
-- .

PROGRAMMER'S REFERENCE LIBRARY

Programmer's Reference
Version 1

Designed to

work with

Windows 3.1

: a:J · :::=1 :."' -· :::=1
• , TM

MICROSOFT®
WINDOWS,.

@ == D

:I ~

Programmer's Reference
Version 1

Designed to

work with

Windows 3.1

®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright ©1992 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher. .

Library of Congress Cataloging-in-Publication Data
Microsoft Windows for Pen computing programmer's reference / author,

Microsoft Corporation.
p. cm.

Includes index.
ISBN 1-55615-469-0 (softcover)
1. Microsoft Windows (Computer program) I. Microsoft

Corporation.
QA76.76.W56M525 1992
OOS,4'3--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 MLML 7 6 5 4 3 2

91-39265
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Microsoft, MS, MS-DOS, and QuickC are registered trademarks and Windows is a trademark
of Microsoft Corporation.

Writers: Terry A. Ward
Stephen M. Liffick

Editors: Bryce Holmes
David Paul

Contents

Chapter 1

Chapter 2

Before You Begin ix

Getting Started with Microsoft Windows for Pen Computing 1

Objective 1
What Is Microsoft Windows for Pen Computing? 1

Device Drivers 2
The Recognizer 3
Microsoft Windows for Pen Computing DLL 3
The Pen Interface 3

What Is the Microsoft Windows for Pen Computing SDK? 3
How Will MS Windows for Pen Computing Be Delivered? 4
What Are the Basics of the Pen API? 4

The Handwriting Edit (hedit) Control 4
The Boxed Edit (bed it) Control 4
Data Flow (Overview) 5
Process Writing Function 5
Recognize Function 5
The RC Structure 5
The RCRESULT Structure 6

How Should Applications Support the Pen? 6
Basic Pen Awareness (Pen-Capable Applications) 6
Extended Pen Awareness (Pen-Enhanced Applications) 8
Advanced Pen Awareness (Pen-Centric Applications) 9

This Guide 11

The Architecture of the Pen Extensions

The Goals
Components

The RC Manager
The Pen Driver
The Display Driver
The Pen Message Interpreter
Windows Applications
Pen Applications
Recognizers
Dictionary Modules

Data Flow

13

13
14
14
14
15
15
16
16
16
17
17

Programmer's Reference

iv Contents

Chapter 3

Chapter 4

The Pen Driver 18
The RC Manager: Normal Mode 18
The Application 20
The RC Manager: Inking Mode 21
The Results 23
The Pen Message Interpreter and the Rest of the System 24
The Gesture Macro Layer 24

The Recognition Process 27

Overview 27
RC: The Principal Data Structure 29

Using and Modifying Ink 29
Ending Recognition: Pen State 29

The Application-Recognizer Connection 30
Writing Location 31
Specifying the Recognizer and the Type of Input Expected 31
The Timing of Recognition Results and Significant Events 33
Controlling the Recognition Process 33
Specifying the User for Recognition 35
Dictionary Processing 36

Recognition Results: The RCRESULT Structure 36
The WM_RCRESULT Message 37
Symbols and Symbol Values 37
The Symbol Graph 37
The Best Guess 39
Location and Position of the Input 39
Contextual Information 40
The Ink 40

Managing Ink in Pen Applications

The HPENDA T A Data Type and Ink
The Basics
The Details

The Ink Functions
Rendering Pen Data
Transforming Pen Data
Pen Data Housekeeping
Pen Data Input and Output
Compressing Pen Data
Display Resolution Compression

Common Scenarios Using an Ink Object

41

41
41
42
45
45
46
47
48
50
50
51

Microsoft Windows for Pen Computing

Chapter 5

Chapter 6

Chapter 7

A Sample Pen Application

Overview of the PENAPP Application
WinMain and Initialization Functions

WinMain
FInitApp
FInitInstance
FLoadRec

Data Handling and Display Functions
Main WndProc
InputWndProc
InfoWndProc and RawWndProc

Using Pen Controls and the ProcessWriting Function

Using the Hedit (Handwriting) Pen Control
Control Messages
WinMain
Initialization Functions
HformWndProc
FCreateForm
Dialog Box Functions

Using the Bedit (Boxed Handwriting Edit) Control
Using Bedit Controls in Dialog Boxes

Using the ProcessWriting Function
Modifying a Windows Program to Use ProcessWriting

Replaceable Components: Recognizers and Dictionaries

Recognizers
Converting Input to Usable Data
Returning Results
Training
Symbol Values and Symbol Graphs
The RC Structure
How a Custom Recognizer Interacts with the RC Manager
A Sample Recognizer

Dictionaries
The RC Structure and Dictionary Processing
Subfunction Messages Used in a Dictionary DLL
A Sample Dictionary

Contents v

53

53
54
54
55
56
58
60
60
62
65

67

67
68
68
70
71
72
75
75
77
77
79

81

81
81
83
85
85
87
89
91
96
96
99
100

Programmer's Reference

vi Contents

Chapter 8 Pen API Overview 105

Pen API Categories 107
Pen Interface Functions 107
Pen Data Functions 111
Custom Recognizer Functions 112
Pen Module Functions 112
Pen Driver Functions 113
Display Driver Functions 114
Dictionary Functions 114

Chapter 9 Pen API Reference 115

AddPenEvent 116
AddPointsPenData 117
Atomic VirtualEvent 118
BeginEnumStrokes 119
BoundingRectFromPoints 120
CharacterToSymbol 121
CloseRecognizer 122
CompactPenData 123
ConfigRecognizer 125
CorrectWriting 128
CreatePenData 130
Destroy PenData 132
Dictionary Proc 133
DictionarySearch 142
DPtoTP 144
DrawPenData 145
DuplicatePenData 146
EmulatePen 147
EndEnumStrokes 148
EndPenCollection 149
EnumSymbols 150
ExecuteGesture 151
FirstSymbolFromGraph 153
GetGlobalRC 154
GetMessageExtraInfo 155
GetPenAsyncState 156
GetPenDataInfo 157
GetPenDataStroke 158
GetPenH wData 159
GetPenHwEventData 161
GetPointsFromPenData 163
GetSymbolCount 164

Microsoft Windows for Pen Computing

Contents vii

GetS ymbolMaxLength 165
Get VersionPen Win 166
InitRC 167
Ini tRecognizer 169
InstallRecognizer 170
IsPenAware 171
IsPenEvent 172
MetricScalePenData 173
OffsetPenData 175
PostVirtualKeyEvent 176
Post VirtualMouseEvent 177
ProcessPenEvent 179
ProcessWriting 180
Recognize 183
RecognizeData 186
RecognizeDatalnternal 187
Recognizelnternal 188
RedisplayPenData 190
RegisterPenApp 192
ResizePenData 193
SetGlobalRC 194
SetPenHook 196
SetRecogHook 197
ShowKeyboard 199
SymbolToCharacter 203
TPtoDP 204
TrainContext 205
TrainContextInternal 207
Trainlnk 209
Trainlnklnternal 211
U ninstallReco gnizer 212
UpdatePenlnfo 213

Chapter 10 Pen Structures 215

BOXLAYOUT 216
GUIDE 218
OEMPENINFO 221
PENDATAHEADER 223
PENINFO 225
PENPACKET 228
RC 229
RCRESULT 240
RECTOFS 244

Programmer's Reference

viii Contents

SKBINFO 245
STROKEINFO 246
SYG, SYE, SYC, and SYV 247

Chapter 11 Pen Messages and Constants 251

ALC_ Values (Alphabet Code) 252
BXD _ Values (Boxed Edit Control) 255
HN_ Notification Messages 256
IDC_ Values (Display Cursor) 257
PCM_ Values (Pen Collection Mode Values) 258
PDC_ Values (Pen Device Capabilities) 259
PDK_ Values (Pen Driver State Bits) 260
PDT_ Values (OEM-Specific Data) 261
PDTS_ Values (Data Scaling Values) 262
RCD_ Values (Writing Direction) 263
RCO _ Values (Recognition Option) 264
RCOR_ Values (Tablet Orientation) 266
RCP _Values (User Preferences) 267
RCRT_ Values (Results Type) 268
REC_ Values (Recognition Functions) 270
SYV _ Values (Symbol) 273
WM_GLOBALRCCHANGE Message 276
WM_HEDITCTL Messages 277
WM_RCRESUL T Message 282
WM_SKB Message 283

Appendix A Guide to the Initialization Files 285

FORMAT of .INI files 285
Modifying the SYSTEM.lNI File 286
Modifying the CONTROL.INI File 288
Modifying the PEN WIN .INI File 289
Modifying the WIN .INI File 293

Appendix B Pen Addenda for MS Windows API Functions 295

GetSystemMetrics 295
SetClipboardData 295
Combo-Box Notification Codes 295
Differences Between Bedit and Edit Controls 295
Installable Pen Device Driver 296

Index 301

Microsoft Windows for Pen Computing

Before You Begin

This guide describes the Microsoft® Windows™ graphical environment for Pen Computing
Software Development Kit (SDK). The chapters that follow contain information on:

• Installation

• SDK components

• Pen application programming interface (API)

Organization
This guide is divided into the following chapters and appendixes.

Chapter Description

Chapter 1, Getting Started with Microsoft
Windows for Pen Computing

Chapter 2, The Architecture of the Pen
Extensions

Chapter.3, The Recognition Process

Chapter 4, Managing Ink in Pen
Applications

Chapter 5, A Sample Pen Application

Chapter 6, Using Pen Controls and the
ProcessWriting Function

Chapter 7, Replaceable Components:
Recognizers and Dictionaries

Chapter 8, Pen Overview

Chapter 9, Pen API Reference

Chapter 10, Pen Structures

An overview of pen computing, the Pen
SDK, and setup information.

An overview of the architecture of the pen
API extensions used to build pen
applications.

An overview of the data structures and
methods used in the recognition process.

An overview of the data structures and
methods used in the inking process.

A sample application that uses child
windows for handwriting input.

A sample application that uses the pen
controls. This chapter also introduces the
ProcessWriting function.

Sample reco'gnizer and dictionary dynamic
link libraries (DLLs).

An overview of the Pen API.

Descriptions of the Pen Extensions
functions.

Descriptions of the Pen Extensions
structures.

Programmer's Reference

x Before You Begin

Chapter

Chapter 11, Pen Messages and Constants

Appendix A, Guide to the Initialization
Files

Appendix B, Pen Addenda for MS
Windows API Functions

Document Conventions

Description

Descriptions of the Pen Extensions
messages and constants.

Settings used in the Windows and Pen
Extensions .INI files.

Supplemental notes to the Windows 3.1
API documentation.

The following document conventions are used throughout this manual.

Convention Description

Bold text

()

Italic text

Monospaced text

if(!RegisterClass(LPWNDCLASS)&wc))

else

Microsoft Windows for Pen Computing

Bold letters indicate a specific term or
punctuation mark intended to be used
literally: language functions or keywords
(such as InitRC or switch), MS-DOS®
commands, and command-line options.
You must type these terms and punctuation
marks exactly as shown. The use of
uppercase or lowercase letters is usually,
but not always, significant. For ,example,
you can invoke the C compiler by typing
either CL, cI, or CI at the MS-DOS prompt.

In syntax statements, parentheses enclose
one or more parameters that you pass to a
function.

Italic text indicates a placeholder; you are
expected to provide an actual value. For
example, the following syntax for the
InitRC function initializes the recognition
context for the recognizer:

InitRC(hwndlnput, (LPRC) &rc);

Code examples are displayed in a
nonproportional typeface.

A vertical ellipsis in a program example
indicates that a portion of the program has
been omitted.

Convention

[[]]

{ }

SMALL CAPITAL LETTERS

Additional Documentation

Additional Documentation xi

Description

A horizontal ellipsis following an item
indicates that more items having the same
form may appear.

Double brackets enclose optional fields or
parameters in command lines or syntax
statements.

A vertical bar indicates that you can enter
one of the entries shown on either side of
the bar. In symbol graphs, a vertical bar
indicates the possible character choices.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of
keys and key sequences-for example,
CTRL+AL T +DEL. If the key names are
separated by commas instead of plus
signs-for example ALT, F-then you must
press the keys consecutively rather than
together.

This guide assumes a basic familiarity with MS Windows programming. The additional
documentation listed in the following table explains the MS Windows Graphical
Environment for Pen Computing.

Title Contents

Microsoft Windows for Pen Computing
documentation package

Microsoft Windows for Pen Computing
online help

Microsoft Windows Software Development
Kit (SDK) documentation, or equivalent
documentation

Microsoft Windows Device Driver
Development Kit (DDK) documentation, or
equivalent documentation

Introduction and tutorial materials for the
pen computing system. These materials
describe the user interface and Windows
applications.

The complete source for Windows user
documentation.

. Information about the application
programming interface of the Microsoft
Windows graphical environment.

Describes the application programming
interface of the Microsoft Windows device
drivers. Required if you are developing pen
or tablet drivers.

Programmer's Reference

xii Before You Begin

System Requirements
You can develop pen applications with the following software and hardware:

• An IBM personal computer or compatible running Microsoft Windows version 3.1 or
later

• A mouse, tablet, or other pointing device supported by the Microsoft Windows for Pen
Computing system

• Microsoft Windows version 3.1 SDK

• Microsoft Windows version 3.1 Device-Driver Development Kit (DDK)-necessary
only if you build pen, display, tablet, or keyboard drivers

• Microsoft C Optimizing Compiler, version 5.1 or later, or Microsoft QuickC® for
Windows version 1.0 or later

• Microsoft Macro Assembler version 5.1 or later (necessary only if you will be building
pen, display, or keyboard drivers)

You may also use equivalent development software produced by other manufacturers (for
example, Borland International Inc.).

Setting Up
You can run the SETUP.EXE Windows program on Disk 1 of the distribution disks to
install this SDK.

Note Do not install this version of the SDK over any older versions. You must install this
SDK in a new directory. (References in this book assume that the SDK has been installed
in the default PENSDK directory, however.)

Be sure to read the README.TXT file on Disk 1 for late-breaking release notes.

Microsoft Windows for Pen Computing

Chapter 1

Getting Started with Microsoft Windows
for Pen Computing

This chapter provides background information on Microsoft Windows for Pen Computing.
It also discusses pen computing in general, the pen computing application programming
interface (API), and interface design considerations appropriate to pen-based applications.
This introduction lays the groundwork for your participation in the pen computing
revolution with Microsoft Windows for Pen Computing.

Objective
Since the beginnings in 1988, the goal of the Microsoft Windows for Pen Computing
development team has been the creation of a compelling and compatible pen-based
operating environment. .

A compelling pen-based operating environment enables the creation of applications that
extend current graphical user interface (GUI) techniques and interact with the user on a
"pen-and-paper" level. This metaphor is exciting because it is familiar to users and less
intimidating than the current keyboard and mouse standard. Given the familiarity of the
pen and how it is used, the interaction between a user and a computer becomes more
natural if a pen is the method of interaction.

A compatible pen-based operating environment interacts with existing Windows
applications without modification. Microsoft Windows for Pen Computing offers increased
effectiveness to the installed base of Microsoft Windows applications and hardware
platforms. By employing the code base and experience of Windows independent software
vendors (lSVs), the Pen Extensions widen the acceptance of Microsoft Windows in
corporate settings.

MS Windows for Pen Computing provides a migration path for current Windows products
and a means by which interested ISVs can create advanced pen-centric applications from
the ground up.

What Is Microsoft Windows for Pen Computing?
Microsoft Windows for Pen Computing, also known as Pen Extensions, is a series of
modular extensions to the MS Windows 3.1 operating environment. The Pen Extensions
include a set of dynamic-link libraries (DLLs) and drivers that enable pen-based input and
handwriting recognition in Microsoft Windows. The components of the Pen Extensions are
transparent to the normal Windows 3.1 applications, and yet they are readily available for
those applications that seek to leverage their capabilities.

Pen services are available through a new set of APIs, referred to in the following pages as
the Pen API. This API is available to every computer running version 3.1 of MS®

Programmer's Reference

2 Chapter 1 Getting Started with Microsoft Windows for Pen Computing

Windows-regardless of whether or not that computer is a pen computer or has an
attached pen peripheral. Application developers can therefore leverage the Pen API
window classes-hedit and bedit-as well as use other pen API services, and feel
confident that their programs will run identically on all machines running MS Windows
3.1.

If the pen is present, the Pen API informs applications so they can activate advanced pen
specific features. It also automatically enables pen interaction in the pen control classes. If
the pen is not present, the same .EXE will operate without modification-and without pen
behaviors, of course-under Windows 3.1.

The Pen Extensions have been designed and built for MS Windows version 3; 1, and .this
version of Windows-or a later version-is required for pen-specific behaviors.

The Pen Extensions can be broken down into four general areas. The following paragraphs
summarize them briefly.

Device Drivers
To use MS Windows for Pen Computing, you need to install a pen driver, and you
generally need to use a modified standard display driver.

Pen Drivers
A pen driver is an installable device driver. Its primary role is to get data from the
digitizing device into the Windows system. The data fr<?m a digitizing device consists
minimally of (x,y) coordinates indicating pen position; it may also contain pressure or
angle information. All information reported by a pen driver is available to applications
should they decide to use it.

Pen drivers are distinct from mouse drivers in three important ways. First, they report data
at much higher sampling rates and at much higher resolution than a mouse does. This is
required to support handwriting recognition. Second, they may also report pressure, angle,
rotation, or other pen state information. Finally, they employ a private pen computing
interface to manage the high data rate and density, thereby avoiding a flood of useless
information.

Display Drivers
A quality pen user interface requires the ability to ink (that is, to draw lines to the current
pen location to give the illusion that the user is drawing on the screen. To improve
performance and reduce code duplication, Microsoft has implemented inking in the RC
Manager.

To support the inking process, a communication is established between a Windows display
driver and the pen interface in such a way that ink can be drawn at interrupt time. Thus, in
much the same fashion as the mouse cursor follows the mouse immediately, ink follows
the pen immediately by a close interaction between MS Windows for Pen Computing and
the Windows display driver at interrupt time.

Microsoft Windows for Pen Computing

What Is the Microsoft Windows for Pen Computing SDK? 3

The Recognizer
The portion of the system that actually turns streams of (x,y) points into recognized
characters is a DLL referred to as the recognizer. The Microsoft recognizer recognizes
neatly hand-printed characters from the ANSI character set. However, the recognizer
component can be replaced by third-party recognition systems that may offer improved
recognition rates, different symbol sets, and other qualities not yet available in the
Microsoft recognizer. Several other manufacturers have already begun to develop
recognizers for pen computing systems.

In addition to the standard characters, a recognizer might also recognize circles, squares,
triangles, Kanji symbols, Gregg shorthand, mathematical symbols, CAD/CAM symbols,
and other symbols or characters. MS Windows for Pen Computing SDK includes a special
recognizer (SHAPEREC.DLL) that recognizes circles, ellipses, squares, rectangles, and
lines.

Microsoft Windows for Pen Computing OLL
PENWIN.DLL is the manager of all pen-specific components in the Windows 3.1 system
other than those handled by the recognizer. PENWIN.DLL is the implementation point for
the majority of the Pen APIs and acts as an intermediary between the pen driver, the
display driver, the recognizer, and pen-aware Windows applications.

PENWIN.DLL is included with the retail versions of MS Windows 3.1. At runtime,
PENWIN.DLL determines whether or not there is a pen attached to the system and takes
appropriate action. It is the presence of this DLL in all Windows 3.1 systems that ensures
that developers can always leverage hedit, bedit, and any of the other Pen APIs.

The Pen Interface
There are a number of new interface components in MS Windows for Pen Computing that
ease or otherwise assist pen interaction, accessed primarily through a small floating tool bar
called the Pen Palette. These new interface components include the Trainer, the Gesture
Editor, the On-Screen Keyboard, and the Writing Window. Also included are four new
Control Panel extensions that provide a means to identify specific users to the system, set
user-configurable options, determine screen orientation, and calibrate the stylus device.
Discussed in detail later in this guide, these elements provide a primary interface with
which users manage and modify their pen computing environment.

What Is the Microsoft Windows for Pen Computing SDK?
The Microsoft Windows for Pen Computing SDK (Pen SDK) is an extension to the MS
Windows version 3.1 SDK. The Pen SDK contains libraries, INCLUDE files, and
numerous sample sources. The Pen SDK enables a Windows ISV to develop pen-based
applications and custom recognizers.

The MS Windows version 3.1 SDK is also required for the development of pen-aware
applications and recognizers. The Pen SDK assumes that the INCLUDE files, libraries,
and tools in the Windows 3.1 SDK are present.

Programmer's Reference

4 Chapter 1 Getting Started with Microsoft Windows for Pen Computing

Any development tool that can compile Windows APIs in C code can do the same with the
Pen API and libraries as long as the development tool calls the Windows 3.1 functions
directly and links to the standard API libraries included with MS Windows 3. 1. These
capabilities indicate that the tool is sufficient for the same functions with the MS Windows
for Pen Computing SDK elements.

How Will MS Windows for Pen Computing Be Delivered?
MS Windows for Pen Computing is an original equipment manufacturer (OEM) product.
This means that both developers and end users purchase the product only when they buy
hardware that uses its capabilities. The hardware can be a portable pen-based computer, a
notebook machine with a screen that can be removed and carried around as a pen-based
computer, or a digitizing tablet used on the desktop.

It is important to note that the Pen SDK mentioned previously does not include the MS
Windows for Pen Computing runtime components. You can test your pen applications
under Windows 3.1 without a pen; however, you cannot test them fully until you acquire
pen hardware.

What Are the Basics of the Pen API?
This section assumes that you are familiar with standard Microsoft Windows programming
conventions. It is provided as an introduction to the detailed discussion that follows in the
rest of this guide.

There are seven primary elements for the development of pen-specific behaviors in
Windows applications: the handwriting, or hedit, control; the boxed edit, or bedit, control;
the data flow; the ProcessWriting function; the Recognize function; the RC structure; and
the RCResult structure.

The Handwriting Edit (hedit) Control
The hedit control is a replacement for the edit control. The hedit is a version of the normal
Windows edit control that accepts handwritten input and allows for the configuration and
control of the recognition process through a messaging interface.

The Boxed Edit (bedit) Control
The bedit control is an entirely new Windows control, implementing boxed input. The
following is a boxed edit control showing the cells in the letter guides. Sometimes this
control is referred to as a comb.

Figure 1.1. Boxed edit control

Microsoft Windows for Pen Computing

What Are the Basics of the Pen API? 5

The message set supported by the bedit control is essentially a superset of that supported
by the standard edit control, with additions provided for modifying of the recognition
process and rendering the letter guides. This control was designed from the ground up for
the pen, but it also supports a keyboard interface for compatibility with machines with
attachable keyboards.

Data Flow (Overview)
The data flow in the Pen Extensions is similar to that of a regular Windows program. The
pen driver reports events to Windows as if they were mouse events. Applications treat the
pen as a mouse the majority of the time.

The action begins when the user puts the pen down (mapped to WM_LBUTTONDOWN)
in an area-or over a window-that the application has determined to be a writing area.
When an application determines that this has occurred, it calls the ProcessWriting or the
Recognize function and awaits the results. Both functions activate inking, process the
recognition of ink, and package up the results to be returned to applications.

For a more detailed discussion of the data flow, see Chapter 2, "The Architecture of the
Pen Extensions."

ProcessWriting Function
An application uses the ProcessWriting function to request that all of the basic
recognition parameters be used and that the results be returned as WM_CHARs. This is the
quickest way to add handwriting capabilities to an existing Windows application, because
the application is insulated from the complexities of managing recognition results. An
application receives a WM_LBUTTONDOWN message and responds by calling
ProcessWriting. WM_CHARs are received, ProcessWriting returns, and processing
resumes.

Recognize Function
If the ProcessWriting function is the easiest way to add handwriting capability to an
existing Windows application, the Recognize function can be considered the most flexible.
The caller has complete control over the recognition process. The results are returned
through a new message called WM_RCRESUL T before Recognize returns. An application
that needs to perform exacting control over the recognition process or implement some of
the more advanced features might use this function instead of ProcessWriting.

The RC Structure
The RC structure, the primary controlling data structure of the Pen API, is used by the
application to moderate the recognition process when Recognize or ProcessWriting is
called. The RC controls such parameters as ink width and color, the recognizer to be used,
the timing of the results, which user actions terminate inking, the type of input expected
(that is, numeric or alphabetic), and other parameters.

Programmer's Reference

6 Chapter 1 Getting Started with Microsoft Windows for Pen Computing

The RCRESULT Structure
This data structure is used to pass recognition results back to applications that have called
Recognize or ProcessWriting. The WM_RCRESUL T message contains a pointer to an
RCRESULT structure. RCRESULT contains the recognizer's best guess as to what the
user entered, the possible alternatives, and the actual ink data entered by the user.

How Should Applications Support the Pen?

Important

The following three-tiered breakdown of pen enhancements can be viewed both as a
suggestion list for new pen-aware applications and as guidelines for modifying existing
Windows applications. By following these guidelines you will be able to see where your
application must be modified if it is to be run on pen-based systems, where it might be
augmented to support the pen specifically, and where value can be added through the
incorporation of advanced pen-specific behaviors.

There is no substitute for testing your application on an integrated display-digitizer (if not
an actual pen-based computer) to understand the strengths and limitations of the pen.
Specifically, try your application on such a device to determine how well it works with a
pen. This type of usability testing can help you see which pen interfaces are more
appropriate than others.

Basic Pen Awareness (Pen-Capable Applications)
Basic pen awareness is the groundwork necessary to provide a minimally functional pen
based interface and a base for further pen-aware behaviors. The effort necessary to achieve
basic pen awareness is minimal; the resulting application is fully compatible with desktop
oriented applications.

Registering Your Application with RegisterPenApp
Calling the RegisterPenApp function will result in the replacement of all edit windows
created in your application by hedit Windows. Note that this includes the edit field portion
of combo boxes. This is the first step to being pen-aware. However, you should make sure
that no subclassing of standard edit controls is broken when they are replaced with hedit
controls.

Handwriting Recognition Is Difficult
Handwriting recognition presents a problem that is very difficult to solve to a user's
satisfaction. The first thing to do to an application is to limit the amount of handwriting
required to the greatest extent possible. For example, if you can provide a combo box with
a list of acceptable inputs, provide it. Picking something from a list will always result in
100 percent recognition.

Microsoft Windows for Pen Computing

How Should Applications Support the Pen? 7

Similarly, buttons always result in 100 percent recognition. You will find that using
buttons-as in toolbars-and selection lists will improve the usability of an application
whether used with or without the pen.

Writing Areas
Provide writing areas within your application as appropriate, to allow for text and gesture
entry. The ProcessWriting function is provided for this purpose. It allows support for the
standard editing gestures and text entry with minimum effort on the part of the
programmer. The PENPAD sample in the PENSDK\SAMPLES\PENPAD directory of the
Pen SDK uses this function.

Power Management
Pen-aware Windows applications-and, increasingly, all MS Windows 3.1 applications
will run on portable systems with limited battery life. New power-management facilities in
Windows 3.1 provide for the detection of idle time in Windows applications and institute
special power-saving mechanisms when the system is idle. However, applications that spin
in a PeekMessage loop as their main message loop are never idle. Applications that do not
call GetMessage or WaitMessage will prematurely exhaust the battery of any portable
machine, because they short-circuit the Windows idle-detection mechanism.

Display Considerations
Pen-aware Windows applications need to run acceptably on monochrome monitors,
because a number of early pen-based machines will have them. Application designers
should consider this when designing bitmaps and color schemes.

When designing applications, you should also bear in mind that the configuration of the
desktop is likely to change from execution to execution because of the rotation of the
screen from portrait to landscape mode. Therefore, Windows programs should determine
display dimensions dynamically with each execution. You should take special care when
designing toolbars and dialog boxes, because it is deceptively easy to design both items in
such a way that all or part of them is off the screen when the display is in portrait mode.

Avoiding Keyboard-Only Behaviors
Beware of creating commands in your applications that are dependent on keyboard
shortcuts or key modifiers-for example, a zoom feature that can be restored to normal
view only by pressing the ESC key. If the user doesn't have a keyboard, there will be no
way to restore normal view. A button or gesture could be used instead of a key. This is yet
another example for which a toolbar would provide an excellent and immediate interface
beneficial to both the pen and the mouse user.

Understanding Portable Platforms
Because Microsoft Windows will increasingly find its way onto highly portable platforms,
the application vendor should strive to comply with the size and storage limitations
inherent in such platforms.

Programmer's Reference

8 Chapter 1 Getting Started with Microsoft Windows for Pen Computing

There are a number of strategies for ensuring this. One is to use compressed file formats to
store application data. Another is to break up an application-or its data dependencies
into a number of pieces (DLLs) that can be "left behind" if only a subset of an
application's functionality is required. In general, where vast amounts of fixed storage
could once be counted on, a pen-based machine may not have as much storage available.

Other Considerations
The "text goes where you write it" rule should be implemented whenever reasonable. The
user should not have to tap in a field or window before writing is accepted by it. This is
one of the features of the hedit class. Any writing areas in your application should do the
same.

The pen is very good at indicating general positions-at pointing to regions, selecting
menu items, hitting buttons, and so on. It is not good at indicating specific locations on the
screen. To test this, you might try tapping on a single display pixel with a pen. This should
influence your decisions about button size, the size of the handles you put on objects, font
size, and so on.

Extended Pen Awareness (Pen-Enhanced Applications)
Extended pen awareness is the quality describing applications that provide functionalities
specific to the pen. There are a number of elements that help make pen computing easy,
because they are based on modes of interaction that are already familiar to the user. These
are discussed in the following paragraphs.

Boxed Edit (bed it) Controls
Boxed input is an extremely powerful way to get handwritten input from the user and
should be used in your pen-aware applications whenever possible. The advantages of bedit
controls are numerous:

• The recognizer has excellent segmentation and baseline information.

• Users write more neatly when constrained with boxes.

• The boxed control interface is especially natural and appropriate for pen input.

Note that the bedit control is less than optimal when the amount of user input cannot be
predicted or restrained. It functions best when the input is known to be of a certain length
and type-for example, a social security number, a phone number, or a first name.

I~k Field: Retaining Ink as Data
The ability for a user to enter ink and store it as ink is extremely powerful. The hedit and
bedit classes support this already, but it requires little extra effort to add the inking
capabilities to an existing window class. By storing ink in analog format, the problems
associated with handwriting recognition can be avoided, and yet the user is able to
understand and manage the information contained in the ink. In essence, this is the
electronic equivalent of taking notes on scraps of paper.

Microsoft Windows for Pen Computing

How Should Applications Support the Pen? 9

If ink is entered as graphical data, the ability to recognize that data later is crucial. In MS
Windows for Pen Computing, delayed recognition is implemented in hedit and bedit
controls. The RecognizeData function in the Pen API enables an application to implement
delayed recognition on its own stored ink.

Application developers should not ignore the importance of providing inking capabilities
in applications. It is easy to implement inking behavior with the Pen API. The power and
usability this feature adds to your application is tremendous.

Context
A pen-aware application can provide contextual information that is applied at the
beginning of the recognition process, and contextual information that is applied at the end
of the process. By providing context, applications improve their recognition rate
substantially.

For example, before recognition begins, it is useful for the recognizer to know what type
of data to expect. If a field is numeric, the recognizer should be programmed to expect
only numeric data. If the field is alphabetic, the recognizer should be programmed to
expect only alphabetic data. Other types of contextual information include gestures only,
Kanji symbols only, and normal alphanumeric characters. The hedit and bedit controls
support a message interface through which contextual information can be provided, and
the RC structure provides the same information when ProcessWriting and Recognize are
used.

In addition to providing preprocessing clues to the recognizer, MS Windows for Pen
Computing provides a dictionary path to check recognized pen input against a set of words
(or multiple sets of words) to aid in the recognition process. A dictionary is a DLL that
communicates with PENWIN.DLL to help determine which of the recognizer's guesses is
the best guess. This facility can be folded into your applications where appropriate. For
example, lists of states, terms specific to your application, user names, keywords, or any
other anticipated input can be provided as a check against the recognition process.

In this way, even very poor handwritten input can be interpreted correctly by comparing it
to the set of expected inputs. A dictionary for the English language is included with MS
WiI)dows for Pen Computing to provide this capability for normal English input.

Good Graphical User Interfaces II
Besides the suggestions offered in "Handwriting Recognition is Difficult," earlier in this
chapter, there are further basic QUI elements that you can focus on to ensure that good pen
interaction is possible with your product. These include object linking and embedding
(OLE), direct manipulation, the use of toolbars, and a generally uncluttered user interface.

Advanced Pen Awareness (Pen-Centric Applications)
Pen-centric functionalities are directed solely at a pen-based platform. They are usually
too complex to manage with only a keyboard and a mouse. A personal information
manager (PIM) application targeted at portable pen-based machines would fall into this
category. Pen-centric behaviors and functionalities are many; the following are a few
general ideas.

Programmer's Reference

10 Chapter 1 Getting Started with Microsoft Windows for Pen Computing

Text Goes Where You Write It
There are several terms used to describe this behavior; smart targeting is one of the best.
The idea is that if a user writes text at a particular location, the application should
understand where that text was really meant to go and make sure it gets there. This
functionality might boil down to something as simple as electronic paper-that is, text is
recognized where it is written and placed in an object for later management by the user.

Annotation
An annotation layer, in contrast to an inking field, tends to be all-encompassing and not
constrained to an individual field or location. The ability for a user to scribble all over an
application window, print the annotations, select and modify them, hide them, and so on,
is a complex and powerful pen-centric behavior. An example of this type of functionality
would be the capability to annotate a word-processing document and pass your
handwritten edits along with the text of the document back to the author for revision.

Special Recognition and Shape Recognition
Another powerful pen-centric functionality stems from the ability of special recognizers to
convert glyphs to application- and context-specific input. The shape recognizer included
with MS Windows for Pen Computing is one such recognizer.

A drawing package that can snap, or instantly reconfigure, a rough circle or square to one
that is true is especially valuable. For example, a CAD/CAM application can have a
special recognizer designed to recognize the symbols specific to the industry in which it is
employed.

Pen and Paper
The pen-and-paper metaphor refers to a shift of responsibility from the user to the
application; the application makes decisions and proceeds based on an understanding that
the application work area resembles paper.

Functionalities of this class include context-sensitive pen input. Consider the example of a
scribble entered in a drawing region of an application. If a shape recognizer is unable to
determine what the scribble is, it retains it as a scribble; if it recognizes the scribble, it
snaps it to a circle, square, triangle, or line, as appropriate. If the same glyph is entered in
~ writing region of an application, it is translated to a letter.

Another example of pen-and-paper behaviors is known as math paper. If a region of your
application is designated as math-aware, it understands how to perform calculations as
they are written by a user. For example, if your application understands that an equal sign
is a part of the handwritten input, then the input to the left of the equal sign should be
evaluated as an equation, and the answer must be provided as part of the recognized input.

Another common attribute of this class of application is the ability to bypass the cursor.
With a pen, the user indicates the location of the pointing device by placing the pen tip on
top of it, thereby reducing the need for the cursor. In practice, you may find that this is

Microsoft Windows for Pen Computing

This Guide 11

only partly true, but when visual feedback is moved from the cursor to a change in the
object or area indicated with the pen, it is both powerful and easy to grasp for the average
user. For example, the handles for an object appear only as you move the pen over the
edge of the object.

This Guide
The remainder of this programmer's guide provides in-depth converage of many of the
topics touched upon in the preceding pages. Included are a detailed background on the
architecture of MS Windows for Pen Computing and information on the use of the RC and
RCRESUL T structures. Information about adding ink support to your application is also
included. Combined with the MS Windows API reference, this guide will serve as a
roadmap to the pen API and pen computing functionalities in your applications.

Programmer's Reference

Chapter 2

The Architecture of the Pen Extensions

This chapter discusses the architecture and components of Microsoft Windows for Pen
Computing and how these elements interact with the Windows version 3.1 system. The
reader is assumed to be familiar with basic Windows architecture, programming
techniques, and naming conventions.

The Goals
The goal of the Pen Extensions is to give independent software vendors (ISVs) the ability
to create pen applications that run on top of Microsoft Windows. Powerful pen
applications require something more than simple mouse and keyboard emulation. A
flexible application programming interface (API) must allow ISVs complete freedom when
designing their pen interfaces. The API must enable "pen-and-paper" inter.action with the
user in a natural and intuitive manner.

These objectives require several behaviors:

• The pen must behave in a manner the user expects. For example, it must leave ink as it
moves across the surface of the tablet in the same way that a pen leaves ink on paper.
Also, the pen interface should be natural and easy to use.

• The user must be able to indicate command and position in a single pen action, called a
gesture. The use of gestures is unique to the combination of a pen and a computer, and
it gives users certain advantages over normal pen-and-paper interaction.

• Applications must have access to all recognition results and their alternatives; in
addition, they must be able to process the ink as the user enters it. This flexibility
enables an application to handle user input in the manner appropriate to the task
leaving the information as ink on the page, interpreting it as text characters or shapes,
or providing a list of alternatives to the user so that the correct result can be obtained.

• Applications should be able to create and make use of customized recognizers for
mathematical symbols, Gregg shorthand, and other specialized handwriting recognition
purposes. The Pen API provides a mechanism for passing a single piece of user input to
several recognizers, so that if one cannot determine the correct recognition results,
another might.

• The installed base of Windows applications should have some means of interacting
with the pen. This should certainly take the form of simple mouse emulation and a
writing window from which recognized results can be sent to applications. In addition,
however, this behavior should work in all writing areas in the system-at least with a
minimum of pen functionality (without true pen-and-paper capabilities)-regardless of
whether or not the application has been specifically modified to support the pen.

Programmer's Reference

14 Chapter 2 The Architecture of the Pen Extensions

Components
The following diagram illustrates the relationships of the various components that
constitute MS Windows for Pen Computing and their relationships to Microsoft Windows
and Windows applications.

Windows
apps

Pen apps

Pen message interpreter

RC Manager

Windows 3.1
Figure 2.1. The Pen Extensions

The RC Manager

Dictionary
module

Recognizers

The RC (Recognition Context) Manager is the heart of the Pen Extensions. If you are
familiar with display contexts (DCs), understanding an RC should be straightforward. In
the same way that a DC contains all of the information necessary to send graphical output
to a device, an RC contains all of the information necessary to carry out pen interaction
and handwriting recognition.

The RC Manager moderates the recognition process. It manages the interactions with all of
the pen extension components necessary to support the pen and pen behaviors. It records
points from the pen driver and passes them on to Windows, serves as the implementation
point for the new Pen APIs, integrates the work of the recognizer and dictionaries, and
packages up results for applications.

The RC Manager is implemented in PENWIN.DLL, which is analogous to USER.EXE in
Windows. Throughout this document, "PENWIN.DLL" and "RC Manager" will be used
interchangeably when referring to the Pen Extensions.

The Pen Driver
This is the component of Windows for Pens that interacts with the pen hardware and
passes the information along to the rest of the Windows system by way of PENWIN.DLL.

Two files are associated with the pen driver: an install able Windows device driver that
uses the new installable driver interface of Windows version 3.1, and a virtual device
driver that handles interaction with the hardware when Windows is running in enhanced
mode.

Microsoft Windows for Pen Computing

Components 15

The fact that the pen driver's input may at times be needed for handwriting recognition
places several constraints on a pen input device:

• The pen driver must be able to report the location of the pen at least 100 times per
second. This rate ensures that the true path of the pen is reported accurately enough to
support the efforts of vector-based recognizers, and it makes the ink dropped by the pen
appear smooth and natural for normal writing speeds.

• The pen driver must be able to report pen positions with a resolution of 200 points per
inch. This degree of resolution ensures sufficient granularity in ink coordinates to make
accurate judgments about the path of the pen over the digitizing surface. In other
words, it ensures that the positions reported are fine enough for a recognizer to derive
useful information from them.

• Regardless of the actual resolution of the device, the pen driver must report the pen
position in coordinates of 0.001 inch for the RC Manager, the recognizers, and
applications to manage the ink in a known and standard scale.

The Display Driver
As with Windows, the display driver is responsible for interacting with the display
hardware and the graphical device interface (GDI) module of Microsoft Windows. For the
Pen Extensions, a normal Windows display driver must be enhanced to support inking.
Inking support takes the form of two entry points within the display driver and the ability
to be called at interrupt time by the RC Manager to perform inking. The entry points are
the following.

Function call

InkReady function

GetLPDevice function

Purpose

Called by the RC Manager. This call instructs the display
driver that, when ready, it should call back the RC
Manager to draw some ink.

Returns a value necessary for the RC Manager's ink
drawing function.

In addition, the display driver should provide a cursor in the shape of a pen.

In all other respects, the display driver requirements and responsibilities are the same as
those for a standard Windows 3.1 driver. For more details on pen-enabled display drivers,
see the Windows 3.1 DDK.

The Pen Message Interpreter
The Pen message interpreter is the component of MS Windows for Pen Computing that
interacts with Windows applications that have not been modified to take advantage of the
Pen Extensions. This component is responsible for interpreting gestures, handwritten input,
and pen events into the corresponding mouse and keyboard events for use by applications
that do not do so for themselves.

The most significant feature of the Pen message interpreter is its ability to enable
handwriting in all Windows applications. This is accomplished by detection of the I-Beam

Programmer's Reference

16 Chapter 2 The Architecture of the Pen Extensions

cursor. It can do this regardless of whether or not the application uses the Pen Extensions
API.

Since most applications use the system I-beam cursor in writing areas, the Pen Extensions
can detect this and allow handwritten input of gestures and characters in those writing
areas. Once the user begins writing, the Pen message interpreter intercepts the normal pen
ta-application data flow and acts as an intermediary between the old application and the
Pen Extensions.

As pen input is received by the Pen message interpreter, it is translated into the appropriate
mouse and keyboard messages, which are passed on to the application. The application has
no knowledge of the pen-or that pen input has occurred.

There are limitations in the compatibility provided by the Pen Message Interpreter. First, it
cannot handle nonstandard Windows applications (for example, those without a standard 1-
beam cursor). Second, applications developed for MS Windows prior to version 3.1 were
not designed with the pen in mind, and therefore they may not work optimally with the
pen; for example, an edit field may be too small to write in. Finally, no contextual
information from the application is available to the Pen message interpreter. This
adversely affects recognition rates.

These basic limitations mean that applications must call the Pen Extensions API directly to
implement the highly positional, context-dependent behaviors that define good pen
applications.

Windows Applications
The Windows Apps box in Figure 2.1 represents unmodified Windows applications
executing in standard or enhanced mode.

Pen Applications
The Pen Applications box represents new applications that call the Pen Extensions API
directly. They bypass the Pen message interpreter to provide more direct, intuitive, and
advanced pen interface functionalities. Often these take the form of positionality behaviors
that the Pen message interpreter cannot interpret.

For example, a circle drawn by the user might be the letter "0" in a writing area; however,
if it's drawn in a drawing area, it might be a shape that should be snapped to an exact
circle; if drawn in a scratch area, it might be intended to remain as ink; if drawn over an
object, it might select the object. The application's ability to process the user input as it is
intended is possible because the application calls the API directly and can make the correct
interpretation based on the location and context of a user's input.

Recognizers
Any recognizer is a dynamic-link library (DLL) that communicates with the RC Manager
through a defined protocol. As the name suggests, the recognizer is responsible for
interpreting pen input into recognized symbols. The symbols recognized might be ANSI
characters, mathematical symbols, the symbols associated with electrical diagrams, or any
other set of symbols that someone decides should be directly recognizable.

Microsoft Windows for Pen Computing

Data Flow 17

The recognizer is completely replaceable and modular. This means that an application can
send one sample of user input (ink) to a number of different recognizers, and then examine
the results.

The Microsoft Recognizer
The MS recognizer is a vector-based recognizer. It analyzes the points entered by the user
not as an image, but as a succession of positions; when broken down correctly, these
positions yield a set of features against which comparisons can be made.

The order in which the user enters points is very important. This can be a stumbling block
for users who cannot decide why a recognizer might not be able to distinguish between
two very similar characters. The problem can be solved to some extent by multiple
character prototypes.

The Microsoft recognizer:

• supports the ANSI character set

• supports delayed strokes-for example, crossing a "t" after completing the rest of a
word.

• supports the standard Pen Extensions gestures and the circled letters of the alphabet

• is trainable-that is, it can learn the peculiarities of a person's handwriting to achieve
higher recognition rates

Dictionary Modules
The dictionary module provides a means for checking the results of any recognition
against a set of words-or, more generally, a set of acceptable results.

A dictionary is a DLL that communicates with the RC Manager. After the RC Manager
receives a result from a recognizer, it passes the result on to the Dictionary, which then has
the opportunity to correct that result. Note that a dictionary might be a common English
language dictionary, a dictionary of medical terms, a set of proper names, or the like.
There can be multiple dictionary DLLs in the dictionary module, and the RC Manager
calls each of the dictionaries in turn. The application controls the number of dictionaries
called and their calling order.

A good way to think about the dictionary path is as a general means to perform
postprocessing on a recognition result.

Data Flow
Figure 2.2 illustrates the flow of pen input through the system. The following sections
discuss how the pen interacts with Windows, unmodified Windows applications, and
applications designed specifically for the pen.

Programmer's Reference

18 Chapter 2 The Architecture of the Pen Extensions

Pen application

Mouse events- RC- -Recognition results lr

RC Manager, Windows recognizer, dictionary

Mouse events
j~ •
~ Pen events ~ Ink

1

Pen driver Display driver

Figure 2.2. Pen Extensions data flow: overview

The Pen Driver
A good place to start is with the stylus device, or pen driver. Just as the Windows system is
driven by keyboard and mouse input, the Pen Extensions are driven by pen input.

If no pen behavior has been requested by an application, the pen behaves as a mouse. It
reports the pen status at least 100 times per second to the RC Manager by two function
calls in the RC Manager, AddPenEvent and ProcessPenEvent. Note that the pen driver
might be reporting information other than simple x and y position. For example,
applications may be requesting the pressure with which the user entered the point, the
angle of the pen when it was written, the rotation of the pen, and the distance of the pen
from the tablet surface.

The AddPenEvent and ProcessPenEvent functions pass all pen input to PENWIN.DLL
(the RC Manager), which in tum processes the input. Just how that input is processed by
the RC Manager depends on the recognition mode, as is discussed in the following section.

The RC Manager: Normal Mode
There are two possible modes for pen input: normal mode and inking mode.

In normal mode, the pen acts as a pointing device; that is, it is used for pointing and
clicking, dragging menus, making selections, and other mouse-like functions. The Pen
Extensions need to do very little except act as a message pump from the pen to the
Windows system, converting pen events into their Windows mouse message counterparts.

In inking mode, the pen acts as a pen-dropping ink, passing data off to a recognizer, and
performing other pen functions. In this mode, Windows is not involved in the process at
all. The RC Manager, pen driver, recognizer, and display driver enter a closed universe
where they and they alone process pen input. The pen driver reports it, the recognizer
recognizes it, the display driver draws it, and the RC Manager processes the interactions
necessary to do all of the foregoing.

Microsoft Windows for Pen Computing

Data Flow 19

The transition between modes takes place when an application-or, more precisely, a
window-requests that pen input begin. At all other times (and by default), the pen is in
normal mode. From the user's point of view, the pen behaves correctly-the pen inks,
points, and clicks where it should.

The following paragraphs discuss how the RC Manager processes data when the pen is in
normal mode. Inking mode is discussed later in this chapter.

Buffering Pen Data
The RC Manager buffers all data it passes on to Windows. This is necessary for a number
of reasons.

First, the digitizing device operates at a very high resolution with respect to the screen.
Because a recognizer requires this resolution to do a reasonable job of recognizing
handwritten input, you cannot rely on WM_MOUSEMOVE resolution information for
recognition. Therefore, the high-resolution (x,y) information you do not pass along to
Windows must be stored so that it is available later when needed for recognition.

Second, the digitizing device may also report information other than simple (x,y)
information such as pressure., Windows has no facility for storing this information.

Third, pen events are interrupt-level events with very high report rates. Because all input
in Windows is processed synchronously, it is possible that an application will take a very
long time to process some message while input continues to stream in. The Windows
buffer is not sufficiently large to store all of this information. Therefore, the RC Manager
must store it locally to ensure that no data is lost.

Finally, Windows coalesces mouse moves. Because an application is generally interested
only in the final location of the mouse, Windows does not report mouse moves associated
with old mouse locations. This granularity of measurement is not sufficient for accurate
recognition where every location of the pen is important.

The Message Pump
While the pen is in normal mode, the RC Manager must simply interpret the pen events
into the appropriate mouse events and pass the information along to Windows. The RC
Manager and pen driver combination creates what amounts to a mouse driver.

The mappings are very straightforward. If the pen touches the surface of the digitizer, the
RC Manager sends a WM_LBUTTONDOWN message to Windows. If the pen moves
across the surface of the digitizer, WM_MOUSEMOVE messages are generated. This may
happen whether the pen is in contact with the surface or not; some devices support the
detection of the pen even when it is not in contact with the digitizer. If the pen leaves the
surface of the digitizer, a WM_LBUTTONUP message is passed on to Windows.

After messages have been reported to Windows, the generation of double taps, the
coalescing of mouse messages, the synchronous handling of input, and other processes are
all handled by Windows.

Programmer's Reference

20 Chapter 2 The Architecture of the Pen Extensions

The Application
The WM_LBUTTONDOWN message notifies a Windows application that inking or
recognition should begin. When the pen touches the tablet surface, the result is an
WM_LBUTTONDOWN message; it is up to the application to understand that this
message has occurred over an area that should be an inking area.

For example, menus used with a pen behave as they do with a mouse. This is because the
user expects the pen to work this way with menus. However, in a text area, an application
will want to begin inking, because this is what the user expects. When an application
receives a WM_LBUTTONDOWN message, it must call back into the RC Manager and
instruct the Pen Extensions to begin inking, recognizing the ink, and managing all pen
interaction until the recognition event is over.

The API used by an application to accomplish all of this is Recognize.

GetMessageExtralnfo Function: Digitizing Events, Mouse Messages, and
Time Travel
You may have noticed a problem with the scheme suggested in the preceding
paragraphs-mapping pen events to WM_LBUTTONDOWN and waiting for the
application to call back into the RC Manager to begin recognition. It is not possible to
determine which (x,y) event from the digitizing device (stored in the private RC Manager
buffer) maps to the mouse event being processed by the application.

While Windows input is processed synchronously, pen events are streaming in at 100
points per second. Regardless of what Windows applications are doing-for example, a
spreadsheet may be performing a recalculation-the interrupts from the digitizing device
continue to stream in, and new (x,y) positions for the pen continue to be recorded in the
private RC Manager buffer.

By the time the application calls Recognize function, it is not possible to determine which
of the buffered events are associated with the mouse message being processed by the
application. The solution to this problem requires backtracking and associating the
WM_LBUTTONDOWN message being processed by the application with an event
buffered by the RC Manager. This facility is provided by GetMessageExtralnfo function,
a new Windows 3.1 API.

The pen extensions are reporting more than just (x,y) information when they call the
Windows Mouse_Event function entry point to report an (x,y) position. They are also
reporting a 32-bit number that is stored by Windows with the message. This 32-bit number
is a pointer into the RC Manager buffer that links the Windows message to a specific
digitizer event. Because this extra message information is retained by Windows for the life
of the message, the information is available to applications regardless of how long it takes
an application to get to it.

Using GetMessageExtralnfo function, an application can access this pointer in the RC
Manager buffer while processing the WM_LBUTTONDOWN message and pass it into the
RC Manager as one of the arguments of Recognize function. With this pointer, the RC
Manager knows where the buffered events from the digitizer become significant, and it can
then safely understand which data to begin sending to the recognizer.

Microsoft Windows for Pen Computing

Data Flow 21

The RC Manager: Inking Mode
After the Recognize function call, the pen device enters pen mode and the recognizer
begins to get data and perform recognition. While the RC Manager is in pen mode, the
data flow through the Pen Extensions takes the path illustrated in Figure 2.3.

Pen Application
j ~

RC- r--Recognition results

Windows _-_ .. _--_ .. __ ._ .. RC Manager,
recognizer, dictionary

.
Pen events- '--Ink

Pen driver Display driver

Figure 2.3. Pen Extensions data flow: ink mode

The important point of Figure 2.3 is that Windows is out of the loop. The Pen Extensions
interact without the rest of Windows.

Once an application has called Recognize, there are three major functions to be carried out
before the results can be packaged up and returned to applications. They are inking,
recognition, and dictionary processing.

Inking
It is important that ink be left by the pen in the same way a pen leaves ink on paper. This
implies a timely display of bits, as well as accurate positionality information that
associates a point on a digitizing device with a point on the display.

Note that the digitizing device and the display are disjoint devices. It is up to the drivers to
calibrate their relationship so that pen and ink positions coincide. The Pen Extensions
provide a calibration interface for doing just this-at least for simple (x,y) drift. Rotation
and compression of the digitizing matrix are not addressed in the tablet calibration item
(Calibrate) in the Control Panel window.

The inking procedure is simple. After the pen driver calls AddPenEvent and
ProcessPenEvent to record new data, the RC Manager calls into the display driver
informing it that there is ink to be drawn. Then the display driver does one of two things.
If it is busy-for example, it is in the middle of a large bitblt-then it must wait to draw
the ink until it has finished the other operation. Once it has finished, or if it was not busy
to begin with, it calls back into the RC Manager, which in turn draws the ink. The RC

Programmer's Reference

22 Chapter 2 The Architecture of the Pen Extensions

Manager calls a display driver entry point directly to draw the ink. In this respect, the RC
Manager behaves exactly as the Windows GD!.

The reason the RC Manager calls the display driver directly is that ink is being drawn at
interrupt time. Because GDI is not re-entrant, you c.annot rely on it for a timely display .of
ink on the screen. It was necessary to design a direct interface between the RC Manager
and the display driver to avoid calling other portions of Windows. The availability of a
known set of display driver functions makes this safe as long as the display driver controls
the timing of the whole procedure. The display driver makes sure it is a safe time for the
RC Manager to draw the ink by initiating the process with a callback into the RC Manager.

Recognition
While the display driver and the RC Manager carry out inking, the recognizer is
recognizing the points associated with the ink being drawn to the screen.

The RC Manager calls the Recognizelnternal function exported by all recognizers. The
recognizer then enters a loop, querying data in the RC Manager buffer. The recognizer
then interprets the data as character (or other) symbols. Logically, the loop looks
something like the following:

WHILE (GetMoreXYData() != TERMINATION_EVENT) {
IF (ThereWerePoints)

Process()

SendResultsToDictionariesAndApplications()
return

A number of different events can terminate recognition:

• The pen leaving a bounding rectangle provided by the calling application

• The pen entering an exclusion rectangle provided by the calling application

• The pen leaving the proximity of the tablet

• A timeout on new pen data

After recognition is completed, the'recognizer calls back into the RC Manager to process
the results. It is at this point that dictionary processing ensues. Note that the Recognizer
function has called back into the RC Manager before returning from Recognizelnternal
function.

Recognition occurs concurrently with writing. The pen driver reports the points to the RC
Manager at interrupt time, and the recognizer operates independently in the interim. After
the user finishes writing, there is very little delay before the results are displayed on the
screen.

Dictionary Processing
The dictionary path provides a means to check a recognition result against an expected or
preferred set of results. Most recognizers, including the Microsoft recognizer, return
alternatives along with their best-guess result. The method by which semantic or language

Microsoft Windows for Pen Computing

Data Flow 23

knowledge can be applied to modify results-that is, to decide if one of the alternatives is
preferable to the best guess-is to pass a data structure that embodies the notion "best
guess plus anything else remotely possible" to a dictionary capable of making this
determination. The dictionary then decides if any of the alternatives should replace the
best guess.

A Pen Extensions dictionary is a DLL with a predefined set of exported functions. The RC
Manager can use LoadModule and GetProcAddress to call the required functions at run
time. The concept of a dictionary and its capabilities are loosely defined in the Pen
Extensions architecture. They might be relatively smart, with lots of contextual
intelligence, or relatively dumb, looking up words and replacing a best guess with an
alternative. The API is flexible enough to support either.

The RC Manager passes a single result to a chain of dictionary DLLs until one of the
dictionaries decides to make a correction in the results. Once a single dictionary has
determined that it knows the results should be corrected, no more dictionaries are called;
the results are bundled up and sent to the application that called Recognize function with a
WM_RCRESUL T message.

The Results
The recognition results are passed back to an application by a new message,
WM_RCRESUL T. The message contains a pointer to a data structure that contains the ink
the user has entered, the recognizer's best guess, the bounding rectangle of the input, and
the list of possible alternatives. The application can process this information however it
decides to do so.

All of this occurs before the Recognize function terminates. In fact, the application is
several functions deep at this point, as illustrated in Figure 2.4.

WM_LBUTTONDOWN (Application)

Recognize (RC Manager)

Recognizelnternal (Recognizer)

ProcessResults (RC Manager)

WM_RCRESULT (Application)

Figure 2.4. Data flow, LBUTTONDOWN to WM_RCRESULT

Programmer's Reference

24 Chapter 2 The Architecture of the Pen Extensions

After an application returns from the WM_RCRESULT message, the call tree is unwound,
with some cleanup occurring at each step. The Recognize function returns, and the
remaining WM_LBUTTONDOWN processing, if any, is carried out by the application.

One final note: no WM_LBUTTONUP is received by an application that has called
Recognize function. The RC Manager removes this message from the queue and does not
allow it to be passed on to the application. Application designers need to take note of this.

The Pen Message Interpreter and the Rest of the System
The cursor is an I-beam when over an area designated for textual input and management.
When detected, the cursor changes into a pen cursor. When the pen goes down, the Pen
message interpreter creates an invisible window that overlies the entire screen.

This invisible window serves as the agent for pen-ignorant applications. Inking actually
occurs on this window. It is this window that interacts with the Pen API to perform
recognition. The WM_RCRESULT message is sent to the invisible window, which then
maps the results to keystrokes and mouse messages. The WM_ CHAR,
WM_MOUSEMOVE, and WM_LBUTTONDOWN messages that correspond to the
gesture or text entered are entered into the system at the lowest level-by
Keyboard_Event and Mouse_Event, respectively. The Pen message interpreter serves as
both a logical keyboard and a logical mouse.

After the events are posted, the invisible window is destroyed. The results are that
interaction with the pen is possible, all of the gestures function as expected, and text can
be inserted at the insertion point. This use of an invisible window is present in the
Windows Notepen application.

The Pen message interpreter makes it possible to use the pen with applications designed
only for keyboard and mouse. However, if you design your applications with the pen in
mind, you will increase their usability because they will support the entirety of the pen
interface.

The Gesture Macro Layer
An additional layer of functionality not illustrated in Figures 1 through 3 is the Gesture
Macro Layer.

The Gesture Macro Layer is a system service that functions similarly to keyboard macro
layers, in which the binding of a keystroke to an action implies that the keystroke will not
be available to applications. If you bind a circle-letter gesture to an action, then that
gesture will not be available to applications.

Figure 2.5 illustrates the functionality of the Gesture Macro Layer.

When the recognizer recognizes a circle-letter gesture, it passes the result to the Gesture
Macro Layer to determine what should be done with it. There are three possible outcomes:
no gesture binding, gesture binding that contains only printable characters, and gesture
binding that contains nonprintable characters.

Microsoft Windows for Pen Computing

Data Flow 25

No Gesture Binding
If there is no gesture binding, the WM_RCRESULT message is passed on to the
application. The behavior is as if there were no Gesture Macro Layer.

If non-printable I
characters

Windows Application

Gesture Macro
Layer

r- Circle Letter Gesture

RC Manager,
Recognizer, Dictionary

Figure 2.5. The Gesture Macro Layer

Ilf printable text or
gesture keystroke

Gesture Binding; Binding Contains Only Printable Characters
If a circle-letter gesture is bound only to printable characters-a common case-then the
printable characters are returned to the application by WM_RCRESUL T as the
recognizer's best guess. The alternatives are still available, but the best guess is the user
provided character mapping for the circle-letter gesture. There are two important
consequences of this action:

• The application gets a result that bears no resemblance to the ink the user entered or the
set of alternatives suggested by the recognizer. Specifically, the ink will be that for a
circled letter, and the result may be a very long string. A flag is set in the RCRESULT
structure indicating that the Gesture Manager has made a replacement.

• The positional information associated with the gesture is retained. Because there has
been no translation to WM_CHARs, and the entire set of results information is
available to the application, any position dependence associated with the gesture is
maintained. This ensures that, for those applications that attach importance to the
position of input, the maximum level of this information is retained in results from the
RC Manager.

Gesture Binding; Binding Contains Nonprintable Characters
It is possible to bind a gesture to invisible or nonprintable characters such as ALT, CTRL,
and FI. For example, the circle-s gesture might be bound to ALT+F+S (the Save command)

Programmer's Reference

26 Chapter 2 The Architecture of the Pen Extensions

in the majority of Windows applications. If a gesture binding has characters of this nature,
it cannot simply be specified as the recognizer's best-guess result, because the recognizer's
best guess is always printable.

The Pen Extensions are designed so that the values returned from a recognizer map only to
printable items. Recognizers return a special 32-bit value for each symbol recognized. The
nonprintable characters are not represented in the space of acceptable 32-bit recognizer
symbol values.

Because there is no way to return nonprintable characters with the WM_RCRESULT
message, the characters must be sent to the application as WM_CHARs. There are two
subcases for a nonprintable character binding: the characters represent keyboard shortcuts
for editing gestures, or they are random.

Nonprintable Characters As Keyboard Shortcuts

In this case, the nonprintable characters represent the keyboard shortcuts associated with
standard editing gestures. Examples are SHIFf+DEL for the Cut command and SHIFf+INS for
the Paste command. The Gesture Macro Layer replaces the circle-letter gesture result with
the corresponding standard editing gesture result.

It is important to note that the standard keyboard shortcuts are logically reserved by the
Gesture Macro Layer. Consider the scenario in which an application uses SHIFf+DEL for
something other than the Cut command. If the user maps a circle-letter gesture to
SHIFf+DEL, the Gesture Macro Layer will not map the circle-letter gesture to SHIFf+DEL-it
will map it to the cut gesture. The application will never see SHIFf+DEL-it will see Cut.

Nonprintable Characters As Random Characters

In this case, the nonprintable characters are just random and uninteresting nonprintable
characters sent to the application as WM_CHAR messages. The keystrokes are entered
into the Windows system through the Keyboard Event function API in KERNEL. In
other words, the Gesture Macro Layer becomes alogical keyboard driver .

. Microsoft Windows for Pen Computing

Chapter 3

The Recognition Process

This chapter describes the recognition process in Microsoft Windows for Pen Computing.
It discusses the primary data structures and the methods used by application programs to
process recognition results. This chapter assumes that you have read the previous chapter,
"The Architecture of the Pen Extensions."

Further details about the structures, functions, and constants used by recognizers are
contained in Chapters 9 through 11.

Overview
Figure 3.1 highlights the steps necessary to produce recognition. These steps begin after an
application has initiated the recognition process with a call to the Recognize function, for
example.

Raw data
(Pen driver) ,

Display and buffering
(Display driver, RC Manager)

Shape recognition
(recognizer)

Postprocessing
(dictionaries)

Timing of results
(RC Manager)

RCRESULTS

Figure 3.1. The recognition process

The basic process of recognition takes place as follows:

Programmer's Reference

28 Chapter 3 The Recognition Process

• Display and buffering. The RC Manager takes raw data from the pen driver and
displays it as ink on the screen. The display of ink is incidental to the recognition
process-it is required only to give the user feedback equivalent to that of a pen on
paper. As the ink is displayed on the screen, it is being buffered for use in the next step
of recognition.

• Shape Recognition. In this part of the process, the recognizer turns raw pen data into a
predefined symbol such as a Roman character, geometric figure, or Kanji character.
This phase begins with a recognizer callback into the RC Manager to query the
buffered data. A recognizer processes the data in convenient chunks and determines the
most likely set of symbols associated with the ink.

• Postprocessing. The postprocessing facility provides a measure of contextual
information that can be used to improve recognition accuracy. For example, a typical
postprocessing facility compares the word that was recognized against a set of expected
results (some word list-for example, a dictionary).

• Timing of Results. During this phase, the results are returned to the caller in the
method requested.

Shape recognition is often obstructed by the inability of the recognizer to resolve
ambiguities in user input. Suppose, for example, the following text is passed as raw data to
the recognizer.

!el,
Figure 3.2. Text sample

If you are familiar with the English language, you associate this ink with the word "kit."
However, a recognizer might read it as the text string "lcit." In fact, the recognizer has
little information to distinguish these two possibilities. At first glance, you might expect
that the spacing of the letters could be used to make a determination. However, it's quite
possible that the first two characters are indeed "1" and "c," accidentally written close
together. For this particular ink, a recognizer might return the result that the input has a 40
percent chance of being "kit" and a 60 percent chance of being "lcit."

A postprocessing of these results would replace the possible "lcit" result with the word
"kit," because "lcit" does not appear in an English-language word list.

An application can request that the results of recognition be returned on character, word,
or line boundaries. An application can also request that the results be returned only when
the entire recognition process is complete. The RC Manager passes results back to the
application at the requested intervals, thereby completing the final step of the recognition
process.

Microsoft Windows for Pen Computing

He: The Principal Data Structure 29

RC: The Principal Data Structure
The RC structure is the primary data structure used in the recognition process. The
following paragraphs discuss all of the various options available with the elements of this
structure, listed "chronologically" with respect to the flow of information from ink to
recognition.

Using and Modifying Ink
The nlnkWidth and rgblnk field of the RC structure specify the width and color of the
ink left by the pen as the user writes with it. The nlnkWidth field is an integer-specified
in display coordinates (pixels)-that describes the width of the ink to draw. The rgblnk
field is a DWORD that contains an RGB value used to render the ink on the screen. If the
requested color does not map exactly to a possible color, the GetNearestColor function is
used internally to determine the nearest solid color to use. The ink is drawn only in solid
colors for the sake of speed.

Ending Recognition: Pen State
When you design an application, you must consider when the recognition process will be
considered complete. For example, the type of input expected will influence the criteria for
ending recognition. In the case of a system gesture that consists of a single stroke,
recognition ends after the user enters one stroke. In the case of a freehand drawing
application, recognition might end when the pen leaves a bounding rectangle area where
the user draws with the pen.

The standard way to end recognition is to wait for a pen time-out. The system waits until a
specific interval has elapsed without new data from the pen, and then it stops recognition.
The termination conditions are set in the IPcm bit field (the Pen Collection Mode field) in
the RC structure. You can combine the PCM_ values discussed in the following
paragraphs with the OR operator to create any termination condition you want to specify.

This value ends recognition as soon as the pen is lifted from the tablet surface. If you use
this option, you limit user input to a single stroke before recognition results are returned to
the caller. This is useful for a gestures-only field or for an application that performs some
special action on single strokes of input.

One special use of PCM_PENUP might be for an application to implement scrolling in
applications through flicks of the pen. Another might be for an application that recognizes
only system gestures within a given screen region.

This value ends recognition as soon as the pen leaves the range of the tablet's proximity
detection mechanism. This option makes sense only for those tablet devices that support
proximity detection. Use PCM_RANGE if you want recognition to end after a single letter
of input or as soon as the user stops writing.

Programmer's Reference

30 Chapter 3 The Recognition Process

One difficulty with PCM_RANGE is that the control of proximity is set by the hardware
and is not accessible to software control with the Pen API extensions. If you are going to
use this termination condition, you should test it extensively on the target hardware to
make sure that normal user variances in writing technique do not result in undesirable
behavior such as premature attempts at recognition.

PCM_RECTBOUND
This value ends recognition with the next pen down event that occurs outside a specified
bounding rectangle. Use this option to keep the pen in inking mode for long periods of
time. For example, you can use this option to keep the ink displayed as ink until the user
lifts the pen and taps outside a field. Note that writing can extend beyond the bounding
rectangle; it is the first tap outside this area that ends recognition.

You can also use this termination mechanism to limit the inking area to a window's client
area. The rectangle to serve as the bounding rectangle is in the rectBound field in the RC
structure. This field is a RECT structure that specifies the bounding rectangle in screen
coordinates, unless the RCO _ T ABLETCOORDS flag is set. If this flag is set, the rectangle
will be in tablet coordinates (thousandths of an inch).

PCM_RECTEXCLUDE
This value ends recognition as soon as a pen down occurs within a specified rectangle. For
example, you might use PCM_RECTEXCLUDE to create a button on the display that the
user taps to end the recognition. The rectangle is specified with the rectExclude field in
the RC structure. This rectangle is also in screen coordinates unless the
RCO _ T ABLETCOORDS flag is set to specify tablet coordinates.

Note that PCM_RECTEXCLUDE has a higher priority than PCM_RECTBOUND if both
are set and their specified rectangles intersect.

PCM_ TIMEOUT
This value ends recognition if there is no pen activity for the specified time. The
wTimeOut field of the RC structure specifies how long (in milliseconds) to wait before
the time-out occurs. A value of zero never times out.

PCM_TIMEOUT provides the most common method for ending recognition. It provides
for a fairly natural process of printing, waiting for recognition, and then continuing with
more text entry-much like a user's natural tendency to pause for thought when writing.
This quality makes the time-out option a natural choice for recognition termination.

The Application-Recognizer Connection
The accuracy of recognition can be improved if the application and recognizer
communicate the type of input expected from the user. Such prerecognition contextual
information can be used by a recognizer to improve recognition.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 31

There are several categories of information that an application can provide to the
recognizer to improve its accuracy. The following pages describe these categories of
information, as well as the RC structure fields and values that can be used.

Writing Location
It is likely that applications will provide some context to help users write neatly and
achieve high levels of recognition. This might mean, for example, drawing lines on the
screen that serve as guides for input-in effect representing ruled paper on the screen.

Another example is the bedit window class, which provides a boxed edit control based on
a letter guide like the one illustrated in Figure 3.3. The letter guide improves recognition
accuracy by constraining letters to individual cells.

Figure 3.3. Letter guide of the bedit window class

The cells of the bedit class provide writing areas for the user. The GUIDE structure, an
element of the RC structure, describes the grid of letter guides that the recognizer can use
to separate the ink the user draws.

Suppose the "1cit" of Figure 3.2 is drawn in a bedit-class window. The ambiguous "Ie"
portion of the ink appears in one cell. With this additional clue, the recognizer can make
the correct decision, recognizing the ink as a "k."

A similar use of the GUIDE structure is to resolve the ambiguities of some uppercase and
lowercase letters such as "c/C," "s/S," "u/U," "0/0," "w/W," and "k/K." The recognizer is
capable of independent processing to help make a determination, but it can be helped
along by any information from the application regarding the baseline and midline rules
provided to the writer.

An application can use the wRcOrient field to inform the recognizer of the digitizer's
orientation.The coordinates returned from the digitizing device never actually change
they are just interpreted differently. As an example, this field can be used to enable writing
along the vertical axis of a chart in a graphics program.

The wRcDirect field is used to specify the primary and secondary directions for input. It is
not necessary for a recognizer to support this capability; the Microsoft recognizer, for
example, does not. The wRcDirect field reflects the fact that most languages have a
primary and a secondary writing direction. For English, the primary direction is from left
to right, and the secondary direction is from the top down. For Chinese, the primary
direction is from top to bottom, and the secondary direction is from right to left.
Depending on the language, this information can be important for the recognizer.

Specifying the Recognizer and the Type of Input Expected
Applications can supply additional information in the RC structure to specify which
recognizer to use and what data to expect. Both types of information are supplied by fields
in the RC structure.

Programmer's Reference

32 Chapter 3 The Recognition Process

The hrec field in the RC structure is a handle to the recognizer to use. Generally, an
application will load recognizers with a call to InitRC, which generates a default RC
structure. This loads the default system recognizer. Additional recognizers (such as a shape
recognizer) are loaded with a call to InitRecognizer.

If the hrec field of the RC structure is NULL, then no recognizer is called. A NULL
recognizer is used, for example, if the only intended result of the recognition event is to
display and store the ink entered by the user.

In addition to specifying the recognizer, an application can use three additional clues to
improve recognition accuracy: the characters expected by the recognizer, the priority to be
assigned to different character sets, and the language to be used.

Expected Characters
In many situations, especially those involving the fields in a form or dialog box, an
application knows what type of characters the user is likely to enter. For example, a ZIP
Code field should expect only numeric input-assuming it is configured exclusively for
U.S. addresses. If you know the type of data expected, you can greatly improve the
recognition accuracy by supplying this information to the recognizer.

You can specify the expected characters in the ale field of the RC structure as a 32-bit
value. An application can combine the ALC codes with the OR operator to describe the
expected input precisely. The alphabet, or ALC, codes are discussed in Chapter 11, "Pen
Messages and Constants."

You can also set the rgbfAle field to specify any subset of the ANSI character set as the
set of expected characters. For more information, see the RC structure, discussed in
Chapter 10, "Pen Structures."

Priority
A second field that the application can use is the alePriority field in the RC structure.
This field gives a precedence rating to the possible ALC codes. The alePriority field is set
to a subset of the ale fields that specifies those results to be given the highest priority in
making recognition decisions.

For example, an application could list ALC_UCALPHA I ALC_LCALPHA as the valid
ALC codes indicating that the application is expecting only uppercase or lowercase letters.
If you expect most users to enter uppercase versions of the letters, you set the alePriority
field to ALC_UCALPHA. This weights the recognizer toward the uppercase letters.

Language
The IpLanguage field specifies one or more languages for the expected input. All
characters within the ANSI character set can be specified by adding the
RCIP _ALLANSICHAR flag to the wIntlPreferences field of the RC structure. It is often
more useful to specify a subset of languages that should be enabled during recognition.
The IpLanguage field points to an array of concatenated three-letter language codes that
describe the current set of possible languages expected from the user.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 33

By default, versions of MS Windows for Pen Computing will specify a single language
relying on the International item from the Control Panel. Multiple language values might
be set for European users or for other multinational pen platform users. By default, the
values for this field are derived from the sLanguage element of the [IntI] section of the
Windows WIN .INI file.

The Timing of Recognition Results and Significant Events
The application can provide two different clues concerning the timing of recognition and
the significance of events.

Returning Results
The Microsoft recognizer can return recognition results at different intervals. The available
intervals include word boundaries, stroke boundaries, character boundaries, new lines, and
completion of recognition.

The timing of recognition is specified by the wResultMode field of the RC Structure.
Results are returned no sooner than the requested interval, and they may be returned later.
This may mean that even though an application requests results stroke by stroke, the
results are actually returned when an entire word or an entire sentence is entered.

Determining Significant Points
Pen events are stored in a buffer that is separate from the normal system queue of mouse
events in Windows. This pen event buffer contains the high-resolution data from the
digitizer device that is used by recognizers. Even though the two buffers are independent,
it is possible to associate a particular mouse event with the appropriate pen event.

The pen computer submits each pen event to the Windows system as a mouse event. Along
with the simple (x,y) screen coordinates, MS Windows for Pen Computing also passes a
pointer that associates the mouse event with the pen event that generated it. This pointer is
stored along with the queued mouse event in the Windows buffer. This buffer can be
queried later by applications.

Use the GetMessageExtralnfo function to get the associated event pointer from Windows
while processing a mouse message. For example, with a WM_LBUTTONDOWN
message, an application should call GetMessageExtralnfo to get the pen event pointer.
InitRC assigns a default value to wEventRef. Otherwise, it is the application's
responsibility to assign the wEventRef field of the RC Structure before calling Recognize.

Controlling the Recognition Process
There are several RC structure fields that affect how recognition proceeds. You can use
these fields to implement special functionalities or manage special considerations during
recognition.

The clErrorLevel field is a value from 1 to 100 that represents the percentage probability
that a particular recognition result will be correct. The error level is the level below which
a recognition result is considered to be unrecognized. The application can set the level at

Programmer's Reference

34 Chapter 3 The Recognition Process

which a recognizer will give up and return a "don't know" response rather than return an
incorrect recognition result.

For example, you can modify this setting for a Social Security field where a very low error
rate is required. By setting cIErrorLevel to a high number, you can enforce a low error
rate.

The lpfn Yield field is a long pointer to a function supplied by the application that should
be called by the Recognize function whenever it ~eeds to yield the CPU for other
background processing. If the lpfn Yield field is NULL, the default Windows Yield
function is called. It is the lpfn Yield function's eventual responsibility to call the
Windows Yield function. The default Windows function will not be called if lpfn Yield is
non-NULL.

The wRcOptions field is a bitwise combination of the RCO_ flags listed in the following
paragraphs.

RCO_BOXED
This value indicates that the GUIDE field of the RC structure contains valid data that
should be used in the recognition process. RCO _BOXED suggests that boxes have been
provided to the user for letter entry.

RCO_DISABLEGESMAP
This value disables the Gesture Manager's ability to replace circle-letter gestures with one
or more keystroke combinations. An application that has reserved the circle-letter gestures
might consider using this flag to disable any user-provided meanings for those gestures,
but this is not recommended.

The Gesture Manager is a macro layer, and, as with all macro layers, the user must
understand that any input bound to a macro cannot be used in the context of another
application, because that input will never reach the application. The macro will instead be
mapped before it gets to the application. This behavior is identical for the Gesture
Manager and any other keystroke macro recorder.

RCO_NOFLASHCURSOR,RCO_NOFLASHUNKNOVVN
These values disable the display of visual feedback to the user. Normally, if a recognition
result is· SYV _COpy or SYV _UNKNOWN, the user receives cursor feedback in the form
of a brief change from the pen cursor to an I-beam cursor or a question-mark cursor.

RCO_NOHIDECURSOR
This value prevents the cursor from being hidden while inking. You might use this option
in a drawing package to provide adequate visual feedback with an opaque digitizer tablet.
RCO_NOHIDECURSOR is rarely used with an integrated digitizer-display, because the
user is pressing the pen down on the desired location directly.

Microsoft Windows for Pen Computing

The Application-Recognizer Connection 35

This value prevents the system-wide recognition results hook from being called before the
recognition results are passed on to an application. You would most likely set this option
in an application using hooks that have re-entrancy problems. The application could then
disable the hook recognition results in contexts that are likely to cause such problems.

RCO_NOSPACEBREAK
This value informs the recognizer to send entire sentences, instead of individual words, to
the dictionary. Doing this is useful if you're using a custom dictionary with special
contextual or natural language parsing capabilities.

RCO_SAVEALLDATA
This value specifies that all of the data points should be saved. In the default case, only
those points used by the recognizer are saved. Other points might include pen up locations
or pressure information.

RCO_SAVEHPENDATA
This value is used to save the pen data. Normally, the ink returned to the application by
MS Windows for Pen Computing is discarded after the application returns from
WM_RCRESUL T. If an application is to save the data, it must either copy it before
returning from WM_RCRESULT or set this option.

Once RCO_SAVEHPENDATA is set, it is the application's responsibility to free the ink
data.

This value tells the dictionary to make suggestions for a particular recognition result. In
general, a dictionary can only promote a less likely alternative to be the first choice-it
cannot make suggestions on its own as to the likely recognition result. RCO_SUGGEST
enables the dictionary to make suggestions that are not necessarily among the alternatives
supplied by the recognizer.

RCO_TABLETCOORD
This value indicates that all coordinate values in the RC structure have already been
converted to tablet coordinates. By default, all coordinate values in the RC structure are in
screen coordinates.

Specifying the User for Recognition
The final important values you can provide to the RC structure should be provided within
the IpUser, the wRcPreferences, and the hwnd fields. In these fields, you can identify the
user supplying the input and specify the window that should receive the recognition
results.

Programmer's Reference

36 Chapter 3 The Recognition Process

The IpUser field points to the name of the current user. It is accessible from the
Handwriting application in the Control Panel window. The current user name is the basis
for all training and user-specific settings used by the recognizer-for example, left- or
righthandedness and preferred time-out interval before recognition.

This information should be available at recognition time, because all training is inherently
user-specific, and the left- or righthandedness information can be especially important for
shape recognition. Because the Control Panel supports the addition of new users, multiple
users can use the same machine with their individual preferences recorded in this field.

In conjunction with the IpUser field, the wRcPreferences field of the RC structure
contains the current user's preferences. In the current version of MS Windows for Pen
Computing, this contains information about the preferred writing hand and whether the
recognizer should generate information for training.

The hwnd field of the RC structure indicates where results are to be sent. It is this window
that receives the WM_RCRESULT message containing the results from recognition.

Dictionary Processing
Several fields of the RC structure are used in the postprocessing phase of recognition. All
of these fields affect the dictionary processing of recognition results.

The rglpdf field of the RC structure contains a list of entry points within various
dictionaries that are used in the processing of recognition results. Recognition results are
passed to each of these dictionaries in tum until one of them indicates that a correction has
been made or there are no more entry points to be called.

In general, dictionary processing takes place word by word. Once a single correction is
made, the results string is modified with the new result, and the dictionary processing code
moves to the next word.

You can use the RCO_NOSPACEBREAK option to pass entire sentences on to
dictionaries for correction. This option is not supported by the Microsoft-supplied
dictionary.

The wTryDictionary field of the RC structure is a value from 1 to 4096 that specifies the
number of alternatives in the symbol graph that will be passed to dictionaries. A standard
value for wTryDictionary is 100. This value means that 100 alternatives (should that
many alternatives exist) will be passed to a dictionary for possible correction.

The application can use wTryDictionary to trade-off performance for recognition
accuracy since many dictionary calls are time consuming.

Recognition Results: The RCRESULT Structure
This section focuses on the processing of recognition results, specifically the
WM_RCRESUL T message and the associated RCRESULT structure. The RCRESULT
structure contains the actual recognition results that are sent from MS Windows for Pen
Computing to a pen-aware application.

Microsoft Windows for Pen Computing

Recognition Results: The RCRESULT Structure 37

The WM_RCRESULT Message
The WM_RCRESUL T message is used to send RCRESULT structures back to
applications. The IParam parameter points to the RCRESUL T structure. An application
must be prepared to receive this message before calling the Recognize function, because
all WM_RCRESULT messages associated with a particular recognition event will be
received before Recognize returns.

The WM_RCRESULT message can arrive more than once for a given recognition event
depending on the frequency with which applications have requested that data be returned.
Each message contains a pointer to a new, self-contained RCRESULT structure that
contains the recognition results from the time of the last WM_RCRESULT message to the
present.

The wParam parameter specifies the reason the message was sent-for example, end of
recognition or because of some event like a word break. The wParam parameter contains
one of the REC_ codes described in Chapter 11, "Pen Messages and Constants," describing
why recognition has ended. These REC_ codes are the same as those returned by the
Recognize function.

Symbols and Symbol Values
MS Windows for Pen Computing defines a 32-bit space to hold recognition results. Out of
this space, values are allocated for geometric shapes, gestures, letters of the alphabet,
Kanji, Katakana, musical notes, electronic symbols, or any other symbols defined by the
recognizer. For example, there is a unique 32-bit value associated with the letter "a."

These 32-bit values associated with various symbols are known as symbol values (SYVs).
They are used internally by the Windows for Pen Computing functions to refer to
recognized input. The application, however, uses the symbol graph for recognition results.

The Symbol Graph
The first element of the RCRESUL T structure, syg, contains the various alternatives for
user input that are conveyed to the application. This data structure, called a symbol graph,
contains all of the likely alternatives for the ink entered. Specifically, it is a directed graph
of symbol values that describe the recognition event.

Consider the ink example presented earlier in this chapter, in which the word "kit" was
confused with "leit." The symbol graph representing this situation looks like the following:

{ lc I k } it

If the recognizer decides that the "k" is the likelier interpretation, the symbol graph looks
like the following:

{ k I lc } it

Each RCRESUL T structure contains a symbol graph that fully describes all of the results
generated since the last RCRESULT structure was sent to the application. This means that
in most cases, the symbol graph will contain all of the recognized input associated with an
entire recognition event.

Programmer's Reference

38 Chapter 3 The Recognition Process

The symbol graph is not, strictly speaking, a graph of symbol values. It is possible to have
more than a single symbol value occupying a place in the graph. For example, the possible
meaning "Ie" is two distinct symbol values occupying one place in the recognized input.

Additional information is needed to completely specify the letters associated with a set of
ink. Further, each meaning is potentially a group of symbol values. The symbol graph
must bind locations in the ink stream to mUltiple alternatives of one or more symbol
values, each with associated probabilities, so that likelihood decisions can be made.

The symbol graph structure contains two additional data structures that provide this .
information: symbol correspondence structures and symbol elements.

The array of symbol correspondence structures (SYCs) delineates a specific chunk of ink
out of the stream of ink entered by a user. Each SYC contains a first stroke and a last
stroke. These two strokes and all of the strokes between them define the chunk of ink
associated with the SYC. The symbol graph contains an array of SYC structures, each of
which corresponds to a different part of the ink input. Taken together, the SYC structures
map all of the ink associated with the RCRESULT structure. Note that the array of SYC
structures will be generated only if the RCP _MAPCHAR flag is specified in the
wRcPreferences field of the RC structure.

The second data structure used to delineate the ink and the characters is an array of symbol
elements (SYEs). An SYE contains a symbol value, a confidence level (probability), and
an index into the array of SYCs. There is a symbol element for every symbol value in the
recognized input. Each has its own confidence level and pointer into the array of SYCs.
Each SYE in the array is associated with its ink and the relative certainty with which it is
recognized.

To determine that a single chunk of ink maps to more than one character, note that more
than a single SYE structure maps to the same SYC structure. In other words, more than a
single symbol value is associated with the same chunk of ink.

To determine which result is likelier, you can compare the confidence levels associated
with the symbol elements.

The cost of any particular path through the symbol graph-"cost," that is, in terms of error
level-is a measure of how poor a character match is and how much the recognizer must
deviate from the pure character prototype to accept this match. The cost of a particular
path is computed by adding the costs of all symbol values and dividing by the number of
symbol values for a potential mapping. Thus, you can obtain the lowest-cost solution and
provide it as the best guess.

Higher-cost solutions can remain in the symbol graph as alternatives. By postprocessing
the results with dictionaries, you can then promote one of the alternatives to best-guess
status if it is appropriate.

The symbol graph allows applications to generate choice lists accurately and precisely. It
also allows applications to target input appropriately by illustrating the exact relationship
between the symbols recognized and the ink entered by the user.

Microsoft Windows for Pen Computing

Recognition Results: The RCRESULT Structure 39

The Best Guess
The RCRESUL T structure also contains three fields that provide best-guess information.
Together these fields describe the interpretation the recognizer and dictionaries will apply
to the ink entered by the user, representing the best guess as to the user's meaning.

The Ipsyv field is a string of symbol values that map to the best guess. The best guess can
be in one of the three following states:

• It can be the lowest-cost path through the symbol graph, as discussed earlier. The
FirstSymbolFromGraph function will generate such a Ipsyv from a symbol graph.

• The Ipsyv field can specify a path through the symbol graph that has been created by
dictionary postprocessing-or perhaps a dictionary suggestion unrelated to the symbol
graph. In this case, a dictionary has promoted one of the higher-cost paths through the
symbol graph to the best-guess position. The only way to determine that this has
occurred is to compare the lowest-cost solution, which is obtained with a call to
FirstSymbolFromGraph with the Ipsyv field.

• The Ipsyv field may be the result of a Gesture Manager mapping. For example, the
circle-letter gestures can be mapped to character strings. There are two ways to
determine that this has occurred. You can compare lpsyv with the
FirstSymbolFromGraph result, as discussed previously, or you can check the
wResultsType field of the RCRESUL T structure for the
RCRT_GESTURETRANSLATED or RCRT_GESTURETOKEYS flag.

Additional information about the Ipsyv field included in the RCRESUL T structure is
contained in cSyv, the number of symbol values in the Ipsyv string, and hSyv, the handle
to the memory block where Ipsyv is allocated.

If the Ipsyv field contains a string of symbol values associated with printable characters,
you can translate the string of SYV s to a string of characters with the
SymbolToCharacter function. This function will generate a normal C language string.

Location and Position of the Input
There are several fields in the RCRESUL T structure that provide information regarding
the location and position of the ink entered by the user.

• The nBaseLine field is the recognizer's estimate of the baseline of the ink entered by
the user. If the baseline is not known, this value will be zero. The Microsoft recognizer
does not use this field, so it sets nBaseLine to zero.

• The nMidLine field is the recognizer's estimate of the midline of the ink entered by
the user. If the midline is not known, this value will be zero. The Microsoft recognizer
does not use this field, so it sets nMidLine to zero.

• The rectBoundlnk field is a Windows RECT structure that contains the bounding
rectangle that, in turn, contains the ink entered by the user. Typically, rectBoundlnk is
used to invalidate the area of the screen in which inking occurred, or otherwise to
update the display in the appropriate location. This occurs, for example, when ink is
replaced with recognized text.

Programmer's Reference

40 Chapter 3 The Recognition Process

When rectBoundlnk is computed, the ink width is taken into account. It is also taken into
account that this is the bounding rectangle for all of the data the user enters. It is not
guaranteed that the rectBoundlnk value in RCRESUL T will be a subset of the
rectBoundlnk provided as the bounding rectangle for input.

Contextual Information
Two elements of the RCRESUL T structure provide information about the recognition
event, but not as a part of the actual results of recognition. They are lprc, a far pointer to
the RC structure passed in to Recognize, and wResultsType, a flag that describes how the
recognition event actually proceeded. The values of the RCRT _ constants used in the
wResultsType flag are described in Chapter 11, "Pen Messages and Constants."

The Ink
The fiI:IaI two elements of the RCRESUL T structure contain information about the ink
entered by the user:

• The pntEnd element contains the last point of the ink data from the user only if
PCM_RECTBOUND or PCM_RECTEXCLUDE have been specified.

• The hpendata element is a handle to a pen data memory block that contains all of the
ink information entered by the user.

Applications that manage ink in any way will reference the hpendata field of
RCRESULT extensively. Some of the functions an application can perform on ink include
recognizing it, training it, scaling it, drawing it, adding points to it and getting points out
of it, copying it, and saving it. These capabilities and the Pen API functions that provide
them are discussed in Chapter 4, "Managing Ink in Pen Applications."

Microsoft Windows for Pen Computing

C h a 'p t e r 4

Managing Ink in Pen Applications

This chapter introduces the MS Windows for Pen Computing ink data type and discusses
its internal structure, the Pen APIs that manipulate ink, and some implementation
scenarios involving ink in applications.

The use of ink falls into two broad categories:

• Ink can be left on the screen without any character recognition.

• Ink can be managed by an application when it is performing delayed recognition.

Ink that is left on the screen without recognition is the more important application. In this
usage category, the ink and screen behave like an electronic notepad, but with a few
important differences. The electronic ink can be copied, scaled, erased, stored, indexed,
and otherwise manipulated in ways not possible with ink on paper. This ink capability is
one of the strongest features of the new pen-based computing systems.

The second usage of ink management is by applications performing delayed recognition.
Delayed recognition is the process of storing ink with no loss of accuracy so that
recognition can be performed at some later time.

The HPENDATA Data Type and Ink
Ink used in the Pen Extensions is accessed by HPENDATA-a handle to pen data. The
pen data is a memory block. This data structure is analogous to the other Window "H" data
types such as HDC, HCURSOR, and HPEN. With these the HPENDATA type shares
certain similarities:

• The handles are references to data structures that reside somewhere in memory blocks.

• The handles to memory are passed to the Pen Extension API functions that perform
useful work on the data structures.

• Applications should ignore the details of the underlying data structure and use the API
functions alone to do the work.

However, some details of the HPENDAT A type are of interest. The remaining part of this
chapter discusses the data structure and the APIs used to manipulate it.

The Basics
The HPENDAT A structure is a block of memory made available by an internal call to the
Windows GlobalAlloc (global allocation) function. Unlike most other Windows data types
that are allocated out of the USER or GDI heaps, the size of the PENDA T A blocks require
that their allocation come from the Windows global heap.

Programmer's Reference

42 Chapter 4 Managing Ink in Pen Applications

The HPENDA T A structure is flat-that is, it contains no references to memory locations,
and all of the information is stored in a single, contiguous block of memory. This means
that the data structure can be written to disk and read back in again without corruption due
to invalid pointers. If an HPENDA T A block is written to disk, all that is required to
restore the HPENDA T A is that the data structure be read back in again into an
appropriately sized, globally allocated block of memory.

There is a 64K limit on the size of the memory block containing pen data. At standard
report rates of 120 samples a second at 4 bytes per data point, plus some overhead data
structures, minus the time the pen is not in contact with the surface of the tablet, roughly
two and one-half minutes of pen activity can be encompassed in a single HPENDAT A
structure.

The Details
Figure 4.1 illustrates how the pen data memory block referenced by HPENDA T A handles
is laid out.

I Stroke header

:, ,[,:'

Main
, > I'

Header ",: Ii
ii,

:,
.:

"

:
:,',: !:,

I .1 J 1 .1 I

I Data oints in stroke p

Figure 4.1. HPENDATA memory block

The layout of pen data in memory is a simple hierarchy. Data points are grouped by the
strokes in the order in which they are entered. The HPENDA T A block of memory begins
with a descriptive header area.

Note that the drawing in Figure 4.1 is not to scale. The data points are generally a much
larger proportion of the memory block than the remaining header components.

Data Points
The data points associated with each stroke are initially (x,y) coordinates in tablet
coordinates with a resolution of one-thousandth of an inch and an origin at the upper-left
corner of the tablet. Tablets are required to report points in this scale regardless of their
actual resolution.

The Pen Extensions include functions to scale the points from the one-thousandth-inch
resolution in the HPENDAT A memory block to other metric systems. It is not necessary
for the data in a HPENDA T A memory block to remain in thousandths of an inch.

Microsoft Windows for Pen Computing

The HPENDATA Data Type and Ink 43

If Windows for Pen Computing is running in a portrait mode, the tablet is still required to
report coordinates as if the current upper-left corner of the display is the upper-left corner
of the tablet. The application does not need to concern itself with the current orientation of
the screen. The (0,0) coordinate in Windows display coordinates is always equal to (0,0) in
tablet coordinates.

Each (x,y) data point can be accompanied in the memory block by additional data such as
pressure, angle, or rotation, assuming the tablet supports it. The main header section of the
HPENDA T A memory block describes how this additional information is stored in the
stroke data areas for each data point.

Internally, any such OEM data is stored immediately following the block of (x,y)
coordinates for a stroke. For each such coordinate there is a corresponding index in the
OEM data block.

The ink in pen data structures has the absolute origin (0,0) set at the upper-left corner of
the tablet, and not the relative (0,0) coordinate of the client window. This can cause
difficulties when windows are moved around on the screen. If you encounter such
difficulties, you'll need to modify your pen application. Your application should store the
window-relative offset of the ink and constantly move the ink data to reflect the new
location of the ink in client coordinates each time the ink is rendered.

Whenever a window is moved, the ink should move along with it and be repainted in a
location relative to the upper-left corner of the window. One function you can use to
accomplish this is the OffsetPenData function. This function immediately and
permanently offsets all of the points in the pen data by an amount that you specify. If you
offset them by the position of the client window, you can make the pen data relative to
your client window instead· of the tablet. In effect, this makes the ink position window
relative, but still in tablet coordinates.

Stroke Header
A stroke is defined as the points that are recorded between the transition of the pen from
down to up. The normal case is a stroke that occurs between the time the pen makes
contact with the surface of the tablet and when the pen is lifted from the surface of the
tablet. Some tablets and applications may also use proximity strokes for those points
received when the pen is not in contact with the tablet.

Internally, the stroke header is a STROKEINFO structure (described in Chapter 10, "Pen
Structures"). Each STROKEINFO structure corresponds to the pen's leaving or touching
the tablet surface. Each of the pen events between these transitions is considered part of a
single stroke.

Figure 4.1 shows strokes of different sizes. This is because the pen can be in contact with
the surface of the tablet for longer or shorter periods of time, resulting in more or fewer
points of data. The length of a single stroke is limited only by the maximum size of an
HPENDATA memory block (64K).

Programmer's Reference

44 Chapter 4 Managing Ink in Pen Applications

The information in the.stroke header includes the following items:

• The number of points in the stroke

• The number of bytes in the stroke (only used internally)

• The state of the pen during the stroke (up or down)

• A time index indicating when the stroke began

The time index is particularly useful if you need to reproduce the data on the screen
exactly as the user entered it. For example, using the time index for the beginning of a
stroke and the fact that the number of points per second is a known quantity, a signature
can be retraced with the same speed used to enter it.

Main Header
The first part of the main header of the HPENDA T A data block is the
PENDATAHEADER structure described in Chapter 10, "Pen Structures." The
PENDA T AHEADER contains the following types of information:

• The number of strokes

• The number of points in those strokes

• The remaining amount of memory in the memory block for new information

• The bounding rectangle of all points

• The ink color

• The ink width

This information is used by applications when they query portions of the pen data out of
the HPENDA T A, or render pen information to the screen.

The wPndts field of the PENDAT AHEADER structure describes the state of the data in
the HPENDA T A block. The possible states include compression type, inclusion or
exclusion of up points in the data, and an indicator of OEM data. The wPndts field can be
used by applications to determine the state of the pen data, but it is most often used by the
Pen APIs for this purpose. The wPndts element is a bitwise OR combination of the
PDTS_ * flags described in Chapter 11, "Pen Messages and Constants."

The final component in the main header is a PENINFO structure. Briefly, the PENINFO
structure contains information on the tablet device where the data originated. This includes
such information as the width, height, resolution, report rate, proximity capabilities, and
barrel button status. For more information about the PENINFO structure, see Chapter 10,
"Pen Structures."

The PENINFO structure also specifies if additional data is available beyond simple (x,y)
coordinates.

If the cbOemData field of the PENINFO structure is greater than 0, there is more
information available. The format and order of this extra information are contained in the
rgboempeninfo array of the PENINFO structure. This array describes the order,

Microsoft Windows for Pen Computing

The Ink Functions 45

minimum value, and scale of any OEM specific pen data reported along with the (x,y)
coordinate data.

For example, suppose this array has as its first index a pressure indicator and as its second
index an angle indicator. This means that in the data point area of the pen data memory
block, every (x,y) coordinate is associated with two bytes of pressure data and two bytes of
angle data in the OEM data section of the pen data area. All applications should use the
PEN INFO structure to determine the nature of the data associated with each (x,y) location
contained in pen data.

The Ink Functions
The following sections describe the categories of functions that manipulate ink and the
HPENDAT A structure on behalf of applications. For complete details on these functions,
see Chapter 9, "Pen API Reference."

Rendering Pen Data
The most common use of ink by an application is to render the ink on either screen or
page. The following two functions, DrawPenData and RedisplayPenData, are used for
this purpose.

DrawPenData
DrawPenData(HDC hdc. LPRECT lprect. HPENOATA hpendata)

This function renders the pen data to the specified device context using the Windows GDI
polyline function. The current settings in the device context are used to render the data.
For example, the current pen, pen color, and mapping mode are used when rendering the
points in the pen data. Note that the color and width of ink stored in the pen data block are
not automatically used to render ink.

In general, DrawPenData does not render to the screen data that exactly matches the data
previously drawn by the display driver and PENWIN.DLL at interrupt time. This
discrepancy results because the display driver and GDI polyline functions use different
algorithms to draw the data. The possible difference is an "off by one" error that visually
appears as a shifting of some pixels around the edges, depending on the rounding done by
PolyLine.

You should use the RedisplayPenData function to render ink to the screen precisely as the
user entered it.

RedisplayPenData
RedisplayPenData(HOC hdc. HPENDATA hpendata. LPPOINT lpOrg.

LPPOINT lpExt. int nInkWidth. RGB rgbcolor)

RedisplayPenData uses the same algorithm as PENWIN.DLL to render ink onto the
screen so that it looks exactly like the ink rendered originally by PENWIN.DLL and the
display driver at interrupt time. There are two methods you can use to accomplish this:

Programmer's Reference

46 Chapter 4 Managing Ink in Pen Applications

• For each HPENDAT A received, store the current origin of the window containing the
ink in screen coordinates. Whenever that HPENDATA must be rendered, its origin
will be placed in the lpDelta argument of RedisplayPenData. It is critical that the
origin for every HPENDA T A be stored. The ink received while the origin is the same
can be merged into a single HPENDA T A, but ink received after an origin change
cannot be merged.

• Immediately upon receipt of the pen data, call MetricScalePenData to convert the pen
data to display coordinates. Then use OffsetPenData to convert from display
coordinates to client coordinates. This ensures that the ink data has the origin of the
window in which it is to be drawn as its origin. If this procedure is carried out on all
ink data received, numerous HPENDATA memory blocks can be merged together (up
to the 64K limit for a HPENDAT A memory block).

The disadvantage of this second method is that there will be some degradation in
recognition rates if the recognizer is particularly scale-dependent. If you have used this
method, use the following function call:

RedisplayPenData(hdc, hpendata, NULL, NULL, 1, 0L)

The algorithm used to render pen data at interrupt time uses a square pen brush rather than
a round one for reasons of speed. For wide ink, this optimization of the GDI means that the
end of the inked lines may appear blocky. If you don't want this, use DrawPenData
instead of RedisplayPenData to render the ink.

Transforming Pen Data
There are three functions that manipulate the scale of the pen data in the HPENDAT A
memory block: MetricScalePenData, ResizePenData, and OffsetPenData.

MetricScalePenData
MetricScalePenData(HPENDATA hpendata, WORD wPdts)

This function converts pen data between any of the standard Pen Extensions mapping
modes. The mapping modes specified by wPdts have the same scale as GDI mapping
modes, but they do not have the same origin. In the Pen Extensions, the origin is the
upper-left corner of the display or tablet.

This function will be used in applications that already rely on the use of a mapping mode
and need to pass one of their standard device contexts to DrawPenData. Once the pen
data points are scaled to the mapping mode of their application, the default device contexts
can be passed to DrawPenData, and the ink will appear in the proper scale.

There are two important things to note about MetricScalePenData:

• Because of rounding errors, the scaling is not reversible when you move between
mapping modes. Generally, this is important only if the ink is to be used for delayed
recognition. The problem arises when you move from the standard ink scale
(HIENGLISH) to a scale of lower resolution. Once this is done, you have lost some of
the data from the higher-resolution scale. The recognition accuracy of Recognize Data
may diminish, even if the data is converted back into HIENGLISH.

Microsoft Windows for Pen Computing

The Ink Functions 47

• The scaling is not perfect and will result in numerous shifting, "off-by-one" errors
when the function renders scaled data.

Resize Pen Data
ResizePenData(HPENDATA hpendata. LPRECT lpRect)

This function scales ink into arbitrarily sized rectangles.

ResizePenData exhibits the same weaknesses of the other scaling functions. Proportions
of the rectangle are preserved, but rounding errors prevent the scaling process from being
reversible. If the ink is scaled to a rectangle larger than the bounding rectangle in the pen
data header, delayed recognition is generally not affected.

OffsetPenData
OffsetPenData(HPENDATA hpendata. int dx. int dy)

This function offsets the (x,y) data for the points in the pen data memory block. The
increments dx and dy are added to the (x,y) points. You can use this function to shift the
location of the pen data without changing the scale of the data and thereby affecting
recognition.

A common use for OffsetPenData is to shift the points in pen data to be in window
relative tablet coordinates. Pen data can be stored in this format and easily rendered at the
proper location in a window by this method.

Pen Data Housekeeping
There are three functions that perform housekeeping operations on pen data memory
blocks: DuplicatePenData, DestroyPenData, and CreatePenData. They are standard
operations similar to many Windows data types.

DuplicatePenData
HPENDATA DuplicatePenData(HPENDATA hpendata. WORD gmemFlags)

This function is a copy routine for pen data. An application can quickly generate clones of
its pen data blocks using this function. The gmemFl ags parameter is a combination of
desired GMEM_ * flags used by the Windows GlobalAlloc function.

DestroyPenData
DestroyPenData(HPENDATA hpendata)

This macro maps to the GlobalFree(hpendata) function. Because pen data memory
blocks are simply chunks of memory allocated by GlobalAlloc, the GlobalFree function
frees them.

Programmer's Reference

48 Chapter 4 Managing Ink in Pen Applications

CreatePenData
HPENDATA CreatePenData(lPPENINFO lppeninfo, int cbOemData,

WORD wPdtScale, WORD gmemFlags)

Use this function to create pen data memory blocks from scratch. If an application
provides the PENINFO structure that will reside in the header, the real size of any OEM
data to be stored along with each (x,y) coordinate, and the scale of the points in the pen
data, it can create its own pen data memory block.

The gmemFl ags should be either GMEM_MOVEABLE or GMEM_DDESHARE. This
enables the memory block containing the pen data to move within the Windows global
heap and to be passed to other applications.

Pen Data Input and Output
The functions listed below retrieve (x,y) data from pen data memory blocks and add new
data to the memory blocks.

GetPenDatalnfo
BOOl GetPenDatalnfo(HPENDATA hpendata, lPPENDATAHEADER lppendataheader,
lPPENINFO lppeninfo, DWORD dwReserved)

This function retrieves summary information from the pen data memory block. It is
generally called before any of the other pen data input or output functions are called.

BeginEnumStrokes, GetPenDataStroke, EndEnumStrokes
LPPENDATA BeginEnumStrokes(HPENDATA hpendata)

BOOl GetPenDataStroke(lPPENDATA lppendata, WORD wStroke,
lPPOINT FAR * lplppoint, lPVOID FAR *lplpvOem, lPSTROKEINFO lpsi)

WORD EndEnumStrokes(HPENDATA hpendata)

These three functions operate on the pen data memory block on a stroke-by-stroke basis.
An application must call BeginEnumStrokes before calling GetPenDataStroke, and it
must call EndEnumStrokes when it has finished querying any stroke-level data.

BeginEnumStrokes uses GlobalLock internally to get a pointer to the location of the pen
data block.

GetPenDataStroke returns pointers into the locked pen data memory block. An
application requests that a certain stroke be returned, and a pointer is returned in the
lplppoint argument that points into the hpendata memory block itself. The lpstrokeinfo
buffer is provided by the application and is instantiated with information about the stroke
pointed to by *lplppoint.

Because pointers are returned that indicate the actual points in the pen data block, you
could modify the pen data in place. However, this is not recommended. Strokes are packed

Microsoft Windows for Pen Computing

The Ink Functions 49

one after the other; therefore, it is questionable how much functionality an application
would get from this, because the stroke size is unable to change.

Once an application has finished calling GetPenDataStroke, it must call
EndEnumStrokes. This unlocks the memory block containing the pen data and
invalidates any of the pointers returned by GetPenDataStroke. For this reason, you must
take care never to use the pointers returned by GetPenDataStroke once
EndEnumStrokes has been called.

GetPointsFromPenData
GetPointsFromPenData(HPENDATA hpendata. WORD wStroke. int wPnt.

int cPnt. LPPOINT lppoint)

This function copies points from a pen data memory block in a manner more traditional
than that used by GetPenDataStroke function. The application provides a buffer in which
to hold a block of points, and then it indicates which stroke to retrieve the data from. An
application can also request a certain block of points within a stroke. In that case, wPnt is
the first point to retrieve, and cPnts is the number of points to retrieve.

Use GetPointsFromPenData to retrieve a specific point or block of points from a
particular stroke. For example, use this function to digest the points in a pen data block a
few at a time to avoid allocating a large block of memory to get all of the points.

GetPointsFromPenData can also be used to return the last point in a stroke if the wPnt
argument is greater than the number of points in the stroke. In addition, if wStroke is larger
than the number of strokes in a pen data memory block, the points returned will be from
the last stroke.

A quick way to query the last point in a pen data memory block is to use large numbers for
wStroke and wPnt. For example, any number that creates more than 64K of point data is
high enough to guarantee that the point returned will be the last one in the pen data.

AddPointsPenData
HPENDATA AddPointsPenData(HPENDATA hpendata. LPPOINT lppoint.

LPVOID lpvOemData. LPSTROKEINFO lpsiNew)

This function appends new blocks of points onto an existing pen data memory block
specified by hpendata. The /psiNew parameter specifies a STROKEINFO structure that
describes the new points, and /pvOemData describes any OEM data to be added.

The STROKEINFO structure might represent points that are in the same state as those
that are currently in the last stroke of the pen data. Because such points do not indicate a
state transition, they are appended to the last stroke. If the STROKEINFO structure
indicates that the state transition between pen up and pen down has occurred, a new stroke
will be created to contain the points passed by this function call. The number of points in
the /ppoint array is indicated by the cPnts element of the STROKEINFO structure.

The return value from this function is usually the same HPENDATA passed into it. Any
other return indicates an error condition.

Programmer's Reference

50 Chapter 4 Managing Ink in Pen Applications

Compressing Pen Data
Data compression of pen data is an important element of pen applications. Combining the
high data rates of the pen digitizing devices with large amounts of inking created by the
user results in large memory blocks of ink data. The Pen Extensions offer an application
many different compression options, each with a set of advantages and disadvantages
depending on the future use of the ink.

In general, there are three types of compression:

• Compression that removes redundant or otherwise useless data from the data structure.
The resulting HPENDA T A can be passed immediately to any delayed recognition
function without any loss in accuracy.

• Compression that employs a more complex algorithm to compress pen data points. The
resulting HPENDA TA cannot be passed immediately to a delayed recognition
function. However, data can be decompressed and then passed to a delayed recognition
function with no loss of accuracy.

• Compression that employs an algorithm that compresses the data with some loss of
information. The result is that the data can no longer be used for delayed recognition,
but it is still suitable for display purposes.

CompactPenData
CompactPenData(HPENDATA hpendata, WORD wTrimOptions)

The CompactPenData function is the primary function used to compress pen data. The
wTrimOptions option is a bitwise OR combination of the PDTT _ compression options
described in Chapter 9, "Pen API Reference."

Display Resolution Compression
There is an additional compression method that can be used if the application is intended
to render data only for display and not for later recognition. This method saves the largest
amount of memory space, but at the cost of recognition accuracy.

First, use MetricScalePenData to convert the ink from tablet coordinates to display
coordinates (that is, PDTS_ST ANDARDSCALE to PDTS_DISPLA Y). Second, use the
CompactPenData option of PDTT _ COLINEAR to remove the duplicate and colinear
points. These two steps will massively reduce the number of points in the pen data,
because many high-resolution digitizer points are thrown away by the conversion.
However, this loss means that the data may not be correctly recognized later.

The application can still choose to perform any of the other PDTT _ * compression methods
on the ink to compress pen data further, making the MetricScalePenData call to
MM_TEXT the first step along a path to ink in its most highly compressed form.

Microsoft Windows for Pen Computing

Common Scenarios Using an Ink Object 51

Common Scenarios Using an Ink Object
One common scenario is the display of a scribble of ink that the user enters in a region
containing a number of other scribbles. This ink object will most likely be displayed in
window class designed to support various inking functionalities. When ink is entered into
this region, there are several steps that an application should undertake.

Offset the Ink
The ink should be offset from the origin of the window. However, this object will render
ink precisely as it was inked at interrupt time, and the ink will not be submitted for
delayed recognition. To render the ink in a usable state, you should convert it to
PDTS_DISPLA Y coordinates and offset it to the origin of the window instead of the origin
of the display.

Assuming the origin of the window containing the ink to be at screen coordinates (x,y), the
following calls are required:

MetricScalePenData(hpendata. PDTS_DISPLAY);
OffsetPenData(hpendata. -x. -y) ;

Generate New HPENDATA Structures
New ink from the user will generate new HPENDAT A structures. These should be merged
into the ink storage mechanism already established for the window. There are two ways to
do this:

• You can add the contents of the new pen data to an existing pen data. pirst, extract the
points in the new pen data, using GetPointsFromPenData. Then add them to the
existing pen data structure representing the contents of the window, using
AddPointsToPenData.

Remember that a pen data memory block data structure is limited to 64K, and before
the points are extracted they must have the same scaling or offset performed on them as
on any previous ink.

• Alternatively, you can create a higher-level application data structure-such as a linked
list or an array-that stores a number of HPENDA T A handles, rendering them all as
needed. The inking sample provided in the Pen SDK shows how to do this.

Render the Ink
The ink should be rendered as necessary. There are several reasons why the ink may not
be rendered exactly as the user entered it:

• A mapping mode other than MM_ TEXT is already in use, so the ink will have to be
scaled anyway. This will produce differences.

• The use of a square brush in RedisplayPenData as opposed to the round one used by
GDI and DrawPenData may cause distortion in the display, especially if the ink is
wide.

Programmer's Reference

52 Chapter 4 Managing Ink in Pen Applications

• The ink was originally intended for delayed recognition, and the overhead necessary to
do this and render the ink properly is insufficient.

If none of these factors is present, use RedisplayPenData.

Allow for Resizable Ink Objects
It is likely that an ink object is going to be resizable, and this will probably involve scaling
the ink within the rectangle. You can best implement this functionality by using the lprect
argument of the DrawPenData function or the lpExt argument of the RedisplayPenData
function to scale the ink into the window's DC at display time. Scaling this ink at display
time preserves recognition accuracy.

You can physically alter the points in pen data to achieve the same effect, using
MetricScalePenData. However, this will affect accuracy by altering the data points.

Compressing Ink Objects
Another key issue to consider for the ink object is how the ink will be compressed before it
is stored.

In general, you should use the maximum amount of compression possible, consistent with
the intended use of the ink. If the ink is to be submitted for delayed recognition, you must
use one of the compression methods that is completely reversible or otherwise not
destructive of the ink data. If the ink is to be scaled and redrawn smoothly, then you need
to ensure adequate resolution for the stored data to facilitate rendering at any size.

For example, if the ink data is compressed to display resolution, it will not scale bigger
than its first size without loss of fidelity. If however, the ink is left at tablet resolution, it
will scale much more smoothly because digitizers have a much higher resolution than
display devices.

Saving the Ink to a File
Saving the ink to a file is a trivial matter, because the HPENDATA structure is flat. The
application should first use GlobaISize to determine the size of the HPENDA T A block.
Then the application should call GlobaILock to lock the pen data handle and then store
the data. Later, a memory block sufficiently large to store the data can be allocated from
the global heap with GlobaIAIIoc, and the data can be read back in to the block. When the
new block of data is unlocked, a valid HPENDA T A will result.

Microsoft Windows for Pen Computing

Chapter 5

A Sample Pen Application

This chapter explains how to write a simple pen application. The source code for this
sample program is in the \PENSDK\SAMPLES\sREC directory. The PENAPP. * files
make up the sample application. This directory also contains the files (SREC. *) for a
sample recognizer. For a complete description of this recognizer dynamic-link library, see
Chapter 7, "Replaceable Components: Recognizers and Dictionaries."

This chapter assumes that you are familiar with the architecture of the Pen Extensions and
the basics of Windows programming. An overview of the architecture is discussed in
Chapter 2, "The Architecture of the Pen Extensions."

Overview of the PENAPP Application
The PENAPP application is a standard pen application. It has the familiar Windows look:
a main window, a border, an application menu, and Minimize and Maximize buttons. It
also ha's three child windows: Input, Info, and Raw Data.

In operation, the PENAPP application accepts pen input through the Input child window.
Depending on the menu option, PENAPP sends the input to the system recognizer, the
shape recognizer, or the sample custom recognizer (SREC).

The output from the recognizers is displayed through the Raw Data and Info child
windows. The Raw Data child window redisplays the raw input data. The Info child
window displays one of three things:

• If the selected recognizer is the system recognizer, the Info child window displays the
recognized ANSI text.

• If the selected recognizer is the sample custom recognizer, the Info child window
displays an arrow indicating the compass direction of the input stroke (up, down, left,
or right). If there is no direction-that is, the pen is resting in contact with the tablet
surface-the Info window displays a single dot.

• If the selected recognizer is the shape recognizer, the Info window displays a clean
image of the shape. Recognized shapes are rectangles, ellipses, or lines.

The beginning of writing is signaled by a WM_LBUTTONDOWN message. The
IsPenEvent function is called to confirm that this is a pen rather than a mouse event. Upon
receiving this message, the program initializes the recognition context with a call to
InitRC. In this application, the rc.rglpdf[O] field of the RC structure is set to NULL to
disable dictionary processing.

After the recognizer has recognized pen input, the window procedure receives the
WM_RCRESULT message. The wParam parameter of the message indicates the cause of
the end of recognition (the REC_ code). The application tests to see if wParam is less than
zero, indicating an error condition-for example, buffer overflow. If the pen input is

Programmer's Reference

54 Chapter 5 A Sample Pen Application

successfully recognized, the symbol value returned by the recognizer is copied to the
PENAPP.C syvGlobal variable. In the default recognizer condition, the symbol value is
also converted to an ANSI character.

The raw data is then copied with a call to the CopyRawData function. All of the window
rectangles are invalidated and redrawn on the WM_P AINT message.

WinMain and Initialization Functions.
The PENAPP application uses WinMain and three initialization functions: FlnitApp,
Flnitlnstance, and FLoadRec. To an experienced Windows programmer, the WinMain
and initialization functions will look very familiar.

WinMain
The WinMain function is the entry point for a pen application, just as it is for any
Windows application. In fact, the PENAPP WinMain function looks virtually identical to
a regular Windows function, with just a few additions.

In a pen application, WinMain does the following:

• Declares an extern HANDLE for the recognizer, calls the initialization functions that
register window classes, creates windows, and performs any other necessary
initializations.

• Enters a message loop to process messages from the application queue.

• Stops the application when the message loop retrieves a WM_DESTROY message in
Main WndProc. This termination includes unloading the recognizer with a call to the
U ninstallRecognizer function.

int PASCAL WinMain(HANDLE hInstance. HANDLE hPrevlnstance.
LPSTR lpszCommandLine. int cmdShow)

MSG msg;

extern HANDLE hrecCur;

lpszCommandLine; II to prevent CS 5.1 compiler warning messages

if (!hPrevInstance)
{

if (!FInitApp(hInstance»
{

return 1;

if (FInitInstance(hInstance. hPrevInstance. cmdShow»
{

Microsoft Windows for Pen Computing

WinMain and Initialization Functions 55

while (GetMessage«LPMSG)&msg.NULL.0.0)
{

else

TranslateMessage«LPMSG)&msg);
DispatchMessage«LPMSG)&msg);
}

msg.wParam = 0;

return msg.wParam;
}

FlnitApp
The FlnitApp function is executed only once. It initializes the application data and
registers the window classes. Following standard Windows practice, the function returns
FALSE if it cannot register the window classes. Otherwise, FlnitApp returns TRUE. The
PENAPP child window classes are also registered in this function.

FlnitApp has a pen-specific element. The cursor type, IDC_PEN, is the default cursor
type required for a pen driver. The various pen cursors all begin with IDC_. For more
information on them, see Chapter 9, "Pen Messages and Constants."

BOOL FAR PASCAL FInitApp(HANDLE hInstance)
{

WNDCLASS we;
HCURSOR heursor;

hcursor = LoadCursor(NULL. IDC_ARROW);

1* Register Pen App window class *1

wc.hCursor = hcursor;
wc.hIcon = LoadIcon(hInstanee.MAKEINTRESOURCE(iconPenApp));
wc.lpszMenuName = MAKEINTRESOURCE(menuPenApp);
we.lpszClassName = (LPSTR)szPenAppClass ;
wc.hbrBaekground = (HBRUSH)COLOR_APPWORKSPACE+l;
wc.hInstance = hInstanee;
wc.style = CS_VREDRAW I CS_HREDRAW
wc.lpfnWndProe = MainWndProc;
wc.cbClsExtra 0;
we.cbWndExtra = 0;

if (!RegisterClass«LPWNDCLASS) &we))
return FALSE;

Programmer's Reference

56 Chapter 5 A Sample Pen Application

/* Register Pen App child window classes */

wc.hCursor = LoadCursor(NULL, IDC_PEN);
wc.hIcon = NULL;
wc.lpszMenuName = NULL;
wc.lpszClassName = (LPSTR)szPenAppInputClass;
wc.hbrBackground = (HBRUSH)COLOR_WINDOW+l;
wc.style = CS_VREDRAW I CS_HREDRAW I CS_SAVEBITS;
wc.lpfnWndProc = InputWndProc;
if (!RegisterClass«LPWNDCLASS) &wc»

return FALSE;
wc.hCursor = hcursor;
wc.lpszClassName = (LPSTR)szPenAppInfoClass;
wc.lpfnWndProc = InfoWndProc;
if (!RegisterClass«LPWNDCLASS) &wc»

return FALSE;
wc.lpszClassName = (LPSTR)szPenAppRawClass;
wc.lpfnWndProc = RawWndProc;
if (!RegisterClass«LPWNDCLASS) &wc»

return FALSE;

Flnitlnstance
The FlnitInstance function initializes all data structures for the program instance and
creates the necessary windows.

FlnitInstance looks like a standard Windows initialization function except that, after the
windows are created, the function calls another initialization function, FLoadRec. This
initialization function is required to install the sample recognizer used for handwriting
recognition.

The default system recognizer is already installed. In fact, the procedure of loading
recognizers is necessary only for custom recognizers; it is never required for the system
recognizer.

BOOL FAR PASCAL FInitInstance(HANDLE hInstance, HANDLE hPrevInstance,
int cmdShow)

i nt cxScreen
i nt cyScreen
RECTrect;

extern HWND
extern HWND
extern HWND
extern HWND

Microsoft Windows for Pen Computing

GetSystemMetrics(SM_CXSCREEN);
GetSystemMetrics(SM_CYSCREEN);

hwndMain;
hwndInput;
hwndRaw;
hwndInfo;

WinMain and Initialization Functions 57

hPrevInstance; II to prevent CS 5.1 compiler warning message

1* Create Main window *1

hwndMain = CreateWindow«LPSTR)szPenAppClass.
(LPSTR)szPenAppWnd.
WS_CLIPCHILDREN I WS_OVERLAPPEDWINDOW.
0. 0. cxScreen. cyScreen.
(HWND)NULL.
(HWND)NULL.
(HANDLE)hInstance.
(LPSTR)NULL
) ;

if (!hwndMain)
{

return FALSE;

1* Create Input window *1

GetClientRect(hwndMain. &rect);

hwndInput = CreateWindow«LPSTR)szPenAppInputClass.
(LPSTR)szInputWnd.
WS_CHILD I WS_BORDER I WS_CAPTION I WS_VISIBLE I WS_CLIPSIBLINGS.
XInputWnd(rect.right). YInputWnd(0). DxInputWnd(rect.right).

DyInputWnd(rect.bottom).
hwndMain.
nchildInput.
(HANDLE)hInstance.
(LPSTR)NULL
) ;

if (!hwndInput)
{

return FALSE;

1* Create Raw Data window *1

hwndRaw = CreateWindow«LPSTR)szPenAppRawClass.
(LPSTR) szRawWnd. .
WS_CHILD I WS_BORDER I WS_CAPTION WS_VISIBLE I WS_CLIPSIBLINGS.
XRawWnd(0). YRawWnd(rect.bottom).

Programmer's Reference

58 Chapter 5 A Sample Pen Application

DxRawWnd(rect.right). DyRawWnd(rect.bottom).
hwndMain.
nchildInfo.
(HANDLE)hInstance.
(LPSTR)NULL
) ;

if (! hwndRaw)
{

return. FALSE;
}

/* Create Info window */

hwndInfo = CreateWindow«LPSTR)szPenAppInfoClass.
(LPSTR)szInfoWnd.
WS_CHILD I WS_BORDER I WS_CAPTION I WS_VISIBLE I WS_CLIPSIBLINGS.
XInfoWnd(0). YInfoWnd(0).
DxInfoWnd(rect.right). DyInfoWnd(rect.bottom).
hwndMain.
nchil dRaw.
(HANDLE)hlnstance.
(LPSTR)NULL
) ;

if (!hwndlnfo)
{

return FALSE;

ShowWindow(hwndMain. cmdShow);
UpdateWindow(hwndMain);

return FLoadRec(); /*Load the recognizer */
}

FLoadRec
The FLoadRec function uses the InstallRecognizer function to install a recognizer. The
recognizer to be loaded is determined by the value of the application global flag,
miRecMode. If miRecMode == miSample, this function installs the sample custom
recognizer. If an application performs an explicit load on a default recognizer (as the
following sample does), the application must also explicitly unload it. If an application is
only going to use the system recognizer, there is no need to install it.

BOOL NEAR PASCAL FLoadRec(VOID)
{

Microsoft Windows for Pen Computing

WinMain and Initialization Functions 59

LPSTR lpRecogName;
HCURSOR hsave;

extern HWND hwndMain;
extern HREC hrecCur;
extern i nt mi RecMode;

1* hrecCur == NULL only at start of program *1

if (hrecCur !- NULL)
{

UninstallRecognizer(hrecCur);I* Unload any current recognizer *1
}

1* Install appropriate recognition DLL *1

switch(miRecMode)
{

case miSample:
lpRecogName
break:

case miShape:
lpRecogName
break;

1* load sample recognizer */
(LPSTR)szSampleRec:

1* load shape recognizer *1
(LPSTR)szShapeRec:

default: 1* load system recognizer */
lpRecogName NULL;
hrecCur = NULL:
return TRUE: 1* Don't need to load the Default recognizer *1
break:

hsave = SetCursor(LoadCursor(NULL, IDC_WAIT»:
hrecCur = InstallRecognizer(lpRecogName);
SetCursor(hsave);

if (!hrecCur)
{

MessageBox(hwndMai n, "Coul d not install recogni zer", szPenAppWnd, MB_OK);
return FALSE;

return TRUE;
}

Programmer's Reference

60 Chapter 5 A Sample Pen Application

Data Handling and Display Functions
The CopyRawData, DrawArrow, and DrawRawData functions copy the raw data points,
draw the arrow based on the symbol value returned by the custom recognizer, and draw the
raw data in the Info child window, respectively.

The CopyRawData function saves a buffer of raw data points using an HPENDATA
structure. A message box warns that DuplicatePenData is unable to allocate enough
memory.

The Draw Arrow function uses the value of the syvGlobal variable to determine which
arrow to draw. The syvGlobal value is compared with the recognizer-specific symbols
for example, syvEast-defined in SREC.H.

The DrawRawData function draws the picture form of the input as taken by the
recognizer. It uses the GetPenDataStrokes function to reconstruct the input.

The DrawShape function uses the value of the syvGlobal variable to determine which
shape to draw. The syvGlobal value is compared with the recognizer-specific symbols (for
example, SYV _SHAPEELLIPSE) defined in PENWIN.H.

The SetGraph Window function responds to a request to change the recognizers. It sets
the graph window, installs or reinstalls recognizers, and changes the menu setting,
according to the mi value. The SetGraph Window function uses the FLoadRec function to
install a recognizer.

MainWndProc
The MainWndProc function is the Windows procedure for the PENAPP application
parent window. This is a standard Windows procedure.

lONG FAR PASCAL MainWndProc(HWND hwnd, unsigned message,
WORD wParam, lONG lParam)

lONGl Ret= 0l;

extern HPENDATA hpendata;
extern Baal fSaveData;
RC rc;
Baal (FAR PASCAL *lpfnConfig) (WORD, WORD, lONG);

switch (message)
{

case WM_COMMAND:
swi tch (wPa ram)

{

case miExit:
DestroyWindow(hwndMain);
break;

Microsoft Windows for Pen Computing

case miSample:
case miShape:
case miSystem:

SetGraphWindow(wParam):
break:

case miSaveData:
{

HMENU hmenu = GetMenu(hwnd):

CheckMenultem(hmenu, miSaveData,

MainWndProc 61

(fSaveData = !fSaveData) ? MF_CHECKED MF_UNCHECKED):
b rea k:
}

default:
break:

break:

int x:
int y:
int DX;
int dy:

x = XlnputWnd(LOWORD(lParam»:
y = YlnputWnd(0):
dx = DxlnputWnd(LOWORD(lParam»:
dy = DylnputWnd(HIWORD(lParam»:
MoveWindow(hwndlnput, x, y, dx, dy, TRUE):

x = XRawWnd(0):
y = YRawWnd(HIWORD(lParam»:
dx = DxRawWnd(LOWORD(lParam»:
dy = DyRawWnd(HIWORD(lParam»:
MoveWindow(hwndRaw, x, y, dx, dy, TRUE):

x = XlnfoWnd(0):
y = YlnfoWnd(0):
dx = DxlnfoWnd(LOWORD(lParam»:
dy = DylnfoWnd(HIWORD(lParam»:
MoveWindow(hwndlnfo, x, y, dx, dy, TRUE):
break:
}

Programmer's Reference

62 Chapter 5 A Sample Pen Application

case WM_DESTROY:

/*

*/

if (hpendata)
DestroyPenData(hpendata);

if (hrecCur) /* Unload current recognizer */
UninstallRecognizer(hrecCur);

PostOuitMessage(0);
break;

There is no reason to pass the WM_GLOBALRCCHANGE on to the Sample
Recognizer, because it is a private recognizer and this application
knows that the sample recognizer will not process the message.

case WM_GLOBALRCCHANGE:
GetGlobalRC ((LPRC)&rc, (LPSTR)NULL, (LPSTR)NULL, NULL);
if (hrecCur 1= NULL && (lpfnConfig = GetProcAddress(hrecCur,

"Confi gRecogni zer"» 1= NULL)
lRet = (*lpfnConfig) (WCR_RCCHANGE, 0, (LONG) (LPRC) &rc);

break:

default :
lRet = DefWindowProc(hwnd, message, wParam, lParam);
break;

return lRet;

InputWndProc
The work of a typical Pen application is illustrated in the InputWndProc function. This is
the Windows procedure for the Input child window. You can use InputWndProc as a
template for a typical pen-enhanced Windows procedure.

LONG FAR PASCAL InputWndProc(HWND hwnd, unsigned message,
WORD wParam, LONG lParam)

LONGl Ret= 0L;
RC rc;

extern HANDLE hrecCur:
extern int miRecMode;
extern HWND hwndlnput:
extern HWND hwndRaw;
extern HWND hwndlnfo;

Microsoft Windows for Pen Computing

extern char szResul t[cchMax];
extern SYV syvGl obal ;

switch (message)
{

case WM_LBUTTONDOWN:

InputWndProc 63

1* Two possibilities: user is using the mouse or the pen.
If it is the pen, the user is starting to write.
Initialize recognition context for recognizer *1

if (IsPenEvent(message, GetMessageExtraInfo(»)
(

InitRC(hwndInput, &rc);

rc.rglpdf[0] = NULL; 1* No dictionary search *1
rc.1RcOptions 1= fSaveData ? RCO SAVEALLDATA 0;

if (miRecMode != miSystem)
{

rc.hrec = hrecCur;
}

if(miRecMode == miSample)
(

rC.1Pcm 1= PCM_PENUP; 1* Set this flag for single strokes *1

else
rC.1Pcm 1= PCM_TIMEOUT;

if (Recognize(&rc) == REC_BUSY)
MessageBox(hwndMain, "Recognizer is busy", szPenAppWnd,

MB_OKIMB_ICONEXCLAMATION);
}

break;

case WM_RCRESULT:
{

LPRECT 1 prect;

1* The recognizer has recognized input and piped it through
lParam (as an LPRCRESULT).

The sample recognizer returns a symbol graph containing codes
indicating the general direction the input stroke is written,
according to the four compass directions.

The shape recognizer returns a symbol graph indicating

Programmer's Reference

64 Chapter 5 A Sample Pen Application

the geometric shape of the input (line, rectangle, or
ellipse).

The standard recognizer returns the recognized string. *1

LPRCRESULTlprcresult = (LPRCRESULT)lParam;

lprect = &(lprcresult->rectBoundInk);
if «int)wParam < 0)

{

syvGlobal = SYV_NULL;
*szResult = NULL;
lprect NULL; II set to null to invalidate entire

II input window, because of possible overflow

else if «lprcresult->cSyv 1= 0) && l(lprcresult->wResultsType &
RCRT_NOTHINGRECOG»

{

switch (miRecMode)
(

case miSample:
syvGlobal = *(lprcresult->lpsyv);
break;

case miShape:

1* Copy symbol value *1

syvGlobal = *(lprcresult->lpsyv); 1* Copy symbol value *1
shapeRect = *(LPRECT)(lprcresult->syg.rgpntHotSpots);
wLineStyle = (WORD)(lprcresult->syg.1RecogVal);
break;

default:
*szResult = NULL;
1* Set syvGlobal simply to pass test condition in InfoWndProc *1
syvGlobal = *(lprcresult->lpsyv);
SymbolToCharacter(lprcresult->lpsyv, cchMax, szResult, NULL);
break;

CopyRawData(lprcresult);
}

elsell Nothing Recognized
(

syvGlobal = SYV_NULL;
CopyRawData(lprcresult);
}

InvalidateRect(hwndInfo, NULL, TRUE);
InvalidateRect(hwndInput, lprect, TRUE);
InvalidateRect(hwndRaw, NULL, TRUE);
break;
}

Microsoft Windows for Pen Computing

InfoWndProc and RawWndProc 65

case WM_SYSCOMMAND:
switch (wParam & 0xFFF0)

{

case SC_MOVE:
break;

default :

II Don't allow window to be moved

DefWindowProc(hwnd, message, wParam, lParam);
break;

break;

case WM_PAlNT:
{

HDC hdc;
PAl NTSTRUCT ps;

hdc = BeginPaint(hwnd, &ps);
EndPaint(hwnd, &ps);
break;
}

default :
lRet = DefWindowProc(hwnd, message, wParam, lParam);
break;

return lRet;

InfoWndProc and RawWndProc
InfoWndProc is the Windows procedure for the Info child window. The only pen-specific
feature of this function is the code that determines the appropriate drawing technique to
use, based on the recognizer in use. If the sample recognizer is used, InfoWndProc calls
the Draw Arrow function. If the default recognizer is used, a simple TextOut call is used.

Likewise, the RawWndProc is a normal Windows procedure for the Raw Data child
window using no special pen-specific features.

Programmer's Reference

Chapter 6

Using Pen Controls and the ProcessWriting
Function

There are two techniques you can use for pen programming in addition to those described
in Chapter 5, "A Sample Pen Application." The first technique replaces regular edit
controls with pen-aware controls that recognize handwriting. The second technique uses
the ProcessWriting function to process many of the details involved in recognizing
handwritten input.

This chapter describes the structures of two simple pen programs that make use of these
two techniques.

Using the Hedit (Handwriting) Pen Control
The PENAPP program described in Chapter 5 uses a child window as the means of
accepting handwritten input. An alternative means of input is to use a handwriting edit, or
hedit (pronounced "h-edit"), control.

The hedit control is a complete replacement for the default Windows 3.1 edit control. The
hedit control supports the handwritten input of characters and gestures, and it retains the
standard edit control keyboard and mouse interface. An application can use an hedit
control anywhere a regular edit control will work. An hedit control can also be used in
dialog boxes.

A boxed edit, or bedit (pronounced "b-edit"), control is another type of handwriting
control that provides letter guides for input. Bedit controls are discussed later in this
chapter.

You create the hedit control with a call to CreateWindow using the hedit class. All of the
regular edit control styles-for example, ES_LEFT and ES_PASSWORD-are supported.

The PENAPP application has to install the custom recognizer and handle the details of the
recognition process. If you use the hedit control, these details are handled automatically.

The sample program in the file C:\PENSDK\SAMPLES\HFORM, included with Microsoft
Windows for Pen Computing, shows how the hedit control can be used to build a pen
enhanced application. If you are unfamiliar with controls in general, consult your
Windows programming documentation.

The HFORM sample program has several edit fields that are typical of a generic form
application-name, address, city, and so on. The application registers itself as a pen-aware
application so that the edit controls are replaced by hedit controls.

This application will run under MS Windows, version 3.0. When running under version
3.0, the edit control functionality is present. The boxed edit field and the picture field,
however, are replaced by normal edit controls.

Programmer's Reference

68 Chapter 6 Using Pen Controls and the ProcessWriting Function

WinMain
The PENAPP.C sample program described in Chapter 5 focuses on some techniques for
adding pen capabilities to a standard Windows program. For example, the WinMain,
FlnitInstance, and Hform WndProc functions contain little pen-specific code. This

Microsoft Windows for Pen Computing

Using the Hedit (Handwriting) Pen Control 69

section will focus on the unique hedit features of HFORM.C. This chapter contains only
the relevant sections of the code. For the complete program, refer to the sample code for
HFORM.C.

WinMain uses the RegisterPenApp function to register the application to use hedit
controls instead of edit controls. The RegisterPenApp function makes it possible to
replace all edit controls in an application with hedits. This simplifies the task of making an
application pen-aware and making that same application run under both Windows for Pen
Computing and normal Windows.

To register itself as a pen-aware application, a program should use RegisterPenApp. The
RegisterPenApp function should be called before any edit controls have been created. An
application should unregister itself just before termination, using this same function.

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCommandLine, int cmdShow)

MSG msg;
VOID (FAR PASCAL *RegisterPenApp)(WORD, BOOL) = NULL;

lpszCommandLine; II to prevent CS5.1 warning message
if (!hPrevInstance)

{

if (!FInitApp(hInstance»
{

return 1;

II If running on a Pen Windows system, register this application so all
II EDIT controls in dialogs are replaced by HEDIT controls.
/! (Notice the CONTROL statement in the RC file is "EDIT",
II RegisterPenApp will automatically change that control to
II an HEDIT.)

if «hPenWin = GetSystemMetrics(SM_PENWINDOWS» != NULL)
{

II We do this fancy GetProcAddress simply because we don't
II know if we're running Pen Windows.
if ((RegisterPenApp = GetProcAddress(hPenWin, "RegisterPenApp"»!= NULL)

(*RegisterPenApp)(RPA_DEFAULT, TRUE);
SetAppRecogHook = GetProcAddress(hPenWin, "SetRecogHook");
}

if (FlnitInstance(hInstance, hPrevlnstance, cmdShow»
(

while (GetMessage«LPMSG)&msg,NULL,0,0))
{

Programmer's Reference

70 Chapter 6 Using Pen Controls and the ProcessWriting Function

else

II Check for menu accelerator message
if (!TranslateAccelerator(hwndMain. hAccel. &msg»

(

TranslateMessage«LPMSG)&msg);
DispatchMessage«LPMSG)&msg);
}

msg.wParam = 0;

II Unregister this app
if (RegisterPenApp != NULL)

'(*Regi s terPenApp) (RPA_DEFAU LT. FALS E) ;

return msg.wParam;
}

Initialization Functions
The FlnitApp function initializes the application data and registers the window class. It is
called only once, at the beginning of the program. It returns TRUE if successful.

The Flnitlnstance function initializes all data structures for the program instance and
creates the necessary windows. A hook is set so that the application can trap recognition
results before the hedit control receives them. The following code sets the hook:

if (hPenWin && SetAppRecogHook)
{

II Set a hook so our app window can get recognition results
II _before the HEDIT control does. We do this for an
II accelerator gesture.
if(!(fHookIsSet = (*SetAppRecogHook)(HWR_APPWIDE. HKP_SETHOOK.

hwndMa in»)

MessageBox(NULL. szHookErr. szHformWnd. MB_ICONSTOPIMB_OK);
DestroyWindow(hwndMain);
hwndMain = NULL;
}

The Flnitlnstance function also checks to see if the application is running under Windows
for Pen Computing. If not, the delayed recognition is disabled. The code for this is the
following:

if (hwndMain != NULL && IhPenWin)
EnableMenuItem(GetMenu(hwndMain). miDelayRecog. MF_GRAYEDIMF_BYCOMMAND);

Microsoft Windows for Pen Computing

Using the Hedit (Handwriting) Pen Control 71

HformWndProc
The HformWndProc function is the Windows procedure for the HFORM parent window.
There are two particular things to note concerning the Pen extensions.

The miDelayRecog case highlights the use of the HE_ constants and the technique used to
place the control in a delayed recognition mode. The program code for this case is the
following:

case miDelayRecog:
fDelayRecog = !fDelayRecog;
ModifyMenu (GetMenu(hwndMain). miDelayRecog. MF_BYCOMMANDIMF_STRING.

miDelayRecog. (LPSTR)(fDelayRecog ? szRecog : szDelay»;

SetFocus(rgfield[0].hwnd);
for (i = 0; i < cFieldsMax; i++)

{

if (rgfield[i].hwnd != NULL && rgfield[i].wFieldType==FIELDPIC)
{

if (fDelayRecog)
II Place control in delayed recognition mode
SendMessage(rgfield[i].hwnd. WM_HEDITCTL. HE SETINKMODE •

(LONG)0L);
else

II Send message to HEDIT to recognize data
SendMessage(rgfield[i].hwnd. WM_HEDITCTL. HE STOPINKMODE .

(LONG)HEP_RECOG);

break;

HformWndProc also highlights the use of the WM_HOOKRCRESULT message to get
recognition results and implement an accelerator gesture. The code for this is the
following:

case WM_HOOKRCRESULT:
{

II getting recognition results

LPRCRESULT lpr = (LPRCRESULT)lParam;
SYV syv;

if«lpr->wResultsType&RCRT_GESTURE) &&
(lpr->wResultsType&RCRT_ALREADYPROCESSED)==0)

syv = *(lpr->lpsyv);

II This is an example of an accelerator gesture. The
II user writes a circle with a 'D' (or 'd') inside.

Programmer's Reference

72 Chapter 6 Using Pen Controls and the ProcessWriting Function

II and we look for this gesture.

II However, if the user through the gesture mapper has mapped
II circle d to something else, then we don't need to do anything here.

if(syv == SyvAppGestureFromLoAnsi('d')

brea k;

II syv == SyvAppGestureFromUpAnsi('D'»
{

PostMessage(hwnd, WM_COMMAND, miSampleDlg, 0L);

II Let target window know result has already been acted upon
lpr->wResultsType 1= RCRT_ALREADYPROCESSED;

1 Ret = 1 L;
}

FCreateForm
The FCreateForm function creates the hedit controls. The function returns TRUE if
successful, FALSE if the hedit window cannot be created.

BOOL NEAR PASCAL FCreateForm(HWND hwndParent)
{

i nt i ;
RC rcin;
LONG IT GetDialogBaseUnits();
int cx LOWORD(lT)/2;
int cy HIWORD(lT)/2;
RECTOFS rectofs;

for (i = 0; i < cFieldsMax; i++)
{

PFIELD pfield = &rgfield[i];
DWORD dwStyle = WS_VISIBLE 1 WS CHILD 1 (hPenWin ? 0L WS_BORDER) 1

pfield->dwEditStyle;

switch (pfield->wFieldType)
{

case FIELDPIC:
case FIELDEDIT:

1* Create Hedit window. *1
1* If running on a Pen system, this app will have

been registered, so all EDIT controls will be changed to
HEDIT controls *1

Microsoft Windows for Pen Computing

Using the Hedit (Handwriting) Pen Control 73

pfield->hwnd = CreateWindow(
(LPSTR)"edit",
(LPSTR)NULL,
dwStyle,
pfield->xEdit,
pfield->yEdit,
pfield->cxEdit,
pfield->cyEdit,
hwndParent,
(HMENU)NULL,
GetWindowWord(hwndParent, GWW_HINSTANCE),
(LPSTR)NULL) ;

break;

case FIELDBEDIT: II Comb field
pfield->hwnd = CreateWindow(

(LPSTR)(hPenWin ? "bedit" "edit"),
(LPSTR)NULL,
dwStyle,
pfield->xEdit,
pfield->yEdit,
pfield->cxEdit,
pfield->cyEdit,
hwndParent,
(HMENU)NULL,
GetWindowWord(hwndParent, GWW_HINSTANCE),
(LPSTR) NULL);

break;

if (!pfield->hwnd)
{

continue;
}

The loop first loads the PFIELD structure with the appropriate window arguments. These
values are defined in the static FIELD rgfield array, where one pen-specific feature is
used. The ALC_ values signify the enabled alphabet to be used by the recognizer. The
ALC_ values are described in more detail in Chapter 11, "Pen Messages and Constants."
The values have the following meanings.

ALe value Meaning

ALC_DEFAULT Recognize default alphabet

ALC_GESTURE

ALC_NUMERIC

Recognize gestures

Recognize numeric values

Programmer's Reference

74 Chapter 6 Using Pen Controls and the ProcessWriting Function

Note that the ZIP field is specified as (ALC_NUMERIC I ALC_GESTURE), indicating
that the recognizer should use the numeric values and gestures only. The recognizer will
not need to distinguish carefully between lowercase "0," uppercase "0," and zero. All of
these will be recognized as the numeric value of zero.

A switch statement is used to fill the various types of edit windows (hedit or boxed hedit).
Boxed handwriting edit controls are explained in more detail later in this chapter.

Once the structure is filled, the hedit controls are created with a call to the Windows
Create Window function.

The next step in creating the hedit controls is to set the Recognition Context (RC)
preferences for each control. This step is optional.

1* Set RC preferences for this edit control *1

if (hPenWin)
{

if (SendMessage(pfield-)hwnd. WM_HEDITCTL. HE_GETRC. (LONG)«LPRC)&rcin)))
{

rcin.alc = pfield-)alc;
SendMessage(pfield-)hwnd. WM_HEDITCTL. HE_SETRC. (LONG)«LPRC)&rcin));
}

The Windows SendMessage function uses the new hedit control message
WM_HEDITCTL with the HE_SETRC wParam value to set the RC preferences. The
appropriate alphabet has been set by the preceding assignment statement. You can also set
other RC preferences, such as ink color, at this time.

After the RC preferences are set, the default inflation rectangle offset is set so that it is
one-half the base dialog unit for each respective axis. The HE_SETINFLATE wParam
value specifies the adjustments to the client rectangle of the hedit window. If the control is
not multiline, set the underline to on.

1* Change default inflation rectangle offset so it is
half the base dialog unit for each respective axis. *1

rectofs.dLeft = -cx;
rectofs.dTop = -cy;
rectofs.dRight = ex;
rectofs.dBottom = cy;
SendMessage(pfield-)hwnd. WM_HEDITCTL. HE_SETINFLATE.

(LONG)«LPRECTOFS)&rectofs));

II If no border. put under line in.
if «pfield-)dwEditStyle & ES_MULTILINE) == 0 &&

pfield-)wFieldType==FIELDEDIT)
SendMessage(pfield-)hwnd. WM_HEDITCTL. HE_SETUNDERLINE. (LONG)(!));

Microsoft Windows for Pen Computing

Using the Bedit (Boxed Handwriting Edit) Control 75

Dialog Box Functions
The SampleDialog, SampleDlgProc, ProcessFieldChange, and IFromHwnd functions
are used to process the dialog box information for the sample application.

The SampleDialog function opens a sample dialog box containing an edit (not an hedit)
control. If the HFORM program is running under MS Windows for Pen Computing, then
RegisterPenApp has been called previously. Because of this, the edit control will act like
an hedit.

The ProcessFieldChange function contains the code to process cold recognition. Send an
HE.;...GETINKHANDLE message to the control. If the LOWORD of the return code is
NULL, the control is not in cold recognition mode, and the focus can be set. If it is in cold
recognition mode, skip over it and check the next field.The iCounl variable is used to
break the loop if all fields are in cold mode.

iCount=0;
while (iCount<cFieldsMax && !wRet)

{

if (!LOWORD(SendMessage(rgfield[i].hwnd, WM_HEDITCTL, HE_GETINKHANDLE,
(LONG)(LPSTR)&lInkData»)

hwndFocusField = rgfield[i].hwnd;
SetFocus(hwndFocusField);
wRet = TRUE;
}

else
i = (i+inc) %(cFieldsMax);

iCount++;
II Calculate the next field

}

Using the Bedit (Boxed Handwriting Edit) Control
The bedit (boxed edit) control is a special edit control that permits boxed display of text.
The main advantages of a bedit control are improved recognition accuracy and the fact
that the handwritten text goes where it is written.

A bedit control uses many of the same concepts that edit and hedit controls use-for
example, selection, scrolling, and special keystroke assignments. Programming an
interface for a boxed edit control is also similar to that for edit and hedit controls in the
areas of control messages, notifications, and control styles.

Text in a bedit control is considered a single stream of text that is arranged in rows of cells
for convenience. Text will always wrap around the rows without line breaks at word
boundaries or returns.

You set the layout of a bedit control with the BOXLA YOUT and GUIDE structures
contained within the RC structure. To set the BOXLA YOUT and RC structures, use the
HE_SETBOXLA YOUT and HE_SETRC subfunctions of the WM_HEDITCTL message.

Programmer's Reference

76 Chapter 6 Using Pen Controls and the ProcessWriting Function

The structures are explained in detail in Chapter 10, "Pen Structures," and the message is
described in Chapter 11, "Pen Messages and Constants."

By simply creating a window of class "bedit," you can create a boxed edit control with the
default layout. For more information about the default dimensions of a boxed edit control,
see the entry for BXD_ values in Chapter 11.

Selecting Text
In bedit controls, there is no distinction between caret and selection. A single cell selection
functions as a caret. Selection is displayed with a thick line under the selected cell. Boxed
edit controls support selection gestures and keyboard selection methods.

The last selectable cell is one cell past the last non-empty cell in a boxed edit. The last
selectable cell is also limited by the upper limit on the number of cells in the control,
which is set by the EM_LIMITTEXT message or the size of a nonscrollable boxed edit.

Word Wrap
Bedit controls do not support word wrap. The EM_SETWORDBREAK message has no
effect on a boxed edit control.

Scrolling
The bedit control supports only vertical scrolling. It responds to EM_LINES CROLL
messages. It also supports WS_ VSCROLL and ES_AUTOSCROLL window styles.

Control Notifications
In addition to new HN_ * notification messages, a bedit window's parent will receive the
same notification messages (EN_ *) as the parent of an edit window. The parent window
receives a WM_COMMAND message. The wParam parameter contains the control ID.
The IParam parameter contains the edit window handle in its low-order word and the
message ID in the high-order word.

The HN_ notification messages are listed in Chapter 11, "Pen Messages and Constants."
Both hedit and bedit controls use these messages.

Control Messages and Styles
Any control message (EM_ *) that can be sent to an edit control can also be sent to a bedit
window with these exceptions: EM_FMTLINES, EM_SETREADONL Y,
EM_SETTABSTOPS, and EM_SETWORDBREAK. In addition, a single new message,
WM_HEDITCTL, has been added:

lRet = SendMessage(hwndEdit. WM_HEDITCTL. HE_xxx. lParam);

The wParam parameter indexes the message function, and IParam specifies values
peculiar to the HE_ * messages. For more information about the HE_ wParam and the
corresponding IParam values, see the entry for the WM_HEDITCTL messages in Chapter
11, "Pen Messages and Constants." Both hedit and bedit controls share many of these
messages.

Microsoft Windows for Pen Computing

Using the ProcessWriting Function 77

A bedit control supports all edit control styles with the exception of ES_AUTOHSCROLL,
ES_CENTER, ES_LEFT, ES_RIGHT, and ES_READONL Y.

Using Bedit Controls in Dialog Boxes
A bedif control can be used in a dialog box in the same way as any other control, such as
an edit or hedit control, except in the following cases. '

If a FONT statement is present in the dialog template and the font listed in the statement is
not available at the time the dialog is created, Windows picks another font and scales the
dialog and the controls within it appropriately. Since the default dimensions of the bedit
cell are based only on the system font, this scaling of the bedit control can cause the
number of cells in the control to change slightly.

Applications that must have a specific number of cells in a bedit control can use one of the
following techniques:

• Remove the FONT statement from the dialog template that would otherwise cause the
dialog to use the system font.

• Select a font that is always likely to be available. The configuration of your Windows
system determines which fonts are available.

• Resize the bedit control during the processing of the WM_INITDIALOG message to
contain the required number of cells. You can resize a control with the MoveWindow
or SetWindowPos Windows function. The default dimensions of bedit cells are
specified by various BXD _ constants.

• Resize the dimensions of a bedit cell based on the size of the control. You can change
the dimensions of a bedit cell using the GUIDE structure within the RC structure; use
the HE_SETRC wParam value of the WM_HEDITCTL message.

A dialog box sets the font for all of the controls within it to the font selected for the dialog.
This font size may turn out to be too small for use in the bedit control. An application
·should send a WM_HEDITCTL message with HE_DEFAULTFONT subfunction to the
bedit control during WM_INITDIALOG message processing to get bedit to use a more
suitable font. Alternatively, an application may also use the WM_SETFONT message on a
bedit control.

Using the ProcessWriting Function
The ProcessWriting function simplifies the task of converting an existing application to
take advantage of handwriting input-both gestures and characters. ProcessWriting takes
care of inking, removing the ink, and converting the results message to standard windows
messages.

Depending on the existing code in an application, this function mayor may not be suitable
for making an application pen-enhanced. Although it simplifies pen programming,
Process Writing does not provide some of the low-level flexibility available with other
pen programming techniques. .

Programmer's Reference

78 Chapter 6 Using Pen Controls and the ProcessWriting Function

After writing is completed, the ink is removed before any messages are sent to the
window. After the screen is updated and the ink removed, the window receives a
WM_RCRESULT message. If the application chooses to process this message, it should
return a non-zero value.

If an application returns FALSE to the WM_RCRESUL T message, the application
receives the Windows messages shown in the following table. The messages are sent rather
than posted. If the application returns TRUE to the WM_RCRESULT message, no further
messages are sent.

Name

SYV _BACKSPACE

SYV_CLEAR

SYV_COPY

SYV _CORRECT

SYV_CUT

SYV _CLEARWORD

SYV_EXTENDSELECT

SYV_PASTE

SYV_RETURN

SYV_SPACE

Microsoft Windows for Pen Computing

Messages to hwnd

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_ CHAR of backspace.

WM_CLEAR.

WM_COPY.

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
hotspot of the gesture, followed by WM_COPY; then the
Edit Text dialog is activated, and it pulls text from the
Clipboard. This uses the existing selection if any is
present.

The previous contents of the Clipboard are lost.

WM_CUT.

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
same point, followed by WM_ CLEAR.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture. The
MK_SHIFT flag is set for the wParam of these
messages.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture.
WM_PASTE.

WM_LBUTTONDOWN, followed by
. WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_CHAR of RETURN.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_CHAR of SPACE.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_CHAR of TAB.

Using the ProcessWriting Function 79

Name Messages to hwnd

WM_UNDO. SYV_UNDO

Text

All other results

One WM_ CHAR message per character of text.

No messages.

The Process Writing function returns values less than zero if the application treats the
event as a mouse event instead of a pen event. Values of less than zero are returned if the
event did not come from a pen or the user did a press-and-hold action
(REC_POINTEREVENT). A negative value is also returned in case of an error-for
example, running out of memory.

Modifying a Windows Program to Use ProcessWriting
A normal Windows program has the following basic structure:

ExampleWndProc(hwnd, message, wParam, lParam)
{

switch (message)
{

case WM_ messages:
code

break;

case WM_LBUTTONDOWN:
code for setting insertion point
break;

case WM_CUT:
code to remove text
break;
}

Programmer's Reference

80 Chapter 6 Using Pen Controls and the ProcessWriting Function

You can modify this basic structure as follows to use the ProcessWriting function:

ExampleWndProc(hwnd. message. wParam. lParam)
{

switch (message)
{

case WM_ messages:
code

break;

case WM_LBUTTONDOWN:
if (ProcessWriting(hwnd. NULL) < 0)

Treat the event as if generated by a mouse. If REC_POINTEREVENT or
REC_BUSY is returned. then begin a selection event.
}

break;

case WM_CUT:
code to remove text
break;
}

The sample application for using the ProcessWriting function in a pen application is in
the PENSDK\SAMPLES\PENPAD directory. The PENPAD.OLD source code is for the
non-pen-enhanced version; PENPAD.C is for the pen-enhanced version that makes use of
the ProcessWriting function.

Microsoft Windows for Pen Computing

. Chapter 7

Replaceable Components: Recognizers and
Dictionaries

This chapter describes the construction of recognizer and dictionary dynamic-link libraries
(DLLs). Included with this SDK is the source code for a sample recognizer and dictionary
that can form the basis for your own components.

Recognizers
There are two broad types of recognition, characterized by type of input data: bitmap and
vector.

Bitmap recognition uses optical character recognition (OCR) techniques, which accept an
image of the characters to be recognized as input. This method of recognition is not
supported by the Pen extensions application programming interface (API). However, it is
possible to write an OCR application under Windows.

Vector recognition is the recognition of a sequence of pen-location data points collected as
the pen is moving. This is the recognition model the Pen Extensions API supports.

To perform as the system default, a custom recognizer must, of course, conform to the Pen
API. In addition, it should be able to do all of the following:

• Recognize at least one case of characters, punctuation, numbers, and predefined
gestures

• Return images of prototypes for display purposes

• Associate raw data with matched results

• Return characters only within the requested subset

• Return an "I don't know" response

• Work with only (x,y) pairs as input data

Converting Input to Usable Data
Three steps are involved in the process by which a recognizer converts input to usable
data: processing the raw data of a user's entries, performing segmentation, and interpreting
the order and direction of pen strokes.

Processing Raw Data
Raw data for recognition consists of (x,y) pen coordinates. At a minimum, the pen data
need be collected only while the pen is down. Optionally, additional pen data can be
collected on a per-point basis. Such additional data may include, but is not limited to,
pressure, height of pen above pad, angle of pen, and rotation of pen. Any recognition

Programmer's Reference

82 Chapter 7 Replaceable Components: Recognizers and Dictionaries

module that relies on optional data will be limited to those platforms that provide pens and
pen drivers capable of collecting this information.

The Microsoft recognizer requires only the (x,y) coordinates. The OEMPENINFO
structure supports the collection of other pen data. For details, see the entry for
OEMPENINFO in Chapter 10, "Pen Structures."

Noise Reduction and Normalization

Noise reduction and normalization techniques can also be used. Noise reduction refers to
filtering done to overcome limitations in hardware-for example, correcting pen skips or
wild points. The pen driver is free to perform noise reduction.

Normalization refers to dehooking, deskewing, calculating baselines, correcting for
baseline drift, removing redundant points, and interpolating. Normalization is internal to
the recognizer, not the pen driver. During recognition, the recognizer must be able to
return the raw data (as received from the pen driver) to the application, regardless of the
type of normalization it performs internally.

Performing Segmentation
Recognizers differ in their ability to separate individual characters within a stream. This is
a crucial issue for recognizing different handwriting styles. The following table (derived
from an IBM Research Report RC 11175, No. 50249, [5/21/85], "An Adaptive System For
Handwriting Recognition," by C. C. Tappert) lists the forms of input, in decreasing order
of constraint on the user.

Input form

Boxed input

Discrete spaced

Discrete run-on

Cursive

Mixed

Definition

Each character must be written within its own box.

Each set of strokes can be identified as belonging to the
same character by the surrounding. space. (This is also
called "external segmentation.")

Printed characters can overlap.

Letters are connected by ligatures. Recognition is
accomplished either by identifying discrete letters or by
interpreting a whole word at a time.

Discrete, run-on, and cursive writing are recognized.

Figure 7.1 illustrates these various styles.

Microsoft Windows for Pen Computing

Recognizers 83

[[]lilllR1 Boxed

Di S' c.x-€. t e... Discrete

~nD Discrete run-on

~.
Cursive

ffiixild. Mixed

Figure 7.1. Handwriting styles

The Pen API places few restrictions on the recognizer. At the minimum, however, a
recognizer must be able to recognize discrete characters, because many applications will
not use boxed input.

Interpreting Stroke Order and Direction
The Pen API does not limit a recognizer's ability to deal with any of the following:

• Delayed strokes-for example, the cross on the "t" in "tree" if it was written after the
"r."

• Correction strokes-for example, a little stroke put on the top of a "y" to make it look
like a "g."

• Characters written out of order-for example, "cat" written as "c t" with the "a" filled
in last.

• Variations in stroke order or direction-For example, a capital "E" with four strokes
can be written in 24*4! = 384 distinct ways.

Returning Results
Recognition results should allow for multiple interpretations of input. For example, the
word "clear" could be recognized as the following possible character sequence:

{ cl I d } ea { r In}

This means the word is either "clear," "dear," "clean," or "dean." If multiple results are
possible, the recognizer returns the possibilities listed in order of decreasing likelihood. If
a recognizer has no internal concept of ordered guesses, it must impose an arbitrary order.
In order for multiple recognizers to cooperate, a recognizer must have some concept of a
really bad match and be able to return "unknown" instead of a best guess.

A recognizer should have some concept of confidence level in its matches, so that the user
has some control over whether or not a matched character needs further processing. It is
possible to run a recognizer that does not support "unknown" or confidence levels, but it
will not work as efficiently with dictionary postprocessing, multiple recognizers, or
additional processing.

Programmer's Reference

84 Chapter 7 Replaceable Components: Recognizers and Dictionaries

For each symbol recognized, the recognizer must be able to associate the raw data that was
applied to the match. It is not mandatory that all raw data points be associated with one
and only one matched character; it is acceptable for the recognizer to ignore some input or
assume that a given stroke is used to form multiple characters. The raw data will be used
by applications to place the recognized text on the screen, redraw it, or send information to
secondary recognizers.

Speed and timing are very important in the recognition process. A successful recognizer
should recognize input at least at the speed of normal handwriting-two to three characters
per second.

Results Message
A new message, WM_RCRESULT, has been added to Windows. This message is sent to
the specified window when the recognizer has a result to return.

Any far pointers passed in this structure are valid only while processing the message. This
is the application's chance to save the information about the raw data. After this message
is sent, the recognizer can destroy its copy of the raw data.

The last WM_RCRESUL T message for a recognition context is sent before Recognize
returns and any other messages are sent to the application.

If the application returns 1, the recognition should continue. If the application returns -1,
the recognition stops, and no more results are sent for this context. If the return value is 0,
further processing of this message stops (used with the ProcessWriting function).

Character Sets
To achieve optimum recognition rates, recognizers can limit themselves to a fixed
character set. The Microsoft recognizer recognizes most of the characters in the ANSI
character set and a standard set of gestures. The gestures are listed in online Help.

Any system recognizer for use within the U.S. should support at least a subset of the ANSI
characters, including:

• One case (lower or upper) of the 26 letters

• Numbers

• A set of punctuation

• The standard gestures

There are no other requirements for the character set.

Multiple recognizers are supported. Any application using mUltiple recognizers must set
the calling order of the recognizers. For example, a multilingual application could check to
see if an item of input is an ANSI character and, if not, ask a Kanji recognizer if it could
be a Kanji character.

It's also possible for an application to inform the recognizer that only a certain subset of
the full character set is valid at a certain time. For example, the ZIPCODE field in the
sample HFORM application uses the ALC_NUMERIC constant to specify a numeric-only

Microsoft Windows for Pen Computing

Recognizers 85

field, using the enabled alphabet field in the RC structure. The recognizer must not return
a recognition result outside this range. This does not imply that a recognizer has to force a
match; it can report that the character is unknown.

Hot Spots
When a symbol is recognized, the recognizer may also identify a critical point (hot spot)
on the gesture. For example, if the "X" symbol is used for deleting, the cross of the "X"
points to the item to be deleted. If the recognizer identifies a hot spot for a recognized
symbol, Ipsyg.rgpntHotSpot is filled with the points. Different symbols will define
different numbers of hot spots.

Training
A recognizer can be trainable or nontrainable. A nontrainable recognizer has a fixed set of
prototypes.

Trainable recognizerscan be classified as passive trainers or active trainers. A passive
trainer learns by automatically making modifications to its prototypes as the user is
writing. It assumes that any uncorrected results are correctly identified. An active trainer
forces the user to write in a training window and then positively verifies the input just
written.

The Pen API supports both trainable and nontrainable recognizers. Passive training is
internal to the recognition module; it is not constrained by the API.

Symbol Values and Symbol Graphs
A recognizer communicates with an application by way of symbol values and symbol
graphs.

Symbol Values
Each glyph a recognizer can identify has an associated symbol value, which it returns to
the application upon recognizing a glyph.

All system recognizers should also recognize a special set of glyphs (gestures) used as
commands. The images for the gestures are defined in online Help.

The specific symbol values are discussed in more detail in Chapter 11, "Pen Messages and
Constants. "

Symbol Graphs
Upon completion of recognition, a recognizer returns a symbol graph. A symbol graph is a
representation of the possible interpretations identified by the recognizer. The RC Manager
processes the symbol graph using the dictionary path to identify the best interpretation.
This best interpretation is returned in the results message, along with the symbol graph.

Each element (SYE) of the symbol graph contains information about the recognized
character: bounding rectangle, hot spots, and so on. Components of symbol graphs (SYE,
SYG, and SYC) are listed in Chapter 10, "Pen Structures."

Programmer's Reference

86 Chapter 7 Replaceable Components: Recognizers and Dictionaries

If a single entity recognized by the recognizer is mapped to a string of several symbol
values, the recognizer creates multiple SYEs. This would be the case for recognizers that
can recognize highly stylized runs of characters-for example, "ing"-in which the
individual characters are not necessarily recognized.

Symbol graphs can be represented in different ways. Figure 7.2 shows one example.

C-L- E-A R
t 1../ t / t
0/ E-I/ N

Figure 7.2. Symbol graph representation of handwriting

The symbol graph shown in Figure 7.2 represents these possible words:

clear

dear

clean

dean

cleeir

deeir

cleein

deein

This symbol graph could also be represented as:

{cl I d}e{a I ei}{rln}
or

{clear I clean I cleeir I cleein I dear I dean I deeir I deein}

Symbol Graph Grammar

A symbol graph is an array of symbol elements (SYEs). Each SYE has a symbol value.

The context-free grammar that defines the format of a symbol graph is listed in the
following table. In place of SYEs, just the symbol values of the elements of the arrays are
given. For SYEs that do not represent recognized symbols, such as SYV _NULL, the rest
of the SYE structure is set to O. Bold symbols in the grammar are the terminal symbols.
The following symbols are meta symbols: ->, (,), *, +, and II.

Symbol graph -> A * SYV _NULL

A -> SYV _BEGINOR (B SYV _OR) * B SYV _ENDOR II B

B -> One or more symbol values

Microsoft Windows for Pen Computing

Recognizers 87

In practice, a recognizer will return a list of words (possibly concatenated with other lists,
separated by white space symbol values), or it will return a word with a few alternatives
for some of the characters.

The EnumSymhols function enumerates the possible paths through the symbol graph. It is
up to the recognizer to construct the graph so that the interpretations of the symbol graph
are enumerated in decreasing order of likeliness.

The RC Structure
The core of the recognition process is the RC data structure.

There are a large number of parameters in the RC structure. In practice, however, an
application has to deal with only a few of them. The application calls InitRC to set the
default values and then adjusts certain parameters before making one of the Recognize
calls.

The following table lists the RC structure fields. For more information, see Chapter 10,
"Pen Structures."

RC structure field

rc.ale

rc.alePriority

rc.clErrorLevel

rc. wTry Dictionary

rc.dwAppParam

rc.dwDictParam

rc.dw Recognizer

rc.guide

rc.hrec

Description

Specifies the enabled alphabets for
recognition (ALC_ values).

Specifies the ALCs that have priority.

Specifies the level at which the recognizer
should reject input.

Specifies the cutoff for enumerations per
word. The minimum allowed is 1, the
maximum 4096. The default value is 100.

Specifies the value defined by the
application and passed on through the RC
structure .

. Specifies the value defined by the
application and passed on to the
dictionaries on the dictionary path. (This is
for use on a per-dictionary basis.)

Specifies the value defined by the
application and passed on to the
recognizers. (This is for use on a per
recognizer basis.)

Specifies the values to be used in setting
guidelines on the screen for the recognizer.

Specifies the handle of the recognizer to be
used.

Programmer's Reference

88 Chapter 7 Replaceable Components: Recognizers and Dictionaries

RC structure field

rc.hwnd

rc.lPcm

rc.lpfn Yield

rc.lpLanguage [48]

rc.lpUser [32]

rc.IRcOptions

rc.nInkWidth

rc.rectBound

rc.rectExciude

rc.rgbfAlc [32]

rc.rgbInk

rc.rglpdf [MAXDICTIONARIES]

rc.rgw Reserved

rc.wEventRef

rc.wRcDirect

rc.wRcOrient

rc. w RcPreferences

Microsoft Windows for Pen Computing

Description

Specifies the handle of the window to send
the recognition results to.

Specifies the flags for ending recognition
(the PCM_ values).

Specifies the callback function used by the
recognizer before yielding.

Specifies the list of language strings.

Specifies the name of the current writer. If
NULL, uses the standard prototype set.

Specifies recognition options (RCO_
values).

Specifies the thickness (0-15) of the ink
during inking.

Specifies the bounding rectangle for inking.

Specifies the area where a pen down event
will end recognition.

Specifies the bit field used for enabled
characters.

Specifies the color (nearest solid color) to
use for inking.

Specifies dictionaries called by the
recognizer to convert symbol graphs to
strings. If the rglpdf[O] field is NULL, the
NULL dictionary is used. The path should
be NULL-terminated.

Used internally; applications should not
modify these values.

Specifies the event that begins the
recognition process.

Specifies the direction of writing (RCD_
values).

Specifies the orientation of the tablet
(RCOR_ values).

Specifies user preferences:-for example,
writing hand (left or right) or whether
gestures are positional (RCP _ values).

RC structure field

rc.wResultMode

rc.wTimeOut

Recognizers 89

Description

Specifies the timing of the results messages
to be sent back to the specified window
(RRM_ values).

Specifies the time-out period
(milliseconds).

How a Custom Recognizer Interacts with the RC Manager
This section describes the interface from the RC Manager to the particular recognizer
installed. It also summarizes the entry points the OEM recognizer can call.

Custom Recognizer Functions
The recognition module is written as a Windows DLL. The standard DLL initialization
and termination entries (LibMain and WEP) are called.

These functions must be supplied in an OEM recognizer DLL:

Function Description

CloseRecognizer

ConfigRecognizer

InitRecognizer

RecognizeDatalnternal

Recognizelnternal

TrainContextlnternal

Trainlnklnternal

Called when the recognizer is uninstalled by an
application

Sets recognizer-specific parameters

Gives the recognizer a chance to do any initialization
before receiving the first request for recognition

Begins sampling pen data stored in the buffer and
converts the input to recognized symbols

Begins sampling pen data from the tablet and converts
the input to recognized symbols

Performs training using contextual (recognition)
information

Performs context-free training

Division of Responsibility Between Recognizer and RC Manager
The recognizer is responsible for mapping raw data in the form of pen input to the symbols
the input represents. The RC Manager provides support both before and after this
processing. The RC Manager sets up the pen driver for data collection and display. After
the recognizer identifies results, the RC Manager performs the necessary dictionary
processing and fills in the remaining fields.

The following outline of pseudocode provides more details on this division of work:

Recognize(
Validate RC values and replace any requests for default values
with the actual values.

Programmer's Reference

90 Chapter 7 Replaceable Components: Recognizers and Dictionaries

Prepare for inking and data collection
SetCapture(rc.hwnd)
Hide Cursor if necessary
Remove any existing mouse messages
ReleaseCapture()

Set conditions for ending recognition

Begin Actual recognition work
error code = Recognizelnternal()
Restore cursor
return error code.

Custom recognizer

A general recognizer has the following general form:

Allocate memory to buffer results and raw data:

while (GetPenHwData(..) == REC_OK)
{

Yield sometimes:
Add points to pendata buffer
if (overflow)

(

FEndPenCollectionMode(REC_OOM):
continue:
}

if (enough data to recognize)
{

Perform recognition:

Fi 11 RCRESUL T struct:
Ca 11 1 pFuncResul ts (.. rcresul t ..):
if (lpFuncResults == 0)

return (valid value for RecRecogn;ze):

if (still some raw data left)
(

Perform recognition:
Fi 11 RCRESULT struct:
Call lpFuncResults(.. rcresult..):

Microsoft Windows for Pen Computing

Free buffer memory;

return (valid value for Recognize);
}

A Sample Recognizer

Recognizers 91

The SREC.C file, located in the PENSDK\SAMPLES\sREC directory, is a skeleton
program containing all of the necessary functionality for a simple recognizer. The
recognizer is a DLL loaded at runtime by the pen application. This particular recognizer is
used by the PENAPP sample application.

This recognizer accepts only a single stroke of data points. The recognizer takes the
beginning and ending points of the stroke and calculates the nearest compass direction of
the line formed by these endpoints.

The recognizer then fills out the symbol graph (passed through the IParam parameter of
the application's window procedure on the WM_RCRESULT message) using the
following special codes.

Value Direction

syvEast Right

syvSouth Down

syvWest Left

syvNorth Up

syvDot Single tap

The PENAPP application that uses this recognizer sets the following RC structure item:

lPcm = PCM_PENUP I any other flags.

The PCM_PENUP flag guarantees one single stroke and then recognition.

Windows Dynamic-Link Library Functions
The first two functions in the SREC recognizer are the standard Windows functions
required in any dynamic-link library-Lib Main and WEP. LibMain, the main DLL
function, is analogous to WinMain; it performs any needed initializations and unlocks the
data segment of the library. WEP is the standard DLL termination function. LibEntry, in
the file LIBENTRY.ASM, is identical to the source used in the sample DLL in the SDK
for MS Windows version 3.1.

Stub Functions
A large number of functions are required to be present in any recognizer even if they do
little, if any, processing. The following functions do little actual processing but are stubs
for your enhancements. In general, they return some value to the calling program. The
values returned are those for the sample recognizer discussion here.

Programmer's Reference

92 Chapter 7 Replaceable Components: Recognizers and Dictionaries

Stub function Description Returns

InitRecognizer Initializes recognizer and loads any TRUE
necessary data

CloseRecognizer Closes recognizer and saves any necessary VOID
data

ConfigRecognizer Configures the recognizer for special TRUE
options

Trainlnklnternal Performs context-free training FALSE

TrainContext Performs training using contextual FALSE
(recognition) information

ConfigRecognizer
The ConfigRecognizer function configures the recognizer for special options. Typically, it
is called by the application or system Control Panel to set recognizer-specific options or to
query its capabilities.

Different recognizers will allow for different levels of configuration. For example, a
recognizer can provide a configuration dialog to enable or disable cursive input. This
sample recognizer has no configuration options. The configuration dialog is called from
the Recognizer Dialog of the Control Panel.

In the following code fragment, the SREC recognizer returns only the identification string
of the recognizer. Also, note that the SREC recognizer cannot be set as the system
recognizer. Since SREC does not support standard editing gestures or characters, it is not a
valid system default recognizer.

WORD FAR PASCAL ConfigRecognizer(WORD wConfig. WORD wParam. LONG lParam)
{

WORDwRet = TRUE;

wParam; II to prevent CS 5.1 compiler warning message

switch (wConfig)
(

case WCR_RECOGNAME:
lstrncpy«LPSTR)lParam. szID. wParam);
break;

case WCR_QUERY:
wRet = FALSE;
break;

1* Does not support configuration *1

case WCR_CONFIGDIALOG:
break;

case WCR_DEFAULT:

Microsoft Windows for Pen Computing

Recognizers 93

wRet = FALSE:
break:

1* Incapable of being system default *1

case WCR_RCCHANGE: 1* Change any internal parameters based on *1
1* new information - for example current user *1

break:

case WCR_VERSION:
wRet = 0x0103: 1* Recognizer version 3.1 *1
break:

case WCR_TRAIN:
wRet = TRAIN_NONE:
break:

case WCR_TRAINSAVE:
wRet = FALSE:
break:

return wRet:
}

Recognition Functions

1* Does not support training *1

The two main components of any recognizer DLL are the Recognizelnternal and
RecognizeDatalnternal functions. They handle the recognition from hot and cold
recognition, respectively.

Recognizelnternal is the custom OEM recognizer function. It receives pen stroke input
through the GetPenHwData function and performs recognition. The recognition results
are passed back to the RC Manager in an RCRESUL T structure through the
IpFuncResults function.

In the sample program, you create the symbol graph in the CalcNearestDir function,
which is called from the private function DoRecognition. In this sample, no recognition is
performed concurrently with data collection. As a result, Recognizelnternal just collects
ink and passes it on to RecognizeDatalnternal.

Recogn izel nterna I

For the SREC recognizer, this function receives input of data points of one stroke and
calculates the closest compass direction of the stroke. Unlike a typical recognizer, this
recognizer collects all data points first before performing any calculation.

The function begins by allocating the OEM data buffer. Next, it runs the data collection
loop using GetPenHwData to collect pen points. The lpfn Yield field of the RC structure
controls the yielding of pen tasks to other waiting Windows tasks. Finally, the function
calls DoRecognition to continue the recognition process.

The DoRecognition function contains the common code between Recognizelnternal and
RecognizeDatalnternal. DoRecognition also fills in the RCRESULT structure.

Programmer's Reference

94 Chapter 7 Replaceable Components: Recognizers and Dictionaries

For the SREC sample program, the Recognizelnternal function receives input of data
points of one stroke and calculates the closest compass direction of the stroke.

The recognizer assumes the PCM_PENUP is set, so it does no time-out checking.

REC FAR PASCAL RecognizeInternal(LPRC lprc, LPFUNCRESULTS lpFuncResults)
{

WORDrgpntOem[cpntMax*MAXOEMDATAWORDS];
POINT rgpnt[cpntMax];

1* temporary buffer *1
1* actual data buffer *1

WORDcYield= 0; 1* yield count *1
BOOLfSaveAll= (lprc->lRcOptions & RCO_SAVEALLDATA) != 0;
LPVOID lpvOem = (LPVOID)(fSaveAll ? rgpntOem : (LPVOID)
REC rec = REC_OK;
HPENDATA hpendata;
HPENDATA hpendataT = NULL;
RCRESULT rcresult;
STROKEINFO si;

1* Allocate OEM data buffer *1

if «lprc->lPcm & PCM_PENUP) == 0)
return REC_NOPENUP; II Recognizer-specific error

if «hpendata = CreatePenData(NULL, (fSaveAll ? -1: 0),
PDTS_STANDARDSCALE, GMEM_SHARE» == NULL)

return REC_OOM;

1* Data input loop *1

NULl) ;

while «rec = GetPenHwData(rgpnt, lpvOem, cpntMax, 0, &si» == REC_OK)
{

if (si .cPnt != 0)
{

if «hpendataT = AddPointsPenData(hpendata, rgpnt, lpvOem, &si» ==
NULl)

rec = REC_OOM;
break;
}

hpendata hpendataT;
}

if (cYield++ % 5)
{

(*lprc->lpfnYield)();
}

Microsoft Windows for Pen Computing

II Yield

Recognizers 95

1* Copy last point. Note that only the last point really counts
if rec == REC_TERMPENUP *1

if (hpendataT != NUll && rec == REC_TERMPENUP)
{

1* Normal ending of preceding loop. Add the pen up stroke *1
if «hpendata = AddPointsPenData(hpendata, rgpnt, lpvOem, &si))

rec = REC_OOM;

if (rec == REC_TERMPENUP)
(

II Send results back to the application.
DoRecognition(lprc, hpendata, &rcresult);
(*lpFuncResults)«lPRCRESUlT) &rcresult, rec);
}

II Free up memory used to save data. If you want the application to
II save it, it must make a copy or set the RCO_SAVEHPENDATA flag.

if (hpendata != NUll && (lprc->lRcOptions&RCO_SAVEHPENDATA)==0)
DestroyPenData(hpendata);

return rec;
}

CalcNearestDir

NULl)

The user-defined function, CalcNearestDir, is called with the endpoints. This function
calculates the closest compass direction of the line defined by the two end points. The
CalcNearestDir function concludes by setting the confidence level of recognition.

VOID NEAR PASCAL CalcNearestDirection(lPPOINT lppointEnds)
{

int dx;
int dy;
BOOl fIsEastward;
BOOl fIsSouthward;
BOOl fIsHoriz;

extern SYEsyeGlobal;

dx - (lppointEnds+l)->x - lppointEnds->x;
dy (lppointEnds+l)->y - lppointEnds->y;

fIsEastward = dx > 0 ? TRUE : FALSE;
fIsSouthward = dy > 0 ? TRUE FALSE;
fIsHoriz = ABS(dx) > ABS(dy) ? TRUE: FALSE;

Programmer's Reference

96 Chapter 7 Replaceable Components: Recognizers and Dictionaries

if (flsHoriz)
{

syeGlobal.syv fIsEastward? syvEast syvWest:
}

else
{

syeGlobal .syv = fIsSouthward ? syvSouth syvNorth:
}

if (dx == 0 && dy == 0)
{

syeGlobal .syv = syvDot:
}

syeGlobal.cl = 100: /* Set confidence level */
syeGlobal.1RecogVal - 0L: /* Not used */
}

Dictionaries
The dictionary component, like the recognizer, is a replaceable component. Although the
use of a dictionary is optional, it may increase the recognition accuracy of an application.

A dictionary is implemented as a dynamic-link library (DLL) with only one exported
function. This function, DictionaryProc, is called with different subfunction arguments in
order to perform some action. For a complete description of the DictionaryProc function,
see Chapter 9, "Pen API Reference."

The application tells the system to call the dictionary before returning the
WM_RCRESULT message. Alternatively, the application can call the dictionary itself to
perform a postrecognition search.

Dictionaries can perform a number of different services, of which the most common
service is to provide a word list used to find exact matches. A dictionary can also perform
spell checking, format checking, or macro expansion of a string.

Of all the services a dictionary can perform, the most common is for simple word
matching. Included with this SDK are two dictionary DLL files, MAINDICT.DLL and
USERDICT.DLL. The MAINDICT.DLL file is a general-purpose language dictionary,
providing, among other things, a facility to find words in any of several European
languages. The USERDICT.DLL file is a dictionary DLL and can be used for word lookup
using application-supplied word lists.

The EXPENSE sample included with this SDK shows how a simple dictionary DLL can be
used to provide a custom word list for an application and to perform prefix matching. This
example is discussed in more detail later in this chapter.

The Re Structure and Dictionary Processing
The simplest implementation of a dictionary is to let the system control when the
dictionary is called. When an application sets the RC structure to be used during

Microsoft Windows for Pen Computing

Dictionaries 97

recognition, it doesn't need to change any of the default values to get the system to call the
default system dictionary. The fields in the RC structure that are of interest to the
dictionary are rc.lRcOptions, rc.rglpdf, rc.wTryDictionary and rc.dwDictParam. An
application uses these fields to fine-tune how the system will respond when the dictionary
is called.

The core of the information needed for the dictionary DLL is in the RC data structure.
Although there are a large number of parameters in the RC structure, in practice, a
dictionary application will have to deal with only a few of them.

The following sections list the RC structure fields that are used by the dictionary or by an
APPLICATION using a dictionary DLL. For more information, see Chapter 10, "Pen
Structures."

rc.lRcOptions
This variable is used by both the recognizer and the dictionary. The RCO_ constants that
pertain to the dictionary are RCO_NOSPACEBREAK and RCO_SUGGEST. The
application should use these constants in the following way.

RCO_NOSPACEBREAK specifies that when the system calls the dictionary, it should not
preprocess the information with regard to space breaks. If the user writes "hi there" and the
RCO_NOSPACEBREAK flag is set, the dictionary should receive the string "hi there." If
the flag is not set, the dictionary should receive two separate strings. The system asks the
dictionary first to identify the string "hi" and then to process "there."
RCO_NOSPACEBREAK should be used only in cases where white space is a significant
part of the information. Usage of this flag in language strings processing could
significantly slow the lookup.

If the constant RCO_SUGGEST is set, the system will call the dictionary with the
DIRQ_SUGGEST message-but only under special circumstances. DIRQ_SUGGEST is
sent to the dictionary only if the RCO_SUGGEST option is set in the RC structure and the
dictionary has failed to return success when processing the DIRQ_STRING messages.

The DIRQ_SUGGEST message is designed to be sent to the dictionary after the
DIRQ_STRING messages have been processed. When the dictionary processes the
DIRQ_STRING messages, it looks for the match in the word list that fits the enumeration
it has received. The DIRQ_SUGGEST message is designed for spell checking or macro
expansion of the enumeration.

Say, for instance, that the user writes "SDK," but the word "SDK" is not in the dictionary.
If the RCO_SUGGEST flag is set, the dictionary will be called with the best enumeration
of the string, and it will be able to return its best guess. In this case, the dictionary might
return "Software Development Kit" instead of "SDK." If the RCO_SUGGEST flag is not
set in the RC structure, this message will never be sent to the dictionary.

rc.rglpdf
Within the PENWIN.H header file, rc.rglpdf is an array of far addresses to dictionary
functions. Currently, the system supports a maximum of 16 dictionaries, as specified in the
constant MAXDICTIONARIES. The number and order of these callback functions is
important.

Programmer's Reference

98 Chapter 7 Replaceable Components: Recognizers and Dictionaries

If there are no dictionaries in the list, the system uses the NULL dictionary to extract the
symbols from the symbol graph with the highest confidence level, and it returns this with
the WM_RCRESUL T message.

If there are one or more dictionaries, the system calls the DictionarySearch function,
which uses DIRQ_SYMBOLGRAPH to call all the dictionaries. If none of the dictionaries
respond with a match, the DictionarySearch function enumerates the symbol graph and
calls each dictionary function with DIRQ_STRING for each enumeration.

Suppose, for example, the symbol graph returned from the recognizer is:

OllJow

The dictionary will be called with each enumeration of the symbol graph-"Iow" (the
numeral "I" plus "ow") followed by "low" (with the letter "I" as the first character). With
each call, the dictionary has the option of either accepting or rejecting the input. If the
input is not accepted, the system will continue to send enumerations to the dictionary until
there are no more enumerations left. If the dictionary accepts the,input, the system
immediately sends the ending message DIRQ_STRING with lpIn set to NULL.

After all of the enumerations have been sent, the system calls the dictionary with a
DIRQ_STRING message with the lpIn parameter set to NULL. This informs the dictionary
that there are no more enumerations left. If there is only one dictionary in the search list,
the system sends the DIRQ_SUGGEST message.

If there are multiple dictionaries in the list, the system determines the ORDER in which
they are called by their positions in the list and the confidence of the enumeration. The
system starts by getting the first enumeration of the symbol graph. For every enumeration,
it calls the dictionaries, starting with the one located at position zero, with the
DIRQ_STRING message. If the first dictionary in the list rejects the input, the second
dictionary attempts the same enumeration.

This process continues until there are no more enumerations or until a dictionary returns
success. If, at any time, one of the dictionaries reports a match, the system sends a
DIRQ_STRING message to every dictionary with lpIn set to NULL, indicating that the
search is over. If no match is found, the system may then call the dictionaries with the
DIRQ_SUGGEST message in the same order. Again, the DIRQ_SUGGEST message will
be called only if the RCO_SUGGEST flag is set.

rc.wTryDictionary.
This variable should be set with the "cutoff' threshold value to be used by the system
when determining which enumeration strings from the symbol graph to send to the
dictionary. The wTryDictionary field of the RC structure specifies the cutoff for
enumerations per symbol graph. The minimum number allowed is 1 and the maximum is
4096. The default value is 100.

rC.dwDictParam
This variable is reserved for dictionaries that require more specific information when
called by the system. The information placed in this variable is passed on to the dictionary

Microsoft Windows for Pen Computing

Dictionaries 99

function as the ID parameter. Applications can use this variable to store information that
might be specific to the RC structure the application is currently using.

When using rc.dwDictParam, it is important that the application controls which
dictionary is called, because the dwDictParam is sent to every dictionary in the list. For
this reason, if this variable is used, the application should be aware of all dictionaries in
the list so that only the dictionaries that can support this ID value will receive the message.

Most dictionaries, including the ones included with the SDK, will ignore this parameter.

Placing the dictionary function callback address in the rc.rglpdf list is not the only way to
get a dictionary to work. Every WM_RCRESULT message contains the symbol graph that
represents the current user's input. To simulate the operations of the system, you can call
the DictionarySearch function, and it will mimic the calls the system makes before your
application receives the WM_RCRESULT message. This can be useful for calling a
dictionary with information that needs to be recognized in context.

For example, if the user writes "at" on top of "is" in the word "this," you might want to
have the application defer the dictionary search until after it receives the
WM_RCRESUL T message. The application would calls the DictionarySearch function
with the symbol graph representing "that," instead of having the system call the dictionary
with "at."

Subfunction Messages Used in a Dictionary DLL
When designing a dictionary, you need to be aware of what messages you'll need to
support for system services and which messages you might want to support for enhanced
functionality. The most important message is the DIRQ_STRING message. All other
messages are optional.

The messages defined by Microsoft can be combined into logical groups. There are
basically three types of messages: system messages, dynamic manipulation messages, and
other messages. The following table lists the messages associated with each group.

Dictionary message group Messages

System messages DIRQ_STRING, DIRQ_RCCHANGE,
DIRQ_SUGGEST, DIRQ_SYMBOLGRAPH,
DIRQ_INIT, and DIRQ_CLEANUP

Dynamic manipulation messages

Other messages .

DIRQ_ADD, DIRQ_CLOSE, DIRQ_DELETE,
DIRQ_FLUSH, DIRQ_OPEN, and
DIRQ_SETWORDLISTS

DIRQ_CONFIGURE, DIRQ_DESCRIPTION,
DIRQ_QUERY, DIRQ_USER, and
DIRQ_COPYRIGHT

The dictionary can support any number of these messages. However, a dictionary must
support DIRQ_OPEN, DIRQ_CLOSE, DIRQ_QUERY, DIRQ_STRING,
DIRQ_DESCRIPTION, DIRQ_INIT, DIR~CLEANUP, and DIRQ_COPYRIGHT.

Programmer's Reference

100 Chapter 7 Replaceable Components: Recognizers and Dictionaries

For detailed information about the messages, see Chapter 11, "Pen Messages and
Constants."

A Sample Dictionary
The CUSTDICT.C file (located in the \PENSDK\SAMPLES\EXPENSE directory) is a
skeleton program containing all the necessary functionality for a simple dictionary. The
dictionary is a DLL loaded at runtime by the pen application. This particular dictionary is
used by the EXPENSE sample application (also located in the same directory) to perform
dictionary requests such as DIRQ_QUERY and DIRQ_STRING.

The EXPENSE.C sample is a straightforward pen application. It contains several edit
fields typical of a generic expense report (Name, Employee #, Dept. Items, and so on). The
application registers itself as a pen-aware application so that the edit controls are replaced
by hedit controls when operating on a pen computer.

In the expense report, the user dictionary is used in processing results in the Name and
Dept. Name fields, and the custom dictionary is used in the Expense Item field. There are
separate word lists associated with both the Name and Dept. Name fields. These word lists
are specified in the PENWIN.INI file in the following form:

[Expense]
namedict=<full path to the names dictionary>
deptnamedict=<full path to the department name dictionary>

NAMES.DIC (a Names word list) and DEPTNAME.DIC (a Department Name word list)
have been included with the sample application. If there are no entries in the PENWIN.INI
file, these default word lists are checked for in the working directory.

The custom dictionary maintains an internal array of words instead of having a word list
file. This array contains the following words: Taxi, Food, Flight, Hotel, Misc.

If an application or the RC Manager needs the custom dictionary to perform some
predefined task, a call is made to DictionaryProc. The following table lists the requests
that the custom dictionary has implemented. These are listed as case statements in the
DictionaryProc function.

DIRQ_ sub function

DIRQ_QUERY

DIRQ_DESCRIPTION

Microsoft Windows for Pen Computing

Description

Allows the calling program to ask if a specific DIRQ
request is supported.

Returns, in one of the calling parameters, the name of
the DLL in which the custom dictionary exists.

Determines if the supplied symbol list contains a word
that is accepted by the dictionary. FALSE is returned if
the word is not accepted. If the word is accepted, the
custom dictionary places a symbol list representation of
that word in one of the calling parameters and returns the
number of symbols in the list.

D1RQ_ sub function

Dictionaries 101

Description

If the dictionary receives this request, it is usually from
the RC Manager after all enumerations of the symbol
graph have been processed with DIRQ_STRING
requests. It is up to the custom dictionary to determine
what kind of processing will take place at this point.

In the CUSTDICT sample, a simple, non-case-sensitive
prefix matching is performed on the word in the supplied
symbol list. The FBestGuess function in CUSTDICT is
used for the prefix search. Therefore, if the user writes in
"Fl," the custom dictionary returns "Flight" in its
suggested symbol list. However, if a prefix is not
matched, the custom dictionary returns a NULL symbol
list, which signals to the caller that the lookup was
unsuccessful.

Many types of functionality can be added to the custom dictionary. For example, in the
Date field on the expense report, date verification could be performed. Notice that the
same dictionary can be used for different functions based on the dwDictParam of the RC
structure. The dwDictParam is passed to the dictionary and can be used to signal the field
that is being written in.

Loading and Initializing the Dictionary DLL
A custom dictionary is always implemented as a Windows dynamic-link library. In
addition to the necessary functions of a DLL such as LibMain and WEP, the
DictionaryProc function must also be implemented in the DLL.

The first two functions in the CUSTDICT recognizer are the standard Windows functions
required in any DLL-LibMain and WEP. LibMain, the main DLL function, is
analogous to WinMain; it performs any needed initializations and unlocks the data
segment of the library. WEP is the standard DLL termination function. Lib Entry , in the
file LIBENTRY.ASM, is identical to the source used in the sample DLL.

During the initialization of the instance of the application in the Flnitlnstance function in
EXPENSE.C, the user dictionary and the custom dictionary are loaded with calls to
LoadLibrary.

Once the libraries are loaded and the addresses of the dictionary procedures have been
determined, the word lists associated with the user dictionary are loaded. This is done by
calling the dictionary procedures with the DIRQ_OPEN message and specifying the path
to the word list file. This call returns a handle to the word list in one of the calling
parameters, which can be used when the word list is set.

Programmer's Reference

102 Chapter 7 Replaceable Components: Recognizers and Dictionaries

BOOL NEAR PASCAL Flnitlnstance(HANDLE hlnstance, HANDLE hPrevlnstance,
int cmdShow)

Code omitted for clarity

1* load the library containing the user dictionary procedure *1
if «hUserDictLib = LoadLibrary(szUserDictLib» != NULL)

{

if «lpdfUserDictProc = GetProcAddress(hUserDictLib, szUserDictProc»
NULl)

return FALSE:

else
return FALSE:

1* load the library containing the custom dictionary procedure *1
if «hCustomDictLib = LoadLibrary(szCustomDictLib» != NULL)

{

if «lpdfCustomDictProc = GetProcAddress(hCustomDictLib,
szCustomDictProc» == NULL)

return FALSE:

else
return FALSE:

1* Open all the user dictionary word lists *1
for (i = 0: i < SIZE_WORDLIST: i++)

{

if (GetPrivateProfileString«LPSTR)szAppName,
(LPSTR)rgwordlist[i].szProfileString, (LPSTR)rgwordlist[i].szDefault,
szWordListPath, sizeof(szWordListPath), (LPSTR)szIniFile»

(*lpdfUserDictProc)(DIRQ_OPEN, szWordListPath,
&rgwordlist[i].iList, NULL, NULL,NULL):

Calling the ,Dictionary DLL
ExpenseDictionaryProc, a subc1assed user dictionary DictionaryProc function, has been
set up to determine when to set a word list in the user dictionary. ExpenseDictionaryProc
has the same parameters as DictionaryProc. Once the word list has been checked, the user
dictionary is called with the same parameters ExpenseDictionaryProc received. This
passes the initial dictionary request to the user dictionary.

Microsoft Windows for Pen Computing

Dictionaries 103

In the process of creating the report, the RC structure associated with each edit field is
retrieved using the WM_HEDITCTL and HE_ GETRC messages. Instead of entering the
user dictionary in the RC structure, ExpenseDictionaryProc is specified. The
dwDictParam is set to the corresponding index into the edit field array. This parameter
signals to the ExpenseDictionaryProc which edit field is active. Once the RC elements
have been updated accordingly, the RC structure is set in the edit control using the
WM_HEDITCTL and HE_SETRC messages.

ExpenseDictionaryProc uses a global variable to check if the active edit field differs from
the edit field that last accessed the user dictionary. If the edit field is different, the word
list associated with that field is set by calling the user dictionary procedure directly with
the DIRQ_SETWORDLIST request.

Any recognition results that occur in the Names and Department Name fields will
eventually be processed by the user dictionary using the set wordlist. If no matches are
found, the user dictionary is not called with a DIRQ_SUGGEST message, because the
RCO_SUGGEST flag has not been set; therefore, the RC manager returns the best guess as
the result.

The expense report's use of the user dictionary demonstrates the ability to use the same
dictionary with different word lists for different edit fields.

After recognition occurs in the Expense Item field of the expense report, the custom
dictionary is called by the RC Manager with the results from the recognizer and the
DIRQ_STRING request. If the custom dictionary finds a match between the supplied
enumeration of the symbol graph and internal word list, the matched text appears in the
Expense Item field. If no matches are found, the RC Manager calls the custom dictionary
again with a DIRQ_SUGGEST request. The custom dictionary then performs prefix
matching on the specified symbol list.

Programmer's Reference

Chapter 8

Pen API Overview

Microsoft Windows for Pen Computing is an extension to Microsoft Windows version 3.1.
It builds upon the Windows application programming interface (API) to provide a rich
environment for developing pen-based applications.

Several components in Microsoft Windows for Pen Computing are completely replaceable
by third-party components. Both the dictionary and the recognition components are
replaceable. The term dictionary refers to any postrecognition processing of the
handwriting. The term recognizer refers to the component that performs the mapping of
raw input to recognized symbols. (Recognizers are supplied by various software and
hardware vendors, including Microsoft.) A third-party recognizer can be designed to
recognize Kanji, Arabic, or even shorthand. For an explanation of how a simple
recognizer and dictionary operate, see Chapter 7, "Replaceable ·Components: Recognizers
and Dictionaries."

Device drivers can also be replaced by third-party components. To simplify the creation of
applications, hardware-specific code has been isolated in the pen driver and the display
driver components. For the average application programmer, there is no need to modify
the standard device drivers. For the OEM and ISV programmer, sample source code for
both a tablet and a display driver are provided with this SDK.

Figure 8.1 shows the basic structure of the Pen components. The shadowed modules are
replaceable.

Programmer's Reference

106 Chapter 8 Pen API Overview

Pen Palette

Recognition Context (RC) Manager

Recognizer

Pen Driver

Figure 8.1. Pen components

Shadowed modules
are replaceable

The following table describes the Pen components.

Component Description

Pen-enhanced application

Pen Palette

Display driver

Pen driver

Prototypes

RC Manager

Recognizer

Microsoft Windows for Pen Computing

An application that makes use of the RC Manager to
enable the use of a pen by the application.

An application that mediates communication between
the pen and an existing, unmodified Windows
application. An OEM may provide enhanced capabilities
in a Pen Palette application.

The component that provides the ability to ink during
recognition. Inking shows pen activity on the video
screen or tablet surface.

The component that manages input from the digitizer
tablet and provides mouse emulation.

An internal database used by the recognizer. Prototypes.
are compared with user input in the recognition process.

Used to denote functions, code, and functionality that
Microsoft has added to Windows to support handwriting
input and stylus devices.

The module that performs recognition. It compares user
input to a set of prototypes.

Pen API Categories 107

The flow of data from pen to RC Manager to application is discussed in Chapter 5, "A
Sample Pen Application."

Pen API Categories
The Pen API is an extension to the standard Microsoft Windows API. The Pen API
contains the functions, messages, data structures, data types, statements, and files you need
to create programs and device drivers that run with Microsoft Windows for Pen
Computing.

There are six categories of API functions. The following table briefly describes each
group. Each of these categories is discussed in more detail following this table.

API Category Description

Pen interface

Pen data

Custom recognizer

Pen module

Pen driver

Display driver (inking)

Dictionary

Adds pen functionality to applications. If you use the
Microsoft-supplied recognizer and device driver, this
may be the only group of functions you'l need.

Manipulates the pen data memory block (accessed with
the HPENDA T A structure), the primary mechanism for
passing the information captured from the pen between
an application and other applications and recognizers.

Functions to be provided by the recognizer component.
The application does not call these functions directly.

Functions called by pen drivers and recognizers to
manipulate data coming from the pen driver.

Functions provided by pen drivers.

Functions provided by display drivers.

Functions provided by a custom dictionary.

Pen Interface Functions
There are three methods for creating a pen application. One method is to use the
Process Writing function, which simplifies the process of collecting handwritten input. For
information about this method, see Chapter 6, "Using Pen Controls and the
ProcessWriting Function."

The following paragraphs discuss the two remaining methods, using a recognizer within a
window and using the Pen controls.

Programmer's Reference

108 Chapter 8 Pen API Overview

To Use a Recognizer within a window
This method uses a recognizer within a window to generate handwriting entry and
recognition behavior. The RC Manager invokes the recognizer for the application. The
procedure is as follows:

1 Install a custom recognizer (if appropriate), using InstallRecognizer.

2 When pen input begins, initialize the RC data structure.

3 Call the recognizer.

4 Receive the recognized data in a Windows message.

5 Process the data with your program.

6 When finished, unload the custom recognizer (if appropriate).

For an example that uses this procedure, see the discussion of\PENSDK\SAMPLES\sREC
in Chapter 5, "A Sample Pen Application."

To Use the Pen Controls
The hedit control completely replaces the default edit class of Windows. In addition to the
normal edit control functionality, hedit supports direct handwriting input. That is, in an
hedit control, you can mix keyboard, mouse, and pen input.

The bedit control is an entirely new edit class that implements boxed input. The bedit
control also accepts keyboard and mouse input.

For a sample program that uses hedit and bedit controls, see the discussion of
\PENSDK\SAMPLES\HFORM in Chapter 6, "Using Pen Controls and the
ProcessWriting Function."

Function Subcategories
The Pen Interface functions install and call recognizers, create handwriting edit controls,
and unload recognizers when completed.

There are five subcategories of functions in the Pen Interface category:

• Virtual Event Layer

• Recognition

• Symbol Manipulation

• Training

• Utility

Virtual Event Layer

The Virtual Event Layer subcategory provides the mechanism for sending virtual mouse or
keyboard events to Windows. The following table describes the functions in this
subcategory.

Microsoft Windows for Pen Computing

Function

Atomic VirtualEvent

Post Virtual Key Event

Post VirtualMouseEven t

Recognition

Pen API Categories 109

Description

Blocks out physical pen events while posting virtual
events

Sends a virtual key code event to Windows

Sends a virtual mouse event to Windows

The Recognition subcategory provides the mechanism for initializing, installing, and
unloading the recognizer; for recognizing data; and for correcting errors. The following
table describes the functions in this subcategory.

Function Description

Correct Writing

EmulatePen

ExecuteGesture

InitRC

InstallRecognizer

IsPenAware

Process Writing

Recognize

RecognizeData

RegisterPenApp

SetRecogHook

ShowKeyboard

U ninstallRecognizer

Symbol Manipulation

Displays Edit Text Window.

Emulates text I-beam. In general, you should use
ProcessWriting or hedit controls instead.

Converts a gesture to a set of keystrokes that the user has
mapped.

Initializes recognition context for the recognizer.

Loads a specified recognizer.

Checks application's capability of handling pen events.

Runs high-level recognition services.

Begins sampling pen data from the tablet and converts
the input to recognized symbols.

Converts pen data stored in a buffer to recognized
symbols.

Modifies the behavior of an edit control within an
application to behave as an hedit control.

Installs or removes a recognition hook.

Displays or hides the on-screen keyboard.

Unloads a specified recognizer.

The Symbol Manipulation subcategory provides the mechanism for converting symbols to
characters.

A symbol value is a 32-bit value that represents a glyph (such as a character or a gesture)
recognized by a recognizer. This is sometimes referred to as a symbol. A symbol string is a
null-terminated array of symbols. A symbol graph is a compact representation of the
alternatives recognized.

The following table describes the functions in this subcategory.

Programmer's Reference

110 ChapterS Pen API Overview

Function

CharacterToSymbol

GetSymbolCount

EnumSymbols

FirstSymbolFromGraph

GetSymbolMaxLength

SymbolToCharacter

Training

Description

Converts an ANSI string to an array of symbol values

Returns the number of possible symbol strings that can
be generated from the symbol graph

Enumerates strings of symbols from a symbol graph

Returns the array of symbols that is the most likely
interpretation of a specific symbol graph

Gets the length of the longest symbol string generated
from the symbol graph

Converts an array of symbols to an ANSI string

The Training subcategory provides the mechanism for training the ink to improve
recognition. The following table describes the functions in this subcategory.

Function Description

TrainContext

Trainlnk

Utility

Informs the recognizer that the raw data input represents
the symbol value results

Informs the recognizer that the raw data input represents
the symbol value results

The Utility subcategory provides a variety of functions for general maintenance,
coordinate conversion, and low-level functions. The following table describes the
functions in this subcategory.

Function Description

BoundingRectFromPoints

DPtoTP

GetGlobalRC

GetMessageExtralnfo

GetPenAsyncState

GetVersionPen Win

Microsoft Windows for Pen Computing

Returns the bounding rectangle of an array of points.

Converts display coordinates to tablet coordinates.

Gets the current default settings for the specified
recognition context. Normally, an application gets this
information at RC initialization time. However, if you
need to query these values at some other time, use
GetGlobalRC.

Windows function used to extract extra information
passed along with mouse event messages.

Gets the barrel button state of the pen.

Gets the version number.

Function

SetGlobalRC

SetPenHook

TPtoDP

Pen Data Functions

Pen API Categories 111

Description

Sets default settings for the specified recognition
context. This function should be called only from the pen
Control Panel program.

Captures low-level pen events.

Converts tablet coordinates to display coordinates.

The HPENDAT A handle to the pen data memory block is the primary mechanism for
passing the information captured from the pen between an application and other
applications and recognizers.

The pen data functions manipulate the pen data memory block. The following table
describes the functions in this category.

Function Description

AddPointsPenData

BeginEnumStrokes

CompactPenData

CreatePenData

Destroy PenData

DrawPenData

DuplicatePenData

EndEnumStrokes

GetPenDatalnfo

GetPenDataStroke

GetPointsFromPenData

MetricScalePenData

OffsetPenData

ResizePenData

Adds an array of new points and OEM data to an existing
pen data memory block

Initializes the pen data memory block

Performs various memory-saving operations on the pen
data memory block

Allocates memory for a new pen data memory block and
initializes its header

Frees up memory associated with a pen data memory
block

Displays the ink in an hDC

Creates a copy of the given pen data memory block

Unlocks the specified memory block

Gets the status information for the pen data memory
block

Gets the raw data for a stroke stored in the pen data
memory block

Returns an array of points from the pen data memory
block

Converts pen data points to one of the supported metric
modes

Offsets pen data points by a specified amount

Stretches or shrinks the physical size of the pen data
memory block .

Programmer's Reference

112 Chapter 8 Pen API Overview

Custom Recognizer Functions
The recognizer component is replaceable. You can substitute any vector-based recognizer
for the one supplied by Microsoft. Vector refers to the recognition of a sequence of pen
location data points collected as the pen is moving. The other method of recognition,
bitmap, refers to optical character recognition (OCR) techniques, which accept an image
of the characters to be recognized as input.

Bitmap recognition is not supported by the Pen API; however, it is possible to write an
OCR application under Windows. For a complete discussion of recognition features, see
Chapter 7, "Replaceable Components: Recognizers and Dictionaries."

The following table describes the functions that must be supplied in an OEM
recognizer DLL.

Function Description

CloseRecognizer

ConfigRecognizer

InitRecognizer

RecognizeDatalnternal

Recognizelnternal

TrainContextlnternal

Trainlnklnternal

Called when the recognizer is uninstalled by an
application

Sets recognizer-specific parameters

Gives the recognizer a chance to do any initialization
before receiving the first request for recognition

Begins sampling pen data stored in the buffer and
converts the input to recognized symbols

Begins sampling pen data from the tablet and converts
the input to recognized symbols

Informs the recognizer at the DLL recognition level that
the raw data input represents the symbol value results
using contextual information

Informs the recognizer at the DLL recognition level that
the raw data input represents the symbol value results

Any recognizer will also make extensive use of the Pen Module functions described in the
next section. The Pen Module functions provide the means of capturing and manipulating
pen data in the recognition process.

A recognizer may also allow another module to examine the results of recognition before
the results are sent to the application. For more details, see the entry for the
SetRecogHook function in Chapter 9, "Pen API Reference."

Pen Module Functions
The pen module is the component of the RC Manager that the pen driver calls to enter new
events. The pen module is responsible for buffering events and generating the appropriate
Windows mouse events.

A pen module operates in two modes, pen collection mode and mouse mode. The module
is initialized in mouse mode. The RC Manager handles the switching of the two modes.

Microsoft Windows for Pen Computing

Pen API Categories 113

The pen module functions fall into two sets. One set consists of the data collection and pen
information functions called by recognizers and applications. The other set consists of the
functions called by the pen driver.

Function Description

AddPenEvent

EndPen Collection

GetPenHwData

GetPenHwEventData

IsPenEvent

ProcessPenEvent

U pdatePenlnfo

Pen Driver Functions

Adds a pen event to the pen module for later processing.
Called by a pen driver.

Forces an end to pen data collection mode. Called by a
recognizer.

Gets data from the internal pen buffer. Called by a
recognizer.

Gets pen data associated with a range of specified mouse
events. Called by an application.

Checks to see if the given mouse event was generated by
the pen driver. Called by an application.

Tells the pen module to process any pending pen events.
Called by a pen driver.

Updates the PENINFO data structure. Called by the pen
driver only when a PENINFO value changes.

A pen driver provides the same functionality as the mouse driver in the system, and it
provides additional support needed for recognition. A pen driver is free to do any low-level
filtering necessary to correct for hardware problems. This includes correcting for pen skip
(pen up and down actions due to contact bounce), removing duplicate points, and
smoothing jitter. The pen driver is loaded as an installable device driver under Windows
version 3.1.

The pen driver provides two types of functionality:

• The hardware-specific code necessary to convert the tablet's data into the standard pen
format

• The APls to examine the capabilities of the tablet and modify some of its behavior

You can find the source code for the pen driver for the Microsoft Mouse and the Wacom
tablet in the \PENSDK\DDK\T ABLET subdirectories.

The following minimum assumptions apply to the tablet and pen supported by the system:

• The tablet should have a sampling resolution of at least 200 dots per inch. A minimal
sampling rate of 120 samples per second is required.

• A barrel button is recommended. The barrel button does not need to be located
physically on the pen, but the handling of any barrel events should be in the pen driver.

• The ability to detect the position of the pen when it is not in contact with the tablet
surface is strongly recommended.

Programmer's Reference

114 Chapter 8 Pen API Overview

A pen device can provide capabilities in addition to these minimum requirements. Besides
capturing the (x,y) data, a pen device can support as many as eight more types of input
data: pressure (force), height, angle, and others. This optional information is passed in with
the (x,y) data with each pen packet.

All pen driver functionality is implemented with installable driver messages. A pen driver
must also support the standard install able device driver messages.

Appendix B, "Pen Notes for the Windows 3.1 Software Development Kit API," describes
the messages and install able device driver interface of the pen extensions.

Display Driver Functions
The definition of a Windows display driver has been expanded to support inking. Inking is
drawing done by the display driver at interrupt time. The mechanisms for managing inking
are very similar to those used for managing a cursor, the other Windows mechanism for
drawing on the screen at interrupt time without calling the Windows Graphic Device
Interface.

The InkReady function tells the display driver that ink is ready to be drawn. This API is
never called directly by an application. See the Windows Device Driver Development Kit
documentation for more details about building a display driver.

A pen display driver must also define a new pen cursor type, IDC_PEN (value 32631).

Dictionary Functions
When the recognizer has finished attempting to identify the input, it returns a symbol
graph to the RC Manager. If the application has requested the NULL dictionary, it
generates a symbol string from the symbol graph. Otherwise, the RC Manager invokes a
specified set of dictionary modules to perform further processing.

Microsoft provides a dictionary of language words specific to the version of Windows
(English, French, and so on), but you can also build your own custom dictionary with the
DictionaryProc function. If you plan to build your own dictionaries, see Chapter 10, "Pen
Structures." Dictionary return codes are described in Chapter 11, "Pen Messages and
Constants." For complete details on using the DictionaryProc function, see Chapter 9,
"Pen API Reference." The DictionarySearch function performs the requested dictionary
search.

A sample dictionary DLL, \PENSDK\SAMPLES\EXPENSE, is included with this SDK. It
is discussed in detail in Chapter 7, "Replaceable Components: Recognizers and
Dictionaries. "

Microsoft Windows for Pen Computing

ChapJer 9

Pen API Reference

This chapter describes the Pen Application Program Interface (API) functions, listed
alphabetically. Each entry includes a complete description of the function, along with its
syntax.

Each API function description contains the following information.

Heading Meaning

Action

Syntax

Module

Called By

Comments

Return Value

See Also

A short description of the function

The syntax for the API function with a list of parameters

The module that contains or provides the function

A list of modules that call this function

Additional information about the function

The value returned by the function

Related API functions

The Called By and Module headings tell you what class of software developers will use a
particular API function. For example, if you are writing a recognizer, you use functions
called by the recognizer or in the recognizer module. If you are writing an application, you
use the functions called by an application.

Chapter 10, "Pen Structures," describes the structures used in pen computing.

Chapter 11, "Pen Messages and Constants," describes the messages and constants used in
pen computing.

Programmer's Reference

116 Chapter 9 Pen API Reference

AddPenEvent
Action

Module

Called By

Syntax

Comments

Adds a pen event to the pen module for later processing

PenModule

Pen driver

mov si, offset Pen Packet

call dword ptr IpfnAddPenEvent

The basic unit of communication between the pen driver and Windows is a pen packet. A
pen packet contains all of the information about a single logical event: (x,y) coordinate
position, button states, and any optional information such as pressure or barrel rotation.
Many physical events-interrupts-may be needed to construct a single logical event.

On entry, DS:SI should point to a pen packet.

The PENPACKET structure is defined in the TABLET.INC file. The definition is shown
in the following code fragment.

PENPACKET - what drivers should use to communicate with
PenWi n. 011

PENPACKET struc
wTabletX dw 0
wTab 1 etY dw 0

X in tablet coordinates
Y in tablet coordinates

wPOK dw 0 various status bits for packet
rgwOemOata dwMAXOEMOATAWOROS dup (0) ; OEM info like pressure

PENPACKET ends

This function adds the pen packet at ds:[si] to a safe internal location in the pen module.
AddPenEvent is not reentrant. Once the pen packet has been added to the pen module,
the ProcessPenEvent function will process any pending pen events. ProcessPenEvent
can be reentered.

A pen driver should construct a pen packet with tablet interrupts disabled, call
AddPenEvent, re-enable tablet interrupts, and then call ProcessPenEvent.

Return Value None

See Also ProcessPenEvent

Microsoft Windows for Pen Computing

AddPointsPenData 117

AddPointsPenData
Action

Module

Called By

Syntax

Comments

Adds a set of data points to the pen data structure

RC Manager

Recognizer, application

HPENDATA AddPointsPenData(hpendata, /pPnt, /pvOemData, /psiNew)

Parameter Type Description

hpendata HPENDATA Handle to pen data structure.

/pPnt LPPOINT New data points to be added to
structure. Zero points may be added
to force a change of pen state or to set
a new pen state.

/pvOemData LPVOID

/psiNew LPSTROKEINFO

OEM data; can be set to NULL if
there is no additional OEM data. This
is interpreted as indicated in the pen
data header.

Header for new stroke data. Contains
the count of points from /pPnt to be
added.

In use, a call to GetPenHwEventData gets the /psiNew and /pvOemData values. A
subsequent call to AddPointsPenData adds these points to the pen data structure. This
SDK includes an example program, \PENSDK\SAMPLES\sREc\sREC.C, that illustrates
the use of AddPointsPenData.

AddPointsPenData does not scale the data points. It is the caller's responsibility to ensure
the proper scaling.

If adding the points to be added represents the same pen up or down state, the data is
appended to the last stroke. Otherwise, a new stroke is added.

Return Value AddPointsPenData returns a handle to the pen data structure. Normally, this is the same
handle that was originally passed to the function. NULL is returned on an error. The size
of hpendata is limited to 64K.

See Also CreatePenData, GetPenHwData, GetPenHwEventData

Programmer's Reference

118 Chapter 9 Pen API Reference

AtomicVirtualEvent
Action

Module

Called By

Syntax

Comments

Locks out pen packets

RC Manager

System applications (Pen Palette)

void AtomicVirtuaIEvent(fBegin)

Parameter Type

fBegin BOOL

Description

Set TRUE to begin lockout, Set
FALSE to end lockout

This function is used by the Pen Palette or a similar virtual keyboard program to lock out
pen packets while the application is posting simulated key or mouse events. For example,
the following code fragment posts a mouse click:

AtomicVirtualEvent(TRUE);
PostVirtualMouseEvent(VWM_MOUSELEFTDOWN. xPos. yPos);
PostVirtualMouseEvent(VWM_MOUSEMOVE. xPos. yPos);
PostVirtualMouseEvent(VWM_MOUSELEFTUP. xPos. yPos);
AtomicVirtualEvent(FALSE);

Calling AtomicVirtualEvent with a TRUE value blocks out input from physical devices
until they are freed with a FALSE call. Therefore, a call to AtomicVirtuaIEvent(FALSE)
should quickly follow.

Return Value None

See Also PostVirtualKeyEvent, PostVirtualMouseEvent

Microsoft Windows for Pen Computing

BeginEnumStrokes 119

BeginEnumStrokes
Action

Module

Called By

Syntax

Locks an HPENDA T A data structure in memory in preparation to enumerating strokes

RC Manager

Application

LPPENDAT A BeginEnumStrokes(hpendata)

Parameter Type Description

hpendata HPENDATA Handle to pen data structure

Comments This function should be called before GetPenDataStroke. The return value from
BeginEnumStrokes can be used in the GetPenDataStroke function. Any HPENDAT A
locked using BeginEnumStrokes must be unlocked using EndEnumStrokes.

Return Value A far pointer of the type LPPENDAT A. This function will return NULL if hpendata is
compressed or if the handle cannot be locked.

See Also EndEnumStrokes, GetPenDataStr'oke

Programmer's Reference

120 Chapter 9 Pen API Reference

BoundingRectFromPoints
Action

Module

Called By

Syntax

Returns the bounding rectangle specified by the given points

RC Manager

Application, recognizer

void BoundingRectFromPoints(lpPnt, cPnt, {prectBound)

Parameter Type Description

{pPnt LPPOINT Pointer to an array of points

cPnt int Count of points

{prectBound LPRECT Pointer to bounding rectangle
containing /pPnt points

Comments Parameter validation does nothing if {pPnt or {prectBound is an invalid pointer value.

Return Value Returns bounding rectangle in {prectBound. The rectangle is set to an empty rectangle if
cPnt is zero.

See Also DPtoTP

Microsoft Windows for Pen Computing

CharacterToSymbol 121

CharacterToSymbol
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Converts an ANSI string to an array of symbol values

RC Manager

Application

int CharacterToSymbol(lpstr, cSyv, lpsyv)

Parameter Type Description

lpstr LPSTR Pointer to a null-terminated ANSI string

cSyv int Count of maximum symbols lpsyv can
hold

lpsyv LPSYV Pointer to symbol values buffer

Conversion proceeds until a NULL byte is found in lpstr or untillpsyv has been filled with
cSyv symbols. A NULL byte is converted to SYV _NULL.

Number of characters converted

SymbolToCharacter

Programmer's Reference

122 Chapter 9 Pen API Reference

CloseRecognizer
Action

Module

Called By

Syntax

Comments

Informs the recognizer that it is being unloaded by an application

Recognizer

RC Manager

void CloseRecognizerO

This function is called when an application uninstalls a recognizer by a call to
Un install Recognizer .

Because multiple applications can load a given recognizer, it is the recognizer's
responsibility to maintain a use count to determine whether a given CloseRecognizer call
is being made because the last application is unloading.

Because an application may abnormally end without unloading a recognizer, the use count
may be invalid. An alternate strategy is to perform all necessary closing operations-for
example, saving newly trained prototypes-on each call to this function.

This function is in the recognizer and is not called directly by an application.

Return Value None

See Also InitRecognizer, InstallRecognizer, UninstallRecognizer

Microsoft Windows for Pen Computing

CompactPenData 123

CompactPenData
Action

Module

Called By

Syntax

Comments

Compacts the pen data based on specified trim options

RC Manager

Application

HPENDATA CompactPenData(hpendata, wTrimOptions)

Parameter Type Description

hpendata HPENDATA Pen data

wTrimOptions UINT Data-trimming options

CompactPenData trims the pen data in hpendata based on the wTrimOptions parameter.
For complete details on compression and inking, see Chapter 4, "Managing Ink in
Windows for Pens Applications."

The following table lists the trim options.

Trim options Meaning

PDTT_DEFAULT Reallocates memory block to fit the data; does not trim
the data. If you call CompactPenData with this trim
option and the call GlobaISize(hpendata), you can get
the size of the data file to be saved. This data can be
written out like any other block of binary data.

PDTT_COLINEAR

PDTT _COMPRESS

Removes the PENINFO structure from the header;
throws out all data from up points (points collected when
the pen is not in contact with the tablet) and removes
OEM data and collinear points.

Removes successive identical points and colinear points
from the pen data. After the operation is performed,
PDTS_NOCOLINEAR is set in the wPndts field of the
pendata header. The colinear points can be removed with
very little loss of recognition accuracy. If the colinear
points are removed before the points are scaled to
display coordinates, there may be some slight change in
visual image.

Compresses the data without losing any information.
Once the data has been compressed, the compressed
hpendata can be passed as a parameter only to the
following functions: CompactPenData,
GetPenDataInfo, DuplicatePenData.

This is the best compression currently provided by the
CompactPenData function that retains the ability for an
application to come back later and recognize the ink.

Programmer's Reference

124 Chapter 9 Pen API Reference

Trim options

PDTT _DECOMPRESS

PDTT_OEMDATA

PDTT _ UPPOINTS

Meaning

Decompresses the data. You cannot use this option with
any other trim options. Compression will restore the data
completely.

Removes OEM data. (That is, data other than x,y
coordinates - for example, pressure.) This option will
not affect delayed recognition unless you are using a
recognizer that expressly requires OEM data. For
example, signature recognizers often use pressure
information.

Removes the PENINFO structure from the header. Use
this option if there is no OEM data associated with the
data points or if the application will not be using any of
the OEM data. This option will have no effect on the pen
data for delayed recognition.

Throws out all data from up points (points collected
when the pen is not in contact with the tablet). This
option will have no effect on delayed recognition. It
should not be necessary, because the majority of the time
up points are not a part of standard pen data.

Return Value If successful, this function returns an HPENDA T A handle to the PENDA T A structure.

See Also

Otherwise, it returns NULL. CompactPenData may fail and return NULL in low memory
situations if compression or decompression is requested.

The PDTS_ bits are set in the wPdts field in the PENDATA header to indicate which
operations have been performed.

CreatePenData

Microsoft Windows for Pen Computing

ConfigRecognizer 125

ConfigRecognizer
Action

Module

Called By

Syntax

Comments

Sets recognizer-specific parameters

Recognizer

System applications (Pen Palette, Control Panel, and others)

UINT ConfigRecognizer(wConfigRecog, wParam, IParam)

Parameter Type Description

wConfigRecog UINT Specifies recognizer subfunction.

wParam UINT See descriptions following.

IParam LONG Far pointer to buffer.

This function provides various initializations and query functions. The value of
wConfigRecog determines what function is performed.

Recognizer subfunction Meaning

WCR_CONFIGDIALOG This subfunction informs the recognizer to open a dialog
box to set any recognizer-specific parameters. (This is
analogous to DEVMODE in printer drivers, which is
called when a user requests a printer setup.) Some
examples of the type of settings a recognizer may choose
to implement are whether or not to allow cursive input,
how much to depend on stroke order, and how rapidly to
modify prototypes based on the user's own style.

The IParam parameter points to the name of the
currently selected user in the Control Panel. Because the
global RC may not yet have been updated, this may not
be the same as the user in the global RC. The wParam
parameter is used by the recognizer as the parent window
for any dialog boxes it displays. The return value is
always TRUE.

A recognizer may also choose to implement this as a
NULL procedure consisting of just a return statement.

This subfunction returns TRUE if the recognizer is
capable of being a default recognizer. A default
recognizer must support the standard character set as
well as the gestures.

Values above WCR_PRIV ATE have a recognizer
dependent meaning.

This subfunction returns TRUE if the recognizer
supports a configuration dialog.

Programmer's Reference

126 Chapter 9 Pen API Reference

Recognizer subfunction

WCR_QUERYLANGUAGE

WCR_RECOGNAME

WCR_ TRAINCUSTOM

Microsoft Windows for Pen Computing

Meaning

The wParam parameter is not used. The [Param
. parameter points to a null-terminated language string.
For a description of the language strings, see the
documentation for the IpLanguage field of the RC
structure. The return value is TRUE if the recognizer
supports the language; otherwise, it is FALSE.

The [Param parameter points to the new default RC
structure. An application that loads nondefault
recognizers should call this subfunction for each
recognizer it has loaded in response to a
WM_GLOBALRCCHANGE message. The return value
is TRUE. A recognizer may support only some RC
fields, such as language or user fields, at the global level.

This subfunction treats the IParam parameter as a far
pointer to a buffer that is filled with an identification
string from the recognizer. The wParam parameter is the
size of the buffer to fill. The identification string is a
description of the recognizer that the Control Panel
presents to the user, for example, "US English character
set, cursive & print." The return value is always TRUE.

This subfunction returns TRAIN_NONE if the
recognizer does not support training. A return value of
TRAIN_DEFAULT indicates support for the default
trainer. A return value of TRAIN_CUSTOM indicates
that the recognizer also provides its own custom trainer.
A return value of TRAIN_BOTH indicates support for
both kinds of training.

If the recognizer returns TRAIN_CUSTOM or
TRAIN_BOTH in response to WCR_TRAIN, it will
receive a WCR_TRAINCUSTOM message when it is
time to display its own training system. The format for
calling this subfunction is:

ConfigRecognizer(WCR_TRAINCUSTOM, hwnd,
lprcresu[t)

The hwnd parameter is a handle to the requesting
window; the trainer uses this as the parent window for a
dialog box, for example. If there has been a recent
recognition, a pointer to it will be passed in the [Param
field, although this may be null.

Recognizer subfunction
WCR_TRAINDIRTY

WCR_TRAINSA VE

WCR_USERCHANGED

ConfigRecognizer 127

Meaning
The recognizer returns TRUE if the recognizer needs to
save training. The recognizer returns FALSE if no
training occurred, if the recognizer does not use a
database for training, if the recognizer saves as it works,
or if the recognizer cannot revert the training. The
format for this subfunction call is:

ConfigRecognizer(WCR_ TRAINDIRTY,O,O).

The recognizer returns the maximum number of SYV s
that it can train for any given shape. It should return ° if
it can train any number of characters. For example, the
Microsoft recognizer can train as many as three
characters for a shape (so that it can recognize ligatures),
but a cursive recognizer may allow more.

The trainer calls ConfigRecognizer
(WCR_ TRAINSA VE, TRAIN_SAVE, °) when it is
time to save the database. This happens when the user
closes the trainer. After this call, the recognizer should
return TRUE if it can successfully save the database;
otherwise, it should return FALSE.

The trainer calls ConfigRecognizer
(WCR_ TRAINSA VE, TRAIN_REVERT, °) before it
discards any changes made to the database that have not
yet been saved to disk (that is, revert to saved). This
happens when the user cancels the changes. Again, the
recognizer should return TRUE if it is successful.

This subfunction notifies the recognizer that a user has
changed. The lParam parameter points to the name of
the user that is affected. The modification is indicated by
the wParam parameter. Currently, only one modification
notification is sent to a recognizer. A wParam value of
CRUC_REMOVE indicates that the user is being
removed from the user list. If the recognizer has saved
any files or settings for the user, they should be deleted
in response to this notification. If the recognizer receives
this message with a new user, it should do nothing.

The return value is 0.

The function returns version number. The low-order byte
of the return value specifies the major (version) number.
The high-order byte specifies the minor (revision)
number.

Return Value The return value is described in the preceding table for each WCR_ value.

Programmer's Reference

128 Chapter 9 Pen API Reference

CorrectWriting
Action

Module

Called By

Syntax

Comments

Sends text to the edit text dialog for modification

RC Manager

Application

BOOL CorrectWriting(hwnd, !pBuJ, ebBuJ, !pre, dwCwrF!ags, dwReserved)

Parameter Type Description

hwnd HWND Handle to the window that is the
owner of the correction dialog.

!pBuJ LPSTR Text to be corrected.

ebBuJ UINT Number of characters (greater than 1)
in !pBuf This should include space
for the NULL terminator of the string.

!pre LPRC Pointer to RC structure for context or
NULL.

dwCwrF!ags DWORD Translation and style flags. NULL is
the default.

dwReserved DWORD Reserved for future use. NULL is the
default.

An application calls CorrectWriting to send text to the Edit Text dialog box. Normally,
this would be in response to receiving the SYV _CORRECT gesture.

The hwnd parameter contains a Windows handle to the window that will be used as the
owner of the dialog box created for correction. The Edit Text dialog box will be
application-modal, based on the hwnd parameter.

The !pBuJ parameter contains the text to be corrected. It is zero-terminated with a
maximum size of ebBuf The corrected text is also returned in !pBuf As a general rule, the
!pBuJparameter should allow for growth by a factor of two or more-or some maximum
size that is dependent on the field of entry.

If [pre is not NULL, the following fields from !pre are used as the context for correction. If
the field in !pre has a default value, it will not override the corrector's default value.

_ lpfn Yield _ IpUser

_ IpLanguage _ rglpdf

- wTryDictionary - clErrorLevel

- ale - alePriority

- rgbfAle - dwDictParam

- dwRecognizer - hrec

Microsoft Windows for Pen Computing

CorrectWriting 129

The dwCwrFlags parameter can be any combination of the following. The default value of
NULL indicates that none of these translation flags are to be applied.

Subfunction Meaning

CWR_STRIPLF

CWR_STRIPCR

CWR_STRIPTAB

CWR_SINGLELINEEDIT

CWR_TITLE

Removes the LF characters

Removes the CR characters

Removes the tab characters

CWR_STRIPLF I CS_STRIPCR I CWR_STRIPTAB

If this flag is set, dwReserved is interpreted as an
LPSTR pointer to a null-terminated caption string.

If the user chooses OK from the Correction dialog box, and if any of the dwCwrFlags
(except CWR_TITLE) are set, then the dwCwrFlags characters are removed from the
buffer before the text is returned to the application.

Return Value This function returns TRUE if the OK button is pressed in the Edit Text dialog box.
Otherwise, it returns FALSE. If FALSE is returned, the application should leave the text
unchanged in the original application.

Programmer's Reference

130 Chapter 9 Pen API Reference

CreatePenData
Action

Module

Called By

Syntax

Comments

Creates a PENDA T A structure

RC Manager

Application, recognizer

HPENDATA CreatePenData(lppeninJo, cbOemData, wPdtScale, gmemFlags)

Parameter Type Description

IppeninJo LPPENINFO Far pointer to tablet information for
filling the HPENDA T A structure. If
this is NULL, the current tablet
settings are used.

cbOemData

wPdtScale

gmemFlags

int

UINT

UINT

Width of OEM data packet. If this
value is greater than or equal to 0, the
OEM data will override whatever is
contained in the PENINFO structure.

Data scaling metric value. (See the
following table.)

Parameter for specifying the flags
passed to the Windows GlobalAIloc
function when memory for the
HPENDA T A object is created. The
gmemFlags parameter should be 0 or
GMEM_DDESHARE.

The following table lists the wPdtScale values. These scaling values are also used in the
API function MetricScalePenData and in the wPdts field of PENDA TAHEADER.

The scaling values do not behave in the same way as the Windows terms of the same
name. For example, in the Windows GDI, a line 1 inch long in MM_HIENGLISH will not
necessarily be an inch long on the screen, because the GDI does not know the size of the
monitor. However, with PDTS_HIENGLISH in MetricScalePenData, an application can
assume that a line drawn an inch long really is an inch long.

Scaling value Meaning

PDTS_LOMETRIC Each logical unit is mapped to 0.01 mm. Positive x is
to the right; positive y is down.

PDTS_HIMETRIC

PDTS_HIENGLISH

Each logical unit is mapped to 0.001 mm. Positive x
is to the right; positive y is down.

Each logical unit is mapped to 0.001 inch. Positive x
is to the right; positive y is down.

Data points are in tablet units.

Microsoft Windows for Pen Computing

Scaling value

PDTS_ARBITRARY

PDTS_STANDARDSCALE

CreatePenData 131

Meaning

The application has done its own scaling of the data
point.

The standard scaling metric is equivalent to
PDTS_HIGHENGLISH.

Return Value This function returns a handle to the pen data memory block that was created. The
HPENDAT A data type is returned to the recognizer to represent raw data. On creation, the
pen data memory block contains no point.

If successful, this function returns an HPENDAT A handle to the PENDAT A structure.
Otherwise, it returns NULL. It returns NULL on a memory allocation failure.

See Also DestroyPenData

Programmer's Reference

132 Chapter 9 Pen API Reference

DestroyPenData
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Frees up memory associated with an hpendata memory block

RC Manager

Application, recognizer

#define DestroyPenData(hpendata) (GlobalFree (hpendata) == NULL)

The Destroy PenData macro uses the Windows GlobalFree function to free up memory
associated with the specified hpendata memory block.

This function returns TRUE if the macro is successful. Once memory is freed, the
hpendata handle is no longer valid.

CreatePenData

Microsoft Windows for Pen Computing

DictionaryProc 133

DictionaryProc
Action

Module

Called By

Syntax

Comments

Entry point into dictionary module

Dictionary

RC Manager

int FAR PASCAL DictionaryProc(dirq, [pIn, [pOut, cbMax, dwContext, dwData)

Parameter Type Description

dirq int

[pIn LPVOID

[pOut LPVOID

cbMax int

dwContext DWORD

dwData DWORD

Dictionary subfunction number. See
the dictionary subfunction table
following.

Input parameter (type dependent on
dirq).

Output parameter (type dependent on
dirq).

Size of [pOut buffer.

Reserved for future implementation.

Dictionary-specific data.

This is the only exported function required in any dictionary DLL. A sample dictionary
DLL is discussed in Chapter 7, "Replaceable Components: Recognizers and Dictionaries."
A sample dictionary is supplied with the SDK. It is available in the \sAMPLES\EXPENSE
subdirectory.

The process of loading dictionaries and identifying entry points is handled in the same way
as any other DLL. That is, you use the LoadLibrary and GetProcAddress API-functions
under Windows.

Dictionary Subfunction Table (dirq Parameter)
The following table lists the dictionary subfunctions.

DlRQ subfunction Meaning

DIRQ_QUERY This subfunction queries the dictionary. The [pIn
parameter is a far pointer to an integer containing a
DIRQ_ value. It returns TRUE if the dictionary
supports the subfunction; otherwise, it returns FALSE.

Programmer's Reference

134 Chapter 9 Pen API Reference

DlRO subfunction

DIRQ_SYMBOLGRAPH

DIRQ_USER

Meaning
This subfunction looks for the existence of a string.
The [pIn parameter points to a SYV _NULL
terminated array of symbol values. If a match for the
string is found, cbmax symbols from [pIn are returned
in [pOut. If not successful, DIRQ_STRING returns
zero. Otherwise, it returns the number of symbols
copied to [pOut. SYV _NULL terminates the output
buffer if enough space is available. The return count
does not include SYV _NULL.

The [pIn parameter can be NULL. NULL can be used
as a signal to the dictionary to return any deferred
match.

Note that a dictionary implementation does not have
to be a simple lookup. For example, a dictionary
function can be written to determine if the input
matches the format for a social security number.

This subfunction is provided so that applications can
use the same dictionaries for spell checking as for
handwriting recognition. The [pIn parameter is a
pointer to a symbol string. Symbol strings terminated
by SYV _NULL are placed in [pOut. The end is
marked by two successive SYV _NULLs. The return
value is the count of alternatives placed in [pOut. A
dictionary implementation can be written so that, if
the word being looked up is in the dictionary,
DIRQ_SUGGEST always returns FALSE or,
alternatively, the contents of [pIn in [pOut.

This subfunction is provided so that dictionaries can
examine the whole symbol graph before each
enumeration is passed in individually. The [pIn
parameter contains a far pointer to the symbol graph.
The other parameters are the same as those in
DIRQ_STRING. Before enumerating,
DIRQ_SYMBOLGRAPH checks each dictionary
once to see if any dictionary is prepared to handle the
whole symbol graph. The check takes place if
RCO_SUGGEST is on.

Values greater than DIRQ_ USER (that is, >4096) can
be used for private calls to the dictionary DLL. Each
dictionary can define its own values.

Other DIRQ_ values are defined for adding words, deleting words, and saving dictionaries.
These are discussed in the OEM Dictionary Module section, later in this listing. However,

Microsoft Windows for Pen Computing

DictionaryProc 135

only the subfunctions in the preceding list are called by the DictionarySearch API, which
is in the RC Manager.

A dictionary called with a subfunction number it does not support should return FALSE. A
dictionary must support DIRQ_OPEN, DIRQ_CLOSE, DIRQ_QUERY, DIRQ_STRING,
DIRQ_DESCRIPTION, DIRQ_INIT, and DIRQ_CLEANUP.

NULL Dictionary
The NULL dictionary provides the minimum mapping functionality from a symbol graph
to a symbol string. The resulting string is the best enumeration as returned by
FirstSymbolFromGraph.

DictionarySearch Function
When the recognizer has attempted to identify the input, it returns a symbol graph. If the
application has requested the NULL dictionary, it generates a symbol string from the
symbol graph. Otherwise, the RC Manager calls the DictionarySearch function.

If the RCRESUL T field hSyv is not NULL, the RC Manager assumes that the dictionary
has already filled it in. This means the recognizer can perform the dictionary processing
itself. Once the recognizer has completed its dictionary processing, it simply sets hSyv in
RCRESUL T to a non-NULL value. The recognizer must set hSyv to NULL every time if
it is not performing the dictionary processing.

Word Definitions and Validation
If you build a dictionary, you determine the rules for identifying which words to validate.
For example, the symbol graph may contain punctuation or other symbol values not in the
character set supported by the dictionary. A dictionary can strip out punctuation and
perform the lookup, or it can just fail on words containing symbols outside the dictionary's
supported character set.

Unless RCO_NOSPACEBREAK is set in the RC structure, the symbol strings passed to
the dictionaries are divided at white-space characters.

A symbol graph passed to a dictionary may include a space as an option. For example, the
symbol graph fat {space I null }cat represents two possible strings: "fat cat" and "fatcat."
These are passed in as two words.

The RC Manager passes a parameter into the dictionary to provide access to dictionary
functionality not directly supported. The dwDictParam parameter is set by an application
and passed on to the dictionary by the RC Manager. For example, a dictionary may request
that the application pass in a pointer to a structure containing the sentence to which the
results of the recognition will be added, as well as an indication of where in the sentence
the new characters are to be added.

Spell Checking
Spell checking should be handled in the normal ways by the application using handwriting
input. Dictionary modules can also be used by the recognizer for spell checking. However,
to avoid outguessing the user, the recognizer does not attempt corrections based on

Programmer's Reference

136 Chapter 9 Pen API Reference

spelling errors except when DIRQ_SUGGEST is specified. For example, if the user writes
"seperate," the recognizer will not report "separate"-unless it indicates that the second
"e" could be an "a." However, the application is free to take the result returned by the RC
Manager and perform spell checking on it.

OEM Dictionary Module
The dictionary module provides a way of loading in DLLs as dictionaries and establishing
a default dictionary to look through. Loading dictionaries and identifying entry points are
handled in the same way that printer drivers use the Windows LoadLibrary and
GetProcAddress functions.

DlRO subfunction

DIRQ_CLOSE

DIRQ_ COPYRIGHT

Microsoft Windows for Pen Computing

Meaning

Adds a word to the word list. The [pOut parameter is
the word (SYV string) to add. The [pIn parameter is a
handle to the word list returned by DIRQ_OPEN.

DIRQ_ADD returns 1 if the word if successfully
added. Otherwise, it returns O.

Closes or discards a word list. The [pIn parameter is a
pointer to the handle previously received after a
successful DIRQ_OPEN.

DIRQ_ CLOSE returns 1 if successful; otherwise, it
returns O.

The dictionary DLL determines whether or not to
save all of the changes made through DIRQ_ADD,
DIRQ_DELETE, and DIRQ_FLUSH before closing a
word list.

Opens the dictionary DLL's private configuration
dialog. This can be used to establish which word lists
to use with the given dictionary DLL. The [pIn
parameter points to a window handle to be used as the
parent of the dialog box.

DIRQ_CONFIGURE returns 1 if the user makes a
change.

Returns in [pOut a maximum of cbMax characters of a
copyright notice for the dictionary DLL. This
subfunction returns TRUE if if [pOut is not empty.
The description should not exceed 255 bytes.

Deletes a word from the word list. The [pOut
parameter is the word (SYV array) to delete. The [pIn
parameter is a word list handle.

DIRQ_DELETE returns 1 if the word is successfully
deleted.

DIRQ subfunction

DIRQ_DESCRIPTION

DIRQ_OPEN

DIRQ_QUERY

DIRQ_RCCHANGE

DictionaryProc 131

Meaning

Returns in lpOut a description string for the dictionary
DLL. Example: "Microsoft English Language
Dictionary." This description is used by the Control
Panel. The description should not exceed 80 bytes.

Deletes all words in a word list. The lpIn parameter
points to the handle of the word list.

Loads a word list. The lpIn parameter points to a
string specifying the word list to load. It can be a full
path or any other implementation-dependent method
of identifying individual word lists.

Dictionary word-list files are dependent on the
particular dictionary implementation. Dictionary
implementation determines whether successive loads
are merged or replace one another.

If the subfunction is successful, the lpOut parameter
points to the handle to the word list for subsequent
use.

DIRQ_OPEN returns TRUE if successful.

Queries the dictionary. The [pIn parameter points to
an integer representing a DIRQ_ value.

DIRCLQUERY returns TRUE if the dictionary
supports the subfunction.

Enables dictionaries to respond to a change in their
environment-for example, a .INI change of current
language. This subfunction is also used to allow a
change in any other parameter in the supplied RC. It
is the responsibility of an application to call this
subfunction for all nondefault dictionaries it loads. It
is analogous to the WCR_RCCHANGE subfunction
of ConfigRecognizer.

The lpIn parameter points to the new global RC.

Language dictionary DLLs can unload the currently
loaded language dictionary and load the new language
dictionary in response to this call. How or whether to
respond to this call is determined by the DLL
implementation.

Programmer's Reference

138 Chapter 9 Pen API Reference

DlRQ subfunction

DIRQ_SETWORDLISTS

Meaning

Sets the user/language word lists to search through in
DIRQ_STRING, DIRQ_SUGGEST, and
DIRQ_SYMBOLGRAPH commands. If the function
is not successful because of incorrect handles, the old
search lists are retained.

The lpIn parameter contains an array of handles
obtained by using DIRQ_OPEN. The cMax parameter
is the count of handles in the array.

DIRQ_SETWORDLISTS returns TRUE if successful.

Microsoft User Dictionary DLL
The Microsoft User Dictionary DLL (USERDICT.DLL) supports a user-defined set of
words, with the following DIRQ_ values.

• DIRQ_ADD • DIRQ_OPEN

• DIRQ_ CLOSE • DIRQ_QUERY

• DIRQ_DELETE • DIRQ_SETWORDLISTS

• DIRQ_DESCRIPTION • DIRQ_STRING

On initialization (in LibMain), the user dictionary DLL loads all of the user dictionaries
(to a maximum of 16) in the [MsUserDict] section of the PENWIN.INI file.

The PENWIN.INI file might look like the following:

[MsUserDict]
c:\pensdk\bin\names.dic=
c:\states.dic=

Each task can open a maximum of 16 word lists, so as many as 16 word lists can be set up
for default searching. If a task performs a DIRQ_SEARCH without first using a
DIRQ_OPEN or a DIRQ_SETWORDLIST, the input buffer will be searched for a match
in the default dictionaries.

The word lists are a list of strings, one string per line, listed in alphabetic order. A user
dictionary can be created using a word processor. The word-list file should not have any
other formatting information and should not be terminated by a "Z character.

Microsoft Language Dictionary DLL
The Microsoft Language Dictionary DLL (MAINDICT.DLL) is a multilingual dictionary
that currently allows more than one dictionary to be loaded at a time.

Microsoft Windows for Pen Computing

DictionaryProc 139

MAINDICT.DLL supports the following DIRQ_ subfunctions:

• DIRQ_CLEANUP • DIRQ_QUERY

• DIRQ_CLOSE • DIRQ_RCCHANGE

• DIRQ_COPYRIGHT • DIRQ_SETWORDLISTS

• DIRQ_DESCRIPTION • DIRQ_STRING

• DIRQ_INIT • DIRQ_SUGGEST

• DIRQ_OPEN

On initialization (with LibMain), MAINDICT.DLL loads the current language
dictionaries based on the sLanguage keyword in PENWIN.INI.

The following table lists the implementation for each DIRQ_ subfunction within
MAINDICT.DLL. Only those subfunctions with additional details beyond the descriptions
given previously are described.

DlHQ subfunction Description

DIRQ_ CLEANUP

DIRQ_CLOSE

DIRQ_COPYRIGHT

DIRQJNIT

This subfunction is provided so that dictionaries can
do any cleaning up before termination. The RC
manager calls dictionary DLLs with this message
before unloading the dictionary DLL.

Closes a language word list. The [pIn parameter is a
pointer to the handle received after a successful
DIRQ_OPEN.

DIRQ_CLOSE returns TRUE if the close is
successful.

This subfunction returns the copyright string, if one is
available, into the buffer specified by [pOut. The size
of the buffer is cbMax. It returns TRUE if a copyright
string was returned; otherwise it returns FALSE.
Dictionaries should be able to respond to this message
at all times.

This subfunction is provided so that dictionaries can
do any initialization (such as loading a default word
list). The RC manager calls the dictionary DLLs with
this subfunction before using them for spell checking
during the recognition process.

A dictionary DLL may get two or more consecutive
DIRQ_INIT messages before getting any
DIRCL CLEANUP messages. You should keep a
count of the DIRQ_INIT calls, which are incremented
and decremented for each DIRQ_INIT or
DIRQ_ CLEANUP subfunction use.

Programmer's Reference

140 Chapter 9 Pen API Reference

DIRQ_OPEN

DIRQ_RCCHANGE

DIRQ_SETWORDLISTS

Microsoft Windows for Pen Computing

Opens a language word list. The lpI n parameter is a
pointer to a three-letter language code for the
language word list to be loaded. These codes are
listed later in this section. The lpOut parameter
returns the handle to the language word list. Other
parameters are not used.

The function returns TRUE if the open is sucessful;
otherwise, it returns FALSE. The handle returned on a
successful open can later be used for setting the word
lists to search through. For more information, see
DIRQ_SETWORDLISTS, later in this listing.

Version 1.0 of MAINDICT.DLL can deal with only
one language at a time.

Responds by loading a new language dictionary if the
current language has changed and the dictionary is not
already loaded.

Sets the language word lists to search through in
DIRQ_STRING and DIRQ_SUGGEST commands. If
the function is not successful because of incorrect
handles, the old search lists are retained.

The lpIn parameter is (iot FAR *) containing an array
of handles obtained by doing DIRQ_OPEN. The
cMax parameter is the count of handles in the array.

DIRQ_SETWORDLISTS returns TRUE if successful.

If the calling task has not made any open calls to
DIRQ_OPEN, or its search list is empty, the DLL
searches through the current language dictionary.
Otherwise, it goes through the search lists in
sequence. In Windows version 3.1, you can set or
change the current language, using the Control Panel.

See Also

DictionaryProc 141

Language Codes for DIRG_OPEN
The following are the three-letter language codes that /pln can point to when you open a
language word list. They are the same as those allowed under Windows, version 3.1.

• NLD (Dutch) • ITA (Italian)

• ENG (International English) • NOR (Norwegian)

• FRC (French Canadian) • PTG (Portuguese)

• FRA (French) • ESP (Spanish)

• DEU (German) • SVE (Swedish)

• ISL (Icelandic; not yet supported) • ENU (American English)

• ESN (Modern Spanish) • DAN (Danish)

• FIN (Finnish)

To load the language word list, the DLL looks for keyword XXXMain= where XXX
represents any of the three-letter language codes under the [MsMainDict] section in
PENWIN.INI. If the keyword is found, the DLL tries to open the file indicated.
Otherwise, it looks for MSSP _ YY.LEX in the BIN directory-or wherever you installed
the SDK. Note that multilingual searches are costly in terms of time and memory.

The "YY" letters stand for the following language-specific two-letter codes:

• NL (Dutch) • NN (Norwegian)

• BR (English) • PB (Portuguese)

• FC (French Canadian) • SP (Spanish)

• FR (French) • SW (Swedish)

• GE (German) • AM (American English)

• IT (Italian)

DictionarySearch

Programmer's Reference

142 Chapter 9 Pen API Reference

DictionarySearch
Action

Module

Called By

Syntax

Comments

Performs the requested dictionary search

RC Manager

Application, RC Manager, recognizer

BOOL DictionarySearch(lpre, /psye, eSye, /psyv, eSyvMax)

Parameter Type Description

/pre LPRC Pointer to the RC structure to be used
in the search.

/psye LPSYE Pointer to an array of symbol
elements that constitute the symbol
graph.

eSye int Number of SYEs in the array.

/psyv LPSYV Output buffer of SYV s. This
parameter contains the return results
of the dictionary search.

eSyvMax int Size of the output buffer.

The DictionarySearch function takes the symbol graph in /psye, performs a dictionary
search based on the options set in /pre, and returns the result as an array of SYVs in the
buffer pointed to by /psyv. The function returns the number of SYV elements copied,
limited by the maximum specified in the eSyvMax parameter. A SYV _NULL value is
always appended at the end, and therefore /psyv must have enough space for esyvMax+ 1
SYVelements.

DictionarySearch first passes in the symbol graph with DIRQ_SYMBOLGRAPH to all
the dictionaries in the rglpdf array in the [pre structure. If none succeeds, the function
enumerates the symbol graph in /psye and searches through all of the dictionary functions
for a match. The caller can get suggestions by setting the RCO_SUGGEST flag in the
IRcOptions field in /pre. When this flag is set and no enumeration is found in any of the
dictionaries in the rglpdf array, DictionarySearch tries to get a suggestion from the
dictionaries on the path. It takes the first suggestion offered by any dictionary and returns
that as the result of the search. If there are no suggestions, the function returns the best
enumeration.

The best enumeration is obtained using the FirstSymbolFromGraph function.

If the option RCO_NOSPACEBREAK is set in the IRcOptions field of /pre, the function
treats the entire /psye array as a single symbol graph. If this flag is not set, the function
breaks down the input symbol graph into tokens delimited by white space, performs the
search sequence on each of them, and assembles the result in the /psyv array.

This function uses the EnumSymbols function for enumeration and the wTryDictionary
field in /pre to specify the maximum number of enumerations to search through for each
symbol graph token.

Microsoft Windows for Pen Computing

DictionarySearch 143

Return Value The DictionarySearch function returns TRUE if any enumeration is found in a
dictionary. It returns FALSE if a NULL dictionary was requested or none of the
enumerations was found in any dictionary.

See Also Dictionary Proc

Programmer's Reference

144 Chapter 9 Pen API Reference

DPtoTP
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Converts an array of points in display coordinates to tablet coordinates

RC Manager

Application

BOOL DPtoTP(lpPnt, cPnt)

Parameter Type

IpPnt

cPnt

LPPOINT

int

Description

Pointer to an array of points

Count of points

Because of possible rounding errors, the DPtoTP and TPtoDP functions are not
guaranteed to be complete inverses of each other. It is the caller's responsibility to avoid
overflow by not passing in points beyond the limits of the current physical display.
DPtoTP returns TRUE.

TPtoDP

Microsoft Windows for Pen Computing

DrawPenData 145

DrawPenData
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Displays the pen data in the specified device context

RC Manager

Application

void DrawPenData(hdc, lprect, hpendata)

Parameter Type Description

hdc HDC Device context

lprect LPRECT Bounding rectangle for ink, in client
coordinates

hpendata HPENDATA Handle to pen data memory block

DrawPenData draws the pen data specified by hpendata into the device context specified
by hdc. The hdc value may also specify a Windows metafile handle.

The application using DrawPenData is reponsible for either scaling the data points or
setting the mapping appropriately if lprect is NULL.

If lprect is not NULL, the points are scaled into lprect as the drawing is done. Internally, a
non destructive use of SetViewportExt - SetViewPortOrg and SetWindowOrg
SetWindowExt renders the pen data in the device context within the bounds of the
provided rectangle. You will have to compute the proper pen width (assuming it is other
than 1) before calling this function with a non-nulliprect to account for the scaling that is
going to occur.

DrawPenData draws the ink in the rectangle relative to the upper-left corner of the
window. It ignores any changes that have been made to the HDC's origin by previous calls
to the Windows functions SetWindowOrg or SetViewportOrg. If the origin has changed,
the rectangle passed to DrawPenData must be offset by the appropriate amount.

The PENDA T A structure has no graphic attributes -such as ink width or color
associated with it.

If the ink is to be drawn with a width of greater than -I pixel, the currently selected pen
must be set to the appropriate width (in client coordinates if a mapping mode is set in the
DC) for the proper width to result. For example, if the mapping mode has been set to
MM_HIENGLISH, then the pen width needs to be set to a number appropriate for the
desired width in HIENGLISH units to preserve the proper scale of the ink. This scaling is
an issue only when the ink width is greater than 1.

Because of aliasing effects, DrawPenData may not draw the exact same pixels that were
originally inked. If an exact reproduction is required, you should use RedisplayPenData.

None. If hpendata is NULL, DrawPenData does nothing.

CreatePenData, Du plicatePenData, Redisplay PenData

Programmer's Reference

146 Chapter 9 Pen API Reference

DuplicatePenData
Action

Module

Called By

Syntax

Creates a copy of the pen data

RC Manager

Application

HPENDATA DuplicatePenData(hpendata, gmemFlags)

Parameter Type Description

hpendata

gmemFlags

HPENDATA

UINT

Data to be duplicated

Memory-allocation flag

Comments The DuplicatePenData function duplicates the data specified by the hpendata parameter
by creating a second pen data memory block.

The gmemFlags parameter specifies the flags to be passed to the Windows GlobaIAlloc
function when memory for the pen data memory block is created. The gmemFlags
parameter is connected with GMEM_MOVEABLE by an OR operator when the global
heap data is allocated.

Return Value If successful, this function returns an HPENDATA handle to the duplicate PENDATA
structure. Otherwise, it returns NULL. It will return NULL on a failure to allocate
memory.

See Also CreatePenData, DestroyPenData

Microsoft Windows for Pen Computing

EmulatePen 147

EmulatePen
Action Emulates a pen in applications that do not use the standard Windows I-beam cursor in text

areas

Module

Called By

Syntax

RC Manager

Application

void EmulatePen if Pen)

Parameter Type

(Pen BOOL

Description

Flag to set pen emulation. TRUE
activates pen emulation; FALSE turns
it off.

Comments EmulatePen enables applications that do not use the I-beam to get I-beam functionality
over text fields in the application. Call this function withfPen set to TRUE whenever the
cursor is over a text window in the application. When the cursor leaves that area, call
EmulatePen withfPen set to FALSE. Iff Pen has been set to TRUE and the Pen Palette is
currently running, then a tap of the pen will enable the Pen Palette to process the pen input
for the active application. If the Pen Palette is not present, calling EmulatePen has no
effect.

Note EmulatePen might not be supported in future versions of Microsoft Windows for Pen
Computing. This function is intended to aid those developers using Windows software
development tools that have not been updated for pen functionality and that do not give
the developers access to Windows handles or other Windows APIs. Most applications can
use ProcessWriting or hedit controls instead. These methods are described in Chapter 6,
"Using Pen Controls and the ProcessWriting Function."

Return Value None

See Also ProcessWriting

Programmer's Reference

148 Chapter 9 Pen API Reference

EndEnumStrokes
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Unlocks the specified memory block

RC Manager

Application

#define EndEnumStrokes (hpendata) GlobalUnlock (hpendata)

The EndEnumStrokes macro uses the Windows GlobalUnlock function to unlock the
global memory block specified by the hpendata parameter. This macro should be called
when the application has completed the GetPenDataStroke function. The buffer filled by
a call to GetPenDataStroke will not be valid after a call to EndEnumStrokes.

The function returns NULL if the macro is successful. Once this has been called, any
pointers returned by GetPenDataStroke are invalid.

BeginEnumStrokes, GetPenDataStroke

Microsoft Windows for Pen Computing

EndPenCollection 149

EndPenCollection
Action

Module

Called By

Syntax

Forces an end to pen collection mode

RC Manager

Recognizer

BOOL EndPenCollection(recEnd)

Parameter Type

recEnd REC

Description

Error code parameter

Comments The EndPenCollection function is called by a recognizer or the RC Manager. The
recognizer calls this function to stop collection. This may occur, for example, if the
recognizer runs out of memory.

The error code parameter, recEnd, will be returned by GetPenHwData on some future
call. Since data might still be available when this call is made, the caller should continue
to call GetPenHwData until the return value indicates that pen mode has ended.

Return Value EndPenCollection returns TRUE if the call succeeds. The call will fail if the pen is down
when the call is made and recEnd is not negative. If the call fails, the pen module remains
in the collection mode. This function returns FALSE if it is not currently in collection
mode.

Programmer's Reference

150 Chapter 9 Pen API Reference

EnumSymbols
Action

Module

Called By

Syntax

Comments

Enumerates strings from a symbol graph in order of most probable to least probable

RC Manager

RC Manager, application

UINT EnumSymbols(lpsyg, wMaxStr, /pEnumFunc, /vData)

Parameter Type Description

/psyg LPSYG Pointer to symbol graph

wMaxStr UINT Maximum number of strings to
enumerate

/pEnumFunc

IvData

FARPROC

LPVOID

Pointer to enumeration function

Application-specific data

The EnumSymbols function enumerates all strings of symbols-to a maximum defined by
wMaxStr-that can be generated from the symbol graph /psyg. The /pEnumFunc parameter
is a pointer to the enumeration function called with each enumeration.

To generate all the symbols from a symbol graph, set wMaxStr equal to
GetSymboICount(lpsyg).

EnumFunc
int FAR PASCAL EnumFunc(lpsyv, csyv, IvData)

Parameter . Type Description

/psyv LPSYV Symbol string

csyv

IvData

int

FAR VOID *
Count of symbols in string

Pointer passed in from EnumSymbols

EnumFunc is a placeholder for an application-supplied name. This function must be
exported in the module definition file. EnumFunc should return 0 to stop enumeration.

Return Value EnumSymbols returns the number of strings enumerated.

See Also FirstSymbolFromGraph, SYG structure

Microsoft Windows for Pen Computing

ExecuteGesture 151

ExecuteGesture
Action

Module

Called By

Syntax

Comments

Executes a gesture

RC Manager

System application (Pen Palette)

BOOL ExecuteGesture(hwnd, syv, lprcresult)

Parameter Type

hwnd HWND

~v SYV

lprcresult LPRCRESULT

Description

Window handle

Gesture to map

Pointer to the RCRESUL TS structure

This function attempts to convert the gesture in syv to a set of keystrokes that the user has
mapped using the Gesture Mapper. The hwnd parameter specifies the application that will
receive the mapped gesture. If no mapping exists, ExecuteGesture tries to get the default
mapping of the gesture. If a mapping is found, one of three things happens:

• The gesture is sent to the system queue as a set of keystrokes.

• The mapping is placed in the lpsyv element of the RCRESUL TS structure.

• The mapping is placed in the lpsyv element as another gesture if it maps to some
standard key sequences.

In general, ExecuteGesture is called once to get the mapping. If necessary, it is called a
second time to send the mapped keystrokes to the application.

If lprcresultis NULL, the result is always sent as keystrokes. If lprcresult is not NULL,
the type conversion is indicated by the flags in the wResultsType element of lprcresult. If it
is translated to an ANSI string, the RCRT_GESTURETRANSLATED flag is set. If it is
translated to another gesture, the RCRT_GESTURETRANSLATED and
RCRT _GESTURE flags are set. If neither of these two translations is true, the translation
is to a set of virtual key codes, and the RCRT_GESTURETOKEYS and
RCRT_ALREADYPROCESSED flags are set.

To send the results of a mapping, call ExecuteGesture with the
RCRT_GESTURETOKEYS flag set in the wResultsType field in the RCRESULT
structure. The function will send the virtual keys that have been placed in lpsyv as symbol
values to the system as keystrokes. Once the keys have been sent, ExecuteGesture resets
the flag.

Programmer's Reference

152 Chapter 9 Pen API Reference

If the result of the mapping is one of the keystrokes listed in the following table, then the
keystrokes are replaced by the corresponding symbol gesture.

Keystrokes Gesture

CTRL+INS

SHIFf + INS

ALT + BACKSPACE

SHIFf + DEL

SYV_COPY

SYV_PASTE

SYV_UNDO

SYV_CUT

When a gesture is mapped to virtual keys and the keys are inserted into the lpsyv element
of the lprcresult parameter passed in, each element in the lpsyv array is of the type SYV
with the following format:

• The HIWORD is set to SYVHI_ VKEY.

• If the LOWORD has the most significant bit cleared, the LOBYTE contains the virtual
keycode as defined in WINDOWS.H. The HIBYTE has CONTROL, ALT, or SHIFf bits
set. For example, Ox00060441 means an SYV for ALT+A, Ox00060270 means CTRL+FI,

and Ox0006012D means SHIFf+INS.

• If the LOWORD has the most significant bit set, the lower three nibbles contain binary
coded decimal numbers indicating an ALT+NUMPAD combination. For example, .
Ox00068199 means an SYV for an ALT+NUMPAD combination that translates to ANSI
code 199.

Return Value This function returns TRUE if the given gesture is mapped to text, keystrokes, or another
gesture.

Microsoft Windows for Pen Computing

FirstSymbolFromGraph 153

Fi rstSym bo I From G ra p h
Action

Module

Called By

Syntax

Places into lpsyv the array of symbols that is the likeliest interpretation of the symbol
graph

RC Manager

Application

void FirstSymboIFromGraph(lpsyg, lpsyv, cSyvMax, IpcSyv)

Parameter Type Description

lpsyg LPSYG Symbol graph.

lpsyv

cSyvMax

IpcSyv

LPSYV

int

LPINT

Array of symbols.

Buffer size.

Number of symbols returned in lpsyv.
This value is 0 if lpsyg is empty. It is
-1 if the buffer is not large enough to
hold the results.

Comments The array of symbols is identical to the first string returned to the EnumFunc procedure of
EnumSymbols.

Return Value None

See Also EnumSymbols

Programmer's Reference

154 Chapter 9 Pen API Reference

GetGlobalRC
Action

Module

Called By

Syntax

Comments

Queries the current default settings and fills the RC structure with the global values

RC Manager

System applications (Control Panel)

UINT GetGlobaIRC(lprc, /pDejRecog, /pDefDict, cbDefDictMax)

Parameter Type Description

/prc LPRC Pointer to RC structure.

/pDejRecog LPSTR Buffer in which the default recognizer
module name is returned. This must
be 128 bytes long.

/pDefDict LPSTR

cbDefDictMax int

Buffer in which the default dictionary
path is returned. This ends with
double zero byte values.

Size of /pDefDict buffer to be filled.

GetGlobalRC fills the RC structure with global values. Values that have no default
settings-for example, the bounding rectangle-are set to zero.

An application does not need to call this function to use the default values. When an
application initializes an RC structure using InitRC, the system default values are set as
the values for the structure fields. Any of the parameters /prc, /pDejRecog, or /pDefDict
may be NULL to indicate that the caller is not interested in the value.

This function returns the actual current values for RC fields. The InitRC function returns
the default values; these include placeholder values for some RC fields.

Return Value The following table lists the possible return values:

Value Meaning

GGRC_DICTBUFfOOSMALL

See Also InitRC, SetGlobalRC

Microsoft Windows for Pen Computing

The function has run successfully without
any errors.

One or more invalid parameters were
detected. The call to GetGlobalRC has no
effect.

The size of the /pDefDict buffer is not large
enough to contain the entire dictionary
path. The buffer is filled with as many
complete dictionary module names as
allowed by the size. The list is terminated
by a NULL string.

GetMessageExtralnfo 155

GetMessageExtralnfo
Action

Module

Called By

Syntax

Comments

Gets extra information associated with a mouse message

Windows (USER.EXE)

RC Manager, application

LONG GetMessageExtralnfoO

The Windows 3.1 GetMessageExtralnfo function is called in response to a mouse
message to retrieve the extra information passed along with the event. The following
paragraphs describe pen-specific information.

If the message was generated by a pen driver, the low word of the return value contains the
wEventRefvalue and the high word contains the shift states of the barrel buttons (the
PDK_ values). The wEventRefvalue can be used as the parameter to Recognize or
GetPenHwEventData to reference the tablet data.

If the message was not generated by a pen driver, the return value of
GetMessageExtralnfo should be zero-as it is, for example, for a Microsoft Mouse.
However, because this value was undefined in previous versions of Windows, it may not
be zero. The IsPenEvent function can test the value to determine if it is a pen event even
if the long value is nonzero. All devices and emulators that guarantee compatibility with
stylus use will set the long value to zero. For other messages, the value is undefined.

Because of the manner in which Windows coalesces mouse messages, an application is
guaranteed to get only the most recent position of the mouse during a move-and not
necessarily all the intervening positions. Although this is more than acceptable for most
uses of the mouse, it can cause problems with recognition efforts.

The pen module maintains a circular buffer of the pen events. As each event is received
from the pen driver, it is placed in the buffer as well as entered into the system message
queue as a mouse message. Along with the mouse message, two other pieces of
information are tagged to the message: the state of the pen driver barrel buttons and a
reference to the raw pen event (an index into the buffer).

Programmer's Reference

156 Chapter 9 Pen API Reference

GetPenAsyncState
Action

Module

Called By

Syntax

Gets the barrel buttor:t state of the pen

RC Manager

Application

BOOL GetPenAsyncState(wPDK)

Parameter Type

wPDK UINT

Description

PDK_ value

Comments The wPDK parameter is one of the PDK_ values for the barrel buttons. The following table
lists the PDK_ values.

Constant

PDK_BARRELI

PDK_BARREL2

PDK_BARREL3

Value

Ox0002

Ox0004

Ox0008

Meaning

Set if barrel button #1 is depressed

Set if barrel button #2 is depressed

Set if barrel button #3 is depressed

Return Value This function returns TRUE if the given barrel state is down when the call is made.

Microsoft Windows for Pen Computing

GetPenDatalnfo 157

GetPenDatalnfo
Action

Module

Called By

Syntax

Returns the header and pen information from the pen data memory block

RC Manager

Application, RC Manager, recognizer

BOOL GetPenDatalnfo(hpendata, lppendataheader, lppeninfo, dwReserved)

Parameter Type Description

hpendata HPENDATA Raw pen data

lppendataheader LPPENDATAHEADER Buffer for the information
contained in the pen data type
structure header

lppeninfo

dwReserved

LPPENINFO

DWORD

Pointer to the PEN INFO structure
(may be NULL)

Reserved for future use.

Comments Applications can use this routine to get the header and pen information in the pen data
memory block. If lppeninfo is non-NULL and the pen data does not contain pen
information, the contents of lppeninfo are not changed.

The amount of data allocated is contained in lppendataheader ->cbSizeUsed.

Return Value This function returns TRUE if sllccessful. The returned data is placed in lppendataheader.
GetPenDatalnfo returns FALSE if invalid parameters were used or it cannot lock
HPENDATA.

Programmer's Reference

158 Chapter 9 Pen API Reference

GetPenDataStroke
Action

Module

Called By

Syntax

Comments

Returns a pointer to the data

RC Manager

Application

BOOL GetPenDataStroke(lppendata, wStroke, IplpPoint, IplpvOem, Ipsi)

Parameter Type Description

Ippendata LPPENDATA

wStroke UINT

IplpPoint LPPOINT FAR *

IplpvOem LPVOIDFAR *

Ipsi LPSTROKEINFO

Pen data to be enumerated. This
parameter is the value returned by a
previous call to the
BeginEnumStrokes function.

Which stroke to get. The number of
the stroke is zero-based.

Pointer to the data. You should be
careful about modifying the data in
your application. This pointer
becomes invalid when you call
EndEnumStrokes.

OEM data block. If IplpvOem is
NULL, no OEM data is returned. If it
is not NULL, IplpvOem points to the
OEM data block. The format of the
OEM data is specified by the peninfo
field in the PENDA T AHEADER
structure.

Contains a pointer to the
STROKEINFO structure to be filled.

The GetPenDataStroke function returns a pointer in IplpPoint to the pen data associated
with the stroke at the position specified by wStroke. The data is an array of POINTS.

You must call BeginEnumStrokes before calling GetPenDataStroke. After the last call
to GetPenDataStroke, you must call EndEnumStrokes. Once EndEnumStrokes is
called, the points contained in IplpPoint and IplpvOem are no longer valid.

Return Value GetPenDataStroke returns TRUE if the call succeeds. If the stroke requested is out of
range, it returns FALSE.

See Also BeginEnumStrokes, EndEnumStrokes

Microsoft Windows for Pen Computing

GetPenHwData 159

GetPenHwData
Action

Module

Called By

Syntax

Comments

Fetches data from the internal pen buffer

RC Manager

Recognizer

REC GetPenHwData(ipPnt, IpvOemData, cPntMax, wTimeOut, Ipsi)

Parameter Type Description

IpPnt LPPOINT Buffer to fill with pen event data.

IpvOemData LPVOID Buffer to fill with OEM-specific data
(an array of OEM words). This can be
NULL if no data is required.

cPntMax int

wTimeOut UINT

Ipsi LPSTROKEINFO

Maximum number of samples to
. return.

GetPenHwData returns
REC_ TIMEOUT if wTimeOut msecs
have elapsed since the last time pen
down data was added to the queue.

Stroke information, including the
count of points and point state. Also
included is the time stamp of the first
point returned in the buffer. It is
expressed in milliseconds since the
start of collection mode.

The GetPenHwData function fetches data from the internal pen buffer. It should be called
only by the recognizer.

The first call to this function returns the data pointed to by the rc.wEventRef passed to
Recognize. Subsequent calls return data immediately following the previously returned
data.

GetPenHwData returns (in Ipsi) the stroke information. In addition, GetPenHwData
returns in IpPnt points which represent either all pen-down or all pen-up points. In other
words, on a single call, GetPenHwData will stop filling the buffer when the next point to
add is not in the same state as the previous point. Consecutive calls may return points of
the same state if there is not enough room in the return buffer or if the data was not yet
available. For more details on the STROKEINFO structure, see Chapter 10, "Pen
Structures."

The IpPnt parameter must be at least sizeof(POINT)*cPntMax and IpvOemData must be
NULL or cbOemData*cPntMax in size to avoid overflow. (The cbOemData parameter is
defined in the PENINFO structure using the function). If no data is available, Ipsi->cPnt
== ° and the return value is REC_OK.

The collection of data ends with a nonzero return value.

Programmer's Reference

160 Chapter 9 Pen API Reference

Return Value GetPenHwData returns the following values.

See Also

Value Meaning

REC_OVERFLOW

REC_NOCOLLECTION

REC_PARAMERROR

REC_TERMBOUND

REC_TERMEX

REC_ TERMPENUP

REC_ TERMRANGE

REC_TERMTIMEOUT

REC_TERMOEM

The call is successful. The /pPnt parameter contains
/psi.cPnt points of valid data. The /psi.cPnt parameter
may equal zero if no data is currently available.

The driver buffer has overflowed, with possible loss of
data. The /pPnt data is not valid.

Recognition was halted by a call to EndPenCollection
with this value. The /pPnt data is not valid.

Pen collection mode has not been set.

An invalid parameter has been passed to
GetPenHwData.

The call was ended because of a hit test outside the
bounding rectangle. The /pPnt parameter is filled with
the point causing the stop.

The call was ended because of a hit test inside the
exclusion rectangle. The /pPnt parameter is filled with
the point causing the stop.

The call was ended on pen up. The /pPnt parameter is
filled with the pen-up point that ended the recognition.

The call was ended because the pen left the proximity
range. The /pPnt data is not valid.

The call was ended on time out.

Values >= 512 are reserved for termination reasons
specific to the recognizer.

AddPointsPenData, EndPenCollection, STROKEINFO structure

Microsoft Windows for Pen Computing

GetPenHwEventData 161

GetPenHwEventData
Action

Module

Called By

Syntax

Gets the pen data associated with events wEventRefBeg through wEventRefEnd

RC Manager

Application

REC GetPenHwEventData(wEventRefBeg, wEventRefEnd, /pPnt,
/pvOemData, cPntMax, /psi)

Parameter Type Description

wEventRefBeg UINT Beginning pen event.

wEventRefEnd

/pPnt

/pvOemData

cPntMax

/psi

UINT

LPPOINT

LPVOID

int

LPSTROKEINFO

Ending pen event.

Buffer to fill to with (x,y) data.

Buffer to fill with OEM-specific data.
. This can be NULL if no data is
I required.

Maximum number of samples to
return.

Filled with stroke information
including the count of points and
point state. Also included is the time
stamp of the first point returned in the
buffer, recorded in milliseconds since
Windows startup.

Comments This function fetches all data collected from the pen event wEventRefBeg through the pen
event wEventRefEnd, excluding the final point. If wEventRefBeg equals wEventRefEnd,
GetPenHwEventData fetches the pen event associated with wEventRefBeg.

The values for wEventRefBeg and wEventRefEnd are obtained by a call to
GetMessageExtralnfo.

Unlike GetPenHwData, this function can be called directly from an application.

Return Value The following table lists the values returned by GetPenHwEventData.

Value Meaning

REC_OK

REC_BUFFERTOOSMALL

REC_PARAMERROR

The buffer was successfully filled.

The cPntMax buffer is not large enough.

An invalid parameter has been passed to
GetPenHwEventData

If REC_BUFFERTOOSMALL is returned, no data is returned and the cPnt field of /psi

Programmer's Reference

162 Chapter 9 Pen API Reference

contains the number of points between wEventRefBeg and wEventRefEnd. If REC_OK is
returned, IpcPnt contains the number of valid points placed in IpPnt.

See Also GetPenHwData, GetMessageExtraInfo.

Microsoft Windows for Pen Computing

GetPointsFromPenData 163

GetPointsFromPenData
Action

Module

Called By

Syntax

Comments

Gets the specified data points

RC Manager

Application

BOOL GetPointsFromPenData(hpendata, wStroke, wPnt, cPnt, /ppoint)

Parameter Type Description

hpendata HPENDA T A Handle to pen data structure

wStroke UINT Which stroke to get

wPnt

cPnt

/ppoint

UINT

UINT

LPPOINT

Beginning point in wStroke

Number of points to get

Buffer to fill

The GetPointsFromPenData function copies the points between wPnt and wPnt + cPnt in
the stroke specified by wStroke to the buffer /ppoint.

If wStroke is greater than the number of strokes in hppendata, GetPointsFromPenData
returns the points from the last stroke. If the count of points to return is 1 and wPnt is
beyond the last point in the stroke, GetPointsFromPenData returns the last point in the
stroke.

Return Value GetPointsFromPenData returns TRUE if the call succeeds. If you are asking for points
that are out of range, it returns FALSE.

See Also GetPenDataStroke

Programmer's Reference

164 Chapter 9 Pen API Reference

GetSymbolCount
Action

Module

Called By

Syntax

Return Value

See Also

Returns the number of symbol string enumerations possible in a symbol graph

RC Manager

Application

int GetSymboICount(lpsyg)

Parameter Type Description

lpsyg LPSYG Pointer to symbol graph

This function returns the number of possible symbol strings that can be generated from the
symbol graph. Returns -1 for any graph that can generate more than 32,767 symbol
strings.

For example, if the symbol graph lpsyg is ex { a I u } mp 1 e, a call to GetSymbolCount
returns the value 2, because two symbol strings can be generated ("example" and
"exumple").

EnumSymbols, FirstSymbolFromGraph, GetSymbolMaxLength

Microsoft Windows for Pen Computing

GetSymbolMaxLength
Action

Module

Called By

Syntax

Gets the length of the longest symbol string

RC Manager

Application

int GetSymboIMaxLength(lpsyg)

Parameter Type

/psyg LPSYG

GetSymbolMaxLength 165

Description

Pointer to the symbol graph

Return Value This function returns the number of symbols in the longest symbol string that can be
generated from the symbol graph. For example, if the symbol graph /psyg is
ab {c I de } f, a call to GetSymbolMaxLength returns 5, because the longest string is
"abdef."

See Also EnumSymbols, FirstSymbolFromGraph

Programmer's Reference

166 Chapter 9 Pen API Reference

GetVersionPenWin
Action

Module

Called By

Syntax

Return Value

Gets the version number of Microsoft Windows for Pen Computing

RC Manager

Application

UINT GetVersionPenWinO

The low-order byte of the return value specifies the major (version) number. The high
order byte specifies the minor (revision) number.

Microsoft Windows for Pen Computing

InitRC
Action

Module

Called By

Syntax

Comments

InitRe 167

Fills an RC structure with the default values

RC Manager

Application

void InitRC(hwnd, /pre)

Parameter Type

hwnd HWND

/pre LPRC

Description

Window handle

Pointer to RC structure

InitRC fills an RC structure with the default values.The resulting RC structure is a valid
RC structure that can be passed to Recognize. Although an application can change any of
these values, it should be careful about changing those items that can be set by the user
through the Control Panel.

InitRC sets the bounding rectangle to the client area of hwnd. The bounding rectangle set
by InitRC is valid only until the window is resized or moved, when it becomes invalid.
Therefore, an application cannot use InitRC once and then use the rectBound field in the
resulting RC without modification. If the window handle hwnd is NULL, then the
bounding rectangle and rc.hwnd are Jeft unitialized. The rc.hwnd field must be set to a
valid window before Recognize or RecognizeData is called.

Values not listed in the following table are set to the value in the global RC structure.
Some of the global default values can be modified by the user in the Control Panel. These
global values are described in Chapter 11, "Pen Messages and Constants."

RC structure field Value

rc.alc

rc.lRcOptions

rc.hwnd

rc.wResultMode

rc.rectBound

rc.IPcm

rc.rectExclude

rc.guide

rc.wRcOrient

rc. w RcDirect

ALC_DEFAULT. That is, the function uses the complete
alphabet and all gestures. The exact character set is
recognizer-dependent.

° hwnd (the argument)

RRM_COMPLETE

(0,0,0,0) or client rectangle of hwnd if hwnd is not
NULL

PCM_ADDDEFAULTS

(0,0,0,0)

(0,0,0,0,0,0,0)

RCOR_NORMAL

RCD_DEFAULT

Programmer's Reference

168 Chapter 9 Pen API Reference

Those values that can be changed through the system Control Panel are filled with values
indicating that the system default should be used. These placeholder values are
RC_ WDEFAULT or RC_LDEFAULT, depending on whether the field is a UINT or
LONG value. During the processing of Process Writing, Recognize, or RecognizeData,
these values are replaced with the current system defaults before the RC structure is
passed to the recognizer.

If the PCM_ADDDEFAULTS flag is set in rc.lPcm, the values of the lPcm field in the
global RC are combined with the current rc.IPcm values with OR operators at the time the
recognizer is called.

If the high bit is set in rc.wRcPreferences, the values of the wRcPreferences field in the
global RC are combined with the current rc.wRcPreferences values with OR operators at
the time the recognizer is called.

Re structure field Default value

rc.hrec RC_WDEFAULT

rc.lpfn Yield RC_LDEFAULT

rc.lpUser RC_LDEFAULT

rc.wCountry RC_WDEFAULT

rc. w IntIPreferences RC_ WDEFAULTFLAGS

rc.1 pLanguage RC_LDEFAULT

rc.rglpdf RC_LDEFAULT

rc. wTry Dictionary 100

rc.cIErrorLevel RC_WDEFAULT

rc. wTimeOut RC_WDEFAULT

rc. w RcPreferences RC_ WDEFAULTFLAGS

rc.nlnkWidth RC_WDEFAULT

rc.rgbInk RC_LDEFAULT

rc.alcPriority ALC_NOPRIORITY

rc.rgbfAIc Array initialized to zero

The RC structure pointed to in the RCRESUL TS structure is a copy of the original RC
structure passed in as a parameter to Recognize. In this copy, the default values are
replaced; all coordinates are in tablet coordinates, and the lRcOptions field have the
RCO_TABLETCOORD flag set.

Return Value None

See Also Recognize, RecognizeData

Microsoft Windows for Pen Computing

InitRecognizer 169

InitRecognizer
Action

Module

Called By

Syntax

Comments

Gives the recognizer a chance to do any initialization before receiving the first request for
recognition

Recognizer

RC Manager

BOOL InitRecognizer(lpre)

Parameter Type Description

[pre LPRC Long pointer to RC structure

InitRecognizer is called when the recognizer is loaded by a call to InstaIlRecognizer
after the DLL's LibMain but before any other function in the recognizer's DLL. It is
called with a copy of the global RC.

Applications should not call this function directly but should call InstaIlRecognizer
instead.

Return Value Returns FALSE if the load fails. The recognition load can fail if the recognizer requires
resources that are not available-for example, a pressure-sensitive pen. It is the
recognizer's responsibility to' post any error messages on failure.

See Also CloseRecognizer, InstallRecognizer, SetGlobalRC

Programmer's Reference

170 Chapter 9 Pen API Reference

InstallRecognizer
Action

Module

Called By

Syntax

Comments

Loads a specified recognizer

RC Manager

Application

HREC InstallRecognizer(/pszR eco gN arne)

Parameter Type

/pszRecogNarne LPSTR

Description

Recognizer module name to load. If
/pszRecogNarne is NULL, the default
recognizer is loaded. Windows does
this automatically on initialization.

The recognizer's name is the name of the DLL to be loaded. The standard rules for
searching for a DLL are used. The procedure fails if the library cannot be found, the load
fails, or the loaded DLL is not a valid recognizer. The load may also'fail if the recognizer
requires services that are not provided by the current pen driver-for example, pressure.

After the recognizer is loaded, InitRecognizer is called by the RC Manager. An
application should not load the default recognizer. All recognizers installed by an
application must be uninstalled by a call to UninstalIRecognizer before the application
terminates.

If an application loads a recognizer with a call to LoadLibrary instead of
InstallRecognizer, only the ConfigRecognizer function in the recognizer can be called.

Return Value The return value is a handle to a recognizer to be used in the RC structure.
InstalIRecognizer returns NULL on an error.

See Also InitRecognizer, UninstalIRecognizer

Microsoft Windows for Pen Computing

IsPenAware 171

IsPenAware
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Checks the capability of an application to handle pen events

RC Manager

System Application

UINT IsPenAwareO

This function is called to determine which handwriting events are handled by the
application for the current task. The information returned is the registration flags
previously set by a call to the RegisterPenApp function.

IsPenA ware returns the registration flags word set by a previous call to the
RegisterPenApp function. If RegisterPenApp has not been called previously,
IsPenAware returns zero.

RegisterPenApp

Programmer's Reference

172 Chapter 9 Pen API Reference

IsPenEvent
Action

Module

Called By

Syntax

Checks to see if a mouse event was generated by the pen driver

RC Manager

Application

BOOL IsPenEvent(message,IExtralnfo)

Parameter Type

message UINT

IExtralnfo LONG

Description

Windows mouse message being
queried

Value returned by
GetMessageExtralnfo for the given
message

Note Mouse drivers that have not been updated to be compatible with pens may produce an
event that cannot be distinguished from a real pen event. This has a very low probability of
occurring.

Return Value This function returns TRUE if the given mouse event was generated by the pen driver. All
other messages return FALSE.

Microsoft Windows for Pen Computing

MetricScalePenData 173

MetricScalePenData
Action

Module

Called By

Syntax

Comments

Converts pen data points to one of the supported metric modes

RC Manager

Application

BOOL MetricScalePenData(hpendata, wPdts)

Parameter Type Description
hpendata

wPdts

HPENDATA

UINT

Pen data points to be converted

Scaling metric to be used with the
data

The MetricScalePenData function scales the points in hpendata according to the scaling
values given by the wPdts parameter.

The following table lists the wPdts scaling values.

Scaling value Meaning

PDTS_LOMETRIC Each logical unit is mapped to 0.1 mm. Positive x is to
the right; positive y is down.

PDTS_HIMETRIC

PDTS_HIENGLISH

Each logical unit is mapped to 0.01 mm. Positive x is to
the right; positive y is down.

Each logical unit is mapped to 0.001 inch. Positive x is
to the right; positive y is down. This is equivalent to
PDTS_STANDARDSCALE.

This parameter scales the data, using DPtoTP. The pen
data memory block will be left in display coordinates.
Strictly speaking, this is not a metric scale.

To use the PDTS_DISPLA Y scale type, the current scale of the data must be in
PDTS_STANDARDSCALE units. The PDTS_DISPLA Y scale also assumes that the
desired tablet-to-display ratio is equal to the current ratio for the display and tablet.

The effect of this call is similar to that of using the TPtoDP function on the array of
points. A recognizer may not accurately recognize the resulting data.

As with the other scales, the PDTS_DISPLA Y is set in the wPndts field of the pendata
header. If data is in PDTS_DISPLAY scale, MetricScalePenData cannot be called to
scale it back to the other metric scales.

No overflow checks are made. Because of rounding errors, the conversion of scalings is
not perfectly reversible.

All recognizers must recognize points that have been scaled to
PDTS_STANDARDSCALE (equivalent to PDTS_HIENGLISH).

Programmer's Reference

174 Chapter 9 Pen API Reference

Return Value MetricScalePenData returns TRUE ifsuccessful; it returns FALSE if hpendata is in a
compressed state or if the data is not already in one of the metric modes-for example, if
the data is in PDTS_ARBITRARY mode.

See Also OffsetPenData, ResizePenData

Microsoft Windows for Pen Computing

OffsetPenData
Action

Module

Called By

Syntax

Offsets pen data points by a specified amount

RC Manager

Application

BOOL OffsetPenData(hpendata, dx, dy)

Parameter Type

hpendata "PENDATA

dx int

dy int

OffsetPenData 175

Description

Handle to pen data memory block.

x -axis offset: amount to move left or
right. To move left, the dx value must
be negative.

y-axis offset: amount to move up or
down. To move up, the dy value must
be negative.

Comments For every point in hpendata, dx is added to the x-coordinate and dy is added to the y
coordinate. No overflow checks are made.

Return Value OffsetPenData returns TRUE if successful, FALSE if hpendata is in a compressed state.

See Also MetricScalePenData, ResizePenData

Programmer's Reference

176 Chapter 9 Pen API Reference

PostVi rtua I KeyEvent
, Action

Module

Called By

Syntax

Posts a virtual key code event to Windows

RC Manager

System applications (Pen Palette)

void PostVirtuaIKeyEvent(vk,jUp)

Parameter Type

vk

{Up

UINT

BOOL

Description

Virtual key

Key transition-FALSE for down,
TRUE for up

Comments This function does not check the virtual key code for errors.

You can post repeating keys by calling PostVirtualKeyEvent consecutively withjUp
FALSE. End this by a single call withjUp set to TRUE.

The events are posted to the system message queue and can be received by the application
with the input focus, using the GetMessage and PeekMessage calls.

Return Value None

See Also AtomicVirtualEvent, PostVirtualMouseEvent

Microsoft Windows for Pen Computing

PostVirtualMouseEvent 177

PostVirtualMouseEvent
Action

Module

Called By

Syntax

Comments

Posts a virtual mouse code event to Windows

RC Manager

System applications (Pen Palette)

void PostVirtuaIMouseEvent(wMouseFlag, xPos, yPos)

Parameter Type Description

wMouseFlag UINT Mouse flag

xPos

yPos

int

int

The x position in screen coordinates

The y position in screen coordinates

The x and y positions are absolute positions in screen coordinates. Note that the x and y
values should not exceed the screen resolution limits. The wMouseFlag parameter is one
of the values in the following table.

Constant Value

VWM_MOUSEMOVE

VWM_MOUSELEFTDOWN

VWM_MOUSELEFTUP

VWM_MOUSERIGHTDOWN

VWM_MOUSERIGHTUP

OxOOOl

Ox0002

Ox0004

Ox0008

OxOOlO

The VWM_MOUSELEFTDOWN and VWM_MOUSELEFTUP constants are set only to
mark a transition in state. The VWM_MOUSEMOVE constant is set if the cursor changes
positions. A move and button transition can be entered in the same event by connecting the
correct flags with OR operators.

The events are posted to the system message queue and can be received by the application
with the input focus, using the GetMessage and PeekMessage calls.

Because of the way Windows interprets mouse messages, the caller must be careful about
the order in which events are sent to the system. A message that represents both a button
state transition and a move will generate first a Windows event for the button transition at
the current cursor location and then a move to the new location. If the expected result is a
move to a new location and then a button transition, this requires two separate calls to
Post VirtualMouseEvent.

When posting events, the caller should bracket the calls by calls to Atomic VirtualEvent,
which is used to lock out pen packets while the application is posting simulated mouse
events. For example, the following code fragment posts a mouse event:

AtomicVirtualEvent(TRUE);
1* PostVirtualMouseEvent calls go here */

AtomicVirtualEvent(FALSE);

Programmer's Reference

178 Chapter 9 Pen API Reference

Return Value

See Also

GetMessageExtraInfo will return 0 for any messages generated with this function.

None

Atomic VirtualEvent, GetMessageExtraInfo, Post VirtualKey Event

Microsoft Windows for Pen Computing

Process Pen Event 179

ProcessPenEvent
Action

Module

Called By

Syntax

Comments

Tells the pen module to process any pending pen events

RC Manager

Pen driver

call dword ptr IpfnProcessPenEvent

The ProcessPenEvent function tells the pen module to process any queued pen events that
have been added with the AddPenEvent function. This function is reentrant and can be
called with all interrupts-including tablet interrupts-enabled.

Processing a pen packet may involve graphics operations, copying large amounts of
memory, calling numerous Windows APls, and other time-consuming operations.
Therefore, it is recommended that a pen driver enable the tablet interrupts before the call
to ProcessPenEvent.

A pen driver should construct a pen packet with tablet interrupts disabled, call
AddPenEvent, re-enable tablet interrupts, and then call ProcessPenEvent.

Return Value None

, See Also AddPenEvent

Programmer's Reference

180 Chapter 9 Pen API Reference

ProcessWriti ng
Action

Module

Called By

Syntax

Comments

Processes handwriting

RC Manager

Application

REC ProcessWriting(hwnd, [prc)

Parameter Type

hwnd HWND

[prc LPRC

Description

Window to receive messages. This
parameter must not be NULL.

Pointer to RC structure to use for
recognition. This parameter can be
NULL.

The ProcessWriting function simplifies the task of converting an existing application to
take advantage of handwriting input-both gestures and characters. This function is
similar to Recognize except that, in addition, ProcessWriting takes care of inking,
removing the ink, and converting the results message to standard Windows messages.

Depending on the existing code in an application, Process Writing may not be suitable for
making an application pen-aware. This function can also limit the power of a pen
interface.

The hwnd parameter is the window to receive messages. It cannot be NULL. The [prc
parameter is the RC structure to use for recognition. If the [prc parameter is an RC, the
results mode field is ignored and the recognition terminates on RRM_COMPLETE.

The window specified by the hwnd parameter receives a WM_PARENTNOTIFY message
when ProcessWriting destroys its inking window. The wParam value is WM_DESTROY,
and [Param contains -1 in the HIWORD. The LOWORD of [Param contains the window
handle of the inking window being destroyed. An application may ignore this message.

If [prc is NULL, a default RC structure is created for the application. The default RC
structure contains all system defaults. In addition, the inking is constrained to the client
area of hwnd. Otherwise, [prc->rectBound is used to constrain the inking.

The ProcessWriting function is normally called on the mouse-click message
WM_LBUTTONDOWN or at other times with a non-NULL [prc that contains a valid
wEventRef

On a call to Recognize or ProcessWriting, during a WM_LBUTTONDOWN message,
the application does not receive the corresponding pen up message.

After the writing is completed, the ink is removed before any messages are sent to hwnd.
After the ink is removed, the screen is updated and hwnd receives a WM_RCRESUL T
message. If the application processes this message, it should return a nonzero value. If the
application returns 0 (DefWindowProc will return 0 for this message), ProcessWriting
performs the default conversion of the results message to standard Windows messages.

Microsoft Windows for Pen Computing

ProcessWriting 181

By default, when an application receives a WM_RCRESULT message as a result of a
ProcessWriting call, the lprcresult->hpendata value is NULL. If you want to have the
hpendata returned, set the RCO_SA VEHPENDATA flag in the rc.1RcOptions field. If this
is done, the caller must free hpendata.

If an application returns FALSE to the WM_RCRESULT message, the application
receives the Windows messages shown in the following table. The messages are sent rather
than posted. If the application returns TRUE to the WM_RCRESUL T message, no further
messages are sent.

Result

SYV _BACKSPACE

SYV_CLEAR

SYV _CLEARWORD

SYV_COPY

SYV _CORRECT

SYV_CUT

SYV_EXTENDSELECT

SYV_PASTE

SYV_RETURN

SYV_SPACE

Messages to hwnd

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_ CHAR of backspace.

WM_CLEAR

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
same point, followed by WM_ CLEAR.

WM_COPY

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
hotspot of the gesture, followed by WM_COPY; then the
Edit Text dialog box is activated, and it pulls text from
the Clipboard. This uses the existing selection if any is
present.

The previous contents of the Clipboard are lost.

WM_CUT

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture. The
MK_SHIFT flag is set for the wParam of these
messages.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture.
WM_PASTE.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_ CHAR of RETURN.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_CHAR of SPACE.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hotspot of the gesture,
followed by WM_CHAR of TAB.

Programmer's Reference

182 Chapter 9 Pen API Reference

Result

SYV_UNDO

text

all other results

Messages to hwnd

WM_UNDO

One WM_CHAR message per character of text.

No messages.

Additional information is included in Chapter 6, "Using Pen Controls and the
ProcessWriting Function."

Return Value The ProcessWriting function returns values of less than 0 if the application should treat
the event as a mouse event instead of a pen event. Return values of less than zero occur if
the event did not come from a pen, the user performed a press-and-hold action
(REC_POINTEREVENT), or an error-for example, running out of memory occurred.

See Also InitRC, Recognize, RC structure, RCRESULT structure

Microsoft Windows for Pen Computing

Recognize 183

Recognize
Action

Module

Called By

Syntax

Comments

Begins sampling pen data and converts tablet input to recognized symbols

RC Manager

Application

REC Recognize(lpre)

Parameter Type Description

[pre LPRC Recognition parameters

This is the primary recognition function. An application calls Recognize to begin
recognition on a pen event identified by [pre ->wEventRef (For information on the
wEventRe!parameter, see the entry for GetMessageExtralnfo, earlier in this chapter.)
The [pre parameter contains the parameters that control the recognition. Results are sent
through the WM_RCRESULT message to the window indicated in [pre. All results
messages are sent before this function returns. Multiple result messages may be sent if the
application asks for results to be sent to the application before all input has been
completed (as indicated by rc.wResuItMode).

Recognize should be called in response to a WM_LBUTTONDOWN message.

On a call to Recognize or ProcessWriting, the application will not receive the
corresponding pen up message.

Return Value The following table lists the possible return values. Recognize may also return any of the
return values from GetPenHwData.

The value REC_OK is used in the wParam of the WM_RCRESULT message to indicate
that more data is coming. Return values of greater than zero signal normal successful
completion. Return values of less than 0 indicate abnormal termination. Return values of
less than REC_DEBUG are reserved for return values from debugging versions of the
system or recognizer. If an application creates a condition that would be caught in a
debugging version while running a nondebugging version, the results are undefined.

Each of the values listed below can be the wParam value of the WM_RCRESULT
message or the return value for Recognize. The wParam value of the last
WM_RCRESUL T message generated by a call to Recognize will be the return value of
Recognize. Some error conditions, such as REC_OOM or REC_NOTABLET, will be
returned without any WM_RCRESULT message being generated.

Value Meaning

To be followed by other results before Recognize
terminates. This is a valid wParam value for
WM_RCRESULT, but it can never be the return value
for Recognize.

Recognition stopped by a call to EndPenCollection with
this value. The [pPnt data is not valid.

Programmer's Reference

184 Chapter 9 Pen API Reference

Value

REC_BADHPENDAT A

REC_BUFFERTOOSMALL

REC_BUSY

REC_DONE

REC_NOINPUT

REC_NOT ABLET

REC_OOM

REC_OVERFLOW

REC_POINTEREVENT

REC_TERMBOUND

REC_TERMEX

REC_TERMOEM

REC_ TERMPENUP

REC_ TERMRANGE

REC_ TERMTIMEOUT

Microsoft Windows for Pen Computing

Meaning

Returned if hpendata in /prc cannot be locked or has an
invalid header. It is also returned if hpendata has no data
in it or if the data is in an incorrect scale or compressed.

Returned by GetPenHwEventData.

Returned if another task is currently performing
recognition.

Returned by RecognizeData upon normal completion.

Returned by RecognizeData if the buffer contains no
data; returned by Recognize if recognition ends before
any data is collected, for example, a pen down occurs
outside the bounding rectangle before any data is
collected.

Tablet not physically present.

Out-of-memoryerror.

Data overflow during execution of the call.

Returned if the user makes contact with the tablet
surface and lifts the pen before the pen tip travels a short
distance. This value is also returned if the user does a
press-and-hold action. That is, the pen makes contact
with the tablet and holds the position for a short period
of time. This return value indicates that the application
should begin selection actions rather than inking or
recognition. If this is returned, no WM_RCRESUL T
message is generated and no ink will be displayed.

Terminated because of a hit test outside the bounding
rectangle. The rcresult.pntEnd field is filled with the
point causing the stop.

Terminated because of a hit test inside the exclusion
rectangle. The rcresult.pntEnd field is filled with the
point causing the stop.

Values >= reserved for recognizer-specific termination
reasons.

Terminated on pen up. The rcresult.pntEnd field is
filled with the pen-up point that terminated recognition.

Terminated because the pen left the proximity range.

Terminated on time-out. (The pen was up continuously
for a given amount of time.)

See Also

Recognize 185

Debugging Values
All of the values listed in the following table are in the debug version only. No
WM_RCRESULT message is generated if these values are returned by Recognize.

Value Meaning

REC_DEBUG

REC_ALC

REC_BADEVENTREF

REC_CL VERIFY

REC_DICT

REC_ERRORLEVEL

REC_GUIDE

REC_HREC

REC_HWND

REC_INV ALIDREF

REC_LANGUAGE

REC_NOCOLLECTION

REC_RECTBOUND

REC_RECTEXCLUDE

REC_RESULTSMODE

All debugging return values are less than this.

Invalid enabled alphabet.

Returned when the wEventReJfield in the lpre structure
is invalid.

Invalid verification level.

Invalid dictionary parameters.

Invalid error level.

Invalid GUIDE structure.

Invalid recognition handle.

Invalid handle to window to send results to.

Invalid data reference parameter.

This value is returned by the recognizer when the
IpLanguage field contains a language that is not
supported by the recognizer. Call ConfigRecognizer
withWCR_QUERYLANGUAGE subfunction to
determine whether a particular language is supported.

Returned by GetPenHwData if collection mode has not
been set.

Error values below this (below -1024) are specific to the
recognizer.

Invalid lPem parameter. There is no way for the
recognition to end.

Invalid rectangle.

Invalid rectangle.

Unsupported results mode requested.

InitRC, RecognizeData, RC structure

Programmer's Reference

186 Chapter 9 Pen API Reference

RecognizeData
Action

Module

Called By

Syntax

Comments

Converts the data in hpendata to recognized symbols

RC Manager

Application

REC RecognizeData(/pre, hpendata)

Parameter Type Description

lpre LPRC Pointer to RC structure

hpendata HPENDATA Buffer containing pen data memory

This function recognizes data in hpendata and returns the results to lpre->hwnd. It is
similar to Recognize; the difference is that the input data comes from the parameter
instead of the tablet driver. Parameters regarding the end of recognition in the RC
structure are ignored.

RecognizeData can return REC_BUSY if the recognizer is not reentrant.

A recognizer is not guaranteed to return the same results for identical input. This is
because persistent states, such as the current average size of writing or the position of the
baseline, can affect recognition results. In addition, training may change the prototypes
against which the data is being compared.

RecognizeData attempts to convert hpendata to PDTS_STANDARDSCALE if it is not
already in standard scale. If the conversion fails-for example, because the data was in an
application-specific scale PDTS_ARBITRARY -the data is still passed on to the
recognizer. A recognizer may return an error code (REC_BADHPENDA T A) on data in a
scale it cannot handle or attempt to recognize.

Return Value RecognizeData returns REC_DONE on completion, or an error code if an error occurs.
The error codes are identical to those for Recognize. REC_BADHPENDAT A is also
returned on compressed HPENDAT A.

See Also InitRC, Recognize

Microsoft Windows for Pen Computing

RecognizeDatalnternal 187

RecognizeDatalnternal
Action

Module

Called By

Syntax

At the DLL recognition level, converts hpendata to recognized symbols

Recognizer

RC Manager

REC RecognizeDatalnternal(lpre, hpendata, IpFuneResults)

Parameter Type Description

lpre LPRC Recognition parameters

hpendata

IpFuneResults

HPENDATA

FARPROC

Pen data structure

Pointer to function

Comments This function is similar to Recognizelnternal; the difference is that data for recognition is
provided as a parameter instead of being read from the pen driver. This function is called
by an application's call to RecognizeData.

Return Value Same as for Recognize.

See Also Recognize, Recognizelnternal

Programmer's Reference

188 Chapter 9 Pen API Reference

Recognizelnternal
Action

Module

Called By

Syntax

Comments

Begins sampling pen data and converts tablet input to recognized symbols

Recognizer

RC Manager

REC RecognizeInternal(lpre, lpFuneResults)

Parameter Type Description

lpre LPRC Recognition parameters

lpFuneResults FARPROC Pointer to function

This function is called in the DLL when an application calls Recognize. The
RecognizeInternal function is in the recognizer and cannot be called directly by an
application.

RecognizeInternal calls (*lpFuneResults)O with a result in an RCRESUL T structure. The
rules governing which results to send from the recognizer to theRC Manager and when to
send them are the same as the rules that govern the sending of results from the RC
Manager to the application. This procedure does not return until (*lpFuneResults)O has
been called for the last time.

If Iprcresult->hSyv is NULL, the RC Manager assumes that the recognizer has already
performed dictionary processing; otherwise, the RC Manager takes the responsibility. The
recognizer should set the field Iprcresult->hSyv to NULL every time to indicate that it has
peformed dictionary processing. The RC Manager is responsible for freeing hSyv. It
changes lprcresult so that a recognizer will reset all fields on each call to IpFuncResults to
the appropriate values. The RC Manager modifies the wResultType, cSyv, and hSyv
fields.

IpFuncResults
int (* IpfnFuncResults)(lpreresult, wParam)

Parameter Tvpe

lpreresult LPRCRESUL T

wParam UINT

Description

This is a pointer to the RCRESUL TS
structure.

The wParam parameter has the same
meaning as wParam in the
WM_RCRESULT message.

The following table lists the return values for IpFuncResults.

Microsoft Windows for Pen Computing

Return Value

See Also

Return value

o

<0

Same as Recognize

RecognizeDatalnternal

Recognizelnternal 189

Meaning

Continues default processing.

Message processed; further processing on this message
stopped (for ProcessWriting).

Aborts recognition. If RRM is set for multiple messages
per recognizer call, this stops further recognition
attempts. It is not applicable to ProcessWriting.

Aborts recognition and returns the value from
Recognize.

Programmer's Reference

190 Chapter 9 Pen API Reference

RedisplayPenData
Action

Module

Called By

Syntax

Comments

Redraws the pen data in the same manner as originally inked

RC Manager

RC Manager, application

BOOL RedisplayPenData(hDC, hpendata, lpDelta lpExt, nlnkWidth, rgbColor)

Parameter Type Description

hDC HDC

hpendata HPENDATA

lpDelta LPPOINT

lpExt LPPOINT

nlnkWidth int

rgbColor DWORD

Handle to the device context in which
to draw the ink. The mapping mode is
assumed to be MM_TEXT.

Handle to the pen data memory block
to be displayed. The pen data must be
scaled to PDTS_ST ANDARDSCALE
or PDTS_DISPLA Y.

An offset in logical units that is
subtracted from the pen data points to
position the ink. If lpDelta is NULL,
there is no offset.

Extents in logical units for scaling. If
lpExt is NULL, no scaling is
performed.

Width of the ink to be drawn (1-15).

If nlnkWidth is -1, the ink width
specified in the nlnkWidth field in
hpendata is used for drawing.

ROB value of the color to draw the
ink. If rgbColor is OxFFFFFFFF, the
ink color specified in the rgblnk field
in hpendata is used for drawing.

RedisplayPenData displays the data specified by hpendata in the device context specified
by the hDC parameter with a width specified by nlnkWidth and of color rgbColor. The
nlnkWidth and rgbColor values override the pen currently selected for the hDC.

If the mapping mode of hDC is not MM_TEXT, two problems can occur:

• RedisplayPenData uses TPtoDP to prepare the pen data points for rendering. After
this, the points are in MM_TEXT coordinates; this assumes an MM_TEXT device
context for display. If the device context is in a different mapping mode, the ink
coordinates will not be correct. Even if you use the ink scaling functions to bypass this
problem, you will still encounter rounding error problems between the two scalings.

Microsoft Windows for Pen Computing

RedisplayPenData 191

• No matter'what pre scaling is done, you will have rounding errors when converting
between modes. The ink will still shift slightly when repainted.

For any rendering into an hDC that represents anything other than a display hDC,
DrawPenData should be used. This is so because RedisplayPenData makes assumptions
that are not optimal for other devices such as printers or metafiles. RedisplayPenData
provides the ability to recreate original inking perfectly.

To recreate inking perfectly, an application must follow one of two procedures:

• On receipt of a WM_RCRESUL T message, convert the hpendata to display
coordinates using MetricScalePenData; offset the pen data by the display coordinates
of the window containing the ink. To display, call RedisplayPenData with lpDelta and
lpExt set to NULL and the mapping mode of the hDC set to MM_TEXT.

• On receipt of a WM_RCRESUL T message, the application must remember the display
coordinate of the upper-left corner of the client area of the window containing the ink.
To display, call RedisplayPenData with lpDelta set to this saved coordinate; lpExt set
to NULL, and the mapping mode of the hDC set to MM_ TEXT.

For more details on inking, see Chapter 4, "Managing Ink in Pen Applications."

The IpDelta parameter contains offsets in the current mapping mode of the device context
hDC that should be subtraced from all ink coordinates before they are rendered.

Since the pen data has the origin of (0,0) based on the upper-left corner of the display, you
need to move from a screen-relative position to a device-context-relative position. Subtract
the origin of the device context in screen coordinates from the object currently residing in
screen coordinate space.

The lpDelta argument enables the application to render ink in a window-relative manner
instead of a screen-relative manner. An application should call the Windows function
ClientToScreen for (0,0) to find the proper screen coordinates to be placed in the *lpOrg
POINT structure. Once this is done, the pen data will be rendered at the appropriate.
location in window coordinates. If lpDelta is NULL, no offset for the data is assumed.

The lpExt argument specifies the extents into which the data should be scaled. If extents
are provided, data will be scaled into a rectangle described by lpDelta and IpExt. The
values of x and y in lpExt and IpDelta are in the mapping mode of the device context to
which the data will be rendered.

Return Value The RedisplayPenData function returns TRUE if succesful, FALSE if it fails because of
invalid parameters.

See Also DrawPenData

Programmer's Reference

192 Chapter 9 Pen API Reference

RegisterPenApp
Action

Module

Called By

Syntax

Comments

Used by pen-enhanced applications to notify the RC Manager that the application edit
controls are replaced with hedit controls '

RC Manager

Application

void RegisterPenApp(wF lags, JRegister)

Parameter Type

wFlags DINT

{Register BOOL

Description

Registration flags for recognizer to
determine whether or not application
is pen-enhanced.

Sets TRUE to register pen-enhanced
application. To unregister the
application, this value is set to
FALSE.

The RegisterPenApp function makes it possible to replace all edit controls in an
application with hedits. This simplifies the tasks of making an application pen-aware and
making that same application run under both Windows for Pen Computing and regular
Windows.

The only registration flag currently supported is RPA_DEFAULT. Other values are
reserved for future use. The RC Manager will use the IsPenAware function to determine
the flags set.

The application should call RegisterPenApp before any edit controls or combo dropdown
controls are created. The function should also be called withJRegister set to FALSE before
the application ends.

Return Value None

See Also IsPenA ware

Microsoft Windows for Pen Computing

ResizePenData 193

ResizePenData
Action

Module

Called By

Syntax

Comments

Resizes pen data

Recognizer

Application

BOOL ResizePenData(hpendata, /prect)

Parameter Type

hpendata

/prect

HPENDATA

LPRECT

Description

Handle to pen data memory block

Bounding rectangle

This function is used to change the physical size of the object without changing the
meaning of the measurements. Use the MetricScalePenData function to convert the data
to one of the supported metric modes of measurement.

ResizePenData physically resizes the data in hpendata to the bounding rectangle
dimensions given by the lprect parameter. Data from hpendata is mapped to the new
rectangle. If /prect is NULL, this function just recalculates the bounding rectangle (the
rectBound element in the PENDATAHEADER structure).

For example, assume that the current object is a square and is at location (1500, 1600) with
PDTS_HIMETRIC scaling, and you need to double the size. To accomplish this, set lprect
to (500, 600, 2500, 2600).

Return Value ResizePenData returns TRUE if successful.

See Also OffsetPenData, MetricScalePenData

Programmer's Reference

194 Chapter 9 Pen API Reference

SetGlobalRC
Action

Module

Called By

Syntax

Comment

Sets the current default settings for the RC structure

RC Manager

System applications (Pen Palette, Control Panel, and others)

UINT SetGlobalRC(lpre, lpDefReeog, lpDefDiet)

Parameter Type Description

lpre LPRC Pointer to RC structure.

lpDefReeog LPSTR Default recognizer module name
(maximum 128 bytes).

lpDefDiet LPSTR Default dictionary path. The list
should end with double zero bytes.

Because the default RC values are shared among all applications on the system, they
should be changed only through the Control Panel. Whenever a change is made to the
global RC values, the WM_GLOBALRCCHANGE message is sent to all top-level
windows. The wParam and lParam values are not used; they are set to zero.

Any of the parameters may be NULL to indicate that the caller does not want the value
changed.

The standard rules for searching a DLL are used for the recognizer and each one of the
dictionaries.

SetGlobalRC uses only certain fields of the RC structure passed in through the lpre
parameter. They are the following:

w RcPreferences

wCountry

IpLanguage

clErrorLevel

rgbInk

nInkWidth

IpUser

wIntlPreferences

wTry Dictionary

wTimeOut

wRcDirect

the PCM_ TIMEOUT and PCM_RANGE
bits oflPcm

When InitRecognizer is called for a new recognizer from within the SetGlobalRC call,
the RC structure that is passed in contains the new values for all fields except hrec and
rglpdf; no new recognizer and dictionaries have been set up at this point.

When an application receives a WM_GLOBALRCCHANGE message, it should call
ConfigRecognizer with a WCR_RCCHANGE subfunction request. This should be done
for all recognizers that the application has loaded, excluding the default recognizer. The
RC Manager will call the ConfigRecognizer function in the new default recognizer with a
CR_RCCHANGE subfunction request.

Microsoft Windows for Pen Computing

SetGlobalRC 195

In a similar way, an application should also call DictionaryProc with a
DIRQ_RCCHANGE subfunction request for any dictionaries it has loaded, excluding
dictionaries on the default path. The RC Manager will call the DictionaryProc function
in the new default dictionaries with a DIRQ_RCCHANGE subfunction request.

SetGlobalRC does not save the Rep _MAPCHAR flag in the wRcPreferences field of the
RC structure to the PENWIN.INI file. The RCP _MAPCHAR flag is reflected in the global
RC for the current session only.

Return Value SetGlobalRC returns the value SGRC_OK if successful. If an error occurs, the return
value consists of one or more of the other SGRC_ flags, combined with the bitwise OR
operation.

See Also

The following table lists the SGRC_ values.

Value Meaning

SGRC_OK

SGRC_USER

SGRC_RECOGNIZER

SGRC_DICTIONARY

GetGlobalRC

There are no errors. No other flags are set.

An invalid user name was found in the supplied RC
structure lprc. The call to SetGlobalRC has no effect.

One or more invalid parameters were detected. The call
to SetGlobalRC has no effect.

The supplied recognition context lprc has entries, other
than the user name, that contain invalid settings for a
global recognition context. The supplied recognition
context is ignored.

The supplied recognizer module name, DefRecogis
invalid; or the recognizer cannot be loaded. The
supplied recognizer module name is ignored.

The supplied dictionary path, lpDefDict, is invalid; or
some dictionaries on the path cannot be loaded. The
supplied dictionary path is ignored.

An error was encountered while saving the new global
recognition context settings to the initialization file
PENWIN.INI. The new settings will be lost after
rebooting Windows.

Programmer's Reference

196 Chapter 9 Pen API Reference

SetPenHook
Action

Module

Called By

Syntax

Comments

Installs and removes a pen packet hook

RC Manager

System applications (Pen Palette)

BOOL SetPenHook(hkpOp, [pin)

. Parameter Type

hkpOp

[pfn

HKP

LPFNRA WHOOK

Description

Operation to be performed

Function to handle pen packets

This function is called by any routine that needs to examine, modify, or cancel pen packets
as they arrive.

The operation parameter, hkpOp, determines whether the hook is set or removed. The
following table lists the HKP _ values.

Value Meaning

HKP _SETHOOK

HKP_UNHOOK

Installs a hook

Removes function from hook list

Return Value The function returns FALSE if it is unable to set or remove the hook.

Return Value

See Also

PenHookCalIBack is a callback function that examines, modifies, or cancels a pen packet.
Each callback is run at interrupt time on every pen packet.

PenHookCaliBack
BOOL Ipfn PenHookCallBack(lppp)

Parameter Type

[ppp LPPENPACKET

Description

Pointer to the pen packet that is being
processed

The callback function returns FALSE to cancel the processing of this pen packet.

SetRecogHook

Microsoft Windows for Pen Computing

SetRecogHook 197

SetRecogHook
Action

Module

Called By

Syntax

Comments

Installs and removes recognition hook

RC Manager

Application

BOOL SetRecogHook(whrHook, hkpPosition, hwndHook)

Parameter Type Description

whrH ook UINT Hook parameter

hkpOp UINT Operation to be performed

hwndHook HWND Handle to a window

This function enables an application to examine the results of recognition before they are
sent to the target application.

The operation parameter, hkpOp, determines whether the hook is set or removed. The
following table lists the HKP _ values.

Value Meaning

HKP _SETHOOK

HKP_UNHOOK

Installs a hook

Removes function from hook list

The hook parameter, whrHook, determines the scope of the hook. The following table lists
the HWR_ values.

Value Meaning

The hook window receives a WM_HOOKRCRESUL T
message before a WM_RCRESUL T message is sent to
the target window.

The hook window receives a WM_HOOKRCRESUL T
message before a WM_RCRESULT message is sent to
the target window if the target window belongs to the
same task as the window that set an HWR_APPWIDE
hook. This is useful for implementing application-wide
gestures. The HForm sample application demonstrates a
typical use of this feature.

The RCRT_ALREADYPROCESSED flag is set in the
wResultsType field of the results structure sent with
WM_RCRESULT if an application-wide hook has
already processed the data.

The hook message is WM_HOOKRCRESULT. The wParam and IParam parameters are
the same as for the WM_RCRESUL T message.

Programmer's Reference

198 Chapter 9 Pen API Reference

If the windows procedure that receives the the WM_HOOKRESUL T message returns
FALSE, the WM_HOOKRESULT message will not be sent to any of the remaining hooks
in the chain.

Note No drawing should occur during the processing of the WM_HOOKRESULT and before
recognition is complete. Drawing at these times could cause timing problems, with ink
reappearing in formerly invisible controls as they are redrawn.

Return Value The function returns FALSE if it is unable to set or remove the hook.

See Also SetPenHook

Microsoft Windows for Pen Computing

ShowKeyboard 199

ShowKeyboard
Action

Module

Called By

Syntax

Comments

Displays or hides the on-screen keyboard

RC Manager

Application

BOOL ShowKeyboard(hwnd, wCommand, /pPnt, /pSKBlnfo)

Parameter Type Description

hwnd HWND Handle to window invoking the on
screen keyboard.

wCommand

/pPnt

/pSKBlnfo

UINT

LPPOINT

LPSKBINFO

Command request.

Pointer to initial keyboard position in
screen coordinates or NULL.

Pointer to SKBINFO structure to be
filled with values for current
keyboard. This parameter is ignored if
NULL. If /pSKBlnfo->hwnd is
NULL, no onscreen keyboard has
been loaded yet.

The function displays or hides the on-screen keyboard. The wCommand argument specifies
the action to be taken.

Command Request

SKB_HIDE

Meaning

Hides the on-screen keyboard. This request may not
actually hide the keyboard if another application is also
using it. The command decrements the use count for the
keyboard. SKB_HIDE automatically loads the onscreen
keyboard if it is not already present.

Returns the current state of the keyboard in /pSKBlnfo
without invoking a new keyboard state. This command
does not automatically load the on-screen keyboard.

Shows the on-screen keyboard in a restored state at the
most recently used screen location. This command
increments a window-use count similar to that used by
WinHelp. SKB_SHOW automatically loads the on
screen keyboard if it is not present.

The SKB_SHOW command can be connected by an OR operator with any of the
command or keypad requests listed in the two tables below.

Programmer's Reference

200 Chapter 9 Pen API Reference

Command request used
with SKB_SHOW

SKB_CENTER

SKB_MINIMIZE

Keypad request used
- with SKB_SHOW

SKB_FULL

SKB_NUMPAD

Meaning

Centers the keyboard on the display. This command has
higher priority than SKB_MOVE.

Displays the on-screen keyboard in a minimized state.
This command can be used with SKB_CENTER or
SKB_MOVE. If it is used with SKB_MOVE, the
location specified will be used when the keyboard is
restored.

Moves the keyboard to the location specified by IpPnt. If
IpPnt is NULL, the keyboard will be centered instead. If
it is not NULL, IpPnt specifies a pointer to the x and y
screen coordinates of the upper-left comer of the restored
keyboard.

Meaning

Switches keyboard to partial keyboard with no extended
keys.

Switches keyboard to fulllOl-key display.

Switches keyboard to partial keyboard of ESC, TAB,
SHIFT, and numeric keypad only.

Only one of SKB_BASIC, SKB_FULL, or SKB_NUMPAD can be used at anyone time.

If IpSKBlnfo is specified for SKB_SHOW or SKB_HIDE, the structure returned contains
values that were active before any action requested by the current command.

Any user action on the keyboard itself overrides the function requests. That is, if the user
closes the on-screen keyboard, all registered applications become unregistered. If the user
minimizes the keyboard, the active SKBInfo structure is changed to reflect the new state.

Registration information for 20 window handles is tracked by the function. If one
application displays the keyboard and then another one does, both applications must
request that the keyboard be hidden before it actually goes away.

Whenever the keyboard display changes, a WM_SKB message is posted to all top-level
windows on the desktop. This occurs, for example, upon a change affecting the position or
visibility of the keyboard or keypad display, or when the display is restored or minimized.
The wParam value is SKN_CHANGED, and the LOWORD of IParam is a combination of
one or more of the following: SKN_POSCHANGED, SKN_ VIS CHANGED,
SKN_PADCHANGED', or SKN_MINCHANGED. The HI WORD value is the window
handle of the keyboard.

Microsoft Windows for Pen Computing

ShowKeyboard 201

Button Bitmaps
The following three bitmaps are provided for owner-drawn pushbuttons that can be used to
invoke the on-screen keyboard. The application will process WM_DRA WITEM and other
button-related code. On-screen keyboard pushbuttons should behave as other standard
buttons (for example, the Minimize button) and invoke their action on button up.

#define OBM_SKBBTNUP 32767
#define OBM_SKBBTNDOWN 32766
#define OBM_SKBBTNDISABLED 32765

The up bitmap, for example, can be loaded as follows:

HANDLE hDLL ... GetSystemMetrics(SM_PENWINDOWS);
HBITMAP hBitmap - LoadBitmap(hDLL.

MAKEINTRESOURCE(OBM_SKBBTNUP»;

The application must call the DeleteObject function to delete each bitmap handle returned
by the LoadBitmap function.

The button should be left in the up state after it is released; that way, if the user closes the
keyboard, the button will be up the next time the keyboard is opened.

The following code segment can be used to get the current keyboard and restore the
current state:

#include <penwin.h>
{

if (ShowKeyboard(hwnd. SKB_SHOW.NULL. NULL» II nonzero: no error
{

II do some actions
ShowKeyboard(hwnd. SKB_HIDE. NULL. NULL);
}

else
UserErrMsg("Unable to use Screen Keyboard");

The following code segment can be used to move the keyboard and then put it back:

SKBINFO skbinfo;
WORD wCommand - SKB_SHOW I SKB_MOVE;
POINT pnt;
pnt.x = wSKBLeft; II init
pnt.y ... wSKBTop;

II Show the keyboard
ShowKeyboard(hwnd. wCommand. &pnt. &skbinfo);

II Other code

Programmer's Reference

202 Chapter 9 Pen API Reference

II Now restore the keyboard
if (skbinfo.fVisible)

wCommand SKB_SHOW I SKB_MOVE I (skbinfo.fMinimized?
SKB_MINIMIZED: 0);

else
wCommand = SKB_HIDE;

ShowKeyboard(hwnd. wCommand. (LPPOINT)(&skbinfo.rect). NULL);
}

Return Value ShowKeyboard returns TRUE if successful; otherwise, it returns FALSE.

Microsoft Windows for Pen Computing

SymbolToCharacter 203

SymbolToCharacter
Action

Module

Called By

Syntax

Comments

Converts an array of SYVs to an ANSI string

RC Manager

Application

BOOL SymboIToCharacter(lpsyv, cSyv, Ipstr, IpnConv)

Parameter Type Description
Ipsyv LPSYV Array of symbols.

cSyv int Count of symbols.

Ipstr LPSTR ANSI string buffer. The buffer should
be big enough to hold at least cSyv
number of ANSI characters (including
SYV_NULL). .

IpnConv LPINT If not NULL, IpnConv contains the
number of symbols converted. If
NULL, this parameter is ignored.

This function takes in an array of SYVs and a count of how many SYVs to convert. The
buffer Ipstr should be big enough to hold the total number of converted bytes. For ANSI
characters, this value will be cSyv bytes. For double-byte characters (Kanji, for example),
this value will be (2 * cSyv) bytes.

The SymbolToCharacter function converts, at most, cSyv number of SYV s from Ipsyv
and places them in the Ipstr buffer. The conversion proceeds until a SYV _NULL value is
encountered or until cSyv symbols have been converted. A SYV _NULL is converted to \0.
The actual number of symbols converted is returned in IpnConv if IpnConv is not NULL.

Return Value SymbolToCharacter returns FALSE if it encounters one or more symbols that cannot be
converted to ANSI. Otherwise, it returns TRUE.

See Also CharacterToSymbol

Programmer's Reference

204 Chapter 9 Pen API Reference

TPtoDP
Action

Module

Called By

Syntax

Comments

Return Value

See Also

Converts an array of points from tablet coordinates to screen coordinates

RC Manager

Application

BOOL TPtoDP(lpPnt, cPnt)

Parameter Type

IpPnt LPPOINT

cPnt int

Description

Array of points

Number of points

The conversion will fail if some tablet points lie outside the region mapped to the screen.

Because of rounding errors, the DPtoTP and TPtoDP functions are not guaranteed to be
complete inverses of each other.

TPtoDP returns FALSE if not all points can be converted.

DPtoTP

Microsoft Windows for Pen Computing

TrainContext 205

TrainContext
Action

Module

Called By

Syntax

Comments

Gives the recognizer a previous recognition result that may contain errors plus the correct
interpretation of the raw data

RC Manager

System applications (Pen Palette)

BOOL TrainContext(lprcresult, lpyse, csye, lpsyc, csyc)

Parameter Type Description

lprcresult LPRCRESUL T Pointer to the RCRESUL T structure
.containing the hpendata that contains
the raw data and the recognizer's
original interpretation of that data.

lpsye LPSYE An array of SYEs that specify the
correct interpretation of the raw data.
The lpyse->iSyc values index the
SYCs in the lpsyc parameter.

csye int

lpsyc LPSYC

csyc int

The number of SYEs in the lpsye
array.

An array of SYCs that establish the
mapping between the raw data and
the characters in the hpendata field
of the lprcresult parameter.

The number of SYCs in the lpsyc
array.

TrainContext is called by an application with a recognition result that may contain
mistakes along with a correct interpretation, so that the recognizer can learn from the
mistake and improve subsequent recognition. A second, simpler training function is
provided by Trainlnk.

TrainContext calls the recognizer-supplied function TrainContextInternal in the
recognizer DLL identified by lprcresult->lprc->hrec. A custom recognizer must provide
this function, as well as Trainlnklnternal, but it can simply return FALSE if the
recognizer does not support this type of training.

When a training application is able to provide contextual information, such as
segmentation suggestions to the recognizer, it uses the TrainContext function. The trainer
incorporated in the Microsoft Pen Palette uses this function for training.

The lprcresult parameter points to an RCRESUL T structure that contains the results of a
previous recognition. The raw data is also contained in the hpendata field of lprcresult.
The lprcresult parameter must be non-NULL.

In addition to providing the incorrect interpretation of the data (by means of the symbol
graph, the Ipsyg field in lprcresult), a more detailed, correct interpretation is also provided

Programmer's Reference

206 Chapter 9 Pen API Reference

by the SYEs and SYCs. Because the correct interpretation is passed by SYEs, it is possible
to suggest segmentation boundaries to the recognizer.

Suppose, for example, that a user writes "lc," and the recognizer interprets it as "k." A
trainer calls TrainContext using, first, an array of SYCs that point to the ink of the "lc"
and, second, the two SYEs with the SYV values "I" and "c." These two SYEs share the
same index into the /psyc array, indicating that both use the ink that was interpreted as "k."

Segmentation errors can be corrected in the other direction as well. Suppose, for example,
the user writes "k" and the recognizer interprets it as "le." A trainer could call
TrainContext, using a single SYE with SYV equal to "k" and an array of SYCs that
incorporate the ink the recognizer had previously assigned to the "1" and the "c."

To train several SYVs to a single piece of ink (for example, a long stroke that is an
"he" ligature), there will be two consecutive SYEs-one for the "h" and one for the
"e." Both SYEs will have the same iSyc field; this means that these SYEs both point
to the same ink. A recognizer will need to take this into consideration to avoid training
the two characters separately and using the same ink for both; that would result in
having "he" trained as "he he."

Custom Training
A recognizer may supply its own custom training dialogs. An application should check to
see if the recognizer supports custom training by calling ConfigRecognizer with the
WCR_ TRAIN subfunction.

Return Value TrainContext returns TRUE if the ink could be trained; otherwise, it returns FALSE.

See Also

The trainer does not display an error message if Trainlnk or TrainContext returns
FALSE. Error messages that occur when training fails are the responsibility of the
recognizer.

ConfigRecognizer, TrainContextlnternal, Trainlnk, SYC, SYE structures

Microsoft Windows for Pen Computing

TrainContextlnternal 207

TrainContextlnternal
Action

Module

Called By

Syntax

Comments

At the DLL recognition level, gives the recognizer a previous recognition result that may
contain errors plus the correct interpretation of the raw data

Recognizer

RC Manager

BOOL TrainContextInternal(lpreresult, lpsye, esye, lpsye, esye)

Parameter Type Description

lpreresult LPRCRESUL T Pointer to the RCRESUL T structure
containing the hpendata that contains
the raw data and the recognizer's
original interpretation of that data.

lpsye LPSYE An array of SYEs that specify the
correct interpretation of the raw data.
The Ipyse->iSye values index the
SYCs in the lpsye parameter.

esye int

lpsye LPSYC

esye int

The number of SYEs in the lpsye
array.

An array of SYCs that establish the
mapping between the raw data and
the characters in the hpendata field
of the lpreresult parameter.

The number of SYCs in the lpsye
array.

TrainContextInternal is the function in the recognizer DLL that performs the
TrainContext function. A custom recognizer must provide this function, as well as
Trainlnklnternal, but it may simply return FALSE if the recognizer does not support this
type of training. .

For details on training using contextual (recognition) information, see the entry for
TrainContext, earlier in this chapter.

A recognizer that cannot make use of contextual information can instead translate this
function into a call to the simpler training function Trainlnklnternal. The lpre
argument for Trainlnklnternal can be taken directly from the lpreresult. To create
the hpendata argument, you first use CreatePenData to create a new HPENDA T A
structure; next, step through the SYEs of lpsye, using GetPenDataStroke to get a
copy of the strokes for the characters to be trained from the hpendata field of
lpreresult; finally, use AddPointsPenData to insert the pen data into the new
HPENDA T A structure. The lpsyv argument for Trainlnk can be generated from the
syv fields of the SYEs.

Programmer's Reference

208 Chapter 9 Pen API Reference

Saving Training
The recognizer is responsible for saving the results of any training. Two appropriate times
to save this information are:

• In response to a WCR_ TRAINSA VE subfunction request in ConfigRecognizer

• In response to a WCR_RCCHANGE subfunction request in ConfigRecognizer

Return Value TrainContextInternal returns TRUE if the ink could be trained; otherwise, it returns
FALSE.

See Also TrainContext, Trainlnk, Trainlnklnternal, SYC, SYE structures

Microsoft Windows for Pen Computing

Trainlnk
Action

Module

Called By

Syntax

Comments

Trainlnk 209

Gives the recognizer raw data and a correct interpretation of the data

RC Manager

System applications (Pen Palette, Control Panel, and others)

BOOL Trainlnk(lprc, hpendata, /psyv)

Parameter Type Description

/prc

hpendata

/psyv

LPRC

HPENDATA

LPSYV

Pointer to the RC structure.

Pen data to train. This parameter must
be non-NULL.

An array of SYVs terminated by
SYV _NULL. This parameter must be
non-NULL.

Trainlnk is called by an application with raw data along with a correct interpretation, so
that the recognizer can learn to improve subsequent recognition. A second, more complex
training function is provided by TrainContext.

Trainlnk is called by an application to access the Trainlnklnternal function in the
recognizer DLL. A custom recognizer must provide this function, as well as
TrainContextInternal, but it can simply return FALSE if the recognizer does not support
this type of training.

Trainlnk provides the lowest level of basic shape training. It effectively says to the
recognizer, "Take the ink in hpendata and give it the meaning in /psyv." The recognizer
should interpret the ink to meet that request.

In the most common case, /psyv contains a single character, and the recognizer will train a
new shape based on the ink and that character. In other cases, multiple SYV s may be
passed, indicating that the ink represents multiple characters. The recognizer must decide
whether simply to add a new shape with a multiple-SYV meaning or to segment the ink
into separate shapes for each SYV.

If the application passes NULL in the /prc parameter, the RC Manager substitutes a
pointer to the global RC structure before passing it on to the recognizer.

The recognizer identified by /prc->hrec is called. If /prc is NULL or if /prc->hrec is
RC_ WDEFAULT, the recognizer in the global RC is called.

An application should check to see if the recognizer supports training by calling
ConfigRecognizer with the WCR_ TRAIN subfunction.

Return Value Trainlnk returns TRUE if the ink described by hpendata could be trained; otherwise, it
returns FALSE.

The trainer will not display an error message if Trainlnk or TrainContext returns

Programmer's Reference

210 Chapter 9 Pen API Reference

FALSE. Error messages that occur when training fails are the responsibility of the
recognizer.

See Also ConfigRecognizer, TrainContext, TrainContextInternal, TrainInkInternal

Microsoft Windows for Pen Computing

Trainlnklnternal 211

Trainlnklnternal
Action

Module

Called By

Syntax

Comments

At the DLL recognition level, informs the recognizer that the raw data input represents the
symbol value results

Recognizer

RC Manager

BOOL Trainlnklnternal(lprc, hpendata, /psyv)

Parameter Type Description

/prc LPRC Pointer to the RC structure. This
parameter must be non-NULL.

hpendata

/psyv

HPENDATA

LPSYV

Pen data to train.

An array of SYVs terminated by
SYV_NULL.

Trainlnklnternal is the function in the recognizer DLL that is called by the Trainlnk
function with raw data along with a correct interpretation so that the recognizer can learn
to improve subsequent recognition. A custom recognizer must provide this function, as
well as TrainContextInternal, but it can simply return FALSE if the recognizer does not
support this type of training.

Saving Training
The recognizer is responsible for saving the results of any training. Two appropriate times
to save this information are:

• In response to a WCR_ TRAINS A VE subfunction request in ConfigRecognizer

• In response to a WCR_RCCHANGE subfunction request in ConfigRecognizer

See the description of Trainlnk for details on using this function for context-free training.

Return Value Trainlnklnternal returns TRUE if the ink described by hpendata could be trained;
otherwise, it returns FALSE.

See Also TrainContext, TrainContextInternal, Trainlnk

Programmer's Reference

212 Chapter 9 Pen API Reference

UninstallRecognizer
Action

Module

Called By

Syntax

Comments

Unloads the specified recognizer

RC Manager

Application

void UninstaIlRecognizer(hrec)

Parameter Type

hrec HREC

Description

Recognizer handle

Windows maintains a use count so that the library is not actually unloaded until all callers
of InstallRecognizer in the given library have called this function. This function should be
called by any application one time for every call made to InstallRecognizer.

Before attempting to unload the library, CloseRecognizer is called within the recognizer.

It is not necessary to uninstall the default recognizer. An application must uninstall all
recognizers that it explicitly loads, however.

Return Value None

See Also InstallRecognizer

Microsoft Windows for Pen Computing

UpdatePenlnfo
Action

Module

Called By

Syntax

Called by the pen driver any time a PENINFO value changes

RC Manager

Pen driver

void UpdatePenlnfo(lppenitifo)

Parameter Type Description

UpdatePenlnfo 213

/ppeninfo LPPENINFO Pointer to the PENINFO structure

Comments A PENINFO value could change if the driver parameters are altered by the configuration
dialog. When this happens, the pen driver must call UpdatePenlnfo to notify the RC
Manager of the change.

Return Value None

Programmer's Reference

Chapter 10

Pen Structures

This chapter describes all of the structures that you use in conjunction with the Pen API
functions. The entries are listed alphabetically; each includes the code from its header file
and a complete description of the structure.

Chapter 9, "Pen API Reference," describes all the Pen API functions.

Chapter 11, "Pen Messages and Constants," describes the messages and constants used in
pen computing.

Programmer's Reference

216 Chapter 10 Pen Structures

BOXLAYOUT
Use the BOXLAYOUT structure to specify some of the characteristics of a bed it control.
The GUIDE structure specifies the rest. The HE_GETLA YOUT and HE_SETLAYOUT
wParam values of the WM_HEDITCTL message can be used to get and set the
BOXLA YOUT structure for a bedit control.

For more details, see the entry for WM_HEDITCTL messages in Chapter 11, "Pen
Messages and Constants."

typedef struct
{

int cyCusp;

int cyEndCusp;
UINT style;

II Height of the box in pixels when BXS_RECT is specified;
II height of the cusp in pixels otherwise (in comb style).

II Height of cusps at either extreme in pixels.
II Style of box edit control;

II a combination of the BXS_ flags.
DWORD rgbText; II Color of the text, -1 = color of window text.
DWORD rgbBox; II Color of boxes, -1 - color of window frame.
DWORD rgbSelect; II Color of selection, -1 - color of window text.
} BOXLAYOUT, FAR *LPBOXLAYOUT;

The following table lists the default values for the BOXLA YOUT structure.

Field Default value

cyCusp

cyEndCusp

style

rgbText

rgbBox

rgbSelect

Equivalent in pixels of BXD_CUSPHEIGHT dialog units

Equivalent in pixels of BXD_ENDCUSPHEIGHT dialog
units

o for a single-line boxed edit control;
BXS_ENDTEXTMARK for a multiline boxed edit
control

-1 (Color of window text is used)

-1 (Color of window frame is used)

-1 (Color of window text is used)

The following table lists the values for the BXS_ style flags.

BXS_ Flags for Style Field Meaning

BXS_RECT If this flag is set, rectangular boxes are used; otherwise,
combs are used.

BXS_ENDTEXTMARK

Microsoft Windows for Pen Computing

If this flag is set, an end-of-text marker is displayed in
the control.

BOXLAYOUT 217

Figure 10.1 shows the general layout of a boxed edit control. Some of the terms in this
figure are explained under the GUIDE structure later in this chapter. To see an individual
cell from a boxed edit control, see Figure 10.3.

-- - - - - - - - - I
I I

~ ____ ~I I

- - - T - - - I - - - -1- - L - I I I

L-..J : L-..I : L-..I : L...-J : [: I I H- cyEndCusp
I I I I I I

- - - -1- - - - r- - - - 1" - - - -t I I
I I I I I ________ ~

L-..J I L-..I I L-..I I L...-J I
I I . I I cyCusp ____ 1 ____ I- ___ -I- ___ ...J

I I I I
I _ I I I _ II
I--....J I L-..I I L-..I I I--....J I

I I I I
- - - -1- - - - I" - - - I - - - -I

I I I I
L-..J I L-...J I L-..I I L...-J I

I I I I -]----r---r------
---------1
I I
I I
1 1

r
l

I I t-!- cyCusp
I I
I 1
I ______ --~

cyEndCusp

---------1
1 1
1 I
1 1
I I

[

I I It+- cyCusp
1 I
I 1
I ______ --~

cyCusp

In style BXS-RECT

Figure 10.1. Boxed edit control.

Programmer's Reference

218 Chapter 10 Pen Structures

GUIDE
Use the GUIDE structure to specify the characteristics of any guidelines used in the
writing area.

typedef struct
{

int xOrigin;

int yOrigin;

int cxBox;
int cyBox;
int cxBase;

int cyBase;

int cHorzBox;
int cVertBox;
int cyMid;

II Position of left edge of first box
II in screen coordinates.

II Position of top edge of first box
II in screen coordinates.

II Width of boxes.
II Height of boxes.
II Offset of the visible edge of the baseline
II within the box from the edge of the box.
II Offset of the baseline for writing
II from the top of the box
II Count of columns of boxes.
II Count of rows of boxes.
II Offset from baseline to midline.

II Zero if not present.

GUIDE, FAR * LPGUIDE; II Guide~ines for recognizer.

The GUIDE structure is a part of the RC structure, described later in this chapter.

If the application has drawn guidelines on the screen on which the user is expected to
write, the application should set the values in the GUIDE structure to inform the
recognizer. The GUIDE structure is for the recognizer's use only. Setting the GUIDE
structure does not, by itself, draw any visual clues on the display. It is the responsibility of
the application or the control to draw the visual clues. The look of a boxed edit control is
determined by the BOXLA YOUT and GUIDE structures together.

The xOrigin and yOrigin fields are screen coordinates of the top-left corner of the area to
write in. The cyBox and cxBox fields are the height and width of the individual boxes to
write in. The cHorzBox and cVertBox fields are the number of columns and rows. A
baseline within the box can be indicated by setting cyBase. Setting cyBase to zero
indicates that no baseline is given. The cxBase field can indicate a horizontal displacement
of the edge of the guideline from the edge of the box where writing can be expected to
start.

If only horizontal lines are present, cxBox will be zero. In this case, only yOrigin, cyBox,
cyBase, and cyMid will be valid. If both vertical and horizontal lines are present (boxed
input), the RCO_BOXED flag must be set in the lRcOptions field of the RC structure.

Writing need not be restricted to inside boxes. Inking is still restricted to rc.rectBound
only. If there is a midline (shown in the bottom row of boxes in Figure 10.2), its height
above the baseline is given by cyMid. This is zero if no midline exists.

Microsoft Windows for Pen Computing

GUIDE 219

In the RC structure, these values will be converted to tablet coordinates before they are
passed on to the recognizer. With an orientation of RCOR_LEFT or RCOR_RIGHT, the
roles of cHorzBox and c VertBox are reversed.

The InitRC function sets all elements of the GUIDE structure to O.

For boxed input, the result message contains an index to the box containing the first input
character. This is numbered in row-major order, zero-based. In Figure 10.2, for example,
"h" is in box 12.

cxBox

xOrigin -fo-- - - - T - - - .., - - - -1- - - - r - - - ,
yOrigin 1 1 1 1 1 1

:~I~I~I~I~I
1 1 1 1 1 1
____ -I - - - -1- - - - I- - - - + - - - .J
1 1 1 1 1
1 1 1 1 1 1
I~I~I~I~I~I
1 1 r - - - .J - - - -I - - - - L ___ 1. - - - -

cyMid --+----,,-:-·-···-J ~··~·~ .. ;h·,·;·~··~·~ .. I .. A .. , :
~ ___ J___ _ __ ~ ___ ~ ___ ~

cyBox

imaginary grid lines

Figure 10.2. Guidelines.

cxBox

I---------=-- cyBase

cyBox
.... ···_···_··_···_···_···_··_··_···_1_···_···_··_ ... _ °

1

• • i cyMid

-------- ______ 1

cxBase

Figure 10.3. Guidelines box.

rectBound

formatting rect

cVertBox (3)
cHorzBox (5)

Programmer's Reference

220 Chapter 10 Pen Structures

To change a standard bed it, first make an HE_GETRC subfunction request of
WM_HEDITCTRL to get the GUIDE structure. Make any changes needed, and then use
HE_SETRC to inform the bedit control of the changes.

For best recognition results, the pair-wise ratios of cxBox, cyBox, and cyBase should be
similar to the default ratios.

Microsoft Windows for Pen Computing

OEMPENINFO
typedef struct
{

UINT wPdt;
UINT wValueMax;
UINT wDistinct;
} OEMPENINFO;

OEMPENINFO 221

II Pen data type.
II Largest value returnable by device.
II Number of distinct readings possible.

The OEMPENINFO structure contains a description of the additional OEM information
that the hardware can generate. It is a part of the PENINFO structure described later in
this chapter.

Besides capturing the (x,y) data, a pen device has the option of supporting a number of
other types of input data: pressure, height, angle, and so on. A pen driver can capture up to
six other types of data. An application can access this data through the GetPenHwData
function.

Each event from the pen generates a position as well as information on any of the other
types of data. The width of this optional data is cbOemData bytes. Each type of data is
one word wide. The type of data in the nth word of the Oem data packet is given by the
nth element of the OEMPENINFO field in the PENINFO structure. PDT_NULL
indicates no data. Values above PDT_OEMSPECIFIC are reserved for private use by
drivers for data types not currently defined as standard. The wValueMax parameter is the
largest value that can be returned by the device for that data type. The wResolution
parameter is the number of distinct readings the device can take between 0 and
wMaxValue.

The constants that specify OEM-specific data are listed in the following table.

Constant Value

PDT_NULL 0

PDT_PRESSURE 1

PDT_HEIGHT 2

PDT_ANGLEXY 3

PDT_ANGLEZ 4

PDT _BARRELROT ATION 5

PDT_OEMSPECIFIC 16

The units for height are 0.01 cm.

The units for the angle measure are in tenths of a degree. Zero for ANGLEZ indicates that
the pen is perpendicular to the writing surface. Zero for ANGLEXY indicates that the pen
is parallel with the side, running from the top to the bottom of the writing surface. The
zero position for barrel rotation is device-dependent.

Programmer's Reference

222 Chapter 10 Pen Structures

Figure 10.4 shows the pen in a position where both angles are roughly 45 degrees.

Angle Z

AngleXYb/ I :,
I
I

Side View Top View

Figure 10.4. Pen angles relative to the surface of the tablet.

As an example, consider a device that can sense height and ANGLEZ. It can sense 256
levels of height in a range from 0 to 10 centimeters and has a resolution of 1 degree on the
angle of the pen. The rgOemPenlnfo for this device would look like this:

peninfo.cbOemData = 4
peninfo.rgOemPenInfo[MAXOEMDATAWORDS] ~ {
{PDT_HEIGHT, 1000, 256},
{PDT_ANGLEZ, 1800, 180},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0} };

This optional information is saved by the pen driver in the same manner as the (x,y) data.
There must be a one-to-one correspondence between the OEM event data and the (x,y)
data.

See the PENINFO structure for additional information.

Microsoft Windows for Pen Computing

PENDATAHEADER
typedef struct

{

UINT wVersion:
UINT cbSizeUsed;
UINT cStrokes;

UINT cPnt;
UINT cPntStrokeMax;
RECT rectBound:
UINT wPndts;
int nInkWidth;
DWORD rgbInk;
}

PENDATAHEADER 223

II Pen data format version
II Size of pen data memory block
II Number of strokes (each pen up and

II pen down run is a single stroke)
II Total count of points
II Length of longest stroke in points
II Coordinates of bounding rectangle of down pOints
II State of the various PDTS_ bits

I I Ink width
II Ink color

PENDATAHEADER. FAR * LPPENDATAHEADER;

Use the PENDATAHEADER structure in conjunction with the GetPenDataHeader
function. The structure describes the specified pen data memory block.

If data is collected outside the bounding rectangle, the rectBound field reflects this. This
means that rcresult.rectBoundlnk is outside the rectangle and does not truly reflect the
bounds of the ink on the screen. However, it does reflect the size of the object if it is to be
drawn in a different window.

The following table lists the PDTS_ values for the wPndts field.

PDTS_ bits for wPndt Meaning

PDTS_ARBITRARY The application has done its own scaling of
the data point.

PDTS_COMPRESS2NDDERIV

PDTS_COMPRESSED

PDTS_COMPRESSMETHOD

PDTS_HIENGLISH

PDTS_HIMETRIC

The second derivative between points is
stored.

The data is compressed.

Bits have been saved to encode which
compression scheme is used.

Each logical unit is equivalent to a display
pixel. Positive x is to the right; positive y
is down.

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is
down.

Each logical unit is mapped to 0.001 mm.
Positive x is to the right; positive y is
down.

Programmer's Reference

224 Chapter 10 Pen Structures

PDTS_ bits for wPndt

PDTS_LOMETRIC

PDTS_NOOEMDATA

PDTS_NOPENINFO

PDTS_NOUPPOINTS

PDTS_SCALEMASK

PDTS_SCALEMAX

PDTS_STANDARDSCALE

Microsoft Windows for Pen Computing

Meaning

Each logical unit is mapped to 0.01 mm.
Positive x is to the right; positive y is
down.

No OEM data is present.

The PENINFO structure has been trimmed
from the header.

The data points on pen up have been
removed.

This value refers to the bits used to mask
scaling.

This value represents the maximum scaling
allowed.

The standard scaling metric is equivalent to
PDTS_HIENGLISH. Standard recognizers
will scale to this.

PENINFO
Hdefine MAXOEMDATAWORDS 6

typedef struct
{

PENINFO 225

UINT cxRawWidth: II Max X coordinate & width of tablet in 0.001 inches
UINT cyRawHeight: II Max Y coordinate & height of tablet in 0.001 inches

UINT wDistinctWidth: II Number of distinct X values tablet returns
UINT wDistinctHeight: II Number of distinct Y values tablet returns

int nSamplingRate: II Samples/second
int nSamplingDist: II Minimum distance moved in either direction

II to generate a new pen event

LONG lPdc:
int cPens:

II Pen device capabilities
II Number of pens supported

int cbOemData: II Width of OEM data packet
OEMPENINFO rgoempeninfo[MAXOEMDATAWORDS]: II Supported OEM data types

UINT rgwReserved[8]; II For internal use
}

PENINFO, FAR *LPPENINFO;

The DRV _GetPenInfo pen driver message fills the PENINFO structure with the current
pen parameters. DRV _GetPenInfo returns FALSE if a tablet is not physically present. If
this occurs, the peninfo field may not be present.

The following table lists the PDC_ values for the IPdc field.

Value Meaning

PDC_BARRELI

PDC_BARREL2

PDC_BARREL3

PDC_INTEGRATED

PDC_INVERT

PDC_RELATIVE

Barrel button 1 is present.

Barrel button 2 is present.

Barrel button 3 is present.

The display and the digitizer share the same surface.

The pen can detect that the other end of the pen is in
contact with the tablet.

The pen position can be detected without the tip's being
in contact with the tablet.

The pen can generate an event upon leaving or entering
the detection range.

The physical device is a relative motion device only.

Programmer's Reference

226 Chapter 10 Pen Structures

The PENINFO Fields
The following paragraphs discuss the PENINFO fields, listed in the order in which they
appear in the preceding structure.

cxRawWidth, cxRawHeight
UINT cxRawWidth;
UINT cyRawHeight;

The cxRawWidth and cyRawHeight fields describe the physical tablet dimensions in
thousandths of an inch. These values also specify the maximum x and y table coordinates.

wDistinctWidth, wDistinctHeight
UINT wDistinctWidth;
UINT wDistinctHeight;

The wDistinctWidth and wDistinctHeight fields specify the number of distinct values
that the hardware can detect. For example, if a tablet is 8 inches wide and has a resolution
of 1/500 of an inch, cxRowWidth is 8000 and wDistinctWidth is 4000, because the tablet
hardware can return 4000 distinct x values ranging from 0 to 8000.

nSamplingRate
int nSamplingRate;

The nSamplingRate field specifies the number of times per second that the pen hardware
is sampled. This rate can be adjusted with the DRY _SetSamplingRate pen driver message.

nSamplingDist
int nSamplingDist;

The nSamplingDist field specifies the distance in distinct tablet units a pen must travel
before a new pen event is generated. This distance can be adjusted with the
DRY _SetSamplingDistance pen driver message.

IPdc
LONG lPdc;

The IPdc field is the combination (OR operator) of all of the PDC_ (pen device
capabilities) bits that describe the tablet capabilities.

cPens
int cPens;

The cPens field specifies the number of pens the tablet can support.

Microsoft Windows for Pen Computing

PENINFO 227

cbOemData
int cbOemData:

The cbOemData field specifies the width, in bytes, of the additional OEM data that is
passed in each pen packet. For example, if a tablet supports pressure and angle Z
information, this is two additional words of OEM information, so cbOemData is 4.

rgoempen info
OEMPENINFO rgoempeninfo[MAXOEMDATAWORDS]:

The rgoempeninfo field is is an array of OEMPENINFO structures. Each structure
describes one word of additional OEM data contained in each pen packet. For additional
information, see the description of OEMPENINFO, earlier in this chapter.

rgwReserved
UINT rgwReserved[8]:

This array is reserved for future use.

Programmer's Reference

228 Chapter 10 Pen Structures

PENPACKET
#define MAXOEMDATAWORDS 6

typedef struct
{

UINT wTabletX;
UINT wTabletY;
UINT wPdk;

II X in raw coordinates.
II Y in raw coordinates.
II State bits.

UINT rgwOemData[MAXOEMDATAWORDS];
}

II OEM-specific data.

PENPACKET. FAR * LPPENPACKET;

The basic unit of communication between the pen driver and Windows is a pen packet. A
pen packet contains all of the information about a single logical event: (x,y) coordinate
position, button states, and any optional information such as pressure or barrel rotation.
Many physical events-interrupts-may be needed to construct a single logical event.

The PENPACKET structure is formally defined in the T ABLET.INC file. The following
code fragment contains the definition:

PENPACKET - what drivers should use to communicate with
PenWin.Dll

PEN PACKET struc
wTabletX dw 0; X in tablet coordinates
wTabl etY dw 0; Y in tablet coordinates
wPDK dw 0; various status bits for packet
rgwOemData dw MAXOEMDATAWORDS dup (0);OEM info like pressure

PENPACKET ends

The rgwOemData field contains the real-time values associated with the pen data types
described in the OEMPENINFO structure.

Microsoft Windows for Pen Computing

He
RC 229

The core of the recognition process is the RC (Recognition Context) structure. Although
there are a large number of parameters in the RC structure, an application will only have
to deal with a few of them. The application uses the InitRC function to set the default
values and then adjusts certain parameters before making one of the Recognize calls.

typedef struct
{

HREC hrec;
HWND hwnd;

II Handle of recognizer to use.
II Window to send results to.

UINT wEventRef; II Data reference indicating first
II point to use in recognition.

II Preferences.
II Options.

UINT wRcPreferences;
LONG lRcOptions;
RCYIELDPROC lpfnYield; II Procedure called during yield.

BYTE lpUser[cbRcUserMax];
UINT wCountry;
UINT wIntlPreferences;

II Current writer.
II Country code.
/I RCIP_ Flags

char 1 pLanguage[cbRcLanguageMax]; I I 1 anguage stri ngs.

LPDF rglpdf[MAXDICTIONARIES]; II List of dictionary functions.
UINT wTryDictionary; II Maximum enumerations to search.
CL clErrorLevel; II Level at which recognizer should reject input.

ALC alc; II Enabled alphabet.
ALC alcPriority; II Prioritizes the ALC codes used to enable alphabets.

BYTE rgbfAlc[cbRcrgbfAlcMax];11 Bit field for enabled characters.
UINT wResultMode; II When to send (ASAP or when recognition complete).

II Control of recognition completion.
UINT wTimeOut; II Time-out threshold in milliseconds

II (after this time, stop recognition).
LONG lPcm; II Flags for ending recognition.

RECT rectBound;
RECT rectExclude;

GUIDE guide;

UINT wRcOrient;

UINT wRcDirect;
int nInkWidth:
COLORREF rgbInk;

II Bounding rectangle for inking.
II Pen down inside this ends recognition.

II Define guidelines for recognizer.

II Orientation of writing relative to
II tablet coordinates.

II Direction of writing.
II Ink width. 0 (no ink) to 15.

II Color of ink.

Programmer's Reference

230 Chapter 10 Pen Structures

DWORD dwAppParam:
DWORD dwDictParam:

DWORD dwRecognizer:

II For use by applic~tion.
II For use by application to be

II passed on to dictionaries.
II For use by an application to pass

II information to recognizer.

UINT rgwReserved[cwRcReservedMax]: II Reserved for future
II use by Windows.

RC. FAR * LPRC: II Recognition context.

The RC Fields
The following paragraphs discuss the RC fields, listed in the order in which they appear in
the preceding structure.

rc.hrec
HREC hrec:

The hrec field is the handle of the recognizer to use. This value should be set to the value
returned by a previous call to InstallRecognizer or RC_ WDEFAULT for the default
recognizer.

If hrec is NULL, the null recognizer is used. WM_RCRESULT messages are generated
as with a real recognizer-but the wResultsType field of RCRESUL T is set to
RCRT_NORECOG, and the hSyv and IpSyv fields are set to NULL.

rc.hwnd
HWND hwnd:

The hwnd field specifies the window to send recognition results to. This field cannot be
NULL. Also, the mouse capture will be set to this window to clear the queue of pending
mouse messages that were meant for recognition.

rc.wEventRef
UINT wEventRef:

The value for wEventRef indicates which tablet data to begin recognition with. For a
fuller explanation of the wEventRef field, see the entry for the GetMessageExtraInfo
function in Chapter 9, "Pen API Reference."

InitRC sets this field to RC_ WDEFAULT. If Recognize is called during the processing of
the mouse message (such as WM_LBUTTONDOWN), triggering recognition, the
application need take no other action.

Before an application starts recognition on some other Windows event, it should save the
wEventRef from the appropriate. mouse message (using GetMessageExtraInfo) and place
this value in wEventRef before calling Recognize.

This field is not used on calls to RecognizeData.

Microsoft Windows for Pen Computing

RC 231

rc.wRcPreferences
UINT wRcPreferences:

The wRcPreferences field specifies the user preferences as a combination of the RCP _
constants described in the following table.

Value Meaning

rc.lRcOptions
LONG lRcOptions:

User writes with left hand. The default assumption is
right-handed.

This value tells the recognizer to fill in segmentation
information in the Ipsyc field. This cannot be set by the
user, because there is no Control Panel access to this
value. It is set if training is enabled.

The IRcOptions field specifies various options for recognition. It is, a logical OR
combination of any of the RCO_ constants described in Chapter 11, "Pen Messages and
Constants."

rc.lpfnYield
RCYIELDPROC lpfnYield:

The Ipfn Yield field is a callback function used by the recognizer before it yields. The
application sets this to NULL for no yield processing. Recognition can often take more
than a few seconds, and therefore, a recognizer should periodically call the yield function
to yield control to other Windows tasks. The default yield function is:

BOOl FAR PASCAL StandardYieldFunction()
(

Yield():
return 1:
}

If Recognize or RecognizeData is called with rc.lpfnYield set to RC_LDEFAULT, then
the default yield function is called. If the rc.lpfn Yield field is not NULL, the recognizer
will call1pfn Yield every time before it yields.

rc.lpUser
#define cbRcUserMax 32
BYTE lpUser[cbRcUserMax]:

The IpUser field specifies the name of the current writer. The current writer is used to
specify any custom prototype sets that might be available to the recognizer.

Programmer's Reference

232 Chapter 10 Pen Structures

If the IpUser field is NULL, it means that the recognizer will use the standard prototype
set-the prototype set as it existed before anyone modified it (through training, for
example).

rc.wCountry
UINT wCountry;

The wCountry field contains the country code. The values for country code are the same
as the values used by the International item of the Control Panel for the iCountry field in
the [intI] section of the WIN.INI file.

rc. wi ntl Preferences
UINT wIntlPreferences;

The wlntlPreferences field contains a combination of various RCIP _ flags.

Currently, the only RCIP _ flag is RCIP _ALLANSICHAR. This flag specifes that the user
intends to use the entire ANSI character set. A recognizer should examine this flag to
decide which characters to enable for recognition.

If nothing is set, then only characters from the current language or languages are enabled.

rc.lpLanguage
#define cbRcLanguageMax 44;
char lpLanguage[cbRcLanguageMax];

The IpLanguage field is a list of language strings. Each string is zero-terminated, and the
list ends in the NULL string.

The set of values for each language string is the same as the set used by the International
item of the Control Panel for the sLanguage field in the [intI] section of the WIN.INI file.
These three-letter codes are documented inthe Microsoft Windows SDK.

A recognizer should implement recognition of the ANSI character set and then use this
information during recognition to limit a match to the appropriate subset.

The IpLanguage field holds strictly optional information-a recognizer may choose to
ignore it. By definition, the character set implied by a language string is the set of
characters that can be generated from the country-specific keyboard without using the
ALT+numeric keypad combinations. It will still be possible to enter ANSI characters
outside the given language through the use of the on-screen keyboard and ALT+numeric
keypad combinations.

rc.rglpdf
#define MAXDICTIONARIES 16
LPDF rglpdf[MAXDICTIONARIES]

The dictionary path field, rglpdf, specifies which dictionaries are called by the RC
Manager to convert symbol graphs into strings.

Microsoft Windows for Pen Computing

RC 233

If rglpdf[O] is NULL, the NULL dictionary path is used. The NULL dictionary path
indicates that the first enumeration from the symbol graph is used as the best enumeration.
The array of dictionary functions is NULL-terminated. During recognition, the dictionary
functions are called in the order in which they appear. For more details, see the entry for
DictionarySearch in Chapter 9, "Pen API Reference."

rc.wTryDictionary
UINT wTryDietionary:

The wTryDictionary field specifies the maximum number of enumerations generated
from the symbol graph during dictionary processing on the results of recognition.

The minimum number allowed is 1, and the maximum is 4096. The default value is 100.

rc.clErrorLevel
CL el ErrorLevel :

Recognition accuracy is defined as the percentage of times the recognizer accurately
assigns a symbol to an input. There is no penalty or gain if the recognizer does not attempt
a match and returns "unknown." The value can range from 0 to 100.

There are situations in which a higher accuracy rating is preferable despite an increased
number of unknown results. For example, in a forms application, the social security field
must be correctly recognized. If the recognizer is unsure, it can get the application to
reprompt the user for the input (or a portion of it). At other times, it is preferable that the
recognizer make a guess, no matter how wild, in order to limit the number of unknown
results. For example, while taking notes in a meeting, the user may not care whether all of
the results are transcribed perfectly.

The clErrorLevel field allows the application to signal its preference to the recognizer.
Recognizers should report the "unknown" symbol for any symbol having a confidence
level below clErrorLevel.

rc.alc
typedef LONG ALC:
ALC ale:

The ale field is used to define the enabled alphabet for any RC structure. You define the
enabled alphabet using the ALC_ constants described in Chapter 11, "Pen Messages and
Constants." Any of the ALC_ constants can be combined together to form the set of
characters you want.

The actual characters enabled are language-dependent. For example, if the user has
requested French language support, "e" would be included in the lowercase alphabet.
Likewise, "£" is included in place of "$" in British systems if ALC_MONETARY is set.

Setting the RCIP _ALLANSICHAR flag in the wIntlPreferences field of the RC structure
enables all characters of the appropriate set regardless of the language setting.

Programmer's Reference

234 Chapter 10 Pen Structures

A recognizer that recognizes characters other than ANSI can ignore this field. If you want
an application to pass character subset information to private non-ANSI recognizers, you
can use the dwReeognizer field.

A recognizer will not return a symbol value outside the specified subset. However, a
recognizer does not have to force a match to the subset; it can return "unknown" if a
suitable match is not found.

rc.alcPriority
ALe al cPr; ority

The alePriority field prioritizes the ALC_ codes used to enable alphabets. It does this by
telling the recognizer in which order to list options in the symbol graph-alphanumeric or
numeric.

The alePriority field uses the same ALC_ codes used in the ale field. The bits set in
alePriority should be a subset of those set in ale. Bit sets in the alePriority that are not
also set in the ale field have no effect.

A recognizer can recognize a glyph that belongs to more than one enabled ALC_ subset.
For example, the "I" glyph can be the letter "I" in the ALC_LCALPHA subset or the
number "I" in the ALC_NUMERIC subset. The alePriority field specifies that the
recognizer should return those interpretations that are in the subsets indicated in
alePriority first. If no interpretations are in any of the alePriority sets, or no priority
fields are set, the recognizer will return all possibilites within the enabled sets.

For example, suppose the user writes a symbol that looks like either a "q" or a "9." The
symbol graph generated contains {q I 9 }. The alcPriority field determines the exact
look of the symbol graph.

If alePriority = ALC_ALPHA, the recognizer should return { q I 9 } in the symbol
graph. If alePriority = ALC_NUMERIC, the recognizer should return { 9 I q } in the
symbol graph.

Note that ale Priority does not affect the dictionary processing directly.

If ALC_USEBITMAP is set, the rgbfAIe field indicates which characters have priority.

rc.rgbfAlc
#def;ne cbRcrgbfAlcMax 32
BYTE rgbfAlc[cbRcrgbfAlcMax];

The rgbfAIe field is the bitfield used for enabled characters. For more details, see the
description of enabled alphabets in Chapter 11, "Pen Messages and Constants."

If ALC_USEBITMAP is set, the 256-bit bitfield in re.rgbfAIe is used to indicate which
characters from the ANSI character set are currently enabled. Character 0 is the low bit of
the low-order byte in the array. Characters thus indicated are connected by OR operators to
any characters enabled using the other ALC_ codes. A "1" set in a bit array indicates that
the character is enabled.

As an example, to enable the "$" character, the fifth bit of byte four is set:

Microsoft Windows for Pen Computing

RC 235

rgbfAlc[4] \= 0x10

A recognizer that recognizes characters other than ANSI can ignore this field. If an
application wants to pass character subset information to private non-ANSI recognizers, it
can use the dwReeognizer field of the RC structure.

A set of macros simplifies user setting and testing the rgbfAle bits for the RC specified by
[pre. The ANSI macros listed in the following table set (bit=1), reset (bit=O) or test (TRUE
if bit== 1, else FALSE) the appropriate bits in Ipre->rgbfAle corresponding to the index i,
which is the ANSI value to use. The [pre is a pointer to the RC structure containing the
rgbfAle[] array.

Macro

SetAleBitAnsi(lpre ,i)

ResetAleBitAnsi(lpre ,i)

IsAleBitAnsi(lpre ,i)

Usage

Sets the bit specified by i in rgbfAle of [pre
to 1.

Resets the bit specified by i in rgbfAle of
[pre to O.

Returns TRUE if the bit specified by i in
rgbfAle of [pre is set.

Only the IsAleBitAnsi macro returns a value (BOOL). The return values of the other
macros are undefined.

Setting bits in re.rgbfAle[] also requires combining ALC_USEBITMAP by an OR
operator with re.ale for the bits to have meaning. The bits are used in addition to other ale
settings. For example, adding ALC_NUMERIC does not also set the bits in re.rgbfAle
that correspond to 0 through 9. Thus, to recognize octal numbers (the set 0 to 7), the
following code can be used:

RC rc;
int i;

rc.alc = ALC_USEBITMAP; 1* note no ALC_NUMERIC *1
for (i == (int)'0'; i <= (int)'7'; i++)

SetAlcBitAnsi(&rc, i);

rc.wResultMode
UINT wResultMode;

The wResultMode field specifies the timing and granularity of the results messages to be
sent back to the specified window. The following times are defined.

Value Meaning

RRM_WORD The granularity is set at a word boundary. As soon as the
recognizer sees a word break, itcan send all symbols up
to the point of the word break.

Programmer's Reference

236 Chapter 10 Pen Structures

Value

RRM_COMPLETE

Meaning

The granularity is set at a new line. As soon as the recognizer
sees a line break, it sends the result to that point.

When recognition is completed by one of the methods (for
example, time-out or barrel button), the results message is
sent just before Recognize returns.

The granularity is set at the stroke level. A result message is
sent at each stroke. This is used in the NULL recognizer.

The granularity is set at the symbol level. A result message is
sent at each symbol. In the Microsoft recognizer, this is
implemented only for boxed input. Default dictionary
processing is disabled when this value is used.

Future versions may implement other results modes.

A recognizer is free to send the messages any time after the requested time (defined in the
preceding order), but it cannot send any messages sooner. Because of recognizer
constraints, a recognizer may combine intermediate results messages. For example, if an
application requests RRM_ WORD, the recognizer may choose to return results on a line
by-line basis instead.

Results sent at a word boundary do not have to be sent strictly one word at a time. The
requirements are as follows:

• The raw data returned must be contiguous, and it must begin with a pen down and end
with a pen up.

• The "word" returned may contain spaces. This is useful if a space was resolved only by
dictionary look-up. For example, fat(space I NULL}cat would be resolved into two
words, "fat cat." This is also necessary if the raw data for successive words overlaps.

• The recognizer should not send a word until it knows how the word will be followed. If
the word is followed by a word on essentially the same line, the word should be space
terminated. If the word is followed by text on a new line, it should append a soft
newline symbol. The key point is that the recognizer must make it possible for the
application to detect word and line spacing so it can display the recognized text
appropriately.

• Once a word has been sent, the recognizer cannot change the results because of the late
arrival of more strokes.

The rules for returning results with RRM_NEWLINE are similar:

• The new line should be included with the symbol graph in the result.

• Once a word has been sent, the recognizer cannot change the results because of the late
arrival of more strokes.

Microsoft Windows for Pen Computing

RC 237

rc.wTimeOut
U I NT wTi meOut:

The wTimeOut field specifies the time-out threshold. After the time-out threshold has
passed, the recognizer stops the recognition process.

Time-out occurs if more than wTimeOut milliseconds elapse between the most recent pen
up and the next pen down. If time-out occurs, the recognition context is closed. Closing a
recognition context means no more data is accepted-the existing data is processed, and
the results are sent to the application.

This value is ignored if re.lPem does not enable time-out.

In general, applications should use the value set by the user with the Control Panel. This
value can be set by setting this field to RC_ WDEFAULT.

The maximum value allowed is 65,534 milliseconds. If wTimeOut is set to FFFF
(65,535), the system level value is used.

rc.lPcm

rc.rectBound

rc.rectExclude
LONG lPcm:
RECT rectBound:
RECT rectExclude:

These three fields of the RC structure set the conditions for ending recognition.

The IPem field sets the flags for ending recognition. The two reet fields specify inclusive
and exclusive rectangles for inking. The.rectangle values are in screen coordinates. The
rectangle values can be in tablet coordinates if RCO _ T ABLETCOORD is set.
RCO_TABLETCOORD cannot be used with ProeessWriting.

When RCRESUL T is returned, the reetBound and reetExclude values are converted from
screen to tablet coordinates and the RCO_TABLETCOORD flag is set.

Only pen events within reetBound are collected as part of the recognition context. If
PCM_RECTBOUND is set in re.IPem, the first pen down outside the rectangle will close
the context. Dragging the pen outside the rectangle after starting inside will not close the
context; the data is still collected outside the rectangle.

If PCM_RECTEXCLUDE is set in re.lPem, any pen down event within reetExclude will
close the context.

The event that ends pen collection mode-an event outside the bounding rectangle or
inside the exclusion-is entered into Windows as a mouse event. For hit-testing the
rectangles, the top and left borders are included, but not the right or bottom borders.

The bounding rectangle set by InitRC is valid only until the window is resized or moved.
If the window is moved or sized, the application should respecify the reetBound field in
the RC structure.

Programmer's Reference

238 Chapter 10 Pen Structures

The following table lists the values for IPcm.

Value Meaning

PCM_ADDDEFAULTS

PCM_RECTBOUND

PCM_RECTEXCLUDE

PCM_TIMEOUT

re.guide
GUIDE guide;

If this bit is set, the default ending conditions set in the
Global RC are connected by OR operators to the values
set by the application. This bit is set by InitRe so that
Control Panel settings for time-out and proximity will be
considered during the subsequent call to Recognize.

Ends recognition on pen inversion (a pen tap with the
opposite end-'--that is, the blunt end of the pen).

Ends pen collection mode if pen is not in contact with
the screen (that is, the pen tip is no longer pressed).

Ends pen collection mode if the pen leaves the detection
range.

Ends on pen down outside the bounding rectangle.

Ends on pen down inside the exclusion rectangle.

Ends on time-out.

The guide field is a structure of the GUIDE type described earlier in this chapter. It
contains information that specifies the placement of guidelines in the writing area for the
recognizer's use.

re.wReOrient
UINT wRcOrient;

The wRcOrient field specifies the orientation of the tablet. The RCOR_ constants are used
to establish the tablet orientation.

For details about RCOR_ constants, see Chapter 11, "Pen Messages and Constants."

re.wReDireet
UINT wRcDirect;

The wRcDirect field informs the recognizer of the direction of writing. There are both
primary and secondary directions. For example, English is written from left to right
(primary) and then down the page (secondary). Chinese is often written top down
(primary) and then right to left across the page (secondary).

The high byte of the direction indicates primary direction; the low byte, secondary
direction. A recognizer can choose to ignore this word and support only the natural
direction of the given language. The default value is determined by the recognizer.

Not all recognizers will respond to this field.

Microsoft Windows for Pen Computing

RC 239

The RCD _ constants used to set this field are described in Chapter 11, "Pen Messages and
Constants."

rC.nlnkWidth, rc.rgblnk
int nInkWidth;
COLORREF rgblnk;

These two fields specify the ink width and color to be used during inking.

The nlnkWidth field is the thickness, in pixels, of the pen to use during inking. If this
value is 0, no ink will be drawn. The current maximum value allowed is 15. The default is
the ink width set in the global RC.

The rgblnk field is the color to use for inking. If this is not a solid color, it will be mapped
to the closest solid color. The default is the ink color set in the global RC.

rc.dwAppParam, rc.dwRecognizer
DWORD dwAppParam;
DWORD dwRecognizer;

These two fields are analogous to the dwDictParam field. (See the following entry).

The dw AppParam value is provided for use by the application and passed to the
application by way of the Iprc field in the RCRESUL T structure.

The dwRecognizer value is passed to the recognizer specified in rc.hrec. Applications can
use this to pass information to a private recognizer for functionality not directly supported.

These values are set to zero by InitRC and should remain zero if they are not used by the
application or recognizer.

rC.dwDictParam
DWORD dwDictParam;

This parameter is set by an application and passed on to the dictionary by the RC Manager.
It is intended to provide for dictionary functionality not directly supported. For example, a
dictionary can request that the application pass in a pointer to a structure that contains a
given sentence. You can use this information to extend the dictionary functionality. For
example, you can use this to highlight misspelled words.

If it is not used by the application, dwDictParam should be left to the value (0) set by
InitRC.

rc.rgwReserved[cwRcReservedMax]
UINT rgwReserved[cwRcReservedMax];

The rgwReserved field, used internally, is reserved for future use. Applications should not
change the values set by InitRC for this field.

Programmer's Reference

240 Chapter 10 Pen Structures

RCRESULT
A new message, WM_RCRESUL T, has been added to Windows to support handwriting.
This message is sent to the specified window when the recognizer has a result to return.

The wParam parameter of the message is the reason recognition ended (one of the REC_
codes). It is REC_OK if more results are sent; otherwise, it is the same value for the last
message as that returned by Recognize or RecognizeData. The IParam parameter is a far
pointer to an RCRESUL T structure.

All of the data in the RCRESUL T structure is in tablet coordinates.

typedef struct
{

SYG syg; II Symbol graph.

UINT wResultsType;

II The next three values are filled in by the RC Manager
II and the recognizer.
int cSyv; II Count of symbols. This is 0 if not able to

LPSYV lpsyv;

HANDLE hSyv;

int nBaseLine;

int nMidLine;

HPENDATA hpendata;
RECT rectBoundInk;

POINT pntEnd;
LPRC lprc;
}

II recognize results or no recognition is requested.
II Recognized symbols. NULL-terminated.

II Count in cSyv does not include NULL.
II Global shared handle out of which

II lpSyv was allocated.
II Baseline of input writing.

II 0 if not calculated or unknown.
II Midline of input writing.

II pen data memory block
II ink data bounds

II point that terminated recognition
II Recognition context used.

RCRESULT, FAR * LPRCRESULT; II Recognition result

The following table elaborates on the RCRESULT fields. All of the fields are allocated
with GMEM_SHARE so they can be passed between processes.

Microsoft Windows for Pen Computing

RCRESULT field

syg

w ResultsType

Ipsyv

hpendata

rectBoundlnk

pntEnd

RCRESULT 241

Description

This field contains the raw results returned by the
recognizer. These include the various possible
interpretations of the pen input, the mapping of the
results to the raw data, and locations of any hot spots if
the result is a gesture.

The syg.lpsyc field is not valid unless RCP _MAPCHAR
was set in the RC structure when Recognize or
RecognizeData was called.

For more details, see SYE, SYG, and SYC, later in this
chapter.

The values for this field are listed in the table following.
The values can be connected by OR operators. They are
not mutually exclusive.

This field contains the symbols that are recognized. An
application should use these values to display the text or
gestures recognized. The Ipsyv field is the result of any
dictionary search on the SYG or further postprocessing.
It is NULL if the NULL recognizer is used.

This field contains the raw data captured during inking.

This is the bounding rectangle of the ink drawn during
recognition. It is in coordinates of the window that
receives the results. If the user attempts to draw ink
outside rc.rectbound, it will not be displayed. However,
rcresult.rectBoundlnk will be calculated as if the ink
were drawn.

If data is collected outside the bounding rectangle, the
rectBound field of PENDATAHEADER will reflect
this. (Note that only down points are reflected in
rectBound.) This means, however, that a portion of
rectBoundlnk will lie outside the rc.rectBound
rectangle. The actual ink drawn lies in the intersection of
rectBoundlnk and the rc.rectBound rectangle. Before
calculating the intersection, convert rectBoundlnk from
tablet to screen coordinates.

The bounding rectangle includes the width of the ink
drawn.

If recognition ended on a tap outside the bounding
rectangle or inside the exclusive rectangle, pntEnd
contains the coordinates of those points in display
coordinates.

Programmer's Reference

242 Chapter 10 Pen Structures

RCRESULT field

Iprc

Description

This is the RC used by recognition. Any default values
(RC_ WDEFAULT or RC_LDEFAULT) are replaced by
the correct default value.

When the recognizer fills the wResultType variable in the RCRESULT structure, it should
choose the appropriate RCRT_ value. The following list is meant to help clarify the
options. The recognizer should never have to set RCRT_ALREADYPROCESSED,
RCRT_GESTURETOKEYS,orRCRT_GESTURETRANSLATED.

Value

RCRT_ALREADYPROCESSED

RCRT_GESTURE

RCRT_GESTURETOKEYS

RCRT_GESTURETRANSLATED

Microsoft Windows for Pen Computing

Meaning

The recognition was successful; the RCRESUL T
structure contains valid information. This typically
occurs with text that the recognizer readily
recognizes. This value can be connected by OR
operators to RCRT_GESTURE,
RCRT_PRIVATE, and RCRT_UNIDENTIFIED.

This flag is set by a hook or the Gesture Manager
if the result has already been acted upon. If an
application receives a result with this bit already
set, it should erase the ink and perform no other
processing. An application-wide hook or the
Gesture Manager may set this flag. The Hform
sample application demonstrates its use.

RCRT_ALREADYPROCESSED can be connected
by OR with RCRT_GESTURE,
RCRT _NORECOG, RCRT _PRIV ATE, and
RCRT _UNIDENTIFIED.

The result is a gesture symbol. RCRT_GESTURE
is not usually combined by OR with anything.

The Gesture Manager translated the gesture to a
set of virtual keys. The keys may represent such
things as function or navigation keys.

The Gesture Manager translated the gesture to an
ANSI text string.

Nothing is recognized; the only data in the
RCRESULT structure is the raw data in the pen
data format. No recognition was attempted.
RCRT_NORECOG is not usually combined by OR
with anything.

Value

RCRT _NOSYMBOLMATCH

RCRT _UNIDENTIFIED

RCRESULT 243

Meaning

Nothing is recognized. The ink drawn does not
match any enabled symbols. This flag must not
appear with any other flags; do not combine it with
any other flags by OR.

The results have a unique meaning to the
recognizer, or they are in a special format. This
flag can be connected by OR with
RCRT _UNIDENTIFIED.

The result contains unidentified results.The
RCRT_UNIDENTIFIED bit was set, indicating
that some piece of the user's input was not found
in the recognizer's database. The RCRESULT
structure still contains valid information, but not
all of it was recognized. This flag can be
connected by OR with RCRT_PRIVATE.

Programmer's Reference

244 Chapter 10 Pen Structures

RECTOFS
In addition to having the basic characteristics of an edit control, an hedit or bedit control
must make allowances for the input of handwriting. The client rectangle often needs to be
adjusted to a larger size to allow for easier writing.

For example, the Delete gesture typically extends above the selected text it is deleting. If
the gesture is arbitrarily clipped off at the edge of the client window, recognition accuracy
suffers. Likewise, restricting handwriting input to stay within the lines can also hinder
recognition accuracy. To correct this, rectangle offsets are used in the hedit and bedit
controls to make the writing area slightly larger than the client window size of a normal
edit control. The HE_SETINFLATE and HE_ GETINFLATE wParam values of the
WM_HEDITCL message are used for this purpose. These messages use a RECTOFS
structure as a parameter. The values in the RECTOFS structure are added to the
corresponding client area to create the bounding rectangle for the ink.

The inflation does not need to be symmetrical in every direction.

typedef struct
{

int dLeft;
int dTop;
int dRight;
int dBottom:
} RECTOFS; / / Rectangl e offsets

RECTOFS FAR * LPRECTOFS;

Microsoft Windows for Pen Computing

SKBINFO 245

SKBINFO
The SKBINFO structure stores the current on-screen keyboard information. You use it
with the ShowKeyboard function.

typedef struct
{

HWND hwnd;
UINT nPad;
BOOl fVisible;
BOOl fMinimized;
RECT rect;
DWORD dwReserved;

II handle to SKB window
II current pad view

II Visible status
II Minimized status

II Restored keyboard rectangle
II Reserved for future use

SKBINFO. FAR *lPSKBINFO;

The following table describes the SKBINFO structure fields.

Field Description

hwnd

nPad

fVisible

fMinimized

reet

Handle to the on-screen keyboard window

Current view of the keypad (full, basic or numeric pad)

If TRUE, the on-screen keyboard is available and visible

If TRUE, the on-screen keyboard is minimized

The screen coordinates of the restored keyboard
rectangle

Programmer's Reference

246 Chapter 10 Pen Structures

STROKEINFO
The STROKEINFO structure serves two main purposes. First, it is returned by the
GetPenHwData and GetPenHwEventData functions with each piece of new data from
the tablet. Second, it is used in the pen data functions (AddPointsPenData and
GetPenDataStroke) as a header for each stroke. In both cases, it contains information
about a sequence of data from the tablet.

typedef struct
{

UINT cPnt; II Count of points in stroke.
UINT cbPnts; II Count of bytes used for stroke.
UINT wPdk; II State of stroke.
DWORD dwTick; /I Time of stroke.
}

STROKEINFO. FAR * LPSTROKEINFO; II Stroke header.

The following table describes the STROKEINFO structure fields.

Field Description

cPnt

cbPnts

wPdk

dwTick

Microsoft Windows for Pen Computing

Number of points in the stroke.

Used internally to contain length of compressed data.
Applications should ignore this value.

Contains information about the state of the stroke. The
wPdk field is one or more of the PDK_ bits described in
Chapter 11, "Pen Messages and Constants."

Time in milliseconds since the first point in the pen data
was collected from the tablet. If an application is
creating its own pen data memory block and the timing
of the stroke is not important, this field should be set to
zero for all strokes.

SYG, SYE, SYC, and SYV 247

SVG, SVE, SVC, and SVV
Upon completing recognition, a recognizer returns a symbol graph-an SYG structure-as
a field of the RCRESUL T structure. A symbol graph is a representation of the possible
interpretations identified by the recognizer. The RC Manager processes the symbol graph
using the dictionary path to identify the best interpretation. This best interpretation is
returned in the results message along with the symbol graph.

A symbol value is a 32-bit value that represents a glyph (such as a character or a gesture)
recognized by a recognizer. This is sometimes referred to as a symbol. A symbol string is a
null-terminated array of symbols.

Each element of the symbol graph, an SYE, contains information about the recognized
character-for example, bounding rectangle and hot spots.

The SYC structure maps SYEs back to the corresponding raw data. If two or more
consecutive SYEs map to the same SYC, they represent an indivisible unit; for example,
the user might teach the system a "th" with the crossbar of the "t" connected to the "h".
SYCs are used primarily for training.

In general, an application does not use the symbol graph directly. Instead, it should use the
Iprcresult->hSyv field, which contains a symbol string that represents the best
interpretation from the symbol graph. For details about symbol values (SYVs), see Chapter
11, "Pen Messages and Constants."

SYEs and SYCs work together with the HPENDA T A memory block to identify strokes
and meanings for ink. The following table lists the basic functions of these structures.

Structure Meaning

HPENDATA

SYC

SYE

SYV

SYG

Contains raw data information: strokes, pen up, pen
down, points, and so on.

A symbol character map. SYCs delimit strokes in
HPENDA T A. A single shape can be identified by one or
more SYCs. Each SYC identifies a starting stroke, an
ending stroke, a starting point, and an ending point. A
flag also indicates whether subsequent SYCs in the array
contain additional strokes for the shape. (This feature is
used for delayed strokes, such as "T" crossings.)

A symbol element. An SYE contains a symbol, which
can be a character, a gesture, or a string. The symbol is
denoted by an SYV. The SYE contains an index into an
array of SYCs; this array identifies the raw data that
makes up the symbol. It is possible for several SYEs to
use the same SYCs. The SYCs contain indexes into the
raw data.

A symbol value.

A symbol graph.

Programmer's Reference

248 Chapter 10 Pen Structures

Note

A set of SYEs and SYCs, together with an HPENDATA structure, is sufficient to define
ink and specify how that ink should be interpreted. The two training functions,
TrainContext and TrainInk, use this information in training.

SYE (Symbol Element)
typedef struct

{

SYV syv;
LONG 1 RecogVal ;
CL cl;
int iSyc:
}

SYE. FAR * LPSYE;

SYG (Symbol Graph)
#define MAXHOTSPOT 8

typedef struct
{

II Symbol value.
II Reserved for use by recognizer.
II Confidence level of symbol value.

II Symbol graph element.

POINT rgpntHotSpots[MAXHOTSPOTJ: II Hot spots.
int cHotSpot; II Number of valid hot spots in array.
int nFirstBox; II If RCO_BOXED set. this contains

LONG lRecogVal;
LPSYE lpsye;
int cSye;
LPSYC 1 psyc;
int cSyc:
}

SYG. FAR * LPSYG;

II the index to the box of the first
II character in the results. The index is
II in row-major order.

II Reserved for use by recognizer.
II Nodes of symbol graph.
II Number of SYEs in symbol graph.

II Symbol graph.

If a single entity recognized by the recognizer is mapped to a string of several symbol
values, the recognizer creates multiple SYEs. This is the case for recognizers that can
recognize highly stylized sequences of characters-for example, "ing"-in which the
individual characters are not necessarily recognized.

The nFirstBox field has no meaning for gestures. A gesture is applied to the location
indicated by its hot spot.

Microsoft Windows for Pen Computing

SYG, SYE, SYC, and SYV 249

SYC (Symbol Correspondence)
typedef struct

{

UINT wStrokeFirst:
UINT wPntFirst:

UINT wStrokeLast:
UINT wPntLast:

BOOL fLastSyc:
}

SYC. FAR *LPSYC:

II First stroke. inclusive.
II First point in first stroke. inclusive.

II Last stroke. inclusive.
II Last point in last stroke. inclusive. Set

II to wPntAll for all points.

IITRUE: no more SYCs follow for current SYE.

Figure 10.5 illustrates the relationship of symbol values and symbol graphs. The first line
shows that a symbol value is a single symbol element (an SYE). A series of symbol values
can be connected by the SYV _OR value to create an OR string, as the second line
illustrates. This OR string begins with the SYV _BEGINOR value and ends with a symbol
value followed by SYV _ENDOR.

The third line shows a symbol graph that" is simply a symbol value or an OR string, in
either case ending with the SYV _NULL value.

Symbol value

-----., SYE

OR string

Symbol graph

.!Symbol value~I---'----' (SYV_NUL0--

1--__ • lOR string r
Figure 10.5 Symbol values and symbol graphs

Programmer's Reference

Chapter 11

Pen Messages and Constants

This chapter describes all of the messages and constants used by the Pen API, listed
alphabetically. Each entry includes a complete description of the message or constant.

Chapter 9, "Pen API Reference," describes all of the Pen API functions.

Chapter 10, "Pen Structures," describes the structures used in pen computing.

Programmer's Reference

252 Chapter 11 Pen Messages and Constants

A,LC_Values (Alphabet Code)
rc.alc typedef LONG ALe: II Alphabet code.

To enable a subset of the active character set, the application can use OR operators with
any of the following values and set the ,result in the ale field of the RC structure. The
actual characters enabled depend on the language and the wlntlPreferenees specified in
the RC structure. For example, if the user has requested French language support, "e"
would be included in the lowercase alphabet. Likewise, "£" is included in place of "$" on
British systems.

Value Definition

ALC_ALPHA

ALC_ALPHANUMERIC

ALC_DBCS

ALC_GESTURE

ALC_HIRAGANA

ALC_KANJI

ALC_KATAKANA

ALC_LCALPHA

ALC_MATH

Microsoft Windows for Pen Computing

All text written (excludes ALC_USEBITMAP and
ALC_RESERVED).

Alphabetic (both lower and uppercase).

Alphanumeric (letters and numbers).

Returns characters in the double byte encoding (that is,
UNICODE).

Default value; uses complete set of recognizable
characters and gestures. The set of these is defined by the
recognizer. It is the set of characters at or above
ALC_SYSMINIMUM that the recognizer can accurately
distinguish.

If an application sets re.'ale to ALC_DEFAULT, and the
recognizer is an alphanumeric system recognizer, it must
at least support ALC_SYSMINIMUM as a default.
ALC_DEFAULT should be the same character set as the
complete character set for the given language minus the
ALC_OTHER characters.

Gesture glyphs.

Enables Hiragana characters.

Enables Kanji characters.

Enables Katakana characters.

Lowercase alphabetic.

The following characters:
%A*()_+={ }<>,/.

, (comma), . (period), and $ (dollar sign). Optionally,
the monetary characters can vary according to the
recognizer and language setting to include, for example,
the symbols ¢ (cent sign), ¥ (yen sign), and £ (pound
sterling).

Value

ALC_NOPRIORITY

ALC_NUMERIC

ALC_OEM

ALC_OTHER

ALC_PUNC

ALC_RESERVED

ALC_SYSMINIMUM

ALC_UCALPHA

ALC_USEBITMAP

ALC_WHITE

ALC_Values (Alphabet Code) 253

Definition

Nonprinting characters: space, tab, return, control
characters, glyphs.

The default value for rc.aIcPriority. This value means
the application has no preference for one type of symbol
over another.

o through 9.

Bits reserved for recognizer capabilities specific to the
original equipment manufacturer (OEM).

@ # 1_ (underline) -- (tilde) and square brackets []. That
is, all other symbols not included in
ALC_ALPHANUMERIC, ALC_MONETARY,
ALC_MATH, and ALC_PUNC.

The following characters: \ ! - ; , " ? () & . , ;

Reserved for future use.

Minimum set of characters needed for Roman alphabet
system recognizers: ALC_ALPHANUMERIC I
ALC_PUNC I ALC_ WHITE I ALC_GESTURE.

Uppercase alphabetic.

See the explanation following this table.

White space. If this value is not included in the re.ale
field, the recognizer should ignore any white space left
between characters. Thus, ALC_ WHITE is included in
the ALC_DEFAULT. For example, in the zip code field
of the Hform sample application, where
ALC_NUMERIC I ALC_GESTURE is set, the user does
not have to worry about getting any extraneous spaces.

If ALC_ USEBITMAP is set, the 256-bit bitfield in rc.rgbfAlc is used to indicate which
characters from the ANSI character set are currently enabled. Character 0 is the low bit of
the low-order byte in the array. Characters thus indicated are connected by OR operators
with any characters enabled, using the other ALC_ codes. A "1" set in a bit array indicates
that the character is enabled.

If the character enabled in the rc.rgbfAlc bitfield is a foreign character, you should also
specify the language of the character in the rc.lpLanguage field.

For Asian languages other than Japanese, refer to the appropriate subsets within the
language: phonetic symbols for words within the language, phonetic symbols for words
outside the language, and native pictographs. For example, in Korean, ALC_HANGUEL
equals ALC_KATAKANA, and ALC_HANJA equals ALC_KANJI.

Programmer's Reference

254 Chapter 11 Pen Messages and Constants

For Kanji and other Asian encodings, different effects are possible depending on the state
of ALC_DCBS. These effects are described in the following table.

Character in ALC_DDCS = 0 ALC_DDCS = 1

ALC_HIRAGANA

ALC_KATAKANA

ALC_KANJI

N/A

Oxal - Oxdf

N/A

Ox82aO - Ox82f2

Ox8340 - Ox8396

Kanji character (Shift JIS
Level 1 Kanji)

A recognizer will not return a symbol value outside the specified subset. However, a
recognizer does not have to force a match to the subset; it can instead return "unknown" if
a suitable match is not found.

You can set the ALC value for an hedit or bedit control in a dialog by inserting a special
string in the .RC file's CONTROL statement. This string is of the form "ALC<xxxx>"
where xxxx represents a case-independent hexadecimal ALC code, without any preceding
0x qualifier. You can append normal window text after this ALC entry.

The following code sample is an example of this entry:

CONTROL "ALC<402c>001l ars". I DO_PAlO. "hedit". ES_LEFT I ... etc

The ALC<402c> value will be stripped out, and Do 11 a rs will be left as window text. In this
example, 402c is the hexadecimal equivalent of ALC_NUMERIC I ALC_PUNC I
ALC_MONETARY I ALC_GESTURE.

The following example allows only Kanji characters, Katakana characters, and gestures;
there is no initial window text specified.

CONTROL "ALC<74000>". lDD_J. "hedi t". ES_LEFT I ... etc

Microsoft Windows for Pen Computing

BXD_Values IBoxed Edit Contrail 255

BXD_Values (Boxed Edit Control)
The BXD _ values define the initial dimensions of the various components of a boxed edit
(bedit) control. These are constants defined in terms of dialog units. They are converted to
pixel dimensions by the bedit control before use. For more information, see the entries for
the BOXLAYOUT and GUIDE structures in Chapter 10, "Pen Structures."

The following table lists the BXD _ values.

Constant Value Definition

BXD_CELLWIDTH 11

BXD_CELLHEIGHT 15

BXD_BASEHEIGHT 12

BXD_BASEHORZ °
BXD_CUSPHEIGHT 2

BXD_ENDCUSPHEIGHT 4

Initial value for cxBox in GUIDE structure
after conversion from dialog units to pixels

Initial value for cyBox in GUIDE structure
after conversion from dialog units to pixels

Initial value for cyBase in GUIDE structure
after conversion from dialog units to pixels

Initial value for cxBase in GUIDE structure
after conversion from dialog units to pixels

Initial value for cyCusp in BOXLA YOUT
structure after conversion from dialog units
to pixels

Initial value for cyEndCusp in
BOXLA YOUT structure after conversion
from dialog units to pixels

Programmer's Reference

256 Chapter 11 Pen Messages and Constants

HN_ Notification Messages
The parent window of an hedit or bedit window receives the same notification messages
(EN_ *) as the parent of an edit window. The parent window receives a WM_COMMAND
message. The wParam parameter contains the control ID. The IParam parameter contains
the edit window handle in its low-order word and the message ID in the high-order word.

The following table lists notification messages specific to hedit and bedit controls.

Notification Message Meaning

HN_DELA YEDRECOGFAIL Delayed recognition has failed. The attempted
recognition was initiated by an application through an
HE_STOPINKMODE message or by the user tapping on
a control. See also HE_GETRCRESULTCODE in the
table of WM_HEDITCTL messages.

The current recognition context has closed. The call to
the recognizer for recognition has terminated.

The hedit or bedit control has received a
WM_RCRESUL T message from the recognizer.

HN_RCRESULT is sent within a WM_COMMAND message to the parent application
after the dictionary processing of the SYG. Any result returned for HN_RCRESULT by
the application is ignored. The application is free to modify the RCRESUL T to force an
end to the processing or some other action.

The application can retrieve the actual pointer to the RCRESUL Tusing:

lprcr = (LPRCRESULT) SendMessage(hwndHedit. WM_HEDITCTL.
HE_GETRCRESULT. 0L);

This pointer is valid only during the processing of the HN_RCRESUL T message. It is also
the actual RCRESULT -not a copy-so any changes to it affect the hedit or bedit control.

Microsoft Windows for Pen Computing

IDC_ Values (Display Cursor) 257

IDC_ Values (Display Cursor)
Any pen display driver must define the following new cursor types.

Name Value Description

32631 Default pen. Pen points in the northwest
compass direction.

IDC_ALTSELECT 32501 Upside-down standard arrow used for
tap-and-hold selection.

You can access the tap-and-hold cursor with the following code:

HANDLE hPenDLL - GetSystemMetrics(SM_PENWINDOW);
if (hPenDLl)

SetCursor(LoadCursor(hPenDLL, IDC_ALTSELECT));

You can also preload the handle and use it instead of calling LoadCursor every time.

Programmer's Reference

258 Chapter 11 Pen Messages and Constants

PCM_ Values (Pen Collectio,n Mode Values)
Pen collection can be stopped on any of the following conditions set by the PCM_ values
in the IPcm field of the RC structure.

Value Meaning

PCM_ADDDEFAULTS If the PCM_ADDDEFAULTS flag is set in rc.IPcm, the
values of rc.IPcm are combined with the OR operators
to the rcGlobal.Pcm values at the time the recognizer is
called.

PCM_PENUP

PCM_RANGE

PCM_RECTBOUND

PCM_RECTEXCLUDE

Microsoft Windows for Pen Computing

Stops recognition on pen inversion (a pen tap with the
blunt end of the pen).

Stops when the pen leaves the tablet contact.

Stops when the pen leaves the tablet proximity range.

Stops when the pen is placed down outside the inclusion
rectangle. The inclusion rectangle is specified in the
rectBound field of the RC structure.

Stops when the pen is placed down inside the exclusion
rectangle. The exclusion rectangle is specified in the
rectExclude field of the RC structure.

Stops at time-out. The time-out value is specified in the
wTimeOut field of the RC structure.

PDC_ Values (Pen Device Capabilities) 259

PDC_ Values (Pen Device Capabilities)
The following table lists the values for the IPdc field of the PENINFO structure.

Value Meaning

PDC_BARRELI

PDC_BARREL2

PDC_BARREL3

PDC_INTEGRATED

PDC_INVERT

Barrel button I is present.

Barrel button 2 is present.

Barrel button 3 is present.

The display and the digitizer share the same surface.

The pen can detect that the other end of the pen is in
contact with the tablet.

The pen position can be detected even when the tip is not
in contact with the tablet.

The pen can generate an event when it leaves or enters
the proximity range.

The pen driver can generate only relative coordinates.

For additional details, see the entry for the PENINFO structure in Chapter 10, "Pen
Structures."

Programmer's Reference

260 Chapter 11 Pen Messages and Constants

PDK_ Values (Pen Driver State Bits)
The pen driver passes along information that the mouse event is being generated by a pen
driver, as well as the current state of any barrel buttons. This information is passed along
in the wPdk field of the PENPACKET and STROKEINFO structure. The following
table lists the PDK_ values.

Constant

PDK_BARRELI

PDK_BARREL2

PDK_BARREL3

PDK_DOWN

PDK_OUTOFRANGE

PDK_TRANSITION

Value

Ox0002

Ox0004

Ox0008

OxOOOI

Ox8000

Ox0080

Ox4000

OxOOl0

Meaning

Set if barrel button 1 is depressed.

Set if barrel button 2 is depressed.

Set if barrel button 3 is depressed.

Set if the pen is in contact with the
tablet.

Set if generated by a pen driver (as
opposed to a mouse driver).

Set if the other end of the pen is being
used as the tip.

Set if the driver detects the pen leaving
the range of detection. If set, other
information in the packet is invalid.

Has meaning only if set by
GetPenHwData. This bit is set if the
first point in the sequence being
returned is in a different pen tip state
(up or down) from the previous points
returned by GetPenHwData.

If this bit is set on a call to
AddPointsPenData, a new stroke will
be created even if the previous call to
AddPointsPenData appended points of
the same pen state. By default, a
contiguous call to AddPointsPenData
adding points of the same state as the
previous call appends the points to the
last stroke instead of creating a new
stroke.

Bits 8 through 11 are used to indicate which physical pen generated the event. Pens are
numbered starting at O. Other bits are reserved.

Microsoft Windows for Pen Computing

PDT_ Values (OEM-Specific Datal 261

PDT_ Values (OEM-Specific Data)
Constant Value

PDT_NULL ° PDT_PRESSURE 1

PDT_HEIGHT 2

PDT_ANGLEXY 3

PDT_ANGLEZ 4

PDT _BARRELROT ATION 5

PDT _OEMSPECIFIC 16

For additional information, see the PENINFO and OEMPENINFO structures in Chapter
10, "Pen Structures."

Programmer's Reference

262 Chapter 11 Pen Messages and Constants

PDTS_ Values (Data Scaling Values)
Constant

PDTS_ARBITRARY

PDTS_HIENGLISH

PDTS_HIMETRIC

PDTS_LOMETRIC

PDTS_ST ANDARDSCALE

Value

The application has performed its own
scaling of the data point.

Each logical unit is mapped to a display
pixel. Positive x is to the right; positive y
is down.

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is
down.

Each logical unit is mapped to 0.001 mm.
Positive x is to the right; positive y is
down.

Each logical unit is mapped to 0.01 mm.
Positive x is to the right; positive y is
down.

The standard scaling metric is equivalent to
PDTS_HIENGLISH.

The data points are in tablet units.

For additional information, see the entries for the CompactPenData and
MetricScalePenData functions in Chapter 9, "Pen API Reference."

Microsoft Windows for Pen Computing

RCD_ Values (Writing Direction) 263

RCD_ Values (Writing Direction)
rc.wRcDirect:

The wRcDirect field informs the recognizer of the direction of writing. There are both
primary and secondary directions. For example, English is written from left to right
(primary) and then down the page (secondary). Chinese is often written from the top down
(primary) and then right to left across the page (secondary).

The high byte of the direction indicates primary direction; the low byte indicates
secondary direction. A recognizer can choose to ignore this word and support only the
natural direction of the given language. The default value is determined by the recognizer.
The following table lists the RCD_ values.

Value Meaning

RCD_DEFAULT

RCD_BT

RCD_LR

RCD_RL

RCD_TB

Default value

Bottom to top

Left to right

Right to left

Top to bottom

For example, the value for normal English writing direction is defined as follows:

#define wRcDirectRoman «RCD_LR«8) I RCD_TB)

Programmer's Reference

264 Chapter 11 Pen Messages and Constants

RCO_Values (Recognition Option)
rc.1RcOptions;

This field specifies various options for recognition. It is a logical OR of any of the
following values. The following table lists the RCO_ values.

Value Meaning

RCO_BOXED Set if the writer is expected to write in boxes and the
GUIDE structure contains valid data.

RCO_COLDRECOG

RCO_DISABLEGESMAP

RCO_NOFLASHCURSOR

RCO_NOFLASHUNKNOWN

RCO_NOHIDECURSOR

RCO_NOHOOK

RCO_NOPOINTEREVENT

RCO_NOSPACEBREAK

RCO_SAVEALLDATA

RCO_SAVEHPENDATA

Microsoft Windows for Pen Computing

Set in results messages if the result is coming from cold
recognition.

Disables gesture mapping during the Recognize function
call.

No flash cursor feedback.

If set in the RC structure and nothing was recognized, the
cursor will not momentarily change to the question-mark
shape.

If set, doesn't remove cursor while inking.

Prevents application-wide and system-wide hooks from
being called.

If set, the RC Manager will not try to recognize a pointer
event but passes on all data to the recognizer. This is
useful, for example, if the application has installed a
shape recognizer so the user can enter dots of ink.

If the NULL recognizer is selected into the RC,
RCO_NOPOINTEREVENT is assumed to be set.

If set, indicates that the results passed back from the
recognizer should be passed on to the dictionaries without
breaking at space boundaries.

Saves all the pen data in the RCRESUL T structure that is
generated by the tablet, including any data for pen up and
optional data such as pressure. By default, only data used
by the recognizer is saved.

The Microsoft recognizer collects all data from first to
last downstroke, including upstrokes in between, and any
available OEM data for each stroke.

Saves the pen data. If this is set, the recognizer does not
delete the data when the application returns from
WM_RCRESULT. It is the application's responsibility to
free the pen data.

Value

RCO_TABLETCOORD

RCO_Values (Recognition Option) 265

Meaning
If set, the following actions take place. After all
dictionaries have been unsuccessfully searched with
strings from the symbol graph, each dictionary is called
with DIRQ_SUGGEST to allow the dictionaries to make
suggestions. If still no string is identified by a dictionary,
the NULL dictionary is used to create a symbol string
from the symbol graph.

If set, indicates that the fields representing coordinate
values in the RC structure are in tablet coordinates
instead of screen coordinates. This can be used to collect
recognition data on the portion of the tablet not mapped
to the screen.

Programmer's Reference

266 Chapter 11 Pen Messages and Constants

ReOR_Values (Tablet Orientation)
rc.wRcOrient;

The wRcOrient field specifies the orientation of the tablet. Orientation should not be
confused with direction of writing, which is described later in this chapter. Orientation can
be useful in a charting program that allows the user to label the vertical axis.

The orientation does not affect the raw data that is passed back in the RCRESUL T
structure. Internally to the recognizer, however, the orientation is used to direct the
transformation of tablet coordinates to ideal coordinates used for recognition. The
following table lists the RCOR_ values.

Constant X coordinate V coordinate

RCOR_NORMAL X=X' Y=Y'

RCOR_LEFT X=yMax - Y' Y=X'

RCOR_RIGHT X=Y' Y= xMax - X'

RCOR_UPSIDEDOWN X=xMax - X' Y=yMax - Y'

As with the preceding values, direction is provided as a clue to the recognizer. A
recognizer may attempt to identify the direction of writing by itself.

(0,01 (0,01

F Il

(max,maxl (max,maxl

(0,01 (0,01

(max,maxl (max,maxl

Figure 11.1. Tablet orientation

Microsoft Windows for Pen Computing

ReP_Values (User Preferences) 267

ReP_Values (User Preferences)
WORD wRcPreferences:

The wRcPreferences field specifies the user preferences as a combination of Rep _
constants, as described in the following table.

Constant Meaning

RCP _LEFTHAND

RCP _MAPCHAR

User writes with left hand.

Tells the recognizer to fill in segmentation information
in the Ipsyc field. This value cannot be set by the user
(there is no Control Panel access to it). RCP _MAPCHAR
is used by the Trainer.

Programmer's Reference

268 Chapter 11 Pen Messages and Constants

ReRT_Values (Results Type)
rcresult.wResultsType

The wResultsType field can contain any of the following values.

Value Meaning

RCRT_ALREADYPROCESSED

RCRT_GESTURE

RCRT_GESTURETOKEYS

RCRT_GESTURETRANSLATED

RCRT _NOSYMBOLMATCH

RCRT_PRIVATE

RCRT _UNIDENTIFIED

Set by a hook or the Gesture Manager if the result
has already been acted upon. If an application
receives a result with this bit already set, it should
erase the ink and perform no other processing. An
application-wide hook or the Gesture Manager can
set this flag. The Hform sample application
demonstrates its use.

Result is a gesture symbol.

Gesture Manager translated the gesture to a set of
virtual keys.

Gesture Manager translated the gesture to an ANSI
text value.

Nothing recognized; only the data is returned. No
recognition was attempted.

Nothing recognized. The ink drawn did not match
any enabled symbols.

Recognizer-specific symbol recognized.

Result contained unidentified results.

The code below shows an example of how to use RCRT_ values:

if «lpr->wResultsType & (RCRT_NOSYMBOLMATCH I
RCRT_ALREADYPROCESSED RCRT_NORECOG
RCRT_PRIVATE)) -- 0

II A gesture or chracter
if (lpr->wResultsType & RCRT_GESTURE)

{

Microsoft Windows for Pen Computing

II Handle Gesture
code

}

else
(

else
(

II Character results
code ...

RCRT_Values (Results Type) 269

II Handle special cases as necessary. In general.
II should just ignore. This is what hedits do .
... code ...

Programmer's Reference

270 Chapter 11 Pen Messages and Constants

REC_ Values (Recognition Functions)
The following return values are used as return values from Recognize, RecognizeData,
ProcessWriting, GetPenHwEventData, and GetPenHwData. They are also returned as
the wParam value of the WM_RCRESULT message. Return values of less than
REC_DEBUG are provided for debugging purposes only and represent abnormal
termination.

Value

REC_BADHPENDATA

REC_BUFFERTOOSMALL

REC_BUSY

REC_DONE

REC_NOINPUT

REC_NOTABLET

REC_OOM

REC_OVERFLOW

REC_POINTEREVENT

Microsoft Windows for Pen Computing

Meaning

This result message to be followed by other results
before Recognize terminates. This is a valid wParam
value for WM_RCRESUL T, but it can never be the
return value for Recognize.

Recognition stopped by a call to EndPenCollection with
this value. The lpPnt data is not valid.

Returned if hpendata in lpre cannot be locked or has an
invalid header. This value is also returned if hpendata
has no data in it or if the data is in an incorrect scale or
compressed.

Returned by GetPenHwEventData.

Returned if another task is currently performing
recognition.

Returned by RecognizeData upon normal completion.

Returned by RecognizeData if the buffer contains no
data, or returned by Recognize if recognition ended
before any data is collected. For example, a pen down
occurs outside the bounding rectangle before any data is
collected.

Tablet not physically present.

Out-of-memoryerror.

Data overflow during execution of the call.

Returned if the user makes contact with the tablet
surface and lifts the pen before the pen tip travels a short
distance. This value is also returned if the user does a
press-and-hold action. That is, the pen makes contact
with the tablet and holds the position for a short period
of time.

REC_POINTEREVENT inqicates that the application
should begin selection actions rather than inking or
recognition. If this is returned no WM_RCRESUL T
message is generated and no ink will be displayed.

Value

REC_ TERMBOUND

REC_ TERMPENUP

REC_TERMRANGE

REC_ TERMTIMEOUT

Debugging Values

REC_ Values (Recognition Functions) 211

Meaning

Recognition ended because of a hit test outside the
bounding rectangle. The rcresult.pntEnd field is filled
with the point causing the stop.

Recognition ended because of a hit test inside the
exclusion rectangle. The rcresult.pntEnd field is filled
with the point causing the stop.

Values >= 512 reserved for recognizer-specific
termination reasons.

Recognition ended on pen up. The rcresult.pntEnd field
is filled with the pen up point that terminated
recognition.

Recognition ended because the pen left the proximity
range.

Recognition ended on time-out. (The pen was up
continuously for a given amount of ti~e.)

All of the values listed in the following table are in the debug version only. No
WM_RCRESUL T message was generated if these values were returned by Recognize.

Value Meaning

REC_DEBUG

REC_ALC

REC_BADEVENTREF

REC_CL VERIFY

REC_DICT

REC_ERRORLEVEL

REC_GUIDE

REC_HREC

REC_HWND

REC_INV ALIDREF

All debugging return values are less than or equal to this.

Invalid enabled alphabet.

Returned when the wEventRef field in the [pre structure
is invalid.

Invalid verification level.

Invalid dictionary parameters.

Invalid error level.

Invalid GUIDE structure.

Invalid recognition handle.

Invalid handle to window to send results to.

Invalid data reference parameter.

Programmer's Reference

272 Chapter 11 Pen Messages and Constants

Value

REC_NOCOLLECTION

REC_RECTBOUND

REC_RECTEXCLUDE

REC_RESUL TMODE

Microsoft Windows for Pen Computing

Meaning

Returned by the recognizer when the IpLanguage field
contains a language that is not supported by the
recognizer. Call ConfigRecognizer with the
WCR_QUERYLANGUAGE subfunction to determine
whether or not a particular language is supported.

Returned by GetPenHwData if collection mode has not
been set.

Error values below this (below -1024) are specific to the
recognizer.

Invalid lPcm parameter. There is no way for the
recognition to end.

Invalid rectangle.

Invalid rectangle.

Unsupported results mode requested.

SYV_ Values (Symbol) 273

SVV_ Values (Symbol)
typedef LONG SYV: II Symbol value

Each glyph a recognizer can identify has an associated symbol value. It is this value that is
returned to the application by the recognizer.

The high-order and low-order words of a symbol value have the following meanings.

High-order word Low-order word

o System symbols.

1

2

3

4

5

6

7-0x7EFF

Ox 7FOO-Ox7FFF

>=Ox8000

ANSI character code.

Gestures.

Shift JIS Level 1 (Kanji).

Shapes.

Unicode.

Virtual keys.

Reserved for future use.

Recognizer-specific symbols.

Character code for given code page. The low 15 bits of
the high-order word indicate the code page.

Recognizers for the European market should return symbol values using ANSI and gesture
symbol values. (ANSI is the native character set for Windows in the European market).
For the Japanese market, recognizers can use Shift JIS Level 1 and gestures. When writing
a recognizer, bear in mind that symbol values outside these ranges cannot be interpreted by
all Windows applications.

System Symbol Values
Value

SYV _BEGINOR

SYV_EMPTY

SYV_ENDOR

Meaning

Begins a list of choices; in this document, displayed as
an opening brace character: {

Empty.

Ends a list of choices. In this document, displayed as a
closing brace character: }

NULL terminator.

Separator for list of choices; in this document, displayed
as a vertical bar: I

Programmer's Reference

274 Chapter 11 Pen Messages and Constants

Value

SYV _SOFTNEWLINE

SYV _SPACENULL

Meaning

Translated to a space by the SymbolToCharacter
function. When breaking strings into words,
DictionarySearch treats SYV _SOFTNEWLINE as a
space.

Used in a symbol graph to indicate an alternative to a
space.

Unrecognized glyph.

Gesture Symbol Values
All system recognizers are expected to recognize a special set of glyphs used as
commands.

The Win 3 Equivalent column shows the Windows 3.0 mouse and keyboard equivalents.

Name Value Description Win 3 Equivalent

OO-OxOOFF Command gesture given. The low byte Nonstandard (usually

specifies which ANSI character was CTRL+key)

modified by the command gesture.

SYV _BACKSPACE OxOOO20008 Deletes character under gesture, and sets BACKSPACE

insertion point.

SYV_CLEAR OxOOO2FFD5 Clears the selection. DEL

SYV_CLEARWORD OxOOO2FFDD Deletes word or object under gesture. Double-click, DEL

SYV_COPY OxOOO2FFDA Copies selection to Clipboard. CTRL+INS

SYV_CORRECT OxOOO2FFDF Corrects selection or word under

gesture.

SYV_CUT OxOOO2FFDB Cuts selection and places it on SHIFT+DEL

Clipboard.

SYV_EXTENDSELECT OxOOO2FFD8 For linear selection (text), selects all text SHIFT +mouse click

between current insertion point and

point of extend selection gesture. For

nonlinear selection (objects), adds object

under gesture to selection.

SYV_PASTE OxOOO2FFDC Pastes selection at point indicated by Click (place insertion

hotspot of paste gesture. point) followed by

SHIFT+INS

SYV_RETURN OxOOO2000D Enters RETURN key. Click, RETURN

Microsoft Windows for Pen Computing

Name

SYV_SPACE

SYV_TAB

SYV_UNDO

SYV_USER

Value

Ox00020020

Ox00020009

Ox0002FFD9

Ox0002FFDE

Circle Gesture Symbol Values

Description

Adds space character.

Enters TAB.

Undoes previous action.

Any circle gesture.

SYV_ Values (Symbol) 275

Win 3 Equivalent

Click, SPACEBAR

Click, TAB

ALT+ BACKSPACE

The circle gestures consist of the alphabetic characters surrounded, in each instance, by a
circle. The characters can be uppercase or lowercase letters. Gestures can be mapped to
specific user actions by means of the Gesture Manager.

The following table lists the SYV _ values for the circle gestures. The intervening values
correspond to the letters between "a" and "z":

Constant Value Meaning

SYV _CIRCLELOA OxOOO224dO Lowercase "a" circle
gesture

SYV _CIRCLELOZ OxOOO224e9 Lowercase "z" circle
gesture

SYV _CIRCLEUPA OxOOO224b6 Uppercase "A" circle
gesture

SYV _CIRCLEUPZ OxOOO224cf Uppercase "Z" circle
gesture

Programmer's Reference

276 Chapter 11 Pen Messages and Constants

WM_GLOBALRCCHANGE Message
Whenever a change is made to the global RC values, the WM_GLOBALRCCHANGE
message is sent to all top-level windows. The wParam and IParam values are not used;
they are set to zero.

When an application receives a WM_GLOBALRCCHANGE message, it should call
ConfigRecognizer with a WCR_RCCHANGE subfunctio J. request for all recognizers the
application has loaded (excluding the default recognizer).

Similarly, an application should call DictionaryProc with a DIRQ_RCCHANGE
subfunction request for all dictionaries the application has loaded (excluding the default
dictionaries) .

For more details, see the entries for ConfigRecognizer and DictionaryProc in Chapter 9,
"Pen API Reference."

Microsoft Windows for Pen Computing

WM_HEDITCTL Messages 277

WM_HEDITCTL Messages
Any control message (EM_ *) that can be sent to an edit control can also be sent to an hedit
window. Most EM_ * control messages are also supported by bedit controls, except as
noted in the following table. In addition, a single new message, WM_HEDITCTL, has
been added for hedit and bedit controls.:

lRet = SendMessage(hwndEdit. WM_HEDITCTL. HE_xxx. lParam);

The message function is indexed by wParam, the values by [Paramo The following table
gives the different values for wParam and lParam, as well as the return values. All HE_
messages are common to both hedit and bedit controls except as noted. In a bedit control,
each cell contains one logical character. In a bedit control, carriage return (CR) and line
feed (LF) bytes together form one logical character.

wParam value IParam value Returns (BOOL)

HE_CHAROFFSET
(bed it only)

HE_CHARPOSITION
(bedit only)

Converts logical
character position of a
character in the control
to byte offset to the
character. Both the
logical character
position and the byte
offset are zero-based.
The LOWORD contains
the logical character
position. The HIWORD
is reserved and must be
set to zero.

Converts byte offset in
the text buffer of the
control to the logical
character position,
which contains the byte
specified by the byte
offset. Both the byte
offset and the logical
character position are
zero-based. The
LOWORD contains the
byte offset. The
HIWORD is reserved
and must be set to zero.

If the supplied logical
character position is less than
the total number of logical
characters in the control, the
LOWORD of the return value
contains the byte offset and
the HIWORD is zero.
Otherwise, the LOWORD
contains the length of text in
bytes and the HIWORD
contains OxFFFF.

See the related
HE_CHAROFFSET.

If the supplied byte offset is
less than the length of the text
in bytes, the LOWORD of the
return value contains the
logical character position, and
the HIWORD is zero.
Otherwise, the LOWORD
contains the total number of
logical characters in the text
of the control, and the
HIWORD contains OxFFFF.

See the related
HE_CHAROFFSET.

Programmer's Reference

278 Chapter 11 Pen Messages and Constants

wParam value IParam value Returns (BOOL)

HE_DEFAULTFONT (bedit Switches the font of the Undefined.
only) bedit control to the

default font that bedit
selects at the time of
creation. If the
LOWORD of IParam is
nonzero, the control is
repainted.

HE_GETBOXLA YOUT Points to the Undefined.
(bedit only) BOXLAYOUT

structure, which is filled
with the current
BOXLA YOUT for the
control.

HE_GETINFLATE LPRECTOFS filled TRUE if successful.
with current value.

HE_GETINKHANDLE Unused. The LOWORD contains a
handle to the captured ink. If
NULL, the control is not in
ink mode. Applications need
to duplicate this handle,
because it is no longer valid
after the control is destroyed.

HE_GETRC LPRC Pointer to the TR UE if successful.
RC structure to fill with
current values.

Microsoft Windows for Pen Computing

WM_HEDITCTL Messages 279

wParam value IParam value

HE_GETRCRESULT Unused.

HE_GETRCRESULTCODE Unused.

HE_GETUNDERLINE
(hedit only)

HE_SETBOXLA YOUT
(bedit only)

Unused.

Points to the
BOXLAYOUT
structure to be set.

LPRECTOFS specifies
the adjustments to the
client rectangle of the
control window to
specify the size of the
writing window.

Starts the collection of
inking. The LOWORD
is the initial
HPENDATA. It can be
NULL. If initial
HPENDATAis
supplied, it must be
relative to the top-left
corner of the client
rectangle of the control.

Returns (BOOL)

Pointer to an RCRESULT
structure received by the
control. This message can be
sent only during the
processing of an
HN_RCRESUL T notification.

Any modifications the
application makes to the
RCRESUL T it receives
directly affect the
RCRESULT used by the
control. The pointer to
RCRESUL T is valid only
during the processing of the
HN_RCRESUL T notification.

Returns the value returned by
the last delayed recognition. It
can be called only in response
to an HN_ENDREC, an
HN_RCRESUL T, or an
HN_DELA YEDRECOGFAIL
notification.

TRUE if underline mode is
set.

TRUE if successful.

TRUE if successful, FALSE if
an invalid window rectangle is
specified.

TRUE if successful.

Programmer's Reference

280 Chapter 11 Pen Messages and Constants

wParam value

HE_SETUNDERLINE
(hedit only)

HE_STOPINKMODE

IParam value

LPRC pointer to the
RC structure to set.

Returns (BOOL)

TRUE if successful. For
details about the fields
ignored or overridden in the
RC, see the discussion
following this table.

The LOWORD is TRUE The current underline mode.
to set the underline and
FALSE to reset it.

Note that to use
underline mode with
hedit controls, the
WS_BORDER style bit
must be turned off.

Stops the collection of
ink. If the LOWORD is
HEP _RECOG, it
performs recognition
and displays text. If the
LOWORD is
HEP _NORECOG
(zero), it removes the
ink without performing
recognition. If the
LOWORDis
HEP_WAITFORTAP, it
performs recognition on
the next tap in the
control.

TRUE if successful.

Before using the HE_SETBOXLA YOUT, HE_SETINFLATE, or HE_SETRC wParam
values, it is often useful to retrieve the current structure associated with the control using
the HE_GETBOXLAYOUT, HE_GETINFLATE, or HE_GETRC wParam values. You
should then change the fields of interest in the retrieved structure. This reduces the risk of
inadvertent changes in the fields of the structure that are not of interest.

Note that, with the HE_SETRC wParam value, certain fields in the RC are overridden or
ignored in hedit and bedit controls. For the following fields, values are calculated by the
control when necessary; when set by the application with a call to HE_SETRC, however,
the values for these fields are ignored:

Microsoft Windows for Pen Computing

WM_HEDITCTL Messages 281

• rc.hwnd

• rc.rectBound

• rc.wResultMode

• rc.wEventRef

• rc.lRcOptions

• rc.lPcm

With rc.IRcOptions, the RCO _ T ABLETCOORD is always forced off. If the application
sets RCO_SA VEHPENDATA, it must process the HN_RCRESUL T to get the result and

. free the hpendata.

With rc.IPcm, the PCM_RECTBOUND is always set, and PCM_RECTEXCLUDE is
always cleared.

In addition, for bedit controls the values set by the user for the following fields are ignored
or overridden:

• rc.guide.xOrigin

• rc.guide.yOrigin

• rc.guide.cHorzBox

• rc.guide.c VertBox

• rc.lRcOptions

• rc.wRcOrient

Note that with rc.IRcOptions, RCO_BOXED is always forced on. With rc.wRcOrient,
only RCOR_NORMAL is supported.

• rc. wResultMode

Using the RRM_SYMBOL value for wResultMode in bedit controls disables all default
dictionary processing. An application may perform dictionary processing on its own by
getting the recognition results during the processing of HN_RCRESULT notification and
calling the DictionarySearch function.

Programmer's Reference

282 Chapter 11 Pen Messages and Constants

WM_RCRESULT Message
The WM_RCRESULT message is generated as a result of a call to ProcessWriting,
Recognize, or RecognizeData.

The wParam parameter of the message contains the reason the recognition ended (one of
the REC_ codes). It is REC_OK if more results are to be sent; otherwise, it is the same
value returned by Recognize or RecognizeData. The lParam parameter is a far pointer to
an RCRESUL T structure.

If the input consists of multiple lines, nBaseLine and nMidLine in the RCRESUL T
structure are set to the value for the first line. If the input has a vertical writing direction,
the value of nBaseLine represents the left alignment edge.

Any far pointers passed in the RCRESUL T structure are valid only while processing the
message. This is the application's chance to save the information about the raw data. After
this message is sent, the recognizer is free to destroy its copy of the raw data.

The last WM_RCRESUL T message for a recognition context is sent before Recognize
returns and any other messages are sent to the application.

If the application returns 1, the RC Manager should perform no further processing. If the
application returns REC_ABORT, the recognition is ended; no more results will be sent
for this context. If the application returns 0, it means the application did not process the
RCRESUL T message; the RC Manager should perform any further default processing.
This distinction is relevant only to ProcessWriting.

Microsoft Windows for Pen Computing

WM_SKB Message 283

WM_SKB Message
The WM_SKB message is posted to all windows when the on-screen keyboard changes
(for example, position, visibility, keypad visibility, restored or minimized changes).
Clients and other applications can use this message to monitor its state.

The wParam value is SKN_CHANGED, and the LOWORD of IParam is a combination of
one or more of the following values listed below. The HIWORD value is the window
handle of the keyboard.

Value Meaning

SKN_MINCHANGED

SKN_PADCHANGED

SKN_POSCHANGED

SKN_ VISCHANGED

, The on-screen keyboard has been minimized or restored.

The keypad display of the on-screen keyboard has
changed.

The position of the on-screen keyboard has changed.

The on-screen keyboard has been shown or hidden.

Programmer's Reference

Appendix A: Guide to the Initialization Files

Note

This appendix describes the settings used in the SYSTEM.INI, WIN.INI, CONTROL.INI,
and PENWIN.INI initialization files and how to change them.

The SYSTEM.lNI file is one of two Windows initialization files that contain information
used by the Microsoft Pen Extensions; the other is WIN.lNI. Both are included with MS
Windows.

The PENWIN.lNI file is an initialization file used for pen computing. It contains
information that defines your pen and handwriting environment.

For information on general Windows settings in the SYSTEM.lNI or WIN .INI file, see
your MS Windows documentation.

All initialization files reside in the directory where Windows is installed.

The Control Panel provides user access to the commonly needed entries in the
initialization files. In general, a user of the Pen Extensions should never need to inspect or
modify the .INI file entries directly.

If you change a setting incorrectly in SYSTEM.INI, you can disable your system.

FORMAT of .INI files
All Windows initialization files have the following format:

[section name]
keyname-value
keyname-value

. other keynames go here

[section name]
keyname-value
keyname=value : comments may also appear on a regular line
: comments are p~eceded by semicolons

The [section name] parameter is the name of a section. Sections are used to break settings
into logical groups. The enclosing brackets [] are required, and the left bracket must be in
the leftmost column on the screen.

The keyname=val ue statement defines the value of each setting. A keyname is the name of
a setting. It can consist of any combination of letters and digits, and must be followed
immediately by an equal sign (=). The value of the setting can be an integer, a Boolean
value, a string, or a quoted string, depending on the setting. There are multiple settings in
most sections.

Programmer's Reference

286 Appendix A Guide to the Initialization Files

You can include comments in initialization files. You must begin each line of comments
with a semicolon (;).

This appendix assumes that you have installed the Microsoft Windows for Pen Computing
SDK into the C:\PENSDK directory. If you have installed it in some other directory or on
a different drive, you must make substitutions to the SYSTEM.INI, WIN.INI, and
PENWIN.INI files where appropriate.

Modifying the SVSTEM.lNI File
You can use either the mouse or a digitizing tablet as your input device. You must modify
your SYSTEM.INI file depending on which device you will be using.

Mouse Input Device
If you are using the mouse as your input device, make the following entries to your
SYSTEM.INI file.

SYSTEMoiNI entry Description

[boot]

mouse.drv=c:\pensdk\bin\yesmouse.drv

display.drv=c:\pensdk\bin\vga.drv

drivers=pen penwindows

[drivers]

penwindows=c:\pensdk\bin\penwin.dll

pen=c:\pensdk\bin\msmouse.drv

[boot.description]

display.drv=VGA for Pen

Pen Input Device·

Section name

Custom mouse driver that simply
displays the cursor

Sets video driver that supports inking

Defines installable drivers

Section name

Sets the Microsoft Windows for Pen
Computing system

Sets installable pen driver using mouse

Section name

Name change

If you are using a pen tablet instead of the mouse, use the following SYSTEM.INI entries
rather than those listed above.

SYSTEMoiNI entry

[boot]

mouse.drv=mouse.drv

display.drv=c:\pensdk\bin\vga.drv

drivers=pen penwindows

Microsoft Windows for Pen Computing

Description

Section name.

Set back to the default setting.

Sets video driver that supports inking.

Defines installable drivers.

SYSTEM.lNI entry

[drivers]

pen-c:\pensdk\bin\wacom.drv

penwindows-c:\pensdk\bin\penwin.dll

[boot.description]

display.drv-VGA for Pen

[386Enh]

device-c:\pensdk\bin\wacom.386

[Pen driver]

com2-l

wacom5l0-l

pressure-l

inductive"'l

Modifying the SYSTEM.INI File 287

Description

Section name.

Sets the pen driver for the Wac om tab
let. If you are using a different tablet,
substitute it here for WACOM.DRV.

Sets the MS Windows for Pen
Computing system.

Section name.

Name change.

Section name.

Sets the device driver for the Wacom
tablet. If you are using a different
tablet, replace this line with the
appropriate .386 name.

Section name.

The Wacom serial driver also supports
additional SYSTEM.INI settings.

Set to 1 if the tablet is connected to
COM2.

Set if the tablet is the opaque HD-51 0
tablet.

Set if the tablet uses pressure-sensitive
pen.

Set if the tablet uses an inductive
pressure pen.

In general, you should use VGAMONO.DRV in place of VGA.DRV. The monochrome
VGA display driver gives better display results on a one-plane integrated tablet.

Pen Display Orientation
The following comments assume you are using a tablet or display that supports different
orientations.

Programmer's Reference

288 Appendix A Guide to the Initialization Files

SYSTEM.lNI entry

[Display Driver]

DisplayOrientation-n

Description

Section name.

Specifies the tablet orientation. The,
value of n is the number of times
the screen and tablet have been
rotated 90 degrees counter
clockwise (default is 0).

The ROT ATE.DRV display driver
can rotate the screen only 90
degrees counterclockwise. The only
valid values with this driver are ° or
l.

OrientableDrivers-c:\pensdk\bin\vga.drv,
c:\pensdk\bin\rotate.drv

Specifies, on a single line, the path
to the rotatable screen drivers. This
entry can have more than two items
listed. They should all be listed on
one line. The format is:

Modifying the CONTROL.lNI File

OrientableDrivers=device driver 1,
driver 2, driver 3, driver 4

Each driver in the line represents
the driver for 0, 90, 180, and 270
degrees rotation right, respectively.

The following table contains a description of the entries ,related to pen computing in the
CONTROL.INI initialization file.These changes are not required if the *.CPL files from
C:\PENSDK\BIN are copied to the SYSTEM subdirectory of the directory where Windows
was installed.

CONTROL.INI Entry

[MMCPL]

cppen-c:\pensdk\bin\cppen.cpl

cphw-c:\pensdk\bin\cphw.cpl

cprot-c:\pensdk\bin\cprot.cpl

cpcal-c:\pensdk\bin\cpcal.cpl

Microsoft Windows for Pen Computing

Description

Section name.

Adds the pen properties' customization item
(Pen) to the Control Panel.

Adds the recognition parameter
customization item (Handwriting) to the
Control Panel.

Adds the display orientation customization
item (Rotate) to the Control Panel.

Adds the tablet calibration item (Calibrate)
to the Control Panel.

CONTROL.INI Entry

NumApps=x

Modifying the PENWIN.lNI File

Modifying the PENWIN.INI File 289

Description

The x specifies the number of applications
in the control panel. After installing the Pen
Windows system, it will be 4 larger than
the previous value, reflecting the four
additional entries noted above.

The following table contains a description of the entries in the PENWIN .INI initialization
file. Most of these values should not be changed directly. The user should use the
Windows Control Panel to change them. Unless specified, numeric values are decimal
numbers. A "CPL" following the description indicates that you can use the Control Panel
to set the entry.

Current values of several entries in PENWIN.INI are available in the global recognition
context. To read or write these entries, an application should use the GetGlobalRC and
SetGlobalRC functions.

PENWIN.lNI Entry

[Current]

User=Default User

InkWidth=l

InkColor=0000FF

SelectTimeOut=250

[*Default User]

TryDictionary=100

Description

Section name. This is a required
section of PENWIN .INI that defines
the current parameters. You set the
values with the Control Panel.

The user's name. (CPL)

Ink width (valid values are ° through
15). (CPL)

Ink color, in hexadecimal values (valid
values: ° through FFFFFF). (CPL)

Delay from pen tap-down time to the
beginning of selection mode. The
delay is specified in milliseconds.
(CPL)

Section name. There will be a section
like this for each user on the system.

Specifies the cutoff for the number of
enumerations per symbol graph. For
more information, see the entry for
rc.TryDictionary in Chapter 10, "Pen
Structures."

Programmer's Reference

290 Appendix A Guide to the Initialization Files

PENWIN.lNI Entry

ErrorLevel-25

EndRecognition=8000

TimeOut-1000

WriteDirection-103

MenuDropAlignment-0

Preferences-0

IntlPreferences-0

Recognizer=c:\pensdk\bin\mars.dll

Microsoft Windows for Pen Computing

Description

Confidence threshold. The recognizer
does not return anything with confi
dence level below the ErrorLevel.
For more information, see the entry for
rc.clErrorLevel in Chapter 10, "Pen
Structures."

A long hexadecimal value bit field
. specifying when recognition should
end (for example, proximity). For
more information, see the entry for
rc.IPcm in Chapter 10, "Pen
Structures." (CPL)

How long the system waits (in
milliseconds) while there is no more
pen input before recognition
terminates. For more information, see
the entry for rc.wTimeOut in Chapter
10, "Pen Structures." (CPL)

The writing direction (in hexadecimal
values). For more information, see the
entry for rc.wRcDirect in Chapter 10,
"Pen Structures."

The menu alignment. ° indicates a
drop to the right; 1 indicates a drop to
the left. (CPL)

A hexadecimal bit field for
recognition context preferences. For
more information, see the entry for
rc.wRcPreferences in Chapter 10,
"Pen Structures." (CPL)

A hexadecimal bit field for
international recognition context
preferences. For more information, see
the entry for rc.wRcIntlPreferences
in Chapter 10, "Pen Structures." (CPL)

Specifies the path to the recognizer
currently selected by the user. (CPL)

PENWIN.lNI Entry

[User List]

Default User-

Modifying the PENWIN.lNI File 291

Description

Section name that lists the defined
users.

If non-zero, denotes the default user
for the system. You should always use
the Control Panel to set a unique user
name. (CPL)

A series of entries in the PENWIN.INI file is devoted to the dictionaries and recognizers
used by the system. The following table describes these entries.

PENWIN.lNI Entry Description

[Dictionary List]

c:\pensdk\bin\userdict.dll=

c:\pensdk\bin\maindict.dll=

[*Default User.Dictionary List]

0=c:\pensdk\bin\userdict.dll

l=c:\pensdk\bin\maindict.dll

[Recognizer List]

c:\pensdk\bin\mars.dll=

Section name. This section contains
lists of dictionaries available on the
system. You set this only in the
PEN WIN .INI file.

Each entry specifies the path to a
dictionary DLL. Setup programs for
the dictionaries should add and
remove entries in this section.

Note: nothing follows the equal sign.

Note: nothing follows the equal sign.

Section name that defines the
dictionaries currently used by the user
"Default User." There will be one such
section for each user who uses the
default dictionaries.

Dictionaries currently used by the
user. The number indicates the search
order. (CPL)

(CPL)

Section name.

List of recognizers available on the
system. Set this only in the
PENWIN .INI file.

Each entry specifies the path to a
recognizer DLL. Setup programs for
the recognizers should add and remove
entries in this section.

Programmer's Reference

292 Appendix A Guide to the Initialization Files

PENWINoiNI Entry

[mars]

msdb=c:\pensdk\bin\beta.mob

[MsMainOict]

XXXMain=<path>mssp_yy.lex

[MsUserOict]

c:\pensdk\bin\listl.dic=

c:\pensdk\bin\list2.dic=

c:\pensdk\bin\list3.dic=

[MsSpell]

c:\pensdk\bin\msspell.dll=

Description

Section name for specific Microsoft
recognizer.

The character database against which
handwriting input is compared.

Section name for main and short
dictionaries to use. These entries
reflect the Microsoft dictionary
implementation and will vary if other
dictionaries are used.

The DLL looks for the keyword
XXXMa i n=, where xxx is any of the
three-letter language codes under the
[MsMa i nOi ct] section in PENWIN.lNI
to load the language word list. If
XXXMa in is found, the DLL tries to
load the files the keyword points to.
Otherwise, the DLL looks for
mssp_yy. 1 ex in the BIN directory of
wherever you installed the SDK.

The "yy" letters stand for one of the
two-letter language-specific codes
listed in the description for the
DictionaryProc function.

The default value is xxx=emu and
yy=am.

Section name for user word lists
(optional).

Default user word lists that the
Microsoft User Dictionary DLL
searches (optional).

Same as preceding.

Same as preceding.

Section name.

Default user word lists that the
Microsoft User Dictionary DLL
searches (optional).

The Pen Palette uses a section of the ~ENWIN.lNI file to maintain its settings. The
following table lists these entries. You can configure any of them with the Pen Palette
settings.

Microsoft Windows for Pen Computing

PENWIN.lNI Entry

[Pen Palette]

Minimized-1

WritingWindowOpen-1

WindowPos-18 263 260 414

Comb-0

AutoWrite-1

TrainOpen-0

SKBOpen-1

SKBPos-26 68

SKBView-3

SKBInvert=0

SKBMinimized-0

TrainPos-321 297

TrainOpen-0

TrainMinimize-0

DisableTrain=0

Modifying the WIN.lNI File

Modifying the WIN.INI File 293

Description

Section name for Pen Palette entries.

Pen Palette status. I = iconic; 0 = restored. The
Pen Palette is started initially in the minimized,
iconic state.

Writing window status. 1 = open; 0 = closed.

Position of Pen Palette (left, top, right, bottom),
including the writing window. This is measured
in screen coordinates.

Letter guide status. I = use boxed input; 0 = use
a standard hedit window.

Automatic writing status. I = use autowriting on
text fields; 0 = do not use autowriting.

Training window status. 1 = training window is
open; 0 = training window is closed.

On-screen keyboard status. I = on-screen
keyboard displayed; 0 = on-screen keyboard
closed.

Position of the left, top coordinate of the on
screen keyboard (in screen coordinates).

On-screen keyboard template setting (10 I-key,
numeric keypad, and so on).

On-screen keyboard color status. I = invert all
colors of the on-screen keyboard; 0 = use the
normal colors. You can set this item only in the
PEN WIN .INI file.

On-screen keyboard status. I = minimized; 0 =
restored.

Position of the left, top coordinate of the trainer
(in screen coordinates).

Trainer status. I = displayed; 0 = closed.

Trainer status. I = minimized; 0 = restored.

Trainer status. 0 = Trainer enabled; I = Trainer
disabled.

The following comments assume you are using a tablet or display that supports different
orientations.

Programmer's Reference

294 Appendix A Guide to the Initialization Files

Pen Display Orientation
WINoiNI entry

[Display Driver]

DisplayOrientation-n

OrientableDrivers-c:\pensdk\bin\vga.drv,
c:\pensdk\bin\rotate.drv

Microsoft Windows for Pen Computing

Description

Section name.

Specifies the tablet orientation. The
value of n is the number of times
the screen and tablet have been
rotated 90 degrees counter
clockwise.

The DisplayOrientation field does
not affect the display driver at all.
The ROTATE.DRV display driver
rotates the screen 90 degrees
counterclockwise, so people should
use DisplayOrientation= 1 with this
display driver.

Specifies the path to the rotatable
screen drivers. This entry can have
more than 2 items listed. They
should all be listed on one line. The
format is
OrientableDrivers=device driver 1,
driver 2, driver 3, driver 4

Each driver in the line represents
the driver for 0, 90, 180, and 270
degrees rotation right, respectively.

Appendix B:
Pen Addenda for MS Windows API Functions

This appendix describes the minor changes and additions made to the MS Windows 3.1
API functions for use with the pen extensions. For information on general Windows API
functions, see the Microsoft Windows Programmer's Reference.

Each note is listed beneath the name of the Windows API function call.

GetSystemMetrics
Use the SM_PENWINDOWS index value with GetSystemMetrics to retrieve the handle
to the pen win DLL. You can use GetSystemMetrics(SM_PENWINDOWS) to get the
DLL handle to pass to GetProcAddress.

The return value will be NULL if Microsoft Windows for Pen Computing is not running.

The following code sample highlights this use:

fnRegisterPenApp =
GetProcAddress((HANDLE) GetSystemMetrics(SM_PENWINDOWS). "RegisterPenApp");

SetClipboardData
Use the CF _PEND AT A value with SetClipboardData to specify the predefined data
format for pen data. Specifically, the CF _PENDA T A value is a handle to the pen data
memory block (BPENDA T A).

Combo-Box Notification Codes
The following additional notification codes apply to combo boxes used in MS Windows
for Pen Computing.

Message Description

CBN_DELA YEDRECOGFAIL Sent when delayed recognition has failed

CBN_ENDREC

CBN_RCRESULT

Sent when recognition is ended

Sent when RCRESUL T has been sent

Differences Between Bedit and Edit Controls
The parent of the bedit control should not return a nonsolid (patterned) brush to the control
in response to the WM_CTLCOLOR message.

Programmer's Reference

296 Appendix B Pen Addenda for MS Windows API Functions

The following values have different behaviors if used in bedit or edit controls:

The EM_SCROLL message is available in bedit controls.

When these values are used by bedit controls, they are cell indices. When they are used by
edit controls, they are byte indices.

The bedit control selects the inserted text; edit puts the caret after the inserted text. If there
is a single cell selection before the paste operation, bedit does not delete the text in the
single cell selection.

Installable Pen Device Driver
There are no specific API functions for pen driver use. Instead, the pen driver functionality
is implemented with installable driver messages.

The pen driver is an installable driver in MS Windows version 3.1. As an installable
driver, it mayor may not exist. All communication with any installable driver is through
driver messages. In order to send an installable driver a message, you need a driver handle.
Use the OpenDriver Windows version 3.1 function to get the driver handle. For example:

HANDLE hDriverPen;
hDriverPen ;,. OpenDriver("PenWindows". NULL, NULL);
if(hDriverPen -- NULL)
{

/* The pen driver does not exist. */
/* Either bring up an error message. */
/* or continue to function as a non-pen-aware application */

Once your application has a handle to the installable driver, the application can send the
driver messages. For example, the following code uses the pen driver message
DRV _SetPenSamplingRate to set the sampling rate to 200 points per second. A later
segment of code then queries the driver to get relevant pen information.

WORD wOldRate;
wOldRate - SendDriverMessage(hDriverPen. DRV_SetPenSamplingRate.

200. NULl);

/* get information about the pen driver */

Microsoft Windows for Pen Computing

Installable Pen Device Driver 297

PENINFO pi;
BOOl fPenHardwareExists;
fPenHardwareExists - SendDriverMessage(hDriverPen,

DRV_GetPenlnfo,
(DWORD)(lPPENINFO)&pi,
NUll);

You must close the handle to the install able driver when an application has finished
sending messages to the installable driver. For example:

1* we won't be sending the driver any more messages now *1
CloseDriver(hDriverPen, NUll, NUll);

The following table lists the pen driver messages and describes their use.

Pen Driver Message Meaning

DRV _SetPenDriverEntryPoints

DRV _RemovePenDriverEntryPoints

DRV _SetPenSamplingRate

DRV _SetPenSamplingDist

This message is used by the Pen Module after it
has been loaded. After receiving this message,
the pen driver should call the OpenDriver
function for the RC Manager and get the address
of the appropriate entry points for passing
packets into the RC Manager (AddPenEvent,
ProcessPenEvent). The pen driver must not
statically link to the RC Manager or call
OpenDriver before being called by this
function.

This function is used dy the Pen Module just
before it is unloaded. Once this message is
received, pen drivers should stop calling the
AddPenEvent and ProcessPenEvent entry
points in the Pen Module.

This message sets the pen sampling rate in
samples per second.

This message sets the minimum pen sampling
distance. Successive points less than the given
distance do not generate new points. The
distance is defined in raw tablet coordinates as
the maximum of the change in x and y. The
default distance is zero, which means that all
pen events generate new events.

A pen driver does not have to simulate nonzero
sampling distances. You need to use the
DRV _GetPenInfo driver message to determine
the actual sampling distance set.

A button state transition always generates a new
event regardless of the distance of a move.

Programmer's Reference

298 Appendix B Pen Addenda for MS Windows API Functions

Pen Driver Message

DRV _GetName

DRV _GetVersion

DRV _GetPenlnfo

DRV _GetCalibration

DRV _SetCalibration

Meaning

This message reports the name of the pen
hardware you're using. Returns TRUE on
success.

This message reports the version number of MS
Windows for Pen Computing that you're
running.

This message fills in the PENINFO structure
pointed to by llParaml with·the current pen
parameters. If this parameter is set to NULL, it
checks for the presence of a pen tablet only.

This message returns the tablet calibration (such
as size and offset values).

This message sets the tablet calibration (such as
size and offset values).

The following table lists the supported driver messages with their parameters and their
return values.

Pen Driver Message Parameters

DRV _SetPenDriverEntryPoints IParaml = 0
IParam2 = 0

DRV _RemovePenDriverEntryPoints IParaml = 0
IParam2 = 0

DR V _SetPenSamplingRate IParam 1 HIWORD = 0
IParam 1 LOWORD =
new sampling rate
IParam2 = 0

DR V _SetPenSamplingDist

DRV _GetName

Microsoft Windows for Pen Computing

IParam 1 HIWORD = 0
IParaml LOWORD =
new sampling distance
IParam2 = 0

IParam 1 LOWORD =
length of name buffer
IParam2 = LPSTR
long pointer to the
name buffer

Return Value

None.

None.

HIWORD contains 0;
LOWORD contains the
sampling rate
previously set.

HIWORD contains 0;
LOWORD contains the
sampling distance
previously set.

Number of characters
actually copied.

Installable Pen Device Driver 299

Pen Driver Message

DRV _GetVersion

DRV _GetPenInfo

DRV _GetCalibration

DR V _SetCalibration

Parameters

IParaml = 0
IParam2 = 0

IParaml =
LPPENINFO (points to
a peninfo structure to
be filled)
IParam2 = 0

IParaml =
LPCALBSTRUCT
(points to a
CALBSTRUCT
structure to be filled)
IParam2 = O.

IParaml =
LPCALBSTRUCT
(points to a
CALBSTRUCT
structure that describes
the new calibration
parameters the pen
driver must use)
IParam2 = O.

Return Value

HIWORD contains O.
Within LOWORD,
HIB YTE contains the
minor version number,
LOBYTE the major
version number.

HIWORD contains 0;
LOWORD contains
TRUE if pen hardware
exists, FALSE if it
does not.

HIWORD contains 0;
LOWORD contains I.

HIWORD contains 0;
LOWORD contains I.

The calibration driver messages use the CALBSTRUCT structure defined below:

typedef struct
{

int wOffsetX;
int wOffsetY;
int wDistinctWidth;
int wDistinctHeight;
} CALBSTRUCT. FAR * LPCALPSTRUCT;

The wOffsetX and wOffsetY fields are the amount in tablet coordinates that need to be
added to the x and y values returned by the hardware for proper calibration. The
wDistinctWidth, and wDistinctHeight fields have the same meaning as in the PENINFO
structure.

Programmer's Reference

Index

A
AddPenEvent function 113, 116
AddPointsPenData function 49, 111, 117, 207
alc field 87, 167, 233
ALC_ values

ALC_ALL252
ALC_ALPHA 252
ALC_ALPHANUMERIC 252
ALC_DBCS 252
ALC_DEFAULT 73,252
ALC_GESTURE 73,252
ALC_HIRAGANA 252, 254
ALC_KANJI 252, 254
ALC_KATAKANA 252, 254
ALC_LCALPHA 252
ALC_MATH 252
ALC_MONETARY 252
ALC_NONPRINT 253
ALC_NOPRIORITY 253
ALC_NUMERIC 73, 253
ALC_OEM 253
ALC_OTHER 253
ALC_PUNC 253
ALC_RESERVED 253
ALC_SYSMINIMUM 253
ALC_UCALPHA 253
ALC_USEBITMAP 253
ALC_ WHITE 253
description 32

alcPriority field 32, 87, 168,
Alphabet

definition of in RC structure 233
enabling 234
recognition 73

Annotation layer 10
AtomicVirtualEvent function 109, 118

B
Background processing 34
Barrel buttons 156,225,259-60
Bedit

and edit controls 293-94
cell sizing 76
changing standard bedit 218

Bedit (continued)
control 76-77, 277-81
description 4, 67
GUIDE data structure 31
scrolling 76
specifying characteristics of 216
switch statement 74
text wrapping 76
using 8

BeginEnumStrokes function 48, 111, 119
Bounding rectangles 39, 120,244
BoundingRectFromPoints function 110, 120
Boxed edit See Bedit
BOXLA YOUT data structure

description 216-17
sample code 216

Buffer
and events 33
and ink display 28
ANSI string 203
obtaining data from 159
pen module control of 112
pointer to 20
reaso'ns for 19

Buttons 7
BXD_ values

BXD_BASEHEIGHT 255
BXD_BASEHORZ 255
BXD_CELLHEIGHT 255
BXD_CELL WIDTH 255
BXD_CUSPHEIGHT 255
BXD_ENDCUSPHEIGHT 255

BXS_ values
BXS_ENDTEXTMARK 216
BXS_RECT 216

c
CalcNearestDir function 95-96
Calibration driver messages 299
CBN_ messages

CBN_DELA YEDRECOGFAIL 295
CBN_ENDREC 295
CBN_RCRESULT 295

cbOemData field 44, 227
cbPnts field 246
Character sets 84
CharacterToSymbol function 109-10, 121
cHorzBox field 218, 281
clErrorLevel field 33,87, 168,233
CloseRecognizer function 89, 92, 112, 122
Code See sample code

Programmer's Reference

302 Index

Color
GetNearestColor function 29
ink 29,88, 190,239
programming considerations 7
setting RC preferences 74

Comb 4
CompactPenData function 50, 111, 123-24
Compressing data 50, 52, 123-24
ConfigRecognizer function 89, 92-93, 112', 125-27,276
Control

bedit 76-77
ID76
messages 68, 76
notifications 76
replacing edits with hedits 69

CONTROL.INI file
description 288
sample code 288

Converting ANSI strings 121
Coordinates

tablet 30, 144,218
tablet to screen 204
values 35

Copying pen data 146
CopyRawData function 60
CorrectWriting function 109, 128-29
Country code 232
cPens field 226
cPnt field 246
CreatePenData function 47, 111, 130-31,207
CreateWindow function 74
Cursor

copy 34
hiding during inking 34
pen 34
question-mark 34

CUSTDICT.C 100
cVertBox field 218, 281
CWR_ subfunctions

CWR_SINGLELLINEEDIT 129
CWR_STRIPCR 129
CWR_STRIPLF 129
CWR_STRIPTAB 129
CWR_TITLE 129

cxBase field 218
cxBox field 218
cxRawHeight field 226
cxRawWidth field 226
cyBase field 218
cyBox field 218
cyCusp field 216
cyEndCusp field 216

Microsoft Windows for Pen Computing

o
Data

accessing 159, 161-62
buffer 19,20,28,33
compression 50, 123-24, 223
conversion 46, 186-89
copying 146
display 145
ending collection 149
points 117, 175
recognition process 183-85
redraw 190-91
resizing 193
trim options 123-24 '

Data flow
dictionary processing 22-23, 265
gesture processing 151-52
overview 5, 17-26
recognition 22, 27-40, 81-83

Data structures
pen

SYG, SYE, SYC, & SYC See SYG, SYE, SYC,
& SYV data structures

adding data points 117
BOXLA YOUT See BOXLA YOUT data structure
CALBSTRUCT 299
GUIDE See GUIDE data structure
HPENDATA See HPENDATA data buffer
OEMPENINFO 82
PENDATAHEADER See PENDATAHEADER

data structure
PENINFO See PENINFO data structure
PENPACKET See PENPACKET data structure
RC See RC data structure
RCRESULT See RCRESUL T data structure
RECTOFS See RECTOFS data structure
SKBINFO See SKBINFO data structure
STROKEINFO See STROKEINFO data structure

PFIELD 73
Debugging values 185
Defaults

BOXLAYOUT data structure 216
ink color 239
setting 194-95,229

Delayed recognition
and compressed data 50
and scaled data 47
failure 256
sample code 70

DestroyPenData function 47, 111, 132
Device drivers

See also Pen driver
display drivers 2, 15,45, 114
modifying 105
replacing 105

Dictionary
.DLL 101, 102
case statements 100
constants 97-98
definition 105
description 17,96-100, 114
expanding functionality 239
initializing 101-2
languages 138
loading 101-2
maximum number of 97
message groups 99
path invalid 195
processing

DIRQ_ subfunctions 101
fields 36, 96-99
functions 133-41
overview 22-23
sentences 35-36
words 35-36, 265

sample code 138
searches 142-43
suggestions 35
word lists 136-40

DictionaryProc function 96, 101, 133-41,276
DictionarySearch function 98, 135, 142-43
DIRQ_ values

DIRQ_ADD 99, 136, 138
DIRQ_CLEANUP 99, 139
DIRQ_CLOSE 99, 136, 138-39
DIRQ_CONFIGURE 99, 136
DIRQ_COPYRIGHT 99, 136, 139
DIRQ_DELETE 99, 136, 138
DIRQ_DESCRIPTION 99, 100, 137, 138-39
DIRQ_FLUSH 99, 137
DIRQ_INIT 99, 139
DIRQ_OPEN 99, 137, 138-39, 140
DIRQ_QUERY 99, 100, 133, 137, 138-39
DIRQ_RCCHANGE 99, 137, 139, 140
DIRQ_SETWORDLISTS 99, 138-39, 140
DIRQ_STRING 98, 99, 100, 134, 138-39, 140
DIRQ_SUGGEST 98,99,101,134
DIRQ_SYMBOLGRAPH 99, 134
DIRQ_USER 99,134

Display drivers 2, 15,45, 114

Index 303

.DLL
dictionary 10 1, 138-40
MAINDICT.DLL 96
PENWIN 3,15
SHAPEREC 3
USERDICT.DLL 96

DPtoTP function 110, 144
DrawArrow function 60
DrawPenData function 44, 111, 145
DRV _ messages

DRV _GetCalibration 298-99
DRV _GetName 298
DRV _GetPenlnfo 298-99
DRV _GetVersion 298
DRV _RemovePenDriverEntryPoints 297-98
DRV _SetCalibration 298-99
DRV _SetPenDriverEntryPoints 297-98
DRV _SetPenSamplingDist 297-98
DRV _SetPenSamplingRate 297-98

DuplicatePenData function 47, 111, 146
dw AppParam field 87, 239
dwDictParam field 87, 97, 99, 239
dwRecognizer field 87, 239
dwTick field 246

E
Edit control 69, 192
Ellipse 53
EM_ values

EM_GETSEL 296
EM_LIMITTEXT 296
EM_REPLACESEL 296
EM_SETSEL 296

EmulatePen function 109, 147
EndEnumStrokes function 48, 111, 119, 148
EndPenCollection function 113, 149
EnumSymbols function 109, 150
Errors

and corrections 205-10
dictionary path invalid 195
invalid parameters 195
invalid recognition settings 195
invalid user name 195
segmentation 206

Events
buffer 112
generating pen 226
mouse 172
obtaining data 161-62
pen into mouse!keyboard 15,33

Programmer's Reference

304 Index

Events (continued)
processing queued pen events 179
recognizer processing 22
virtual 176-77

ExecuteGesture function 109, 151-52
EXPENSE.C 100
ExpenseDictionaryProc function 102-3

F
Fields See individual field name
FirstSymbolFromGraph function 39, 109-10, 142, 153
fMinimized field 245
Fonts

in bed its 77
statements 77

Functions
allocation

GlobalAlloc 41, 47, 52
ANSI strings

CharacterToSymbol 121
application entry point

WinMain 54-55,68
barrel button

GetPenAsyncState 156
bounding rectangles

BoundingRectFromPoints 120
buffer

CopyRawData function 60
GetPenHwData 93, 159-60

compression
CompactPenData 50, 123-24

custom recognizer
CloseRecognizer 89, 112
ConfigRecognizer 89, 112
InitRecognizer 89, 112
RecognizeDataIntemal 89, 112
RecognizeIntemal 89, 112
TrainContextIntemal 89, 112
TrainInkIntemal 89, 112

data access
GetPointsFromPenData 48, 163

data handling & display
DrawArrow function 60
DrawRawData function 60
DrawShape function 60
GetNearestColor 29
SetGraph Window function 60
SetViewportOrg 145
SetWindowExt 145
SetWindowOrg 145

Microsoft Windows for Pen Computing

Functions (continued)
data I/O

AddPointsPenData 117, 207
EndPenCollection 149

dictionary
DictionaryProc 96, 101, 133-41,276
DictionarySearch 98, 135, 142-43
GetProcAddress 23
LoadModule 23

events
IsPenA ware 171
IsPenEvent53, 155, 172
Keyboard_Event 24
ProcessPenEvent 116, 179

gestures
ExecuteGesture 151-52

GetSystemMetrics 295
hedit

CreateWindow 74
hooks

SetPenHook 196
SetRecogHook 197-98

HPENDA T A data structure
BeginEnumStrokes 119
CreatePenData 207
GlobalLock 52
GlobalSize 52

initialization

ink
InitRc 167-68,229

DrawPenData 44,145
DuplicatePenData 47, 146
GetLPDevice 15
InkReady 15

keyboard
Keyboard_Event 24
ShowKeyboard 199-202

memory
AddPointsPenData 49
BeginEnumStrokes 48
CreatePenData 47
DestroyPenData 47, 132
EndEnumStrokes 48, 119, 148
GetPenDataInfo 48, 157
GlobalFree 47
SetClipboardData 295

mouse

pen
GetMessageExtraInfo 20,33, 155,230

Atomic VirtualEvent 118
EmulatePen 147

Functions (continued)
pen data

AddPointsPenData 111
BeginEnumStrokes 111
CompactPenData III
CreatePenData 111
DestroyPenData III
DrawPenData 111
DuplicatePenData 111
EndEnumStrokes 111
GetPenDataStroke function 111
GetPointsFromPenData 111
MetricScalePenData III
OffsetPenData 111
ResizePenData III

pen driver
description 113-14
UpdatePenlnfo 213

pen module
AddPenEvent 113, 116
EndPenCollection 113
GetPenHWData 113
GetPenHWEventData 113
IsPenEvent 113
ProcessPenEvent 113
UpdatePenlnfo 113

PENDA T A data structure
CreatePenData 130-31

RC data structure defaults
GetGlobalRC 154,289
SetGlobalRC 194-95,289

recognition
CorrectWriting 109, 128-29
EmulatePen 109
ExecuteGesture 109
InitRC 109
InstallRecognizer 109, 169, 170
IsPenA ware 109
IpFuncResults 93
ProcessWriting 5, 77,80, 107, 109, 180-82,282
Recognize 5, 21-22, 109, 183-85,282
RecognizeData 9, 109, 186,282
RecognizeDatalnternal 93, 187
Recognizelnternal22, 93-95, 188-89
RegisterPenApp 109
SetRecogHook 109
ShowKeyboard 109
UninstallRecognizer 109

Functions (continued)
recognizer

CloseRecognizer 122
ConfigRecognizer 125-27, 276
InitRecognizer 169
UninstallRecognizer 212

recognizer training

Index 305

GetPenDataStroke 48, 119, 148, 158,207
TrainContext 110, 205-6
TrainContextlnternal 207-8
Trainlnk 110,205,209-10
Trainlnklnternal 211

rendering pen data
RedisplayPenData 45-46, 145, 190-91

stub
CloseRecognizer 93
ConfigRecognizer 92-93
InitRecognizer 92
TrainContext 92
Trainlnklnternal 92

symbol graph
CalcNearestDir 95-96
EnumSymbols 150
FirstSymbolFromGraph 142, 153
GetSymbolCount 164
GetSymbolMaxLength 165

symbol manipulation
CharacterToSymbol 110
EnumSymbols 110
FirstSymbolFromGraph 39, 110
GetSymbolCount 110
GetSymbolMaxLength 110
SymbolToCharacter 39, 110, 203

tablet data
GetPenHwEventData 155, 161-62

transforming pen data
MetricScalePenData 46, 50, 173
OffsetPenData 43,47, 175
ResizePenData 46, 193

utility
BoundingRectFromPoints 110
DPtoTP 110, 144
GetGlobalRC 110
GetMessageExtralnfo 110
GetPenAsyncState 110
GetVersionPenWin 110
SetGlobalRC 111
SetPenHook 111
TPtoDP 111,204

Programmer's Reference

306 Index

Functions (continued)
version number

GetVersionPenWin 166
virtual events

AtomicVirtualEvent 109
PostVirtualKeyEvent 109, 176
PostVirtualMouseEvent 109, 177

windows
HformWndProc 68, 71
InputWndProc 62-65
Main WndProc 60-62
RawWndProc 65

fVisible field 245

G
Gesture

accelerator 71
ALC_ value 74
and keyboard shortcuts 26
binding 26
definition 13
executing 151-52
gesture-only fields 29
hot spots 85
macro layer 24, 34
manager 34, 39
recognition process 29

GetGlobalRC function 110, 154,289
GetLPDevice function 15
GetMessageExtraInfo function 20, 33, 110, 155,230
GetNearestColor function 29
GetPenAsyncState function 110, 156
GetPenDataInfo function 48, 157
GetPenDataStroke function 48, 111, 119, 148, 158,207
GetPenHwData function 93, 113, 159-60
GetPenHwEventData function 113, 155, 161-62
GetPointsFromPenData function 48, 111, 163
GetProcAddress function 23
GetSymbolCount function 110, 164
GetSymbolMaxLength function 109, 165
GetSystemMetrics function 295
GetVersionPenWin function 110, 166
GGRC_ values

GGRC_DICTBUFfOOSMALL 154
GGRC_OK 154
GGRC_PARAMERROR 154

GlobalAlloc function 41,47,52
GlobalFree function 47
GlobalLock function 52
GlobalSize function 52
Graphs 37-38, 85-87, 98, 134-35

Microsoft Windows for Pen Computing

GUIDE data structure
BXD _ values 255
description 31, 216-17
sample code 218

guide field 87, 167, 238

H
Handwriting edit See Hedit
Handwriting processing 5, 6, 67-75, 180-82
HE_ messages

HE_CHAROFFSET 277
HE_CHARPOSITION 277
HE_DEFAULTFONT 278
HE_GETBOXLA YOUT 278
HE_GETINFLATE 278
HE_GETINKHANDLE 278
HE_GETRC 278
HE_GETRCRESULT 279
HE_GETRCRESULTCODE 279
HE_GETUNDERLINE 279
HE_SETBOXLA YOUT 279
HE_SETINFLATE 279
HE_SETINKMODE 279
HE_SETRC 280
HE_SETUNDERLINE 280
HE_STOPINKMODE 280

Hedit
control creation code 72-75
control messages 68, 277-81
controls 69, 192
description 4,67-75
setting hook after recognition 70
setting RC preferences 74
switch statement 74
use 67
window creation 74

HFORM parent window 71
HformWndProc function 68, 71
HKP_ values

HKP _SETHOOK 197
HKP_UNHOOK 197

HN_ messages
HN_DELA YEDRECOGFAIL 256
HN_ENDREC 256
HN_RCRESULT 256

Hook
pen packet 196
recognition 197-98

Hot spots 85

HPENDA T A data buffer
compressing data in 50
data points 42-43
description 41-52
freeing memory 132
generating 51
header 44
information storage 42
memory 46, 119
PENDAT AHEADER structure 44
PENINFO structure 44
stroke headers 44

hpendata element 40
hpendata field 241
hrec field 32, 87, 168, 230
hwnd field 35,88, 167,230,245,281
HWR_ values

HWR_APPWIDE 197
HWR_RESULTS 197

IDC_ values
IDC_ALTSELECT 257
IDC_PEN 257

.INI files
CONTROL.INI See CONTROL.INI file
format 285-86
PENWIN .INI See PENWIN
SYSTEM.INI See SYSTEM.INI file

Initialization
functions See Functions, initialization
data structures 70
dictionary 10 1-2
recognizer 169-71
SYSTEM.INI file 285-86

InitRC function 109, 167-68,229
InitRecognizer function 89, 92, 112,169
Ink

baseline 39
compressing 52
drawing process 21-22, 29
entering and storing 9
freeing data 35
functions 45-50
location and position 39
mapping of 38
midline 39
mode 18,21-26
offsetting 51
processing 13, 77
redraw 190-91

Ink (continued)
rendering 45, 51
saving 42, 52
sizing 47,52

Index 307

width and color 29,88, 145, 190,239
Inking

definition 106
hidden cursor 34
restrictions 218

InkReady function 15
InstallRecognizer function 109, 169, 170
Installation requirements xii
IsPenAware function 109, 171
IsPenEvent function 53, 113, 155, 172

K
Keyboard 199-202, 245
Keyboard_Event function 26
Keypad request

L

SKB_BASIC 200
SKB_FULL 200
SKB_NUMPAD 200

Languages
dictionary 138
recognizing 32
sLanguage element in WIN .INI 33
word list codes 141

LoadModule function 23
IPcm field 88, 167,237,281
IPdc field 225-26
IpfnYield field 34,88, 168,231
IpFuncResults function 93
IpLanguage field 32, 88, 168,232
Iprc field 242
Iprc pointer 40
Ipsyv field 39, 241
IpUser field 35, 88, 168, ~31
lRcOptions field 88, 97-98, 167, 231, 281

M
Macros

IsAlcBitAnsi 235
layers 24, 34
ResetAlcBitAnsi 235
SetAlcBitAnsi 235

MAINDICT.DLL 96

Programmer's Reference

308 Index

Memory
adding data to 48
clearing 111
controlling functions 111
data structure description 223
freeing 132
housekeeping operations 47
HPENDATA data structure 41-42, 119
merging blocks in HPENDA T A 46
operations 111
out of memory error 184, 270
retrieving data from 48
returning header & pen information 157
unlocking 148

Messages
bedit control 76
calibration driver 299
combo-box notification

CBN_DELA YEDRECOGFAIL 295
CBN_ENDREC 295
CBN_RCRESULT 295

control 68
dictionary

DIRQ_ADD99
DIRQ_CLEANUP 99
DIRQ_CLOSE 99
DIRQ_CONFIGURE 99
DIRQ_COPYRIGHT 99
DIRQ_DELETE 99
DIRQ_DESCRIPTION 99
DIRQ_FLUSH 99
DIRQ_INIT 99
DIRQ_OPEN 99
DIRQ_QUERY 99
DIRQ_RCCHANGE 99
DIRQ_SETWORDLISTS 99
DIRQ_STRING 98, 99
DIRQ_SUGGEST 98, 99
DIRQ_SYMBOLGRAPH 99
DIRQ_USER 99

HN_ notification
HN_DELA YEDRECOGFAIL 256
HN_ENDREC 256
HN_RCRESULT 256

interpreter 15-16,24
pen driver

DRV _GetCalibration 298-99
DRV _GetName 298
DRV _GetPenlnfo 298-99
DRV _GetVersion 298
DRV _RemovePenDriverEntryPoints 297-98
DRV _SetCalibration 298-99

Microsoft Windows for Pen Computing

Messages (continued)
pen driver (continued)

DRV _SetPenDriverEntryPoints 297-98
DRV _SetPenSamplingDist 297-98
DRV _SetPenSamplingRate 297-98

results 84
SYV_

SYV _BACKSPACE 78
SYV _CLEAR 78
SYV _CLEARWORD 78
SYV_COPY78
SYV _CORRECT 78
SYV_CUT78
SYV_EXTENDSELECT78
SYV _PASTE 78
SYV _RETURN 78
SYV _SPACE 78
SYV_TAB 78
SYV_UND079

WM_
WM_GLOBALRCCHANGE 276
WM_RCRESUL T 37, 282
WM_SKB 283

WM_HEDITCTL
HE_CHAROFFSET 277
HE_CHARPOSITION 277
HE_DEFAULTFONT 278
HE_GETBOXLA YOUT 278
HE_GETINFLATE 278
HE_GETINKHANDLE 278
HE_GETRC 278
HE_GETRCRESULT 279
HE_GETRCRESULTCODE 279
HE_GETUNDERLINE 279
HE_SETBOXLA YOUT 279
HE_SETINFLATE 279
HE_SETINKMODE 279
HE_SETRC 280
HE_SETUNDERLINE 280
HE_STOPINKMODE 280

MetricScalePenData function 46, 50, 111, 173
Microsoft recognizer 17
Microsoft Windows for Pen Computing

See Pen extensions
Module'

Dictionary
DictionaryProc function 133-41

PenModule
AddPenEvent function 116

RC Manager
AddPointsPenData function 117
Atomic VirtualEvent function 118

Module (continued)
RC Manager (continued)

BeginEnumStrokes function 119
BoundingRectFromPoints function 120
CharacterToSym~01 function 121
CompactPenData function 123-24
CorrectWriting function 128-29
CreatePenData function 130-31
DestroyPenData function 132
DictionarySearch function 142-43
DPtoTP function 144
DrawPenData function 145
DuplicatePenData function 146
EmulatePen function 147
EndEnumStrokes function 148
EndPenCollection function 149
EnumSymbols function 150
ExecuteGesture function 151-52
FirstSymbolFromGraph function 153
GetGlobalRC function 154
GetPenAsyncState function 156
GetPenDataInfo function 157
GetPenDataStroke function 158
GetPenHwData function 159-60
GetPenHwEventData function 161
GetPointsFromPenData function 163
GetSymbolCount function 164
GetSymbolMaxLength function 165
GetVersionPenWin function 166
InitRC function 167-68
InstallRecognizer function 170
IsPenAware function 171
IsPenEvent fu~ction 172
MetricScalePenData function 173
OffsetPenData function 175
PostVirtualKeyEvent function 176
PostVirtualMouseEvent function 177-78
ProcessPenEvent function 179
ProcessWriting function 180-82
Recognize function 183-85
RecognizeData function 186
SetGlobalRC function 194-95
SetPenHook function 196
SetRecogHook function 197-98
ShowKeyboard function 199-202
SymbolToCharacter function 203
TPtoDP function 204
TrainContext function 205-6
TrainInk function 209-10
UninstallRecognizer function 212
UpdatePenInfo funciton 213

Index 309

Recognizer
Close Recognizer function 122
ConfigRecognizer function 125-27
InitRecognizer function 169
RecognizeDataIntemal function 187
RecognizeIntemal function 190
RedisplayPenData function 190
RegisterPenApp function 192
ResizePenData function 193
TrainContextIntemal function 207-8
TrainInkIntemal function 211

Windows
GetMessageExtraInfo function 155

Mouse

N

click sample code 118
events 172
input code 286

nBaseLine field 39
nInkWidth field 29,88, 168,239
nMidLine field 39
Noise reduction 82
Normalization 82
nPad field 245
nSamplingDist field 226
nSamplingRate field 226

o
OCR 81,112
OEMPENINFO data structure

description 82, 221-22
sample code 221-22

OffsetPenData function 43, 47, 111, 175
On-screen keyboard

p

command request
SKB_CENTER 200
SKB_HIDE 199
SKB_MINIMIZE 200
SKB_MOVE 200
SKB_QUERY 199
SKB_SHOW 199

partial keyboard 200
storage location 245

Parameters, setting for recognizer 127
Parent window, HFORM 71

Programmer's Reference

310 Index

PCM_ values
PCM_ADDDEFAULTS 238, 258
PCM_INVERT 238, 258
PCM_PENUP 29, 238, 258
PCM_RANGE 29, 238, 258
PCM_RECTBOUND 30, 40, 238, 258
PCM_RECTEXCLUDE 30, 40, 238, 258
PCM_TIMEOUT 30, 238, 258

PDC_ values
PDC_BARRELI 225,259
PDC_BARREL2 225, 259
PDC_BARREL3 225, 259
PDC_INTEGRATED 225, 259
PDC_INVERT 225, 259
PDC_PROXIMITY 225, 259
PDC_RANGE 225, 259
PDC_RELATIVE 225, 259

PDK_ values
PDK_BARRELI 156,260
PDK_BARREL2 156,260
PDK_BARREL3 156,260
PDK_DOWN 260
PDK_DRIVER 260
PDK_INVERTED 260
PDK_OUTOFRANGE 260
PDK_ TRANSITION 260

PDT_ values
PDT_ANGLEXY 221, 261
PDT _ANGLEZ 221, 261
PDT_BARRELROTATION 221, 261
PDT_HEIGHT 221, 261
PDT_NULL 221, 261
PDT_OEMSPECIFIC 221, 261
PDT_PRESSURE 221, 261

PDTS_ values
PDTS_ARBITRARY 131,223,262
PDTS_ COMPRESS2NDDERIV 223
PDTS_COMPRESSED 223
PDTS_COMPRESSMETHOD 223
PDTS_DISPLA Y 173, 223, 262
PDTS_HIENGLISH 130, 173,223,262
PDTS_HIMETRIC 130, 173,223,262
PDTS_LOMETRIC 130, 173,224,262
PDTS_NOOEMDATA 224
PDTS_NOPENINFO 224
PDTS_NOUPPOINTS 224
PDTS_SCALEMASK 224
PDTS_SCALEMAX 224
PDTS_STANDARDSCALE 131,224,262
PDTS_TABLET 130,262

Microsoft Windows for Pen Computing

PDTT _ trim options

Pen

PDTT _ ALL 123
PDTT_COLINEAR 123
PDTT_COMPRESS 123
PDTT_DECOMPRESS 124
PDTT_DEFAULT 123
PDTT_OEMDATA 124
PDTT _PENINFO 124
PDTT_UPPOINTS 124

algorithms 46
applications 16
barrel button state 156
determining last stroke 29
determining recognition 29-30
event20,226
ink mode 18,25-27
input code 286
interpreting strokes 81
memory 157
message interpreter 15-16,24
normal mode 18-19
number per tablet 226
obtaining data from buffer 159
packet 116, 118, 179, 196, 228
palette 118, 209
stroke 44
time-out period 30
using to scroll 29

Pen data
compression 50
copying 146
display 145
housekeeping 47
memory 47-48
points 42-43
saving 35, 264
sizing 193
structure 117

Pen driver
communication with Windows 116, 228
description 2, 14-15, 18
functions 113-14
IDC_ values 257
installable 296
messages 297-99
PENINFO value changes 213
sample code 296
saving OEM data 221

Pen extensions
.DLL3
components 14-17
data flow 17-26
description 1
device drivers 2
goals 13
objectives 1
pen interface 3
pen message interpreter 15-16,24
recognizer 3
visual user feedback 34

PENAPP.C90
PENDA T A data structure 130
PENDATAHEADER data structure

description 44, 223-24
sample code 223-24

PEN INFO data structure
description 44, 225-26
sample code 225

PENPACKET data structure
description 228
sample code 228

PENWIN
.DLL 3,14
.INI file 195,289-93

PFIELD data structure 73
pntEnd element 40
pntEnd field 241
PostVirtualKeyEvent function 109, 176
PostVirtualMouseEvent function 109, 177
Power requirements 7
Preferences

color 74
RC data structure field 230
setting for hedits 74

Process description See Data flow
ProcessPenEvent function 113, 116, 179
ProcessWriting function 5, 77,80, 107, 109, 180-82,

282
Proximity detection 29

R
RC data structure

bedit window class 31
description 5, 29-30, 229-30
dictionary code 96
filling in default values 167-68
GUIDE data structure 31

RC data structure (continued)
pointer to 40
sample code 229-30
setting defaults 194-95

RC data structure fields
ale 87, 167,233
alcPriority 32,87, 168,234
clErrorLevel 87, 168, 233
dwAppParam 87, 239
dwDictParam 87, 97, 99, 239
dwRecognizer 87, 239
guide 87, 167,238
hrec 32, 87, 168, 230
hwnd 88, 167, 230, 281
IPcm88,167,237,281
IpfnYield 88, 168,231
IpLanguage 88, 168, 232
IpUser 88, 168,231
IRcOptions 88, 97, 167, 231, 281
nlnkWidth 29, 88, 168,239
rectBound 30,88, 167,237,281
rectExclude 30, 88, 167, 237
rgbfAlc 88, 168, 234
rgblnk 29,88, 168,239
rglpdf 53, 88, 97, 168, 232
rgwReserved 88, 239
wCountry 168, 232
wEventRef 88, 230, 281
wIntlPreferences 168,232
wRcDirect 88, 167, 239

Index 311

wRcOrient 88, 167,239,281
wRcPreferences 37, 88, 168,231
wResultMode 89, 167,236,281
wTimeOut 30,89, 168,237
wTryDictionary 87,97,98, 168,233

RC Manager
buffer 19, 20, 28
description 14, 89
interpreting pen events 20

RC preferences
color 74
setting for hedits 74

RCD_ values
RCD_BT263
RCD_DEFAULT 263
RCD_LR263
RCD_RL263
RCD_TB 263

RCO_ values
RCO _BOXED 34, 264
RCO_COLDRECOG 264
RCO_DISABLEGESMAP 34, 264

Programmer's Reference

312 Index

RCO_ values (continued)
RCO_NOFLASHCURSOR 34, 264
RCO_NOFLASHUNKNOWN 34, 264
RCO_NOHIDECURSOR 34, 264
RCO_NOHOOK 35, 264
RCO_NOPOINTEREVENT 264
RCO_NOSPACEBREAK 35, 97"""798, 264
RCO_SAVEALLDATA 35, 264
RCO_SAVEHPENDATA 35, 264
RCO_SUGGEST 35, 97-98, 265
RCO_TABLETCOORD 35, 265

RCOR_ values
RCOR_LEFT 266
RCOR_NORMAL 266
RCOR_RIGHT 266
RCOR_UPSIDEDOWN 266

RCP_ values
RCP _LEFTHAND 230, 267
RCP _MAPCHAR 231, 267

RCRESUL T data structure
description 6, 36-40, 240-43
recognition 39
sample code 240

RCRT_ values
RCRT _ALREADYPROCESSED 242, 268
RCRT_DEFAULT 242
RCRT_GESTURE 242,268
RCRT_GESTURETOKEYS 242, 268
RCRT _ GESTURETRANSLATED 242, 268
RCRT_NORECOG 242, 268
RCRT_NOSYMBOLMATCH 243, 268
RCRT_PRIVATE 243, 268
RCRT_UNIDENTIFIED 243, 268

REC_ values
REC_ABORT 160,183,270
REC_ALC 185,271
REC_BADEVENTREF 185,270
REC_BADHPENDATA 184,271
REC_BUFFERTOOSMALL 161, 184,270
REC_BUSY 184,270
REC_CLVERIFY 185,271
REC_DEBUG 185,271
REC_DICT 185,271
REC_DONE 184, 270
REC_ERRORLEVEL 185, 271
REC_GUIDE 185,271
REC_HREC 185,271
REC_HWND 185,271
REC_INV ALIDREF 185, 271
REC_LANGUAGE 185, 272
REC_NOCOLLECTION 160,185,272
REC_NOINPUT 184, 270

Microsoft Windows for Pen Computing

REC_ values (continued)
REC_NOTABLET 184, 270
REC_OEM 185,272
REC_OK 160, 161, 183,270
REC_OOM 184,270 .
REC_OVERFLOW 160, 184,270
REC_PARAMERROR 160, 161
REC_PCM 185,272
REC_POINTEREVENT 184,270
REC_RECTBOUND 185,272
REC_RECTEXCLUDE 185,272
REC_RESULTMODE 185,272
REC_TERMBOUND 160,184,271
REC_TERMEX 160, 184,271
REC_TERMOEM 160, 184,271
REC_TERMPENUP 160, 184,271
REC_TERMRANGE 160, 184,271
REC_TERMTIMEOUT 160, 184,271

Recognition
alphabet 73
and writing direction order 31
bitmaps 81, 112
Context See RC data structure
controlling the process 33-35
data 81, 186-89,230
delayed

and compressed data 50
and scaling pen data 46
definition 41
failure of 256
sample code for 70-71

description 22
ending 22, 29-30, 238
gesture manager 34
handwriting 6
hooks 35, 70
improving accuracy 32
languages 32
OCR 112
process description 28,81-83
RC data structure 29-30
RCResult data structure 39
rectangles 30
results

character sets 84
description 36-40
errors plus corrections 205
gesture hot spots 85
message 84
optimum 220
overview 83

Recognition (continued)
results (continued)

RCResult data structure
See RCResult data structure

storage space available 37
symbol graph 37-38
window they appear in 230
WM_RCRESUL T message 37

sentences 35
shapes 53
speed 84
stroke order & direction 83
tablet proximity detection 29
time-out 35, 237
timing of results 33
vector 81, 112

Recognize functions
Recognize 5, 21-22, 109, 183-85,282
RecognizeData 9, 109, 186,282
RecognizeDataIntemal 89,93, 112, 187
RecognizeIntemal 22,89,93-95, 112, 188-89

Recognizer
and GUIDE structure 218
call back function 231
definition 17, 105
description 89
ending data collection 149
event processing description 22
functions 81
handle 230
initialization 169-71
Microsoft 17
removing 122, 212
segmentation suggestions 206
setting parameters 127
training 85, 205-11
using within a window 7
yield function 231

rect field 245
Rectangles

bounding 30, 39, 120, 167,244
recognition 30, 53
sizing 47

rectBound field 30, 88, 167, 223, 237, 281
rectBoundInk field 39,241
rectExclude field 30, 88, 167,237
RECTOFS structure

description 244
sample code 244

RedisplayPenData function 45-46, 145, 190-91
Redraw ink 190-91
RegisterPenApp function 6, 69, 75, lq9, 192

Removing recognizer 122, 212
ResizePenData function 47, 111, 193
Resizing data 193
Results See individual result name
rgbBox field 216
rgbfAlc field 88, 168, 234
rgbInk field 29,88, 168,239
rgbSelect field 216
rgbText field 216
rglpdf field 36,53,88,97-98, 168,232
rgoempeninfo field 227
rgwReserved field 88, 227, 239
RRM_ values

s

RRM_COMPLETE 236
RRM_NEWLINE 236
RRM_STROKE 236
RRM_SYMBOL 236
RRM_ WORD 235

Sample code
.INI files

CONTROL.INI 288
PENWIN .INI 289
SYSTEM.INI 286

accelerator gesture 71
adding pen events 116
button bitmaps 201
CalcNearestDir function 96
calibration driver messages 299
data structures

BOXLAYOUT216
GUIDE 218
OEMPENINFO 221-22
PENDATAHEADER 223-24
PENPACKET 228
RC 229-30
RECTOFS 244
STROKEINFO 246

dictionary 138
EXPENSE.C 100
hedit

and recognition hook 70
controls 69, 72-75

mouse click 118
Pen application 53-65
PENAPP.C 53-65
posting a mouse event 177
RCRT_ values 268-69

Index 313

Programmer's Reference

314 Index

Sample code (continued)
recognition

delayed 70
recognizer vs. RC manager 89-90

RecognizeInternal function 93-95
setting RC preferences 74
using ProcessWriting function 80

Sample dictionary 100-103
Saving

data points 35
ink data 52
pen data 35, 264
training results 208, 211

Scaling
data points 117
minimum & maximum 223
rectangles 47

Scrolling
implementing 29
in bed it control 76

Searches 142-43
Segmentation suggestions 206
SetClipboardData function 295
SetGlobalRC function 111, 194-95
SetGraph Window function 60
SetPenHook function 111, 196
SetRecogHook function 109, 197-98
SetViewportOrg function 145
SetWindowExt function 145
SetWindowOrg function 145
SGRC_ values

SGRC_DICTIONARY 195
SGRC_INIFILE 195
SGRC_OK 195
SGRC_PARAMERROR 195
SGRC_RC 195
SGRC~RECOGNIZER 195
SGRC_USER 195

SHAPEREC.DLL 3
Shapes 10, 53
ShowKeyboard function 109, 199-202
Sizing data 193
SKB_ requests

SKB_BASIC 200
SKB_CENTER 200
SKB_FULL 200
SKB_HIDE 199
SKB_MINIMIZE 200
SKB_MOVE 200
SKB_NUMPAD 200
SKB_QUERY 199
SKB_SHOW 199

Microsoft Windows for Pen Computing

SKBINFO data structure
description 245
sample code 245

SKN_ values
SKN_MINCHANGED 283
SKN_PADCHANGED 283
SKN_POSCHANGED 283
SKN_ VIS CHANGED 283

Speed of recognition 84
Spell checking 135
Storage 7, 42
Strings

conversion to ANSI 203
converting from ANSI 121
count of 164
measure length of 165
sorting 150

Stroke
headers 44
recognition 83

STROKEINFO structure
description 246
points 49
sample code 246
stroke headers 43

style field 216
Subfunctions

ConfigRecognizer 125-27
CorrectWriting 128-29
Dictionary 133-35

SYC 38, 85, 247, 249
SYE 38,85,247-48
SYG 85, 248
syg field 241
Symbol

converting to characters 109-10
correspondence structures (SYC) 38, 85
elements (SYE) 38, 85
graphs 85-87, 98, 109-10, 134-35
values 85, 110

Symbol graph
description 37-38
interpreting 153
symbol count 164

SymbolToCharacter function 39, 110, 203
System

processing See Data flow
requirements xii

SYSTEM.INI file
description 285
modifying 286
mouse input code 286
pen tablet input code 286

SYV 247
SYV_ values

T

SYV _BACKSPACE 78, 181,274
SYV _BEGINOR 273
SYV _CIRCLELOA 275
SYV _CIRCLELOZ 275
SYV _CIRCLEUPA 275
SYV _CIRCLEUPZ 275
SYV _CLEAR 78,181,274
SYV _CLEARWORD 78,181,274
SYV _COpy 78,181,274
SYV _CORRECT 78,181,274
SYV _CUT 78, 181,274
SYV _EMPTY 273
SYV_ENDOR273
SYV _EXTENDS ELECT 78, 181,274
SYV _NULL 273
SYV_OR273
SYV _PASTE 78, 181,274
SYV _RETURN 78,181,274
SYV _SOFTNEWLINE 274
SYV_SPACE 78,181,275
SYV _SPACENULL 274
SYV _TAB 78, 181,275
SYV _UNDO 79, 182,275
SYV_UNKNOWN 274
SYV _USER 275

Tablets
coordinates 30, 35, 144,204,218
dimensions 226
hardware requirements 113
number of pens per 226
opaque digitizer 34
orientation 266
proximity detection 29

Tenninating recognition process 29-30
Text

annotations 10
editing 128
spell checking 135
wrapping 76

TPtoDP function 111, 204
Trainable recognizers 85
TrainContext function 92, 110, 205-6

Index 315

TrainContextlntemal function 89, 112,207-8
Training 205-11
Trainlnkfunction 110,205,209-10
Trainlnklntemal function 89, 92, 112, 211
Trim options

u

PDTT _ALL 123
PDTT_COLINEAR 123
PDTT_COMPRESS 123
PDTT_DECOMPRESS 124
PDTT_DEFAULT 123
PDTT_OEMDATA 124
PDTT _PEN INFO 124
PDTT_UPPOINTS 124

UninstallRecognizer function 109,212
Unlocking memory 148
UpdatePenlnfo function 113,213
User

feedback 34
name 36

USERDICT.DLL 96

v
Values See individual value names
Verifying results 23-24
Version number 166
Vertical scrolling 76
Virtual events 176-77
Visual user feedback 34
VWM_ constants

VWM_MOUSELEFTDOWN 177
VWM_MOUSELEFTUP 177
VWM_MOUSEMOVE 177
VWM_MOUSERIGHTDOWN 177
VWM_MOUSERIGHTUP 177

w
wCountry field 168, 232
WCR_ subfunctions

WCR_CONFIGDIALOG 125
WCR_DEFAULT 125
WCR_PRIVATE 125
WCR_QUERY 125
WCR_QUERYLANGUAGE 126
WCR_RCCHANGE 126
WCR_RECOGNAME 126
WCR_TRAIN 126
WCR_TRAINCUSTOM 126

Programmer's Reference

316 Index

WCR_ subfunctions (continued)
WCR_TRAINDIRTY 127
WCR_ TRAINMAX 127
WCR_ TRAINSA VE 127
WCR_USERCHANGED 127
WCR_ VERSION 127

wDistinctHeight field 226
wDistinctWidth field 226
wEventRef field 88, 230, 281
WIN.INI file

modifying 293-94
PENWIN .INI 100
sample code 293-94
sLanguage element 32

Windows
buffer 33
communication with pen driver 116, 228
creating 56, 70, 74
hedit 68, 72-75
HFORM parent 71
invisible for interpreting messages 24
setting to register pen entries 6

WinMain function 54-55, 70
wIntlPreferences field 168,232
WM_ messages

WM_GLOBALRCCHANGE 276
WM_PASTE 296
WM_RCRESULT 26,37,282
WM_SKB 283

Microsoft Windows for Pen Computing

Word lists 136-40
wPdk field 246
wPndts field 44
wRcDirect field 31, 88, 167,239
wRcOptions field 34
wRcOrient field 31, 88, 167,239,281
wRcPreferences field 35, 38, 88, 168,231
wResultMode field 89,167,236,281
wResultsType field 39, 241
Writing

areas 8, 29-30
directions 31, 239, 263
on vertical axis 31

wTimeOut field 30,89, 168,237
wTryDictionary field 36, 87, 97, 98, 168,233

x
xOrigin field 218, 281

v
yOrigin field 218, 281

The MicrosoJf Windows™ 3.1
Programmer's Reference Library
This six-book series is the official documentation of the Microsoft Windows

Software Development Kit (SDK). These references, now updated and expanded for Microsoft
Windows version 3.1 are essential resources for every serious Windows programmer.

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 1

Overview
Microsoft Corporation

Volume 1 is an examination of all the window
management, graphics, and system services as well as
the extension libraries that are part of the API. In
addition, there is instruction on specific Windows 3.1
applications: Control Panel, File Manager, and others.
Also includes an index to all four volumes of the
Programmer's Reference.

519 pages, softcover $29.95 ($39.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 3

Messages, Structures, Macros
Microsoft Corporation

Volume 3 is a comprehensive reference on additional
elements of the API: data types; structures; macros;
printer escapes; dynamic data exchange transactions;
and File Manager, Control Panel, common dialog box,
and installable driver messages.

616 pages, softcover $29.95 ($39.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMING TOOLS

Microsoft Corporation
MICROSOFT WINDOWS 3.1 PROGRAMMING
TOOLS provides detailed information and instruction
for using built-in software development tools that are
part of the Microsoft Windows SDK; topics include
creating and compiling resources, debugging applica
tions, analyzing data, and compressing and decom
pressing data.

280 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 2

Functions
Microsoft Corporation

Volume 2 is a detailed reference to all the API
functions. Includes information on various function
groups as well as an alphabetic reference to each
function. Information includes syntax, statement of
purpose, input parameters, return values, and com
ments.

1008 pages, softcover $39.95 ($54.95 Canada)

MICROSOFT® WINDOWS™ 3.1
PROGRAMMER'S REFERENCE, Vol. 4

Resources
Microsoft Corporation

Volume 4 contains information on the many Windows
3.1 file formats as well as reference pages for several
built-in tools. Reference-page topics include resource
definition statements, assembly-language macros, and
Windows Help statements and macros.

352 pages, softcover $22.95 ($29.95 Canada)

MICROSOFT® WINDOWS™ 3.1 GUIDE
TO PROGRAMMING
Microsoft Corporation

A helpful introduction to the Windows 3.1 applications
programming interface (API) for the experienced C
programer. Key topics: processing input and output,
creating the necessary components of a Windows
application, managing memory, using dynamic-link
libraries and dynamic data exchange, and working with
fonts and printers.

Available Summer 1992

These six volume are the official Microsoft documentation of the Microsoft Windows Software Development Kit
and are included with that software product.

Microsoft Press books are available wherever quality computer books are sold.
Or call1-800-MSPRESS for ordering information or placing credit card orders.*

Please refer to BBK when placing your order. Prices subject to change .
• In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call (416) 293-8141.

In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 5TZ.

Your Window to 32-Bit Programming

iWin3~-
Application
Programming
Interface

MICROSOFT® WIN32™ APPLICATION PROGRAMMING INTERFACE
The Programmer's Reference: Volumes 1 & 2

Now developers can get a jump on 32-bit programming with this detailed two-volume reference to the new
Microsoft Windows 32-Bit API. This pre-release information is a first look at the programming architecture of the
future, designed to enable Windows-based applications to run on a broad range of computing platforms-from
battery-operated portables to high-end RISC workstations and multiprocessor servers.

Supported by Windows NTM and future versions of MS-DOS Windows, the Win32 API will be the
foundation for a generation of powerful new Windows applications as well as high-performance versions
of existing Windows applications. With no inherent memory or processor limitations, the Win32 API is
the programmer's answer to the ever increasing capabilities of state-of-the-art hardware.

MICROSOFT® WIN32™
APPLICATION PROGRAMMING

INTERFACE
VOLUME 1 contains an overview, the programming
guide, and the alphabetic API reference from A-G.

736 pages, softcover $45.00 ($60.00 Canada)

MICROSOFf® WIN3tM

APPLICATION PROGRAMMING
INTERFACE

VOLUME 2 contains the alphabetic API reference
H-Z and includes information on DDE transaction type,
messages, notifications, structures, types and macros.

736 pages, softcover $45.00 ($60.00 Canada)

The Win32 API will first be available in the Win32 Development Kit which is expected in the first half of 1992,
and in the Microsoft Windows NT operating system, expected in the second half of 1992. The Win32 API is
planned for addition to MS-DOS Windows in 1993. Look for your registration card in the back of these books to
be eligible for special discounts on the Win32 Development Kit and on updated editions of Volumes 1 and 2 of the
MICROSOFT WIN32 APPLICATION PROGRAMMING INTERFACE: THE PROGRAMMER'S REFERENCE.

Microsoft Press books are available wherever quality computer books are sold.
Or call1-800-MSPRESS for ordering information or placing credit card orders. *

Please refer to BBK when placing your order. Prices subject to change .
• In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call (416) 293-8141.

In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 5TZ.

Great Programming Resources from Microsoft Press
PROGRAMMING WINDOWS;M 2nd ed.
The Microsoft®Guide to Writing Applications for Windows™ 3
Charles Petzold
This edition of PROGRAMMING WINDOWS is packed with keen insight, tried-and-true programming techniques,
scores of complete sample programs written in C, and straightforward explanations of the Microsoft Windows
programing environment. Topics include: Dynamic Data Exchange (DOE) and the Multiple Document Interface (MOl)
features, reading input, using resources, the graphics device interface (GOI), and data exchange and links. PROGRAM
MING WINDOWS, 2nd edition is the most authoritative, example-packed, and thorough resource for programmers new
to the Microsoft Windows version 3 graphical environment and those familiar with earlier versions.
960 pages, softcover $29.95 ($39.95 Canada)
Updated edition covering Windows 3.1 available June 1992.

MICROSOFT® WINDOWS™3 DEVELOPER'S WORKSHOP
Richard Wilton
This example-packed programming resource provides rich and detailed discussions of some of the central-and
most complex-areas of programming for Windows. Wilton addresses topics that concern every serious Windows
programmer: debugging; building custom controls; interprocess communication through Dynamic Data Exchange
(DOE); Dynamic Link Libraries (DLL); and more. Wilton takes a practical, problem-solving approach, explaining
how to combine effective programming practices with good design.
296 pages, softcover $24.95 ($32.95 Canada)

MICROSOFT® C/C++ RUN-TIME LIBRARY REFERENCE, 2nd ed.
Covers version 7
Microsoft Corporation
The Microsoft C run-time library, available with Microsoft C and Microsoft C/C++, is a set of more than 550
functions and macros that offer extraordinary power to C and C++ programmers.This book is an up-to-date
complement to the Microsoft C/C++ online reference, the Microsoft Advisor help system. It provides a superb
introduction. to using the run-time library and its variables, constants, and types. Includes scores of sample
programs. This is your essential reference to the industry-standard run-time library.
944 pages, softcover $29.95 ($39.95 Canada)
NOTE: This book is the official run-time library documentation for the Microsoft ClC++ compiler, version 7, and is
included with that software product.

THE PROGRAMMER'S PC SOURCEBOOK, Znd ed.
Reference Tables for IBM® PCs, PS/2~ and Compatibles; MS-DOS® and Windows™
ThomHogan
This is a must-have reference for MS-DOS and Windows programmers. Here is all the information culled from
hundreds of sources and integrated into convenient, accessible charts, tables, and listings. This second edition is
updated and expanded to cover recent hardware releases as well as DOS 5 and Windows 3.
808 pages, softcover 8111 x 11 $39.95 ($54.95 Canada)

Microsoft Press books are available wherever quality computer books are sold.
Or caUl-800-MSPRESS for ordering information or placing credit card orders. *

Please refer to BBK when placing your order. Prices subject to change .
• In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call (416) 293-8141.

In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 STZ.

ENHANCE THE VISUAL I.Q.
OF YOUR ApPLICATIONS
WITH WINDOWS CONTROLS
Windows controls elevate a graphical user interface to a higher
plane. Nothing can make your application bolder, brighter, and
more visual-faster-than knowing how to use the full array
of Windows controls to your advantage. Now, there's a video
course to help you fast forward through programming techniques
using the controls in the Microsoft., Windows™ operating system.
The Microsoft University Exploring Controls video course
examines various Windows controls, including buttons, combo
boxes, static controls, scroll bars, edit controls, list boxes,
and custom controls. Concepts are visually illustrated through
3-D animation and supported with hands-on lab exercises and
a student guide.

Learn how to modify and customize controls
.... Apply techniques for creating, managing, and using common

control components of the Windows environment.
.... Explore how to modify controls through advanced techniques

for use when a standard Windows control doesn't meet an
application's requirements.

.... Learn about subclassing, owner draw controls, and what it
takes to create your own custom controls.

Get up to speed quickly
Software developers are on a critical path where bringing a
product to market a few days late can mean missing the mark
completely. Video training from Microsoft University offers the
flexibility to meet your needs. Each module includes:
.... Reference infonnation about the control, such as styles,

messages, and notifications .
.... Procedural techniques for actually implementing the control.
.... Lab exercises with sample code that you can incorporate into

your applications immediately.

Exceptional training at a price
that's under control
This video course will save you countless development man
hours while helping you improve the appearance and usability of
your applications. So bring the Microsoft University classroom
in-house, and take advantage of this intelligent training solution.
The complete Exploring Controls video course is just $495* and
includes one student guide. To leverage your training investment
across a development team, you can purchase additional student
guides for just $99 each.

Expertise at the touch of a button
If you want to understand Windows controls from the inside out,
pop in the videotape, hit play, and turn up the volume. You'll
learn from the training experts at Microsoft, developer of the
most popular applications for Windows. Now, put the power
of Windows controls to work in YOUR applications-order your
copy of the Exploring Controls video course today.
·Plus shipping and applicable state sales taxes.

TO ORDER:

"'::,',·""'·,'·'fIl··""·",'·"",'"'".·,",,,.,·',.',',',".'

(: /j

, I.,

",' . ",' .,', ,
........ ~~
~ .. ~ ... ':

, ,~.~ ' " "

CALL (206) 828·1507
Once your representative answers, please mention department 605.

Microsoft University offers technical training for developers and
support professionals. Please callfor more information on other
video courses, classroom courses at nine convenient locations in
the U.S., on-site training, licensing programs, custom courses,
Management Education seminars, or the Microsoft University
Training Alliance member nearest you.

lIIIictosottIJniversily
© 1992 Microsoft Corporation. All rights reserved. Microsoft is a registered trtideTTlilrk. and Windows is a trtideTTlilrk of Microsoft Corporation.

I Win~ows- for Pen Com~utinl
Programmer's Relerence Version 1

Designed to work with Windows 3.1

Microsoft Windows for Pen Computing, a series of modular extensions to the Microsoft Windows
operating system version 3.1, provides a rich environment for developing pen-based applications and for
enhancing existing Windows-based applications to take advantage of pen input devices. The Pen
extensions include a special set of dynamic link libraries (DLLs) and drivers that enable pen-based input
and handwriting recognition in Microsoft Windows 3.1.

Here, for programmers experienced in developing Windows-based applications, are both a minitutorial
and the application programming interface (API) reference for the Microsoft Windows for Pen Computing
extensions. The first half of the book lays the foundation for programming with the Pen extensions,
providing an overview of the architecture, an introduction to the components of the user interface, and a
sample application and sample recognizer (the DLL that translates pen input into recognizable symbols) .
The second half of the book offers a comprehensive and detailed look at the API routines, concluding with
a summary of pen-related structures, messages, and constants.

You 'll find important information on:

• Using the RC and RCRESULT recognition
methods and data structures

• Enabling the user to enter and store text
and graphical data as ink

• Using the ProcessWriting function to
simplify the conversion of existing
applications to take advantage of
handwriting input

• Using the hedit and bedit pen controls to
replace regular edit controls

• Using all pen functions, structures, and
constants

• Constructing replaceable recognizers
and dictionary DLLs

If you are developing-or considering developing-applications for Microsoft Windows for Pen Com
puting, this book is an absolute necessity.

Please note: This reference is the official
documentation included in the Microsoft
Windows Software Development Kit (SDK).

U.S.A. $24.95
U.K. £22.95
Canada $34.95

[Recommended]
The Authorized

Editions

ISBN 1-55615-469-0

90000

9 78

