() calls LM
AlreadyLoadedO to determine if the module is already loaded in the system. If it is,
LoadModuleO calls LMPrevInstanceO to either start up a new instance of a program or incre
ment the usage count of a DLL. We'll come back to the case where the module already exists
later. For know,/we'regoing to concentrate on the more interesting mechanics of creating a
new module from a disk image.

The first step in creating anew module is to make sure you have an appropriate file to
build from. The LoadExeHeaderO function performs several tests on the file to verify that it
really is an NE file. This is where many of the error codes for LoadModuleO, such as the
warning for a still-compressed file, are detected. If the file passes all the tests, LoadExeHea
derO loads the file's header section and some of its tables into memory and synthesizes a

WINDOWS INTERNALS

module table out of the raw data. An important step in this process involves iterating through
the segment table, modifYing any attributes of segments that weren't set properly when the
file was linked. If the file has a gangload area, this is where it's detected and loaded.

Having built the module table, LoadModuleO now calls LMCheckHeaderO. The name
LMCheckHeader is a bit of a misnomer. Although some validity testing does occur, the most
important thing that LMCheckHeaderO does is call the helper functions that ultimately create
the task database for the new program (see the CreateTaskO description). If the loading mod
ule is a DLL rather than an EXE, LMCheckHeaderO performs the validity testing, but creates
no TDB. That one little bit in the module database sure makes a lot of difference!

Once the module table and task database are in place, the next step in loading a module is
to bring in the code and data needed to give the module the smashing send-off it truly
deserves. LMRamNMods() (what a pain to type!) first adds the module table to the linked list
of modules described earlier. It then loops through all of the segments in the segment table,
allocating appropriate selectors, and storing them in the selector field of each segment table
entry. Based upon their GMEM_XXX attributes, some segments have memory allocated for
them at this same time, while others only get a selector without any associated memory. No
data is read in by LMRamNModsO. That job goes to the LMSegsO routine. LMSegsO coor
dinates the actions of allocating memory for the segments, where necessary, bringing in the
segment's data, and applying any relocations. If the module's gangload area was successfully
loaded, the data for the segments is copied out of the in-memory gangload area, rather than
reading the data from the file.

In between allocating space for the· segments in LMRamNMods() and bringing in the
data for the segments in LMSegs(), LMlmports brings any DLLs referenced by the loading
module into memory. LMlmportsO examines the module references in the newly created
module table. If any DLLs are needed but not yet loaded, LMlmportsO calls LoadLibraryO
to load them. Since LoadLibraryO is just a wrapper around a call to LoadModuleO, the obvi
ous implication, as mentioned previously, is that LoadModuleO is a recursive function.

After all the referenced DLLs have been loaded and all the PRELOAD segments of the
primary module are in place, the preparatory work is pretty much done. It's now time to pop
the cork and launch the newly created module to fulfill its destiny as a new member of the
community of Windows modules. This honor goes to LMLetsGoO. Inside LMLetsGoO, any
PRELOAD resources are brought into memory. If the module is for a task, the initial register
values· for the task, including the starting CS:IP, are set up on the stack; and the new task is
started up by yielding to it through DirectedYieldO. A more detailed description of this pro
cedure comes later, so don't worry just yet. If the loading module is a DLL, and unless the
DLL is being loaded implicitly by a new task, LMLetsGoO causes the module's initialization
routine to be called. Again, a more detailed description comes later.

Any successful launching party involves a cleanup afterwards. LoadModuleO is no excep
tion. This janitorial work falls to LMCleanUPO. If a gangload area was allocated, it's freed up
now. If the module was loaded from a floppy disk, its file handle is· closed. It doesn't make
sense to keep an open file handle for something that might change at any time. If the loading
of the module was aborted for some reason, LMCleanUPO closes the NE file and frees up the
task database segment.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

The LOADMODULE Helper Routines

You've now seen, from a fairly high vantage point, what happens when a new module is
brought into the system. While high level overviews are nice, it's also important to understand
the details. To enhance our understanding of the module and task creation processes, we now
dig down into the helper routines. These routines appear roughly in the order discussed in the
previous section.

r

LMAlreadyLoadedO
LMAlreadyLoadedO determines if a module is already present in mem~ry, and if it is,
LMAlreadyLoadedO returns its module handle. If the asked-for module name contains an
.EXE or .FON extension, LMAlreadyLoadedO sets one of two flags used by other helper rou
tines. To determine if a module is already present in the system, it makes two passes through
the module list. The first pass is performed by FindExeFileO, which takes the passed-in base
filename and extension (for example, MYPROG.EXE) and compares it to the base filename
and extension of every module in the system (for example, USER.EXE). As noted earlier, the
complete path and filename for every module's NE file is stored in the module table. If no
matches are found, LMAlreadyLoadedO calls FindExeInfoO to make a second pass through
the module list. FindExelnfoO takes just the passed in base filename (C:\MYPROG.EXE
becomes MYPROG) and compares it to the module name of every loaded module (the mod
ule name corresponds to ,entry 0 in the resident names table; see offset 26h in Table 3-1).

The implications of this search are not always obvious and have bitten more than a few
Windows programmers. One assumption LMAlreadyLoadedO makes is that the module
name, specified by the NAME or LIBRARY field in the DEFfile, is the. same as the base
filename of the executable file. Microsoft itself violates that assumption, with the KERNEL
module having filenames ofKRNL286.EXE and KRNL386.EXE. Other examples are the var
ious device drivers (VGA.DRV has a module name of DISPLAY). It's somewhat surprising
that the LoadModuleO code doesn't extract the module name from the NE file and compare
it to entry zero in the resident names table of the loaded modules.

Another assumption in LMAlreadyLoadedO is that you never have two different EXE or
DLL files with the same filename, but in different directories. Try this simple experiment.
Find a Windows program in a directory other than the main Windows directory. Make a copy
of this executable file and name the copy CALC.EXE. Run the regular Windows CALC by
clicking on its icon. From the Program Manager, type in the full pathname to the copy of the
program that you named CALC.EXE. You end up with two copies of the Windows CALC.
When you invoked your dummy CALC.EXE, LMAlreadyLoadedO determined that CALC
was already loaded, and so another copy of the Windows CALC was started, rather thail your
dummy CALC.EXE.

Next, shut down your renamed program and the Windows CALC, thereby removing the
CALC module from memory. Now from the PROGMAN RUN menu, type in the complete
path to your renamed program. It will run the correct program, even though its name was
changed to CALC.EXE.

Obviously, Microsoft is hoping that no two EXEs or DLLs end up with the same name.
The odds of this are pretty slim, given the success of Windows. In addition, there are a limited

WINDOWS INTERNALS

number of useful eight-byte names, many of which are already taken by existing programs and
DLLs. Many a programmer has spent frustrating hours while they figured out that you can't
have an EXE and a DLL with the same base filename (like PLAY.EXE and PLAY.DLL). Simi
larly, SHELL.EXE is a perfectly nice name for a program in Windows 3.0, but it can't be used
in Windows 3.1, where there's a SHELL.DLL.

Pseudocode for LMAlreadyLoaded() - LD.OBJ

II Determines if the module specified by lpModuleName already
II exists in the system. Shares its locals with LoadModule()
II (it uses the same stack frame). If the module already is
II loaded, returns the module handle, 0 otherwise

II Check for zero length strings
if (strlen(lpModuleName) == 0)

return 2 II File not found

Extract the base filename and extension from lpModuleName,
and uppercase it (i.e., "c:\work\test.exe" -> "TEST.EXE">'
Store the extracted string in ofs_buffer.

II See if the file is a font file. Normally, Windows 3.x
II will refuse to work with Windows 2.x files that haven't
II been MARK'ed as O.K. to run in 3.0. However, it's a
II fairly safe assumption that a font file won't have code
II segments that won't run in protected mode. Thus, we'll
I I make a special exception, and· load these fi les.
if (filename extension in ofs_buffer == ".FON")

font_flag = TRUE II actually set to whatever BP is

if (filename extension in ofs_buffer == '" .EXE")
exe_flag = TRUE II actua lly set to whatever BP is

II FindExeFile() iterates through each module in the module
II table list. It compares the base filename.ext of each
II module with the passed in base filename.ext. If a match
I lis found", it returns the matchi.ng module handle,
II 0 otherwise.
if (FindExeFile(ofs_buffer) != 0)

return AX II AX = already loaded module handle

II FindExeInfoO iterates through each module in the module
II table list. It compares the module name of each module
II (entry 0 in the resident names table), with the base
II filename (no extension) passed to it. If a match is
II found, it returns the found module handle, 0 otherwise.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

II The difference between FindExeFile(), and FindExeInfo()
II is that one compares the filenames, while the other
II compares the module names (the NAME/LIBRARY field in the
/I .OEF file>.
return FindExeInfo()

LMLoadExeFileO
LMLoadExeFile() is responsible for opening the NE file for subsequent reading by other
helper routines. It first switches the Windows PDB (or PSP, if you prefer) to the PSP that was
in effect when Windows started up (TopPDB). It next creates the flags used to open the file.
If the file is for a DLL, LMLoadExeFileO sets OF_CANCEL and OF]ROMPT in the Open
FieldO flags. If SetErrorModeO has been called to disable prompting for the file, the
OF_PROMPT flag is not set, however. A third, unknown flag (value Ox0080) is also turned
on in the open-file flags. Once the open file flags are set up, MyOpenFileO opens the file.
MyOpenFile() is a wrapper function around the OpenFile() function.

Pseudocode for LMLoadExeFileO - LO.OBJ

II Locals:
II WORO openFile_flags

old_POB = Win_POB
Win_POB = topPOB II topPOB = POB of KERNEL when loaded

II by the DOS loader
openFile_flags = 0

/I Set flags so that if a OLL i sn I t found, it I S prompted.
II for. If an EXE can I to, be found, don I t prompt for it
II See also: SetErrorMode() in WINOOWS.H
if (! exe_flag)
{

}

openFile_flags = OF_CANCEL
if (SEM_NOOPENFILEERRORBOX bit not set in TOB_ErrMode)

openFile_flag = OF~CANCEL 1 OF_PROMPT

openFile_flags 1= Ox0080 II ???

file_handle = MyOpenFile(lpModuleName, &ofs_buffer, openFile_flags)

if (file_handle != - 1)
return 0 II Success

else
return 2 II File not found

WINDOWS INTERNALS

LoadExeHeaderO
As the name implies, LoadExeHeader() is responsible for bringing the NE header in from the
disk and creating a module table. The first step in creating a mbdule table is to ensure that the
file being loaded really is a Windows NE file. Since every NE file has an old style DOS header,
LoadExeHeader() checks the first two bytes of the file for the 'MZ' signature. If the signature
is not there, LoadExeHeaderO looks for the signature of a Windows compressed file. If it
finds this signature ('SZDD'), the function returns the "compressed file" error code. (You
need to run EXPAND .EXE before executing the file.) Otherwise, LoadExeHeader() returns
the "invalid EXE" error code. What's interesting is that LoadExeHeaderO completely ignores
the WORD at offset I8h in the file. According. to all Microsoft documentation, this WORD
must contain 40h to be a valid NE file; the 3.1 SDK says it must be 40h or greater. The
Micros()ft Excel 3.0 EXCEL.EXE file contains the value IEh at offset I8h, yet Windows still
loads it without a complaint.

Having established that the file is at least a DOS executable, the next step is to find and
read the NE header, verifYing its presence by the 'NE' signature in the first two bytes. If
LoadExeHeader() finds a 'PE' signature for a so-called Portable Executable, instead of the
expected 'NE' signature, the file is a Win32 application, and LoadExeHeaderO returns an
appropriate error code. The KERNEL INT 2Ih handler that called LoadModuleO checks for
this specific return value; if it sees this value, the handler loads the Win32s subsystem, if pres
ent, to run the program as a Win32s application. More on this later.

Since the size and format of some of the NE file tables are different in memory than on
disk, a fairly lengthy sequence of code calculates the size that the module table needs to be, in
order to accommodate them all. Tables that are different include the segment table, where
entries go from eight bytes on disk to ten bytes in memory, and the entry table, which trades
compactness on disk, for ease of look-up in memory. In addition, an OFSTRUCT, used to

access the file, contains the complete pathname to the executable, and adds to the size of the
module table. When all the calculations are completed, LoadExeHeaderO calls GlobalAllocO
to allocate the memory for the module table.

Once LoadExeHeaderO has the selector for the new module table, it reads the disk image
of the NE header and certain tables into memory. The strange thing is that the data is not
read in starting at offset zero, but is instead read into the middle of the segment. We'll come
back to this in a moment.

Using the copy of the NE header in memory, LoadExeHeaderO checks to see ifit should
abort the load because either the "errors in image" flag is set, or the linker version number is
less than 4. The first version of the Microsoft linker to produce NE files had a version number
of four, so this is a form of sanity checking. LoadExeHeaderO then examines the operating
system field and returns error codes if the field doesn't contain an acceptable value. Surpris
ingly, if the NE file is an OS/2 l.X file, and if the "Windows 2.x application runs in 3.x pro
tected mode" flag is set, the Windows loader accepts the file as a Windows NE file. This
hidden capability is not documented anywhere, nor are there any known OS/2 l.X files that
meet the criteria. It appears that Microsoft may have been experimenting with running OS/2
programs under Windows, but that it never came to fruition.

Once the module header has been validated, LoadExeHeader() copies the NE header
(read in previously) to the beginning of the module table. Immediately after the NE header

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

portion (40h bytes) comes the segment table. The segment table is an array of ten-byte
entries, each entry corresponding to one segment in the NE file. The first eight bytes of each
segment entry are copied from the eight-byte segment entries which were stored in the NE
file and read in previously. When copying the flags WORD of a segment entry, the MOVE
ABLE bit is turned on if the module is an executable module as opposed to a DLL module.
Since Windows 3.1 only runs in protected mode, there's no need for applications to have
FIXED segments, unless you're mucking about with CODE or DATA aliases, or with inter
rupt handlers, which need to be in pagelocked memory. If a segment's data gets moved in
memory, the Local Descriptor Table is updated to reflect this, and the application is none the
wiser. The last two bytes of each segment entry are initialized to zero. The global memory
handle allocated to hold the segment's data will be stored in those bytes later.

With the NE header and segment table portions of the module table completed,
LoadExeHeaderO makes a temporary detour to find and read in the gangload area. The Win
dows 3.1 SDK documentation refers to the gangload area as the fast-load area; they are one
and the same thing. LoadExelfeaderO first checks to see if the file has a ganglood area. If one
is present and it is less than 1Mb in size, LoadExeHeaderO calls GlobaWlocO to obtain a
huge segment. If the allocation request succeeds, the undocumented _hreadO function reads
in the block. Later on in the LoadModule() call, segments and resources will be copied out of
this memory block, rather than read from the NE file. If for some reason, an error oCCurs dur
ing the processing of the gangload area, the loading of the module is not affected. The
gangload area can speed things up, but it is definitely not required.

With the temporary gangload area diversion out of the way, LoadExeHeaderO resumes
processing the remainder of the raw data in the middle of the module table, working from
lower offsets ·to higher offsets. The result of this processing is copied to the start of the mod
ule table with lower offsets near the beginning and higher offsets further up in memory. The
processing builds towards higher addresses. At some point, the finished version of the module
table starts overwriting the beginning of the raw portion, but everything works out OK in the
end. "It's a cute optimization, but it wreaks havoc on those trying to figure out what the code
does. This was probably not a concern of Microsoft's programmers when the code was writ
ten. The code may have been written during the days of real mode Windows, where every
byte counted.

After all the tables are copied, LoadExeHeaderO fills in the remaining fields in the mod
ule table's NE header with appropriate values. For instance, this is where the complete
filename of the NE file is copied into the module table.

Near the end of LoadExeHeaderO, the function iterates through the segment table again,
with the intention of fixing any segment flags that might have been set incorrectly by the care
less or unknowing programmer. (Gee, a KERNEL that knows what's good for you. Just like
Mom!) All code segments that are MOVEABLE and NONDISCARDABLE have their PRE
LOAD flags turned on. Any FIXED CODE segment has its PRELOAD flag turned on as
well, unless Wihdows is still in the process of booting. Finally, all data segments are forced to
be NONDISCARDABLE, and their PRELOAD flag is turned on. While it might seem that
almost every segment is now PRELOAD, this is usually not the case. A well-written program

WINDOWS INTERNALS

has its code segments marked as MOVEABLE and DISCARDABLE. LoadExeHeaderO
doesn't add the PRELOAD attribute to these segments.

Pseudocode for LoadExeHeaderC) - LDHEADER.OBJ

II Returns AX = module_table, BX = gangload_handle

Read in oLd styLe .EXE header. Verify read was successfuL

if C 'MZ' signature found
goto oLd_header_ok

II Check for compressed fiLes, in case they accidentaLly
II weren't decompressed when they instaLLed the program.
if C compressed file signature found, i.e., "SZDD ")
{

}

else

AX = 19 II compressed fiLe
goto LoadExeHeader_cLeanup

goto invaLid_exe

if C oLdheader.new_exe_offset -- 0)
goto invalid_exe

Seek to the start of the "new exe" portion of the fiLe, and
read in the 'NE' header C40h bytes) into a spot on the stack.

if (seek or read faiLed)
goto invalid_exe

if ('NE' signature found in header)
goto have_new_exe_header

if ('PE' signature found in header)
{

AX = 21 II Win32s extensions required
goto LoadExeHeader_cleanup

}

AX = 11 II Invalid exe
goto LoadExeHeader_cleanup

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

CaLcuLate the size of the new moduLe tabLe. This includes:
- The new exe header from the fiLe
- The entry tabLe (Larger in memory than on disk)
- 10 byte segment tabLe entries (onLy 8 bytes on disk)
- The OFSTRUCT, incLuding the exe/dLL fiLename

GLobaLALLoc() a piece of memory big enough to hoLd the
caLcuLated size of the module tabLe. The fLags are:
(GMEM_ZEROINIT I GMEM_MOVEABLE)

if (GLobaLALLoc() faiLs
goto invalid_exe_2

GLobaLLock()/GLobaLUnLock() the moduLe table handLe to get
a seLector

II At this point, we have a copy of the new exe header on
II the stack, and an aLlocated segment that the moduLe table
II wiLL be buiLt in. In order to minimize disk reads, the
II new exe header, and other sections of the exe fiLe wiLL
II be read into the middLe of the aLlocated segment. Then,
II this "raw" data is processed and copied to the beginning
II of the segment. The end resuLt is a new module table.

copy new exe header from the stack image into upper portion of new moduLe tabLe

Read in the rest of the in-memory portions of the fiLe into
the upper portion of the module tabLe. This incLudes the:

Segment table
Resource tabLe
Resident names tabLe
Module reference tabLe
Imported names table
Entry tabLe

if (successfuLly read in resident portions of file)
goto test_new_exe_header

invalid_exe_2:
AX = 11 II Invalid exe error code

WI NDOWS INTERNALS

II Control comes here if the module can't be loaded for
II whatever reason. AX holds the error code that will
II be returned to the LoadModule() caller.
GlobalFree() the allocated module table, preserving the
error code in AX

goto LoadExeHeader_cleanup

test_new_exe_header:

/I The following section of code "checks out" the values in
II the 'NE' header portion of the file. If something doesn't
II look right, LoadExeHeader() returns an error code that
II eventually is returned by LoadModule() or WinExec().
II The following tests are performed:
/I
II Is the "errors in image" flag set? Abort if so.
II Is the linker version number less than '41? Abort if so.
II Is the file a Windows or NE_UNKNOWN file? Continue if so.
II Is the file an OS/2 file? (Having a particular bit set
II tells Windows to try and load the file anyhow)
II Is the file a "European DOS 4" file? (an OEM version
II with limited multitasking abilities). Abort if so.
II Is the OS type of the file none of the above? Abort if so.
if ("errors in image" flag set in module table)

go to invalid_exe_2

if (linker_version in module_table < 4)
go to invalid_exe_2

Turn off "protected mode required" flag in module_table

II Windows 1.X files were NE_UNKNOWN, so we can't just
II punt if the OS type isn't NE_WINDOWS. Isn't backwards
II compatibility great???
if (exetype in module table -- NE_UNKNOWN or NE_WINDOWS)

goto windows_exe

if (exetype in module table == NE_OS2)
{

II Apparently this means certain OS/2 apps can be
II run under Windows.
if ("2.X app runs in 3.X protected mode" flag is set)
{

Turn off "self-loading appLication" flags in module
flags. Turn on "protected mode required" flag in
module table

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

}

}

else
{

}

II The "expected OS version" field is going to be
II out of whack if we're loading an OS/2 module.
II We'll call it a 3.0 compatible module, and hope
II for the best.
module_table.expected_winver = 3.0

goto windows_exe II Continue on as if this were
II a normal Windows module.

AX = 12 II Normal OS/2 app. Can't run it. Sorry!

else if (exetype in module table == NE-POS4)
{

AX = 13 II European DOS 4 app

}

else
{

goto free_module_table

AX = 14 II Unknown application type

}

Copy the 'NE' header from its position on the stack to offset
o of the module table.

if (module has no segments)
go to dO-9angload

II A resource .DLL

Build the segment table in the low end of the module. The
8 byte disk segment entries are transformed into 10 byte
versions, with the last WORD being the handle for the
segment. Several internal flags are twiddled in the flags
field of the segment record. All segments not in a DLL are
marked as MOVEABLE, regardless of their flags in the 'NE'
file. See Chapter 2 for more information on FIXED vs.
MOVEABLE segment issues.

dO...,9angload:

WINDOWS INTERNALS

if gang toad bit not set in "other flags" of module_table
goto gang load_done

if (gang Load_start offset -- 0)
goto gang load_done

calculate the starting offset in the file of the gangload
area, as weLL as its Length

II Huge memory blocks can't exceed 1Mb in Length
if (gangload Length> 1Mb)

goto gang Load_done

GLobalALloc() space for the gangload area to be read into
if (GlobaLAlloc() fails)

goto gang Load_done

GlobalLock() the gang load memory

Seek to the start of the gangload area, and _hread() it into
the aLLocated block

if (read of gang Load area was successfuL)
goto gang Load_done

GlobaLUnlock()/GlobaLFree() the aLlocated gang load area

gang load_done:

Start creating the new module table by processing the raw
information in the upper portion of the module table, and
storing the finished product in the Lower portion (offset 0).
The segments tabLe was buiLt previously.

copy the resource table to final position in module_table

copy the resident names tabLe to final position in
the module_table

upper-case the moduLe name (the O'th entry in the resident
names table). This is why the NAME or LIBRARY field in your
.DEF file should always be uppercased. In Windows 3.0, not
doing this could cause a DLL to be loaded, but to not be
unloaded later on.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

copy the moduLe reference tabLe to finaL position in
moduLe_tabLe

copy the imported names table to final position in
module_tabLe

Build the entry table. The in-memory form is substantially
different than the table on disk. See the beginning of
the chapter for its in-memory format, and the Windows 3.1
SDK for its NE file format.

if (linker version in module_tabLe < 5)
rework the resource table II Reason: Unknown

moduLe_tabLe.next_moduLe = moduLe_tabLe. usage = 0

copy the fiLename into moduLe tabLe

set module_tabLe.ne_autodata to point at the segment .entry
of the automatic data segment (DGROUP)

if (module_table.expected_winver == 0)
module_table.expected_winver = 2.01

II Abort if an app that requires a newer version of Windows
II is trying to Load on this version.
if (moduLe_table.expecte~winver > current version)
{

}

GLobalFree() the module table
goto LoadExeHeader_cleanup

Iterate through the segment table, appLying these rules:
- If (MOVEABLE and NONDISCARDABLE) CODE segment

set to PRELOAD
If FIXED CODE segmenf I I Should only happen in DLLs

set to PRELOAD (except at boot time)
- if DATA segment

set to NONDISCARDABLE and PRELOAD.

Set the entry point code segment to PRELOAD
Set the DGROUP segment to PRELOAD
II Note that MOVEABLE/DISCARDABLE segments aren't
II set to PRELOAD.

WINDOWS INTERNALS

if (not a DLL)
Make sure stack size in module_table is at least 5K

if (heapsize !~ 0)
{

II Allow for programs with no heap

if (heapsize in module table < 100)
heapsize = 100 II slightly more in debug version

}

FarSetOwner() II Set owner of module_table to be itself

LoadExeHeader_cleanup:
II When we reach here, AX contains the return value

GlobalUnlock() the gangload block if necessary

if (a segment that should have been PRELOAD wasn't marked
as such)

{

}

GlobalFree() the gangload area II Don't use it
gang load_handle = 0

if AX < 32) II AX < 32 is an error code
GlobalFree() the gang load area II Doesn't appear to

II zero out the
II gangload_handle here

return AX II BX contains handle of gangload block

LMCheckHeaderO
LMCheckHeaderO performs some additional tests beyond those in LoadExeHeaderO to
make sure that there's smooth sailing ahead for the module. The first test determines if the
module was originally written for Windows 1.x, but doesn't have the "OK to run in Windows
3.x protected mode" flag set. If a 1.x application is tested and found to run successfully in
Windows 3.x protected mode, use MARKEXE from the Windows SDK to set a flag in the
NE file. This flag indicates that it's OK to run this application in Windows 3.x. If the flag isn't
set, a dialog box pops up, warning the user of this potential problem and asking whether to
proceed anyway, at the user's own risk. If the file is a Windows 1.x font file, this step is
skipped. The likely assumption is that fonts don't have any protected mode sensitive code, so
it's OK to use them.

Another test LMCheckHeaderO performs is to make sure there are enough "free system
resources." LMCheckHeapO is a very simple function that just calls GetFreeSystemResour
ces(O) and returns 0 if there is less than ten percent available. This test is ultimately responsi
ble for the dreaded PROGMAN error, "Insufficient memory to run this application. Quit one

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

or more Windows applications and then try again." Undocumented Windows discusses vari
ous aspects of the infamous free system resources.

Last, if the module is for an executable file, LMCheckHeader() calls OpenApplEnvO to
handle the details of creating a new task database.

Pseudocode for LMCheckHeader() - LD.OBJ

module_table = AX
gang load_handle = BX

II These 2 registers set by LoadExeHeader

if (module_table.expected_winver < 3.0)
if ("3.X protected mode compatible" flag not set)

if (not font_flag)
if (WarnRealMode() == IDCANCEL) II Ask user if OK to proceed.

return 15 II Attempt to load real mode app

if (module_table is for an EXE)
{

}

II if lpParameterBlock == -1, the loading module
I lis a DLL
if (lpParameterBlock != -1)

go to LMCheckHeader_application
else

return 5 II The module_table flags are indicating
II that it's an .EXE, but lpParameterBlock
II is -1, which it can only be for a DLL;
II 5 is the "can't link to task" error

else II Module is a DLL
return 33 II First non-error return value?

II Execution won't continue past this point for DLL modules

LMCheckHeader_application:

II Make sure at least 10% free system resources
if (LMCheckHeap() == 0)

goto Abort_2 II In LoadModule() code

WI N DOWS INTERNALS

OpenAppiEnvO
OpenApplEnv() calls CreateTask() to allocate and initialize the Task Database segment. In
addition, it creates a segment that contains the module handles of all the DLLs that the load
ing executable module brought into memory. Modules that were already present in memory
are not added to the list. When the new application calls InitTask() in its startup code, it
causes the module handles in this segment to be iterated through and their startup routines to
be called. The code was originally written this way because back in the bad old days of real
mode code, the DLL startup routines had to execute in the EMS bank of the application
being loaded. Therefore, their initialization routines couldn't be called until the new task was
completely done loading and bank switched into memory. This is no longer true, but it hangs
around as interesting historical baggage in Windows; it might come in handy again some day
if Windows switches over to giving each task its own address space.

Pseudocode for OpenApplEnv() - LD.OBJ

II LocaLs:
I I WORD return_value
I I WORD initse~handle, initse~selector

if((return_value = CreateTask(» == 0)
return 0;

if (not booting)
{

}

initse~handle = GLobalALloc(2048)
initse~seLector = GlobalLock(initse~handle)

loadTDB.LiblnitSeg = initse~selector;
LoadTDB.LiblnitOff = 10h

(WORD far)MK_FP(initse~selector, OxA) = Ox12

return return_value

Create Task 0
CreateTask() is one busy function! Its first duty is to calculate how big the Task Database seg
ment should be. Once the size has been determined, it allocates memory for the segment with
GlobalDosAlloc(). Why GlobalDosAllocO instead of regular old GlobalAlloc()? A good ques
tion. GlobalDosAlloc() allocates memory below 1Mb in the linear address space. That means
that real mode DOS, which Windows sits on top of, can access the same memory. Why is this
important? The second half of the TDB (offsets 0100h to 1FFh) is actually a DOS Program
Segment Prefix (PSP). (Remember, a PSP is often called a PDB in Windows terminology.)
The PSP contains the Disk Transfer Area (DTA), which DOS uses for certain file I/O ser
vices. It's essential that real mode DOS be able to access that memory, thus, the requirement

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

that the memory be below 1Mb in the linear address space. In addition, DOS services are
used to fill in the current drive and directory fields in the TDB (offsets 66h and 67h), so the
same argument applies there as well. Because each task requires at least 200h of memory
below 1Mb, it's a good idea to keep your own use of GlobaIDosAlloc() to a minimum. Eating
up memory below 1Mb can make it impossible to create more tasks, even if there's plenty of
free memory elsewhere. Figure 3-1 shows the relationship between a TDB and a PDB.

After allocating the TDB segment, the next major step is to set up the PSP (or PDB if
you prefer). CreateTaskO allocates a selector using AllocSelectorO and sets its base address to
the start of the PDB, lOOh bytes into the TDB segment. Then, BuildPDBO fills in the fields
of the PDB.The rest of the CreateTaskO routine involves filling in the various fields of the
TDB, including the MakeProcInstanceO thunk area.

Pseudocode for CreateTask() - TASK.OBJ
II
II
II
II
II
II
II
II
II
/I

Parameters:
LPVOID lpParameterBlock
WORD module_table
WORD hPreviouslnstance
WORD winoldap_flag

Locals:
WORD environment_segment
WORD tdb_alloc_size
WORD TDB
WORD pdb_al ias

environment_segment = 0

if (FP_SEG(lpParameterBlock) != 0)
{

IIWas an environment specified?

}

II Returns environment seg in AX
Pass_Environment(module_table, lpParameterBlock)

environment_segment = AX

tdb_alloc_size = 100h II 100h = size of the PDB

II DOS applications can have command lines greater than
II 127 characters. Windows apps can't. *Sigh*
if (winoldap_flag)
{

}

if (length of command line> 127)
bump up tdb_alloc_size by the additional bytes
beyond 127, and then round up to the nearest
paragraph boundary.

WINDOWS INTERNALS

II In most cases, the TOB segment is 200h bytes. However,
II in the case of an unusuaLLy Long command Line (above),
II the TOB segment can be Larger.
tdb_aLLoc_size += 100h II 100h = sizeof the TOB
round tdb_aLLoc_size up to a muLtipLe of 16

II ALLocate the TOB beLow 1Mb, so that it can be accessed by DOS
II for fiLe I/O
TOB = GLobaLOosALLoc(tdb~aLLoc_size)
Zero out TOB's segment

FarSetOwner(TOB,TOB) II Set owner of this TOB to itseLf

if (winoLdap_fLag)
set TOBF_WINOLOAP fLag in TOB

if (LpParameterBLock -- 0)
go to CreateTask_a

II Not the same thing
II as the POB fLag
II at offset 48h

if (task is protected mode onLy (from moduLe_tabLe fLags))
set some bits in TOB_fLags and TOB_ErrMode

pdb_aLias = ALLocSeLector()
caLL LongPtrAdd() to point pdb_aLias to the start of the POB
inside the TOB segment. For LongPtrAddO, see "Undocumented
Windows," Chapter 5.

BuiLdPOBO II Set up the fieLds for the POB

copy first FCB from LpParameterBLock to the POB we just buiLt

TOB.POB_environ = environment_segment

CreateTask_a:

II fiLL in some fieLds of the TOB
TDB.TDB-pModuLe = moduLe_tabLe
Copy moduLe name from moduLe_tabLe to TDB.TDB_ModName
Copy interrupt handLer addresses from KERNEL's OS into the TDB

II Puts the current drive/dir/FPU state into the TDB. Inserts
II the new TDB into the task List.
FarCreateTask()

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Set TDB.TDB_DTA at offset BOh in the PDB section
TDB.TDB_sig = 'TD'
TDB.TDB_ASignaLProc = &DefauLt_Si~HandLer II In USER

CaLL ALLocDStoCSALias() to create a code aLias to the TDB for
use by the MakeProcInstance() thunks. Store the aLias in
TDB_MPCSeL fieLd of the TDB.Afterwards, initiaLize the
area used for MakeProcInstance() thunks.

Pseudocode for Pass_Environment() - TASK.OBJ
II Returns environment seg in AX
II Parameters:
I I LPVOID
I I WORD

LpParameterBLock
moduLe_tabLe

if (fBooting)
return 0

II Are we bootstrapping KERNEL?

if (LpParameterBLock.envseg -- 0)
return AX = 0

II No environment

Scan LpParameterBlock.envseg, Looking for the 2 consecutive
D's, indicating the end of the environment. Remember the
Length of the environment.

&LobalALLoc() a new bLock big enough to hoLd a copy of the
previously scanned environment.

Copy the environment from LpParameterBLock.envseg to the
new bLock

return handLe of aLLocated bLock in AX

BuildPDBO
BuildPDBO relies on the undocumented DOS subfunction 55h to build a new PDB, using
the segment/selector specified in DX. In this case, BuildPDBO sets DX to the selector allo
cated to point at the PDB portion of the newly created TDB. Then BuildPDBO copies the
command line, which was specified in the lpParameterBlock and passed to LoadModule() into
offset SOh in the PDB. This space is reused later as the disk transfer area (DTA). If you're
unfamiliar with PSPs, Undocumented DOS contains a good description of them.

Pseudocode for BuiLdPDB() - MODULE.OBJ
II Parameters:
II WORD parent_PDB, new_PDB
II LPVOID LpParameterBLock

/I
/I

WORO
WORO

WINDOWS INTERNALS

size
wi noldap_f lag

Save Win_POB on stack
Win_POB = parent_POB

II Create the new PSP. This DOS subfunction is undocumented.
INT 21H, Fn. 55H

II cur_dos_POB is a Windows global variabLe that contains
II the vaLue that DOS thinks the current PSP is set to.
cur_dos_POB = handLe of new POB

restore Win_POB from stack

PLug in new parent, bLock Length, & exit address into new POB

if winoLdap_fLag)

else

copy lpParameterBlock.LpCmdLine to OTA of new POB. Moves
as many characters as specified in the first byte of the
command Line

copy LpParameterBLock.LpCmdLine to OTA of new POB. Copy
80h characters, ignoring the length specified in the
first byte of the command Line

LMRamNMods()
Before we started investigating how tasks are created, we were examining the various helper
functions that LoadModuleO uses. We'll pop our stack and return to that investigation. We
left offhaving examined the LMCheckHeader() function, which ultimately causes a task to be
created. We therefore resunle our trek through LoadModuleO with the LMRamNModsO
function, which adds the new module to the module list and allocates its CODE and DATA
segments.

LMRamNMods() begins by calling AddModule() to add the new module table to the list
of system modules. LMRamNMods() then adds the file handle that's been used to access the
NE file to the Windows file handle cache and sets the local copy of the. file handle to -1 so
that it can't be used anymore. Next, LMRamNModsO calls AllocAllSegsO and passes to it the
module handle of the loading module. AllocAllSegsO iterates through the segment table and,
where appropriate, fills in the selector/handle field in each segment table entry. All PRE
LOAD DATA segments and all PRELOAD FIXED segments have memory allocated for
them. Otherwise, all MOVEABLE segments have selectors allocated, but no memory is com
mitted. FIXED segments in DLLs are left alone entirely. There shouldn't be any FIXED seg
ments in EXEs at this point because any FIXED flags were turned off when the module table
was originally created in LoadExeHeader().

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

The' remainder ofLMRamNModsO is devoted to checking for two special cases involving
referenced modules. The first check is to be sure the operating system field in the module
header does not have a value (NE_UNKNOWN). Early Windows l.x programs, as well as
some OS/2 programs have NE_UNKNOWN as their operating system type. To attempt to
weed out the OS/2 programs, Search_Mod_Dep_ListO (Search Module Dependency List) is
called with a pointer to the string "DOSCALLS". Search_Mod_Dep_ListO iterates through
the imported names table of the module,looking for the passed-in string. Since DOSCALLS
is an OS/2 DLL used by almost all OS/2 programs (it's the equivalent of KERNEL in Win
dows), finding it in the imported names table is a good indicator that the NE file is an OS/2
file.

The second special case involves looking for references to the WIN87EM module in
EXEs and DLLs built for Windows versions prior to 3.0. If WIN87EM is found in the
imported names table, LoadLibraryO loads WIN87EM.DLL into memory. It is not clear why
this module, which does 80x87 floating-point emulation, is handled specially.

Pseudocode for LMRamNMods() - LO.OBJ

II Adds a new module table to the list of system modules
if (AddModule(module_table) == 0)
{

unlink module_table from list
goto Abort_3 II In LoadModule code

}

II Assume no error for now.

II Windows maintains a cache of module handles, and the
II associated file handle for the 'NE' file. Add the
II loading module to the cache.
FarGetCachedFileHandle(module_table, -1, file_handle)

II The file handle is now cached by windows. LoadModule() doesn't
II need its file handle anymore
file_handle = -1

Win_POB = old_POB
old_POB = -1

if (application is self loading
goto done_allocatinR-segs

II 0800h bit in module
II flags (offset OCh)

if (seg count in module_table -- 0)
goto done_allocatinR-segs

II A resource OLL?

module_table.usage_count = 1

WINDOWS INTERNALS

II Allocate selectors for the module's ~egments. In some
II cases just selectors are allocated. In others cases,
II selectors are allocated and memory associated with them.
II Some segments don't get a handle at this time. The
II PRELOAD I LOADONCALL attribute is what distinguishes
II between the two cases.
allocAllSegs_ret = AllocAllSegs(module_table)

module_table.usage_count = OxBOOO II?

if (preceding AllocAllSegs() returned 0)
go to Abort_1

done_allocatinR-segs:

if (module table.num_modules -- 0)
goto LMRamNMods_done

// Any links to DLLs?

if (module_table.exe_type == NE_UNKNOWN)
{

}

Call Search~od_Dep_List() to examine the imported names
table for the string "DOSCALLS". This identifies the
file as an OS/2 application. In this case, we don't want
to run it. On the other hand, if it's not an OS/2
program, it could be a Windows 1.X app, in which case we
should try to load it.

if ("DOSCALLS" found in imported names table)
{

}

failure_code = 11 /1 invalid exe
goto Abort_1

if (module_table.expected_winver < 3.0)
{

}

Call Search_Mod_Dep_List() to examine the imported
names table for the string "WINB7EM".

if ("WINB7EM" found) II May be related to the old
LoadLibrary("WINB7EM") II WINB7EM.EXE. We'd rather

1/ use the newer WINB7EM.DLL?

if (LoadLibraryOfailed to load WINB7EM)
implicit_link_failure = LoadLibraryO return value

LMRamNMods_done:
return

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

LMlmpons()
LMImports() is responsible for loading any DLLs that the loading program implicitly links to.
The majority of the code loops through the imported names table, extracting each referenced
module in turn. For each module it finds, LMImports() calls GetModuleHandle(). to see if the
module is already loaded. If not, LMImportsO calls LoadLibraryO to load the module. Before
going on to the next module in the imported names table, the module handle of the refer
enced module is added to the module reference table (see offset 28h in Table 3-1), overwrit
ing the offset into the imported names table that the NE file contained.

IncExe Usage 0 , a complex routine near the end of LMImportsO, handles the details of
incrementing the usage count of each DLL that the passed-in module handle references. Add
ing complexity to the situation, DLLs can link to other DLLs, and those DLLs can in turn
link to still other DLLs. IncExeUsageO handles all those details with code that acts recursively
on the list of DLLs. There is a corresponding DecExe Usage () function that's called when a
module is freed. It performs the opposite job of decrementing the usage count of .all DLLs
that are directly or indirectly referenced by a module.

Pseudocode for LMlmports() - LD.OBJ
II Locals:
II WORD dll_handle II module handle of loaded/loading DLL

if (number of imported modules == 0)
goto LMlmport_done

II See offsets 1Eh and 28h in Table 3-1
for (count = 0; count < .number of imported modules; count++)
{

Extract module name from imported names table

dll_handle = GetModuleHandle(module name)

if (dll_handle == 0)
{

}

if (module_table.expected_winver < 3.0)
append ".EXE" to module name

else
append ".DLL" to module name

dll_handle = LoadLibrary(module name)
if (dll_handle < 32)

implicit_Link_failure = dll_handle

II offset.2Ah

II Convert dll_handleto a module handle, if it's not a
II module handle already
dll_handle = GetExePtr(dll_handle)

}

WINDOWS INTERNALS

I I The module. reference table in memory is a list
II of module handles, rather than offsets into
II the imported names table (NE file on disk).
add dll_handle to next spot in module reference table

LMlmport_done:

II If in first level call to LoadModule, call IncExeUsage()
II to bump u~ the usage count of the loading modules, and
II allDLLs that it refers to
if (flMdepth == 1)

IncExeUsage(module_table)

if (impliciClink_failure != -1)
failure_code = implicit_link_failure

LMSegs()
The job of LMSegsO is to get all the PRELOAD segments into memory so that the module
can start up. Since segments for self-loading applications are loaded differently than normal
modules, LMSegsO first checks to see if the module is self-loading. If so, it calls BootApplO
(described later) to handle the self-loading duties. For normal modules, the code iterates
through the segment table. Any segment marked as PRELOAD is brought into memory and
fixed up by the FarLoadSegmentO function. (Dynamic linking and fixups are covered in
Chapter 8). If a gangload area was loaded, the segments are copied from it. Otherwise the
segments are loaded from the NE file. Segments that aren't loaded at this time are
LOAD ON CALL segments. They're also loaded by FarLoadSegmentO, but not until they're
accessed for the first time. Protected mode Windows can rely on a processor segment-not
present exception to notifY it when a segment that's not currently loaded is touched. This is a
much cleaner mechanism than the awful mechanism used in real mode, wherein all far calls
passed through a thunk.

Pseudocode for LMSegs() - LD.OBJ

II Self loading applications bring their segments into memory
II by themselves. BootAppl() initiates this sequence of
II events. This is discussed towards the end of the chapter.
i1 (self loading app)
{

}

FarGetCachedFileHandle()

if(!BootAppl())
go to Abort_1

FlushCachedFileHandle()

II Abort now if the segments couldn't be allocated

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

if (allocAllSegs_ret == 0)
return

II See offset 1Ch in Table 3-1.
for (count=O; count < number of segments; count++)
{ II See offset 22h in Table 3-1.

if (segment[countJ is not PRELOAD)
goto next_segment

II if possible, copy the segments from gang load area
if (gangload_handle != 0)
{

}

if (!global_lock{gangload_handle))
{

}

GlobalFree{gangload_handle)
gang load_handle = 0
go to read_from_disk

Calculate address of segment's data in gangload block

II Copy the memory to the allocated selector, and
II perform the relocations. FarLoadSegment{) can
II work with either a file handle to read with,
II or a pointer to copy memory from.
FarLoadSegment{)

GlobalUnlock{gangload_handle)

else II Read segment in from disk
{

read_from disk:

}

II Load the segment's data, and do the relocations.
II Here, we pass a file_handle, so the segments are
/I read in from the disk image.
FarLoadSegment()

next_segment:
}

WINDOWS INTERNALS

LMLetsGo()
LMLetsGoO is where the module begins to sprout its wings and take off. First, however, it
brings the module's PRELOAD resources into memory using PreloadResourcesO. With that
out of the way, LMLetsGoO calls StartModuleO. StartModuleO sets up the initial register val
ues for program modules and calls StartLibaryO for DLLs. Lastly, if the module is for a pro
gram, LMLetsGoO calls CloseApplEnvO. CloseApplEnvO, despite its backwards-sounding
name, is where the new task is finally launched. Upon return from CloseApplEnvO, the new
program has executed its startup code and run until it yielded-for your average Windows
program, the first yield is inside a GetMessageO call, with the main window already created.

Pseudocode. for LMLetsgoO - LD .OBJ
II Locals:
II WORD fhandle

push current Win_PDB
Win_PDB = topPDB

II save the current PDB, and switch
II to the PDB of KRNLx86.EXE when
II Windows loaded

fhandle = FarGetCachedFileHandle() II Get file handle of loading module

II If we have a gang load area, use it to create the preload
II resources. Else, read the resources from the 'NE' file.
if (gang load_handle != 0)

PreloadResources(gangload_handle)
else

PreloadResources(fhandle)

'pop back the current Win_PDB

if (lpParameterBlock == -1) II -1 indicates a DLL load
lpParameterBlock = 0

lIDo some setup work. EXE modules will get their initial
II registers set up on the initial stack of the task. DLLs
II have their initialization routine called if appropriate
II loading via LoadLibrary().
ret_value = StartModule()

if (module is a task (not a DLL))
{

}

/! CloseApplEnvO is where the task is "launched".
II The call does not return until the app has yielded,
II typically in its GetMessage() loop. CloseApplEnv()
II is a very strange name, considering that it _starts_
/! the new task, rather than "closing" it. This may
II be a throwback to the weirdness of EMS Windows, and
II the need to "open" and "close" EMS banks.
ret_value = CloseApplEnv()

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

StortModule()
StartModuleO is a fairly minor routine. The code probably could have been inlined inside
LMLetsGoO with no loss of clarity. It performs two functions: First, it makes sure that the
module's automatic data segment (DGROUP) is present in memory. Since this segment was
loaded previously in LMSegsO, it's not understood why it's loaded again here.
StartModuleO's second job is to call either StartTaskO for program modules or StartLibraryO
for DLL modules. One of the arguments to StartTaskO is the initial SS:SP of the task. It
obtains this value by calling GetStackPtr(.).

GetStackPtrO is an even simpler routine. It retrieves the stack size value out of the mod
ule table and adds it to the size of the DGROUP segment. The result is the initial SP value.
The DGROUP selector is used for the initial SS value.

Pseudocode for StartModule() - LD.OBJ
/I
/I
/I
/I
/I
/I

Parameters:
WORD hPreviouslnstance
WORD LpParameterBlock
WORD module_table
WORD fileJlandle
DWORD start_address

/I Make sure the automatic data segment is in memory
if (module_table.startin~CS != 0)

if (module_table.autodata_segment != 0)
if (! FarLoaqSegmentCmodule_table,.autodata_segment»
{

}

_lclose(file~handle)

return 0;

start_address = StartProcAddress(module_table);

if C file_handle != -1)
_lclose(fi le_handle)

if (module is a task)
{

}

else
{

GetStackPtr()
StartTask()

II Return result sent to StartTask()
II Set up registers for the task

Set flag in module_table.ne_flags indicating that WEP
needs to be called.

StartLibrary()
}

WINDOWS INTERNALS

StortTosk0
StartTaskO is where the magic sleight-of-hand of starting a new task occurs. Chapter 6, on
the scheduler, discusses how one task is always running, while all other tasks are parked inside
the scheduler routine. The register values for each parked task are saved on the stack and are
restored when the task is scheduled to run again. StartTaskO, rather than call a program's
entry point, instead arranges for the new task to get scheduled. You might be asking, "Why
can't the entry point for the program just be called directly?" Like any other Windows func
tion, LoadModule() is executing in the context of the calling task. If we were just to JMP to
the entry point, we'd still be running as the task that called LoadModuleO, which is no good.
The scheduler doesn't know anything about task creation or destruction. We need a new task,
and the only way to do this is to fool the scheduler into thinking that the task has been there
all along.

StartTaskO performs this fakery by storing the initial startup values on the new task's
stack, just like the scheduler would have done if the task had been switched away from pre
viously. Without the scheduler knowing it, a new task has been inserted into the task list.
Actually, the new task was added to the task list in CreateTaskO, but the real magic is making
the new task looks like it's just another task parked inside the scheduler. The task will actually
run for the first time inside of CloseApplEnv(), which we will discuss momentarily. Inciden
tally, there is nothing Windows-specific to the procedure. Many multitasking operating sys
tems start new tasks by making them look like old switched-away-from tasks.

Another interesting bit of trickery occurs when the ToolHelp or WinDebug DLLs need
to be notified about task creations for debugging purposes. Notifications are discussed in
detail in Chapter 5 of Undocumented Windows. For now, it is sufficient to say that the notifi
cation handler function needs to be called in the context of the new task, when a new task
starts up.

This is the NFY_STARTTASK notification in ToolHelp. It's not sufficient to call the
notification handler before starting the new task up. The new task has to be running when
the handler is called. The handler also has to be called before any instructions in the new task
are executed. The only feasible way to do this is to patch things so that the notification han
dler is called in the context of the new task, but before the entrypoint of the task is called.
This is done by setting the initial CS:IP values of the new task to the address of a routine,
CVW _Hack(), which calls the notification handler and then JMPs to the correct entry point in
the new task. The name CVW _HackO obviously refers to Microsoft's own Code View for
Windows, as though this were the only Windows debugger. So much for Chinese Walls.

Pseudocode for StartTask() - TASK.OBJ
II Parameters:
II WORD hPreviouslnstance
II WORD module_table
II DWORD startin9-sssp
II DWORD startin9-csi p
II Locals:
II WORD instance_handle, dgroup_selector

II A task must have a valid stack and a valid entry point

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

II These values come from offsets 14h and 18h in Table 3-1
if ((startinR-sssp.ss == 0) I I (startinR-csip.cs==O))

return 0

II Check the signature bytes to make sure it's a real TDB
if (loadTDB.TDB_sig != 'TD')

return 0

II Set the SS:SP field in the TDB. Adjust SP downward to
II accommodate the saved registers stackframe in Reschedule()
II See Chapter 6 for more information on Reschedule()
loadTDB.TDB_taskSS = startinR-sssp.ss
loadTDB.TDB~taskSP = startinR-sssp.sp - Ox16

instance_handle = GetInstance(module_table)

startinR-csip.cs = HIWORD(GlobalHandle(startinR-csip.cs))
dgroup_selector = HIWORD(GlobalHandle(instance_handle>)

TDB.TDB_ExpWinVer = module_table.expected_winver

II Start filling in "register values" on the stack. The
II registers themselves aren't being modified. Instead,
/I we're setting up a stack frame that looks like it was
II created by a call to Reschedule(). When the new task is
/I scheduled, it will "resume" from this call to RescheduleO,
II and start executing at the specified starting address with
/I the register values "set" here.
AX = 0
ES = TDB.TDBYDB
DI = instance_handle
DS = dgroup_selector
SI = hPreviousInstance
BX = stacksize
CX = heapsize
BP = 1 II indicate a Far frame?

/I Still setting register values in initial task stack.
I/For RegisterPtrace, etc. See "Undocumented Windows," Chapter 5.

if (RegisterPtrace/ToolhelpHook flag set in KERNEL_Flags)
{

II Set the initial CS:IP of the stack to start at
II CVW_Hack(). CVW_Hack() generates the appropriate
/I start-task "notification", and then calls the
II real entry point of the task (which are saved below
II in the global variable ptrace_app_entry).

}

WINDOWS INTERNALS

CS:IP = CVW_Hack
FP_SEG(ptrace_app_entry) = startinR-csip.cs
FP_OFF(ptrace_app_entry) = startinR-csip.IP

else II The scheduler will return to the task directly.
{

}

CS = startinR-csip.cs
IP = startinR-csip.ip

StartLibrary()
StartLibrary() is responsible for setting up a library to be initialized. An important point here
is the initialization sequence for DLLs depends on the circumstances of the DLL load. If the
global variable 10adTDB is 0, the· DLL is being loaded at run-time, as the result of a
LoadLibraryO call during the execution of a program. In this case, the DLL's initialization
routine, which eventually calls LibMainO, is invoked.

The other scenario involves DLLs that are loaded because they're implicitly linked to
(that is, an import library was used). In this case, the DLL initialization routine is not called
inside of StartLibraryO. Instead, the module handles of all new, implicitly linked DLLs are
stored in a special segment called the LibInitSeg. The application startup sequence calls
InitTask(), which iterates through the list of module handles. InitTask() finds the entry point
of each module and calls it, eventually causing LibMain() to be called.

The fact that the entry point of an implicitly linked DLL isn't called until after the task
starts executing may have some of its roots in the need to debug DLL initialization routines.
Normally, debuggers like TDW load a program and, ifit has debug information, run the pro
gram to the WinMainO procedure. By this point, the LibMainO of each DLL has been
invoked, and it's too late to debug them. However, if you tell the debugger not to run to
WinMainO, such as by specifying "-1" on the TDW command line, the debugger stops at the
very first instruction. At that point, you can set breakpoints in any DLL initialization routine.

Pseudocode for StartLibrary() - TASK.OBJ
II Parameters:
I I DWORD
II LPVOID
I I WORD

startin9.....,csip
lpParameterBlock
module_table

II loadTDB != 0 indicates an implicitly loaded DLL. Don't
II call the initialization function, as the application will
II do that inside its startup code.
if C- loadTDB ! = 0)

if (! boot i ng)
{

}

insert module_table into array of module handles for which
InitAppO will call the entry point.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

if (FP_SEG(pSignalProc))
pSignalProc(40)

II pSignalProc is a global variable.
II Undocumented. 40 means DLL load. See
II "Undocumented Windows" for details.

convert startinR-csip.cs from a handle to a selector
with GlobalHandle().

Set up CX:BX to startinR-csip for DLL load notification
Send the DLL load notification II NFY_STARTDLL in TOOLHELP

if (FP_SEG(startinR-csip) == 0)
return

II No initialization code?

II Set up registers for calling the DLL entry point
CX = heapsize II from module_table.ne_heap
DX = selector of h1nstance segment
ES: D1 = lpParameterBlock.lpCmdLi ne

call (startinR-csipJ

CloseApplEnv()

II Actually calls a "wrapper"
II function which does the call

CloseApplEnvO sounds as though its job is to shut something down. Exactly the opposite is
true. CloseApplEnvO is where a new task joins, the ranks of other running tasks. The first
order of business is to clean up a few things. If no module handles were added to the
LibInitSeg for initialization by InitTaskO, the segment is deleted. The global variable
loadTDB indicates whether a task is in the process of being created. Once the task is fully
formed, loadTDB is set back to 0, indicating that no task is being created at the moment.
Before it's set to 0, a local copy of the TDB selector value is made because CloseApplEnvO
isn't quite done with the loading TDB just yet.

CloseApplErtv() is called both for successful and unsuccessful module loadings. If the
module is successfully loaded, CloseApplEnvO gets the honor of starting up the new task. In
order to ensure that the new taskwill be scheduled and, therefore, run, CloseApplEnvO sets
the event count in the task database (offset 6 in Table 3-2) to 1. Next, CloseApplEnvO incre
ments the global variable NUffi_Tasksto reflect the fact that a new task has joined the system.
If the TDBF_OS2APP flag is set in the TDB,and if the function pointer dn!ssedJor_success
is nonzero, CloseApplEnvO calls the address stored in dressedJor_success. Presumably this is
some sort of notification to someone that an OS/2 application is about to be launched under
Windows. Finally, CloseApplEnvO starts the new task by calling YieldO. YieldO eventually
calls the core scheduling routine,~hich sees the nonzero event count in the newly created
TDB and schedules the task to run. Breakout the. cigars!

WINDOWS INTERNALS

Pseudocode for CloseApplEnvC) - LD.OBJ
II Called for both successful and unsuccessful loads
II Locals:
II WORD current_TDB
II WORD local_loadTDB

current_TDB = curTDB II curTDB is a global variable, and the
II return value from GetCurrentTaskC)

local_loadTDB = loadTDB

if C local_loadTDB)
if (no module handles in local_loadTDB.TDB_LibInitSeg)
{

}

GlobalUnlock(local_loadTDB.TDB_LibInitSeg)
GlobalFreeClocal_loadTDB.TDB_LibInitSeg)

/I Don't need
II the LibInitSeg.

loadTDB = 0; II A KERNEL global variable, so put it back
II to zero when all done with it.

if (ret_value> 32)
{

II A successful load?

}

II Making the event count nonzero ensures that the
II scheduler will schedule the task
local_loadTDB.event_count = 1;

II A system global variable. The
II GetNumTasks() API returns this value.

II This following sequence looks like something having
II do with running OS/2 applications.
if (TDBF_OS2APP ,set in TDB_flags)

if C dressed_for_success != 0)
dressed_for_successC) II A function pointer

II Start the program up, and let it run until it yields,
II typically inside its message loop
if (not booting)

YieldO

else II Task load failed for some reason
{

}

FarDeleteTask()
FarUnlinkObject()
FreeTDB()

II Remove the TDB from the memory
II chain and delete its memory

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

LMCleanVp()
The final act ofLoadModuleO is to clean up after itself. LMCleanUPO performs these chores,
both for successful and unsuccessful loads. The function begins by closing the file handle that
was used by LoadModuleO to read in the various parts of the 'NE' file. Since Windows main
tains a cache of module handles, which are paired with the file handles of the associated 'NE'
files, closing the original file handle that LoadModule() used doesn't hurt anything.

If there's still a gangload area selector still floating around, LMCleanUpO calls
GlobalFree() to release its memory back to the system. If a task database was created, but
didn't make it all the way to an actual task, LMCleanUpO deall~ates its memory by invoking
CloseApplEnvO. Lastly, if the module was loaded from a floppy disk or other removable
media, its file handle in the previously mentioned cache file handle is closed. Presumably, this
is done because the floppy may be changed at any moment and it doesn't make sense to keep
an open file handle for a removable file.

Pseudocode for LMCleanUp() - LO.OBJ

lIOn entry, AX contains the error code (or instance handle)
II that will be returned by LoadModule()
if (AX < 32) II Was it successful? < 32 means NO!
{

}

close file_handle;
file_handle = -1

if (old_POB != -1)
Win_POB = old_POB

if (gangload_handle != 0) II Free the gangload memory.
GlobalFree(gangload_handle)

if (AX >= 32)
goto LMCleanup_app_ok II <32 is an error code.

if (loadTOB != a) il If we get here, unsuccesful load.
if (module_table > 32)

if (module is a task)
CloseApplEnv() II Free up stuff allocated for the task

II if a module was loaded, and it was loaded from removable
/I media (e.g., a floppy), then flush the file handle (don't
II keep it around in the cache).

WINDOWS INTERNALS

if (AX > 32)
{

II Succesful load.

}

if (!on_hard_drive)
{

}

II If we get here, AX is an instance handle

II Close the file in KERNEL's cache
FlushCachedFileHandle(GetExePtr(AX))

if (fBooting and in diagnostics mode)
write out all kinds of stuff about what happened.

Loading a Second Instance of an EXE or DLL

We've seen the details of how a new module is created in the system. The next thing to exam
ine is how an existing module is reused. Near the beginning of LoadModuleO, it checks to see
if the requested module is already loaded. If so, it calls LMPrevInstanceO.

LMPrevlnstanceO
LMPrevInstanceO is a combination of previously seen routines,and new code. Like
LMCheckHeaderO, LMPrevInstanceO uses LMCheckHeapO to ensure that there's at least
ten percent free system resources before attempting to load the module. The new code in .
LMPrevInstanceO is necessary because of the problem with programs containing multiple
data segments. This situation was discussed previously in the section on the module table.

To prevent an application that has multiple data segments from running a second time,
the code loops through the module's segment table, counting the total number of DATA seg
ments that aren't read-only. If there is more than one such segment, LMPrevInstanceO
returns an appropriate error code. Multiple read-only data segments are allowed because the
application can't write to the segment unless it goes to the trouble of creating an alias selec
tor. Therefore, it doesn't matter if more than one instance of an application reads from the
same segment. Resources work on the same concept.

Once LMPrevInstanceO has certified the module as having only one read/write DATA
segment, it calls some functions that we've seen already. OpenApplEnvO creates a new task
database; IncExeUsageO bumps up the reference count of all implicitly linked DLLs;
AlloC'AlISegsO creates a new DGROUP for the loading task; StartModuleO sets up the initial
register values on the stack of the new task; and CloseApplEnvO eventually causes the new
task to be scheduled.

If the LMPrevInstanceO is called for a previously loaded DLL, LMPrevInstanceO makes
sure that the DLL's DGROUP segment is loaded. It then calls IncExeUsageO to bump up
the usage count of the implicitly linked DLLs. Yawn ...

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Pseudocode for LMPrevInstance() - LD.OBJ
II Starts up another instance of a previously loaded module
lIOn startup, AX contains the module handle of the previous
II instance of the module
II
II Locals:
II WORD previousInstanceHandle

module_table = AX
ret_value = 0

II Undocumented use of LoadModule(). LoadLibrary() uses
II LoadModule() to load the DLL, and passes it -1 for the
II lpParameterBLock
if (lpParameterBlock == -1)
{

if (DLL flag not set in the module table)
return 5 II Can't dynamic link to a task

else
lpParameterBlock = 0

}

if (MULTIPLEDATA flag not set in module table)
goto no_instance_data

II LMCheckHeap() checks to make sure there is enough space
II in the USER/GDI heaps by calling GetFreeSystemResources(O)
II "Enough" in this case means 10%.
if (LMCheckHeap() == 0)

return 0 II Out of memory

if (winoldap_flag II WINOA386.MOD contains 2 data segs
goto only_one_data_seg II Reason: Unknown

iterate through the segment table in the module table.
Count how many non-read-only DATA segments there are.

If (number of non-read-only DATA segments> 1)
return 16 II Multiple data segments in application

II OpenApplEnv() calls CreateTask() to create the TDB, and
II allocates a segment to store the hModules of the DLLs that
II will need to be initialized when the program starts. Since
II there already is a previous instance, there won't be any

WINDOWS INTERNALS

II DLLs that are initialized by this instance of the program.
OpenApplEnv()

II The previousInstanceHandle is needed by StartModule(),
II below. The instance handle (the DGROUP handle) is
II obtained from module_table's segment table.
previousInstanceHandle = GetInstance(module_table);

II Bumps up the usage count in the module table. Makes
II sure that modules referenced by this module have their
II usage count incremented as well.
IncExeUsage(hModule)

II Allocate the ~ode/data segments that this instance will
II use. Since there is already a previous instance of the
II program, and since code segments are shared between
II instances, AllocAllSegs() will only allocate a
II new automatic data segment in this case.
if (AllocAllSegs(hModule) == -1) II -1 -> failure.
{

}

II If AllocAllSegs() failed, then we need to restore
II the module usage count to its previous value
DecExeUsage(hModule)

return 0 II Not enough memory

II StartModule sets up the register values for the new task
if (StartModule() == 0)
{

}

FreeModuleO;
return 0

II Decrements the usage count of the module
II Not enough memory

II Start execution of the new task, by Yield()'ing
return CloseApplEnv()

II DLL modules come here

if (auto data segment selector == 0)
if (FarLoadSegment(auto data segment) -- 0)

return 0 II Not enough memory

IncExeUsage() II Increment the module usage count

return GetInstanceO II Gets DGROUPof DLL.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

The Application Startup Code
Up to this point, we've focused on what happens in the Windows KERNEL to load a new
task and call its entry point (or get the scheduler to do so). While WinMainO is where your
own code begins executing, you are probably aware that WinMain() is not called directly by
Windows itself. Instead, the entry point of your program is in the startup code that's supplied
by your compiler vendor (assuming you're not one of the dying breed who still hand codes
everything, even Windows programs and DLLs, in assembler). If you're a C or c++ program
mer, the startup code is in the OBJ file that's the first OBJ fde linked into the EXE or DLL.
For Borland C and C++, the source code for this OBJ can be found in
\BORLANDC\LIB\STARTUP. For EXEs, the file is COW.ASM, for DLLs, COD.ASM.
Microsoft C/C++ users can find the startup code in CRTOASM and WINSTART.ASM.
Zortech supplies its startup code in the \ZORTECH\SOURCE\CLIB directory.

The C/C++ startup code does the normal things you'd expect, such as parsing the com
mand line to create argv and argc arguments, and calling any C++ static constructors. In Win
dows EXEs and DLLs, the startup code plays the additional role of calling some critical
initialization functions that do things such as creating a message queue for the new task and
calling the DLL initialization routines for implicitly linked DLLs.

If you're interested in what happens in the startup code, examine the actual code supplied
by your compiler vendor. However, if you're not an assembler wizard, or if you just want to
know the general concepts, we present the startup code for Borland C++ EXEs and DLLs in
pseudocode form.

Windows EXE Startup Code
For EXEs, the important parts of the startup code involves calling InitTask() and then
InitApp(), which we cover momentarily. Mter those functions have been called, the EXE is
completely initialized and ready to start its work as a Windows program. This is where
WinMain is called. Assuming that the application terminates normally, (i.e., that a UAE
doesn't terminate it abruptly) WinMainO returns with the program's exit code. After some
cleanup, the startup code eventually calls the DOS terminate function, INT 21h function
4Ch. It's somewhat strange that Windows uses functions like LoadModuleO and WinExecO
to start a program, but uses a DOS interrupt to shut them down. The DPMI specification
states that DPMI clients must exit by doing an INT 21h function 4Ch in protected mode;
perhaps this has something to do with it.

Pseudocode for COW.ASM

II Give KERNEL an opportunity to initiaLize things reLated
II to the task, such as the instance data area.
InitTaskO

Save off register return vaLues from InitTask() into gLobaL
and LocaL variabLes that can be referenced by the C code

WINDOWS INTERNALS

II Lock the DGROUP segment
if (near data memory model

LockSegment(-1)
II Decided at assembly time
II rather than at run time

Initialize the BSS area of DGROUP to zeroes

/I CloseApplEnvO had to "fake" an event (with PostEventO)
/I to force this task to be scheduled. WaitEventO "eats"
/I the event, thus putting the task in its "natural" state.
WaitEventO

II Creates the queue for the new task, sets the signal proc
II handler, and so on.
InitAppO

Determine and save off various global variables, such as
the date, time, DOS version number, etc.

Call any C++ static constructors. Note that this is done
after InitApp() is called. If this wasn't the case, calls
to MessageBox() (and other routines that require a message
queue to be present) would blow up in the constructors.
Windows++ by Paul DiLascia (Addison-Wesley, 1992)
describes a bug related to this in the startup code of one
the major C++ vendors.

II This is it!!! Call the user supplied WinMain(). This
II routine won't return until the program has been told to
II terminate by the user. The parameters to WinMain() were
/I given to us in various registers after returning from
II InitTask(), and a~e pushed on the stack for WinMain().
WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)

II Calls any static destructors, and eventually terminates
II the program via INT 21h, fn. 4Ch
_exit(AX) II AX set to return value from WinMain()

Windows DLL Startup Code
The startup code for DLLs is much simpler than for EXEs. If the programmer requests a local
heap, the startup code calls LocalInitO to set up the data structures that maintain the heap.
After invoking any static constructors the startup code finally calls LibMainO:

Pseudocode for COD.ASM

II Setup the local heap in the DGROUP
Loca LInit 0

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

if (near data memory modeL)
LockSegment(-1)

II Decided at assembLy time
II rather than at run time

InitiaLize the BSS area of DGROUP to D's

CaLL any C++ static constructors.

LibMain(hlnstance, wDataSeg, wHeapSize, LpCmdLine)

II UnLike the appLication startup code, static destructors are
II not caLLed after the "main" routine. Instead, they are
II caLLed by the run time Library before the user-suppLied WEP()
II routine is caLLed.

InifTaskO
While the startup code for EXEs is mildly enlightening, the real question is, What goes on
inside InitAppO, InitTaskO, and WaitEventO? These functions were first documented as part
of the Microsoft Open Tools initiative. While a good start, this information was not freely
available to just anyone. Luckily, these functions are now documented in the Microsoft Win
dows 3.1 SDK, in Chapter 22 ofVolurne 1 of the Programmer)s Reference. Pseudocode for
InitApp() and InitTask() is presented here. WaitEvent() is covered in Chapter 6 on the sched
uler.

InitTaskO starts by calculating the lowest and highest SP values that should occur in this
task and stores them in the "instance data" area of the DGROUP. The instance data area is
10h bytes in length, and starts at offset 0 of each DGROUP. Along with stack values, the
instance data area contains near pointers to the local heap and atom tables. The instance data
area is described in the InitTaskO documentation in the 3.1 SDK, as well as in Chapter 5 of
Undocumented Windows. Afterwards, InitTaskO calls LocalInitO to initialize the local heap
and store some additional values, like a pointer to the local heap and atom tables, into the
instance data area. LocalInit() is discussed in Chapter 2 on memory management.

The next item on the work list of InitTask() is to call the entry points of all DLLs which
were just loaded and which are implicitly linked to by this task. This chore is performed by
Do_LibInitO. As described in the description for StartLibraryO earlier in this chapter, a spe
cial segment is created that contains an array of module handles for each DLL that needs to
be initialized. Do_LibInitO iterates through the list, finding the entry point of each module
and calling it. If for some reason a library initialization returns 0, indicating failure,
Do_LibInitO terminates the task by calling INT 21h function 4Ch, with the exit code in AL
set to FOh.

InitTaskO next calls SetAppCompatFlagsO, which, despite its name, retrieves the compat
ibility flags for an application. The compatibility flags enable certain behaviors that existed in
Windows 3.0, but which were changed in Windows 3.1. Certain applications depended on a
particular behavior in Windows 3.0 and broke when the initial beta releases of Windows 3.1
were introduced. To keep these applications working in Windows 3.1, the [Compatibility]
section of the WIN.INI file contains a list of the module names for the programs and the

WINDOWS INTERNALS

associated flags that tell Windows which behavior, including bugs, to reenable. The individual
compatibility flags are discussed in Undocumented Windows. SetAppCompatFlags() extracts
the module name from the task database and uses the profile functions to determine if the
module is in the [Compatibility] section. The compatibility flags only apply to Windows 3.0
applications, so if the expected Windows version in the TDB is greater than 3.0,
SetAppCompatFlags() returns O. The return value from SetAppCompatFlags() is stored in the
task database for fast retrieval by the GetAppCompatFlags() function.

If the task being initialized in InitTask() is the first task to be loaded into the system,
some additional code is executed. It's at this point that CalMaxNRSeg() is called to set up the
initial minimum value for the swap area size. The global heap is then compacted twice. It's
not clear why it's done twice; one would hope that the GlobalCompact() would work cor
rectly the first time it's called. The USER module needs a chance to initialize a few things
after the first task has loaded, and so it is called through the PUserInitDone() function
pointer. Finally, if the KERNEL is running in Enhanced mode, InitTaskO calls KRebootlnitO
to set up the local reboot handling. (In Windows 3.1, you can use CTRL-ALT-DELETE to
reboot out of a non-responding application).

After the "first task only" code is out of the way, InitTaskO finishes by setting up the reg
isters with the return values that InitTaskO is documented to return. This includes some
mucking about with the command line and retrieving the value for the nCmdShow parameter
out of the first file control block (FCB) in the PDB. The application's startup code passes
these values on the stack as the parameters to WinMain().

Pseudocode for InitTask() - TASK.OBJ
II Locals:
II WORD TDB

pop return address off the stack into DX:AX

Save SP value into pStackMin and pStackBot. These are
variables at the base of the DGROUP seg, and indicate
the _highest_ address that the SP register can contain.

Calculate the lowest address that the stack will contain,
by subtracting the stack size (in BX) from the SP value.
Add Ox96 to that value (unsure as to why). Store this
value in pStackTop. This is the _lowest_ address that the
SP register should be able to use without incurring a stack
overflow.

BP = 0
PUSH BP

Push the return CS:IP back onto the stack (from DX:AX)

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

II If there's a local heap for this task, initialize it
if (CX != 0) II CX = heap limit
{

}

if (! LocaLInitO)
goto InitTask_done II AX == return code == 0

TDB = GetCurrentTask()

II DO_LibInit() calls the initialization routines of any
II implicitly linked DLLs loaded by this task. Only call
II if there is a LibInitSeg
if (TDB.LibInitSeg)

Do_LibInitO

II Get the compatibility flags, and store them in
II the TDB for quick look-up
TDB.TDB_CompatFlags = LOWORD(SetAppCompatFlags(»
TDB.TDB_CompatFlags2 = HIWORD(SetAppCompatFlags(»

if (some bit set in KERNEL_Flags) II Indicates booting?
{

}

fBooting = 0 II a global variable (0 = not booting)

II Unlock the DGROUP segment
UnlockSegment(GlobalHandle(DS»

CalcMaxNRSeg() II Calculate the minimum swap area needed

II Compact system memory
GlobalCompact(O)
GlobalCompact(O) II again

II Lock the DGROUP segment
LockSegment{GlobalHandle(DS»

II Give USER a chance to initialize some things after
II the first application has started up.
if (FP_SEG(pUserInitDone))

pUserInitDone()

KRebootInit() II Enhanced mode only

II Set up return register vatues from InitTask().

WINDOWS INTERNALS

Scan through the command Line in the PDB. NuLL terminate
the string after the fiLename. Set ES:BX to the next
character afterwards (the start of the command Line, i.e.,
LpszCommandLine).

CX = pStackTop

II Set up the nCmdShow vaLue in DX. This vaLue was passed
II to LoadModuLe() via the LpParameterBLock, and was squirreLed
II away in the first FCB of the PDB. This expLains the need
II for the magic vaLue '2' when setting up the parameter bLock
if (first WORD in first FCB == 2)

DX = second WORD in first FCB
eLse

DX =

AX = seLector of PDB II Set in ES upon entry to InitTask()

InitTask_done:

return

InitAppO
The InitAppO function resides in USER and performs initializations that are more specific to
USER than to KERNEL. InitAppO, to a much larger degree than InitTask(), contains special
code that's only executed for the first task to be loaded (typically, PROGMAN).

The Windows boot sequence creates a message queue that doesn't belong to a specific
task. The desktop window gets its messages from this queue and contains the queue handle in
its WND structure (see Table 4-2 in Chapter 4, offset ISh). InitAppO sets the queue of the
first program to be this queue, rather than creating a whole new message queue for it. No
sense leaving the original message queue (see Table 7-1 in Chapter 7, offsets 2 and 36h) lay
ing around unused. At the same time, InitAppO sets the hTask and "expected Windows ver
sion" fields in this message queue to the hTask and expected Windows version of the first
task. For any other task besides the first one, InitApp calls CreateQueueO to allocate and ini
tialize a queue for the new task.

Next, InitAppO installs some callback functions. The task signal procedure is set up by
SetTaskSignalProcO. These signals indicate the termination of tasks and the loads and unloads
ofDLLs. ToolHelp hooks this signal to allow it to shut down interrupt and notification han
dlers for tasks that did not or could not do it for themselves.

The next handlers installed are the resource handlers. Resource handlers are callback func
tions that load particular resources from the NE file. The SDK documentation implies that
resource handlers are only for custom resources, but this is not the case. InitAppO sets the
resource handlers for cursors and icons. There are different installed handler functions, based
upon the expected Windows version in the TDB (Windows 3.1 has DIEs, or device inde
pendent bitmaps). Finally, InitAppO calls SetDivZeroO to change the divide-by-zero excep
tion handler to point to a routine in USER. The new handler pops up a message box
informing the user of the situation and then terminates the program.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

The last portion of the InitAppO code is devoted to more code that only executes for the
first task in the system. Thus, we're back to watching the Windows initialization sequence,
which we examined in Chapter 1. InitAppO calls SetSystemTimerO to set up a timer routine
that's invoked every ten seconds. The timer callback routine simply calls IsUserIdleO, which
determines if a screen saver should be started up. The core scheduling routine, Reschedule()
also calls Is UserIdleO.

InitAppO next calls LoadDriversO to load any drivers (DLLs) that were specified in the
"drivers=" entry in the [boot] section of SYSTEM.IN!. In a related vein, InitAppO calls
LW_InitNetInfoO to load the network driver, if one is specified in the SYSTEM.INI file.

Mter loading the drivers, InitApp() uses GetProflieInfo() to see if there is a
"SETUPWIN" entry in the [windows] section of WIN . IN!. If SETUPWIN is found,
InitApp() calls WriteProfileString() with a NULL pointer, causing SETUPWIN to be deleted
from the WIN.INI file. By deleting the SETUPWIN entry when it's found, the Windows
setup procedure can be made to run only once. If SETUPWIN isn't found, then presumably
the setup program isn't running, and some additional initializations need to be performed.
The code now calls WNetRestoreConnection() to reconnect to the network if the connection
was broken for some reason. Following that, InitAppO calls AutoLoadTSRApps() to give
installed TSRs an opportunity to request that WinExec() execute a program or load drivers
and DLLs. The drivers are queried with a DPMI "simulate real-mode INT" call that does an
INT 2Fh function 160Bh. (The 3.1 DDK describes this interrupt in INT2FAPI.INC, with
the helpful comment, "Identify TSRs." There is a lengthy description on the MSDN CD
ROM.) Finally, InitAppO calls SetCursorO to set the cursor to the normal cursor instead of
the hourglass cursor that's shown during the load process.

Pseudocode for InitApp(} - TMINIT.OBJ (USER)
II Uses a gLobaL WORD variabLe that's initiaLized to 1. We'LL
II caLL it "fi rst""program" here.
/I
/I
II
/I
/I
II
II

Parameters:
WORD hlnstance

LocaLs:
char stringBuff[20]
char is_setup
QUEUE FAR * queuePtr; II Pointer to a message queue

if (first""program != 0)
{

II Do onLy if the first task

}

SetTaskQueue(O, HWndDesktop.hQueue);

II PLug the queue created for the desktop window with the
II current task and expected Win version for this task.
queuePtr = MK_FP(HWndDesktop, 0)
queuePtr->hTask = GetCurrentTask()
queuePtr->ExpWinVersion = GetExeVefsion()

WINDOWS INTERNALS

II Create a queue for aLL programs besides the first one
if (first.J)rogram == 0).

if (CreateQueue(DefQueueSize) == 0)
return 0;

II Set the task signaL proc to the defauLt handLer in USER
SetTaskSignaLProc(O, SignaLProc)

II InstaLL the caLLback routines that wiLL be used to Load.
II cursors and Icons from the NE fiLe. See the SDK
II documentation for detaiLs.
if (GetAppVer() >= 3.0) ~

{

}

eLse
{

}

SetResourceHandLer(hlnstance, RT_CURSOR,
LoadDibCursorHandLer)

SetResourceHandLer(hlnstance, RT_ICON,
LoadDiblconHandLer)

SetResourceHandLer(hInstance, RT_CURSOR,
LoadCursorlconHandLer)

SetResourceHandLer(hlnstance, RT_ICON,
LoadCursorlconHandLer);

SetDivZero() I I Set divide-by-zero handLer to a routine
II that pops up a message box if a division
II by zero occurs.

if (first.J)rogram != 0) II First program in system.
{

first.J)rogram = 0 II Don't Let happen again

II See "Undocumented Windows" for a description of the
II system timers, and SetSystemTimer().
SetSystemTimer(hWndSwitch, OxFFFD, 10000, IdLeTimer)

LoadDr;vers() II Load instaLLabLe drivers.

LW_In;tNetInfo()

II Loads stringBuff with "Windows"
LoadString(HlnstanceWin, 0, stringBuff, 20);

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

}

II Determine if windows is being run for the very first
II time. It does this by Looking for "SETUPWIN" in the
II WIN.INI fiLe. If found, it's the first time. To
II prevent it from being found subsequentLy, the string
II is deLeted from WIN.INI.
is_setup = GetProfiLeInt<stringBuff, "SETUPWIN", 0)

if (is_setup == 0)
{

II Not the first invocation.

}

eLse
{

}

WNetRestoreConnection(O, MK_FP(0,1»

UserDiagOutput(O, "TSRQuery")

AutoLoadTSRApps() II Int 2Fh function 160Bh

UserDiagOutput<1, "TSRQuery")

WriteProfiLeString(stringBuff, "SETUPWIN", 0) II Remove it.

SetCursor(HCursNormal)

return 1

Application Shutdown
The startup code for a Windows application is also responsible for shutting it down. Just as
WinMainO isn't the true entry point to a Windows program, returning from WinMainO does
not immediately terminate the Windows program. If you recall, the startup code called
WinMainO, and so when WinMainO is exited, the startup code takes over again. After doing
any necessary shutdown procedures, such as calling C++ static destructors, the startup code
terminates the program the same way as a DOS application, with INT 21h function 4Ch.

At this point, you may be thinking, "But DOS doesn't know anything about Windows
programs!" Once again, we're faced with the dual personality of Windows. Sometimes Win
dows acts like DOS, with system services provided by INT 21hs; and other times you forget
about DOS and make Windows calls. When WinExecO starts a program, Windows translates
the call into a DOS style INT 21h call. But then the INT 21h in KERNEL intercepts the INT
21h request and transforms it back into a series of Windows function calls. As you might
expect, application shutdown is nearly as twisted. Like the INT 21h, function 4Bh that starts a
Windows program, KERNEL intercepts INT 21h, function 4Ch and transforms it into a
series of Windows calls. The routine that performs process terminations in KERNEL is
ExitCall() .

WINDOWS INTERNALS

ExitCall()
ExitCallO is one busy routine! It starts by setting the WExitingTDB global variable to the
selector value of the exiting TDB, indicating to Windows that a task is in the process of exit
ing. Next, ExitCall() invokes DebugExitCallO, which sends the extremely important process
termination notification. This notification is essential for debuggers, which need to know
when the process they're debugging has exited. However, one problem related to this seems
to bite quite a few programmers. Look a bit further in the code, and see where the module for
the task is freed, causing the WEPs for the implicitly loaded DLLs to be called. Why is this a
problem? When a debugger gets the task termination notification, it considers the process to
be dead and therefore shuts down its internal tables and deans up. It's turned a deaf ear
towards Windows. Unfortunately the WEPOs haven't been called yet. Thus, programmers
who set a breakpoint in their WEP code are somewhat surprised when their WEP() is called,
but the debugger doesn't stop at the breakpoint. Although there is a fairly ugly way to work
around this problem in TDW, the best solution is to use a system level debugger like Soft
lce/W, or if desperate, WDEB386 from the Microsoft SDK.

After the task termination notification is sent, ExitCall() checks to see if the terminating
task is the last one in the system. In this case, ExitCall() needs to shut down Windows. Win
dows without a task is like a car without an engine. In this case, the local rebooting feature of
Enhanced mode Windows 3.1 is first disabled. Then, ExitCallO invokes the infamous
Bunny-3510. Bunny_3510 is described in Undocumented Windows, but here, suffice it to

say that it changes KERNEL's GP fault handling routine to a function that prints out, "Fault
at Exit Time!!!" if the debug version of KERNEL is running. Finally, ExitCallO invokes
ExitWindows(). If for some strange reason ExitWindows() manages to return from this call,
ExitCallO invokes ExitKernelO. ExitWindowsO and ExitKernelO are examined in detail in
Chapter 1. It's unlikely that Windows will exit through the code sequence just described,
however. Typically, the user selects "Exit Windows" from PROGMAN, or else closes PROG
MAN. In eitl1er case, ExitWindowsO is called by PROGMAN, and the code sequence just
described doesn't get a chance to execute. The actions of ExitWindowsO are also covered in
Chapter 1.

Naturally, most invocations of ExitCallO are not for the last task in the system. ExitCallO
calls the task signal procedure with a parameter of 20h. This indicates that the task is termi
nating normally, as opposed to a code of 666h, which indicates the task has died violently in a
UAE (draw your own conclusions about the appropriateness of the signal value). This is
USER's opportunity to do any deanup that needs to be done on a task specific basis. We'll
come back to this shortly.

After sending the termination signal, ExitCall() goes through a rather strange sequence of
code that points the exception 6 (illegal opcode) handler at the final portion of the ExitCallO
code. It then intentionally generates an exception 6. This causes the rest of ExitCallO to be
executed as a DPMI exception handler. Why is this? It's been hypothesized that a DPMI
exception handler is a quick and easy way to get a "cheap" stack. In Windows 3.0, the
extremely small stack used during program exits cause severe problems. It wouldn't do to
have the application exit on its own stack either, since its stack segment is going to be tossed
as part of its cleanup process. Running the program cleanup sequence on an exception han
dler stade seems a bit odd, but the problems with Windows 3.0 do seem to have gone away.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Inside ExitCallO's "exception handler," a call to the GlobalFreeAllO function walks the
global heap and frees any segments owned by the exiting PDB. DeleteTaskO removes the
TDB from the linked list ofTDBs. TerminatePDBO shuts down any filehandles that the task
may have open. FreeModuleO removes the module database of the exiting tasks and decre
ments the usage counts of any DLLs that were implicitly linked to. If the usage count of the
DLL falls to 0, KERNEL removes the DLL from memory. The details of FreeModuleO are
covered shortly. DOS function 50h sets the current PSP to the PSP that was in effect when
Windows loaded. The selector allocated to point at the PDB (the WORD at offset 60H in the
TDB) is freed; and immediately after that, ExitCallO frees the IDB itself.

Also inside this exception handler, ExitCall() sets the exception 6 handler address back to
its original value. It then sets the saved SS:SP value in the DPMI stack frame to point to a
small stack inside KERNEL. The CS:IP in the stack frame is set to a label inside the core
scheduling routine. When ExitCallO RETFs from the exception handler, the CPU ends up
executing in the scheduler, looking for a task to schedule, and running on the temporary
KERNEL stack. Onfe a new task is scheduled, the exiting task is completely gone.

The final act before RETF'ing to the scheduler is to set the global variable WExitingIDB
to 0, indicating that the task termination is complete.

Pseudocode for ExitCall() - I21TASK.OBJ
WExitingTDB = CurTDB II Both are global variables

II A non-zero WExitingTDB indicates
II that a task is terminating

II Send RegisterPtrace() I ToolhelpHook() notification
II for debuggers/TOOLHELP
DebugExitCall ()

II If in graphics mode, call DISPLAY.SOO
II (UserRepaintDisable()) to suspend screen updates
II This only occurs in the Enhanced mode KERNEL
if (graphics)

PDisplayCritSec(1)

pStackTop = a II See InitTask() for description

UnlinkObject() II Remove the PDB from the list of PDBs

Num_Tasks-- II Global variable returned by GetNumTasksO

II If the number of task drops to 0, exit Windows. This.
/I section appears to be a "safety-hatch" (e.g., if PROGMAN
II was the only task, and GP faulted). Windows is normally
II exited by calling ExitWindows()

WINDOWS INTERNALS

if (Num_Tasks == 0)
{

II Last task in system?

}

II Calls the reboot VxD via 2F/1684 to shut down local reboot
if (FP_SEG(LPReboot))

LPReboot()

II Set FaultHandler() to a different handler for exiting
Bunny_351()

II Calls ExitWindows(). This call doesn't return
PExitProc ()

II In case the previous call _did_ return?
ExitKerne l ()

II Usually come here: -pot_ the last task in the system

/I Send the "task-exiting" signal. This is where USER gets
II its opportunity to clean up things, such as window classes
II that need to be unregistered.
if (FP_SEG(WExitingTDB.TDB_USignalProc) != 0)

WExitingTDB.TDB_USignalProc(20h)

II This next section is somewhat strange. It deliberately
II generates an exception 6 (invalid opcode) and handles
II it. It's been theorized that the reason for this is to
II make sure that there's a "safe stack" to terminate the
II task with (i.e., we can't run on the original stack
II anymore) There were problems in Windows 3.0 with very
II small stacks at program exit time.
Use DPMI fn. 202h to get the current exception 6
handler. Push this address on the stack

Use DPMI fn. 203h to set the exception 6 handler to
ExitCall_exception_6_handler

pop the original exception 6 handler off the stack into CX:DX

An invalid Ofh OFFh "opcode" appears here. This triggers an
exception 6, that's now vectored to
ExitCall_exception_6_handler

MOV BP, SP

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Use DPMI fn. 203h to set the exception 6 handler to CX:DX
Before the intentional exception 6, CX:DX contained the
address of the original exception 6 handler.

Patch the SS:SP values at [BP+12J to point to GMOVE_STACK

Patch the CS:IP. values at [BP+6J to point at ExitSchedule(),
which is inside the scheduler.

II O.K. We're all done with that strange section that did
II the deliberate exception 6, and handled it. Note however,
II that we're still in the exception 6 handler, and will be
II throughout the rest of this function.
GlobalFreeAll() II GlobalFree() segments belonging to task

DeleteTask() II Remove task from the list of tasks

TerminatePDB() II Closes open files, etc.

II Look for a private file handle table
if (WExitingTDB.TDB_PHT)

WExitingTDB.TDB_PHT = a

/I Free up the task's module. This in turn decrements
II the usage count of implicitly linked DLLs, and frees
II the DLLs whose usage count has gone to zero
FreeModule(WExitingTDB.TDB_Module)

Free up the file handle table segment if it's not inside the PDB

II topPDB = PDB of DOS when Windows loaded
Cur_DOS_PDB = Win_PDB = topPDB

PrevInt21Proc(AH = 50)

II Free the PDB selector stored in the TDB

FreeTDB() II Free up the TUB selector

WExitingTDB = a II Indicate task is done terminating

RETF II Returns to ExitSchedule in the scheduler
/I We're _still_ in the exception 6 handler.

WINDOWS INTERNALS

AppExitO
We can now come back to the details of the USER task cleanup that we temporarily deferred.
Inside the SignalProc() task signal handler routine in USER, if the signal number is either 20h
(normal task termination) or 0666h (termination by GP fault), SignalProc() calls AppExitO.

AppExit() is a particularly interesting routine. The code has to completely remove all
traces of a task, at least from the perspective of the USER module. To make matters interest
ing, the task that's exiting could be dying as the result of a UAE or GPF. AppExit() can't
make any assumptions concerning the state of the exiting task. For instance, the exiting task
may have put Windows into a system modal state. Or it may have captured the mouse cursor.
Or any number of other things. As a result, examining AppExit() gives us a pretty good idea
of USER's worry list, that is, things that USER doesn't trust an application to have shut down
properly. The operational motto of AppExit() seems to be, "Better safe than sorry."

Pseudocode for AppExitO - TMDSTROY.OBJ
II
II
II
II
II
II
II
II

Parameters:
WORD hTask
WORD hInstance
WORD hQueue
WORD termByGPFault

Locals:
WORD hModule
DWORD lpfnFileCDR

hModule = GetInstanceModule(hInstance) II Need the hModule

if (HGAppExit != 0)
if debug KERNEL

II See if we're recursing

output a message: "Reentrant application termination"

HQAppExit = hQueue II HQAppExit is a global variable.
II Is non-zero if a task is exiting

if (fTaskIsLocked II If exiting task is system modal,
LockMyTask(O) II unlock it now

CloseCommPorts(hTask II Don't need these anymore!

DestroyTimers(hQueue, o) II Undo any timers we have going

Loop through some sort of linked list. If certain flags are
set, and if a field in the structure matches the hInstance,
call ReleaseCacheDC(). This would appear to be
freeing up any DC's that weren't freed up by the program.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

II Make sure nobody is waiting for us to reply to their
II sent message, because we certainly won't be.
FlushSentMessages()

UnhookHooks(hQueue, 1) II Release any installed hooks

IIDid the app GP fault? Is it a 3.1 or later application?
if (termByGPFault I I GetExpWinVer(hInstance) = Ox30A)

DeactivateQueue(hQueue) II ???

II Change the queue handle of the desktop window to the
II queue of the parent of the exiting task.
PatchQueueModuleWindows(HWndDesktop, hQueue, 0)

II Get rid of any windows or menus owned by the queue
II of the exiting task.
DestroyQueueWindows(HWndDesktop, hQueue)
DestroyQueueMenus (hQueue)

II if the exiting queue "owns" the clipboard, reset
II values relating to the clipboard
if (hQueue == hqClipLock)
{

}

hwndClipOpen = 0
hwndClipOwner = 0
EmptyClipboard()
hqClipLock = 0

II Do USER cleanup things that should be done on a per-module
II basis, rather than on a per-task basis (e.g. unhook
II installed hooks). Pseudo-code is below.
ModuleUnload(hModule, 1, termByGPFault)

fDragIcon = 0 II Not dragging icons anymore

II If the terminating application (e.g., WINFILE) is using
II FileCDR() disable the FileCDR() callbacks (see
II "Undocumented Windows" for FileCDRO description.
lpfnFileCDR = FileCDR(OxFFFF)
if (lpfnFileCDR)

if (GetProcModule(lpfnFileCDR) -- hModule)
FileCDR(0)

WINDOWS INTERNALS

Some kind of menu cleanup (i.e, EndMenu())

if (termByGPFault)
{

ClipCursor(0) II Undo any cursor clipping the
II faulting app may have set up?

fMessageBox = 0
fInt24 = 0 II No longer in critical error handler

EnableHardwarelnput(1) II Turn mouse on (just in case?)

}

else
{

}

hCurCursor = 0
SetCursor(hCursNormal)

II Nobody has the cursor now
II Restore to normal cursor

if
{

}

/I
/I
if
{

}

(hTask == hTaskGrayString) /I The meaning of
/I hTaskGrayString

SelectObject(hDCGray, hBmGray) /I variable is
SelectObject(hDCGray, hFontSys) /I unknown.
hTaskGrayString = 0

II The task is terminating normally (No GP fault)

If there's sufficient space in the DGROUP heap,
shrink all 3 heaps used by USER
(LocalCountFree() > 4096)

LocalShrink(0,
LocalHeapSize() - LocalCountFree() - Ox0400)

LocalShrink(hMenuHeap, a)
LocalShrink(hMenuStringHeap, a)

fShrinkGDI = 1 II GDI heap needs to shrink?

if (fPaletteDisplay) /I Does palette need to be changed?
Tweak some palette values

the

II If the terminating app has the mOuse capture, or is system
II modal, put the system back into a "normal" state
if (HQAppExit -- hQCapture I I

HQAppExit == hQSysModal)

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

{

}

Capture(a)
hwndSysModal = a
hqSysModal = a

DeleteQueue() II Don't need our message queue anymore!

II Give GDI a chance to check for unfreed objects, etc?
GDITaskTermination()

II Tell installable drivers that an application is going away?
InternalBroadcastDriverMessage()

HQAppExit = a II AppExit() is done, and can now be
II entered again

ModuleUnload()
ModuleUnload() is a helper routine to AppExitO. It's called every time AppExitO is called,
but only does something if this is the last task using the module, and the module is about to
be unloaded. For instance, if you were running four copies of Solitaire (slow day, huh?), and
exited each of them in turn, ModuleUnloadO would be called each time. It doesn't spring
into action, however, until the last instance terminates, and the Solitaire module is about to be
unloaded.

Module UnloadO performs the USER cleanup needed when a module (as opposed to a
task using the module), is leaving the system. The two items that fall into this category are
callback hooks like WH30URNALPLAYBACK and windows classes. It wouldn't do to undo
hooks or unregister classes every tim~ an application terminates. Another instance of the same
program might be using them. Therefore, these two cleanup chores aren't performed until the
last instance of a particular module terminates.

Pseudocode for ModuleUnload() - TMDSTROY.OBJ
II
II
II
II
II
II

Parameters:
WORD hModule
WORD isApplication
WORD termByGPFault

Locals
WORD usageCount

usageCount = GetModuleUsage(hModule)
II If this is the last instance of the module, or if the
II app GP faulted, remove any installed hooks.
if (usageCount == 1 I I termByGPFault)

UnhookHooks(hModule, a)

WI N DOWS INTERNALS

if (usageCount == 1)
{

II Is module going away?

II Patches queue handles in WND structures. Why?
PatchGueueModuleWindows(hwndDesktop, 0, hModule)
II Get rid of all classes registered by this module
PurgeClass(hModule) II see end of chapter 4

}

FreeModule() and FreeLibrary()
Awhile ago, we handwaved past the details ofFreeModuleO. Now it's time to put it under the
microscope. FreeModuleO and FreeLibraryO are one and the same function, with the
FreeLibraryO name being more widely known. There are two entry ordinals, but they both
JMP to the same internal code. The code for FreeModuleO is fairly straightforward. It starts
by calling DecExeUsageO to decrease the usage count of the module. If the usage count
drops to 0, FreeModuleO removes the module from the system by calling DelModuleO,
which will be examined momentarily.

If the module isn't removed from the system, there's still work to be done in
FreeModuleO. If the module being freed has MULTIPLE data segments (that is, it is a task),
the selector for the DGROUP segment might need to be updated in the module table. If you
recall, each module table contains a table of the segments from the NE file, along with their
associated selectors (see offset 22h in Table 3-1). Since multiple copies ofa program can be
running, the selector of the DGROUP segment in the segment table contains the selector
value for the most recently run instance of the program. If this selector value is that of the
DGROUP for the instance being freed, the selector value is invalid after the instance is freed.
To remedy this, DelModuleO iterates through the task list, looking for a task with a
DGROUP that was created from the same module as the freed instance, but which is not the
instance that's being freed. When a qualified DGROUP is found, FreeModuleO plugs the
selector into the DGROUP selector's spot in the module table.

Pseudocode for FreeModule() - MODULE.OBJ
II FreeLibrary() is an alias for FreeModule()
II Parameters:
II WORD instance_handle
II Locals:
II WORD

II GetExePtr takes an hInstance, and returns an hModule
module_table = GetExePtr(instance_handle) II Is module valid?
if (!module_table)

return

II Decrement the usage count of the module. If the usage
II count becomes 0, it's time to remove the module from the
II system.
if (DecExeUsage(module_t~ble) == 0)

CHAPTER 3- STARTING A PROCESS: MODULES AND TASKS

{

}

DelModule(module_table)
return

if (module is MULTIPLE instance) II More than one task using this module?
{

}

FarMyFree(instance_handle) II Free the DGROUP.

if (instance_handle != current instance handle II No need to worry?
in the module_table)

return

II The instance handle in module_table has been freed.
II It needs to be replaced with an hInstance for a
II different instance of the same program.
loop through the task list, looking for a task whose
hModule == module_table, and whose hInstance is not the
same as instance_handle. When one is found, store its
hInstance into the instance_handle of module_table.

DelModule() ,
DelModuleO is responsible for undoing all the work that LoadModuleO did. DelModuleO
calls FarDebugDelModuleO, which causes the module deletion notification, NFY_DEL
MODULE in TOOLHELP.DLL, to be sent. Next, DelModuleO uses CallWEPO to handle
all the messy details of calling DLL WEPO functions. After whatever WEPO processing
occurs, DelModuleO calls the task signal procedure with a signal value of 80h, indicating that
a DLL unload is taking place. DelModuleO then frees the DGROUP segment of the DLL,.if
one is present. Self-loading applications have their ExitProcO called at this time. Continuing
on, DelModuleO closes the module's NE file handle in the KERNEL file handle cache. Next,
DelModuleO removes the exiting module from the list of modules. The global heap is locked
during this procedure. Afterwards, the GlobaIFreeAll() function walks through the global
heap, freeing any global memory blocks owned by the outgoing module. (Global memory
blocks that were owned by the process were freed previously, in the ExitCallO routine).
Finally, DelModuleO adjusts the maximum swap area size of the system by invoking
CalcMaxNRSeg().

code for DelModule() - MODULE.OBJ
/I Parameters:
II WORD module_table

/1 Perform the RegisterPtrace/ToolhelpHook module deletion
II notification.
FarDebugDelModule()

WINDOWS INTERNALS

CallWEP() II Calls the WEP if necessary.

if (module_table is for a DLL)
{

if (FP_SEG(pSignalProc))
pSignalProc(SO) II Undocumented. 80 = DLL unload

}

if (module_table has a DGROUP segment)
FarMyFree(DGROUP segment)

if (module is self loading)
ExitApplO

FlushCachedFileHandle()

II locks the global heap

II Remove module_table from the module list
FarUnlinkObject()

II Undoes the Far_GEnter()
Decrement the lrulock in the global heap

/I ExitProcO

II Remove from KERNEL cache

II Free any global blocks owned by the exiting module_table
GlobalFreeAll(module_table)

CalcMaxNRSeg() II See if the swap area needs to be adjusted

What About Win32s Programs?
Having seen how normal Windows NE programs and DLLs are loaded and unloaded from
memory, we can now take a little time and examine how Win32s allows programs designed
for Win32 and Windows NT to be run on top of Windows 3.l.

The first difficulty with running Win32 programs that springs to mind is the fact that
these programs aren't in the NE format. Instead, they're in the Portable Executable (PE) for
mat. Indeed, when LoadModuleO encounters one of these files, it doesn't load it. Instead, the
error code (21) returned from LoadExeHeaderO indicates to the caller that the file is a PE
file. The INT 21h 4Bh (EXEC) handler in KERNEL sees "Windows 32-bit extensions
required" error code and springs into action, calling the ExecPEO function.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

ExecPEO
The ExecPEO function is responsible for loading W32SYS.DLL arid transferring control to it.
The ExecPEO code does nothing with regards to the 'PE' file. It's therefore obvious that the
loader for 'PE' applications that run under Windows 3.1 is somewhere inside the Win32s sys
tem. This loader is responsible for doing everything that LoadModuleO does, including creat
ing module tables and task databases.

Pseudocode for ExecPE() - 121TASK.OBJ
// Command line and nCmdShow are on the stack when ExecPE is
/1 called. ExecPE does not set up its own stack frame
/I
// Locals:
// WORD hlnstW32Sys
J / Globals:
// DWORD lpfnW32Sys_startprog

1/ Don't prompt if the file can't be found
SetErrorMode(8000h}'
Save the returned error mode on the stack

1/ Load the Win32ssupport DLL
hInstW32Sys = Loadlibrary("W32SYS.DLL")

pop the. returned error mode, and call SetErrorModeO again
with the original error mode value

// Get address of 3rd entry in W32SYS.DLL.
lpfnW32Sys_startprog =

GetProcAddress(hlnstW32Sys, MK_FP(O, 3))

push lpfnW32Sys_startprog on stack, and RETF to it. This
eliminates the return CS:IP from the stack, thereby making
the stack in lpfnW32Sys_startprog look just like the stack
frame that was passed to ExecPE()

The Win32s environment itself continues the grand tradition of hacks on top of hacks.
When DOS programs started outgrowing the confines of real mode, DOS extenders were
invented. A small stub program sits in real mode· DOS and acts as a proxy for the protected
mode code. The protected mode code ignores DOS and enjoys its newfound freedom, except
when it needs to do certain things, at which point it temporarily converts back to .a.normal
DOS program. TheWin32s environment is a Windows Extender. A Win32s implementation
has some EXEs and DLLs (for example, W32SYS.DLL), plus a virtual device driver,
W32S.386, that give the appearance to 16-bit Windows that just another 16-bit Windows
application is running. Meanwhile; the meat of a Wm32s application runS in 32-bit flat mode
and acts like aWin32 application. When it needs to put something on the screen or otherwise
interact with lowly 16-bit Wmdows applications, it reverts temporarily to acting like a normal
Windows application.

WIN DOWS INTERNALS

Self-Loading Windows Applications
This chapter wouldn't be complete if we didn't say a few words about the historical oddity of
self-loading Windows applications. At one point in time, the Microsoft applications developers
felt that the Windows loader, which we've just discussed so extensively, wasn't adequate for
their needs. Amazingly, the Windows development team was able to provide a back door to
the KERNEL, allowing a program to provide its own loader and rely only on very minimal
KERNEL services. One might speculate as to whether this back door would have appeared
had at least two of Microsoft's most successful products not been involved.

At this time, the only self-loading programs known to us are Microsoft Word l.x,
Microsoft Fortran, and early versions of Microsoft Excel. With Microsoft Word 2.0, self-load
ing appears to have been abandoned. Microsoft Fortran produces programs that use the self
loading mechanism because of the lack of proper support for huge (greater than 64K) data
segments in Windows 3.0. The large data segments were necessary for Fortran COMMON
block support. Additionally, Microsoft Excel 3.0 appears to have self-loading fingerprints, per
haps left over from a previous version. However, Excel 3.0 does not use the self-loading facili
ties of Windows 3.X. In version 4.0 of Excel, the fingerprints are gone. The obvious
conclusion is that Microsoft itselfis moving away from self-loading applications.

At this point, you might be thinking, "Oh well, they're a thing of the past. History is
bunk. End of story." This is not the case. With the Microsoft Open Tools initiative of 1991,
the requirements for a self-loading application were laid out. This documentation, while a

. huge step in the right direction, was amazingly lacking in some key details and concepts that
would be necessary for someone to implement a self-loading application. The Open Tools
documentation later reappeared in the Windows 3.1 SDK (Chapter 24, Overviews), with even
less detail provided. Microsoft representatives on CompuServe have stated that self-loading
applications were documented because Microsoft itself uses them, and that Open Tools was
intended to create a level playing field. At the same time however, they strongly discouraged
anyone from actually writing one. The fact that Microsoft discourages self-loading applica
tions, along with the incomplete documentation, may be related. Everything associated with
self-loading applications seems to generate lots of heat, but not much light. It has been sug
gested that the self-loading documentation is so poor because no one in Redmond admits to
knowing anything about it!

Why would a program purposely forego using the loader provided by KERNEL, espe
cially when one considers the substantial amount of work self-loading requires? The Microsoft
documentation itself gives two very good examples of why performing your own loading
might be beneficial. The first reason is that y.our program might wish to use different code or
data segments for different machine configurations or environments. The Microsoft docu
mentation gives the case of a Windows compiler that generates different code for machines
with. a coprocessor than for those without. The other example given is that of a program
where data segments have been compressed and need to be expanded to be read into mem
ory. Self-loading has a tendency to make life more difficult for those people who try to disas
semble everything in sight. In fact, a third use of self-loading applications would be for
encrypting sensitiv<;: data and allowing it to be loaded only if the proper password, dongle, or
whatever was present.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

Despite the previous comments on the quality of the SDK documentation regarding self
loading applications, it's still the first place to go if your application just has to be self-loading.
Rather than rewriting everything that's in the SDK documentation, we'll assume that you
have it and will comment on various spots where the documentation is unclear or lacking.

The first spot in the SDK documentation that bears closer examination is the sentence,
"For a complete description of an executable file before it is altered by the loader and loaded
into memory ... " This information is analogous to describing a butterfly by discussing the
details of the cocoon. Since Microsoft hasn't divulged the details of the in-memory module
table, the documentation assumes that you know that file offsets in the NE header translate to
offsets in the module tables segment. In addition, there are tables in the in-memory module
table that have a different format than those in the NE file. Luckily, in most cases, a self-load
ing application doesn't need to use any tables beside the segment table, which is addressed
momentarily. If you do need to know the format of the other tables, see Table 3-1 on the in
memory module table.

Next, there is a spot in the documentation referencing the self-loading flag, which must
be set to Ox0800. There are two diiferentsets of flag in the NE header. The module table
description early in this chapter refers the flags at offSet OCh in the NE header. What's com
pletely missing in the documentation is just how those flag values get set. The Open Tools
documentation is somewhat clearer on this, stating that starting with LINK version 5.15,
APPLOADER is a new keyword in the DEF file that causes the bit to be set. Borl<md's
TLINK does not support this feature. However, it would be rather trivial, given the NE file
spec, to write a 30 line C program that would find the NE header and toggle on the bit.
There does not appear to be anything else special required, besides setting the bit and having
a proper loader: data table set up in segment 1.

Continuing our hit parade we find the section that says, "After the segment table for an
executable file is loaded in memory, each entry contains an additionall6-bit value. This"value
is a segment selector (or handle) that the loader created." This refers to the eight-byteseg
ment table entries for an NE file. What the documentation is trying to say is that each eight
byte entry on disk becomes a ten-byte entry when loaded into memory. The last two bytes
contain the selector handle used to reference the CODE or DATA in the segment. This topic
was discussed previously in the section on the module table (see offset 22h in Table 3-1). In
addition, the documentation implies that the module table is handed to the self-loading appli
cation, with the selectors already allocated for each of the segments. This is not the case.
BootAppO is a function that must be provided as part of a self-loading executable. When
BootAppO is called, it's expected to allocate the selectors for each of the segments in the NE
file and patch the segment table itself.

In the section, Reloading Segments,· the documentation says, " ... the LoadAppSeg func
tion should resolve any far pointers that occur in the segment." This seems to contradict an
earlier statement, "All of the pointers in this t~ble must point to locations within the first seg
ment.There can be no fixups outside this segment." The intended meaning might be this: All
functions pointed to in the Loader Data Table must be. in the first segment. Otherwise,
there'd be relocations to segments that the Windows loader isn't loading, but which you are.

Now that we've beaten up on the documentation, let's take a look at what KERNEL does
to assist self-loading applications. Self-loading programs are required to provide three func-

WINDOWS INTERNALS

tions, BootAppO, ExitAppO, and LoadAppSegO, which Windows calls at the appropriate
time. Each of these functions has a corresponding wrapper function in KERNEL. Thus,
BootAppO is called by KERNEL's BootApplO; LoadAppSegO is called by LoadApplSegO;
and ExitProcO is called by ExitApplO. As it turns out, however, ExitApplO is an empty func
tion. It doesn't do ~ything, which means that the user-supplied ExitProcO isn't called. The
KERNEL-supplied functions that a self-loading application uses is discussed in other chapters
of this book. That leaves BootApplO and LoadApplSegO, for which we can show pseudocode.

BootApplO
BootAppl() starts by verifying that the segment attributes for segment 1 are what they should
be for a self-loading application. BootApplO then loads the first segment, just as if it were a
regular segment in any normal Windows EXE. One result is that the fixups for the first seg
ment are applied. This is how the addresses of the user-supplied functions in the loader data
table get filled in. Next,a data segment selector that aliases the newly loaded code segment is
created. This allows BootAppl() to put in the addresses of the KERNEL-supplied functions
without GP faulting by trying to write to a code segment. After verifying the "AO" signature
at offset 0 in the segment, BootAppl() calls the user supplied BootApp() function using the
function pointer in the loader data table.

Pseudocode for BootAppl() - LDAPPL.OBJ
II Parameters:
II WORD module_table
II WORD file_handle

II LoadModule() sets all code segments to moveable,
II so if the first segment is fixed, something funny
II is going on.
if (first segment in module_table is FIXED)

return 0

if (first segment in module_table isn't PRELOAD)
return 0

FarLoadSegment(1) II Load segment 1 normally

II Allocate a data segment alias for the newly load code
Far_Get_Temp_Sel()

If (first 2 bytes in the segment != "AO")
return 0

Fill in the "self-loading" table with the addresses of
FarMyAlloc(), AppLoaderEntProcAddress(), and MySetOwner().
Another far pointer not mentioned in the documentation is
a l so f ill ed in.

CHAPTER 3 - STARTING A PROCESS: MODULES AND TASKS

call BootApp() in the application's code, via the function
pointer in the self-loading app table.

LoadApplSegmentO
LoadApplSegO begins by calling the user-supplied LoadAppSegO function with the pointer in
the loader data table. On its first attempt, LoadAppISeg() passes LoadAppSeg() the file handle
that it was passed as a parameter. If that procedure fails for some reason, LoadApplSegO tries
to open up the EXE file itself and calls LoadAppSegO again with its newly opened file handle.
Before LoadApplSegO returns, it checks to see if it did open the file, and if so, it closes the
file.

Pseudocode for LoadApplSegment() - LDAPPL.OBJ
1/ Parameters:
1/ WORD module_table
1/ WORD segment_number
1/ WORD file_handle
1/ Locals:

WORD local_file_handle

local file_handle = -1

start:

if ("AD" signatUre not in segment 1)
go to error

call program supplied LoadAppSeg() function with the function
pointer stored in the self-loading table

if (LoadAppSeg() returned non-zero) // Selector in AX
goto done

(/ Open the file specified in the module table. The flags
// are OF_PROMPT I OF_REOPEN I OF_CANCEL I OF_VERIFY
if (local_file_handle == -1)
{

}

error:

local_file_handle = MyOpenFile()

// Try to call LoadAppSeg() again with this file handle
if (local_file_handle)

goto start

WINDOWS INTERNALS

AX = 0

done:

if (local_file~andle)
INT 21h, fn. 3Eh to close local_fi le_handle

return AX

Summary
In this chapter, we've examined modules, tasks, and the Windows loader.

A module is comprised of a module table and the associated code, data, and resources
that the module table refers to. A module table is somewhat similar to the New Executable
header found in NE files. The global memory handle used to access the module table is called
a module handle, or hModule. Both programs and DLLs are built from modules. The auto
matic data segment (DGROUP) for program and DLL modules is called the instance handle,
or hInstance.

A task is a thread of execution through code. Every task has a task database (TDB) associ
ated with it. The task database stores information about the task, such as the number of events
waiting for the task, a handle to the task's message queue, the current directory, and so on.
The global memory handle used to access the task database is called a task handle, or hTask.
There can be more than one task created from a program module. Tasks based on the same
module can be differentiated by their DGROUP segment (hInstance).

The Windows loader consists of the LoadModule() function and its helper functions.
LoadModuleO loads both programs and DLLs. Much of the work of the Windows loader
involves reading in the NE file, and creating a module from it. If the module is for a program
file, the loader also creates a task database and inserts the new task into the list of tasks to be
scheduled.

The Windowing System

Of all the Windows components, the most immediately visible is the windowing system. Un
derstanding the fundamentals of the windowing system is crucial, as this is how you convey
information to and from the user. Any interactive DOS program must deal with the specifics
of the keyboard, mouse, and video display mode. One of the goals of Windows is to remove
the need to worry about these hardware-specific areas and let you concentrate on your pro
gram. Chapter 7 on the messaging system concentrates on how messages are passed around
between windows and applications. Here, we examine the internal data structures for windows
and classes and see what happens during the lifetime of a window.

The implementation of the windowing system in USER.'EXE could easily be the subject
of an entire book. Therefore, the functions discussed here are in no way supposed to represent
the whole of the windowing system. We cannot hope to cover all the intricacies of such things
as controls, the dialog manager, or Multiple Document Interface (MDI) windows. Instead the
focus is on covering areas that even the simplest generic application encounters.

You might be surprised to learn that, like the messaging system, the windowing system in
Windows is quite similar to its OS/2 counterpart. Therefore, many of the concepts in this
chapter apply equally to Presentation Manager (PM) and to Windows. Experts in this area
give the idea that the PM implementation is purer. Its API doesn't have as many special cases
and doesn't try to overload parameters to mean different things in· different circumstances.
Since OS/2 PM was designed and developed after the original Windows implementation, it's
reasonable to assume that Microsoft and IBM, one-time partners who developed PM, incor
porated many of the lessons learned from Windows.

299

WINDOWS INTERNALS

Many programmers keep the core Windows DLLs straight by associating their primary
functionality with them. For instance, KERNEL (KRNL286 and KRNL386) is considered to
be the memory manager, while the Graphics Device Interface (GDI) is considered the graph
ics engine. In this simplified scheme, USER is the windowing system. Although USER per
forms other duties such as resource handling, string manipulation, and atom management, the
vast majority of USER appears to deal with displaying and managing windows in one form or
another.

Window Classes
One of the first and most daunting things new Windows programmers encounter is the
RegisterClass() function. The WNDCLASS structure you pass as a parameter sure has a lot of
fields! Why do you have a WNDCLASS, and why do you need to call RegisterClassO with the
WNDCLASS, if all you want to do is put a simple window on the screen?

The WNDCLASS structure reflects Window's habit of sharing as much commonality as
possible. Rather than forcing the programmer to specifY all the attributes of a window when
ever a new window is created, the attributes are collected into a central place, the
WNDCLASS structure. When you need to create a new instance of a particular kind of win
dow, USER can retrieve much of the required information out the WNDCLASS structure,
which is described below.

A window class is similar in some ways to the module table (Chapter 3). It acts as a cen
tral database of information and can be reused by different programs. Just as tasks are created
from information in a module table, windows are created from information stored in a win
dow class. When the last task created from a module table goes away, so does the module
table. When the last window using a class goes away, so does the window class (sort of: see the
discussion of PurgeClassO at the end of this chapter). The use of the term class is rather
unfortunate, as a class in Windows has a completely different meaning from a C++ class.

A disturbing aspect of window classes is that you need to contend with them immediately
upon writing your first non-trivial Wmdows program. There are typically lots of window
classes already registered when your program starts up, such as the USER control classes
described below. Unfortunately, none of these classes is either suitable or available for pop
ping up a simple window and printing "Hello World" in it. Instead, most programmers' first
Windows programs usually create a very predictable generic window class. There doesn't
appear to be any reason why Windows couldn't have a predefined generic window class. It
would certainly be helpful to beginning programmers.

In order to provide a slick look, as well as to include a modicum of basic functionality,
Windows provides a collection of predefined window classes for certain well-defined tasks.
These window classes are commonly known as controls; they include standard user-interface
components such as scroll bars, list boxes, edit boxes, and so on. These controls are registered
inside the USER module at bootstrap time (see Chapter 1) and are CS_GLOBALCLASS
classes, making them available to all applications. The standard windows control classes are as
follows:

CHAPTER 4 - THE WINDOWING SYSTEM

ComboBox
ComboLBox
ScrollBar
ListBox
Edit
Static
Button

When you specifY the layout of a dialog box in a resource script (.RC) file, you use names
like PUSHBUTTON, SCROLLBAR, or LISTBOX. The resource compiler converts the
strings into integer IDs that are stored in the 'RES and EXE or DLL files. When you create a
dialog box using the dialog template, USER takes these integer values and uses them to look
up the appropriate WNDCIASS structure in a list of window classes. USER then passes the
selected window class as an argument to CreateWirtdowExO, which creates the control win
dow. In addition to the control classes, USER creates some additional classes for its own use
as well:

MDIClient
#32768 (PopupMenu)
#32769 (Desktop)
#32770 (Dialog)
#32771 (WinSwitch)
#32772 (IconTitle)

/ / These windows are named using the
/ / integer atom method. The names in
/ / parentheses are just descriptions.
/ /WinSwitch is the ALT-TAB window.
/ / IconTitle is the title below an icon.

Window classes can either be application local or global. You typically create an applica
tion local class when you call RegisterClassO. Only instances of your program or DLL can use
this window class to create windows. If a different program registers a class using the same
name, USER creates a different class. The module handle is used to differentiate between
application focal classes with the same name. A global window class (CS_GLOBALCLASS) is
a class that's available for use by all applications. The USER control classes are the best exam- ,
ples of global classes. When an application specifies a class name to CreateWindowO, the code
first searches for an application local class. If the class isn't found, CreateWmdowO repeats the
search, but this time, global classes are also included in the search.

Format of the WNDCLASS Structure.
The parameter to RegisterClassO is a pointer to a WNDCLASS structure, defined in WIN
DOWS.H. RegisterClassO creates a data structure in the USER local heap that's a combina
tion of the WNDCLASS and some additional information about the class. Here, we call .the
data structure an INTWNDCLASS (for INTernal WNDCLASS). The first part of an
INTWNDCLASS consists of fields initialized by USER internally. The secpnd part of the
INTWNDCLASS structure.is a copy of the WNDCLASS passed to RegisterClass(),although
USER modifies a few fields after it copies the WNDCLASS.

The format of an INTWNDCLASS is shown in Table 4-1.

WINDOWS INTERNALS

Table 4-1: Format of an INTWNDCLASS.

Off Type Name Description
OOh WORD hcNext USER local handle of next class in linked list.
02h WORD wSig Signature word - 4B4Eh.

(4B4Eh = 'NK' for Neil Konzen, the
original author of USER.)

04h ATOM atomCls USER local atom for class name.
06h WORD hDCE USER local handle to device context entry (DCE)

(see Undocumented Windows).
08h WORD cClsWnds Number of windows of this class.

From this point) the rest of an INTWNDCLASS is just a WNPCLASS and can be accessed
with the GetClassWord() and GetClassLong() APIs:

Off Type
OAh WORD
OCh WNDPROC
lOh WORD

12h WORD

14h HMODULE

16h HICON

18h HCURSOR

1.tTh HBRUSH
lCh LPSTR
20h LPSTR

Name
style
IpfuWndProc
cbClsExtra

cbWndExtra

hModule

hlcon

hCursor

Description
WS_XXX style bits.
Address of window procedure.
Extra bytes needed by class, allocated
at end of structure and accessed by
GetClassWord() or GetClassLong().
Extra bytes needed by each window of
this class (allocated at end ofWND structure).
Module handle of registering module
(not an hInstance!).
Icon handle associated with instances
of this window.
Cursor handle associated with
instances of this window.

hBrBackground Background Brush handle for window instances.
IpszMenuName Menu name for class.
IpszClassName Name of class (zeroed by RegisterClass).

Of particular interest here is the hcNext field, used by USER to keep all window classes in
a linked list. The TOOLHELP API provides functions for walking the list of registered win
dow classes. If you're feeling adventurous, call the undocumerited UserSeeUserDo(5) func
tion to get the first class in the list; then walk the class list YOlirsel£ This function only works
under Wllldows 3.1. When running under Windows 3.0, TOOLHELP finds the head of the
class list using hard-coded offsets into a USER data segment.

Another thing worth noting inthe INTWNDCIASS is the use of ATOMs to manage the
class name. For instance, the GetClassNameO API simply obtains the handle to the
INTWNDCLASS stored in the passed HWND's data structure. The atomCls stored in the
INTWNDCLASS can be fed to GetAtomNameO to retrieve the class name, assuming DS is
set to USER's DGROUP. This use of atoms is similar to how GDI manages device driver
names (see Chapter 5).

CHAPTER 4 - THE WINDOWING SYSTEM

Class Registration
The first step in creating a new window is to create a new class, or at least to know the name
of a suitable, existing class. Look below at how RegisterClass() adds a new class to the
windowing system.

RegisterClassO
ATOM WINAPI RegisterClass(const .WNDCLASS FAR*>;

At its highest level, RegisterClass() checks to see if the class to be registered is already present
in the system. If not, it allocates memory for it out of a USER local heap and fills in the
IN1WNDCLASS fields.

RegisterClassO first calls GetClassPtrO (covered next) to see if an application local class
that was registered by the calling module is already present in the system. If so,
RegisterClassO aborts immediately. The next step is to determine if the class will be a global
class, accessible to all applications. In Wmdows 3.0 and greater, the CS_GLOBALCIASS flag
indicates that the class should be global. Prior to version 3.0, however, all classes were global,
so the expected Windows version of the calling module needs to be determined, to allow the
appropriate global class things to be done in all cases. (Yes, there really were Windows applica
tions before version 3.0, and some people still!lm them!).

With this initial inspection out of the way, RegisterClassO now allocates memory for the
INTWNDCIASS structure. It block-copies the data in the passed WNDCIASS structure to
the end of the newly allocated INTWNDCLASS. Afterwards, RegisterClassO starts filling in
and modifying fields in the IN1WNDCLASS ..

RegisterClassO calls AddAtomO to add the class name to the USER local atom table. The
returned atom handle is stored in the atom CIs field ·of the INTWNDCIASS. If a valid menu
name is passed, the function allocates memory for a local copy of the menu name, and copies
the menu name string into the local copy. This is necessary because the calling task many not
keep the menu name string around for the entire existence of the class. It's necessary to make
a local copy of the name to ensure that you've got a valid pointer at all times.

The hInstance passed in the WNDCLASS structure is now converted into the module
handle associated with the hInstance. Despite the fact that the Microsoft documentation
refers to it as an instance handle, after the class is registered, it's really a module handle. It
doesn't make sense to tie a class to a particular instance of a program. Another instance of a
program could be using the window class when the first instance shuts down. If USER
deleted the class when the registering instance went away, the results could be disastrous.
Information like this is per module, not perinstance.

The remaining code just fills in a· few more fields in the INTWNDCLASS and uses
hcNext to link the new INTWNDCIASS into the list of classes: The return value of
RegisterClassO is either 0,1, or the atom handle of the class name.

Pseudocode for RegisterClassO - WMCLASS.OBJ
II Parameters:
II WNDCLASS far * lpWndCls
II Locals:

/I
II
/I
/I

WINDOWS INTERNALS

INTWNDCLASS *intWndCls
WORD
WORD
LPSTR

isGlobalClass
expWinVersion
menuName

II Pointer to internal class
II is it a CS_GLOBALCLASS ?
II expected Windows version
II local copy of menu name

II Look up the ~lass in the list of existing classes.
II GetClassPtr() walks the list of classes (using .the
II next field of the INTWNDCLASS structure). The
II hlnstance parameter is necessary for identifying
II application local classes.
intWndCls = GetClassPtr(lpWndCls->lpszClassName,

lpWndCls->hlnstance, 0)

if (intWndCls) II Abort if the class is already registered
{

}

_DebugOutput(
"USER: RegisterClass failed: class already exists")

return 0

if (lpWndCls->style & CS_GLOBALCLASS
isGlobalClass = 1

) /I Set a flag
II indicating if this
II will be a global
II class

else
isGlobalClass = 0

II Get the minimum version of Windows required for module
expWinVer = GetExpWinVer(lpWndCls->hlnstance)

if

if
{

}

(expWinVer < Ox0300) /I Before Windows 3.0, all
isGlobalClass = 1 /I classes were global, so set

/I isGlobalClass appropriately
(isG loba lC lass) /I Are we registering a global class?

II Look up the class name to be registered in the USER
II local atom table. Pass this, along with the module
II handle of the registering module to GetClassPtrAsm().
II The idea is to see if the class is already registered
II by walking the list of registered classes.
intWndCls = GetClassPtrAsm(

FindAtom(lpWndCls->lpszClassName),
GetModuleHandle(MAKELP(0, lpWndCls->hlnstance», 1)

if (intWndCls) II Abort now if the class already exists
{

}

_DebugOutput("USER: RegisterClass failed: global"
"class already exists")

return 0

CHAPTER 4 - THE WINDOWING SYSTEM

II ALLocate memory for the new cLass. The first parameter
II telLs the debug USER that the aLLocation is for a cLass
II (see TOOLHELP.H). The aLLocated memory is zero fiLLed and
II FIXED (since LMEM_MOVEABLE isn't specified). The returned
II "handLe" is reaLLy a near pointer to the class's memory.
II The third parameter takes into account any "extra bytes"
II specified in the WNDCLASS structure.
intWndCLs = UserLocaLAlLoc(LT_USER_CLASS, LMEM_ZEROINIT,

sizeof(INTWNDCLASS) + LpWndCLs->cbCLsExtra)

if (! intWndCLs
return 0

II Make sure we successfuLly aLLocated
II memory for the new class

II Copy the passed WNDCLASS structure into the middLe
II of the INTWNDCLASS structure (starting at offset OxA)
LCopyStruct(LpWndCLs, intWndCLs + OxA, sizeof(WNDCLASS)

II If the user specified the ugLy IDI_APPLICATION icon,
II switch it now to the more coLorfuL Windows "flag" icon.
II HlconWindows is a USER gLobal variabLe
if (intWndCLs->hlcon == HlconSampLe)

intWndCLs->hlcon = HlconWindows

II Turn on CS_GLOBALCLASS fLag for appLications that don't
II know to do it for themseLves (i.e., pre-3.0 programs)
if (isGLobaLCLass)

turn on CS_GLOBALCLASS in intWndCLs->styLe

II Add the new cLass name to the USER atom tabLe (The DS
II register must be set to the DGROUP segment whose atom
II tabLe you want to add to (in this case, USER's)
intWndCLs->atomCLs = AddAtom(intWndCLs->LpszCLassName)
if (!intWndCLs->atomCLs)

go to RegisterCLassNoMem

II NuLL out the pointer to the cLass name. From now on,
II you can onLy get the name by dereferencing the atom.
II (GetClassName() does this)
intWndCLs->LpszCLassName = 0

if (FP_SEG(intWndCLs->lpszMenuName» II Was a menu given?
{

if (strLen(intWndCLs->LpszMenuName) == 0)
{

menuName = 0 II No menu if the "empty" string given
}

}

else
{

}

WINDOWS INTERNALS

II Menu name string looks OK

II Time to go. allocate space so that we can retain
II a local copy of it in the USER local heap.
menuName = UserLocalAlloc(LT_USER_CLASS,

LMEM_ZEROINIT,
strlen(intWndCls->lpszMenuName))

if (menuName == 0)
{

II Did allocation fail?

DeleteAtom(intWndCls->atomCls) II Not needed
goto RegisterClassNoMem II anymore

}

1/ Copy .the string to the allocated memory (in the
II USER heap), and update the menu name pointer in
II the INTWNDCLASS data structure.
lstrcpy(menuName, lpWndCls->lpszMenuName)
intWndCls->lpszMenuName = menuName

II Make the backgrbund brush private if it's greater
II than or equal to Ox15
if (intWndCls->hbrBackground >= Ox15)

MakeObjectPrivate(intWndCls->hBrBackgound, 1)

II The hInstance field in the WNDCLASS is seriously
II mislabeled. It is really a module handle, not an
II instance handle. In fact, GetClassWord() accesses this
II field with a GCW_MODULE constant, instead of as
II GCW_INSTANCE. Here, the code converts the passed
II hInstance into the correspbnding hModule.
intWndCls->hModule = GetModuleHandle(

MAKELP(0, intWndCls->hModule))
intWndCls->wSig = Ox4B4E II 'NK' = Neil Konzen

intWndCls->hcNext = PClsList
PClsList = intWndCls

if (expWinVersion > Ox0300)
return intWndCls->atomCls

else
return 1

II Add class to the head of
II the list of classes
II PClsList is a USER var

II If Win 3.1 app or later,
II return the atom of the
II class name. Otherwise,
II just return 1

CHAPTER 4 - THE WINDOWING SYSTEM

RegisterCLassNoMem:

/I "generi c" fai Lure LabeL. TeLL the programmer there' 5

II no memory, then free up memory aLLocated for INTWNDCLASS.
_DebugOutput< "USER: RegisterCLass faiLed: out of memory")

LocaLFree(intWndCLs) II Don't need this memory anymore!
return 0

In a nutshell, RegisterClassO creates a new instance of an INTWNDCLASS data structure
and links it into the list of INTWNDCLASSes maintained by USER.

GetClassPtrO
GetClassPtr() is the high-level routine that encapsulates the algorithm for looking up a class.
If it finds the specified class, GetClassPtr() returns a pointer to a pointer to an INTWND
CLASS (an INTWNDCLASS **). GetClassPtrO relies heavily on the lower level GetClassPtr
Asm() function, described next.

After some initial validity tests, GetClassPtr() converts the passed hInstance into the cor
rect hModule. This is necessary because an INTWNDCLASS has an hModule, not an hInst
ance, stored in it. If the global-class flag wasn't specified, GetClassPtrO calls
GetClassPtrAsmO, telling it to only look for application local classes. If such a class isn't
found, or if we're only interested in global classes, GetClassPtrO uses GetClassPtrAsmO
again, this time directing it to look for global classes. If that search fails, GetClassPtr() uses
GetClassPtrAsmO one more time, directing it to look up the class using USER's module han
dle. This is how the control classes (e.g., buttons) are found by applications and DLLs, even
though their hModules don't match USER's hModule.

Pseudocode for GetCLassPtrC) - WMCLASS.OBJ
II Parameters:
I I LPSTR
/I HANDLE
I I WORD
/I LocaLs:

LpszCLassName
hInstance
checkGLobaLCLasses

II ATOM atom

II Look for gLobaL cLasses?

/I INTWNDCLASS near * near *intWndCLs
II HANDLE hModuLe

atom = FP_OFFC LpszCLassName) II In case MAKELONG(O, atom)
II was passed

II If a vaLid name pointer was passed (the seLector portion
II is nonzero), Look up the name in the USER atom tabLe.
if (FP_SEGCLpszCLassName))

atom = FindAtom(LpszCLassName)

WINDOWS INTERNALS

if (atom == 0)
return 0

II if a vaLid atom or name wasn't passed to
II us baiL out now.

II Get the moduLe handLe associated with the hInstance. Note
II the undocumented usage for GetModuLeHandLe(). FMessageBox
II is a USER gLobaL variabLe that's set to 1 inside
II SysErrorBox() (a criticaL state!). It's not known why
II FMessageBox comes into pLay here.
hModuLe = hInstance
if (FMessageBox == 0)

hModuLe = GetModuLeHandLe(MK_FP(O, hInstance))
eLse

goto LookupGLobaLCLasses

II Look for the cLass in the cLass List, but onLy Look
II for appLication LocaL cLasses for now (the 0 param)
intWndCLs = GetCLassPtrAsm(atom, hModuLe, 0)
if (*intWndCLs != 0) II Return the pointer we got, if

goto GetCLassPtr_exit II it points to nonzero vaLue

LookupGLobaLCLasses: II End up here when we want gLobaL cLasses
if (checkGLobaLCLasses == 0) II *intWndCLs == 0 if we

goto GetCLassPtr_exit II get here (see above)

II Look for cLasses again, but this time, we'LL accept
II a CS_GLOBALCLASS (the 1 parameter)
intWndCLs = GetCLassPtrAsm(atom, hModuLe, 1)
if (*intWndCLs != 0) II Return the pointer we got, if

goto GetCLassPtr_exit II it points to nonzero vaLue

II Our Last hope. Look for cLasses registered by the USER
II moduLe (e .. g., diaLog boxes, buttons, etc.). If we get
II to this point, whatever GetCLassPtrAsm() returns to us is
II what GetCLassPtr() returns. hModuLeWin is USER's moduLe handLe.
intWndCLs = GetCLassPtrAsm(atom, hModuLeWin, 0)

GetCLassPtr_exit:
return intWndCLs

GetCiassPtrAsm()
GetClassPtrAsm() is the dumb, low-level routine that simply iterates through the class list,
looking for a class that matches the passed parameters. The one bit of intelligence it has is that
it knows it's OK if the hModule fields don't match up when directed to look for a global
class.

CHAPTER 4 - THE WINDOWING SYSTEM

Pseudocode for GetCLassPtrAsm() - CLASS.OBJ
II
II
II
II
II
II

Parameters:
ATOM atom
HANDLE hModuLe
WORD gLobaLCLassFLag

LocaLs:
INTWNDCLASS near

if (atom == 0)
return 0

intWndCLs = &PCLsList

* near * intWndCLs

II Must be passed a vaLid atom!

II Get pointer to pointer to cLass List
II PCLs List is a USER GLobaL variabLe that
II points to the head of the cLass List.

II Start waLking through the Linked List of INTWNDCLASSs
II in the USER LocaL heap.
whiLe (*intWndCLs)
{

II Do the cLass name atoms match? If they do, drop out
II of the Loop for further testing to see if it's the
II cLass we're after.
if ((*intWndCLs)->atom == atom

break;
NextCLass:

intWndCLs = &(*intWndCLs)->cLassNext II Go on to
II next cLass }

if (*intWndCLs == 0) II Was something found? Return
return intWndCLs II "empty" pointer if not

II We get to this section of the code if the above Loop
II found a cLass whose atom handLe matches the atom
II handLed .passed as a parameter. It's necessary to do
II further testing on the cLass to see if it's reaLLy the
II cLass we're Looking for.

if (hModuLe == 0)
return intWndCLs

II If hModuLe parameter is nuLL, we
II don't need to compare hModuLes,
II so just return the found cLass.

II Does the passed in hModuLe match that stored in the
II INTWNDCLASS? We're done if they do.
if ((*intWndCLs)->hModuLe == hModule)

return intWndCLs

WINDOWS INTERNALS

II If we get here, the atom names matched up, but the
II hModules don't. This would happen if two applications
II registered application local classes with the same name.

II If we're not looking for global classes, continue iterating
II through the list, looking for a class whose module does
II match the passed module handle (and whose atom matches)
if (globalClassFlag == 0)

go to NextClass

II If we are looking for global classes, see if the class for which we
II broke out of the loop is a CS_GLOBALCLASS. If not
II go back and continue searching through the other classes.
if ((intWndCls->style & CS_GLOBALCLASS) == 0)

goto NextClass

return intWndCls II All tests passed. Ship it!

In summary, a window class is a convenient way to store information that's common be
tween windows. An application can register new window classes as needed. In addition, there
are predefined window classes that USER provides (the control windows). We now turn our
attention to the process of creating windows from a registered class.

Windows and the WND Data Structure

The windowing system in USER can be thought of as a tree. All windows fall somewhere in
the hierarchy, with the desktop window at the root of the tree. Each window has its own data
area to maintain the window's state. You change the state of a window by sending messages
to it (for instance, the WM_PAINT message tells a window to go into its paint state). We dis- .
cuss both the window tree and the state that each window maintains in the following sections.

Perhaps the most pervasive handle in all of Windows is the HWND. An HWND is a local
handle to a WND data structure in the USER local heap. Unfortunately, Microsoft doesn't
document the format of the WND data structure that the HWND refers to. As mentioned in
Undocumented Windows, the window structure changes dramatically between Windows 3.0
and 3.1. Some people might see this as evidence that you really should heed Microsoft's warn
ings not to use undocumented data structures. Other people, however, might see this as evi
dence that Microsoft deliberately broke misbehaving applications that used undocumented
fields. There may have been a legitimate reason for this dramatic change, but none is known
at this time.

Although the WND structure wasn't formally documented under Windows 3.0, certain
parts of it could be derived by looking at the GetWindowWordO and GetWindowLongO con
stants in WINDOWS.H. These could be treated as negative displacements from the end of the
WND structure. As people found out about other undocumented fields in the WND structure

CHAPTER 4 - THE WINDOWING SYSTEM

(for example, Paul Bonneau's June 1992 Windows/DOS Developer)s Journal column), they
could easily be extracted by defining new constant values to pass to GetWindowW ord() or
GetWindowLongO. In Windows 3.1, the ordering of the WND fields changed, which means
that the constant values in WINDOWS.H no longer work as offsets. In order to be backwards
compatible, the USER authors were forced to continue using the same WINDOWS.H values
and to use a table to convert the WINDOWS.H constants to usable offsets in the 3.1 WND
structure. Why would they take a simple system, as implemented in Windows 3.0, and make it
slower and more complicated? Go back and read the preceding paragraph and draw your own
conclusions.

The format of a WND structure under Windows 3.1 is shown in Table 4-2.

Table 4-2: Format of a WND Structure Under Windows 3.1.

Off Type Name Description
OOh HWND hWndNext (GW _HWNDNEXT) window handle of next

sibling window.
02h HWND hWndChild (GW_CHILD) First child window.
04h HWND hWndParent (GWW_HWNDPARENT) Parent window handle.
06h HWND hWndOwner . (GW _OWNER) Owning window handle.
08h RECT rectWindow Rectangle describing entire window.
10h RECT rectClient Rectangle for client area of window.
18h HANDLE hQueue Application message queue handle.
lAhHRGN hrgnUpdate window region needing an update.
lCh HANDLE wndClass handle to an INTWNDCLASS.
lEh HANDLE hInstance (GWW _HINSTANCE) hInstance of creating

application.
20h WNDPROC lpfuWndProc (GWL_ WNDPROC) Window procedure address.
24h DWORD dwFlags internal state flags.
28h DWORD dwStyleFlags (GWL_STYLE) Flags holding window style

(the WS_XXXvalues in WINDOWS.H).
2Ch DWORD dw ExStyleFlags (GWL_EXSTYLE) Flags holding extended

window style (the WS_EX_XXX styles in
WINDOWS.H).

30h HANDLE hMenu Menu handle for window.
32h HANDLE hBuffer Alternative DS value for window text.
34h WORD scrollBar WORD associated with the scroll bars.
36h HANDLE properties Handle for first window property.
38h HWND· hwndLastActive Last active owned popup window.
3Ah HANDLE hMenuSystem handle to the system menu.

The WND structure has quite a few interesting fields. The structure starts out with the
parent, next, child, and owner window fields. These fields allow USER to maintain the win"
dow hierarchy, which we examine shortly.

WI N DOWS INTERNALS

USER employs the hQueue field to know which message queue a message should go to,
given just an HWND. This is an extremely important point. As Chapter 7 discusses, each
application has its own message queue. Since each window is associated with a specific mes
sage queue, windows are implicitly connected to a particular task as well. It doesn't matter
whether the window was created inside a DLL or an application. All that matters is what the
current message queue was at the time of the window's creation. Whatever task owns that
message queue implicitly owns all the windows associated with the queue. When the task goes
away, so will its windows. Knowing this, we can answer the commonly asked question, "Who
owns the window ifCreateWindowO is called in a DLL?" The application that called the DLL
owns the window. This is what GetWindowTaskO returns.

The wndClass field allows the window to refer back to its class, just as each task database
maintains a selector to the module table from which it came.

The hInstance field stores the DGROUP associated with the DLL or EXE that created
the window. As shown in the pseudocode for DispatchMessageO in Chapter 7, the AX regis
ter is loaded with the value in the hInstance field before calling the window function. A nor
mally exported window function in an EXE loads the data segment register (DS) from the AX
register in its prologue. This is why you don't need MakeProcInstanceO thunks for window
functions. As a sidenote, at creation, a global memory handle can be passed to edit controls as
the hInstance value. Doing this allows edit controls to contain up to 64K of text.

The IpfnWndProc field holds the address that is called to handle a message for the win
dow (the window procedure). You might notice that a window class contains a window pro
cedure address as well. What's the difference? In object-oriented terms, the window class is
like a base class. It provides default values and default behavior for classes derived from it. In
this case, during the creation of the WND structure, its IpfnWndProc is set to whatever the
corresponding value is in the window class. You can go in later and override the default
IpfnWndProcO with another function (i.e., "derive" from the base class). Changing the value
of the IpfnWndProc is how window subclassing is implemented. If the window procedure
address were only stored in the window class, it would be rather difficult to subclass a stand
ard control because every control would be affected, rather than just the one you were inter
ested in. By storing a window procedure address in each WND structure, you can alter the
behavior of just the desired window. If you do subclass a window, it's important that your
application retain the original window procedure address so that messages you don't handle
can be passed on to the original procedure.

Another obscure but interesting field in the WND structure is the property list. Each win
dow can maintain a linked list of properties. This allows an application to store an arbitrary
collection of named 16-bit values on a per-window basis. For instance, you could allocate a
global memory block and store its handle in a property. The SetPropO and GetPropO APIs
are the exported interface to this functionality. Most programmers are aware that a window
can have extra bytes where they can store information. While this is fine for your own win
dows that you create, it may not be possible for windows created by other applications. The
window properties neatly circumvent this problem, assuming you can come up with unique
property names, which shouldn't be hard.

CHAPTER 4 - THE WINDOWING SYSTEM

Windows styles
All windows can be categorized in terms of three basic styles. These styles are defined in WIN
DOWS.H, and are:

WS_OVERLAPPED
WS_POPUP
WS_CHILD

A WS_OVERLAPPED window is the most basic window style. WS_OVERLAPPED win
dows are used as the main, or top level, window in a program. WS_OVERLAPPED windows
always have a title bar because the CreateWindowO code turns on the WS_CAPTION bit.

WS_POPUP windows are typically used for dialog boxes, but they have many of the same
attributes as main windows (for example, they can have title bars and such). It is not a require
ment that WS_POPUP windows have a title bar, however.

WS_CHILD windows are most often used as controls for dialog boxes. Examples of child
windows include buttons, edit boxes, scroll bars, and list boxes. Note, however, that it is per
fectly legitimate to have child windows that aren't in dialog boxes. A child window is often
used to send WM_COMMAND messages to its parent, informing it of user actions.

There are other window styles such as WS_CLlPCHILDREN and WS_GROUP that can
be OR'ed in with the three main styles. There are quite a few styles, so we defer to a compre
hensive discussion of them to the Windows SDK When specifYing controls for a dialog box in
an RC file, the last entry on each control line contains the style bits for the window. When
you create a dialog box, for instance, with DialogBoxO, each control is created with the style
bits specified in the RC file definition. We cover the inner workings of window creation
shortly.

The Window Hierarchy:
the Parent/Child/Sibling Relationships
Of all the concepts in the windowing system, the most fundamental is the parent/child/sib
ling relationship. As we saw in the description of the WND data structure, every window
maintains a handle to its parent window, a·handle to its first child window, and a handle to
the next window, also known as a sibling. HWND values are really just near pointers in a
USER local heap, so you can consider these HWNDs as link:ed-list pointers that allow hierar
chy traversal. The hierarchies that USER creates look like Figure 4-1.

The window hierarchy is traversed extensively in all three directions, parent to child, child
to parent, and sibling to sibling. Examples of traversing the hierarchy include the following:

• When destroying a window, USER must destroy all of its children and their descen
dants, as well. USER traverses the entire hierarchy using the hWndChild and
hWndNext fields. Remember, window handles are just near pointers in a USER local
heap.

WINDOWS INTERNALS

Figure 4-1. Window Hierarchies Created by USER.

Child Sibling

• When tabbing through the controls in a dialog box (which are child windows of the
dialog box window), the sibling pointer (or hWndNext field) is what links the con
trols. In addition, the ordering of windows in the hWndChild and hWndNext list mir
rors the Z-order of the windows on screen. The Z-order is the relative position of
windows in the third dimension (coming out of the screen, towards you). As you click
on various main windows to bring them to the top of the Z-order, their relative posi
tions in the hWndNext list are shifted about.

• When clicking on a dialog control window, you cause the dialog manager to walk up
the parent pointer chain to see if the top level (main) window of the application needs
to be made the active window.

At the root of the window tree is the desktop window. This window covers the entire
screen and is always at the bottom of the Z-order, meaning that it is always behind all other
windows. The desktop window is always the first window created, and it is the only window in
the system that does not have a parent or owner window. (Owner windows are described
next). The painting of the desktop window is responsible for the Windows wallpaper.

There is nothing special about the desktop window in terms of special bits or such. At
creation, its style bits (discussed below) are WS_POPUP and WS_CLIPCHILDREN. There is
nothing like an undocumented WS_DESKTOP style bit. Instead, the handle to the desktop is
stored in a USER global variable, HWndDesktop. When the windowing system needs to
know if it's dealing with the desktop window, it just compares the HWND in question to
HWndDesktop. You can get the value of HWndDesktop using the documented
GetDesktop Window() API.

CHAPTER 4 - THE WINDOWING SYSTEM

Window Ownership
Along with the parent/child relationship, Windows also maintains an entirely different notion
of window ownership. Each window has a field in its data structure that contains the window
handle for the window that owns the window. Unlike the parent/child relationship, the win
dow owner relationship is one-directional. A window knows the handle of its owner window,
but it doesn't know the handles of the windows it owns.

The owner of a window is the window that receives notifications for the owned window.
For instance, when you create a WS_POPUP menu window with TrackPopupMenuO, you
specifY an owner window. The owner window receives the WM_COMMAND message gener
ated when a menu item is selected. It's important to note that in the general case, the parent
window and the owner window are completely distinct. The parent/child relationship defines
where the window is in the window hierarchy, while the owner window determines which
windows receives the owned window's notifications.

A twist to the above rule involves WS_CHILD windows. For WS_CHILD windows, the
owner HWND in the child window's WND structure is zero, and notification messages are
instead sent to the parent window. For instance, a button in a dialog box is the child of the
main dialog box window. When you press the button, the button window notifies its parent,
the main dialog window, ofthe event. You can think of the hWndOwner ofWS_CHILD win
dow as one and the same as the hWndParent, even though they really are different. In Presen
tation Manager, there's no need for WS_CHILD or WS_POPUP bits. Both the hWndParent
and h WndOwner fields are filled in. This completely defines who gets the child's notification
messages and the location of the window in the hierarchy. Under Presentation Manager, the
hWndOwner and hWndParent fields typically contain the same HWND value.

In addition to sending notifications to its owner, an owned window is also always in front
of its owner window. If a window is iconized, all windows it owns are iconized. If the owning
window is destroyed, all windows it owns are destroyed, as well. Since a window doesn't keep
track of the windows it owns, the child/sibling pointer lists must be walked and the owner of
each window compared to the HWND of the window being destroyed.

What's somewhat strange in all this is that Windows doesn't make the owner relationship
very explicit. Although the SDK documentation discusses ownership briefly, you have to look
pretty hard to see where the owner relationship is differentiated from the parent/child rela
tionship. In OS/2 PM, you specifY both a parent window and an owner window when you
create a window. In Windows, you only specifY a parent.

IfCreateWindowO only accepts a parent HWND, how then do you specifY an owner win
dow in Windows? One of the parameters to CreateWindowO is the style bitmask. If the win
dows style is WS_CHILD, the hWndParent parameter is indeed interpreted as the parent
window. If you specifY WS_OVERLAPPED or WS_POPUP, however, the hWndParent
parameter is actually used as the owner HWND, which is made clear later in some pseudo
code. The parent window of a WS_OVERLAPPED or WS_POPUP windows is always the
desktop HWND (HWndDesktop).

The relationship between style bits, parents, and owners is shown in Table 4-3.

WINDOWS INTERNALS

Table 4-3: Relationship Between Style Bits, Parents, and Owners.

WS_STYLE Parent
WS_ OVERlAPPED HWndDesktop
WS_POPUP HWndDesktop
WS_CHILD hWndParent param

Owner
hWndParent parameter.
hWndParent parameter.
o (messages go to hWndParent).

hWndParent parameter is the hWndParent argument toCreateWindowO or Create
WindowExO.

Window Creation

An area that frequently confuses programmers is the order of messages during window cre
ation. Many programmers know that WM_ CREATE is not the first message that a window
receives, but there's much more to it than that. Here, we examine the sequence of events that
is set off by a Create Window() call.

In the following pseudocode, note the numerous calls to REvaISendMessage(). This func
tion is just a debugging wrapper flUlction arowld a normal SendMessage() call. The parame
ters to both functions are identical, so you should just mentally translate REvalSendMessage()
to SendMessage().

CreateWindow()
From the pseudocode below, you can see that CreateWindowO doesn't do much. The real
work is shunted off to the documented CreateWindowExO API, which we look at next. In
pre-Windows 3.0 days, there was no CreateWindowExO, and CreateWindowO contained
much of the code that's now in CreateWindowExO. To prevent having two similar copies of
the code, the USER authors moved the original CreateWindowO code into Create
WindowExO and made CreateWindow() a stub to transfer control to CreateWindowExO.

Pseudocode for CreateWindow() - WMCREATE.OBJ

Use REP MOVSW to copy the entire stack frame (incLuding the
return address) 4 bytes down in memory. FiLL in the 4 byte
"hoLe" at the highest address with a's. The stack frame
now Looks Like a caLL to CreateWindowEx(), with a passed as
the dwExStyle parameter.

JMP CreateWindowEx II Begin executing in CreateWindowEx()

Create Win do wExO
HWND WINAPI CreateWindowExC

DWORD dwExStyLe,
LPCSTR LpszCLassName,

CHAPTER 4 - THE WINDOWING SYSTEM

LPCSTR
DWORD
int
int
int
int
HWND
HMENU
HINSTANCE
void FAR*

LpszWindowName,
dwStyLe,
x,
y,
nWidth,
nHeight,
hwndParent,
hmenu,
hinst,
LpvCreateParams);

CreateWindowEx() is quite a large function! So large in fact, that we're going to break it up
into logical sections, and discuss each in turn.

The first portion of CreateWindowExO deals with validity checking of the parameters,
allocation of the memory for a WND structure, and filling in some of the WND's fields. The
first validity test determines if a parent window was specified when you requested a
WS_CHILD style window. In addition, the hInstance parameter must be nonzero unless the
requesting application is pre-Windows 3.1. In this case, the stack segment is used as the
instance handle, with appropriate bit twiddling. The next test determines if the specified win
dow class has been registered, with the expected whining in the debug USER if it's not
found.

CreateWindowExO now allocates memory for the WND structure, taking into account
the extra byte size specified when registering the class. It then fills in several fields that don't
depend on anything else. These fields include the current task's message queue and both style
DWORDs. The last bit of this section is to call the Computer Based Training (CBT) hook to
see if the window creation should proceed. The CBT hook is new to Windows 3.1, and is
barely documented. USER calls the CBT hook callback function at key points throughout the
life of the window (creation, destruction, etc.). For some events, the hook callback can direct
USER to continue with the event or abort it.

Pseudocode for CreateWindowEx() - WMCREATE.OBJ
II Parameters:
I I DWORD
II
II
II
II
II
II
II
II

LPCSTR
LPCSTR
DWORD
short
HWND
HMENU
HANDLE
LPVOID

II LocaLs:

dwExStyle
LpszCLassName
LpszWindowName
dwStyLe
x, y, nWidth, nHeight
hWndParent
hMenu
hlnstance
LpvCreateParams

II INTWNDCLASS *intWndCLs
II HWND hWnd
II short LocaLX, LocaLY

II Return HWND vaLue

II
II

short
WORD

WINDOWS INTERNALS

localWidth, localHeight
isChild II Is it a child window?

I I WORD showWindow = SW_SHOW
I I RECT localRect II a "scratch" RECT
II WORD someFlag = 0
I I WORD moreStyleBits = 0 II default to nothing

II First, make sure child windows have a parent specified
if (WS_CHILD bit set in style && (hWndParent == 0))
{

}

_DebugOutput<"USER: CreateWindowO: Invalid parent hwnd")
return 0

if (hInstance == 0)
{

}

_DebugOutput<"USER: CreateWindowO: NULL instance handle")

hInstance = GlobalHandle(SS) 1/ Get instance handle
II from SS register

II Only pre 3.1 apps get away with supplying a
II NULL instance handle. 3.1 and later apps must
II supply a correct hlnstance.
if (GetExpWinVer(hInstance) >= Ox030A)

return 0

II Determine if the specified class has been registered.
II If the last param is nonzero, GetClassPtr() searches for
II global classes if an application local class isn't found.
intWndCls = GetClassPtr(lpszClassName, hInstance, 1)
if (!intWndCls) II If not registered, return failure
{

}

_DebugOutput("USER: CreateWindow fai led: "
"Window class not found")

return 0

II Allocate space for the new WND structure, taking into
II account the extra bytes specified in the class structure.
II LT_USER_WND == 2, and is defined in TOOLHELP.H. Note
II also that since LMEM_MOVEABLE isn't specified, the memory
II is fixed, thus allowing you to use HWNDs as offsets into
II a USER heap.

CHAPTER 4 - THE WINDOWING SYSTEM

hWnd = UserLocalAlloc(LT_USER_WND, LMEM_ZEROINIT,
sizeof(WND) + intWndCls->cbWndExtra)

if (!hWnd)
{

II Abort call if memory isn't available

}

_DebugOutput<"USER: CreateWindow failed: Out of memory")
return 0

hWnd->hQueue = HQCurrent() II Set the window's message queue
II to the current message queue
II (see Chapter 7)

hWnd->wndClass = intWndCls
hWnd->dwStyleFlags = dwStyle
hWnd->dwExStyleFlags = dwExStyle

II Start filling in the
II fields of the newly
II allocated WND

if (GetExpWinVerChInstance) >= Ox030A) II Windows >= 3.1.?
{

)

II This bit is used in several places, indicating the
II window belongs to a 3.1 (or greater) compatible app
Turn on bit (Ox0004)in theHIWORD of hWnd->dwFlags

else II A 3.0 or earlier app
{

}

II Get the task handle associated with this window out of
II the new window's message queue structure. It's unclear
II why GetCurrentTask() isn't used instead. Use the task
II handle to determine if this program needs a
II "compatibility" hack to keep 3.0 apps working in 3.1.
I I GetAppcompatFlagsOis des<;ribed in Undocumented
II Windows.
AX = GetAppCompatFlags(hWnd->hQueue->hTask)
if (AX & GACF_ALWAYSSENDNCPAINT)

Turn on bit (Qx0008) in HIWORD of hWnd->dwFlags

II CallHookO. is the function that handles calling the
II installed filter functions (hooks). In this case~
II it appears to be calling any installed Computer Based
II Training hooks to find out if the window creation
II should proceed. 5=WH_CBT, 3 = HCBT_CREATEWND
if (!CallHook(3, 'hWnd, 8rsoll\e_Local_buff, 5))

goto CreateWindowEx_out,-of_mem

WINDOWS INTERNALS

The next section of CreateWindowExO calculates the initial position and size of the new
window. Judging from the amount of code involved, there is quite a complex algorithm for
determining these values. The style of the window (WS_CHILD, WS_OVERlAPPED, or
WS_POPUP) plays an important role here. For instance, when creating child windows, the
coordinates given are relative to the parent window. These values need to be adjusted to
screen coordinates, since at the lowest level it all comes down to putting pixels on the screen,
and the display driver doesn't know anything about windows.

There is quite a bit of code here that appears to be related to positioning WS_OVER
LAPPED (or main) windows on the screen. If you specifY CW_USEDEFAULT for the size
and position parameters, notice that successive invocations of the same program cause the ini
tial positioning to move slightly down and to the right. To see this, try invoking Solitaire sev
eral times in a row, exiting it each time before starting it again. (No, don't play it now!)

Continuation of Pseudocode for CreateWindowEx() - WMCREATE.OBJ

II If the window is a CHILD or a POPUP, CW_USEDEFAULT isn't
II aLLowed for x, y, width, height. Reset them to O.
if (hWnd->dwStyLeFLags & (WS_CHILD I WS_POPUP))
{

}

if (x == CW_USEDEFAULT)
x = y = 0;

if (nWidth == CW_USEDEFAULT
nWidth = nHeight = 0

LocaLX = x II Save off the position parameters
II into LocaL copies LocaLY = y

LocaLWidth = nWidth
LocaLHeight = nHeight

II Set a variabLe indicating a chiLd window is being created
isChiLd = (hWnd->dwStyLeFLags & WS_CHILD) ? 1 : 0

II If we're creating a chiLd window, the X,Y coordinates are
II reLative to the parent window, so adjust them to use
II screen coordinates.
if (i sCh i Ld)
{

}

LocaLX += hWndParent->rectCLient.Left
LocaLY += hWndParent->rectCLient.top

II If the window is WS_OVERLAPPED, do some adjustments
if ((hWnd->dwStyLeFLags & (WS_CHILD I WS_POPUP)) == 0
{

II Force on the WS_CLIPSIBLINGS and WS_CAPTION bits for

}

CHAPTER 4 - THE WINDOWING SYSTEM

II WS_OVERLAPPED windows
hWnd->dwStyleFlags 1= WS_CLIPSIBLINGS
moreStyleBits = OxOOCO

SetTiledRect(hWnd, &localRect) II Fill in LocalRect with
II the initial x,y values?

if (x == CW_USEDEFAULT)
{

}

else
{

}

someFlag =
x = localX = rc.left
y = localY = rc.top

if (iWndStack != 0) II iWndStack is a global var.
iWndStack-- II The "window stack" depth?

if (localWidth = CW_USEDEFAULT)
{

}

localWidth = localRect.right - x
localHeight = localRect.bottom - y

else if (someFlag)
{

}

a long string of calculations that's not entirely
understood.

II End of WS_OVERLAPPED 'if' statement

The next section of CreateWindowExO fills in some more fields in the WND structure
and sets up other things related to menus. If a menu was specified for a non-WS_CHILD
window, the code calls LoadMenuO to load the menu from the EXE or DLL file. In addition,
if the CS_NOCLOSE flag was given when the class was registered, CreateWindowExO
removes the Close menu item, as well as its separator.

Continuation of Pseudocode for CreateWindowEx() - WMCREATE.OBJ

/1 If the window is a popup window, and isn't the desktop
II window, turn on the WS_CLIPSIBLINGS flag
if (hWnd->dwStyleFlags & WS_POPUP)

if (hWnd != HWndDesktop)
hWnd->dwStyleFlags 1= WS_CLIPSIBLINGS

OR in moreStyleBits into the HIWORD of hWnd->dwStyle. For
WS_OVERLAPPED windows, this has the effect of turning on the
WS_CAPTION flag.

WINDOWS INTERNALS

hWnd->hBuffer = a II Initial value is zero.

II If no menu was specified to CreateWindow, and if the
II window isn't a child window, load the default menu
II specified in the window class.
if (hMenu == a)

if (isChild == a)
if (intWndCls->lpszMenuName != a)
{

}

hMenu = LoadMenu{ intWndCls->hModule,
intWndCls->lpszMenuName

hWnd->hMenu = hMenu II Store whatever menu was picked
II (either the default class menu, or
II the menu passed to CreateWindow)

if (CS_NOCLOSE bit set in hWnd->wndClass)
{

}

II Remove the "close" selection, and its separator
II from the system menu. Note that in both cases, the
II item to delete is specified by its relative position
II in the menu. 5 is used for both items, because after
II the first DeleteMenu{), the menu items shift up by 1.
hMenu = GetSystemMenu{ hWnd, FALSE)
DeleteMenu{ hMenu, 5, MF_BYPOSITION)
DeleteMenu{ hMenu, 5, MF_BYPOSITION

II Store the hInstance and window procedure address into
II the WND structure.
hWnd->hInstance = hInstance
hWnd->lpfnWndProc = intWndCls->lpfnWndProc

This next section ofCreateWindowExO concerns setting up the parent/child/owner win
dow relationship. See the discussion of this earlier in the chapter for the details of what the
end result should be. One thing worth noting here is that if the window being created has an
owner, and if the owner is a topmost window (WS_EX_TOPMOST), the new window will
also become WS_EX_TOPMOST. This is apparently to make sure that the owner window Z
ordering rules are adhered to.

The second part of this section ensures that the WS_CLIPCHILDREN and
WS_CLIPSIBLING flags are set correctly. Perhaps to remain compatible with applications
written before Windows 3.1, CreateWindowEx() turns off the WS_CLIPCHILDREN and
WS_CLIPSIBLINGS flags for these applications if the CS_PARENTDC flag is specified in the
window class. The CS_PARENTDC style makes WS_CLIPCHILDREN and WS_CLIP
SIBLINGS meaningless, since it says to use the parent window's DC and clipping region
instead of calculating one for this window.

CHAPTER 4 - THE WINDOWING SYSTEM

Continuation of Pseudocode for CreateWindowEx() - WMCREATE.OBJ

II Do things related to top level windows and owners
if (isChild == 0) II If not a child window .•.
{

}

hWnd->hWndLastActive = hWnd

II The owner of a top level window is specified by
II passing an HWND as the hWndParent parameter. Check
If for this special case here.
if ((hWndParent != 0) && (hWndParent != HWndDesktop))
{

}

else

II Set the owner of the new window to the HWND
II specified as the hWndParent parameter. If
/I the hWndParent isn't a "top level" window,
II GetTopLevelWindow() walks up the parent list
II till it finds a top level window.
hWnd->HWNDOwner = GetTopLevelWindow(hWndParent)

II If the owning window is a TOPMOST style window,
II make sure this window is TOPMOST as well?
if «hWnd->HWNDOwner != 0) &&

(hWnd~>HWNDOwner->dwExStYleFlags & WS~X_TOPMOST»
{

Turn on WS_EX_TOPMOST in hWnd->dwExStyleFlags
}

hWnd->HWNDOwner = 0
II No owner window specified
II The window isn't owned

hWndParent = HWndDesktop II All non-WS_CHILD windows
II are children of the desktop
II HWndDesktop is a USER
II global variable.

hWnd->hWndParent = hWndParent II Copy parent HWND into
II hWndParent field of
II the WND structure

II Earlier, we saw that bit Ox0004 was set only for
/I apps that required Windows 3.1 or greater. Here, we
II check to see if the app is a pre-Windows 3.1 app.

WI N DOWS INTERNALS

if (bit Ox0004 NOT set in HIWORDChWnd->dwFlags))
{

}

II If the class uses its parent DC, and if the parent
II doesn't use WS_CLIPCHILDREN, CreateWindowExC) turns
II off and ignores the WS_CLIPXXX flags.
if C CintWndCls->style & CS_PARENTDC) &&

{

}

!ChWndParent->dwStyleFlags & WS_CLIPCHILDREN)

if C hWnd->dwStyleFlags & WS_CLIPCHILDREN)
{

}

_DebugOutputC "USER: WS_CLIPCHILDREN overridden"
"by CS_PARENTDC")

if hWnd->dwStyleFlags & WS_CLIPSIBLINGS)
{

}

_DebugOutputC "USER: WS_CLIPSIBLINGS overridden"
"by CS_PARENTDC")

Turn off WS_CLIPSIBLINGS and WS_CLIPCHILDREN flags
in hWnd->dwStyleFlags

The first part of the next portion of CreateWindowExO concentrates on more issues
involving sizing and positioning the window. Of special interest is the call to
CheckByteAlignO, which if specified with the CS_BYTExxxflags, causes the window borders
and client area to be placed on pixel boundaries that allow the video board to perform optimi
zations when accessing video memory. This is primarily useful for boards that have more than
one pixel per byte of memory, such as EGA and VGA boards in 16-color mode.

Then CreateWindowExO increments the usage count of the window class. By keeping
track of how many windows are using the class, the class can be deleted from memory when
it's no longer in use. The final act of this section is to create or obtain the device context
(DC) for the window if the CS_OWNDC or CS_CLASSDC flags were specified at class regis
tration time. Device contexts are described in Chapter 5.

Continuation of Pseudocode for CreateWindowExC) - WMCREATE.OBJ

II It appears that AdjustSizeC) can alter the width and
II height parameters passed to it. This routine presumably
II does some calculations to "tweak" the size of the windows
II with messages; see below.
AdjustSize(hWnd, &localWidth, &localHeight)

CHAPTER 4 - THE WINDOWING SYSTEM

II Now store the window coordinates (including the titLe and
II borders) into a RECT in the WND struct under construction.
hWnd->rectWindow.Left = locaLX
hWnd->rectWindow.right = locaLX + LocalWidth
hWnd->rectWindow.top = localY
hWnd->rectWindow.bottom = LocalY + localHeight

II CheckByteAlign() appears to be responsible for deaLing with
II the CS_BYTEALIGNCLIENT and CS_BYTEALIGNWINDOW detaiLs. The
II goaL of byte alignment is to pLace the window so that the
II cLient area andlor borders don't faLL in the middLe of a
II byte in video memory. This can create performance speedups
II with some video boards.
CheckByteAlign(hWnd, &hWnd->rectWindow)

intWndCls->cCLsWnds++ II Indicate that another window
II instance was created from cLass

II Since the reference count is stored in a 16 byte vaLue, it
II places a Limit of 32K windows in the system. It's likely
II that the USER heap will run out of space before then!
if (intWndCls->cClsWnds < 0)

_DebugOutput("USER: Window class reference count overflow")

II If the class uses its own private DC, or the class's DC,
II go get the DC now.
if (CS_OWNDC or CS_CLASSDC bits set in

intWndCls->style)
{

}

II CreateCacheDC() creates a DC, and adds it to the list
II of DC's that USER maintains. See the entry for DCE
II in chapter 6 of Undocumented Windows for details.
if (!CreateCacheDC(hWnd, 2, 0))

goto CreateWindowEx_out_of_mem

CreateWindowExO now turns its attention to sending the initial startup messages to the
new window. Due to a design error in Windows 2.0, the first,,~message actually sent to the
window is sometimes WM_GETMINMAXINFO, which is sent from a routine called by
AdjustSizeO. In the pseudocode below, CreateWindowExO sends the intended first message,
WM_NCCREATE (non-client create), to the new window. If the window returns nonzero
from this message, the window creation proceeds.

At this point, the window is sufficiently created that the HWndDesktop USER global
variable can be filled in. The desktop window is always the first window to be created (see
Chapter 1), so ifHWndDesktop's value is 0, CreateWindowExO must be creating the desktop

WINDOWS INTERNALS

window. After this special case code, CreateWindowExO links the new window into the par
ent/ child hierarchy with the LinkWindow() function. This function is given enough informa
tion for it to walk the child list of the parent window and insert the new window accordingly.

With this administrative work completed, the code goes back to the task of sending the
startup messages to the new window. First, it sends the WM_NCCALCSIZE message. Upon
return, the passed RECT structure contains the size of the client area of the window, which is
the portion of the window that you normally draw in. Next, CreateWindowExO sends the
WM_CREATE message. The handler for WM_CREATE is usually where applications do
their work that needs to be done at window-creation time. If the handler returns -1 in
response to the WM_CREATE message, CreateWindowExO destroys the window using
DestroyWindowO (described later) and aborts the creation process. The last sequence of this
section is to send WM_SIZE and WM_MOVE messages to the new window, if a certain
(unknown) bit is set in the windows dwFlags field.

Continuation of Pseudocode for CreateWindowEx() - WMCREATE.OBJ

II Send the WM_NCCREATE message to the new window. If the
II window handler returns failure, the memory for the WND
II structure is freed, and the function returns failure.
II REvalSendMessage() is just a "wrapper" around a
II SendMessage() call that verifies the hWnd after
II the SendMessage() call. The retail version calls
II SendMessage() directly.
if (!REvalSendMessage(hWnd,WM_NCCREATE,O,&lpvCreateParams»
{

CreateWindowEx_out_of_mem: /I Can get here from several places

}

FreeWindow(hWnd)
_DebugOutput("USER: CreateWindow: Out of memory")
return 0

if (HWndDesktop == 0) II If HWndDesktop is 0, this
HWndDesktop = hWnd II is the first window being created,

II and is therefore, the desktop

II If a parent window was specified, splice it into the
II parentlchild hier~rchy.
if (hWndParent)
{

if (isChild == 0
{

}

A long sequence of code that appears to relate to
to the WS_EX_TOPMOST flag.

}

CHAPTER 4 - THE WINDOWING SYSTEM

II Use LinkWindow() to add the window to the list of
II child windows maintained by the window's parent.
II LinkWindow() needs to know the address of the pointer
II to the first child in the list, so that it can
II insert the new window at the head of the list.
LinkWindow(hWnd, some_local_var, &hWndParent->hWndChild)

II Send the WM_NCCALCSIZE message to the new window, passing
II it the coordinates of the full window rectangle. The
II message returns the size of the client area, which we
II copy into the WND under construction.
copy hWnd->rectWindow to localRect
REvalSendMessage(hWnd, W~CCALCSIZE, 0, &localRect)
copy LocaLRect to hWnd->rectClient

II Send the WM_CREATE message to the new window. If it
II returns failure for some reason, abort the creation.
if (REvalSendMessage(hWnd, WM_CREATE, 0, &lpvCreateParams)

== -1)
{

}

DestroyWindow(hWnd)
return 0

II Send WM_SIZE and W~MOVE messages to the new window.
if (bit Ox0010 not set in hWnd->dwFlags)
{

}

SendSizeMessage(hWnd, 0) II Sends WM_SIZE message

if (hWndPar.ent)
{

localRect.left
localRect.top

}

=
=

rc.left - hWndParent->rectClient.left
rc.top - hWndParent->rectClient.top

REvalSendMessage(hWnd, WM_MOVE, 0,
MAKELONG(localRect.left, localRect.top))

The last section of CreateWindowExO begins by handling the special cases where a win
dow is supposed to start out minimized (WS_MINIMIZE) or maximized (WS_MAXIMIZE).
The code calls the MinMaximizeO function and lets it handle the dirty work.

If the WS_EX_NOPARENTNOTIFY flag wasn't given, the code sends the
WM_PARENTNOTIFY message to the window's parent, informing it of the child window's
creation. If the WS_ VISIBLE flag was specified, a ShowWindowO call takes care of the initial
display of the window. The last step before CreateWindowExO returns is to call .the

WINDOWS INTERNALS

WH_SHELL hook, informing it of the window's creation. However, this is only done if the
window is not a child window and isn't owned by anyone (a WS_OVERLAPPED window).
The WH_SHELL hook is new for Windows 3.1 and is intended for use by applications that
want to replace PROGMAN.EXE as the Windows shell. The WH_SHELL hook is called
when a top level window is created or destroyed and when the shell program should activate
itself.

Continuation of Pseudocode for CreateWindowEx() - WMCREATE.OBJ

if (hWnd->dwStyLeFLag & WS_MINIMIZE)
{

}

Turn off WS_MINIMIZE in hWnd->dwStyLeFLags)
MinMaximize(hWnd, 7, 1) II Minimize or maximize it

eLse if (hWnd->dwStyLeFlag & WS_MAXIMlZE)
{

}

Turn off WS_MAXIMIZE in hWnd->dwStyLeFLags
MinMaximize(hWnd, 3, 1) II Minimize or maximize it

II If the window is a child window, and it's O.K. to send
II messages to the parent, send the WM_PARENTNOTIFY message
II to the new window's parent. The WPARAM indicates that
II a new window has been created.
if (isChiLd)

if (!(hWnd->dwExStyleFlags & WS_EX_NOPARENTNOTIFY))
{

}

REvalSendMessage(hWnd->hWndParent, WM_PARENTNOTIFY,
WM_CREATE, MAKELONG(hWnd, hWnd->hMenu))

if (IsWindow(hWnd) == 0) II Make sure window is
return 0 /I still valid!

II If the caller specified that the window should be visible
II immediately upon creation, show the window now.
if (dwStyle & WS_VISIBLE)

ShowWindow(hWnd, showWindow)

II If the window just created is a top level window, call the
II WH_SHELL hook, and tell it about ,the new window.
if (isChild == 0)

}

if (hWnd->HWNDOwner == 0)
{

II 1 -> HSHELL_WINDOWCREATED, OxA -> WH_SHELL ?
CallHook(1, hWnd, 0, OxA)

return hWnd II All qone! Return window handLe to calLer

CHAPTER 4 - THE WINDOWING SYSTEM

We're now done with the arduous journey through the creation of a window. The net
result of CreateWindowExO is the creation a new data structure linked into the appropriate
spot in the window hierarchy. The initial startup messages are then sent. Depending on the
value of the dwStyle parameter to CreateWindowEx(), the window mayor may not be visible
on the screen.

Window Manipulation
Now that we've created a window, look at the mechanics of some common window manipu
lation functions. As we examine the various routines, notice that almost all window manipula
tion boils down to a small set of functions.

ShowWindow()
BOOL WINAPI ShowWindow(HWND, int nCmdShow);

ShowWindow() is perhaps the most immediately useful window manipulation routine.
This is an API that allows you to minimize, maximize, show and hide a window, as well as to
restore it to its original screen position and size. As you might imagine, the code is somewhat
lengthy.

The first portion of ShowWindow() is where the specifics for each of the possible SW _xxx
arguments, like SW _HIDE, are dealt with. Each possible SW _xxx case boils down to one of
two actions. One action is to call the MinMaximizeO function, let it do the work, and then
return from ShowWindowO. The other SW_xxx cases build an appropriate set of SWP_xxx
flags to be used in a subsequent SetWmdowPosO call.

The second portion of ShowWindowO is invoked only for the commands that weren't
handled by a MinMaximizeO call. The highlight of this section is the call to SetWindowPosO.
Although SetWindowPos() might look like it contains the brains to manipulate window posi
tions and such, it doesn't. We put SetWindowPosO under the microscope momentarily, to see
who's doing the real work.

If the window isn't currently visible, ShowWindowOdoesn't bother to call SetWindow
PosO. It wouldn't have any effect, since the window couldn't be seen. Instead, it adjusts the
WS_ VISIBLE flags to give the effect of having called SetWindowPos(), without incurring the
overhead.

Besides calling SetWindowPos(), this portion ofShowWindow() is responsible for sending
the messages that indicate a change in window state. Specifically, it sends the WM_SHOW
WINDOW, WM_SETVISIBLE, WM_MOVE, and WM_SIZE messages.

Pseudocode for ShowWindow() - WMSHOW.OBJ
/I Parameters:
II HWND hWnd
/I int nCmdShow
II Locals:
/I WORD setWridPosFlags

/I
/I

WORD
WORD

WINDOWS INTERNALS

wasVisible
showFlag

II Set the initial value of wasVisible. We'll be returning
II this value. It indicates whether the window was
II previously visible.
wasVisible = hWnd->dwStyleFlags & WS_VISIBLE

II This next if statement is for backwards compatibility with
/I the "icon parking lot" values that could be passed to
II ShowWindowO in Windows 1.x. The values for nCmdShow
/I were from OxFF80 to 0, and allowed you to specify a
/I particular "parking lot space" for your icon.
if (HIBYTE(nCmdShow) & OxFF)
{

}

II If the upper byte of nCmdShow is nonzero, convert it
II to a more reasonable value
if (HIBYTE(nCmdShow)==OxFF) && (LOBYTE(nCmdShow)&Ox80))

nCmdShow = SW_SHOWMINNOACTIVE
else

nCmdShow = SW_SHOW

II Get rid of SW_xxx v~lues if ((WORD)nCmdShow > 9)
{ 11 that are out of range.

_DebugOutput("USER: Invalid ShowWindow command")
goto ShowWindow_done

}

convert nCmdShow into an offset into a JMP table. This may
be a compiler optimization of a switch statement, as the code
looks similar to other switch statements produced by the
Microsoft C compiler. We'll show it as one here:

case SW_HIDE:
if (wasVisible == 0)

goto ShowWindow_done
II We're done if it was already
II invisible

setWndPosFlags 1= SWP_HIDEWINDOWI SWP_NOSlZE 1 SWP_NOMOVE

II If hWnd is not the active window, don't cause it to
II be activated when we call SetWindowPos()
if (hWnd != hWndActive)

setWndPosFlags 1= SWP_NOACTIVATE SWP_N6z0RDER
break

CHAPTER 4 - THE WINDOWING SYSTEM

case SW_SHOWNORMAL:
case SW_SHOWNOACTIVATE:
case SW_RESTORE:

if (hWnd->dwStyLeFLags & WS_MINIMIZE II II Is window aLready
hWnd->dwStyLeFLags & WS_MAXIMIZE II min/maximized?

{

}

MinMaximize(hWnd, nCmdShow, 0)
go to ShowWindow_done

eLse II Window isn't min/maximized
{

II minimize or maximize
II as appropriate

if (wasVisibLe) II The window is aLready visibLe!
goto ShowWindow_done

setWndPosFLags 1= SWP_NOSIZE 1 SWP_NOMOVE 1 SWP_SHOWWINDOW

if (nCmdShow == SW_SHOWNOACTIVATE
{

setWndPosFLags 1= SWP_NOZORDER

if (hWndActive)

II Do this extra
II step onLy if
II SW_SHOWNOACTIVATE
II was seLected

setWndPosFlags 1= SWP_NOACTIVATE
}

}

break

case SW_SHOWMINIMIZED:
case SW_SHOWMAXIMIZED:
case SW_MINIMIZE:
case SW_SHOWMINNOACTIVE:

MinMaximize(hWnd, nCmdShow, 0)
goto ShowWindow_done

case SW_SHOW:

II Make it so.

if (wasVisibLe) II Window is aLready visibLe!
goto ShowWindow_done

setWndPosFLags 1= SWP_NOSIZE SWP_NOMOVE SWP_SHOWWINDOW
break

case SW_SHOWNA:
setWndPosFLags 1= SWP_NOSIZE 1 SWP_NOMOVE 1 SWP_SHOWWINDOW

if (hWndActive)
{

II If there's an active window, don't
II cause it to Lose its "active" status

setWndPosFLags 1= SWP_NOACTIVATE
break

}

WINDOWS INTERNALS

1/
II End of pseudo switch statement
1/

II Set showFlag to a if the window should be hidden
II when we're done, 1 if it should be visible
showFlag = (nCmdShow == SW~IDE) ? a : 1

II If the desired window visibility is different than its
II current state, change it now. Note that this section
II of code sends messages, but the actual display of the
II window comes later (a SetWindowPos() call).
if (showFlag != wasVisible)
{

}

REvalSendMessage(hWnd, WM_SHOWWINDOW, showFlag, a

II If the application is not 3.1 compatible, send
II a WM_SETVISIBLE message to the window
if (bit Ox0004 set in HIWORD(hWnd->dwFlags))

REvalSendMessage(hWnd, WM_SETVISIBLE, showFlag, a)

if (IsWindow(hWnd) == 0) II Is window still around?
goto ShowWindow_done

if (hWnd->dwStyleFlags & WS_CHILD)
{

II Is it a child wnd?

}

if (CS_SAVEBITS specified in hWnd->wndClass)
{

}

if (nCmdShow is SW_SHOWNORMAL or SW_SHOW)
{

ActivateWindow(hWnd, 1)

if (IsWindow(hWnd) == 0) II Is window still
goto ShowWindow_done II valid?

setWndPosFlags 1= SWP_NOACTIVATE SWP_NOZORDER
}

else f

{
II Not a child window

setWndPosFlags = SWP_NOACTIVATE SWP_NOZORDER
}

CHAPTER 4 - THE WINDOWING SYSTEM

II If the window shouLd be visibLe, use SetWindowPos() to
II make it visibLe on the screen. FChiLdVisibLe() waLks up
II the parent window chain, testing to see if each parent
II window is WS_VISIBLE. If not, it returns O. If aLL
II parents are visibLe, it returns 1.
if (FChiLdVisibLe(hWnd» II ALL parents are visibLe
{

}

II SetWindowPos() does the reaL work. CaLL it now.
II Pseudocode for SetWindowPos() is beLow.
SetWindowPos(hWnd, 0, 0, 0, 0, 0, setWndPosFLags)

if (IsWindow(hWnd) -- 0
goto ShowWindow_done

II Is window stiLL vaLid?

eLse II Parents aren't visibLe, so neither are we. Just
{ II set the appropriate styLe bits, and go on.

}

if (nCmdShow == SW_HIDE)
Turn off WS_VISIBLE fLag in hWnd->dwStyLeFLags

eLse
Turn on WS_VISIBLE fLag in hWnd->dwStyLeFLags

II Send some slzlng message to the window, if necessary
if (bit Ox10 set in LOBYTE(hWnd->dwFLags))
{

Turn off bit Ox10 set in LOBYTE(hWnd->dwFLags)

II Send an appropriate WM_SIZE message to the window
if (hWnd->dwStyLeFLags & WS_MINIMIZED)

SendSizeMessage(hWnd, SIZE_MINIMIZED)
eLse if (hWnd->dwStyLeFLags & WS_MAXIMIZED

SendSizeMessage(hWnd, SIZE_MAXIMIZED)
eLse

SendSizeMessage(hWnd, SIZE_RESTORED)

II Now send a WM_MOVE message.
REvaLSendMessage(hWnd, WM_MOVE, 0,

MAKELONG(hWnd->rectCLient.Left
- hWnd->hWndParent->rectCLient.Left,
hWnd->rectCLient.top
- hWnd->hWndParent->rectCLient.top)

II Verify that the window is stiLL vaLid. Perhaps it's
II possibLe that the window couLd have been destroyed
II during the preceding manipuLations?

}

WINDOWS INTERNALS

if (IsWindow{hWnd) == 0) II Is window still valid?
goto ShowWindow_done

II If we're hiding the active window, do something special
II to get out of whatever state we're in.
if (nCmdShow -- SW-HIDE)

if (hWnd -- hWndActive) II are we the active window?
{

}

ActivateWindow{ hWnd, 3)

if (IsWindow{hWnd) == 0
goto ShowWindow_done

II Make it inactive?

II Is window still valid?

if (nCmdShow == SW_HIDE
CheckFocus{ hWnd)

II If HWND parameter has the
II focus, and is a child, set
II focus to the parent HWND

II Send a WM_SHOWWINDOW to the icon title window if the
II window is minimized
if (hWnd->dwStyleFlags & WS_MINIMIZED)

ShowIconTitle{ hWnd, nCmdShow != SW_HIDE)

ShowWindow_done:
return wasVisible

As you can see, ShowWindowO is a high level function that takes any SW _xxx parameter
and dispatches it to an appropriate MinMaximizeO or SetWindowPosO invocation. It isn't the
last time we encounter SetWindowPosO.

MoveWindow()
BOOl WINAPI MoveWindow{HWND, int left, int top,

int width, int height, BOOl fRepaint);

From the pseudocode below, it's apparent that MoveWindowO is just a wrapper routine
around a SetWindowPbs() call. Like too many other routines in Windows, there is one path
that's executed for pre-Windows 3.1 applications, and another for Windows 3.1 or above
compatible applications.

Pseudocode for MoveWindow{) - WMSWP.OBJ
II Parameters:
II HWND hWnd
II int left, top, width, height
II BOOl fRepaint

CHAPTER 4 - THE WINDOWING SYSTEM

/I Locals:
II WORD
II WORD

returnValue
setWndPosFlags

II if we're not the desktop window, and not a 3.1 app, and
II our parent is the desktop (i.e., a top level window) •..
if ((hWnd!= HWndDesktop)

.{

}

else
{

}

&& (bit Ox0004 not set in HIWORD(hWnd->dwFlags»
&& (hWnd->hWndParent == HWndDesktop))

returnValue = SetWindowPos(hWnd, 0, left, top, width,
height, SWP_NOZORDER 1 SWP_NOACTIVATE),

if (fRepaint == 0)
ValidateRect(hWnd, 0)

II Remove entire window
II from update region

setWndPosFlags = SWP_NOZORDER 1 SWP_NOACTIVATE
if (fRepaint == 0)

setWndPosFlags 1= SWP_NOREDRAW

returnValue = SetWindowPos(hWnd, 0, left, top, width,
height, setWndPosFlags) ,

return returnValue

Set Win do wPos()
BOOL WINAPI 5etWindowPos(HWND hwnd,

HWND hwndlnsertAfter,
int x, int y, int width, int height,
UINT fuFlags);

We've seen how ShowWindowO ~d MoveWindowO use SetWindowPosO. As it turns
out, there are many routines (for instan~e, DestroyWindowO and BringWindowToTop()) that
also boil down to a call to SetWindowPosO. It's becoming readily apparent that SetWindow
PosO is a key routine that other windowing routines are built upon.

Taking a look at the pseudocode for SetWindowPos(), we quickly discover that the code
can be summarized as:

BeginDeferWindowPos()
DeferWmdowPos()
EndDeferWmdowPos().

WINDOWS INTERNALS

For good measure, SetWindowPosO throws in a RedrawWindowO call and some flag
twiddling. The core of the routine however, is just the above three functions.
SetWindowPos() is just another layer on the onion. All SetWindowPosO does is encapsulate
the three stages of the actual window-manipulation APIs into one function call. The
DeferWindowPos functions allow you to collect all of your changes together and tell USER to
update the screen once with the final results. We'll look at them next.

Pseudocode for SetWindowPos() - WMSWP.OBJ
1/
1/
1/
1/
1/
1/
1/

Parameters:
HWND hWnd, hWndInsertAfter
int left, top, width, height
WORD flags

Locals:
HDWP hDWP 1/ handle to DeferWindowPos structure
WORD needsRedraw = a

II Is the window being shown or hidden?
if (flags & (SWP_SHOWWINDOW 1 SWP_HIDEWINDOW)
{

}

II Is it a 3.1 compatible app window?
if (bit Ox0004 not set in HIWORD(hWnd->dwFlags)
{

}

flags 1= SWP_NOMOVE 1 SWP_NOSIZE

if (flags & SWP_SHOWWINDOW)
if (hWnd->dwStyleFlags & WS_VISIBLE)

needsRedraw = 1

II Tell USER that we're going to start giving it our changes.
II The return value is a handle to a USER internal structure
/1 Note that the 1 parameter value tells USER that we
II only expect to change one window.
if ((hDWP = BeginDeferWindowPos(1» == a)

return a

II tell the windowing system about the window that we want to
II move, but don't cause it to be drawn yet.
hDWP = DeferWindowPos(hDWP, hWnd, hWndInsertAfter, left, top,

width, height, flags)
if (hDWP == a) 1/ Make sure we're still O.K.

return a

CHAPTER 4 - THE WINDOWING SYSTEM

if EndDeferWindowPos(hDWP»
{

II Repaint the window now, if it needs it
if (needsRepaint)

RedrawWindow(hWnd, 0, 0, RDW_INVALIDATE
I RDW_ALLCHILDREN I RDW_FRAME)

return II Success!
}

else
return 0 II EndDeferWindowPos() failed!

The DeferWindowPos() APls

At the heart of all routines that position or resize windows on the screen are three functions.
All three must be used in conjunction with each other, and luckily, all are documented. If you
want maximum performance when moving around multiple windows on the screen, these
functions are what you're looking for.

The process of manipulating one or more windows occurs in three steps. The first step is
to call BeginDeferWindowPosO. BeginDeferWindowPosO allocates a data structure called a
DWP, for DeferWindowPos. BeginDeferWindowPosO returns a handle to a DWP (an
HDWP). Thc DWP acts as a container for all the changes made in the next step. Think of the
DWP structure as a blank piece of paper on which to record your window changes. If more
than one window is changed as a result of the next step, the DWP structure can grow as
needed. The format of a DWP is shown in Table 4-4.

Table 4-4: Format of a DWP.

Off Type
OOh WORD
02h WORD
04h WORD
06h . WORD
08h ?

Name
actualWndCount
suggestWndCount
isValid
signature
windowData

Description
/ / # of windows we're managing
/ / Suggested number of windows
/ / 1 if usable, 0 if not
/ / 5057h = 'WP' (WindowPos?)
/ / Start of window data area

The second step of moving windows on the screen is to invoke DeferWindowPosO one or
more times. The arguments to DeferWindowPosO include the DWP handle, the HWND to
be changed, the position and size coordinates, and the SWP _xxx flags. It's important to note
that no visible action takes place at this time. You won't see anything move about as a result
of calling DeferWindowPosO. As its name implies, it defers action. The function, although
not well understood enough to provide pseudocode for, does not call any functions which
would cause display updates. Instead, the DeferWindowPosO just adds the specified changes
to the DWP structure allocated in the first step. These changes are taken care of in the third

WINDOWS INTERNALS

step, below. If more windows need to be positioned than there are room for in the DWP
structure, DeferWindowPosO calls LocalReAllocO to resize the structure. The goal of
DeferWindowPos() is to collect all the changes to all the windows in one place, without
repainting anything. When all the changes are complete, the screen can be updated just once,
minimizing the amount of window flash.

After all the calls to DeferWindowPosO have completed, EndDeferWindowPosO steps in
and calls the necessary internal routines to enforce Z-ordering, clipping, and so on. The DWP
structure is passed to these returns, which might cause even more windows to be added to the
list of windows needing to be repainted. When all windows affected by the DeferWindow
PosO calls in step two have been accounted for, EndDeferWindowPosO redraws them. It
appears that DoSyncPaintO may playa large part in this procedure also.

As we saw earlier, SetWindowPosO is just a convenient wrapper around the trio of calls.
Besides SetWindowPosO, the three functions are called as a group from several other places in
USER, such as in the NW_DrawSwitchWindowO function, which draws the small window
you see when using ALT-TAB in your programs. You too can gain performance improve
ments at the expense of a little complexity. If your program needs to move around more than
one window at a time, consider using the DeferWindowPos functions, instead of SetWmdow
PosO·

Now that we understand what goes on at a high level, let's examine pseudocode for
BeginDeferWindowPosO and EndDeferWindowPosO. We aren't able to show you
DeferWindowPosO because its actions aren't well understood. However, it doesn't appear to
do anything besides add data to the DWP structure in preparation for the eventual call to
EndDeferWindowPos().

BeginDeferWindowPos()
HDWP WINAPI BeginDeferWindowPos(int cWindows);

It's the responsibility of BeginDeferWindowPosO to return a local handle to a DWP
structure for DeferWindowPosO to fill in. It's somewhat unusual that BeginDefer
WindowPos() gives the caller the opportunity to suggest how many windows will be affected
by subsequent DeferWindowPosO calls. It appears that USER keeps around two permanent
DWP structures. Only if a permanent DWP structure can't be used will a new DWP structure
be allocated. Once the local handle for the DWP structure has been determined, the code ini
tializes the known fields before returning the DWP handle.

Pseudocode for BeginDeferWindowPos() - WMSWP.OBJ
II Parameters:
II WORD suggestWndCount
II LocaLs:
II DWP near * hDWP

if (FMessageBox) II NormaLLy O. Set to 1 by SysErrorBox()
{

hDWP= MSR-Workspace II a "permanent" DWP structure
II Used when a message box is up?

}

CHAPTER 4 - THE WINDOWING SYSTEM

if ((hDWP->isVaLid) II (suggestWndCount > 2))
{

}

_DebugOutput("USER: Too many windows positioned"
"with tasks Locked")

return 0

suggestWndCount = 2 II Msg_Workspace has 2 windows?

eLse if ((suggestWndCount <= 4) && (Workspace->isVaLid == 0»
{

}

eLse
{

}

hDWP = Workspace II "Workspace" appears to be yet
suggestWndCount = 4 II another "permanent" DWP structure,

II with 4 "update" windows

II ALlocate a new DWP structure in the USER heap. Take
II into account the suggested number of windows given by
II the caLLer. LT_USER_MWP is defined in TOOLHELP.H
hDWP = UserLocaLALLoc(LT_USER_MWP, LMEM_ZEROINIT,

(suggestWndCount * Ox26) + 8)

if (hDWP != 0)
{

II If we have a DWP pointer to work with, .
II fiLL in the fieLds now

}

hDWP->isValid =
hDWP->actualWindowCount = 0 II No windows modified yet!
hDWP->suggestWndCount = suggestWndCount
hDWP->signature = 'WP'

return hDWP II Return handLe to caLLer

DeferWindowPos()
HDWP WINAPI DeferWindowPos(

HDWP,
HWND hWnd,
HWND hWndInsertAfter,
int x, int y, int cx, int cy,
UINT flags);

DeferWindowPosO is where you submit window changes. These changes can include the
window's size, position on the screen, position in the Z-order, and so on. DeferWindowPosO
adds these changes to the running list of changes stored in the DWP structure. As "defer"

WINDOWS INTERNALS

implies, these changes do not affect the current windows on the screen. All Defer
WindowPos() does is manipulate some data in memory. The actual WND structures and on
screen images don't change till later.

If the DWP structure becomes too small to hold all the changes, DeferWindowPosO real
locates the memory block to a larger size. If it can't reallocate the memory,
DeferWindowPosO returns NULL, and you should abort the sequence of window changes.
When you've completed all your changes, the final DWP structure is turned over to
EndDeferWindowPosO so that it can update the screen in one operation.

EndDeferWindowPos()
BOOl WINAPI EndDeferWindowPos(HDWP);

EndDeferWindowPosO is passed the handle to a DWP structure that contains the infor
mation for all windows the caller wants modified. There are several calls that handle the dirty
work of recalculating and updating the affected windows. The first of these routines is
ZOrderByOwnerO, which takes care of determining the order of windows in the third dimen
sion. Another important routine is CalcValidRectsO, which presumably takes care of calculat
ing which windows overlap other windows, and deciding what portions of the various
windows are to be visible. Also important is DoSyncPaintO, which appears to take care of the
task of forcing the affected windows to repaint.

Pseudocode for EndDeferWindowPos() - WMSWP.OBJ
1/
1/
1/
1/
1/
/I
1/

Parameters:
HDWP hDWP

locaLs:
WORD doPaint
WORD someWnd
WORD anotherWnd
WORD SwpActivateResult

if (hDWP->actualWndCount == 0) II nothing to do!
goto EndDeferWindowPos_free_exit II Vacation time!

II VaLidateSmwp() appears to set the doPaint variable
II (if the DWP is vaLid???).
if (VaLidateSmwp(hDWP, &doPaint))
{

someWnd = some unknown field in the hDWP structure

II Do Z-ordering things if the desktop window was
II incLuded in the DWP structure.
If (someWnd != 0)

if (someWnd == HWndDesktop)

}

{

}

CHAPTER 4 - THE WINDOWING SYSTEM

hDWP = ZOrderByOwner(hDWP)
if (hDWP == 0)

return 0

II Find out which portions of the various windows
II referenced by the DWP structure are valid.
II CalcValidRects() is a lengthy routine, and
II appears to contain a fair amount of the "logic"
II behind window placement and ordering.
CalcValidRects(hDWP, &anotherWnd)

if (BltValidBits(hDWP) != 0) II If bitmaps are saved,
doPaint = 0 II no need to repaint?

SwpActivateResult = SwpActivate(&anotherWnd)

II Do we need to do any painting? Do$yncPaint() is
II another large routine that appears to contain even
I I mor.e update logi c.
if (doPaint)

if C IsWindow(someWnd) != 0)
DoSyncPaint(someWnd, 0, 4)

if (SwpActivateResult)
{

II ??

}

if (HWndActive)
Turn off bit Ox0100 in HWndActive->dwFlags

if (HWndActivePrev)
Turn off bit Ox0100 in HWndActivePrev->dwFlags

SendChangedMsgs(hDWP) II Send WM_WINDOWPOSCHANGED
II messages

if (someWnd)
if (someWnd == HWndDesktop)
{

}

II Walks top level windows. Something having
II to do with WS_EX_iOPMOST?
Va l i dateTopmost()

II End of ValidateSmwp() == TRUE

EndDeferWindowPos_free exit:

@FreePsmwp(hDWP) II Fr~e the hDWP if it's not the
II permanent "MsLWorkspace" or
II "Workspace" DWP structures

WINDOWS INTERNALS

The three functions just described, BeginDeferWindowPos(), DeferWindowPos(), and
EndDeferWindowPos(), comprise the core routines that window manipulation is built on. As
we saw earlier, other window manipulation routines are really just layers built upon the three
DeferWindowPos functions.

Window Focus
Until now, we've not paid much attention to the subject of window focus. It certainly bears
mentioning here, as the notion of window focus is important to many aspects of the window
ing system.

The focus window receives messages related to keyboard activity, for instance,
WM_ CHAR messages. The most immediate example of window focus is the edit control win
dow in a dialog box. An edit control with the focus has a blinking cursor which indicates that
the window will receive the characters typed at the keyboard. If the focus switches away from
the dialog box, the cursor disappears from the edit control. Note however that almost any
window can have focus, including the window for a simple generic program.

USER maintains a global variable, HWndFocus, that holds the HWND of the current
focus window. The HWndFocus value can be obtained using the GetFocus() API. It's possi
ble not to have a current focus window, in which case HWndFocus is zero. You can enter this
state by calling SetFocus() (described below) with an HWND ofzero. In the Win32 API, the
notion of focus has a somewhat different meaning, as one application isn't allowed to interfere
with another application (for example, to steal the focus away from it). In Win32, the
windowing system maintains a focus in a per-application manner.

Besides the focus window, USER maintains a global variable, HWndActive, containing
the HWND of another special window called the active window. While the focus window can
be any window in the system, the active window is always a top level window (WS_OVER
LAPPED or WS_POPUP). The active window is either the focus window, or an ancestor
(parent, grandparent, great grandparent, and so forth) of the focus window. The active win
dow HWND can be set with the SetActiveWindow() API and retrieved with GetActive
Window(). The pseudocode for ShowWindow() and DestroyWindow() shows examples of
how HWndActive is used.

The active window is indicated to the user by the color of its title bar. The active window
title bar is color, while the title bars of all the other, inactive colors are gray-that is, unless
you've played with the color schemes in the Control Panel.

SetFocus()
The first portion of SetFocus() takes care of the special case where the focus is to be taken
away from all windows (HWndFocus set to zero). The code first queries the Computer Based
Training hook (WH_CBT) to see if it's OK to change the focus; if it is OK, the code calls
SendFocusMessages(), described later.

If the new focus window won't be zero, the expected Windows version of the windows
task comes into play. Depending on whether it's a pre-Windows 3.0 application or not,
SetFocus() determines the top level window for the new focus, using different methods, then

CHAPTER 4 - THE WINDOWING SYSTEM

SetFocusO saves the HWND. The rest of SetFocusO is similar to the code where the focus
HWND is set to zero. The code calls the Computer Based Training hook, and then invokes
SendFocusMessages(). The one difference between the two calls to SendFocusMessagesO is
that SetFocusO makes the previously found top level window into the new active window, if
it's not already active.

Pseudocode for SetFocus() - WINLOOP2.0BJ
II
II
II
II
II

Parameters:
HWND hWnd

Locals:
HWND hWndPrevFocus II WND with focus at time of call
HWND hWndScratch II A scratch HWND

if C hWnd == 0)
{

II Taking focus away from everybody ..•

}

II Calla hook function. 9==HCBT_SETFOCUS, 5==WH_CBT ?
if C CallHookC9, hWnd, MAKELONGCHWndFocus, hWnd), 5) != 0)

return 0

hWndPrevFoc.us = HWndFocus I I Remember the old focus wnd

II Send the WM_KILLFOCUS and WM_SETFOCUS messages
SendFocusMessages(HWndFocus, hWnd)

return hWndPrevFocus

if (GetAppVerC) < Ox0300)
{

II pre 3.0 windows app:

}

else
{

II Walk up the parent window list to 'get the topmost
I I window Cthe"main" window>.
hWndScratch = GetTopLevelWindowChWnd)

if (hWndScratch & WS_DISABLED) II Don't set focus to
return 0 I I a di sabled parent

II window

II we walk up the parent window list, checking to see
II if the state of any p~rent window would prevent us
II from being able to get the focus.
hWndScratch = hWnd I I start at focus window
while (hWndScratch & WS_CHILD) II Stop when we reach
{ I I the to'p level window

}

}

WINDOWS INTERNALS

II Check to see if any parent window is minimized or
II disabled. We can't set the focus if so.
if «hWndScratch & WSjlINIMIZED) I I

(hWndScratch & WS_DISABLED))
return 0

hWndScratch = hWndScratchParent II Now check the parent
II wi ndow ...

if (hWnd != HWndFocus)
{

II Is focus WND changing?

}

eLse

II CaLL a hook function. 9==HCBT_SETFOCUS, 5==WH_CBT ?
if (CaLLHook(9, hWnd, MAKELONG(HWndFocus, hWnd), 5) != 0)

return 0

II hWndScratch shouLd be pointing to the top LeveL
II window of the appLication receiving the focus. If
II this top LeveL window is different than the currentLy
II active top LeveL window, caLL ActivateThisWindow()
II to switch the active window.
if (hWndScratch != HWndActive)

if (ActivateThisWindow(hWndScratch, 0, 0) -- 0)
return 0

if (IsWindow(hWnd)== 0) II Was new focus WND destroyed?
return 0

hWndScratch = HWndFocus II Remember previous focus HWND,
II because we need to return it!

II Send the WM_KILLFOCUS and WM SETFOCUS messages
SendFocusMessages(HWndFocus, hWnd)

II Focus not changing
hWndScratch = HWndFocus

return hWndScratch II contains previous focus HWND

SendFocusMessQges()
SendFocusMessagesO has three duties. It sets the HWndFocus global variable to the new
focus HWND; it sends the WM_KILLFOCUS message to the window that's about to lose
focus, and send the WM_SETFOCUS to the new focus window. It's interesting to note that
before sending the WM_SETFOCUS message, the value of the new focus HWND is com
pared to its value upon entry into SendFocusMessagesO. This is most likely needed because

CHAPTER 4 - THE WINDOWING SYSTEM

some applications handle the WM_KILLFOCUS message, calling SetFocusO with their
HWND to prevent themselves from losing the focus. It's conceivable that without this code,
applications that call SetFocusO in their WM_KILLFOCUS handler could cause an infinite
recursion.

Pseudocode for SendFocusMessages() - WINLOOP2.0BJ

1/ Parameters:
II HWND hWndOldFocus
1/ HWND hWndNewFocus

HWndFocus = hWndNewFocus II Set USER global variable. This
II precedes the WM_KILLFOCUS msg!!!

if (hWndOldFocus != 0)
{

II If there was a previous focus
II HWND, send WM_KILLFOCUS

}

FRevalidate = 0 II A USER Global variable

REvalSendMessage(hWndOldFocus, WM_KILLFOCUS,
hWndNewFocus, 0)

II If we're setting the focus to a new window (i.e., not
II NULL), send the WM_SETFOCUS message to the new window
II Note that the hWndNewFocus is compared to its original
II value (stored in HWndFocus). This is probably necessary
II because an application might have trapped the
II WM_KILLFOCUS message, and set the focus back to itself.
if (hWndNewFocus)

if (HWndFocus == hWndNewFocus)
{

}

SendMessage(hWndNewFocus, WM_SETFOCUS,
hWndOldFocus, 0)

Message Processing
Our discussion of the windowing system would be sorely lacking if we didn't cover at least
some of the most basic functions for handling window messages. Therefore, we discuss the
BeginPaintO and EndPaintO functions, as well as DefWindowProcO.

BeginPaintO
Of all the messages your program could handle, WM_PAINT is typically the most important.
The standard response to the WM_PAINT message is to call BeginPaintO to get a device con
text from the list of five cached DCs USER maintains (DCs are discussed in Chapter 5). With

WINDOWS INTERNALS

the device context, you do whatever screen updating is necessary and release the DC when
you're done using it. Since there's a set of functions that acquire and release DCs (GetDC()
and ReleaseDC(), also discussed in Chapter 5), you might think that it's OK to bypass
BeginPaintO and EndPaintO in favor of calling the DC functions. This is not the case. While
BeginPaintO does acquire a DC for your use, it performs other necessary actions that
GetDCO doesn't. We'll see what these actions are when we examine the pseudocode.

We won't be presenting pseudocode for BeginPaintO, as it's just a stub routine. All it
does is push another value on the stack frame created when BeginPaint() was called, and then
JMP to InternalBeginPaint().

InternalBeginPaintO begins by zeroing out the PAINTSTRUCT structure whose address
was passed. Next, it turns off a flag inside of the HWND that was set inside DispatchMess
ageO. This indicates to DispatchMessageO that BeginPaintO was called in response to the
WM_P AINT message. Chapter 7 discusses the DispatchMessageO part of this process.

A bit later, InternalBeginPaintO sends the WM_NCPAINT (non-client paint) message to
the window, if necessary. If the window wants to paint its own custom frames, it would han
dle this message and paint accordingly. Then, if the window being painted is the caret win
dow, InternalBeginPaintO hides the caret so that it doesn't interfere with subsequent
painting.

The next task for InternalBeginPaint() is a key step that distinguishes it from a call to
GetDCO. If the window has an update region, InternalBeginPaintO calls DecPaintCountO
for it. As described in Chapter 7 on the Windows messaging system, DecPaintCountO decre
ments the paint count field in the application's message queue, and clears the QS_PAINT bit
if the count drops to zero. If DecPaintCount() wasn't called, the application would continue
to see that a WM_P AINT message needs to be generated whenever GetMessageO or
PeekMessage() is called. GetDC() doesn't clear the QS] AINT bit or call DecPaintCount().

InternalBeginPaint() now turns it attention to obtaining a device context handle from
USER's cache ofDCs (see the discussion ofDCEs in Chapter 6 of Undocumented Windows)
and the discussion of LW _DCInitO in Chapter 1 of this book), for the application to paint
with. It uses the GetDCExO function to get the device context which it stores in the
PAINTSTRUCT field. Some other PAINTSTRUCT fields are cleared at this point.

Before BeginPaintO can return the DC to the caller, two more steps remain. If the win
dow has a background area to be erased, the code calls SendEraseBkgndO to send either
WM_ICONERASEBKGND or WM_ERASEBKGND, whichever is needed. The second task
is to call SendChildNCPaintO, which sends WM_NCP AINT messages to the window's child
windows.

Pseudocode for InternalBeginPaintC) - WMPAINT.OBJ
II Parameters:
II HWND hWnd
II PAINTSTRUCT far *lpps
II WORD windowDC
/I Locals:
II HRGN
II WORD

hUpdateRgn
needBkgErase

II WND to be painted
II PAINTSTRUCT pointer
II Should DCX_WINDOW be used?

CHAPTER 4 - THE WINDOWING SYSTEM

II HDC hDC
II DWORD DCFLags

II Write a consistent memory pattern to the PAINTSTRUCT
II for debugging purposes (onLy in the debug USER)
/I Undocumented Windows List K3290 as "DebugFiLLBufferO"
K329(Lpps, sizeof(PAINTSTRUCT))

II CLear the fLag set inside of DispatchMessage(). This
II fLag indicates that painting did occur for the window. If
II DispatchMessage() see that this fLag is stiLL set after
II dispatching the message, it wiLL do defauLt painting, and
II in the debugging version, whine at the caLLer that painting
II didn't occur properLy.
Turn off bit Ox02 in HIWORD(hWnd->dwFLags)

II if not the desktop window AND not a 3.1 compatibLe app
II AND the window is minimized AND there is an hIcon for
II cLass, set windowDC to 1.
if (hWnd != HWndDesktop)

if (bit Ox04 not set in HIWORD(hWnd->dwFLags))
if (hWnd->dwStyLeFLags & WS_MINIMIZED)

if (hWnd->wndCLass->hIcon != 0)
windowDC = 1 II It'sa window DC

if (Ox0800 bit set in LOWORD(hWnd->dwFLags))
{

}

II Get a handLe to a RGN containing the non-cLient areas
II that need to be painted
hUpdateRgn = GetNCUpdateRgn(hWnd, 0)

SendNCPaint(hWnd, hUpdateRgn) II Send WM_NCPAINT to hWnd

DeLeteNCUpdateRgn(hUpdateRgn) II ALL done with the RGN

if (hWnd == Caret) /I Turn off the caret before painting
InternaLHideCaret() II The _reaL_ HideCaret() code

needsBkgErase = (BYTE at hWnd->dwFLags+1) & Ox0002
if (needsBkgErase)

Turn off bits Ox0004 & Ox002 in (BYTE at hWnd->dwFLags+1)

II If the window has an update region, decrement the paint
II count stored in the appLication's message queue

WINDOWS INTERNALS

if hWnd->hRgnUpdate I I
bit Ox1000 set in LOWORD(hWnd->dwFLags)

{

DecPaintCount(hWnd)
}

hUpdateRgn = hWnd->hrgnUpdate // Remember update RGN handLe

// NuLL the window update region stored in the WND structure.
// We've aLready saved the handLe in a LocaL variabLe.
hWnd->hrgnUpdate = 0
Lpps->fRestore = 0 // Zero out fieLds in the PAINTSTRUCT
Lpps->flncUpdate = 0

if (windowDC

eLse

DCFLags = DCX_WINDOW I DCX_INTERSECTRGN DCX_USESTYLE
some undocumented fLag

DCFLags = DCX_INTERSECTRGN I DCX_USESTYLE
some undocumented fLag

// Get a DC (from USER DC cache) that'LL be used for painting
// the window. Put the DC in the PAINTSTRUCT, as weLL as in
// a LocaL variabLe.
hDC = GetDCEx(hWnd, hUpdateRgn, DCFLags)
Lpps->hdc = hDC

// FiLL in the rcPaint fieLd of the PAINTSTRUCT with the
// rectangLe coordinates that need painting.
if (UT_GetParentDCCLipBox(hWnd, hDC, &Lpps->rcPaint))
{

}

1/ Send either WM_ICONERASEBKGND or WM_ERASEBKGND to
// the window, as appropriate.
if (needsBkgErase)

SendEraseBkgnd(hWnd, hdc, hUpdateRgn)

if (IsWindow(hWnd) == 0) // Make sure the window is
return 0 // sti LL vaLid.

SendChiLdNCPaint(hWnd) // Send WM_NCPAINT msgs to the
// chiLd windows, as appropriate

// Set the fLag that indicates that the appLication needs
// to erase the background. This wiLL be nonzero if the
// appLication didn't specify a background brush in the

CHAPTER 4 - THE WINDOWING SYSTEM

II window cLass.
Lpps->fErase = LOWORD(hWnd->dwFLags) & Ox0400

return hDC II Return DC that caLLer wiLL paint with

Upon completion of BeginPaint() and InternalBeginPaintO, the application has a device
context to draw and paint its window (see Chapter 5 on GDI). When the application com
pletes its work, it releases the device context back to the USER device context cache using the
EndPaint() function.

EndPaintO
The EndPaint() code is very straightforward. It first releases the device context used for paint
ing back to the cache of display DCs that USER maintains. If the window had the caret
before painting began, InternalShowCaret() turns it back on. The last step is to zero out the
PAINTSTRUCT, if the program is running under the debugging USER.

Pseudocode for EndPaint() - WMPAINT.OBJ
II Parameters:
II HWND hWnd
II PAINTSTRUCT far *Lpps

II ReLease the painting DC back to the pooL of 5
II dispLay DCs that USER keeps around.
ReLeaseCacheDC(Lpps->hdc, 1)

if (hWnd == Caret)
InternaLShowCaret()

II Now that painting is done, we
II can reshow the caret, if the
II window is the caret window

K329(Lpps, sizeof(PAINTSTRUCT)) II bLow away the

DefWindowProcO

II PAINTSTRUCT fieLds
II (debug USER onLy)

The wayan application handles messages is somewhat similar to inheritance in object-oriented
languages such as C++. The idea behind inheritance is that a derived class retains all the func
tions of the base class and only overrides or adds the functions it needs to. In Windows pro
gramming, your window procedure is the derived class; it handles only the messages it needs.
The role of the base class is played by DefWindowProc(). DefWindowProc() is responsible for
handling all messages that must have some sort of action taken for them.

With the hundreds of messages that Windows slings around, it's bound to be somewhat
interesting to see what messages absolutely must have some form of special processing. Luck
ily, we don't have to dig much to find this out. The source code for DefWindowProc(), as
well as the default dialog procedure, DefDlgProcO, can be found in the Windows SDK. In
the Windows 3.1 SDK, the files can be found in the DEFPROCS directory (for example,

WI N DOWS INTERNALS

C:\SDK\SAMPLES\DEFPROCS\) as DEFWND.C and DEFDLG.C. We highly recommend
that you look at the code if you have it, as it can be very enlightening. However, we wouldn't
recommend that you base your own window procedure code on the code in
Def\VindowProcO. It's one very long switch statement. Contrary to what some people seem
to think, you don't have to write all of your program's code to fit inside a single switch state
ment.

!fyou do examine the Def\VindowProcO code, you might notice the TestWFO function.
According to the CodeView information, as well as the disassembly listings, there is no Test
WFO function. Instead, it appears that TestWFO is really a C macro. What's somewhat
strange is that the TestWFO macro appears able to access the WND structure's dwFlags,
dwStyleFlags, and dwExStyleFlags fields, all from the same macro. The TestWFO macro must
be ugly indeed!

An interesting aspect of Def\VindowProc() is that it calls numerous internal functions
(and the comments in the code don't explain them very well). Since the internal functions
aren't exported, you can't just compile Def\VindowProcO and include it in your application.

Also of some note is that Def\VindowProcO openly handles a set of messages that aren't
documented in the SDK or DDK. One would think that if they absolutely required some sort
of response, they'd be documented. The undocumented messages are described in Undocu
mented Windows and are as follows:

WM_SYNCPAINT
WM_ISACTIVEICON
WM_GETHOTKEY
WM_SETHOTKEY
WM_QUERYDROPOBJECT
WM_DROPOBJECT

DestroyWindow()
When you're finished with a window, you need to remove it from the windowing system. The
disposal of a window is much more than just undoing the work of CreateWindowExO.
DestroyWindow() is another large function, so we have broken it up into subsections to cover
individually.

DestroyWindowO is usually not directly called as often as CreateWindowO. In many
cases, it's called for you by Def\VindowProcO in response to the WM_CLOSE message.

The first section of DestroyWindowO determines if it's OK to shut down the window;
then it gets out of any states during which it wouldn't be good to shut down. The first test
determines if the window being destroyed is associated with the current message queue. If
not, the function returns a failure code. This prevents one application from destroying the
windows of another application, be it malicious or not.

Next, DestroyWindowO exits out of a locked state if the system is in such a state. The
locked state is a special mode of the scheduler that only allows the current task to run (Chap
ter 6 discusses this in more detail). If the system were to remain in a locked state, a potential
deadlock situation could arise later on if a message was sent to another task.

CHAPTER 4 - THf WINDOWING SYSTEM

Afterwards, DestroyWindowO invokes the Computer Based Training hook, asking it if it's
OK for the window destruction to proceed. Assuming the return is zero (okay to proceed)
and that the right conditions are met, DestroyWindowO uses EndMenuO to get out of a
menu state.

Pseudocode for DestroyWindow() - WMDSTROY.OBJ
/I Parameters:
II HWND hWnd

II Find out if the window we're destroying is owned by the
II current task/queue. If.not~ slap the caller on the wrist.
if (hWnd->hQueue != HqCurrentO)
{

}

_DebugOutput("USER: DestroyWindow: hwnd not created "
"by the current task")

return 0

II If the scheduler is only letting the current task run~ get
II out of that state now~ as intertask SendMessage()'s may be
II sent Later on.
if (FTasklsLocked != 0)

LockMyTask(0)

1/ Call a hook. 4-> HCBT_DESTROYWND~ 5 -> WH_CBT
II CBT ..:.> "Computer Based Training"
if (CallHook(4~ hWnd~ 0, 5) != 0)

return 0

/I Do something related to getting out of a menu state if
II we're in one. PGlobalPopupMenu is a USER gLobaL variabLe
if (PGlobalPopupMenu)

if (hWnd == some field in PGlobalPopupMenu)
{

}

set PGlobalPopupMenu field to 0
EndMenuO

The second part of DestroyWil)dow() concerns itself with broadcasting the fact that the
window is shutting down and that various states may n:eed to be updated. If the window is a
top level window, DestroyWindowO calls the WH_SHELL hook procedure. This gives the
owner of the shell hook a chance to do whatever it needs to do when a top level window goes
away. This section is also where DestroyWindowO updates the palette and tells other applica
tions of the new palette, using a WM_PALETTECHANGED message.

WINDOWS INTERNALS

lfthe window is a WS_CHlLD window, and if it is not prevented from notifying its par
ents, the code sends a WM_PARENTNOTIFY message to the hWndParent window. It's
apparently undocumented that the high WORD of the LPARAM field is the menu handle for
the window being destroyed. This section of DestroyWindowO ends by using SetWindow
Pos() to remove the window entirely from the screen.

Continuation of pseudocode for DestroyWindow() - WMDSTROY.OBJ

if (hWnd->dwStyleFlags & WS_CHILD == 0 II If not a child

{

}

&& hWnd->HWNDOwner == 0) II or owned window

CallHook(2, hWnd, 0, OxA) II 2-> HSHELL_WINDOWDESTROYED
II OxA -> WH_SHELL

if (Ox0001 bit set in HIWORD(hWnd->dwFlags))
{

}

RealizeDefaultPalette(HDCBits) /I HDCBits is a
II global var

II HQAppExit is normally 0.' When an app is exiting,
II HQAppExit is set to its message queue
if (HQappExit == 0)
{

}

}

II Tell all top level windows, and the desktop
II that the palette has changed
REvalSendMessage(HWND_BROADCAST,

WM_PALETTECHANGED, hWnd, 0)
REvalSendMessage(HWndDesktop,

WM-PALETTECHANGED, hWnd, 0)

II DestroyWindow() is recursive, so it always makes sure
II the window it's working on is still valid at this point.

CHAPTER 4 - THE WINDOWING SYSTEM

if (IsWindow(hWnd) == 0) II If the window isn't valid

if
{

return 1 I I anymore, return success

(hWnd->dwStyleFlags & WS_VISIBLE) II Is window visible?

if (hWnd->dwStyleFlags & WS_CHILD) II A child window?
{

}

else
{

}

ShowWindow(hWnd, SW_HIDE II Hide it!

II Not a child window

II We're a top level window. CaLL SetWindowPos()
II to hide the window. If we're the app that's
II currentLy exiting, add in the SWP_DEFERERASE fLag.
if (HQAppExit == hWnd->hQueue)
{

}

else
{

}

SetWindowPos(hWnd, 0, 0, 0, 0, 0,
SWP_DEFERERASE I SWP_HIDEWINDOW
SWP_NOACTIVATE I SWP_NOZORDER I
SWP_NOMOVE I SWP_NOSIZE)

SetWindowPos(hWnd, 0, 0, 0, 0, 0,
SWP_HIDEWINDOW I SWP_NOACTIVATE

SWP_NOZORDER I SWP_NOMOVE I SWP_NOSIZE)

if (IsWindow(hWnd) == 0) II If the window isn't vaLid
return 1 II anymore, return success

II SetWindowPos() may have
} II destroyed the window?

The final section of DestroyWindow() breaks apart the various components of the win
dow and deallocates them. The first thing to be disposed of is some window whose handle is
stored in the destroying window's property list. DestroyWindow() recurses into itself to com
plete this.

Next DestroyWindow() throws away any windows owned by the window undergoing
destruction. DestroyOwnedWindows() handles the job of walking the list of child windows,
looking for appropriate windows. Since DestroyOwnedWindows() calls DestroyWindow(),
you can see that these two functions recurse into each other in order to walk the window hier
archy. We cover DestroyOwnedWindowsO after our discussion of DestroyWindow().

At this point, all windows that were owned by the destroying window should be gone
from the window hierarchy. Only non-owned WS_CHILD windows should remain.

WINDOWS INTERNALS

DestroyWindowO calls SendDestroyMesssagesO to send a WM_DESTROY message to the
window being destroyed and to each of its descendants.

The next step taken depends on whether the window has a parent or not. If the window
doesn't have a parent, meaning it's a top level window, DestroyWindowO changes the queue
associated with the desktop window to the queue of the active application. This may be an
attempt to keep down the number of intertask SendMessageOs. By keeping the queue of the
desktop window the same as the queue of the active window, most messages sent to the
desktop window can be handled within the context of the active application. This reduces the
number of time-consuming task switches needed.

If the window does have an hWndParent, it needs to be removed from the hierarchy of
windows. UnlinkWindowO takes care of this.

DestroyWindow() finishes up by calling FreeWindowO. FreeWindowO does more than its
name implies; it frees up not only the memory for the HWND passed to it, but also that of
the window's children. We discuss FreeWindowO in a bit.

Continuation of pseudocode for DestroYWindow() - WMDSTROY.OBJ

if (hWnd->properties)
{

}

HANDLE hProp

II This couLd possibLy be the destruction of the icon
II titLe window if the window is minimized (iconic).
II AtomCheckPointProp is a USER gLobaL variabLe.
hProp = GetProp(hWnd, MAKELP(O, AtomCheckPointProp))
if (hProp)

if (hProp->someWindow)
{

}

II The DestroyWindow() caLL beLow impLies that
II DestroyWindow() can be recursiveLy entered.
if (IsWindow(hProp->someWindow))

DestroyWindow(hProp->someWindow)
hProp->someWindow = 0

II If the window is not a child window, it's time to get
II rid of aLL windows that it owns. See pseudocode beLow.
if (hWnd->dwStyLeFLags & WS_CHILD == 0)

DestroyOwnedWindows(hWnd)

if (FMessageBox == 0) II FMessageBox set to 1 inside
{ II SysErrorBox() (a criticaL state!)

A Long sequence of nested code branches. The code

}

}

CHAPTER 4 - THE WINDOWING SYSTEM

caLLs ActivateWindow(), InternaLDestroyCaret(), and
RedrawIconTitLe(). At various points, it sets
the gLobaL variabLes HWndActive, HQActive, and HWndFocus
to O. It appears that this sequence is reLated to
activating some other window.

II RecursiveLy send WM_DESTROY messages to ourseLf, and aLL
II our chiLd windows. See pseudocode beLow.
SendDestroyMessages(hWnd)

if (IsWindow(hWnd) == 0) II If the window isn't vaLid
return 1 I I anymore, return success

if (hWnd->hWndParent -- 0)
{

II If there's no parent ...

}

II And if the queues match ...
if (hWnd->hQueue -- HWndDesktop->hQueue)
{

}

II Change the hQueue of the second window to the
II hQueue for the first window. Don't bother
II doing this if the two queues are the same.
II This is presumabLy done so that the desktop
II window aLways gets its messages from the queue
II of the currentLy active window, thereby avoiding
II expensive intertask SendMessage() caLLs.
ChangeToCurrentTask(hWndActive, HWndDesktop)

eLse II There is a parent window ...
{

}

II UnLink the window from the List of chiLd windows
II maintained by the parent. The second parameter points
II to the first child window of the parent. UnLinkWindow()
II iterates through its chiLd windows untiL it finds
II the hWnd (the first parameter), and then unLinks it.
UnLinkWindow(hWnd, &hWnd->hWndParent->hWndChiLd)

FreeWindow(hWnd) II DeaLLocate the window's memory, as weLL
II as that of its chiLdren.

return 1

WINDOWS INTERNALS

DestroyOwnedWindowsO
Because the window structure only contains information for its child and sibling windows and
doesn't include any owned window information, the method used by DestroyOwned
Windows() to destroy all the owned windows of a particular HWND is somewhat inefficient.

DestroyOwnedWindows() starts at the desktop window and iterates through every win
dow in the child hierarchy. If it finds a window that's owned by the destroying window, the
hierarchy traversal stops so that the found window can be destroyed. Perhaps in an attempt to
be safe, the found window isn't destroyed if the window's queue doesn't match the queue of
the destroying window.

If an owned window is found and destroyed, DestroyOwnedWindows() begins searching
for more owned windows at the desktop window making no attempt to remember where the
search left off. This may be necessary because a window could be owned by a window that
itself was owned by yet another window. Since the owner of a window could conceivably be
deeper in the hierarchy than a window it owns, the search has to begin at the root of the hier
archy each time.

Pseudocode for DestroyOwnedWindows() - WMDSTROY.OBJ
II
/I
/I
/I

Parameters:
HWND

LocaLs:
HWND

whiLe (1
{

hWndDestroying

hWnd

II We're going to iterate through aLL the top LeveL
II windows. We start with the first chiLd window of the
II desktop window, and foLLow the 'hWndNext' pointers
hWnd = HWndDesktop->hWndChiLd
whiLe (hWnd)
{

}

if (hWnd->HWNDOwner -- hWndDestroying)
{

}

/I Check hQueues to see if we rightfully "own"
II the window we just found. If we don't, just
II set the owning window to 0, rather than
II destroy the window.
if (hWnd->hQueue == hWndDestroying->hQueue)

break
eLse

hWnd->HWNDOwner = 0

hWnd = hWnd->hWndNext II Go on to next window

}

CHAPTER 4 - THE WINDOWING SYSTEM

if (hWnd == 0)
return

II When there are no more top LeveL
II windows owned by 'hWndDestroying',
II This test wiLL be true, and the
II function wiLL return.

II Destroy the found window. Afterwards, we start Looping
II through the chiLdren of the desktop window again,
II Looking for more windows owned by 'hWndDestroying'.
DestroyW;ndow(hWnd)

SendDestroyMessages()
SendDestroyMessagesO sends a WM_DESTROY message to a window and all of its children.
It does this by recursing through the child window hierarchy. Besides sending
WM_DESTROY messages, SendDestroyMessagesO performs two other tasks. The first is to
ensure that the focus doesn't remain with a window that's about to receive the
WM_DESTROY message. The second is to disown the clipboard ifit's owned by the window
about to receive the WM_DESTROY.

A point worth noting is the relationship between WM_DESTROY and WM_NC
DESTROY (see FreeWindowO, below). The WM_DESTROY messages are sent to the win
dows in the hierarchy in top-down order, that is, the parent window always sees the
WM_DESTROY message before its children. The WM_NCDESTROY message is exactly the
opposite. It propagates through the hierarchy from the bottom up. The child windows see
their WM_NCDESTROY messages before their parents.

Pseudocode for SendDestroyMessage() - WMDSTROY.OBJ
/I
/I
/I
/I

Parameters:
HWND hWndDestroying

LocaLs:
HWND hWnd

CheckFocus(hWndDestroy;ng) II If HWND parameter has the
II focus, and is a chiLd, set
II focus to the parent HWND.

if (hWndDestroying == hWndCLipOwner)
SDM_DisownCLipboard()

II If we own the
II cLipboard, get
II rid of it now.

II Send WM_DESTROY to ourseLves. For main windows, the usuaL
II response to WM_DESTROY is to caLL PostQuitMessage().
REvaLSendMessage(hWndDestroying, WM_DESTROY, 0 ,0)

II Make sure we didn't Lose ourseLves in the process of

WINDOWS INTERNALS

II handling the WM_DESTROY message ...
if (IsWindow(hWndDestroying) == 0)
{

_DebugOutput("USER: Window destroyed itself during"
"WM_DESTROY processing")

return
}

II Iterate through all the children of 'hWndDestroying ' ,
II calling SendDestroyMessagesO for each of them. This means
II that SendDestroyMessages() is recursive.
hWnd = hWndDestroying->hWndChild II Start with first child
while (hWnd)
{

}

SendDestroyMessages(hWnd)
hWnd = hWnd->hWndNext

CheckFocus(hWndDestroying)

II Go on to next sibling

II See above description

FreeWindowO
From its name, FreeWindowO would seem to be a simple routine that just de allocates the
memory for a WND structure. This is certainly not the case. FreeWindowO is a large function
that handles many chores you'd think would be handled in DestroyWindowO. In fact, it's
FreeWindowO, rather than DestroyWindowO, that's really the opposite of CreateWindowO.
Since it's so big, we broke it up into sections and discuss each in turn.

The first important duty of FreeWindowO is to recurse through the child window hierar
chy, calling FreeWindowO for each child window~ This ensures that all children of the win
dow being freed are themselves freed.· When all the child windows are destroyed,
FreeWindowO sends a WM_NCDESTROY (non-client destroy) message to the window
being freed.

Pseudocode for FreeWindowO - WMFREE.OBJ
II
II
II
II
II

Parameters:
HWND hWnd

Locals:
HWND hWndFree, hWndFreeNext
MSG msg

II Verify a valid hWnd was passed. It seems rather unlikely
II that there's a real assert() in the code, since no source
II file and line number is given. The program isn't exited
II either, like a real assert() would do.

CHAPTER 4 - THE WINDOWING SYSTEM

if IsWindow{ hWnd) == 0)
_DebugOutput< "USER: Assertion faiLed")

if (hWnd == HWndCbDLgExtra
HWndCbDLgExtra = 0

II DiaLog extra bytes ???

Iterate through some sort of Linked List, setting fieLds
to O. The head of the List is pointed to by PBWLList.

II RecursiveLy iterate through aLL the chiLd windows, caLLing
II FreeWindow{) on each of them. FreeWindow{) is recursive.
hWndFree = hWnd->hWndChi Ld /I Start with fi rst child wi ndow
whiLe (hWndFree)
{

II Remember hWndNext, because we won't be abLe to get
II it after we free the currenthWndFree.
hWndFreeNext = hWndFree->hWndNext
FreeWindow{ hWndFree) II Isn't recursion great!
hWndFree = hWndFreeNext II Go on to next window

}

II Send a non-cLient destroy message to the window that's
II presentLy being freed.
REvaLSendMessage{ hWnd, WM_NCDESTROY, 0, 0)

FreeWindow() now examines various USER variables that represent states of the window
ing system. If the window being freed is associated with'the state, FreeWindowO resets the
state to "none," since the window won't be valid when FreeWindowO completes. The win
dow being freed is compared to the following USER global variables in Table 4-5.

Table 4-5: Some USER Global Variables.

HWndCursor
HWndSysModal
HWndl\ctivePrev
HW ndl\ctive
HWndClip Viewer
HWndFocus
HWndCapture

The Window with the cursor over it.
The system modal window.
The previous active window.
The current active window.
The clipboard viewer window.
The window with input focus.
The window with the mouse capture.

Conti.nuation of pseudocode for FreeWindowO - WMFREE.OBJ

II We now start a Long sequence where we compare the window
II being freed to USER gLobaL HWND variabLes. If the window

WINDOWS INTERNALS

II being freed is stored in any of these variabLes,
II appropriate action is taken to "reset" the state. It
II wouLdn't do to have gLobaL variabLes referring to an HWND
II after it was deaLLocated.

II Here, if the window being freed is the one with the cursor,
/I caLL FarSetWakeBitO. This causes "events" in a queue,
II and causes the scheduLer to "wake" the task associated
II with the queue. See Chapter 6 for detaiLs.
if (hWnd == HWndCursor)
{

HWndCursor = 0
if (HGKeyboard)

FarSetWakeBit(HGKeyboard, GS_MOUSEMOVE)

}

II If the window is owned by another window, do something
II invoLving resetting the Last active window.
if (hWnd->HWNDOwner)

if (hWnd->HWNDOwner->hWndLastActive == hWnd
hWnd->HWNDOwner->hWndLastActive = hWnd->HWNDOwner

if (hWnd == HWndSysModaL) II If we're system modaL, get
SetSysModaLWindow(0) II get of that state.

if (hWnd == HWndActivePrev)
hWndActivePrev = 0

II If we were the previous
II active window, we can't
II be anymore!

if (hWnd == HWndActive)
{

hWndActive = 0
_DebugOutput("USER: Attempt to activate destroyed window")

}

if (hWnd == HWndClipViewer)
HWndCLipVi~wer = 0

if (hWnd == HWndFocus) /I If
HWndFocus = 0 /I be

we're Leaving, it wouLdn't
nice to keep the focus •.•

if (hWnd = HWndCapture) /I ReLease the mouse capture if
ReLeaseCapture() /I we

if (hWnd == PSBISB->someWindow)
PSBISB->someWindow = 0

currentLy have it

II Popup Save Bits?

CHAPTER 4 - THE WINDOWING SYSTEM

FreeWindow() begins the next section by destroying any timers that would be a source of
messages for the window being freed. (Note that as explained in Chapter 7, timer messages
aren't sent or even posted. They're created when the application asks for another message.) If
the exiting window has an update region stored in a block in a USER local heap,
FreeWindowO deletes the update region at this time. There's certainly no need to update a
window that's soon to be nonexistent!

A very important task of this section of FreeWindowO is to flush out any messages in the
application's message queue that were destined for the window being freed. If this weren't
done, GetMessage() could be called later on and return a message for a window that no
longer existed. It would be rather difficult to dispatch such a message! All messages re.ad from
the queue are "dropped on the floor," with the exception ofWM_QUIT. If this message is
seen, FreeWindowO reposts it back to the application's queue so that the task will still get it.
Remember, messages are kept in the taskJs message queue, rather than with a particular win
dow. When GetMessageO encounters the WM_QUIT message in the queue, it returns zero,
which indicates to the program that it should drop out of its main loop and exit.

This section of FreeWindow() ends by destroying, as appropriate, the regular menu and
system menus for the window.

Continuation of pseudocode for FreeWindow{) - WMFREE.OBJ

DestroyTimers{ 0, hWnd II Get rid of timers associated
II with the freeing window?

II If the window needed painting, it's too Late now. Free
II up the GDI region associated with the window.
if (hWnd->hRgnUpdate I I

{

}

bit Qx1000 set in LOWORD(hWnd->dwFLags))

DecPaintCount(hWnd) II What if paint count> 1 ???

if (hWnd->hRgnUpdate > 1)
DeLeteObject(hWnd->hRgnUpdate

II FLush out any messages in the queue for this window.
while (1)
{

}

II Read messages (and toss them) untiL there's no more
II in the queue.
if (!ReadMessage(hWnd->hQueue, &msg, hWnd, 0, -1, 1))

break;
if (msg.message == WM_QUIT)
{

PostQuitMessage(msg.wParam)
break;

}

II Except! Don't Lose
II WM_QUIT messages!

WINDOWS INTERNALS

II If not a child window, and if there's a menu for it,
II go destroy the menu.
if (hWnd->dwStyleFlags & WS_CHILD == a)

if (hWnd->hMenu != a)
{

}

if (IsMenu(hWnd->hMenu)
DestroyMenu(hWnd->hMenu)

else
_DebugOutput("USER: DestroyWindow: Window menu"

"no longer valid")

II If the window has a system menu, go destroy it now.
if (hWnd->hMenuSystem)
{

}

if (IsMenu(hWnd->hMenuSystem)
{

}

else
{

DestroyMenu(hWnd->hMenuSystem)

_DebugOutput("USER: DestroyWindow: System menu"
"handle no longer valid")

}

The last section of FreeWindowO finally gets the opportunity to free up things. First to
go are any DCs that weren't released by the window beforehand. The pseudocode shows
other things of interest, including the window properties, being deleted.

Near the very end, FreeWindowO decrements the reference count of the window class,
indicating that one less window is using it. You might think that the class would be freed here
if its count dropped to zero. This is not the case, however. The window class is freed in the
PurgeClassO routine, called from ModuleUnloadO, called from AppExitO. As its name
implies, AppExitO (see Chapter 3) is invoked when a program is terminating. No-Ionger-in
use window classes hang around in memory until the program terminates.

The last act of FreeWindowO is to do what its name implies, free the WND structure in
the USER local heap.

Continuation of pseudocode for FreeWindow() - WMFREE.OBJ

Iterate though the list of Device Contexts (DCs), and based
up(ln various flags, clean up things. The head of the DCE
(Device Context Entry) list is given by the global variable
'PDCEFirst'. The following functions are called:
DeleteHRgnClip(), DestroyCacheDC(), and ReleaseCacheDC().
At one point, the message: "USER: GetDC without ReleaseDC"
can be printed out. 'DCs are explained in chapter 5.

if

if

if
{

}

CHAPTER 4 - THE WINDOWING SYSTEM

(hWnd->dwStyLeFLags & WS_CHILD
SetHotKey(hWnd, 0)

(hWnd->hBuffer != 0)
TextFree(hWnd->hBuffer

(hWnd == HWndLockUpdate

FreeSPB(FindSPB(hWnd)

HWndLockUpdate = 0
HGLockUpdate = 0

/I Get

/I
II

) /I

/I

== 0)
rid of hot keys for window?

Free up memory used
by text controLs?

???

Free "Saved Popup Bits"

if (Ox80 bit set in LOBYTE(hWnd->dwFLags))
FreeSPB(FindSPB(hWnd» II Free Saved Popup Bits:

II If there's a scroLLbar for the window, deLete it.
II UserLocaLFree() is equivaLent to LocaLFree() with USER's DS.
if (hWnd->scroLLBar)

UserLocaLFree(hWnd->scroLLBar)

II Get rid of any properties that may have been added
II to the widow.
if (hWnd->properties

DeLeteProperties(hWnd

Decrement the reference count fieLd in hWnd->wndCLass

if (reference count fieLd in hWnd->wndClass < 0)
{

_DebugOutput("USER: Window class reference ..
"count underfLow")

}

hWnd->wndCLass = 0

Use~LocaLFree(hWnd

Summary

II Zero out the INTWNDCLASS pointer

II ALL done with the WND's memory

This chapter has examined the basic structure and mechanics of the windowing system. To
create a window, you need a class. A window class specifies information that all windows of
the class have in common. The controls (buttons, scrollbars, and so forth) are predefined
classes.

Windows are arranged in a parent/child/sibling linked list. The root of the hierarchy is
the desktop window. Each window has its own state, given by the fields of the WND data
structure. When updating windows on the display, everything boils down to the three
DeferWindowPos functions.

The Graphics Device
Driver Interface (GDI)

Systems programmers are often divided into two camps. The first group are quite happy spe
lunking around in the depths of program loaders, schedulers, memory management, and so
on. Sometimes it seems like their attitude is, "Hey, we take a file on disk and create a running
process. We give you scheduling and memory management and the ability to put characters
on the screen. What more is there?" This group of programmers gave us operating systems
such as UNIX and MS-DOS.

The second group of programmers are those who build on top of the work of the first
group. These are the programmers who created things such as X-Windows for UNIX, and the
USER and GDI portions of Windows. They often see the work of the first group as an
"implementation detail."

The design of many operating systems reflects this two-camps sort of thinking. In his
extremely accessible book Inside OS/2, Gordon Letwin describes the workings of OS/2 for
several hundred pages. However, when he comes to the topic of the graphical user interface
(Presentation Manager), Letwin has this to say:

These packages are complex; explaining them in detail is beyond the scope
of this book.

Guess which camp Gordon Letwin is in! To your benefit, your intrepid editor won't let
the same thing happen here. Unlike OS/2, Windows doesn't give the developer the choice to
ignore the graphical portions of the operating system. To do anything significant in Windows,
with a very few exceptions,. you have to confront its graphical nature very early in the game.

365

WINDOWS INTERNALS

The intent of this chapter is to give you an overview of the internal workings of some of the
main GDI concepts, in other words, how things get put on the screen.

The graphics engine module in Windows is GDI.EXE. GDI is an acronym for Graphics
Device Interface. The GDI was conceived to be a device independent subsystem, like its
OS/2 sibling, the GPI. With the profusion of faster and more complex output devices, it
would be a nightmare trying to maintain a code base that knew that a VGA card provides
640x480 resolution, while an HP Laser-Jet provides 300 dots per inch and a given list of
fonts. The GDI works around this problem by providing a generic interface that in theory
generates the same results on a Super VGA board as on a plotter. Actions common to any
output device, such as calculating clipping regions, are handled by the GDI. Actions requiring
knowledge of the output device are shunted off to GDI device drivers. The GDI doesn't work
to the lowest common denominator abilities of the device driver, however. For instance, if the
driver knows how to draw lines, GDI tells the driver to draw a line. If the driver doesn't know
how to draw lines, but it knows how to plot pixels, GDI simulates the line by calculating
which pixels need to be drawn and then calls the driver's pixel-drawing routine. How does
GDI know what the device is capable of? As you'll see later, there's a well-defined interface for
a btaining the capabilities (caps) of GD I device drivers.

In Windows, there are two kinds of screen output. The first kind of output is the display
ing and drawing of window frames, icons, title bars, and so forth. At the very highest level,
you control these actions by calling the windowing routines in USER (CreateWindow(),
ShowWindow(), MoveWindow(), and so forth, which are discussed in Chapter 4). The USER
module maintains an internal picture of what the window looks like, and USER calls GDI
routines such as BitBlt() to update the display as necessary. You d'Jn't deal with the GDI at all
for this kind of output.

The second type of screen output occurs when your program interacts with GDI directly.
The primary example of this is when your code responds to a WM_PAINT message. This may
involve calling TextOutO, LineToO, BitBlt(), or any of a multitude of GDI calls. At this level,
it is very helpful to know what's going on underneath the covers. The intent of this chapter is
to give you a top-level overview of some of the main GDI concepts.

Compared to the KERNEL module, GDI is quite large. KERNEL weighs in at roughly
64K of code, while GDI's code is over 200K. KERNEL does an amazing amount of work in
64K, so GDI must really have a full plate. (In all fairness, the KERNEL module code is appar
ently mostly in assembler, while GDI does have some C modules.) When you think about it,
just implementing all the various font mechanics that Windows supports in a device-inde
pendent manner is daunting. Then, add in all the machinery to draw lines, circles, and arcs.
Now throw in all the code that deals with BitBlt'ing and stretching bitmaps. Don't forget that
GDI supports recording your actions to a metafile for later playback. And don't forget all the
work required to deal with logical and physical palettes. GDI supports multiple coordinate
systems. In short, there's a lot going on here!

Adding to the complexity and size of GDI is the possibility that when it isn't feasible for
the device driver to implement a particular function, GDI decomposes the operation into sim
pler parts that the device driver can handle. That means GDI must also include the ability to
perform many operations that may never be needed because the DISPLAY driver and printer
driver are sufficiently capable. No matter, GDI must be prepared for the worst. An interface

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

exists between the device driver and the GDI that enables the driver to specify what its capa
bilities are.

The flexibility that GDI provides to the device driver also has its downside. In the course
of looking at disassembled code for many GDI functions, it became evident that the GDI
code is incredibly complex and convoluted. In order for Windows to provide a device-inde
pendent interface, yet still deal with the special capabilities and idiosyncrasies of various
devices, somebody had to bite the bullet, and handle all the possible permutations andcombi
nations. GDI is that somebody.

For instance, trying to trace through a simple TextOutO call becomes an exercise in mad
ness. Then, consider that some devices handle text rotation, while others don't. Windows sup
ports both bitmap and vector fO!lts, which adds complexity. Likewise, some devices know
about fonts and can generate characters directly, while others don't. For devices that don't
handle fonts directly, GDI has to simulate the font, either with bitmaps or lines. If the device
doesn't do lines, GDI has to break the operation into calls to draw individual pixels. The GDI
code must be a monster to maintain.

Because we have no hope of covering everything that GDI does, we have picked a few
important functions and go into some detail with them. Before jumping into pseudocode for
these functions though, let's first explore some general concepts that GDI is built upon.

GDI Device Drivers

Despite all of the code in GDI, it still knows nothing about the details of any particular out
put device. To the user of a GDI function, it shouldn't matter whether the output goes to the
screen, a printer, a plotter, or a metafile. To enable this device independence, GDI dynami
cally loa<is device drivers .as needed and expects the device drivers to export a predefined set of
functions. Even the DISPLAY device is loaded dynamically, although it happens at USERini
tialization time, so it's effectively a predefined device. The Wmdows Device Development Kit
(DDK) enumerates the functions that.a GDI compatible device driver must implement, as
well as some optional functions.

The most commonly used GDI device driver is the DISPLAY device (the "display,drv="
entry in SYSTEM.INI such as VGA.DRV). Another common GDI device driver is the printer
driver (for instance, EPSON9.DRV). If you use TDUMP or EXEHDR to dump their
exported functions, notice that there's a series of exported entries, starting at ordinal #1 that
are the same, or nearly identical, for each device. As we'll see later when we look at the
GetLogOfunction, GDI loads' the driver module with LoadLibraryO and calls
GetProcAddressO to dynamically link to the driver's entry points. The functions exported by
the driver constitute a sort of logical device with a consistent interface, regardless of the differ
ences, illogicalities, inconsistencies, and idiosyncrasies of the underlying hardware. More on
this later.

A complete logical device exports the functions shown in Table 5 -1.

WINDOWS INTERNALS

Table 5-1: Functions Exported by a CDI Logical Device.

Entry Name Description
01 BitBlt Transfer bits from src to dest recto
02 ColorInfo Converts between logical and physical colors.
03 Control Handles "Escape" extensions.
04 Disable Disables device driver actions.
05 Enable Enables device driver actions.
06 EnumDFonts Enumerate driver fonts.
07 EnumObj Enumerate driver pens, brushes.
08 Output Draw lines, arcs, and so forth.
09 Pixel Draw a pixel or get its color.
10 Realize 0 bject Create device specific data structures.
11 StrBlt String BLT. Superseded by ExtTextOut.
12 ScanLR Find nearest non-matching pixel.
13 DeviceMode Shows configuration dialog box.
14 ExtTextOut Write text to device.
15 GetCharWidth Gets widths of character ranges.
16 DeviceBitmap Do nothing stub function.
17 FastBorder Fast drawing of window frames.
18 SetAttribute Do nothing stub function.
19 DeviceBitmapBits Converts between DIBs and DDBs.
20 Create Bitmap Create a device-independent bitmap.
21 SetDIEitsToDevice Copy DIE to device.
22 SetPalette Set hardware palette values.
23 GetPalette Get logical RGB color values.
24 SetPalette Translate Set palette translation table.
25 GetPaletteTranslate Get palette translation table.
26 Update Colors Redraws pixels with translated colors.
27 StretchBlt Shrinks or grows src bitmap as needed.
28 StretchDIE Converts between DIB and DDB, stretching as needed.
29 SelectBitmap Select a new bitmap into the device.
30 BitmapBits Sets, retrieves, copies bitmap data.

It is important to note however, that a GDI device driver does not have to implement all
of these functions. For instance, the EPSON9.DRV file only exports the first 18 functions;
the SUPERVGADRV that comes with Windows 3.1 implements the first 21 functions; while
an ATI 800x600 driver contains the first 27 functions. In addition, some GDI device drivers
like the SUPERVGA driver implement even more than the standard set of functions.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

CDIObjects

In its interface to the programmer, GDI maintains the Wmdows tradition of relying heavily
on handles. The KERNEL module has HTASKS (handles to tasks) and HMODULES (han~
dles to modules). The USER module has HWNDs (handles to windows). Likewise, the GDI
uses handles to device contexts (HDCs), handles to pens (HPENs), and so on. As with the
rest of Windows, Microsoft has tried to implement "information hiding" and has not fully
documented the full nature of what GDI handles really refer to. Undocumented Windows dis
closes many of these data structures, but some of the information bears repeating here. In
addition, we have some new information to add to that covered in Undocumented Windows.

GDI objects are just standard LMEM_MOVEABLE memory blocks in the GDI local
heap (local heaps are covered in Chapter 2). Each GDI object starts its data structure with a
standard set of fields that we call a GDIOBJHDR and have the format shown in Table 5-2.

Table 5-2: Data Structure of GDI Objects.

Offset Type Name Description
OOh WORD nextinchain Next object in linked list.
02h WORD ilObjType The type of object (see below).
04h DWORD ilObjCount Number of previous objects.
08h WORD ilObjMetaList Something to do with metafiles?
OAh WORD ilObjSelCount Number ofDCs selected into (debug only).
OCh WORD ilObjTask Task that created the object (debug only).

Note that in the nondebug GDI, the ilObjSelCountand ilObjTask fields are not present,
thereby shifting all subsequent fields backwards by four bytes.

GDI defines the following types of objects, shown with their corresponding signatures in
the ilObjType field in Table 5-3.

Table 5-3: GDI Objects and Signatures.

Object Signature
PEN Ox4F47 ('GO')
BRUSH Ox4F48 ('HO')
FONT Ox4F49 ('10')
PALETTE Ox4F4A ('JO')
BITMAP Ox4F4B ('KO')
REGION Ox4F4C ('LO')
DC Ox4F4D ('MO') (Device context)
IC Ox4F4E ('NO') (Information context)
META_DC Ox4F4F ('OQ')
METAFILE Ox4F50 ('PO')
METAFILE_DC Ox4F51 ('QO')

WINDOWS INTERNALS

The PEN, BRUSH, and FONT objects are all very simple in structure. They consist of
the GDIOBJHDR, followed by their logical data structure, as given in the SDK. For instance,
the data structure referred to by an hBrush is just a GDIOBJHDR followed immediately by a
LOGBRUSH structure, as shown in Table 5-4.

Table 5-4: BRUSH Object Structure.

Offset Type Name Description
OOh WORD nextinchain These fields are the GDIOBJHDR described above
02h WORD ilObjType
04h DWORD ilObjCount
08h WORD ilObjMetaList
OAh WORD ilObjSelCount
OCh WORD ilObjTask
OEh WORD IbStyle These fields are a LOGBRUSH structure, as given in the

Windows SDK
lOh DWORD IbColor
14h WORD IbHatch
16h DWORD ilBrushBkColor Background painting color
lAh WORD ilBrushhBitmap Bitmap for painting with

The above BRUSH object is somewhat special in that it adds two extra fields after the
GDIOBJHDR and LOGBRUSH structures. The pen and font objects do not have any corre
sponding extra fields.

As you would expect, GDI objects are referred to, both internally by GDI and externally
in your program, by their local handles. Since GDI objects are MOVEABLE, their handles are
not just offsets into the GDI local heap. Instead, GDI needs to lock the handles with Local
Lock() whenever it needs to access the data contained therein. Or so you would think. The
GDI routines, perhaps in an attempt to increase performance, make an assumption about the
format of a local heap data structure. Specifically, a MOVEABLE object'S handle is a near
pointer to a structure in the local heap (Chapter 2). The first field of this structure contains
the offset in the GDI heap of the handle's data. By treating the GDI object's handle as a near
pointer to a near pointer (near **) and dereferencing the handle, GDI does a quick Local
LockO without the overhead of calling LocalLockO. Note that this action does not actually
lock the data, so it can still move around. This doubly-dereferenced pointer trick is just like
handles on the Macintosh; parts of USER employ this technique, also. Microsoft is quite ada
mant about. telling developers not to rely on undocumented data structures, because they
might change in the future. In this case, it doesn't look like they practice what they preach.
Since this kind of pointer trickery is common in the GDI code, as well as elsewhere, it's prob
ably a safe bet to assume this feature won't change in the future. Too much of Windows
would break if it did.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

Device Contexts (DCs)
The central structure that much of the GDI revolves around is the device context, more often
known by its DC acronym. A device context is also sometimes referred to as a display context.
That's incorrect, however, because the GDI is designed not to tie you to a particular output
device. A DC for a printer or a plotter is just as valid as a DC for the display device. Unfortu
nately, Microsoft muddied the issue by referring to DCs as display contexts in certain portions
of their documentation up through Windows 3.0 (for example, the return value from
GetDC()). The 3.1 documentation uses the proper name, device context.

Picture a DC as a virtual canvas, upon which you draw without knowing what the under
lying surface is. Other graphical systems, such as the Macintosh, use similar concepts; on the
Mac, it's called a GrafPort. Think of the device context as a magic cookie that you need in
order to perform output operations. When it comes time to output some text, draw a circle,
fill a region, or whatever, you need to obtain a handle to a DC (an hDC). You then call the
appropriate GDI routines, handing them the DC handle (hDC) as part of the request. When
your program receives a WM_P AINT message and you call BeginPaint() in response, you
most commonly get a device context. You do whatever repainting is necessary, using the DC,
and when you're finished, you give the DC back with the EndPaintO function. You can
obtain and use DCs outside of WM_P AINT message handler by calling GetDC() and
RdeaseDCO:

case WM_TIMER:
{

}

HOC hOC;
hOC = GetOC(hWnd);
if (hOC)
{

}

LineTo(hOC, newX, newY);
ReleaseOC(hWnd, hOC);

A DC is a fairly large data structure because it needs to retain quite a bit of "state" infor
mation. Of primary interest in the DC are the handles to the logical device and the physical
device block. The logical device is the set of core primitive functions that a GDI device driver
provides. Part of the logical device is an array of function pointers to the devices entry points.
The physical device block is a data structure describing the actual capabilities of the device, for
example, what kind of device it is, its pixel resolution, and its color capabilities. We'll come
back to these topics later.

Also of particular interest in the DC are the handles to the current pen, brush, font, and
bitmaps. When you give a. command to display text, draw a line, and so on, GDI uses the cur
rently selected pen, brush, font, or bitmap, as appropriate. If you want to Use a different
object, select a new object into the device context with the SelectO bject() API. If current val
ues weren't stored in the device context, the programmer would always have to specifY which

WINDOWS INTERNALS

font, pen, brush, and bitmap to use for each GDI operation. Storing current values is much
easier in general. It's important to note that calling SelectObject() can result in calls to the
GDI device driver and can fail in low memory situations. We'll see the details of this later.

When Windows boots, there are no device contexts. DCs (like any other GDI object)
need to be created. This is done with the CreateDC() API. During its initialization, USER
creates five DCs for the display device (see LW _DClnit() in Chapter 1) and keeps them in a
cache. These are the DCs that your program sees when it calls BeginPaint() or GetDC()
(unless you are using CS_CLASSDC or CS_OWNDC, a situation which is described in the
SDK documentation). Unless your program does printing, these cached DCs are typically the
only DCs you encounter. If your program needs to do printing, you need to create a device
context for the desired printer, using CreateDCO.

Chapter 8 of Undocumented Windows gives a fairly complete description of the various
fields in the DC. However, we felt that the DC was so important that it warranted giving a
condensed version of it here. The fields of type INT16 indicate a signed 16-bit integer value.
The format of a Windows 3.1 debug GDI DC, as extracted from the debug information, is
shown in Table 5-5.

Table 5-5: Format of Debug GDI DC.

Offset Type Name Description
OOh GDIOBJHDR SayWhatBro This is the real name!
OEh BYTE DCFlags flags (e.g., needs repaint).
OFh BYTE DCFlags2 more flags.
10h WORD hMetaFile metafile handle if meta DC.
12h WORD hClipRgn handle to clipping region.
14h WORD hPDevice handle to PDEVICE.
16h WORD hLPen handle to logical pen.
18h WORD hLBrush handle to logical brush.
lAh WORD hLFont handle to logical font.
lCh WORD hBitMap handle to selected bitmap.
lEh WORD dchPal handle to selected palette.
20h WORD hLDevice handle to LOGDEV (below).
22h WORD hRaoClip handle to Rao clipping region.
24h WORD hPDeviceBlock handle to PHYSDEVBLOCK (below).
26h WORD hPPen handle to physical pen.
28h WORD hPBrush handle to physical brush.
2Ah WORD hPFontTrans handle to font xlate table.
2Ch WORD hPFont handle to physical font.
2Eh LPBYTE lpPDevice far ptr to PDEVICE.
32h LOGDEV near * pLDevice near ptr to LOGDEV (below).
34h PBYTE pRaoClip near ptr to Rao clip region.
36h PHYSDEVBLOCK

near * pPDeviceBlock (see field 24h).

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

Table 5-5: Format of Debug CDI DC. (continued)

Offset Type Name Description
38h PBYTE pPPen near ptr to physical pen.
3Ah PBYTE pPBrush near ptr to physical brush.
3Ch PBYTE pPFontTrans near ptr to font xlate table.
3Eh FONTINFO far * IpPFont far ptr to FONTINFO (see DDK).
42h WORD nPFTIndex.
44h POINT Translate.
48h DRAWMODE phDrwMode DRAWMODE struct (see DDK).
68h INT16 LCurPosX logical cursor X position.
6Ah INTI 6 LCurPosY logical cursor Y position.
6Ch INT16 WndOrgX window origin X.
6Eh INT16 WndOrgY window origin Y.
70h INT16 WndExtX window extent X (width).
72h INT16 WndExtY window extent Y (height).
74h INTI 6 VprtOrgX viewport origin X.
76h INT16 VprtOrgY viewport origin Y.
78h INT16 VprtExtX viewport extent X (width).
7Ah INTI 6 VprtExtY viewport extent Y (height).
7Ch INT16 UserVptOrgX user viewport origin X.
7Eh INTI 6 UserVptOrgY user viewport origin Y.
80h INTI 6 MapMode mapping mode - SetMapMode().
82h INT16 XformFlags transform flags?
84h INT16 RelAbsmode
86h INT16 PolyFillmode polygon fill mode.
88h INT16 StretchBltMode stretch BLT mode.
8Ah BYTE dcPlanes number of color planes.
8Bh BYTE dcBitsPixel bits per pixel.
8Ch INTI 6 PenWidthX logical pen width.
8Eh INTI 6 PenWidthY logical pen height.
90h INTI 6 dcTextAlign SetTextAlignO flags.
92h DWORD dcMapperFlags SetMapperFlagsO flags.
96h INTI 6 BrushOrgX logical brush origin X.
98h INTI 6 BrushOrgY logical brush origin Y.
9Ah INTI 6 FontAspectX font aspect ratio X value.
9Ch INTI 6 FontAspectY font aspect ratio Y value.
9Eh WORD hFontWeights font weights.
AOh INTI 6 DCSaveLevel nesting level of saved Des.
A2h INT16 DCLockCQunt lock count·ofDG
A4h WORD hVisRgn . handle to visible region.
A6h INT16 DCOrgX DC origin X (in pixels).
A8h INT16 DCOrgY DC origin Y (in pixels).

WINDOWS INTERNALS

Table 5-5: Format of Debug GDI DC. (continued)

Offset Type Name Description
AAh FARPROC lpPrintProc far pointer to printing procedure.
AEh INT16 DCLogAtom driver name atom.
BOh INT16 DCPhysAtom device name atom.
B2h INT16 DCFileAtom DOS filename atom.
B4h INT16 PostScaleX
B6h INT16 PostScaleY
B8h RECT BoundsRect bounding rectangle.
COh RECT LVBRect Logical Video Buffer recto
C8h FARPROC lpNotifYProc SetDCHook() callback proc.
CCh DWORD HookData data to give to hook callback.
DOh INT16 globalDCFlags more flags for the DC.
D2h WORD hNextDC next DC in linked list.

As you can see, there is quite a bit of state information, as well as quite a bit of redundant
information in a DC. For instance, the DC stores both a handle and a near pointer to the
LOGDEV structure. This may be another stab at improving performance, although it violates
the principal of not keeping two copies of the same information.

The GDI Logical Device

At some level, the GDI stops calculating, and hands off the results to a GDI display driver for
rendering. Where the rubber meets the road is the point at which GDI calls the functions
exported by the GDI device driver. By forcing a GDI display driver to have a well-defined set
of interface functions with given entry ordinal values, the GDI can load device drivers at run
time and not worry about what the device driver connects to.

To use an OOP analogy, the Logical Device holds the public member functions of a class.
It is essentially a big table of virtual function pointers. GDIworks (it puts stuff on the screen)
by calling the virtual functions. The public data for the object corresponds to the Physical
Device Block (described later). The private data is the driver-defined PDEVICE structure.
Mter examining the Physical Device Block (PHYSDEVBLOCK) to see what the device is
capable of, GDI calls the appropriate logical device (LOGDEV) member functions. The
PDEVICE pointer is passed as a sort of "this", or "self", pointer, which gives the device driv
er's member functions access to any data that the driver defines to do its job. Like a well
designed class interface that uses virtual functions, the GDI can interact with an output device
object without knowing about its underlying internal data structures.

The format for the Windows 3.1 debugging GDI for the LOGDEV structure, as
extracted from the debug information, is shown in Table 5-6.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

Table 5-6: Format for Debugging CDI for LOCDEV Structure.

Offset Type Name Description
OOh FARPROC OEMBitbit (For fields 0-74h, see Table 5-1.)
04h FARPROC OEMColorInf
08h FARPROC OEMControl
OCh FARPROC OEMDisable
10h FARPROC OEMEnabie
I4h FARPROC OEMEnumDFonts
I8h FARPROC OEMEnumObj
ICh FARPROC OEMOutput
20h FARPROC OEMPixel
24h FARPROC OEMRealizeO
28h FARPROC OEMStrblt
2Ch FARPROC OEMScanLR
30h FARPROC OEMDeviceMode
34h FARPROC OEMExtTextOut
38h FARPROC OEMCharWidths
3Ch FARPROC OEMDevBitrnap
40h FARPROC FastRectBorder
44h FARPROC SetAttrs
48h FARPROC OEMDIBBits
4Ch FARPROC OEMCreateBit
SOh FARPROC OEMD IBtoScreen
54h FARPROC o EMSetPalette
58h FARPROC OEM GetPalette
5Ch FARPROC OEMSetPalTrans
60h FARPROC OEM GetPalTrans
64h FARPROC OEMUpdateCol
68h FARPROC OEMStretchBlt
6Ch FARPROC OEMStretchDIB
70h FARPROC o EMSelBitrnap
74h FARPROC o EMBitrnapBits
78h FARPROC RealOEMRealizeO Genuine address of RealizeObjectO. Bypasses

Adobe Type Manager GetProcAddressO
hook in ATM versions prior to 2.5.

7Ch INTI6 DevDCRefCnt Number ofDCs using this LOGDEV.
7Eh UINTI6 hPDevBlock Handle to PHYSDEVBLOCK (below).
80h UINTI6 LDevAtom Logical (driver) atom.
82h UINTI6 hModule Module handle of device driver.
84h UINTI6 hNextLogDev Next logical device in GDI chain.
86h UINTI6 hPhysPalette Handle to physical palette.
88h UINTI6 RealTime ???
8Ah UINTI6 tPalette U se ? ??

WINDOWS INTERNALS

The CD. Physical Device Block
The Physical Device Block (PHYSDEVBLOCK) is a data structure that GDI device drivers fill
in with information concerning the attributes and capabilities of the device. The structure is
filled in when GDI calls the driver's Enable() function with a particular parameter flag set.
The EnableO function is a standard routine in all GDI device drivers. GDI calls Enable() to
tell the device that it's time to start up. GDI also calls Enable() to obtain information, such as
the PHYSDEVBLOCK, from the device.

The information in the PHYSDEVBLOCK tells GDI what kind of device it's dealing
with, its pixel resolution, what graphics primitives it can handle itself, what type of palette
management is available, and so on. When a GDI function is called by your program, GDI
examines what capabilities the device has by looking at the PHYSDEVBLOCK structure. If
the device can handle sophisticated commands, like outputting fonts directly or clipping, GDI
does only the work it has to, and lets the device driver do everything else. On the other hand,
if the device driver only handles a simple set of primitive instructions (for example, if it can
only output pixels), GDI breaks the high-level command down to simpler instructions that it
feeds to the device driver. Having a smart device driver is often beneficial because it can often
use special hardware or make assumptions that the GDI code can't, thereby increasing the
speed of graphics operations.

The first part of the PHYSDEVBLOCK consists of a GDIINFO structure, as documented
in the DDK. If you don't have the DDK, take a look at the GetDeviceCapsO function in the
SDK. Each of the capabilities listed corresponds directly to a field in the GDIINFO structure.
In fact, the #define values you pass as the iCapability parameter happen to be, "coinciden
tally," the offset of the matching field in the GDIINFO structure. For instance,
DRIVERVERSION, HORZSIZE, and so on.

The second part of the PHYSDEVBLOCK holds fields that GDI uses for "internal house
keeping." For instance, the atom handles that refer to the device name, like EPSON FX-80,
and the output filename (e.g., LPT1:) are stored here.

The format for the Windows 3.1 debugging GDI version of the PHYSDEVBLOCK
structure, as extracted from the debug information, is shown in Table 5-7.

Table 5-7: Format for Debugging GDI for PHYSDEVBLOCK Structure.

Offset Type Name Description
00 GDIINFO PhysGDIINFO See DDK or GetDeviceCapsO.

hNextPhysDev Next PhysD6vBlock in chain. 6E UINT16
70 UINT16 PDevRefCnt Number of references by DCs
72 UINT16 PDev MemRefCnt ???
74 UINT16 PDevAtom Physical (device) atom
76 UINT16 PDOSAtom filename atom (i.e., "LPT1:")
78 UINT16 hPDevData Global handle to PDEVICE
7A UINT32 PDevCount m

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

Pseudocode for Selected CD. Functions
Now that we've covered some of the key concepts and data structures in GDI, it's time to dig
into some pseudocode to illustrate what we've just learned. The following functions are in no
way intended to show you all the various facets of the GDI. GDI is just too large and convo
luted. Instead, they were selected to give you a feel for some of the fundamental ideas.

Parameter ValidatIon
A bit of explanation is in order before examining the various GDI functions. Windows 3.1
added a parameter validation layer, which ensures that all parameters passed to a Windows
API are valid and won't cause a GP fault somewhere down inside the Windows DLLs. While
we don't have the space to discuss parameter validation in any detail, for now it is sufficient to
say that the core Windows DLLs (USER, KERNEL, and GDI) each have a source module,
LAYER. OBI, that includes the entry points for many of their exported functions. The param
eter validation occurs in the appropriate LAYER module, before JMP'ing to the real function.
The real function is never exported, but has the name of the API preceded by an "I". For
instance, if you call CreateDCO, the CreateDCO function in the GDI LAYER module vali
dates the parameters. If the CreateDCO LAYER function decides the parameters are OK, it
JMPs to the ICreateDCO function in some other GDI source module. If the parameters are
invalid, the LAYER module may print out a debugging message in the debugging DLLs
before returning a failure code to the application.

Throughout this book, many of the functions described are really the internal version of
the function (for example, IGetMessageO, rather than the real GetMessageO function).
Attempting to show the parameter validation everywhere it's encountered would quickly
obscure the main point of the discussion. However, the CreateDCO function has an interest
ing twist embedded in the parameter validation layer, which makes it worth examining. Plus,
we felt it was important to show parameter validation at least once.

CreateDCO
The three strings passed to CreateDCO are the name of the GDI driver to be loaded, the
device name (if the driver supports more than one kind of device), and the name of the file
that output should be sent to (for example, "LPT1:").The second and third strings can be
NULL if riecessary. For instance, upon initialization, USER creates five DCs for the display,
using the "display.drv=" entry in the SYSTEM.INI file as the driver name. The calls to
CreateDC() from LW _DCInit() in USER probably look something like this:

CreateDC("DISPLAY", NULL, NULL, NULL>

If, on the other hand, you are creating a DC to print with, you might use:

CreateDC("EPSON9", "Epson FX-aO", "LPT1:", NULL>;

which specifies that you want to load the EPSON9.DRV device driver, that the printer is an
FX-80 model, and that the device driver output should be sent to the DOS device, LPT1:. In
most applications printing is usually the only time that you need to call CreateDCO, since you
use the USER-created DCs when doing screen output.

WINDOWS INTERNALS

The pseudocode for the CreateDCO function below has nothing to do with creating a
device context. Instead, it's the one example we give of what parameter validation looks like.
The real code for creating a DC is in the InternalCreateDCO function, which we cover next.

What is especially interesting about CreateDCO is the way it deals with Adobe Type Man
ager (ATM). Here, we're going to concentrate on the technical details, but see Chapter 1 of
Undocumented Windows for the horrifYing story about Michael Geary, Adobe Type Man
ager, and the Microsoft legal department. The original ATM for Windows 3.0 provides a sys
tem for giving the user access to better fonts than Windows 3.0 could provide. To do this,
ATM needs to tap into the calls to various Windows functions, substituting its own informa
tion relating to fonts for that which would normally go back and forth between the GDI, the
GDI device drivers, and the application. ATM taps into the function calls by searching in tpe
GDFs code segments for the calls to the functions and patching them to point to its own func
tions. This is very distasteful, as Mike Geary willingly admits. According to Mike, several
cleaner methods were tried, but they were more difficult for the user to install. The code that
was finally decided on made the assumption that the GDI code wouldn't change or that ATM
would need to be updated if the GDI code did change. As we just mentioned, however, the
code did change in Windows 3.1 when the parameter validation layer was added.

More recent versions of ATM, starting with version 2.5, add yet another layer to this tan
gled mess. These versions intercept all GetProcAddress() calls and hook even mOre routines
(for example, the EngineXXX functions). Interestingly, some of the hooking is made simpler
by directly modifYing certain entries in GDI's entry table to point to the ATM code, rather
than to the intended GDI code. This negates the need to patch the actual code. Table 3-1 in
Chapter 3 shows the structure of entry table.

To Microsoft's credit, the GDI developers did go the extra mile and made the Windows
3.1 GDI compatible with ATM versions prior to 2.5. To do this, they had to trick ATM into
thinking it had found the functions it needed to patch, while still maintaining the
CreateDCO/ICreateDCO separation needed for the validation layer. To accomplish this, they
placed bait code, which looks exactly like what ATM wants, at the start of the CreateDC()
code. When these older ATM versions start up, they scan through the CreateDCO code look
ing for calls to LoadLibraryO, GetProcAddressO, and FreeLibraryO. ATM patches these calls
to point at ATM code, which does whatever it needs to do, then ATM chains on to the origi
rial function. ATM searches the DeleteDCO code for a FreeLibraryO call, as well.

This bait code never gets executed directly. Instead,the GDI developers took advantage
of the way direct and indirect CALL's are encoded, to fake out ATM. The destination field of
a direct FAR CALL instruction (which ATM looks for) can also be used as a DWORD mem
ory location for an indirect (through memory) FAR CALL. When GDI needs to call one of
the functions that: ATM may have hooked, it calls indirectly through the memory location. If
ATM has patched the direct FAR CALL, control goes to ATM. If ATM isn't around, the
indirect FAR CALL goes to the correct Windows function, which was fixed up with the
proper address when GDI was loaded. It's a sick world out there.

If the general flow of CreateDC() is confusing, don't feel bad. It is contorted enough that
it is not immediately obvious what goes on. Just remember that the code eventually makes its
way to InternalCreateDC(), where the code gets down to the business of creating and initial
izing a new device context structure.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

The parameter validation is reasonably simple here. The first parameter must be a valid far
pointer to a string. CLPSZTextO ensures that accessing any of the characters of the string
won't cause a GP fault. The second two parameters to CreateD CO can be either NULL or
valid far pointers to a string. CLPSZOText() performs the same test as CLPSZTextO, but it
first checks for a NULL pointer, letting it go through if it's NULL. The last parameter can
either be NULL or a far pointer to a data structure. If it's non-NULL, a few fields in the data
structure are tested to see if they'll cause problems later on. Once the parameter validation
layer verifies that things are OK, the code eventually ends up at InternalCreateDCO, which
we cover next.

pseudocode for CreateDC() - LAYER.OBJ
II Parameters:
II LPSZ lpszDriver II (e.g., "EPSON9")
II LPSZ lpszDevice II (e.g., "Epson FX-80")
II LPSZ lpszOutput II (e.g., "LPT1:")
II LPVOID lpvInitData II typically NULL

goto CreateDC_2 II Skip over the "bait" code placed
II for Adobe Type Manager (ATM) to find.

CALL FAR LoadL ibraryO II ATM patches these function ca lls
CALL FAR GetProcAddress() II Inside InternalCreateDC(),
CALL FAR FreeL ibraryO II indirect calls are made

II through these "function pointers".

ATMlnternalCreateDC: II A real label name

Set up a standard INC BP I PUSH BP I MOV SP,BP stack frame.
Then, immediately undo the above stack frame. ATM looks
for this prologue code.

goto InternalCreateDC II JMP to the real CreateDC() code

II Parameter validation. String must be a valid far pointer
II that doesn't GP fault when accessed. If the string fails
II the test, the function returns without doing anything.
CLPSZText(lpszDriver)

II Parameter validation. String must either be null OR a
II valid far pointer that doesn't GP fault when accessed.
CLPSZOText(lpszDevice)
CLPSZOText(lpszOutput)

WINDOWS INTERNALS

if lpvlnitData == 0)
goto Real_CreateDC

II if lpvlnitData == NULL, no
II need to do param validation

perform more validation checks on the lpvlnitData structure

Real_CreateDC:

JMP ATMlnternalCreateDC II This actually jumps to ICreateDC{),
II which just zeros CX, DX, BL, then
II JMPS to ATMlnternalCreateDC (above)

InternalCreateDCO
In the most general terms, InternalCreateDCO loads a GDI device driver DLL into memory,
allocates space for a device context, and initializes its fields. Along the way, it allocates space
for the LOGDEV and PHYSDEVBLOCK structures, described earlier, and initializes their
fields as well.

The function starts by obtaining atom handles for the three string parameters that are
passed in. Storing the strings in the atom table allows the GDI to simplify a lot of code that
would have to maintain and compare strings like device driver names, in favor of just storing a
16-bit handle. If you're not familiar with atoms, they can be extremely useful, and reading the
SDK documentation for AddAtomO and GlobalAddAtomO is highly recommended (there is
also a lengthy discussion of atom tables in Chapter 5 of Undocumented Windows). In addi
tion, because atom tables are hashed, determining if a string is already in use is much faster .
than doing a linear search through all the possible strings.

Once the atom work is done, InternalCreateDCO allocates space for the device context
out of the GDI local heap. Very soon after creating the space for the DC, the code calls
GetLogO and GetPhysO to create and initialize the LOGDEV and PHYSDEVBLOCK data
structures. Their local handles are stored in the DC under construction. GetLog() is discussed
a bit later. GetPhys() is a lengthy routine that's not easily taken apart; pseudocode for
GetPhysO is not given here.

, Mter the above three data structures are created, InternalCreateDCO goes through a
lengthy stretch where it fills in various fields of the device context with initial values. This
includes calling the documented SetBkColorO, SetTextColor(), and SelectObjectO APIs.

pseudocode for InternalCreateDC{) - DCMAN1.0BJ
II Parameters:
II LPSZ lpszDriver II Note that these are the same as
II LPSZ lpszDevice II the parameters to CreateDC()
II LPSZ lpszOutput
II LPVOID lpvlnitData
II LocaLs:
II ATOM driverAtom, deviceAtom, outputAtom
II BYTE DCKind
II WORD AChain[9J
II WORD logDevHnd, physDevBlkHnd II local handles

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

II DC near *dc II Pointer to space allocated for DC
II LOGDEV near *logdev
II PHYSDEVBLOCK near *physDevBlk

II Get the kind of DC to be created (in BL register)
II a == normal -> CreateDC()
II 1 = memory -> CreateCompatibleDC()
II 80h = info DC -> CreateIC()
DCKind = BL

physDevBlkHnd = DX
logDevHnd = CX

II CX and DX are initialized by the
II caller of InternalCreateDC()

driverAtom = MyAddAtom(lpszDriver
deviceAtom = MyAddAtom(lpszDevice

/I e.g., "EPSON9"
/I e. g., "Epson FX-80"

II SansColon() strips any trailing ':', and calls
II GDIAddAtom() with the resultant string. For instance,
II "LPT1:" becomes "LPT1".
outputAtom = AX = SansColon(lpszOutput)

if (AX != 0) II AX==outputAtom. Was an output file given?
{

}

else

if (outputAtom != NullPortAtom) II??
goto decided_on_atom

if (DCKind == 0) II a -> normal DC
goto RetAtoms II Calls MyDeleteAtom() for driverAtom,

II deviceAtom, and outputAtom. It then
II zeros AX, and JMPs to CreateDCExit

AX = deviceAtom

some local var = AX II Either deviceAtom or outputAtom. The
II local var doesn't seem to be used.

Zero out the 12h bytes of the "AChain" structure (a local var)

AX = GetCurrentTask()
if (AX == a)

goto RetAtoms II Abort. RetAtoms is described above.
Store AX (current hTask) into a field in AChain

WINDOWS INTERNALS

II Here's where we aLLocate space for device context! The
II return vaLue is a handLe, rather than a near pointer.
II In generaL, the code Likes to deaL with handLes to LocaL
II memory bLocks (in the GDI heap), and dereference them to
II near pointers as needed.
AX = MyALLoc(OxD4) II sizeof (DC)--see TabLe 5-5.

II AX = DC handLe Store AX into fieLd in AChain
if (AX == 0)

go to RetAtoms II Abort. See above for detaiLs

CreateDC10: II These LabeLs are reaL names in the debug info!
II Perhaps BiLL originaLLy wrote this in BASIC?

if (DCKind != 1)

goto CreateDC15

if (! GetPhys3000)
goto CreateDC20

SI = LogDevHnd
DI = physDevBLkHnd
go to CreateDC30

CreateDC15:

II 1 -> memory (compatibLe) DC

II CaLLs CreateRectRgn(), and
II stores handLe in AChain

II Atoms obtained at top of function

II Create the LogicaL device. This incLudes Loading the
II driver DLL moduLe, and obtaining the entry points for
II various functions in the driver. Pseudocode beLow.
CX = Get Log 0
if (CX == 0)

goto CreateDC20 I I Failure!
eLse

LogDevHnd = CX

II Obtain a handLe to a previousLy created "physicaL device"
II bLock. It appears that GetPhys() waLks through some sort
II of List of physicaL devices, and compares their deviceAtoms
II and outputAtoms to the corresponding atoms obtained above.
II If no matching physicaL device bLocks are found, a new one
II is created.
if (GetPhys())

goto CreateDC30

CreateDC20: II We get here if something faiLed. This is
II where handLes are freed up.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

goto RetAChain

CreateDC30:

II Free all the local handles in AChain
/I structure. Calls GlobalFreeO for
II one of the handles. Returns to the
II InternalCreateDC() caller.

logdev = *(WORD *)SI II SI is logical device local handle.
II Dereference to get LOGDEV pointer.

logdev->DevDCRefCnt++ II Increment the LOGDEV reference count

II Get a pointer to the PHYSDEVBLOCK structure that was
II allocated and initialized inside the GetPhys() function.
physDevBlk = *(WORD *) PHYSDEVBLOCK handle from GetPhys()

II Get a pointer to the DC we're creating. We're going to
II start filling in its fields now. Remember, GDI uses the
/I "quick LocalLock" trick to dereference local handles.
dc = *(WORD *) DC handle allocated earlier

II Start iilli~g in fields in t~e DC
dc->hPDevice = physDevBlk->hPDevData
dc->hVisRgn = some field in AChain structure
dc->globalDCFlags ~ 2
dc->hNextDC =hFirstDC /I hFirstDC isa global var

II Put this DC at the head of
II the GDI DC list

II GDIOBJHDR is the standard neader that all GDI objects
/I start with. IC = 4f4Eh, DC = 4F4D, BOh = info DC
dc->GDIOBJHDR.ilObjType = DCKind & BOh ? IC : DC

dc->GDIOBJHOR.ilObjCount = physDevBLk->PDevCount
dc->GDIOBJHDR.ilObjMetaList = 0
dc->GDIOBJHDR.iLObjTask = 0
dc->DCFlags = BX I BOh II BX = ???
dc->hMetaFiLe = some field in AChain
dc->hBitMap = hStaticBitmap /I A $llobal var
dc->dchPal = LDefaultPalette /I A gLobal var
dc->hLDevice = logDevHnd II LogDevHnd set at fn. entry
dc->hRaoClip = somefiel.d in AChain
dc->hPDeviceBlock = physical device handle /I from GetPhysO
dc->phOrwMode.Rop2 = ODh
dc->phDrwMode.bkMode = 2
dc->WndExtX = dc->WndExtY = 1

WI N DOWS INTERNALS

dc->VprtExtX = dc->VprtExtY = 1
dc->MapMode = 1
dc->XformFlags = 1
dc->RelAbsmode = 1
dc->PolyFillmode = 1
dc->StretchBltMode =
dc->SaveLevel = 1

variable dc->BitsPixel = some local
dc->DCLogAtom = driverAtom
dc->DCPhysAtom = deviceAtom
dc->DCFileAtom = outputAtom

II These 3 atoms were created
II at the top of the function

if (some field in AChain != 0)
GlobalUnlock(field in AChain

CreateDC40:

if (!LockDC(dc))
goto CreateDC50

II Lock the DC being created?
1/ Failure!

II Start selecting defaults into the DC under construction.
if (!SetBkColor(dc, OxFFFFFF » // Set color to WHITE

go to CreateDC50 // Failure!

if (!SetTextColor(dc, OxFFFFFFFF » II Set to WHITE
goto CreateDC50 II Failure!

/1 StockObj is a global structure variable
if (!SelectObject(dc, some field in StockObj))

goto CreateDC50 II Failure!

// Set the logical pen field. Then, get the physical pen,
// which involves calling the device driver's RealizeObject()
II function.
dc->hLPen = some field in StockObj
if (!GetPPen(dc))

goto CreateDC50 II Failure!

Compare "DisplayAtom" (a global variable), with a local
variable. Depending on whether they're equal or not,
set AX with one field or another from StockObj.

CreateDC45:

dc->hLFont = AX II AX is some field from StockObj

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

if (GetPFont(dc, 0))
goto CreateDC60

II "Get physical font"
II Success!

CreateDCSO: II Some error has occurred. CLean up things.

DeLeteMetaStuff()
DeLeteDC(dc)

II KilL things related to metafiLes?
II KiLL the DC items aLLocated so far.

AX = 0
go to CreateDCExit

CreateDC60:

Turn off BOh bit in dc->DCFLags if set

if (driverAtom == MGXWMFAtom) II MGXWMFAtom ???
Turn on some bit in dc->DCFLags2

if (some fieLd in AChain == 0)
goto CreateDC70

if (!SaveDC(dc))
goto CreateDCSO

II ??
I I Failure!

dc->GDIOBJHDR.ilObjType = MetafiLe

CreateDC70:

II 4FSOh

AX = DC LocaL handLe alLocated earLier (stored in AChain)

CreateDCExit :

if (debug GDI and AX == 0)
output a message: "CreateDC faiLed"

if (AX != 0)
hFirstDC = AX

GetLogO

II Put new DC at head of chain

GetLogO is where the GDI device driver specified as the first argument to CreateD CO is
loaded into memory. GetLogO also creates the LOGDEV data structure that's used through
out GDI to call the device driver's routines.

Because the specified device driver may already have been loaded (for example, after the
first DISPLAY DC is created), GetLog() first walks the linked list of LOGDEVs,comparing
their LDevAtom field to the driver atom found or created at the beginning of Inter
naICreateDC(). If a match is found, the driver has already been loaded, and GetLog() just
returns its local handle. If the driver is not in the list, GetLog() has more work ahead of it.

WINDOWS INTERNALS

The first task of creating a new LOGDEV is to allocate space for it. With this done,
GetLog() loads the device driver with LoadLibrary(), using the device driver name specified as
the first argument to CreateDC(). Thus, calling CreateDC() does an indirect LoadLibraryO.
Assuming the driver is safely loaded, the next step is to hook up the LOGDEV to the func
tions exported by the driver. This is an amazingly simple task. Starting with ordinal value 1,
and incrementing up through ordinal 30, GetLog() calls GetProcAddressO for the newly
loaded driver, specifYing the current ordinal value. The return addresses from GetProc
Address() are stored in the first part of the LOGDEV structure (see Table 5-6). After the loop
completes, you can think of the LOGDEV structure as an array of 30 function pointers. If the
driver doesn't export a particular function, GetProcAddress() returns NULL. Since the device
can use the device capabilities to specifY what functionality it exports, there shouldn't be any
danger of GDI trying to call through a NULL pointer. Each capability corresponds roughly
to a function pointer.

Interestingly, after the standard 30 functions are imported, GetLog() calls GetProc
Address() for the driver's RealizeObjectO routine one more time. This time, however, it calls
GetProcAddress() directly, rather than indirectly through the function pointer that ATM may
have patched to point to itself. In ATM 2.5 and later, even this GetProcAddress() call gets
intercepted. If these hacks on top of hacks on top of hacks continue, somebody's going to get
hurt!

The last portion of GetLogO simply fills in the other, non-function pointer fields of the
LOGDEV with appropriate values.

It is important to note when looking at the pseudocode that GetLog() does not create its
own stack frame. Instead, it uses the stack frame from InternaICreateDC(). Put another way,
GetLogO shares the same parameters and local variables as InternalCreateDCO. This is similar
to the LoadModuleO helper functions in Chapter 3.

pseudocode for GetLog() - DCMAN1.0BJ
II Returns CX set with a local handle to a logical device block,
II or 0, if it couldn't be loaded/created.
II
II Locals:
II LOGDEV *logdev II Alternately either a local handle or

II a near *

II First have to see if the requested device is already
II loaded. Walk the chain of logical device blocks,
II looking for one whose atom matches "driverAtom" inside
II the InternalCreateDC() function.
logdev = HLDevHead II HLDevHead is a global, and the "head"

II handle in the logical device chain.

GetLog10:

CX = logdev

II A real label name

II Retain handle of current LOGDEV handle
II being examined ihCX

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

if (logdev == 0)
goto GetLog20

II If at end of chain, it wasn't found,
II so we need to try loading the driver.

logdev = *(WORD *)logdev II Convert the local handle to
II a near pointer. HACK!!!
II Assumes knowledge of local
II heap data structures.

/I See if the LDevAtom for this block matches "driverAtom"
II (from the InternalCreateDC() stack frame). If it does,
II return now. CX contains the handle of the logical device
II local heap block.
if (logdev->LDevAtom == driverAtom)

return II CX contains driver local handle
logdev = logdev->hNextLogDev /I Try the next logical
goto GetLog10 II device block in the chain

GetLog20:

/I Allocate space for a new LOGDEV structure. AChain is a
II local variable from InternalCreateDC().
Some field in AChain = MyAlloc(sizeof(LOGDEV))

if (MyAlloc() call failed)
goto GetLog30 II Return failure

II Figure out how long the driver name is, and make a copy
/I of it on the stack. Add on the ". DRV"extensi on,
II in preparation for calling LoadModule()
CX = HowLongIsIt(lpszDriver) II A strlen() clone
CX += 5 II For ". DRV" ???
CX &= OFEh II Make the resul t even?
copy lpszDriver onto temporary space on stack
strcatO on ".DRV" extension

II Load the library using the driver name created on the stack.
/I But don't call LoadLibraryO directly. Adobe Type Manager
/I might have "hooked" what it thinks is the call to
II LoadLibrary(). Thus, call through the LoadLibrary()
II "bait" function call that was conspicuously placed at the
/I start of CreateDCO's code so that ATM would find it.
if (CreateDC_lpfnLoadLibrary() > 32)

goto GetLog40 II Success. Continue on.

GetLog30: II Failure. Ti~e to clean up ,

WINDOWS INTERNALS

return with CX = 0

GetLog40: II Things are going well. Continue on.

store AX (the LoadLibrary() instance handle) into another
fieLd in AChain

Retrieve locaL handLe obtained by earLier MyAlloc() calL, and
convert to a near *. Put vaLue into Dl. Dl wilL be a near
pointer to the LOGDEV structure just allocated.

II Now going to caLL GetProcAddress() for the first Ox1E
II entries in the driver. CalL indirectLy through the
II "bait" GetProcAddressO caLL. (See earLier ATM comments.)
II The address of each function is stored in a corresponding
II fieLd in the LOGDEV structure. (See Table 5-6)
for (WORD i=1; i < Ox1E; i++)
{

CreateDC_lpfnGetProcAddress(hlnstanceLib, MK_FP(O, i))
* (DWORD far *) ES:DI = DX:AX II Save function address
DI += 4 II point at next fn. ptr field

}

II Circumvent any ATM hooking, and get the "real" address of
II RealizeObject() by caLLing GetProcAddress() directLy.
II This is an escaLation in the "war of hacks"! ATM seems
II to be winning though!(lt patches the foLLowing too.)
Logdev->ReaLOEMReaLizeO =

GetProcAddress(hlnstanceLib, MK_FP(0, OxA »

II Start fiLLing in various fields in the second part of the
II LOGDEV structure (the first part is all function pointers).
Logdev->LDevAtom = driverAtom II driverAtom is locaL var

II from InternalCreateDC()

Logdev->hModuLe = hlnstance returned from LoadLibrary() call

Logdev->hNextLogDev = hLDevHead II Add the new device to the
hLDevHead = logdev II head of the device list

Logdev->hPhysPaLette = 0
Logdev->ReaLTime = 0
Logdev->fPaLetteUse = 1

II No physical paLette?
II ?
II ?

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

To sum up the above, device contexts are created on the fly as needed. They testify to the
enormous power and flexibility you can achieve with runtime dynamic linking using Load
Library() and GetProcAddress().

ICreatePenO
CreatePen() (actually, ICreatePen()) is covered here because it's a fairly essential GDI func
tion if you need to do anything that the stock objects don't provide. A typical call to make a
new GDI pen would look something like this:

II Create a pen with the PS_DOT styLe, width == 1, and the
II specified coLor.
HPEN hPen = CreatePen(PS_DOT, 1, RGB(10,20,30));

The ICreatePen() pseudocode below is extremely simple. It takes the style, width, and
color parameters and constructs a LOGPEN structure on the stack. (The LOGPEN is
described in the CreatePenIndirect() seqion of the SDK documentation.) ICreatePen() then
calls ICreatePenIndirect(), which we cover next. Essentially, CreatePen() is just a user friendly
version of CreatePenIndirect(). Note that CreatePen() and siblings don't actually create a
physical object. That comes later when we invoke SelectObject().

pseudocode for ICreatePenO - OBJMAN.OBJ
II
II
II
II

Parameters:
WORD style
WORD width
DWORD coLor

II Take the passed parameters, and create a LOGPEN structure
lion the stack.
push HIWORD(coLor)
push LOWORD(coLor)
push 0 II Y part of POINT structure is 0
push width
push styLe

ICreatePenIndirect(SS:SP) II Pass far pointer to LOGPEN
II created above.

ADD SP, OAh II CLean off things pushed on stack

ICreatePenlndirectO
ICreatePenIndirectO is either called indirectly from ICreatePenO or directly by the user (actu
ally, CreatePenIndirectO goes through the CreatePenIndirect() parameter validation layer
first, but you get the idea). The code is a model of simplicity. It takes a pointer to a LOGPEN
structure and immediately hands it off to the MoveObjectO helper routine, along with the
PEN signature, 4F47h='Go.' (see Table 5-3). The MoveObjectO routine (below), takes the
LOGPEN structure and copies it into the GDI local heap, making it an official GDI object.

WINDOWS INTERNALS

pseudocode for lCreatePenlndirect() - OBJMAN.OBJ
II Parameters:
II LOGPEN far *Logpen

SI = 04F47h II PEN signature
BX = Dl = OAh II size of LogPen

MoveObject(Logpen II Move object into GDl LocaL heap

MoveObject()
MoveObject() is called by ICreatePenIndirect(), ICreateBrushIndirect(), and ICreateFont
Indirect(). Its job is to take a far pointer to a logical object somewhere in the caller's address
space and make a GDI object in the GDI local heap based on the logical object.
MoveObject() doesn't care about what kind of object it's creating. If MoveObject() were a
c++ member function, it would be operating on a pointer to a base class, ignoring the data
members specific to the derived classes (for example, the PEN, BRUSH, and FONT
"classe s ") .

As we noted in the discussion of GDI objects, each object starts out with a standard
GDIOBJHDR structure (see Table 5-2). When MoveObject() allocates memory from the
GDI local heap for the new object, it has to add the size of the GDIOBJHDR to the size of
the logical object. After the memory is allocated, it's a simple matter to initialize the
GDIOBJHDR fields and copy the logical object's data immediately after the end of the
GDIOBJHDR.

pseudocode for MoveObject - OBJMAN.OBJ
II
II
II
II
II
II
II
II
II

Parameters:
LPVOID object
SI = object type
Dl = size of object
BX = size to aLLocate

LocaLs:
WORD hTask
WORD GDIObjHandLe
GDIOBJHDR near *GDI0bjPtr

if (!(hTask = GetCurrentTask(») II baiL out if hTask == 0
go to MoveObject_done

II ALLocate the specified memory size + OEh. The extra OEh
II is for the GDI0BJHDR (at the beginning of aLL GDl objects)
II (OAh bytes in non-debug Windows)

if (! (GDI0bjHandLe= GDILocaLALLoc(BX + OEh)))
go to MoveObject_done'

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

II>Dereference the aLLocated handLe to get a pointer to the
II actuaL data for the bLock. ReaLLy shouLd use LocaLLock()
GDIObjHeader = *(WORD near *) GDIObjHandLe

GDIObjHeader->nextinchain = 0
GDIObjHeader->iLObjType=SI II object type (e.g., 4F47h=PEN)
GDIObjHeader->iLObjCount = ObjectCount II A gLobaL variabLe
ObjectCount++ II A gLobaL variabLe. Indicate

II there's one more GDI object

GDIObjHeader->iLObjMetaList = 0
GDIObjHeader->iLObjSeLCount = 0
GDIObjHeader->iLObjTask = hTask

copy the bytes from the passed "object" to the allocated
bLock (immediateLy after the GDIOBJHDR portion). For
instance, if the passed object was a LOGPEN, the LOGPEN
wouLd be copied right after the GDIOBJHDR portion.

MoveObject_done:

return aLLocated handLe to caLLer

CreateSolidBrush()
CreateSolidBrush() is included here because it's also a common GDI function that you are
likely to encounter if you do any serious graphics output. It also provides another opportunity
to see how simple the GDI logical object concept is.

A typical call to CreateSolidBrush() would be like this:

II Create a brush with the specified coLor given in RGB format
HBRUSH hBrush = CreateSoLidBrush(RGB(O,128,255));

CreateSolidBrush() is extremely simple, as it just loads two registers with appropriate val
uesand passes the color parameter off to the internal CreateBrush() function. Note also that
there is no parameter validation for this function. Just about any value you could pass as the
color parameter will be OK, so there's no need to have separate CreateSolidBrush() and
ICreateSolidBrush() functions.

pseudocode for CreateSoLidBrush() - OBJMAN.OBJ
II Parameters:
II DWORD coLor

AX = BS_SOLID
BX = 0
CX:DX = coLor

WINDOWS INTERNALS

II CaLL the common brush creation entry point. ALso caLLed
II by CreateHatchBrush(), CreatePatternBrush(), and
II CreateDIBPatternBrush()
CreateBrush()

CreateBrushO
It's somewhat surprising that Microsoft doesn't export this function, as it's very similar in
nature to CreatePenO. Instead, Microsoft provides four different CreateXXXBrushO functions
that all do essentially the same thing, with only minor variation among them. Perhaps the
problem was that one of the parameters would have to be either a hatch code or a bitmap
handle, depending on what kind of brush is being created.

Like CreatePenO, CreateBrushO takes the parameters and pushes them on the stack, cre
ating a LOGBRUSH structure. This structure is passed to ICreateBrushIndirectO. Once
again, we have a user-friendly front end to another exported function, CreateBrushIndirectO.

pseudocode for CreateBrush() - OBJMAN.OBJ
II Parameters:
II AX = Brush styLe (BS_xxx)
II BX = hatch index, or hBitmap, or ...
II CX:DX = coLor scheme (e.g., a COLORREF)

II Create a
push BX
push CX
push DX
push AX

LOGBRUSH structure on the stack
II Hatch or hBitmap
II HIWORD(COLOR)
II LOWORD(COLOR)
II styLe

ICreateBrushlndirect(SS:SP II Pass far pointer to
II LOGBRUSH created above.

ADD SP, 8 II CLean off things pushed on stack

I Crea teB rush In directO
ICreateBrushIndirectO starts out very similarly to ICreatePenIndirectO. The far pointer to the
LOGBRUSH object is handed off to MoveObject() (covered earlier) to make the BRUSH
object in the GDI local heap.

Unlike ICreatePenIndirect() however, there is additional work to be done after
MoveObjectO completes. GDI gives you the capability to make brushes that use bitmaps. It's
not safe to use a bitmap that the application manages because it might be deleted at an inop
portune time. Therefore, if the brllshbeing created depends on a bitmap (a DIBBrush or
PatternBrush), ICreateBrushIndirectO makes a copy of the bitmap information. Presumably,
the "object manager" code takes care of deleting GDI's copy of the bitmap when the brush is
deleted. Note in the code below that this is not the same bitmap as was passed to
CreateDIBBrushO. The caller of CreateDIBBrushO is responsible for deleting the bitmap it
passed.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

pseudocode for ICreateBrushlndirect() - OBJMAN.OBJ
II Parameters:
II LOGBRUSH far * logbrush
II
II
II
II

HANDLE
BRUSHOBJ
WORD
WORD

SI = 04F48h
DI = 8h
BX = OEh

brushHandle
near *brushObj

bitmapSize
bitmapHandle

II BRUSH signature
II size of LOGBRUSH
II Allocate this many bytes (for extra
II data at the end of the structure)

II Move the brush object into the GDI local heap
brushHandle = MoveObject(logbrush)
if (!brushHandle)

return 0

brushObj = *(WORD *)brushHandle II Hack dereference of local
II handle to a near *

if (brushObj->LOGBRUSH.lbStyle == BS_DIBPATTERN)
goto CreateBrushlndirect_DIBBrush

if (brushObj->LOGBRLJSH.lbStyle == BS_PATTERN)
goto CreateBrushlndirect_Pattern

return with AX == brushHandle

CreateBrushlndirect_DIBBrush: II Come here to create a DIB brush

I','· ,

II The lbHatch field is really holding a global memory handle
II for a bitmap, rather than a hatch ID.
bitmapSize = GlobalSize(brushObj->LOGBRUSH.lbHatch)

if (bitmapSize > 64K)
goto Free_brushHandle_and_exit II Bitmap is too big!

bitmapHandle = II Allocate space for the GDI copy
GlobalAlloc(GMEM_MOVEABLE I GMEM_SHARE, bitmapSize)

if (!bitmapHandle)
goto Free_brushHandle_and exit

II Couldn't get memory in
II the global heap. Abort.

WINDOWS INTERNALS

II Lock the block just allocated, and the handle of the bitmap
II passed in. We1re going to make a copy of the passed in
II bitmap into our own local copy.
GlobalLock(bitmapHandle)
GlobalLock(brushObj->LOGBRUSH.lbHatch)

Copy the memory of the passed in bitmap to the global memory
block just allocated.

II Can now unlock the bitmap's global memory handles
GlobalUnlock(bitmapHandle)
GlobalUnlock(brushObj->LOGBRUSH.lbHatch)

II Copy the original bitmap handle (from the lbHatch field)
II into another field in the BRUSHOBJ header (so that we
II don't forget its value). Then, store the global bitmap
II handle just allocated into the LOGBRUSH structure,
/I overwriting the original brush handle that we copied from.
brushObj->ilBrushBitmap = brushObj->LOGBRUSH.lbHatch
brushObj->LOGBRUSH.lbHatch = bitmapHandle

return AX = brushHandle

CreateBrushlndirect_Pattern: II Here to create a pattern brush

Get the bitmap handle out of th~ brushObj->LOGBRUSH.lbHatch
field. Dereference the handle to get a pointer to a bitmap.

LockBitmap(brushObj->LOGBRUSH.lbHatch)

Based upon various fields in the bitmap structure, call either
ICreateCompatibleBitmap() or ICreateBitmaplndirect().

if (CopyBitmap())
goto PatternBrush_OK

II Couldn't copy the bitmap. Start cleaning things up for
II an error return.
UnlockBitmap(brushObj->LOGBRUSH.lbHatch)

FreeObject(brushHandle)
return AX =, a

PatternBrush_OK:

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

FreeObject(AX) II AX = ???

II Can now unlock the bitmap passed in the lbHatch fieLd.
UnlockBitmap(brushObj->LOGBRUSH.lbHatch)

II Move the originaL bitmap handle to a new spot in the
II BRUSHOBJ structure, and repLace it with the handle of
II the bitmap just created and copied into.
brushObj->iLBrushBitmap = brushObj->LOGBRUSH.lbHatch
brushObj->LOGBRUSH.lbHatch = bitmapHandLe

ISelectObjectO
The ISelectObjectO API is one of the more important APIs in GDI. Rather than making you
always specify the attributes of every GDI object used for every GDI call, the device context
has a set of current objects, like a solid BLUE brush, or a PS_DOT pen, that it uses for draw
ing. When you need to use a different object, you select it into the device context like this:

II SeLect the new object, and remember the old object so that it
II can be restored Later.
HGDIOBJ oLdObject = SeLectObject(hDC, newObject);

At its highest level, ISelectObjectO changes the appropriate field in the device context
structure to contain the handle of the object passed to ISelectObjectO. The previous handle
value is returned to the caller. ISelectObjectO determines the appropriate field by examining
the ilObjType field of the passed object. Forinstance, if the passed object is a PEN, it changes
the DC's hLPen field to the passed object handle and returns the previous hLPen value to the
caller.

At a lower level however, some GDI objects need a little more preparation. To prevent a
long series of tests and branches, ISelectObjectO uses a JMP table to quickly transfer control
to the appropriate code for the object.

It's important to note that ISelectObjectO is where the GDI device driver's
RealizeObject() function is called from. It's the RealizeObject() call that tells the device driver
to set up whatever data structures are needed to actually do the output. Up till now, the logi
cal objects were tentative. The RealizeObject() call is where these logical objects are finally
committed. The routines that select pens, brushes, and fonts all eventually call the device driv
er's RealizeObject() function.

pseudocode for ISeLectObject() - OBJSEL.OBJ
II Parameters:
II WORD hDC
II WORD hObj
II LocaLs:
II
1/

DC near *dc
GDIOBJHDR object

II Pointer to device context structure
II Pointer to GDI object

WINDOWS INTERNALS

II WORD pbrushHandle II Handle to physical(?) brush

object = *(WORD *)hObj II Get a pointer to the data for the
II object being selected. Quick
II replacement for LocalLock()

Do something related to testing if the DC is a metafi leo The
functions CheckMetaFile(), and SendlnvalidVisRgn() are called
in this section, based upon some unknown criteria. If
CheckMetaFile() is called, ISelectObject() returns immediately
afterwards.

dc = *(WORD *)hDC II Get a pointer to the DC's data. Quick
II replacement of LocalLock()

BX = object->ilObjType II Get object type (4f47h=Pen, etc.)
BX &= Ox5FFF II Mask off high bit flags???

if (BX > 4F4Ch) II Don't bother with objects with
goto SelectObject_done II ID's > 4F4C (e.g., DCs)

BX = (BX- Ox4F47) « 1

II Note that a test is not
II performed on the "lower bound"

II Convert object type into a JMP
II table offset

JMP [SelectObjectJmpTable + BX] II Go through the JMP table

select_rgn:

II Control ends up at one of
II the select_xxx labels below

SelectClipRgn(hDC, hObj) II A documented API
goto SelectObject_done

selectJ>alette:
goto SelectObject_done II Nothing needs to be done

select_brush:
pBrushHandle = GetPBrush(hDC, hObj) /I Get Physical Brush.
if (!pBrushHandle) /I Calls RealizeObject()

goto SelectObject_done /I in device driver

if (dc->hPBrush != 0) /I Unlock the old Phys Brush
LocalUnlock(dc->hPBrush) /I Doesn't really call

/I LocalUnLockO. Just
/I decrements the lock count

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

dc->hPBrush = pBrushHandle II Stuff in new brush handle.

LocalLock(pBrushHandle) 1/ "Lock" the new brush by
II incrementing its lock count

II Set the pointer to the physical brush data Ox10 bytes into
II the data structure returned by GetPBrush()
dc->pPBrush = LocalLock< pBrushHandle) + Ox10

AX = hObj
XCHG dc->hLBrush, AX

II Swap the original logical brush
II handle with the new one, leaving
II AX with the original handle.

go to SelectObject_success

select...,pen:
XCHG hObj, dc->hLPen II Swap the old and new pens

II Get a physical pen. Calls RealizeObject() in device driver
if (GetPPen(hDC)) II Test to see if the new pen

goto SelectObject_success II works? If so, return

XCHG dc->hLPen, hObj
AX = 0
goto SelectObject_done

select_font:
XCHG hObj, dc->hLFont

if (GetPFont(hDC))
goto SelectObject_success

XCHG dc->hLFont, hObj
AX = 0
go to SelectObject_done

SelectObject_success:

II success.

II Something went wrong. Put
II things back the way they
II were, and return 0

II Swap the old and new font

II Get physical font. Looks
II like a lot of pointer
II manipulation!

II Something went wrong. Put
II things back the way they
II were, and return 0

object = *(WORD *)hObj II Get a pointer to the data for the
object->ilObjSelCount++ II object just selected. Increment the

II selection count.

object = *(WORD *)AX II Get a pointer to the data for the
object->ilObjSelCount-- II object just deselected. Decrement

II the selection count. AX contains

WINDOWS INTERNALS

if (AX == a
AX++

SelectObject_done:
return AX to caller

II the old object,handle

II Make sure we return "success",
II even if AX is a (???)

select_bitmap: II Why is this code separate???
II The undocumented SelectBitmap() function JMPs to a spot
II a few instructions past the select_bitmap label.

if (hDC == a)
return a

II We must have a valid DC!

dc = *(WORD *)hDC II Get a pointer to the DC's data

if (hDC is not for a memory DC)
return a

II A long sequence of code follows that's not well understood.
II The following functions are called, and are apparently
II necessary to properly select a new bitmap object.
LockBitmap() / UnlockBitmap()
MakeBitmapCompatible()
SetRectRgnO
GetBkColor() I SetBkColor()
GetTextColor() I SetTextColor()
ComputeRaoRgn()

II At various points along the way, tests are performed, if
II the tests fail, a is returned. If the code makes it
II all the way to the end, it JMPs to the
II SelectObject_success label.

If you're interested in digging even deeper into the GDI/device driver interface, you
should look at the device driver source code included in the DDK For instance, at several
place in the ISelectObjectO code, you see function calls that eventually call the device driver's
RealizeObjectO function. The code for RealizeObject() in the four-plane display device
(including the VGA driver) is a real yawner. It's a large amount of bit twiddling and copying
of data from one place to another. Nothing dramatic here. The different objects that can be
realized are handled by dispatching through a JMP table to a suitable routine. If these things
are up your alley, you'll certainly get a kick out 9fthe code.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

ISetPixelO
When we started this chapter, we wanted to show a function that put something on the
screen. The original first choice was TextOutO. Unfortunately, the obvious flow of control
quickly got lost in the labyrinth of the GDI font engine. RectangleO looked like the next logi
cal choice. RectanglcO, however, goes through an amazingly long series of computations
before it gets anywhere near putting something on the screen. The same is true for even the
seemingly-simple LineToO. We are now proud to present pseudocode for the ISetPixelO rou
tine, which displays a single dot. Even this is pretty complicated!

ISetPixelO begins by converting the logical coordinates, which were passed to it, to
device context coordinates. ISetPixel() then checks the new coordinates to make sure they
won't be clipped away (for example, by the current window borders, or by windows overlap
ping the window we're drawing in). If the pixel wouldn't be visible, ISetPixelO returns -1
indicating that the pixel is outside the clipping region.

Once ISetPixel() knows the pixel will be drawn, its next task is to convert the logical RGB
value parameter to a physical palette color that the device can render. The user may have spec
ified a palette index instead of an RGB value, so this is handled before the color mapping
occurs.

The core of the SetPixelO function is the call to the GDI device driver's PixelO routine.
The device driver is responsible for handling whether the output surface is a physical device or
a memory bitmap. Mter the pixel's been drawn, ISetPixelO calls LVBUnionO (Logical Video
Buffer Union) to force the device context to include the pixel just drawn in its "dirty region"
to be updated. The last thing ISetPixel() does is find the actual RGB value of the plotted
pixel. It may differ from the input RGB value if the device had to map the input RGB value to
make it fit in the current palette. The actual RGB value is needed for SetPixel's return value.

pseudocode for ISetPixeL() - SETPIXEL.OBJ
II Parameters:
II WORD hDC
II WORD x, Y

COLORREF coLor /I
II LocaLs
II DC near * dc
II LOGDEV near *Logdev
II POINT LPo;nt
II COLORREF outCoLor

II window coordinates of pixeL

II Pointer to DC struct
II Pointer to LOGDEV structure for DC
II LocaL POINT structure
II DispLay driver

Do something reLated to testing if the DC is a metafiLe. The
functions CheckMetaFiLe(), and SendInvaLidVisRgn() are caLLed
in this section, based upon some unknown criteria. If
CheckMetaFiLe() is caLLed, ISetPixeL() returns immediateLy
afterwards.

dc = *(WORD *) hDC II Get a pointer to the DC's data

LPoint.x ~ x II Copy the X,Y parameters into a

WINDOWS INTERNALS

lPoint.y = y

FarLC2DCC)

II local POINT structure.

II Convert logical coordinates to DC
II base coordinates???

II Make sure the point won't get clipped away. If it will,
II just return -1 now.
if C !InRegionC dc->hRaoClip, &lPoint))

return -1

/I If a· palette index was specified, convert it now to a
II real color value.
if C topmost byte of color is nonzero)

color = FarPalIndexToPhysicalC hDC, color)

logdev = dc->pLDevice II Get pointer to LOGDEV from the DC

II Call the device driver to do color mapping
logdev->OEMColorInfC dc->lpPhysDevice, color, &outColor

II Call the device driver to draw the pixel. The whole
II point of this exercise!
logdev->OEMPixelCdc->lpPhysDevice, lPoint.x, lPoint.y,

outColor, dc->lpDrawMode)

II LVBUnionC) relates to updating the rectangle in the
II device context that needs to be redrawn. See
II _Undocumented Windows_ for details. Note also that the
II device context pointer is being passed, rather than the
II handle to the device context Cthe hDC).
if C some bit set in dc->GlobalDCFlags)

LVBUnionCdc, lPoint.x, lPoint.y, lPoint.x+1, lPoint.y+1)

II Call the device driver to convert the physical color
II that was drawn, into a logical color. The function
II returns the value in DX:AX, which is just what SetPixelC)
II needs to return with.
logdev->OEMColorInfC dc->lpPhysDevice, outColor, OL) II return

As mentioned earlier, you can go down even another level into the pixel display process
by examining the sources in the Windows DDK. The four-plane VGA driver code takes care
of putting the pixel to either a memory bitmap or the display device. As you would expect, the
code is a large collection of optimized assembler, designed to do scan line computation, han
dle frame buffers that are greater than 64K in size, sum up bits in color planes, and so on. If
the output surface is the display device, the pixels are set and read using OUT instructions.
This is as close to the hardware as you can get.

CHAPTER 5 - THE GRAPHICS DEVICE DRIVER INTERFACE

A Word or Two About Names

As a group, programmers have a tendency to inject a bit of humor into their code, especially
with regard to function and variable naming. The coders at Microsoft are no exception. In re
searching this chapter, we came across many humorous names that we felt you might enjoy. If
you disdain such practices, you can skip the rest of this section. For those of you who don't
think programming has to be dry and dull, we present the following list of symbols extracted
from the debugging GDI symbol table:

OutMan_HappyPolyLineGutsExit
Lets_See_ WhacThe_Engine_ Can_Do
The_ Victorious_Font_Is_Returned
Use_YoucKopf
Bloat
GDISeeGDIDo
Major_Bummer
ScaleThisShit
GiveMeThePrinterAtom
RonHatesThis / / Ron Gery?(palette function)

By no means does GDI have a lock on good names. For instance, the KERNEL module
has Display_Box_OCDoom and PrepareToParty, while USER has MS_FlushWigglies. On the
whole however, GDI seems to lead the pack in this particular category.

This small side diversion is not intended as a comment on the professionalism or dedica
tion of anyone at Microsoft. Instead, its goal is to give you a glimpse at the lighter side of the
sometimes overwhelming system that is Windows.

..

The Windows Scheduler

In any multitasking operating system, a scheduler is necessary to switch among the various
tasks currently alive in the system. Unlike OS/2, Windows NT, or UNIX, Wmdows has a
nonpreemptive scheduler. A program.running under Windows continues to run until it gives
up the CPU to another program. If a program enters a tight loop or otherwise hogs the CPU,
the system is effectively deadlocked until the application yields the CPU. The act of yielding is
either done explicitly, by calling YieldO for instance, or indirectly, by calling a Windows API
(such as GetMessageO or MessageBoxO) that causes a yield to occur. Because of the none
preemptive nature of the Windows scheduler, you can deadlock the input system if your pro
gram doesn't relinquish control in some manner. This renders the computer effectively
useless. In thi.s chapter,we examine the Windows scheduler in detail so that you can avoid
these situations and even use it to your advantage in some cases.

The scheduler discussed in this chapter is the scheduler that manages Windows applica
tions only; it is part of the KERNEL module. This scheduler is entirely separate from the
time-slicing scheduler thatls part of the Virtual Machine Manager (VMM) in Enhanced mode
Windows. The scheduler we focus on here runs inside the system virtual machine. The system
virtual machine (VM) is scheduled by the VMM in WIN386. If you run DOS applications
from within Enhanced mode, the system VM scheduler preemptively switches between the
system VM.(the collection of running Windows applications), and the DOS boxes you're run
ning. The KERNEL scheduler described here. is only activewhenWIN386 has given a
timeslice to the system VM. In other words, it's a scheduler within a scheduler.

403

WINDOWS INTERNALS

Fundamentals of the Windows Scheduler
To fully understand the scheduler, there are three fundamental concepts you need to know.
Once you understand them completely, you can think through almost any situation and accu
rately predict what the scheduler's behavior will be.

Nonpreemptive Scheduling
The first fundamental aspect of the scheduler is that it's nonpreemptive. While a task is run
ning, it will never have control taken away from it by another Windows task without warning.
The current task must relinquish control of the CPU to allow other Windows tasks to run.
The virtual machine scheduler can switch away from the system VM at almost any time, but
when the system VM is scheduled again, the current Windows task picks right up where it left
off. Within the system VM, the current task is absolutely in charge until it says otherwise, by
yielding. Even if an interrupt occurs in the system VM, any interrupt handler registered by a
Windows application or DLL executes in the context of the current task) rather than the task
that registered the handler.

There is a YieldO call in the Windows API, but it is hardly ever called directly. You might
be thinking, "I never yield in any of my code, but I'm still able to run other programs." This
works because certain Windows API calls yield for you. For instance, when you don't have any
more messages waiting for your application, the GetMessage() API yields to other tasks. If
your code doesn't call any functions that yield control, your task will run indefinitely. We'll
get a better idea of just which functions can yield control a bit later on.

Events
The second concept fundamental to understanding the Windows scheduler is the notion of
events. An event indicates that there's some reason for a task to wake up. The scheduler won't
wake up a task (schedule it) unless there's an event waiting for it. When there are no events
for the current task, and when that task relinquishes the CPU, the scheduler puts the task to
sleep until the task receives another event.

What causes events? Typically, a task gets an event when there's a new message for it. For
instance, when you post a message to a window, the message is put in the message queue of
the task associated with the window. In addition, the task's event count is incremented. A
nonzero event count indicates to the scheduler that there's a good reason to wake up the task
and let it run again. Events and messages are not the same thing, however.

It's important to note that events and messages are tied more to tasks and queues, rather
than to the windowing system. As explained in Chapter 3, the windowing system puts new
messages in the task's message queue and increments the event count in the task database
(TDB). It's only late in the game, inside DispatchMessage(), that the window associated with
the message becomes important. Chapter 7, the messaging system, discusses in more detail
how the messaging system internals cause tasks to receive events.

Events have no data associated with them. To the scheduler, there aren't different kinds
of events. When a task receives a new event, the only thing KERNEL does is increment the
WORD at offset 6 (TDB_nEvents) in the TDB (see Table 3-2). Note that the event count in
the TDB is not the same as the message count stored in the task's message queue, described
in Chapter 7 (see Table 7-1).

CHAPTER 6 - THE WINDOWS SCHEDULER

You can increment the number of events waiting for a task with the undocumented
PostEventO API, which simply increments the value in the TDB_nEvents field in the TDB.
PostEvent() is intended for use by the USER messaging system routines to indicate that some
kind of message is waiting for the task. In addition, WINDEBUG.DLL and its descendants,
CVWIN.DLL and TDWIN.DLL, modify the event count field directly to affect the schedul
ing behavior of the child being debugged.

Besides PostEventO, there's a corresponding, barely documented WaitEventO API that
"blocks" until the task has another event waiting for it. The messaging system, especially
GetMessage(), calls WaitEventO to block the current thread of execution until there's another
event for the task. As noted in Chapter 3, compiler startup code typically calls WaitEventO.
WaitEvent() doesn't just spin mindlessly in a loop, checking the event counter though. If it
did, no other task could run. (The scheduler is nonpreemptive, remember.) Instead, WaitEv
entO loops around a call to the core scheduling routine, Reschedule(), until there's a new
event for the task. The call to the core scheduling routine allows other tasks to run. We cover
RescheduleO in detail later; it is really RescheduleO that we refer to when we say the Windows
scheduler.

Task Priorities
It's a little known fact that under Windows, tasks have a priority level. A task's priority is a
value between -32 and 15. Lower priority level values indicate a higher priority task. Thus,
tasks with a priority level of -32 have the highest priority, while tasks at priority level 15 are
the lowest priority. The default priority for a task is O. Since most programmers aren't aware
of priority levels or how to change them, almost all tasks run at priority level O.

When considering priority levels and which task will be scheduled next, you need to con
stantly keep in your mind the earlier discussion concerning events. A task running at a high
priority (say, -8), but with no events, will not be scheduled ahead of a task at average priority
(0), that has an event. Put another way, the priority level only comes into play when two or
more tasks have events waiting for them.

To use an analogy, consider the CPU to be a pay phone. Only one person (task) can use
it at a time, and nobody else can use it until the current user is done with it. Now imagine
that each task is a person waiting in line to use the pay phone (the CPU). The people closer to
the front of the line have the highest priority (lowest priority level values). In this scenario, a
task event is like the dime that you need to use the phone. Not every person waiting in line
has a dime to use the phone. When the person using the phone (the currently running task)
finishes, the first person in line who has a dime gets to use the phone next. In scheduler terms,
when the task currently using the CPU gives it up, the scheduler has to examine each task, in
priority order, to find the first one that has an event for it. That task gets to use the CPU next
and becomes the current task.

In the above discussion, we implicitly assumed the existence of a sorted list of tasks. How
is this implemented? As shown in Chapter 3, each task database contains a field holding the
selector of the next task database in the list. Each TDBalso has a field at offset 8 that remem
bers the current priority level of the task (see Table 3-2). One of the jobs of the core schedul
ing function RescheduleO is to keep this list in priority sorted order, with the highest priority
tasks at the list's front. Thus, all the tasks with priority level -32 come first in the list, followed

WINDOWS INTERNALS

by tasks at priority level -31, and so on. The head of the list is referenced by the HeadTDB
global variable, which resides in the KERNEL module. The current value ofHeadTDB can be
found in the DX register after a call to GetCurrentTaskO. As we see later, all the main sched
uling Toutine has to do is walk through the task list until it sees a task with an event. The rela
tive priority levels of the tasks are thus handled implicitly. There's no need to compare priority
levels when trying to find the correct task to run next. This is shown in Figure 6-1.

Figure 6-1: Priority Levels.

Higher priority

Taskl
Priority: -2
Events: 0

Task3
. Priority: 0
Events: 1

/
Will be scheduled next
(First task with an event)

Lower priority

Task4
Priority: 0

, Events: 2

The priority level of a task can be adjusted using the undocumented SetPriorityO API. A
description of this function appears in Undocumented Windows, but it is unfortunately incor
rect for the most part. The real behavior of SetPriorityO can be seen in the following pseudo
code:

Pseudocode for SetPri orityO - CONTEXT.OBJ
/I
II
II
/I
/I

Parameters:
WORD hTask
WORD PriorityDelta

Locals:
WORD newPriority

II Calculate new priority by adding (possibly negative) PriorityDelta to the
II current priority of the task.
newPriority = hTask.TDB-priority + PriorityDelta

if (newPriority < -32
newPriority = -32

if (newPriority > 15
newPriority = 15

II Min priority is -32

II Max priority is 15

if (newPriority == hTask.TDB-priority) II If priority isn't
if (hTask == CurTDB) I I changi ng, and

return II it's the current
II task, we're done!

CHAPTER 6 - THE WINDOWS SCHEDULER

II We're going to reposition hTask in the task list
II immediately after all tasks that are at hTask's new
II priority level. We do this by temporarily making its
II new priority 1 higher than what it really should be.

hTask.TDB-priority = newPriority +

DeleteTask(hTask
InsertTask(hTask

hTask.TDB-priority--

II Delete and Insert the task to put
II it in priority sorted order.

II Reset to the correct new priority.

A couple of things are worth noting in the SetPriorityO code. First, the priority value
passed as the second parameter is a relative priority delta, not an absolute priority value. If a
task currently has a priority of -4, and SetPriorityO is called with a priority level of -3, the new
priority of the task will be (all together now!) -7.

Second, observe that the code deletes, then reinserts, the task in the list. The InsertTaskO
function knows about priority levels and always inserts a task in the correct position in the list.
Correct means immediately before any tasks at the same priority level. By adding one to the
priority level of the task before inserting it, the task can be forced to appear after all other
tasks of the same priority. Then, to ensure that the task ends up with the correct priority level,
decrements the task's priority level, SetPriorityO, by one. As we see later, the core scheduling
routine also uses this trick.

Now that task priority levels are out in the open, we should point out that they're not
that beneficial. Setting your task priority to the lowest numeric value, so that it has the highest
priority, usually won't do you a lick of good. The scheduler only cares about fj.nding the first
task that has an event. Even if your task is running at the very highest priority, it won't get
scheduled until there is an event for it. If there's no event for your task, it will be beaten out
every time by a lower priority task that does have an event. The only time task priority would
be useful is if there were a flurry of messages going to all the tasks in the system, and you
wanted your task to get first crack at them. At this time, we're unaware of any programs that
try to modify their priority level.

Yielding to Other Tasks
When You Have Messages

One question that draws a lot of confusion concerns yielding to other tasks while
you have pending messages. Many programmers are under the impression that Win
dows will not let you relinquish control to another program if you haven't emptied
your message queue. This simply isn't true. If you understand the task event and prior
ity concepts, you can see how it certainly is possible. The following YIELD program
demonstrates this.

WINDOWS INTERNALS

11===============================
II YIELD, by Matt Pietrek, 1992
II File: YIELD~C
11===============================
#include "windows.h"

BOOL FirstInstance = 0; II Set to 1 if the first instance
II HWNDs we need to know HWND OurHWnd, SecondInstHWnd;

HANDLE SecondHInstance = 0; II HInstance value of 2nd instance

#define WM_YIELD_MSG (WM_USER + Ox1234) II Our yield test
#define WM_OUR_POSTED_MSG (WM_USER + Ox123S) II messages

II SysErrorBox() is undocumented, so we need to prototype it.
II You may need to add it to the IMPORTS section of a .DEF file.
int FAR PASCAL SysErrorBox(LPSTR, LPSTR, WORD, WORD, WORD);

long FAR PASCAL _export YieldWndProc(HWND hWnd,
unsigned msg, WORD wParam, LONG lParam)

{

switch(msg)
{

case WM-PESTROY : PostQuitMessage(O); break;

case WM_LBUTTONUP:
case WM_RBUTTONUP:
if (FirstInstance)
{

II Using left button does the yield
II Using right button doesn't

II Slimy hack to get the HWND of the 2nd instance
GetInstanceData(SecondHInstance,

(BYTE *)&SecondInstHWnd, sizeof(HWND));

II Post different messages to our (the 1st
II instance's) queue, as well as to the queue of
II the 2nd instance.
PostMessage(hWnd, WM_OUR_POSTED_MSG, 0, 0);
PostMessage(SecondInstHWnd, WM_YIELD_MSG, 0, 0);

if (msg == WM_LBUTTONUP)
YieldO;

}

break;

II Use left button to show
II effect of Yield()'ing

II The 2nd instance of the application gets this msg.
II SysErrorBoxO doesn't yi eld as MessageBoxO will.
case WM_YIELD_MSG:

}

}

CHAPTER 6 - THE WINDOWS SCHEDULER

SysErrorBox("I was Yielded to", "Second Instance",
0, 1, 0); break;

II The 1st instance of the application gets this msg
case WM_OUR_POSTED_MSG:

SysErrorBox("Got posted message","First Instance",
0, 1, 0); break;

default: return DefWindowProc(hWnd,msg,wParam,lParam);

return OL;

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpszCmdLine, int nCmdShow)

{

MSG msg;
char exeName[260J; II Name of our program

II Window sizes int width = ~OO, height = 50;

if (hPrevlnstance == 0)
{

// Register a generic WNDCLASS

}

WNDCLASS wndCls;
wndCls.style = CS_HREDRAW I CS_VREDRAW;
wndCls.LpfnWndProc = (WNDPROC)YieLdWndProc;
wndCLs.cbWndExtra = wndCls.cbCLsExtra = 0;
wndCLs.hlnstance = hlnstance;
wndCls.hlcon = Loadlcon(NULL, IDI_APPLICATION);
wndCLs.hCursor = LoadCursor(NULL, IDC_A~ROW);

wndCls.hbrBackground = GetStockObject(WH1TE_BRUSH);
wndCLs.lpszMenuName = NULL;
wndCls.lpszClassName = "Yield";
RegisterClass(&wndCls);
Firstlnstance = 1; II Remember if we're the 1st instance

II Create a Window. We use a quick hack to ensure that the
II windows don't overlap, and are close to each other.
OurHWnd = CreateWindowC"YieLd", "Yield", WS_OVERLAPPEOWINDOW,

10 + width*Firstlnstance, 10 + height*Firstlnstance,
width, height, NULL, NULL, hlnstance, NULL);

1/ Set a global variable. The 1st instance will Later grab
II this value into its own copy via GetlnstanceData()
SecondlnstHWnd = OurHWnd;

II Have both windows indicate which instance they are
SetWindowTextC OurHWnd, .Firstlnstance

? "Yield - 1st instance" : "Yield - 2nd instance");

}

WINDOWS INTERNALS

ShowWindow(OurHWnd, SW_SHOWNORMAL);

II A quick hack to get the exact filename of our .EXE file
II If this is the first instance, fork the 2nd instance
GetModuleFileName(hInstance, exeName, sizeof(exeName»;
if (FirstInstance)

SecondHInstance = WinExec(exeName, SW_SHOWNORMAL);

while (GetMessage(&msg, NULL, 0, 0)
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

II Standard loop

The above YIELD.C code isn't pretty. It was written with the aim of compressing
the generic code as much as possible, in order to draw out the important areas. In
other words, there's isn't any error checking like you'd expect in a shipping program.
You shouldn't need a DEF file to link the program, unless you're using a LIBW.LIB
that doesn't include the undocumented functions. Use IMPLIB to build your own
LIBW.LIB if so!

In order to show that yielding can occur between two tasks while there are pending
messages, the first instance of YIELD starts a second copy. The catalyst for the yield is
when you let go of either the left or the right mouse button while over the first
instance.

Releasing either mouse button while over the first instance tells the program to put
a user-defined message in its own message queue and a different one in the message
queue of the second instance of the program. Upon receipt of these messages, each
instance immediately indicates its receipt. By yielding after the messages have been
posted, and seeing which message is received first, we can test to see if the scheduler
switched tasks or not.

Since both instances have a message waiting for them (and hence, have nonzero
event counts), the.schequler should be able to schedule either instance to run next. We
can now test the assertion that a task can in fact yield while it has a message waiting for
it. Letting go of the left mouse button while over the window of the firstinstance

. makes the code post the messages and then call Yield(). Letting go of the right mouse
button causes the messages to be posted, but doesn't call YieldO. To provide an unbi
ased judge as to which task processed its posted message first, and hence, to see if the
first instance yielded while it stillhad an unprocessed message, we used the undocu
mented SysErrorBoxO function. We chose SysErrorBoxO, described in Undocumented
Windows, because it is synchronous. No other task can run while you have a Sys
ErrorBoxO up. MessageBoxO allows other tasks to run, so using it would skew the
results.

CHAPTER 6 - THE WINDOWS SCHEDULER

What should happen in the case where the left button is used? Both instances of
the program have an event waiting for them and are at the same priority level. How
ever, as we saw in the SetPriorityO pseudocode, the currently running task always
comes later in the list than all other tasks with the same priority level. Inside the YieldO
call this should cause the scheduler to see the event for the second instance of the task
before it sees the event for the first instance, the currently running task. Therefore, the
scheduler should wake up the second task immediately. You should see the Sys
ErrorBox from the second instance pop up before the SysErrorBox for the first
instance. Indeed, this is what happens.

If you use the right mouse button instead, the code doesn't perform the YieldO
call. In this situation, the first instance returns from the WM_RBUTTONUP handler
and eventually calls GetMessageO from its main loop. The GetMessageO invocation
sees another message waiting for it, so it doesn't yield the CPU to the second instance.
The SysErrorBox for the first instance appears first as a result. Only afterwards, when
there are no more messages for the first instance, will GetMessage() yield to the second
instance, giving it a chance to run and show its SysErrorBox.

A couple of conclusions can be drawn from the above. First, contrary to popular
belief, the messaging system does not maintain some sort of internal flag that prevents
one application from retrieving a message while another task is still processing a mes
sage. Secondly, it is possible to yield to other tasks while you still have unprocessed
messages. The key thing to remember is that in order to yield, there has to be some
other task with an event to yield to. You could call YieldO all day long, but if other
tasks don't have events, calling YieldO does effectively nothing.

Yielding: How You End Up in the Scheduler

Having seen at a high level the criteria the scheduler uses to make its decisions, we now look
at how to get into the scheduler. Specifically, what actions allow the scheduler to switch tasks?

GetMessageO and PeekMessageO
Most programs don't explicitly manage their scheduling. Instead, the scheduling is handled
for them "automagically" inside GetMessage2(). As Chapter 7 describes in much more detail,
GetMessage2() is just a back end for both GetMessage() and PeekMessage(). If you call
GetMessage() and there are no messages waiting for you, GetMessage2() invokes UserYieldO
(described on the following page). GetMessage20 also calls UserYieldO if you call PeekMess
ageO without specifying PM_NOYIELD.

An important thing to remember is that even if you don't call GetMessage() or PeekMess
age() yourself, some Windows APIs call those functions behind your back. For instance, the
DialogBoxO family of routines, including MessageBoxO, contains its own set of PeekMess
age() loops. Therefore, calling any of these routines can cause your application to hand over
control to another task without your explicitly being aware of it.

WINDOWS INTERNALS

Sen dMessage 0
Interestingly, another way to end up in the scheduler is to call SendMessageO with a message
for another task. An intertask SendMessage() occurs when the window that's receiving the
message belongs to a different task than the sending task. Since the code in each window pro
cedure must operate in the correct task context, a convoluted section of code in the messag
ing system organizes the necessary task switches. The code needs to ensure that the correct
task is awakened to handle the message and that the original task is switched back to after
wards. Chapter 7 describes the incredible complexity of intertask SendMessageO calls in much
more detail.

There are Windows APIs that use intertask SendMessage() beneath the surface. Programs
such as WinSight and Spy help ferret out which messages (such as WM_KILLFOCUS) are
commonly sent between tasks.

Yie/dO
The scheduling API most familiar to programmers is Yield(). Yield() relinquishes control to
any applications that have events waiting for them and which are at equal or higher priority to
the caller. Pseudocode for YieldO looks like this:

Pseudocode for Yield() - CONTEXT.OBJ

if (CurTDB.TDB_QUEUE
goto UserYield()

else
goto OldYieldO

II Zero out the field indicating a
II specific hTask to yield to.

II If there's a message queue for
II the current task, go to the
II UserYield() routine. Otherwise
II goto OldYield() directly.

All YieldO does is clear the "Yield to this task" field used by DirectedYieldO (described
later) in the current TDB before branching to either UserYieldO or OldYieldO. In the general
case, the application calling YieldO has a message queue which is created as part of the appli
cation startup code. UserYieldO is what's called in this instance. We look at UserYieldO next,
followed by OldYieldO.

UserYie/dO
UserYieldO is an undocumented API exported from USER. Its pseudocode is as follows:

Pseudocode for UserYield() - WINSEND.OBJ
II Locals
II WORD hQueue

hQueue = GetTaskQueueES() II Get current task queue handle

II Make sure the current task doesn't have any intertask
II SendMessage()s that are waiting to wake it up. Call
II ReceiveMessage() until there's no more to process.

CHAPTER 6 - THE WINDOWS SCHEDULER

II This is to prevent potentiaL deadLock situations.
whiLe (QS_SENDMESSAGE bit set in hQueue.wakebits)

ReceiveMessage()

OldYieLdO II The actuaL YieLd function (beLow)

II HandLe any intertask SendMessages to this task that
II occurred while the task was asleep?

II InSendMessage

whiLe (QS_SENDMESSAGE bit set in hQueue.wakebits II InSendMessage
ReceiveMessage()

UserYieldO provides a USER-aware wrapper around a call to OldYieldO. OldYieldO is
where the core scheduling routine is invoked, and it is described next. As Chapter 7 explains,
PostMessageO simply puts the message in the appropriate message queue and returns, while
SendMessageO waits until the message has been replied to. The wrapper code in UserYieldO
apparently ensures that no other task is blocked while waiting for the current task to respond
to a message. If this situation were encountered, potential deadlock situations could arise.
UserYieldO deals with this by calling ReceiveMessageO to make sure that no intertask
SendMessage() calls are waiting for the task about to yield.

OldYieldO
OldYieldO is an undocumented API that's callable by your program. Based on its name, you
might draw the conclusion that OldYieldO used to be the real YieldO function, before the
USER messaging system became part of Windows. It's been mentioned that the three core
modules in Windows (USER, KERNEL, and GDI) were developed separately and then glued
together. The fact that there's both a YieldO and an OldYieldO could be evidence of this.

Pseudocode for OldYieLd() - CONTEXT.OBJ

if (InScheduLer != 0)
return

if (CurTDB != 0)
CurTDB.TDB_nEvents++

RescheduLeO

CurTDB.TDB_nEvents--

II Don't re-enter the scheduLer!
II a KERNEL gLobaL variabLe

II If there's a current TDB, bump
II up its event count so that
II it is guaranteed to be
II rescheduLed eventuaLly.

II The core scheduLing routine

II Restore the originaL event count

OldYieldO first makes sure that the core scheduling routine won't be re-entered. Since
YieldO, UserYieldO, and DirectedYieldO, discussed on the following pages, all go through
OldYieldO, it's apparently safe to assume that the core scheduling routine won't be re
entered.

WINDOWS INTERNALS

If it's OK to enter the scheduler, OldYieldO bumps up the event count for the current
task, calls the scheduler, and resets the event count afterwards. If the event count weren't
incremented before the Reschedule() call, Reschedule() wouldn't return till there was a real
event for the task. Since a task should yield only if some other task has an event, OldYield()
fakes an event for the task so that it will be scheduled next if no other task needs to be sched
uled. This is a good example of where an event doesn't correspond exactly to a message.

DirectedYieldO
DirectedYieldO is a specialized and very powerful routine. It's used by SendMessage(), and it
is a lifesaver when writing Windows debuggers. DirectedYield() allows you to yield to a spe
cific task. As we see later, if that task doesn't have a waiting event, DirectedYieldO turns into
an ordinary Yield() call. DirectedYield() existed in Windows 3.0, but wasn't documented until
Windows 3.1. DirectedYield() simply stores the HTASK that should be yielded to in a field in
the current TDB, before JMP'ing to OldYieldO. The RescheduleO function examines this
field and, if it's nonzero, Reschedule() attempts to schedule that task next, assuming there's
an event for it. To effectively use DirectedYield() therefore, you need to ensure that the task
you're yielding to has an event. PostMessageO and PostAppMessage() are the usual means of
accomplishing this, but you can also use the undocumented PostEventO.

Pseudocode for DirectedYield() - CONTEXT.OBJ
II Parameters:
II WORD hTask 1/ Task to yield to

CurTDB.TDB_Yield_to = hTask II stash away task to yield to

goto OldYieldO 11 The "real" yield code

All of the routines we've looked at so far get to the core scheduling function (that is,
Reschedule(») through OldYield(). There's one other way to get into the scheduler, so we'll
look at it now before we proceed to our discussion of Reschedule().

WaitEventO
From reading the SDK documentation, you can get the impression that WaitEventO is a rou
tine that Microsoft didn't want to document, but had to since it's called from the standard
Windows startup code. As Chapter 3 shows, the Windows loader has to fake an event with
PostEvent() so that the new task gets scheduled. WaitEvent() is where this dummy event is
removed, restoring the "level playing field" of tasks. WaitEventO is also at the core of
GetMessage2() (see Chapter 7).

WaitEventO is as close as you get to a semaphore in Windows. You call WaitEvent() to
block your task until there's an event for it. While blocking your task, WaitEvent() still allows
other tasks to run. In OS/2 PM, the WaitEvent() routine is replaced by a semaphore, which is
much more elegant. Undocumented Windows has a sample program, SEMTEST, that
demonstrates the use of the WaitEvent() and PostEvent() pair as a pseudo-semaphore.

WaitEventO is where events are eaten. Each time it's called, WaitEventO decrements the
event count for the task by one. If the event count is 0, WaitEventO immediately calls

CHAPTER 6 - THE WINDOWS SCHEDULER

RescheduleO. When RescheduleO returns, there should be an event for the task, causing
WaitEventO to return to its caller. If there's already an event for the task when WaitEventO is
called, WaitEventO simply decrements the event count and returns.

Pseudocode for WaitEvent() - CONTEXT.OBJ
II Parameters:
II WORD hTask

if (LockTDB == 0)
FTaskSwitchCalled =

hTask = get_task(hTask)

while (1)
{

II Returns either the passed
II hTask, or the current task
II if 0 is passed.

hTask.TDB_nEvents-- II Decrement the event count

if (hTask. TDB_nEvemts >= o)
goto WaitEvent_done II There was at least 1 event,

II so we're done!

hTask.TDB_nEvents = 0 II Event count was o before we
II decremented it. Reset it to 0

RescheduleO II The core scheduling routine
}

WaitEvent_done:

We've now examined the path leading up to the core scheduling routine. It's now time to
light the torches, bring the dogs to the front, and slowly push open the door of RescheduleO.

The Core Scheduling Routine-RescheduleO
RescheduleO takes no parameters, returns no values, arid is not an exported API. When Old
YieldO and WaitEventO call RescheduleO, they have no idea what happens inside Resched
uleO. RescheduleO may decide that there's no reason to switch tasks and simply return.
Alternatively, it may switch away from a task for hours on end. To the caller, RescheduleO is
an atomic operation. Time effectively does not exist for the task when it is in RescheduleO.

In order to provide this transparency of operation, as well as to keep the system flowing
smoothly, RescheduleO has four major duties:

WINDOWS INTERNALS

• Find the next task that should be scheduled and make sure that there are no extra
ordinary conditions that could prevent it from being switched to.

• Save the complete state of the outgoing task, and restore the state of the incoming
task.

• Go into an idle loop that allows certain idle time actions to take place if no task needs
to be scheduled (has an event).

• Update global variables that KERNEL maintains for the current task.

Unfortunately, the code to do each of these things is not broken up into distinct sections.
Instead, the above chores are somewhat interwoven, and are in various states of completion
throughout much of Reschedule(). Thus, I have chosen to walk through the sequence of
events that occurs when Reschedule() is called, breaking up the code into three distinct sec
tions.

Reschedule() Entry Code
Upon entering Reschedule(), the following registers are saved on the stack of the calling task:
BP, DS, 51, DI, AX, CX, ES, BX, and DX. Furthermore, calling RescheduleO implicitly causes
the CS and IP registers to be placed on the stack. The TOOLHELP routines, TaskGetCSIPO
and TaskSetCSIPO, rely upon the stack frame created by RescheduleO to obtain and set the
CS:IP values that will be used when the task starts up again. The 32-bit registers are not saved
across task switches. If your code uses the 32-bit registers, it's important that you be aware
when a task switch might occur and plan accordingly. Once again, we should stress that the
scheduler we're discussing here is the one responsible for scheduling Windows applications
(including Win32s applications). The preemptive VM scheduler does save the full 32-bit regis
ter set when it switches between virtual machines.

After RescheduleO saves the registers on the stack, TaskSwitchProfileUpdateO updates the
profile (INI) files if they have been changed since the task was last switched to. Following that,
RescheduleO verifies the 'TD' signature at offset OFAh in the current TDB (see Table 3-2). If
the 'TD' signature isn't found, RescheduleO assumes that the current TDB is garbage;
Reschedule() immediately jumps to the code that searches for a new task to switch to.

If the signature bytes in the TDB look OK, the TDB_Yield_to field in the TDB is zeroed
out, but not before retrieving its value into AX. This field is nonzero if RescheduleO was
entered using a DirectedYidd() invocation. Its value indicates the hTask that the Directed
Yield() caller desires to be scheduled next. RescheduleO is careful, though, and does not just
blindly switch to this hTask. It first verifies that the event count for the potential new task is
nonzero. If the event count is 0 for the DirectedYieldO task, there's no need to schedule it, so
RescheduleO treats this invocation as if it were invoked by a regular YieldO call. The implica
tion is that the task specified in a DirectedYieldO call is not necessarily the one that's sched
uled next. As the Windows 3.1 documentation states, if you want to ensure that a particular
task is scheduled, you should do a PostAppMessage() to make sure that the event count field
in the TDB is nonzero. If you know what you're doing, you can also use the undocumented
PostEvent() API.

CHAPTER 6 - THE WINDOWS SCHEDULER

Pseudocode for RescheduLe() - SCHEDULE.OBJ
1/ LocaLs:
II WORD thisTask II Task we're currentLy Looking at

II Task to switch to 1/ WORD
II WORD

newTask
!JSERlsldLe II Return vaLue for IsUserIdLe()

II Statics:
II WORD NumldLeIters = 0 II Number of times the idLe

II Loop has been executed

save registers on outgoing task stack in the foLLowing order:
DS, SI, DI, AX, CX, ES, BX, DX

BootScheduLe: II The Bootstrap (Chapter 1) routine
II JMP's here to start normaL scheduLing

TaskSwitchProfiLeUpdate() II update task profiLes (.INIs)

ExitSchedu Le: II The ExitCaLL() routine (Chapter 3) JMP's
II here after removing the task from the List

if (CurTDB == a)
goto WaLk_through_task_List

If (CurTDB.TDB_sig != 'TD')
go to WaLk_through_task_List

II No current task? Start
II Looking for a new task
II immediateLy!

II Signature is bogus.
II Thus, don't trust the
II DirectedYieLd() HTASK.

II Get the task that we're supposed to be yieLding to. A 0
II indicates no one in particuLar. RescheduLe() aLways zero
II out the "yieLd to" fieLd regardLess of whether it
II contains an hTask to yieLd to or not.
newTask = CurTDB.TDB_YieLd_to
CurTDB.TDB_YieLd_to = 0

if (newTask == 0) II If no hTask was specified
goto WaLk_through_task_List II a task needs to be found.

II Does the task we're supposed to yieLd to have any events
II waiting for it? If so, RescheduLe() doesn't have to
II search any further. If not, then don't yieLd to it.
if (event count in DirectedYieLd TDB != 0)

goto startup_this_task

WINDOWS INTERNALS

Searching for a Task to Schedule, and the Idle Loop
The next section of code is the heart of RescheduleO. It's responsible for finding a suitable
task to switch to, spinning in an idle loop if no task with an event is found.

As we now know, all task databases are kept in a linked list. RescheduleO starts at the
head of the list and iterates through each TDB, looking for one with a nonzero event count in
the TDB_nEvents field. For the remainder of this section, we refer to the code that iterates
through the tasks, looking for one with an event, as the Walk_through_task_list code. When a
TDB with a nonzero event count is found, RescheduleO attempts to switch the current task
to the found TDB. We describe this a bit later.

If all the tasks were examined and none were found with waiting events, the
Walk_through_task_Iist code falls into the idle loop section. The actions of the idle loop
depend somewhat on whether you're running Standard or Enhanced mode windows, and if
you're using virtual memory. The code described in the next two paragraphs exists only in the
KRNL386 version.

Upon entering the idle loop, Reschedule checks some values in the KERNEL paging
flags. If conditions are right, it calls ShrinkHeapO. ShrinkHeapO walks the global heap and, if
enough free memory is found, it unlinks free blocks from the global heap's list. ShrinkHeapO
and the DiscardFreeBlocksO routine are covered in Chapter 2.

If the paging system is in use, and if other paging flags are set, the idle loop code calls
DiscardFreeBlocksO. The job of DiscardFreeBlocksO is to find free blocks of paged memory
and give them back to the DPMI server. During the call of DiscardFreeBlocksO, hardware
events may have occurred, causing new events for the tasks. To deal with this, RescheduleO
JMP's back to the Walk_through_task_Iist code and starts anew the process of looking for a
suitable task to switch to.

With the global heap housekeeping out of the way, RescheduleO calls the USER routine
IsUserIdleO. In Windows 3.1, this is where USER places its checks to see whether to activate
a screen saver. The return value from IsUserIdleO is a BaaL, and it is TRUE if a mouse but
ton is held down, FALSE otherwise. We present pseudocode for IsUserIdleO after examining
Re schedule ().

If the return from Is UserIdleO was TRUE, and if the FPokeAtSegments global variable is
nonzero, then once every 20h times through the idle loop, RescheduleO calls PokeAt
SegmentsO. PokeAtSegmentsO walks the module list and loads any discardable segments of
boot time modules that haven't been previously loaded. The walk of the module list stops
when it encounters the SHELL module. This presumably causes PokeAtSegmentsO to load
only segments for modules that are required for Windows to boot up. Once all the boot time
segments have been loaded, PokeAtSegmentsO sets FPokeAtSegments to 0, causing the idle
loop not to call PokeAtSegmentsO any more. IfPokeAtSegmentsO loaded a segment during a
particular iteration of the idle loop, a task event may have occurred, so RescheduleO JMP's
back to the Walk_through_task_Iist code.

Next on the play list of the idle loop is a call to INT 28, the MS-DOS idle interrupt. After
the INT 28h completes, the IsUserIdleO return value determines what goes in the BXregister
for an INT 2Fh, AX=1689h call. If IsUserIdleO returns TRUE, BX is 0, otherwise BX is l.
The INT 2Fh, 1689H call is documented in the INT2FAPLINC file in the DDK, as the
"Windows kernel idle" call. When the INT 2Fh returns, one iteration of the idle loop has

CHAPTER 6 - THE WINDOWS SCHEDULER

completed, and it's time to check once again to see if any task has received an event. A JMP to
the Walk_through_task_list code takes care of this.

An important point concerning the idle loop needs to be made here. The idle loop inter
rupts are critical to the proper functioning of power management software, such as
POWER.EXE from Microsoft. If the idle loop isn't entered, the power management mecha
nisms can't kick in, and your laptop's battery drains at the normal rate, rather than at the idle
rate. As Chapter 7 explains, applications that use a PeekMessage() loop never fall into· the idle
loop. The reason for this is that PeekMessageO calls UserYieldO, which in turn calls
OldYieldO. OldYieldO always increments the event count of the current task before calling
RescheduleO, which means that RescheduleO is guaranteed to find a task to switch to and, as
a result, it never goes into the idle loop code. GetMessageO on the other hand, calls WaitEv
entO, which doesn't muck with the event count. The moral of the story is that you should use
PeekMessageO loops as little as possible. If at all possible, use GetMessageO instead. It's
much nicer to your laptop battery, and also to any DOS TSRs that depend on INT 28h.

Continuation of pseudocode for Reschedule() - SCHEDULE.OBJ

thisTask = HeadTDB II Point to the first task in the list

if (thisTask != 0) II At the end of the task list?
goto Does_this_task_have_a~event? II At end of loop

II This next section of code is the "Idle loop". When
II searching for tasks, this code is jumped over repeatedly.
II only when there's no task with events will execution
II "fall" into this code.
if (bit Ox0008 set in PagingFlags)

ShrinkHeap() II In KRNL386 only. See Chapter 2.

if (a bit set in WinFlags
{

}

DiscardFreeBlocks() II In KRNL386 only. An internal
II memory management routine.

goto Walk_through_task_list II Start again at top

if (FP_SEG(PIsUserIdle » II A global function pointer
{

USERIsIdle = PIsUserIdle() II Ask the USER module if
} II it's idle.

WINDOWS INTERNALS

if FPokeAtSegments!= 0
{

II A global variable, set from
II the LOADSEGMENTSATIDLE key in
II the BOOT section of SYSTEM.INI

}

if (USERIsIdle)
{

}

NumIdleIters++ II Remember how many times through

II Every Ox20 times through, load some boot time
II segments. This doesn't happen anymore, once
II they're all loaded.
if ((NumIdleIters & Ox1F) == 0)

PokeAtSegments()

go to Walk_through_task_list II Now start looking for
II a task with an event!

INT 28h II Generate the DOS "idle" interrupt

INT 2Fh, AX = 1689h II KERNEL tells WIN386 of its
II idle state. BL is 0 or 1,
II depending on IsUserIdle() result

go to Walk_through_task_list II Maybe a task got an event
II while we were doing idle time
II things. Go check!

II This is the other half of the "Walk_through_task_list"
II loop. Between the top half and this part lies the
II "idle loop".

if (thisTask.TDB_nevents == 0)
{

}

thisTask = thisTask.TDB_next
go to Try_next_task

II If there's no events
II for this task, go on
II to the next one. If
II there are events, drop
II through to the code
II below.

II If we get here, we've found a task (described later in continued code).

We've Found a Task. So Now What?
Once Reschedule() finds a TDB that has a nonzero event count, it begins the process of sav
ing the context of the outgoing task and restoring the context of the incoming task. Before
this can be done, Reschedule() needs to make a few tests. If the incoming task is the current

CHAPTER 6 - THE WINDOWS SCHEDULER

task, there's no reason to go through the full process of saving and restoring the task context.
Instead, Reschedule() just JMP's to the section that restores the registers from the stack frame
that was saved upon entry; then it returns.

The next important thing to check is whether there is a locked task. When a task is
locked, it is the only task in the system that is allowed to receive messages. All other tasks are
shut out until the task is unlocked. A task can be locked by the LockCurrentTaskO API in
KERNEL or by the LockMyTaskO function in USER. A system modal message box is an
example of a locked task in action. If the incoming task is not the same as the locked task,
Reschedule() should not switch to it. Instead, the saved registers on the stack are restored,
and Reschedule 0 returns without having switched tasks.

The last hurdle to clear before starting the task switching sequence is to check the KER
NEL_InDOS flag. The value of KERNEL_InDOS is nonzero if the KERNEL Real_DOSO
function has been entered. Real_DOSO is a low level routine that, for the most part, just calls
the INT 2lh handler established by the DPMI server and DOS extender. KERNEL_InDOS is
also checked in other critical sections of code elsewhere in KERNEL. Presumably, switching
to a task when KERNEL_InDOS is nonzero would cause DOS re-entrance problems. There
fore, if KERNEL_InDOS is nonzero, Reschedule() won't switch tasks. In place of switching
tasks, it resumes walking the task list, where the TDB search left off. If the TDB search started
at the beginning, the same task would be found, and we still wouldn't be able to switch to it.
Perhaps the hope is that by starting the search farther down the task list, the idle loop code
will eventually execute. This might in turn clear the KERNEL_InDOS flag, allowing things to
return to normal.

Once past the above gauntlet of idle loops and other checks, RescheduleO starts saving
the context of the current task and waking up the incoming task in the same state it was left in
when it was last switched away from. The switching code is as much of a critical section as any
other piece of code, so it's only fitting that a global variable, InScheduler, is incremented to
indicate that this work is in progress.

The first thing the switching section does is readjust the priority of the task. Like the pre
viously discussed SetPriorityO functionO, RescheduleO keeps the task list in priority sorted
order by momentarily deleting the incoming TDB from the task list and then reinserting it.

Because most tasks share the same priority value, it's important to give them each a fair
chance to be selected for scheduling. RescheduleO accomplishes this by incrementing the pri
ority value in the incoming TDB before removing and reinserting it into the task list. Then it
decrements the priority back to its previous value. The net effect is to place the incoming task
later in the list than any other tasks of the same priority value. This gives other tasks running
at the same priority level first crack at being scheduled when they receive events. In the much
more sophisticated OS/2 scheduler, this is roughly equivalent to the round-robin scheduling
of threads at the same priority level.

After reprioritizing the TDB list, RescheduleO locks the global heap. This prevents the
Least Recently Used (LRU) sweeping of the global heap from changing the global heap dur
ing the remainder of the task switching code. The LRU sweeping only occurs if you're not
using paged virtual memory, as Chapter 2 explains.

WINDOWS INTERNALS

Now it's time to· finish the job of saving the context of the outgoing task. At the begin
ning of RescheduleO, most of the 16-bit registers for the outgoing task were pushed on the
stack. This is where they remain the entire time the outgoing task is asleep.

The remainder of the job involves three steps. The first step is to save the current SS:SP
values into the DWORD at offset 2 in the outgoing TDB. These two values are all that con
nect the outgoing task to its sleeping state in the scheduler (recall that the outgoing task's
registers are saved on its stack, not in its TDB). Overwrite either of these two values, and the
scheduler goes down in flames the next time the task is switched to.

The next step in saving the state of the outgoing task is to call SaveStateO. SaveStateO
stores the current 80x87 control word and the current drive and directory values into the out
going TDB. We examine SaveStateO later on.

The final act of the outgoing process is to call DebugSwitchOutO, which generates the
task switching out notification. This notification can be hooked through TOOLHELP.DLL
as an NFY_TASKOUT notification, or by a RegisterPtraceO or ToolhelpHookO callback
function with AX = ODh. RegisterPtraceO and ToolhelpHookO are crucial to writing a Win
dows debugger (see Undocumented Windows, Chapter 5).

RescheduleO now turns to the job of waking up the incoming task. As you might expect,
the steps to reawaken a task are almost a mirror image of the steps to save away the outgoing
task. First, RescheduleO sets the CurTDB KERNEL global variable to the value of the incom
ing TDB. Next, it retrieves the PDB (or PSP if you prefer) of the incoming task and stores it
in the Win_PDB KERNEL global variable. Note however that INT 21h, function 50h is not
invoked to switch what DOS thinks is the current PSP. Since Windows relies so heavily on the
PSP and DOS for file I/O, you might think that it would call DOS to change the current PSP
each time a task switch happens. As it turns out, KERNEL delays switching the PSP until it
absolutely has to, such as during a file I/O operation. Switching the PSP requires a transition
to DOS, a relatively slow process. If the only reason for a particular task switch is to deal with
an intertask SendMessageO, it would get expensive. Thus, KERNEL holds out switching the
current PSP until it's unavoidable. This causes problems on occasion, as the current PSP in
DOS may not match the current TDB in Windows.

If an 80x87 is installed, Reschedule() loads the control word for the incoming task from
its TDB using an FLDCW instruction. Before the control word is loaded though, Resched
uleO executes an FCLEX instruction. This one instruction is a vital bug fix in Windows 3.l.
In Windows 3.0, if a task generated a floating-point exception, it was possible for it to be
masked until a new task had been scheduled and was loading its control word. This had the
rather unfortunate effect of causing the wrong task to be blamed for the exception and then
terminated as a result. Paul Bonneau's column in the May 1992 Windows/DOS Developer)s
Journal describes this in more detail.

At this point, RescheduleO sends the incoming task notification, NFY_TASIGN for
TOOLHELP, AX = OEh for the RegisterPtraceO, and ToolhelpHook () callbacks. Debug
SwitchIn() takes care of this chore.

RescheduleO is now almost done. It's time to start running on the stack of the incoming
task. Accordingly, the SS:SP is switched to the SS:SP stored away in the incoming TDB.
RescheduleO can now decrement the InScheduler flag, indicating that Reschedule is once
again safe to enter. If running KRNL386, RescheduleO calls the UserRepaintDisableO func-

CHAPTER 6 - THE WINDOWS SCHEDULER

tion in the DISPLAY module, indicating that screen updates are now OK. Repainting may
have been disabled inside the ExitCallO routine (see Chapter 3), which is invoked when a task
is terminating.

Mterwards, the global heap is unlocked, allowing LRU sweeping to resume. As a final act,
Reschedule () pops the register values for this task off the new stack and returns to either
OldYieldO or WaitEventO. The new task is now awake, and the previous task is now silently
sleeping. It will not wake up again till another event arrives for it.

Continuation of pseudocode for RescheduLe() - SCHEDULE.OBJ

II When we get here, we've found a potentiaL task to switch
II to. Make sure it's o.k. to switch to the new task though
newTask = thisTask

if (newTask == CurTDB
goto RescheduLe_done

if (LockTDB != 0

II The current task and the found
II task are the same. Just pop the
II registers and return!

if (LockTDB != newTask)
goto RescheduLe_done

II If there's a locked task,
II and it's not the task we
II seLected, don't switch
II to it!

If (KERNEL~InDOS fLag)
go to Try_next_task:

InScheduLer++ II The above tests were passed. We're now
II definiteLy committed to switching to the
II found task. Increment a fLag so that we
II don't get re-entered.

II This next section is responsibLe for keeping the task List
II in priority order. It also prevents one task at a given
II priority from "hogging" the CPU from other tasks at the
II same priority. The new task aLways ends up at the end
II of the List of tasks at the same priority LeveL.
newTask.TDB-priority++ II Lower the tasks reLative priority
DeLeteTask(newTask) II Remove it from the task List
InsertTask(newTask) II Reinsert it in the task List
newTask. TDB-priori ty-- II Restore or; gina L priority

GLobaLInfo.gi_LruLock++ II Lock the gLobaL heap (prevent LRU
II sweeping) See Chapter 2.

II This next section is responsibLe for saving the state of
II the outgoing task.

WINDOWS INTERNALS

CurTDB.TDB_taskSS = SS
CurTDB.TDB_taskSP = SP

SaveState(CurTDB)

DebugSwitchOut()

II Save the SS:SP in the TDB of the
II outgoing task.

II Save 80x87 state, Current DOS
II disk/directory. See pseudocode
II beLow.

II send task switch out notification
II For the outgoing task (the TOOLHELP
II NFY_TASKOUT notification)

II From this point on, we're restoring the context of the
II new task.
CurTDB = newTask II Update KERNEL global variable. We're

II now running as the new task!

Win_PDB = newTask.TDB_PDB II Update KERNEL globaL variable

if (F8087 II 80x87 present?
{

FCLEX II Restore the 80x87 state
FLDCW [newTask.TDB_FCW] II of the incoming task

}

DebugSwitchln() II send task switch out notification for
II the incoming task (the TOOLHELP
II NFY_TASKIN notification)

SS = newTask.TDB_taskSS
SP = newTask.TDB_taskSP

II Switch stacks to the SS:SP
II of the incoming task.

CurTDB = newTask II Set CurTDB again for good measure?

InScheduler-- II Now "safe" to re-enter the scheduler

if (a bit set in (Kernel_Flags+2))
PDispLayCritSec(0) II TeLL the display driver that

II it's O.K. to repaint now.

GLobaLlnfo.gi_Lrulock-- II UnLock the gLobaL heap. See above

Reschedule_done:

Restore registers saved on stack upon entry

Return to caller

That's it for the Reschedule() code. We've seen exactly how Windows switches between
tasks. In our coverage of RescheduleO, we came across the IsUserIdle() and SaveState() func
tions. These functions are especially interesting, so we examine them next.

CHAPTER 6 - THE WINDOWS SCHEDULER

IsUserldle()
Besides being called by RescheduleO to determine if anything is happening in the messaging
system, IsUserIdleO is also called by the internal IdleTimerO function. IdleTimer() calls
IsUserIdle to give it a chance to activate the sere ens aver (added in Windows 3.1). During its
first invocation, InitAppO calls SetSystemTimerO, telling it to call IdleTimerO every 10 sec
onds. The implication is that the minimum screensaver delay is 10 seconds.

Of some note are the tests in Is U serIdleO that determine whether to activate the
screensaver. In order to start the screensaver, the following conditions must be met:

• Enough time has elapsed.

• There's an active window. See Chapter 5 for details on what this entails.

• The active window cannot be a DOS application running in a window if running in
Enhanced mode.

If all these tests are passed, IsUserIdleO posts a WM_SYSCOMMAND message with an
SC_SCREENSAVE wParam. Assuming the active window doesn't handle the message,
DefWindowProcO gets it and calls the internal SysCommandO function to load the
screensaver module specified in the SYSTEM.INI file.

Pseudocode for IsUserIdLe() - WINLOOP.OBJ
II LocaLs:
II DWORD timeDiff

II See if the user has any of the mouse buttons pressed
II If so, return 0, indicating that USER isn't idLe.
if (GetAsyncKeyState(VK_LBUTTON) & Ox8000)

return 0
if (GetAsyncKeyState(VK_RBUTTON) & Ox8000)

return 0
if (GetAsyncKeyState(VK_MBUTTON) & Ox8000

return 0

II Here's where we find out if we need to post the
II SC_SCREENSAVE message. We won't bother to do this if
II there's a system modaL window up, or if the screen save
II time intervaL is set to 0_
if ((HWndSysModaL==O) && (IScreenSaveTimeout > 0)

&& (TimeLastInputMessage != 0))
{

II TimeLastInputMessage is a USER gLobal variabLe, which
II remembers the time (in miLLiseconds) when the Last
II input message (mouse or keyboard) was received.
timeDiff = GetCurrentTime() - TimeLastInputMessage

WINDOWS INTERNALS

II Has enough time eLapsed? Get out now if not.
if ((IScreenSaveTimeout * 1000) >= timeDiff)

go to IsUserIdLe_done

if (HWndActive == 0)
goto IsUserIdLe_done

II If no active window, don't
II bother posting the message

II If running in Standard mode, we'LL aLways post
II the SC_SCREENSAVE message if we get this far.
if ((WinFLags & WF_ENHANCED) = 0

goto IsUserIdLe_PostMessage

II Running in Enhanced mode. See if the active
II window is for a DOS appLication in a window. Don't
II post the SC_SCREENSAVE message if so.
if (IsWinOLdApTask(GetWindowTask(HWndActive»)

goto IsUserIdLe_done

IsUserIdLe_PostMessage:

PostMessage(HWndActive, WM_SYSCOMMAND, II Post the
SC_SCREENSAVE, 0) II screensave msg

TimeLastInputMessage = 0 II Reset the idLe timer
}

IsUserIdLe_done:

return 1 II Indicate that USER is idLe

SaveState()
SaveStateO is responsible for saving all the context information that a task needs later in order
to start back up in the same state as when it was switched away from. A quick look at the
pseudocode on the following page tells you that there's not much state to save. The register
values for the task are implicitly saved as part of the Reschedule() routine. Therefore, all
SaveStateO has to do is save the 80x87 control word, if an 80x87 is present, and the current
DOS drive and directory. (Remember, Windows runs multiple programs, each with its own
drive, directory, and environment, all on top of one copy of DOS.) Of these states, the cur
rent drive, directory, and 80x87 control word are saved in fields designated exclusively for
them in the TDB of the outgoing task.

From our observations, the current drive and directory information needs to be saved
here only once. After the fields are initialized the first time, it appears that the KERNEL INT
21h handler maintains the current drive and directory values, obviating the need to obtain and
store away the values here. By testing the high bit of the drive letter field (see offset 66h in
Table 3-2), SaveStateO decides ifit needs to query DOS for these values.

CHAPTER 6 - THE WINDOWS SCHEDULER

Pseudocode for SaveState() - SCHEDULE.OBJ
II Parameters:
II WORD hTask II hTask of outgoing task

if (F808?) II If there's an 80x8?, save its

if
{

}

FSTCW [hTask.TDB_FCWJ II control word in the TDB

«hTask.TDB_Drive & Ox80) == 0) II Only if high bit set

INT 21h, AH = 19h II DOS Get current disk in AL
hTask.TDB_Drive = AL I 80h

II Get the current DOS directory
hTask.TDB_Directory[OJ = '\' II prepend root '\'
INT 21h, AH = 4?h, DS:SI = &(hTask.TDB_Drive+1>

if (carry flag set)
hTask.TDB_Directory[OJ

II Failure? If so, NULL
o II out the dir string

The Windows
Messaging System

Messages are the lifeblood of a Windows program. To draw an analogy with the human body,
the GetMessageO/DispatchMessageO loop is the heart, while the window procedures and
their associated functions are the arteries, veins, and capillaries of a Windows program. The
role of blood is, of course, played by messages. If the flow of blood stops, the body dies. A
Windows program that stops processing messages also dies. Not only does the program halt,
all other programs also stop until circulation resumes. As we'll soon see, the central point is
that the creation, disposition, and flow of messages must be a smooth, well-oiled process.

In Windows, messages are used for many purposes. There are obvious uses for messages,
such as indicating when a mouse moves or a menu item is selected. On a more complex scale,
dialog boxes, menus, and other controls make very heavy use of messages, especially for com
municating with each other. Messages are used for system-wide inquiries and broadcasts, as
well as a form of interprocess communication. For instance, messages are used to query all
applications to determine if it's OK to shut Windows down. In fact,the KERNEL module,
which is supposed to be below the level of the messaging system, uses messages to indicate
changes in the global heap. Much of the understanding of how Windows and Windows pro
grams work often comes down to knowing what messages are used, when they're used, and
what the proper response to a message is.

In this chapter, we examine how the Windows messaging system works. To return to the
circulatory system analogy, we see where the blood is created and examine the chambers of
the heart. In addition, Windows messages are commonly sent between different tasks, often
times without your knowing it! Imagine if your circulatory system were connected with that

429

WINDOWS INTERNALS

of everybody else in the room. All of a sudden, the connections and blood flow become more
vital, for everyone. Because the messaging system must work with this high level of complex
ity, while remaining highly reliable, the Windows code that keeps the messages flowing is
highly complex. (So what else is new?) We examine these mechanisms to see what kind of
ugly tricks go on underneath the surface.

To best demonstrate how the various parts of the messaging system interrelate, it helps to
describe smaller chunks of the messaging system individually. The code for the messaging sys
tem is implemented throughout much ofUSER.EXE. The scheduler in the KERNEL module
also plays a vital role in keeping the system flowing; it is discussed in Chapter 6. After looking
at small sections of the messaging system, we then bring all the pieces together to show how
they create a message pump that keeps the program, and ultimately the whole of Windows,
alive. The smaller chunks consist of:

• A quick review of the message structure.

• The different types of messages.

• The application message queue (one per program) and the single shared system mes
sage queue.

• How Windows implements cooperative multitasking.

A Quick Review of the MSG Structure
The format of a MSG structure, as seen by a program, is as follows:

typedef struct tagMSG
{

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

The hwnd field indicates which window the message should be directed to. It's possible
for the field to not contain a valid window handle. For instance, a message posted with
PostAppMessageO contains an hwnd of o. Though almost always processed in a WndProc,
messages are in fact independent of the windowing system.

The message field contains a code representing what the message is trying to say. For
instance, the value OxOOOF is a WM_P AINT message which indicates that a portion of the
window should be repainted. Values below WM_USER (Ox0400) are reserved by Microsoft
for system-wide usage. In Windows, the range of system messages is small enough so that you
can sometimes use an array of function pointers to deal with the common messages, thereby
eliminating a very long C switch statement. Message values above WM_ USER are user-defin
able messages, meaning you can define them to mean whatever you wish in your application.

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

The wparam and lparam fields store information that is particular to a given value of the
message field. For instance, if the message field contains WM_MOUSEMOVE, wparam con
tains information about which keys are held down, and lparam contains the (x, y) coordinates
of the cursor. For other messages, wparam and lparam may not be meaningful at all.

The time and pt fields contain the time and cursor position when the message was cre
ated. The time is represented as the number of milliseconds since the booting of the system.

In Windows 3.1, there is additional information stored with each message. Since back
wards compatibility with Windows 3.0 was a requirement for Windows 3.1, the existing APIs
for retrieving messages couldn't be changed. Thus, a new API, GetMessageExtraInfoO,
retrieves the extra information. Messages that enter the system through the mouse or key
board drivers appear to be able to pass on this extra information, while posted messages cause
zeros to be stored in the extra information field.

The Different· Kinds of Messages
There are essentially five different ways for messages to be introduced into a Windows pro
gram. The GetQueueStatus() API, newly documented and improved in Windows 3.1, is a
thin veneer that exposes some of the internals of the messaging system. In its return values,
defined in WINDOWS.H, we see the five types of messages. Each of these message types is
represented by a bit in a WORD in the application message queue (discussed momentarily).

• QS_KEY, QS_MOUSEMOVE, and QS_MOUSEBUTTON messages, although con
sidered distinct by GetQueueStatusO, are all examples of input messages. Input mes
sages are generated by hardware devices like the keyboard and mouse; they are stored
in the shared system message queue. We discuss the system queue later.

• QS_POSTMESSAGE messages are placed in the application's message queue using
PostMessageO or PostAppMessageO. There is one application message queue per pro
gram. Application message queues are also discussed later.

• QS_PAINT messages like QS_TIMER messages (see below), don't wait in a queue,
but are, instead, generated as needed when an application requests a message. The
Windowing system (see Chapter 4) is responsible for knowing if a particular window
needs updating. When a window region becomes invalidated, USER informs the mes
saging system that a repaint is necessary by setting the QS_PAINT flag. When an appli
cation asks for a new message, the QS_P AINT flag is checked, and if set, a
WM_PAINT message IS composed on the spot. An important point worth noting here
is that paint messages are not generated until there are no messages in the application's
message queue. More on this later.

• QS_TIMER messages, similar to QS_PAINT, cause WM_TIMERmessages to be gen
erated on the fly when the QS_TIMER flag is set and an application calls GetMess
ageO or PeekMessageO. These messages are not stored in either the application's
message queue or the system queue. Thus, timer messages cannot back up and fill the
application or system queues.

WINDOWS INTERNALS

• QS_SENDMESSAGE. The SendMessage() API allows a message to be sent to a win
dow and guarantees that the receiving window replies immediately. To send messages
between two windows of the same application is not hard. A simple function call does
the job. However, SendMessage() does not always involve a simple function call. The
difficult part is when messages are sent between two different tasks. Because each win
dow procedure must operate in its normal task context, the Windows scheduler needs
to get involved. Doing this correctly involves a large amount of synchronization be
tween the two tasks. Much work goes on underneath the covers to make this appear
seamless to the caller of SendMessage(). Because intertask SendMessages() are so
complex and misunderstood, we examine them in detail at the end of the chapter.

It's important to note that the above distinctions are not based on the message number,
but rather, on how the message came into existence (no, there's not a message stork!). For
instance, consider the WM_PAINT message. Normally, it's generated for you when your
application calls GetMessage() while the QS_PAINT flag is set. On the other hand, it's per
fectly legal for an application to use SendMessage() to send a WM_P AINT message to
another window. Such a message will be seen in the queue status bits as a QS_SENDMESS
AGE, rather than as a QS_PAINT type message. Likewise, you can just as easily do a
PostMessageO of a WM_PAINT message, which results in a QS_POSTMESSAGE type of
message. The message numbers themselves aren't important for this discussion. What is
important is that there are multiple ways to introduce messages into the system. Incidentally,
you really wouldn't want to send or post WM_P AINT messages. The windowing system gen
erates them automatically. We only picked WM_PAINT as the example message because it
could be generated in three different ways.

The IBM OS/2 Presentation Manager (PM) input system is based upon similar message
classifications. This isn't surprising when you learn that before the big IBM/Microsoft
divorce, Presentation Manager and the Windows input system shared essentially the same
source base. In fact, the OS/2 2.0 Presentation Manager implementation is still remarkably
similar to the Windows 3.1 input system. This casts an interesting light on the operating sys
tem warfare between Microsoft: and IBM. Windows and OS/2 are (evil?) twins that were
"separated at birth."

The Application Message Queue
To get a firm grip on all that goes on in the Windows messaging system, it's first necessary to
understand the two types of queues used by the messaging system. We examine the applica
tion message queue first and the system message queue afterwards.

During a program's initialization, USER generates a message queue for the application
inside of the InitApp() routine (see Chapter 3 for details on program startup). The memory
for the application queue is allocated and initialized by two internal USER routines,
CreateQueue() and CreateQueue2(). The message queue is created in a segment of memory
allocated from the global heap. A handle to the current message queue (actually a selector,
since the segment is FIXED) can be obtained with the undocumented GetTaskQueue() func
tion. The function is prototyped as:

HANDLE FAR PASCAL GetTaskGueue(HANDLE hTask);

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

Passing 0 as the hTask returns the queue handle of the current task.
Every window in the system is associated with a particular application message queue.

Examine the fields in the WND data structure (see Chapter 4) and you'll notice a message
queue handle (see offset ISh in Table 4-2). In fact, when messages are posted, the message
queue handle in the WND structure determines which queue the message is added to.

Even the desktop window (your wallpaper, rememberr) has a message queue associated
with it. The desktop window is somewhat of a special case when it comes to its message
queue. The message queue that the desktop window is associated with changes based upon a
complex set of conditions that's not fully understood. However, there does seem to be a gen
eral pattern that the desktop window's message queue tracks the currently active application.
This behavior can be observed by setting a hardware write breakpoint on the message queue
field of the desktop window. To do this,you need to determine the data segment in USER
that contains the window structures (it's one of the USER local heaps). You also need to find
the offset or handle of the desktop window. Programs like WinSight or Spy can tell you the
desktop'S hwnd. Add OxIS to the desktop hwnd value to determine the offset in the USER
segment that should be used. Once you have the segment and offset, set a hardware write
breakpoint at that address and start up Windows again. By clicking on icons, starting up appli
cations, and performing other tasks, you can start to see where the message queue of desktop
is switched around.

Messages are placed in an application's queue using PostMessageO. Some internal Win
dows functions also call PostMessage() behind the scenes, for instance DefWindowProcO. If a
program wants to post a message in the queue of another task without knowing its HWND,
or if the task has no windows, the program can use PostAppMessage(). PostAppMessage()
takes the hTask parameter and finds the associated queue by looking it up in the Task
Database (Chapter 3). The message is then placed into the destination queue with the
HWND field of the message set to O.

The default size of an application's message queue is just eight messages. In most cases,
this is more than enough to contain all the messages actually posted to an application. This
size is usually fine for most programs because, typically, far more messages are sent directly to
the window or generated outside of the message queue than are posted. However, if you have
more than one top level window, you might consider bumping up the size. If you need to do
this, SetMessageQueue() is your friend. It's important that this function be called before any
windows are created, since USER deletes the original message queue and creates a new one.
This can cause confusion in the messaging system if the original message queue has already
been used. Thus, SetMessageQueueO should be called before the message queue is used in
any way by the application. An alternative to using SetMessageQueue() is to add to or other
wise alter the "DefaultQueueSize" setting in the [windows] section of the WIN.INI file. This
is an undocumented INI key, so you may have to add it to the WIN.INI file yourself. In the
general case though, eight messages is perfectly adequate for almost all applications.

The message queue for an application is closely tied to the Tasl,c Database (TDB) of the
application. A field in the message queue contains the selector of the associated TDB, and vice

WINDOWS INTERNALS

versa. It's conceivable that the application queue could have been made a part of the TDB,
but as we see later, there are reasons for treating them as distinct entities.

It's not possible to have a message queue for a DLL. As mentioned in Chapter 3, DLLs
are really just library code that gets linked at run time. Therefore, they cannot own things that
Windows associates with a task, like message queues or file handle tables. A common problem
programmers encounter is that functions like MessageBox() won't work inside the LibMain()
of an implicidy-linked DLL. Why is this? MessageBoxO creates and uses windows. As men
tioned earlier, each window must be associated with a message queue. Since an application has
not yet created its message queue at the time your task calls LibMainO (see Chapter 3), win
dows cannot be created, and hence, MessageBoxO fails.

The format of a message inside a message queue is very similar to the format of a MSG
described previously. The difference is that a message held inside the message queue is four
bytes larger. The extra four bytes occur at the beginning of the structure and are used by the
"extra info" DWORD added in 3.1. A message that's waiting to be read from the application
message queue looks like this:

DWORD ExtraInfo
HWND hwnd
WORD me'ssage

WPARAM wParam
LPARAM lParam
DWORD time
POINT pt

In Windows 3.0, there is no ExtraInfo field, so MSGs inside and outside the message
queue are identical.

A message queue structure contains far more than justa queue of messages. Fields are
needed to handle intertask SendMessagesO and the like. GetTaskQueueO returns a handle to
this structure. The format of the message queue structure changed between Wmdows 3.0 and
3.1. Undocumented Windows contains the format for both 3.0 and 3.1. Table 7-1 gives an
updated version of the message queue for Windows 3.1.

Table 7-1: Message Queue for Windows 3.1.

OOh WORD Selector of next message queue. Like many data structures in Windows,
message queues are stored in a linked list, with each queue containing
the selector of the next queue in the list. The system message queue is
not included in this list.

02h WORD hTask of task that owns this queue. GetWindowTaskO gets the queue
handle from the HWND parameter and gets the associated hTask from
thi.s field. (See WND structure in Chapter 4 and TDB in Chapter 3.)

04h WORD Size of a message in this queue. Contains 22 for application message
queues in Wmdows 3.1.

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

Table 7-1: Message Queue for Windows 3.1. (continued)

06h WORD Number of messages waiting in the message area that have not been

08h WORD
OAh WORD
OCh WORD

OEh DWORD
12h DWORD
16h WORD
18h DWORD
lCh WORD
lEh DWORD
22h WORD
24h WORD
26h WORD
28h WORD
2Ch WORD
2Eh WORD
30h WORD
32h DWORD
36h WORD
38h WORD

3Ah WORD

3Ch WORD

3Eh WORD
40h WORD
42h WORD

removed by a GetMessageO or PeekMessage(PM_REMOVE).
Offiet in the queue segment of next message to be retrieved.
Offiet in the queue segment where the next message will be written.
The length in bytes of the queue segment. Used to determine when the
(circular) queue needs to wrap back to the beginning of the message
area.
Value returned by GetMessageTime().
Value returned by GetMessagePos().
Unknown. Sometimes contains 1.
Information returned by GetMessageExtraInfo().
Unknown.
Contains the LP ARAM of a SendMessage() to another task.
Contains the WP ARAM of a SendMessageO to another task.
Contains the MSG of a SendMessageO to another task.
Contains the HWND of a SendMessageO to another task.
Contains the DWORD result from the SendMessageO.
Nonzero ifPostQuitMessageOhas been called by this program.
PostQuitMessage() exit code.
Flags of some sort.
Unknown.
Expected Windows version from NE fIle.
Queue handle of application that is sending a message to this applica
tion. InSendMessage() returns this value.
In an intertask SendMessageO, the sending task sets this field in the
receiving task's queue. The value is the queue handle of the sending
task. When the receiving task wakes up, it uses this field to determine
which task/queue sent the message to it. This field, in conjunction with
the next field, allows nested intertask SendMessageO calls to occur.
In an intertask SendMessageO, the sending queue stores the value from
offiet 3A of the, receiving queue intooffiet 3C of the sending queue.
When the receiving queue wakes up, it restores the value it used to con
tain in offset 3A by reading the fIeld at offset 3C of the sending queue.
Put another way, it unlinks the sending queue from the chain of inter
task SendMessageO calls.
Number of paints needed by this application.
Number of timer events waiting for this application.
Change Bits. Contains the QS_xxx bits that have changed since the last
GetMessageO, PeekMessageO, or GetQueueStatusO call. The bits are
sets by SetWakebit20 (described later). .

WINDOWS INTERNALS

Table 7-1: Message Queue for Windows 3.1. (continued)

44h WORD Wake Bits. Contains the QS_xxx bits which indicate what kind of
messages are waiting for the application. As the messages are extracted,
the appropriate QS_xxx bit is turned off. There are a few other bitfields
used for communicating the current status of an intertask Send
MessageO·

46h WORD Wake Mask. Contains the QS_xxx bits that an application is currently
waiting for. When the application goes to sleep through SleepHqO, it
sets the wakemask bits to indicate which type of QS_xxx messages
should wake it up and make it start executing again.

48h WORD Used for intertask SendMessagesO. Upon return from intertask call,
contains the near address on the stack where the SendMessage() result
(offset 28h) will be copied.

4Ah WORD Used for intertask SendMessagesO. Before the intertask call, is initial
ized with the near address on the stack where the SendMessage() result
(offset 28h) will be copied after the intertask call Returns.

4Ch WORD Used for intertask SendMessagesO. In the ReceiveMessageO, it is set to
the value in the WORD at offset 4Ah in the sending queue. Later on in
ReplyMessageO, this same value is copied to offset 48h in the sending

4Eh WORD
50h BYTE[lEh]
6Eh WORD

queue.
Something having to do with hooks.
Unknown. Possibly having to do with hooks.
Start of the posted message storage area (the message queue proper).
The memory from here to the end of the segment can be thought of as
an array of messages, each message being 22 bytes in length (in Win
dows 3.1).

As can be seen from the preceding description, the message queue maintains data for sev
eral different states:

• A circular buffer of messages. This area is similar in concept to the ROM-BIOS key
board buffer. The queue contains· read and write pointers that indicate where the next
message will be read from, as well as where the next message will be written to. A
pointer pointing at the last available message slot wraps around to the first available
slot when it's incremented. When the read and write ·pointers are equal, there are no
messages in the queue. The message queue also maintains data for intertask SendMess
ageO. The parameters, return values, and current state of the SendMessageO transac
tion are stored iIi. the message queue, but not in the section that's normally used for
posted messages since. messages sent by intertask SendMessage() are guaranteed to be
processed immediately, ahead of any other waiting messages.

• Whether the application has been told to quit and ifit has, its exit code.

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

• A back link to the Task Database. GetWindowTaskO uses this field to obtain the task
handle associated with a given window.

• The wake bits and other associated status fields. These flags indicate information such
as which types of message are waiting to be processed by this queue. These fields playa
very important role in multitasking Windows applications. We examine them in detail
later.

Because an application message queue contains most of the data that the messaging sys
tem uses, the queue can be thought of as a command center for messaging. The application
queue is much more than a holding area for posted messages. It's what links a window handle
to a particular task, and it is the keeper of the status bits, so vital to GetMessageO and
PeekMessage() .

The QUEUE Sample Program

The following program demonstrates some of the concepts discussed previously. It uses the
WINIO library that was distributed with Undocumented Windows to keep the user interface
code to a minimum.

11=================================
II QUEUE, by Matt Pietrek, 1992
II File: QUEUE.C
11=================================
#i nclude <wi ndows. h>
#include <dos.h>
#include "winio.h"

II If your IMPORT.LIB or LIBW.LIB doesn't include
II GetTaskQueue(), you'LL have to add it to the IMPORTS section
II of the .DEF fiLe. The ordinaL number is KERNEL.35
WORD FAR PASCAL GetTaskQueue(WORD hTask);

typedef struct
{

DWORD extra Info;
HWND hwnd;
WORD message;
WORD wParam;
DWORD LParam;
DWORD time;
POINT pt;

} QUEUEMSG;

WINDOWS INTERNALS

typedef struct
{

WORD NextQueue;
WORD OwningTask;
WORD MessageSize;
WORD NumMessages;
WORD ReadPtr;
WORD WritePtr;
WORD Size;
LONG MessageTime;
POINT MessagePoint;
WORD Unknown1;
DWORD Extralnfo;
WORD Unknown2;
LONG SendMessageLParam;
WORD SendMessageWParam;
WORD SendMessageMessage;
HWND SendMessageHWnd;
DWORD SendMessageResuLt;
WORD Quit Flag;
int ExitCode;
WORD flags;
DWORD Unknown3;
WORD ExpWinVersion;
WORD SendingHQ;
WORD sendms~heLper1;

WORD sendms~heLper2;

WORD PaintCount;
WORD TimersCount;
WORD ChangeBits;
WORD WakeBi ts;
WORD WakeMask;
WORD SendMessageResuLt1;
WORD SendMessageResuLt2;
WORD SendMessageResuLt3;
WORD Hook;
BYTE Hooks2[30J;
BYTE MessageArrayStart;

} QUEUE; II see TabLe 7-1

II Dumps seLected fieLds of a message queue
void DumpQueueContents(QUEUE far *queue)
{

QUEUEMSG far *queuemsg;
unsigned maxMessages, i;

maxMessages =

}

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

queue->Size - FP_OFF(&queue->MessageArrayStart»
I sizeof(QUEUEMSG);

queuemsg = (QUEUEMSG far *) &queue->MessageArrayStart;

printf("Messages: %u ReadPtr: %04X Writ'ePtr: %04X\n",
queue->NumMessages, queue->ReadPtr, queue->WritePtr);

printf("WakeBits: n);
if (queue->WakeBits & QS_KEY)

printf{nQS_KEY ");
if (queue->WakeBits & QS_MOUSE)

printf("QS_MOUSE ");
if (queue->WakeBits & QS_POSTMESSAGE)

printf("QS_POSTMESSAGE ");
if (queue->WakeBits & QS_TIMER)

printf("QS_TIMER ");
if (queue->WakeBits & QS_PAINT)

printf("QS PAINT ");
printf("\n");

for (i=O; i « maxMessages; i++)
{

printf{
"HWnd: %04X Msg: %04X WParam: %04X LParam: %08lX\n",
queuemsg->hwnd, queuemsg->message,
queuemsg->wParam, queuemsg->lParam);

queuemsg++;
}

printf{n\nn) ;

II Get a pointer to the application message queue~ Then, put
II some messages into the queue, and retrieve them. We display
II the contents of the queue at each s~~te, so that we can see
II the principles involved.

void ExamineQueue(void)
{

QUEUE far *queue;
MSG msg;

queue = MK_FP(GetTaskQueue(GetCurrentTask(», 0 };
if (!queue)
{

}

printf("Unable to find message queue\n");
return;

}

WINDOWS INTERNALS

printf("Here we have an empty queue:\n\n");
DumpQueueContents(queue);

printf(
"We'll now call PostAppMessageO to put some messages in\n"
"the queue. Note that the message count goes up, and that\n"
"QS]OSTMESSAGE is now set:\n\n");

PostAppMessage(GetCurrentTask(), Ox1234, Ox5678, Ox12345678L);
PostAppMessage(GetCurrentTaskO, Ox2345, Ox6789, Ox12345678U;
PostAppMessage(GetCurrentTask(), Ox3456, Ox789A, Ox12345678L);
PostAppMessage(GetCurrentTask(), Ox4567, Ox89AB, Ox12345678L);

DumpQueueContents(queue);

printf(
"We'll now call GetMessage() to remove a message. The\n"
"message still appears in the message array, but the Read\n"
"pointer has been incremented. We also print out the\n"
"contents of the retrieved message to show that it matches\n"
"what was in the queue:\n\n");

GetMessage(&msg, 0, 0, 0);
DumpQueueContents(queue);

printf(
"The message retrieved into the MSG struct:\n"
"HWnd: %04X Msg: %04X WParam: %04X LParam: %08lX\n\n",
msg.hwnd, msg.message, msg.wParam, msg.lParam);

printf(
"We now call Get Message 3 more times to get rid of the\n"
"remaining messages. Note that the Read and Write ptrs are\n"
"equal, the QS]OSTMESSAGE flag is no longer set, and the\n"
"message count field shows O. Thus, the queue is considered\n"
"to be empty:\n\n");

GetMessage(&msg, 0, 0, 0);
GetMessage(&msg, 0, 0, 0);
GetMessage(&msg, 0, 0, 0);
DumpQueueContents(queue);

int mainO
{

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

II This program uses the message queue format for Windows
II 3.1. Abort if running under any other version.
if (LOWORO(GetVersion(» != OxOA03)
{

winio_warn(FALSE, "QUEUE",
"This program requires Windows 3.1");

return 1;
}

II Turn off repaints. If we don't do this, th~ WINIO library
II will attempt to use the queue while we're in the process of
II examining it.
winio_setbusy();
winio_setpaint(winio_current(), FALSE);

Exami neQueue () ;

II Turn the repaints back on. This allows WINIO to refresh
II the display with all the output that was created in
II ExamineQueue().
winio_setpaint(winio_current(), TRUE);
winio_resetbusy();
winio_home<winio_current(»;
return 0;

}

Here is sample output from QUEUE.EXE:

Here we have an empty queue:

Messages: 0 ReadPtr: 006E .WritePtr: 006E
WakeBits: QS_MOUSE QS~TIMER QS_PAINT
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000

We'll now call PostAppMessage() to put some messages in
the queue. Note that the message count goes up, and that
QS_POSTMESSAGE is now set:

WINDOWS INTERNALS

Messages: 4 ReadPtr: 006E WritePtr: 00C6
WakeBits: QS_MOUSE QS_POSTMESSAGE QS_TIMER QS_PAINT
HWnd: 0000 Msg: 1234 WParam: 5678 LParam: 12345678
HWnd: 0000 Msg: 2345 WParam: 6789 LParam: 12345678
HWnd: 0000 Msg: 3456 WParam: 789A LParam: 12345678
HWnd: 0000 Msg: 4567 WParam: 89AB LParam: 12345678
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000

We'll now call GetMessage() to remove a message. The
message still appears in the message array, but the Read
pointer has been incremented. We also print out the
contents of the retrieved message to show that it matches
what was in the queue:

Messages: 3 ReadPtr: 0084 WritePtr: 00C6
WakeBits: QS_MOUSE QS_POSTMESSAGE QS_TIMER QS_PAINT
HWnd: 0000 Msg: 1234 WParam: 5678 LParam: 12345678
HWnd: 0000 Msg: 2345 WParam: 6789 LParam: 12345678
HWnd: 0000 Msg: 3456 WParam: 789A LParam: 12345678
HWnd: 0000 Msg: 4567 WParam: 89AB LParam: 12345678
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000

The message retrieved into the MSG struct:
HWnd: 0000 Msg: 1234 WParam: 5678 LParam: 12345678

We now call GetMessage 3 more times to get rid of the
remalnlng messages. Note that the Read and Write ptrs are
equal, the QS-POSTMESSAGE flag is no longer set, and the
message count field shows O. Thus, the queue is considered
to be empty:

Messages: a ReadPtr: 00C6 WritePtr: 00C6
WakeBits: QS_MOUSE QS_TIMER QS_PAINT
HWnd: 0000 Msg: 1234 WParam: 5678 LParam: 12345678
HWnd: 0000 Msg: 2345 WParam: 6789 LParam: 12345678
HWnd: 0000 Msg: 3456 WParam: 789A LParam: 12345678
HWnd: 0000 Msg: 4567 WParam: 89AB LParam: 12345678
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000
HWnd: 0000 Msg: 0000 WParam: 0000 LParam: 00000000

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

The System Message Queue
The system message queue is a kind of half-brother to the application message queue. The
system message queue holds all the hardware or input messages. Typically this means mouse
and keyboard events, but the queue is not restricted to those input devices. There are mecha
nisms for alternative input devices, such as digitizing tablets, to place messages in the system
queue.

Like the application message queue, the system queue is allocated and initialized by
USER. The format of the system queue is the same as the application queue, except that the
format of their stored messages differ. The fields that store information like the number of
messages remain the same. Unlike the application queue, there is only one system queue for
all of Windows. In addition, there is no API, documented or undocumented, to obtain the
handle of the system queue. Thus, we have to resort to slimy hacks to find its handle. The first
WORD in the Ox2C'th segment of USER contains the handle of the system queue. In Win
dows 3.0, it's the WORD at offset 2 of the Ox2B'th segment. GlobalEntryModuleO in
TOOLHELP provides a convenient way to obtain the selector or handle to a segment, given
its logical number.

Some of the fields used in the application message queue are ignored in the system meS
sage queue. For instance, the hTask field (offset 2) is not the owning task, as no one task
owns the system queue. In fact, the only parts the system queue uses are the fields used for
the circular message buffer portion.

As mentioned earlier, the system queue's job is to save up the hardware,messages that are
turned into user input. In general, hardware events occur at a pretty good clip. Simply moving
your mouse across the screen can cause dozens ofWM_MOUSEMOVE messages. To prevent
all these events from being lost, the system queue typically can hold many more messages than
an application queue. By default, the system queue can hold 120 hardware messages. The
number of message slots can be altered by adding or changing the TypeAhead entry in the
[windows] section of the WIN.INI file,. but this is almost never necessary.

Messages in the system queue are not destined for a particular window, which is a key dif
ference between Windows 3.x and Windows NT .. ' The processing of one system message
affects which window or task subsequent messages should go to. For instance, a WM_
LBUTTONDOWN message could cause a change of focus. Subsequent messages in the
queue should then go to the new focus window, rather than to the previous one.

On the other hand, the system queue can be locked bya task. This ensures that no other
task can read messages from the system queue until the locking task is done reading all the
messages it needs. For example, a double click message is synthesized out of a series of button
up and down messages. It wouldn't do for one task to steal away messages in the middle of
the process. The system queue is unlocked when there are no messages left for a task, or when
it receives a message that another task must handle.

The format of a message in the system queue is as follows:

DWORD Extra info.
WORD Meaning varies by message number.
WORD Message number. This is a real WM_ number, such as

WINDOWS INTERNALS

WM_MOUSEMOVE
WORD Meaning varies by message number
DWORD Time. Number of miLLiseconds since booting the system.

How do events get into the system queud A good question. In USER.EXE, a routine
called EnableInput() (see Chapter 1) calls the mouse driver and keyboard driver Enable()
functions (ordinal entry #2). The parameters to the mouse and keyboard driver Enable () func
tions are the addresses of the exported USER functions, mouse_event() and keybd_event().
The mouse_event() and keybd_event() routines are essentially interrupt-level functions. Mov
ing the mouse or striking a key generates a hardware interrupt. Interrupt handler functions are
provided in the mouse or keyboard device driver, typically called MOUSE.DRV and KEY
BOARD.DRV. The mouse and keyboard drivers then call mouse_event() and keybd_event(),
using function pointers passed to them during their initialization. Inside of mouse_event()
and keybd_event(), some processing occurs to place appropriate values in the registers before
calling SaveEvent().

SaveEvent() is responsible for placing the message in the system queue by calling
WriteSysMsg(). SaveEvent() also attempts to coalesce multiple WM_KEYDOWN messages
that result from a key that is repeating because it is being held down. Finally, SaveEvent() calls
WakeSomeone(). WakeSomeone() determines which application is the best candidate to
receive the message. When WakeSomeone() finds an appropriate application, the appropriate
flags are set in its message queue and an event is posted to the application's TDB. As we see
later, this causes the chosen application to wake up and receive the message. This looks some
what interesting, so we'll dig into the WakeSomeone() code.

WakeSomeone()
Of special note in WakeSomeone() is the test for hQCapture. This one innocent looking test
contains nearly the entire implementation of the capture mechanism. When your application
calls SetCapture(), USER sets the global variable hQCapture to the queue associated with
SetCapture()'s hwnd parameter. Inside of WakeSomeone(), if hQCapture is non-null, the
hQCapture queue is given the QS_MOUSE event, rather than the queue that ordinarily
would have received it. It is also important to note that if Windows is in a system modal state,
the hQSysModal queue is always highest in the pecking order, even ahead of the queue with
the capture.

Pseudocode for WakeSomeone()

II GLobaLs variabLes:
II hQCursor - The queue "associated" with the cursor
II hQActive - The queue of the "active" window that has focus
II hQCapture - The queue associated with the capture window
II hQSysModaL - The queue associated with the system modaL window
II
II Local variabLes:
II "best_queueP contains the current "best guess" as to which
II queue shouLd be woken up to receive the message

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

II
1/ "wakebit" contains the QS_xxx message type (QS_MOUSEMOVE,
II QS_MOUSEBUTTON, or QS_KEY) that wiLL be pLaced in the
II WakeBits of whatever queue is seLected to receive the message

best_queue = hQCursor

if (message is a not a key message)
go to mouse_event

wakebit = QS_KEY

if (hQActive != NULL)
best_queue = hQActive

mouse_event:
if (message == WM_MOUSEMOVE)

wakebit = QS_MOUSEMOVE
eLse

wakebit = QS_MOUSEBUTTON

if (hQCapture != NULL)
best_queue = hQCapture

system_modal_check:
if (hQSysModaL != NULL)

best_queue = hQSysModaL

if (best_queue != 0
goto wake_ern_up

iterate through queue linked list
{

}

if (queue's WakeMask includes wakebit determined previously)
{

}

best_queue = current queue under examination
go to wake_ern_up

if (at end of queue linked List)
return

wake_ern_up:
SetWakeBit2(); II Sets WakeBits, and posts event; see beLow

return

WI N DOWS INTERNALS

If you're especially interested in the mechanisms that transform a mechanical action into a
message in Windows, you might wish to examine the DDK The DDK provides source code
for the mouse and keyboard drivers, so you can see for yourself how the interrupts handlers
and USER work together to create system queue messages.

If you have your own hardware device and wish to add messages to the system queue, you
can use the exported hardware_eventO routine. hardware_eventO is just a wrapper around a
call to WriteSysMsgO. On entry, hardware_eventO should contain:

S1 = hWnd
AX = message number
D1 = wParam
DX:CX = lParam

Like the application message queue, the system queue is a critical component of the mes
saging system. Now it's time to find out how the messaging system delivers messages in the
application and system queues to waiting applications.

Wakebits, WaitEvent, and the Scheduler
The goal of the next large piece of the messaging system is to wait for a message to appear,
but not hold up other programs. If no messages are waiting to be processed inside of
GetMessageO, the task should allow other programs to retrieve messages waiting for them.
This is where the term cooperative multitasking comes from. If you use the standard
GetMessageO/DispatchMessageO loop, cooperative multitasking happens automatically.

As seen earlier, there are five ways for a message to become available to a program.
Because it wouldn't do to just spin in a loop, polling for messages, there needs to be a way to
wmt for a message, while still allowing other tasks an opportunity to run. To show how this is
done, we first have to introduce a few terms that are used for much of the remaining discus
sion. Actually, they are fields in the message queue (see Table 7-1).

• WakeBits-Offset 44 in the message queue. These bitfields indicate that a particular
kind of message (QS_PAINT, QS_TIMER, for example) is available to the task. For
instance, if the QS]AINT bit is set, it indicates that a paint message is waiting for the
application, but hasn't yet been retrieved. Only QS_POSTEVENT messages exist in
the application message queue. All other message types need to have messages synthe
sized or read out of the system queue when a program calls GetMessageO.

• WakeMask-Offset 46 in the message queue. A mask of the QS_xxx message types
that the application is actively waiting for. Typically, GetMessageO is called with
uMsgFilterMin and uMsgFilterMax set to o. This sets the WakeMask to include all the
QS_xxx message types. If you specify an actual range of messages in the GetMessageO
call, an appropriate set of QS_xxx bits is calculated inside of GetMessageO.

• ChangeBits-Offset 42 in the message queue. The QS_xxx bits that have changed
since the last call to GetQueueStatusO, GetMessageO, or PeekMessageO. This infor
mation is mainly for informational purposes and doesn't appear to be used much by
the messaging system.

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

With those definitions in mind, we now look at pseudocode for SleepHqO, which is called
by GetMessage() to wait for a message, but which yields to other tasks if they have messages.

II
II WakeMask contains QS_xxx OR'ed together. SleepHq() will not return
II until at least 1 of QS_xxx bits in the WakeMask parameter has been
II set in the ChangeBits.
1/

void SleepHq(unsigned WakeMask)
{

HANDLE currQ

SleepHCLcheck_flags:

currQ = GetTaskQueue(O) II Get current task queue

II If already have a message then go get it
if (WakeMask & currQ.ChangeBits)

goto SleepHCLdone

II Check for SendMessages and deal with them
if (currQ.WakeBits & QS_SENDMESSAGE)

go to SleepHCLhave_SendMessage

II Always check for SendMessages
currQ.WakeMask = WakeMask & QS_SENDMESSAGE

if (WakeMask & currQ.ChangeBits
goto SleepHCLdone

Wa it Event () II Kernel routine that waits for an event

goto SleepHCLcheck_flags:

SleepHCLdone:

zero out currQ.WakeMask

return

SleepHCLhave_SendMessage:

zero out qWakeMask

}

WINDOWS INTERNALS

II DeaL with the SendMessage(). Described in the section
lion SendMessage()
ReceiveMessage()

goto SLeepH~check_fLags

There are a couple of interesting things going on inside of SleepHqO that are worth
pointing out. First, notice the code that deals with replying to SendMessageO calls.
SendMessagesO are dealt with at a lower level than the other four message types. The messag
ingsystem checks for sent messages in many different spots and deals with them immediately,
before continuing with the normal waiting state. When SleepHqO notices that a SendMessage
is waiting for the current queue, it calls ReceiveMessageO to deal with it and then goes back
to waiting for one of the other QS_xxx type messages. Sent messages are like an annoying
phone call. When one happens, you deal with it immediately so that you can go back to what
ever you were doing before. SleepHq() really wants to wait for a QS_POSTMESSAGE, a
QS_PAINT, or whatever. When it sees a pending QS_SENDMESSAGE flag, it handles it and
then goes back to what it's really waiting for. We discuss SendMessageO in detail at the end of
this chapter.

Because SendMessageO is dealt with inside SleepHqO, your application doesn't do any
thing special to receive SendMessage() messages. The handling of sent messages is thrown in
for free when you call GetMessageO. As noted earlier, though, it is unsafe to yield during a
SendMessage(). For this your application needs to call InSendMessage() and ReceiveMess
ageO. Another implication of the way SendMessageO is dealt with is that you cannot receive
sent messages at just any given time. You only receive sent messages when you're inside of
GetMessageO or PeekMessageO, when you call SendMessageO yourself, or when you call a
function that uses SendMessage(), such as a dialog box function. If you're in the middle of
crunching a long series of numbers, there's no need to worry about a critical message being
sent to you and interrupting your work.

The other point worth noting in the SleepHqO code is its use of WaitE ventO. The Win
dows scheduler and events are described in detail in Chapter 6, but a brief synopsis is needed
here: At offset 6 in the Task Database is the event count field. The event count is like a flag on
a mailbox. If it's up (if it contains a non-zero value), then there is some reason to switch to
the task, because something is waiting for it. The something is determined by the WakeBits in
the message queue. The scheduler however, knows nothing of why the task should be woken
up, just that it should be. WaitEventO simply waits for the mailbox flag to pop up. SleepHqO
checks what's in the mailbox and either waits some more for a desired QS_xxx "letter", or
returns when it finds what it wants. If SleepHqO sees a QS_SENDMESSAGE in the mailbox
(essentially, an InSendMessageO), SleepHqO takes it out, deals with it promptly, using
ReceiveMessageO, and goes back to waiting for the desired QS_xxx letter. In OS/2 Presenta
tion Manager, the act of "sleeping" is simplified by just using a semaphore for each message
queue. A Presentation Manager process can have more than one message queue, but only one
queue per thread. The equivalent to calling WaitEventO in OS/2 is to block on a semaphore.
When there's input for a particular queue, the semaphore is "tickled," and the thread wakes

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

up. Indeed, it was noted earlier that theWaitEventO/postEventO pair of functions essentially
treat offiet 6 in the TDB as a counting semaphore.

SetWQkeBit20
Now that we've seen how SleepHqO waits for the QS_xxx messages to appear, let's see where
the QS_xxx bits come from in the first place. The SetWakeBit20 function sets the WakeBits
in the application's message queue, as well as ensuring that the program gets scheduled so
that it can respond to the message.

void SetWakeBit2(HANDLE hQueue, UINT WakeBit)
{

}

hQueue.ChangeBit 1= WakeBit
hQueue.WakeBit 1= WakeBit

II Turn on the QS_xxx flags

II If we're setting a QS~xxx bit that the queue is waiting
II for, force the scheduler to schedule the task
if'(WakeBit & hQueue.WakeMask)
{

}

hQueue.WakeMask = 0
PostEvent() to hQueue's task II See Chapter 6 for info

SetWakeBit20 is a very popular internal routine, It is called by the following functions in
USER:

• WakeSomeoneO. This routine is called by the hardware event handlers when a message
has been added to the system queue. It sets the QS_MOUSE or QS_KEY bits.

• IncPaintCountO. When a window region is invalidated, IncPaintCountO setS the
QSYAINT bit and increments a counter. There's a corresponding DecPaintCountO
that decrements the counter. When the counter value goes down to zero, the
QS_PAINT bit is turned off.

• SendMessageO. During an intertask SendMessageO, SetWakeBit20 sets the QS_
SEND MESSAGE bits in the queue of the receiving task, so that the task wakes up and
processes the message.

• ReceiveMessage(). During an intertask SendMessage(), when the receiving task is done
processing the message and needs to wake up the sending task to receive the result,
this function sets a bit that's not included in the previously discussed QS:""xxx bits.

• ScanTimersO. Called by the timer interrupt service routine, this routine sets the
QS_TIMER bit if sufficient time has elapsed. The USER timer interrupt service rou
tine is installed using CreateSystemTimerO. The CreateSystemTimerO rate is the
smallest rate that's been specified in all the SetTimerO invocations.

• WriteMessageO. PostMessageO and PostAppMessageO call PostMessage20, which
uses WriteMessageO to put the message in the application's queue, and sets the
QS_POSTMESSAGE bit.

WINDOWS INTERNALS

Bringing It All Together-GetMessageO,
. PeekMessageO, and DispatchMessageO
At this point, we cpn now put together what we've learned about queues, sleeping, wakebits,
and all the rest and show how GetMessage() and DispatchMessage() do their thing. First, in
the code below, we see that GetMessage() and PeekMessage() are really just front ends for
GetMessage2(), which does most of the actual work. Put another way, GetMessage() and
PeekMessage() share most of their code, so the following pseudocode is for the GetMess
age()/PeekMessageO front ends and the GetMessage2() back end.

CetMessageO and PeekMessageO
I I "flags" are the "flags" parameter to PeekMessageO

I I "removeFlag" is a local indicating whether a message wi II be
II read from the queue.

II WakeMask is a local containing a QX_xxx mask of messages types
II that GetMessage()/PeekMessage() are waiting for.

II WakeBits is a local containing the QS_xxx bits that
II indicate which types of messages are waiting for this task.

PeekMessage:
Is_GetMessage_call = 0

goto GetMessage2

GetMessage:
Is_GetMessage_call = 1

Insert a flags WORD in the stack frame so that the stack
frame for GetMessage() is the same as for PeekMessage().
The flag is set to PM_REMOVE.

GetMessage2: II This is where GetMessage() and PeekMessage()
II start sharing their code

II See Chapter 6 for more details on locked task
if (current task is locked)

set PM_NOYIELD in flags

removeFlag = flags & PM_REMOVE

Unlock the system queue if this task holds it

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

if ((msgMin != 0) or (msgMax != 0))
Call function to set up WakeMask for the specified
message range

else
WakeMask = QS_MOUSE I QS_KEY I QS_POSTMESSAGE

I QS_TIMER I QS_PAINT

begin_lookinR-for_msgs:
if (!CheckForNewlnput())

goto wait_f~r_input

if (system queue not locked).
goto not_in_system_queue

II Pseudocode below

if (system queue not locked by current queue)
goto not_in_system_queue

if ((QS_MOUSE I QS_KEY) set in WakeMask and WakeMask)
if (ScanSysQueue())

goto GetMessage_have_msg

not_in_system_queue:
if (QS_POSTMESSAGE set in WakeBits and WakeMask)

if (ReadMessage())
go to GetMessage_have_msg

if ((QS_MOUSE or QS_KEY) set in WakeBits and WakeMask)
if (ScanSysQueue())

go to GetMessage_have_msg

if !CheckForNewlnput()
go to wait_f~r_input

if (QS_PAINT set in WakeBits and WakeMask)
if (DoPaint())

goto GetMessage_have_msg

if (PM_NOYIELD set in flags)
goto check_for_timer_msg

UserYieldO II Yield after paint test, before timer test.

if (!CheckForNewlnput()
goto wait_f~r_input

WINDOWS INTERNALS

if C QS_TIMER set in WakeBits and WakeMask
if C DoTimerC))

goto begin_Lookin9-for_msgs

wait_for_input:
if (FShrinkGDI)

ShrinkGDIheapC) II Shrink the GDI heap?

if C Is_GetMessage_caLL -- 0) II If not in GetMessageC), we
goto PeekMessage_exit II must be in PeekMessage()

SLeepHqCwakemask) II Wait for a message. CaLLs WaitEventC).

GetMessage_have_message:
if C a WH_GETMESSAGE hook is installed)

caLL the hook function

if C Is_GetMessage_caLL == 0) II If not in GetMessage(), we
return 1 II must be in PeekMessage()

if C returning msg -- WM_QUIT) II This is responsibLe for
return 0 II making the main

eLse II "whiLe C !GetMessage())"

return 1 II Loop exit.

PeekMessage_exit:
if C ! PM_NOYIELD

UserYi eLd () II YieLd to any higher priority app
II See Chapter 6 for significance of

return 0 II PeekMessage() caLLing UserYieldC), instead
II of WaitEvent().

CheckForNewlnputO
II Returns Zero FLag set if no desired input fLag is set
II
II WakeMask & WakeBits are in registers, and are the same
II thing as WakeMask and WakeBits in GetMessage2()

top:
Get handLe of current queue

if C QS_SENDMESSAGE set in the queues wakebits)
{

}

ReceiveMessageC)
goto top

CHAPTER 7 THE WINDOWS MESSAGING SYSTEM

II AND instruction sets the Zero fLag if any bits match
AND WakeMask, WakeBits together

return

We can now examme how each of the five types of messages are dealt with in the
GetMessage()/PeekMessage() code:

• QS_SENDMESSAGE. GetMessage20 calls CheckForNewInputO several times.
Checking for sent messages is its first priority. If GetMessage20 ends up sleeping via
SleepHqO, SleepHqO checks for sent messages.

• QS_POSTMESSAGE. ReadMessageO extracts the message from the application mes
sage queue. The message fields are copied into the addresses specified in the GetMess
ageO or PeekMessage() call.

• QS_MOUSE and QS_KEY. ScanSysQueueO extracts the message from the system
message queue. The message fields are copied into the addresses specified in the
GetMessage() or PeekMessage() call.

• QS_PAINT. DoPaintO extracts the painting parameters from the WND structure. The
message fields are copied into the addresses specified in the GetMessage() or
PeekMessage() call.

• QS_TIMER. DoTimer() synthesizes, then writes a timer message into the application
queue. GetMessage2() then starts at the beginning and finds the timer message as if it
were a QS_POSTMESSAGE.

From the GetMessageO/GetMessage2()/PeekMessageO pseudocode, we can draw a
couple of conclusions. First, a task calling GetMessage() or PeekMessageO does not yield to
any other applications if there are messages waiting for it. (As noted in Chapter 6,a task can
call YieldO to relinquish control, even when there are messages waiting for it.)

Secondly, there is a definite pecking order of message priority. Messages sent with
SendMessages() always have top priority, which is necessary because the task that did the
SendMessageO is cooling its heels, waiting for the reply. Next in priority are messages posted
with PostMessage(). Messages from the input system (mouse and keyboard) come next, fol
lowed by WM_PAINT messages. Checking for WM_PAINT comes after the other message
types because processing the other messages might cause additional paints to be needed. To
alleviate the potential for doing unnecessary paints, WM_PAINT messages are handled late in
the game, after things have settled down. Bringing up the rear, the last messages checked for
before GetMessage2() gives up and goes to sleep are WM_TIMER messages. The ordering of
these last two message types is critical. IfWM_TIMER messages were handled before
WM_PAINT messages, programs like CLOCK wouldn't work! (Exercise for the reader: Why?)

There's a Microsoft Knowledge Base article that claims that GetMessage() and PeekMess
age() will yield to other tasks if there are messages waiting for these tasks, before they check
for WM_PAINT and WM_TIMER messages. Based upon examination of the code in Win
dows, this does not appear to be entirely accurate. Instead, it seems that the yield occurs
before checking for WM_TIMERs, but not before checking for WM_P AINTs.

WINDOWS INTERNALS

It appears that the above message priorities are cast in stone. However, a clever applica
tion can play with the order that messages are received. How? You simply set the values of
uMsgFilterMax and uMsgFilterMin to encompass messages of the various types and use
PeekMessage (PM_REMOVE) to get the message.

NOTE: the following section relies heavily on knowledge of the scheduler, events, and
idling, which are described in detail in Chapter 6.

Many applications use a PeekMessage() loop to do background processing during lengthy
sequences, while still allowing other applications to receive messages and respond to the user.
There are several Microsoft Knowledge Base articles that warn that PeekMessageO loops
should be used sparingly, as they never allow the system to idle when no user input is occur
ring. The idle loop in the scheduler generates an INT 2Fh, Function 1689h, as well as an INT
28h, the DOS idle interrupt. Some power management schemes use these interrupts to deter
mine when the hardware can be put into a low power idle state. Many TSRs also rely on
receiving INT 28h. PeekMessageO prevents this idle loop from executing.

From looking at the pseudocode for PeekMessageO and GetMessageO, it might be hard
to pick out exactly why GetMessageO allows the system to idle, while PeekMessageO does
not. The answer lies in what happens when there are no waiting messages to be processed. If
GetMessageO is called, SleepHqO is invoked. SleepHqO calls WaitEventO, which decrements
the event count for the task down to 0 before calling the core scheduling routine in KER
NEL, RescheduleO. If the task has no events waiting for it, there's a good chance that
RescheduleO will fall into its idle loop and generate the appropriate idle interrupts.

On the other hand, if there are no messages waiting to be processed, and if PeekMess
ageO was called, the code invokes UserYieldO (assuming that the PM_NOYIELD flag wasn't
specified). UserYieldO checks for sent messages and eventually calls the KERNEL routine
OldYieldO. OldYieldO in turn calls RescheduleO. You might think that this would be enough
for RescheduleO to fall into its idle loop, just like when called by WaitEventO. This is not the
case however. OldYield() first increments the event count field for the current task before call
ing RescheduleO. This guarantees that RescheduleO will never enter its idle loop because it
always finds that the current task has an event waiting for it. PeekMessage() is documented as
returning control to the calling task, whether or not it has messages, and the complicated
mechanism just described is simply the way this always-return behavior is implemented.
Because the calling task stays the current task, whether or not it has messages, obviously the
system never goes idle.

DispatchMessage()
Once an application has retrieved a message, it is expected to deal with it. Typically, the mes
sage is dealt with by dispatching it to the appropriate window procedure. Luckily, Windows
provides the DispatchMessageO function to do this, rather than requiring the programmer to
determine the address of the window procedure and call it directly. DispatchMessageO looks
like:

Pseudocode for DispatchMessage()

LPMSG lpMsg II Pointer to passed in message.

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

II Will be used as scratch variable.

if ((msg.msg != WM_TIMER) && (msg.msg != WM_SYSTIMER))
goto handle_normally

if (msg.lParam == 0)
goto handle_normally

push msg fields onto stack (except lParam)

GetTickCount()
push DX:AX

II Returns DWORD in DX:AX, which becomes the
II lParam parameter for the WM_TIMER message.

lpMsg = msg.lParam II Timer function callback address

AX = SS II Fake a MakeProclnstance() thunk

goto ca ll_functi on /I now go ca II the wi ndow procedure

handle_normally:
if (msg.hwnd -- 0)

return;

push msg fields on stack

if (msg.msg == WM_PAINT)
set "paint" flag in WND structure II see Chapter 4

lpMsg = Window proc address II stored in WND data structure
II pointed to by msg.hwnd

AX = hln~tance from WND structure II Pretend there's

caLl __ function:
ES = DS = SS

call ClpMsgJ

II a MakeProclnstance()
II thunk

II Set all segment registers to hlnstance
II of the application

II Call the window proceedure (or timer
/I callback fn>. Remember~ lpMsg .is now
II used to store the address of the window
II function (or timer callback function)
II that needs to be called

WINDOWS INTERNALS

if (msg.msg != WM_PAINT)
goto DispatchMessage_done

II Check for destroyed window
if (! IsWindow(msg.msg))

goto DispatchMessage_done

if ("paint" flag in WND structure still set)
go to No_BeginPaint

DispatchMessage_done:
return

No_BeginPaint:
Display debugging message "Missing BeginPaint ... "

Call DoSyncPaint() to handle the painting correctly

go to DispatchMessage_done

The DispatchMessageO code is straightforward, with only a few interesting things worth
pointing out. At its beginning, there's special handling for WM_TIMER and WM_SYSTI
MER messages. If the lParam field of the message is non- zero, DispatchMessageO calls a user
supplied callback, rather than a standard window procedure. The SDK documentation for
SetTimer() describes how to use timer callbacks.

Another interesting facet of the DispatchMessage() code is its handling of misbehaving
programs that forget to do a BeginPaintO in their handler for WM_PAINT messages. Appar
ently Microsoft felt that this is enough of a problem such that DispatchMessage() always checks
to see if BeginPaintO was called by the message handler. If the program didn't call
BeginPaintO, DispatchMessageO goes ahead and does default painting to correct the situation,
and whines at you with a debug message if you're running the debug version of Windows.

Last of all, sharp eyes might notice that before the window procedure is called, Dis
patchMessageO sets. DS to the hInstance of the application, a setting that compensates for
applications that fail to export their callback functions properly. Under Windows 3.0, if you
don't export your functions, there is a good chance that when your window procedure is
called, the DS register will be set incorrectly, and you would most likely have a GP fault.
Some people have claimed that it's no longer necessary to export your functions and call
Mal<:eProcInstanceO, as long as your application only runs under Windows 3.1. Whether this
is sound advice or not is up for debate, but apparently Microsoft felt that it fixed enough
problems to warrant trying it.

;.1
>1
',I
'" [I CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

Advanced Study: Anatomy of a SendMessage() Call
SendMessageO is one of the most frequently used function calls in Windows and one of the
least understood. Even though the SDK documentation is fairly lucid on what a SendMess
ageO does, many programmers are under the ffiistaken assumption that SendMessageO simply
calls the appropriate window procedure. The fact that a SendMessageO might need to operate
in two different task contexts is often forgotten.

The methods for synchronizing two different tasks in order to bounce a message and its
response back and forth are highly complex. The receiver of a sent message might need to
send a message to another task before it can respond to the original message. This can lead to
nested SendMessageOs. We've seen how the messaging system works for normal messages,
and we've seen indications that intertask SendMessages() are dealt with in a special way. Now
we're ready to tackle the toughest portion of the messaging system and see what happens dur
ing an intertask SendMessage().

SendMessageO
Pseudocode for SendMessage()

if (receiving HWnd == -1)
goto BroadcastMessage II Not included here

Verify sending app has a message queue

Get receiving app's queue from receiving hWnd

II Are the sending and receiving queues the same?
Intertask = (receivingHQueue != sendingHQueue)

Call any installed WH_CALLWNDPROC hooks

if (Intertask)
goto InterTaskSend

II The next section deals with calling a window proceedure within
II the same program. This is the simple case, and is much easier
II than calling between two different programs (below)

Push address of the wndproc of the receiving WND structure
on the stack

Push SendMessage params on stack

put hInstance into AX II Fake MakeProcInstance() thunk

Load DS & ES from the SS regi ster II In case ca llee didn't
II export properly!

WINDOWS INTERNALS

CalL through the wndproc address in the window structure IISee Chapter 4

SendMessage_done:
return to caLLer

SendMessage_error: II Common JMP Location when errors occurr
put a in DX:AX

goto SendMessage_done

II SendMessage()'s that go between different tasks come here.
II This is where the code gets compLex.

InterTaskSend:
If (A task is Locked)
{

}

dispLay a diagnostic in debugging version
Goto SendMessage_Error

if (sending task is terminating)
{

}

dispLay a diagnostic in debugging version
Goto SendMessage_Error

If (SendMessage parameter area in sending app is aLready used)
{

dispLay a diagnostic in debugging version
SLeep until the parameter area is free II Uses SLeepHq()

}

Grab parameter area in sending app

Save the address where the resuLt of the caLL wiLL be stored

Copy the SendMessage parameters off the stack into the
sending hQueue

Put the receiving queue at the head of the SendMessage() List

II Set bits to wake up the recelvlng task
SetWakeBit2(QS_SENDMESSAGE

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

SendMessage_wakeup_receivinR-task:
if (a previous SendMessage() has compLeted)

go to got_repLy

Turn off "have resuLt" flags in sending queue

CaLL DirectedYieLd() to force the chiLd task to run next

II When the DirectedYieLd() returns, the receiving task
II shouLd have woken up, and caLLed ReceiveMessage() and
II RepLyMessage(), which are described beLow.

SLeep untiL resuLt is back from chiLd

II Uses SLeepHq(). Part of the code beLow is probabLy redundant, because
II there aLready shouLd be a resuLt avaiLabLe when the prior
II DirectedYieLd() returned.

got_repLy:
Copy the return vaLue to the "resuLt" area on the stack

ReLease parameter area in sending queue

if (Not repLied to)
go to SendMessage_wakeup_receivinR-task

goto SendMessage_done

ReceiveMessage()
Make sure there is a SendMessage waiting for us

Remove sending queue from List of SendMessage() queues

CLear QS_SENDMSG bit if the List of queues is empty

Save copies of the sending hQueue and pointer to area
where resuLts shouLd be saved in the sending task

Free the the SMPARAMS area in the sending queue

make sure target window is stiLL vaLid

Copy the Extralnfo data from sender to receiver

WI N DOWS INTERNALS

CaLL the target window proc

CaLL RepLyMessage() II ReceiveMessage() & RepLyMessage() caLL
II each other!

ReplyMessage()
II RepLy message takes the vaLue that shouLd be returned to
II the sender asa parameter. Here, it's called "return_vaLue"

RepLyMessage_start:
If (message has aLready been repLied to, or if no sending queue)

return

if (QS_SENDMESSAGE bit set
{

ReceiveMessage()
Goto RepLyMessage_start

}

if (resuLt area in use)
{

OLdYieLdO
Goto RepLyMessage_start

}

in receiving queue)

/I RepLyMessage() and
/I ReceiveMessage()
II caLL each other!

Copy return_vaLue into sending hQueue

Restore pointer to resuLt area on stack in the sending hQueue

Set ALreadyRepLiedFLag

SetWakeBit2(QS_SMRESULT) II TeLL the sending task that
II its repLy is ready.

DirectedYieLd(SendingTask) II Switch directLy to the sending
II task.

As the code at the top of SendMessageO shows, handling the case where an application
sends itself a message is very straightforward. SendMessage() pushes the parameters on the
stack, and calls the window procedure. The majority of the code for SendMessageO is for han
dling SendMessage() calls in which the receiving window is in a different task (an intertask
SendMessageO). Within the intertask SendMessageO, and in ReceiveMessageO and
ReplyMessageO, as well, a large amount of the code is for handling nested SendMessageO
calls. As SendMessageO calls are nested, a linked list of queues that are waiting for the
SendMessageO to return builds up. The most recent queue is always at the head of the list. As

CHAPTER 7 - THE WINDOWS MESSAGING SYSTEM

each message is replied to, the head of the list is removed, and the list shrinks down, eventu
ally, to an empty list. (See offsets 38h and 3Ah in the message queue structure in Table 7-1.)

Although not commonly done, ReplyMessageO can be called by application programs.
For instance, inside of a WH_CALLWNDPROC hook, ReplyMessageO can be used to pre
vent the window that ordinarily would get the message from actually receiving it. Another
case where you might call ReplyMessageO is when you're handling a message that's been sent
to you through SendMessageO. The sending program cannot execute until your program fin
ishes processing the message. Ifpart of your handling of the message involves Windows func
tions that yield control (MessageBox(), and so forth), a potential deadlock situation can arise.
By calling ReplyMessageO before doing anything which might yield control, you can prevent
this situation.

Problems with the Windows Input System
The fatal·flaw in the Windows input system, as well as in OS/2 PM, has to do with the single
threaded input system. If an application fails to call GetMessageO orPeekMessageO in a
timely manner, the system deadlocks. The mouse can be moved around, and background pro
cessing in enhanced· mode DOS boxes continues, but Windows applications do not respond
to mouse or keyboard input. The system is as good as hung.

The underlying reason for this is inside GetMessage20 where applications yield to other
tasks in the system. Between successive calls to GetMessage20, no other Windows program
can run. For example, let's say a database program gets a WM_COMMAND message, which
itinterprets to mean,; ~'Go sort this database of 300,000 .records." If the program dutifully
performs the sort operation and takes 45 minutes, then all applications in the system are dead
locked for 45 minutes until the application calls GetMessageO again. Occasionally an applica
tion tries to be helpful and lamely changes the icon to an hourglass. This is not extremely
helpful, other than to let you know that it's time to get a cup of coffee.

This wonderful quirk in the messaging system really rears its ugly head when you attempt
to write a Windows hosted debugger (also called aGUI debugger). A GUI debugger isa
debugger for Windows programs that itself uses the Windows display mechanisms. What's the
problem with that? Imagine the following scenario. A GUI debugger places a brealcpoint in
the debugee's code. Eventually, the program being debugged hits the breakpoint and stops.
Now we have a problem on our hands. The program being debugged is stopped so it cannot
call GetMessage() to yield control to other tasks. That means no other tasks, including the
GUI debugger, can get their messages. The debugger can't even respond to mouse clicks tell
ing the debuggee to run again. It's time for the reset button.

Some readers are probably saying, "But there are GUI de buggers available!" How do
they deal with this situation? Unfortunately, the answer is, not extremely well. When the
debuggee hits the breakpoint, or stops for any reason, the GUI debugger takes over the duties
of calling GetMessageO and DispatchMessageO for the debuggee. The debugger must pre
vent any code in the debuggee process from running. To do this, the debugger must some
how intercept all messages that would normally go to the debuggee windows and deal with
them itself.

WINDOWS INTERNALS

One way to intercept all messages destined for the debuggee is to subclass all of the
debuggee's windows. A major question then arises. How do you deal with all the messages
that were originally intended for the debuggee? The debugger surely doesn't know how to
paint the debuggee's windows in response to a WM_PAINT message. Situations such as DDE
transactions where message ordering is critical are even harder to deal with. Unfortunately,
there's no 100% perfect solution. It's up to the designers of the GUI debugger to deal with
this situ'ation as best they can. You may now understand why Turbo Debugger for Windows
(TDW) and Codeview for Windows (CVW) are text mode debuggers, rather than GUI
debuggers.

In Win32, the input mechanism has been redesigned. One of the main goals of the rede
sign was to eliminate the input system problem. To accomplish this, Win32 has separate input
queues for each task. A thread in the Win32 subsystem continually assigns the messages to the
appropriate applications queue as the input events occur. This allows programs to deal with
messages in their own sweet time, without adversely affecting the responsiveness of the system
as a whole. Helen Custer's book, Inside Windows NT, describes the details of the NT input
system. Unfortunately, this improved functionality is really part of Windows NT, rather than
the Win32 API; and so this functionality does not extend to Win32s applications. Under
Win32s, the Windows 3.1 USER is still in charge of the input system, thereby causing Win32s
applications to be in the same boat as regular 16-bit Windows programs. Sigh!

If you know that your Windows 3.x program will take a significant amount of time to
process a message, you can allow it to yield to other programs by using a PeekMessageO loop.
A prime example of PeekMessage() loops in action are the Windows hosted development
environments that compile your program, while still allowing other applications to be used.
The details of implementing a PeekMessage() loop have been covered to death in Microsoft
Knowledge Base articles, as well as in magazine articles. Thus, I won't go into the details of
implementing one here. If you do use a PeekMessageO loop, be sure to read the caveats given
earlier concerning power consumption and idling.

WM_QUIT

The Windows input system is a complex beast. It's integrally tied to many other parts of Win
dows, especially the scheduler (Chapter 6) and the windowing system (Chapter 4). Of all the
subsystems discussed in this book, the messaging system is almost certainly one of the most
important to understand if you want to really understand Windows.

I

Dynamic Linking

In the days when DOS was the only game in town, programming was a lot simpler in some
respects. You wrote your code, compiled and linked it, and were done with it. All the pieces of
your program came together when you invoked the linlcer. Occasionally you might get fancy
and generate or intercept an interrupt to communicate with some other code, such as DOS
itself. For the most part, though, your program remained essentially a single, self-contained
entity.

With Windows, the situation is much more complex. Your code calls routines in libraries
that the linker never sees when it links your program. Put another way, the linker can't possi
bly fill in the target addresses of the CALLs to these library routines. To take it a step further,
your program can even call functions that you and your program had no concept of when you
compiled and linked. Then;'s no way to retreat under a rock and ignore this dynamic linking
aspect of Windows. Every Windows program does dynamic linking of one form or another.
Whenever you call a Windows API function in your code, another dynamic link occurs.

With this added complexity comes enormous power and flexibility, however. A prime
example of this flexibility is the device drivers used by Windows. The same core Windows files
(USER, KERNEL, GDI, and so forth) work with a multitude of different video, mouse, key
board, sound, communications port, and printer drivers. This feat is achievable because
dynamic linking allows the target of CALL instructions to be filled in at the last possible
moment, while the program is running. When Windows starts up, KERNEL uses SYS
TEM.INI to tell it which drivers should be loaded and fixed up. Instead of having to re-link

463

WINDOWS INTERNALS

all of the various Windows components every time you change a driver, instead you just mod
ify a line in the SYSTEM.INI file.

Although Windows is the first exposure to dynamic linking for many PC programmers, it
is certainly not the first system with these capabilities. OS/2 uses a dynamic linking imple
mentation which is virtually identical to Windows. For instance, the OS/2 DosGetProcAddrO
corresponds exactly to GetProcAddress() under Windows .. UNIX, with its shared libraries, has
a form of dynamic linking. In fact, almost all real operating systems are fundamentally based
on the availability of dynamic linking and have been so for a long time. It's DOS that's out of
the mainstream with its need for programs to be entirely self-contained.

In this chapter, we first come to a good definition of dynamic linking. We cover both
implicit dynamic linking, as well as explicit dynamic linking using the GetProcAddressO func
tion. Then, we see how dynamic linking is implemented in Windows 3.1 and finish up by
examining some of the issues, such as MakeProcInstance() thunks and exporting, that affect
how your program performs dynamic linking.

Before we begin our discussion, I'd like to note that the concepts described in this chap
ter rely heavily on an understanding of the module table described in Chapter 3. If you're not
familiar with the basic concepts ofNE files and in-memory module tables, you should proba
bly read the appropriate sections of Chapter 3 before continuing.

What is Dynamic Linking?
When thinking about dynamic linking, it helps to remember that everything eventually boils
down to. machine instructions. When compiling or assembling your program, the compiler or
assembler generates machine code and places it in an object file (an .OBJ file on the PC). For
instance, a CALL instruction generated by your compiler consists of two parts, the CALL
opcode and the address where the CPU should start executing. Your compiler can emit the
CALL opcode byte at compilation time. It can't, however, know the exact address to which
the CPU should transfer. The compiler simply can't know where in memory the target of the
call instruction will be. The target address of the call instruction can vary each time Windows
is loaded. The resulting machine instructions are therefore incomplete (see FigureS-I).

Figure 8-1: A Typical FAR CALL Fixup in an EXE or DLL.

CALL GetMessage Address

9Ah ? ?

(offset) (selector)

I

Needs fixing up

CHAPTER 8 - DYNAMIC LINKING

The job of completing the instructionis left to the linker. To assist the linker in finishing
the instruction, the compiler emits a fixup record in the OBJ file. The fixup record tells the
linker what the intended target routine is. For instance, if you call a function "Foo" in
another source file, the fixup record tells the linker to find the code for the Foo function in
the list of 0 BJ or LIB files presented to it. The linker should then put Foo's address into the
second part of the CALL instruction, thereby completing the instruction. The MS-DOS Ency
clopedia has a very good explanation of how this works.

A more physical example of a fixup can be found throughout this boole. In writing the
chapters, I needed a way to refer to other chapters of th~ book by their chapter number.
However, I was not sure how many chapters there would be or what their order would be.
Because I didn't know actual chapter numbers when writing a reference, I placed an XXX
wherever a chapter number should go. The XXXS are a form of fixup. Later on, when the
book was being prepared for printing, I searched for all the XXXs and replaced them with the
correct chapter number. As you'll see later, the Windows loader does something similar to this
when it loads an EXE or DLL.

Coming back to the topic at hand (compiler generated fixups), an important point needs
to be made. The compiler knows absolutely nothing about the intended targets of the call
instruction. It cannot and should not know that GetMessageO will be in a Windows DLL,
while FooO's code is in another source module in your program. The compiler is just an igno
rant code generator that gives the linker the name of the call target in the fix up record and
expects the linker to sort out where the function's code resides.

Also, before we go any further, we do need to make one other point, to be completely
accurate. Not every dynamic link fixup involves a CALL instruction. Any instruction, includ
ing variables in data segments that could be affected by a fixup record, can be handled with
dynamic linking. For the most part, though, dynamic linking is used with the FAR CALL
instruction, so that's what we focus on here.

The linker's job is to collect all the OBJ and LIB files given to it and create a file that the
operating system loader can load into memory. (LIB files are essentially just collections of
o B J files strung one after the other, so we treat them as 0 B J files for this discussion.) If there
are any instructions that the compiler could not complete (as described earlier), the linker
must fill in the target address. This task is called performing the fixups, or resolving fixups.

Now we're ready to see what differentiates dynamic linking from static linking. A static
link occurs when the linker is able to find the target of the fixup in one of the OBJ or regular
LIB files given to it. In this instance, the linker patches the address portion of the CALL
instruction with the correct address and then forgets the fixup record. It's no longer needed.
Dynamic linking occurs when the linker can't possibly know the address of the fixup target.
These fixups aren't performed until the program or DLL is actually loaded into memory,
hence the term dynamic linking.

The emphasis of this chapter is on the intermodule aspect of dynamic linking, that is,
CALLs between two separately linked Windows modules. However, the simplest form of
dynamic linking is termed base linking; it doesn't involve any outside modules. If your pro
gram has more than one code segment, it's very likely that you have FAR CALLs between the
two segments. When linking a program like this, the linker doesn't know the actual selector
value that the Windows loader will assign to the various segments. Since the linker doesn't

WINDOWS INTERNALS

know which selectors will be assigned to the EXE or DLL's segments, it has to give up and let
somebody else resolve the fixup. The "somebody else" is the Windows loader. More specific
ally, it's the internal KERNEL SegRelocO function, called by LoadModuleO, that performs
the fixup. LoadModuleO is described in Chapter 3.

Just as the compiler emitted fixups to tell the linker about instructions it couldn't com
plete, the linker puts information in the EXE or DLL file telling the Windows loader about
fixups that the loader needs to resolve. This is nothing more than "passing the buck." The
Windows loader resolves all the fixups for a given segment in a module when it loads the seg
ment into memory. How the Windows loader can take the fixup information and find the cor
rect address with which to resolve it is one of the primary focuses of this chapter. If you're
interested, the format of fixups in EXE and DLL files are given in the NE file documentation
in the Windows 3.1 SDK.

To give an example of base dynamic linking, imagine that you have a program with two
code segments. In segment 1, you call a function in segment 2. A FAR CALL instruction is
needed. Part of the FAR CALL instruction is the selector value that should be put in the CS
register, which in this case, is the selector for the second segment. Since there's no way for the
linker to know the actual selector the loader will pick for the second code segment, all the
linker can do is emit a fixup record in the EXE or DLL. The fixup tells the loader to figure
out what selector it assigned to the second segment and patch the FAR CALL instruction:
with the selector value. How does the loader remember which selector value it assigned to the
second segment? Simple. As Chapter 3 describes, each module table holds a segment table
containing information about each logical segment in the module, including the associated
selector value.

Another type of dynamic linking happens when the linker is unable to find the code for
the target routine anywhere in the OBJ files given to it. This means that the destination of the
CALL instruction must lie somewhere outside the code in the module being linked. For
example, your program can call GetMessageO, but the GetMessageO code is nowhere to be
found in the OBJ files passed to the linker. Instead, the GetMessageO code is in the
USER.EXE file.

At this point, you may be wondering, "But how does the linker know that a GetMess
ageO call can be resolved by the Windows loader, while other calls can't be?" Every Windows
programmer has had the experience of getting an "Undefined symbol" message when linking
a Windows EXE or DLL. What criteria does the linker use for determining which fixups are
valid, while others aren't?

The answer lies in the magic of import libraries, which we cover in more detail later on.
For now, it's enough to say that an import library associates names (for example, GetMess
age), with a set of "magic cookies." For instance, all of the Windows APls that you typically
call have their names and associated magic cookies contained in an import library (usually
IMPORT.LIB or LIBW.LIB). If the linker can't find the name it's looking for in the OBJ file
list, it searches the import libraries and the IMPORTS section of the DEF file (more on
IMPORTS later). If the linker finds the name in an import library or in the IMPORTS sec
tion, it puts the magic cookies in the fixup table of the EXE or DLL. When the Windows
loader comes along to load this module, it uses the "cookies" to find the correct target
address to fixup the instruction with. Only if the linker can't find the name of the function

CHAPTER 8 - DYNAMIC LINKING

after searching in the OBJ files, the import libraries, and the IMPORTS section, will it give
the "Undefined symbol" error. Calling a function in a DLL, and using an import library to
tell the linker about it, is called implicit dynamic linking. The Windows loader knows through
the module reference table to load the target DLLs, if necessary, before fixing up the call
instruction. Once you provide the import library to the linker, your work is done.

A third type of dynamic linking occurs even later, after the program has already been
loaded and is executing. This form of dynamic linking involves the program explicitly asking
the KERNEL module for the address of a function in a loaded DLL. If KERNEL is able to
locate the function, it returns the function's address, so that the requesting program can call
it. You can request the address of a function with the GetProcAddressO API. Typically, you
call GetProcAddress() and store the result in a function pointer. You then call the function
indirectly through the function pointer. We discuss the implementation of GetProcAddress()
in a bit.

Requirements for Intermodule Dynamic Linking
In order to perform either kind of intermodule dynamic linking, implicit or with
GetProcAddress(), two things are necessary. The first requirement is that you know the Win
dows module that you're trying to link to. This can be either a module name, specified in the
NAME or LIBRARY line in the DEF file, or the associated module handle. For instance,
USER is a module name,and you can get its module handle by calling:

hModuLeUSER = GetModuLeHandLe("USER");

The format of the module table which the module handle refers to is discussed in detail in
Chapter 3. As that chapter also mentions, the module tables are kept in a linked list, so all
GetModuleHandle() needs to do is walk the list, comparing the passed string argument to the
module name stored in the module table. Also, note that sometimes you can hard code in a
module name such as USER, while at other times, you may need to get the module name
from an INI file. A good example is a printer driver.

When you implicitly link to a function (for example, when you call GetMessage() directly,
resolving the fixup with the import library), the module name is stored in the imported names
table of the executable file. For instance, GetMessage() is in the USER module. If your pro
gram calls GetMessageO, "USER" appears in the imported names table of the EXE or DLL.
Alternatively, when you dynamically link explicitly with GetProcAddress(), the loader needs to
know the module handle for the module containing the function you're linking to (see above
example). The point is that either a module name or a module handle is sufficient to identifY
the target module.

Internally, module handles are the only thing KERNEL uses in its dynamic linking func
tions. If a module is specified by its name, KERNEL automatically finds the corresponding
module handle and uses that from then on. For example, when you load a new module in the
system, KERNEL talces each module name string in the imported names table and converts it
to the corresponding module handle. KERNEL stores the module handles in the in-memory
module table and uses the handles from that point on. The imported names table isn't needed
anymore.

WI N DOWS INTERNALS

The second requirement for dynamic linking is that an entry point must exist for the tar
get to which you're fixing up. The entry point can either be an integer value, termed an ordi
nal here, or an ASCII string. If you do specity a string, KERNEL converts the string to its
corresponding entry ordinal. What exactly is an entry ordinal? In each module table resides an
entry table (hence, the need to specity which module you're linking to). The entry table maps
an entry ordinal value to an address in the module's code or data segments.

To give an example of this, the GetMessageO function is the 108th entry in the USER
module. In my copy of USER.EXE, the entry table tells me that the address for the 108th
entry is in logical segment 1, offset OB74Dh. When loading a code segment that contains a
call to GetMessageO, the loader sees a fixup for the 108th entry in USER. The fixup also indi
cates where in the loading code segment the fixup should be applied. Using the example
shown in Figure 8-1, the fixup indicates that selector and offset fields in the FAR CALL need
to be changed to contain the address of GetMessage(). The offset field (one byte into the
instruction) will be set to B74Dh. The segment field (three bytes into the instruction) will be
set to the selector for USER's first segment.

The loader goes through the following steps:

1. Figure out the module handle for USER.

2. Use the module handle to access the entry table inside USER's module table. In
the entry table, the loader sees that the code for the 108th entry is at logical seg
ment 1, offSet OB74Dh.

3. Use the module's segment table to look up the selector value for USER's first
logical segment (for example, OSBFh). The loader now knows that GetMess
age() is at the physical address OSBFh:B74Dh.

4. Patch the segment and offset portions of FAR CALL instruction with the physi
cal address of GetMessage() .

A moment ago, we mentioned that you can specity a function name, rather than an entry
ordinal, when dynamic linking. This is most commonly done when you call GetProcAddress()
(although there is also a way to specity an entry ordinal rather than a name to
GetProcAddress()). In addition, it is possible to implicitly link to a function by name, rather
than by entry ordinal. This is rarely done, however. In all cases, if a function name is specified
instead of an entry ordinal, KERNEL converts the name to its matching entry ordinal.

You might be wondering how KERNEL converts names to their matching entry ordinal
value. The answer lies in a set of tables contained within the module table. These tables COn
tain the resident and nonresident names. Both tables are just a series of uppercase strings like
"GETMESSAGE", with each string followed by its corresponding entry ordinal value. As we
see a bit later on, KERNEL scans these tables to match a given string to its entry ordinal. As
its name implies, the resident names table is always in memory and is part of the module table.
When KERNEL searches for a name, it always looks in the resident names table first. KER
NEL loads the nonresident names table from disk each time it's needed. Since most dynamic
linking is done implicitly, and therefore with entry ordinals, the nonresident names table is
not loaded that often, so it usually doesn't reduce performance to have the table be nonresi-

CHAPTER 8 - DYNAMIC LINKING

dent. In fact, if you know that nobody will be linking to your DLL by name (with
GetProcAddressO for example), you can remove the nonresident names table altogether.

If you're curious to see real examples of all these tables we've been discussing, run
TDUMP (from Borland) or EXEHDR (from Microsoft) on some Windows EXEs and DLLs.
Both of these programs give you comprehensive information for the tables contained within
Windows EXE and DLL files. TDUMP displays the tables in a fairly raw format, showing you
each table exactly as it exists in the file. Figure 8-2 below, shows a portion of the TDUMP
output from PBRUSH.DLL. All of the tables discussed above can be seen in the output. Note
that WEP is in the nonresident names table, which is a no-no according to Microsoft. It
should be in the resident names table so that the nonresident names table doesn't need to be
loaded during the DLL termination. EXEHDR tends to combine the information from sev
eral tables. You see more information in less space, but don't get quite the feel for what the
tables actually look like.

Figure 8-2: Portion of TDUMP Output of PBRUSH.DLL.

Segment TabLe

Segment Number: 01h
Segment Type: CODE
Sector Offset: 0019h
Attributes: ReLocations

offset: OOCOh

ALLoc Size: 16BAh
FiLe Length: 16B9h

Segment Number: 02h
Segment Type: DATA
Sector Offset: 019Ah
Attributes: MoveabLe

ALLoc Size: 0180h
FiLe Length: OOCEh

Sharable Pre Loaded

No Resource tabLe present

Resident Name TabLe
ModuLe Name: 'PBRUSH'

ModuLe Reference TabLe
ModuLe 1: KERNEL
ModuLe 2: GDI

Imported Names TabLe
name
KERNEL
GDI

Entry TabLe

offset: OODOh

offset: OODAh

offset: OODEh
offset
0001h
0008h

offset: OOEAh
Fixed Segment Records (8 Entries> Segment: 0001h

Entry 1: Offset: 0075h Exported SingLe data

WI N DOWS INTERNALS

Figure 8-2: Portion of TDUMP Output of PBRUSH.DLL. (continued)

Entry 2: Offset: 009Eh
Entry 3: Offset: 0208h
Entry 4: Offset: 0220h
Entry 5: Offset: 0341h
Entry 6: Offset: 0541h
Entry 7: Offset: 0770h
Entry 8: Offset: OD3Ch

Non-Resident Name Table
Module Description: 'Virtual
Name: VSTRETCHBlT
Name: WEP
Name: DISCARDBAND
Name: VDElETEOBJECT
Name: VPATBlT
Name: VBITBlT
Name: GETVCACHEDC
Name: VCREATEBITMAP

Segment Relocation Records
Segment 0001h relocations
type offset target
PTR 0061h KERNEl.4

Exported Single
Exported Single
Exported Single
Exported Single
Exported Single
Exported Single
Exported Single

offset: 0105h
bitmap manager'

Entry:
Entry:
Entry:
Entry:
Entry:
Entry:
Entry:
Entry:

PTR 0831h KERNEl.132
PTR
PTR
PTR

OB8Dh
0138h
OBF6h

KERNEl.5
KERNEL.6
KERNEl.7

rest of file omitted

data
data
data
data
data
data
data

6
1
8
7
4
5
3
2

What can we discern from the TDUMP output? Quite a lot. First off, there are two seg
ments, a code and a data segment. We can also see the size of the two segments and where the
raw data for the segments can be found in the file. The first entry in the resident names table
is the module name PBRUSH. If we wanted to use GetProcAddressO to call routines in
PBRUSH.DLL, we would first get the DLL's module handle in the following way, assuming
PBRUSH.DLL is already loaded:

hModPBrush = GetModuleHandle("PBRUSH");

The module reference table tells us that PBRUSH.DLLcalls functions in the KERNEL
and GDI modules. From the entry table, we know there are eight functions that PBRUSH
exports for use by outside EXEs or DLLs. The entry table also tells us that each of these
exported functions is in segment 1, and gives the starting offsets of each function within seg
ment 1.

CHAPTER 8 - DYNAMIC LINKING

The nonresident names table gives us the name of each exported function that appears in
the entry table. For instance, if we wanted to call VSTRETCHBLT, assuming we knew its
parameters, we could get its address like this:

lpfnVStretchBLT = GetProcAddress(hModPBrush, "VSTRETCHBLT");

or alternatively,as we'll see later:

lpfnVStretchBLT = GetProcAddress(hModPBrush, "#6");

Last of all, the segment relocation records tell us all the locations where the Windows
loader needs to fix up an instruction. The target portion of each fixup is useful for determin
ing which APIs the DLL calls. For instance, KERNEL.4 is LocalInitO, KERNEL.132 is
GetWinFlagsO, and so on. You can find out these names by running TDUMP or EXEHDR
on KRNL386.EXE. .

Resolving DynamiC: Links

Now that we have a sense of what dynamic linking is, we'll dig into the details of how the
Windows KERNEL implements it. In this excursion, we travel through the code of the
GetProcAddressO function. We chose to show the GetProcAddressO style of linking because
it's. much simpler than showing how implicit linking works when you load a new program or
DLL. Internally, GetProcAddress() and the Windows loader use the same workhorse routines,
so we're really not missing much.

GetProcAddress()
Earlier, we went over the two requirements for dynamic linking, a module and an entry point.
It's no coincidence that these are the exact parameters to GetProcAddressO. Actually, that's
not quite true, according to the Microsoft documentation. The first parameter to
GetProcAddressOis documented as an instance handle (DGROUP). What good is the selec
tor of the module's DGROUP segment? By itself, it's useless. However, as we know from
Chapter 3, the instance handle can easily be converted into a module handle.
GetProcAddressO calls GetExePtrO, which we cover next, to take care of this conversion:
GetProcAddressO really should take a module handle. In fact, the Windows 3.0 documenta
tion shows GetProcAddressO taking an HMODULE. Unfortunately, the 3.1 SDK backtracks
and specifies ail HINSTANCE instead. Perhaps it's currently documented as taking an
HINSTANCE because instance handles are more easily obtained than module handles. Your
WinMainO or LibMain() function is passed an instance handle, rather than a module handle.
When you call LoadLibraryO, you get an hInstance, as well. On the other hand, if you follow
the GetProcAddressO documentation exactly and want to get the address of something in
USER, you somehow need to get USER's instance handle. Just how are you supposed to do
that? It's not immediately clear that one solution is to use LoadLibraryO on a DLL that's
already loaded. And as we see from Chapter 3, calling LoadLibraryO has a lot of overhead just

WI N DOWS INTERNALS

to get an instance handle that GetProcAddress() just turns around and internally converts
back to a module handle anyway. Many seasoned pros don't bother with LoadLibraryO there
fore. They just call GetModuleHandle("USER") and give GetProcAddressO what it really
wants, a module handle. This is yet another case where Microsoft tried to make things simple
for the programmer, but instead made it harder to really understand what's happening.

Once GetProcAddressO knows the module handle it's supposed to work with, it looks to
see if the module handle is for a task, as opposed to a DLL. If the module is for a task,
GetProcAddress() immediately bails out. The reasoning is that you're not supposed to be
linking to a task. It's OK for a task to link to a DLL, and for a DLL to link to another DLL,
but Microsoft doesn't want you linking one task to another task, or from a DLL to a task.
The reason for this might be that you could make calls to the task's code without having
properly switched to the proper task context. For instance,You could end up using the wrong
PSP or the wrong SS register. As shown in Chapter 3, the Windows loader makes a similar
test when loading implicitly linked modules and returns error code 5, "Attempt to dynami
cally link to a task," if such a situation arises. If you really want to dynamically link to a task,
you can turn on the DLL bit in the flags of the module table before calling GetProcAddressO,
and then turn the bit back off later. This hack assumes that the module is already loaded in
memory. It won't work if you're implicitly linking (there's no module table to modifY yet).

An undocumented feature of GetProcAddressO is the ability to pass in 0 as the hInstance.
When GetProcAddress() sees this, it uses the module handle associated with the current (call
ing) task. This enables a task to call GetProcAddressO on its own functions, but still prevents
it from linking to other tasks.

With the module handle portion of the dynamic link squared away, GetProcAddressO
now turns its attention to the entry point parameter. GetProcAddressO can take an entry
point in three different forms:

• The name of the entry point as an ASCII string. It must match the name in the target
module's resident or nonresident names table exactly. The string is typically uppercase,
for instance, "GETMESSAGE".

• An ASCII string representing the entry ordinal in decimal. For instance, GetMessage(), '
the 108th entry in USER, would be specified in this form as "#108" .. This behavior
isn't documented for Windows, but is documented for the OS/2 equivalent
DosGetProcAddr(). The KERNEL module itself uses this method of specifYing the
target function when it links to functions in other DLLs.

• An entry ordinal value. In this case, the ordinal value is found in the offset portion of
the LPSTR parameter to GetProcAddressO. The segment portion must be zero. For
instance, GetMessageO in this form could be created by MAKELP(O, 108).

Regardless of which form is specified, GetProcAddress() does whatever is necessary to get
the entry point into its integer (entry ordinal) form. If either of the string forms was specified,
the FarFindOrdinalO function, described later, does whatever is necessary to determine the
integer entry poin,t value.

After the integer form of the entry point is known, the final step is to pass the hModule
and entry ordinal to FarEntProcAddressO, which just passes its parameters to EntProc
AddressO. EntProcAddressO uses the hModule and entry ordinal to determine an actual

CHAPTER 8 - DYNAMIC LINKING

selector:offset that can be returned to the caller of GetProcAddressO. We describe
EntProcAddress() in a bit.

Pseudocode for GetProcAddress() - LDAUX.OBJ
II Parameters:
II WORD hInstance
II LPSTR procName
II Locals
I I WORD buffer[Qx82J
II WORD hModule II handle to a module database

II Entry ordinal to look for I I WORD entryOrdinal

if (hInstance != 0')

(
II a nonzero instance handLe?

}

II Get module handle from hInstance. If an hModule
II was passed to us, GetExePtr() returns it, unchanged.
hModule = GetExePtr(hInstance)
if (hModule == 0) II Bailout if hInstance

return 0 II was no good.

if (DLL flag not set in hModule's flags)
(

}

II You can't dynamically link to a task. Tell the
II caller about this.
FarKernelError("Can not GetProcAddress a task.")
return 0;

else II We were given a 0 instance handle. We'll use
{ II the module handle of the current task therefore.

}

hModule = CurTDB.TDB-pModule II module handle for a task
II is stored in its TDB.

II We now check which form the procedure "name" is in. It
II can either be a LPSTR to a function name, or it can be
II an entry ordinal value in the LOWORD, and a 0 in the HIWORD.
if (FP_SEG(procName) == 0) II LOWORD is entry ordinal
(

}

else
(

entryOrdinal = FP_OFF(procName)

II we have a name pointer

II Copy the name to a local buffer, and prepend a length
II byte to it.
CopyName(procName, buffer, 0)

}

WINDOWS INTERNALS

II Look up the name in the resident or nonresident names
II tabLe for the module. The WORD after each name
II contains the entry ordinal for the associated name.
II FarFindOrdinal{) just calls FindOrdinaL{), which is
II expLored later on.
entryOrdinal = FarFindOrdinaL{ hModule, buffer, OxFFFF
if (entryOrdinaL == 0)

return 0

II The reaL work goes on in this routine. Given a module
II handLe, go Look up the address of the specified entry
II ordinaL in the moduLe's entry tabLe.
return FarEntProcAddress{ hModuLe, entryOrdinaL)

GetExePtrO
GetExePtrO is one of my favorite undocumented functions. Given almost any kind of global
handle, it will find the module handle associated with it. Sadly, it will RIP in the debug KER
NEL if you pass it a task handle-a minor blemish on an otherwise wonderfully useful func
tion.

GetExePtrO goes through the following steps in the order given below, to find the associ
ated module handle:

1. If you pass in a module handle, GetExePtr() just returns it. A simple test for the
'NE' signature at the beginning of the segment is all that's needed to test for
this.

2. If you pass in an instance handle, GetExePtrO walks through the task list, look
ing for a task (TDB) whose hlnstance field matches the passed handle. If
GetExePtrO fmds the TDB, it knows the passed handle is an instance handle.
It's then a simple matter to return the corresponding module handle that's
stored in the task database.

3. If you passed in a handle that is a GMEM_MOVEABLE global handle,
GetExePtrO calls MyLockO (Chapter 2) to obtain the associated selector.
GetExePtr() tests this selector to see if it points to a module table. If so, it's
returned.

4. GetExePtrO then calls GetOwnerO to determine the owner of the block. Block
ownership is discussed in Chapter 2. A block's owner can be either a module
handle, a PDB (PSP), or a task handle. If the owner is an hModule, GetExePtrO
returns it.

5. Last, GetExePtrO iterates through the task list again. This time, it compares the
owner of the block to the PDB for each task. IfGetExePtrO finds a match, it
returns the module handle for the task. Blocks that were obtained using
GlobalAllocO and friends are found this way.

CHAPTER 8 - DYNAMIC LINKING

Pseudocode for Get ExePt r () - LDUT! L. OBJ
II
II
II
II
II
II
II

Parameters:
WORD handle

Locals:
WORD hTask
WORD hModule
WORD PDB
WORD blockHandle

if (handle &1)
{

II If the handle is in a FIXED segment

}

II Treat the handle as a selector, and look for an NE
II signature (at the beginning of all module tables),
II meaning that no further work is required.
if (handle.ne_magic == 'NE')

return handle

II Perhaps the handle passed to us was an instance handle.
II Therefore, iterate through every task in the system,
II comparing the hInstance for the task to the handle that
II we were passed. If a match is found, the hModule for the
II task is returned.
hTask = HeadTDB
while (hTask != 0)
{

if (hTask.hInstance == handle) II Does hInstance of task
return hTask.TDB-pModule II match passed handle? If so,

II return hModule for task.
hTask = hTask.TDB_next II Try the next task.

}

II Call the MyLock() function to obtain the selector for
II the handle passed to us. See Chapter 2 for details
II on.MyLock().
blockHandle = MyLock(handle
if (blockHandle == 0) II Bailout if not found.

return 0

if (blockHandle.ne_magic -
return blockHandle

'NE') II Is blockHandle a
II module table? Return
II it if so.

II Get the owner of the memory block by looking it up in
II the global memory block's arena (see Chapter 2). The

WINDOWS INTERNALS

II owner of a gLobaL heap bLock is either a moduLe handLe or
II a POB (Process Oata Base; a PSP).
hModuLe = GetOwner(bLockHandLe)
if (hModuLe == 0) II BLock isn't owned. Abort!

return 0

if (hModuLe.ne_magic -
return hModuLe

'NE') II If the bLock is owned by
II an hModuLe, return the
II hModuLe as the owner.

POB = hModuLe II Maybe it was a POB, rather than an hModuLe?
II We'LL waLk the task List again, comparing
II the POB's for each task to find out.

hTask =
whiLe
{

II
II
if

HeadTOB
hTask != 0) II WaLking the task List ...

Is the POB for this task the same as the POB that owns
the passed handLe? Return the task's hModuLe if so.
(hTask.TOB_POB == POB)
return hTask.TOB-pModuLe

hTask = hTask.TOB_next II Nope. Try next task.
}

return 0 II No owner couLd be found. Return faiLure

FindOrdinalO
In our previous discussion of GetProcAddressO, we saw where it called FarFindOrdinalO,
which is just a wrapper around a call to FindOrdinalO. FindOrdinalO's job is to take an
ASCII string and return the associated entry ordinal. In most cases, this involves searching
through the resident and nonresident names tables. Besides being called by GetProcAddressO,
FindOrdinal() is also invoked from the SegReloc() function, which is the part of the Windows
loader that performs all the fixups on a segment when it's loaded into memory.

FindOrdinalO begins by determining if the passed string starts with the pound sign (#). If
so, the remainder of the string is supposed to contain an entry ordinal value, in decimal, as a
string (for instance, "#123"). If a pound sign is found, FindOrdinalO branches to a section of
code that reads the remaining characters of the string and creates the integer value from them.
This code is similar to the atoi() function in C.

The more likely case is that the passed string contains the name of a function. For these
strings, FindOrdinal() iterates through the resident names table and compares the passed string
to the entries in the table. The comparison is quasi case-insensitive. FindOrdinal() uppercases
each character of the input parameter string before it's compared to the corresponding charac
ter in the name table strings. The linker is supposed to have uppercased the names it put in the
table, so in general, you can consider FindOrdinalO and, hence, GetProcAddressO to be case

CHAPTER 8 - DYNAMIC LINKING

insensitive. FindOrdinalO optimizes the scanning by only comparing strings whose lengths
match exactly.

If the name is not found in the resident names table, FindOrdinalO loads the nonresident
names table from the NE file and branches back to the code that searched through the resi
dent names table. When the FindOrdinalO finishes with the nonresident names table it dis
cards the table. Thus, every time you call GetProcAddressO with a name that's not in the
resident names table, you force the nonresident names table to be brought in, searched, and
discarded.

Also worth noting is that FindOrdinalO ignores the first entry (#0) in both the resident
and nonresident names table. The first entry in the resident names table contains the module
name, as specified in the NAME or LIBRARY line in the DEF file. The first entry in the non
resident names table is the module description, as given in the DESCRIPTION field in the
DEF file.

Pseudocode for FindOrdinalO - LDUTIL.OBJ
II Parameters:
II WORD hModule
II LPSTR name II proc name with prepended length byte
II WORD fi leHandle
II
/I
)

II

Locals:
WORD NRTableLoaded = 0 II Have we loaded the non-

II resident name table yet?
LPSTR nallleTableEntry II Current name we're looking at

II iresident/non-resident name
II table.

II *name is the string length. *(name+1) is the first
II character in the string. Find out if the string begins
II with a '#', which indicates that an ASCII representation
II of the ordinal value (in decimaL> follows (e.g., "#123" >.
if (*(name+1) == "#")

goto ConvertStringToInteger

II Initialize pointer to resident names table. See chapter
II 3 for the full description of the resi.dent names table.
nameTableEntry = MK_FP(hModule, hModule.ne_restab)

SearchNameTable:

II Skip over the module name or module description, which are
II both the first entries (#0) in the tables.

in

nameTableEntry += (*nameTableEntry) + 3 11+3 skips over the length
II byte and entry ordinal WORD.

II Start searching through all the entries in a name table.

WINDOWS INTERNALS

II' The string passed, as well as the names in the table
// are preceded by length bytes to make comparisons faster.
// We stop when we reach an entry whose length byte is O.
// This indicates the end of the table.
while (1)
{

}

if (*nameTableEntry == 0)
goto NoMoreNames

if (*nameTableEntry == *name) // Do lengths of the two
{ // strings match?

}

Start comparing each byte of the two strings, calling
MyUpper() on the characters in the procedure name
passed to us. This has the effect of making the
string comparison case insensitive. It also assumes
that the linker uppercased the names it put in the
resid~nt and non-resident names tables. If at any
point the strings donlt compare, stop the comparison,
and increment the nameTableEntry pointer to the next
string in the table.

If passed in string completely matches the string in
the resident/non-resident names table, LODSW the
WORD immediately after the name in the table. This
is the entry ordinal associated with the name.

if NRTableLoaded
go to FindOrdinal_FreeNonResidentNames

else
return AX // Contains the entry ordinal

ConvertStringToInteger:
Start reading in the bytes past the 1#1 character. Convert
the string to itls equivalent machine value. The algorithm
is the standard atoi() algorithm:

ordinal = 0
while (character is between lOr & 19 1)
{

}

ordinal = (ordinal * 10) + (character - 101)
get next character

i~;

CHAPTER 8 -'- DYNAMIC LINKING

When all characters have been read, return the resulting
ordinal value.

NoMoreNames:
if (NRTabLeLoaded == a)
{

}

II Look up the file handle in the cache of fiLe handles
II that KERNEL maintains.
AX = GetCachedFiLeHandle(hModule, fileHandle, axFFFF)

II Now go load the nonresident names table into memory
LoadNRTable(hModule, AX, &someBuffer, Ox96)

nameTableEntry = &someBuffer II Start searching at
II the beginning of the
II nonresident names.

NRTableLoaded = OS II Remember that we've loaded
II the nonresident names.

goto SearchNameTable II Go search through the
II non-resident names table.

FindOrdinal_FreeNonResidentNames:
FreeNRTable(hModule, ax2C) II Ox2C -> ???

" return AXIl AX == entry ordinal or a

EntProcAddress0
EntProcAddressO has the interesting. job of determining the selector:offset in memory, corre
sponding to the passed hModule and entry ordinal combination. In addition to being called
from GetProcAddressO, EntProcAddressO is also called from SegRelocO, the routine that
handles all fixups for a segment when it's brought into memory.

The first thing EntProcAddressO needs to do is scan through the entry tables contained
in the module database. The format of the entry bundles and entries is discussed in Chapter 3.
Once EntProcAddressO finds the bundle that matches the entry ordinal passed in, it now has
the logical address for the entry point. A logical address consists of a segment number, corre
sponding to the order of the segments in the file, and an offset within the segment. For
instance, the logical address 0003h:1234h means offset 1234h in the third segment in the
module's segment table.

EntProcAddressO now has to take the segment portion oEthe logical address and find out
which selector the Windows loader assigned to that segment. However, first there are two
special cases that need to be tested for. lEthe segment portion of theJogical address is OxFE,
the offset portion of the logical address is really a constant value, rather than an offset to a
segment. For instance, consider the exported symbol _FOOOH in KERNEL. The value

WINDOWS INTERNALS

returned by GetProcAddressO in this case is not the address of a function called _FOOOH.
Instead, the offset portion of the returned address can be used as a protected mode selector to
access the memory at real mode segment FOOOH. (We saw these selectors constructed in
Chapter 1.)

The logical segment value OxFF is also a special value treated differently by the loader.
Entries with a logical segment of OxFF are termed moveable, even though moveable entries
have lost any semblance of significance now that Windows only runs in protected mode.
When the logical segment is OxFF, the actual logical segment needs to be looked up in
another field in the entry bundle's data structure. From there on, EntProcAddress() acts the
same for moveable entries as it does for fixed entries. Fixed entries are all entries that have log
ical segments other than OxFE or OxFF.

Resuming our original line of thought, EntProcAddressO needs to map the logical seg
ment to the matching selector value. It does this by indexing into the segment table contained
within the module database. The one difference between fixed and moveable entries is that
fixed entries force the segment to be loaded into memory, if it's not already, while moveable
entries don't. Once EntProcAddressO knows the selector value, it combines the value with
the offset portion of the address stored in the entry bundle's data structure. EntProcAddress()
returns the result to GetProcAddress(), which simply passes the address back to the caller,
thereby completing the dynamic link.

Pseudocode for EntProcAddress() - LDUTIL.OBJ
1/
II
1/
II
II
1/
1/
1/

Parameters:
WORD hModule
WORD ordinal

Locals:
DWORD bundleHeader II Pointer to entry bundles
DWORD entry II Pointer to found bundle
WORD logSeg 1/ logical segment of entry
WORD selector 1/ Sel~ctor for entry

ordinal = ordinal & Ox7FFF II Turn off high bit, so
II no entry ordinals> 32768

if (ordinal == 0)
return 0

ordinal-- II Entries in module table are zero based
II Elsewhere are one-based.

bundleHeader = hModule.ne_enttab

do II Search for the correct bundle.
{

if (ordinal < bundleHeader->firstEntry)
return 0

CHAPTER 8 - DYNAMIC LINKING

if (ordinal < bundleHeader->lastEntry)
{

}

/I Point "entry" at the correct entry within the
II entry point bundle. 6 is the size of the bundle
II header.
entry = bundleHeader + 6 +

(ordinal - bundlerHeader->firstEntry)

goto foundBundle II Now get the address!

bundleHeader = bundleHeader->nextBundle

} while (bundleHeader)

return 0 II We didn't find the entry. Return failure

constantEntry: II Come here for "constant" entries like _FOOOH
BX = &bundle->entryOffset

return MK-FP(-1, bundle->entryOffset)

foundBundle: II We found enclosing bundle in entry table

if (bundle->entrySegment == OxFE) II Check for "constant"
goto constant Entry /I ent ri es li ke _FOOOH

if (bundle->entrySegment == OxFF) /I Check for moveable
go to MoveableEntry /I entries

/I If we get here, the entry is a "fixed" entry, and
II bundle->entrySegment contains the logical segment of the
/I entrypoint.
logSeg = bundle->entrySegment

Given the logical segment specified by logSeg, create a
pointer to the appropriate entry in the segment table of
the module table (see Chapter 3 for details).

if (MOVEABLE bit set for the segment)
goto MoveableEntry

selector = LoadSegment(hModule, logSeg, OxFFFF, OxFFFF)
if (selector == 0)

return 0

WINDOWS INTERNALS

return MK_FP(selector, entry->entryOffset)

MoveableEntry:
logSeg = bundle->entrySegment

Given the logical segment specified by logSeg, create a
pointer to the appropriate entry in the segment table of
the module table.

if (handle for segment in the segment table -- a)
return a

else
return MK_FP(handle in segment table, entry->entryOffset)

When loading an EXE or DLL from disk, the Windows loader doesn't call
GetProcAddress(). It does, however, use EntProcAddress(), which we just discussed. As we
saw in the earlier TDUMP output for PBRUSH.DLL, an EXE or DLL file usually has tables
of fixups that need to be applied. The fixup tables are per-segment, allowing the loader to
apply all the fixups for a particular segment, without having to filter out fixups for other seg
ments. Whenever KERNEL loads a segment from an NE file, the loader iterates through all of
the segment's fixup records. For fixups to outside modules, the loader uses EntProcAddress()
to obtain the address of the target function. This address is copied into the specified fixup
location in memory, thereby completing the CALL instruction. In other words, this is where
the EXPORTed function is connected up to the IMPORTing module. For fixups to other
segments within the same EXE or DLL, it's a simple matter to look up the segment's selector
value in the module's segment table.

That's it! As you can see from the preceding pseudocode, dynamic linking isn't that hard.
We now move on to cover some smaller topics that are directly or indirectly related to
dynamic linking.

Import Libraries

An import library tells the linker about routines that are in DLLs, rather than in the program
it's linking. Import libraries allow the linker to defer to the Windows loader the job of fixing
up calls to these routines. Without an import library, the linker would generate "Undefined
symbol" errors for these calls.

It's hard to avoid import libraries. Even if you're creating a simple, self-contained Wmdows
program, the odds are that you're using an import library, even if you don't know it. Each
Windows API function you call has an entry in an import library. Borland C++ users use
IMPORT. LIB. The equivalent for Microsoft C users is LIBW.LIB. The closest equivalent to an
import library for Turbo Pascal for Windows users is the WinProcs unit in the TPW.TPL file. If
your program consists of an executable file that implicitly links to your own private DLLs, you
need to create import libraries for the DLLs before you can link the main executable.

CHAPTER 8 - DYNAMIC LINKING

An import library generally contains no code. Rather, it's just a collection of OBI file
records that connect a function name to a module name and an entry ordinal within the mod
ule. You can see this in the following excerpt ofTDUMP output ofIMPORT.LIB:

005010 THEAOR GETMESSAGE
005D1F COMENT Purge: Yes, List: Yes, Class: 160 (OAOh)

Dynamic link import (IMPDEF)
Imported by: ordinal
Internal Name: GETMESSAGE
Module Name: USER
ordinal: 108

005039 MODENO

The Internal Name: line tells the linker the llame of the routine, GETMESSAGE. The
next two lines provide the previously described prerequisites for dynamic linking: a module
name (USER), and an entry point, 108. The format of IMPDEF and the related EXPDEF
records can be found iri the Windows 3.1 SDK documentation.

There is a way to avoid using import libraries, if you enjoy doing things the hard way.
Rather than tell the linker about DLL routines with an import library, specifY the same infor
mation in the IMPORTS section of the DEF file. For instance, to implicitly link to GetMess
ageO without using an import library, you need to have something like this:

IMPORTS
GETM.ESSAGE = USER.108

Alternatively, you could use:

IMPORTS
GETMESSAGE = USER.GETMESSAGE

The key point is that you still need to specifY both a module and an entry point within the
module. It's generally much easier to use import libraries, but if you need to call an undocu
mented function that's not in your import library, the IMPORTS section can come in handy.

To create import libraries, you use .the IMPLIB utility. Borland and Microsoft each ship
their own version of IMPLIB, but with the same name. IMPLIB creates an import library
from either a DLL file or from a DEF file. This isn't a hard process. As you now know, the
records in the import library need to specifY a function name, the module containing the
function, and the function's entry point. From examining the TDUMP output earlier in the
chapter, you can see that this information is readily obtainable in the EXE or DLL file. You
can also specifY this exact same information in the EXPORTS section of the DEF file, which
we discuss momentarily. All IMPLIB has to do is know how to read both NE files and DEF
files, and then emit all three pieces of information for each function in the appropriate
IMPDEF record and LIB file format.

WINDOWS INTERNALS

Exporting and Exportable Functions
So far, we've focused on what's involved in linking to a function in another module. It's now
time to turn the telescope around. We need to see what the requirements are for being the
target of a dynamic link. In the first part of our discussion, we concentrate on exporting func
tions from EXE files.

In general, a function that will be called from outside the DLL or EXE it was compiled in
needs to be exported. If you don't export a function, there's no way that GetProcAddress() or
the Windows loader can find it to link up to it. (For those of you familiar with smart callbacks
and FIXDS, be patient, we'll get to those later.)

For a function to be properly exported, two steps are essential. First, you need to tell the
linker about the function to be exported. Traditionally, you do this by putting the uppercase
name of the function, along with the export ordinal value, in the EXPORTS section of the
DEF file. For instance:

EXPORTS
MYCALLBACKFUNC @10

Telling the linker to export a function has two effects. First, it creates a new entry for the
function in the EXE or DLL entry table. Each entry in the entry table holds the logical
address of the function. In the above example, the tenth entry in the entry table of the mod
ule being linked contains the logical address of MYCALLBACKFUNC.

Second, exporting a function causes its name to appear in the resident or nonresident
names table. Putting the function name in the EXPORTS Section of the .DEF file causes the
name to appear in the nonresident names table by default. If you expect this function to be
primarily linked by its ordinal value (from import libraries), this is usually what you want. Put
ting the name, instead, in the nonresident names table saves memory because the name
doesn't reside in memory for the entire lifetime of the module, but if you want the name to
always be in memory (in the resident names table), either omit the export ordinal value
(thereby letting the linker pick one) or use the RESIDENTNAME modifier. For instance:

EXPORTS
MYCALLBACKFUNC

or

EXPORTS
MYCALLBACKFUNC @10 RESIDENTNAME

RESIDENTNAME is most often used for the WEP (Windows exit procedure) routine in
DLLs. Due to some problems in DLL termination, you could often crash Windows ifWEP
were in the nonresident names table. When KERNEL tries to load the nonresident names
table at a time when the system is in a shaky state, things rapidly go downhill. The solution is
to keep WEP in the resident names table, which is always in memory.

CHAPTER 8 - DYNAMIC LINKING

The second part of properly exporting a function is to make sure that the function is
exportable. An exportable function has the proper prologue and epilogue code to allow it to
be called from outside the EXE or DLL it resides in. Note this carefully: Making a function
exportable is not the same as exporting it. Making a function exportable affects the code gen
erated for it, whereas exporting the function is something the linker does. It's quite possible
to have exportable functions that aren't exported. The other case, exported functions that
aren't exportable, is a bad idea.

So what exactly does making a function exportable entail? In the simplest terms, an
exportable function needs to set up the DS register to access the correct data segment. As
Chapter 3 describes, each instance of a program has its own data segment. Each DLL also has
its own data segment. It's imperative that the DS register be loaded with the correct data seg
ment selector before any code tries to read or write it. The convention Windows follows is
that upon entry to an exported function, the original DS value is saved before the correct DS
value for tlaecode in question is loaded. You might be aware of a C modifier called _loadds.
Wouldn't that do the job? Unfortunately for applications, no. Using _loadds causes an actual
data segment selector value for DGROUP to be put in the code segment. For instance:

mov ax,257Fh
mov ds,ax

As Chapter 3 explains, putting the data segment selector value into the code segment is
fine if you want to run only one instance of a program. If you want to run two or more copies
of a program, however, it just won't work. Because code is shared between multiple instances,
and because _loadds puts the data segment selector (DGROUP) right in this shared code,
each instance ends up using the same data segment selector, which is obviously not a good
thing.

Since we most definitely can run multiple instances of a program, there must be some
other method to load the DS register. To find out what it is, let's look at the code generated
in an EXE file for two tiny functions, one of which is exported, and the other of which isn't.
The C code looks like this:

int FAR PASCAL _export ExportMe(void)
{

return 1;
}

int FAR PASCAL DontExportMe(void)
{

return 1;
}

Ignore the _export modifier for the ExportMe() function. We discuss _export a bit later.
For now, it's enough to say that it tells the compiler to generate code to make the function
exportable. The assembler code generated looks like this:

WINDOWS INTERNALS

EXPORTME proc far
mov ax,ds
nop
inc bp
push bp
mov bp,sp
push ds
mov ds,ax
mov ax,1
pop ds
pop bp
dec bp
ret

EXPORTME endp l>

DONTEXPORTME proc far
inc bp
push bp
mov bp,sp
mov ax,1
pop bp
dec bp
ret

DONTEXPORTME endp

Both the exported and nonexported functions have the INC BP, PUSH BP, MOV SP,BP
code, which is used to set up a standard stack frame to reference local variables and parame
ters. (Some compilers can omit the INC BP, which is only necessary for real mode Windows.)
Filtering out the stack frame code shows that the real effect of making a function exportable is
to add the following prologue code:

mov ax,ds
nop
push ds
mov ds,ax

This sure looks redundant! The code loads AX from the DS register, and then three
instructions later, it loads DS from AX. It doesn't do anything! And what about that NaP? At
best, the code is harmless. It chews up some clock cycles, but it doesn't break anything. As it
turns out, this is exactly why the code sequence was chosen. If you make a function export
able, but don't export it, nothing bad happens, other than a slight performance degradation.
In early Windows compilers, all far functions had this prologue code, even if they didn't need
it. Luckily the situation has improved and you only need to use the right compiler options to
get better code. More on this later.

CHAPTER 8 - DYNAMIC LINKING

Returning to the question at hand, we still don't know why you would want to add this
extra code to a function. To answer this, you need to know about some magic. When the
Windows loader brings an EXE's code segment into memory, it looks at the prologue code
for all the exported functions. If the loader sees:

mov ax,ds
nop

or the equivalent:

push ds
pop ax

at the start of an exported function, it patches those instructions with three NOP instructions.
The result, ignoring the stack frame code, looks like this:

nop
nop
nop
push ds
mov ds,ax

Now, it's starting to become clearer. The prologue code for an exportable and exported
function sets the DS register to whatever's in the AX register. This implies that the AX register
had better contain the data segment that the exported function, and all of the functions it
calls, should be using. In other words, AX needs to contain the DGROUP selector for the
instance of the program currently executing.

How does the AX register get set? Usually, it happens in one of two ways. For example,
when you call MakeProcInstanceO (such as before calling DialogBoxO), the address of a
thunk is returned to you. (See Chapter 3 for a description of where thunks are stored in the
TDB.) This thunk just sets AX to the corresponding selector for the hInstance passed to
MakeProcInstance(), before jumping to the address passed to MakeProcInstanceO. A
MakeProcInstanceO thunk, therefore, looks like this:

MOV AX, XXXX
JMP FAR YYYY:ZZZZ

; XXXX -> hlnstance selector (DGROUP)
; YYYY:ZZZZ -> address of function

The magic of MakeProcInstance() thunks allows dialog box procedure code for example
to be shared between multiple program instances, while still allowing each instance to have its
own data segment. Each program instance passes a different MakeProcInstance() thunk to the
DialogBox() function, which is why thunks are stored with the task, not with the module.
Whenever DialogBox() needs to call your dialog box callback function, it calls through the
thunk you passed. This ensures that the callback function always has the correct hlnstance
selector in AX when it's called and can, therefore, load the DS register with the proper selec~
tor value for your hlnstance or DGROUP.

The other way of setting the AX register occurs when the exported function being called
is a window procedure. DispatchMessage() and friends set AX to the hlnstance stored in the
WND data structure (Chapter 4) before calling the exportable function, so you don't need to

WINDOWS INTERNALS

pass a MakeProcInstanceO thunk when you call RegisterClassO or CreateWindowO. The
MakeProcInstance() thunk is done for you!

Whot About Exporting ond DLLs7
The situation with exporting functions from DLLs is somewhat different. In particular, the
code generated for an exportable DLL function differs from that generated for an EXE. In a
DLL the prologue for the ExportMeO function looks like this:

mov ax,DGROUP
inc bp
push bp
mov bp,sp
push ds
mov ds,ax

The DGROUP symbol in the first line causes a fixup record to be generated for the seg
ment. When the loader brings this segment into memory, it patches the first instruction to
move the selector value for the DGROUP into AX, for example:

mov ax,134Fh

The line at the end just copies the AX register into the DS register. It would be even sim
pler if the Intel CPUs allowed the segment registers to be loaded from immediate values, for
example:

mov DS, 134Fh

The implication is that the functions in a DLL always use the same DATA segment, no
matter which instance of a task it was called from. Specifically, they use the DLL's DGROUP.
Any value in AX upon entry is ignored by an exported DLL function. In fact, if you call
MakeProcInstanceO with the address of a DLL function, it just returns the original address,
unmodified. There's simply no need for a thunk in this case. Likewise, _loadds works from a·
DLL, so long as you remember to also _export the function.

FIXDS and Smart Callbacks
One of the most common mistakes Windows programmers make is to forget to call
MakeProcInstanceO when needed. This may be simple oversight, or the programmer may just
not be aware of the need for it. In any event, forgetting to call MakeProcInstanceO causes
your exported function to be called with a meaningless value in AX. This almost always has
the fatal effect of causing your program to die ignominiously with a General Protection Fault
(or UAB, if you prefer). Isn't there a better way?

One of the most fundamental, but little known, aspects of Wmdows is that your pro
gram's stack resides in its data segment, or DGROUP. In the general case, therefore, you can

CHAPTER 8 - DYNAMIC LINKING

assume that, while executing in your EXE)s code, the stack segment register (SS) contains the
same value as the data segment register (DS). In other words, SS==DS. As we just saw, the
purpose of the prologue code for an exported function in an EXE is to set up the data seg
ment register for the particular instance of the task. Since the stack segment register is the
same thing as the DS for the task, we should be able to load the DS value from the SS regis
ter. By doing this, we can get rid of the need to create a MakeProcInstance() thunk. This is a
great idea! The prologue code would look something like this:

mav ax,ss
nap
inc bp
push bp
mav bp,sp
push ds
mav ds,ax

Although stretched across several instructions, the prologue code has the net effect of
loading DS from the SS register. What's very interesting here is that only the first instruction
differs from what a normally exported function's prologue would look like. Plus, the first
instruction fits into exactly the same number of bytes.

A few years ago, Michael Geary wrote a program that took advantage of this lucky coinci
dence. The program is called FIXDS; it post-processes executable files after they've been
linked. FIXDS scans through the code segments in the EXE file and finds all the routines that
start with either of the standard exportable prologues we saw earlier. It then patches those
prologues to start with m a vax, s s instead.

Programmers who forget to or don't want to call MakeProcInstance() are now free of its
tyranny. Subsequently, Borland and Microsoft added the capability to malce their compilers
generate FIXDS style code directly. Borland terms this option Smart Callbacks. For Borland
C++ compilers, -WS enables this option for all far functions, while -WES generates smart call
backs only for functions with the _export modifier (described later). In Microsoft C++ 7.0,
use -GA -GEs.

For DLLs, FIXDS and smart callbacks have no effect. If you thinlc about it for a bit,
there's no need to call MalceProcInstance() for a function in a DLL. The prologue code for an
exported DLL function already sets DS to the module's DGROUP selector. In addition,
things would get rather interesting in a hurry if the DLL prologue code did switch the DS
value to the current stack's value. The DLL would be reading and writing the data in the
application's DGROUP, rather than its own. An interesting footnote is that early versions of
FIXDS didn't verify that the file was an EXE, as opposed to a DLL, before modifying it. This
oversight was subsequently corrected.

WINDOWS INTERNALS

Compiler Code Generation Options

Finally, we'd like to clear up some issues concerning code generation and dynamic linking.

The PASCAL and C Calling Conventions Are Both OK
Many programmers are under the mistaken impression that to export a function, it must be
declared as a PASCAL function. This is simply not true. The PASCAL convention implies two
things in Windows compilers. First, function names will be uppercased by the linker (for
example, GetMessage() becomes GETMESSAGE(». Second, the PASCAL calling convention
dictates that parameters be pushed on the stack in the order they appear in the function defi
nition. The called function pops the arguments before returning. The other common conven
tion is CDECL, where names are case sensitive and have an underbar C) prefix (FooO
becomes _FooO). Parameters to a CDECL function are pushed on the stack in right to left
order. The CDECL convention also dictates that the calling code remove the arguments from
the stack, which is how varargs are implemented. Incidentally, both PASCAL and CDECL are
actually #defines in WINDOWS.H; they just map to the compiler keywords _pascal and
_cdecl.

The vast majority of the Windows APIs are defined as PASCAL functions. However, this
is not a requirement. For instance, the wsprintfO function in USER is not a PASCAL style
function (it takes a variable number of arguments). One advantage of using functions declared
as PASCAL is that the name you declare in your code is the same name you export. If you
have a CDECL function, you need to remember to put a~ "_" at the front of the name when
you export it in the DEF file. Since this confuses many people, they tend to stick with the
PASCAL convention. There are sometimes size benefits from using the PASCAL convention;
specifically, the stack arguments can be cleaned up in one place, at the end of the function,
rather than after every call to the function. However, if you really need the CDCEL conven
tion, such as for variable argument lists, don't be afraid to use it.

C++ Name Mangling
All too often, C programmers try their hand at writing a DLL in C++, only to get immensely
frustrated when the function doesn't export properly. For instance, there are quite a few peo
ple who write a C++ based DLL and try to call it from a Visual Basic application. Try as they
might, they can't get Visual Basic to recognize the exported DLL function. The compiler and
the linker are all too often unfairly maligned when this happens.

The problem these programmers are hitting is called "C++ name mangling" (or "C++
name decoration" for Microsoft users). When you compile a function in C++, the name emit
ted in the OBJ files is not the name you used in the source file. Instead, it's a variation of the
name, which includes information on the parameter types and so on. This is how function
overloading and type-safe linkage are implemented. This topic is covered in many texts on
C++. Here, we're interested in why it causes problems for DLL authors.

Since the name emitted in the OBJ file name is different from the name used in the
source file, the first problem programmers usually have is when the linker won't link. For
instance, you have the following function in a C++ program:

CHAPTER 8 - DYNAMIC LINKING

int FAR PASCAL ExportMe(void)
{

return 1;
}

And in the .DEF file, you have:

EXPORTS
EXPORTME @1

The problem is that in the OBJ file, the compiler has mangled (or decorated) the function
name:

0001C1 PUBDEF '@EXPORTME$QV' Segment: _TEXT:OOOO

In other words, thanks to c++ name mangling, your function is really called
@EXPORTME$QV, but you're trying to export a function called EXPORTME. Obviously,
they aren't the same, and the linker has every right to complain.

There are two solutions to this problem. The first is to use the extern ((C)) modifier when
you declare the function, for instance:

extern "C" int FAR PASCAL ExportMe(void);

This modifier prevents the compiler from mangling the name. The name in the OBJ file
will now be EXPORTME, just as you'd expect. The problem with this modifier is that you
can no longer overload your functions. The names have to be different for the compiler and
linker to distinguish between them.

The other solution is to use the _export modifier, which we cover in more detail in a
moment. For now, the important thing is that using _export tells the compiler to emit an
EXPDEF record in the OBJ. This record indicates to the linker that it should export the func
tion as is, regardless of whether or not the name appears in the EXPORTS section of the DEF
file. The downside of this approach is that the mangled name appears in the resident or non
resident names table. Thus, any programs that want to use GetProcAddress() on the function
(including Visual Basic) need to know that the name is in its mangled form and deal with it
accordingly.

The _export modifier
One of the most handy and little known Windows feature in today's C and c++ compilers is
the _export or _export (with two underscores) modifier. For instance:

int FAR PASCAL _export ExportMe(void)

The _export modifier causes two things to happen. First, it guarantees that the proper
prologue code to make a function exportable is generated, -no matter what other compilation

WI N DOWS INTERNALS

options are selected. We come back to this important point later. Second, the modifier tells
the compiler to emit an EXPDEF record (Exported Definition) for that name. When the
linker sees the EXPDEF record, it includes that function in the list of functions to be
exported, regardless of whether or not you included the function in the EXPORTS section of
the DEF file. This is a great aid to programmers like the author, who always forgets to add the
exported function names to the DEF file.

There is one slight drawback to using _export. If you don't add the exported function
name to the EXPORTS section of the DEF file, the linker picks the entry ordinal for you. This
isn't ordinarily a problem, unless you modify a library that other programs or DLLs link to by
ordinal values (which is usually the case). If you add a new exported function and use _export,
but don't include the nam in the EXPORTS section, there's a good chance the linker will
shift around the entry ordinals it assigned to the exported functions. Confusing, to say the
least!

There are two solutions in this situation. If you can relink the EXE orDLL that's import
ing the DLL functions, you can run IMPLIB on the DLL to produce an updated import
library and then relink the dependent EXE or DLL file(s). If you can't relink the dependent
files (for instance, if you've already distributed files to customers), you'll want to include the
exported function names and ordinals in the DEF file EXPORTS section. This can be messy if
you have C++ functions with mangled names, but at least the export ordinals won't change.

Making Your Code Optimally Efficient
If you're the type of programmer who worries about clock cycles, you may have noticed
something about the prologue and epilogue for both traditionally exportable and FIXDS style
functions. Specifically, they both contain two segment register loads, which is, in and of itself,
not a problem. However, the compiler doesn't know which functions will actually be called
from outside the module. As a result, in some default or worst-case modes, the compiler gen
erates the extra prologue and epilogue code for every single FAR function. If you program in
the compact or large memory models, this extra code is dead weight that adds up and, gets
expensive.

In this day, when performance and code size are often the last things on programmer's
minds, we see all too many people giving the advice, "Just use smart callbacks. You don't have
to worry about MakeProcInstanceO or exporting anymore." While this is often a quick and
easy solution, you also pay the price in increased code size and slower performance if your
program is a compact or large-model program.

If you don't mind applying a little thought to your coding, you can squeeze out this dead
weight, creating a smaller, faster program as a result. The key to this technique is the _export
modifier and a specific compiler code generation option.

Our goal in this process is to tell the compiler to generate the prologue to make a func
tion exportable only when it needs to be generated. In other words, by default, the compiler
should not generate exportable prologue and epilogue code for all far functions. For Borland
compilers, this option is -WE or -WES for EXE files, and -WDE for DLL files. For Microsoft
C++ 7.0, use -GEs or -GEd with -GA or -GD as appropriate.

When the compiler compiles a function that needs the exportable prologue code, it should
. generate it. How does it know for which functions to generate the prologue? You need to

CHAPTER 8 - DYNAMIC LINKING

help out the compiler a bit here. As mentioned earlier, one effect of the _export modifier is to
always force exportable prologue code to be generated, no matter what the current default is.
Therefore, you just need to add _export to the function declaration for functions that need to
have the exportable prologue. The use of _export has an additional side benefit-you usually
don't have to add the exported function names to the EXPORTS section of the DEF file.

In conclusion, to create optimal compact and large-model programs, you first need to add
the _export modifier to any function, like window and dialog procedures, that will be called
from outside the module. Next, you need to tell the compiler not to make all functions
exportable. The final step is to generate smart callback prologue code for all _export func
tions. Alternatively, create MakeProcInstance() thunks as necessary for all_export() functions.
Smart callbacks are easier, but are less portable to earlier Windows compilers. In this case,
FIXDS helps out.

If you follow these simple rules and understand the concepts of dynamic linking discussed
earlier, you should be well on your way toward fast, efficient code. Dynamic linking is your
friend, rather than your misunderstood and feared enemy.

Bibliography

The following is a listing of books, articles, and other sources of information I found particu
larly useful when writing this book.

Ralf Brown and Jim Kyle, PC Interrupts: A Programmer's Reference to BIOS, DOS, and
Third-Party Calls, Reading MA: Addison-Wesley, 1991, ISBNO-201-57797-6
A veritable gold mine for anyone taking apart PC software. Almost every interrupt

. encountered while examining Windows is covered in PC Interrupts. It is especially nice
to have the DPMI interrupts in quick reference form. The interrupts are ordered some
what strangely, but the index does a good job of showing. where to look for a particular
interrupt subfunction.

Harvey M. Deitel and Michael S. Kogan, The Design of OS/2, Reading MA: Addison-Wesley,
389 pp., ISBN 0-201-54889-5
Describes at many points the differences between OS/2 1.x and OS/22.0. OS/2 1.x is
very similar in implementation to Windows and OS/2.2.0 retains many of these concepts,
such as module handles.

DOS Protected Mode Interface (DPMI) Specification, VersionO.9 (May 15, 1990), Intel
Order No. 240763-001
The DPMI specification was originally Microsoft's response to the VCPI specification,
which provided for cooperative multitasking of 386 DOS extenders. Subsequently,

495

WINDOWS INTERNALS

Microsoft and other companies formed a committee to hammer out a specification on
which Windows and other DOS extenders could be built. The 0.9 specification is what
Windows 3.0 and Windows 3.1 implement. There is a 1.0 specification, but it's not in
wide use because running in a Windows DOS box (with only 0.9 DPMI support) is a
design requirement for most applications. Once you're familiar with the DPMI specifica
tion, you can use PC Interrupts as a quick reference to the DPMI functions.

Ray Duncan et ai., The MS-DOS Encyclopedia, Redmond WA: Microsoft Press, 1988, 1570
pp., ISBN 1-55615-174-8
Although some of the information is becoming outdated, there's still much good informa
tion here. The information in the chapters on the . OBI file format, and on the inner
workings of LINK.EXE is hard to find elsewhere. There's also an appendix describing the
New Executable format, and a chapter describing programming for Windows 2. 0 (inter
esting reading if you want to see what a big step forward Windows 3.0 was).

Ray Duncan et ai., Extending DOS: A Programmer's Guide to Protected-Mode DOS, Second
Edition, Reading MA: Addison-Wesley, 1992, 538 pp., ISBN 0-201-56798-9
Windows is one part graphical user interface and one part DOS extender. There aren't
many books that really cover the pros and cons of DOS extenders, and how they work.
Extending DOS, now in its second edition, provides a wealth of interesting and useful
material for programmers who have to contend with the lower level operating system
aspects of Windows. See especially Ray Duncan's chapter on DPMI and Bob Moote's
chapter on multitasking and DOS extenders.

Robert L. Hummel, PC Magazine Programmer's Technical Reference: The Processor and
Coprocessor, Emeryville CA: Ziff-Davis Press, 1992, 761pp., ISBN 1-56276-016-5.
A readable guide to the Intel series of CPUs. It's particularly good for its description of
chip bugs (termed ((errata)) by Intel).

Intel i486 Microprocessor Programmer's Reference Manual, 1990, Intel Order No.
240486-001, ISBN 1-55512-101-2
It's been said that this book is only slightly more exciting than reading the phone book.
Don't you believe it! If you need the final word on some esoteric or obscure feature of pro
tected mode, there's no substitute for the original documentation. More than just opcode
documentation, over half the book is devoted to describing various aspects of how the
80486 works, and how to program for it. There are other books (such as The Processor
and Coprocessor) which might be more readable but, inevitably, small details get lost in
the translation.

Gordon Letwin, Inside OS/2, Redmond WA: Microsoft Press, 1988, 289 pp., ISBN 1-
878058-43-6
Although many of its details are somewhat outdated, Letwin does an excellent job of
explaining the ((religion)) of OS/2. Since OS/2 and Windows were so similar in the early
days, much of this book is still relevant today.

BIBLIOGRAPHY

Microsoft Windows Device Driver Kit, Version 3.1,1992, Microsoft Part No. 29132
Of particular interest in regards to Windows Internals are the header files that docu
ment the format of the task database (TDB.INC) the module database (NEW
EXE.INC) and the local and global heaps (WINKERN.INC). Also) the DDK
documents the interface for GDI device drivers and gives several example drivers.

Microsoft Windows Software Development Kit, Version 3.1,1992, Microsoft Part No. 30211
Often maligned) the 3.1 SDK is actually pretty good within the confines of what it must
do: document the exported APIs and data structures.

Daniel A. Norton, Writing Windows Device Drivers, Reading MA: Addison-Wesley, 1992,
434 pp., ISBN 0-201-57795-X
While definitely not a DDK replacement) it)s detailed enough to keep within arms reach
as a quick reference. If you need more information) use the DDK.

Charles Petzold, Programming Windows 3.1) Third Edition) Redmond WA: Microsoft Press,
1990,983 pp., ISBN 1-55615-395-3
The universally acknowledged standard text on Windows programming. The focus is on
showing you how to write Windows programs) rather than on how Windows works. How
ever) both types of books are necessary these days.

Andrew Schulman, "Exploring Demand-Paged Virtual Memory in Windows Enhanced
Mode," Microsoft Systems Journal, December 1992, pp. 17-36.
An in-depth description of how page-based virtual memory is implemented in Enhanced
mode windows. Chapter 3 of Windows Internals describes the virtual memory (~andbox»
that the KERNEL memory management layer is built on. Andrew)s article describes how
the sandbox works.

Andrew Schulman, et aI., Undocumented DOS: A Programmer)s Guide to Reserved MS
DOS Functions and Data Structures, Reading MA: Addison-Wesley, 1990, 694 pp.,
ISBN 0-201-57064-5
As chapters 1 and 3 of Windows Internals show) Windows rests precariously upon the
foundation of MS-DOS. As you might expect) what)s officially documented about DOS
isn)t enough for the Windows developers to do everything they need to. Undocumented
DOS brings this often essential undocumented information to the rest of us. A second
edition with greatly expanded coverage on the interaction between DOS and Windows
will appear in 1993.

Andrew Schulman, David Maxey, and Matt Pietrek, Undocumented Windows: A Program
mer)s Guide to Reserved Microsoft Windows APIfunctions, Reading MA: Addison-Wes
ley, 1992, 715 pp., ISBN 0-201-60834-0
The forerunner of this book. As the title implies) the focus is on documenting the undocu
mented APIs in KERNEL) USER) GDI, and SYSTEM. In addition) many key data
structures in Windows are described as well. Also includes chapters on taking apart Win-

WINDOWS INTERNALS

dows, undocumented messages, and the inner workings ofTOOLHELP.DLL. There are
numerous useful spelunking utilities included on the accompanying disk.

A large amount of the research done for Undocumented Windows didn)t make it
into that book, mostly because the findings related to documented APIs or subsystems. In
order for something to be in Undocumented Windows, it had to be an undocumented
data structure or an undocumented exported API. The intent of Windows Internals is
to explain and document the Windows subsystems as a whole, without regard to whether
the functions or topics were documented, undocumented, internal, or exported.

Index

-A

actualWndCount, 337
AddAtomO, 303, 380
AddModuleO, 256
Address space, 207-12, 218-24
AdjustSizeO, 325
AKAO,98

general description of, 99-100
Alloc_SelO, 128-29
AllocAllSegsO, 256, 270
AllocCStoDSAliasO,215

general description of, 100
AllocDStoCSAliasO, 158

general description of, 98-99
and GlobalFixO, 156

AllocSelector(), 253
general description of, 88-89

AllocSelectorArray()
general description of, 89

ALT-TAB, 66,301,338

API (Application Programming Interface),
5,58,229,337-42

and dynamic linking, 463, 467, 490
and GDI, 371, 372, 377, 380, 395
and loading KERNEL, 10
and memory management, 79, 80,

82,84,93,104,116,147,153,
163,181,208

and the messaging system, 431, 432,
443,462

and multiple data segments, 217
and the scheduler, 403-6, 411-13,

415,416,421
and the shutdown process, 71
and the windowing system, 300, 302,

312,314,316,329,336-42. See
also specific calls

AppExitO, 362
general description of, 286-89

APPLOADER, 295
ASCII code, 468, 472, 476

499

WINDOWS INTERNALS

ATM (Adobe Type Manager), 378, 387
atoiO,476
atom CIs, 302, 303
ATOMs, 302
AutoLoadTSRAppsO,279
AUX,43

III!!

B

BeginDeferWindowPosO, 335, 337, 342
general description of, 338-39

BeginPaintO, 371,456
general description of, 345-49

BitBltO, 366, 368
BITMAP, 369
BitmapBits, 368
Bonneau, Paul, 311, 422
BootAppO, 295, 296
BootApplO, 260

general description of, 296-97
BOOTLOG.TXT, 41
BootStrapO, 10, 13-43, 56, 237, 300

and dummy task databases (TDBs),
31,35-36

and GInitO, 122
and KERNEL debugging support,

21-22
andSlowBootO,41

Borland, 8, 295. See also c++ program
ming

BoundsRect, 374
BRUSH, 369, 370

- BrushOrgX, 373
BrushOrgY, 373
Bugs. See Debugging
BuildPDBO,253

general description of, 255- 56
Bunny_3510,282
Burgermaster, 107, 109, 118

general description of, 104-5
and GInitO, 121-22
and GlobalInitO, 118

and the selector table, general descrip
tion of, 11 0-11

Button, 301

III!!

C

C programming, 229, 290
and application startup code, 273
and dynamic linking, 476, 485, 490,

491
and the _export modifier, 491
and the "mapping myth," 210
and memory management, 87, 118,

177,208-9,210
and multiple data segments, 217
and TestWFO, 350

C Programming Language) The (K&R),
118

C++ programming, 87,102,111-14,181,
209-11,492

and application shutdown, 281
and application startup code, 273
and DefW"mdowProc(), 349
and dynamic linking, 482, 489, 491-

92
and the _export modifier, 491
and IMPORT.LIB, 482
and MoveObjectO, 390
and multiple data segments, 217
and the NE format, 214
and suballocation, 211
and window classes, 300

COD.ASM, 273
CALC, 225, 239
CALC.EXE, 215, 239
CalcMaxNRSegO,173

general description of, 174-75
CalcValidRectsO,340
CALL,218,378,463,464,465,482
CaiMaxNRSegO, 276, 291
CBT (Computer Based Training), 317
CDECL, 490

Change Bits, 446
ChangeSelector(),97-98
CheckByteAlign(), 324
CheckForNewlnputO,452-54
CLOCK,453
CloseAppEnv(), 262
CloseApplEnv(), 264, 269,270

general description of, 267-68
CLPSZText(), 379
CODE, 97-98, 99,216-17,243,256,295
Codeview for Windows (CVW), 87, 264,

462
ColorInfo, 368
ComboBox, 301
ComboLBox, 301
COMMON, 294
CompuServe, 294
Control, 368
Control Panel

and LW_InitWndMgrO, 66
and LW.-LoadResourcesO, 62
and window focus, 342

COW.ASM,273
CPU s (central processing units)

and application shutdown, 283
and BootStrap(), 36
and dynamic linking, 464, 488
and KERNEL, 15-17, 19
and logical and physical addresses,

218
and memory management, 79,82,

83,164
and the scheduler, 403, 404, 405, 411
and tasks, definition of, 224, 229, 231
and WIN.COM, 4

CreateBitmap, 368
CreateBrush(), 391

general description of, 392
CreateBrushlndirect(),392
CreateDC(), 372, 377, 386, 387

general description of, 377-80
CreateDIBBrushO,392
CreatePenO, 389, 392
CreatePenIndirectO, 389-90, 392

INDEX

CreateQueueO, 278, 432
CreateQueue2(),432
CreateSolidBrush(), 391-92
CreateSystemTimer(), 164,449
CreateTaskO, 238, 264

general description of, 252-55
CreateWindowO, 301, 312, 315-16,350,

358,488
general description of, 316

CreateWindowExO, 301, 316-29, 350
CreateXXXBrush(),392
CS:IP, 238, 264, 283,416
CS_BYTExxx, 324
CS_GLOBALCLASS, 300, 301, 303
CS_NOCLOSE, 321
CS_OWNDC, 324
CS_PARENTDC, 322
CSCIASSDC, 324
CTRO.ASM, 273
CTRL-ALT-DELETE, 71
CTRL-C checking state, 77
CTRL-ESC,69
Cursors

loading of, 62
CurTDB, 422
CVW (Codeview for Windows), 87,264,

462
CVWIN.DLL, 405
CW_USEDEFAULT, 320

ill

D

DATA, 89, 97,216-17,243,256,270,
295,488

dcBitsPixel, 373
DCFileAtom, 374
DCFlags, 372
DCFlags2, 372
dchPal,372
DCLockCount, 373
DCLogAtom, 374
dcMapperFlags,373
DCOrgX,373

WINDOWS INTERNALS

DCOrgY,373
DCPhysAtom, 374
dcPlanes, 373
DCs (device contexts)

general description of, 371-74
and EndPaintO, 349
and the windowing system, 345-46,

349,362
DCSaveLevel, 373
dcTextAlign, 373
DDE (Dynamic Data Exchange), 462
DDK (Device Driver Kit), 10,226

and application startup code, 279
and DefWindowProcO, 350
and GDI, 367, 376, 398,400
and GlobalNotifYO, 168
and memory management, 83,103,

105,168
and the messaging system, 446
and the scheduler, 418

Debugging
and application shutdown, 282
and BootStrapO, 14, 33
and DebugDebugO, 33
De bugDefineSegmentO, 22
and DebugExitCallO, 282
and DebugInitO, 21-22
and DebugSwitchInO, 422
and DebugSwitchOutO, 422
and GDI, 372-76, 401
and memory management, 87,164,

212
and the messaging system, 456, 461-

62
and monochrome monitors, 44
in shared code environments, 215-16
and the shutdown process, 71
and the startup process, 14,21-22,

33,44-55
DecExeUsageO, 259, 290
DecPaintCountO, 346, 449
DEF, 295, 410, 466, 467, 477, 483, 490,

492,493
DefDIgProcO,349

DeferWindowPosO, 335, 336, 363
APIs, summary of, 337-42
general description of, 339-40

DEFPROCS, 349-50
DefWindowProcO, 345,425,433

general description of, 349-50
Delete, 210
DeleteDCO, 378
DeleteTaskO, 55, 283
DelModuleO, 290

general description of, 291-92
DESCRIPTION,477
Desktop, 301
DestroyOwnedWindows(), 353

general description of, 356-57
DestroyWindowO; 326, 342, 358

general description of, 350-55
DevDCReiCnt, 375
DeviceBitmap, 368
DeviceBitmapBits, 368
DeviceMode, 368
DGROUP, 57, 58, 147, 177,205,209,

211,471,487-89
and application startup code, 275
and modules and tasks, 216-17,225,

263,270,275,290-91,298
and the windowing system, 302, 312

DiagInitO, 40-41
DiagOutput(),41
Dialog, 301
DialogBoxO, 313, 411, 487
DIBs (device independent bitmaps), 278
DirectedYieldO, 238, 412, 413, 416

general description of, 414
Disable, 368.
DisableInputO, 71,73,74
DisableKernelO, 74, 75-77
DISCARDABLE memory, 33,244

general description of, 115-18
and the local heap, 177-78, 179-81
and memory management, 85-86,

102-4,110,116-18,132-33,
147-49,158,161,163-64, 166,
168-69,173,175,187,189,204

DiscardFreeBlocksO,418
DispatchO,429
DispatchMessageO, 312, 346,404,446,

450,461,487
general description of, 454-56

DISPlJ\Y, 366,367,422
and debugging, 47
and LW_DisplayDriverInitO, 69

DLLs (Dynamic Link Libraries), 1,2,377,
380,404

and application shutdown, 282
and debugging, in shared code envi

ronments, 216
and LoadModuleO, 232, 237
and memory management, 82, 102,

116,117,126,164,177,199,
208,211

and the messaging system, 434
and modules and tasks, 213-16, 218,

226,232,237-40,243,252,
256-57,259,262-64,266,273-
75,278-79,282-83,291,293,
298

and multiple data segments, 218
second instance of, loading of, 270-73
and the startup process, 10,27-30,

33, 36-37,44-47,56-57,62,65,
74,274-75

and TDBs, 226
typical FAR CALL fixup in, 464
andWE32 programs, 293
and the windowing system, 300, 301,

307,312,321
Do_LibInitO,275
DoPaintO, 453
DOS and Windows Protected Mode: Pro

gramming with DOS Extenders in C
(Williams), 3

DOS Internals (Chappell), 7
DOSCALLS, 257
DosGetProcAddrO, 47, 464, 472
DOSSHELL,6
DosSubSetMemO,85
DOSX, 8, 9, 10, 82, 83,90

INDEX

DOSXjWlND386, 8
DoSyncPaintO, 338, 340
DoTimerO, 453
DPMI (DOS Protected Mode Interface),

2,82-84,90,94-97,103-4,114-16
and application shutdown, 282, 283
and application startup code, 273,

279
basic description of, 8
and BootStrapO, 17, 18,27, 36, 37
bypassing of, by KERNEL, 90
and exiting KERNEL, 74
and Free_ObjectO, 145
and FreeSelO, 94 .
and GAllocO, 129
and Get_Physical_AddressO, 96
and Get_SelO, 90
and GetDPMIFreeSpaceO, 170
and GetFreeMemInfoO, 172
and GetFreeSpaceO, 168, 169
and GetSelectorLimitO, 95
and GInitO, 121-22
and GlobalCompactO, 154
and global heaps, layout of, 103-4
and global memory blocks, general

description of, 114-15
and GlobalPageLock(), 159
and GlobalPageUnlockO, 160
and GlobalReAllocO, 152
and GlobalWireO, 161
and GrowHeapO, 139
and GSearchO, 133
hosts, loading of, 8-10
and InnerShrinkHeapO, 154
and LRUSweepO, 164
and the scheduler, 418, 421
and segment attributes, general

description of, 116
and SetSelectorBaseO, 97
and the startup process, 4-6, 8 -1 0,

17,18,21,30,36,37
and suballocation, 210
and UnlinkWin386BlockO, 156
and WIN.COM, 4-6

WINDOWS INTERNALS

0.9 specification, 82
dressedJocsuccess, 267

DS:EDI, 107
DSWAP, 7
DTA (Disk Transfer Area), 225, 252, 255
DumpHeapHeaderO, 181 .
DumpNodeO,181
dwExStyleFlags, 311, 350
dwFlags, 311, 326, 350
DWOFUD, 311, 317, 378,422,434
DWP structures. See DeferWindowPosO
dwStyleFlags, 311, 350
DX:AX,95
Dynamic linking, 463-93

II1II

E

and c++ name mangling, 490-91
and compiler code generation

options, 490-93
and exporting and exportable func-

tions, 484-88
and the _export modifier, 491-92
and FIXDS, 488-89, 492, 493
general description of, 463-67
and import libraries, 482-83
intermodal, requirements for, 467
and making your code optimally effi-

cient, 492-93
and nonresident names, loading of,

468-69
and PASCAL and C calling conven

tions, 490
and resolving dynamic links, 471-82
and smart callbacks, 488-89, 492.

See also DLLs (Dynamic Link
Libraries)

Edit, 301
Edsun chip set, 57
EMS (Expanded Memory), 211, 232,

252
EnableO, 376, 368,444
EnableinputO, 65-66, 73, 75, 444

EnableSystemTimerO, 65
EndDeferWindowPosO, 335, 338

general description of, 340-42
EndMenuO, 351
EndPaintO, 345, 346, 371

general description of, 349
EntProcAddress(),473

general description of, 479-82
EnumDFonts, 368
EnumObj,368
EnumProps(), 58
EnumWindowsO, 71, 225
EPSON9 .D~V, 368, 377
Errors, 19

and dynamic linking, 472, 482
and LoadExeHeaderO, 242, 243
and modules and tasks, 231, 232,

242,243,251-52,292
and the startup process, 5, 7, 19
and WIN.COM, 5, 7
and Win32 programs, 292. See also

Error messages
Error messages

"Attempt to dynamically link to a
task" (code 5),472

"compressed file," 242
"Insufficient memory to run this

application ," 251-52
"This program requires Microsoft

Windows," 231
"Undefined symbol," 482
"Windows 32-bit extensions

required," 292. See also Errors
ES:BX, 5, 37
Events

general description of, 404
EW _RESTARTWINDOWS, 6
Excel, 242, 294
EXCEL.EXE, 242
Exception OBh, 36
EXEs (executable files)

and dynamic linking, 465, 466-67,
469,470,480,482-85,487,
488-89,492

and modules and tasks, 215, 217,
218,238-40,256,257,270-74,
293,296,297

and multiple data segments, 217, 218
second instance of, loading of, 270-73
and self-loading applications, 296,

297
startup code, general description of,

273-74
and WE32 programs, 293
and the windowing system, 301,312,

321
EXEC, 229, 231
EXEHDR, 469, 471

and GDI device drivers, 367
and logical and physical addresses,

219
and modules and tasks, 214, 217, 219

ExePE()
general description of, 292

ExitApp(), 296
ExitApplO, 296
ExitCallO, 281, 291, 423

general description of, 282-85
ExitKernelO, 71,74-77,282
ExitProcO, 291, 296
ExitWindowsO, 6, 71, 72,282
ExitWindowsExec(),6
EXPDEF, 483, 491-92
EXPORTME, 491
ExportMeO, 485, 488
Extending DOS (Duncan), 3
ExtraInfo, 434
ExtTextOut, 368

•
F

FAR CALL, 17,18,218,378,464,465,
466,468

FarDebugDelModuleO,291
FarEntProcAddressO,472-73
FarFindOrdinaIO,472

INDEX

FarLoadSegment(), 260
FastBorder, 368
FastRectBorder,375
FCBs (file control blocks), 276
FCLEX,422
File extensions

.COM, 3-4,231

.DEF, 85, 111,117,177, 181

.DLL,86

.EXE, 231, 239

.FON, 239

. MAP , 217

.PIF, 231

.RLE, 4
File Manager, 14
FILES, 40
FindExeFileO,239
FindExeInfoO,239
FindOrdinal(), 476-79
FIXDS, 488-89, 492, 493
FIXED memory, 85,98,101-3,125,129,

132,147,153,161-62,187,189,
193,196-98,209,243,256,432

block arena, general description of,
179

general description of, 115 -18
and the local heap, 177-78, 179-81

FLDCW,422
fLMdepth, 237
FONT, 369, 370
FontAspectX, 373
FontAspectY, 373
Font files

as the basis for modules, 214
FOO, 219
FooO, 465, 490
Fortran, 294
fPaletteUse, 375
FPokeAtSegments, 43, 418
fprintfO, 181
freeO, 80,208,209
FreeLibraryO, 378

general description of, 290-91

WINDOWS INTERNALS

Free memory
block arena, general description of,

180
FreeModuleO,283

general description of, 290-91
Free_ ObjectO

general description of, 145-47
FreeSel()

general description of, 94-95
FreeSelArray()

general description of, 93-94
FreeSelectorO

general description of, 93
Free System Resources, 58, 21 0-11, 250
FreeWindowO, 354

general description of, 358-63

-G

GA_ALLOC_DOS, 132, 153
GA_DISCODE, 163
GA_MOVEABLE, 116
GA_NOT_THERE, 115, 139, 154, 156
GA_xxx, 167
GAllocO, 125

general description of, 128-32
GAvailO, 140, 154
GbTopO, 125, 129

general description of, 126-28
GCmpHeapO, 140, 141
GCompact()

general description of, 140-43
and GReserveO, 175
and GSearch(), 133

GDI (Graphics Device Interface), 2,365-
401

and debugging, 44,372-76,401
device contexts (DCs). See DCs

(device contexts)
device drivers, general description of,

367-68
and dynamic linking, 470

functions, selected, pseudocode for,
377-400

general description of, 365-67
logical devices, 368, 374-76
objects, general description of, 369-70
and the shutdown process, 71
and the startup process, 30,41,44, 57
and the windowing system, 300, 302

GDLEXE, 366
GDIINFO, 376
GDIOBJHDR, 369, 370, 372, 390
GDiscardO, 140-41
GDTDSC,18
GDTs (global descriptor tables), 18
Geary, Michael, 43, 378, 489
GEnterO, 107, 125, 143
GeePhysical_Address()

general description of, 96-97
and GlobalDOSAllocO, 153

GeeSelO, 21, 88,89,99
general description of, 90-93

Gee WinDirO, 30
GetActiveWindow, 342
GetAtomNameO,302
GetCachedFileHandle(), 233
GetCharWidth, 368
GetClassNameO,302
GetClassPtrO, 303

general description of, 307-8
GetClassPtrAsmO,307

general description of, 308-10
GetCurrentTaskO, 226, 406
GetDCO, 346, 371, 372
GetDCExO, 346
GetDesktopWindowO,314
GetDeviceCapsO,376
GetD PMIFreeSpace ()

general description of, 170-72
GetExePtrO, 217-18,471,477

general description of, 474-76
GetFocusO, 342
GetFreeMemInfo()

general description of, 172

GetFreeSpace()
general description of, 168-69

GetFreeSystemResources(0),250
GetLog(), 367, 380

general description of, 385-89
GETMESSAGE, 468, 472, 483
GETMESSAGE(),490
GetMessage(), 225, 262,346,361,377,

404-5,419,429,431-32,437,446-
48, 452-54, 461

and dynamic linking, 464, 465, 466,
467,468,490

general description of, 411, 450-52
GetMessage2(), 411, 414, 450, 453, 461
GetMessageExtralnfo(), 431
GetModelUsageO,218
GetModuleFilenameO, 217,218
GetModuleHandleO, 217, 259, 467, 472
GetOwnerO,474
GetPalette, 368
GetPaletteTranslate, 368
GetPhysO, 380
GetPrivateProfileXXX(), 43
GetProcAddressO, 2,37,47,87,226

and ATM, 378 ..
and dynamic linking, 464, 467-74,

476,477,479,480,484,491
general description of, 471-74
and GDI, 367, 378, 387

GetProfilelnfoO,279
GetProfileInt(),58
GetPropO, 312
GetQueueStatusO, 431, 446
GetSelectorBase()

general description of, 96
GetSelectorLimit()

general description of, 95
GetStackPtrO,263
GetTaskQueueO, 432, 434
GetWindowLongO, 310, 311
GetWindowTaskO, 312,437
GetWindowWordO, 310, 311

INDEX

GetWinFlagsO, 4, 471
GFree(), 143

general description of, 144
gUrulock, 107
GlnitO,118

general description of, 121-24
GLeaveO, 125,143
GlobalAddAtomO, 380
GlobaWloc(), 58, 84,86, 102, 115, 116,

143,209,474
and CreateTask(), 252
and GAllocO, 128
general description of, 124-26
and and GbTop(), 126
and GlobalCompactO, 154
and GlobalDOSAllocO, 153
and GlobalReAllocO, 152
and LoadExeHeader(), 242, 243
and logical and physical addresses,

219
and the "mapping myth," 210
and PSPs, 225
and suballocation, 210

GlobaICompact(), 117,276
general description of, 154-5 5

globalDCFlags, 374
GlobalDOSAlloc(), 27-30, 103, 116

and CreateTask(), 252, 253
general description of, 153
and sharing memory, 211

GlobalDOSFree()
general description of, 153-54

GlobalEntryModule(), 443
GlobalFixO, 57, 98

general description of, 156
and LockSegmentO, 158

GlobalFlags()
general description of, 167

GlobalFreeO, 84, 153,269
general description of, 143-44

GlobaIFreeAlI(),283
and DelModuleO, 291

WINDOWS INTERNALS

GlobalHandleO, 81, 101, 150,203
GlobalInfoO, 80, 109, llO, ll5

and GlobalInitO, ll8-19
header, general description of, 105-7

GlobalInitO,27, 122
general description of, ll8-21

GlobalInitAtomO,68-69
GlobalLockO, 85, 86,101, ll7, 149

general description of, 147-48
GlobalLRUNewest()

general description of, 166
GlobalLRUOldestO

general description of, 166-67
GlobalMasterHandle(), 104
GlobalNotifyO, ll7, 177

general description of, 168
GlobalPageLockO, 57, ll6, 162

general description of, 159-60
and GlobalPageUnlockO, 160
and GlobalWireO, 161

GlobalPage Unlock()
general description of, 160-61

GlobalPtrHandleO, 101
GlobalReAlloc()

and GbTopO, 126
general description of, 151-52
and LocalNotifyDefaultO, 205

GlobalSizeO
general description of, 167-68

GlobalU nfixO
general description of, 156-57
and LockSegmentO, 158
and UnlockSegmentO, 159

GlobalUnlockO, 101, ll7
general description of, 149

GlobalU nwire()
general description of, 163

GlobalWireO, 57, 168
general description of, 161-62

GLockO, 156, 157, l61
GLRUBotO, 166
GLRUDelO, 161
GLRUTopO, 166
GMEM..,.DDESHARE, 102, 211

GMEM_FIXED, 116, 226
GMEM_MOVEABLE, 474
GMEM_SHARE,102,211
GMEM_XXX, 238
GMoveBusyO, 162
GN_DISCARD, 168
GN_MOVE & GN_DISCARD, 168
GN_MOVE, 168
GNotifyO, 168
GReAllocO,151-52
GReserveO, 173, 174

general description of, 175-77
GrowHeapO, 175

general description of, 139-40
GrowSFTToMaxO, 40, 75
GSearchO, 128, 140, 162

general description of, 132-39
GUI (Graphic User Interface), 70,461-62
GUnLockO, 157

general description of, 158
and GlobalUnwireO, 163
and UnlockSegmentO, 159

GW_CHILD,3ll
GW_HINSTANCE,3ll
GW _HWNDNEXT, .311
GW_OWNER, 3ll
GWireO

general description of, 162-63
and GlobalPageLockO, 159

GVVL_EXS1lnLE,311
GVVL_S1lnLE, 3ll
GVVL_WNDPROC, 311
GWW_HWNDPARENT,311

-H

HAllocO, 187
HANDLE, 311
Handle tables
Hard drives, 3
hardware_eventO, 446
Hash tables, 68
hBitMap,372

hBuffer,311
hClipRgn, 372
hcNext, 303
HDCs (handles to device contexts), 369,

371
HeadTDB, 405
HEAPFUN, 111-15
Heaplnfo

general description of, 105-6
and the local heap, 178

HEAPWALK, 9,103
"Hello World," 300
Hewlett-Packard, 44
hFontWeights, 373
hi_firstJree, 110
HIMEM.syS, 4, 114
hlnstance, 298,307,311,317,487
HINSTANCE,471
hLBrush, 372
hLDevice,372
hLFont,372
HLoadBlock, 27
hLPen, 372, 395
hMenu,311
hMenuSystem, 311
hMetaFile, 372

. hModule, 298,307,308,375,472,473,
474

HMODULES, 369
hNextDC, 374
hNextLogDev, 375
HookData, 374
hPBrush, 372
hPDevBlock, 375
hPDevice, 372
hPDeviceBlock, 372
HPENS (handles to pens), 369
hPFont,372
hPFontTrans, 372
hPhysPalette, 375
hPPen,372
HPSYSTEM.DRV,44
hQCapture, 444
hQSysModal, 444

INDEX

hQueue, 311, 312
hRaoClip, 372
HRGN,311
hrgnUpdate, 311
HTASK,414
hTask,225,226,278,298,416,433,443
HTASKS,369
HUGE, 114, 115,232
hVisRgn,373
HWinAtom, 68
~D,72,302,310-13,315,337,342-

46,354,356,433
HWndActive, 342, 359
HWndActivePrev, 359
HWndCapture, 359
hWndChild, 311, 313-14
HWndClipViewer, 359
HWndCursor, 359
HWndDesktop, 314-16, 325-26
HWndFocus, 342, 344, 359
hwndLastActive, 311
hWndNExt, 311, 313-14
hWndOwner, 311, 315
hWndParent, 311, 315-16, 352, 354
HWndSysModal, 359
Hyperdisk,5

I/O (input/output)
and modules .and tasks, 225, 228, 252
and PSPs, 225, 228
and the scheduler, 422
and WIN. COM, 3

ibColor, 370
ibHatch, 370
IBM,300
iCapability, 376
!cons

loading of, 62, 217
!conTicle, 301
ICreateBrushIndirect(),390

general description of, 392-95

WINDOWS INTERNALS

ICreateDCO, 377, 378
I Crea teF ontIndirect(), 390
ICreatePenO, 389
ICreatePenIndirect(),392

general description of, 389-90
ICreateSolidBmsh(), 391
IdleTimerO,425
IGetMessageO, 377
ilBmshBkColor, 370
ilBmshhBitmap, 370
ilObjCount, 369, 370
ilObjMetaList, 369, 370
ilObjnextinchain, 369
ilObjSelCount, 369, 370
ilObjStyle, 370
ilObjTask, 369, 370
ilObjType, 369, 370, 395
IMPDEF, 483
IMPLIB, 410, 483
IMPORT. LIB, 482, 483
IMPORTS, 466
IncExeUsageO, 259, 270
IncPaintCountO,449
InitAppO, 53, 425, 432

and application startup code, 273,
275

general description of, 278-81
InitAtomTable(),68-69
InitDOSVarpO,25
InitFwdRefO,47
InitTaskO, 252, 273

and CloseApplEnvO, 267
general description of, 275-78
and StartLibraryO, 266

InnerShrinkHeap()
general description of, 154~55
and GlobalCompactO, 154

InScheduler, 422
InSendMessage(),448
InsertTaskO,407
Inside OS/2 (Letwin), 265
Inside Windows NT(Custer), 462
INT 2Fh, 5, 6c 7, 17, 18,279,418,454
INT 15h, 4

INT 21h, 242, 229, 231, 237, 273, 275,
281,292,421,422,426

and memory management, 109, 208
and the startup process, 4,6,8,9,

19,35,74,77
INT 28h, 418, 454
INT 31h; 19, 83, 170
INT41h,22
INT67h,4
INT 68h, 14
INT2FAPI.INC, 418
Integer atom method, 301
Intel, 2,79,95,488
InternalBeginPaintO, 346, 349
InternalBroadcastDriverMessage(), 65
InternalCreateDCO, 378, 379, 386, 387

general description of, 380-85
InternalDisableDOS(), 77-78
Internationalization, 57
INTWNDCLASS, 301-2,303,307,311
IOCTL,5
ISelectObjectO, 395-98
ISetPixelO,399-400
IsUserIdleO, 279, 418, 424

general description of, 425-26
isValid, 337

III

J
JMP, 36,231; 264

I11III

K

and application shutdown, 290
and GDI, 377, 395, 398
and messaging process, 346
and the scheduler, 418, 419, 421

KERNEL, 79-212, 231
and application shutdown, 281-82,.

283
and application startup code, 273,

276,278
and the code fence, 118

and dynamic linking, 463, 467-68,
471,472,474,479,482

exiting, 74-77
and FIXED versus MOVABLE seg-

ments, 115-17
and GDI, 366, 369
and the global heap, layout of, 103-4
and global heap arenas, general

description of, 108
and global heap components, sum

mary of, 104-15
and global heap functions, summary

of, 118-77
and global memory blocks, general

description of, 114-15
and the LHEAP example, 181-87
loading of, 10-13
and LoadModuleO, 237
and logical and physical addresses, 219
and memory attributes, 85-86
and memory ownership, 102-4
and the messaging system, 429, 430,

454
and multiple instances and memory

models, 216
and the scheduler, 403, 404, 406,

416,418,421
and segment attributes, in the global

heap, 115-18
and the "segment not present" fault,

86,116
and selector functions, 86-102
and the selector table, general descrip

tion of, 110-11
and self-loading applications, 294,

295-96
and the startup process, 3,4, 8, 9, 10-

43,46,55,56,71
and WIN.COM, 3, 4,5
and the windowing system, 300

KERNEL_InDOS, 421
keybd_eventO,444
KEYBOARD, 58

INDEX

KEYBOARD.DRV, 444
KREbootInitO,276

•
L

la_prev, 180
LAllocO, 187

general description of, 189-92
LAR (Load Access Rights), 93,147
LAYER, 377
LAYER. OBI, 377
LCompactO, 189,204
LCurPosX, 373
LCurPosY, 373
LDevAtom, 375, 386
LDrefO, 193, 199
LDTs (local descriptor tables), 18,20-21

and the "mapping myth," 210
and memory management, 87, 90,

94,95,102,108,111,145,208,
210

and modules and tasks, 243
and the startup process, 18,20-21

LDT_InitO,20-21
LE (Linear Executables) files, 214
LEnterO,193
LFreeO,193
LHE_DISCARDED, 193
LHEAP, 181-87
LHFreeO, 193
LIB,465,483
LibInitSeg, 266, 267
LibMainO, 57,266,274,434,471
Libraries

import, 482-83
run-time, and memory management,

118, 177,208-9,211
WINIO,181. See also DLLs

(Dynamic Link Libraries)
LIBRARY, 467, 477
LIBW.LIB, 410, 482
LineToO, 366, 399

WINDOWS INTERNALS

LINK, 295
LinkWindowO, 326
LISTBOX, 301
ListBox, 301
LkAllocSegsO,30
LkExeHeaderO,30
LMAlreadyLoadedO,237

general description of, 239-41
LMCheckHeaderO, 238, 256, 270

general description of, 250-51
LMCheckHeapO, 250, 270
LMCleanUpO, 238

general description of, 269-70
LMEM_MOVEABLE, 178, 369
LMImportsO, 238

general description of, 259-60
LMLetsGoO, 238, 263

general description of, 262
LMLoadExeFileO,241
LMPrevInstance(),237

general description of, 270-72
LMRamNMods(),238

general description of, 256-5 8
LMSegsO, 238, 263

general description of, 260-61
LNotifyO,189
LoadApplSegO, 296, 297
LoadAppISegment(),297-98
LoadAppSegO, 296, 297
LoadDriversO,279
LoadExeHeaderO, 30,237-38,256

general description of, 242-50
LoadIconO, 62, 217
LoadLibraryO, 367, 378,471-72

and GetLogO, 387
and modules and tasks, 238, 257,

259,266
LoadMenuO, 321
LoadModuleO, 10,46,53,226,298,387,

466'
and application startup code, 273
and ExecPEO, 293
general description of, 231-38
helper routines, 233, 239-70

and Win32 programs, 292
LoadNewExeO, 44, 46, 56
LOADONCALL, 233, 260
LoadSegmentO, 33
LoadStringO, 57, 62
10adTDB, 266
LoadWindowsO,57-70

and the global atom table, 58
and message queue sizes, 57-58
and the minimum border width of a

window, 58
Local heap arenas

general description of, 179-80
LocalAllocO,209

general description of, 187-89
and the "mapping myth," 210

LocalCompact()
general description of, 204

LocalFlags()
general description of, 199

LocalFree()
general description of, 193

LocalHandle()
general description of, 198

LocalHandleDelta()
general description of, 202-3

LocalHeapSize()
general description of, 202

LocalInfo structure, 199-200
general description of, 178-89

LocalInitO, 58, 211, 471
and application startup code, 274,275
general description of, 199-202

LocalLockO, 85, 178, 370
general description of, 196-97

LocalNotifyO,177
and LAllocO, 189
general description of, 204-5

LocalNotifyDefaultO
general description of, 205-7

LocalReAllocO, 338
general description of, 193-96

LocalShrink()
general description of, 203

LocalSize()
general description of, 198-99

LocalUnlockO
general description of, 197

LockCurrentTaskO,421
LockMyTaskO,421
LockSegment()

general description of, 158-59
LOG, 219
LOGBRUSH, 370, 392
LOGDEV, 374, 380, 386, 387
LOGPEN, 389
LPARAM, 352
IParam, 72, 456
IpfnWndProcO, 311, 312
IpNotifYProc, 374
IpParameterBlock, 237, 255
IpPDevice, 372
IpPFont,373
IpPrintProc, 374
LpSaveBitmap, 69
LPSTR, 472
LRU (Least Recently Used) sweeping, 53,

110,423
and Free_ObjectO, 145
and GAllocO, 129
and GlobalLRUNcwestO, 166
and GlobalUnwireO, 163
and GlobalWireO, 161
and GULockO, 158
and LRUSweepO, 163-66
and the scheduler, 421

LRUSweepO, 110
general description of, 163-66

LRUSweepFrequency,l64
LShrinkO, 203, 204
LSL (Load Segment Limit), 88,95, 167
LVBRect, 374
LVBUnionO,399
LW_DC1nitO, 372, 377
LW_DisplayDriverInitO,69
LW_DriversInit(), 58
LW_InitNetInfoO,279

INDEX

LW _InitWndMgrO, 66-68
LW _LoadResourcesO, 62-64
LW_LoadSomeStringsO, 57,62
LW _LoadTaskmanAndScreenSaverO, 58,

69-70
LW _RegisterWindowsO, 64-65

-M
Macintosh, 178
mainO,219
MAKEINTATOM, 64
MakeProcInstanceO, 2,36, 225, 253,

256
and dynamic linking, 464, 487, 488,

489,492,493
and GlobalNotifYO, 168
and the windowing system, 312

malloc()
and the "mapping myth," 210
and memory management, 80, 84,

208,209,210
MAP,219
Mapping

between logical and physical
addresses, 219

"myth," 210
MapMode, 373
MARK.EXE, 250
MCBs (Memory Control Blocks), 7

description of, 225
MDB (Module Database)

description of, 225
MDI (Multiple Document Interface), 300-

301
MDIClient, 301
MemManInfoO,I72
Memory management, 1-2

and address space, 207-12, 218-24
and the code fence, 118
functions, outline of, 80-84
and global heap components, sum

mary of, 103-15

WINDOWS INTERNALS

and global heap functions, summary
of, 118-77

and the "large model is bad" myth,
209

and the local heap, 117-207
and the "mapping" myth, 210
and memory attributes, 85-86
and memory below 1Mb, 116, 132,

153,161,207,209,211,252-53
and memory ownership, 102-4
and runtime libraries, 208-9
and segment attributes, in the global

heap, 115-18
and the selector functions, 86-102
and sharing memory, 211-12
and suballocation, 210-11
and WIN.COM, 4, 5

MessageBoxO, 410, 411 434
Messaging system, 2,345-63,429-62

and the application message queue,
432-37

and different types of messages, 231-
32

general description of, 429-30
and GetMessage(), PeekMessage(),

and DispatchMessageO, general
description of, 450-56

and LoadWindows(), 57
and the MSG structure, general

description of, 430-31
and the QUEUE sample program,

437-42
and the scheduler, 446-49, 462
and SendMessage() calls, "anatomy

of," 457-62
and the system message queue, 443-

46
and WaitEvent, 446-49
and WakeBits, 446-49
and WM_QUIT, 462
and yielding to other tasks, when you

have messages, 407-11
META_DC, 369
METAFILE, 369

METAFILE_DC, 369
Microsoft Knowledge Base, 453, 454, 462
Microsoft Systems Journal, 83
MinMaximizeO, 327, 329, 334
Module(s), 1,213-15

and application shutdown, 281-92
and application startup code, 273-81
and del;mgging, in shared code envi-

ronments, 215-16
definition of, 213-14
and loading a second instance of an

EXE or DLL, 270-73
and LoadModuleO, 231-38
and the LoadModule helper routines,

239-70
and logical and physical addresses,

218-24
and multiple instances, 216-18
and self-loading windows applica

tions, 294-98
table, in-memory, in Windows 3.1,

format of, 219-24
and Win32 programs, 292-93

Module U nload()
general description of, 289-90

Monochrome monitors
and Windows diagnostics, 44-55

MOUSE, 58
MOUSE.DRV,444
mouse_eventO,444
MOVEABLE memory, 85,101-4,116-17,

129,132-33,140,187,189,194,196-
99,202,209,256

block arena, general description of,
179

and GDI, 370
general Q.escription of, 115-18
and the local heap, 177-78,179-81
and modules and tasks, 243, 244

MoveObjectO, 389, 392
general description of, 390-91

MoveWindowO
general description of, 334-35

MS-DOS Encyclopedia, 218, 465

MULTIPLE, 290
MYCALLBACKFUNC, 484
MyLockO,474

general description of, 150
MyOpenFileO, 241

-N

NAME, 467, 477
NCBs (Network Control Blocks), 5
nCmdShow, 276
NE (New Executable) files, 10-13, 19,27,

36,43,298
and application shutdown, 290, 291
and application startup code, 278
and dynamic linking, 464, 466, 474,

477,482,483
and LoadModuleO, 232-33,237-39,

242-43,250,256-57,259-60,
269

and logical and physical addresses,
219

and modules, 214-15, 224
and multiple data segments, 217
and self-loading applications, 295
and tasks, 231
and Win32 programs, 292

ne_swaparea, 173
NE_UNKNOWN, 257
NetBIOS, 5-6
New, 210
NFY_DELMODULE, 291
NFY_STARTTASK, 264
NFY_TASKIN, 422
NFY_TASKOUT, 422
NONDISCARDABLE memory, 117,203,

243
Norton Desktop, 53
nPFTIndex, 373
NULL, 279

and GDI, 377, 379, 387
and memory management, 145, 181
and the windowing system, 340

INDEX

Num_Tasks, 267
NW_DrawSwitchWindowO,338

-o
OBl, 273, 465, 466, 490-91
OEMBitBlt, 375
OEMBitrnapBits, 375
OEMCharWidths, 375
OEMColorInfo, 375
OEMControl, 375
OEMCreateBit, 375
OEMDevBitrnap, 375
OEMDeviceMode, 375
OEMDIBBits, 375
OEMDIBtoScreen, 375
OEMDisable, 375
OEMEnable, 375
OEMEnumDFonts, 375
OEMEnumObj,375
OEMExtTextOut, 375
OEMFastRectBorder, 375
OEMGetPalette, 375
OEMGetPalTrans, 375
OEMOutput, 375
OEMPixel, 375
OEMRealizeO, 375
OEMScanLR, 375
OEMSelBitmap, 375
OEMSetPalette, 375
OEMSetPalTrans, 375
OEMStrBlt, 375
OEMStretchBlt, 375
OEMStretchDIB, 375
OEMUpdateCol, 375
OF_CANCEL, 241
OF_PROMPT, 241
OFSTRUCT, 30, 242
OldYieldO, 412-15, 419, 423, 454

general description of, 413 -14
one_hreadO, 232
OOP (Object Oriented Programming), 8,

224,374

WINDOWS INTERNALS

Open Tools, 275, 294
OpenApplEnvO, 251, 270

general description of, 252
OpenFieldO, 241
OpenFileO,241
OS/2,214,242,257,267,414,421,448,

461
and BootStrapO, 47
and debugging, in shared code envi-

ronments, 216
and DPMI, 8
and dynamic linking, 464, 472
and GDI, 365, 366
and LoadModuleO, 232
and memory management, 85, 207,

208,211
and the messaging system, 432
and the NE format, 214
and the scheduler, 403
and the startup process, 5, 8,47
and WIN .COM, 5
and the windowing system, 300, 315

Output, 368
OUTPUTTO=, 43
OX.SYS,43

I11III

P

PAINTSTRUCT, 346, 349
PALETTE, 369
PASCAL,490
PBRUSH.DLL, 469-70, 482
PC Interrupts (Brown and Kyle), 4
PDBs (Process Data Bases), 75, 102-3,

241,253,255,474
and application shutdown, 283
and application startup code, 276
description of, 225
and GbTopO, 126
and LoadModuleO, 233
and logical and physical addresses,

219
and the scheduler, 422

and TDBs, 228-29
PDEVICE, 374
PDRefO, 151, 193
PeekMessageO, 346,419,431,437,446,

448,453-54,461-62
general description of, 411, 450-52

PE (Portable Executable) files, 242, 293
PEN, 369, 370, 395
PenWidthX,373
PenWidthY, 373
pga_count, 156, 159, 160, 163
pgaJreenext, 110
pgaJreeprev,110
pga_lrunext, 11 0
pga_lruprev,110
pga_next, 154
pga_pglock, 159, 160
pga_prev, 154
phDrwMode, 373
PHYSDEVBLOCK (Physical Device

Block), 374, 380
general description of, 376

Pixel, 368
pLDevice, 372
PM (Presentation Manager), 216,300,

315,432,448
PM_NOYIELD, 411
PokeAtSegmentsO,418
PolyFillmode, 373
POP,4
PopupMenu, 301
PostAppMessageO, 414, 416

and the messaging system, 430, 431,
433,449

PostEventO, 405, 414, 416, 449
PostMessageO, 413, 414, 431-33, 449,

453
PostMessage20, 449
PostScaleX, 374
PostScaleY, 374
POWER.EXE,419
pPBrush, 373
pPDeviceBlock, 372
pPFontTrans, 373

pPPen,373
pRaoClip,372
PRELOAD, U8, 232, 238, 243, 244,

256,260,262
PreloadResourcesO, 262
PRESENT, 89
PrestoChangoSelector(}

general description of, 97-98
Prey Int3FPRoc, 36
printfO, 181
PRqGMAN, 53,102,250

and application shutdown, 282
and application startup code, 278
and modules and tasks, 239
and the shutdown process, 71

PROGMAN.EXE, 31, 52-53,233,328
Program Manager, 168, 171
Programming Windows (Petzold), 217
properties (WND structure), 3U
PSPs (Program Segment Prefixes), 102,

228,241,252,255
and application shutdown, 283
description of, 225
and exiting KERNEL, 75
and LoadModuleO, 233

PurgeClassO,362
PUserInitDoneO,276
PUSH, 4
PUSHBUTTON, 301

-Q
QDPMI,8
QEMM386, 4, 5, 8, 114
QS_KEY, 431, 449, 453
QS_MOUSE, 444, 449, 453
QS_MOUSEBUTTON,431
QS_MOUSEMOVE,431
QS_PAINT, 346,431,432,446,448,

449,453
QS_POSTEVENT, 446
QS_POSTMESSAGE, 431, 448,449, 453
QS_SENDMESSAGE, 432, 448, 449, 453
QS_TIMER, 431, 449, 453

INDEX

QS_llX, 446, 448, 449
Qualitas,8
Quarterdeck, 8, 40
QueryQuitEnumO, 72-73

II1II

R
RAM (Random Access Memory), 83
ReadMessageO, 453
Real_DOSO,421
RealizeObjectO, 368, 387, 395, 398
ReaIOEMRealizeO, 375
RealTime, 375
REBOOT, 74
ReceiveMessageO, 413, 448, 449

general description of,459-60
RECT, 311, 326
RectangleO,399
rectClient, 311
rectWindow,311
RedrawWindow(),336
REGION, 369
RegisterClassO, 64, 68, 300,.301,488

general description of, 303-7
RegisterPtraceO, 22, 422
RelAbsmode, 373
ReleaseDCO,371
ReplyMessage()

general description of, 460~61
Re!lcheduleO, 279, 405; 414, 454

entry code, 416-17
four major duties of, 415-16
general description of, 415-27
and the idle loop, 418
and searching fora task to schedule,

418-20
RESDUMP, 62
RESIDENTNAME, 484
Resource Workshop, 62
RETFs, 36
REvalSendMessageO,316
ROMBIOS,87
RPF (requested privilege level), 101

WINDOWS INTERNALS

• s
SaveEventO, 444
SaveStateO, 35-36,422,424

general description of, 426-27
SayWhatBro, 372
SC_SCREENSA VB, 425
ScanLR, 368
ScanSysQueueO,453
ScanTimersO,449
Scheduler, 2, 225, 403-27

and the core scheduling routine, 415-
27

and events, 404-5
fundamentals of, 404-7
and how you end up in the scheduler

(yielding), 411-15
and the idle loop, 418
and the messaging system, 446-49,

462
and nonpreemptive scheduling, 404
and searching for a task to schedule,

418-20
and task priorities, 405-7
and yielding to other tasks, when you

have messages, 407-11
SCROLLBAR, 301
scrollBar, 311
SDK (Software Developer's Kit), 243, 214,

250
and application shutdown, 282
and application startup code, 275,

278
and BootStrapO, 47
and DefWindowProcO, 349-50
and dynamic linking, 466, 471, 483
and GDI, 376, 370, 380
and GlobalNotityO, 168
and LoadModuleO, 237
and LW _RegisterWindowsO, 64
and memory management, 87,103,

168
and the messaging system, 456, 457
and self-loading applications, 294

and the startup process, 11, 47, 64
and the windowing system, 3'13, 315,

349-50
Search_Mod_Dep_List(), 257
Security (system security), 88
SegLoadBlock, 122
SegRelocO, 466, 476, 479
SelectBitmap, 368
SelectObjectO, 371; 372, 380, 389
Selector Table, 80
Self-loading applications, 294-98
SelTableLen,110
SelTableStart, 110
SEMTEST, 414
SendChildNCPaint(),346
SendDestroyMessagesO,354

general description of, 357-58
SendEraseBkgnd(),346
SendFocusMessagesO, 342, 343

general description of, 344-45
SendMessageO, 316, 354,412-14,422,

432,434,436,448-49,453,460-61
general description of, 412, 457-59

SetActiveWindow(), 342
SetAppCompatFlags(), 275-76
SetAttribute, 368
SetAttrs, 375
SetBkColorO,380
SetCaptureO, 444
SetCursorO, 279
SetDIBitsToDevice, 368
SetDivZero(), 278
SetErrorModeO, 241
SetFocusO,342-44
SetMessageQueueO, 433
SetPalette, 368
SetPaletteTranslate, 368
SetPriorityO, 406-7, 411, 421
SetPropO, 312
SetSelectorBase()

general description of, 97
SetSelectorLimit()

general description of, 95-96
SetSwapAreaO,173

SetSwapAreaSizeO,118
general description of, 173-74

SetSystemTimerO,279
SetTaskSignalProcO, 278
SetTextColorO, 380
SetTimerO, 449, 456
SETUP .EXE, 3
SETUP.INF,3
SETUPWIN, 279
SetWakeBit20,449
SetWindowPosO, 329, 334, 338

and DestroyWindowO, 352
general description of, 335-37

SFTs (System File Tables), 40-41
SHARED memory, 208
Sharing code

and debugging, 215-16
SHELL, 418
SHELL.DLL, 240
SHELL.EXE, 240
SHELL=,52
ShowHeapO, 181
ShowWindowO, 327, 335, 342

general description of, 329-34
ShrinkHeapO, 154,418
Shutdown

application, 281-92
SignaIProc(), 286
signature (DWP), 337
SleepHqO, 447, 448, 449, 454
SlowBoot()

and debugging, 52-53, 55
and the startup process, 39,41-44,

46, 52-53, 55, 56
'Smart callbacks, 488-89, 492
SMARTAAR, 5
SMARTDRV, 4, 5
Soft-ICE/W, 21, 44,282
Solitaire, 289, 320
SPY, 64,433
Spy, 412
SS:SP, 263, 283, 422
StartLibraryO, 262, 263, 275

general description of, 266-67

INDEX

StartModuleO, 262, 270
general description of, 263

StartTaskO, 263
general description of, 264-66

Startup
and BootStrapO, 10, 13-43,56
and debugging, 14,21-22,33,44-

55,71
and DLLs, 10, 27c30, 33, 36-37, 56,

55-47,57,62,65,74
and DPMI, 5,6,8-10,17,18,21,

30,36,37
and LDTs, 18,20-21
and LoadWindowsO, 57-61
and LoadWindowsOHelper, 61-70
and modules and. tasks, 273-81
and SlowBootO, 39, 41-44; 46,52- .

53,55,56
and USER, 30,41,44,47,56-58,

62,64,68,70
and WIN.COM, 3-8, 19,39

Static, 301
StrBlt, 368
StretchBlt, 368
StretchBltMode, 373
StretchDIB, 368
Suballocation, 210-11
suggestWndCount, 337
SUPERVGA.DRV, 368
SW_HIDE, 329
SW_XXX, 329
Switches

-Kswitch, 232
IB switch, 39
Irswitch, 4
IS switch, 82

Switch1;'oPModeO,17-19
SWP_xxx, 337
SYM, 219
SysCommandO, 425
SysErrorBoxO, 410, 411
SYSTEM, 44,47, 82,83, 164
systemO,229
SYSTEM.INI, 43,46,52,83,279

WINDOWS INTERNALS

and dynamiclinking, 463-64
and GDI, 367, 377
and LW_LoadTaskmanAndScreen

SaverO,69-70
and the scheduler, 425

System security, 88
System timers, 65
SYSTEM\DOSX.EXE; 7, 9
SYSTEM\WIN386.EXE,9

III

T

Task(s), 1,213,224-29
and application shutdown, 281-92
and application startup code, 273-81
definition of, 224-25
and going from a file to a process, in

28 steps, 229-31
and loading a second instance of an

EXE or DLL, 270-73
and LoadModuleO, 231-38
and the LoadModule helper routines,

239-70
priority levels, and the scheduler, 405-

7
searching for, to schedule, 418-20
and self-loading windows applica

tions, 294-98
and Win32 programs, 292-93

TaskGetCSIPO,416
TASKMAN. EXE , 69,225
TaskSetCSIPO,416
TaskSwitchProfile UpdateO, 416
TBD.INC, 226
TDBs (Task Databases), 31,168,209,225-

26,267,298
and application shutdown, 282, 283
and application startup code, 276,

278
and CreateTaskO, 252, 253
description of, 225

and dynamic linking, 474
and events, notion of, 404
and LoadModuleO, 238
and memory management, 116, 153
and the messaging system, 433-34,

437, 444, 448-49
and PDBs, relation of, 228-29
and the scheduler, 405, 412, 414,

418,420-21
Windows 3.1, format of, 226-28

TDB_nEvents, 405, 418
TDB_Yield, 416
TDBF_OS2APP, 267
TDUMP, 214,217

and dynamic linking, 469-70, 482,
483

and GDI device drivers, 367
and logical and physical addresses, 219
output ofPBRUSH.DLL, 469-70

TDW (Turbo Debugger for Windows), 87,
266,282,462

TDWIN.DLL, 405
TerminatePDBO,283
TestWFO, 350
TextOutO, 366,367,399
THHOOK, 33,110
TLINK,295
TOOLHELP

and the messaging system, 443
and RescheduleO, 416
and the scheduler, 416, 422

. and the windowing system, 302
ToolHelp, 33,226,291

and InitAppO, 278
and memory management, 110, Ill,

172,181
and StartTaskO, 264

TOOLHELP.DLL, 217, 291, 422
ToolhelpHookO, 22, 422
TopPDB, 233
TPW.TPL, 482
TrackPopupMenuO,315

Translate, 373
TSRs (terminate-and-stay-resident pro

grams), 153,207,211-12,279
Turbo Pascal, 482
TypeAhead, 443

IIIiII

U

UAE (General Protection Fault), 488
uMsgFilterMax, 446, 454
uMsgFilterMin, 446, 454
Undocumented Windows, 9, 22, 62,71,

87,181,217,251,264,275,276,
282,310,350,369,372,378,406,
410,414,422,434,437

Undocumented DOS, 255
UNIX, 365,403,464
UnlinkWin386BlockO, 154

general description of, 156-57
UnlillkWindowO, 354
U nlockSegment()

general description of, 159
and LockSegmentO, 158

Update Colors, 368
UpdateWindowO,66
USER

and application shutdown, 282, 286,
289

and application startup code, 276,
278

and debugging, 44, 47
and the doubly-dereferenced pointer

trick, 370
and dynamic linking, 466-68,471,

472,490
foreign language version of, 57
and GDI, 365, 366, 369, 370, 372,

377
and GlobalInitAtomO, 68
initialization, 56-57
and LoadModuleO, 237
and LoadWindowsO, 58, 62

INDEX

and LW _LoadTaskmanAndScreen
SaverO,70

and LW _RegisterWindowsO, 64
and memory management, 102, 141,

210,211 ..

and the messaging system, 430-33,
443,444,446,449,462

and the scheduler, 405, 412, 413,
418,421

shutting down, 71-73
and SlowBootO, 41
and the startup process, 30,41,44,

47,56-58,62,64,68,70,71-73
and suballocation, 210,211
and "two-camps" thinking, 365
window hierarchies created by, gen-

eral description of, 313-14
and the windowing system, 300-303,

307,310,311,313-14,316,
317,325,336,338,342,345,
349,359,361

USER.EXE, 468
and dynamic linking, 466
and the messaging system, 430, 444
and the windowing system, 300

USEREntryO,57 .
UserRepaintDisable(),422
UserSeeUserDo(5),302
UserVptOrgX, 373
UserVptOrgY, 373
UserYieldO, 411, 419, 454

general description of, 412 ·13
UT_GetIntFromProfileO,57-58

IIIiII

V

VCPI (VIrtual Control Program Interface),
4,8

VDDs (Virtual Device Drivers), 214
and USER initialization, 57
and WE32 programs, 293

VGALOGO.LGO, 3-4

WINDOWS INTERNALS

VGALOGO.RLE, 3-4
Visual Basic, 490
VM (Virtual Machine), 10,211,404,416

and GlobalDOSAllocO, 153
and the scheduler, 403

VMM (Virtual Ma{;hine Manager), 9-10,
82,83.

VprtExtX, 373
VprtExtY, 373
VprtOrgX, 373
VprtOrgY, 373
VSTRETCHBLT, 471
VxDs (virtual device drivers)

..
W

and exiting KERNEL, 74
and memory management, 86
and the startup process, 9, 10

W32SYS.DLL, 293
WaitEventO, 405, 419, 423, 448-49, 454

and application startup code, 275
general description of, 414-15

WakeBits, 449
general description of, 446

WakeMask,446
WakeSomeoneO, 449

general description of, 444-46
Walk_through_task_list, 418, 419
Wallpaper, 66
WDEB386, 21, 282
WEP (Windows Exit Procedure), 74, 102,

116-17,282,291
and dynamic linking, 469, 484

WEPO, 102,291
WExitingTDB, 282, 283
WF _xxx flags, 4
WH_CALLWNDPROC, 461
WH_ CBT (Computer Based Training

hook),342,343,351
WH-IOURNALPLAYBACK, 289
WH_SHELL, 328, 351
WtlCGi_Reserve_FitO,175

WIN, 1, 3,4
WIN.CNF, 3,4
WIN.COM

and BootStrapO, 39
and DPMI, 8, 9
and GInitO, 121
and GlobalInitO, 119
and memory management, 82, 119,

121
and the start up process, 3-8, 19, 39
WIN.CNF portion of, 3,4

WIN.INI
and application startup code, 275,

279
and BootStrapO, 33
andLW _InitWndMgrO, 66
and memory management, 164
and messaging, 57, 433, 443

Win_PDB, 422
Win32 programs,.214, 242, 292-93,342

and LoadModuleO, 232
and the messaging system, 462

WIN386, 4, 5, S
and memory management, 82,83-

84,86,90,110,116
and the scheduler, 403

WIN87EM, 257
WinDebug, 264
WINDEBUG.DLL, 405
WINDMOD,9
WINDOW.H, 313
windowData, 337
Windowing system, 2, 299-363, 366,462

and class registration, 303-10
and the DeferWindowPosO APIs,

summary of, 337-42
and message processing, 345-63
and the WNDClass structure, format

of, 300-303, 311, 312
and window creation, 316-29
and window focus, 342-45
and window hierarchy, 313-14
and window manipulation, 329-37
and window ownership, 315-16

and window styles, 313
and the WND data structure, 300-

302,310-13,317,321,340,
362,363

and z-ordering, 314, 322, 338, 339-
41

Windows l.x, 257
Windows 2.0, 325
Windows 2.x, 242, 250
Windows 2.x, 204, 250
Windows 3.0, 75, 414, 422

al).d dynamic linking, 471
and GDI, 371, 378
and memory management, 82,83,

97-98,101, 1l0, 111, 116, 152,
153,209,210

and the messaging system, 431, 434,
456

and moduks and tasks, 231, 232,
233,240,257,275-76,282

and the startup process, 4, 5, 8, 10,
36,41,58

and the windowing system, 302, 303,
310, 311, 316, 342

Windows 3.1, 74,414,416,418,422
and dynamic linking, 464, 466, 483
format of a WND structure under,

311
and GDI, 368, 371, 374-75, 377,

378
in-memory module tabk in, format

of, 219-24
and memory management, 82, 87,

101,104,110,111,209,211
and the messaging system, 431, 432,

434-36,456
and modules and tasks, 214, 219-24,

226-28,231,232,243,275-76,
278,279,282,292,293

and the startup process, 4, 5, 8,9,
10,41,58

Task Database, format of, 226-28
and the windowing system, 302, 311,

317,322,328,334,349-50

INDEX

Windows 3.X, 242, 250, 294
Windows 3.x, 204, 211, 443, 462
WINDOWS.H,301, 310, 311,431,490
Windows/DOS Developer)s Journal) 422
Windows NT, 292

and memory management, 88, 207,
211

and the messaging system, 443, 462
and the scheduler, 403
and WIN. COM, 5

WINDOWS\sYSTEM, 3, 9
WINDOWSX.H,101
WinExecO, 10,70,279,281

and application startup code, 273
and logical and physical addresses,

219
and tasks, 229-31

WinFlags, 17
WINGIF,4
WINIO, 181,437
WINKERN .INC

and GlobalNotifYO, 168
and the local heap, 178
and memory management, 103, 104,

105,109,168,178
WinMainO, 217, 281, 471

and application startup code, 273,
276

and StartLibraryO, 266
WINOA386.MOD,117,237
WINOLDAP,237
WinProcs, 482
WinSight, 412, 433
WinSpector, 219
WINSTART.ASM,273
WINSTART.BAT, 10,211
WinSwitch,301
WM_CHAR, 342
WM_CLOSE, 350
WM_COMMAND, 313, 315,461
WM_COMPACTING, 140, 141

"' WM_CREATE, 316, 326
WM_DESTROY, 354, 357
WM_DROPOBJECT, 350

WINDOWS INTERNALS

WMJ;NDSESSION,72
WM_ERASEBKGND, 346
WM_GETHOTKEY, 350
WM_GETMINMAXINFO, 325
WM_ICONERASEBKGND, 346
WM_ISACTIVEICON,350
WM_KEYDOWN,444
WM_KILLFOCUS, 344-45
WM_LBUTTONDOWN, 443
WM_MOUSEMOVE, 431, 443
WM_MOVE, 326, 329
WM_NCCALCSIZE, 326
WM_NCCREATE, 325
WM_NCDESTROY, 357, 358
WM_NCPAINT, 346
WM_PAINT, 345-46,366,430,431,432,

453,456,462,37l
WM_PALETTECHANGED,351
WM_PARENTNOTIFY, 327, 352
WM_QUERYDROPOBJECT, 350
WM_QUERYENDSESSION,72
WM_QUIT, 361
WM_RBUTTONUP,411
WM_SETFOCUS, 344
WM_SETHOTKEY, 350
WM_SETVISIBLE, 329
WM_SHOWWINDOW, 329
WM_SIZE, 326, 329
WM_SYNCPAINT, 350
WM_SYSCO LORCHANGE , 66
WM_SYSCOMMAND, 425
WM_SYSTIMER, 456
WM_TIMER, 453, 456
WM_ USER, 430
WNDCLASS, 64, 303
WNDClass structure, 300-303, 311, 312
WND data structure, 278,300-302,310-

13,340,362,363
and dynamic linking, 487
and the messaging system, 433, 453
and CreateWindowExO, 317, 321
format of, under Windows, 3.1, 311

WndExtX, 373
WndExtY, 373

WndOrgX, 373
WndOrgY, 373
WNDPROC,311
WNetRestoreConnection(),279
WORD, 242-43, 294, 431, 443

and LoadModuleO, 237
and memory management, 178, 180,

199
and the scheduler, 404
and the windowing system, 311, 352

wParam, 425
wparam,431
WriteMessageO, 449
WriteProfileStringO,279
WriteSysMsgO, 444, 446
Writing Windows Device Drivers (Nor

ton),10
WS_CAPTION,313
WS_CHILD, 315-16, 317, 321, 352, 353-

54
general description of, 313

WS_CLIPCHILDREN, 313, 314, 322
WS_CLIPSIBLINGS, 322
WS_DESKTOP, 314
WS_EX_NOPARENTNOTIFY, 327
WS_EX_TOPMOST, 322
WS_EX_XXX,311
WS_GROUP, 313
WS_OVERLAPPED, 315-16, 320

general description of, 313
WS_POPUP style, 314, 315-16

general description of, 313
WS_ VISIBLE, 327, 329
WS_~, 311
wsprintfO, 490
WSWAP,7,9
WSWAP.EXE, 7

-X

XformFlags, 373
XHandleO, 150, 167, 193

general description of, 151

XMS (Extended Memory Specification), 4,
8,114

X-Windows, 365

II1II

Y

YIELD, 407-11
YIELD.C, 410
YieldO, 267, 403, 404, 410, 411, 413, 453

general description of, 412

INDEX

Yielding

II1II

Z

as how you end up in the scheduler,
411-15

to other tasks when you have mes
sages, 407-11. See also TieldO

Z-ordering, 314, 322, 338, 339-40
ZERO, 154
ZOrderByOwnerO,340
Zortech, 273

About th

the series are
stantive. They encompass every aspect of IBM programming with
particular emphasis on Windows and DOS programming.

Andrew Schulman, the·· series editor, is a software engineer
known for his insight on programming issues and his ability to
express technical ideas clearly .. He has established a reputation
as one of the finest writers on programming topics.

UndQcumented DOS

ng Series

(COnly one or two books per year stand out as truly worthwhile efforts that we can use· every day.
Undocumented DOS is such a book .. Serious DOSprogrammers should own a copy.» .
-PC Magazine

(Cl consider this to be one of the best programming books (Undocumented DOS) sinceZ(!n of
Assembly Language. »

-PC Techniques

''Undocumented DOS is the most informative DOS programming book 1 have ever read»
-Dr. Dobb)s Journal

Undocumented Windows
au ndoq:rmented Windows is a must-have guide for developers of serious Windows application~)
-lnfoWorld

au ndocumented Windows will take a place of honor on your bookshelf"
-PC Magazine

Windows.3.1 Programming for Mere Mortals
'Windows 3.1 Programming for Mere Mortals is actually fun to read. It)s also highly informa
tive.))
-PC Magazine

«This is a . brilliant title .and the book (Windows 3.1 Programming for Mere Mortals) is i'l1:.st if,

hair short of genuine brilliance. » .

-PC Techniques

Windows++
«No other work 1 have seen comes close to what Wmdows ++ brings to the C++ Windows programmer.))
-Dr. Dobb)s Journal

About the Books in the Series

.Undocumented DOS: A Programmer's
Guide to Reserved MS-DOS Functions
and Data Structures, Second Edition
by Andrew Schulman, RalfBrown, David Maxey, Raymond
J. Michaels, and Jim Kyle. Undocumented DOS is widely
considered one of the best DOS programming books ever
published. As the first complete reference to all of
Microsoft's reserved DOS functions, it has become an
essential addition to any serious programmer's library. This
second edition is completely revised to cover DOS 6,
Windows™ 3.1, and DR-DOS® 6, with coverage of all the
newest interrupts and data structures that have appeared
since the first edition.
$44.95, Paperback, 900 pages, 3.5" disk.
ISBN 0-201-63287-X

Windows ++: Writing
Reusable Windows Code in C++
by Paul Dilascia describes how to build a c++ class library.
Rather than teach you how to use commercially available
class libraries, it shows you how to build your own system,
one that's tailored to suit your needs. Along th~ way,
you'll learn the benefits and ease of object-oriented
programming in C++. Highlighted tips show how to adapt
the various tips and techniques to C.
$29.95, Paperback, 571 pages.
ISBN 0-201-60891-X

Windows 3.1 Programming for Mere Mortals
by Woody Leonhard uses commonly available Windows
tools-most notably WordBasic, the programming
language in Word for Windows, and Visual Basic-to
develop effective utilities from the ground up. You'll
discover the power of creating dialog boxes, moving data
between applications with Dynamic Data Exchange
(DDE), client/server links, calling Windows API functions,
and using Dynamic Link Libraries (DLL) while building
these exciting programs.
$34.95, Paperback, 537 pages, 3.5" disk.
ISBN 0-201-60832-4

Undocumented Windows: A Programmer's Guide
to Reserved Microsoft Windows API Functions
by Andrew Schulman, David Maxey, and Matt Pietrek is a
complete guide and comprehensive reference to the Win
dows API functions left undocumented or "reserved" by
Microsoft. The first section of the book introduces the
inner workings of Windows and the role of the reserved
API functions. The second section contains a comprehen
sive reference to all undocumented Windows functions. It
names and defines each function, lists the versions and
modes of Windows that support it, names programs and
libraries currently using it, and then notes unique features,
potential problems, and conflicts.
$39.95, Paperback, 715 pages, 3.5" disk.
ISBN 0-201-60834-0

DOS and Windows Protected Mode:
Programming with DOS Extenders in C
by Al Williams is essential reading if you're using or con
templating using protected mode or DOS extender technol
ogy in applications development. It is the definitive guide,
complete with practical source code, to writing applica
tions that take full advantage of the most popular DOS
extenders including Phar Lap and Intel. The accompanying
disk contains a working model of Phar Lap's 2861DOS
Extender Lite.
$39.95, Paperback, 593 pages, 5.25" disk.
ISBN 0"201-63218-7

Windows Network Programming:
How to Survive in a World of
Windows, DOS, and Networks
by Ralph Davis is the first book to clearly address the key
issues regarding Windows and networks. The book looks
closely at the leading network standards, including:
NetWare, Windows NT, Banyan Vines, and TCP/IP. It
also develops a network-independent interface for Win
dows applications by determining what functionality
should be standardized.
$29.95, Paperback, 592 pages.
ISBN 0-201-58133-7 .

ORDER INFORMATION
Available wherever computer books are sold or call Addison-Wesley at 1-800-358-4566
in the United States. Outside of the U.S. call your local Addison-Wesley office.

Addison-Wesley books are available at special discounts for bulk purchases by corpora
tions) institutions) and other organizations. For more information) please contact
Special Markets at (617) 944-3700 x2431.

\
'\, '.

Version 1.1
(free update for registered 1.0 customers)

Debug Windows at the systems level!
Soft-ICE/W tokes you inside Windows! Debug and explore with power
and. flexibility not·found in any other Windows debugger! Soft-ICE/W
allows you to debug at the systems or applications level or simply leam
the inner workings of. Windows.

• Debug VxD's, drivers and interrupt routines at.source level,
• Debug interactions between DOS T&SR's and Windows Apps
• Debug programs in DOS boxes
• Display valuable system information

(from the total memory occupied by a Windows application, to the
complex intemal structures of Windows)

Soft-ICE/W uses the 386/486 architecture to provide break point
capabilities that normally require extemal hardware. Nu-Mega, which
pioneered this technology with the introduction of its award winning
Soft/ICE for DOS, now gives Windows programmers the some debug
ging power". and still at a software price.

Own the debugger that combines the best 'view' of Windows ihtemals
with the most powerful break points of any software debugger.

Soft-ICE/W .•. Onl $386
"While you may choose to keep your own favorite

debugger for simple work, Soft-lCE/W will soon become
mandatory equipment

for serious windows.debugglng.·
PC Magazine, June 1992

Undocumented Windows
FREE!

- Learn Windows Inside & Out -

For a limited time get a great book,
Undocumented Windows, a $39.95
value FREE with your Soft-ICE/W order
(or $39.95 separately while supplies lost).

The ideal companion for
your Soft-ICE/W

Windows debugger!
~"""""'I'I

Undocumented
Windows
places, at
programmer's
fingertips. all the
information
needed to use the
more than 200 by A::: .::~man reserved Windows

Maa P,..... functions that
Microsoft has left undocumented.

(,,11(603) 889-2386
I !\K (603) 889-1135

P.O; Box 7780
Nashua, NH 03060-7780 U.S.A.

'MBNu-M~
~TECHNOLOGIES INC

MICROSOFT WINDOWS 1$ A REGISTERED TRADEMARK OF MICROSOFT CORP. Soft·IC~ IS A TRADEMARK oF"NU-MEGA TECHNOLOGIES, INC.

ANOTHER DEBUGGING BREAKTHROUGH
BOUNDS-CHECKER™ FOR WINDOWS!

Automatic Bug Finder For Microsoft Windows
NEW! BOUNDS-CHECKER for Windows is the only totally automatic
solution to your Windows memory corruption, heap corruption and resource
leakage problems.

BOUNDS-CHECKER for Windows is an easy to use utility that automatically
detects problems in your local heap, global heap, stack or data segment. It also
tracks resource allocation / de-allocation, perfonns full parameter checking
(even when not using the debug kernel) and handles all Windows faults. In one
step, you can quickly and easily flush out some of the most aggravating bugs that
a Windows programmer islikely to encounter.

Using BOUNDS-CHECKER for Windows is simple, there are no changes
to be made to your source in any way, and no linking of code or macros into
your executable. When a bug is found, BOUNDS-CHECKER for Windows
pops up showing you the source code that caused the problem.

BOUNDS-CHECKER for Windows
quickly & easily traps:
• Memory and heap related corruption problems
• Library routine over-runs of strings,

arrays and structures
• Attempting to free bad blocks
• NULL pointers the instant they are referenced
• Resources that were not freed

(shows your actual source line that created the resource)
• Errant parameters passed to API routines
• Processor Faults

Order NOW! Only $199
For even more debugging power at a great value you can order BOUNDS-CHECKER for Windows in one of our package
bundles that include other Nu-Mega debugging tools:

BOUNDS-CHECKER for DOS & BOUNDS-CHECKER for Windows

BOUNDS-CHECKER & Soft-ICE (DOS or Windows versions)

$298
$499

Get all 4 products (BOUNDS-CHECKER & Soft-ICE for DOS & Windows) $770 - SAVE $4001

We're making CjC++ a Safe Language!

P.O. Box 7780
Nashua, NH 03060-7780 U.S.A.

'·DNu-M~
~TECHNOLOGIES INC

BOUNDS CHECKER FOR WINDOWS. SOFT-ICE. AND NU-MEGA TECHNOLOGIES are trademarks
owned by NU-Mega Technologies. Inc. All other trademarks are owned by their respective owners.

r":
,I

Windows™ Internals
MATT PIETREI(

Most Wil.J.dowsTM programming books treat Windows like
a "black box"-your program makes calls to the
Windows API and somewhere the request is processed.

But to write truly professional programs, you need to understand
what goes on under the hood of Windows. Matt Pietrek, coauthor
of the bestselling Undocumented Windows, reveals the internal
complexity and power of Windows in a clear and concise style.
Through the extensive use of pseudocode, the book illustrates the
actual implementation of Windows functions, showing in detail
what happens when a Windows program executes.

The topics include a walk through a typical Windows application,
memory management, the creation and destruction of a program,
dynamic linking, the Windows-DOS interface, the scheduler, the
messaging system, resource management, and GDI basics. Based
on intensive research of the actual binary code of the Windows
program files, Windows Internals ' authoritative account of the
complicated interactions that occur inside Windows is essential
reading for all Windows programmers.

Matt Pietrek is an engineer at Nu-Mega Technologies
Incorporated, developer of BOUNDS-CHECKER and Soft
ICEIWM. He is coauthor of Undocumented Windows.

Cover design by Jean Seal
Cover painting by Jean Seal in the style of Mark Rothko

52995

9 780201 622171
ISBN 0-201-62217-3

US $29.95
CANADA $38.95

