Second Edition
Expanded coverage of Windows 95

Writing
Windows VxDs

and Device Dnvers

Programming Secrets for
Virtual Device Drivers

A practical guide to
VxDs and the secrets
of Windows

virtual machines

Explains when you :,:l* F
need a VxD or a DLL = B
or both

Writing Windows
VxDs
and Device Drivers

Karen Hazzah

R&D Books
Lawrence, KS 66046

R&D Books

an imprint of Miller Freeman, Inc.
1601 West 23rd Street, Suite 200
Lawrence, KS 66046

USA

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where R&D is aware of a trademark claim, the product
name appears in initial capital letters, in all capital letters, or in accordance with the ven-
dor’s capitalization preference. Readers should contact the appropriate companies for
more complete information on trademarks and trademark registrations. All trademarks
and registered trademarks in this book are the property of their respective holders.

Copyright © 1997 by Miller Freeman, Inc., except where noted otherwise. Published
by R&D Books, an imprint of Miller Freeman, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced or distrib-
uted in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher; with the exception that the program list-
ings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have
been carefully tested, but are not guaranteed for any particular purpose. The publisher
does not offer any warranties and does not guarantee the accuracy, adequacy, or com-
pleteness of any information herein and is not responsible for any errors or omissions.
The publisher assumes no liability for damages resulting from the use of the informa-
tion in this book or for any infringement of the intellectual property rights of third
parties which would result from the use of this information.

Distributed in the U.S. and Canada by:
Publishers Group West

P.O. Box 8843

Emeryyville, CA 94662

ISBN: 0-87930-438-3

m Miller Freeman

A United News & Media company

Preface

This book is primarily for developers who need to write a non-standard device driver,
either as a VxD or as a DLL. (A non-standard device is anything except a display,
keyboard, mouse, serial port, or printer.) This second edition expands the coverage of
VxDs, with particular attention to the issues raised by new Windows 95 features, like
Plug and Play.

While not intended for a beginning programmer, it is my intent that this book will
be accessible and useful to a wide range of readers. If you have written a device driver
or device interface code for DOS or some other operating system, you should be com-
fortable with the material in this book. To get the most from this book, you should
have a strong working knowledge of C. You should also be able to read 80x86 assem-
bly, although this edition uses far less assembly than the first edition. A strong grasp
of how segments are used by DOS compilers and assemblers will be helpful. You do
not need to be a Windows application programmer. In fact, you’ll find the code in this
book bears a much stronger resemblance to conventional DOS code than to the typical
Windows application.

i

A Step-by-step Approach

Windows can be an overwhelmingly complex environment. My goal in this book is to
help you understand which parts of that environment are really critical to each differ-
ent type of driver. Each chapter introduces a new driver, and each chapter introduces
only as much new material as you need to understand the new example. I've tried to
keep each example driver as simple as possible so that the critical features are nearly
self-evident. Most of the example code is written in C and embedded assembly using
VC++ 4.0. Where necessary, code is written in assembly using Microseft Assembly
(MASM) v6.1. The code disk includes a library of wrapper functions that allow VxDs
to be coded almost entirely in C.

Which Version of Windows?

This book covers both Windows 95 and Windows 3.x (Enhanced Mode). The focus is
on Windows 95, but almost all of the material also applies to Windows 3.x. In most
chapters the differences between the two versions are minimal and Windows 3.x con-
siderations are simply highlighted in a separate section at the end of the chapter. In a
few chapters the differences are larger. In these chapters I fully describe both ver-
sions, each in a separate section.

About the Book

This book is partitioned into two major sections. Part I (Chapters 2 through 12) covers
the Windows execution environment and VxDs. Part IT (Chapters 13 through 19) cov-
ers DLL-based drivers. Within each part, the chapters are ordered so that each builds
on the prior chapters. Once you have read Chapter 1 and decided whether you need to
build a VxD or a DLL, you can decide how to read the rest of the book. Nearly every-
one should read Chapters 2 and 3. These chapters describe those portions of the Win-
dows architecture that are important to device driver writers. The topics covered in
these chapters are important to both VxD and DLL developers. Those readers who are
rusty on selectors, descriptors, page tables, and the other architectural details of the
80x86 family of processors will want to read and refer to Appendix A as they read
Chapters 2 and 3. Throughout the book, I assume you are comfortably familiar with
the architectural information in Appendix A. Finally, if it bothers you to have certain
implementation details hidden, you may want to read portions of Appendix B as you
study the first example drivers. This appendix is the primary reference for the assem-
bly language “wrappers” used throughout the text.

Table of Contents

Preface

Chapter 1

T P 11

A Step-by-step Approach.cc..iiiiiiiia... iv
Which Version of Windows? iv
Aboutthe Book i, iv

WhatisaDriver?............coiiiiiiii it 1
Privileged and Non-privileged Packages 1
DriverInterfaces.ttt 2
What Kind of a Driver Do I Need to Write? 2
What Classof Device?.cviiiiiiiniiiiieeieenn. 2
What Kind of Hardware Interface? 4
What are the Performance Requirements?. 5
Summaryoiiii e e e 5

Part 1

Chapter 2

Chapter 3

Windows Execution
Environmentand VxDs7

The Virtual World of Windows 9

What is a Virtual Machine?., 10
MultitaskingModel.t 11
Virtual Memory through Demand Paging. 11
ProcessorModescooiiiiieniii e 12
ProtectedMode 13
VBOMOde . .. ooi e e e 14
Windows Execution Environments 15
Summary e e 17

How Windows Implements
the Virtual Environments 19

Trapping /O Port Accesscovviiiniinnnnnn.. 19
Trapping Access to Memory-mapped Devices 22
Trapping Interrupts and Exceptions 22
Processor Registers, 23
A Closer Look at Linear Addresses and Paging 23
Competing Address Requirements of Win32, Win16, and

DOS Applicationsc.ccoviiiieninniennnenns. 26
Win32 Address Requirements.t 26
Win16 Address Requirements. e 26
DOS Address Requirementsocoiinnenn... 28
Satisfying Address Requirements of Win16 and

DOS Applications: How Does Windows 3.x Do It? 28
Satisfying Address Requirements of Win32, Win16, and

'DOS Applications: How Does Windows 95 Do It?............ 32
SUMMAIY . ..o vttt et et et 36

Chapter 4 IntroductiontoVxDs...................37

VxD Loading T 38
BasicStructureofanD.‘............., 39
The Device Descriptor Block. 40
Supporting Data Structures LI e 42
Event Notification, 47
Statically Loaded VXD Initialization and

Termination Messagesovvviiine et 49
Dynamically Loaded VxD Initialization and

Termination Messages vvvvver v viieneneeneeennnns 50
VM State Change Messages e 51
Thread Messagesc.cn... P 53
Windows 3.x Differences. N 54
Summary e e 54

Tools for Building VXDs e 55
“DDK” Version Source Files 57
The DDB and Device Control Procedure: SKELCTRL.ASM. 60
VToolsD Versioncoviiiiininniiinennneen.. 63
A Windows 3.x Version of SKELETON. 67
SUMMArY . ..ot e e 68

Vil

Chapter 6

Chapter 7

viii

VxD Talks to Hardware79

I/O-mapped versus Memory-mappedc........ 79
Talking to an /O-mapped Deviceo 80
Talking to a Memory-mapped Device...................... 81
Statically Configured Memory-mapped Devices 82
Dynamically Configurable Devices. 82
Another Data Transfer Method: DMA 85
Using System DMA i, 86
System DMA Buffer Requirements 86
A Function for Allocating a System DMA Buffer 88
Overview of VDMAD Services.oovivinienenn.. 90
VDMAD ServicesinDetailooua.. 91
Using Bus-master DMAt 93
The Right Way to Use VDMAD_Scatter_Lock................ 96
Using Events with Bus-master DMA Transfers 99
Windows 3.x Differenceso 100
SUmMmMAryoo i e 100

Handling Hardware Interrupts in a VxD . . .107

Interruptsandthe VMM o oo, 108
Using VPICD Servicesoveurnineennnennennenn.n 109
Examining VPICD Services in Detail: VXDIRQ.C............ 110
Assembly Thunks and CHandlers 112
The HwIntProc Callback: DDBISR.ASMand VXDISR.C........ 112
Event Handlingin VXDISR ooiiians. 113
Windows 3.x Differencesot 114
SUMMArycooi i e 116

Chapter 8

Chapter 9

VxDs for Virtualization127

VMM and Processor Exceptions, 128
Device Ownershipooviiiiiiiiiiinn .. 129
Virtualizing an I/O-mapped Device:

The PORTTRAPExample.coviieiinn..n. 130
The Initialization Routine: OnDevicelnit................. 130
Handling Different IO Types: PortTrapThunk 131
Checking Ownership: PortTrapHandler e 133
Processing VM_TERMINATEot .. 136
Using PORTTRAP. 136
Virtualizing a Memory-mapped Device:

The PAGETRAPExample................cooviiinn... 137
The Initialization Routine 137
The Fault Handler Routine.t 140
Processing VM_Terminate........, 142
Using PAGETRAP. i 142
Virtualizing a Hardware Interrupt 143
WhichVM? ..o e 143
A VxD for Hardware Interrupt Reflection. 144
Callbacks: MaskChangeHandleroouet. 146
Callbacks: HwintHandlero, 148
Callbacks: EOIHandler ... 149
Callbacks: VirtIntHandler and IRETHandler............. 150
SUMMATY ..ot e e e e 150

Plug and Play: The Big Picture171

Plug and Play Componentsccovvvinnnn.. 172
Plug and Play Components

During Windows 95 Installation 174
Plug and Play Components

During Device Installation.ouun.. 176
Plug and Play Components During Boot. 176
Summaryoiii e 181

Chapter 10 Plug and Play Device Driver VxDs 183

Chapter 11

Plug and Play VxD Installation. 183
Introducing the INFFilet 184
Plug and Play Boot Process.ccovvieeennnenn.. 187
Other Plug and Play Configuration Scenarios............... 192
Shutdown. ... e 192
New Configurationcovvveinunnrnnennennnnnnns 194
DeviceRemoval, 194
A Sample Plug and Play Driver VxD: TRICORD.VXD 195
TRICORD.INFDetails..........coovviiiininnniiinnnnennn 196
CodeDetailscoviiiiiiiii i 197
SUMMATY . .o vt i i e 203
Communication from

Applications toVxDs. 215
Win16 Application to VxD: View from VxD Side 216
Win16 Application to VxD: View from Application Side.. 217
Winl16 Application to VxD: Example Code 219
Win32 Application to VxD: View from VxDside............ 224
Win32 Application to VxD: View from the Application Side . . .226
Win32 Application to VxD: Example Code 229
Summary O 232

Chapter 12

Part 2

Chapter 13

Communication from
VxDs to Applications245

Difficulties with Calling from a VxD to a

Winl6 Application. o 246
VxD to Win16 Application under Windows 3.x 247
Using Nested Execution Servicesc........ 250
VxD to Win16 Application under Windows 95:

PostMesSage 253

VxD to Win16 Application under Windows 95: Appy Time . . . 254
Windows 95 VxD to Win32 Application:

Asynchronous Procedure Calls 256
The APCVXDExample...........cooviiniinennn. 256
Windows 95 VxD to Win32 Application: Win32 Events. 260
VxDsandWin32Eventscovuviniinen... 262
SUMMArY ...t e e 268

DLI-based Drivers.287

Introduction to 16-bit Driver DLLs.289

Why Driver DLLs are Always 16-bit. 289
Interfacing 16-bit DLL to 32-Bit Application

RequiresaThunk............ i, 290
Static versus Dynamic Libraries 290
Why Package DriversinaDLL?........................ 291
Applications versus DLLs, 291
DLLs and Stack Segments.coovuunnninn.. 292
DLLs and Data Segments.c.oouierneennann... 293
DLLs and Ownership of Dynamically Allocated Memory 293
DLL Initialization and Termination. 294
DLL Function Requirements 295
The Skeleton Driver. oot 295
Building the Skeleton Driver O 296
DLL Requires an Application 297
Debugging Tools for Driver DLLs. 299
Summary ... 299

Chapter 14 Driver DLLs:

Xii

Connecting to the Hardware 303

DLLsand Port-accessvviiinnnn e, 303
A Port-mapped Example 304
Driver Design Conventions.ieuiienneen... 306
The Polled-mode Driver e 307
Accessing Memory-mapped Devices 310
A Memory-mapped Version P TR TV A, 311
Advanced Memory Issues.........., 312
SUMMATY . . .ot 317

Windows Memory Management Strategy Overview 326
Memory Requirements for an Interrupt-safe Driver.......... 332
Static Interrupt-safe Code and Data: The Easy Way.......... 334
Use the Right Way under Windows 3.x.................... 334
Dynamically Allocating Interrupt-safe Buffers:

TheEasyWaycoviiiiiin it iie 335
Dynamically Allocating Interrupt-safe Buffers:

TheRightWay. 336
Installing an Interrupt Handler 339
The New Driver: An OVerviewc.ouoveeunennn .. 340
The New Driver: TheCodecoooiiiii... 341
Summary............ P 346

DMA Buffer Requirements.ocouveinn.. 361
How to AllocateaDMA Buffer 362
DMA DOS Applications Under Windows 362
DMA Windows Applications Can Use this Knowledge 363
Using Virtual DMA ServicesIsBetter 363
SUMMATY . .. oe e e e 366

Chapter 17 Driver DLLs:

Chapter 18

Using Real Mode Services.367

Talking to a DOS Device Driver 368
Special Handling for IOCTLs e 370
Talkingto TSRS cov it 372
SUMMATY ...t e e e e e 384

Thunks: Calling from 32-bit to 16-bit.393

WhatisaFlat Thunk?0. ... i, 394
Thunk Layer Tasks.o, 396
Thunk LayerMagiccooiiiniiiinnan.. 397
Creating a Thunk Layer, Stepby Step 399
Building the Thunk Layer, Stepby Step 403
SUMMATY ...t e i e e 404

Chapter 19 Driver DLLs: Using Timers.415

Timers for Periodic Notification 415
Using SetTimer. oo 416
Hooking INT 1Chand INT 8h........ R T 416
Don’t Depend on 18.2 Ticks per Second 417
Using timeSetEvent: ProsandCons 417
If All Else Fails ... Use aVXDc.ooonnneenennn... 418
Measuring Elapsed Time ovun .. 419
Choices: GetTickCount, timeGetTime, and

QueryPerformanceCounter e 419
Summary ... e 419

b1}

Appendix A Intel Architecture 421

8086/8088 and Real MOEvvvvneeeeeennnn.s. 421
80286 and Protected Modecovvviiiinnnann. 422
Selectors and Descriptorsc.ocoiiinennennann.. 423
Interrupts and EXCEpHtONSovvueerenrennennennn.. 425
Protection Mechanisms 426
PrivilegeLevels. T 427
80386 and Virtual-8086 Mode.covuvrnennnnnnn. 428
Virtual-8086 Modeccviiiii i 431

Appendix B Using Assembly Language with

Index

xiv

Your VxD WritteninC 433
Declaringthe DDBo inn.. 434
Coding the Device Control Procedure. 434
Adding “Thunks” to Support Callbacks from VMM/VxDs437
Introducing the Wrapper Library 438
WRAPPERS . H. oottt e e e 440
Overview of WRAPPERS.ASMt 441
Building the Wrapper Library........................... 446
SUMMATrYvee e 447
..... B (3]

Chapter 1

Introduction

What is a Driver?

In its broadest definition, a “driver” is a set of functions that manipulates a hardware
device. One way of categorizing drivers is by how these functions are packaged. In
the DOS world, a “driver” can be a module that is linked into the application . EXE, or
a “driver” can be another piece of software which is completely separate from the
application (a DOS device driver or a TSR). In the world of Windows, a “driver” can
be a module that is dynamically linked into the application . EXE (called a DLL), or it
can be completely separate from the application (called a VxD).

Privileged and Non-privileged Packages

Another way of categorizing drivers is privilege. Some operating systems, such as
UNIX and Windows NT, prohibit applications from manipulating hardware directly.
In these environments, only privileged pieces of code known as “device drivers” are
allowed to interface to hardware. Applications that need to control hardware must use
the services provided by these drivers.

Windows too supports a privileged driver package. In Windows, these device drivers
are called VxDs. However, Windows does not require hardware support to be contained
in a VxD. In Windows, a surprising amount of hardware support is contained in DLLs,
not VxDs. In Windows, DLLs that interface to hardware are often called “drivers”.

2 — Writing Windows VxDs and Device Drivers

Driver Interfaces

Yet another way of categorizing a driver is by the interface it presents to the applica-
tion and the OS kernel. All Windows NT drivers use the same exact interface to the
NT kernel. The kernel in turn provides a standard interface which applications can use
to call any driver (open, read, etc.). The privileged driver package in Windows, the
VxD, is different. Although all Windows VxDs use the same kernel interface, there is
no standard interface to a VxD from the application level. Instead, each VXD defines
its own application interface.

Some Windows drivers packaged as DLLs interface to the kernel and are required
to export a specific interface to the kernel. Such drivers are sometimes called “system
drivers”. However, note that the interface used by the system keyboard driver looks
very different than the interface used by the system display driver. Other driver DLLs
have no required interface to the kernel at all, and the driver developer has a free hand
in designing whatever kernel interface and application interface he wants.

What Kind of a Driver Do I Need to Write?

Clearly there are many different kinds of “drivers” under Windows. Exactly which
type of driver you need to write depends on several interrelated factors:

* the version of Windows (3.x, 95),

* the class of hardware device (keyboard, network card, custom A/D board),
* the kind of hardware interface (I/O ports, interrupts), and

 the performance requirements (throughput, interrupt latency).

Collectively these four factors will determine whether you write your driver as a
DLL or as a VxD.

What Class of Device?

The first factor that will narrow down the decision is the class of device you’re sup-
porting. Windows dictates a specific driver type for many device classes, so if you're
supporting one of these, there is no decision to make. Windows dictates both the
packaging of the driver (DLL or VxD) and its interface. Table 1.1 shows the device
classes that Windows directly supports and the type of driver required.

As Table 1.1 shows, for most classes of device, both Windows 3.x and Windows
95 require exactly the same type of driver(s). The two exceptions are network adapt-
ers and block devices, neither of which was supported directly by Windows 3.x (DOS
drivers were used instead), but both of which now require a VxD under Windows 95.

Introduction — 3

Both a DLL and a VxD are required to support most device classes, with the bulk
of the work done in the DLL. You should also note that Driver DLLs are always16-bit
components — even under Windows 95, where native applications and DLLs are
32-bit instead of 16-bit.

The multimedia drivers were first introduced in Windows 3.1, where they were
implemented as DLLs that conformed to a new message-based interface. A driver
DLL that conformed to this interface was called an “installable driver”, and exported
a DriverProc (similar to the WindowProc of a Windows application) and responded
to messages such as DRV_LOAD, DRV_OPEN, DRV_INSTALL, and DRV_CONFIGURE. This
interface provided the user with a standard mechanism for installing multimedia driv-
ers through the Control Panel. The new interface also provided the operating system
with a standard way of loading, enabling, and disabling multimedia devices.

Table 1.1 Devices that require a particular type of driver.

Device Class Windows 3.x Windows 95
16-bit DLL VxD 16-bit DLL VxD
Display DISPLAY.DRV VDD. VXD DISPLAY.DRV VDD. VXD
Printer PRINTER.DRV PRINTER.DRV
Keyboard KEYBOARD. DRV VKD.VXD KEYBOARD.DRV VKD.VXD
Mouse MOUSE .DRV VMD. VXD MOUSE.DRV VMD. VXD
Serial/Parallel Port | COMM.DRV VCD.VXD VCOMM
port driver
Multimedia installable driver installable
DLL driver DLL
Network not a Windows NDIS 3.0
driver, but a DOS MAC
device driver or driver
TSR (e.g. NDIS
2.0 or ODI)
Block Device not a Windows layered
(Hard Disk, driver, but a DOS block
CD-ROM) device driver device
driver

4 — Writing Windows VxDs and Device Drivers

During the reign of Windows 3.1, the installable driver DLL soon caught on
as a driver interface for types of devices other than multimedia. However,
Microsoft is now pushing VxDs as the recommended driver type.
Interestingly, multimedia drivers under Windows 95 remain as 16-bit
installable drivers. Luckily, developers of multimedia drivers don’t have to
worry about thunking issues as other 16-bit driver developers do, because
Windows itself contains the required thunking layer (just as it contains
thunks for lots of other Windows pieces that remain 16-bit, such as USER
and GDI). See Chapter 18 for a discussion of thunking.

What Kind of Hardware Interface?

If you are not writing a driver for one of the device classes in the table above, then
Windows does not dictate either the driver package (DLL or VxD) or the interface.
Since for either package you’re going to design your own interface, the choice is
between DLL and VxD. The next factor to consider when choosing a package is the
hardware interface to your device:

» Is the device I/O-mapped or memory-mapped?
* Does the device generate interrupts?
* Does the device use DMA?

It is very easy to talk to an I/O-mapped device from a DLL, both under Windows
3.x and Windows 95. If your device is I/O-mapped and doesn’t generate interrupts or
DMA, the best choice for you may well be a DLL.

On the other hand, talking to a memory-mapped device, handling hardware inter-
rupts, and performing DMA all are possible from a DLL, but only easy under Win-
dows 3.x. Under Windows 95, only 16-bit DLLs are capable of these three operations.
Native Windows 95 applications are, of course, 32-bit, not 16-bit, so if you use a
16-bit driver DLL under Windows 95 you also need to develop a separate “thunk
layer” DLL. This thunk layer converts between the 16-bit world of your driver DLL
and the 32-bit world of native Windows 95 applications that use your driver.

Because of the extra work required to develop the thunk DLL, if you’re supporting
Windows 95, there are only two reasons to consider using a driver DLL instead of a
VxD. One, if you're supporting a very simple I/O-mapped device that doesn’t use
interrupts. In this case, you can write a simple 32-bit DLL that accesses the device.
Two, if you’ve already written a 16-bit DLL driver for the device. In this case, add a
thunk layer and you’ll have Windows 95 support.

Introduction — 5

You should also consider how fully you wish to support the capabilities of the
newer buses. Windows 95 includes built-in support for Plug and Play devices —
which includes PCI, PCMCIA, and VL-Bus. To get full support, the driver for a Plug
and Play device must be a VxD and interact with the Plug and Play Configuration
Manager (also implemented as a VxD). See Chapters 10 and 11 for a full discussion
of Plug and Play and the Configuration Manager.

If you choose to write a driver DLL instead of a VxD for your Plug and Play
device, you’ll have to use bus-specific BIOS methods to obtain your device’s configu-
ration information. And since most of these BIOS calls require using a software inter-
rupt, and software interrupts aren’t supported from 32-bit code (see Chapter 13 for an
explanation of why this is so), your DLL must be 16-bit with a thunk layer. Thunk
layers are discussed in Chapter 18.

What are the Performance Requirements?

Actual hardware access time, for both I0-mapped and memory-mapped devices, is
roughly the same from either a driver DLL or a VxD. However, interrupt response
time, also known as interrupt latency, is much faster (orders of magnitude) for a VxD.
So if your device generates a lot of interrupts and/or doesn’t have much buffering,
you’ll probably want to write a VxD.

Summary

With the information in this chapter, you should be able to reach a preliminary deci-
sion about what type of driver you need to develop. If a DLL will meet your require-
ments, then you can probably skip Chapters 4 through 12, for now, and focus on the
DLL information in the second part. If you plan to develop a VxD, you will want to
focus on the information in Part I.

In either case, you should probably browse through Appendix A sometime before
you have finished reading Chapter 3. Throughout the book, I will assume you are
comfortably familiar with the architectural information in that appendix.

In either case, whether you plan to develop a VxD or a DLL, the next two chapters
lay an important foundation. Chapter 2 explains the basics of Virtual Machines. Chap-
ter 3 explains how Windows exploits the 80x86 architecture to implement its Virtual

- Machines.

6 — Writing Windows VxDs and Device Drivers

Part 1

Windows ExeCution
Environment and VxDs

8 — Writing Windows VxDs and Device Drivers

Chapter 2

The Virtual World
of Windows

Windows 95 runs three different types of applications: DOS applications, Winl6
applications, and Win32 applications. To overcome the potential incompatibilities
among these types of applications, Windows executes them on virtual machines in
virtual environments. When developing applications, Windows programmers can usu-
ally ignore the distinction between the virtual environment and the real environment;
to most applications, the virtual environment is the real environment.

Writing a VxD, however, is a different matter, because a VxD runs in a supervisor
context — meaning it runs outside of any of the virtual machines. In fact, a VxD
becomes a part of the software which implements the virtual machine. Thus, the VxD
writer needs a more complete understanding of how the virtual environment differs
from the physical environment and how Windows creates the illusion of the virtual
machine. A full understanding of the virtual machine is especially important to pro-
grammers who are developing VxDs that need to manipulate resources in an applica-
tion’s virtual environment, as many are.

This chapter explains the salient aspects of the Windows architecture, including
how virtual machines are implemented, the major characteristics of the virtual envi-
ronments, and the characteristics of the supervisor environment.

10 — Writing Windows VxDs and Device Drivers

What is a Virtual Machine?

A virtual machine is a system-created illusion; virtual resources are emulations of
hardware (and sometimes software) resources. To qualify as a virtual resource, the
emulation must be so complete that the typical program can be written just as if the
hardware were real, not emulated. For example, virtual memory systems use disk
space, system software, special processor capabilities, and relatively small amounts of
physical memory to emulate systems with enormous quantities of physical memory.
The emulation is so convincing that programs running in a virtual environment can be
written just as if the entire virtual address space were actually populated with physical
memory. Such a memory system is said to have been “virtualized”.

When a system virtualizes all, or nearly all, program-accessible resources, it cre-
ates a “virtual machine”, or VM. Program-accessible resources include processor reg-
isters, memory, and peripheral devices (display, keyboard, etc.). The real reason
behind the use of virtual machines under Windows is to support existing DOS appli-
cations. A DOS application assumes it is the only application running and often
accesses hardware directly, uses all of available system memory, and uses all of the
processor time. Since under Windows the DOS application is not the only one run-
ning, Windows creates a virtual machine for the application to run in: access to hard-
ware is trapped and may be redirected, disk space may replace physical memory, and
the VM is “put to sleep” while other VMs get processor time.

The definition of Virtual Machine is: A task with its own execution environment,
which includes its own

+ address space,

* I/O port space,

* interrupt operations, and
* processor registers.

Virtualizing this much of a machine while still executing the bulk of the code
directly requires specialized processor support. The 80386 (and upwardly-compatible
descendants) includes sophisticated processor support for address translation, demand
paging, I/O trapping, instruction trapping, and interrupt trapping.

The main supervisor process, called the Virtual Machine Manager (VMM), uses
these hardware capabilities to create not just one virtual machine, but several indepen-
dent virtual machines, each with its own virtual execution environment. All Windows
applications (both Win32 and Winl6) run a single VM, called the System VM,
whereas each DOS application runs in its own independent VM. Each of these virtual
environments can differ substantially from the underlying physical machine.

The Virtual World of Windows — 11

Multitasking Model

Windows 3.x and Windows 95 use slightly different multitasking models. In Windows
3.x, the VMM preemptively multitasks among VMs. The VMM scheduler picks a VM
and executes it for an assigned time slice, and when the time slice is up, the scheduler
executes the next VM. This execution switch is transparent to the application — after
all, some of the time-shared applications are DOS applications, which certainly aren’t
written to support multitasking.

Although VMs are unaware of this preemptive timeslicing, the Windows 3.x
VMM itself is unaware that multiple Windows applications might be running in the
System VM. To the VMM, all Windows applications are part of the same task. A
higher layer “kernel” in the KERNEL DLL takes care of non-preemptive multitasking
among the Windows applications in the System VM.

Because the Windows 3.x VMM scheduler deals only with VMs, the benefits of pre-
emptive multitasking are realized only by users running DOS programs inside Windows.
Badly behaved Windows programs can and do prevent other Windows applications from
running, because the Kernel layer scheduler uses non-preemptive multitasking.

Windows 95 changes all that, bringing the benefits of preemptive multitasking to
Win32 applications also. In Windows 95, the tasking unit is something new called a
thread. Each DOS VM has a single thread. Within the System VM, all Win16 pro-
cesses share a single thread, while each Win32 process has its own thread. In addition,
each Win32 process may itself be multithreaded. In a multithreaded Win32 process,
the main thread creates additional threads during execution.

In Windows 3.x the VMM switches execution among VMs, and when the System
VM is run, a higher layer chooses which Windows application runs within the System
VM. In contrast, the Windows 95 VMM switches execution among threads, not VMs,
and it’s the lowest layer, the VMM, that chooses which thread to run in the System
VM. Since DOS VMs are always limited to a single thread, sometimes I'll simplify
and say that the Windows 95 VMM “runs a DOS VM” — while technically speaking,
it’s running the single thread within that DOS VM.

Virtual Memory through Demand Paging

Because Windows supports multitasking, it’s easy to imagine situations where the
total amount of memory used by all running programs is greater than the actual mem-
ory present in the system. An operating system that limits a user to running just a cou-
ple of programs because he only has a small amount of physical memory might be
useful, but not nearly as useful as one that somehow lets him run lots of programs.
This problem is hardly unique to Windows, and the solution — demand paged virtual
memory — isn’t unique either: mainframe operating systems have had it for years.

12 — Writing Windows VxDs and Device Drivers

The term virtual memory refers to a system that makes more memory available to
applications than physically exists. “Demand paged” refers to a specific type of vir-
tual memory. In a “paged” system, the operating system and processor divide the
address space into blocks of uniform size, called pages. Windows uses a page size of
4Kb, since that’s what the processor supports. “Demand” means that the virtual mem-
ory used by a program is associated with actual physical memory “on demand”. Only
when the program reads, writes, or executes a location on a page in virtual memory do
the processor and operating system intervene to associate a page of physical memory
with the virtual page. '

The operating system and the processor work together to implement demand pag-
ing. When a program is loaded, Windows first allocates pages in virtual memory to
hold the program, its data, and its resources. However, these are pages in virtual mem-
ory only, not in physical memory. The pages are marked as “not present” in physical
memory. When the program actually attempts to execute or read from a not-present
page, the attempted memory access triggers a processor exception called a page fault.
(An exception is a condition that causes an immediate transfer of control to an excep-
tion handler, which is almost always part of the operating system.) The Windows page
fault handler then allocates physical memory for that page and restarts the instruction
that caused the page fault. The restarted instruction doesn’t cause a fault because the
page is now present. This fault handling is completely transparent to the application,
which doesn’t realize that all of the memory it’s using is not present in physical mem-
ory at the same time.

The other half of demand paging is swapping pages to and from disk storage.
Even though Windows delays allocating physical memory until it’s actually used, at
some point all physical memory will have been used. When the page fault handler
finds that it can’t allocate a page because physical memory is exhausted, it frees up a
physical page by writing that page out to disk. The page fault handler then loads the
needed page into the newly vacated physical page. Later, when the swapped-out page
is accessed and causes a fault (it’s definitely not present; it’s on disk), the page fault
handler first allocates a page (swapping out yet another page if necessary) and then
checks to see whether this new page was previously written to disk. If it was, it copies
the page contents from disk to physical memory. When the instruction is restarted, the
swapped-out page is once again present in physical memory, with exactly the same
contents as before.

Processor Modes

In order to create and maintain virtual machines, the VMM exploits special character-
istics of the 80386 family of processors. These processors can operate in any of three
modes: protected, real, and V86. Windows 95 utilizes two of the modes: protected
mode and V86 mode.

The Virtual World of Windows — 13

The processor mode determines several important execution characteristics,
including

* how much memory the processor can address,

* how the processor translates the logical addresses manipulated by software into
physical addresses placed on the bus, and

* how the processor protects access to memory and I/O ports and prevents execution
of certain instructions.

Windows 95 requires an 80386 processor, or one of its upwardly compatible
descendants: 80486, Pentium, Pentium Pro. From now on when I use the
term “processor”’, I mean one of these processors. I'll also use the terms
“32-bit protected mode” and “16-bit protected mode” to refer to the
processor when it is in protected mode and executing either 32-bit or 16-bit
code, respectively. Although technically these two aren’t “modes” in the
same sense that V86 and protected are (i.e. this behavior isn’t controlled by
bits in the flags register), the size or “bitness” of the executing code has such
an effect on the processor’s behavior that 32-bit protected mode can
essentially be considered a different mode than 16-bit protected mode.

Protected Mode

The biggest difference between 32-bit and 16-bit protected mode is the amount of
addressable memory. In 16-bit protected mode, total addressable memory is only
16Mb. In 32-bit protected mode, the processor can address 4Gb, which is 2*2.
Although 4Gb is such a large number that systems have nowhere near that much
physical memory, such a large address space is still useful when the operating system
provides virtual memory.

Although this difference in total address space is certainly important, what’s more
important is the difference in segment size — the maximum amount of memory
addressable at once. Appendix A explains segments and other features of the Intel
80x86 architecture. In 16-bit protected mode, segments are limited to 64Kb (2'°), and
developers working on large programs must be aware of segments. In 32-bit protected
mode, segments can be 4Gb in size — so large that most operating systems that utilize
32-bit protected mode, including Windows 95, make segmentation invisible to the
programmer by creating a single segment that addresses all 4Gb. Applications then
never need to change segments.

14 — Writing Windows VxDs and Device Drivers

As used by Windows 95, both 32-bit and 16-bit protected mode use the same
method to translate the logical addresses used by software into the physical addresses
placed on the bus. The translation process has two steps. A logical address consisting
of a selector and offset is translated first to an intermediate form, called a linear
address, by looking up the selector in a descriptor table which contains the segment’s
base linear address. Then the linear address is translated into a physical address by a
second step called paging. I’ll explain this two-step translation process in much more
detail later; for now, just remember that the first step uses a selector lookup to find the
linear address, which is different than the first step used by V86 mode.

The term “protected mode” came about because it was the first 80X86 processor
mode to provide mechanisms to control access to memory and to I/O ports, mecha-
nisms which an operating system could use to protect itself from applications. These
mechanism are all based on the concept of privilege level. Executing code always has
a privilege level, which Intel jargon calls a “ring”, where Ring O is the innermost and
most privileged ring, Ring 3 the outermost and least privileged.

A code segment’s privilege level is determined by the operating system, and this
privilege level controls which areas of memory and which I/O ports the code can
access, as well as what instructions it can execute. Ring 0 code — referred to as
supervisor code earlier — can access any memory location or I/O location and can
execute any instruction. If an application running at an outer ring attempts an action
that its privilege level doesn’t allow, the processor raises an exception.

V86 Mode

Whereas protected mode was invented to support bigger programs and more robust
operating systems, V86 mode exists to emulate real mode, the only mode supported
by the original PC and the only mode supported by DOS applications even today. This
emulation allows operating systems like Windows to better multitask DOS applica-
tions. V86 mode has a 1Mb address limit like real mode. The V86 mode address
translation, however, is a cross between real and protected mode. V86 mode takes the
logical-to-linear translation method from real mode: the segment is simply shifted left
by 4 bits. (Contrast this to the selector lookup used in protected mode.) V86 mode
takes the linear-to-physical method from protected mode: paging. The paging is com-
pletely transparent to DOS applications.

To keep multitasked DOS applications from crashing the system, V86 mode sup-
ports some of the same protection mechanisms as protected mode. Any program run-
ning in V86 mode will cause an exception (transferring control to the operating
system) if it attempts to execute certain “privileged” instructions, access certain /O
ports, or access forbidden areas of memory. Table 2.1 summarizes the 80386+ physi-
cal execution environments.

The Virtual World of Windows — 15

Windows Execution Environments

The Windows 95 architecture supports four fundamentally different types of pro-
cesses: supervisor processes, Win32 applications, Winl6 applications, and DOS
applications. Windows 95 runs each of these in a different execution environment. An
execution environment can be described by processor mode, privilege level, and “bit-
ness”, which is a fancy term for 16-bit or 32-bit. Table 2.2 summarizes the Windows
execution environments.

Table 2.1 Physical execution environments associated
with various 80386+ processor modes.

32-bit Protected 16-bit Protected V86
Total Address | 4Gb (2*%) 16Mb (224 1Mb (2%%)
Space
Segment Size 4Gb 64Kb 64Kb
Address logical to linear: logical to linear: logical to linear:
Translation selector lookup selector lookup segment << 4
linear to physical: | linear to physical: | linear to physical:
page tables page tables page tables
Privilege 0 through 3 0 through 3 3
Level
Protection yes yes yes
Mechanisms
Table 2.2 Windows execution environments associated
with various process types.
Process Processor Memory
Type Mode Privilege | Bitness | Model VM
Supervisor | protected Ring 0 32-bit flat outside all
Win32 protected Ring 3 32-bit flat System VM
Winl6 protected Ring 3 16-bit segmented | System VM
DOS V86 Ring 3 16-bit segmented | individual VM

16 — Writing Windows VxDs and Device Drivers

The supervisor processes run in protected mode with Ring O privilege (the highest
access privilege), so they are able to see and manipulate the actual hardware environ-
ment. That is, the supervisor processes execute on the actual machine, not on a virtual
machine; or to put it another way, supervisor processes run outside of any VM. Of all
the components that make up Windows 95, only the VMM and VxDs execute in the
supervisor environment. All other components run in a VM.

The supervisor environment is 32-bit, so these processes can address 4Gb of vir-
tual memory. Supervisor processes use only two selectors, both of which address
4Gb. These two selectors differ only in their attributes: one is marked executable and
loaded into CS; and the other is marked non-executable and loaded into DS, ES, and SS.
(These selector attributes are stored in the same descriptor table that stores the seg-
ment’s base linear address.) This type of memory model, where segments are loaded
once and never again, is called flat model, and makes segmentation essentially invisi-
ble to the programmer.

While supervisor processes run outside of any VM (on the real machine), Win32
processes run at Ring 3 (the lowest access privilege) in a VM. Furthermore, all Win32
processes run in the same VM, called the System VM. Win32 processes are 32-bit
protected mode and use a flat memory model, like supervisor processes, seeing a 4Gb
address space and for all practical purposes ignoring selectors and segments.

Winl16 processes run in the same SystemVM as Win32 processes. Winl6 pro-
cesses run in protected mode with Ring 3 privileges but don’t get the luxury of a flat
memory model. Because they run in 16-bit protected mode, Win16 processes are still
stuck with a 16Mb address space and must deal with selectors and 64Kb segments.

Each DOS process gets its own VM. A DOS process doesn’t run in protected mode
like all the other types of processes. Instead, it runs in V86 mode, the 80386 mode built
specially for emulating an 8086. V86 mode means a segmented memory model with
8086-type translation plus the addition of paging. V86 mode also implies Ring 3 privi-
lege, so access to hardware resources and interrupts is hidden and virtualized.

Why does each DOS process get its own VM, while all Win32 and all Winl6
applications share the System VM? Because DOS processes are in general unaware
that they are sharing the system with any other process, and so usually “take over” the
machine. DOS processes do things like modify the interrupt vector table and write
directly to the screen. Windows runs each DOS program in a separate virtual machine
so that each one modifies only its own virtual interrupt vector table, and writes only to
its own virtual screen. '

Windows applications, on the other hand (both Win32 and Win16), are aware that
other processes are running. They write only to their own windows, not directly to the
screen, and use a DOS call to modify the interrupt vector table instead of modifying it
directly. Windows applications don’t need to be protected so much from each other as
they do from the DOS applications that aren’t aware of them. So Windows can safely
run all Windows applications in the same virtual machine.

The Virtual World of Windows — 17

Summary

Windows can run Win32, Winl6, and DOS applications and can multitask among
them. It does this by running the applications not on the real machine, but in virtual
machines. The Virtual Machine Manager, a supervisor process that runs on the real
machine, provides each of the different types of applications with a different virtual
environment. The next chapter will take a closer look at each of the four resources
in a Virtual Machine — I/O space, interrupt operations, processor registers, and
address space — and show how Windows utilizes specialized processor features to
virtualize each.

18 — Writing Windows VxDs and Device Drivers

Chapter 3

How Windows Implements
the Virtual Environments

The previous chapter introduced the concept of a virtual machine and the four compo-
nents that make up a virtual machine: I/O space, interrupt operations, processor regis-
ters,.and address space. It also described the virtual environments seen by each of the
four different types of processes that run under Windows: Win32, Winl6, DOS, and
supervisor (VMM and VxDs). This chapter will take a closer look at how the VMM
virtualizes each of the components in the VM, for each different type of process. (This
chapter assumes you are familiar with the basic features of the Intel 80x86 architec-
ture. See Appendix A for a review of the important aspects of the architecture.)

Trapping I/0O Port Access

Both protected mode and V86 mode incorporate several features that an operating
system can use to trap IN and OUT instructions and thus prevent an application from
directly accessing an I/O-mapped device. Memory-mapped devices are accessed via
any instruction that uses a memory reference, while I/O-mapped devices are accessed
only via IN and OUT instructions. (For a more detailed discussion of I/O-mapped and
memory-mapped devices, see Chapter 6.) Windows 95 uses a combination of two pro-
cessor features, I/O Privilege Level (IOPL) and the I/O Permission Map (IOPM), to
control VM access to I/O addresses.

19

20 — Writing Windows VxDs and Device Drivers

In protected mode, every code segment has an associated Descriptor Privilege
Level stored in the descriptor table. Each code segment also has a separate attribute
for I/O Privilege Level, also stored in the descriptor table. When an IN or OUT instruc-
tion is executed in protected mode, the processor compares the segment’s IOPL to the
privilege level of the currently executing code segment (called CPL for current privi-
lege level). If CPL < IOPL, the segment has enough privilege, and the processor exe-
cutes the instruction. If CPL >= I0PL, the processor uses the IOPM as a second level
of protection. The IOPM is a bit-mapped list of ports: a 1 bit means “access denied”,
and a 0 bit means “access granted”, So if CPL >= I0PL and the IOPM bit for the spe-
cific port is clear, the instruction is executed. But if the IOPM bit for that port is set,
the processor generates an exception.

As used by Windows 95, the IOPM is really the dominant privilege mechanism for
all VMs. In DOS VMs, the IOPM determines the I/O privilege of the application
because the VMM runs DOS applications in V86 mode where the processor ignores
the IOPL and looks only at the IOPM when processing IN and OUT instructions. In
Winl6 and Win32 VMs, the IOPM determines the I/O privilege of the application
because the VMM runs all Win16 and Win32 processes with CPL > I0OPL. Thus, even
though Winl16 and Win32 applications run in protected mode where the processor
tests the IOPL, the test always results in a further check “through” the IOPM.

By manipulating the IOPM, Windows 95 can trap accesses to specific ports while
allowing uninhibited access to other ports. Windows 95 uses this ability to virtualize
the physical device located at the trapped port address. By routing device accesses
through virtual device drivers (VxDs), Windows 95 can maintain separate state infor-
mation for each of the VMs that might use the device.

The VMM is responsible for maintaining the IOPM. VxDs call a VMM service to
request that the VMM trap a particular port. When making this request, the VxD spec-
ifies a callback function, called a “port trap handler”. The VMM responds to such a
request by setting the port’s bit in the IOPM. When a VM accesses that port and thus
causes a fault, the VMM fault handler calls the VxD’s registered port trap handler.
This port trap handler can do anything in response to the I/O access: the VxD may
ignore the instruction, may execute the instruction, or may substitute a value instead
* (e.g. OUT 3F8h, 01lhmight become OUT 3F8h, 81h).

Windows 95 and its standard component VxDs trap almost all standard PC I/O
devices but never trap non-standard I/O addresses. Table 3.1 lists the port locations
trapped. A third-party VxD may trap other ports as well.

How Windows Implements the Virtual Environments — 21

Table 3.1 1/0 ports trapped by standard VxDs.

Windows 3.1
Port Address VxD Description
00-0F/CO-DF VDMAD DMA controller
20/21/A0/A1 VPICD programmable
interrupt controller
40/43 V1D timer
60/64 VKD v keyboard
3F8-3FE/3E8-3EE/2F8-2FE VCD com port (COM1/2/3)
1F0/3F6 WDCTR1 hard disk controller
(if Western Digital
compatible)
3B4/3B5/3BA/3C0-3CF/3D0-3DF VDD VGA display
Windows 95
Port Address VxD Description
3F0/3F1/3F2/3F4/3F5/3F7 VFBACKUP | floppy controller
1F0-1F7 ESDI_506 | hard disk controller
378/379/37A ' VPD printer LPT1
2F8-2Fe/3F8-3Fe SERIAL serial port COM1
and COM2
61 VSD sound
3B4/3B5/3Ba/3D0-3DF/3C0-3CF VoD VGA display
1CE/1CF/2E8/Xx6EC-EF ATI miniport display
AEC-EF/XEEC-EF PClI-specific VGA
00-0F/CO-DF/81/82/83/87/89/8A/83/87/89/8A | VDMAD DMA controller
60/64 ' VKD keyboard
40/43 V1D timer
20/21/A0/A1 VPICD programmable
interrupt controller

22 — Writing Windows VxDs and Device Drivers

Trapping Access to Memory-mapped Devices

While most standard peripherals are I/O-mapped, some are memory-mapped. Win-
dows 95 relies primarily upon the page fault mechanism to virtualize access to mem-
ory-mapped devices. To trap references to one of these devices, the VxD virtualizing
the device will mark the page corresponding to the device’s physical address as “not
present”, and register its own page fault handler with VMM. When a process running
in a VM tries to access that page, the access will cause a page fault. Instead of per-
forming its default response and attempting to swap a page, the VMM fault handler
will now call the registered page fault handler in the VxD that is virtualizing the
device. The VxD handler can then decide what action is consistent with the require-
ments of the virtual environment.

The Virtual Display Device (VDD) uses this mechanism to virtualize the video
frame buffer. When a DOS program writes to the video buffer at logical address
B000:0000, the output doesn’t appear on the screen because the VDD marks that par-
ticular page “not present”. Instead, accesses to the video frame buffer are trapped by
the VxD’s page fault handler and redirected to another location in physical memory.
This redirection causes writes to the video buffer to appear in a window instead of on
the full screen. The VxD in Chapter 8 uses this same mechanism to arbitrate access to
another memory-mapped device, a monochrome adapter.

Trapping Interrupts and Exceptions

In addition to trapping memory and I/O references, Windows 95 traps certain “privi-
leged” instructions. “Privileged” instructions are those that could be used to bypass
the processor’s protection features or that could interfere with the integrity of the vir-
tual machine. Privileged instructions include: those that affect the processor interrupt
flag (CLI, STI, POPF, IRET); software interrupts (INT n); and those that load descriptor
tables (LLDT, LDGT, LIDT). For the most part, Windows 95 traps these instructions to
protect the integrity of the VM. In the instance of the INT instructions, Windows 95
exploits the trap to transparently intercept DOS and BIOS calls.

Processes running in a VM execute with Ring 3 (least privileged) permissions.
Code executing at Ring 3 causes an exception when executing one of these “privi-
leged” instructions. When this exception is raised, the processor switches to Ring 0
and then transfers control to an appropriate handler.

More precisely, each segment has an associated Descriptor Privilege Level (DPL).
This segment privilege level determines the privilege level of most instructions (e.g.
LLDT, LGDT). However, a few instructions (those which affect the processor’s interrupt
flag) derive their privilege level from the IOPL, not the DPL. When a Ring 3 process exe-
cutes STI or CLI, for example, the processor will raise an exception only if CPL > IOPL.

One of the more significant differences between the System VM environment and the
DOS VM environment relates to these IOPL-based privileges. While the 80386 architec-
ture supports trapping of CLI and STI in both protected and V86 modes, Windows 95

How Windows Implements the Virtual Environments — 23

does not trap the STI and CLI instructions in V86 mode. The VMM purposely sets CPL =
I0PL for DOS applications, so that CLI and STI do not cause an exception. What’s more,
even though Windows 95 runs Win16 and Win32 applications with CPL > I0PL, so that
CLI/STI do cause an exception for Windows applications, the VMM exception handler
goes ahead and executes the instruction, enabling or disabling interrupts on behalf of the
application. Apparently the designers decided the overhead of trapping all STIs and CLIs
was a bigger performance penalty than they were prepared to pay.

Processor Registers

Virtualizing the third resource, processor registers, is trivial when compared to the
mechanisms required to virtualize I/O port space and interrupt operations. The VMM
maintains a virtual register data structure for each VM, and each time the VMM switches
from executing one VM (say, VM1) to executing another VM (say, VM?2), it first saves
the state of VM1’s registers in VM 1’s virtual register structure then updates the actual
processor registers from VM2’s virtual register structure before executing VM2.

A Closer Look at Linear Addresses and Paging

The previous chapter introduced the different processor modes and the address trans-
lation used in each. Before explaining how Windows virtualizes the address space,
this chapter will examine, more closely, the two-step address translation mechanism
used in both protected and V86 modes.

As viewed by software, an address has two parts, a selector and an offset. (Or in
V86 mode, a segment and offset.) This form of address is known as a logical address.
When software references this address, the processor translates the logical address
into an intermediate form called a linear address, and then to a physical address which
is actually placed on the bus and decoded by memory or a device.

In V86 mode, this first level translation, logical to linear, is very simple. The seg-
ment is shifted left by 4 bits and the offset is added in to form a linear address. In pro-
tected mode there is no arithmetic relationship between the logical address
manipulated by the software and the corresponding linear address. Instead, the pro-
cessor uses the selector portion of the logical address to index an entry in the Descrip-
tor Table. Each entry in this table is a descriptor, a data structure that holds the base
address of a segment. The processor translates the logical address to a linear address
by using the selector to index the appropriate descriptor, extracting the base address
from the descriptor, and adding that base address to the offset portion of the logical
address. The resulting sum is a linear address. This process is depicted in Figure 3.1.

The next level of translation, from linear address to physical address, involves
another set of data structures: the page directory and the page tables, sometimes collec-
tively called “the page tables”. Together, these structures map every 4Kb page of linear
address space onto some 4Kb page of physical memory. (With virtual memory, though,
this page of “physical memory” can exist either in RAM or on the hard disk.) Windows

24 — Writing Windows VxDs and Device Drivers

makes extensive use of the page tables to remap physical memory to meet the varying
needs of each type of process, as well as to implement virtual memory. Once again,
there is no arithmetic relationship between linear memory and physical memory.

The “page tables” are a hierarchical arrangement of a root page directory, multiple page
tables and multiple page table entries, as illustrated in Figure 3.2. Each Page Table Entry
(PTE) maps a 4Kb page of linear memory to a physical address. A group of 1024 PTEs
forms a page table, which maps 4Kb*1024 = 4Mb of linear memory. A group of 1024 page
tables forms a page directory, which maps 4Mb*1024 = 4Gb, all of linear memory.

Thanks to the hierarchical encoding of the data structures, the linear to physical
translation can be implemented quite efficiently in hardware. To the processor, a lin-
ear address isn’t merely a number between 0 and 4Gb — it’s actually three bitfields: a
page directory index, a page table index, and a page offset. Adding together the
address of the root page directory table (stored in the CR3 register) and the page direc-
tory index bits, the processor finds a page directory entry. Inside this entry is the
address of a page table. Adding together the address of this page table and the page
table index bits, the processor finds a page table entry. Inside this PTE is a physical
address. Adding together this physical address and the final bitfield, the page offset,
the processor forms a final 32-bit physical address.

Figure 3.1 ~Logical-to-linear address translation.

selector descriptor table address
[]000 [
. J L)

descriptor table
base address ! limit | other

32-bit
linear address

How Windows Impléments the Virtual Environments — 25

Figure 3.2 Illustrates how bitfields from the linear address
are combined with Page Table Entries (PTEs)
to construct a physical reference.

CR3 Register

Root Page Directo Index Into . .
BaSegAdd[ess i Page Table Page Table Page Offset 4Kb Page
N 0 PTE 0
1 PTE % P
Index Root 2 PTE 2
Into . .
Page | e : . 4094
Directory v irectory 1023 PTE 4094
0 PDE 1023 PTE
1 PDE
2 PDE Page Offset 4Kb Page
35—~ PDE 4 g g
4 FoR Index Into Page 1
Page Table Table 2
0 PTE .
. 1 PTE 4093
s . : 4094
. . . 4095
Y 756 PTE
’ O 75— PIE 4Kb
. \ Page Offset l Page
. . 0
1023 PTE 1
2 Physical
1021 PDE : : Reference
1022 PDE Index Into (‘_"_: . RN 4
1023 .~"7[PDE |y |PageTable Page Table 4093 P~ _ I
- - 4094 Wi
P Ikt 0 PTE
/‘ " STE 4095
:2 PTE Page Offset 4Kb Page
Each PTE occupies . . 0
4 bytes, making y = 1
a 1024 entry page table 1021 ETE 2
fill 2 4Kb 1022 Lt : :
1 aa8b page. 1023 PTE : .
. 4093
4094
4095

\l

¢ Page Directory (10 Bits) l ¢ Page Table Index (10 Bits) | o Page Offset (12 Bits)
31 21 11 0)

-
LINEAR ADDRESS

26 — Writing Windows VxDs and Device Drivers

Competing Address Requirements of
Win32, Winlé6, and DOS Applications

Windows 95 multitasks Win32, Win16, and DOS applications. Each of these three
types of processes expects to see an address space with different characteristics. By
address space, here I mean linear address space, not actual physical address space.
When running under Windows, applications are not even aware of physical addresses
— the generation of physical addresses by the processor happens “beneath” them.

Win32 Address Requirements

Every Win32 application has a 4Gb address space, which is completely separate from
the address space of all other Win32 applications (Figure 3.3). By “completely sepa-
rate”, I mean it is literally impossible for one Win32 application to access the memory
of another Win32 application. However, each Win32 application shares some of its
vast 4Gb address space with other system components, like system DLLs and
VMM/VxD code. Since all Win32 applications will be using these components, it
makes sense to share these common components, instead of having a separate copy of
each of these in physical memory. All Win32 applications can access the shared sys-
tem components, but they can’t access each other.

Winl6 Address Requirements

Win16 applications have very different address space requirements than Win32 appli-
cations. Winl6 applications expect a smaller address space (about 2Gb), and they
expect to share this smaller address space not only with system components but also
with all other Win16 applications as well (Figure 3.4). This shared address space is
the main reason Win16 applications are less robust than Win32 applications. A Win16
application can obtain a selector — by accident or by design — to a segment belong-
ing to another Win16 application and use that selector to write into the other applica-
tion’s data segment. Many Win16 applications rely on this shared address space, so in
order to be backwardly compatible, Windows 95 must run Winl6 applications in a
shared address space.

How Windows Implements the Virtual Environments — 27

Figure 3.3 Linear address space as viewed by Win32

applications.
4Gb 4Gb
Shared Shared
Private Private
0 0
Win32 Appl Win32 App2

Figure 3.4 Linear address space as viewed by Winl6

applications.
4Gb
Winl6 App2
Winl6 DLL
Winl6 Appl
0

28 — Writing Windows VxDs and Device Drivers

DOS Address Requirements

Windows 95 runs DOS applications in V86 mode. In this mode, the processor can
only generate linear addresses in the 0~1Mb region. When a DOS application runs
under Windows 95, it sees certain system components in its address space: TSR or
device drivers loaded before Windows 95 began, the interrupt vector table and BIOS
data areas in low memory, and “DOS” itself — COMMAND.COM. When Windows 95
runs multiple DOS applications, all of the DOS applications will see exactly the same
set of system components (Figure 3.5). These DOS system components are shared
among the multiple DOS applications, meaning they appear in the address space of
each DOS application (somewhere below 1Mb), but only one copy of each is in phys-
ical memory.

Satisfying Address Requirements of
Winl6 and DOS Applications:
How Does Windows 3.x Do It?

Windows 3.x doesn’t run Win32 applications but it still needs to handle Win16 and
DOS applications. These applications have exactly the same requirements under Win-
dows 3.x as under Windows 95: Winl16 applications run in a shared address space,
DOS applications in linear 0—~1Mb.

Figure 3.5 Linear address space as viewed by DOS
applications.
1Mb 1Mb
DOS Appl DOS App2
COMMAND . COM COMMAND . COM
\'%
0 IVT 0 IVT

How Windows Implements the Virtual Environments — 29

Under Windows 3.x, all types of processes — Winl6, DOS, and supervisor —
share the same 4Gb linear address space. In fact, they really share less than 4Gb,
because Windows 3.x uses only a little over a half of the 4Gb address space. Windows
3.x uses a small portion of the lower half (below 2Gb), and a larger portion of the
upper half (above 2Gb). (If these numbers sound unusually large, remember, they are
linear addresses, not physical addresses.)

The Windows 3.x VMM loads processes into linear address space in 4Mb chunks.
The vast majority of all processes live in the upper half of the linear address space
(2Gb and above). Supervisor processes — VMM itself plus VxDs —are loaded in the
4Mb starting at 2Gb. The VMM loads VMs immediately above these supervisor pro-
cesses (Figure 3.6).

Figure 3.6 Linear address space under Windows 3.x.

V86 of VM2
V86 of VM1
V86 of VMO
PM of VM2
PM of VMO
2Gb + 4Mb
2Gb VxDs
4Mb
Currently
0 executing VM

30 — Writing Windows VxDs and Device Drivers

If a VM switches processor modes, Windows 95 will load both a protected mode
component and a V86 mode component, each taking up at least 4Mb of address space.
(Note that in Figure 3.6, VMO has both a “PM” component and a “V86” component.)
Although the System VM usually runs in protected mode, and DOS VMs usually run
in V86 mode, VMs can and do flip modes. For example, all VMs, including the Sys-
tem VM, start in V86 mode. Once started, any VM can later switch to protected mode.
In the System VM, the Ring 3 KERNEL module always switches into protected mode
very early in the Windows initialization process. When a DOS-extended application
runs under Windows, it too starts life in a VM in V86 mode, then the DOS-extender
switches into protected mode.

Protected mode VMs, both the System VM and any DOS-extended VMs, switch
back to V86 mode to access real mode DOS and BIOS services. Together, these DOS
and BIOS services and TSRs make up the V86 mode component of the System VM,
while the Windows applications, DLLs and system modules (KERNEL, USER, etc.)
make up the protected mode component of the System VM. A DOS VM that runs a
normal DOS application has only a V86 mode component. On the other hand, a DOS
VM running a DOS-extended application has a V86 mode component containing
DOS, BIOS, etc., and a protected mode component containing the DOS-extended
pieces that run in protected mode.

Figure 3.7 The page tables while VM1 is executing.

Page Directory Page Tables Physical
4Gb N
V86 VM2 e .
+8Mb
V86 VM1 >
+4Mb
PM VM1 Not Present
2Gb
0
Not Present
. Current VM _ Not Present
Linear 0

How Windows Implenents the Virtual Environments — 31

Figure 3.8 The page tables while VM2 is executing.
Page Directory Page Tables Physical
4Gb ’ R
V86 VM2 *
+8Mb
V86 VM1 e "
+4Mb
PM VM1) Not Present
2Gb
_ 0
Not Present
Linear 0 Current VM Not Present

Copying Without Copying

When we say the VMM “copies” the V86 component down in linear address space, it sounds like a vast
amount of memory is being copied. In reality, only a single pointer (32 bits) is copied, thanks to the hierarchy
of the page table structures. Figure 3.7 shows an example load configuration. The VMM uses a single page
directory, which maps the entire 4Gb of linear address space. Each of the 1024 entries in the page directory
maps 4Mb (4Gb/1024 = 4Mb). Look first at the two entries labeled V86 VM1 (at location 2Gb + 4Mb) and
V86 VM2 (at location 2Gb + 8Mb). Each of these two page directory entries points to a different page table,
and the two page tables contain different PTEs.

Now look at the lowest (0—4Mb) entry in the page directory (labeled Current VM). Note that this entry
points to one of the two page tables I just described. In Figure 3.7, VM1 is the currently executing VM, so the
0-4Mb (Current VM) entry points to the page table for VM1. To switch to VM2, the VMM merely updates the
first entry of the page directory table, causing it point to VM2’s page table instead of VM1’s page table.
Changing a single 32-bit entry in the page directory table accomplishes a “move” of 4Mb in linear memory.

After the switch (Figure 3.8), VM2 is visible at two different locations in linear memory, one below 1Mb
(0—4Mb) and one above 2Gb (2Gb + 8Mb). The VMM can now begin executing the V86 component located
below 1Mb and still retain access to the copy above 2Gb.

32 — Writing Windows VxDs and Device Drivers

In V86 mode the processor can only generate linear addresses below 1Mb.
Because of this restriction, the V86 component of the currently executing VM must
live below 1Mb. More precisely, the currently executing V86 component must occupy
linear address space below 1Mb. The active V86 component may be located in any
part of physical memory — as long as the page tables properly map that physical
image into the correct region of linear address space.

Thus Windows must remap the lower 4Mb of linear address space each time it
runs a different VM. Only one active V86 component may occupy the linear space
below 1Mb at any one time. Windows keeps a copy of all VM components (active and
inactive) above 2Gb, but once a VM becomes active, Windows must “move” its V86
component to the lower portion of linear address space. Windows exploits the
page-mapping hardware to effect this “move” without performing a copy. (See the
sidebar “Copying Without Copying” on page 31.)

Thanks to the magic of the page mapping hardware, a single physical copy of a VM
component can be visible at two different positions in linear address space at the same
time. Windows uses this page table trick to make it more convenient for Ring O code to
manipulate the V86 component. Windows constructs the page tables so that each V86
component appears at two locations in linear memory: once below 1Mb and once above
2Gb. These “aliased” page table entries allow Ring O code to manipulate a V86 compo-
nent without testing to see if the component is part of the currently executing VM.

To summarize: Windows 3.x loads both a V86 and a PM component for each VM.
These components always reside above the 2Gb boundary in linear address space, and
the active V86 component is also mapped into the region below 1Mb. To switch VMs,
Windows simply switches page tables (see the sidebar). Because Win16 processes run
in the same VM, switching from one Win16 process to another does not involve any
change in the page tables. In fact, the Windows 3.x VMM doesn’t know anything
about the multiple Win16 programs running in the System VM.

Satisfying Address Requirements of
Win32, Winl6, and DOS Applications:
How Does Windows 95 Do It?

Although Windows 3.x uses only a small portion of the 4Gb linear address space,
Windows 95 uses all of it. Windows 95 divides this 4Gb into several different regions,
called arenas (Figure 3.9):

* private arena,

* shared arena,

* system arena, and
¢ DOS arena.

How Windows Implements the Virtual Environments — 33

The private arena, from 4Mb-2Gb (almost half the entire 4Gb) is used for Win32
application code, data, and resources. This arena is private because it’s mapped to a
different location in physical memory for each Win32 application. So when Win32
Appl accesses linear address 4Mb, it accesses one set of physical locations, but when
Win32 App2 accesses the same linear address 4Mb, it accesses a different set of phys-
ical locations. Windows 95 achieves this magic by switching the 511 page directory
entries that map linear 4Mb-2Gb. When executing Win32 App1, these page directory
entries point to one set of page tables (Figure 3.10). When Windows 95 switches to
execute Win32 App2, they point to another set of page tables (Figure 3.11).

Figure 3.9 The Windows 95 address space.

Linear Address
4Gb
Page Tables
System arena
VxDs (Ring 0 shared)
VMM
_/
3Gb ™\
System DLLs
Memory-mapped Files Shared arena
Upper portion of (Ring 3 shared)
Winl16 global heap
_/
2Gb)
Win32 code,
data and resources Private arena
(distinct linear to physical mapping (per process area)
for end process)
-/
4Mb
L rtion of Win16 global h
OWer po 10111\/;)5_[)815 global heap D QS ataiia
0

34 — Writing Windows VxDs and Device Drivers

By changing the private arena PDEs, Windows 95 protects Win32 applications
from each other. The page table entries used for Win32 App1 simply don’t contain the
physical addresses used by App2, and the page table entries used for Win32 App2
don’t contain the physical addresses used by Appl. Appl and App2 are each literally
unable to touch the other’s resources. ‘

The shared arena, located at 2Gb—-3Gb, contains all Ring 3 code and data that must
be shared. This arena hosts both Win32 system DLLs (because all Win32 applications
need to share them) and all Winl6 processes (because Winl6 processes depend on a
shared address space). Windows 95 implements the shared arena by more clever use
of the page directory: Windows 95 never switches the 256-page directory entries that
map linear 2Gb-3Gb. No matter what process is running, linear 2Gb-3Gb always
maps to the same location in physical memory. :

The system arena is at the top of address space, from 3Gb—4Gb. Windows 95 uses
the system arena exclusively for supervisor (Ring 0) components: the VMM and
VxDs. This arena is shared also, in exactly the same way as the shared arena, by never
switching the page directory entries that map 3Gb—4Gb.

Figure 3.10 Before the switch — when Win32 App1
is executing, the page directory’s 4Mb slot
points to a page table whose PTEs point
to pages 2, 3, and 4 in physical memory.

Page Directory Page Tables Physical
8
System ' 7
6
3Gb Not Present
Shared 5
s
2Gb Not Present
Win32 —
Appl
(Private) -—
4Mb Used
- only by
Linear 0 DOS =7 App2

How Windows Implements the Virtual Environments — 35

Many operating systems prevent user-mode components from accessing system
pages directly by setting the ‘Supervisor bit in the PTEs for system pages, which
causes a page fault to occur if a system page is accessed from user-mode. Windows 95
does not use Supervisor bits at all, which makes it easy to pass data between a VxD
and an application — the VxD can just give the application a pointer, which is directly
usable by the application. (I’ll explain this technique in detail in a later chapter.)

The DOS arena, at linear 0—-4Mb, is devoted to DOS applications and a small por-
tion of the Win16 heap. As stated earlier, DOS applications must reside here because
they run in V86 mode and thus generate linear addresses below 1Mb. A small portion
of the Win16 heap must also be below 1Mb, for use by Win16 applications and sys-
tem DLLs allocating memory for communication with DOS, TSR, etc.

Figure 3.11 After the switch — when Win32 App2
begins executing, the page directory’s
4Mb slot points to a different page table,
whose PTEs point to pages 0 and 1.

The page directory entries for the shared
regions above 2Gb remain the same.

Page Directory Page Tables Physical
4Gb g 8
System 7
6
3Gb Not Present
Shared
e Used
2Gb Not Present only
Win32 for
App2 Not Present Appl
(Private) -~
4Mb i — > 1
Lincaro| P95 *T°

36 — Writing Windows VxDs and Device Drivers

Windows 95 manages the page directory entries for the DOS arena in the same
way that Windows 3.x did. With every VM switch, the V86 component of the cur-
rently executing VM is copied in linear space, from above 2Gb to below 1Mb, by sim-
ply changing the first entry in the root page directory.

Windows 95 makes more extensive use of page directory switching than Windows
3.x. Each time a different Win32 process is executed, the Windows 95 VMM switches
the page directory entries for the private arena, leaving the page directory entries for
the shared and system arenas alone. And each time a different VM is executed, the
Windows 95 VMM switches the single page directory entry for the first 4Mb.

Summary

This chapter has explained how the VMM creates appropriate virtual environments
for Win32, Win16, and DOS applications. The VMM utilizes several privilege-related
processor features to virtualize access to I0-mapped and memory-mapped devices, as
well as to control execution of privileged instructions. The VMM also utilizes the pro-
cessor’s paging features to provide each type of application with the linear address
space that it expects. The remaining chapters in this section will focus on VxDs, the
supervisor processes that assist the VM in creating and maintaining the virtual world
of Windows.

Chapter 4

Introduction to VxDs

Although VxD is an abbreviation for Virtual Device Driver, a VxD can be much more
than a device driver that virtualizes a particular device. Some VxDs do virtualize a
device. However, some VxDs act as a device driver, but don’t virtualize the device.
Some VxDs don’t interact with any device; they exist rnerely to provide a service to
other VxDs or to applications.

VxDs may be loaded along with the VMM (statically loaded) or on demand
(dynamically loaded). In both cases, though, the VxD cooperates closely with, and
shares execution context with the Virtual Machine Manager (VMM). This special
relationship with the operating system gives a VxD powers that are unavailable to
Windows and DOS applications. VxDs have unrestricted access to all hardware
devices, can freely examine operating system data structures (such as descriptor and
page tables), and can access any memory location. A VxD can also trap software
interrupts, trap I/O port and memory region accesses, and even intercept hardware
interrupts.

Although Windows or DOS applications may be able to do some “low-level”
tasks (such as trap software interrupts), an application is always limited. For
example, a Windows application can trap software interrupts issued by
another Windows application — but not interrupts issued by a DOS
application. A VxD would see all interrupts, regardless of source.

37

38 — Writing Windows VxDs and Device Drivers

To support this level of integration with the VMM kernel, both statically loaded
and dynamically loaded VxDs

¢ conform to a standard structure,
* register their services with the VMM, and
* service at least parts of a special message protocol.

This chapter explains how VxDs are loaded and how each type of VxD conforms
to these fundamental requirements of a VxD. The following chapters show how VxDs
can be used to implement different device-related capabilities. ‘

VxD Loading

Windows 95 supports both statically loaded and dynamically loaded VxDs. Statically
loaded VxDs are loaded when Windows initializes and remain loaded for the lifetime
of Windows. If a VxD is used only by a particular application or exists only to provide
services to certain applications, the memory it occupies is wasted when the VxD isn’t
actually in use. Static loading is particularly annoying for VxD developers, who must
exit and restart Windows before they can test a change to a VxD.

Windows 95 supports two methods for static loading. The first, also supported by
Windows 3.x, is to name the VxD in a device= statement in SYSTEM. INI. The second,
new for Windows 95, is to add a Static VxD named value (e.g. Static VxD = pathname)
to the registry, under the subkey \HKLM\System\CurrentControlSet\Services\VxD.

Dynamically loadable VxDs aren’t loaded automatically when Windows initial-
izes but are instead loaded and unloaded under the control of either an application or
another VxD. For example, Plug and Play VxDs (discussed in detail in Chapter 10)
must be dynamically loadable because Windows 95 supports runtime removal and
reconfiguration of hardware. The VxDs that support this kind of hardware must be
able to be loaded and unloaded as necessary.

Dynamically loadable VxDs are also useful as drivers for devices that are used
only by a particular application. When the application needs to use the device, it loads
the VxD. When the application is finished with the device, it unloads the VxD.

Statically and dynamically loaded VxDs respond to slightly different sets of VMM
messages. Some messages are seen only by static VxDs, some are seen only by
dynamic VxDs, but most are seen by both. In fact, it is easy to write a VxD that sup-
ports both methods of loading, simply by responding to both sets of messages.

Introduction to VxDs — 39

Basic Structure of a VxD

Although VxDs use the 32-bit flat memory model, VXD code and data are still orga-
nized into segments. (In fact, a base plus offset addressing model is a necessary archi-
tectural component if a machine is to efficiently load and execute relocatable
modules.) VxDs use these types of segments:

* real mode initialization,

* protected mode initialization,
* pageable,

* locked (non-pageable),

e static, and

* debug only.

For each of these segment types, there is a code segment and a data segment, so a
VxD could have a total of 12 segments. The real mode code and data segments are
both 16-bit (segmented model), and all other segments are 32-bit (flat model).

The real mode initialization segment contains code that is executed early in the
Windows initialization sequence, before the VMM switches into protected mode. This
early initialization phase gives each statically loaded VxD an opportunity to examine
the pre-Windows real mode environment, and then decide whether the VxD should
continue loading. By returning with an exit code in AX, the VxD can tell VMM to con-
tinue loading the protected mode portion of the VxD, to abort loading of this VxD, or
even to abort loading Windows.

Most VxDs don’t need a real mode initialization routine, but the PAGEFILE
VxD, included as part of VMM.VXD, illustrates a possible use of one.
PAGEFILE uses several DOS (INT 21h) calls to find out if the SMARTDRV
DOS device driver is loaded. If not, PAGEFILE returns from its real mode
initialization routine with Carry set, so that VMM never calls PAGEFILE’s
protected mode code.

After the real mode section of each statically loaded VxD has been executed,
VMM switches into protected mode and gives each statically loaded VxD an opportu-
nity to execute the code in its protected mode initialization segment. The protected
mode initialization code can also return with an error code to tell VMM that the VxD
has failed to initialize. If a VxD reports an initialization failure, the VMM marks the
VxD inactive, and never calls it again.

40 — Writing Windows VxDs and Device Drivers

Both real mode and protected mode initialization segments are discarded after ini-
tialization is complete. These segments are loaded before the first VxD is initialized
and not discarded until all VxDs have finished initialization.

Most of a VxD resides in one of the other segments. In a statically loaded VxD,
these other segments exist until Windows terminates. In a dynamically loaded VxD,
they remain present until the VxD is unloaded. As their names suggest, a pageable
segment may be paged to disk by the Virtual Memory Manager, while a locked seg-
ment will never be paged out. Most VxD code and data should be in a pageable seg-
ment, to allow the Virtual Memory Manager to swap out VxD pages and free up
physical memory. Only the following items should — and must — go in a locked
segment:

* The Device Control Procedure (the VxD’s main entry point).
* Hardware interrupt handlers and all data accessed by them.

» Services that may be called by another VxD’s hardware interrupt handler (referred
to as asynchronous services).

Static segments are used only by dynamically loadable VxDs, which are discussed
later in this chapter. The static code and data segments of a dynamically loadable VxD
will not be unloaded when the rest of the VxD is dynamically unloaded but will
remain in memory.

The VMM loads debug-only segments only when the system is running under a
system debugger like WDEB386 or Softlce/Windows. By partitioning debugging
code into a debug-only segment, developers can always build the same executable,
including the debug code without any run-time code overhead. The VMM will load
the debug code when a system debugger is present, but omit it during normal load
cycles (i.e. when no system debugger is present).

The Device Descriptor Block

The Device Descriptor Block, or DDB, is the VMM’s “handle” to the VxD. The DDB
includes information that identifies the VxD and a pointer to the VXD’s main entry
point. The DDB may optionally include pointers to other entry points, used by either
applications or other VxDs. Table 4.1 shows the fields of the DDB structure that are
initialized by the VxD. The VMM finds the VxD’s DDB, and thus the main entry point,
as soon as it loads the VxD by looking for the first exported symbol in the module.

Introduction to VxDs — 41

Even when written in C, a VxD has no main procedure. Instead, the Device Con-
trol Procedure field in the DDB contains the address of the main entry point into a
VxD. After real mode initialization, all calls from the VMM come to a VxD through
this entry point. The VMM uses this entry point to notify a VXD of state changes in
VMs and in Windows itself, and VxDs do their job by reacting to these events. (I’ll
discuss these events in detail a bit later.)

The DDB Device ID field is used by the VMM to identify the VxD. In particular,
the VMM relies upon unique IDs to correctly resolve exported PM and V86 API entry
points. Here are the rules for choosing a Device ID.

» If your VxD is a direct replacement for an existing VxD, use the ID of the existing
VxD from the VMM header file.

» If your VxD is not a direct replacement, and it exports any entry points to DOS or
Win16 applications or to other VxDs, you must apply to Microsoft for a unique ID.

* If your VxD doesn’t replace a standard VxD and doesn’t export any entry points to
DOS or Win16 applications, you can use the UNDEFINED_DEVICE_ID constant
defined in the VMM header file.

Table 4.1 The fields of the DDB structure.

Field Description

Name 8-byte VxD name

Major Version of VxD, not related to Windows version
Minor Version of VxD, not related to Windows version
Device Control Procedure address* of Device Control Procedure
Device ID same as ID of VxD being replaced, or unique

value assigned by Microsoft

Initialization Order usually Undefined_Init_Order. To force intial-
ization before/after a specific VxD, assign an
Ini t‘_Or‘der‘ in VMM.INC and add/subtract 1.

Service Table address* of Service Table
V86 API Procedure address* of V86 API Procedure
PM API Procedure address of PM API Procedure

*32-bit offset

42 — Writing Windows VxDs and Device Drivers

If a VxD provides an API for Winl6 or DOS applications, its DDB contains the
address of the API entry point. The DDB contains one field for each type of API: the
PM API field is the 16-bit protected mode entry point used by Winl6 applications,
and the V86 API field is the entry point used by DOS applications. Because there is
only one API entry point for each of these types of application, VxDs typically use a
function code in a register to determine the specific function needed by the caller
(much like a software interrupt under DOS).

A VxD can also export an entry point for use by other VxDs. VxD documentation
usually refers to this as a “Service”, not an API. Services are different from APIs in
that the DDB contains a field for a service table, not a single service entry point. A
service table is basically a list of function codes and function addresses.

One other field in the DDB is sometimes used by a VxD, though the VxD does not
initialize this field. The Reference_Data field allows the real mode initialization
piece of a VxD to communicate with the rest of the (protected mode) VxD. When
the real mode initialization code returns, the VMM copies the value in EDX to the
Reference_Data field of the VxD’s DDB. If the real mode code needs to commu-
nicate more than four bytes, it should allocate a block of memory with
LDSRV_Copy_Extended_Memory and return the address of the block in EDX. The pro-
tected mode portion of the VXD can then use Reference_Data as a pointer to the allo-
cated block.

Supporting Data Structures

The DDB is the only data structure actually required of a VxD by the VMM. How-
ever, VxDs typically service more than one physical device (e.g. multiple serial ports)
and interact with more than one Virtual Machine. Most VxDs will need to create their
own supporting data structures to store per-device and per-VM configuration and state
information.

VxDs typically use one or more device context structures to store device-specific
information like I/O base address, IRQ, etc. These device context structures can be
allocated statically in the VxD’s data segment (locked if used by an interrupt handler)
or dynamically through VMM services.

In general, if the number of devices is always fixed, allocate the device structures
statically, and if the number varies, allocate the structures dynamically. For example,
all PCs have two DMA controllers, so Virtual DMA Driver (see Chapter 6) declares
static device structures in its data segment, but the number of serial ports on a PC var-
ies, so the serial port driver dynamically allocates a device structure as each serial port
is discovered.

Introduction to VxDs — 43

If you dynamically allocate your device structure at runtime, use the VMM service
_HeapAllocate, which is very similar to malloc. However, if your device structure
includes a large buffer (4Kb or larger), you’ll want to include only a pointer to the
buffer in the device structure itself, and then allocate the large buffer separately using
_PageAllocate. The rule is to use _HeapAllocate for small allocations and
_PageAllocate for large allocations, where small and large are relative to 4Kb.

Figure 4.1 Illustrates how Control Block Data (CBD)
can be used to save per-VM state
information for each multiple device.

VM1 VM2 VM3
Control Block Control Block Control Block
VM1 —»x x VM2 VM3
Handle VMM Handle VMM Handle VMM
Data Data Data
<
3
=1
o
m
o]
&
o
X
Per-VM Data Per-VM Data Per-VM Data
Per-VM Storage for VxD1 for VxD1 for VxD1
Requested by
VxD1
:
Per-VM Storage Pep\)’ h]/; Data Per-VM Data Per-\)’ l\szl)ata
Requested by for VxD2 for VxD2 for Vx|
VxD2
VxD1 Device Context VxD2 Device Context
. Pointer to Per-VM Data p
Pointer to Per-VM Data . set

Offset A

44 — Writing Windows VxDs and Device Drivers

While managing per-device information is a familiar concept for device drivers,
managing per-VM or per-device/per-VM information is less common. Fortunately, a
VxD can ask the VMM to manage per-VM storage on behalf of the VxD. The VMM
itself allocates and uses a Control Block for each VM. A VxD can use a VMM service
to reserve its own per-VM data area within the VM Control Block.

To reserve this Control Block space, the VxD calls the VMM service
_Allocate_Device_CB_Area during initialization, requesting a certain size block.
The VMM will return the allocated block’s offset within the entire Control Block.
Once the VxD has requested this space, the VMM will reserve it at this same offset in
every VM Control Block. Because the VxD will always have access to the current
VM'’s handle, and the VM handle is actually the starting address of the VM Control
Block, the VxD will always be able to get to this control block data. (I'll explain how
the VxD gets the current VM handle in the next section.) Figure 4.1 shows how Con-
trol Block Data (CBD) can be used to save per-VM state information.

Just as VxDs have a need for per-VM data, some VxDs also have a need for
per-thread data. The reason is that Windows 95 schedules threads, not VMs, and the
System VM may have more than one thread. The mechanism for per-thread storage

‘resembles that used for per-VM storage. A VxD allocates per-thread storage during
VxD initialization by calling the service. _AllocateThreadDataSlot. This service
returns the offset of the thread data slot, relative to a data structure called the Thread
Control Block or THCB. The VMM provides the THCB of the currently executing
thread when it calls a VxD’s Device Control Procedure with thread-related messages.
A VxD can also get the THCB of the currently executing thread by calling the VMM
service Get_Cur_Thread_Handle.

Unlike _Allocate_Device_CB_Area, which can reserve various size data areas,
_AllocateThreadDataSTot always allocates 4 bytes of per-thread storage. If your
VxD’s per-thread data won’t fit in 4 bytes, use these 4 bytes to store a pointer to a
larger structure. Your VxD should allocate the larger structure when the thread is cre-
ated (Figure 4.2).

Introduction to VxDs — 45

To examine or modify the state of a VM, a VxD examines or modifies the fields in
another important data structure, the Client Register Structure. This structure contains
the VM'’s current registers and flags. Typically a VxD is interested in the VM state if it
provides an API for use by PM or V86 mode applications. Such a VxD gets its input
and provides its output through these client registers. The VMM sets EBP to point to

Figure 4.2 Illustrates how Thread Data Slots (TDSs)
can be used to save per-thread information.
Thread 1 Control Block Thread 2 Control Block
VMM VMM
Data Data
A A
Bl Bl
TDS for TDS for
| VxD1 *T7> i VxD1 o
TDS for Thread 1 Data TDS for fThrsladDZI Data
VxD2 ¢ for VxD1 VxD2 or Vx
A A
Thread 2 Data
Thread 2 Data for VxD2
for VxD2
VxD1 Device Context VxD2 Device Context
Pointer to
Pointer to Offset B per-thread
per-thread data
Offset A data

46 — Writing Windows VxDs and Device Drivers

the Client Register Structure before calling the VxD API entry point, so most access
to the Client Register Structure is done through EBP. A VxD can also find the Client
Register Structure through the CB_Client_Pointer address found in the VM’s Con-
trol Block. Figure 4.3 shows these relationships.

Figure 4.3 Illustrates the relationship between the
current VM handle, the VM control block,
and the Client Register Structure.

Register values
when VxD control
procedure is invoked* | Current VM

EBX " Control Block
Current VM Handle I >

CB_Client_Pointer Client Register
Structure

EAX ‘ >

Message Code

EBP
Client Reg. Structure!

* Not all messages

Introduction to VxDs — 47

Event Notification

Once real mode initialization is complete, the VMM will notify the VxD about rele-
vant events through a special message interface. To send a message to the VxD, the
VMM obtains the address of the VxD’s Device Control Procedure from the VxD’s
DDB and calls this procedure with a message code in EAX and the handle to the cur-
rent VM in EBX. The control procedure then branches to message-specific code. The
VMM uses this interface to notify the VxD of initialization activities, cleanup activi-
ties, and VM state changes.

Although the VxD message interface is conceptually similar to the WinProc
message interface, the implementation is completely unrelated and
incompatible.

The roughly two dozen messages can be divided into eight major categories. The
messages and their categories are shown in Table 4.2. The messages in the initializa-
tion and termination categories are always sent in the order listed. A more detailed list
of the messages and their register parameters and return codes can be found in the
Windows 95 DDK documentation.

Table 4.2 The event notification messages that VMM
sends to VxDs.

Message Category | Message Description

System Initialization | Sys_Critical_Init Interrupts disabled and remain
s0; minimal processing.

Device_Init System VM already loaded;
VxDs do most initialization here.
Init_Complete Any processing needed after all
VxDs do Device_Init.
System Termination System_Exit System VM destroyed, but still in
' memory.
Sys_Critical_Exit System VM no longer in mem-

ory; interrupts disabled.

48 — Writing Windows VxDs and Device Drivers

Many VxDs process only a handful of these messages. The example VxDs begin-
ning in the next chapter will illustrate the processing of the most commonly handled
messages. Most of these messages mark important events in the life of either the VxD
or a VM. The following section explains how the messages relate to the normal life
cycle of a VxD and the VMs it services.

Table 4.2 (continued) The event notification messages
that VMM sends to VxDs.

Message Category | Message Description

VM Initialization Create_VM VxDs initialize per-VM data.

VM_Critical_Init

Interrupts disabled.

VM_Init

VM fully created; VXD can now
call code in VM.

Sys_VM_Init

Equivalent to VM_Init, but VM is
System VM.

VM Termination

Query_Destroy

Abnormal VM termination:
return Carry flag set if VM
should not be destroyed.

VM_Terminate

Normal VM termination; VM
still exists so VxD can call code
in VM.

Sys_VM_Terminate

Equivalent to VM_Terminate, but
VM is System VM.

VM_Not_Executeable

Sent for both normal and abnor-
mal termination; VM still in
memory, but not executable.

Destroy_VM

VM no longer in memory.

VM State Change

VM_Suspend

VM suspended by another VxD;
VxD should give up any
resources associated with the VM.

VM_Resume

VM resumed from a suspend.

Set_Device_Focus

VM has keyboard/mouse focus.

Begin_PM_App

VM has started a protected mode
application.

End_PM_App

VM has ended a protected mode
application.

Introduction to VxDs — 49

Statically Loaded VxD Initialization
and Termination Messages

A statically loaded VxD is loaded when Windows initializes and is unloaded when
Windows terminates. During Windows initialization, a statically loaded VxD will
receive three messages, one marking each phase of Windows initialization. In
response to any of the three messages, a VxD may indicate failure by returning with
the Carry flag set. On such failure, Windows will unload the VxD, and the VxD will
receive no further messages.

The first phase of Windows initialization is marked by the Sys_Critical_Init
message. At this time, interrupts are disabled, so if your device requires uninterruptible
initialization, do it here. If a VXD exports services to other VxDs, it should perform any
initialization needed to carry out these services in the handler for Sys_Critical_Init,
because other VxDs may call the exported services immediately after the exporting
VxD processes this message. If a VxD virtualizes a memory-mapped adapter that can
be used by DOS applications, then it should reserve pages in V86 address space here.
(For example, the virtual display adapter reserves pages for the video frame buffer,
usually at AOOOOh—C0000h, in each VM'’s address space.)

Table 4.2 (continued) The event notification messages

that VMM sends to VxDs.
Message Category | Message ' Description
Thread Initialization | Create_Thread New thread is being created; allo-

cate and initialize THCB data.

Thread_Init New thread has been created and
is currently executing.

Thread Termination Terminate_Thread Thread is about to be terminated;
release any thread-specific
resources.

Thread_Not_Executeable | Thread is being terminated and
will not be executed again.

Destroy_T h’read Thread has been destroyed.
Miscellaneous Reboot_Processor Handled only by Virtual
Keyboard Driver.
Debug_Query Generated on behalf of debugger;

VxDs display status.

50 — Writing Windows VxDs and Device Drivers

All VxDs should defer any other actions until the next phase. Note that services
such as Simulate_Int or Exec_Int, which execute code in a VM, are not available at
this time because no VMs have been created yet. (I'll explain the role of
Simulate_Int and Exec_Int in more detail in Chapter 12.)

The next message, Device_Init, notifies a VXD of the second initialization phase,
which occurs after VMM has created the System VM. Most of a VxD’s setup is per-
formed during this phase. At this time, a VxD should allocate device context and Con-
trol Block memory, hook I/O ports, and hook interrupts.

Init_Complete marks the last phase of system initialization. Usually only VxDs
that allocate pages in V86 address space need to respond to this message.

Windows also shuts down in three phases. When the system terminates normally
(i.e. not in a crash), the System VM is terminated first, resulting in a Sys_VM_Terminate
message. The System VM has not been destroyed yet, so Simulate_Int and Exec_Int
services are still available if the VxD needs to eecute code in the System VM. The next
message in the shutdown sequence is System_Exit, which occurs during both normal
and abnormal terminations. At this time, interrupts are enabled but the System VM has
already been destroyed, so Simulate_Int and Exec_Int are no longer available. Most
VxDs do their shutdown processing during System_Exit, shutting down their device.
The last message is Sys_Critical_Exit, sent with interrupts disabled. Most VxDs
don’t process this message.

Dynamically Loaded VxD Initialization
and Termination Messages

A dynamically loadable VxD doesn’t see the system initialization messages
(Sys_Critical_Init, Device_Init, and Init_Complete) because it hasn’t been
loaded yet when these messages are sent. However, the VMM provides an analogous
message to a dynamic VxD during its loading procedure, Sys_Dynamic_Device_Init,
and another message when the VxD is unloaded, Sys_Dynamic_Device_Exit.

A dynamic VxD processes the Sys_Dynamic_Device_Init message much as a
static VxD would process the system initialization messages — by performing basic
device initialization, hooking I/O ports, installing hardware interrupt handlers, etc.
Note that certain VMM services are available only during system initialization and
therefore may not be used by dynamic VxDs (see the Windows 95 DDK for a list of
these services). A dynamic VxD may indicate that it failed to load by returning from
the Sys_Dynamic_Device_Init message with the Carry flag set.

Introduction to VxDs — 51

Although static VxDs receive several system termination messages, static VxDs
are often careless about releasing resources during termination, since Windows
itself is terminating. A dynamic VXD must, on the other hand, be very careful to
free any resources it has allocated. This includes unhooking I/O ports, uninstalling
hardware interrupt handlers, and unhooking services. In addition, a dynamic VxD
must cancel all outstanding timeouts and events during Sys_Dynamic_Device_Exit,
otherwise the VMM will end up calling code that is no longer loaded and the system
will probably crash.

Static code and data segments can be used to solve some of the problems a
dynamic VxD may encounter in releasing resources. For example,
sometimes the VMM doesn’t provide a “deallocate” service for a particular
resource, and sometimes the deallocate may fail. In these cases, the code
using this resource should be in the static code segment and shouldn’t take
any action unless the rest of the VxD is loaded. The VxD should also reuse
the already allocated resource the next time the VxD is loaded, instead of
allocating the resource again.

VM State Change Messages

Another set of messages tracks the life of VMs. Creation of a new VM also occurs in
three phases, each with its own message: Create_VM, VM_Critical_Init, and VM_Init.
For each of these messages, the VM handle is in EBX.

When the VxD receives the first message, Create_VM, it should initialize any data
associated with the VM. VM_Critical_Init marks the next phase. An error response
(returning with Carry flag set) to the VM_Critical_Init message will cause a VM
termination sequence, starting with VM_Not_Executeable. (There is no VM termina-
tion sequence if YM_Create is failed.) The final phase of creation is VM_Init. At this
time, the VM has already been created, and Simulate_Int and Exec_Int are avail-
able for calling software interrupts in the newly created VM.

A VM’s destruction also takes place in three stages, again with the VM handle in
EBX. A VM that exits gracefully results in a VM_Terminate message, which indicates
the VM is “about to die”. (An abnormal termination will first generate a
Query_Destroy, see the following paragraph.) The VxD should take any action
requiring Simulate_Int or Exec_Int here, while the VM is still present. The next
phase, VM_Not_Executeable, occurs both during a graceful exit and an abnormal exit.
The EDX register contains flag values that indicate the actual cause of termination.

52 — Writing Windows VxDs and Device Drivers

These flag values are listed in Table 4.3. Because the VM has already been termi-
nated, Simulate_Int and Exec_Int are not available. The last phase is marked by
Destroy_VM. If a VxD doesn’t care about the specific reason for VM termination and
it doesn’t need to use Simulate_Int or Exec_Int, it can choose to respond to only
this final message. .

Before the SHELL VxD shuts down a VM abnormally (typically in response to a
user request), it will send a Query_Destroy message. A VxD can respond to this mes-
sage with the Carry flag set to indicate the SHELL should not destroy the VM. In this
case, the VxD should also inform the user of the problem, using the SHELL message
services (covered in Chapter 8, in the “Checking Ownership” section).

In addition to VM startup and shutdown events, VxDs are also notified about
scheduling events that change the currently running VM. VM_Suspend and VM_Resume
messages are sent to VxDs as the VMM scheduler suspends and resumes execution of a VM.

Although the DDK documentation says to free any resources associated with
the suspended VM on receipt of a YM_Suspend, only a few of the VxDs
whose source is provided in the DDK respond to the VM_Suspend and
VM_Destroy messages. The Virtual Display Driver (VDD) responds to
VM_Suspend by unlocking the pages of video memory and to VM_Resume by
locking the pages again. The Virtual Comm Driver (VCD) responds to
VM_Suspend by clearing any pending serial port interrupt if the port is owned
by the VM being suspended.

Table 4.3 Flag values contained in the EDX register
that indicate the cause of termination.

Flag Description

YNE_Crashed VM crashed.

VNE_Nuked VM destroyed while still active.
VNE_CreateFail A VxD failed Create_VM.
VNE_CrInitFail A VxD failed VM_Critical_Init.
YNE_InitFail A VxD failed VM_Init.
VNE_Closed VM closed properly then destroyed.

Introduction to VxDs — 53

Thread Messages |

Another set of messages tracks the life of threads, the unit of tasking used by the Win-
dows 95 VMM scheduler. These messages are Create_Thread, Thread_Init,
Terminate_Thread, Thread_Not_Executeable, and Destroy Thread. However,
these messages are not sent for the initial thread of a VM, only for subsequently cre-
ated threads in a VM. As discussed in an earlier chapter, DOS VMs have exactly one
thread each, so even though creation of a DOS VM does result in creation of a new
thread, the VMM does not send a Create_Thread message. (It does however, send a
Create_VM message.) ,

Threads are created and destroyed in stages, similar to VMs. The first message,
Create_Thread, is sent early in the thread creation process. EDI contains the handle
(THCB) of the thread being created (which is not the currently executing thread). A
VxD can return with Carry set and the VMM will not create the thread. A VxD typi-
cally allocates and initializes any thread-specific data here. The extra allocation step is
necessary if the 4 bytes of per-thread data in the THCB (allocated during VxD initial-
ization) isn’t enough. In this case, a per-thread structure is allocated during
Create_Thread, and the per-thread data in the THCB is used to store a pointer to this
newly allocated structure.

Once the thread has been fully created, the VMM sends out the Thread_Init mes-
sage. EDI once again contains the handle of the newly created thread, but now the new
thread is also the currently executing thread. A VxD should delay any initialization that
requires the new thread to be the currently executing thread until it receives this message.

Thread destruction also involves multiple messages: Terminate_Thread,
Thread_Not_Executeable, and Destroy_Thread. When the first message,
Terminate_Thread, is sent, the thread is “about to be terminated”, but is still capable
of being executed. VxDs typically respond to this message by freeing any resources
associated with the thread. The next message, Thread_Not_Executeable, is sent
when the thread will no longer be executed. The last message, Destroy_Thread,
occurs after the thread has actually been destroyed and gives VxDs a last chance to
free thread-specific resources.

54 — Writing Windows VxDs and Device Drivers

Windows 3.x Differences

Windows 3.x used only three types of segments: real mode initialization, protected
mode initialization, and locked (non-pageable). The Windows 3.x VMM never swaps
out any VxD code or data.

Windows 3.x doesn’t support dynamic VxD loading, only static loading. Static load-
ing is specified via a device=statement in the [386Enh] statement in SYSTEM. INI, just
as it is under Windows 95.

Windows 3.x doesn’t support threads. This means there is no need for per-thread
data, no Allocate_Thread_Data_STot, and no thread-specific messages.

Summary

Despite the hundreds of functions supported by the VMM and other VxDs, for
many VxD applications you really don’t need to know much more than what I've
covered in this chapter. Unless you are doing something very special (like writing a
replacement for the VMM), you’ll probably never need more than a dozen of the
functions in that API.

In the following chapters I'll show you how to build several practical VxDs. Even
though these VxDs span a wide variety of applications, collectively they use only a
few functions from the VMM/VxD API. As you easily can tell just by scanning some
of the listings in the chapters ahead, VxDs don’t have to be overwhelmingly compli-
cated to be useful. N

Chapter 5

A Skeleton VxD

This chapter will introduce a “skeleton” VxD, one that won’t have much functionality
but will provide the basic framework for future VxDs. This skeleton VxD will simply
monitor the creation and destruction of VMs and threads and will print out VM and
thread information during these events. This output is sent both to the debugger and to
a file, techniques that will be used in later VxDs to provide trace information for
debugging.

This chapter will introduce you to two different approaches to developing VxDs in
C: one using tools from the Windows 95 DDK and the other using the VToolsD prod-
uct from Vireo Software. VToolsD gives you a big head start, automatically generat-
ing a makefile and a prototype C file. VToolsD also requires no assembly language
modules. In contrast, the DDK-only process requires one assembly language file. This
chapter will cover both methods but will focus more on the DDK-only process, since
it is more complicated.

Tools for Building VxDs

In the days of Windows 3.x, VxDs were almost always written in assembly, simply
because VxDs are 32-bit flat model programs and there were few 32-bit C compilers
available. Now that 32-bit compilers are the norm, it’s possible to write VxDs in C.
However, your standard 32-bit compiler and linker won’t be enough.

55

56 — Writing Windows VxDs and Device Drivers

You’ll also need the include (. h) files for VMM and other VxD services, as well as
a special library for interfacing to the VMM and other VxDs. The routines in the
library contain glue code that transforms the register-based interface used by VMM
and other VxD services into a C-callable interface. The include files and the VMM
library are available from two different sources: the Windows 95 DDK (Device Driver
Kit), which is available as part of the Microsoft Developer Network Subscription, and
the VToolsD toolkit.

Both the Windows 95 DDK and VToolsD come with the tools you need to write
VxDs in C — just add a 32-bit compiler and linker. VToolsD explicitly supports both
Borland and Microsoft compilers, while the Windows 95 DDK supports only
Microsoft, although it can be coerced to work with Borland. VToolsD includes several
other features which the Windows 95 DDK does not. One is QuickVxD, a VxD “wiz-
ard” that quickly generates a skeleton VxD, including C source, header file, and
makefile. VToolsD also includes a C run-time library for VxDs. This alternate library
is useful because a VxD can’t just use the C run-time included with a 32-bit compiler;
the standard compiler-provided libraries make assumptions about the run-time envi-
ronment that don’t hold true for VxDs. ‘

Although the DDK technically provides all you need to write VxDs in C, VToolsD
makes it much easier. The VMM “glue” library provided by both VToolsD and the
DDK solves only half of the problem, allowing your VxD written in C to call VMM
and other VxD services, which use register-based parameters. However, only
VToolsD addresses the problem of register-based parameters in the other direction.
The messages sent to your VxD’s Device Control Procedure, as well as many call-
backs (port trap, interrupt, fault handler, etc.), all call into your VxD with parameters
in registers. When using the DDK, you must either write small stub functions in
assembly or embed assembly statements directly in your C code in order to extract
these register parameters. VToolsD, on the other hand, provides a “C framework” that
passes these parameters on the stack and allows you to write message handlers and
callbacks all in C.

Even if you don’t use the DDK development tools, you may still find it very valu-
able. The DDK also contains the source code for about a dozen of the VxDs that ship
with Windows 95. These VxDs range from the virtual display driver to the virtual
DMA driver to the virtual NetBios driver. If you’re planning to write'a VxD to support
new hardware that is similar to an existing device, you’ll certainly want to invest in
the DDK and modify the VxD for the existing device. Even if you’re creating a brand
new VxD, taking a look at other VxDs is a great way to learn, and the DDK is the only
source I know of for non-trivial, real world VxDs.

You’ll also need a debugger to get your VxD working, and the application-level
debugger shipped with your compiler simply won’t do. Only two products can debug
VxDs: the WDEB386 debugger included with the DDK or Softlce/Windows by
NuMega Technologies. Whether to use WDEB386 or Softlce is largely a matter of
taste, money, and development preferences. Although both are powerful enough to

A Skeleton VxD — 57

debug VxDs, Softlce has more user-friendly features: WDEB?386 requires a terminal,
SoftIce does not; Softlce/Windows can debug C at the source level, WDEB386 shows
you only assembly.

“DDK”’ Version Source Files

The “DDK?” version of the SKELETON VxD consists of two source files:

» SKELCTRL.ASM, which contains the Device Descnptor Block (DDB) and Device
Control Procedure found in every VxD;

* VXDCALL.C, provided free of charge by Vireo (makers of VToolsD), which con-
tains a patch necessary to fix a bug in the Microsoft VC++ 4.1 compiler; and

+ SKELETON.C, which contains the message handler functions called by the Device
Control Procedure.

Although it’s not absolutely necessary to place the DDB and Device Control Pro-
cedure in an assembly language file (VToolsD doesn’t), I prefer to do so. These very
small pieces are easily coded in assembly, and putting them in a C file would involve
writing complicated pre-processor macros and embedded assembly.

As explained in the last chapter, when a C module calls a VMM or VxD service,
an assembly language function is required to take parameters from the stack and place
them in appropriate registers as expected by the specific service. The VXDWRAPS.CLB
library in the DDK provides wrappers for some commonly used VMM and VxD ser-
vices, but SKELETON.VXD uses several services that aren’t contained in this library.
The wrapper functions for these services are in the WRAPPERS . CLB library, provided in
the \wrappers directory on the code disk.

This chapter will focus on how SKELETON.C (Listing 5.1, page 69) uses the func-
tions in the wrapper library, not on the wrapper functions themselves. Refer to Appen-
dix B for a complete description of WRAPPERS.CLB, instructions on how to add new
VMM/VxD services to the module, and how to place these functions in a library.

If you’re using Microsoft VC++ 4.1 to build your VxD, you’ll need to link one
more file, VXDCALL.C, into your VxD. Without this module, a bug in the 4.1 compiler
makes it worthless for building VxDs. In a nutshell, the compiler generates incorrect
code when enums are used in embedded assembly statements: the VMMcall macro in
VMM.H uses enums. VxDs generated with this incorrect code causes the run-time error
message, “Unsupported service xx in VxD xx”.

The VXDCALL.C module provided free of charge by Vireo (makers of VToolsD)
back-patches the incorrect code at run time. Compile the code once and simply link in
the OBJ file to any VxDs built with VC++ 4.1. Note that you must also include the
accompanying header file, VXDCALL . H, in all your VxD C source files. :

58 — Writing Windows VxDs and Device Drivers

Although Vireo provides VXDCALL.C on their web page (www.vireo.com),
you don’t need VToolsD to use VXDCALL.C. You need VXDCALL.C if you’re
using VC++ 4.1, regardless of whether your toolkit is the DDK or VToolsD.

The file SKELCTRL.ASM (Listing 5.2, page 71) provides the building blocks for
SKELETON. VXD, and for the VxDs in later chapters. SKELCTRL.ASM can be easily adapted
for use in other VxDs by changing DDB fields (for example, the VxD name) and add-
ing/deleting messages from the Device Control Procedure as desired. The other file,
SKELETON.C, contains the message handler functions, which implement specific VxD
functionality, and will vary greatly from one VxD to the next.

Although the specific functionality of the C source file will vary for each of the
VxDs in this and later chapters, each version of the C source file includes the same basic
set of header files. The header files, and a description of each, are found in Table 5.1.

The makefile, SKELETON.MAK (Listing 5.3, page 72) is used to build SKELETON. VXD.
The makefile compiles, assembles, and links all components needed to build
SKELETON.VXD. After building SKELETON.VXD, the makefile runs the MAPSYM utility,
which converts the linker map file into a symbol file usable by either the WDEB386
or Softlce/Win debugger.

The compiler and assembler options (flags) are defined by the macros CVXDFLAGS and
AFLAGS at the top of the makefile. Tables 5.2 and 5.3 explain the purpose of each of these flags.

Table 5.1 Header files for SKELETON.C.

Header | Description Directory

File

BASEDEF.H | constants and types used by other header files | inc32 of Win95 DDK
DEBUG.H macros for enabling/disabling debug code = | inc32 of Win95 DDK
VMM. H constants and types for VMM services inc32 of Win95 DDK

VXDWRAPS.H | function prototypes for VMM/VxD services inc32 of Win95 DDK
provided in DDK (VXDWRAPS. CLB)

WRAPPERS.H | function prototypes for VMM/VxD services wrappers
provided by WRAPPERS.CLB

VXDCALL.H | function prototype for Vireco VMMcall/VxD- | wrappers
call patch

INTRINSI.H | function prototype for intrinsic string wrappers
functions

A Skeleton VxD — 59

Table 5.2 Compiler options and flags for VxDs.

Option Purpose
or Flag
o compile only (no link)
Gs disable stack overrun checking
Zdp, Zd name PDB file that stores debug and symbol information
21 suppress default C run-time library name in OBJ;
prevents accidental link with unsupported C run-time
DIS_32 specifies 32-bit code, not 16-bit; used by some VxD header files
DDEBUG enables debug macros and functions in some VxD header files
DDEBLEVEL=1 sets debug level to normal in DEBUG.H
(choices are retail, normal, or max)
DWANTVXDWRAPS | disable some inline functions in VXD header files,
forcing ones in wrapper library to be used instead

Table 5.3 Assembler flags for VxDs.

Option Purpose
or Flag
c assemble only (no link)
coff output file in COFF format; MS linker now uses COFF, not OMF
Cx preserve case in publics and externs
W2 set warning level to 2
Zd include line number debug information in OBJ
DIS_32 specifies 32-bit code, not 16-bit (used by some VxD include files)
DDEBUG enables debug macros and functions in some VxD include files
DDEBLEVEL=1 | sets debug level to normal in DEBUG. INC

(choices are retail, normal, or max)
DMASM6 specifies assembler is MASM 6.x (used by some VxD include files)
DBLD_COFF specifies COFF format (used by some VxD include files)

60 — Writing Windows VxDs and Device Drivers

The DDB and Device Control Procedure:
SKELCTRL.ASM

The short assembly language module SKELCTRL.ASM (Listing 5.2, page 71) contains
the DDB and a Device Control Procedure:

.386p

include vmm.inc
include debug.inc

DECLARE_VIRTUAL_DEVICE SKELETON, 1, 0, ControlProc, \
UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

BeginProc ControlProc
Control_Dispatch SYS_VM_INIT, _OnSysVmInit, cCall, <ebx>
Control_Dispatch SYS_VM_TERMINATE, _OnSysVmTerminate, cCall, <ebx>
Control_Dispatch CREATE_VM, _OnCreateVm, cCall, <ebx>
Control_Dispatch DESTROY_VM, _OnDestroyVm, cCall, <ebx>
Control_Dispatch CREATE_THREAD, _OnCreateThread, cCall, <edi>
Control_Dispatch DESTROY_THREAD, _OnDestroyThread, cCall, <edi>

clc
ret

EndProc ControlProc
VxD_LOCKED_CODE_ENDS

END

At the top of the file, the DDB is declared with the macro DECLARE_VIRTUAL _-
DEVICE. This macro’s parameters correspond one for one to the DDB fields described
in the section “The Device Descriptor Block” in Chapter 4. SKELCTRL.ASM uses only
the first six macro parameters, because the VxD doesn’t export either a V86 or a PM
API. Because SKELETON doesn’t export an API or any services, it doesn’t need a
VxD ID, so SKELCTRL.ASM uses UNDEFINED_DEVICE_ID for the Device_Num macro
parameter (Device_Num is the same as Device ID). SKELETON doesn’t have any
requirements for a particular initialization order, so it uses UNDEFINED_INIT_ORDER
for the Init_Order macro parameter.

A Skeleton VxD — 61

The last half of SKELCTRL.ASM defines the VxD’s Device Control Procedure
(ControlProc). A VxD’s Device Control Procedure must be placed in the locked
segment, so ControlProc is surrounded by the macros VXD_LOCKED_CODE_SEG and
VXD_LOCKED_CODE_ENDS. ControlProc uses a series of Control_Dispatch macros to
generate code for a basic switch statement. For example, the line

Control_Dispatch SYS_VM_INIT, _OnSysVmInit, cCall, <ebx>

translates to code that compares the message code in EAX with SYS_VM_INIT, and if
equal, calls the function OnSysVmInit in the C module, passing the YM handle in EBX
as a parameter.

That’s enough information about SKELCTRL.ASM to allow you to make minor modi-
fications to support other messages in your VxD. Appendix B contains further details,
including more information on the macros Control_Dispatchand cCall. Appendix B
also contains information about the wrapper library, WRAPPERS . CLB, which you’ll need
if you add other VMM/VxD service wrappers to the library. In the rest of the chapter,
I’ll concentrate on the real functionality of SKELETON. VXD, contained in SKELETON.C.

SKELETON.C (Listing 5.1, page 69) contains the message handlers for the
SKELETON.VXD. The SKELETON VxD processes six messages relating to creation
and destruction of VMs and threads: Sys_VM_Init, Sys_VM_Terminate, Create_VM,
Destroy_VM, Create_Thread, and Destroy_Thread. Each time a VM is created, all
VxDs are sent one of two messages: Sys_VM_Init for System VM or Create_VM for
non-System VMs. VM creation also results in the creation of an initial thread, but no
message is sent for this thread. Subsequent (non-initial) threads created in a VM do
result in a message, Create_Thread. As discussed earlier in Chapter 2, each non-Sys-
tem VM is limited to a single thread, which means all Create_Thread messages are
associated with the System VM.

SKELETON demonstrates this behavior by printing out both VM handle and
thread handle values for the six messages. The VM message handlers (OnSysVmInit,
OnCreateVm, OnDestroyVm, and OnSysVmTerminate) use the VMM service
Get_Initial_Thread_Handleto obtain the thread handle of the initial thread created
along with the VM. (This service is not supported by the DDK library VXDWRAPS.CLB,
so its wrapper is in WRAPPERS . CLB). The thread message handlers Create_Thread and
Destroy_Thread extract the VM associated with the thread from the thread handle —
which is really a pointer to the thread’s control block. One of the fields in the thread
control block is the handle of the VM associated with the thread.

Each message handler function prints these VM and thread handle messages to the
debugger and to a file. The functions use the DPRINTF macro to generate debugger
output. This macro mimics the useful VToolsD function dprintf. The macro com-
bines a call to two VMM services: _Sprintf, which formats a string; and
Out_Debug_String which outputs the formatted string to the debugger. Both of the
services are included in the DDK library VXDWRAPS.CLB.

62 — Writing Windows VxDs and Device Drivers

The DPRINTF macro expands only if the symbol DEBUG is defined at compile
time. Typically this symbol is defined via a compiler switch rather than a
ftdefine in a source file. For example, with Microsoft’s compiler you would
use -DDEBUG=1. If DEBUG is not defined, the DPRINTF macro expands to
nothing.

To send the messages to a file, the message handlers use the IFSMgr_Ring0_-
FileIO service. The IFSMgr is the Installable File System Manager VxD, the top
level manager of all the VxDs that together form a file system. Most IFSMgr services
are used by other VxDs that are part of the file system, but the IFSMgr_Ring0_FilelO
service is useful to any VxD: it lets a VXD perform file I/O at Ring 0. The “Ring 0”
part is significant because before the IFSMgr arrived with Windows for Workgroups
3.11, a VxD could only perform file I/O by switching to Ring 3, and each individual
I/O operation (open, close, etc.) involved a sequence of several VMM services. Under
Windows 95, it takes only a single call to IFSMgr to do each file I/O operation.

The IFSMgr_RingO_FilelO service will not work correctly if used before
the Sys_Init_Complete message.

Although the actual IFSMgr service uses a single entry point for all I/O operations
(open, close, etc.) with a function code to distinguish them, it’s more convenient to
have a separate function call for each operation. When creating the wrapper functions
in WRAPPERS.CLB, I took a cue from VToolsD and provided a different wrapper func-
tion for each: IFSMgr_Ring0_OpenCreateFile, IFSMgr_Ring0_WriteFile, etc.

During System VM creation, OnSysVmInit opens the file VXDSKEL. LOG with a call
to IFSMgr_Ring0_OpenCreateFile. The 1FSMgr_Ring0_OpenCreateFile interface
mimics the INT 21h File Open interface, with parameters for filename, open mode
(read, write, and share flags), creation attributes (normal, hidden, etc.), and action (fail
if file doesn’t exist, etc.). In fact, the mode, attributes, and action parameters use
exactly the same values as the INT 21h File Open.

The IFSMgr adds two additional parameters to the Open call that aren’t part of the INT
21h interface. One is a context boolean: if set, the file is opened in the context of the cur-
rent thread and thus can only be accessed when that thread is current. The other parameter
contains a flag bit which if set means “don’t cache reads and writes to this file”.

OnSysVmInit uses “create and truncate” for the action parameter, so that the log file
is created if it doesn’t exist or opened and truncated if it already exists. OnSysVmInit
allows file caching (since I/O to the log file isn’t critical) and uses FALSE for the con-
text boolean, so that the VXD can do file I/O at any time without worrying about which

A Skeleton VxD — 63

thread is current. This allows the VxD to open the file during Sys_VM_Init when the
initial thread of the System VM is current and then to write to the file with the same
handle during another VM or thread message when another thread is current.

OnSysVmInit keeps the file open and stores the file handle in the global variable
fh so that other SKELETON. VXD message handlers can also write to the file. The file is
closed by the OnSysVmTerminate message handler when Windows shuts down.

All the message handlers, including OnSysVmlInit, write to this already-open file
using IFSMgr_Ring0_WriteFile. This function uses the parameters you’d expect for
a write: a handle, a buffer, and a count. But where most file I/O functions update file
position automatically with each read and write, IFSMgr_Ring0_WriteFilerequires
an explicit file position parameter, which means the caller must keep track of file
position. SKELETON does this by initializing the global file_pos variable to zero
and incrementing file_pos by the number of bytes written with each call to
IFSMgr_Ring0_WriteFile.

IFSMgr_Ring0_WriteFile performs no formatting, it simply writes a raw buffer.
So before calling IFSMgr_Ring0_WriteFile, each message handler first formats the
buffer using the VMM _Sprintf service provided in the DDK library VXDWRAPS.CLB.

VToolsD Version

To generate the VToolsD version of SKELETON.VXD, I used the QuickVxD “wizard”
included with VToolsD to quickly generate a prototype VxD. Using QuickVxD is
simple. You fill in several DDB fields (name, ID, init order, etc.), select which mes-
sages your VxD will handle, specify whether or not your VxD supports a V86 or PM
API, and which (if any) services your VxD provides to other VxDs.

I used the name SKELETON and left both the ID and init order with the default value,
which was UNDEFINED. I selected six messages: Sys_VM_Init, Sys_VM_Terminate,
Create_VM, Destroy_VM, Create_Thread, and Terminate_Thread. Then I clicked on
“Generate” and QuickVxd generated a single C source file, a header file, a makefile, and a
definition file (Listings 5.5-5.8, pages 73-77).

QuickVxD uses the name you specify for your VxD as the base filename. Because
I chose SKELETON, the source file was named SKELETON.C. This file contained the
DDB, the Device Control Procedure, and message handler stub functions for the six
messages I selected. The message handler functions created by QuickVxD all follow
the same naming convention: OnX, where X is the name of the message. For example, a
message handler for Init_Complete would be called OnInitComplete (notice the
underscore is removed). Parameters for the message handlers are message specific,
but usually include either a VM handle or a thread handle, and sometimes an addi-
tional parameter.

64 — Writing Windows VxDs and Device Drivers

To complete the VToolsD version of SKELETON.VXD, I added a few global vari-
ables and some additional code to each of the stub message handlers. The resulting
SKELETON.C is shown in the following code. Sections that I added are delimited by
comments. (Text continues on page 67.)

f##define DEVICE_MAIN
#include "skeleton.h"
ffundef DEVICE_MAIN

JVEREEEEEEE begin section added to prototype
DWORD filepos = 0;

HANDLE fh;

[]-==-=m=-- end section added to prototype

Declare_Virtual_Device(SKELETON)

DefineControlHandler(SYS_VM_INIT, OnSysVmInit);
DefineControlHandler(SYS_VM_TERMINATE, OnSysVmTerminate);
DefineControlHandler(CREATE_VM, OnCreateVm);
DefineControlHandler(DESTROY_VM, OnDestroyVm);
DefineControlHandler(CREATE_THREAD, OnCreateThread);
DefineControlHandler(DESTROY_THREAD, OnDestroyThread);

BOOL __cdecl ControlDispatcher(
DWORD dwControlMessage,
DWORD EBX,

DWORD EDX,
DWORD ESI,
DWORD EDI,
DWORD ECX)

START_CONTROL_DISPATCH

ON_SYS_VM_INIT(OnSysVmInit);
ON_SYSTEM_EXIT(OnSysVmTerminate);
ON_CREATE_VM(OnCreateVm);
ON_DESTROY_VM(OnDestroyVm) ;
ON_CREATE_THREAD(OnCreateThread);
ON_DESTROY_THREAD(OnDestroyThread) ;

END_CONTROL_DISPATCH

return TRUE

A Skeleton VxD — 65

BOOL OnSysVmInit(VMHANDLE hVM)

[/ begin section added to prototype
BYTE action;
WORD err;
int count=0;
char buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "SysVMInit: VM=%x tcb=%x\r\n", hVM, tcb);

fh = RO_OpenCreateFile(FALSE, "vxdskel.log",
0x0002, 0x0000, 0x12, 0x00,
derr, &action);
if (!fh)
{
dprintf(buf, "Error %x opening file %s\n", err, "vxdskel.log");
}
else
{
sprintf(buf, "SysVMInit: VM=%x tcb=Zx\r\n", hVM, tcb);
count = RO_WriteFile(FALSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;

[]=====m-n-- end section added to prototype
return TRUE;

VOID OnSysVmTerminate(VMHANDLE hVM)

[]==-=-===---- begin section added to prototype
WORD err;
int count=0;
char buf[80];
PTCB tcb;

tch = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb);
sprintf(buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FALSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;
RO_CloseFile(fh, &err);

i end section added to prototype

66 — Writing Windows VxDs and Device Drivers

BOOL OnCreateVm(VMHANDLE hVM)

[[-=====m==-- begin section added to prototype
PTCB tcb;
WORD err;
int count=0;
char buf[80];

tcb = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
sprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count; '

[]==mmrmmmm- end section added to prototype
return TRUE;

VOID OnDestroyVm(VMHANDLE hVM)

[]===mmmmmme begin section added to prototype
WORD err;
int count=0;
char buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Hand1e(hVM);
dprintf(buf, "Destroy_VM: VM=%x tcb=%x\r\n", hVM, tcb);
sprintf(buf, "Destroy_VM: VM=%Zx tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

[]====mmmm-- end section added to prototype

BOOL OnCreateThread(PTCB tcb)

[]-====------ begin section added to prototype
WORD err;
int count=0;
char buf[80];

dprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
sprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tch);
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

[]-====mmmn-- end section added to prototype
return TRUE;

A Skeleton VxD — 67

VOID OnDestroyThread(PTCB ‘tch)

[/---------=- begin section added to prototype
WORD err;
int count=0;
char buf(80];

dprintf(buf, "Destroy_Thread VM=%x, tcb=Zx\r\n", tcb->TCB_VMHandle, tcb);
sprintf(buf, "Destroy_Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

[]-=====---- end section added to prototype

This code looks similar to the DDK-only version of SKELETON.C. In fact, the indi-
vidual message handler functions are almost indistinguishable from their DDK-only
counterparts. The VtoolsD version uses dprintf and sprintf, whereas the DDK ver-
sion uses the DPRINTF macro and _Sprintf. The VToolsD version of IFSMgr services
is slightly different, using RO_ instead of IFSMgr_Ring0_.

The advantage of VToolsD is not in the C code you write in your VxD. The advan-
tage is that you don’t have to write anything other than C code. No assembly language
modules are required. The DDB and Device Control Procedure are generated by the
wizard and placed in the same C file, relying on a number of clever macros in the
VToolsD header files to produce a mixture of C and embedded assembly. More
importantly, the VToolsD library contains all of the VMM and standard VxD services.
With VToolsD you will probably never have to write a service wrapper in assembly.
VToolsD also throws in most ANSI C run-time functions, including sprintf.

A Windows 3.x Version of SKELETON

Structurally, VxDs for Windows 3.x are the same as Windows 95 VxDs. However,
Windows 95 contains a number of new VMM services and a number of new VxD ser-
vices not available under Windows 3.x. A VxD that doesn’t use any Windows 95-spe-
cific services will run unchanged under Windows 95. But a VxD that uses Windows
95-specific services will cause an “Unsupported Service” run-time error when run
under Windows 3.x.

SKELETON. VXD does use a number of Windows 95-specific services. Windows 3.x
doesn’t have threads, so a Windows 3.x version of SKELETON wouldn’t contain the two
thread message handlers or any calls to Get_Initial_Thread_Handler in the VM
message handlers. Windows 3.x doesn’t have an IFSMgr VxD either, so file I/O must
be done in V86 mode using Exec_VxD_Int instead of at Ring O with IFSMgr.
(Exec_VxD_Int will be covered in Chapter 12.) Last, the VMM in Windows 3.x
doesn’t offer the _Sprintf service, so formatted output of message strings would have
to be done in the SKELETON VxD itself (unless you use VToolsD, which provides

68 — Writing Windows VxDs and Device Drivers

sprintf in the run-time library). This VxD doesn’t really need the full power offered
by _Sprintf, and a simpler method that converts a DWORD to a hex string could be
used instead.

VToolsD sells a version of their toolkit for Windows 3.x, and if you plan to write a
Windows 3.x VxD in C, you need VToolsD. As this chapter showed, writing a Win-
dows 95 VxD in C without VToolsD is possible but painful. Writing VxD in C for
Windows 3.x without VToolsDs is more than painful. It’s so much trouble that you
might as well stick to assembly.

If you do choose Windows 3.x and C without VToolsD, here’s what you’re up
against. While the Windows 95 DDK provided only a partial VMM wrapper library,
the Windows 3.x DDK doesn’t provide one at all. This means each and every VMM or
~ VxD service called by your VxD will require you to write an assembly language
wrapper function and to create an appropriate function prototype in your own VMM
header file. Also, the Windows 3.x DDK doesn’t provide a VMM.H, so you’ll have to
use the one from the Windows 95 DDK, being careful not to use any services not
present in Windows 3.x.

Summary

Even with its limited functionality, SKELETON. VXD illustrates many critical issues of
VxD development, requiring correct use of structure, interface, and tools. Using the
wrappers supplied by WRAPPERS.CLB, you can code most of a Windows 95 VxD
directly in C, even if you have only the DDK development tools. VToolsD makes the
process even easier by supplying a more complete set of wrappers and convenient
access to Ring O versions of many standard library functions. If you are developing a
Windows 3.x VxD, VToolsD is more than a convenience. Whichever tool set you are
using, you are now ready to write a VXD that does something — one that actually
manipulates the hardware. The next chapter will explain the issues involved in manip-
ulating basic hardware resources from Ring 0 code.

A Skeleton VxD — 69

Listing 5.1 SKELETON.C (DDK-only version)

#include <basedef.h>
fFinclude <vmm.h>
#include <debug.h>
fHinclude "vxdcall.h"
ffinclude <vxdwraps.h>
#include <wrappers.h>
#include "intrinsi.h"

##ifdef DEBUG

f#idefine DPRINTF(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);
Out_Debug_String(buf)

felse

f#idefine DPRINTF(buf, fmt, argl, arg2)

fendif

typedef struct tch_s *PTCB;

BOOL OnSysVmInit(VMHANDLE hVM);

VOID OnSysVmTerminate(VMHANDLE hVM);
BOOL OnCreateVm(VMHANDLE hVM);

VOID OnDestroyVm(VMHANDLE hVM);

BOOL OnCreateThread(PTCB hThread);
VOID OnDestroyThread(PTCB hThread);

ffpragma VxD_LOCKED_DATA_SEG

DWORD filepos = 0;
HANDLE fh;
char buf[80];

#fpragma VxD_LOCKED_CODE_SEG

BOOL OnSysVmInit(VMHANDLE hVM)
{

BYTE action;
WORD err;

int count=0;
PTCB tcb;

tch = Get_Initial_Thread_Handle(hVM);
DPRINTF(buf, "SysVMInit: VM=Zx tcb=%x\r\n", hVM, tcb);

fh = IFSMgr_Ring0_OpenCreateFile(FALSE, "vxdskel.log",
0x0002, 0x0000, 0x12, 0x00,
&err, &action);

if (!fh)

{

DPRINTF(buf, "Error %x opening file %s\n", err, "vxdskel.log");

else

{
_Sprintf(buf, "SysVMInit: VM=%x tcb=%x\r\n", hVM, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;

return TRUE;

70 — Writing Windows VxDs and Device Drivers

Listing 5.1 (continued) SKELETON.C (DDK-only version)

VOID OnSysVmTerminate(VMHANDLE hVM)
{

WORD err;
int count=0;
PTCB tcb;

tch = Get_Initial_Thread_Handle(hVM);
DPRINTF(buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb);
_Sprintf(buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;
IFSMgr_Ring0_CloseFile(fh, &err);
)

BOOL OnCreateVm(VMHANDLE hVM)
{

PTCB tcb;
WORD err;
int count=0;

tcb = Get_Initial_Thread_Handle(hVM);
DPRINTF(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
_Sprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;
return TRUE;
}

VOID OnDestroyVm(VMHANDLE hVM)
{

WORD err;
int count;
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);
DPRINTF(buf, "Destroy_VM: VM=%x tcb=%x\r\n", hVM, tcb);
_Sprintf(buf, "Destroy_VM: VM=%x tcb=%x\r\n", hVM, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(count), filepos, &err)
filepos += count; X
)

BOOL OnCreateThread(PTCB tcb)
{

WORD err;
int count;

DPRINTF(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
_Sprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(count), filepos, &err)
filepos += count;
return TRUE;

}

VOID OnDestroyThread(PTCB tcb)
{

WORD err;
int count;

DPRINTF(buf, "Destroy_Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
_Sprintf(buf, "Destroy_Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
count = IFSMgr_Ring0_WriteFile(FALSE, fh, buf, strlen(count), filepos, &err);
filepos += count;

A Skeleton VxD — 71

Listing 5.2 SKELCTRL.ASM (DDK-only version)

.386p

ckkkkkkkkkkkk *Kkk

; INCLUDES

’
e KK EAIKRK KA KK AAAKAKRA KKK AA KA KKK AA R AR KAk Ak Ak kA k kA khkhkhkhkhkhkhkkhkhkhkhkkhkhkkhkhkkkhkkhhhkkhx

include vmm.inc
include debug.inc

; VIRTUAL DEVICE DECLARATION

DECLARE_VIRTUAL_DEVICE SKELETON, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

: PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:

If carry clear then
Successful

else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch SYS_VM_INIT, _OnSysVmInit, cCall, <ebx>
Control_Dispatch SYS_VM_TERMINATE, _OnSysVmTerminate, cCall, <ebx>
Control_Dispatch CREATE_VM, _OnCreateVm, cCall, <ebx>
Control_Dispatch DESTROY_VM, _OnDestroyVm, cCall, <ebx>
Control_Dispatch CREATE_THREAD, _OnCreateThread, cCall, <edi>
Control_Dispatch DESTROY_THREAD, _OnDestroyThread, cCall, <edi>

clc
ret

EndProc ControlProc
VxD_LOCKED_CODE_ENDS
END

72 — Writing Windows VxDs and Device Drivers

Listing 5.3 SKELETON.MAK (DDK-only version)

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: skeleton.vxd

skeleton.obj: skeleton.c
cl $(CVXDFLAGS) -Fo$@ %s

skelctrl.obj: skelctrl.asm
ml $(AFLAGS) -Fo$@ %s

skeleton.vxd: skelctrl.obj skeleton.obj ..\..\wrappers\vxdcall.obj
..\..\wrappers\wrappers.clb skeleton.def
echo >NUL @<<skeleton.crf
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:skeleton.def -OUT:skeleton.vxd -MAP:skeleton.map
-VXD vxdwraps.clb wrappers.clb skelctrl.obj skeleton.obj vxdcall.obj
<L
link @skeleton.crf
mapsym skeleton

Listing 5.4 SKELETON.DEF (DDK-only version)

VXD SKELETON
SEGMENTS
_LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PDATA CLASS 'PCODE' NONDISCARDABLE
_STEXT CLASS 'SCODE' RESIDENT
_SDATA CLASS 'SCODE' RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE'
EXPORTS
SKELETON_DDB @1

A Skeleton VxD — 73

Listing 5.5 SKELETON.C (VToolsD version)

// SKELETON.c - main module for VxD SKELETON e

f#idefine DEVICE_MAIN
f#include "skeleton.h"
ffundef DEVICE_MAIN

DWORD va_arg_list[2];
DWORD filepos = 0;
HANDLE fh;

Declare_Virtual_Device(SKELETON)

DefineControlHandler(SYS_VM_INIT, OnSysVmInit);
DefineControlHandler(SYS_VM_TERMINATE, OnSystTerm]nate)
DefineControlHandler(CREATE_VM, OnCreateVm);
DefineControlHandler(DESTROY_VM, OnDestroyVm);
DefineControlHandler(CREATE_THREAD, OnCreateThread);
DefineControlHandler(DESTROY_THREAD, OnDestroyThread);

BOOL __cdecl ControlDispatcher(
DWORD dwControlMessage,
DWORD EBX,

DWORD EDX,
DWORD ESI,
DWORD EDI,
DWORD ECX)

START_CONTROL_DISPATCH

ON_SYS_VM_INIT(OnSysVmInit);
ON_SYS_VM_TERMINATE(OnSysVmTerminate);
ON_CREATE_VM(OnCreateVm);
ON_DESTROY_VM(OnDestroyVm);
ON_CREATE_THREAD(OnCreateThread);
ON_DESTROY_THREAD(OnDestroyThread) ;

END_CONTROL_DISPATCH
return TRUE;

74 — Writing Windows VxDs and Device Drivers

Listing 5.5 (continued) SKELETON.C (VToolsD version)

BOOL OnSysVmInit(VMHANDLE hVM)
{
BYTE action;

WORD err;

int count;
char buf(80]1;
PTCB teb;

tch = Get_Initial_Thread_Handle(hVM);
dprintf("SysVmInit: VM=%x, tcb=%x\r\n", hVM, tcb);

fh = RO_OpenCreateFile(FALSE, "vxdskel.log", 0x0002, 0x0000, 0x12, 0x00,
&err, &action);
if (!fh)
dprintf("Error %x opening file\n", err);
else
{
count = sprintf(buf, "SysVmInit: VM=%x tcb=%x\r\n", hVM, tcb);
if (count)
{
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;
}
}
return TRUE;
}

VOID OnSysVmTerminate (VMHANDLE "hVM)
{

WORD err;

int count;
char buf[801;
PTCB teb;

tcb = Get_Initial_Thread_Handle(hVM); .
dprintf("SysVmTerminate: VM=%x, tcb=fx\r\n", hVM, tcb);
count = sprintf(buf, "SysVmTerminate: VM=%x tcb=%x\r\n", hVM, tcb);
if (count)
{
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

RO_CloseFile(fh, &err);

A Skeleton VxD — 75

Listing 5.5 (continued) SKELETON.C (VToolsD version)

BOOL OnCreateVm(VMHANDLE hVM)
{

WORD err;
PTCB tcb;
int count;

char buf[807;

tcb = Get_Initial_Thread_Handle(hVM);
dprintf("Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);

count = sprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
if (count)
{
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

}
return TRUE;
}

VOID OnDestroyVm(VMHANDLE hVM)
{

char buf[807;

int count;

WORD err;

dprintf("Destroy_VM: VM=%x tcb=%x\n", hVM);

count = sprintf(buf, "Destroy_VM: VM=%x\r\n", hVM);

if (count)

{
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

}

BOOL OnCreateThread(THREADHANDLE hThread)
{

PTCB tcb = (PTCB)hThread;

char buf[801;

int count;

WORD err;

dprintf("Create_Thread: VM=f%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);

count = sprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
if (count)
{
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;
}
return TRUE;

76 — Writing Windows VxDs and Device Drivers

Listing 5.5 (continued) SKELETON.C (VToolsD version)

VOID OnDestroyThread(THREADHANDLE hThread)
{

PTCB tchb = (PTCB)hThread;
char buf(80];

int count;

WORD err;

dprintf("Destroy_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);

count = sprintf(buf, "Destroy_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
if (count)
{

count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);

filepos += count;

Listing 5.6 SKELETON.H (VToolsD version)

// SKELETON.h - include file for VxD SKELETON
#include <vtoolsc.h>

ftdefine SKELETON_Major 1
fidefine SKELETON_Minor 0
fidefine SKELETON_DevicelD UNDEFINED_DEVICE_ID

f#fdefine SKELETON_Init_Order UNDEFINED_INIT_ORDER

Listing 5.7 SKELETON.MAK (VToolsD version)

SKELETON.mak - makefile for VxD SKELETON

DEVICENAME = SKELETON
FRAMEWORK = C

DEBUG = 1

OBJECTS = skeleton.0BJ

Yinclude $(VTOOLSD)\include\vtoolsd.mak
Hnclude $(VTOOLSD)\include\vxdtarg.mak

skeleton.0BJ: skeleton.c skeleton.

A Skeleton VxD — 77

Listing 5.8

SKELETON. DEF (VToolsD version)

VXD SKELETON

SEGMENTS
_LTEXT
_LDATA
_TEXT
_DATA
_LPTEXT
_CONST
_BSS
_TLS
_ITEXT
_IDATA
_PTEXT
_PDATA
_STEXT
_SDATA
_MSGTABLE
_MSGDATA
_IMSGTABLE
_IMSGDATA
_DBOSTART
_DBOCODE
_DBODATA
_16ICODE
_RCODE

EXPORTS

_The_DDB @1

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

"LCODE’
"LCODE"
"LCODE"
"LCODE"
"LCODE"
"LCODE"
"LCODE"
"LCODE"
"ICODE"
"ICODE"
'PCODE"
'PCODE"’
'SCODE"
'SCODE
"MCODE’
'"MCODE"
'"MCODE’
'"MCODE"
'DBOCODE"
'DBOCODE
'DBOCODE
"161CODE"
"RCODE"

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESTDENT

RESTDENT

PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE.CONFORMING
PRELOAD DISCARDABLE

78 — Writing Windows VxDs and Device Drivers

Chapter 6

VxD Talks to Hardware

The last two chapters introduced the basic structure of a VxD and demonstrated a
skeleton VxD that processed a few messages and did some debug output. In this chap-
ter, I’ll show you how a VXD communicates with a hardware device. This chapter will
cover talking to I/O-mapped, memory-mapped, and DMA/bus-master devices. I'll
save a related subject, interrupt handling, for the next chapter.

I/0-mapped versus Memory-mapped

A hardware device on a PC can be located in one of two separate address spaces:
memory or I/O. A device in the memory address space, called memory-mapped, is
accessed exactly like memory. It can be accessed via any of the many instructions that
take a memory reference, such as MOV, ADD, OR, etc: From a high-level language, mem-
ory-mapped devices are accessed through a pointer. By contrast, a device in /O
address space (I/O-mapped) can be accessed with only a few instructions: IN, OUT,
and their derivatives. There is no high-level language construct for an I/O-mapped
device, although many compilers do add support via run-time library functions like
inpand outp.

Another difference between the two address spaces is that /O address space is
much smaller than memory space. While the 80386 and above processors support a
4Gb memory address space, I/O address space is only 64Kb on all 80x86 processors.

79

80 — Writing Windows VxDs and Device Drivers

Talking to an I/0-mapped Device

To communicate with an I/O-mapped device, a VxD directly executes the appropriate
IN or OUT instructions or their high-level language equivalents. The processor won’t
trap a VxD that executes these instructions, because VxDs run at Ring 0.

If you’re writing in assembly, use an IN or OUT instruction with an appropriately
sized operand. For example, this code fragment writes the byte A5h to the port 300h.

MOV AL, OA5h
MOV DX, 300h
OUT DX, AL

If you're writing in C, it’s easiest to use the C run-time equivalents of IN and OUT
— as long as these functions are supported by your compiler and you make sure the
compiler uses the intrinsic, or inline, version. When asked to use the “intrinsic” form
of a function, the compiler inserts actual IN and OUT instructions instead of making a
call to the run-time library. It is important to avoid calling the library version. because
few vendors supply a VxD-callable run-time library. (VToolsD is an exception).

Microsoft’s 32-bit compilers support _inp and _outp for byte access, _inpw and
_outpw for word access. You can force the compiler to generate intrinsic code instead
of a call to the run-time by using either the -0i compiler flag, or by using the
intrinsic pragma in your code. The following code fragment writes the byte O to
the port 300h, and uses the intrinsic pragma to guarantee inline code:

fioragma intrinsic(_outp)
_outp(0x300, 0);

Borland doesn’t support IN and OUT equivalents (called _inpb, _inpw, _outpb,
and _outpw) when generating 32-bit code. If you develop your VxD with Borland’s
compiler, you should use embedded assembly for input and output operations.

The run-time functions listed above are only for byte- and word-sized port
accesses. Some devices, particularly recent PCI devices, support dword-sized (32-bit)
accesses (IN EAX, DX and OUT DX, EAX). Neither Microsoft nor Borland provides a
run-time equivalent for the dword version of IN and OUT instructions. To exploit
dword I/O operations, you’ll have to use embedded assembly.

VxD Talks to Hardware — 81

By default, the Borland compiler uses its built-in assembler to translate
embedded assembly, which contains only 16-bit instructions. The compiler
will automatically call the stand-alone TASM32 assembler if the embedded
assembly contains any 32-bit instructions. Therefore, to use IN EAX, DX and
OUT DX, EAX, you must have TASM32. EXE.

Talking to a Memory-mapped Device

To access a memory-mapped device, a VXD must manipulate a specific physical
address. Unfortunately, manipulating an address in the memory system’s physical
address space isn’t as straightforward as manipulating a port in the I/O system’s port
address space. Even though VxDs run at Ring O (where they see a flat memory
model), they still manipulate only linear addresses; all VxD memory accesses go
through the page tables for linear-to-physical address translation. Thus, before a VxD
can access a particular memory-mapped device, it must configure the page tables to
assure that the device’s physical address corresponds to a linear address. The resulting
linear address may then be used as a “plain old pointer”. Even though this mapping
information comes from the page tables, a VxD should never directly manipulate the
page tables; it should use VMM services instead.

This procedure takes one of two forms, depending upon whether the device can
be dynamically reconfigured. Older ISA devices with jumper-selected addresses are
“statically configured”; they are guaranteed to reside at the same address for the life
of the Windows session. Many modern devices, however, can be reconfigured at run
time (for example, PCI, PCMCIA, and ISAPNP devices). As part of its support for
Plug and Play, Windows 95 may move these dynamically configurable devices
around (both in I/O and memory space) as the devices are started and stopped. (See
Chapters 9 and 10 for a full discussion of Windows 95 Plug and Play.) A Windows 95
VxD obtains a linear address for a statically configured device with a single call to
MapPhysToLinear — just as in Windows 3.x. If the device is run-time configurable,
though, the process is more complicated and not Windows 3.x compatible. I'll dis-
cuss each situation separately.

82 — Writing Windows VxDs and Device Drivers

Statically Configured Memory-mapped Devices

'A VxD for an ISA device can obtain a linear address for its device by calling
_MapPhysToLinear. Given a physical address and the region size, _MapPhysToLinear
returns a linear address that maps to that physical address region. (Both VToolsD and
the DDK C wrapper libraries contain a wrapper for _MapPhysToLinear.)

The Calling Interface for _MapPhysTolinear

DWORD _MapPhysToLinear(DWORD PhysAddr, DWORD nBytes, DWORD Flags);

PhysAddr: physical address to be mapped

nBytes: size of region to be mapped, in bytes

Flags: must be zero

Returns: linear address of region; this linear address is in the
system arena, and so is valid no matter which Win32 process
is current

In the following code fragment, the VXD accesses a device mapped to the 256Kb
region starting at 16Mb:

BYTE *1in;

DWORD phys, size;

phys = 0x01000000L; // 16Mb

size = 256*1024; // 256Kb

1in = (BYTE *)_MapPhysToLinear(&phys, size, OL) ;

*Tin = 0OxA5; // write out to device

if (*1in != 0xA5) // read back from same location
return 0; // error

Dynamically Configurable Devices

A VxD for a Plug and Play device shouldn’t use _MapPhysTolLinear because a Plug
and Play device may change its physical address while Windows 95 is running. More-
over, because the linear address returned by _MapPhysTolLinear maps to the same
physical address for the life of Windows, calling the service multiple times would
waste page table entries. The VMM provides no “unmap” service.

VxD Talks to Hardware — 83

Instead of calling _MapPhysTolLinear, a VxD for a device with a dynamically
reconfigurable physical address must divide the “map” process into multiple steps.
Each step calls a VMM service that can be reversed:

* _PageReserve, to allocate a block of linear address space. This is really a set of
page table entries.

* _PageCommitPhys, to map the linear address range to the device’s physical
address (by setting the physical address field of the allocated page table entries).

e _LinPagelock, to prevent the Virtual Memory Manager from swapping out the
pages, thus making the linear address usable during interrupt time.

Here’s a function, MyMapPhysToLinear, which performs this three-step mapping
and returns a linear address:

DWORD MyMapPhysToLinear(DWORD phys, DWORD size)
{

DWORD 1in;

DWORD nPages = size / 4096;

Tin = _PageReserve(PR_SYSTEM, nPages, 0);
if (1in = -1)

return 0;

if (!_PageCommitPhys(1in, nPages, phys, PC_INCR | PC_WRITEABLE))
return 0;

if (!_LinPagelLock(T1in, nPages, 0))
return 0; .

} fi“v!ﬂ’ I"J}

This function uses the _PageReserve, _PageCommitPhys, and _LinPagelock ser-
vices. Let’s examine each call in detail.

MyMapPhysTolLinear passes PR_SYSTEM into ipage when calling _PageReserve
(see next page), so that the linear address is valid for any address context, regardless of
the current Win32 process and current VM. (Note that PR_SHARED would have the same
effect, since that arena is also valid for all processes and VMs.) MyMapPhysToLinear
doesn’t use any of the predefined values for flags. If the call to _PageReserve fails,
MyMapPhysTolLinear immediately returns zero (failure) to its caller.

84 — Writing Windows VxDs and Device Drivers

The Calling Interface for _PageReserve

PVOID _PageReserve (DWORD ipage, DWORD npages, DWORD flags) ;

ipage: determines which arena the linear address will be in
PR_PRIVATE to allocate the Tinear address in the private arena
PR_SHARED to allocate the linear address in the shared arena
PR_SYSTEM to allocate the linear address in the system arena

nPages: number of pages to allocate

flags: PR_FIXED prevents PageReallocate from moving pages
PR_STATIC forces future calls to commit, decommit and frees

this linear address to also specify PR_STATIC

PR_4MEG forces linear address on a 4Mb boundary

MyMapPhysToLinear passes the linear address returned by _PageReserve and the
caller’s physical address to _PageCommitPhys. Calling with the PC_INCR flag causes
an “incremental” wrapping: i.e. the first page in the linear address range maps the first
page of the physical region; the second page in the linear address range maps.the sec-
ond page of the physical region; etc.

The Calling Interface for _PageCommitPhys

BOOL _PageCommitPhys(DWORD ipage, DWORD npages, DWORD physpage, DWORD flags);
ipage: first page number of linear range to be mapped
npages: number of pages to commit
physpage: first physical address to be mapped, as a page number (linear >> 12)
flags: PC_INCR maps linear pages to successive contiguous physical pages
(if not set, all linear pages in range are mapped to same physpage)
PC_USER marks all pages as accessible to Ring 3
PC_WRITEABLE marks all pages as writeable (else write will page-fault)

Finally, the same linear page and number of pages is passed to _LinPagelLock. No
flags are specified because the pages should be locked regardless of the type of swap
device; the device doesn’t use DMA (it’s memory-mapped instead), and the linear
address was already allocated from the system arena.

VxD Talks to Hardware — 85

The Calling Interface for _LinPa gelLock

DWORD _LinPagelock(DWORD LinPgNum, DWORD nPages, DWORD Flags);
LinPgNum: page to lock
nPages: number of pages to lock
Flags: PAGELOCKEDIFDP locks pages only if swap device uses DOS or BIOS services
PAGEMAPGLOBAL returns an alias linear address in the system arena so
region can be accessed regardless of current context
PAGEDIRTY marks dirty bit in page table entry. Use if DMA device will
pe writing to pages, because processor won't know pages are dirty

To undo the mapping, call _LinPageUnlock, _PageDecommit and _PageFree.
Each of these calls undoes the work of its counterpart which was called earlier. That’s
all I will say about these services, because the parameters are all self-explanatory and
no special flags are required.

Another Data Transfer Méthod: DMA

When the CPU transfers individual bytes to a device through an I/O port or a memory
location, the processor must fetch one or more instructions and generate target
addresses for every single byte of data transferred to or from the device. An alterna-
tive method, DMA (Direct Memory Access), can significantly reduce bus traffic dur-
ing a transfer. In a DMA transfer, the device itself takes over the bus from the
processor and transfers the data, eliminating the instruction fetches associated with a
CPU-driven transfer.

There are two types of DMA: system DMA and bus-master DMA. In system
DMA, the system DMA controller (every PC has two of these) and the device work
together to take over the bus from the processor and transfer the data. The Sound-
Blaster card is the best known system DMA device. In bus-master DMA, the device
itself acts as “master” of the bus, requiring no help from the system DMA controller
or the processor. Bus-master DMA is common for PCI devices.

A device that uses DMA as its data transfer method still needs I/O-mapped or
memory-mapped control ports. By writing to the control ports, the processor can tell
the device where to find the system memory buffer, how large the buffer is, and when
to start the transfer. A buffer to be used in a DMA transaction must meet a number of
allocation requirements, which I’ll explain in detail later in this chapter.

VxDs that use DMA — either system or bus-master — for their data transfer
method should use the services provided by the VDMAD. The VDMAD (Virtual DMA
Controller) does more than virtualize the PC’s two system DMA controllers. It also pro-
vides services useful to VxDs that are performing system DMA or bus-master transfers.

86 — Writing Windows VxDs and Device Drivers

Using System DMA

For system DMA, a VxD uses VDMAD services to claim usage of one of the seven
DMA channels supported by the PC and to request that VDMAD issue appropriate
instructions to the DMA controller. Note that because VxDs run at Ring 0, there is
nothing to prevent a VXD from interacting with the controller directly. However,
doing so could interfere with DMA transfers on other channels, because of the way
the registers on the DMA controller are laid out. (Specifically, because there is only a
single mode and a single mask register, not one set for each channel, so the VDMAD
must be aware of all reads and writes to/from the controller in order to correctly virtu-
alize DMA transfers.)

In addition to using VDMAD services to program the controller, a VXD must also
allocate a buffer suitable for DMA and obtain the buffer’s physical address. A buffer
used for a system DMA transfer must meet several strict requirements. The DMA
buffer must be

* physically contiguous,

» fixed and pagelocked,

+ aligned on a 64Kb boundary, and

* located below 16Mb in physical memory.

These requirements are necessary because the system DMA controller has no
knowledge of linear addresses or pages and performs no address translation. The con-
troller is programmed with a starting physical address and simply increments (or dec-
rements) that address with each byte transferred in order to generate the next physical
address.

System DMA Buffer Requirements

The buffer must be physically contiguous because the processor views the linear
address space as a series of 4Kb pages. Through the page tables, each 4Kb page can
be mapped to a different location in physical address space. A buffer made up of
pages that map to noncontiguous physical addresses won’t work for DMA, because
the DMA controller can only increment through a series of physical addresses (or
decrement through a decreasing series).

To understand the requirement for fixed and pagelocked memory, consider the sit-
uation illustrated in Figure 6.1. The VXD, through VDMAD services, initializes the
DMA controller with the physical address of the desired buffer and instructs the con-
troller to begin the transfer. The controller transfers a byte to physical memory, and
the processor regains control of the bus. Assuming that the buffer’s pages were not
fixed, the virtual memory manager may then decide to move a page — the one being

VxD Talks to Hardware — 87

used in the transfer — by copying the page contents to another location in physical
memory and then updating the page’s linear address in the page tables.

At some later time the DMA controller steals the bus again and continues the trans-
fer, using the original physical address programmed during the initialization process
(plus one for each byte already transferred). When the transfer completes, the VxD
examines the new data using the same linear address, but the expected data is not at
that linear address, because that linear address maps to a new physical address. The
DMA controller stored the data at the location given by the original physical address.

Figure 6.1 The DMA requirement for fixed memory.

Before Transfer
directory page table

index index offset
0000 0100 0200
7
page table entry physical memory
00420000 buffer 00420020
After Transfer
directory page table
index index offset
0000 0100 0200
L]
page table entry physical memory

» 00800000 data from DMA| 00420020

88 — Writing Windows VxDs and Device Drivers

Pagelocking the buffer also prevents a similar problem, where the memory man-
ager swaps the page contents out to disk during the transfer. The DMA controller con-
tinues to store data at the original physical address. But when the VXD accesses the
page after the transfer, expecting to see the new data, the memory manager swaps the
page contents in from disk instead, and the VxD sees “old” data.

The two requirements for physical location below 16Mb and 64Kb alignment
have nothing to do with either Windows or the processor but are a limitation of the PC
architecture. The original PC used 20-bit physical addresses, but the PC’s DMA con-
troller chip had only a 16-bit address register. To make it possible to perform DMA
transfers anywhere within the entire 1Mb of the PC’s address space, the PC system
designers added a page register external to the DMA controller to store the upper four
bits of the address. They also added extra logic so that the page register put these
upper 4 bits onto the address bus at the same time the DMA controller placed its 16
bits on the bus, forming a full 20-bit address for main memory.

When the PC-AT was introduced, the page registers grew to 8 bits, and again extra
logic made those 8 bits appear on the address bus when the DMA controller placed
the lower 16 bits on the bus. To remain compatible, today’s system designers still use
this 24-bit DMA scheme even though processors have a 32-bit bus. One side effect of
this decision is that system DMA can only occur in the lowest 16Mb (24 bits) of
memory.

How is this relevant to the 64Kb boundary requirement? Suppose you want to per-
form a DMA transfer of 1000h bytes to physical address 6F000h. To do this, you write
the lower 16 bits (FO0O0h) into the DMA controller’s address register and the upper 4
bits (6h) to the proper page register (there is one per DMA channel). You also set the
controller for a transfer count of 1000h bytes. The physical address of the very last
byte is 70000h (6FO00h + 01000h). But the physical address generated when the last
byte is transferred is actually 60000h. The DMA controller address register correctly
rolls over from FFFFh to 0000h, but the page register containing the upper 4 bits
doesn’t increment from 6h to 7h. Therefore, all system DMA transfers must stay on
the same 64Kb “page”.

A Function for Allocating a
System DMA Buffer

Although the VMM provides a number of different types of memory allocation ser-
vices for VxDs to use, only one will meet the requirements for a system DMA buffer.
That service is _PageAllocate. (Note that _PageAllocate is one of the VMM ser-
vices provided in the Windows 95 DDK VMM wrapper library.)

VxD Talks to Hardware — 89

The Calling Interface for _PageAllocate

ULONG _PageAllocate(ULONG nPages, ULONG pType, ULONG VM, ULONG AlignMask,
ULONG minPhys, ULONG maxPhys, ULONG *PhysAddr,
ULONG flags);
nPages: number of 4Kb pages
pType: PG_VM (specific to VM)
PG_SYS (valid for all VMs)
PG_HOOKED (same as PG_VM, hold-over from Win3.x)
VM: handle of VM or zero if PG_SYS
AlignMask: used if PAGEUSEALIGN bit in Flags is set
00h forces 4Kb,
OFh forces 64Kb alignment,
1Fh forces 128Kb alignment
minPhys: minimum acceptable physical page
maxPhys: maximum acceptable physical page
*PhysAddr: pointer to DWORD where physical address will be returned
flags: zero or more of the following bits
PAGEZEROINIT (pages are filled with zeroes)
PAGELOCKED (pages are locked, can be unlocked with _PageUnlLock)
PAGELOCKEDIFDP (locks pages only if the virtual page swap device uses
MS-DOS or BIOS functions to write to the hardware)
PAGEFIXED (pages are locked at fixed linear address,
can't be unlocked or moved)
PAGEUSEALIGN: pages allocated meet AlignMask, minPhys and maxPhys
restrictions; ignored unless PAGEFIXED also set
PAGECONTIG: pages allocated are physically contiguous; ignored unless
PAGEUSEALIGN is also set
Note: unless one of PAGELOCKED, PAGELOCKEDIFDP or PAGEFIXED is set,
no physical pages are allocated, only linear pages
Returns: linear address of buffer

The function AllocSysDmaBuffer (contained in the file DMAALLOC.C in the
\DMAALLOC directory of the code disk) uses _PageAllocate with the appropriate
parameters to allocate a system DMA buffer. s

DWORD AllocSysDmaBuffer(DWORD nPages, DWORD *pPhysAddr)
{
return _PageAllocate(nPages, PG_SYS, 0, OxOF, 0, 0x1000,
pPhysAddr, PAGEFIXED | PAGEUSEALIGN |
PAGECONTIG);

90 — Writing Windows VxDs and Device Drivers

PG_SYS allows the VXD to access the buffer at hardware interrupt time, regardless of
which VM is currently executing at the time of the interrupt. The AlignMask, minPhys,
and maxPhys parameters, combined with the PAGEUSEALIGN flag bit, correspond exactly
to the “64Kb alignment” and “below 16Mb” requirements. (Note that the maxPhys
parameter is not 16Mb, but 16Mb/4Kb, which is the physical address expressed as a
page number.) The PAGEFIXED flag meets the fixed and pagelocked requirement. The
function return value is the buffer’s linear address, and the physical address is returned
at PhysAddr. » ‘

In general, a VxD should only pagelock a buffer when it’s absolutely necessary —
in this case, only for the duration of the DMA transfer. But because of the way
_PageATlocate uses the F1ag parameter, the physical contiguity requirement forces
Al1ocSysDmaBuffer to allocate a buffer that is permanently fixed and pagelocked.

A VxD cannot use a buffer allocated by a Win32 application for system
DMA, because there is no way to force that buffer to meet physical
contiguity and alignment requirements.

Overview of VDMAD Services

After allocating a system DMA buffer from the VMM, the VxD uses VDMAD ser-

vices to program the DMA controller. The standard documentation explains the indi-

vidual VDMAD services well enough, but fails to outline the overall sequence of

services used to perform a transfer. Here is a summary of the overall sequence.
Before the first transfer, the VxD calls

e VDMAD_Virtualize_Channel to reserve the channel and obtain a DMA “handle”
used in calls to other VDMAD services.

Then, for every transfer, the VxD calls

* VDMAD_Set_Region_Info to program the system DMA controller with the
buffer’s physical address and size,

* VDMAD_Set_Phys_State to program the system DMA controller’s mode, and

e VDMAD_Phys_Unmask_Channel to unmask the channel on the system DMA controller.
The VMM/VxD library included with VToolsD provides C-callable wrappers for

all VDMAD services. The Windows 95 DDK wrapper library doesn’t have the neces-

sary wrappers, but WRAPPERS . CLB does include all VDMAD services discussed in this
chapter.

VxD Talks to Hardware — 91

VDMAD Services in Detail

VDMAD_Virtualize_Channel can be used to virtualize a channel. If you pass in a
non-null callback parameter, VDMAD will call your VxD back whenever Ring 3 code
changes the state of your channel by accessing one of the DMA controller registers.
By responding to this callback, your VxD can virtualize the channel itself. Or you can
pass NULL for the callback parameter to tell VDMAD you’re not really virtualizing the
channel, you only want the DMA “handle” returned by the service, which you need
for other VDMAD calls.

The Calling Interface for VDMAD_Virtualize_Channel

HANDLE VDMAD_Virtualize_Channel (DWORD Channel, PVOID CallbackProc);
Channel: DMA channel to virtualize/use, 0-7
CallbackProc: called to notify of Ring 3 access to DMA controller
Returns: DMA handle to be used in calls to other VDMAD services

or zero if fail

The next call is VDMAD_Set_Region_Info, where “region” refers to the DMA
buffer. The DMAHand1e is, of course, the one returned by VDMAD_Virtualize_Channel.
The Bufferld parameter should be zero if you’ve allocated your own buffer (other-
wise it refers to the buffer ID returned by the service VDMAD_Request_Buffer). The
documentation says that the LockStatus parameter should be “zero if not locked,
non-zero if locked”. If this parameter is zero, VDMAD will send a warning message
to the debugger during the next step (VDMAD_Set_Phys_State) — a gentle reminder
that you probably forgot to lock. The Region parameter, containing the buffer’s linear
address, and the PhysAddr parameter are both provided by the initial call to
PageAllocate.

The Calling Interface for VDMAD_Set_Region_Info

VOID VDMAD_Set_Region_Info(HANDLE DMAHandle, BYTE BufferlID,
BOOLEAN LockStatus, DWORD Region,

] DWORD RegionSize, DWORD PhysAddr);

DMAHandle: handle returned by VDMAD_Virtualize_Channel

BufferID: id returned by VDMAD_Request_Buffer, or zero

LockStatus: zero if pages are not locked, non-zero if locked;

Region: Linear address of DMA buffer

RegionSize: size of DMA buffer, in bytes

PhysAddr: physical address of DA buffer

92 — Writing Windows VxDs and Device Drivers

While VDMAD_Set_Region_Info gives the VDMAD information about the DMA
buffer, VDMAD_Set_Phys_State gives VDMAD information about the transfer itself.
There is no explanation of the VMHand1e parameter in Microsoft’s documentation. In
fact, the VDMAD does nothing more with this parameter than see if it’s a valid VM
handle; if not it sends a warning message to the debugger. To avoid this warning, use
the handle of the current VM, returned by Get_Cur_VM_Handle.

The Calling Interface for VDMAD_Set_Phys_State

void VDMAD_Set_Phys_State(HANDLE DMAHandle, HANDLE VMHandle,
WORD Mode, WORD ExtMode);
DMAHandle: handle returned by VDMAD_Virtualize_Channel
VMHandle: any VM handle
Mode: bitmap corresponding to system DMA controller's Mode register

The Mode parameter isn’t explained in the documentation either, but it corresponds
exactly to the mode register of the DMA controller, which controls transfer direction,
auto-initialization, etc. VxDs should always use the flag DMA_sing1le_mode, to be con-
sistent with the way PC architecture defines system DMA bus cycles. The VDMAD.H
provided by VToolsD provides ffdefines for these values, as does the WRAPPERS . H for
the WRAPPERS . CLB library. The ExtMode parameter, used only in EISA and PS/2 DMA
transfers, also has #defines in VToolsD VDMAD.H and in WRAPPERS . H.

When VDMAD_Set_Phys_State returns, the VDMAD has programmed the DMA
controller base register, page register, count (using the address and size from the pre-
vious call to VDMAD_Set_Region_Info), and mode register (with the mode parameter
from this call).

The final step is to enable the transfer by unmasking the channel with a call to
VDMAD_Phys_Unmask_Channel. Once again, the call requires a VM handle, and the
return value from Get_Cur_VM_Handle will do. This call unmasks the channel in the
actual system DMA controller, which means the DMA controller is ready to begin the
transfer. The transfer will actually begin when your device asserts the proper bus sig-
nals (DMA_REQx, DMA_GRANTX).

The Calling Interface for VDMAD_Ph ys_Unmask_Channe?

void VDMAD_Phys_Unmask_Channel(HANDLE DMAHandle, HANDLE VMHandle);
DMAHandle: handle returned by VDMAD_Virtualize_Channel
VMHandle: any VM handle

VxD Talks to Hardware — 93

The following code fragment combines a call to AllocSysDmaBuf with the
VDMAD calls described above to set up a system DMA transfer on Channel 3. The
transfer uses DMA_type_write mode, meaning the transfer “writes” to memory (from
the device). This example also specifies DMA_sing1e_mode, the mode used for normal
system DMA bus cycles.

DWORD 1in, size, phys;

BYTE ch;

DMAHANDLE dmaHnd;

size =4 * 4 * 1024;

ch = 3;

1in = AllocSysDmaBuf(size/4096, &phys);

dmaHnd = VDMAD_Virtualize_Channel(ch, NULL);

VDMAD_Set_RegionInfo(dmaHnd, O, TRUE, 1in, size, phys);

VDMAD_Set_Phys_State(dmaHnd, Get_Cur_VM_Handle(),
DMA_type_write | DMA_single_mode, 0);

VDMAD_Phys_Unmask_Channel(dmaHnd);

Using Bus-master DMA

A buffer used for a bus-master transfer has fewer restrictions than a system DMA
buffer. Bus-master transfers still require fixed and pagelocked buffers, but the new
buses (like PCI) that support bus-master transfers aren’t limited by the old ISA 64Kb
alignment and 16Mb maximum restrictions. Whether a bus-master transfer requires a
physically contiguous buffer depends on whether or not the bus-master device sup-
ports a feature called “scatter-gather”.

In a “scatter-gather” transfer, the DMA buffer, described by a single linear address
and size, may be composed of multiple physical regions instead of a single physically
contiguous region. A “scatter-gather” driver programs a bus-master device with the
physical address and size of each of these regions, then the device initiates DMA
transfers to/from each of the regions in turn, without any more intervention from the
driver — or the processor, for that matter.

DMA buffers for devices without scatter-gather support must consist of physically
contiguous pages — i.e. _PageAllocate must be called with the PAGECONTIG flag. The
following function, A11ocBusMasterBuffer (also contained in the file DMAALLOC.C in
the \DMAALLOC directory of the code disk), uses _PageAllocate with the appropriate
parameters to allocate a buffer for a bus-master without scatter-gather support.

94 — Writing Windows VxDs and Device Drivers

DWORD AlTocBusMasterBuffer(DWORD nPages, DWORD *pPhysAddr)
{
return _PageAllocate(nPages, PG_SYS, 0, 0, 0, 0x100000, pPhysAddr,
PAGEFIXED | PAGEUSEALIGN | PAGECONTIG);

Note that alignment and maximum physical address requirements have relaxed.
The AlignMask parameter now specifies 4Kb instead of 64Kb, and maxPhys now
specifies the page number for 4Gb. PAGECONTIG is set to get contiguous pages; the
PAGEUSEALIGN bit is set because PAGECONTIG requires it; and PAGEFIXED is set
because PAGEUSEALIGN requires it. The function returns the buffer’s linear address
and stores the physical address at *pPhysAddr. This physical address is used to pro-
gram the bus-master device with the address of the transfer.

Bus-masters that des’t support scatter-gather don’t require physically contiguous
pages. The following function, AlTocScatterGatherBuffer (also contained in the
file DMAALLOC.C in the \DMAALLOC directory of the code disk), uses _PageAllocate
with the appropriate parameters to allocate a buffer for a bus-master with scat-
ter-gather support.

DWORD AllocScatterGatherBuffer(DWORD nPages, DWORD *pPhysAddr)
{
return _PageAllocate(nPages, PG_SYS, 0, 0, 0, 0x100000,
pPhysAddr, 0);

Notice that the last argument, Flags, in this call to _PageAllocate is zero.
PAGECONTIG isn’t set, which means PAGEALIGN doesn’t need to be set, which means
PAGEFIXED doesn’t need to be set.

The function return value is the buffer’s linear address, but the physical address
returned at pPhysAddr is not valid. When PAGEFIXED is clear, _PageAllocate allo-
cates linear pages (slots in the page tables) but marks the pages as not present in phys-
ical memory. This state is called “committed”, but “not present”. (Note that
_PageAllocate behaves a bit differently under Windows 3.x: see the section “Win-
dows 3.x Differences” at the end of this chapter).

The VxD can wait until the time of the actual transfer to allocate physical pages
(make them “present”) and meet the remaining buffer requirements — fixed and
pagelocked. This strategy reduces overall system demands for physical memory, a
limited commodity. When the transfer is over, the VXD can unlock the pages again,
allowing the virtual memory manager the flexibility of swapping these pages to disk
to free up physical memory for another use.

In addition to pagelocking the buffer before the scatter-gather transfer, a VxD
needs to acquire the physical address of each page in the buffer (remember, they’re
not physically contiguous) in order to program the device for the transfer. The

VxD Talks to Hardware — 95

VDMAD provides a service for just this purpose: one call to VDMAD_Scatter_Lock
will lock all the pages in a linear address range and return the physical address of each
page. Unfortunately, using this service is tricky. The documentation is incomplete,
and the VMDAD . H header file (in both VToolsD and the Windows 95 DDK) incorrectly
defines the structure it uses.

Examining Linear and Physical Addresses in the Debugger

Both Softlce/Windows and WDEB386 let you examine memory manager data structures. I used this feature
to verify the behavior of the A110cSysDMABuf, A11ocBusMasterBuf, and AllocScatterGatherBuf func-
tions. I used the WDEB386 command .m to dump all the memory manager information for the linear address
range returned by _PageAllocate. In each case I allocated four pages, so I dumped four linear addresses.

WDEB386 shows that A110cSysDMABuf does meet system DMA requirements: is fixed and locked; four
physical pages are contiguous; each physical page is aligned on a 4Kb boundary (implicitly meeting the
requirement that the buffer not cross a 64Kb boundary); and each physical page is below 16Mb.

The Buffer Attributes After a Call to A11ocSysDMABuf

.m C156D000
C156D000 committed r/w user Fixed present lTocked Phys=00250000 Base=C156D000
.m C156D100
C156D100 committed r/w user Fixed present locked Phys=00251000 Base=C156D000
.m C156D200
C156D200 committed r/w user Fixed present locked Phys=00252000 Base=C156D000
.m €156D300
C156D300 committed r/w user Fixed present locked Phys=00253000 Base=C156D000

WDEB386 shows that A11ocBusMasterBuf does meet bus-master (no scatter-gather) requirements: is
fixed and locked; four physical pages are contiguous; each physical page is aligned on a page boundary; and
each page is located well above 16Mb (my system had 40Mb of physical RAM).

The Buffer Attributes After a Call to Al1ocBusMasterBuf

.m C156D000
C156D000 committed r/w user Fixed present locked Phys=027fc000 Base=C156D000
.m C156D100
C156D100 committed r/w user Fixed present locked Phys=027fd000 Base=C156D000
.m C156D200
C156D200 committed r/w user Fixed present Tocked Phys=027fe000 Base=C156D000
.m C156D300
C156D300 committed r/w user Fixed present locked Phys=027ff000 Base=C156D000

96 — Writing Windows VxDs and Device Drivers

The Right Way to Use VDMAD_Scatter_Lock

The first parameter to VDMAD_Scatter_Lock is a VM handle parameter, and you can
pass in the return value from Get_Cur_VM_Handle (see previous “VDMAD Services
in Detail” section for an explanation of this technique). The other parameters need a
lot of explanation because the available documentation is incomplete and confusing.

(Examining Linear and Physical Addresses in the Debugger — continued)

Finally, WDEB386 shows that A11ocScatterBuf doesn’t really allocate any physical pages. Though the mem-
ory manager says the pages are “committed” (have page table entries), they are marked as “not present”, so no
physical address is shown.

The Buffer Attributes After a Call to AllocScatterBuf

.m C1573000
C156D000 committed r/w user Swapped not-present Base=C1573000
.m C1573100
C156D100 committed r/w user Swapped not-present Base=C1573000
.m C1573200
C156D200 committed r/w user Swapped not-present Base=C1573000
.m C1573300
€156D300 committed r/w user Swapped not-present Base=C1573000

After a call to VDMAD_Scatter_Lock, the same buffer meets bus-master (scatter-gather) requirements. The
pages are still “swapped” — but this really seems to mean “swappable” as opposed to “fixed”. Now, however, the
pages are present, locked, and have a physical address. Note that the physical addresses are not contiguous and that
each is located above 16Mb.

The Buffer Attributes After a Call to VDMAD_Scatter_Lock

.m C1573000
C1573000 committed r/w user Swapped present locked Phys=0155c000 Base=C1573000
.m C1573100
C1573100 committed r/w user Swapped present locked Phys=015a9000 Base=C1573000
.m 1573200
C1573100 committed r/w user Swapped present locked Phys=0168b000 Base=C1573000
.m C15732300
C1573100 committed r/w user Swapped present Tocked Phys=0168f000 Base=C1573000

VxD Talks to Hardware — 97

The Calling Interface for VDMAD_Scatter_Lock

DWORD VDMAD_Scatter_Lock(HANDLE VMHandle, DWORD Flags, PVOID pDDS,
PDWORD pPTEOffset);
VMHandle: any VM handle
Flags: 0: copy phys adddr and size to DDS
1: copy raw PTE to DDS
3: don't lock not-present pages
pDDS: pointer to DDS structure
pPTEOffset: if flags is 1 or 3, contains the 12-bit offset portion
of the .physical address for the first region.
Returns: 0 if no pages were locked
1 if all pages were locked
2 if some pages were locked

If Bit O of the F1ags parameter is clear, the VDMAD fills in the caller’s DDS struc-
ture with the physical address and size of each physical region in the buffer’s linear
address range. If Bit O is set, the VDMAD fills the DDS structure with the PTE (page
table entry) for each page in the buffer. Your VxD can then derive the physical address
and size of each region from the PTEs. For most VxDs, the physical address and size of
each region is sufficient, so Bit 0 would be clear. A pager VxD would typically set Bit
0, because it can use the other PTE information (like the present bit and the dirty bit).

Only a pager VxD would use Bit 1 of the F1ag parameter (which is ignored unless
Bit O is also set). Setting Bit 1 tells the VDMAD to not lock, or return the address of,
pages that are not present. Other VxDs usually clear Bit 1 so that the VDMAD locks
pages whether or not they are marked “present”. Because when used for a DMA buffer,
the pages are already locked and present, Bit 1 doesn’t really matter, but it’s more effi-
cient to tell the VDMAD to ignore the present/not-present attribute by clearing the bit.

According to the documentation, the second parameter should be a “pointer to the
extended DDS structure”. But the EXTENDED_DDS structure definition in VDMAD.H is
incorrect. Here is the definition of the correct structure (DDS) to pass (via a pointer)
to VDMAD_Scatter_Lock:

typedef struct
{

EXTENDED_DDS extdds;
union

REGION aRegionInfo[16];
DWORD aPte[16];

)

} DDS;

98 — Writing Windows VxDs and Device Drivers

typedef struct

{
DWORD PhysAddr;
DWORD Size;

} REGION;

typedef struct Extended_DDS_Struc
{

DWORD DDS_size;

DWORD DDS_linear;

WORD DDS_seg;

WORD RESERVED;

WORD DDS_avail;

WORD DDS_used;
} EXTENDED_DDS, *PEXTENDED_DDS;

The DDS and REGION structures above aren’t contained in any VToolsD or Win-
dows 95 DDK header files, but they are in WRAPPERS . H. I created them after figuring
out how VDMAD_Scatter_Lock really uses the structure passed to it (by looking at the
VDMAD source contained in the Windows 95 DDK). To understand this complicated
set of structures within structures, it’s best to step back and think about what the ser-
vice is really doing.

A DMA buffer, described by a single linear address and size, can be composed of
multiple physical regions, each of varying size. For example, a 16Kb buffer is always
composed of four pages, 4Kb each. But this buffer can be composed of 1, 2, 3, or 4
physically contiguous regions. This is illustrated in Figure 6.2.

VDMAD_Scatter_Lock takes the buffer’s linear address and size and returns either:
the physical address and size of each of the physically contiguous regions (if Bit O of
Flags is clear) or the PTE for each of the pages (if Bit 0 of Flags is set). All of this
information is recorded — albeit in a most complicated manner — in the DDS struc-
ture described above.

The VxD fills in (as input) the DDS_si ze (size of buffer, in bytes) and DDS_T1inear
(linear address of buffer) fields of the EXTENDED_DDS structure. VDMAD provides (as
output) one of the two members of the union inside DDS: either the array of REGION
structures or the array of DWORD PTEs, depending on the F1ags parameter.

The call to VDMAD passes a pointer to the DDS which contains both pieces, the
EXTENDED_DDS and the union. Your VxD fills in as input DDS_avail which tells the
VDMAD the number of REGIONs or DWORDs in the union. The VDMAD fills in
DDS_used on return, which tells your VxD how many of the REGIONs or DWORDs were
filled in with physical address and size or with PTEs.

VxD Talks to Hardware — 99

Note that in my definition, the two arrays contain 16 elements, which means
the DDS structure supports a maximum DMA buffer size of 256Mb
(16*4Kb). A buffer of 16 pages could consist of 16 physically discontiguous
pages, in which case the VDMAD would need a REGION structure to describe
each. If your VxD for a bus-master device uses more than 256Kb in a single
bus-master transfer, increase this array size.

Using Events with Bus-master DMA Transfers

Commonly, DMA drivers start the first transfer in non-interrupt code, service an inter-
rupt generated by the device when the transfer is complete, and start the next transfer
directly from the interrupt handler. However, only VxD services marked specifically
as asynchronous may be called at interrupt time, so it’s vital to know which VDMAD
services are asynchronous. According to the DDK documentation, only
VDMAD_Physically_Unmask_Channel and VDMAD_Physically_Mask_Channel are
asynchronous. The VDMAD source code reveals several other asynchronous ser-
vices too, including VDMAD_Set_Region_Info and VDMAD_Set_Phys_State. But,
VDMAD_Scatter_Lock and VDMAD_Scatter_Unlock are conspicuously missing.

A system DMA VxD can make all of its calls from its interrupt handler, because all
of the VDMAD services it uses are asynchronous (even if not documented as so). But
a bus-master VxD needs VDMAD_Scatter_Unlock, which can’t be called at interrupt
time. The synchronous services, VOMAD_Scatter_Lock and VDMAD_Scatter_Unlock,
must be called outside of the interrupt handler. This is accomplished by having the
interrupt handler use VMM services to schedule an event, and calling VDMAD_-
Scatter_Lock and VDMAD_Scatter_Unlock from the event handler. In fact, it’s
really just as easy to do the entire sequence of VDMAD calls in the event handler.

Figure 6.2 A 16Kb buffer can be composed of 1, 2, 3,
or 4 physically contiguous regions.

Linear Physical Linear Physical Linear Physical = Linear = Physical

. iy g .

] 4 =l = —
SN = T]
Sy =] e =T

100 _ Writing Windows VxDs and Device Drivers

If your VxD allocated the DMA buffer itself, you can schedule a global event,
because any buffer allocated by a VxD comes from the 3Gb—4Gb system arena,
visible regardless of the currently executing thread and VM. On the other hand, if
your VxD didn’t allocate the buffer, but instead pagelocked a buffer allocated by a
Win32 process, then that buffer resides in the 2Gb-3Gb private arena and is valid
only in the context of the same Win32 process that called your VxD for the page-
lock. In this case, you must schedule a thread event so that your event handler runs
in the correct context. Handling interrupts, as well as using thread and global
events, will be covered in the next chapter.

Windows 3.x Differences

There are only minor differences in talking to hardware from a VXD when running
under Win3.x.

* Accessing I/O-mapped hardware is no different at all — it works exactly as
described earlier in the chapter.

* When accessing memory-mapped hardware, use _MapPhysToL1inear, a simpler method
than multiple VMM calls to _PageReserve/_PageCommi tPhys/_LinPagelock.
The simple method is sufficient because the device’s physical address cannot
change (no Plug and Play). Also, the other VMM services (_PageReserve, etc.)
are Windows 95-specific.

» To perform system DMA, use the VDMAD services as described above. However,
your VxD must allocate the DMA buffer during Sys_Critical_Init message
processing because the PAGECONTIG flag passed to _PageAllocateisn’t valid after
initialization.

* Bus-master DMA is no different at all.

Summary

Talking to the hardware from your VxD is pretty straightforward if you only need to
manipulate I/O ports. Most devices that use memory-mapped I/O are only slightly
more challenging. Devices that support DMA are considerably more challenging,
because they interact with physical memory in more complex patterns. Even so, with
careful consideration of the paging and address translation issues involved, you can
write a VXD that can manipulate the necessary physical memory.

I/0 ports, memory, and DMA channels, though, are only part of the hardware a
VxD needs to manipulate. VxDs aren’t just called by applications — they are often
invoked as asynchronous interrupt handlers. The next chapter explains how Windows
virtualizes interrupts and how to register a VxD as the handler for a particular interrupt.

VxD Talks to Hardware — 101

Listing 6.1 DMAALLOC.C

// DMAALLOC.c - main module for VxD DMAEXAMP
fidefine WANTVXDWRAPS

fHinclude <basedef.h>
JHinclude <vmm.h>
fFinclude <debug.h>
fHinclude "vxdcall.h"
#include <vxdwraps.h>
#Hinclude <wrappers.h>

#Hifdef DEBUG

Jidefine DPRINTFO(buf, fmt) _Sprintf(buf, fmt); Out_Debug_String(buf)

#define DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)

fidefine DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);
Out_Debug_String(buf)

ftelse

fidefine DPRINTFO(buf, fmt)

fidefine DPRINTF1(buf, fmt, argl)

Jidefine DPRINTF2(buf, fmt, argl, arg2)

fendif

PVOID AllocSysDmaBuf(DWORD nPages, PVOID pPhysAddr);
PVOID AllocBusMasterBuf(DWORD nPages, PVOID pPhysAddr);
PVOID AllocScatterGatherBuf(DWORD nPages, PVOID pPhysAddr);

PVOID 1in;
char buf[801;

BOOL OnSysDynamicDeviceInit(VMHANDLE hVM)
{

BOOL rc;

DWORD PTEOffset;
DWORD nPages, phys;
DDS myDDS;

int ;S

DPRINTFO(buf, "DynInit\r\n");

nPages = 4;

1in = AllocScatterGatherBuf(nPages, &phys);
if (11in)

{

DPRINTFO(buf, "ERR PageAlloc\r\n");
}
else

DPRINTF2(buf, "Lin=%x, Phys=Zx\r\n", Tin, phys);
}

102 — Writing Windows VxDs and Device Drivers

Listing 6.1 (continued) DMAALLOC.C

myDDS.dds .DDS_linear = lin;

myDDS.dds.DDS_size = 4 * 4 * 1024;

myDDS.dds .DDS_seg = myDDS.dds.RESERVED = 0;

myDDS.dds.DDS_avail = 16;

rc = VDMAD_Scatter_Lock(Get_Cur_VM_Handle(), 0, &myDDS, &PTEQffset):
DPRINTF1(buf, "Scatter_Lock rc=%x\r\n", rc);

DPRINTF1(buf, "nRegions=%x\r\n", myDDS.dds.DDS_used);

for (i=0; i < myDDS.dds.DDS_used; i++)

DPRINTF2(buf, "Region phys=%x size=%d\r\n", myDDS.aRegionInfo[j].PhysAddr,
myDDS.aRegionInfo[i].Size);
}

return TRUE;

BOOL OnSysDynamicDeviceExit(void)
{

BOOL rc;
DPRINTFO(buf, "DynExit\r\n");
rc = _PageFree(1in, 0);
if (lrc)
DPRINTFO(buf, "PageFree failed\n");
return TRUE;

PVOID A11ocSysDmaBuf(DWORD nPages, PVOID pPhysAddr)
{

return(_PageAllocate(nPages, PG_SYS, 0, 0xOF, 0, 0x1000L, pPhysAddr,
PAGECONTIG | PAGEUSEALIGN | PAGEFIXED));

PVOID AllocBusMasterBuf(DWORD nPages, PVOID pPhysAddr)
{
return(_PageAllocate(nPages, PG_SYS, 0, 0, 0, 0x100000L, pPhysAddr,
PAGECONTIG | PAGEUSEALIGN | PAGEFIXED));
}

PVOID AllocScatterGatherBuf(DWORD nPages, PVOID pPhysAddr)
{
return(_PageAllocate(nPages, PG_SYS, 0, 0, 0, 0x100000L, pPhysAddr, 0));

VxD Talks to Hardware — 103

Listing 6.2 DMADDB.ASM

.386p

s kkkdokkkkkkhkkhkkkx *hkkkkhkkkkhkkkkk
»

H INCLUDES

include vmm.inc
include debug.inc

: VIRTUAL DEVICE DECLARATION

DECLARE_VIRTUAL_DEVICE DMAALLOC, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

; PROCEDURE: ControlProc

DESCRIPTION:

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
H Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

Device control procedure for the SKELETON VxD

BeginProc ControlProc

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>

clc
ret

EndProc ControlProc
VxD_LOCKED_CODE_ENDS
END

104 — Writing Windows VxDs and Device Drivers

Listing 6.3 DMAALLOC.MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:i386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: dmaalloc.vxd

dmaalloc.obj: dmaalloc.c
c1 $(CVXDFLAGS) -Fos@ -F1 %s

dmaddb.obj: dmaddb.asm
ml $(AFLAGS) -Fo$@ %s

vxdcall.obj: vxdcall.c
c1 $(CVXDFLAGS) -Fos$@ %s

dmaalloc.vxd: dmaddb.obj dmaalloc.obj vxdcall.obj ..\wrappers\wrappers.clb dmaalloc.def
echo >NUL @<dmaalloc.crf

-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:dmaalloc.def -0OUT:dmaalloc.vxd -MAP:dmaalloc.map

-VXD vxdwraps.clb wrappers.clb vxdcall.obj dmaddb.obj dmaalloc.obj

K
1ink @dmaalloc.crf
mapsym dmaalloc

VxD Talks to Hardware — 105

Listing 6.4 DMAALLOC.DEF

VXD DMAALLOC DYNAMIC

SEGMENTS
_LTEXT
_LDATA
_TEXT
_DATA
_LPTEXT
_CONST
_BSS
_TLS
_ITEXT
_IDATA
_PTEXT
_PDATA
_STEXT
_SDATA
_MSGTABLE
_MSGDATA
_IMSGTABLE
_IMSGDATA
_DBOSTART
_DBOCODE
_DBODATA
_161CODE
_RCODE

EXPORTS

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

DMAALLOC_DDB @1

"LCODE'
'LCODE"’
"LCODE'
"LCODE'
"LCODE'
'LCODE'
"LCODE"
'LCODE"
"ICODE'
"ICODE'
'PCODE"
'PCODE"’
'SCODE"
'SCODE"
'"MCODE"
'"MCODE'
"MCODE"
'"MCODE"
'DBOCODE"
'DBOCODE
'DBOCODE
'16ICODE’
"RCODE"

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESIDENT

RESIDENT

PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

106 — Writing Windows VxDs and Device Drivers

Chapter 7

Handling Hardware
Interrupts in a VxD

Windows’ translation of hardware interrupts into events that can trigger execution of ISRs
residing in'various virtual machines is one of the most confusing and complicated parts of
the virtual environment. Windows must not only make certain that any associated VxD
sees the interrupt but also must assure that the appropriate virtual machines see the inter-
rupt. This process is not only complicated but also involves a large amount of overhead —
so much overhead that an ISR residing in a DOS program running under Windows can
exhibit as much as 20 times more latency than the same ISR under pure DOS. (For details,
see ““The Tao of Interrupts,” by David Long, Microsoft Developer Network CD.)
An interrupt can trigger activity that cascades through four levels of code:

* the processor vectors to a routine in the VMM;

* the VMM calls registered handlers in one or more VxDs; ,
* the VMM then (potentially) simulates the interrupt for protected mode handlers; and
» the VMM then (potentially) simulates the interrupt for V86 mode handlers.

The programmer can install an interrupt handler at any but the first of these levels.
(Actually, since a VXD runs at Ring 0, it could also install at the first level, directly in
the actual IDT. Microsoft strongly warns against doing this.) Handlers installed by
Windows applications qualify as protected mode handlers, running in the System VM.
Handlers installed by DOS applications qualify as V86 mode handlers, running in the
same VM as the DOS application.

107

108 — Writing Windows VxDs and Device Drivers

Interrupts and the VMM

Under Windows, the processor runs in three different states. The processor runs in
V86 Mode when a DOS application is executing (in a V86 VM). The processor runs
in Ring 3 protected mode when the System VM (Windows) is executing or when a
DOS VM has switched into protected mode. The processor runs in Ring 0 protected
mode when VMM or a VxD is executing.

Regardless of the processor’s current state, when a hardware interrupt occurs, the
processor switches to protected mode at Ring 0. The processor then finds the address
of the interrupt handler in the IDT and begins executing the handler. This isn’t a Win-
dows rule — it’s the way the 80x86 architecture works.

As Figure 7.1 shows, however, Windows doesn’t use the IDT to vector to what one
normally thinks of as a interrupt handler. Instead, Windows makes all IDT entries
point to a routine in the VMM. The VMM routine figures out whether it was called as
the result of an exception or an interrupt. The VMM manages exceptions itself but
hands all hardware interrupts to an important VxD called the VPICD (Virtual Pro-
grammable Interrupt Controller Device.) VPICD will pass the interrupt on to another
VxD for servicing if a VxD has registered for the interrupt. If not, the VPICD will
pass the interrupt on to one of the VMs, a process known as reflection.

A VxD registers for a specific hardware interrupt by calling the VPICD service
VPICD_Virtualize_IRQ and passing to the VPICD the address of a callback routine.
Once a VxD has registered for an interrupt it may act as a true interrupt handler, ser-
vicing the interrupting device itself, or the VXD may use another VPICD service,

Figure 7.1 Path from IDT to VxD interrupt handler.
VMM
IDT fault handler VPICD
GP fault
hw int t IR
w interrupt | Q X ‘| R
page fault
hw interrupt IRQy
VxD registered
for IRQ x

Handling Hardware Interrupts in a VxD — 109

VPICD_Set_Int_Request, to reflect the interrupt to a VM. That is, instead of servic-
ing the device itself, the VxD lets the VM’s handler do it. The section “Virtualizing a
Hardware Interrupt” in Chapter 8 will explain reflection in more detail. (See also the
sidebar “Interrupt Latency under Windows™.) '

Using VPICD Services

This section will examine the VPICD services used by a VxD that handles a hardware
interrupt. Although the VPICD exports close to two dozen services, a typical VXD
uses only a few of them:

* VPICD_Virtualize_IRQto install an interrupt handler.

* VPICD_Phys_Unmask to unmask the interrupt at the PC Interrupt Controller (PIC).
e VPICD_Phys_EOI to send an EOI to the PIC.

e VPICD_Phys_Mask to mask the interrupt at the PIC.

e VPICD_Force_Default_Behavior to uninstall an interrupt handler.

Interrupt Latency under Windows

The delay between the hardware interrupt signal and the execution of its handler is called interrupt latency.
Because of the complicated reflection process involved, latency for protected mode or V86 mode handlers can
be significant — times around 1 ms are not uncommon. To minimize interrupt latency, handling of hardware
interrupts should be done in a VxD.

Unfortunately, not even a VxD can guarantee real-time response to an interrupt. There are several factors
that make true real-time response impossible under Windows (both 95 and 3.x), including ring transitions and
the multiple layers of VMM and VPICD handlers. But the factor that overwhelms all others is the abillity of
applications to disable processor interrupts. When processor interrupts are disabled, not even a VxD interrupt
handler can run.

The VMM allows both DOS and Windows applications (and DLLs) to turn off interrupts. (Refer to the
section “Trapping Interrupts and Exceptions” in Chapter 3 for more details). Although applications could also
turn off interrupts under plain DOS, the consequences are often worse under Windows simply because users
typically run multiple applications, and the chances that one application will disable interrupts for a long
period are increased.

110 — Writing Windows VxDs and Device Drivers

The VMM/VxD library included with VToolsD provides C-callable wrappers for all
VPICD services. The Windows 95 DDK wrapper library doesn’t, but the WRAPPERS .CLB
library does include VPICD functions discussed in this chapter as well as the others dis-
cussed in the section “Virtualizing a Hardware Interrupt” in Chapter 8.

The example VxD for this chapter, VXDISR.VXD, demonstrates a simple interrupt
handler. This VxD services one of the few standard PC devices that isn’t already con-
trolled by another VxD: the Real Time Clock, which generates an interrupt on IRQ 8.
The Real Time Clock is not the same as the 8254 Timer device. The timer generates
an interrupt on IRQ 0, and is controlled by another VxD, the VTD.

Examining VPICD Services in Detail: VXDIRQ.C

The VXDISR VxD has only two message handlers, On_Sys_Vm_Init and On_Sys_-
Vm_Terminate, which install and uninstall an interrupt handler, respectively.
On_Sys_Vm_Init calls the service VPICD_Virtualize_IRQto install an interrupt handler.

The Calling Interface for VPICD Virtualize_IRQ

IRQHANDLE VPICD_Virtualize_IRQ(VPICD_IRQ_DESCRIPTOR *vid);
vid: pointer to structure which describes the interrupt to be virtualized
typedef struct
{
USHORT VID_IRQ_Number; // IRQ to virtualize
USHORT VID_Options;
// VPICD_OPT_CAN_SHARE: allow other VxDs to virtualize IRQ also
// VPICD_OPT_REF_DATA: pass VID_Hw_Int_Ref as param to Hw_Int_Handler
ULONG VID_Hw_Int_Proc; // callback for hardware interrupt
ULONG VID_Virt_Int_Proc;
ULONG VID_EOI_Proc;
ULONG VID_Mask_Change_Proc;
ULONG VID_IRET_Proc;
ULONG VID_IRET_Time_Out;
PVOID VID_Hw_Int_Ref; // pass this data to Hw_Int_Handler
} VPICD_IRQ_DESCRIPTOR;
Returns: handle to be used in future VPICD calls
or zero if call failed (IRQ already virtualized or invalid IRQ)

Handling Hardware Interrupts in a VxD — 111

This service is well behaved, i.e. it doesn’t install the handler directly into the IDT,
but simply registers the handler with the VPICD. This service uses only a single
parameter, a pointer to a VPICD_IRQ_DESCRIPTOR structure. The return value is an
IRQ “handle”, required in calls to other VPICD services. _

Because VXDISR is simply handling an interrupt, as opposed to fully virtualizing
it (I’'1l discuss virtualization in the next chapter), it uses only a few fields in this struc-
ture. VID_IRQ_Number is the number of the IRQ the VxD wants to service.
VID_Hw_Int_Proc is the address of the interrupt service routine. VID_Options is a
bitmapped flag. VPICD_OPT_CAN_SHARE allows other VxDs to call VPICD_-
Virtualize_IRQ for the same IRQ. (VXDISR doesn’t set this bit: the device itself
must support IRQ sharing, and simply setting the option bit won’t make IRQ-sharing
work.) The VPICD_OPT_REF_DATA bit works in conjunction with the VID_Hw_Int_Ref
parameter. If VPICD_OPT_REF_DATA is set, the VPICD passes VID_Hw_Int_Ref as a
parameter when it calls the interrupt handler. VID_Hw_Int_Ref is used as reference
data, so VXDISR passes a pointer to its device context structure.

Be sure to set the other callback fields (VID_Virt_Int_Proc, VID_EOI_Proc,
VID_Mask_Change_Proc, and VID_IRET_Proc) to NULL. The VPICD uses
these callbacks to notify a VxD of other interrupt-related events, such as
when a V86 mode or protected mode handler is called. The section
“Virtualizing a Hardware Interrupt” in Chapter 8 will demonstrate use of
these other callbacks.

After installing its interrupt handler, On_Sys_Vm_Init enables the RTC interrupt
in two steps. In the first it writes to an RTC register to enable the interrupt “at the
device”. In the second step, On_Sys_Vm_Init calls VPICD_Physically_Unmask using
the same IRQ handle returned by VPICD_Virtualize_IRQ, which programs the PIC
to recognize interrupts on IRQ 8. This second step enables the interrupt “at the PIC”.
A VxD should always use the VPICD service instead of writing directly to the PIC
mask register.

The Calling Interface for VPICD_Physically_Unmask

void VPICD_Physically_Unmask(IRQHANDLE hnd);
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

The On_Sys_Vm_Terminate function reverses the steps taken at initialization, first
disabling interrupts at the device, then calling VPICD_Physically_Mask to disable the
interrupt at the PIC, and finally uninstalling the handler with a call to
VPICD_Force_Default_Behavior.

112 — Writing Windows VxDs and Device Drivers

The Calling Interface for VPICD Physically_Mask

void VPICD_Physically_Mask(IRQHANDLE hnd);
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

The Calling Interface for VPICD_Force_Default_Behavior

void VPICD_Force_Default_Behavior(IRQHANDLE hnd);
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

Assembly Thunks and C Handlers

Many VMM and VxD services require a callback function parameter. The VXDISR
example in this chapter introduces a callback convention that all other VxDs in this
book will follow. All registered callback functions reside in the VxD’s assembly lan-
guage file. The name of each registered callback function ends in “Thunk”. Each call-
back function always transfers parameters from registers to the stack and calls an
analogous function in the VxD’s C file. The name of the C function is similar to the
callback in the assembly function, except that the C function ends in “Handler”
instead of in “Thunk”.

The HwIntProc Callback:
DDBISR.ASMand VXDISR.C

When a hardware interrupt occurs, the VPICD calls the registered Hw_Int_Proc call-
back with the handle of the current VM in EBX and the IRQ handle in EAX. Because
On_Sys_Vm_Init set the VPICD_OPT_REF_DATAbit in VID_Options when registering the
handler, EDX contains reference data. The registered interrupt handler is
_HwIntProcThunk in DDBISR.ASM (Listing 7.2, page 122). This function does nothing
more than push the current VM handle, IRQ handle, and reference data on the stack and
call the real interrupt handler, HwIntProcHandler in VXDISR.C (Listing 7.1, page 117).
The first action taken by HwIntProcHandler is to cast the reference data to a
pointer to its device context structure. The DEVICE_CONTEXT structure contains all
the VxD needs to know about the device: its I/O address, state information, etc.
HwIntProcHandler reads from the RTC Status C register to clear the interrupt.

The Calling Interface for VPICD_Phys_EOI

void VPICD_Phys_EOI(IRQHANDLE hnd);
hnd: handle returned by VPICD_Virtualize_IRQ

Handling Hardware Interrupts ina VxD — 113

Immediately before returning, HwIntProcHandler calls VPICD_Phys_EOI to send an
EOI (End Of Interrupt) command for IRQ 8 (see the sidebar “EOI Handling in Win-
dows”). This EOI tells the PIC to recognize further interrupts from the RTC. A com-
mon mistake in coding an interrupt handler is to forget the EOI The result is an
interrupt handler that is called once but never again: although the device itself may be
generating more interrupts, the PIC doesn’t let these interrupts through to the proces-
sor until an EOI is received.

HwIntProcHandler returns a boolean indicating whether or not it serviced (cleared)
the interrupt. On return, its caller, _HwIntProcThunk in DDBISR.ASM (Listing 7.2,
page 122), examines this return value. If true (meaning the interrupt was serviced,)
_HwIntProcThunk clears the Carry flag before returning to the VPICD, otherwise
_HwIntProcThunk sets the Carry flag.

The VPICD uses this return value to support shared interrupts. If more than one
VxD virtualizes the same IRQ, and both set VPICD_OPT_CAN_SHARE during registra-
tion, the VPICD keeps the registered interrupt handlers in a list. When the interrupt
occurs, the VPICD calls the first handler on the list. When that handler returns, the
VPICD examines the Carry flag. If Carry is set, meaning the interrupt handler did not
service the interrupt, the VPICD calls the next handler in the list. This continues until
one of the handlers services the interrupt.

Event Handling in VXDISR

In many cases, a VxD’s interrupt handler isn’t able to fully process the interrupt
because the VMM or VxD services required aren’t asynchronous. (See the section
“Using Events with Bus-master DMA Transfers” in Chapter 6 for an explanation of
synchronous and asynchronous services.) In this situation, the interrupt handler must
schedule an event (which will be called later) and call the needed VMM/VxD service
from the event callback. HwIntProcHandler demonstrates this technique, even
though it doesn’t really need it (the only VxD service it uses is VPICD_Phys_EOI,
which is asynchronous).

EOI Handling in Windows

Windows uses the interrupt controller’s EOI mechanism differently than does DOS. The VPICD is the first
VxD to be notified of an interrupt, and the VPICD immediately sends a “specific EOI” to the controller —
specifically for the level of the interrupting device. Then the VPICD masks (disables) that particular interrupt
level on the controller. These two actions allow other interrupt levels to be recognized, including those of
lesser priority than the interrupting level. When a VxD calls VPICD_Phys_EOI before exiting the interrupt han-
dler, the VPICD unmasks (enables) interrupts on that same level.

114 — Writing Windows VxDs and Device Drivers

The Calling Interface for Schedule_Global_Event

EVENTHANDLE Schedule_Global_Event(void *EventCallback, void *RefData);
EventCallback: pointer to callback function;
RefData: pointer to reference data to be passsed to callback function

HwIntProcHandler schedules a'global event, meaning that the event callback could
occur in the context of any VM. A global event is used because the actions taken in the
event callback aren’t specific to any one VM. The parameters to Schedule_Global_Event
are straightforward: a pointer to the callback function and a pointer to reference data. The
return value is an EVENTHANDLE, which is used to cancel the event.

As with the interrupt handler, the function passed to Schedule_Global_Event is
actually a procedure in DDBISR.ASM, called EventThunk. This procedure takes the
three parameters passed in by the VMM — the current VM handle in EBX, the refer-
ence data in EDX and a pointer to the Client Register Structure in EBP — and pushes
them on the stack before calling the real event handler in VXDISR.C. (The Client Reg-
ister Structure was introduced in Chapter 4.)

EventHandler is the name of the real event handler. EventHandler first casts the
reference data to a DEVICE_CONTEXT pointer, then zeros out the event handle and
increments the EventCounter field of the structure.

If your VxD ever cancels an event from an interrupt handler or timeout, the event
handler must take special precautions to prevent cancellation of an already-dispatched
event. Although VXDISR doesn’t have cancel code, it follows this rule anyway. An
event handler guards against this condition by zeroing out the event handle as its very
first action. This precaution ensures that if the VxD’s cancel code interrupts the event
handler, the handle passed to VMM cancel service will be zero. It’s permitted to pass
the VMM cancel routine a handle of zero, but it’s not ok to cast the handle of an event
that is already in progress.

Windows 3.x Differences

There is only one minor difference in handling an IRQ in a Windows 3.x VxD as com-
pared to a Windows 95 VxD. The VPICD doesn’t support the VPICD_OPT_REF_DATA
flag for VPICD_Virtualize_IRQ, so no reference data can be passed to the interrupt
handler. Since the VXDISR example above used this reference data to provide a
pointer to the DEVICE_CONTEXT associated with the interrupting device, how does a
Windows 3.x handler get context information?

A Windows 3.x interrupt handler must provide its own context information. When
the VxD supports only a single device instance, this is trivial. The assembly language
handler pushes the hard-coded address of the one and only device context structure
before calling the C handler routine.

Handling Hardware Interrupts in a VxD — 115

EXTRN ptrDevice:DWORD ;declared in C module, as is Device structure

BeginProc HwIntProcThunkDev
mov edi, ptrDevice
cCall _HwIntHandler, <ebx, eax, edi>
or eax, eax
ret
EndProc HwIntProcThunkDev

By extending this concept a little further, the VxD can support multiple device
instances, and thus multiple device contexts. Declare a different"entry point in the
assembly language module for each device context and have each entry point push the
address of its own device context structure onto the stack before calling the C routine.

EXTRN ptrDevicel:DWORD ;declared in C module, as is Devicel structure
EXTRN ptrDeviceZ2:DWORD ;declared in C module, as is Device2 structure

BeginProc HwIntProcThunkDevl
mov edi, ptrDevicel
cCall _HwIntHandler, <ebx, eax, edi>
or eax, eax
ret
EndProc HwIntProcThunkDevl

BeginProc HwIntProcThunkDev?2
mov edi, ptrDevice2
cCall _HwIntHandler, <ebx, eax, edi>
or eax, eax
ret
EndProc HwIntProcThunkDev2

Of course, the initialization code that registers the interrupt handlers with the VPICD
must change also. When registering a handler for Devicel, HwIntProcThunkDevl is
the handler; when registering for Device2, HwIntProcThunkDev?2 is the handler.

Note that for both single and multiple device instances, the real handler in the
C module remains ignorant of these changes in the assembly language module.
HwIntProcHandler keeps its DEVICE_CONTEXT* parameter, only this time it’s pro-
vided by the HwIntProcThunk instead of the VPICD.

116 — Writing Windows VxDs and Device Drivers

Summary

Once you understand the role of the VPICD with regard to hardware interrupt han-
dlers, writing a VxD that services an interrupt isn’t much harder than writing a DOS
ISR. Instead of calling DOS Set Vector, use VPICD_Virtualize_IRQ. Instead of
writing to the PIC directly to unmask an IRQ, use VPICD_Unmask_IRQ, and instead of
sending an EOI to the PIC directly, use VPICD_Phys_EOI.

However, you may discover your VxD gets less than exciting performance. Even
when implemented in a VxD, an ISR running under Windows will show substantially
worse latency than a similar ISR running under DOS. The fact that a Windows or
DOS application can actually disable processor interrupts for an indeterminate time
means that even a VxD ISR can be delayed indefinitely.

Even so, most modern hardware has quick response time and some buffering.
These factors mean that a VxD ISR may be an acceptable solution for all but applica-
tions with “hard” real-time requirements.

Handling Hardware Interrupts in a VxD — 117

Listing 7.1 VXDISR.C

#Hinclude <basedef.h>
#Hinclude <vmm.h>
#Hinclude <debug.h>
#Hinclude <vxdwraps.h>
f#Hinclude <vpicd.h>

f#finclude <vxdcall.h>

f#Hinclude <wrappers.h>
fFinclude <intrinsi.h>

ffdefine RTC_IRQ 8

jidefine RTC_STATUSA 0xA
jfdefine RTC_STATUSB 0xB
Jidefine RTC_STATUSC 0xC
fidefine STATUSB_ENINT 0x40

Jkdefine CMOS_ADDR 0x70
jidefine CMOS_DATA 0x71

typedef struct
{

VPICD_IRQ_DESCRIPTOR descIrg;

TRQHANDLE hndIrg;
EVENTHANDLE hEvent;
DWORD EventCounter;
BYTE StatusA;
BYTE StatusB;

} DEVICE_CONTEXT;
DEVICE_CONTEXT rtc;

BOOL OnDevicelnit(VMHANDLE hVM);

void OnSystemExit(VMHANDLE hVM);

BOOL _stdcall HwIntProcHandler(VMHANDLE hVM, IRQHANDLE hIRQ, void *Refdata);
VOID _stdcall EventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs);

void CmosWriteReg(BYTE reg, BYTE val);

BYTE CmosReadReg(BYTE reg);

118 — Writing Windows VxDs and Device Drivers

Listing 7.1 (continued) VXDISR.C

// functions in asm module
void EventThunk(void);
void HwIntProcThunk(void);

BOOL OnSysDynamicDevicelnit(VMHANDLE hVM)
{

OnDevicelnit(hVM);

return TRUE;
}

BOOL OnSysDynamicDeviceExit(void)

{
OnSystemExit(Get_Cur_VM_Handle());
return TRUE;

}

BOOL OnDeviceInit(VMHANDLE hVM)

{
rtc.desclrqg.VID_IRQ_Number = RTC_IRQ;
rtc.desclrq.VID_Options = VPICD_OPT_REF_DATA;
rtc.desclrq.VID_Hw_Int_Ref = &rtc;
rtc.desclrq.VID_Hw_Int_Proc = (ULONG)HwIntProcThunk;
rtc.desclrq.VID_EOI_Proc =
rtc.desclrq.VID_Virt_Int_Proc =
rtc.desclrq.VID_Mask_Change_Proc =
rtc.desclrq.VID_IRET_Proc = 0;

rtc.desclrq.VID_IRET_Time_Out = 500;

if (!I(rtc.hndlrq = VPICD_Virtualize_IRQ(&rtc.desclrq)))
return FALSE;

rtc.StatusA = CmosReadReg(RTC_STATUSA);
rtc.StatusB = CmosReadReg(RTC_STATUSB);

Handling Hardware Interrupts in a VxD — 119

Listing 7.1 (continued) VXDISR.C

// set interrupt frequency to only 2 times a sec
CmosWriteReg(RTC_STATUSA, rtc.StatusA | OxOF);

// enable clock interrupts

CmosWriteReg(RTC_STATUSB, rtc.StatusB | STATUSB_ENINT);
// clear flags

CmosReadReg (RTC_STATUSC) ;

rtc.EventCounter = 0;
VPICD_Physically_Unmask(rtc.hndIrq);

return TRUE;
}

VOID OnSystemExit(VMHANDLE hVM)
{

CmosWriteReg(RTC_STATUSA, rtc.StatusA);
CmosWriteReg(RTC_STATUSB, rtc.StatusB);

Cancel_Global_Event(rtc.hEvent);
VPICD_Physically_Mask(rtc.hndIrq);
VPICD_Force_Default_Behavior(rtc.hndIrq);

}
BOOL __stdcall HwIntProcHandler(VMHANDLE hVM, IRQHANDLE hIRQ, void *Refdata)
{

DEVICE_CONTEXT *pRtc = (DEVICE_CONTEXT *)Refdata;

CmosReadReg(RTC_STATUSC);

VPICD_Phys_EOI(hIRQ); // tell VPICD to clear the interrupt

pRtc->hEvent = Schedule_Global_Event (EventThunk, (ULONG)pRtc);

return TRUE; // thunk will clear carry

120 — Writing Windows VxDs and Device Drivers

Listing 7.1 (continued) VXDISR.C

VOID __stdcall EventHandler(VMHANDLE hVM, PVOID Refdata, CRS* pRegs)
{
DEVICE_CONTEXT *rtc = (DEVICE_CONTEXT *)Refdata;

rtc->hEvent = 0;
rtc->EventCounter+t;
}

BYTE CmosReadReg(BYTE reg)
{
BYTE data;

_asm
{
; disable NMI then ints

mov al, reg
or al, 80h
cli

; first output reg to address port
out CMOS_ADDR, al

Jmp 1

_1:
Jmp 2

2
; then read data from data port
in al, CMOS_DATA
mov data, al
Jmp 3

_3:
Jmp _4

4:

; reenable NMI then ints
xor al, al
out CMOS_ADDR, al
sti
}

return data;

Handling Hardware Interrupts in a VxD — 121

Listing 7.1 (continued) VXDISR.C

void CmosWriteReg(BYTE reg, BYTE val)
{
_asm
{
; disable NMI then ints
mov al, reg
or al, 80h
cli

; first output reg to address port
out CMOS_ADDR, al

Jmp - _1

1.
Jjmp 2

_2:
; then output val to data port
mov al, val
out CMOS_DATA, al
Jmp _3

_3:
jmp _4

4:

; reenable NMI then ints
xor al, al

out CMOS_ADDR, al

sti

122 — Writing Windows VxDs and Device Drivers

Listing 7.2 DDBISR.ASM

.386p

chkkkkhkhhkkhkkhhkhkkk *kkkk Kk kkk *kk *hkkkkkkk *kkkkkk *kkkkkkkkkk

: INCLUDES

’
H Fhhkkhkhkhhkhkhkhk Ak hkAAhAhhkhhkkkhkAkkhhkkhhkhhkhkhkhkkhhkhkhkhkkhhkkhkhhhkrhhkkhkkkhhrkhkhhhhkhhkhx

include vmm.inc
include debug.inc

; VIRTUAL DEVICE DECLARATION

»

DECLARE_VIRTUAL_DEVICE VXDISR, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

; PROCEDURE: ControlProc

; DESCRIPTION:
; Device control procedure for the SKELETON VxD

; ENTRY:
; EAX = Control call ID

H EXIT:
H If carry clear then

; Successful

; else

; Control call failed

; USES:
H EAX, EBX, ECX, EDX, ESI, EDI, Flags

s

BeginProc ControlProc

Control_Dispatch DEVICE_INIT, _OnDevicelnit, cCall, <ebx>

Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall

clc

ret

EndProc ControlProc

Handling Hardware Interrupts in a VxD — 123

Listing 7.2 (continued) DDBISR.ASM

PUBLIC _HwIntProcThunk
_HwIntProcThunk PROC NEAR ; called from C, needs underscore

sCall HwIntProcHandler, <ebx, eax, edx>
or ax, ax
jnz clearc
stc
ret
clearc:
clc
ret
_HwIntProcThunk ENDP
VxD_LOCKED_CODE_ENDS

VxD_CODE_SEG

BeginProc _EventThunk

sCall EventHandler, <ebx,edx,ebp>
ret

EndProc _EventThunk
VXD_CODE_ENDS

END

124 — Writing Windows VxDs and Device Drivers

Listing 7.3 VXDISR.MAK

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG -DWANTVXDWRAPS
AFLAGS -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: vxdisr.vxd

vxdisr.obj: vxdisr.c
c1 $(CVXDFLAGS) -Fos$@ %s

ddbisr.obj: ddbisr.asm
ml $(AFLAGS) -Fo$@ -F1 %s

vxdisr.vxd: ddbisr.obj vxdisr.obj ..\wrappers\vxdcall.obj vxdisr.def
echo >NUL @<<vxdisr.crf

-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:vxdisr.def -OUT:vxdisr.vxd -MAP:vxdisr.map

-VXD vxdwraps.clb wrappers.clb ddbisr.obj vxdisr.obj vxdcall.obj
<<KEEP

Tink @vxdisr.crf
mapsym vxdisr

Handling Hardware Interrupts in a VxD — 125

Listing 7.4 VXDISR.DEF

VXD VXDISR DYNAMIC
SEGMENTS
_LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS '"LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS '"LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS '"LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PDATA CLASS 'PCODE' NONDISCARDABLE
_STEXT CLASS 'SCODE' RESIDENT
_SDATA CLASS 'SCODE' RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE ~ CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE"
EXPORTS
VXDISR_DDB @1

126 — Writing Windows VxDs and Device Drivers

Chapter 8

VxDs for Virtualization

Earlier chapters explained how to write a “driver” VxD, that is a VxD that interfaces to
and controls a hardware device. Topics included interfacing to I/O-mapped, mem-
ory-mapped, and DMA devices, as well as hardware interrupts. This chapter will focus
on a different aspect of VxD functionality: how to virtualize a hardware device
(I/0-mapped or memory-mapped) and how to virtualize a hardware-generated interrupt.

Windows virtualizes physical devices because with multitasking, there is always
the possibility of two processes attempting to use a device simultaneously. Virtualiza-
tion wouldn’t be required if every process went through the same driver to access the
device; in that case, the driver could serialize the access.

Unfortunately, some applications (especially DOS applications) attempt to manip-
ulate the hardware directly, instead of calling the operating system’s driver. Because
VxDs rely upon the 80x86’s port-trapping and page-trapping hardware instead of an
explicit call to a device driver, the VXD can intercept any VM’s attempt to access a
device. This includes even direct manipulations by a DOS application. Thus, the VxD
can reliably detect when multiple VMs are trying to access the same device.

Note that Windows does not rely on VxDs to detect conflicts between
multiple Windows applications trying to access the same device. The
port-trapping and page-trapping features work on a per-VM basis, and all
Windows applications live in the same VM. 1t is the job of a Windows driver
DLL to serialize access to the device by multiple Windows applications.

127

128 — Writing Windows VxDs and Device Drivers

Thus, a VxD that virtualizes a device is responsible for detecting and resolving
conflicts between multiple VMs that want to use the same device. The VxD “resolves”
the conflict by enforcing a particular “arbitration policy”. In the Windows environ-
ment, the most common policies are:

» Allowing one VM to access the physical device and ignoring the other VMs. The
VPD (Virtual Printer Device) uses this, the simplest form of virtualization.

* Allowing one VM to access the physical device and virtualizing the device for the
other VMs. The VKD (Virtual Keyboard Device) takes this approach. The VKD
assigns one VM to have the input focus, and that VM gets access to the physical
keyboard, which includes keyboard interrupts. The VKD also makes sure the other
VMs see an empty keyboard buffer

* Allowing multiple VMs to share the same physical device while maintaining the
illusion, from the VM point of view, of exclusive access. The VDD (Virtual Dis-
play Device) behaves this way. Each windowed DOS VM writes directly to what it
thinks is display memory, while the VDD remaps this memory to another buffer,
which appears in a window.

* Allowing one VM to access the virtual device while the VxD independently con-
trols the physical device. The VCD (Virtual Com Device) uses this, perhaps the
most complicated form of virtualization. The VCD buffers incoming serial data,
and transparently “feeds” it to a VM by reflecting the interrupt and then, when the
VM interrupt handler reads the serial port data register, substituting an
already-received byte from the buffer.

Like physical devices, hardware-generated interrupts must also be virtualized.
Hardware-generated interrupts have no knowledge of VMs. Interrupts are virtualized
to assure that each interrupt is visible to every VM that needs it, regardless of which
VM was running when the interrupt was generated.

This chapter presents two example VxDs, PORTTRAP and PAGETRAP, that illus-
trate the techniques involved in virtualizing both port-mapped and memory-mapped

“devices. A third example, REFLECT, virtualizes a hardware interrupt. All of these
VxDs use the simplest arbitration policy to resolve access conflicts. Avoiding unneces-
sary complexity in the arbitration policy emphasizes the basic techniques that are core
to all virtualization VxDs: port-trapping, page-trapping, and interrupt reflection.

VMM and Processor Exceptions

At Windows startup, the VMM installs handlers in the IDT for all processor excep-
tions, including faults, traps, and interrupts. VxDs may then use various VMM services
to register for notification from the VMM when a particular fault, trap, or interrupt
occurs. The VPICD always registers with the VMM for all hardware interrupts, then
other VxDs register with the VPICD to receive notification of hardware interrupts.

VxDs for Virtualization — 129

Although VMM provides a general purpose Hook_VMM__Fault service, which can be
used to hook any type of fault, trap, or interrupt, most VxDs should register their han-
dlers via more specialized services. The VMM offers other entry points specifically for
use by port trap handlers and page fault handlers (Install_I0_Handler and
Hook_V86_Page). By using these specific services, VxDs can take advantage of the
pre-processing work done by the VMM fault handler, which figures out which VM
caused the exception, which port or page the VM accessed, and even the specific
instruction that causes the trap/fault. Similarly, VxDs should use the VPICD_-
Virtualize_IRQ service to register a hardware interrupt handler rather than calling
Hook_VMM_FauTlt.

The VxDs presented in this chapter will use the specialized VMM and VPICD ser-
vices mentioned above. PORTTRAP will use Instal1_I0_Handler to receive call-
backs on I/O port access. PAGETRAP will use Hook_V86_Page to receive callbacks
on access to memory pages. REFLECT will use VPICD_Virtualize_IRQ service to
get callbacks on hardware interrupts.

Device Ownership

Both PAGETRAP and PORTTRAP use a very simple algorithm for device manage-
ment. Succinctly stated, the strategy is: “you touch it, you own it until you die”. The
first VM to access the device is declared the owner VM, and ownership is relinquished
when a VM is terminated. If any other VM attempts to access the device while it is
owned, the VxD may ask the user to decide which VM should be the owner.

The concept of device ownership is fundamental to a virtualization VxD. Typi-
cally the VxD disables local trapping of port I/O or of page faults to allow the owner
VM direct access to the device without causing a trap, a step which improves perfor-
mance. Also, if the device generates interrupts, the VxD makes sure that only the
owner VM sees them.

Some VxDs allow access to specific I/O ports within a device without assigning an
owner, if such accesses are benign and non-destructive. For example, the VCD (Vir-
tual Com Device) allows any VM to configure a serial port with baud rate, parity, etc.
Instead of outputting the bytes to the serial port, however, the VCD stores them in its
own virtual copy of the serial port registers. Ownership is assigned when a VM
accesses the serial port’s interrupt or data registers. As part of assigning ownership,
the VCD copies the virtual registers for that VM to the real serial port registers.

Implementing this type of behavior is more complicated and requires in-depth
knowledge of how VMs are expected to access the device. If a VM accesses the
device in a way that the VxD doesn’t expect and, thus, doesn’t handle it properly —
for example, not reading a status register before writing to a register — the device
won’t function as the VM expects.

130 — Writing Windows VxDs and Device Drivers

Virtualizing an 1/0-mapped Device:
The PORTTRAP Example

Writing a VxD to demonstrate I/O-mapped virtualization using port-trapping is com-
plicated by the fact that Windows contains VxDs that virtualize most of the standard
PC I/O port devices, and the VMM allows only one VxD to trap access to a given port.
Rather than take over an existing device, this chapter’s PORTTRAP traps the ports of
an imaginary device at I/O address 300h-307h.

The PORTTRAP example (Listing 8.1, page 151) is the most elaborate of the
examples in this chapter. It allocates per-VM storage in the VMM’s Control Block
and allows the user to resolve contention between VMs. Even so, PORTTRAP
requires a very modest amount of code: only three message handlers (OnDevicelnit,
OnSystemExit, and OnVmTerminate) and a port trap handler.

The Initialization Routine: OnDevicelnit

BOOL OnDevicelInit(VMHANDLE hVM)
{

int i;

for (i=0; i < device.numloPorts; i++)
{
if (!Install_I0_Handler(device.IoBase+i, PortTrapThunk))
{
DPRINTF1(buf, "Error installing handler for io %x\r\n", IO_BASE+i);
return FALSE;
}
}
if (device.cbOffset = _Allocate_Device_CB_Area(sizeof(DEVICE_CB), 0))
{

DPRINTFO("Error alloc'ing control block\r\n");
return FALSE;
}

return TRUE;
}

OnDevicelnit calls the VMM service Install_I0_Handler to register a port trap
handler for each of the trapped ports. The VxD calls Install_I0_Handler in a loop,
passing the same callback function each time (PortTrapThunk), but a different port
number. Because the same callback function is used for all the ports, when the trap
handler is invoked it will need to determine which port was accessed before it can act
appropriately. This is an easy decision, because the port number is provided to the
callback routine. An alternative method is to give each port its own callback routine.

VxDs for Virtualization — 131

The Install_I0_Handler service initially enables trapping for all VMs, current
and future, which means that PORTTRAP doesn’t have to take any special action
when new VMs are created. A VxD could change this initial behavior by calling other
VMM services: Disable_Global_Trapping and Enable_Global_Trapping change
the trapping state of a specific port for all VMs; Enable_Local_Trapping and
Disable_Local_Trapping change the trapping state only for a specific VM and a
specific port.

The Calling Interface for Install_I0_Handler

BOOL Install_IO_Handler(DWORD PortNum, PIO_HANDLER I0Callback);

PortNum: 1/0 port number

I0Callback: pointer to callback function, called when VM accesses
PortNum

PORTTRAP uses both device context and per-VM data structures. The device
context structure, DEVICE_CONTEXT, includes fields for items like the I/O port base
address and the handle of the owner VM. The per-VM structure, DEVICE_CB, consists
of a single boolean field. This boolean is set whenever a user is asked to choose an
owner VM from among two contending VMs. OnDevicelnit uses the VMM service
_Allocate_Device_CB_Area to allocate room for a DEVICE_CB in the VM Control
Block, then stores the returned offset in the device context.

Handling Different 10 Types: PortTrapThunk

When a port trap occurs, the VMM calls the handler registered through
Install_I0_Handler. As is the case with other example VxDs in this book, the
actual registered callback is found in the assembly module. In this case the function is
_PortTrapThunk in the module PORTDDB.ASM (Listing 8.2, page 154), and like the
other example VxDs we’ve seen so far, _PortTrapThunk does minimal processing
before calling the “real” callback in the C module, which is PortTrapHandler.

132 — Writing Windows VxDs and Device Drivers

When the VMM invokes a port trap handler, the register data is set up as follows:

Input:

EAX=data for OUT instruction

EBX=current VM handle ‘

ECX=IQType ~ //BYTE_INPUT, BYTE_OUTPUT, WORD_INPUT, WORD_QUTPUT,
//DWORD_INPUT, DWORD_OUTPUT, STRING_IO, REP_IO,
//ADDR_32_10, REVERSE_IO

EDX=port number

EBP=address of Client Register Structure

Output:

EAX=data returned by IN instruction

PortTrapThunk passes all these parameters on to the C routine, after some initial
pre-processing which involves the macro Emulate_Non_Byte_IO.

BeginProc PortTrapThunk

Emulate_Non_Byte_I0
cCall _PortTrap, <ebx, ecx, edx, ebp, eax>
ret

EndProc PortTrapThunk

The VxD is “emulating” non-byte I/O because its hardware understands only
byte-sized access. Nothing prevents an application from issuing word or dword
IN/OUT instructions, or even from performing “string I/O” using REP INSB/OUTSB.
The VMM provides the macro Emutate_Non_Byte_IO to allow a VxD port trap han-
dler to pass non-byte accesses back to the VMM. This macro expands to

;Emulate_Non_Byte_IO macro expansion
cmp ecx, BYTE_OUTPUT

jbe SHORT Byte_IO

VMMJImp Simulate_IO

Byte_I0:

;cCall macro expansion

push eax

push ebp

push edx

push ecx

push ebx

call _PortTrap

;C routine returned with data in EAX, just return as is to VMM
ret

VxDs for Virtualization — 133

If the I0Type parameter in ECX indicates a byte-sized access, the generated code
falls through to the code after the macro, which pushes parameters on the stack and
calls the C routine. If I0Type is non-byte, then the code jumps to the VMM service
Simulate_IO0. This service breaks down a word access into two sequential calls back
into the port trap handler, each with ECX=BYTE_INPUT or BYTE_OUTPUT. The service
similarly breaks down dword and string access into multiple calls into the port trap
handler.

The C routine PortTrapHandler called by _PortTrapThunk passes a return value
in EAX, which _PortTrapThunk passes on to the VMM when it returns. If I0Type was
an IN of any size, the VMM will move the contents of EAX to the Client Register
Structure EAX field. The end result is that the return value from _PortTrapThunk
appears to the VM as the result of an IN instruction.

If your hardware directly supports word or dword I/O, your handler should
also support these modes directly, rather than using Emulate_Non_Byte_I0.

Checking Ownership: PortTrapHandier

After taking care of non-byte access with the macro Emulate_Non_Byte_ IO, the
assembly language routine _PortTrapThunk calls the function PortTrapHandler in
the C module to do the real work — to allow port access by the owner VM while pre-
venting access from a non-owner VM.

DWORD _stdcall PortTrapHandler(VMHANDLE hVM, DWORD IOType, DWORD Port,
CLIENT_STRUCT *pcrs, DWORD Data)
{
DEVICE_CB *pCB;
BOOL bThisVMIsOwner;
VMHANDLE newVMOwner;

bThisVMIsOwner = TRUE;

if (!device.VMOwner)

{
// device doesn't have an owner, assign this VM as owner
SetOwner(hVM, &device);

134 — Writing Windows VxDs and Device Drivers

else if (device.VMOwner && (device.VMOwner != hVM))
{
// device has an owner, but it's not this VM
pCB = (DEVICE_CB *)((char *)hVM + device.cbhOffset);
if (pCB->flags & FLAGS_CONTENDED)
{
// this VM has already attempted to grab the device
bThisVMIsOwner = FALSE;
}
else
{
newVMOwner = SHELL_Resolve_Contention(device.VMOwner, hVM,
device.DeviceName);
if (newVMOwner != device.VMOwner)
{
bThisVMIsOwner = FALSE;
Data = OxFFFFFFFF;

}

if (bThisVMIsOwner)

{ if (I0Type & BYTE_INPUT)
{ Data = _inp(Port);
e}31se if (I0Type & BYTE_OUTPUT)
{ _outp(Port, Data);

} }

return Data;

If the VMOwner field of DEVICE_CONTEXT is set to zero, then the device doesn’t
have an owner yet. In this case, the code calls the subroutine SetOwner to assign the
VM that caused the trap as the owner. SetOwner updates the VMOwner field of
DEVICE_CONTEXT and disables local trapping for the new owner VM, using the VMM
service Disable_Local_Trapping. This service takes as parameters a VM handle and
a port number. SetOwner calls the service in a loop, using the same VM handle (the
new owner) and changing the port number each time to disable trapping on each of
the device’s ports. With local trapping disabled, the owner VM can now access the
device without causing a fault and, thus, without interference from PORTTRAP.
Access by any other VM will still cause a fault and a call to PortTrapHandler.

VxDs for Virtualization — 135

If the device does have an owner but it’s not the VM that caused the trap, PORT-
TRAP may use the SHELL_Resolve_Contention service to ask the user which VM
should be owner: the already-assigned owner VM or the new “contender” VM. How-
ever, the VxD doesn’t bother the user every time a non-owner VM accesses the
device, only the very first time. The FLAGS_CONTENDED bit in the Flag field in the
per-VM control block determines whether the VxD queries the user.

If FLAGS_CONTENDED is set, it means the VxD has already warned the user once
that this VM is accessing the port and asked the user to assign an owner. In this case,
PortTrapHandler simply sets the local variable bThisVMIsOwner to FALSE, which
prevents code executed later in the function from performing the I/O access on behalf
of the VM.

If FLGS_CONTENDED is clear, the VxD immediately sets it and then calls
SHELL_Resolve_Contention, passing as parameters the VM handle of the current
owner, the VM handle of the “contender” and a pointer to a device name. (See the
sidebar “Why Blue Text?” for details on the SHELL_Resolve_Contention display.)
The SHELL VxD then displays a dialog box listing the name of each VM (usually
corresponding to the name of the DOS application running in the VM) and the name
of the device, and the user chooses which VM should own the device.

SHELL_Resolve_Contentionreturns to PortTrapHandler with the handle of the
chosen VM as a return value. If the user has not chosen the contending VM as owner,
then PortTrapHandler sets the local variable bThisVMIsOwner to FALSE, so that code
later in the function will not perform the I/O.

Why Blue Text?

Why does SHELL_Resolve_Contention sometimes display a blue text screen instead of a dialog box?

SHELL_Resolve_Contention appears to behave inconsistently, sometimes displaying a true Windows dia-
log box on top of the GUI, and sometimes going into full-screen mode and displaying a blue text message.
Many developers think this blue screen is ugly and would like to force SHELL_Resolve_Contention to always
display a true dialog box.

Bad news: you can’t. The SHELL VxD’s behavior depends on the current state of the GUI subsystem of
the System VM, as well as which VM is current when SHELL_Resolve_Contention is called. In short, if the
GUI subsystem is already “busy” when this SHELL function is called, a true dialog box cannot be displayed,
so the SHELL VxD does the next best thing: switches to text mode and displays an ugly blue screen with the
message on it.

136 — Writing Windows VxDs and Device Drivers

At this point, PortTrapHandler has determined whether or not the VM that
caused the port trap is indeed the owner VM, and thus should be allowed to access the
port, and has set bThisVMIsOwner accordingly. If bThisVMIsOwner is now TRUE,
PortTrapHandler carries out the I/O access on behalf of the VM, using the 10Type
parameter to determine whether to execute an IN or OUT and the Port parameter to
determine the port address. If the access was an OUT, the Data parameter provides the
output data. If the access was an IN, PortTrapHandler sets Data to the result of the IN.
Finally, PortTrapHand1er returns to his caller with Data as a return value. As explained
in the previous section, the VMM propagates the port trap handler return value back
to the VM, so the VM sees this value as the result of its IN instruction.

Processing VM_TERMINATE

Once a VM has acquired ownership of a device, it continues to own it until
* the VM terminates or)
 the user selects a different owner through the She11_Resolve_Contention service.

To detect the first case, PORTTRAP processes the VM_TERMINATE message.
OnVmTerminate checks to see if the VM being destroyed is the device owner and, if
so, sets VMOwner to zero to mark the device as unowned. OnVmTerminate does not
need to re-enable port-trapping for the VM, because the VM itself is being destroyed.

Using PORTTRAP

I've implemented PORTTRAP as a static VxD so that it is present for the creation and
destruction of all VMs. Under Windows 95, you can load a static VXD one of two
ways: a device= statements in the [386Enh] section of SYSTEM.INI, or a registry
entry under SYSTEM\CurrentControlSet\Services\VxD. For details on static load
methods, refer to Chapter 4.

An easy way of testing PORTTRAP is to open several DOS boxes and use
DEBUG to access the device through one of the ports at 300h—307h. (Use the i and o
commands for input and output.) You’ll see that after you access any one of the eight
I/O ports that make up the imaginary device in one DOS box, the first access to the
device in a different DOS box results in the “Device Contention” dialog box from the
SHELL VxD. If you assign the original DOS box as owner, subsequent accesses by the
second DOS box will not result in the dialog box. But if you open up a third DOS box
and access the port from there, you will once again see the Device Contention dialog.

VxDs for Virtualization — 137

Virtualizing a Memory-mapped Device:
The PAGETRAP Example

A device that is memory-mapped, as opposed to I/O-mapped, may also need a VxD to
perform device arbitration. The need for such a VxD depends on where the device is
mapped in memory. A device mapped above 1Mb in physical memory by definition
cannot be accessed by a DOS application, and so doesn’t need to be virtualized. But a
device mapped below 1Mb can be accessed by a DOS application, and so may need a
VxD for virtualization.

Because the only standard PC memory-mapped device is the video adapter, and the
Video Device Driver (VDD) already virtualizes it, I've designed PAGETRAP (Listing 8.5,
page 157) to virtualize the monochrome video adapter. If you don’t have a mono-
chrome video adapter, then PAGETRAP will still work, as PORTTRAP did, on an
imaginary device.

The Initialization Routine

To intercept access to a memory-mapped device, PAGETRAP calls the following
VMM services in its Device_Init message handler:

* _Assign_Device_V86_Pages, to tell the VMM that the VxD will be using a spe-
cific range of pages in V86 linear address space (i.e. below 1Mb),

* _ModifyPageBits, to mark the pages as not present so that VM access to the
pages will cause a page fault, and

* Hook_VB6_Page, to register a page fault handler for those pages.

Note that PAGETRAP does not allocate pages in physical memory, because
the memory is already supplied by the device.

BOOL OnDeviceInit(VMHANDLE hVM)

{
DWORD PageNum = device.RegionPhysAddr >> 12;
DWORD nPages = device.RegionSize / 4096;

if (! Assign_Device_V86_Pages(PageNum, nPages, hVM, 0))
{

DPRINTF("Assign_Device_V86_Pages failed\r\n");

return FALSE;

138 — Writing Windows VxDs and Device Drivers

if (lHook_V86_Page(PageNum, PageFaultThunk))
{
DPRINTF("Hook_V86_Page failed\r\n");
return FALSE;
}

if (!_ModifyPageBits(hVM, PageNum, nPages, ~P_AVAIL, 0, PG_HOOKED, 0))
{

DPRINTF("ModifyPageBits failed\r\n");

return FALSE;
}

return TRUE;

_Assign_Device_V86_Pages allows a VXD to claim pages in a VM’s linear
address space for use by a device. Later calls will associate physical address space
with these linear pages. PAGETRAP uses the monochrome video adapter’s physical
address and size, stored in the DEVICE_| CONTEXT structure, to derive the values for the
VMLinrPage and nPages parameters.

The Calling Interface for _Assign_Device_lV86_Pages

BOOL _Assign_Device_V86_Pages (DWORD VMLinrPage, DWORD nPages,
VMHANDLE hVM, DWORD flags);
VMLinrPage: Tinear page number (linear address >> 12)
nPages: number of (4 KB) pages
hVM: zero for global assignment
non-zero VM handle for local assignment
flags: reserved; must be O

I

A zero value for the hVM parameter means the assignment is global, that is, the
pages are assigned to the device in all VMs (present and future). A non-zero value
means the assignment is local; the pages are assigned to the device only in the VM
identified by hVM. The VMM will return an error if one VxD has claimed a page glo-
bally and another VxD tries to claim the same page, whereas two different VxDs can
both claim the same page locally without error. PAGETRAP uses zero for hVM, so that
the device pages are claimed in all VMs.

Next, the OnDevicelInit routine calls Hook_V86_Page to register a page fault han-
dler routine. PAGETRAP only hooks a single page. If you’re writing a VxD for a
device that spans multiple pages, you will need to call this service repeatedly — once
for each page. I'll explain the page fault handler code in detail later.

VxDs for Virtualization — 139

The Calling Interface for Hook_V86_Page

BOOL Hook_V86_Page(DWORD PageNum, PV86Page_HANDLER Callback);
PageNum: linear page number
Callback: pointer to callback function,

called when any VM causes a page-fault on PageNum

Last, OnDevicelnit calls _ModifyPageBits to mark the deVice page as not
present in the System VM. Once again, the parameters hVM, VMLinPgNum, and nPages
are self-explanatory. The bit-mapped values for the bitAnd and bitOr parameters
match the processor’s page table entry bits exactly.

The Calling Interface for _ModifyPageBits

BOOL _ModifyPageBits(VMHANDLE hVM, DWORD VMLinPgNum, DWORD nPages,
DWORD bitAnd, DWORD bitOR, DWORD pType,
DWORD Flags);

To force a page fault, PAGETRAP must clear the P_PRES, P_WRITE, and P_USER
bits. The VMM. H header files has a ffdef1ine for this particular combination of bits:

ffdefine P_AVAIL (P_PRES | P_WRITE | P_USER)

To clear these three bits and leave all other bits as is, PAGETRAP uses a value of
(~P_AVAIL) for the bitAND parameter and O for the bitOR. PAGETRAP uses a value
of PG_HOOKED for the pType parameter, because the DDK documentation says that
PG_HOOKED must be used if P_PRES, P_WRITE, or P_USER is being cleared.

PAGETRAP calls _ModifyPageBits with the very same parameters in its
OnCreateVm message handler, so that the device pages are also marked as
not present in the page tables for each new VM.

140 — Writing Windows VxDs and Device Drivers

The Fault Handler Routine

PageFaultHandler [which is called by _PageFaultThunk in PAGEDDB.ASM (Listing 8.6,
page 160)] has two jobs: it arbitrates access to its memory-mapped device, and it
maps the owner VM’s linear address to the device’s physical address. PAGETRAP
uses the same strategy that PORTTRAP did for device arbitration: you touch it, you
own it. PAGETRAP’s implementation is even simpler, though, as it doesn’t ask the
user to resolve contention. This means PAGETRAP uses no per-VM data and thus
doesn’t need to allocate space in the CB. PageFaultHandler merely watches for the
first VM to access the device, and assigns that VM as owner.

VOID __stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber)
{ .
if (device.VMOwner)
{
// device already has an owner, owner wouldn’t cause a page
// fault therefore this VM is not owner
if (!_MapIntoV86(_GetNulPageHandle(), PageNumber, hVM,
PageNumber, device.RegionSize / 4096, 0, 0))
{
DPRINTFO("MapIntoV86 failed\r\n");
)
}
else
{
device.VMOwner = hVM;
_PhysIntoV86(PageNumber, hVM, PageNumber,
device.RegionSize / 4096, 0);

After an owner has been assigned, PAGETRAP causes all owner VM accesses to
the memory-mapped device to go straight to the device, while all non-owner accesses
are either ignored (writes) or return OXFF (reads). To get this behavior, PAGETRAP
uses the service _PhysIntoV86, which updates the VM’s page tables to map a range
of linear address space to a range of physical memory.

VxDs for Virtualization — 141

The Calling Interface for _PhysIntoV86

BOOL _PhysIntoV86(DWORD PhysPage, VMHANDLE hVM,
DWORD VMLinPgNum, DWORD nPages, DWORD Flags);

PageFaultHandler uses the handle of the faulting VM (provided by the caller,
_PageFaultThunk) for hVM. Both PhysPage and VMLinPgNum are set equal to
device.RegionPhysAddr >> 12 and nPages is set to device.RegionSize/4096.
These values make linear page 0xBO in the faulting VM map to physical page 0xBO.
After this call, reads and writes by the VM to the device’s linear address go directly to
the device, without page-faulting.

This is the action taken by PageFaultHandler if the device had no owner. On the
other hand, if the device already has an owner — a VM already accessed the pages
and was assigned ownership — then PAGETRAP must take another action. Ideally,
PAGETRAP would make it seem as if the device isn’t present at that address, perhaps
by returning OxFF as a result of the VM’s read of this address. But unlike a port trap
handler, a VxD page fault handler doesn’t have a return value that it can use to return
OxFF for a particular memory read access.

PAGETRAP has two options to trick the non-owner VM into seeing no device at
physical address 0xB0000. One is to _PageAllocate a region of physical memory, fill
it with OxFF, and, when the page fault occurs, map the VM’s pages to the allocated
page. The VM will then see a region of memory that initially reads 0xFFs (although
the page can be written to and read back with a new value). Presumably the device
region would not read 0xFFs if the device was actually present at that page, and the
VM would then determine the device wasn’t present and would not attempt further
access.

The other option achieves the same result with less work. Instead of mapping to a
target page of OxFFs, the VXD can map the VM’s pages to a special page already allo-
cated by the VMM called the “null page”. The null page is mapped to different loca-
tions at different times, so the contents are random. This behavior should also cause
the VM to determine that the device isn’t present and not attempt further access. In
my experience, the null page often maps to non-existent RAM, which does result in
reading OxFF.

PAGETRAP uses the null page approach. If the device is already owned,
PageFaultHandler first calls _GetNulPageHandle to return the memory handle of
the null page. Then PageFaultHandler calls the VMM service _MapIntoV86 to
map the VM’s linear address space to this null page.

142 — Writing Windows VxDs and Device Drivers

The Calling Interface for _MapIntol86

BOOL _MapIntoV86(MEMHANDLE hMem, VMHANDLE hVM,
DWORD VMLinPageNumber, DWORD nPages, DWORD PageOff,
DWORD Flags);

PAGETRAP uses the handle returned by _GetNulPageHandle for the hMem
parameter and the VM handle of the faulting VM for hVM. Once again, VMLinPgNumis
device.RegionPhysAddr >> 12 and nPages is set to device.RegionSize/4096.
This service has an additional parameter, Page0ff, which PAGETRAP sets to 0 so the
first page of the linear region is mapped into the first page of the physical (null page)
region. After the call to _MapIntoV86 with these parameters, reads and writes by the
VM to the device’s linear address go directly to the null page without page-faulting.

Processing VM_Terminate

PAGETRAP also processes the VYM_TERMINATE message. OnVmTerminate checks to
see if the VM being destroyed is the device owner, and if so, sets VMOwner in the
device context to zero to mark the device as unowned. It is not necessary to do any-
thing with the VM’s page tables since the VM is being destroyed.

Using PAGETRAP

You can test PAGETRAP by opening several DOS prompt windows and using
DEBUG to read and write to the monochrome adapter at BO00: 0000h. If you have an
adapter installed, you should be able to read and write to it via DEBUG in the first
DOS window that was opened, but you should see random data in the window when
reading and writing to it from subsequent DOS windows. If you don’t have an adapter
at all, you'll read only OxFFs from the first DOS window and random data from the
other DOS windows.

VxDs for Virtualization — 143

Virtualizing a Hardware Interrupt

When virtualizing a device that generates interrupts, a VxD may virtualize the inter-
rupt by “reflecting” it to a VM for servicing instead of servicing it in the VxD. A VxD
reflects an interrupt — causes the interrupt handler in a VM to execute — by using
VPICD services. A VxD can reflect an interrupt to any VM it chooses, but most VxDs
assign VM ownership of a device through port-trapping or page-trapping, or even
through an API, and then reflect all interrupts to the owner VM.

Because hardware interrupts occur asynchronously, any VM could be executing at
the time a VxD calls the VPICD service for reflection. As the first step in reflection,
the VPICD must force the desired VM to be scheduled. The VPICD forces the sched-
uling change by calling the VMM service Call_Priority_VM_Event with the highest
priority, Time_Critical_Boost.

The VPICD provides a callback with this service, so the VMM may notify the
VPICD when the target VM has been scheduled. The VPICD responds to the callback
by using another VMM service, Simulate_Int, to modify the VM’s execution envi-
ronment. Simulate_Int changes the VM’s state information so that it appears to exe-
cute an INT instruction: the VM’s CS, IP, and flags registers are pushed onto the VM’s
stack; and the VM’s new CS and IP values are fetched from the VM’s IVT (location
0000:0000h in the VM'’s address space). In addition, the VPICD also clears the VM’s
interrupt flag because it’s really simulating a hardware interrupt, not a software inter-
rupt. When the VPICD returns from this callback and the VMM switches back to V86
mode, the VM immediately executes the interrupt handler for the hardware interrupt
that was originally fielded by the VPICD.

Which VM?

The VPICD itself will reflect a hardware interrupt that is not claimed by any other VxD.
Although the VPICD doesn’t know about any other hardware devices besides its own (the
PIC), it must still decide which VM gets the interrupt. In making this decision, the VPICD
differentiates between local interrupts and global interrupts. A local interrupt is one that
was disabled (in the physical PIC) at Windows startup. A global interrupt is one that was
enabled at Windows startup. Note that since a global interrupt is enabled, a global inter-
rupt must already have an interrupt handler installed in the BIOS, in a DOS driver, or in a
TSR when Windows begins. We’ll explore the importance of this statement shortly.

After Windows initializes, a VM may install an interrupt handler and then enable
it in the PIC. By definition, that’s a local interrupt. The VPICD now considers the VM
that enabled the interrupt to be its owner, and from this point on the VPICD will
always reflect this interrupt to the owner VM. This policy makes sense because the
VM interrupt handler exists only in the installing VM,; reflecting the interrupt to any
other VM would result in calling an invalid address.

144 — Writing Windows VxDs and Device Drivers

Global interrupts, on the other hand, do not have owners, but are reflected to what-
ever VM happens to be executing at the time the interrupt occurred. This works
because a global interrupt was enabled when Windows started, and therefore had a
handler installed when Windows started, which in turn means that the “global” han-
dler exists in all VMs. Thus, it really doesn’t matter to which VM the VPICD reflects
a global interrupt — each has an IVT that points to the same handler. The difference
between global and local interrupts is illustrated in Figure 8.1.

Once the VPICD has chosen a VM for reflection, it must make another choice:
whether to call the protected mode or V86 mode handler. As Chapter 4 explained, all
VMs start in V86 mode, and thus, have a V86 component; some VMs later switch to
protected mode, and thus have a PM component also. One or both of these two com-
ponents may install an interrupt handler. V86 interrupt handlers are those installed by
a VM’s V86-mode component, which includes the BIOS and DOS. PM interrupt han-
dlers are those installed by a VM’s PM component — usually a Windows DLL, but
possibly a DOS-extended application using DPMI.

The VPICD always calls the protected mode handler, if one is installed. Only if no
protected mode handler has been installed does the VPICD call the V86 mode handler.
VPICD maintains a pseudo-IDT, which is updated when a protected mode application
installs an interrupt handler through DOS Set Vector or DPMI Set Protected Mode
Vector. This pseudo-IDT is used to get the address of the protected mode handler.
Similarly, VPICD maintains a pseudo-IVT, which is updated when a DOS application
installs an interrupt handler (or when a Windows application calls DPMI Set Real
Mode Vector), and this pseudo-IVT provides the address of the V86 mode handler.

The above describes the VPICD’s default behavior when no VxD has registered
for the interrupt. If a VxD has registered for the interrupt and plans to reflect it to a VM,
then it is the VxD’s responsibility to choose the appropriate VM and direct the inter-
rupt to the correct handler (protected mode or V86 mode). Typically, a VxD tracks
ownership of a device and reflects the interrupt to the owner VM. The VxD passes the
owner’s VM handle to the VPICD as part of the call to VPICD_Set_Int_Request.
(This service will be described in detail later in this chapter.)

A VxD for Hardware Interrupt Reflection

The REFLECT VxD (Listing 8.9, page 163) illustrates how to reflect an interrupt to
an owner VM. The example code virtualizes the Real Time Clock interrupt, IRQ 8
(not to be confused with the timer interrupt on IRQ 0), but can be easily modified to
work with any IRQ.

REFLECT virtualizes IRQ 8 during Device_Init processing with a call to
VPICD_Virtualize_IRQ, passing a pointer to its VPICD_IRQ_DESCRIPTOR structure,
IrgDesc. VPICD_Virtualize_IRQreturns an IRQ handle, which REFLECT stores in
its device context. This handle will be used later when calling other VPICD services.

VxDs for Virtualization — 145

Figure 8.1 VPICD associates an owner with each
interrupt so that it can force the scheduling
of the appropriate VM when a local
interrupt is received. Global interrupts
go to whichever VM is currently executing.

146 — Writing Windows VxDs and Device Drivers

struct VPICD_IRQ_Descriptor {
USHORT VID_IRQ_Number;
USHORT VID_Options;
ULONG VID_Hw_Int_Proc;
ULONG VID_Virt_Int_Proc;
ULONG VID_EOI_Proc;
ULONG VID_Mask_Change_Proc;
ULONG VID_IRET_Proc;
ULONG VID_IRET_Time_Out;
PVOID VID_Hw_Int_Ref;

The VPICD_IRQ_DESCRIPTOR structure contains pointers to five callback func-
tions, which the VPICD uses to notify the VXD of changes to the state of the physical
and the virtualized IRQ. These callbacks are the key to reflecting an IRQ to an owner
VM. The VXDISR VxD discussed in a previous chapter used this same structure but
filled in only the VID_Hw_Int_Proc field. REFLECT fills in all five fields. VXDISR
needed only one callback because it actually serviced the interrupt; REFLECT is only
reflecting the interrupt to a VM for servicing.

The VPICD_IRQ_DESCRIPTOR structure used by REFLECT is statically initialized
as follows:

VPICD_IRQ_DESCRIPTOR IrgDesc = { RTC_IRQ, VPICD_OPT_REF_DATA,
HwIntThunk, VirtIntThunk, EOIThunk,
MaskChangeThunk, IRETThunk, 500,
&device };

REFLECT follows the same framework as the other VxDs in this book: all regis-
tered callback functions reside in the assembly language module. The C function
always ends in the name “Handler”. In the sections below, I'll talk only about the han-
dler functions in the C module.

Callbacks: MaskChangeHandler

VOID MaskChangeHandler (VMHANDLE hVM, IRQHANDLE hIRQ, BOOL bMasking)
{ if (!bMasking)
{ if (!device.VMOwner)
{ device.VMOwner = hVM;
}

VxDs for Virtualization — 147

else

{
if (device.VMOwner != hVM))

{
device.VMOwner = SHELL_Resolve_Contention(device.VMOwner, hVM
device.DeviceName);
}
}
VPICD_Physically_Unmask(hIRQ);
}
else

{
device.VMOwner = 0;
VPICD_Physically_Mask(hIRQ);
}

When a VM masks or unmasks IRQ 8 in the interrupt controller, the VPICD calls
MaskChangeHandler. REFLECT is more interested in unmasking than masking.
REFLECT’s rule for ownership is: “you enable the interrupt in the PIC, you own it”.
So if bMasking is FALSE, the function examines the VMOwner field in the device context
to see any VM owns the IRQ. If no VM currently owns IRQ 8, MaskChangeHandler
assigns the current VM as owner by setting YMOwner to the VM that is doing the
unmasking, hVM.

If a VM already owns the IRQ, but a different (non-owner) VM is attempting the
unmask, then MaskChangeHandler uses the SHELL_Resolve_Contention service to ask
the user which VM should own the device. (See the earlier discussion of PORTTRAP
for details on SHELL_Resolve_Contention.)

After determining the owner VM, MaskChangeHandler calls VPICD_Physically_Unmask
to unmask the interrupt in the actual interrupt controller, then returns to the VPICD. Physi-
cally unmasking the interrupt is an important step. If no VxD has virtualized the IRQ, the
VPICD traps all INs and OUTs to the interrupt controller and will unmask the interrupt on the
VM’s behalf. But once a VxD has virtualized an interrupt, the VPICD gets out of the way
and the VD must unmask the interrupt on the VM’s behalf. The unmask service requires an
IRQHANDLE parameter so MaskChangeHandler supplies the handle stored in the device
context (the one returned by VPICD_Virtualize_IRQ).

If the VM is masking (disabling) the IRQ, REFLECT sets VMOwner to 0, then passes
the mask request on to the VPICD with a call to the service VPICD_Physically_Mask
and exits. It’s not strictly necessary to set the owner to “none” in response to a mask
because the interrupt can’t even get to the processor while masked. However, the only
other time the VxD could realistically set the owner to “none” would be in response to a
VM_Terminate message. Setting the owner to “none” in response to a mask is more use-
ful, because many applications will disable (mask) the interrupt as soon as they’ve fin-
ished with the device (as opposed to waiting until the user exits the program). By
unassigning ownership at this time, the VxD can let another VM use the device.

148 — Writing Windows VxDs and Device Drivers

Callbacks: HwiIntHandler

BOOL _stdcall HwIntHandler(VMHANDLE hVM, TRQHANDLE hIRQ)
{
if (device.VMOwner && !device.bVMIsServicing)
{
VPICD_Set_Int_Request(device.VMOwner, hIRQ);
}
else
{
EatInt();
}
return TRUE;

The actual reflection process occurs in HwIntHandler, which the VPICD calls
whenever an interrupt occurs on IRQ 8. HwIntHandler then reflects, or simulates, an
interrupt into the owner VM, but only under certain conditions:

+ current (interrupted) VM is the device owner, and
* current VM’s handler isn’t servicing the device interrupt.

REFLECT uses the flag bVMIsServicingin the device context to prevent an inter-
rupt from being simulated to the VM while the VM is still handling a previous inter-
rupt. If the VM is overwhelmed with too many simulated interrupts, the interrupts will
nest and the VM interrupt handler’s stack will overflow. This flag is set and cleared in
the VirtIntHandler and IRETHand1er routines, which will be discussed shortly.

If the two conditions are met, REFLECT reflects the interrupt to the owner VM by
calling VPICD_Set_Int_Request. This service requires two parameters, an [RQHANDLE
and a VMHANDLE. HwIntHandler uses the IRQHANDLE field of the device context for the
first, and the VMOwner field for the second. Note that when this service returns to
HwIntHandler, the VM interrupt handler has not been called, the VPICD has only
scheduled an event to take action later. However, HwIntHand1er has done its duty, and
now returns.

If HwIntHandler does not reflect the interrupt because conditions aren’t right, it
must service the interrupt itself. It does so by calling the subroutine EatInt. Clearing
the interrupt in the device is an important step. If the interrupt is not cleared at the
device, then the IRQ will remain asserted and the VPICD will never see another inter-
rupt from that device because IRQs for ISA devices are edge-triggered.

VxDs for Virtualization — 149

void EatInt(void)
{
unsigned char temp;

temp = CmosReadReg(RTC_STATUSC);
VPICD_Phys_EOI(device.IrgHandle);
}

The behavior of EatInt is specific to the RTC device: it clears the pending device
interrupt by reading a status register. Because the interrupt was actually serviced, if
only to be discarded, EatInt also calls VPICD_Phys_EOI to tell the VPICD to EOI the
controller. Finally, EatInt returns to its caller, HwIntHandler.

HwIntHandler always returns TRUE to its caller, _HwIntThunk. This return causes
_HwIntThunk to clear the Carry flag before returning to the VPICD. Carry clear on
return informs the VPICD that the IRQ was processed by the VxD, and so the VPICD
should not call the next VxD in the sharing chain. As written, REFLECT does not
share interrupts, because the RTC hardware can’t share its interrupt with other
devices.

If your device does properly support sharing IRQs, you can easily enhance

the VxD. Your HwIntHand1er should first ask the device if it has an interrupt
. pending and if not, return with FALSE. The _HwIntThunk would then set the

Carry flag, so that the VPICD calls the next VXD handler in the chain.

Callbacks: EOIHandler

void _stdcall EQIHandler(VMHANDLE hVM, TRQHANDLE hIRQ)
{ .
VPICD_Phys_EOI(hIRQ);
VPICD_Clear_Int_Request(device.VMOwner, hIRQ);
}

EOIHandler is called whenever the VM interrupt handler — executed eventually
as a result of REFLECT’s call to VPICD_Set_Int — issues an EOI to the interrupt
controller. EOIHandler first calls VPICD_Phys_EOI on behalf of the VM that
attempted to issue an EOL The only parameter expected by VPICD_Phys_EOI is the
IRQ handle. Last, EOIHandler calls VPICD_Clear_Int_Request, supplying the han-
dle of the owner VM as the hVM parameter.

150 — Writing Windows VxDs and Device Drivers

This call to VPICD_Clear_Int_Request clears the request set by HwIntHandler’s
call to VPICD_Set_Int_Request. Without this step, the VPICD would again reflect
" the interrupt to the VM handler some time after EOIHand1er returned to the VPICD.

Callbacks: VirtIntHandler and IRETHandler

void VirtIntHandler(VMHANDLE hVM, TRQHANDLE hIRQ)
{
device.bVMIsServicing = TRUE;

VirtIntHandler is called each time the VPICD begins simulating the interrupt
into a VM. That is, it marks the beginning of the execution of the VM’s interrupt han-
dler. VirtIntHandler sets the bVMIsServicing flag, which prevents HwIntHandler
from reflecting further interrupts into the VM until the VM handler has returned with
an IRET.

void _stdcall IRETHandler(VMHANDLE hVM, IRQHANDLE hIRQ)
{

device.bVMIsServicing = FALSE;
}

REFLECT knows when the VM handler has returned because another callback,
IRETHandler, is called at that time. IRETHandler clears the bVYMIsServicing flag,
which allows HwIntHandler to reflect an interrupt once again.

Summary

Writing a VxD to virtualize a device is very different than writing a VxD to control a
device, because it requires a completely different set of VMM and VxD services.
Many VxDs today don’t virtualize at all, because they are written for newer devices
and there are no DOS or Windows applications that use this hardware directly.

If you do need to virtualize an I/O-mapped or memory-mapped device, trapping
port or memory accesses is actually pretty easy. Virtualizing an interrupt is more com-
plicated, simply because the process of interrupt reflection under Windows is itself
complicated.

The last three chapters have talked about controlling hardware in a VxD and virtu-
alizing hardware in a VxD. The next two chapters deal with another hardware aspect,
discovering a device’s configuration: I/O address, IRQ, etc.

VxDs for Virtualization — 151

Listing 8.1 PORTTRAP.C

fHinclude <basedef.h>
#include <vmm.h>
#include <debug.h>
#include <vxdwraps.h>

#include <vxdcall.h>
ffinclude <wrappers.h>
#include <intrinsi.h>

fHifdef DEBUG

fidefine DPRINTFO(buf) Out_Debug_String(buf)

ﬁdefine DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)
frelse

#idefine DPRINTFO(buf)

fidefine DPRINTF1(buf, fmt, argl)

fendif

#idefine I0_BASE 0x300
#idefine NUM_IO_PORTS 8
fidefine FLAGS_CONTENDED 0x0001
typedef struct

{

WORD numloPorts;
WORD ToBase;
VMHANDLE VMOwner;

DWORD cbOffset;

char DeviceName[8];

} DEVICE_CONTEXT;
typedef struct
{

WORD flags;
} DEVICE_CB;

DEVICE_CONTEXT device = { NUM_IO_PORTS, IO_BASE, NULL, 0,
CP L0 LR LT LT LRYLALTPYY)

char buf[80];

BOOL OnDevicelInit(VMHANDLE hVM);

void OnSystemExit(VMHANDLE hVM);

void OnVmTerminate(VMHANDLE hVM);

void SetOwner(VMHANDLE newVMOwner, DEVICE_CONTEXT *dev);

DWORD _stdcall PortTrapHandler(VMHANDLE hVM, DWORD IOType, DWORD Port,
CLIENT_STRUCT *pcrs, DWORD Data);

// functions in asm module
void PortTrapThunk(void);

152 — Writing Windows VxDs and Device Drivers

Listing 8.1 (continued) PORTTRAP.C

BOOL OnDevicelnit(VMHANDLE hVM)
{
int i;
for (i=0; i < device.numIoPorts; i++)
if (!Install_IO0_Handler(device.loBase+i, PortTrapThunk))
DPRINTF1(buf, "Error installing handler for io %x\r\n", IO_BASE+i);
return FALSE;
) }
if (device.cbOffset = _Allocate_Device _CB_Area(sizeof(DEVICE_CB), 0))
{
DPRINTFO("Error alloc'ing control block\r\n");
return FALSE;
return TRUE;
}
VOID OnSystemExit(VMHANDLE hVM)
{
int i;
for (i=0; i < device.numIoPorts; i++)
if (!Remove_I0_Handler(device.IloBase+i))
DPRINTF1(buf, "Error removing handler for io %x\r\n", device.loBase+i);
break;
}
}
if (device.cbOffset)
_Deallocate_Device_CB_Area(device.cbOffset, 0);
}
VOID OnVmTerminate(VMHANDLE hVM)
if (hVM = device.VMOwner)

device.VMOwner = 0;

VxDs for Virtualization — 153

Listing 8.1 (continued) PORTTRAP.C

DWORD _stdcall PortTrapHandler(VMHANDLE hVM, DWORD IOType, DWORD Port,

{

CLIENT_STRUCT *pcrs, DWORD Data)

DEVICE_CB *pCB;
BOOL bThisVMIsOwner;
VMHANDLE newVMOwner;

bThisVMIsOwner = TRUE;
if (ldevice.VMOwner)

// device doesn't have an owner, assign this VM as owner
SetOwner(hVM, &device);

else if (device.VMOwner && (device.VMOwner != hVM))
{
// device has an owner, but it's not this VM
pCB = (DEVICE_CB *)((char *)hVM + device.cbOffset);
if (pCB->flags & FLAGS_CONTENDED)
{
// this VM has already attempted to grab the device
bThisVMIsOwner = FALSE;
}
else
{
newVMOwner = SHELL_Resolve_Contention(device.VMOwner, hVM, device.DeviceName);
if (newVMOwner != device.VMOwner)
{
bThisVMIsOwner = FALSE;
Data = OxFFFFFFFF;
}
)
}

if (bThisVMIsOwner)
if (10Type & BYTE_INPUT)
{
Data = _inp(Port);

}
else if (I0Type & BYTE_OUTPUT)
{

}
)

_outp(Port, Data);

return Data;

154 — Writing Windows VxDs and Device Drivers

Listing 8.1 (continued) PORTTRAP.C

void SetOwner(VMHANDLE newVMOwner, DEVICE_CONTEXT *dev)
{
int i;

for (i=0; i < dev->numloPorts; i++)
{ .
Disable_Local_Trapping(dev->VMOwner, dev->IoBase+i);
Enable_Local_Trapping(newVMOwner, dev->IoBase+i);

}

dev->VMOwner = newVMOwner;

Listing 8.2 PORTDDB.ASM

.386p

* * Kk Kk Kk Kkkkkkkk

INCLUDES

s

*kk

* *kkkkkk * *% * *%

include vmm.inc
include debug.inc

B

H VIRTUAL DEVICE DECLARATION

B

DECLARE_VIRTUAL_DEVICE PORTTRAP, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

; PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

VxDs for Virtualization — 155

Listing 8.2 (continued) PORTDDB.ASM

BeginProc ControlProc

Control_Dispatch DEVICE_INIT, _OnDevicelnit, cCall, <ebx>

Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx>

Control_Dispatch VM_TERMINATE, _OnVmTerminate, CCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall

clc

ret

" EndProc ControlProc

VxD_LOCKED_CODE_ENDS

VxD_CODE_SEG

PUBLIC _PortTrapThunk

_PortTrapThunk PROC NEAR ; called from C, needs underscore
Emulate_Non_Byte_IO0
sCall PortTrapHandler, <ebx, ecx, edx, ebp, eax>
ret

_PortTrapThunk ENDP

VXD_CODE_ENDS

END

Listing 8.3 PORTTRAP. MAK

CVXDFLAGS
AFLAGS

-Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG -DWANTVXDWRAPS
-coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: porttrap.vxd

porttrap.obj: porttrap.c
cl $(CVXDFLAGS) -Fo$@ %s

portddb.obj: portddb.asm
ml $(AFLAGS) -Fo$@ %s

porttrap.vxd: portddb.obj porttrap.obj ..\wrappers\vxdcall.obj porttrap.def
echo >NUL @(<porttrap.crf

-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:porttrap.def -OUT:porttrap.vxd -MAP:porttrap.map

-VXD vxdwraps.clb wrappers.clb portddb.obj porttrap.obj vxdcall.obj

<L
link @porttrap.crf
mapsym porttrap

156 — Writing Windows VxDs and Device Drivers

Listing 8.4

PORTTRAP.DEF

SEGMENTS
_LTEXT
_LDATA
_TEXT
_DATA
_LPTEXT
_CONST
_BSS
_TLS
_ITEXT
_IDATA
_PTEXT
_PDATA
_STEXT
_SDATA
_MSGTABLE
_MSGDATA
_IMSGTABLE
_IMSGDATA
_DBOSTART
_DBOCODE
_DBODATA
_16ICODE
_RCODE

EXPORTS

VXD VXDISR DYNAMIC

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

VXDISR_DDB @1

'LCODE"
'LCODE"
"LCODE"’
'LCODE"
'LCODE"
'LCODE"
'LCODE’
"LCODE’
"ICODE"
'ICODE"
'PCODE"
'PCODE"
'SCODE"
'SCODE"
'MCODE"
'"MCODE"
"MCODE"
'MCODE"
'DBOCODE"
'DBOCODE"
'DBOCODE"
'16ICODE"
'RCODE'

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESIDENT

RESIDENT

PRELOAD NONDISCARDABLE I0PL
PRELOAD NONDISCARDABLE I0PL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

VxDs for Virtualization — 157

Listing 8.5 PAGETRAP.C

// PAGETRAP.c - main module for VxD PAGETRAP

#include <basedef.h> -
#include <vmm.h>
fHinclude <debug.h>
fHinclude <vxdwraps.h>

fHinclude <vxdcall.h>
fHinclude <wrappers.h>
fHinclude <intrinsi.h>

#Hifdef DEBUG

ftdefine DPRINTFO(buf) Out_Debug_String(buf)

ﬁdefine DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)
else ‘

ftdefine DPRINTFO(buf)

ftdefine DPRINTF1(buf, fmt, argl)

ffendif

ftdefine DEVICE_PHYS_ADDR 0xB0O0OOL
fidefine DEVICE_REGION_SIZE 4096

typedef struct
{

DWORD RegionSize;
DWORD RegionPhysAddr;
VMHANDLE VMOwner;

DWORD 1inAddr;

} DEVICE_CONTEXT;

DEVICE_CONTEXT device = { DEVICE_REGION_SIZE, DEVICE_PHYS_ADDR };
char buf[807;

BOOL OnDevicelInit(VMHANDLE hVM);

void OnSystemExit(VMHANDLE hVM);

BOOL OnCreateVm(VMHANDLE hVM);

void OnVmTerminate(VMHANDLE hVM);

DWORD _stdcall PageTrapHandler(VMHANDLE hVM,DWORD PageNumber);

// functions in asm module
void PageFaultThunk(void);

BOOL OnSysDynamicDeviceInit(VMHANDLE hVM)
{
OnDeviceInit(hVM);
return TRUE;
BOOL OnSysDynamicDeviceExit(void)
{
OnSystemExit(Get_Cur_VM_Handle());

return TRUE;
}

158 — Writing Windows VxDs and Device Drivers

Listing 8.5 (continued) PAGETRAP.C

BOOL OnDeviceInit(VMHANDLE hVM)
{

DWORD PageNum = device.RegionPhysAddr >> 12:
DWORD nPages = device.RegionSize / 4096;

if (!_Assign_Device_V86_Pages(PageNum, nPages, hvM, 0))
DPRINTFO("Assign_Device_V86_Pages failed\r\n");
return FALSE;
}
if (!Hook_V86_Page(PageNum, PageFaultThunk))
{
DPRINTFO("Hook_V86_Page failed\r\n");
return FALSE;
}
if (!_ModifyPageBits(hVM, PageNum, nPages, ~P_AVAIL, 0, PG_HOOKED, 0))
{
DPRINTFO("ModifyPageBits failed\r\n");
return FALSE;
}

return TRUE;

VOID OnSystemExit(VMHANDLE hVM)
{

DWORD PageNum = device.RegionPhysAddr >> 12;
DWORD nPages = device.RegionSize / 4096;

if (!Unhook_V86_Page(PageNum, PageFaultThunk))
{ DPRINTFO("Unhook_V86_Page failed\r\n");
zf (!_DeAssign_Device_V86_Pages(PageNum, nPages, hVM, 0))
{ DPRINTFO("DeAssign_Device_V86_Pages failed\r\n");
: }
BOOL OnCreateVm(VMHANDLE hVM)
(if (!_ModifyPageBits(hVM, device.RegionPhysAddr >> 12, device.RegionSize / 4096,
~P_AVAIL, 0, PG_HOOKED, 0))
DPRINTFO("ModifyPageBits failed\r\n");
return FALSE;

return TRUE;

VxDs for Virtualization — 159

Listing 8.5 (continued) PAGETRAP.C

VOID OnVmTerminate(VMHANDLE hVM)
{
if (hVM = device.VMOwner)
{
device.VMOwner = 0;

VOID __stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber)
{

if (device.VMOwneP)

{

// device already has an owner, owner wouldn’t cause a page fault

// therefore this VM is not owner

if (!_MapIntoV86(_GetNulPageHandle(), PageNumber, hVM,
PageNumber, device.RegionSize / 4096, 0, 0))

DPRINTFO("MapIntoV86 failed\r\n");

}
else
{
device.VMOwner = hVM;
_PhysIntoV86(PageNumber, hVM, PageNumber, device.RegionSize / 4096, 0);

160 — Writing Windows VxDs and Device Drivers

Listing 8.6 PAGEDDB.ASM

.386p

e RAAKKKIAKRAKRRAKAAAKAKRAKA A AR A ARA R R AR AR AAAAR A AR AR AR IRk A Rk hhkhkhkhkkkhhhhhhhkhhhhhkhkkkx
»

H INCLUDES

 kKk Kk kK * % *kkkkkk khkkkkhkhkkkhhkhkhrk *kk * *kkkk *
’

include vmm.inc
include debug.inc

; VIRTUAL DEVICE DECLARATION

N

DECLARE_VIRTUAL_DEVICE PAGETRAP, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc

Control_Dispatch DEVICE_INIT, _OnDevicelnit, cCall, <ebx>

Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx>

Control_Dispatch VM_TERMINATE, _OnVmTerminate, CCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall

clc

ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

VxDs for Virtualization — 161

Listing 8.6 (continued) PAGEDDB.ASM

VxD_CODE_SEG

PUBLIC _PageFaultThunk
_PageFaultThunk PROC NEAR ; called from C, needs underscore

sCall PageFaultHandler, <eax, ebx>
ret

_PageFaultThunk ENDP
VXD_CODE_ENDS
END

Listing 8.7 PAGETRAP.MAK

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: pagetrap.vxd

pagetrap.obj: pagetrap.c
cl $(CVXDFLAGS) -Fo$@ %s

pageddb.obj: pageddb.asm
ml $(AFLAGS) -Fos$@ %s

pagetrap.vxd: pageddb.obj pagetrap.obj ..\wrappers\vxdcall.obj pagetrap.def
echo >NUL @<pagetrap.crf

-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:pagetrap.def -OUT:pagetrap.vxd -MAP:pagetrap.map

-VXD vxdwraps.clb wrappers.clb pageddb.obj pagetrap.obj vxdcall.obj

K«

link @pagetrap.crf
mapsym pagetrap

162 — Writing Windows VxDs and Device Drivers

Listing 8.8

PAGETRAP.DEF

SEGMENTS
_LTEXT
_LDATA
_TEXT
_DATA
_LPTEXT
_CONST
_BSS
_TLS
_ITEXT
_IDATA
_PTEXT
_PDATA
_STEXT
_SDATA
_MSGTABLE
_MSGDATA
_IMSGTABLE
_IMSGDATA
_DBOSTART
_DBOCODE
_DBODATA
_16ICODE
_RCODE

EXPORTS

VXD PAGETRAP DYNAMIC

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

PAGETRAP_DDB @1

"LCODE"
'LCODE’
'LCODE"
'LCODE"
"LCODE’
'LCODE"
"LCODE’
'LCODE"’
"ICODE’
"ICODE’
'PCODE"
'PCODE’
'SCODE'
'SCODE’
'"MCODE'
'MCODE"
"MCODE"’
'MCODE"
'DBOCODE"
'DBOCODE"
'DBOCODE "
'16ICODE"
'RCODE'

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESIDENT

RESIDENT

PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

VxDs for Virtualization — 163

| void IRETThunk(void);

Listing 8.9 REFLECT.C

// REFLECT.c - main module for VxD REFLECT
fHinclude <basedef.h>

#Hinclude <vmm.h>

#Hinclude <debug.h>

fHinclude <vxdwraps.h>

fHinclude <vpicd.h>

#Hinclude <vxdcall.h>

fHinclude <wrappers.h>
fHinclude <intrinsi.h>
#define RTC_IRQ 8

fidefine RTC_STATUSA OxA
fidefine RTC_STATUSB 0xB
ffdefine RTC_STATUSC 0xC
fidefine STATUSB_ENINT 0x40

#define CMOS_ADDR 0x70
Jidefine CMOS_DATA 0x71

typedef struct
{

TRQHANDLE IrqHandle;
VMHANDLE VMOwner;

char DeviceName[8];
BOOL bVMIsServicing;

} DEVICE_CONTEXT;

// functions in asm module
void HwIntThunk(void);

void VirtIntThunk(void);
void EQIThunk(void);

void MaskChangeThunk(void);

DEVICE_CONTEXT device = { 0, O, {'R',"E"',"F","L','E",'C",'T"} };

VPICD_IRQ_DESCRIPTOR IrgDesc = { RTC_IRQ, VPICD_OPT_REF_DATA,
HwIntThunk, VirtIntThunk, EOIThunk,
MaskChangeThunk, IRETThunk, 500,
ddevice };

BOOL OnDeviceInit(VMHANDLE hVM);

void OnSystemExit(VMHANDLE hVM);

BOOL _stdcall HwIntHandler(VMHANDLE hVM, IRQHANDLE hIRQ):

void _stdcall EOIHandler(VMHANDLE hVM, IRQHANDLE hIRQ);

void _stdcall VirtIntHandler(VMHANDLE hVM, IRQHANDLE hIRQ);

void _stdcall IRETHandler(VMHANDLE hVM, IRQHANDLE hIRQ);

void _stdcall MaskChangeHandler(VMHANDLE hVM, IRQHANDLE hIRQ, BOOL bMasking);
void EatInt(void);

void CmosWriteReg(BYTE reg, BYTE val);

BYTE CmosReadReg(BYTE reg);

164 — Writing Windows VxDs and Device Drivers

Listing 8.9 (continued) REFLECT.C

BOOL OnSysDynamicDeviceInit(VMHANDLE hVM)
{
OnDeviceInit(hVM);
return TRUE;
}
BOOL OnSysDynamicDeviceExit(void)
{
OnSystemExit(Get_Cur_VM_Handle());
return TRUE;
}
BOOL OnDevicelInit(VMHANDLE hVM)

if (!(device.IrgHandle = VPICD_Virtualize_IRQ(&IrqDesc)))
return FALSE;

return TRUE;

VOID OnSystemExit(VMHANDLE hVM)
(

VPICD_Force_Default_Behavior(device.IrgHandle);

BOOL _stdcall HwIntHandler(VMHANDLE hVM, IRQHANDLE hIRQ)
(if (device.VMOwner && !device.bVMIsServicing)
(VPICD_Set_Int_Request(device.VMOwner, hIRQ);
é]se
EatInt();

}
return TRUE;
}.

void EatInt(void)
{
unsigned char temp;
temp = CmosReadReg(RTC_STATUSC);
VPICD_Phys_EOI(device.IrgHandle);
}
void _stdcall EOIHandler(VMHANDLE hVM, IRQHANDLE hIRQ)
{
VPICD_Phys_EOI(hIRQ);
VPICD_Clear_Int_Request(device.VMOwner, hIRQ);
}
void _stdcall VirtIntHandler(VMHANDLE hVM, IRQHANDLE hIRQ)
{

device.bVMIsServicing = TRUE;
}

VxDs for Virtualization — 165

Listing 8.9 (continued) REFLECT.C

void _stdcall IRETHandler(VMHANDLE hVM, IRQHANDLE hIRQ)
{

device.bVMIsServicing = FALSE;
}

void _stdcall MaskChangeHandler(VMHANDLE hVM, IRQHANDLE hIRQ, BOOL bMasking)
{

if (!bMasking)
{

if (ldevice.VMOwner)
{

}
else
{

device.VMOwner = hVM;

if (device.VMOwner != hVM)

device.VMOwner = SHELL_Resolve_Contention(device.VMOwner,
hVM, device.DeviceName);
}

}
VPICD_Physically_Unmask(hIRQ);
}
else
{
device.VMOwner = 0;
VPICD_Physically_Mask(hIRQ);
}
}

BYTE CmosReadReg(BYTE reg)
{
BYTE data;

_asm

; disable NMI then ints
mov al, reg

or al, 80h

cli

; first output reg to address port
out CMOS_ADDR, al

Jmp 1
1:
Jmp 2
2:
; then read data from data port
in al, CMOS_DATA
mov data, al
jmp. 3
3:

jmp - _4

166 — Writing Windows VxDs and Device Drivers

Listing 8.9 (continued) REFLECT.C

; reenable NMI then ints
xor al, al
out CMOS_ADDR, al
sti
}

return data;
}

void CmosWriteReg(BYTE reg, BYTE val)
{
_asm
; disable NMI then ints
mov al, reg
or al, 80h
cli

; first output reg to address port
out CMOS_ADDR, al

Jmp __1
1
Jmp _2
_2:
; then output val to data port
mov al, val
out CMOS_DATA, al
jmp _3
_3:
jmp - _4
4:

; reenable NMI then ints
xor al, al

out CMOS_ADDR, al

sti

VxDs for Virtualization — 167

Listing 8.10 REFLDDB.ASM

.386p

.k *k % * * * *kkkkk * *k
B

H INCLUDES

hhkdkkkkhkhhhkhhkhkkhhkhhkkhhhhhkkhkkk *kk *

include vmm.inc
include debug.inc

H VIRTUAL DEVICE DECLARATION

DECLARE_VIRTUAL_DEVICE REFLECT, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:

If carry clear then
Successful

else
Control call failed

{

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc

Control_Dispatch DEVICE_INIT, _OnDevicelnit, cCall, <ebx>

Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelInit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall

clc

ret

EndProc ControlProc

168 — Writing Windows VxDs and Device Drivers

Listing 8.10 (continued) REFLDDB.ASM

PUBLIC _HwIntThunk
_HwIntThunk PROC NEAR ; called from C, needs underscore

sCall HwIntHandler, <ebx, eax>
or ax, ax
jnz clearc
stc
ret
clearc:
clc
ret
_HwIntThunk ENDP
VxD_LOCKED_CODE_ENDS
VxD_CODE_SEG

PUBLIC _VirtIntThunk
_VirtIntThunk PROC NEAR ; called from C, needs underscore

sCall VirtIntHandler, <ebx, eax>
ret

_VirtIntThunk ENDP
PUBLIC _EOIThunk
_EOIThunk PROC NEAR ; called from C, needs underscore

sCall EOIHandler, <ebx, eax>
ret

_EOIThunk ENDP
PUBLIC _IRETThunk
_IRETThunk PROC NEAR ; called from C, needs underscore

sCall IRETHandler, <ebx, eax>
ret

_IRETThunk ENDP
PUBLIC _MaskChangeThunk
_MaskChangeThunk PROC NEAR ; called from C, needs underscore

sCall MaskChangeHandler, <ebx, eax, ecx>
ret

_MaskChangeThunk ENDP
VXD_CODE_ENDS
END

VxDs for Virtualization — 169

Listing 8.11 REFLECT.MAK

CVXDFLAGS
AFLAGS

-Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG -DWANTVXDWRAPS
-coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: reflect.vxd

reflect.obj: reflect.c
cl $(CVXDFLAGS) -Fo$@ %s

reflddb.obj: reflddb.asm
ml $(AFLAGS) -Fos@ 7%s

reflect.vxd: reflddb.obj reflect.obj ..\wrappers\vxdcall.obj reflect.def
echo >NUL @K<reflect.crf
-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:reflect.def -OUT:reflect.vxd -MAP:reflect.map
-VXD vxdwraps.clb wrappers.clb reflddb.obj reflect.obj vxdcall.obj
<<KEEP
link @reflect.crf
mapsym reflect

Listing 8.12 REFLECT.DEF

VXD REFLECT DYNAMIC
SEGMENTS
_LTEXT CLASS 'LCODE' - PRELOAD NONDISCARDABLE
_LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE" DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PDATA CLASS 'PCODE' NONDISCARDABLE
_STEXT CLASS 'SCODE' RESIDENT
_SDATA CLASS 'SCODE' RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' - PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE'
EXPORTS
REFLECT_DDB @1

170 — Writing Windows VxDs and Device Drivers

Chapter 9

Plug and Play:
The Big Picture

Plug and Play is Microsoft’s strategy to make new hardware devices easier to install
and configure. Plug and Play requires both hardware support (devices that can iden-
tify themselves and can be configured via standard software interfaces instead of
jumpers or proprietary interfaces) and software support (an operating system that can
assign system resources like I/O addresses and IRQs and drivers that obtain these
resource settings from the operating system). Microsoft has provided the operating
system piece in Windows 95, and Windows 95 also provides the interfaces that drivers
use to retrieve resources assigned to their hardware.

In Windows 95, there are two categories of hardware devices: Plug and Play
devices and Legacy devices. Plug and Play devices are those that can identify them-
selves, declare their resource requirements, and accept run-time resource assignments.
Any device for one of the newer expansion buses — PCI, EISA, PCMCIA, etc. — is by
definition a Plug and Play device. Each of these buses meets the above Plug and Play
requirements. Some newer ISA cards include specific support for Plug and Play (PNP).
These cards, known as Plug and Play ISA or PNPISA, are also considered Plug and
Play devices. Legacy devices are those older ISA cards that do not support new Plug
and Play features. A Legacy device cannot be dynamically configured; its resources are
either fixed in the hardware or configured by switches or jumpers. Legacy devices also
fail to support any vendor-independent method of positively identifying themselves.

171

172 — Writing Windows VxDs and Device Drivers

Plug and Play Components

The heart of Windows 95 Plug and Play support is a VxD called the Configuration
Manager. The Configuration Manager relies on other VxDs to do much of the real
work, including: enumerators, arbitrators, device loaders, and device drivers. Both the
Configuration Manager and the enumerators make use of a system-wide database
called the registry to permanently store information about devices and their drivers.

Enumerators are VxDs that run at boot and determine which hardware devices are
currently installed and what resource they require. Each bus type has its own enumer-
ator: PCI, EISA, PCMCIA, SCSI, etc. Arbitrator VxDs are specific to a type of
resource: I/O address, memory address, IRQ, DMA channel. The Configuration Man-
ager gives an arbitrator information about a set of devices that all need a resource, say
an IRQ, and the arbitrator comes up with a conflict-free set of assignments, taking
into account which IRQs are supported by each device and whether or not each device
can share the IRQ with another. Device Loaders are VxDs that load other VxDs. Win-
dows 95 relies on Device Loaders because many devices are managed by several lay-
ers of drivers. The Device Loader knows enough about the layering to load each
driver at the right time and in the right order.

The component of greatest concern to a developer is the Plug and Play Device
Driver VxD. Enumerators, arbitrators, and device loaders are provided by Microsoft
with the OS, so developers only need to understand how these component VxDs fit
into the overall picture, not how to write one. A Plug and Play Device Driver VxD is a
normal VxD that uses Configuration Manager services to obtain its resource assign-
ments, instead of using private methods like INI-file settings or hard-coded values —
nothing more mysterious than that. A PNP Device Driver still uses VMM and other
VxD (VPICD, etc.) services to do its real job, which is acting as a driver for its device.

Figure 9.1 Registry keys, subkeys, values, and data.

fwalue not set)
00 00 00 00

-3 Sy
(-3 HKEY_DYN_DATA

Plug and Play: The Big Picture — 173

If you’re supporting a Plug and Play device you should most definitely write a true
Plug and Play Device Driver VxD instead of using low-level bus-specific methods in
your VxD (like PCIBIOS, PCMCIA Socket services, etc.). But it’s important to
understand that Plug and Play device drivers aren’t just for Plug and Play hardware.
Plug and Play drivers are also meant for Legacy — standard ISA — hardware. For
example, standard serial ports are Legacy devices, with a fixed I/O address and IRQ,
so a serial port driver could be hard-coded to use those settings. But Microsoft’s Win-
dows 95 driver for standard serial ports, SERIAL.VXD, is a Plug and Play device driver,
obtaining its settings from the Configuration Manager. (The Configuration Manager
did, however, retrieve the settings from the registry, rather than from the device itself.
Settings for Legacy devices are put in the registry by the Device Installer.) Microsoft
encourages developers to write Plug and Play device drivers for all devices, including
Legacy devices.

Plug and Play support is a new feature of Windows 95, not present in
Windows 3.x. Therefore the information in this chapter and the next applies
only to VxDs written specifically for Windows 95. A VxD for Windows 3.x
must use other methods to obtain information about the resources used by its
device. Other methods include querying the BIOS (e.g. COM1 and COM2
I/O address), reading SYSTEM. INI entries, or using hard-coded values.

The rest of this chapter will present an overview of Plug and Play, discussing the
role of Configuration Manager and the enumerator, device loader, arbitrator, and
device driver VxDs that it uses to actually implement the Plug and Play feature. The
next chapter will explain in more detail the specifics of writing a Plug and Play
Device Driver VxD, including a sample device driver VxD.

This chapter discusses how Plug and Play works at two times: installation and boot.
Understanding how the Plug and Play components interact during operating system and
driver installation is important for understanding the overall Plug and Play picture, because

The Windows 95 Registry

The registry is a binary database, accessible to the Windows 95 VMM, VxDs, and applications. The Windows
95 Plug and Play components use the registry to store and retrieve information about devices and their driv-
ers, such as possible device configurations, device manufacturer, and the driver revision number. The registry
is hierarchically structured, like a tree, where each node is called a key (Figure 9.1). One or more pieces of
data, called values, can be associated with each key. A key (node) can also have subkeys, where each subkey
is itself a tree with its own values and subkeys.

During installation, Windows 95 creates two keys at the root of the Windows 95 registry and several sub-
keys. The two root keys are HKEY_SYSTEM and HKEY_LOCAL_MACHINE (which is usually abbreviated HKLM).
Most Plug and Play components other than the Configuration Manager use only two subkeys under those root
keys, HKLM\ENUM and HKLM\SYSTEM\CurrentControlSet\System\Class.

174 — Writing Windows VxDs and Device Drivers

the modifications made to the registry at installation time literally drive the Plug and Play
boot sequence. (See the sidebar “The Windows 95 Registry” for information on how the
Plug and Play components store and retrieve information about devices and their drivers.)

Plug and Play Components
During Windows 95 Installation

When Windows 95 is first installed on a system, the Configuration Manager VxD
identifies all the hardware devices in the system, using bus-specific modules called
enumerators and detectors. Each enumerator positively identifies devices on a particu-
lar bus using bus-specific methods: the PCI enumerator reads PCI configuration
space, PNPISA uses the Plug and Play isolation procedure, PCMCIA uses the Card
Information Structure, etc. To find Legacy devices, the Configuration Manager uses
detection modules instead of enumerators. Because of the limits of the ISA bus,
detection modules must use less certain methods, such as examining hard-coded I/O
locations for expected values, to detect standard ISA system hardware like the key-
board controller, interrupt controller, etc.

After an enumerator or detector has identified a new device, a module called the
Device Installer creates a new hardware subkey for the device in the registry. This
new key is of the form

HKLM\ENUM\<enumerator>\<device ID>\<instance ID>

The <enumerator> portion is either the bus name of the enumerator (PCI, SCSI,
PCMCIA, etc.), or Root for Legacy devices found by detectors. The exact format of
the <device ID> portion is enumerator-specific, but usually includes a combination
of vendor id and adapter id, two identifiers supported by all Plug and Play buses. The
<{instance ID> uniquely identifies a particular instance of the device, and may be a
serial number (as in PNPISA) or just an increasing number like 0000, 0001, etc.

After creating this new hardware key, the Device Installer adds registry subkeys
under the hardware key, using information from either the device’s information (INF)
file, supplied by the vendor with the device, or from the device itself. Table 9.1 shows
the values in a typical hardware key. The Device Installer always adds values called
DeviceDesc and Class — two strings that describe the device and its type (network
adapter, CD-ROM, etc.). For a Legacy device, the Device Installer also adds informa-
tion about the device’s current configuration (resource assignments). For a Plug and
Play device, the Device Installer adds information about possible configurations, but not
current configuration, because enumerated devices are always configured after boot.
The Device Installer extracts this possible configuration information from the device
itself in most cases (PNPISA, PCMCIA), or in some cases from nonvolatile system
RAM (EISA).

Plug and Play: The Big Picture — 175

The Device Installer always adds one more value, called Driver, under the
hardware key. The data for Driver comes from the INF file. The Driver value has
a misleading name, because it is not the name of the driver for the device. Instead
it “points” to a software key for the device, which is always found under
HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS For example, if the Driver entry was
Ports, the software key would be HKLM\SYSTEM\CURRENTCONROLSET\SERVICES\CLASS\PORTS

The software key contains values describing the sbftware associated with the
device. Table 9.2 shows a typical software key. The enumerator or detector always
adds a DevLoader value. DevLoader names the VxD that will act as a “device loader”
for the driver for the device. Surprisingly, the software key does net contain a stan-
dardized value representing the driver name. But the software key does contain
enough information to allow the device loader to determine the device driver name —
more about this later in the discussion of device loaders and the boot process.

Table 9.1 Typical hardware key.

Value | Data

Class “Display”
CompatiblelIDs | “PCI/CC_0300”
ConfigFlags 00 00 00 00

DeviceDesc “S3 Inc. Trio32/64 PCI”

Driver “Display/0001”

HardwarelD “PCI/'VEN_ 5333&DEV_8811/BUS_00&DEV_10&FUNC_00”
HWRevision “067”

Mfg “S3”

Table 9.2 Typical software key.

Value Data

DevLoader “*vdd”

DriverDesc “ 83 Inc. Trio32/64 PCI”
InfPath “OEM1.INF”
InfSection “S3.2”

Ver ‘ “4.0”

176 — Writing Windows VxDs and Device Drivers

Plug and Play Components
During Device Installation

The process for installation of a new device and its associated driver after initial Win-
dows 95 installation is similar. Newly installed Plug and Play devices are discovered
by an enumerator at the next boot. Newly installed Legacy devices are discovered
when the user runs the Add New Hardware Wizard.

Whether the new device is Plug and Play or Legacy, the Device Installer knows
it’s a newly installed device because the device has no hardware key in the registry.
When a new device is discovered, the Device Installer looks for the device’s associ-
ated INF file, asking the user to specify its location if the file can’t be found. Once the
INF file is located, the enumerator creates a registry hardware key and software key
and copies the driver from the installation disk, just as during the original Windows 95
installation. Once added to the registry, the “new” device becomes an “installed”
device; on subsequent boots, it will be treated just like all the other installed devices.

Plug and Play Components During Boot

During installation, Windows 95 is interested only in identifying the system’s
devices and the drivers needed to run them. During the Windows 95 boot process, the
operating system does more than identify devices and drivers, it also loads the driv-
ers and configures the devices. The Configuration Manager VxD is the brains behind
this boot process, orchestrating enumerators, arbitrators, device loaders, and the
drivers themselves.

During the boot process, the Configuration Manager uses enumerator VxDs to
discover devices, device loader VxDs to load driver VxDs for the devices, and arbi-
trator VxDs to assign conflict-free configurations to all the devices. As a last step, the
Configuration Manager informs each device driver VXD of the configuration
assigned to its device. The following pseudo-code shows the boot process. The fol-
lowing sections will explain in more detail the role of each of these types of VxDs in -
the boot process.

Plug and Play: The Big Picture — 177

Pseudo-code for the Plug and Play Boot Process

For each enumerator
CM calls enumerator to enumerate all devices on its bus
For each device:
Enumerator finds device, calls CM
to create DevNode from Device ID
if no hardware key in registry,
device is new and must be installed
CM sends DevLoader a PNP_New_DevNode message
DevlLoader loads a Driver VxD
CM sends Driver VxD a PNP_New_DevNode message
Driver VxD calls CM_Register_Device_Driver
to register a configuration callback
CM returns to the enumerator
Enumerator returns to CM
CM links devnodes into a hardware tree
CM uses arbitrators to assign conflict-free configurations
CM traverses hardware tree, beginning at root. For each node:
calls each Driver VxD's registered configuration function
Driver VxD calls CM_Get_Alloc_Log_Conf to discover assigned resources

Plug and Play Components During Boot: Enumerators

During boot, the Configuration Manager runs the same enumerators that were used
during installation, one for each bus. But instead of running detectors as during instal-
lation, at boot the Configuration Manager runs the Root enumerator. The Root enu-
merator is different than other enumerators in that it doesn’t attempt to identify any
hardware, it just relies on the information already placed in the registry (in HKLM\Root)
by detectors at installation.

After identifying each device, an enumerator creates a device node, a data structure
containing basic information about an identified device. The device node contains fields
for possible configurations, current configuration, status information (disabled, config-
ured, etc.), and the driver for the device. The enumerator fills in these fields from values
stored in the device’s hardware key or from information provided by the device itself.

Device nodes serve as the basic unit of “currency” between Plug and Play compo-
nents (Configuration Manager, enumerators, arbitrators, device drivers). In other
words, device nodes are passed around from one component to another to identify the
target device. Note that while some of the information in a device node is also found
in the registry, a device node is different from a registry entry in two ways. One, the
device node is in memory, not on disk, allowing much faster access. Two, the device
node represents a device that is physically present on the system, whereas registry
entries stay even after a device is removed to make device reinstallation easier.

178 — Writing Windows VxDs and Device Drivers

As each enumerator creates a device node, it reports the new device node to the
Configuration Manager. The Configuration Manager then initiates a long sequence
that eventually results in the driver for the device being loaded. The enumerator then
proceeds to the next device. When it has processed all device nodes, the Configuration
Manager calls the next enumerator, which repeats the sequence for its own devices.
When all enumerators have finished, the Configuration Manager has connected the
device nodes to form a hierarchical structure called the hardware tree, an in-memory
representation of the system’s hardware devices.

Plug and Play Components During Boot: Device Loaders

As each device node is discovered by an enumerator, the Configuration Manager
attempts to load a device driver for the device node. The Configuration Manager uses
the DevLoader value in the device’s software key (pointed to by the Driver value in
the device’s hardware key), which names the VxD responsible for loading the “real”
device driver. The Configuration Manager sends a PNP_New_DevNode message to the
VxD named as DevLoader, informing the VxD that a new device node has been cre-
ated and that the VxD is to act as the device loader for this new device.

Two parameters are associated with a PNP_New_DevNode message: a pointer to the
device node and a reason code describing the action the VxD should take. In this ini-
tial message to the device loader, the Configuration Manager uses the
DLVXD_LOAD_DEVLOADER reason code. The name for this reason code is a bit confus-
ing: the Configuration Manager is really telling the VxD to load the driver for the
device, not to load the device loader for the device. DLVXD_LOAD_DEVLOADER really
tells a VxD that “you are the device loader”.

The Configuration Manager relies on device loaders instead of loading all drivers
itself because some devices are managed by several layers of drivers. The device loader
knows enough about the layering to load each driver at the right time and in the right
order. The device loader also knows which value in the software key contains the actual
driver name. For example, SCSI devices use the MiniPortDriver value to store the
driver name, but COM ports use PortDriver, and network devices use DynamicVxD.

For those device classes that do separate the device loader VxD from the device
driver VxD, the device loader must respond to the DLVXD_LOAD_DEVLOADER reason
code by finding and loading the appropriate driver. Device loaders don’t do this work
themselves, but rely on two Configuration Manager services. A device loader uses
CM_Read_Registry_Value to obtain the driver name from the appropriate entry in the
software key and then CM_Load_DLVxDs to actually load the device driver VxD. Its
job finally done, the device loader VxD returns from PNP_New_DevNode processing,
back to the Configuration Manager.

Plug and Play: The Big Picture — 179

The Configuration Manager now sends a second PNP_New_DevNode message, this one
directed to the newly loaded driver VxD. The same device node parameter is used since
it’s still processing the same device, but this time the reason code is DLVXD_LOAD_DRIVER
Once again, the name is a bit confusing, it doesn’t mean “load the driver”, it means “you
are the driver”. The driver VXD should respond to this reason code by calling
CM_Register_Device_Driver.

In cases where layering is not used, the device loader VxD and the device driver VxD
are one and the same. In this simple case, when the VxD gets the DLVXD_LOAD_DEVLOADER
reason code it doesn’t load another VxD. Instead, the combination device loader/device
driver VxD tells the Configuration Manager that it is the driver for the device by calling
the Configuration Manager’s CM_Register_Device_Driver function during
DLVXD_LOAD_DEVLOADER processing.

One of the parameters that a device driver VD passes to CM_Register_Device_Driver
is a pointer to a callback function. The Configuration Manager calls this driver VXD func-
tion later to inform the device driver VXD of configuration events. The driver callback
function and the configuration events that it processes will be covered in more detail in a
later section.

Plug and Play Components During Boot: Arbitrators

At this point in the boot process, all hardware devices have been identified and drivers
have been loaded. Before the drivers can access their devices, the arbitrators must find
a conflict-free set of configurations for all devices.

There are four built-in arbitrators, one for each type of system resource: I/O ports,
memory ranges, IRQs, and DMA channels. The I/O port arbitrator takes a list of
device nodes and assigns to each the number of I/O ports it requires. The arbitrator
must select ports that don’t conflict with the port assignments for any other device
node in the list. The other three arbitrators do exactly the same thing, each with their
own resource type.

Arbitrators must handle “fussy” devices that support only a single resource assign-
ment — e.g. a Legacy device that only supports I/O ports 200h—220h — as well as
“flexible” devices — e.g. a PCI device that supports any 32-byte block within the
entire 64Kb range of I/O space. The IRQ arbitrator handles an additional twist as well,
because some devices support sharing an IRQ with another device, while others do not.
An arbitrator returns either a success or failure code to the Configuration Manager,
indicating whether or not it was successful in finding a set of allocations that worked.

180 — Writing Windows VxDs and Device Drivers

The arbitration process would be fairly simple if resources were always indepen-
dent of each other — if, for example, the choice for I/O port had no effect on the
choice for IRQ. However, resource dependencies are common among Legacy devices:
consider the standard serial port with choices of I/O 3F8h plus IRQ 4 or I/O 2F8h plus
IRQ 3. To handle resource dependencies, the Configuration Manager uses the arbitra-
tors in an iterative manner, calling each with the ARB_TEST_ALLOC reason code, which
asks the arbitrator to make a trial allocation. This ARB_TEST_ALLOC allocation may
occur several times. Later, when all arbitrators have returned a success code, the Con-
figuration Manager calls each again with the ARB_SET_ALLOC reason code, telling the
arbitrators to make this allocation permanent.

An example will make this process more clear. Consider a list of two devices. One
is a Legacy mouse that supports any I/O port in the 200h—3FFh range, but only IRQ 4.
(This resource combination is considered a single “logical configuration”.) The other
is a Legacy serial port that supports either I/O 3F8h plus IRQ 4 or I/O 2F8h plus IRQ 3.
(Thus, the serial port is associated with two logical configurations.) To configure these
two devices, the Configuration Manager must choose a logical configuration for each
device, using the arbitrators to ensure that the resources that make up each chosen
configuration don’t conflict with each other.

Before calling the arbitrators, the Configuration Manager makes one of the logical
configurations the “current” configuration. The arbitrators consider only the resources
in this current configuration when making allocations — they are unaware of the
resources available in any other logical configuration. In our example, suppose the
Configuration Manager chose 3F8h/IRQ 4 as the current configuration for the serial
port, and 200h/IRQ 4 as the current (and only) configuration for the mouse. It calls the
port arbitrator first and then the IRQ arbitrator, using the ARB_TEST_ALLOC reason
code for both.

In this scenario, the I/O port arbitrator can easily identify a set of non-conflicting
assignments and returns TRUE, but the IRQ arbitrator cannot (both devices want IRQ 4)
and returns FALSE. So the Configuration Manager makes 2F8h/IRQ 3 the current con-
figuration for the serial port and tries again, still using the ARB_TEST_ALLOC reason
code for both arbitrators. This time there is no IRQ conflict (the serial port wants IRQ 3
and the mouse wants IRQ 4) so both arbitrators return TRUE. Now the Configuration
Manager calls each arbitrator again with the same current configuration as last time,
but now with the ARB_SET_ALLOC reason code. When the arbitrators return, both
devices have been allocated a set of non-conflicting resources: the mouse with
200h/IRQ 4 and the serial port with 2F8h/IRQ 3.

Plug and Play: The Big Picture — 181

Plug and Play Components During Boot: Device Driver VxDs

After the Configuration Manager has assigned all devices a conflict-free set of
resources, it must inform each driver VxD of the configuration assigned to its device.
The Configuration Manager does this through the callback function registered by each
driver during its call to CM_Register_Device_Driver.

The Configuration Manager passes a reason code to the configuration callback.
The CONFIG_START code notifies the driver VxD that a configuration has been
assigned: CONFIG_START means “start using your device’s assigned configuration”. A
Plug and Play device driver isn’t supposed to use any of its device’s resources until it
gets this notification. Whereas a Windows 3.x VxD usually installed /O port handlers
and virtualized an IRQ during system initialization, the rules are different under Win-
dows 95. A Windows 95 Plug and Play device driver VxD may be loaded early in the
boot process, but shouldn’t do anything with system resources until explicitly notified
by the Configuration Manager in this CONFIG_START message.

At the time of a CONFIG_START message, the Configuration Manager has already
assigned the resources, so the driver VXD simply retrieves that assignment. (The Con-
figuration Manager could have made it easy on the VxD by passing the resource
assignments as a parameter to the configuration callback function — but it doesn’t.)
The VxD must make yet another call to the Configuration Manager, this time to
CM_Get_Alloc_Log_Conf (Alloc stands for allocated, Log stands for logical). This
call returns with all configuration information in a single CMCONFIG structure: memory
ranges, I/O ports, IRQs, DMA channels. Now that the device driver VXD finally
knows which resources its device will be using, it can call VPICD to install an inter-
rupt handler, call VDMAD to register a DMA channel, etc.

Summary

This chapter has introduced the component VxDs that make up Plug and Play in Win-
dows ‘95 and explained how these components interact to identify devices, assign
resources, and load drivers. The next chapter will focus specifically on the Plug and
Play device driver VxD, and you will learn exactly what a driver VxD must do to sup-
port a Plug and Play device: which messages and callbacks it must handle and which
Configuration Manager services it must call.

182 — Writing Windows VxDs and Device Drivers

Chapter 10

Plug and Play
Device Driver VxDs

The last chapter provided an overview of Windows 95 Plug and Play, introducing the
different kinds of Plug and Play VxDs (Configuration Manager, enumerators, device
loaders, arbitrators, device drivers) and the role played by each in the Windows 95
installation and boot processes. This chapter will focus on the Plug and Play Device
Driver VxD, which I’ll define as a VxD that interfaces to a hardware device and that
obtains a device’s configuration using methods that conform to Plug and Play rules.

This chapter will first explain the steps required to install a Plug and Play Device
Driver VxD in the Windows 95 environment. Next, you’ll see how a Plug and Play Device
Driver VxD participates in the Windows 95 boot and initialization processes and how it
handles other Plug and Play configuration scenarios such as device removal. The final sec-
tions will discuss in detail the code for a sample Plug and Play Device Driver VxD.

Plug and Play VxD Installation

Windows 3.x offered no standardized procedure for installing device drivers, so differ-
ent vendors provided different solutions. Some vendors provided an application —
sometimes a Windows program or sometimes a DOS program — that copied the driver
file and made modifications to system files. Others provided only -instructions and
required the user to do the installation. The Plug and Play support in Windows 95
addresses this installation deficiency. Windows 95 standardizes the device installation
process, both from the user perspective and from the driver vendor’s perspective.

183

184 — Writing Windows VxDs and Device Drivers

To install a new piece of hardware for Windows 95, the user first physically
installs the card then boots up Windows 95. If the new hardware is Plug and Play, an
enumerator automatically identifies the new device and the Device Installer prompts
the user for a device installation disk. If the new hardware is Legacy, the system can-
not identify the new device, and the user is required to run the Add New Hardware
Wizard. This “wizard” guides the user, step-by-step, through the installation process,
prompting the user for a device installation disk when required.

The device installation disk (created by the vendor) includes a device driver, a -
Device Information (INF) file, and optional utility or diagnostic programs used with
the device. The INF file is an important piece of the Windows 95 Plug and Play stan-
dard. It provides the Device Installer with a device description for display to the user
and an “installation script” to install the device driver. The installation script includes
items like the name of the driver on the installation disk, the directory the driver
should be copied to, and any registry entries that must be created or modified during
driver installation.

Introducing the INF File

The INF text file resembles a Windows 3.x INT file. The INF is divided into sections,
where each section contains one or more items. Each section relates to one step of the
installation process: one section for files to be copied, another for registry entries to
be added, etc. As a developer, you can create INF files with any text editor. However,
Microsoft also provides an INFEDIT tool with the DDK, which allows you to navigate
and edit the file in a hierarchical manner — sort of like the outline view in a word pro-
cessor. Because the sections in an INF file are arranged in a hierarchy, the INFEDIT
tool is very useful. (See the DDK for an explanation of how to use INFEDIT.)

The INF file can support complicated installation scenarios, but most developers
will only need to handle the basics. A basic driver installation scenario includes:

* identifying the device;

* copying the driver file from the driver disk;

* identifying the device’s resource requirements; and

» adding a DevLoader registry entry to load the driver when the device is enumerated.

Tables 10.1 and 10.2 detail the INF file sections, and items within those sections,
that are required to cover this basic installation. For an actual INF file with these sec-
tions and items, as well as more details about what they mean, see the section “A
Sample Plug and Play Driver VxD” later in this chapter.

Plug and Play Device Driver VxDs — 185

Table 10.1 Standard sections for an INF file.
Section Type | Item Name Item Description
Version Signature Must be $CHICAGO$
Class Choose from list in Table 10.2
Provider Creator of INF file, typically same as
vendor name
Manufacturer Manufacturer Name Vendor name
Device Description Device Manager and Add New Hard-
ware Wizard show this string to user
Device ID ASCII identifier created by hardware -
vendor:
Consists of * followed by 3-letter
(EISA format) company ID then four
hex digit device ID
Install Section Name Names later section containing instal-
lation instructions
CopyFiles (None) Destination file name, optional source
file name
AddReg (None) Registry root, optional subkey, value
name, and value:
All drivers require one of these to
specify device loader; for example,
HKLM, ,DevLoader,0,myvxd
LogConfig I0Config Describes 1/0 addresses supported:
minimum, maximum, size
USE ONLY IF LEGACY DEVICE
IRQConfig Describes IRQs supported and
whether or not sharable
USE ONLY IF LEGACY DEVICE
Install Copyfiles Name of CopyFiles section in this
INF file
AddReg Name of AddReg section in this INF
file
LogConfig Name of LogConf1ig section in this

INF file

186 — Writing Windows VxDs and Device Drivers

Table 10.2 Device classes supported by configuration
manager.

Class Name | Class Name

in INF File in Device Installer Description

Adapter CD-ROM controllers Non-SCSI CD-ROM
controller

DiskDrive Disk drives

Keyboard Keyboard

System System devices Motherboard device
(PIC, PCI bridge, etc.)

MEDIA Sound, video, and game Multimedia

controllers
Modem Modem

MultiFunction

Multi-function adapters

e.g. Combination modem
and network adapter

Monitor Monitor

CDROM CD-ROM

Display Display

fdc Floppy disk controllers

hdc Hard disk controllers

Mouse Mouse

Ports Ports (COM & LPT) Serial and parallel

Printer Printer

MTD Memory Technology Drivers PCMCIA memory card

Net Network adapters

nodriver Device that requires
no driver

PCMCIA PCMCIA socket

SCSTAdapter SCSI controllers SCSI host adapter

Unknown Othef devices

Plug and Play Device Driver VxDs — 187

Plug and Play Boot Process

Driver VxD Load Sequence

Though it’s not an absolute requirement, almost all Plug and Play Driver VxDs are
dynamically loadable. Dynamic loading is preferred because it allows the Configura-
tion Manager to unload a driver when its associated device is removed, either physi-
cally removed in the case of “hot insertion” devices such as PCMCIA, or logically
removed when the Configuration Manager detects a device cotiflict or the user
chooses Remove in the Device Manager.

The dynamic load procedure for a Plug and Play VxD is a convoluted process.
The process begins at boot, when an enumerator identifies a particular device. The
enumerator passes the Configuration Manager the Device ID and asks the Configura-
tion Manager to create a “devnode” (device node) for the device. The Configuration
Manager forms the device’s hardware key by prepending HKLM\ENUM to the ASCII
Device ID. This hardware key contains a Driver value that points to the software key
under HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS. That software key con-
tains a DevLoader value.

The Configuration Manager then dynamically loads the VxD specified by the
DevLoader value. As a result, the VxD receives a Sys_Dynamic_Device_Init mes-
sage. Most driver VxDs do minimal processing in the Sys_Dynamic_Device.Init
handler, perhaps doing some one-time initialization and returning TRUE (Carry clear)
from the handler to indicate success. A driver VXD does not usually call any Configu-
ration Manager services, deferring this until the PNP_New_DevNode message (the next
step in the Plug and Play sequence). A driver VXD must never access its device or
install interrupt or port trap handlers during Sys_Dynamic_Device_Init handling,
because the device hasn’t yet been assigned an I/O address or an IRQ.

When building a dynamically loaded driver, you must specify the DYNAMIC
keyword on the VXD line in your VxD’s DEF file.

In the simplest case, the VxD loaded through DevlLoader is the driver VxD that
interfaces to the enumerated device. However, in some cases the VxD loaded by the
DevLoader statement isn’t the real driver VxD, but is simply a device loader for the
driver VxD. This capability is used for some of Windows 95’s layered subsystems: the
10S VxD loads all block device driver VxDs, the NDIS VxD loads all network driver
VxDs, and the VCOMM VxD loads all port driver VxDs.

188 — Writing Windows VxDs and Device Drivers

Sys_Dynamic_Device_Init processing for a device loader VxD is the same as for
a true driver VxD: no interaction with the Configuration Manager; nothing that
requires an I/O address or IRQ. Like a driver VxD, the device loader VxD will receive
a PNP_New_DevNode message after returning TRUE from Sys_Dynamic_Device_Init.

PNP_New_DevNode Processing

After loading the VxD specified by the DevLoader registry value, the Configuration
Manager tells the VxD which devnode caused it to be loaded, by sending the VxD a
PNP_New_DevNode message. This message has two associated parameters: the
devnode (passed in EBX) and a reason code (passed in EAX). The reason code must be
either DL_LOAD_DEVLOADER, DL_LOAD_DRIVER, or DL_LOAD_ENUMERATOR The
PNP_New_DevNode message and its associated reason codes are one of the most con-
fusing aspects of adding Plug and Play support in a VxD.

In the simple case, where the VXD loaded by DevLoader is really the driver VxD,
the VxD’s PNP_New_DevNode message handler will first receive a reason code of
DL_LOAD_DEVLOADER — because the Configuration Manager knows only that this
VxD is the device loader. In response to this reason code, the VxD should call
CM_Register_Device_Driver to let the Configuration Manager know that this VxD
is really the device driver as well as the device loader.

In the more complicated case, where the device loader VxD and the driver VxD
are separate, the device loader VxD will be loaded first and will then receive the
PNP_New_DevNode message with a DL_LOAD_DEVLOADER reason code. In response, a
true device loader VxD uses a Configuration Manager service to load the real driver
VxD. After loading the driver VxD, the Configuration Manager then sends the driver
VxD its own PNP_New_DevNode message, this time with a DL_LOAD_DRIVER message,
and the driver VxD responds by calling CM_Register_Device_Driver.

In both cases, the driver VxD for a particular devnode ends up calling
CM_Register_Device_Driver. The driver VxD calls this function to trigger the final
step in the Plug and Play process, receiving configuration notifications, which I'll
address in the next section.

Plug and Play Device Driver VxDs — 189

The Calling Interface for CM_Register_Device_Driver

DWORD CONFIGMG_Register_Device_Driver(DEVNODE node,
CMCONFIGHANDLER handler,
DWORD refData, DWORD flags);
node: registering as device driver for this node;
provided along with PNP_New_DevNode message
handler: callback function inside the driver VxD
which will receive configuration notifications
refData: this value will be passed
as a parameter to the callback function
flags: CM_REGISTER_DEVICE_DRIVER_STATIC:
device cannot be reconfigured at run-time
CM_REGISTER_DEVICE_DRIVER_DISABLEABLE:
device can be disabled at run-time
CM_REGISTER_DEVICE_DRIVER_REMOVEABLE:
device can be removed from hardware tree

VxDs for Plug and Play hardware should set both DISABLEABLE and REMOVEABLE.
This combination of flags allows the Configuration Manager to reconfigure the device
to accomodate a newly arrived Plug and Play device. A VxD for a Legacy device
should set STATIC, because a Legacy device does not support reconfiguration. If your
VxD does not set these flags, the Configuration Manager will never attempt to recon-
figure your device — it will never send another CONFIG_START message after the ini-
tial one. In addition, the debug version of the Configuration Manager will output a
warning message to the debugger, “Device does not allow rebalance and removal”.

A VD may also allocate devnode-specific, or “instance”, data during
PNP_New_DevNode. Commonly, a single-driver VxD will support multiple instances of
the same device, for example COM1, COM2, etc. Such a driver will receive multiple
PNP_New_DevNode messages (one for each physical device), and will call
_Heap_Allocate during PNP_New_DevNode processing to dynamically allocate a
structure for device-specific context information. A typical COM1/COM2 driver, for
example, would typically allocate a structure to store the port’s I/O base, IRQ, receive
buffer, and transmit buffer, etc.

190 — Writing Windows VxDs and Device Drivers

ConfigHandler Processing

After it has loaded all driver VxDs for Plug and Play devices, the Configuration Man-
ager invokes arbitrators to assign resources to all Plug and Play devices. Once the
arbitrators have made these assignments, the Configuration Manager notifies each
driver VxD that it may start using the device’s assigned configuration.

A VxD receives this notification through its configuration handler function, regis-
tered earlier in a call to CM_Register_Device_Driver. The VxD’s configuration han-
dler must conform to this interface:

The Calling Interface for a Configuration Callback

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFunc, SUBCONFIGFUNC scfSubFunc,
DEVNODE dnDevNode, DWORD dwRefData, ULONG ulFlags);

cfFunc: function identifier

scfSubFunc: subfunction identifier

dnDevNode: devnode handle

dwRefData: value passed as ulRefData parameter to CM_Register_Device_Driver

ulFlags: always zero

When notifying a VXD of a newly assigned configuration, the Configuration Manager
sets the cfFunc parameter to CONFIG_START, meaning “start using your assigned configu-
ration”. When processing CONFIG_START, a VxD discovers this assigned configuration
with another call to the Configuration Manager, this time to CM_Get_Al1loc_Log_Conf.

The Calling Interface for CM_Get_Alloc_Log_Conf

CONFIGRET CM_Get_Alloc_Log_Conf(PCMCONFIG pccBuffer,
DEVNODE dnDevNode, ULONG ulFlags);
pccBuffer: pointer to CMCONFIG structure to receive configuration
dnDevNode: requesting configuration for this devnode
ulFlags: CM_GET_ALLOC_LOG_CONF_ALLOC to get currently allocated configuration
CM_GET_ALLOC_LOG_CONF_BOOT_ALLOC to get boot configuration

This function retrieves either the currently allocated configuration or the boot configu-
ration, depending on the value of the u1F1ags parameter. When processing CONFIG_START,
a VxD wants the current configuration, and so uses CM_GET_ALLOC_LOG_CONF_ALLOC.
The configuration is returned in a CM_CONFIG structure that summarizes the system
resources assigned to the device: memory address, I/O address, IRQ, and/or DMA chan-
nel. This structure can be confusing at first glance and isn’t documented well in either the
DDK or VToolsD. The following code shows how the CMCONFIG structure is defined.

Plug and Play Device Driver VxDs — 191

struct Config_Buff_s // CM_CONFIG is typedef'ed

// to struct Config_Buff_s
{
WORD wNumMemWindows ; // Num memory windows
DWORD dMemBase[MAX_MEM_REGISTERS]; // Memory window base

DWORD dMemLength[MAX_MEM_REGISTERS]; // Memory window length
WORD wMemAttrib[MAX_MEM_REGISTERS]; // Memory window Attrib
// fMD_ROM or fMD_RAM
// fMD_24 or fMD_32 is number of address lines that device decodes

WORD wNumIOPorts; // Num IO ports

WORD wIOPortBase[MAX_IO_PORTS]; // 1/0 port base

WORD wlOPortLength[MAX_IO_PORTS]; // 1/0 port length

WORD wNumIRQs; // Num IRQ info

BYTE bIRQRegisters[MAX_IRQS]; // IRQ list

BYTE bIRQAttrib[MAX_IRQS]; // IRQ Attrib list
// fIRQD_Share if shared with another device

WORD wNumDMAs ; // Num DMA channels

BYTE bDMALst[MAX_DMA_CHANNELS]; // DMA list

WORD wDMAAttrib[MAX_DMA_CHANNELS]; // DMA Attrib list
// fDD_BYTE if byte size channel
// fDD_WORD if word size channel
// fDD_DWORD if dword size channel

BYTE bReservedl1[3]; // Reserved

};

The fields in the CMCONFIG structure can be partitioned into four groups: the first
group describes memory resources; the second describes I/O resources; the third
IRQs; and the last, DMA resources. Each of these groups conforms to a common
pattern. The first field in the group (wNumMemWindows, wNumIOPorts, wNumIRQs,
wNumDMAs) tells how many assignments of that type were made, and consequently,
which entries in the related arrays are filled in.

For example, a zero in wNumMemWindows means no memory range was assigned,
so none of the entries in the three memory-related arrays (dMemBase, dMemlLength,
wMemAttrib) are valid. A value of 2 for wNumIOPorts means two different I/O
ranges were assigned, and the first range is described by the first entry in the two
wlOPort arrays (wIOPortBase, wlOPortLength). The second range is described
by the second entry in each of the two arrays. In other words, wIOPortBase[0]
and wIOPortLength[0] describe the first /O range; wIOPortBase[l] and
wIOPortLength[1] describe the second I/O range.

After decoding the device’s assigned resources from the CMCONFIG structure, a
VxD’s CONFIG_START handler should perform basic device initialization. Other VxDs
do this during Sys_Init or Sys_Dynamic_Device_Init, but a Plug and Play driver
VxD, although loaded early in the boot process, is unable to access the device until
CONFIG_START. The driver VXD may access an I/O-mapped device with nothing more
than an inp or outp to the I/O port range specified in the CMCONFIG, but access to a

192 — Writing Windows VxDs and Device Drivers

memory-mapped device requires calls to one or more VMM services to obtain a linear
address that maps to the device’s physical address in CM_CONFIG. Also at this time, a
VxD will typically register an interrupt handler for the device’s IRQ by calling
VPICD_Virtualize_IRQ.

In some cases, the Configuration Handler will also want to process the
CONFIG_FILTER message. Before choosing a logical configuration and sending the
CONFIG_START message, the Configuration Manager always sends a CONFIG_FILTER
message. (Note that the VxD will receive a CONFIG_FILTER message before every
CONFIG_START, even if the CONFIG_START was not sent as part of the boot process.)
The CONFIG_FILTER message allows the driver an opportunity to examine and modify
any of the logical configurations before the Configuration Manager commits to a con-
figuration. For example, a device that doesn’t require page-alligned memory resources
might specify an unaligned memory resource in the INF file. By responding to the
CONFIG_FILTER message, the device’s VxD could still attempt to optimize the transfer
by changing (filtering) each logical configuration to use a page-aligned buffer instead.

Other Plug and Play Configuration Scenarios

The previous sections describe how a Plug and Play driver VxD handles boot-related
configuration events. Not all configuration events, though, relate just to the boot pro-
cess. The VxD’s Configuration Handler function must also handle notifications trig-
gered by such user actions as shutting down, adding devices, and removing devices.
Table 10.3 summarizes the sequence of configuration events in each of these scenar-
ios (the boot sequence is also included for completeness).

Shutdown

When a user shuts down Windows 95, each VxD Configuration Handler receives a
CONFIG_SHUTDOWN notification. The DDK documentation recommends that the driver
VxD “free system resources and shutdown its device”. But it’s interesting to note that
many of the drivers whose source is in the DDK don’t follow either of those instruc-
tions. It really doesn’t matter if a VXD frees its system resources by unvirtualizing its
IRQ and unhooking its I/O port trap handlers, because the system is shutting down
anyway. As for “shutting down” your device, the action taken really depends on the
kind of device. For example, an audio playback driver might stop playback on the
device, or a modem might hang up a connection.

Plug’and Play Device Driver VxDs — 193

Table 10.3 Plug and Play configuration events.

Process Function Description
Shutdown CONFIG_PRESHUTDOWN system about to shut down
CONFIG_SHUTDOWN system shutting down
Boot CONFIG_START start using assigned
configuration»
CONFIG_FILTER driver may filter logical
configurations
New CONFIG_STOP stop using assigned
Configuration configuration
Assigned

CONFIG_FILTER

driver may filter logical
configurations

CONFIG_START

start using (new) assigned
configuration

Device Removal
(Windows 95 knows
ahead of time)

CONFIG_TEST

ok for device to be
removed? return
CR_SUCCESS (ok) or
CR_REMOVE_VETOED (not ok)

CONFIG_TEST_SUCCEEDED

devnode and all its children
returned ok to CONFIG_TEST,
device will be removed

CONFIG_PREREMOVE

prepare for device removal

CONFIG_PREREMOVEZ

prepare for device removal

CONFIG_REMOVE

device has been removed

Device Removal
(Windows 95 knows
after the fact)

CONFIG_REMOVE

device has been removed

194 — Writing Windows VxDs and Device Drivers

New Configuration

Sometimes when a new device is added while the system is running (e.g. by inserting
a PCMCIA card), that new device requires a resource already assigned to another
device. In this case, the Configuration Manager may shuffle the resource assignments
of already-present devices to satisfy the new device. If the Configuration Manager
does reassign a device’s resources, that device’s Configuration Handler receives a
CONFIG_STOP notification followed by a CONFIG_START notification. CONFIG_STOP
tells the driver to stop using its allocated configuration; CONFIG_START tells the driver
to start using the (newly) allocated configuration.

To stop using the device resource, the CONFIG_STOP handler may need to “undo”
system calls. If the device uses an IRQ, it should be unvirtualized. If the device was
memory-mapped, the linear-to-physical mapping requested by the CONFIG_START
handler should be released by unlocking, decommitting, and freeing the device’s lin-
ear address. Review “Talking to a Memory-mapped Device” in Chapter 6 for an
explanation of these steps.

It may seem inefficient to free the linear address during CONFIG_STOP if the VxD
will turn around and allocate a linear address again during the following CONFIG_START;
however, there is at least one situation where a CONFIG_START does not follow a
CONFIG_STOP. If the Configuration Manager attempts to reassign resources after boot
because a new device was added, and the attempt results in an unresolvable conflict, the
Device Manager will ask the user to choose a device to kill. This device will receive a
CONFIG_STOP message and nothing else.

In most cases, the Configuration Manager follows a CONFIG_STOP with a CONFIG_START
notification for the newly assigned configuration. The VxD’s CONFIG_START handler acts
exactly as it does during boot: it first calls CM_Get_Alloc_Log_Conf and then starts using
the assigned resources returned in the CM_CONFIG structure. No special code is needed in the
CONFIG_START handler to distinguish reassignment from initial boot-time assignment.

Device Removal

There are two kinds of device removal: those where the operating system knows
ahead of time that the user is planning to remove the device, and those where the
operating system learns of the removal after the fact. In the first case, the system can
warn the device’s VxD of the impending removal. The system will have advance
warning, for example, when the user chooses Remove from Device Manager and when
the user undocks his laptop from its docking station. In cases like these, the VxD Con-
figuration Handler for the “about-to-be-removed” device receives a CONFIG_TEST
notification before the removal. The VxD can grant its permission for the removal to
proceed by returning CR_SUCCESS, or can deny permission if the device isn’t ready to
be removed by returning CR_REMOVE_VETOED.

Plug and Play Device Driver VxDs — 195

If the CONFIG_TEST handler returns CR_SUCCESS, the Configuration Manager fol-
lows up with a CONFIG_TEST_SUCCEEDED notification, which requires no handling at
all by the driver VxD. Finally, after the device is removed, the Configuration Manager
sends a CONFIG_REMOVE notification. The CONFIG_REMOVE handler should halt use of
the device resources (unvirtualize the IRQ, etc.). On this event, the driver should also
free any devnode-specific data. (See the earlier section “Plug and Play Boot Process:
PNP_New_DevNode Processing” for discussion of allocating devnode-specific data.)

The second class of removal happens when the operating system doesn’t find out
about the removal until after the fact, for example when a PCMCIA card is removed.
In this case, the VxD for the just-removed device receives a CONFIG_REMOVE notifica-
tion after the fact. Once again, a CONFIG_REMOVE handler should stop using device
resources and free any devnode-specific data.

A Sample Plug and Play Driver VxD:
TRICORD. VXD

The remainder of this chapter will discuss an example Plug and Play Driver VxD,
TRICORD. VXD, and its accompanying INF file, TRICORD. INF. TRICORD.VXD is the Plug
and Play Device Driver VxD for an imaginary Tricorder device produced by an imag-
inary vendor, the XYZ1234 Corp. TRICORD.VXD also acts as its own Plug and Play
Device Loader, a common scenario.

While the TRICORD VxD isn’t a fully functional device driver — it doesn’t talk
to any real hardware — it is a fully functional Plug and Play Driver VxD — it inter-
acts with the Configuration Manager as required to find out what system resources the
Tricorder device is using. If you already have a driver VxD and you want to add Plug
and Play support, TRICORD shows you what pieces to add to your existing VxD. Or,
if you are writing a Plug and Play Driver VxD from scratch, you can use TRICORD
as a starting point and add device-specific functionality.

Before running TRICORD for the first time, you must run the Add New Hardware
Wizard. The wizard will use TRICORD’s INF file to add several registry entries and
copy the VxD file. If TRICORD was a true Plug and Play device, an enumerator
would automatically recognize it as a new device when first added to the system, and
the Device Installer would automatically be invoked to process its INF file. But like a
real Legacy device, the imaginary TRICORD device isn’t automatically recognized,
so you as a developer must explicitly tell Windows 95 about the new device.

196 — Writing Windows VxDs and Device Drivers

TRICORD. INF Details

TRICORD.INF (Listing 10.5, page 213) performs a basic installation scenario as dis-
cussed earlier in this chapter. TRICORD. INF contains

* aVersion section which describes the OS version and the device class (type);

» aManufacturer section which describes the device;

» aCopyFiles section which copies TRICORD. VXD from the installation disk to the
hard disk;

* - an AddReg section which adds a single DevLoader entry to the device’s software
subtree in the registry;

* alogConfigsection which describes the resources (I/O port and IRQ) used by the
device; and

¢ an Install section which names the CopyFiles, AddReg, and LogConf'ig sections.

The TRICORD. INF file is shown in the following code.

[Version]
Signature=$CHICAGO$
Class=0therDevices
Provider=%String0%

[DestinationDirs]
DefaultDestDir=30,BIN

[Manufacturer]
%String0%=SECTION_O

[SECTION_O]
#Stringl% = XYZ1234.Install,*XYZ1234

[XYZ1234.Install]
Copyfiles=CopyFiles_XYZ1234
AddReg=AddReg_XYZ1234
LogConfig=LogConfig_XYZ1234

[CopyFiles_XYZ1234]
tricord.vxd

[AddReg_XY71234]
HKR, ,Devloader,0,tricord.vxd

Plug and Play Device Driver VxDs — 197

[LogConfig_XYZ1234]
ConfigPriority=NORMAL
10Config=4@180-1B3%fff0(3::)
IRQConfig=4,5,9,10,11

[Strings]
String0="XYZ Corp"
Stringl="Tricorder Model 1234"

When viewed as a text file, an INF file seems disjointed and unstructured. But an
INF file has an implicit hierarchical structure, with a root section that refers to branch
sections, each which refer to other branch sections. The INF file makes more sense
when viewed as a hierarchy, which is why many developers create and modify INF
files with the INFEDIT tool in the DDK. The following pseudocode depicts the hier-
archical structure of TRICORD. INF.

[Manufacturer]
"XYZ Corp" --> [SECTION 0]
"Tricorder Model 1234" --> [XYZ1234.Install]
CopyFiles ---> [CopyFiles XYZ1234]
tricord.vxd

AddReg ----> [AddReg XYZ1234]
HKR, ,DevLoader,0,tricord.vxd

LogConfig ---> [LogConfig XYZ1234]
ConfigPriority=NORMAL
10Config=20@200-3ff%3c0(3ff::)
IRQConfig=5,7,10,15
The INFEDIT view makes it clear that the TRICORD.VXD describes only a single
device ("Tricorder Model 1234") from a single vendor ("XYZ Corp"). This Tri-
corder device requires three steps to install (three items in XYZ1234.Install). A
single file (tricord.vxd) must be copied. A single registry entry must be added
(DevLoader=tricord.vxd) to the device’s hardware key under HKLM\Enum. And,
the device supports a single logical configuration consisting of a range of 20h I/O
ports (anywhere between 200h and 3ffh) and an IRQ of 5, 7, 10, or 15.
You can avoid worrying about the unusual syntax on items like AddReg and
I0Config by using the INFEDIT tool to create and modify your INF file. For more
details on the exact syntax of any INF file section, see the DDK

Code Details

Like the earlier examples, the TRICORD source consists of two files. An ASM file
[TRICORD.ASM (Listing 10.2, page 210)] contains the DDB and Device Control Proce-
dure. A C file [PNP.C (Listing 10.1, page 204)] contains the message handler and call-
back functions.

198 — Writing Windows VxDs and Device Drivers

TRICORD follows the basic procedures outlined earlier in this chapter. Its Device
Control Procedure handles only three messages: Sys_Dynamic_Device_Init, Sys_-
Dynamic_Device_Exit, and PNP_New_DevNode. The PNP_New_DevNode handler reg-
isters a Configuration Handler with the Configuration Manager. This Configuration
Handler processes CONFIG_START, CONFIG_STOP, CONFIG_REMOVE, and CONFIG_TEST
notifications.

By including the DYNAMIC keyword in the VXD DEF file and processing the
Sys_Dynamic_Device_Init and Sys_Dynamic_Device_Exit messages, TRICORD
becomes a dynamically loadable VxD. However, neither message handler does any
real processing. Both OnSysDynamicDevicelInitand SysDynamicDeviceExit simply
return TRUE, indicating success.

CONFIGRET OnPNPNewDevnode(DEVNODE DevNode, DWORD LoadType)
{
CONFIGRET rc;
switch (LoadType)
{
case DLVXD_LOAD_DEVLOADER:
pDeviceContext = (DEVICE_CONTEXT *)_HeapAllocate(sizeof(DEVICE_CONTEXT),
HEAPZEROINIT);

if (!pDeviceContext)
return CR_FAILURE;
rc = CM_Register_Device_Driver(DevNode, ConfigHandler, pDeviceContext,0);
if (rc != CR_SUCCESS)
return rc;
return CR_SUCCESS;
default:
return(CR_DEFAULT);
}
}

OnPNPNewDevnode does some simple processing. If the LoadType parameter is
anything other than DLVXD_LOAD_DEVLOADER, the handler returns the CR_DEFAULT
value defined by the Configuration Manager. If DevType is DLVXD_LOAD_DEVLOADER,
the handler first allocates a DEVICE_CONTEXT structure for instance data (data about
this particular devnode) and then registers as the device driver for the devnode by
calling CM_Register_Device_Driver. As a device driver for the devnode, TRICORD
will receive configuration notifications from the Configuration Manager through
the ConfigHandler callback function, which was passed as a parameter to
(M_Register_Device_Driver. It may seem backwards to register as a device driver
during DLVXD_LOAD_DEVLOADER processing, and yet ignore the DLVXD_LOAD_DRIVER
messages, but, as discussed earlier in this chapter, this is indeed proper behavior
for a VxD that acts as both Plug and Play Device Loader and Device Driver.

Plué and Play Device Driver VxDs — 199

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFuncName,
SUBCONFIGFUNC scfSubFuncName,
DEVNODE dnToDevNode,
DWORD dwRefData, ULONG ulFlags)

CMCONFIG Config;
DWORD rc;
DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)dwRefData;

switch (cfFuncName)
(I
case CONFIG_START:
return ProcessConfigStart(dnToDevNode, dev);

case CONFIG_TEST:
return CR_SUCCESS;

case CONFIG_STOP:
return ProcessConfigStop(dnToDevNode, dev);

case CONFIG_REMOVE: ~
return ProcessConfigStop(dnToDevNode, dev);-

default:
return CR_DEFAULT;
}

The real work in TRICORD. VXD is done by ConfigHand1er, the registered callback
function. The Configuration Manager passes ConfigHandler a reason code parame-
ter, cfFuncName, which tells ConfigHandler the reason for the callback. There are
well over a dozen reason codes, but like most driver VxDs, TRICORD processes only
a handful. Another parameter, dwRefData, is used as “reference data”. It’s actually a
pointer to the DEVICE_CONTEXT structure that TRICORD allocated earlier in its
OnPNPNewDevnode handler. At that time, TRICORD passed this DEVICE_CONTEXT
pointer to the Configuration Manager in a call to CM_Register_Device_Driver, and
the Configuration Manager now passes it back as the dwRefData parameter to
ConfigHandler.

It is important that ConfigHand1er return CR_DEFAULT for any function code
that wasn’t specifically processed. The Microsoft DDK specifically
recommends this behavior for compatibility with future versions of
Windows. In fact, the debug version of Windows 95 tests every VxD’s
default response by calling the Configuration Handler function with a bogus
value of 0x12345678. If a VxD doesn’t respond to this message with
CR_DEFAULT, Windows will output an error message on the debugger screen.

200 — Writing Windows VxDs and Device Drivers

Of all the notifications actually processed by ConfigHandler, CONFIG_TEST
results in the least processing: TRICORD returns a value of CR_SUCCESS, giving the
Configuration Manager permission to either remove or stop using the device. The
most interesting action in ConfigHandler occurs for CONFIG_START, CONFIG_STOP,
and CONFIG_REMOVE notifications. For each of these, ConfigHandler calls a subrou-
tine to do the real work.

CONFIGRET ProcessConfigStart(DEVNODE devnode, void *p)
{ :
DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)p;

CONFIGRET re;
CMCONFIG Config;
MEMREGS *regs;
WORD reg;
IRQHANDLE hndIrq;

rc = CM_Get_Alloc_Log_Conf(&Config, devnode,
CM_GET_ALLOC_LOG_CONF_ALLOC);
if (rc != CR_SUCCESS)
{
DPRINTF1(dbuf, "CM_Get_Alloc_Log_Conf failed rc=%x\n", rc);
return CR_FAILURE;
}

Print_Assigned_Resources(&Config);
if (! ((Config.wNumIRQs = 1) &&
(Config.wNumIOPorts == 1 || Config.wNumMemWindows = 1)))
{
DPRINTFO(dbuf, "Expected resources not assigned”);
return CR_FAILURE;
}

if (Config.wNumMemWindows)
{ .
dev->MemBase = Config.dMemBase[0];
dev->MemSize = Config.dMemLength[0];
dev->pMem = (MEMREGS *)MyMapPhysTolLinear(dev->MemBase,
Config.dMemLength[0]);
if (ldev->pMem)
{
DPRINTFO(dbuf, "MyMapPhysTolLinear failed");
return CR_FAILURE;
}
dev->pMem->Ctrl = CTRL_START_DEVICE;

Plug and Play Device Driver VxDs — 201

else

{
dev->IoBase = Config.wIOPortBase[0];
reg = dev->IoBase + REG_CTRL; .
_outpdw(reg, CTRL_START_DEVICE);

}

A CONFIG_START notification tells TRICORD that its device has been assigned
resources, and that the VxD can now communicate with its device. ProcessConfigStart
begins by retrieving the assigned resources with a call to CM_Get_A11oc_Log_Conf,
using the value CM_GET_ALLOC_LOG_CONF_ALLOC for the flags parameter. This flag
value specifies the allocated logical configuration, as opposed to the logical configura-
tion used at boot. The allocated logical configuration is returned in the CMCONFIG
buffer provided by ConfigHandler. ConfigHandler calls a utility function,
Print_Assigned_Resources, to decode the CMCONFIG buffer and print out the
assigned resources.

Print_Assigned_Resources has four blocks, one for each resource type (/O
port, memory range, IRQ, and DMA channel). Each block first tests to see if one or
more resources of that type was actually assigned and, if so, prints the name of the
resource. Then a for loop prints information about each assigned resource of that type.
- For example, this block processes the I/O port resource:

if (pConfig->wNumIOPorts)
{
DPRINTFO(dbuf, "IO resources\r\n");
for (i=0; i < pConfig->wNumIOPorts; i++)
{
DPRINTF1(dbuf, "Range #%d: ", pConfig->wNumIOPorts);
DPRINTF2(dbuf, "starts at %x len is %d\r\n",
pConfig->wlOPortBasel[i],pConfig->wlOPortLength[i]);

202 — Writing Windows VxDs and Device Drivers

The Print_Assigned_Resources function is included mainly to illustrate decod-
ing of the CMCONFIG structure. A VXD usually has some expectation about the number
and type of resources it will use, while remaining flexible about exactly which IRQ or
1/0 port is assigned. This is true of ProcessConfigStart, which expects a single IRQ
assignment and either a memory range or an I/O range. If these expectations aren’t
met, ProcessConfigStart, and in turn ConfigHand1er, returns with an error.

if (! ((Config.wNumIRQs = 1) &&
(Config.wNumIOPorts = 1 || Config.wNumMemWindows == 1)))

{
DPRINTFO("Expected resources not assigned");
return CR_FAILURE;

After verifying that resources are assigned as expected, ProcessConfigStart
determines whether the device has been configured as memory-mapped or
I/O-mapped. If memory-mapped, the function maps the assigned physical base
memory address to a linear address, using a utility function MyMapPhysTolLinear.
ProcessConfigStart then uses the linear address as a pointer, writing an initializa-
tion value to the device’s control register. '

If the device wasn’t assigned a memory range, TRICORD uses the assigned /O
range instead. Once again TRICORD writes an initialization value to the device’s control
register, but this time it uses an OUT instruction instead of a pointer. ProcessConfigStart
uses the _outpdw macro to perform the OUT since the device has 32-bit registers and the
C run-time doesn’t include a 32-bit form of in or out.

Finally, ProcessConfigStart installs an interrupt handler by filling in a
VPICD_IRQ_DESCRIPTOR structure and passing it to the VPICD service VPICD_-
Virtualize_IRQ. The structure’s VID_IRQ_Number field is the device’s assigned IRQ
(from the CMCONFIG structure). VID_Options is set to VPICD_OPT_REF_DATA. This field
works together with the VID_Ref_Data field, which is set to point to the
DEVICE_CONTEXT (passed in as dwRefData and originally allocated by the
PNP_New_DevNode handler). When the VPICD calls the registered interrupt handler, it
will pass VID_Ref_Data (really a DEVICE_CONTEXT pointer) as a parameter.

This interrupt handler is specified by the VPICD_IRQ_DESCRIPTOR’s Hw_Int_Proc
field. The registered handler is HwIntProcThunk (in TRICORD’s assembly module),
but this thunk merely grabs the reference data parameter from the EDX register and
pushes it on the stack before calling the HwIntProcHandler function in the C module
to do the real handling.

ConfigHandler’s processing for CONFIG_STOP and CONFIG_REMOVE is much
simpler than for CONFIG_START. For both of these messages, ConfigHandler calls
ProcessConfigStop.

Plug and Play Device Driver VxDs — 203

CONFIGRET ProcessConfigStop(DEVNODE devnode, DEVICE_CONTEXT dev)
{
if (dev->pMem)
{
*(pMem->Ctr1) = CTRL_STOP_DEVICE;
UnMapPhysToLinear(dev->pMem);
}
else if (dev->IoBase)
{
_outpdw(IoBase + REG_CTRL, CTRL_STOP_DEVICE);
}
VPICD_Force_Default_Behavior(dev->hndIrqg);
HeapFree(dev, 0);

return CR_SUCCESS;

This subroutine undoes the actions taken by ProcessConfigStart. First TRI-
CORD commands the device itself to stop, then undoes the linear-to-physical mem-
ory mapping if necessary, and finally frees the DEVICE_CONTEXT structure originally
allocated by the PNP_New_DevNode message handler.

Summary

While Plug and Play’s Configuration Manager/Enumerator/Arbitrator mechanism is
definitely complex, the system-to-VxD Plug and Play interface is reasonably straight-
forward. At that system boundary, Plug and Play support only involves handling a few
well-defined messages and constructing an appropriate INF file.

Even so, drivers that fully support the flexibility possible under Plug and Play will
be considerably more complex than, for example, a legacy driver. It’s the old generality
vs simplicity trade-off: a board that can be dynamically reconfigured to use a wide vari-
ety of resources won’t be as simple as one with fixed addresses; code that “binds” to its
resources at run-time won’t be as simple as code that manipulates fixed addresses.

All the same, most commercial drivers probably should include Plug and Play sup-
port. The benefits to end-users (and thus the difference in marketability) are significant.

204 — Writing Windows VxDs and Device Drivers

Listing 10.1 PNP.C

#define WANTVXDWRAPS

#include <basedef.h>
#include <vmm.h>
#include <debug.h>
#include "vxdcall.h"
#include <vxdwraps.h>
#include "intrinsi.h"
#include <configmg.h>
#include <vpicd.h>
#include "wrappers.h"

{##i fdef DEBUG

fidefine DPRINTFO(buf, fmt) _Sprintf(buf, fmt); Out_Debug_String(buf)

#idefine DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)
fidefine DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2); Out_Debug_String(buf)
ffelse

fidefine DPRINTFO(buf, fmt)

fidefine DPRINTF1(buf, fmt, argl)

fidefine DPRINTF2(buf, fmt, argl, arg2)

ffendif

fidefine _outpdw(port, val) _asm mov dx, port \
_asm mov eax, val \
_asm out dx, eax

fidefine REG_CTRL 0
fidefine REG_STATUS 1

fidefine CTRL_START_DEVICE 0x01
{idefine CTRL_STOP_DEVICE 0x00

typedef struct
{
DWORD Ctrl;
DWORD Status;
} MEMREGS;

typedef struct
{

DWORD MemBase;
DWORD MemSize;
MEMREGS *pMem;
WORD ToBase;
WORD Irq;
TRQHANDLE hndIrg;

VPICD_IRQ_DESCRIPTOR IrqDescr;
} DEVICE_CONTEXT;

BOOL OnSysDynamicDevicelnit(void);

BOOL OnSysDynamicDeviceExit(void);

CONFIGRET OnPNPNewDevnode(DEVNODE DevNode, DWORD LoadType);

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFuncName, SUBCONFIGFUNC scfSubFuncName,
DEVNODE dnToDevNode, DWORD dwRefData, ULONG ulFlags)

CONFIGRET ProcessConfigStart(DEVNODE devnode, DEVICE_CONTEXT *dev);

CONFIGRET ProcessConfigStop(DEVNODE devnode, DEVICE_CONTEXT *dev);

void Print_Assigned_Resources(CMCONFIG *pConfig);

DWORD MyMapPhysToLinear(DWORD phys, DWORD size);

BOOL UnMapPhysTolLinear(DWORD 1in, DWORD size);

Plug'and Play Device Driver VxDs — 205

Listing 10.1 (continued) PNP.C

char dbuf[807;
DEVICE_CONTEXT ~*pDeviceContext;

// functions in asm module
void HwIntProcThunk(void):

BOOL OnSysDynamicDevicelnit()
{
return TRUE;

BOOL OnSysDynamicDeviceExit()
{
return TRUE;

CONFIGRET OnPNPNewDevnode(DEVNODE DevNode, DWORD LoadType)
{
CONFIGRET rc;

switch (LoadType)
{

case DLVXD_LOAD_DEVLOADER:
pDeviceContext = (DEVICE_CONTEXT *)_HeapAllocate(sizeof(DEVICE_CONTEXT),
HEAPZEROQINIT);
if (!pDeviceContext)
return CR_FAILURE;
rc = CM_Register_Device_Driver(DevNode, ConfigHandler,
pDeviceContext,
CM_REGISTER_DEVICE_DRIVER_REMOVEABLE |
CM_REGISTER_DEVICE_DRIVER _DISABLEABLE);
if (rc = CR_SUCCESS)
return rc;

return CR_SUCCESS;

default:
return(CR_DEFAULT);

206 — Writing Windows VxDs and Device Drivers

Listing 10.1 (continued) PNP.C

fipragma VxD_PAGEABLE_DATA_SEG
fipragma VxD_PAGEABLE_CODE_SEG

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFuncName, SUBCONFIGFUNC scfSubFuncName,
DEVNODE dnToDevNode, DWORD dwRefData, ULONG ulFlags)
{

CMCONFIG Config;

DWORD re;

DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)dwRefData;
switch (cfFuncName)

{
case CONFIG_START:
return ProcessConfigStart(dnToDevNode, dev);

case CONFIG_TEST:
return CR_SUCCESS;

case CONFIG_STOP:
return ProcessConfigStop(dnToDevNode, dev);

case CONFIG_REMOVE:
return ProcessConfigStop(dnToDevNode, dev);

default:
return CR_DEFAULT;
}
}
CONFIGRET ProcessConfigStart(DEVNODE devnode, void *p)
{

DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)p;

CONFIGRET rc;
CMCONFIG Config;
MEMREGS *regs;
WORD reg;
TRQHANDLE hndIrq;

rc = CM_Get_Alloc_Log_Conf(&Config, devnode, CM_GET_ALLOC_LOG_CONF_ALLOC);
if (rc != CR_SUCCESS)
{

DPRINTF1(dbuf, "CM_Get_Alloc_Log_Conf failed rc=%x\n", rc);
return CR_FAILURE;
)

Print_Assigned_Resources(&Config);

DPRINTFO(dbuf, "Expected resources not assigned”);
return CR_FAILURE;

if (! ((Config.wNumIRQs = 1) && (Config.wNumIOPorts == 1 || Config.wNumMemWindows = 1)))

Plug and Play Device Driver VxDs — 207

Listing 10.1 (continued) PNP.C

if (Config.wNumMemWindows)
{

dev->MemBase = Config.dMemBase[0];

dev->MemSize = Config.dMemlLength[0];

dev->pMem = (MEMREGS *)MyMapPhysToLinear(dev->MemBase, Config.dMemlLength[0]);
if (ldev->pMem)

{
DPRINTFO(dbuf, "MyMapPhysToLinear failed");
return CR_FAILURE;

}
dev->pMem->Ctrl = CTRL_START_DEVICE;
}
else
{
dev->IoBase = Config.wIOPortBase[0];
reg = dev->IoBase + REG_CTRL;
_outpdw(reg, CTRL_START_DEVICE);
}

dev->IrgDescr.VID_IRQ_Number = Config.bIRQRegisters[0];
dev->IrqDescr.VID_Options = VPICD_OPT_REF_DATA;
dev->IrqDescr.VID_Hw_Int_Ref = dev;
dev->IrqDescr.VID_Hw_Int_Proc = HwIntProcThunk;

hndIrq = VPICD_Virtualize_IRQ(&dev->IrqDescr);

if (thndIrg)

{
DPRINTFO(dbuf, "VPICD_Virt failed");
return CR_FAILURE;
}

return CR_SUCCESS;
)

CONFIGRET ProcessConfigStop(DEVNODE devnode, void *p)

DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)p;
WORD reg;

if (dev->pMem)
{
dev->pMem->Ctrl = CTRL_STOP_DEVICE;
UnMapPhysTolLinear((DWORD)dev->pMem, dev->MemSize);
)
else if (dev->IoBase)
{

reg = dev->IoBase + REG_CTRL;
_outpdw(reg, CTRL_STOP_DEVICE);

)

VPICD_Force_Default_Behavior(dev->hndIrq);
_HeapFree(dev, 0);

return CR_SUCCESS;

208 — Writing Windows VxDs and Device Drivers

Listing 10.1 (continued) PNP.C

void Print_Assigned_Resources(CMCONFIG *pConfig)
{

int i;

if (pConfig->wNumMemWindows)

DPRINTFO(dbuf, "Mem resources\r\n");
for (i=0; i < pConfig->wNumMemWindows; i++)
{
DPRINTF1(dbuf, "Range #%d: ", pConfig->wNumMemWindows);
DPRINTF2(dbuf, “starts at %x len is %d\r\n",
pConfig->dMemBase[i], pConfig->dMemLengthl{i]);

)
if (pConfig->wNumIOPorts)
{

DPRINTFO(dbuf, "IO0 resources\r\n");
for (i=0; i < pConfig->wNumIOPorts; i++)
{
DPRINTF1(dbuf, "Range #%d: ", pConfig->wNumIOPorts);
DPRINTF2(dbuf, "starts at %x len is %d\r\n",
pConfig->wlOPortBaseli],pConfig->wlOPortLengthl[i]);

)
if (pConfig->wNumIRQs)
(DPRINTFO(dbuf, "IRQs: ");
for (i=0; i < pConfig->wNumIRQs; i++)
(DPRINTF1(dbuf, "%d ", pConfig->bIRQRegisters[il);

)
DPRINTFO(dbuf, "\r\n");
)

if (pConfig->wNumDMAs)
{
DPRINTFO(dbuf, "DMA channels:");
for (i=0; i < pConfig->wNumDMAs; i++)
DPRINTF1(dbuf, "#d ", pConfig->bDMALst[i]);

)
DPRINTFO(dbuf, "\r\n");

Plug and Play Device Driver VxDs — 209

Listing 10.1 (continued) PNP.C

DWORD MyMapPhysToLinear(DWORD phys, DWORD size)
{

DWORD 1in;
DWORD nPages = size / 4096;

1in = _PageReserve(PR_SYSTEM, nPages, 0);
if (lin = -1)
return 0;
if (!_PageCommitPhys(1in, nPages, PC_INCR | PC_WRITEABLE, 0))
return 0;
if (!_LinPageLock(1in, nPages, 0))
return 0;
return lin;

BOOL UnMapPhysToLinear(DWORD 1in, DWORD size)
{
DWORD nPages = size / 4096;

if (!_LinPageUnlock(1in, nPages, 0))
return 0;
if (!_PageDecommit(1in, nPages, 0))
return 0;
if (!_PageFree((void *)1in, 0))
return 0;
return 1;

BOOL __stdcall HwIntProcHandler(VYMHANDLE hVM, IRQHANDLE hIRQ, void *pRefData)
{
DEVICE_CONTEXT *dev = (DEVICE_CONTEXT *)pRefData;

return TRUE;

210 — Writing Windows VxDs and Device Drivers

Listing 10.2 TRICORD.ASM

.386p

: INCLUDES

*kkkkk * * Kkkkkdkkdhkdkhkkkhhhkkdkkkkkkk * *

include vmm.inc
include debug.inc

; VIRTUAL DEVICE DECLARATION

DECLARE_VIRTUAL_DEVICE TRICORD, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>

clc
ret

EndProc ControlProc

Plug and Play Device Driver VxDs — 211

Listing 10.2 (continued) = TRICORD.ASM

PUBLIC _HwIntProcThunk
_HwIntProcThunk PROC NEAR ; called from C, needs underscore

sCall HwIntProcHandler, <eax, ebx, edx>
or ax, ax

jz clearc

stc

ret

clearc:

clc

ret
_HwIntProcThunk ENDP
VxD_LOCKED_CODE_ENDS

END

Listing 10.3 TRICORD.MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:i386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: tricord.vxd

pnp.obj: pnp.c
cl $(CVXDFLAGS) -Fo$@ %s

tricord.obj: tricord.asm
ml $(AFLAGS) -Fo$@ %s

tricord.vxd: tricord.obj pnp.obj ..\wrappers\vxdcall.obj tricord.def
echo >NUL @K<tricord.crf
-MACHINE:1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:tricord.def -OUT:tricord.vxd -MAP:tricord.map
-VXD vxdwraps.clb wrappers.clb vxdcall.obj tricord.obj pnp.obj
<<KEEP
link @tricord.crf
‘mapsym tricord

212 — Writing Windows VxDs and Device Drivers

Listing 10.4

TRICORD. DEF

SEGMENTS
_LTEXT
_LDATA
_TEXT
_~DATA
_LPTEXT
_CONST
_BSS
_TLS
_ITEXT
_IDATA
_PTEXT
_PDATA
_STEXT
_SDATA
_MSGTABLE
_MSGDATA
_IMSGTABLE
_IMSGDATA
_DBOSTART
_DBOCODE
_DBODATA
_16ICODE
_RCODE

EXPORTS

VXD TRICORD DYNAMIC

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

TRICORD_DDB @1

"LCODE'
"LCODE"
"LCODE"
"LCODE'
"LCODE’
'LCODE"
"LCODE"
"LCODE"
"ICODE'
"ICODE"
'PCODE"
"PCODE’
'SCODE'
'SCODE"’
'"MCODE"
"MCODE"
'"MCODE"
"MCODE"
'DBOCODE'
'DBOCODE’
'DBOCODE'
"16ICODE’
'RCODE"

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESIDENT

RESIDENT

PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD 'NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Plug and Play Device Driver VxDs — 213

Listing 10.5 TRICORD. INF

[Version]
Signature=$CHICAGO$
Class=Unknown
Provider=%String0%
LayoutFile=<Layout File>

[DestinationDirs]
- DefaultDestDir=10

[Manufacturer]
%Stringl%=SECTION_O

[SECTION_0]
%String2%=1234_Install,XYZ1234

[1234_Install]
CopyFiles=1234_NewFiles
AddReg=1234_AddReg
LogConfig=1234_LogConfig

[1234_NewFiles]
TRICORD. VXD

[1234_AddReq]
HKR, ,DevLoader,0,TRICORD.VXD

[1234_LogConfig]
ConfigPriority=NORMAL
10Config=20@200-3ff%ffcO(3ff::)
IRQConfig=5,7,10,15

[ControlFlags]

[SourceDisksNames]
1=XYZ1234 Driver Disk,,0000-0000

[SourceDisksFiles]

[Strings]

String0="XYZ Corp."
Stringl="XYZ Corp."
String2="Tricorder Model 1234"

214 — Writing Windows VxDs and Device Drivers

Chapter 11

Communication from
Applications to VxDs

VxDs do much more than just “handle” hardware. In most cases, VxDs also offer an
interface to applications, so an application can actually do something with the hard-
ware. Both Windows 3.x and Windows 95 have mechanisms which allow VxDs and
applications to communicate in both directions: application-to-VxD and VxD-to-appli-
cation. This chapter will cover communication in the application-to-VxD direction.
The next chapter will cover VxD-to-application interaction.

Instead of organizing this chapter around whether the VxD is running under Win-
dows 3.x or Windows 95, I've divided the chapter into sections that address either the
Win16 application interface or the Win32 application interface. That’s because the
interface between a Win16 application and VxD is the same for both Windows 3.x and
Windows 95. The distinguishing feature is the bitness of the application, not the ver-
sion of Windows the VxD runs on.

215

216 — Writing Windows VxDs and Device Drivers

Winl6 Application to VxD:
View from VxD Side

To provide an interface for a Win16 application, a VxD exports what is known as an
“API procedure”. More correctly, a VxD exports a PM API procedure and/or a V86
API procedure. The PM API procedure is used by 16-bit protected mode applications,
which includes Winl6 applications as well as any DOS-extended (DPMI) applica-
tions. The V86 mode API is, of course, used by DOS applications.

A 'VxD exports these procedures by naming them in the DDB. VxDs typically use
the Declare_Virtual_Device macro to declare the DDB. In this case the API proce-
dure names go in the V86_Proc and PM_Proc fields. When assembled or compiled,
these function names become addresses in the DDB, which the VMM uses to call the
VxD on behalf of the application.

A VxD must also declare a unique Device ID in the DDB in order to export an API
procedure. (This field is referred to as the Device_Numin the Declare_Virtual_Device
macro). Developers commonly use the value UNDEFINED_DEVICE_ID for VxDs, but
that’s not good enough for a VxD that exports an API procedure or a service.
Microsoft reserves the values 0—1FFh, so you’re free to choose any value above that as
long as it’s unique. You can ensure that it’s unique by registering with Microsoft for
your very own Device ID.

When the VMM calls a VxD API procedure on behalf of an application, it puts the
VM handle in EBX and a pointer to the Client Register Structure in EBP. The VXD must
examine the Client Register Structure for the parameters passed in by the application
(including the reason for the call). The VxD developer has total control over all other
aspects of the interface design. The developer decides what functions to support, what
registers to use, and what parameters to pass in registers. A common convention is for
AX to specify the function code, and to use AX=0 for “Get Version”.

Except for pointer parameters, the VXD can examine and use parameter values
directly. For example, if the convention was for CX to contain a buffer size, the VxD would
use the construct [EBX].Client_CX, or from C, crs->Client_CX. Pointer parameters
can’t be used “as is”, because pointers have a different representation in the application’s
16-bit segmented environment than in the VxD’s 32-bit flat-model environment.

In the segmented world of Win16 and DOS applications, pointers are 16:16 values:
either selector:offset for PM applications, or segment:offset for V86 applications. In
the flat world of VxDs, pointers are 32-bit linear addresses. When an application passes
a pointer to a VxD, say in DS:DX, the VXD must transform the segmented representa-
tion into a linear address. The VMM service Map_Flat performs this translation. To
use this service, you specify a segment/selector and an offset, where each component is
a field in the C1ient_Regs_Struc. The VMM returns a Ring O linear address. When
using the DDK and the WRAPPERS library, this service is accessed via the MAPFLAT
macro, as in the following code fragment.

Communication from Applications to VxDs — 217

pBuf = MAPFLAT(CLIENT_DS, CLIENT_DX);

You don’t even need to tell the VMM whether the pointer is from a PM application
(selector:offset) or a V86 application (segment:offset). The VMM figures that out for
itself, based on the execution mode of the currently executing VM. (The current VM is
the appropriate context, because it will always be the VM that called the VxD’s API.)

What about returning a pointer from the VxD to the application? Clearly a flat
model linear address must be transformed into a selector:offset or segment:offset, but
either party to the transaction could be responsible for the conversion. There are two
ways to approach this. The VXD could perform the conversion ang give the applica-
tion a 16:16 pointer. Alternatively, the VxD could return a linear address to the appli-
cation and leave the conversion to the application.

Having the VxD do the conversion might seem to be the more natural solu-
tion, but is actually more work, mainly because only low-level selector functions
are available to a VxD. To perform this conversion, a VxD must first obtain a
selector via Allocate_LDT_Selector, then fill in the associated descriptor with
BuildDescriptorDWORDS. Using Allocate_LDT_Selector isn’t too bad, but
BuildDescriptorDWORDS is. Your VxD must deal with details such as DPL, granu-
larity, and big/default, all requiring intimate knowledge of 80x86 descriptors.

An application, on the other hand, has a more useful set of high-level selector
functions (A11ocSelector, SetSelectorBase, and SetSelectorLimit) which it can
use to transform a linear address into a usable pointer.

Winl6 Application to VxD:
View from Application Side

To call into a VxD, a Win16 application uses the Windows Get Device Entry Point
function , accessed through INT 2Fh. The application puts the numeric Device ID in
BX, the function code in AX (1684), and calls the VMM via the software interrupt 2Fh.
On return, ES: DI is a function pointer the application uses to call the VxD’s API pro-
cedure. This technique works for both protected mode (Winl6 or DOS-extended)
applications and for V86-mode applications (plain old DOS).

218 — Writing Windows VxDs and Device Drivers

The following function, GetVxDAp1i, encapsulates the INT 2Fh call Pass in a VxD
ID, and it returns the function pointer used to call the VxD.

typedef void (far *PVOIDFN)(void);
PVOIDFN GetVxDApi(WORD vxdid)

{
PVOIDFN pfApi;

_asm {

push di

push es

xor di, di

mov es, di

mov ax, 1684h

mov. bx, vxdid

int 2fh

WORD PTR pfApi+2, es
WORD PTR pfApi, di
pop es

pop di

}

return(pfApi);

Notice that I said “function pointer the application uses to call the VxD’s API pro-
cedure” and not “function pointer fo the VxD’s API procedure”. That’s because Ring
3 code can’t call Ring O code directly. If you dump the code pointed to by ES:DI,
you’ll see INT 30h followed by another value. The INT 30h is the VMM'’s way of
transferring control from a Ring 3 application to a Ring 0 VxD. Executing a software
interrupt from Ring 3 causes the processor to switch to Ring 0. The INT 30h handler
is really the VMM '’s “call VxD from application” procedure. The VMM uses the bytes
after the INT 30h instruction to determine which VxD the application wants to call,
gets that VxD’s API procedure from the VxD’s DDB, sets up EBX to point to the client
register structure, and, finally, calls the VxD. (However, see the sidebar for informa-
tion on an alternative that a Windows 95 application can use to call a VxD.)

.The above magic is all transparent from the application’s point of view. The applica-

- tion sees only a far call to the address returned by the call to Get Device Entry Point.
The application passes parameters to the VxD in registers, which means you must use
assembly (or at least embedded assembly) to fill in the parameters. As explained ear-
lier, the registers used for the parameters are determined by the VxD developer.

Communication from Applications to VxDs — 219

Winl6 Application to VxD: Example Code

This section details a simple Win16 application and VxD combination that illustrates
the above techniques. In this example, the application requests the VxD to allocate a
system DMA buffer on its behalf (something an application can’t do itself). The appli-
cation initializes a structure that describes the buffer required and gives the VxD a
pointer to this structure. The VxD allocates a DMA buffer and fills in the application’s
structure with information about the buffer. The application then translates one of the
structure members into a usable pointer.

The Example Application

The application, contained completely in the file WIN16APP.C (Listing 11.1,
page 233), is one of the world’s simplest Win16 applications. It doesn’t even have a
message loop, only a WinMain. In WinMain, it calls the VxD to allocate a DMA bulffer,
displays information about the allocated buffer, calls the VxD to free the buffer, and
then exits.

pfDmaBufApi = GetVxdApiEntry(DMABUF_ID);

if (!pfDmaBufApi)

{
printf("Error! Couldn't get DMABUF Api\n");
exit(1l);

Under Windows 95, An Application Can Call a VxD by Name
Instead of by Device ID

When a Winl6 application knows that it’s running under Windows 95 and not Windows 3.x, the application
can use the VxD’s 8-byte name instead of its Device ID to find its entry point. The 8-byte name is the one the
VxD declares in its DDB, which is usually space padded, and usually does not contain aNUL character at the
end. This method also uses INT 2F AX=1684h and returns the same far function pointer. However, in this
case BX must be set to 0 and ES:DI is used as an input parameter, pointing to the name.

Because Windows 95 supports this new VxD calling method, it is no longer strictly necessary to obtain a
VxD ID in order to provide an API to 16-bit applications running under Windows 95. However, VxD develop-
ers that supply a 16-bit API will continue to require a VxD ID as long as they support customers running
under Windows 3.x — and even after that if Winl6 applications that use the old “call by ID” method are
already in the field.

220 — Writing Windows VxDs and Device Drivers

The application first calls a helper function, GetVxdApiEntry, to obtain a function
pointer to the VxD entry point. The application then fills in the Size field of the
DMA_BUFFER_DESCRIPTOR, telling the VXD what size DMA buffer is required. The
VxD will fill in the other two fields, PhysAddr and LinAddr, with the physical address
and linear address of the allocated buffer.

_asm
{
mov ax, DMABUF_FUNC_ALLOCBUFFER
lea si, dmadesc ; small model, don't need to Toad DS
call DWORD PTR pfDmaBufApi
mov err, ax
}

The VxD expects DS:SI to point to the DMA_BUFFER_DESCRIPTOR, so the applica-
tion uses embedded assembly to load the two registers with the address of the
DMA_BUFFER_DESCRIPTOR structure and the AX register with the function code
DMABUF_FUNC_ALLOCUFFER. With the registers initialized as expected by the VxD, the
application calls the VxD entry point through the function pointer pfDmaBufApi.

If the VXD was unable to allocate the buffer, it returns with a non-zero value in AX.
The application tests for this result, producing an error message and exiting. Other-
wise, the VXD has allocated the buffer and filled in the PhysAddr and LinAddr fields.
An application that was really doing DMA would use the PhysAddr to program the
DMA controller; this example merely prints out the field’s value.

_asm mov myds, ds

usSel = AllocSelector(myds);
SetSelectorBase(usSel, dmadesc.LinAddr);
SetSelectorLimit(usSel, dmadesc.Size);
DmaBufPtr = MAKELP(usSel, 0);

The example application does use the LinAddr field to obtain a usable pointer to
the allocated buffer. First, the application obtains a selector via A11ocSelector. Next,
it calls SetSelectorBase, passing the newly allocated selector and the linear address
returned by the VxD. After that, the application uses SetSelectorLimit to set the
size of the newly allocated selector. The example also limits the selector to the size of
the requested buffer. With this restriction, overwriting the allocated buffer will cause a
GP fault and the register will terminate the application immediately. The application
completes the conversion by using the MAKELP macro to turn the selector into a
pointer. The application now has a usable pointer that maps to the linear address
returned by the VxD.

Communication from Applications to VxDs — 221

When this conversion is complete, the application displays a message box show-
ing the DMA buffer’s physical linear and logical (pointer) address. Finally, the appli-
cation prepares for termination. It frees the selector that it just allocated, then calls the
VxD again, this time using the function code DMABUF_FUNC_FREEBUFFER, to free the -
allocated buffer.

The Example VxD

The DMABUF VxD called by the WIN16APP application is also very simple. To sup-
port the Win16 application, the VXD needs only to handle the Init_Complete mes-
sage and support a PM API with only two functions, AlTocBuffer and FreeBuffer
(Listing 11.5, page 236).

The only reason that DMABUF handles the Init_Complete message is that under
Windows 3.x, physically contiguous pages must be allocated during initialization, and
a system DMA buffer must consist of physically contiguous pages. In Windows 95,
contiguous pages may be allocated at any time. To accommodate the difference,
DMABUF’s OnInitComplete function checks what version of Windows is running.
If it is running under Windows 3.x, DMABUF preallocates a DMA buffer of a fixed
size (64 Kb). The driver saves the buffer’s linear and physical addresses in global vari-
ables, where they can be retrieved when an application calls the VxD. For more
details on DMA buffer requirements and PageAllocate, see Chapter 6. The follow-
ing code shows the OnInitComplete handler.

BOOL OnInitComplete(VMHANDLE hVM, PCHAR CommandTail)
{
DWORD ver;

Get_VMM_Version();

if (HIWORD(ver) <= 3)
{
// Win3.x, not 95
bWin3x = TRUE;
// must alloc phys contig pages now)
LinAddr = _PageAllocate(nPages, PG_SYS, 0, OxOF, 0, 0x1000, &PhysAddr,
PAGEFIXED | PAGEUSEALIGN | PAGECONTIG);
}
return TRUE;

PM_Api_Handler (shown in the following paragraph of code) is the entry point for
calls from Win16 applications. Since the application should specify a function code in
the AX register (found in the Client_AX field of the CLIENT_STRUCT parameter),
PM_Api_Handler switches on this value. '

222 — Writing Windows VxDs and Device Drivers

void __cdecl PM_Api_Handler(VMHANDLE hVM, CLIENT_STRUCT *pcrs)
{
DMA_BUFFER_DESCRIPTOR *pBufDesc;

switch(pcrs->CWRS.Client_AX)

{

case DMABUF_FUNC_ALLOCBUFFER:
pBufDesc = MAPFLAT(Client_DS, Client_SI);
pcrs->CWRS.Client_AX = AllocBuffer(pBufDesc);
break;

case DMABUF_FUNC_FREEBUFFER:
pBufDesc = MAPFLAT(Client_DS, Client_SI);
pcrs->CWRS.Client_AX = FreeBuffer(pBufDesc);
break;

default:
pcrs->CWRS.Client_AX = DMABUF_INVALID_FUNC;
break;

}

The DMABUF API consists only of two functions, A11ocBuffer and FreeBuffer.
In both cases, the buffer in question is described by a DMA_BUFFER_DESCRIPTOR struc-
ture passed by the application in DS:SI. To access this buffer, the VxD must translate
the application’s selector:offset pointer into a usable flat pointer. PM_Api_Handler uses
the VMM service Map_F1lat, accessed via the macro MAPFLAT, to accomplish this con-
version. Finally, PM_Api_Hand1er calls the appropriate subroutine, either A11ocBuffer
or FreeBuffer, passing in the flat pointer to the DMA_BUFFER_DESCRIPTOR. The

A11ocBuffer function is shown in the following code.

DWORD AllocBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)
{
DWORD rc;

if (bOwned)
{

}
else
{

rc = DMABUF_ALREADY_ALLOCED;

bOwned = TRUE;

if (bWin3x)

{ .

if (pBufDesc->Size > 16 * 4 * 1024)
rc = DMABUF_SIZE_TOO0_BIG;

else

{
pBufDesc->PhysAddr = PhysAddr;
pBufDesc->LinAddr = LinAddr;

}

}

Communication from Applications to VxDs — 223

else
{

LinAddr = pBufDesc->LinAddr
PageAllocate(pBufDesc->Size / 4096,
PG_SYS, 0, 0xOF, 0, 0x1000,
&pBufDesc->PhysAddr,

PAGEFIXED | PAGEUSEALIGN | PAGECONTIG);
if (!pBufDesc->LinAddr)

rc = DMABUF_BUF_NOT_AVAIL;

]

}
}
return rc;

For the sake of simplicity, the DMABUF VxD allows only one application to allo-
cate a DMA buffer at a time. To enforce this policy, A11ocBuffer checks the global
variable bOwned. If this boolean is set, A1TocBuffer fails the call and returns with the
error code DMABUF_ALREADY_ALLOCED.

If no other application has already claimed the buffer, A11ocBuffer checks the
bWin3x variable set by OnInitComplete. If this variable is set, then the VxD is run-
ning under Windows 3.x and the DMA buffer was preallocated during initialization.
If the caller requested a larger buffer size than was allocated, the call fails with a
return value of DMABUF_SIZE_TOO_BIG. If the buffer size is aCceptable, the VxD
copies the physical and linear addresses returned earlier by _PageAllocate into
pBufDesc->PhysAddr and pBufDesc->LinAddr.

If the VxD is running under Windows 95, the buffer was not preallocated
during initialization, and so must be allocated now, using the size requested by
the caller. If _PageAllocate fails for any reason, AllocBuffer returns with
DMABUF_NOT_AVAIL. If _PageAllocate succeeds, Al11ocBuffer returns to the caller,
with pBufDesc->LinAddr and pBufDesc->PhysAddr values provided by _PageAllocate.
Notice that DMABUEF also stores the linear address in the global variable LinAddr —
I’ll explain why in a moment. .

FreeBuffer first checks that bOwned was set by Al11ocBuffer. If not, the function
returns immediately with DMABUF_NOT_ALLOCED. Next, the function verifies that the
linear address specified by the caller is the same as the one in pBufDesc->LinAddr,
which was returned by _PageAllocate. If the addresses don’t match, FreeBuffer
returns with DMABUF_NOT_ALLOCED. This precaution prevents the VxD from freeing an
invalid address passed in by a buggy application. Finally, FreeBuffer may indeed
free the buffer, but only if running under Windows 95. If under Windows 3.x, the
buffer allocated during initialization must stay around for future use. The FreeBuffer
function is shown in the following code.

/

224 — Writing Windows VxDs and Device Drivers

DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)

{
DWORD rc;

if (bOwned)
{
bOwned = FALSE;
if (pBufDesc->LinAddr = LinAddr)
{
if (!bWin3x)
i
PageFree(pBufDesc->LinAddr, 0);
}
}
else
{
rc = DMABUF_NOT_ALLOCED;
}
}
else
{
rc = DMABUF_NOT_ALLOCED;

}
return rc;

Win32 Application to VxD:
View from VxD side

The interface from a Win32 application to a VxD is much different, both viewed from
the VxD side and from the application side. As before, I’ll first explain the VxD side,
then the application side.

A VxD doesn’t need to export a special procedure in order to support Win32
applications. Instead, its control procedure must handle a special message, called
W32_DEVICEIOCONTROL. The VMM sends this message to the VXD on behalf of the
calling application.

Communication from Applications to VxDs — 225

Parameters are passed, not through registers, but all bundled up into a DIOCPARAMETERS
structure. The VMM puts a pointer to this structure in ESI. Here’s the structure:

typedef struct DIOCParams {
DWORD Internall;
DWORD VMHandle;
DWORD Internal2;
DWORD dwloControlCode;
DWORD TpvInBuffer;
DWORD cbInBuffer;
DWORD 1pvOutBuffer;
DWORD cbOutBuffer;
DWORD TpcbBytesReturned;
DWORD 1poOverlapped;
DWORD hDevice;
DWORD tagProcess;

} DIOCPARAMETERS;

The DIOCPARAMETERS structure is defined in VWIN32.H, not VMM.H. Also note
that VToolsD uses a different structure name (IOCTLPARAMS) and different
field names.

The dwloControlCode field tells the VxD which function to perform. The
1pvInBuffer and cbInBuffer are pointers to a generic input buffer and the size of
the input buffer, and 1pvOutBuffer and cbOutBuffer are the same for the generic
output buffer. Note that these pointer parameters don’t need translation, but can be
used directly by the VxD. Both the function code in dwloControlField and the
meaning of the buffer contents are defined by the VxD. This interface is generic on
purpose, so that you can do more with a device than just read from and write to it. In
most cases, both the application and the VxD will treat the generic buffer as a spe-
cific structure, casting the buffer pointer to and from a pointer to DIOCPARAMETERS
as necessary. :

226 — Writing Windows VxDs and Device Drivers

The VMM will test your VxD to determine if it supports the Win32
DeviceloControl interface by sending a W32_DEVICEIOCONTROL message
with a dwIoControlCode of DIOC_GET_VERSION. If your VxD doesn’t respond
as expected, the VMM will not pass on further W32_DEVICEIOCONTROL
messages. The response the VMM is expecting is a return value of zero from
the message handler. Your VxD may return whatever version information it
wishes (or none at all) in the 1pvOutBuffer; all the VMM cares about is the
return value. '

Win32 Application to VxD:
View from the Application Side

A Win32 application calls into a VxD by using the DeviceloControl function. One of
the parameters to this function is a device handle obtained via a call to CreateFile.
That’s right, the same call that creates or opens a file can also open a “channel” to a
VxD. To open a VxD, rather than a normal file, with CreateFile, you use a special
form in place of the filename:

"\\.\name"

When using this format in your C code, don’t forget that backslash
represents an escape sequence, so use two consecutive backslashes for each.

This strange format tells Windows that you don’t really want to open a normal file;
instead, you want Windows to find and load the VxD with that name, and give you a special
handle to it. Your application can then use this handle with calls to DeviceloControl.
Windows turns this call into a W32_DEVICEIOCONTROL message, with all of the appli-
cation’s parameters neatly bundled up into a single DIOCPARAMETERS structure.

Communication from Applications to VxDs — 227

If the filename contains an extension, Windows looks in the standard search path
for the VxD: current directory, Windows directory, then path environment variable.
Specifying an extension is the usual method, and the extension is usually VXD. If
there is no extension, Windows looks in the registry for the KnownVxDs key under
HKLM\SYSTEM\CURRENTCONTROLSET\CONTROL\SESSIONMANAGER If this key has an
. associated value, Windows treats the value as the VxD’s full pathname. If Windows
can’t find the VXD there either, it treats the filename as a VXD module name, and
searches its internal VxD list for an already-loaded VxD with that name.

When “opening” a VxD, the VxD name is considered case sensitive. To be
safe, use all uppercase in both your application and VxD DDB declaration.

If CreateFilereturns INVALID_HANDLE_VALUE, you should call GetLastErrorto
get error information. There are two possible errors when opening a VxD.
ERROR_FILE_NOT_FOUND indicates that all the methods described above have failed to
find the specified VxD. ERROR_NOT_SUPPORTED indicates that the VxD was found but
that it doesn’t “support” the DeviceloControl interface — which in many cases
means the VxD wanted to support DeviceloControl but didn’t properly handle the
DIOC_GET_VERSION, as described in the previous section.

Special care is needed in handling ERROR_NOT_SUPPORTED. The problem is
that the VxD did load successfully (the actual error was in the VxD’s
response to the W32_DEVICEIOCONTROL) but CreateFile returned no handle
that the application could use to close the VxD and thus unload it. To force
the VxD to be unloaded, the application must call DeleteFile, using the
VxD’s module name in the DDB, not the filename. A VxD should choose a
module name equal to the filename minus the extension, although the choice
of module name is completely up to the VxD

If the VxD referenced in the CreateFile is dynamically loadable, the call to
CreateFile may do more than open a “channel” to a VxD for future DeviceloControl
communication. If the VxD is dynamically loadable and isn’t yet loaded, Windows
will automatically load the VXD on behalf of the application and send it a
Sys_Dynamic_Device_Init message. Windows maintains a reference, or usage, count
for the VxD, so if it’s already loaded, a call to CreateFile doesn’t load another copy
of the VxD. Applications should generally use the value FILE_FLAG_DELETE_ON_CLOSE
for the fdwAttrsAndFlags parameter when calling CreateFile. This tells Windows
to unload the VxD when the reference count goes to zero. (A zero reference count
means that every application that had opened the VxD has now closed it.)

228 — Writing Windows VxDs and Device Drivers

If the VxD returns with success to the Sys_Dynami c_Device_Init message, the VMM
immediately sends the W32_DEVICEIOCONTROL message with the dwloControlCode
parameter set to DIOC_GETVERSION. A dynamic VxD does any per-application ini-
tialization here. As explained earlier, a VxD must return success for this message,
otherwise the application sees an ERROR_NOT_SUPPORTED return code. If the VxD
returns success, the VMM increments its internal reference count for the VxD. If
another call to CreateFile is made before a CloseHandle, the VXD receives
another message with a dwloControlCode of DIOC_GETVERSION — but not another
Sys_Dynamic_Device_Init message since the VxD is already loaded.

After getting a device handle with CreateFile, your application calls
DeviceloControl. The prototype for this function is:

BOOL DeviceloControl(

HANDLE hDevice,

DWORD dwloControlCode,
LPVOID 1pInBuffer,
DWORD nInBufferSize,
LPVOID 1pOutBuffer,
DWORD nOutBufferSize,
LPDWORD 1pBytesReturned,
LPOVERLAPPED 1pQOverlapped

The first parameter is the handle returned by CreateFile, and the next four
parameters should look familiar: the VXD receives those exact same parameters in its
W32_DEVICEIOCONTROL message, though for the VxD they’re all bundled up into a
single DIOCPARAMETERS structure. The 1pBytesReturned parameter is filled in by the
VxD, telling the application how many bytes the VXD has copied to the output buffer.

When your application has finished communicating with the VxD, it closes the
“channel” by calling CloseHandle, using the same device handle. If the VxD was
dynamically loaded, this call to C1oseHandle results in a W32_DEVICEIOCONTROL mes-
sage with dwIoControlCode of DIOC_CLOSEHANDLE. When the final C1oseHand1e causes
the reference count to go to zero, the VMM sends a final Sys_Dynamic_Device_Exit
message and the VMM then unloads the VxD.

Don’t forget to add the DYNAMIC keyword to the VxD statement in your .DEF
file following the VxD’s module name (Listing 11.8, page 242).

Communication from Applications to VxDs — 229

Win32 Application to VxD: Example Code

To illustrate how a Win32 application talks to a VxD, I've extended the same
DMABUF VxD introduced earlier in this chapter and written a simple Win32 applica-
tion that uses DeviceloControl to talk to the VxD (Listing 11.9, page 243). Once
again, the application is very simple (nothing but a main), and because it is a Win32
console application, we can simply use printf — no message boxes.

This Win32 application is similar in structure to its Win16 counterpart. The appli-
cation “opens” the VxD, initializes a DMA_BUFFER_DESCRIPTOR and then calls the
VxD to allocate a DMA buffer. When the VxD returns to the application, the VxD will
have written the allocated buffer’s physical and linear addresses into the
DMA_BUFFER_DESCRIPTOR. Because this is a Win32 application, a linear address is a
pointer, and no selector magic is needed.

const PCHAR VxDName = "\\\\.\\DMABUF.VXD";
hDevice = CreateFile(VxDName, 0,0,0,
CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);

if (hDevice = INVALID_HANDLE_VALUE)
{
err = GetlLastError();
printf("Cannot load VxD, error=%081x\n", err);
if (err = ERROR_NOT_SUPPORTED)
{
DeleteFiTe("\\\\.\\DMABUF");
}
exit(l);

To “open” a channel to the VxD, the application calls CreateFile with the file-
name \\.\DMABUF.VXD. If the call fails, the application uses GetLastError to obtain
the actual VxD return (error) code, and if the return was ERROR_NOT_SUPPORTED, the
application calls DeleteFile to unload the VxD.

dmadesc.Size = 32 * 1024;

if (err = DeviceloControl(hDevice, DMABUF_FUNC_ALLOCBUFFER,
&dmadesc, sizeof(DMA_BUFFER_DESCRIPTOR),
NULL, O, &cbBytesReturned, NULL))
printf("DeviceloControl failed, error=%Zx\n", err);

230 — Writing Windows VxDs and Device Drivers

If the open succeeded, the application initializes the DMA_BUFFER_DESCRIPTOR
structure with the size of the requested buffer, then calls DeviceloControl, using a
dwloControlCode of DMABUF_FUNC_ALLOCBUFFER. In this example, no output buffer
is used. Instead, the VxD modifies the caller’s input buffer (1pvInBuffer). Further-
more, because the VxD doesn’t copy any bytes to the output buffer, it never fills in the
application’s chBytesReturned variable. Bending the rules like this is perfectly
acceptable under Windows 95, and by defining the interface in this way, I was able to
re-use the exact same VxD code already written for the PM API portion of the VxD.

else
{

printf("Physical=%081X\nLinear=%081X\n", dmadesc.PhysAddr,

dmadesc.LinAddr);
if (err = DeviceloControl(hDevice, DMABUF_FUNC_FREEBUFFER,
&dmadesc, sizeof(DMA_BUFFER_DESCRIPTOR),
NULL, 0, &cbBytesReturned, NULL))
printf("DeviceloControl failed, error=%x\n", err);

}

CloseHandle(hDevice);

If the ALLOCBUFFER DeviceloControl fails (non-zero return value), the applica-
tion prints the error code and exits. Otherwise, the application prints the physi-
cal and linear addresses of the allocated buffer, and immediately frees the buffer
with another DeviceloControl call, but this time with a function code of
DMABUF_FUNC_FREEBUFFER Finally, the application closes the channel to the VxD
with a call to CloseHand]e. If no other application is using the VxD and the VxD is
dynamically loadable, this close also unloads the VxD from memory.

To implement the VxD side, I merely added a W32_DEVICEIOCONTROL message
handler (shown in the following paragraph of code) to the same DMABUF VxD
developed for the Win16 application. This message handler is even simpler than the
PM API function, because no translation of pointer parameters is necessary. Because
both Win32 applications and VxDs use linear addresses, all pointers contained in the
DIOCPARAMETERS structure are directly usable by the VxD.

Communication from Applications to VxDs — 231

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)

{

DWORD rc;

switch (p->dwloControlCode)

{

case DIOC_OPEN:

case DIOC_CLOSEHANDLE:
return 0;

case DMABUF_FUNC_ALLOCBUFFER:
if (!_Assert_Range(p->1pvInBuffer,
sizeof(DMA_BUFFER_DESCRIPTOR),
0, 0, ASSERT_RANGE_NULL_BAD))
return DMABUF_INVALID_PARAMETER;
else
return(AllocBuffer(p->1pvInBuffer));

case DMABUF_FUNC_FREEBUFFER:
if (!_Assert_Range(p->1pvInBuffer,
sizeof(DMA_BUFFER_DESCRIPTOR),
0, 0, ASSERT_RANGE_NULL_BAD))
return DMABUF_INVALID_PARAMETER;
else
return(FreeBuffer(p->1pvInBuffer));

default:
return -1;
}

The message handler specifically checks for dwloControlCode values of

DIOC_GETVERSION and DIOC_CLOSEHANDLE, returning O for each. Failure to do so will
result in failure when the application calls CreateFile and CloseHandle, respec-
tively. The VxD also returns an error code of -1 for unexpected control codes.

The two expected codes are DMABUF_FUNC_ALLOCBUFFER and DMABUF_FUNC_FREEBUFFER

In both cases, the VxD is expecting the caller’s input buffer to be a pointer to a
DMA_BUFFER_DESCRIPTOR, but before using the pointer as such, the VxD validates it. The
cbInBuffer parameter, though ostensibly for this exact purpose, cannot be used to vali-
date the buffer size. cbInBuffer isn’t necessarily the size of the input buffer; it only
reflects the caller’s claims about the input buffer size. The VXD guards against both a null
1pvInBuffer value and a buffer that’s too small with a single call to the VMM service

_AssertRange.

232 — Writing Windows VxDs and Device Drivers

The Calling Interface for _Assert_Range

BOOL __cdecl _Assert_Range(DWORD pStruc, DWORD ulSize,
'DWORD signature, DWORD 1SignatureOffset,
DWORD ulFlags);

_Assert_Range verifies that the buffer pointed to by pStruc is at least ulSize in
length. In addition, it can check for a signature value at the offset 1SignatureOffset.
However, DMABUF doesn’t use this feature, passing in O for signature to disable it.
DMABUEF does use the value ASSERT_RANGE_NULL_BAD for the ulF1ags parameter, how-
ever, so that a NULL value for pStruc will cause _Assert_Range to fail. If _Assert_Range
fails, DMABUF returns to the application with a DMABUF_INVALID_PARAMETER error.

After this validation, the VxD simply casts the caller’s input buffer, p->1pvInBuffer,
to a pointer to a DMA_BUFFER_DESCRIPTOR, then passes that pointer directly to either
AllocBuffer or FreeBuffer, depending on the value of p->dwloControlCode. The
return value from the helper function is passed directly back to the caller as the return
from DeviceloControl. Note these two helper functions are unchanged from the
original DMABUF VxD, which contained only Win16 API support.

Summary

If you structure your code right, supporting both Win16 and Win32 applications in your
VxD isn’t much more trouble than supporting just one or the other. The message here is
that you should put the real work of the API in subroutines that can be called from either
your PM API procedure or from your W32_DEVICEIOCONTROL message handler. If you
follow this practice, then all your PM API procedure will do is extract its caller’s param-
eters from the CLIENT_STRUCT structure. Similarly, the W32_DEVICEIOCONTROL handler
should merely extract its caller’s parameters from the DIOCPARAMETERS structure. Both
interface procedures then call the same helper subroutines.

The application interfaces described in this chapter support communications initi-
ated by the application: when the application calls the VxD. The next chapter will
cover the reverse direction: when a VxD calls into an application.

Communication from Applications to VxDs — 233

Listing 11.1 WIN16APP.C

fHinclude <string.h>
f#Hinclude <windows.h>

#finclude "dmabuf.h"
typedef void (far * PVOIDFN)(void);

static char MsgBoxBuf[1024 1= { 0 };
PVOIDFN pfDmaBufApi;
DMA_BUFFER_DESCRIPTOR dmadesc;

PVOIDFN GetVxdApiEntry(int VxdId)
{
PVOIDFN pfApi; .

_asm
{
xor di, di
mov es, di
mov bx, VxdId
mov ax, 1684h
int 2fh
mov WORD PTR pfApi+2, es
mov WORD PTR pfApi, di
}

return(pfApi);

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR 1pCmdLine, int nCmdShow)

char far *DmaBufPtr;
unsigned short usSel, myds;
WORD err;

pfDmaBufApi = GetVxdApiEntry(DMABUF_ID);
if (!pfDmaBufApi)
{
MessageBox(NULL, "Error, couldn't get VxD API", "USEAPI", MB_OK);
}

234 — Writing Windows VxDs and Device Drivers

Listing 11.1 (continued) WINI6APP.C

else
{
dmadesc.Size = 32L * 1024L;

_asm

{
mov ax, DMABUF_FUNC_ALLOCBUFFER

lea si, dmadesc ; small model, don't need to load DS
call DWORD PTR pfDmaBufApi
mov err, ax

} N

if (err)

{
MessageBox(NULL, "Error calling AllocBuffer",
"USEAPI", MB_OK);
}
else
{
_asm mov myds, ds
usSel = AllocSelector(myds);
SetSelectorBase(usSel, dmadesc.LinAddr);
SetSelectorLimit(usSel, dmadesc.Size);
DmaBufPtr = MAKELP(usSel, 0);
wsprintf(MsgBoxBuf,
"Physical=%081X\nLinear=%081XSelector=%X\n",
dmadesc.PhysAddr, dmadesc.LinAddr, usSel);
MessageBox(NULL, MsgBoxBuf, "USEAPI", MB_OK);

FreeSelector(usSel);

_asm

{
mov ax, DMABUF_FUNC_FREEBUFFER
call DWORD PTR pfDmaBufApi

}

return 0;

Communication from Applications to VxDs — 235

Listing 11.2 WIN16APP.MAK

all: winl6app.exe

winl6app.obj: winl6app.c
cl -W3 -c -AS -Gsw2 -I..\vxd winl6app.c

winl6éapp.exe: winléapp.def winl6app.obj
link winl6app.obj,winl6app.exe,winléapp.map
/MAP /CO,slibcew 1ibw /nod,winl6app.def

Listing 11.3 WIN16APP.DEF

NAME WIN16APP

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE

HEAPSIZE 4096

STACKSIZE 8192

236 — Writing Windows VxDs and Device Drivers

Listing 11.4 DMABUF.H

DWORD PhysAddr;
DWORD LinAddr;
} DMA_BUFFER_DESCRIPTOR;

// DMABUF.h - include file for VxD DMABUF

fdefine DMABUF_ID 0xDBO
ffdefine DMABUF_FUNC_ALLOCBUFFER 0x1000
fidefine DMABUF_FUNC_FREEBUFFER 0x1001
ffdefine DMABUF_ALREADY_ALLOCED 0x0001
fidefine DMABUF_SIZE_TOO_BIG 0x0002
ffdefine DMABUF_BUF_NOT_AVAIL 0x0003
ffdefine DMABUF_BUF_NOT_ALLOCED 0x0004
ffdefine DMABUF_INVALID_PARAMETER 0x0005
ffdefine DMABUF_INVALID_FUNC 0x0006
typedef struct
{

DWORD Size;

Listing 11.5 DMABUF.C

fdefine WANTVXDWRAPS

f#include <basedef.h>
fHinclude <vmm.h>
fHinclude <debug.h>
#inciude "vxdcall.h"
fHinclude <vxdwraps.h>
#Hinclude <wrappers.h>

fHinclude <vwin32.h>
f#include "dmabuf.h"

JHfdef DEBUG
fidefine DPRINTFO(buf, fmt)
#define DPRINTF1(buf, fmt, argl)

_Sprintf(buf, fmt); Out_Debug_String(buf)
_Sprintf(buf, fmt, argl);
Out_Debug_String(buf)

jidefine DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);

Out_Debug_String(buf)

Communication from Applications to VxDs — 237

Listing 11.5 (continued) DMABUF.C

felse

jidefine DPRINTFO(buf, fmt)

Jidefine DPRINTF1(buf, fmt, argl)
Jidefine DPRINTF2(buf, fmt, argl, arg2)
fendif

BOOL bOwned = FALSE;

DWORD nPages = 16; // 64K = 16 * 4K
void *LinAddr;

DWORD PhysAddr;

BOOL bWin3x = FALSE;

char dbgbuf([80];

DWORD AllocBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc);
DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc);

BOOL OnSysDynamicDevicelnit()

DPRINTFO(dbgbuf,"Loading\r\n");
return TRUE;
}

BOOL OnSysDynamicDeviceExit()

DPRINTFO(dbgbuf,"Unloading\r\n");
return TRUE;
}

DWORD OnW32Deviceiocontrol (PDIOCPARAMETERS p)
{
DPRINTF1(dbgbuf,"W32DevIoControl code=%x\n", p->dwloControlCode);

switch (p->dwloControlCode)

{

case DIOC_GETVERSION:

case DIOC_CLOSEHANDLE: // file closed
return 0;

case DMABUF_FUNC_ALLOCBUFFER:
if (!_Assert_Range(p->1pvInBuffer, sizeof(DMA_BUFFER_DESCRIPTOR), 0, 0,
ASSERT_RANGE_NULL_BAD))
return DMABUF_INVALID_PARAMETER;
else
return(AllocBuffer((DMA_BUFFER_DESCRIPTOR *)p->1pvInBuffer));

case DMABUF_FUNC_FREEBUFFER:
if (I_Assert_Range(p->1pvInBuffer, sizeof(DMA_BUFFER_DESCRIPTOR), 0, O,
ASSERT_RANGE_NULL_BAD))
return DMABUF_INVALID_PARAMETER;
else -
return(FreeBuffer((DMA_BUFFER_DESCRIPTOR *)p->1pvInBuffer));

default:
return -1;
}

238 — Writing Windows VxDs and Device Drivers

Listing 11.5 (continued) DMABUF.C

void __cdecl PM_Api_Handler(VMHANDLE hVM, CLIENT_STRUCT *pcrs)
DMA_BUFFER_DESCRIPTOR *pBufDesc;

switch(pcrs->CWRS.Client_AX)

{

case DMABUF_FUNC_ALLOCBUFFER:
pBufDesc = MAPFLAT(Client_DS, Client_SI);
pcrs->CHWRS.Client_AX = AllocBuffer(pBufDesc);
break;

case DMABUF_FUNC_FREEBUFFER:
pBufDesc = MAPFLAT(Client_DS, Client_SI);

pcrs->CURS.Client_AX = FreeBuffer(pBufDesc);
break;

default:
pcrs->CWRS.Client_AX = DMABUF_INVALID_FUNC;
break:
}
}

DWORD AlTocBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)
{

DWORD rc = 0;
if (bOwned)
{ .

rc = DMABUF_ALREADY_ALLOCED;

else

{
bOwned = TRUE;
if (bWin3x)

if (pBufDesc->Size > 16 * 4 * 1024)
rc = DMABUF_SIZE_T00_BIG;

else

{
pBufDesc->PhysAddr = PhysAddr;
pBufDesc->LinAddr = LinAddr;

// Win95, can alloc phys contig pages at any time

pBufDesc->LinAddr = LinAddr = _PageAllocate(pBufDesc->Size >> 12,
PG_SYS, 0, 0xO0F, 0, 0x1000,
&pBufDesc->PhysAddr,
PAGEFIXED | PAGEUSEALIGN | \

PAGECONTIG);
if (!LinAddr)

rc = DMABUF_BUF_NOT_AVAIL;
}
}
return rc;

Communication from Applications to VxDs — 239

Listing 11.5 (continued) DMABUF.C

DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)
DWORD rc =0;
if (bOwned)
{

bOwned = FALSE;

// free buffer only if Win95

// and don't free buffer unless it's the same one we allocated
if (pBufDesc->LinAddr == LinAddr)

if (!bWin3x)
{

_PageFree(pBufDesc->LinAddr, 0);
}
}
else
{

}

rc = DMABUF_BUF_NOT_ALLOCED;

}
else
{

}

return rc;

rc = DMABUF_BUF_NOT_ALLOCED;

}
BOOL OnInitComplete(VMHANDLE hVM, PCHAR CommandTail)
{
DWORD ver;
Get_VMM_Version();
if (HIWORD(ver) <= 3)
{
// Win3.x, not 95
bWin3x = TRUE;
// must alloc phys contig pages now
LinAddr = _PageAllocate(nPages, PG_SYS, 0, 0xOF, 0, 0x1000, &PhysAddr,
PAGEFIXED | PAGEUSEALIGN | PAGECONTIG);

}
return TRUE;

240 — Writing Windows VxDs and Device Drivers

Listing 11.6 DMADDB.ASM

.386p

s KKK IKKAKAAKA KKK I KA AKAKRRAIKN KA K AKK AR AR R AR A KA R A A AAhA R h A Ak kA kkhkhkkkhkhkhkkhhhhkkhhkhkk
B

H INCLUDES

o kkk * LR *kk *% *kkkkkkkkkkk *kkkkk *
i

include vmm.inc
include debug.inc

H

H VIRTUAL DEVICE DECLARATION

6MABUF_ID EQU ODBOH ; must match ID in DMABUF.H

DECLARE_VIRTUAL_DEVICE DMABUF, 1, 0, ControlProc, DMABUF_ID, \
UNDEFINED_INIT_ORDER, 0, PM_API

;extrn _PM_Api_Handler:near
;extrn _V86_Api_Handler:near

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch INIT_COMPLETE, _OnInitComplete, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>
Control_Dispatch W32_DEVICEIOCONTROL, _OnW32Deviceiocontrol, cCall, <esi>
clc
ret

EndProc ControlProc

Communicatlon from Applications to VxDs — 241

Listing 11.6 (continued) DMADDB.ASM

BeginProc PM_API
cCall _PM_Api_Handler, <ebx, ebp>
mov [ebp].Client_EAX, eax
ret

EndProc PM_API

VxD_LOCKED_CODE_ENDS

END

Listing 11.7 DMABUF.MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:i386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: dmabuf.vxd

dmabuf.obj: dmabuf.c
cl $(CVXDFLAGS) -Fos$@ %s

dmaddb.obj: dmaddb.asm
ml $(AFLAGS) -Fo$@ %s

dmabuf.vxd: dmaddb.obj dmabuf.obj ..\..\wrappers\vxdcall.obj

..\..\wrappers\wrappers.cib dmabuf.def
echo >NUL @<<dmabuf.crf

-MACHINE:i1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:dmabuf.def -0UT:dmabuf.vxd -MAP:dmabuf.map

-VXD vxdwraps.clb wrappers.clb vxdcall.obj dmaddb.obj dmabuf.obj
<

<
link @dmabuf.crf
mapsym dmabuf

242 — Writing Windows VxDs and Device Drivers

Listing 11.8 DMABUF.DEF

VXD DMABUF DYNAMIC

SEGMENTS
_LTEXT CLASS
_LDATA CLASS
_TEXT CLASS
_DATA CLASS
_LPTEXT CLASS
_CONST CLASS
_BSS CLASS
_TLS CLASS
_ITEXT CLASS
_IDATA CLASS
_PTEXT CLASS
_PDATA CLASS
_STEXT CLASS
_SDATA CLASS
_MSGTABLE CLASS
_MSGDATA CLASS
_IMSGTABLE CLASS
_IMSGDATA CLASS
_DBOSTART CLASS
_DBOCODE ~ CLASS
_DBODATA CLASS
_16ICODE CLASS
_RCODE CLASS

EXPORTS
DMABUF_DDB @1

'LCODE'
'LCODE"’
'LCODE"’
'LCODE’
'LCODE’
'LCODE"’
' LCODE"
'LCODE'
'ICODE'
'ICODE"
'PCODE"’
'PCODE"’
'SCODE"*
'SCODE"*
'MCODE"*
'MCODE"*
'MCODE"*
'MCODE"*
'DBOCODE"
'DBOCODE"
'DBOCODE"
'161CODE’
'RCODE"

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE

PRELOAD NONDISCARDABLE
DISCARDABLE

DISCARDABLE

NONDISCARDABLE

NONDISCARDABLE

RESIDENT

RESIDENT

PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL

PRELOAD DISCARDABLE IOPL

PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Communication from Applications to VxDs — 243

Listing 11.9 WIN32APP.C

fHinclude <stdio.h>
fHinclude <stdlib.h>
#include <conio.h>
fHinclude <windows.h>
f#Hinclude "dmabuf.h"

HANDLE hDevice;
DMA_BUFFER_DESCRIPTOR dmadesc;

void main(int ac, char* av(])
{
DWORD cbBytesReturned;
DWORD err;

const PCHAR VxDName = "\\\\.\\DMABUF.VXD";
hDevice = CreateFile(VxDName, 0,0,0, CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);

if (hDevice == INVALID_HANDLE_VALUE)
{
err = GetlastError();
fprintf(stderr, "Cannot load VxD, error=%081x\n", err);
if (err = ERROR_NOT_SUPPORTED)

DeleteFile("\\\\.\\DMABUF");

}
exit(l);
}

dmadesc.Size = 32 * 1024;
if (!DeviceloControl(hDevice, DMABUF_FUNC_ALLOCBUFFER,
&dmadesc, sizeof(DMA_BUFFER_DESCRIPTOR), NULL, O,

&cbBytesReturned, NULL))
{

}
else

{

printf("DeviceloControl failed, error=%d\n", GetlastError());

printf("Physical=%081X\nLinear=%081X\n", dmadesc.PhysAddr, dmadesc.LinAddr);
if (!DeviceloControl(hDevice, DMABUF_FUNC_FREEBUFFER,

&dmadesc, sizeof(DMA_BUFFER_DESCRIPTOR), NULL, O,
&cbBytesReturned, NULL))

printf("DeviceloControl failed, error=%d\n", GetlastError());
}

CloseHandle(hDevice);

244 — Writing Windows VxDs and Device Drivers

Listing 11.10 WIN32APP.MAK

win32app.exe: win32app.obj

Tink @K
kerne132.1ib user32.1ib gdi32.1ib winspool.1ib comd1g32.1ib advapi32.1ib
shel132.1ib 01e32.11b oleaut32.1ib uuid.1ib /NOLOGO /SUBSYSTEM:console
/INCREMENTAL:no /PDB:none /MACHINE:I386 /OUT:win32app.exe win32app.obj
K

win32app.obj: win32app.c
cl /c /ML /GX /YX /0d /D "WIN32" /D "NDEBUG" /D "_CONSOLE" -I..\vxd win32app.c

Chapter 12

Communication from VaDs
to Applications

While sometimes it’s enough for an application to call into a VxD and get the infor-
mation or services it needs immediately, other times an application needs to be noti-
fied by a VxD asynchronously, that is, when a particular event occurs. Both Windows
3.x and Windows 95 support mechanisms for communication in this direction (VxD
to application), but the interface is more complicated compared to the applica-
tion-to-VxD methods examined in the last chapter.

The last chapter was divided into two sections, Win16 and Win32. This chapter
will be divided into three sections: Windows 3.x VxD to Win16, Windows 95 VxD to
Win16, and Windows 95 VxD to Win32. Although both Windows 3.x and Windows
95 VxDs use similar mechanisms when communicating with Win16 applications, the
VxD running under Windows 95 can take advantage of several SHELL VxD services
that aren’t available under Windows 3.x. These SHELL services simplify the task of
calling Winl6 code. Win32 applications are treated separately because a VxD must
use a completely different mechanism for communication with Win32 applications.

245

246 — Writing Windows VxDs and Device Drivers

Difficulties with Calling from a VxD
to a Winl6 Application

Assume that a Win16 application has used the INT 2Fh API to pass a VxD the address
of a callback function inside the application. This VXD must overcome several obsta-
cles before it can use the application’s callback. A VxD executes outside the context
of any VM, whereas the Ring 3 callback must execute in the proper VM context —
the SystemVM that registered the callback. So a VxD must first schedule a VM event,
and be called back in the context of the System VM, that is, when that VM is current.
From inside this event handler, the VxD can use VMM nested execution services to
execute the application callback in the System VM.

If the VxD uses only this simple mechanism, the application callback code is very
limited in what it can do. In particular, the only Windows API function the callback is
allowed to use is PostMessage. When called from a VXD via nested execution, an
application callback function executes much like an ISR and is subject to the same
kind of constraints. Like an ISR, the callback “interrupts” the VM’s execution at some
unpredictable point — perhaps even in the middle of performing a Windows system
call. Because Windows isn’t re-entrant, it isn’t safe for the callback to execute any
Windows API calls except PostMessage.

VxDs running under Windows 3.x were stuck with this unhappy state of affairs.
Windows 3.x VxDs could schedule a VM event and then use nested execution to call
back into a VM, but the application callback was limited to PostMessage. For this
reason, it was common practice for the application to pass the VxD the address of the
Windows PostMessage function along with a window handle, and have the VxD use
nested execution to call PostMessage directly on behalf of the application.

Windows 95 offers two improvements for VxDs calling into Win16 applications.
One is the service SHELL_PostMessage, which takes care of the details of nested exe-
cution on behalf of the calling VxD. The other is a set of “appy-time” (application
time) services that allow a VxD to schedule an event to run when the system is in a
“safe state”. From the appy-time event, the VXD can use other VMM services (new
for Windows 95) to call any function in a Win16 DLL, and the Win16 function can
itself call any Windows function — because it is “safe”.

The POSTVXD example in this chapter illustrates both the PostMessage and the
appy-time technique. POSTVXD determines at run-time which version of Windows
it’s running under (3.x or 95) and uses the appropriate technique, so that it works cor-
rectly on both versions.

Communication from VxDs to Applications — 247

The above PostMessage and appy-time solutions apply only to a VxD calling
into Winl6 code. A VxD must use a completely different approach to call
into a Win32 application. The Win32 approach will be discussed later in this
chapter.

VxD to Winl6 Application under Windows 3.x

To call into a Win16 application under Windows 3.x, a VxD must first schedule a VM
event for the System VM, and then use nested execution services from the event han-
dler to call into the application. Events were introduced in Chapter 7 when hardware
interrupts were discussed. For a hardware interrupt handler, scheduling an event pro-
vides a convenient way to defer processing. The interrupt handler example used a glo-
bal event, “global” meaning the VxD didn’t care what VM context the event handler ran
in. The VxD callback will use a VM event instead, that is, an event called in the context
of a particular VM. In the present situation, the VxD should use a VM event instead of a
global event because it needs to call PostMessage, which lives in the System VM.

The POSTVXD example (Listing 12.2, page 269) uses the techniques discussed above
when running under Windows 3.x. POSTVXD supports a PM API that lets Win16 appli-
cations register with the VxD. Using this API, an application passes in a window handle
and the address of the Windows PostMessage function. The VxD then posts a message
to this window whenever a VM is created or destroyed. Before terminating, the appli-
cation should also use the VxD API to deregister the window handle, so that the VxD
stops posting messages to it.

To interface to a Win16 application, POSTVXD needs only a PM API procedure,
two message handlers (OnVYmInit and OnVmTerminate), and an event callback. The
source code for the PM API handler follows.

VOID cdecl PM_Api_Handler(VMHANDLE hVM, CLIENT_STRUCT *pcrs)
{
switch (pcrs->CWRS.Client_AX)
{
case POSTVXD_REGISTER:
PostMsghWnd = (HANDLE)pcrs->CWRS.Client_BX;
PostMsgSelector = pcrs->CWRS.Client_CX;
PostMsgOffset = pcrs->CWRS.Client_DX;
bClientRegistered = TRUE;
pcrs->CWRS.Client_AX = 0;
break;

248 — Writing Windows VxDs and Device Drivers

case POSTVXD_DEREGISTER:
bClientRegistered = FALSE;
pcrs->CWRS.Client_AX = 0;
break;

default:
pcrs->CWRS.Client_AX = Oxffff;
}

The PM API procedure handles two function codes, POSTVXD_REGISTER and
POSTVXD_DEREGISTER, which are defined in the VxD’s header file, POSTVXD.H (List-
ing 12.1, page 269). The code that handles POSTVXD_REGISTER copies the caller’s
input parameters to the global VxD variables PostMsghWnd, PostMsgSelector, and
PostMsgOffset. The application provides the PostMessage address in two separate
pieces, selector and offset. This 16:16 form is the natural form of a pointer for a
Winl6 application, although VxDs generally deal with 32-bit flat addresses, in this
case a 16:16 address is better, because the VxD isn’t going to use the PostMessage
address itself. Instead, POSTVXD will pass this address to the VMM
Simulate_Far_Cal1l service, which wants the address in 16:16 form.

The PM API also sets a global boolean, bClientRegistered, when
POSTVXD_REGISTER s called, and clears it when POSTVXD_DEREGISTER is called. The
create and destroy message handlers look at this variable, and only take steps to post a
message if bClientRegistered has already been set. The code for the POSTVXD
message handlers follows.

BOOL OnVmInit(VMHANDLE hVM)
{
VMINFO *pInfo;

if (bClientRegistered)

if (bWin3x)
{
pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
{
pInfo->hVM = hVM;
pInfo->bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);
}
}
else
{
SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 1, (DWORD)hVM,
PostMessageHandler, NULL);
}
}
return TRUE;

Communication from VxDs to Applications — 249

VOID OnVmTerminate(VMHANDLE hVM)

{
VMINFO *pInfo;

if (bClientRegistered)
{
if (bWin3x)
{
pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
{
pInfo->hVM = hVM;
pInfo->bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);
}
}
else

{
SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 0, hVM,
PostMessageHandler, NULL);

The OnVmInit and OnVmTerminate message handlers are almost identical. After
verifying that bClientRegisteredis set, each handler then determines what version of
Windows is running. In this section, we’ll only discuss what happens if the version
check indicates Windows 3.x — a later section will cover the code for the Windows
95 case. Each handler dynamically allocates a VMINFO structure (defined at the top of
POSTVXD.C), initializes the structure, then schedules a VM event. The VMINFO struc-
ture contains the handle of the VM being created or destroyed and a boolean (which is
set if the VM has been created or clear if destroyed). This data is encapsulated into a
structure because an event handler gets only a single reference data parameter. By
using a pointer to the VMINFO structure as reference data, the message handler can
pass more than one piece of information to the event handler.

The message handlers schedule a VM event by calling Call_Priority_VM_Event.
This service allows the VxD to specify not only the desired VM, but also additional
restrictions on when the event handler can be called.

250 — Writing Windows VxDs and Device Drivers

The Calling Interface for Call_Priority_VM_Event

EVENTHANDLE Call_Priority_VM_Event(DWORD PriorityBoost, VMHANDLE hVM,
DWORD Flags, CONST VOID * Refdata,
PEventHANDLER EventCallback,
DWORD Timeout);

PriorityBoost: while executing the event callback, increase VM priority
by this amount; can be LOW_PRI_DEVICE_BOOST,
HIGH_PRI_DEVICE_BOOST, CRITICAL_SECTION_BOOST,
TIME_CRITICAL_BOOST

hVM: event callback will run in context of this VM

Flags: PEF_TIME_QOUT - call event handler when Timeout occurs

PEF_WAIT_FOR_STI - wait until VM has interrupts enabled
PEF_WAIT_NOT_CRIT - wait until VM does not own critical section

Refdata: passed to event callback

EventCallback: pointer to event callback function

Timeout: timeout, in ms; ignored unless PEF_TIME_OUT is set

To schedule the event that will call PostMessage, POSTVXD specifies the System
VM handle and the restricting flags PEF_WAIT_FOR_STI and PEF_WAIT_NOT_CRIT.
These flags prevent the event from interrupting a VM that is executing with interrupts
disabled, or one that is executing a critical section; presumably such a VM has some-
thing important and/or time-critical to do. Once the VM has re-enabled interrupts or
has exited the critical section, then the event handler can run and call PostMessage.

Using Nested Execution Services

Once inside the event handler PriorityEventHandler (called via PriorityEventThunk
in the VxD’s assembly module), it’s safe to call PostMessage using VMM'’s nested exe-
cution services. These services are the key to executing Ring 3 code from a VxD. In a
nutshell, nested execution works like this:.

* A VxD sets up a VM’s registers and stack as desired, changes the VM’s CS and IP
to point to a Ring 3 address, and then tells the VMM “ok; let the VM execute now”.

* The VMM executes the VM, and when the VM executes a RET, the VMM and then
the VxD regain control.

After this series of “handoffs”, the Rihg 3 function has been executed, and the
VxD has control again.

Communication from VxDs to Applications — 251

VOID __stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata,
PCLIENT_STRUCT pRegs)
{
CLIENT_STRUCT saveRegs;
VMINFO *pInfo = Refdata;

Save_Client_State(&saveRegs);
Begin_Nest_Exec();

Simulate_Push(PostMsghWnd) ; // hwnd
Simulate_Push(WM_USER_POSTVXD); // message
Simulate_Push(pInfo->bVmCreated); // wParam

Simulate_Push(((DWORD)pInfo->hVM >> 16)); // 1Param
Simulate_Push(((DWORD)pInfo->hVM & Oxffff));
Simulate_Far_Call(PostMsgSelector, PostMsgOffset);
Resume_Exec();

End_Nest_Exec();

Restore_Client_State(&saveRegs);

_HeapFree(pInfo, 0);

PriorityEventHandler first saves the current VM state with a call to the VMM
service Save_(Client_State. The VxD supplies the buffer storage, using a local
CLIENT_STRUCT variable. POSTVXD then enters a “nested execution block” by calling
Begin_Nest_Exec. This call tells the VMM to prepare to execute Ring 3 code. Inside
this block, the VxD modifies the VM’s environment, first its stack and then its registers.

Several calls to the VMM service Simulate_Push push onto the VM'’s stack (not the
VxD’s) the hWWnd, message, and wParam and 1Param parameters (both zero) expected
by PostMessage. The VxD extracts these parameter values from the VMINFO structure
passed as a reference parameter. Note that PriorityEventHandler splits the 32-bit VM
Handle into two 16-bit WORDs and pushes each on the stack, instead of pushing a single
32-bit DWORD onto the stack; PostMessage is 16-bit code and expects 16-bit parameters.

Finally the VxD calls the VMM service Simulate_Far_Call, supplying the selec-
tor and offset of the target Ring 3 function (in this case stored in PostMsgSelector
and PostMsgOffset). Simulate_Far_Call modifies both the VM’s stack and its reg-
isters, pushing the VM’s current CS and IP onto the stack (just as a real FAR CALL
would) before setting the VM’s CS and IP to the selector and offset given as parameters.

So far, the VM’s execution environment has been modified (without its knowl-
edge), but no VM code has been executed. The next call, to Resume_Exec, makes that
happen. When a VxD calls Resume_Exec, the VMM temporarily stops executing Ring
0 code and lets the currently scheduled VM run. Because PriorityEventHandler has
modified the System VM’s environment, when the System VM runs, it executes the
Windows function PostMessage, using the parameters supplied by the VxD. When
the VM executes a FAR RET from PostMessage, the VMM traps the instruction, and
the Resume_Exec service returns to POSTVXD.

252 — Writing Windows VxDs and Device Drivers

Calling a Real Mode Interrupt Handler from a VxD

The nested execution services could also be used by a VxD to call a real mode interrupt handler from a VxD,
for example DOS (INT 21h) or the video BIOS (INT 10h). Instead of using Simulate_Push to push parame-
ters on the VM’s stack, a VxD would fill in parameters in registers by modifying the C11ient_Reg structure.
Then, instead of calling Simulate_Far_Call, a VXD would use Simulate_Int.

However, in most cases you do not want to use nested execution services. Instead, use Exec_VxD_Int,
without a nested execution block. The VToolsD declaration for Exec_VxD_Int looks like

VOID Exec_VxD_Int(DWORD Intnum, ALLREGS* Registers)

To use it, your VxD fills in an ALLREGS structure with the register parameters to be passed to the real mode
handler, then passes the service the number of the software interrupt to execute and a pointer to this register
structure. Your VxD must not change the segment register fields of the ALLREGS structure. If the real mode
handler expects a pointer to be passed in ES: BX, then your VXD loads a 32-bit flat pointer into the EBX field of
ALLREGS, leaving the ES field alone. Similarly, if the real mode handler expects a pointer in DS:SI, load the
flat pointer into the ESI field of ALLREGS.

Using Exec_VxD_Int in a VxD is rather simple, but underneath lies a good deal of complexity. Any flat
pointer parameters must be translated into segmented pointers before the real mode hander can use them. Fur-
thermore, the targeted buffer must be located below 1Mb in order for the real mode handler to access it. Yet any
buffers owned by the VxD (either statically allocated in the VxD’s data segment or dynamically allocated
through _HeapAllocate/_PageAllocate) are located above 2Gb, so the buffers owned by the VXD must be
copied down to a real mode addressable buffer and then the real mode service is given a (segmented) pointer to
that translation buffer.

This raises an interesting question. How does the Exec_VxD_Int service even know which registers in ALLREGS
contain pointers? In fact, it doesn’t. Exec_VxD_Int blindly calls the VxD that has hooked the software interrupt
in question. For example, if your VXD calls Exec_VxD_Int with an intnum parameter of 10h, this results in the
BIOSXLAT VxD being called, because BIOSXLAT used VMM Set_PM_Vector to hook INT 10h during
Sys_Critical_Init.

It’s the VD that hooked the software interrupt — in this example, BIOSXLAT — that translates pointers
and copies the pointer data to a real mode addressable buffer. Only a VxD that knows about INT 10h would
know what registers are supposed to contain pointers. The software interrupt hook VxD in turn relies on
another VxD, the V6MMGR, for the most complex part of pointer translation. The VS6MMGR VxD owns a
real mode addressable translation buffer and provides services that other VxDs can use to borrow and copy
from/to this buffer.

So Exec_VxD_Int really works only when no pointers are being passed to the real mode handler, or when
pointers are being passed but another VxD has hooked the software interrupt to provide translation services. For-
tunately, the standard VxDs provided with Windows do hook the most common software interrupts (INT 21h,
INT 10h, INT 13h, etc.), so in most cases your VxDs can use Exec_VxD_Int.

If your VxD must pass pointers when the real mode interrupt is not hooked by another VxD (and thus does not
have translation services provided), your VXD will have to do the translation using V86MMGR services. Then
your VxD would use Simulate_Int inside a nested execution block to actually call the real mode handler.

Communication from VxDs to Applications — 253

Before exiting, PriorityEventHandler exits the nested execution block by call-
ing End_Nest_Exec and restores the VM to its original state with a call to
Restore_Client_State, passing a pointer to the same CLIENT_STRUCT that was used
in the earlier call to Save_Client_State. The next time the VM is scheduled, it will
continue executing from wherever it was interrupted, unaware that this flow of execu-
tion was temporarily interrupted to call PostMessage. Finally, the VxD frees the
VMINFO structure. (It is safe to do so because PostMessage has been executed by the
time Resume_Exec returns.)

As you can see, calling a Win16 application from a VxD under Windows 3.x is a lot
of work. A VxD running under Windows 95 has an easier job. (See the sidebar “Calling
a Real Mode Interrupt Handler from a VxD” on page 252 for information on how a
VxD can also use nested execution services to call a real mode interrupt handler.)

VxD to Winlé6 Application under Windows 95:
PostMessage

The new services provided by the SHELL VxD under Windows 95 make it much eas-
ier for a VxD to notify a Win16 application through PostMessage. A single call to
SHELL_PostMessage will do the trick.

The Calling Interface for SHELL_PostMessage

BOOL SHELL_PostMessage(HANDLE hWnd, DWORD uMsg, WORD wParam, DWORD 1Param,
PPostMessage HANDLER pCallback, PVOID dwRefData);

The first four parameters correspond exactly to the real PostMessage parameters.
The pCallback parameter is a pointer to a callback function that will be called when
the PostMessage actually completes. The last parameter, dwRefData, is reference
data to be passed to the callback function.

The SHELL_PostMessage function itself has a boolean return value, where FALSE
indicates failure, usually caused by insufficient memory. Note this is not the return
value from PostMessage, because the execution of PostMessage is asynchronous
(hence the callback function). The return value of the actual call to PostMessage is
passed to the callback function, along with a pointer to the same reference data passed
in to SHELL_PostMessage.

The Calling Interface Jor SHELL_PostMessage Callback

void PostMessageHandler(DWORD dwPostMessageReturnCode, void *refdata);

254 — Writing Windows VxDs and Device Drivers

So the two-part approach required under Windows 3.x — Cal1_Priority_VM_Event
followed by nested execution services in the event handler — can be replaced by a
single call to SHELL_PostMessage under Windows 95. If the version check indicates
Windows 95, the OnVmInit and OnVmTerminate handlers in POSTVXD simply do:

SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD,1,
(DWORD)hVM, PostMessageHandler, NULL);

Note that the dynamically allocated VMINFO structure is no longer required,
because the message handler itself can pass the VM handle and the boolean directly to
SHELL_PostMessage.

VxD to Winl6 Application under Windows 95:
Appy Time

Although it’s nice to have SHELL_PostMessage available, a VXD running under Win-
dows 95 isn’t limited to calling PostMessage to communicate with Wini6 code.
Using the new “appy-time” functions (also provided by SHELL), a Windows 95 VxD
can call any function in a Win16 DLL, and the Win16 callback itself is allowed to call
any Windows API function.

To use the appy-time services, you first schedule an appy-time event by calling
SHELL_Cal1AtAppyTime.

The Calling Interface for Scheduling an Appy-time Event

APPY_HANDLE SHELL_Cal1AtAppyTime(APPY_CALLBACK pfnAppyCallBack,
void *dwRefData,
DWORD dwFlags, DWORD dwTimeout);
pfnAppyCallback: pointer to function to be called back at appy time
dwRefData: passed as parameter to pfnAppyCallback
dwFlags: describe callback conditions
if CAAFL_TIMEOUT is set, service will timeout and
callback will be invoked if appy time isn't
available within dwTimeout ms

dwTimeout: timeout used if CAAFL_TIMEOUT is set in Flags

As with other events, a VxD returns after scheduling an appy-time event. Later,
when Windows 95 is in-a “safe state”, the SHELL VxD will call the event handler.

SHELL supplies two parameters to the event handler callback: the same reference
data passed in to SHELL_Cal1AtAppyTime, and a flag that has CAAFL_TIMEOUT set if
the timeout occurred. If CAAFL_TIMEOUT is set, then the event handler is not running
during appy time and so can’t call Win16 code.

Communication from VxDs to Applications — 255

The Calling Interface for SHELL_CallAtAppyTime Callback

void AppyTimeHandler(void *dwRefData, DWORD dwFlags);

If this flag is not set, the event handler can use another SHELL service,
SHELL_Cal11D11, to call any function in any Win16 DLL. This service will take care of
loading the DLL, thunking the parameters from 32-bit to 16-bit (see Chapter 18 for a
full discussion of thunking), and unloading the DLL after the function returns.

The Calling Interface for SHELL_CallD1]

DWORD SHELL_Cal1D11(PCHAR 1pszD11, PCHAR 1pszProcName,
DWORD cbArgs, void *1pvArgs);

1pszDLL: name of Winl6 DLL

1pszProcName: name of function in DLL

cbArgs: number of bytes in arguments passed to function

1pvArgs: pointer to structure containing arguments

The first two parameters are self-explanatory. The other two parameters, cbArgs
and 1pvArgs, describe the arguments to be passed to the DLL function. This short
piece of code taken directly from the DDK documentation illustrates their use.

/* PASCAL calling convention passes arguments backwards */
struct tagEXITWINDOWARGS {
WORD wReserved;
DWORD dwReturnCode;
} ewa = { 0, EW_REBOOTWINDOWS };
SHELL_Cal1DT1("USER", "EXITWINDOWS", sizeof(ewa), &ewa);

In this example, the VxD is calling the Windows API function ExitWindows,
which is declared in WINDOWS . H as: :

BOOL _far _pascal ExitWindows(DWORD dwReturnCode, UINT wReserved);

The VxD declares a structure containing only these two parameters. The order of the
parameters in the structure is “backward” compared to the function declaration because
ExitWindows is declared with the _pascal keyword. If the DLL function was declared
as _cdec] instead, the structure would contain parameters in the “normal” order.

256 — Writing Windows VxDs and Device Drivers

Windows 95 VxD to Win32 Application:
Asynchronous Procedure Calls

To communicate with a Win32 application, a Windows 95 VxD uses a completely dif-
ferent approach, one that fits naturally with the multi-threaded support in the Win32
APIL There are two slightly different techniques, though both rely on a VxD “waking
up” a Win32 application thread.

The simplest mechanism for a VXD to communicate with a Win32 application is
via an asynchronous procedure call, or APC. This method is relatively simple for both
the application and the VxD. The application first opens the VXD (CreateFile) and
uses DeviceloControl to pass to the VxD the address of a callback function. The
application then puts itself into an “asleep yet alertable” state using the Win32 call
SleepEx. The application must use SleepEx, not plain old Sleep, because only
SleepEx puts the thread into an “alertable” state. While the application’s thread is
asleep, the VxD can call the application’s callback function using the QueueUserApc
service provided by the VWIN32 VxD.

The APCVXD Example

The APCVXD example illustrates the techniques discussed above. Like the POSTVXD
example, APCVXD notifies a registered application whenever a VM is created or
destroyed. But where POSTVXD notified a Winl6 application via PostMessage,
APCVXD notifies a Win32 application via an Asynchronous Procedure Call.

APCVXD supports a W32_DEVICEIOCONTROL interface, which lets Win32 appli-
cations register a callback function with the VxD. The VxD later calls this applica-
tion function whenever a VM is created or destroyed. The VxD passes to the
callback the address of a VMINFO structure that contains the VM handle and a bool-
ean value (TRUE if create, FALSE if destroy). Inside the callback, after the application
has printed the contents of the VMINFO structure, it calls DeviceloControl with the
APCVXD_RELEASEMEM control code, telling the VM to free the VMINFO structure.

The application is a Win32 console application (Listing 12.11, page 279), which
means it can use standard I/O functions like printf. It consists of nothing but a main
and a callback function.

void main(int ac, char* av[])

DWORD cbBytesReturned;
DWORD err;

const PCHAR VxDName = "\\\\.\\APCVXD.VXD";
hDevice = CreateFile(VxDName, 0,0,0, CREATE_NEW, FILE_FLAG_DELETE_ON.CLOSE, 0);

Communication from VxDs to Applications — 257

if (hDevice == INVALID_HANDLE_VALUE)
{

err = GetLastError();
printf("Cannot load VxD, error=%081x\n", err);
if (err = ERROR_NOT_SUPPORTED)

DeleteFile("\\\\.\\APCVXD");

)
exit(l);
}

if (err = DeviceloControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD,
sizeof(CallbackFromVxD), NULL, 0, NULL, NULL))

printf("DeviceloControl failed, error=%x\n", err);
}
else

while (TRUE)
STeepEx(1000, TRUE);

}
CloseFile(hDevice);

The application’s main function uses CreateFile to get a handle to the VxD,
then DeviceloControl to pass to the VxD the address of its callback function,
CallbackFromVxD. Finally, the application puts itself into an alertable wait state,
using the Win32 S1eepEx function with a timeout parameter of one second, and TRUE
for the bATertable parameter. S1eepEx will block until either the timeout has expired
or the VxD has called the application’s callback. When S1eepEx returns, the thread
checks for keyboard input. If input was detected, the program closes the VxD handle
and exits. Otherwise, it immediately calls S1eepEx again, waiting for another callback
from the VxD or another timeout, whichever comes first.

Note that the timeout in S1eepEx is only necessary because the application must
intermittently test for user input. If the application handled user input in a separate
thread, S1eepEx would not require a timeout (-1 for timeout parameter) and would
return only after the VxD called CallbackFromVxD.

DWORD WINAPI CallbackFromVxD(PVOID param)

{
VMINFO *pVmInfo = param;

printf(buf, "VM %081x was %s\r\n", pVmInfo->hVM, pVmInfo->bCreated ? "created” : "destroyed");
DeviceloControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmInfo),0,0,0,0);
return 0;

The callback function, CallbackFromVxD, first casts its reference data parameter
to a pointer to a VMINFO structure. The VMINFO structure contains the handle of the VM
that was created or destroyed and a boolean indicating creation or destruction. The
callback prints these two items using printf, since the application is a console appli-
cation. Finally, the callback uses DeviceloControl to call back into the VxD with the
control code APCVXD_RELEASEMEM. This code tells the VXD to free the VMINFO struc-
ture that was passed in as reference data.

258 — Writing Windows VxDs and Device Drivers

The APCVXD code is equally simple (Listing 12.7, page 275). It consists only of
three message handlers: OnW32Deviceiocontrol, OnVmInit, and OnVmTerminate.

DWORD OnW32Deviceiocontrol (PDIOCPARAMETERS p)
{
DWORD rc;

switch (p->dwloControlCode)
{
case DIOC_OPEN:

rc = 0;

break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;
rc =0;
break;

case APCVXD_REGISTER:
VmEventApc = p->1pvInBuffer;
appThread = Get_Cur_Thread_Handle();
bClientRegistered = TRUE;
rc = 0; // return OK
break;

case APCVXD_RELEASEMEM:
_HeapFree(p->1pvInBuffer, 0);
rc =0;
break;

default:
rc = Oxffffffff;
}

return rc;

Note that OnW32Deviceiocontrol returns zero when the control code indicates
either DIOC_GETVERSION or DIOC_CLOSEHANDLE. As mentioned in the last chapter, fail-
ure to do so will cause the application call to CreateFile or CloseHandle to fail.
APCVXD also handles two other control codes [defined in APCVXD.H (Listing 12.6,
page 275)]: APCVXD_REGISTER and APCVXD_RELEASEMEM.

To process APVXD_REGISTER, APCVXD grabs the callback function address from the
DIOCPARAMETERS input buffer, then calls the VMM service Get_Cur_Thread_Handle
-to obtain the Ring O handle for the caller’s thread. (This thread handle will be used
later, during the callback process.) Both the callback address and the thread handle
are saved in global variables. To process APCVXD_RELEASEMEM, the VxD frees the
pointer passed in by the caller via the DIOCPARAMETER input buffer. The application
should have loaded this pointer with the address of a structure that was allocated earlier
by the VxD (during VM create or destroy) and passed to the application’s callback.

Communication from VxDs to Applications — 259

The VM_Init and VM_Terminate handlers (see the following paragraph-of code)
look something like their counterparts in the earlier POSTVXD (VxD to Win16 appli-
cation) example. Each verifies that the boolean bClientRegistered is already set
and then allocates and initializes a VMINFO structure containing the VM handle and a
boolean indicating VM creation or destruction. But where the handlers in POSTVXD
scheduled a VM event, APCVXD uses the VWIN32 service _VWIN32_QueueUserApc
to queue a call to the registered application callback.

BOOL OnVmInit(VMHANDLE hVM)
{
VMINFO *pVmInfo;

if (bClientRegistered)
{
pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{
pVmInfo->hVM = hVM;
pVmInfo->bVmCreated = TRUE;
_VWIN32_QueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);
}
}
return TRUE;
}

VOID OnVmTerminate(VMHANDLE hVM)
{
VMINFO *pVmInfo;

if (bClientRegistered)
{
pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{
pVmInfo->hVM = hVM;
pVmInfo->bVmCreated = FALSE;
_VWIN32_QueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);

Although both Win32 applications and VxDs support the notion of “thread
handles”, a Ring 3 thread handle (obtained by calling the Win32 API function
GetCurrentThread) is not the same as a Ring O thread handle. Because
_VWIN32_QueueUserApc requires a Ring O thread handle, APCVXD calls the VMM
service Get_Cur_Thread_Handle during W32_DEVICEIOCONTROL processing to obtain
the Ring 0 handle of the caller’s thread.

260 — Writing Windows VxDs and Device Drivers

The Calling Interface for VWIN32_QueueUserApc

VOID _VWIN32_QueueUserApc(PVOID pR3Proc, DWORD Param, THREADHANDLE hThread);
pR3Proc: linear address of Ring 3 code to execute
Param: parameter to pass to Ring 3 code
hThread: Ring3 code runs in this thread context
NOTE: this is a Ring 0 thread handle, not a Ring 3 thread handle

As the name of the VWIN32 service suggests, the callback is not executed imme-
diately but is queued, to be executed at a later time (when the System VM is current,
etc.) When _VWIN32_QueueUserApc returns, the APCVXD message handler also
returns, having finished its processing.

Because APCVXD uses global variables to store both the callback address
and the thread handle, only one Win32 application can use APCVXD at a
time. In order to support usage by multiple Win32 applications at the same
time, APCVXD would need to dynamically allocate a structure to store the
callback address and the thread handle and then add the dynamically allocated
structures to a linked list. The create and destroy VM handlers would then
traverse the list, calling _VWIN32_QueueUserApc for each registered callback
in the list.

Windows 95 VxD to Win32 Apphcatwn :
Win32 Events

Although using an APC is probably the easiest way to implement a VxD-to-applica-
tion calling mechanism, there is a much more efficient method. If the Win32 applica-
tion is multithreaded, the application can continue to do work in a main thread while a
second thread is waiting on a wakeup from the VxD. For example, a main thread
could monitor for user input while a second thread waits on a VxD that is buffering
incoming data. When the buffered data reaches a threshold level, the VxD wakes up
the waiting Win32 thread.

VxDs use thread events for interthread notification, much as multi-threaded
Win32 applications do. In a multi-threaded Win32 application, Win32 events are
often used to signal from one thread to another that an operation has been completed,
for example that a buffer has been read from disk. One thread creates the event, starts
the second thread, and then waits on the event (which will be signaled by the second

Communication from VxDs to Applications — 261

thread). Assuming the waiting thread has nothing to do until the data is read, this
structure is an efficient use of resources; the waiting thread is'blocked and thus con-
sumes minimal processor cycles.

The Win32 API contains the following event functions:
CreateEvent to create the event and obtain an event handle
ResetEvent to set the event to the unsignaled state
SetEvent to set the event to the signaled state

PulseEvent to set the event to the signaled state and then immediately set it to
unsignaled

WaitForSingleObject to block until the event is signaled

WaitForMultipleObjects to block until any or all the events are signaled
(depending on flag parameter)

The following paragraph of code presents a simple multithreaded Win32 applica-

tion which illustrates the use of Win32 events. It consists of two threads, where the
first thread signals the second whenever the users presses the ‘S’ key. The second
thread prints a message whenever it is signaled.

DWORD WINAPI SecondThread(HANDLE hEvent)

{

}

while (TRUE)

{
WaitForSingleObject(hEvent, INFINITE);
printf("Second thread was signaled\n");

}
return 0;

void main(int ac, char *av[])

{

BOOL bExit = FALSE;
HANDLE hEvent;

char c¢;

DWORD tid;

hEvent = CreateEvent(0, FALSE, FALSE, NULL);
CreateThread(0, 0x1000, SecondThread, hEvent, 0, &tid);

printf("Press 'S' to signal second thread\n");
printf("Press 'X' to exit\n");

262 — Writing Windows VxDs and Device Drivers

while (!bExit)
{
¢ = getch();
switch(¢)
{
case 'S'":

[}

case 's':
SetEvent(hEvent);
break;

case 'X':

case 'x':
bExit = TRUE;
break;

VxDs and Win32 Events

Under Windows 95, VxDs have access to the very same Win32 event AP, through a
set of services provided by the VWIN32 VxD. Using these services, a VxD can signal
a waiting Win32 application thread, or wait to be signaled by a Win32 application
thread. The VWIN32 event services are:
+ _VWIN3Z2_ResetWin32Event
+ _VWIN3Z2_SetWin32Event
+ _VWIN32_PulseWin32Event
o _VWIN32 WaitSingleObject
o _VWIN32_WaitMultipleObjects

Unfortunately, a VXD can’t obtain a Win32 event handle simply by calling the
appropriate event service. (Note that a CreateEvent service is conspicuously missing
in the above list.) Thus, obtaining an event handle that is usable to a VxD becomes a
complicated process involving, among other things, an undocumented system call. The
event is always created by the application, via the Win32 API CreateEvent. The applica-
tion must then translate the event handle returned by CreateEvent into a VxD event
handle, using the undocumented Win32 API function OpenVxDHandle. The applica-
tion then passes the translated (Ring 0) event handle to the VXD via DeviceloControl,
and the VxD uses this handle as a parameter to the VWIN32 event functions.

Communication from VxDs to Applications — 263

The EVENTVXD example (Listing 12.15, page 282) uses a Win32 event to signal
a Win32 application thread from a VxD. Like the POSTVXD and APCVXD examples
introduced earlier in this chapter, EVENTVXD notifies a registered application when-
ever a VM is created or destroyed. But where APCVXD used an Asynchronous Proce-
dure Call to notify a Win32 application, EVENTVXD uses a Win32 event.

EVENTVXD supports the W32_DEVICEIOCONTROL message, which lets a Win32
application register a Win32 event handle with the VxD. The Win32 thread that regis-
tered this event handle should then wait on the event, which the VxD will signal
whenever a VM is created or destroyed. As part of the initial registration, the VxD
returns to the application the address of a VMINFO structure. When the application
thread is signaled, this structure will contain the handle of the VM that was created or
destroyed and a boolean indicating creation or destruction.

Like the earlier APCVXD example, the code for EVENTVXD consists of only
three message handlers: OnW32Deviceiocontrol, OnVmInit, and OnVmTerminate.

DWORD OnW32Deviceiocontrol (PDIOCPARAMETERS p)
{
DWORD rc;

switch (p->dwloControlCode)
{
case DIOC_OPEN:

rc =0;

break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;
rc =0;
break;

case EVENTVXD_REGISTER:
hWin32Event = p->T1pvInBuffer;
*((DWORD *) (p->TpvOutBuffer)) = (DWORD)&GlobalVMInfo;
*((DWORD *)(p->1pcbBytesReturned)) = sizeof(DWORD);
bClientRegistered = TRUE; '

rc = 0;
break; -
default:

rc = Oxffffffff;
}

return rc;

264 — Writing Windows VxDs and Device Drivers

Like the other W32_DEVICEIOCONTROL message handlers we’ve seen, this one
returns O when- the control code indicates either DIOC_GETVERSION or
DIOC_CLOSEHANDLE. If the control code is EVENTVXD_REGISTER, EVENTVXD copies
the event handle from the DIOCPARAMETERS input buffer into the global variable
hWin32Event. .

BOOL OnVmInit(VMHANDLE hVM)
{
if (bClientRegistered)
{
GlobalVMInfo.hVM = hVM;
GlobalVMInfo.bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);
} : :
return TRUE;
}

VOID OnVmTerminate(VMHANDLE hVM)
{
if (bClientRegistered)
{
GlobalVMInfo.hVM = hVM;
GlobalVMInfo.bVmCreated = FALSE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);

The VM_Init and VM_Terminate handlers (Listing 12.16, page 284) look more
like their counterparts from the POSTVXD example than the ones from the APCVXD
example. Like POSTVXD, EVENTVXD must postpone its real work (signaling the
Win32 event) for a VM event handler, because the VWIN32 event functions may only
be called when the System VM is current. Unlike POSTVXD, however, EVENTVXD
does not dynamically allocate a VMINFO structure and pass the structure address to
the event handler as reference data. Instead, EVENTVXD uses a global VMINFO
structure, and passes the Win32 event handle as reference data to its event callback.

Communication from VxDs to Applications — 265

Where both APCVXD and POSTVXD pass a VMINFO pointer to the application
(POSTVXD via the 1Param of PostMessage and APCVXD as a reference data
parameter), EVENTVXD has no way of passing reference data to the Win32 applica-
tion. The VxD doesn’t call a function in the Win32 application. The Win32 applica-
tion simply wakes up from the event it has been waiting on.

Because the VxD can’t pass reference data to the Win32 thread that it’s unblock-
ing, it must use a different method to pass data. The VxD tells the Win32 application
ahead of time, through DeviceloContro]l, the address of a VMINFO structure that will
contain VM information. The VxD must then always use this same YMINFO structure,
because that’s the one the Win32 application knows about.

VOID __stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs)
{
HANDLE hWin32Event = Refdata;

_VWIN32_SetWin32Event(hWin32Event);

The VMM calls the System VM event handler, PriorityEventHandler, once
the System VM has been scheduled. At this time, PriorityEventHandler can
safely call _VWIN32_SetWin32Event, using the reference data parameter as the
Win32 event handle.

The accompanying Win32 application, which uses the EVENTVXD, is more
complicated than the other Windows example applications, partly because it has two
threads, but mostly because it must go to great lengths to obtain a usable event handle.

void main(int ac, char *av[])
{
hEventRing3 = CreateEvent(0, FALSE, FALSE, NULL);
if (!hEventRing3)
{
printf("Cannot create Ring3 event\n");
exit(1);
}

hKerne132D11 = LoadLibrary("kernel32.d11");
if (!hKernel32D11)

{

printf("Cannot load KERNEL32.DLL\n");
exit(l);

}

266 — Writing Windows VxDs and Device Drivers

pfOpenVxDHandle = (HANDLE (WINAPI *) (HANDLE))
GetProcAddress(Kernel32D11, - "OpenVxDHandle");
if (!pfOpenVxDHandle)

{

printf("Cannot get addr of OpenVxDHandle\n");
exit(l);
)

hEventRing0 = (*pfOpenVxDHandle) (hEventRing3);
if ('hEventRing0)
{
printf("Cannot create Ring0 event\n");
exit(l);
}

The main thread must make four different Win32 API calls to create a Win32
event and then obtain a Ring 0 handle for this event usable by the VxD. Creating
the event requires only a call to CreateEvent. The application uses FALSE for the
bManualReset parameter to obtain an auto-reset event. Windows will automati-
cally reset this type of event to the non-signaled state when it wakes up the wait-
ing thread, saving the second thread from explicitly calling ResetEvent. The
application also specifies FALSE as the bInitialValue parameter. Thus, initially
the event will be in the non-signaled state, causing the second thread to block on
the event immediately.

To translate the event handle returned by CreateEvent into a handle usable by the
VxD, the application must call the OpenVxDHandle function in KERNEL32.DLL. This
function is not documented and not in the Win32 import library, thus its address must
be acquired via run-time dynamic linking. First the application uses LoadLibrary to
load KERNEL32.DLL. Then it calls GetProcAddress, specifying both the name of the
function ("OpenVxDHand1e") and the instance handle returned by LoadLibrary.

GetProcAddress returns a function pointer, which the application uses to call the
OpenVxDHand1e function. This function takes as input a Ring 3 event handle, returned
by CreateEvent and returns another handle for the event (one usable at Ring 0). The
application stores this Ring O handle in hEventRing0, to be passed to the
EVENTVXD via DeviceloControl.

hDevice = CreateFile(VxDName, 0O, 0, O, CREATE_NEW,
FILE_FLAG_DELETE_ON_CLOSE, 0);
if (!hDevice)
{
printf("Cannot load VxD error=%x\n", GetLastError());
exit(l);

Communication from VxDs to Applications — 267

if (!DeviceloControl(hDevice, EVENTVXD_REGISTER,
hEventRing0, sizeof(hEventRing0),
&pVMInfo, sizeof(pVMInfo),
&cbBytesReturned, 0))

printf("DeviceloControl REGISTER failed\n");
exit(l);

The next part of main looks similar to the APC example application described earlier
in this chapter. The application opens a channel to the VxD and uses DeviceloControl
to pass hEventRingO0 to the VxD.

The function prototype for DeviceloControl declares both the 1pInBuffer and
the 1pOutBuffer parameters to be void pointers, but it is always up to the VxD to
decide exactly how these pointers are used. EVENTVXD expects the input pointer for
an EVENTVXD_REGISTER control code to be a Ring O event handle, not a pointer.
EVENTVXD expects the output pointer to point to a DWORD, which it fills in with the
address of a VMINFO structure.

After giving the event handle to the VxD, the main thread has nothing left to do
but create the second thread (which will wait to be signaled by the VxD) and wait for
user input. Because the main thread has nothing else to do but wait for input — it’s
the second thread that’s doing the work — it uses the C library function getch, which
blocks. When getch finally returns with a key, the main thread closes the channel to
the VxD and returns.

CreateThread(0, 0x1000, SecondThread, hEventRing3, 0, &tid);
printf("Press any key to exit...");

getch();

CloseHandle(hDevice);

You may notice that the main thread doesn’t do anything to terminate the
second thread. This may seem dangerous, and in fact, Windows 95 won’t
automatically kill off additional threads when the main thread ends.
However, the C run-time exit code does terminate additional threads when
main returns. If you want to be extra safe, you can explicitly terminate the
secondary thread before exiting main by calling TerminateThread and
passing in the (Ring 3) thread handle returned originally by CreateThread.

That wraps up the main thread of the application, which exists only to create a
second thread which does the real work. The second thread, contained in the function
SecondThread, is short and simple.

268 — Writing Windows VxDs and Device Drivers

DWORD WINAPI SecondThread(PVOID hEventRing3)

{
while(TRUE)
{
WaitForSingleObject((HANDLE)hEventRing3, INFINITE);
printf("VM %081x was %x", pVMInfo->hVM,
pVMInfo->bCreated ? "created" : "destroyed");

)
return O;

The reference data parameter gives SecondThread the handle of a Win32 event to
wait on. SecondThread then waits, with an infinite timeout, on this event. When the
event is signaled, SecondThread uses the global variable pVMInfo to access a VMINFO
structure that contains the VM handle and an indication of either creation or destruc-
tion. Then SecondThread waits again on the event. Note that SecondThread doesn’t
have to call ResetEvent because the event was created as an auto-reset event.

Summary

This chapter covered all the techniques used by VxDs to communicate with applica-
tions. All rely on an initial call to the VxD, initiated by the application, to pass infor-
mation about a callback function or event handle which the VxD uses later to
communicate back to the application. Under Windows 3.x, a VxD may not call arbi-
trary Win16 code but is essentially limited to calling PostMessage, using the window
handle and PostMessage address passed in by the application. Under Windows 95, a
VxD may still communicate with a Win16 application by calling PostMessage, but
the VxD may also call any function in any Win16 DLL. A VxD has two different
choices when communicating with a Win32 application: either the simple but not so
elegant asynchronous procedure call (APC) or the more elegant use of Win32 events
to signal a waiting Win32 application thread.

Communication from VxDs to Applications — 269

Listing 12.1 POSTVXD.H

fidefine POSTVXD_ID 0xBADD
ffdefine POSTVXD_REGISTER 0x1000
fidefine POSTVXD_DEREGISTER 0x1001

// based on WM_USER in windows.h
jidefine WM_USER_POSTVXD (0x0400+0x0100)

Listing 12.2 POSTVXD.C

fidefine WANTVXDWRAPS

#include <basedef.h>
finclude <vmm.h>
#include <debug.h>
fHinclude "vxdcall.h"
#include <vxdwraps.h>
#Hinclude <wrappers.h>
#Hinclude <vwin32.h>
#include "postvxd.h"

#ifdef DEBUG

ftdefine DPRINTFO(buf, fmt) _Sprintf(buf, fmt); Out_Debug_String(buf)

#define DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)

#define DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);
Out_Debug_String(buf)

ffelse

Jidefine DPRINTFO(buf, fmt)

fidefine DPRINTF1(buf, fmt, argl)

fidefine DPRINTF2(buf, fmt, argl, arg2)

ffendif

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode,.PVOID refdata);

// functions in asm module
void PriorityEventThunk(void);

BOOL bClientRegistered = FALSE; // True when PM API called to register
WORD PostMsgOffset;

WORD PostMsgSelector;

HANDLE PostMsghWnd;

char dbgbuf[801];

BOOL bWin3x;

typedef struct
{
BOOL bVmCreated;

VMHANDLE hVM;
} VMINFO;

270 — Writing Windows VxDs and Device Drivers

Listing 12.2 (continued) POSTVXD.C

BOOL OnSysDynamicDevicelInit()
{

DPRINTFO(dbgbuf, "Loading\r\n");
return TRUE;
}

BOOL OnSysDynamicDeviceExit()

DPRINTFO(dbgbuf,"Unloading\r\n");
return TRUE;
}

BOOL OnInitComplete(VMHANDLE hVM)
{
DWORD ver;

ver = Get_VMM_Version();
if (HIWORD(ver) <= 3)
{

// Win3.x, not 95
bWin3x = TRUE;
}
}

BOOL OnVmInit(VMHANDLE hVM)
{ VMINFO *pInfo;
if (bClientRegistered)
{ zf (bWin3x)

pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
{

pInfo->hVM = hVM;

pInfo->bVmCreated = TRUE;

Call_Priority_VM_Event (LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);

_SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 1, (DWORD)hVM,
PostMessageHandler, NULL);
}
}
return TRUE;

Communication from VxDs to Applications — 271

Listing 12.2 (continued) POSTVXD.C

VOID OnVmTerminate(VMHANDLE hVM)
{
VMINFO *pInfo;

if (bClientRegistered)
{

if (bWin3x)
{
pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
{
pInfo->hVM = hVM;
pInfo->bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);

_SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 0, hVM,
PostMessageHandler, NULL);

}

VOID __stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs)
{

CLIENT_STRUCT saveRegs;

VMINFO *pInfo = Refdata;

Save_Client_State(&saveRegs);
Begin_Nest_Exec();

Simulate_Push(PostMsghWnd); // hwnd

Simulate_Push(WM_USER_POSTVXD); // message
Simulate_Push(pInfo->bVmCreated); // wParam
Simulate_Push(((DWORD)pInfo->hVM >> 16)); // 1Param

Simulate_Push(((DWORD)pInfo->hVM & Oxffff));
Simulate_Far_Call(PostMsgSelector, PostMsgOffset);
Resume_Exec();
End_Nest_Exec();
Restore_Client_State(&saveRegs);
_HeapFree(pInfo, 0);

}

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode, PVOID refdata)
{

if (!dwPostMessageReturnCode)
DPRINTFO(dbgbuf, "PostMessage failed!\r\n");

272 — Writing Windows VxDs and Device Drivers

Listing 12.2 (continued) POSTVXD.C

VOID __cdecl PM_Api_Handler(VMHANDLE hVM, CLIENT_STRUCT *pcrs)

switch (pcrs->CWRS.Client_AX)

{
case POSTVXD_REGISTER:
PostMsghWnd = (HANDLE)pcrs->CWRS.Client_BX;
PostMsgSelector = pcrs->CWRS.Client_CX;
PostMsgOffset = pcrs->CWRS.Client_DX;
bClientRegistered = TRUE;
pers->CWRS.Client_AX = 0;
break;

case POSTVXD_DEREGISTER:
bClientRegistered = FALSE;
pcrs->CWRS.Client_AX = 0;
break;

default:
pcrs->CWRS.Client_AX = Oxffff;

Listing 12.3 POSTDDB.ASM

.386p

ekkhkkkkxhkhkkkkhkkkkhkkhkkhkhkhhkhkkhkkhkkhkikkhkhkkkhkhkkkkkhkkkhkhkhkkkkhkkhkhkkhkhkkkhkkkkkhkhkkkhkkkk
B

INCLUDES

H
chk AR A A A I I I A A AR A ARKAKR AR I I A AAARRAAIRRRRRKAARAARAR KA KA AR RARKA AR AR ARk kAR Ak khkhkhhhhkxx
’

include vmm.inc
include debug.inc

; VIRTUAL DEVICE DECLARATION

POSTVXD_ID EQU OBADDh

DECLARE_VIRTUAL_DEVICE POSTVXD, 1, 0, ControlProc, POSTVXD_ID, \
UNDEFINED_INIT_ORDER, 0, PM_API

VxD_LOCKED_CODE_SEG

Communication from VxDs to Applications — 273

Listing 12.3 (continued) POSTDDB.ASM

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

’
H
’
B
B
»
;
B
H
H
»
’
»
B
»
N
B
N

BeginProc ControlProc
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>
Control_Dispatch INIT_COMPLETE, _OnInitComplete, cCall, <ebx>
Control_Dispatch VM_INIT, _OnVmInit, cCall, <ebx>
Control_Dispatch VM_TERMINATE, _OnVmTerminate, cCall, <ebx>
clc
ret
EndProc ControlProc
BeginProc PM_API

cCall _PM_Api_Handler, <ebx, ebp>
ret

EndProc PM_API
VxD_LOCKED_CODE_ENDS
VxD_CODE_SEG

BeginProc _PriorityEventThunk

sCall PriorityEventHandler, <ebx,edx,ebp>
ret

EndProc _PriorityEventThunk
VxD_CODE_ENDS
END

274 — Writing Windows VxDs and Device Drivers

Listing 124 POSTVXD. MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:1386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: postvxd.vxd

postvxd.obj: postvxd.c
cl $(CVXDFLAGS) -Fo$@ %s

postddb.obj: postddb.asm
ml $(AFLAGS) -Fo$@ %s

postvxd.vxd: postddb.obj postvxd.obj ..\..\wrappers\vxdcall.obj
..\..\wrappers\wrappers.clb postvxd.def

echo >NUL @Kpostvxd.crf

-MACHINE: 1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:postvxd.def ' -OUT:postvxd.vxd -MAP:postvxd.map

-VXD vxdwraps.clb wrappers.clb vxdcall.obj postddb.obj postvxd.obj

<L
link @postvxd.crf
mapsym postvxd

Listing 12.5 POSTVXD.DEF

VXD POSTVXD DYNAMIC
SEGMENTS
_LTEXT CLASS "LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS "LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS . CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE" DISCARDABLE
_IDATA CLASS "ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' ~ NONDISCARDABLE
_PDATA CLASS 'PCODE' - NONDISCARDABLE
_STEXT CLASS "SCODE' RESIDENT
_SDATA CLASS 'SCODE' RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE®
EXPORTS
POSTVXD_DDB @1

Communication from VxDs to Applications — 275

Listing 12.6 APCVXD.H

fidefine APCVXD_REGISTER 0x8100
fidefine APCVXD_RELEASEMEM 0x8101

typedef struct
{
BOOL bVmCreated;

DWORD hVM;
} VMINFO;

Listing 12.7 APCVXD.C

fidefine WANTVXDWRAPS

ffinclude <basedef.h>
#include <vmm.h>
#include <debug.h>
#include "vxdcall.h"

#Hinclude <wrappers.h>
#include <vwin32.h>
finclude "apcvxd.h”

#ifdef DEBUG

#idefine DPRINTFO(buf, fmt) _Sprintf(buf, fmt); Out_Debug_String(buf)

jtdefine DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)

fidefine DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);
Out_Debug_String(buf)

felse

jidefine DPRINTFO(buf, fmt)

fidefine DPRINTF1(buf, fmt, argl)
jidefine DPRINTF2(buf, fmt, argl, arg2)
ffendif

typedef struct tcb_s *PTCB;
char dbgbuf[801;

BOOL bClientRegistered = FALSE;
PVOID VmEventApc = 0;
PTCB appThread = 0;
BOOL OnVmInit(VMHANDLE hVM)
{
VMINFO *pVmInfo;
if (bClientRegistered)
{

pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{

pymInfo->hVM = hVM;

pVmInfo->bVmCreated = TRUE;

_VWIN32_QueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);
}

}
return TRUE;

276 — Writing Windows VxDs and Device Drivers

Listing 12.7 (continued) APCVXD.C

VOID OnVmTerminate(VMHANDLE hVM)
VMINFO *pVmInfo;
if (bClientRegistered)
{

pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{

pvmInfo->hVM = hVM;

pVmInfo->bVmCreated = FALSE;

_VWIN32_QueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);
}

}
BOOL OnSysDynamicDevicelnit()
{

DPRINTFO(dbgbuf, "Loading\r\n");
return TRUE;
}

BOOL OnSysDynamicDeviceExit()

DPRINTFO(dbgbuf, "Unloading\r\n");
return TRUE;

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)
{

DWORD rc;

switch (p->dwloControlCode)

case DIOC_OPEN:
rc = 0;
break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;
rc =0;
break;

case APCVXD_REGISTER:
VmEventApc = p->TpvInBuffer;
appThread = Get_Cur_Thread_Handle();
bClientRegistered = TRUE;
rc =0; // return 0K
break;

case APCVXD_RELEASEMEM:
_HeapFree(p->1pvInBuffer, 0);
rc =0;
break;

default:
rc = Oxffffffff;

return rc;

Communication from VxDs to Applications — 277

Listing 12.8 APCDDB. ASM

.386p

skkkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhhkhkhhkkhhkkhkhkhhhhkrbhkhkhhkhhkkhkkkhkhkhkhkhkkhkhkhkhhkhhhkhkhkkhkkkhkhkkd
s

INCLUDES

»
chhhkhkhkhkkkhkhhkhkhkhkhkhkkhkhkhkhkkkkkkkkkhkhkhkhkhkkkkAkhkkhkkkhrrkrhhhhkkkkhhkkkhkhkhhkkrkkkhhhkr
B

include vmm.inc
include debug.inc

H 7

: VIRTUAL DEVICE DECLARATION

6ECLARE_VIRTUAL_DEVICE APCVXD, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

If carry clear then
Successful

else

Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

LT

BeginProc ControlProc
Control_Dispatch VM_INIT, _OnVmInit, cCall, <ebx> .
Control_Dispatch VM_TERMINATE, _OnVmTerminate, cCall, <ebx>

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>

Control_Dispatch W32_DEVICEIOCONTROL, _OnW32Deviceiocontrol, cCall, <esi>
ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

END

278 — Writing Windows VxDs and Device Drivers

Listing 129 APCVXD. MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:i386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: apcvxd.vxd

apcvxd.obj: apcvxd.c
cl $(CVXDFLAGS) -Fos@ %s

apcddb.obj: apcddb.asm
ml $(AFLAGS) -Fo$@ %s

apcvxd.vxd: apcddb.obj apcvxd.obj ..\..\..\wrappers\vxdcall.obj
..\ \ L \wrappers\wrappers.clb apcvxd.def
echo >NUL @<<apcvxd.crf
-MACHINE: 1386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:apcvxd.def -0UT:apcvxd.vxd -MAP:apcvxd.map
-VXD vxdwraps.clb wrappers.clb vxdcall.obj apcddb.obj apcvxd.obj
1<4
link @apcvxd.crf
mapsym apcvxd

Listing 12.10 APCVXD.DEF

VXD APCVXD DYNAMIC
SEGMENTS
_LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS - CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE" DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PDATA CLASS 'PCODE' NONDISCARDABLE
_STEXT CLASS 'SCODE' RESIDENT
_SDATA CLASS 'SCODE" ~ RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA ~ CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE’ PRELOAD DISCARDABLE
_RCODE CLASS "RCODE’
EXPORTS
APCVXD_DDB @1

Communication from VxDs to Applications — 279

Listing 12.11 APC/WIN3ZAPP/WIN32APP.C

fHinclude <stdio.h>
fHinclude <conio.h>
#Hinclude <windows.h>
#include "apcvxd.h"

HANDLE hDevice;
char buf[8071;
DWORD WINAPI CallbackFromVxD(PVOID param);

DWORD WINAPI CallbackFromVxD(PVOID param)
{
VMINFO *pVmInfo = param;
printf(buf, "VM %081x was %s\r\n", pVmInfo->hVM,

pVmInfo->bVmCreated 7 "created" : "destroyed");
DeviceloControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmInfo),0,0,0,0);

return 0;
}
void main(int ac, char* av[])

DWORD err;
const PCHAR VxDName = "\\\\.\\APCVXD.VXD";

hDevice = CreateFile(VxDName, 0,0,0, CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);
if (hDevice == INVALID_HANDLE_VALUE)
{
err = GetLastError();
printf("Cannot load VxD, error=%081x\n", err);
if (err == ERROR_NOT_SUPPORTED)
DeleteFile("\\\\.\\APCVXD");

}
exit(l);
}

if (!DeviceloControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD, sizeof(void *),
NULL, 0, NULL, NULL))
{

}
else
{

printf("DeviceloControl failed, error=%d\n", GetLastError());

printf("press ctr1-C to exit . . .\n");

while (TRUE)
{
SleepEx(-1, TRUE);

280 — Writing Windows VxDs and Device Drivers

Listing 12.12 APC/WIN32APP/WIN32APP.MAK

win32app.exe: win32app.obj

Tink @K
kerne132.1ib user32.1ib gdi32.1ib winspool.1ib comd1g32.1ib advapi32.1ib
shel1132.1ib 01e32.1ib oleaut32.1ib uuid.1ib /NOLOGO /SUBSYSTEM:console
/INCREMENTAL:no /PDB:none /MACHINE:1386 /0UT:win32app.exe win32app.obj
<«

win32app.obj: win32app.c
cl /c /ML /GX /YX /0d /D "WIN32" /D "NDEBUG" /D "_CONSOLE" -I..\vxd win32app.c

Listing 12.13 EVENTVXD.H

typedef struct
{
BOOL bVmCreated;

DWORD hvM;
} VMINFO;
fidefine EVENTVXD_REGISTER 0x8100

ffdefine EVENTVXD_RELEASEMEM 0x8101

Listing 12.14 EVENTVXD.C

fidefine WANTVXDWRAPS

#include <basedef.h>
fHinclude <vmm.h>
#include <debug.h>
#inciude "vxdcall.h"

#include <wrappers.h>
#include <vwin32.h>
fHinclude "eventvxd.h"

fHifdef DEBUG

jfdefine DPRINTFO(buf, fmt) _Sprintf(buf, fmt); Out_Debug_String(buf)

ffdefine DPRINTF1(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)

fidefine DPRINTF2(buf, fmt, argl, arg2) _Sprintf(buf, fmt, argl, arg2);
Out_Debug_String(buf)

ffelse ‘

ftdefine DPRINTFO(buf, fmt)

ftdefine DPRINTF1(buf, fmt, argl)

#define DPRINTF2(buf, fmt, argl, arg2)

fendif

Communication from VxDs to Applications — 281

Listing 12.14 (continued) EVENTVXD.C

// functions in asm module
void PriorityEventThunk(void);

typedef VMINFO *PVMINFO;
VOID __stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs);

BOOL bClientRegistered = FALSE;
VMINFO GlobalVMInfo;

HANDLE hWin32Event;

char dbgbuf[807;

BOOL OnVmInit(VMHANDLE hVM)
if (bClientRegistered)
{

GlobalVMInfo.hVM = hVM;

GlobalVMInfo.bVmCreated = TRUE;

Cal1_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);

}
return TRUE;
}

VOID OnVmTerminate(VMHANDLE hVM)
{
if (bClientRegistered)
{
GlobalVMInfo.hVM = hVM;
GlobalVMInfo.bVmCreated = FALSE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),
PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);
}
VOID __stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs)
{
HANDLE hWin32Event = Refdata;

_VWIN32_SetWin32Event(hWin32Event);
}

BOOL OnSysDynamicDevicelnit()
DPRINTFO(dbgbuf, "Loading\r\n");
return TRUE;

}

BOOL OnSysDynamicDeviceExit()

DPRINTFO(dbgbuf, "Unloading\r\n");
return TRUE;

282 — Writing Windows VxDs and Device Drivers

Listing 12.14 (continued) EVENTVXD.C

DWORD OnW32Devicejocontrol (PDIOCPARAMETERS p)
{
DWORD rc;

switch (p->dwloControlCode)
{

case DIOC_OPEN:
rc =0;
break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;
rc =0;
break;

case EVENTVXD_REGISTER:
hWin32Event = p->1pvInBuffer;
*((DWORD *)(p->1pvOutBuffer)) = (DWORD)>obalVMInfo;
*((DWORD *)(p->1pcbBytesReturned)) = sizeof(DWORD);
bClientRegistered = TRUE;
rc =0;
break;

default:
rc = OxfFFfffff;

return rc;

Listing 12.15 EVENTDDB.ASM

.386p

*kk hkkkkkkkkhkddk hhkhkkkhkhkkhhkkhkhkhhkhhkkkkhhrhhhrhkkkhhkkhkkkkhkk *

INCLUDES

»
P REREAAKKAKRKAKAKRRAA KA KA KRR AKARRKRARRAKR Ak Ak kkhh kA h A A dhhhkhhhhhhAkhkhhhhkhhkhkhhhkkhkkdkikx
H

include vmm.inc
include debug.inc

VIRTUAL DEVICE DECLARATION

6ECLARE_VIRTUAL_DEVICE EVENTVXD, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

Communication from VxDs to Applications — 283

Listing 12.15 (continued) EVENTDDB.ASM

VxD_LOCKED_CODE_SEG

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then
Successful
else
Control call failed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch VM_INIT, _OnVmInit, cCall, <ebx>
Control_Dispatch VM_TERMINATE, _OnVmTerminate, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDevicelnit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall, <ebx>
Control_Dispatch W32_DEVICEIOCONTROL, _OnW32Deviceiocontrol, cCall, <esi>
clc
ret
EndProc ControlProc
VxD_LOCKED_CODE_ENDS
VxD_CODE_SEG
BeginProc _PriorityEventThunk

sCall PriorityEventHandler, <ebx,edx,ebp>
ret

EndProc _PriorityEventThunk
VxD_CODE_ENDS
END

284 — Writing Windows VxDs and Device Drivers

Listing 12.16 EVENTVXD.MAK

CFLAGS = -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Z1 -DDEBLEVEL=1 -DDEBUG
LFLAGS = -machine:i386 -debug:notmapped,full -debugtype:cv
-subsystem:console kernel32.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: eventvxd.vxd

eventvxd.obj: eventvxd.c
¢l $(CVXDFLAGS) -Fos$@ %s

eventddb.obj: eventddb.asm
ml $(AFLAGS) -Fo$@ %s

eventvxd.vxd: eventddb.obj eventvxd.obj ..\..\..\wrappers\vxdcall.obj
..\..\..\wrappers\wrappers.clb eventvxd.def

echo >NUL @<eventvxd.crf

-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE

-DEF:eventvxd.def -OUT:eventvxd.vxd -MAP:eventvxd.map

-VXD vxdwraps.clb wrappers.clb vxdcall.obj eventddb.obj eventvxd.obj

<4
link @eventvxd.crf
mapsym eventvxd

Listing 12.17 EVENTVXD. DEF

VXD EVENTVXD DYNAMIC
SEGMENTS
_LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS "ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PDATA CLASS 'PCODE' NONDISCARDABLE
_STEXT CLASS 'SCODE' RESIDENT
_SDATA CLASS 'SCODE' RESIDENT
_MSGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_MSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE ~ CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE’
EXPORTS
EVENTVXD_DDB @1

Communication from VxDs to Applications — 285

Listing 12.18 W32EVENT/WIN32APP/WIN32APP.C

#include <stdio.h>

#include <stdlib.h>
#include <conio.h>

#include <windows.h>
JHnclude "..\vxd\eventvxd.h"

HANDLE hDevice;
VMINFO *pVMInfo;

DWORD WINAPI SecondThread(PVOID hEventRing3);
DWORD WINAPI SecondThread(PVOID hEventRing3)
while(TRUE)
{

WaitForSingleObject((HANDLE)hEventRing3, INFINITE);
printf("VM %081x was %s\n", pVMInfo->hVM,
pVMInfo->bVmCreated ? “"created" : "destroyed");

return 0;

void main(int ac, char *av[])

HINSTANCE hKernel32D11;

HANDLE hEventRing3, hEventRing0;

DWORD tid;

HANDLE (WINAPI *pfOpenVxDHandle) (HANDLE) ;
DWORD cbBytesReturned;

const PCHAR VxDName = "\\\\.\\EVENTVXD.VXD";

hEventRing3 = CreateEvent(0, FALSE, FALSE, NULL);
if (!hEventRing3)
{
printf("Cannot create Ring3 event\n");
exit(l);
}

hKerne132D11 = LoadLibrary("kernel32.d11");
if (!hKernel32D011)
{

printf("Cannot load KERNEL32.DLL\n");
exit(l);
} \
pfOpenVxDHandle = (HANDLE (WINAPI *) (HANDLE))
GetProcAddress(hKernel32D11, "OpenVxDHandle");
if (!pfOpenVxDHandle)
{

printf("Cannot get addr of OpenVxDHandle\n");
exit(l);
}

286 — Writing Windows VxDs and Device Drivers

Listing 12.18 (continued) W32EVENT/ WIN32APP/WIN3ZAPP.C

hEventRing0 = (*pfOpenVxDHandle)(hEventRing3);
if (!hEventRing0)
{
printf("Cannot create Ring0 event\n");
exit(l);
}

hDevice = CreateFile(VxDName, 0, 0, 0, CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, 0);
if (!hDevice)
{
printf("Cannot load VxD error=%x\n", GetlLastError());
exit(1);
}

if (!DeviceloControl(hDevice, EVENTVXD_REGISTER, hEventRingO0,
sizeof(hEventRing0), &pVMInfo, sizeof(pVMInfo),
&cbBytesReturned, 0))
{
printf("DeviceloControl failed, error=%x\n", GetLastError());
exit(l);
}
CreateThread(0, 0x1000, SecondThread, hEventRing3, 0, &tid);
printf("Press any key to exit...");
getch();
CloseHandle(hDevice);

Listing 12.19 W32EVENT/ WIN32APP/WIN32APP.MAK

win32app.exe: win32app.obj

Tink @K
kerne132.1ib user32.1ib gdi32.1ib winspool.1ib comd1g32.1ib advapi32.1ib
shel132.1ib ole32.1ib oleaut32.1ib uuid.1ib /NOLOGO /SUBSYSTEM:console
/INCREMENTAL:no /PDB:none /MACHINE:I386 /0UT:win32app.exe win32app.obj
1<¢

win32app.obj: win32app.c
cl /c /ML /GX /YX /0d /D "WIN32" /D "NDEBUG" /D "_CONSOLE" -I..\vxd win32app.c

Part 2

DLI -based Drivers

287

288 — Writing Windows VxDs and Device Drivers

Chapter 13

Introduction to
16-bit Driver DLLs

Why Driver DLLs are Always 16-bit

Back in the days of Windows 3.x, Microsoft recommended that developers package
~ all hardware drivers as VxDs, the “true” device drivers for Windows. However, many
developers — including Microsoft itself — ignored this advice and instead put driver
functions into DLLs. After all, the learning curve for VxDs was very steep, and a
driver packaged as a DLL could do the job adequately. (Notable exceptions were driv-
ers, like those for the serial port, that required very fast interrupt response times.)
Today, Microsoft recommends that developers for Windows 95 package hardware
drivers as VxDs. This time, however, the recommendation is much more difficult to
ignore, because Win32 DLLs are forbidden from performing most “driver” type oper-
ations. The list of prohibited operations includes

* accessing memory-mapped hardware,
¢ performing DMA transfers,

* handling hardware interrupts, and

* issuing software interrupts.

As you can see, the only type of driver DLL you could package as a 32-bit DLL
without breaking these rules is the simplest type: a polled-mode driver (no interrupts)
for an I/O-mapped device.

289

290 — Writing Windows VxDs and Device Drivers

Many Windows 95 developers are therefore heeding Microsoft’s advice and writing
VxDs. Nonetheless, you can still write a complex driver as a DLL if you build it as a
16-bit DLL because 16-bit DLLs aren’t governed by the same limitations as Win32
DLLs. In fact, many of the standard drivers provided by Microsoft (including the mouse
driver and multimedia drivers) remain 16-bit. Using a 16-bit DLL under Windows 95,
however, requires writing another DLL in addition to the driver DLL: a thunk DLL.

Interfacing 16-bit DLL to 32-Bit Application
Requires a Thunk

In Windows 95, driver DLLs are always 16-bit, regardless of whether the application
interfacing to the DLL is an old 16-bit Windows 3.x application or a new 32-bit
Win32 application. If you want your 16-bit driver DLL to be used.-by Win32 applica-
tions, you must write a translation layer to convert between the 32-bit world and the
16-bit world. This translation layer is called a thunk DLL.

Thunk DLLs will be covered in detail in Chapter 18. For now, just note that choos-
ing to implement a driver as a 16-bit DLL implies creating a thunk DLL if you’ll be
supporting Windows 95. Considering the extra work required for the thunk, it may
make more sense for you to write the driver as a VxD instead.

The remainder of this chapter introduces the basics of 16-bit Windows DLLs, and
introduces a skeleton driver DLL. The next two chapters cover how a driver DLL
interfaces to hardware and handles hardware interrupts.

The material in this chapter applies specificaly to 16-bit DLLs, and much of
it is not relevant to 32-bit DLLs.

Static versus Dynamic Libraries

Although a DLL can be linked to and executed by an application much as a static
library can, the DLL is not really a part of any single application. Understanding how
a DLL differs from a static library will help clarify why drivers are more useful if
packaged as a DLL rather than as a static library.

A static library (such as the run-time library for the C compiler) is nothing more
than a collection of one or more precompiled functions. The static library is packaged
as a single piece from which the linker can extract necessary components. At link
time, the linker searches your application for references to functions outside of the
application and resolves these references by searching for them in the library. The
library functions are then copied into your application’s . EXE image. After linking, an
application calls one of the library functions using the same mechanism it would use
to call one of its own internal functions.

Introduction to 16-bit Driver DLLs — 291

A DLL is also a set of precompiled functions. When these functions are packaged,
two pieces are created: an import library (.LIB) and a DLL. The DLL contains the
actual code and data. The import library contains only name and module information
for the functions. An application that wants to use functions in a DLL links with the
import library, not the DLL. The linker doesn’t fully resolve the application’s refer-
ences to external functions in the DLL, i.e. the linker does not copy the functions into
the application’s .EXE image. Instead, the linker stores only the function name and
module from the import library as a placeholder in the . EXE.

The real magic happens at run time, when the application loads. At that time, the
loader also loads the DLL into memory, thus giving all the DLL functions an address.
The loader then goes back to the .EXE and fills in the placeholders left at link time
with the DLL function addresses.

Why Package Drivers in a DLL?

DLLs are a convenient way to package driver functions because drivers are often used
by more than one application, and also because drivers often need to change indepen-
dently of the application. With the driver functions in a separate file from the applica-
tions, the driver itself can be updated without disturbing the application that uses the
driver. If a driver is used by multiple applications, a DLLL saves memory because only
one copy of the DLL is in memory, whereas building a driver as a statically linked
library would force each application that used the driver to have its own copy of the
driver functions.

The most important reason for packaging a Windows driver as a DLL is to make it
possible to replace the DLL with a “true” device driver (VxD or NT kernel mode
driver). By isolating hardware-dependent code in a DLL, you can replace the DLL
with a true driver without completely rewriting the applications that use the DLL. Of
course, the applications will still require some changes, because usually the interface
presented to the application by your custom driver DLL won’t be exactly the same as
the interface presented by the true driver.

Applications versus DLLs

DLLs are different than applications in several fundamental respects. These differ-
ences have implications for how a DLL is coded and how it is built. The most obvious
difference to a user is that a DLL can’t be executed directly from the Windows shell.
It has no life of its own but is loaded when an application that uses it is loaded and is
unloaded when that application is terminated.

292 — Writing Windows VxDs and Device Drivers

Here’s a comparison of DLLs and applications, from a developer’s point of view:

¢ An application has its own stack segment. A DLL does not. A DLL uses the stack
of the calling application.

» If multiple instances of an application are running, all instances share a single
copy of the application’s code segment. Similarly, if more than one application
uses a DLL, there is still only a single copy of the DLL’s code. (That’s one of the
advantages of DLLs compared to static libraries.)

e If multiple instances of an application are running, each instance gets its own copy
of the application’s data segment. This is not true for DLLs. If more than one
application uses a DLL there is still only a single copy of the DLL’s data segment.

e Memory dynamically allocated by a DLL may belong to either the calling applica-
tion or to the DLL itself, depending on the exact method of allocation.

These items have ramifications for the DLL developer during both the coding and
the build process. The following sections address each of these issues in detail.

DLLs and Stack Segments

. A DLL doesn’t have its own stack segment. This leads to some subtle difficulties with
passing pointers as parameters to other DLL functions. As the following example
illustrates, pointers passed to a DLL can easily turn into subtle bugs.

Suppose an application has the following function: ‘

void FAR Fool(void)
{

int x;

Fooz2(&x);
}

and a DLL contains this function:

void Foo2(int *x)

If this code is compiled as small model, the &x expression in the call to Foo? is a
near pointer. That means the code generated to push the address of x onto the stack
will push only the offset of the variable x. When Foo2 gets this offset from the stack
and dereferences it, Foo2 incorrectly assumes that since this is a near pointer, the off-
set is relative to DS (the DLL’s data segment). Foo2 doesn’t know the offset is really
relative to SS (the caller’s stack segment). The result is that the expression *x accesses
the wrong location, and Y is assigned an incorrect value.

Introduction to 16-bit Driver DLLs — 293

Why do DLLs have this problem and normal applications don’t? Because when a
normal application is running, DS has the same value as SS, so SS-relative is the same
thing as DS-relative. In a DLL, DS != SS. Does this mean DLLs can’t pass the address
of a local variable as a parameter? No, it just means that you must always pass a far
pointer to a DLL, not a model-dependent (no far/near attribute) pointer.

There is a compiler option (add w to the memory model option) that will generate a
warning when the address of a local variable is passed as a model-dependent pointer.
Use this option, heed the warning, and change those parameters to far pointers.

DLLs and Data Segments

Even when used simultaneously by different applications, a DLL has only one copy
of its data segment. This means extra work for the developer if the DLL needs to
maintain some information on a per-application basis. For example, the DLL could
encapsulate all per-application information into an AppInstance structure and allo-
cate a new structure for each application using the DLL. Then at each entry point the
DLL would need to figure out which application was calling it and reference the
appropriate AppInstance structure.

I won’t cover this topic any further, because driver DLLs don’t usually have this
problem. Typically, a driver DLL serves to serialize access to a device by multiple
applications. In other words, if Application 1 is using the device through the DLL,
Application 2 isn’t allowed to use the device. On the other hand, Application 1 might
use Device 1 and while Application 2 uses Device 2 (where both devices are managed
by the same DLL). But that situation can be managed as per-device instead of
per-application data. I'll cover per-device data in more detail in the next chapter.

DLLs and Ownership of
Dynamically Allocated Memory

A Windows DLL must be careful when dynamically allocating memory, for this
memory may be owned either by the calling application or by the DLL itself, depend-
ing on exactly how the allocation was made. Dynamic allocations can be made using
either the GlobalAlloc call to the Windows memory manager or via the C run-time
malloc function.

When a DLL calls GlobalA11oc directly, the DLL specifies whether the memory
is to be owned by the DLL or by the calling application. If the DLL uses the
GMEM_SHARE flag when calling G1obalAlloc, the DLL owns the memory; if not, then
the application owns it. (I'll explain the parameters used by GlobalAlloc in more
detail later; for now the only relevant parameter is GMEM_SHARE.) For VC++ 1.x, the
malloc routine in the C run-time library always uses the GMEM_SHARE flag when called
by a DLL, so any malloc-allocated buffers are owned by the DLL.

294 — Writing Windows VxDs and Device Drivers

Either an application or a DLL can explicitly free a buffer via a call to GlobalFree
or free. The ownership issue becomes important if nobody explicitly frees a dynami-
cally allocated buffer. If the DLL allocates the memory but the application owns it,
then the memory is freed automatically by Windows when the application exits. If the
DLL owns the memory itself, then the memory is freed by Windows only when the
DLL unloads — which doesn’t happen until all applications using the DLL have exited.

So who should own a driver-allocated buffer — application or DLL? If a driver is
not interrupt-driven, it doesn’t really matter. In this case, the DLL executes only as a
result of calls from an application. If the application goes away, it won’t call the DLL
anymore, and that means the DLL won’t use the buffer.

For a driver that does handle interrupts, any dynamically allocated buffers used at
interrupt time should be owned by the driver DLL. An example will clarify the issues
involved. Suppose a driver has an Open entry point and a Close entry point. During
Open, a buffer is allocated and an interrupt handler installed. At Close, the buffer is
freed and the handler removed. Now suppose that an application exited without call-
ing Close, perhaps because it crashed. Windows itself frees the allocated buffer when
the application exits. Then the driver’s interrupt handler accesses the freed buffer and
bad things happen — you can’t reference memory after it’s been freed. If, on the other
hand, the driver owned the buffer, Windows would not have freed it, and the interrupt
handler could continue to access the buffer safely.

DLL Initialization and Termination

A Windows DLL may contain a special initialization entry point called LibMain and a
special termination entry point called WEP (for Windows Exit Procedure). If present,
LibMain is called when the DLL is loaded. If the DLL contains a WEP, it is called
when the DLL is unloaded.

For many DLLs, the initialization code in LibMain does things like registering
window classes and initializing the local heap (which is in the DLL’s data segment).
However, driver DLLs don’t register windows and generally use the global heap
instead of the local heap (the local heap is too small). The driver DLLs in this book
don’t contain a LibMain. Instead, I prefer to do initialization in another entry point
called explicitly by an application using the DLL, an Open routine. Similarly, most
DLL:s use the WEP entry point to un-register window classes. Driver DLLs don’t have
window classes, and the driver DLLs in this book do cleanup in a Close entry point.

Introduction to 16-bit Driver DLLs — 295

DLL Function Requirements

Although a DLL can be compiled with any memory model, all functions that the DLL
exports to an application must be declared far. The reason is simple: a DLL has its
own code and data segments, which are separate from the calling application’s code
and data segments. If you compile your DLL as medium or large model, all functions
are, by definition, far. On the other hand, if you compile your DLL as small model,
you must explicitly declare the DLL entry points with the far keyword. I’ve chosen to
compile the driver DLLs in this book as small model (for reasons I’ll explain in the
next chapter), so all the driver entry points in these DLLs are declared far.

The DLL entry points are also declared with the _export keyword. This tells the
linker to generate a special export definition record for these functions, which the
loader uses at run time to resolve references to a DLL.

An exported DLL function must contain a special section of code at the beginning
and at the end of the function. The code at the beginning is called the prologue: its
purpose is to fix up the DS register (meaning it must load DS with the DLL'’s data seg-
ment). The DS fix-up is necessary because on entry to the DLL, DS contains the calling
application’s data segment, which is different from the DLL’s data segment. The code
at the end is called the epilogue; it restores DS to the caller’s original data segment.

A special compiler option tells the compiler which functions need prologue and
epilogue code. In VC++ 1.x, the /GD flag tells the compiler to generate prologue/epi-
logue code for all functions declared as __export. The makefiles for the DLLs in this
book use this /GD flag.

The Skeleton Driver

The first sample DLL driver is a skeleton or template driver (Listings 13.1-13.4, pages
300-302). It doesn’t interface with any hardware, but it exports a set of functions that
are general enough to apply to most types of drivers: DeviceOpen, DeviceClose,
DeviceWrite,DeviceRead,DeviceGetWriteStatus,DeviceGetReadStatus,Device-
GetDriverParams,DeviceSetDriverParams, and DeviceGetDriverCapabilities.

As the example drivers become more involved, I'll add functionality to the functions
in this skeleton, piece by piece. Of course, your driver may need additional capabilities
that aren’t covered by these functions. In that case, you're free to add functions as
needed because Windows doesn’t dictate a driver interface for non-standard devices.

Each function in the skeleton driver does nothing more than output a trace mes-
sage containing its function name. The driver outputs these messages through the
Windows API function QutputDebugString. OutputDebugStringuses only a simple
string parameter, but you can also-use the more powerful DebugOutput function.
DebugOutput uses a format string and a variable number of parameters, like sprintf,
providing more useful formatting. Windows redirects these strings to the AUX device
(serial port), but you can also use the DBWIN utility to display them in a window
(more on DBWIN later).

296 — Writing Windows VxDs and Device Drivers

Building the Skeleton Driver

The steps involved in building the driver DLL are:
¢ compile the .C file,

¢ linkintoa .DLL,

 run the resource compiler, and

e create the import library.

To automate the steps required to properly build the driver, I use nmake and a
makefile (Listing 13.3 on page 302). If you copy my makefile and source files to the
current directory, you can build the skeleton driver from scratch, simply by typing
nmake -fskeleton.mak.

Choosing the proper compiler options is critical to correctly building a Windows
DLL. The options used by the skeleton DLL are listed in Table 13.1, along with a
notation of whether the option is mandatory for all DLLs.

The link process for a Windows DLL is similar to building a DOS application,
except that you must specify a .DEF file when linking. This .DEF file must include the
statements EXETYPE WINDOWS and LIBRARY. These statements tell the linker to build a
Windows DLL. The other mandatory DEF statements are CODE and DATA, which
determine the attributes of the DLL’s code and data segments. I'll discuss these
attributes in Chapter 15. '

Table 13.1 Options used by the skeleton DLL.

Option | Requirement | Description

c mandatory compile only (no link)

GD mandatory generate function prologue to fix up DS

AS optional small model

Gs mandatory disable stack probes

Aw recommended generate warnings whenever a DLL uses a near
pointer to take the address of a local variable

W3 recommended warning level of 3 (highest is 4)

G2 recommended generate code for 286+ (speeds execution)

Zi optional generate CodeView debug information

0i optional use intrinsics (faster inp/outp/strcpy/memcpy

Fc optional generate assembly output

Introduction to 16-bit Driver DLLs — 297

The linker command line for a DOS application doesn’t usually specify a library.
It’s not necessary because the C compiler embeds information in the .0BJ file that
tells the linker which library (small, medium, large) to use. Windows DLLs need a
special version of the C library, ?d11cew.1ib instead of ?1ibcew.11b, where ? is an
abbreviation for the memory model. When using VC++ 1.x, you should use the /NOD
option so that the linker does not bring in the C library named in the .0BJ file. You
should also explicitly list the DLL version of the library (?d11cew.11ib) as the library
argument. In addition, you should specify LIBW as a second library. This is the
import library containing the Windows API functions.

Last, an import library for the DLL is built using IMPLIB. IMPLIB uses the
DLL'’s .DEF file as input and builds a .LIB file containing exported function names
and modules. This .LIB file is then linked, as a library, to an application that uses the
DLL. There are no option switches required for IMPLIB.

The last step in my makefile, copying the driver DLL to the Windows directory,
isn’t strictly required, but it’s useful. At run time, Windows uses the same method to
locate a DLL that it does to locate an .EXE file: search the current directory, the Win-
dows directory, the Windows system directory, and the directories listed in the PATH.
By copying the driver to the Windows directory, I can invoke the application (and thus
the DLL) regardless of the current directory or PATH variable.

DLL Requires an Application

A Windows DLL can’t execute on its own. It must be called by a Windows program.
I've supplied a sample Windows application, TESTDRIV.EXE, which can exercise all
the functions supported by the driver.

TESTDRIV is a very rudimentary Windows application. Its user interface contains
a single menu with several submenu items, one for each exported driver function:
DeviceOpen, DeviceClose, DeviceWrite, DeviceRead, DeviceGetWriteStatus,
DeviceGetReadStatus, DeviceGetDriverParams, and DeviceGetDriverCapabilities.
Select a menu item, and TESTDRIV calls that function in the driver (Figure 13.1).
TESTDRIV uses hard-coded values for all driver parameters — you can’t specify
from the user interface which device to open or what data to write. You could easily
extend TESTDRIV to support user input of driver parameters.

298 — Writing Windows VxDs and Device Drivers

If the driver function returns with an error code, TESTDRIV will display a message
box. If the function is one of the three with output parameters (DeviceGetReadStatus,
DeviceGetWriteStatus, or DeviceGetDriverCapabilities), the output parameters
are displayed in a message box.

The next two chapters present two more driver DLLs, each adding more
functionality to the SKELETON DLL introduced in this chapter. When developing
this series of DLLs, I was careful to ensure that the three DLLs export exactly the
same set of functions. For this reason, you can use the same TESTDRIV application
with all three driver DLLs. In fact, because the driver functions are dynamically, not
statically, linked to the application, you don’t even need to relink TESTDRIV when
you change the driver DLL implementation.

Figure 13.1 TESTDRIV.EXE— a sample Windows
application that makes calls to our driver
DLL with DBWIN active in the right-hand
window.

Debug .v»
Edit Options Help

GetReadStatus
GetWriteStatus
GetDriverParam s
SetDriverParams
GetDriverCapabilities

Introduction to 16-bit Driver DLLs — 299

Debugging Tools for Driver DLLs

When using TESTDRIV to explore a driver, it also is useful to run the Windows
DBWIN application, a utility included with VC++ 1.x. DBWIN captures all the
strings that Windows applications and DLLs output via calls to OutputDebugString
and DebugOutput. DBWIN redirects the strings to either its client window, a secondary
monochrome monitor, or a serial port. By adding more of these OutputDebugString
calls to your driver, you can trace its execution path and thus perform rudimentary
debugging.

These trace statements, however, won’t replace the need for a real debugger. An
application-level debugger, such as the one provided in the VC++ Integrated Develop-
ment Environment, can be used to debug some driver DLLs, unless the driver handles
interrupts. A better choice would be a system-level debugger, either WDEB386 or
Softlce/Windows.

Summary

With the information in this chapter, you can set up a test environment for DLL driver
development and confirm that you have your tools properly configured to create a
DLL that links to an application. Although this chapter’s skeleton driver doesn’t really
do anything, you can still exercise it to confirm that it communicates with an applica-
tion. This sets the stage for producing a DLL that actually manipulates some hardware
— the topic of the next chapter.

300 — Writing Windows VxDs and Device Drivers

Listing 13.1 SKELDLL\DRIVER.H

typedef struct

{
WORD usDevNumber;
LPBYTE 1pReadBuffer;

} DEVICECONTEXT, FAR *HDEVICE;

typedef struct

{
WORD usReadBufSize;
} DRIVERPARAMS, FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS, FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

HDEVICE FAR PASCAL DeviceOpen(void);

int FAR PASCAL DeviceClose(HDEVICE);

int FAR PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);

int FAR PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);

int FAR PASCAL DeviceWrite(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

int FAR PASCAL DeviceRead(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

int FAR PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

int FAR PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps);

Listing 13.2 SKELDLL\SKELETON.C

fHinclude <windows.h>
#Hinclude "driver.h"

DEVICECONTEXT Devicel = { 0 };
DRIVERPARAMS DefaultParams = { 1024 };

HDEVICE FAR PASCAL _export DeviceOpen(void)
OutputDebugString("DeviceOpen\n");

return &Devicel;

int FAR PASCAL _export DeviceClose(HDEVICE hDevice)
OutputDebugString("DeviceClose\n");

return 0;

Introduction to 16-bit Driver DLLs — 301

Listing 13.2 (continued) SKELDLL\SKELETON.C

int
{

int

int

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export
OutputDebugString(

return 0;

FAR PASCAL _export

OutputDebugString(

return 0;

DeviceGetWriteStatus(HDEVICE hDevice, LPWORD pusStatus)

"DeviceGetWriteStatus\n");

DeviceGetReadStatus(HDEVICE hDevice, LPWORD pusStatus)

"DeviceGetReadStatus\n");

DeviceWrite(HDEVICE hDevice, LPBYTE TpData, LPWORD pcBytes)

"DeviceWrite\n");

DeviceRead(HDEVICE hDevice, LPBYTE 1pData, LPWORD pcBytes)

"DeviceRead\n");‘

DeviceSetDriverParams(HDEVICE hDevice, PDRIVERPARAMS pParms)

"DeviceSetDriverParams\n");

DeviceGetDriverParams(HDEVICE hDevice, PDRIVERPARAMS pParms)

"DeviceGetDriverParams\n");

DeviceGetDriverCapabilities(HDEVICE hDevice,
PPDRIVERCAPS ppDriverCaps)

"DeviceGetDriverCapabilities\n");

302 — Writing Windows VxDs and Device Drivers

Listing 13.3 SKELDLL\SKELETON.MAK

all: skeleton.dll
DRIVER DLL

skeleton.obj: skeleton.c driver.h
cl -c -W3 -ASw -GD2s -0i -Fc $*.c

skeleton.d11: skeleton.def skeleton.obj
link skeleton,skeleton.d11,skeleton.map /MAP, sdllcew 1ibw /nod/noe,skeleton.def
implib skeleton.1ib skeleton.dl1l
copy skeleton.d11 \windows\driver.dll

Listing 13.4 SKELDLL\SKELETON.DEF

LIBRARY DRIVER

DESCRIPTION "Skeleton Driver"

EXETYPE WINDOWS

DATA PRELOAD MOVEABLE SINGLE
CODE PRELOAD MOVEABLE DISCARDABLE

Chapter 14

Driver DLLs:
Connecting to the Hardware

Unlike DOS, which allows programmers to directly manipulate any device at any
time, Windows is somewhat protective of the physical machine resources. In a sophis-
ticated, high-performance driver, the Windows protection mechanisms can signifi-
cantly complicate device access. In simple, polled-mode drivers though, device access
can still be quite straightforward. ’

This chapter shows how to convert the previous chapter’s skeleton driver from an
empty framework into a complete, yet very simple, polled-mode driver that actually
manipulates a physical device. I'll first illustrate the more simple I/O-mapped case by
giving a complete polled-mode serial port driver and then show how to modify the
port-mapped version to access an imaginary memory-mapped device.

DLLs and Port-access

One of the big myths of Windows programming is that applications and DLLs are not
allowed to use _inp or _outp. Here’s the real story.

Under Windows 3.x, there is absolutely nothing wrong with using _inp or _outp
from a DLL to access a non-standard I/O location: the access will go through to the
hardware port, without being trapped by Windows. If you access one of the standard
I/0 ports — keyboard, timer, etc. — then a VxD will trap your access and your code

303

304 — Writing Windows VxDs and Device Drivers

may not work as expected. But standard devices require special system driver DLLs
and VxDs with interfaces defined by Windows, so you shouldn’t be doing this from a
custom driver DLL anyway. '

It is also perfectly acceptable for an application or DLL running under Windows
95 to use _inp or _outp to access a non-standard I/O location. This is true for both
16-bit and 32-bit DLLs. However, if you choose to do this in your DLL, your DLL is
not truly Win32-compatible. The correct way to access hardware from a Win32 appli-
cation or DLL (notice I said “Win32”, not “Windows 95”) is through a true device
driver, which, under Windows 95, takes the form of a VXD and, under Windows NT, is
a kernel-mode driver. Windows NT will terminate any Windows application or DLL
that attempts to access a hardware device, either I0-mapped or memory-mapped.
‘Windows 95 happens to be a more forgiving Win32 platform than Windows NT, but
Microsoft warns that future versions of Windows 95 may be less lenient. To play it
safe, put all hardware access in a “true” driver, that is, a VxD.

A Port-mapped Example

Listings 14.1-14.5 (pages 318-324) make up a simple polled-mode driver for a stan-
dard serial port. The serial port makes a good example because every system has one,
located in the I/O space, and Windows doesn’t insist on taking over this device at
startup. So one can easily install a replacement for the serial port handler without
causing any confusion for Windows: not true for other standard PC devices like the
keyboard or timer.

This driver DLL exports the same public interface as the SKELETON DLL intro-
duced in Chapter 13, but this version’s routines are more than just stubs. This example
is not meant to be a high-performance, commercial-quality driver. I've tried to keep
the driver simple, without sacrificing generality. Thus, it doesn’t achieve very high
throughputs, but it can easily be adapted to support multiple ports or different Univer-
sal Asynchronous Receiver-Transmitters (UARTS). Because the point is to illustrate
techniques and principles that apply to a wide range of drivers, I've also tried to avoid
getting bogged down by the intricacies of the hardware and the details of serial com-
munications. (Figure 14.1 outlines the essentials of the 8250 UART.) By stripping the
handler to its bare essentials, I hope to make the core structure clear enough that you
can easily see what is essential and apply that to your own hardware.

- Driver DLLs: Connecting to the Hardware — 305

Although Windows doesn’t insist on taking control of the serial port, that is
its default behavior. When using the serial port driver DLLs under Windows
3.x, you should prevent the Virtual Comm Device (VCD) from interfering
with all serial ports by commenting out the device=*vcd statement in the
[386Enh] section of SYSTEM.INI. When using the serial port driver DLLs
under Windows 95, you must modify the registry to prevent the VCOMM
VxD from interfering with a particular serial port. Change the PortDriver
entry under the port’s software key

HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\PORTS\000X

to something other than serial.vxd, for example _serial.vxd. In both
cases, remember to undo these changes when you're finisished with the
serial port driver DLL.

Figure 14.1 Outline of 8250 UART registers.

Offset Name Access
6 Modem Status ’) R

5 Line Status (LSR) R

4 Modem Control R/W

3 Line Control R/W

2 Interrupt Ident R

1 Interrupt Enable R/W

0 Receive Data R

0 Transmit Data w -
1when LCRbit7=1 Baud Rate Divisor MSB RW

0 when LCR bit 7 =1 Baud Rate Divisor LSB RW

306 — Writing Windows VxDs and Device Drivers

Driver Design Conventions

All of the driver DLLs in this book share certain design elements. Each uses a device
context structure to store all state and addressing information for a single instance of
the device, specifically the COM1 serial port. Many developers use this technique
because it makes it easier to adapt the driver to support multiple devices. The address
of the context structure is used as a handle to the device. The handle is returned by a
call to DeviceOpen and used as a parameter to all other calls into the driver.

As explained in Chapter 13, a DLL may be called by multiple applications. A
driver DLL that allows applications to “share” a device would need to store all context
information specific to one application in an instance data structure. The example
Driver DLLs presented here do not use an application-specific instance data structure,
because the driver interface is designed to allow only a single application to use the
device at a time. With this restriction, the driver DLL needs only the device context
structure to find all the relevant data.

Some build issues (specifically, the SS != DS problem described in Chapter 13)
can be simplified by compiling a DLL as large model. However, the example drivers
here are all compiled small medel, not large model. Actually, both the skeleton driver
in the last chapter and the polled-mode driver in this chapter would work fine if com-
piled as large model. But the interrupt-driven driver of the next chapter must be small
model to work as designed. (Interrupt handlers must load their own data segments.
Because a large model DLL has multiple data segments, compiling as large model
would complicate accessing data in the interrupt handler. Although this data access
issue can indeed be resolved, it is simpler to keep the driver as small model.) Very few
drivers will bump up against the 64Kb code or 64Kb data limit of small model.

All example driver DLL statically allocate their device context, as well as
most other important data structures. If your driver allocates any memory at
run time, it is important that the memory be allocated with the GMEM_SHARE
flag. As discussed in Chapter 13, memory dynamically allocated by a DLL is
owned by the calling application, not the DLL, unless the DLL uses
GMEM_SHARE :

The malloc provided by VC++ 1.x uses GMEM_SHARE, so if you’re using it
you may safely use malloc for any dynamic allocations in a polled-mode
driver. An interrupt-driven driver, which will be discussed in detail in the
next chapter, can dynamically allocate also, but it must use GlobalAlloc
instead of malloc.

Driver DLLs: Connecting to the Hardware — 307

The Polled-mode Driver

This chapter doesn’t contain a detailed discussion of the polled-mode driver code. The
driver is both small and simple. However, a brief discussion of the data structures and
the parameter validation code used by all of the driver entry points is in order.

In the example, the capabilities word simply contains the driver’s version number.
More sophisticated drivers might probe the device to determine its specific capabili-
ties. For example, a multi-model scanner driver might query the attached driver and
store maximum resolution and color depth in a capabilities structure. This information
could then control the behavior of other driver routines and also could be used by the
calling application if appropriate.

The example driver doesn’t use the DRIVERPARAMS structure. Again, a more com-
plex driver might offer several configuration options. These options could be recorded
in the parameters structure and then be referenced by all affected routines.

When asked to open a new device, the DeviceOpen routine initializes hDevice
with the address of the static device context structure. The DeviceOpen routine then
configures the UART, as shown in the following code.

// Configure UART.

outp(hDevice->usIoBase + UART_REG_IER, 0);

outp(hDevice->usIoBase + UART_REG_LCR, UART_LCR_DLAB);
outp(hDevice->usIoBase + UART_REG_BAUDLO, BAUD_1200);
outp(hDevice->usloBase + UART_REG_BAUDHI, 0);

outp(hDevice->usIoBase + UART_REG_LCR, UART_LCR_8N1);
outp(hDevice->usloBase + UART_REG_MCR, UART_MCR_LOOP);
inp(hDevice->usIoBase + UART_REG_LSR);

inp(hDevice->usIoBase + UART_REG_RDR);

SET(hDevice->bFlags, FLAGS_OPEN);

The DeviceOpen routine then sets the FLAGS_OPEN bit. The driver’s other routines
can then check the FLAGS_OPEN bit to verify that a requested service is appropriate for
the specified device. This chapter’s example uses only the FLAGS_OPEN bit in the sta-
tus field, although your driver might record additional state information here.

To make the driver robust, each routine validates the hDevice pointer and the
device’s current state. For example, to prevent the driver from attempting to manipu-
late a nonexistent device structure, the driver entry points will validate the hDevice
pointer with the test:

if (!ValidHandle(hDevice))
return -1;

308 — Writing Windows VxDs and Device Drivers

To prevent the driver from being used on a port that hasn’t yet been opened, the
driver routine will test the bF1ags field:

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

The example driver statically allocates only one device control structure.
Thus, even though the code is structured to support multiple devices, the
example is limited to one device. To use this driver with more than one serial
port, you would need to allocate additional device structures (either statically
or dynamically when DeviceOpen is called) and modify ValidHandle to
keep track of all such structures.

The DeviceRead and DeviceWrite routines have an interface similar to the Standard C
Library read and write routines, The DeviceRead routine expects a handle to a device con-
text, a pointer to a data buffer (1pData), and a pointer to the number of bytes to read
(pcBytes). A polling loop then copies the data from the UART to the buffer, one byte at a time,
until it has collected the requested number of bytes. The DeviceWrite routine works identi-
cally, but in the reverse direction. It copies the specified number of bytes from the buffer to the
UART transmit register. The following code shows the main polling loop for each function.

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice, LPBYTE 1pData,
LPWORD pcBytes)
{ .
WORD i;

OutputDebugString("DeviceWrite\n");

if (!1pData)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

for (i=0; i < *pcBytes; i++)
{
while ((inp(hDevice->usIoBase + UART_REG_LSR) & UART_LSR_THRE) == 0)

outp(hDevice->usloBase + UART_REG_THR, 1pDatal i 1);
}

return 0;

Driver DLLs: Connecting to the Hardware — 309

int FAR PASCAL _export DeviceRead(HDEVICE hDevice, LPBYTE 1pData,
LPWORD pcBytes)
{
WORD i;

OutputDebugString("DeviceRead\n");

if (!1pData)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

for (i=0; i < *pcBytes; i++)
{
~ while ((inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_RXRDY) = 0)

TpDatali] = inp(hDevice->usIoBase + UART_REG_RDR);
}

return 0;
b

It may seem unnecessary to require the caller of DeviceRead and DeviceWrite to
provide a pointer to the number of bytes requested. This interface is indeed overkill
for a polled-mode driver, where the number of bytes requested is always the same as
the number of bytes processed. But this feature will support the next chapter’s inter-
rupt-driven driver without any changes to the interface. Keeping the same exact inter-
face means the TESTDRIV application introduced in Chapter 13 works with both the
polled-mode and the interrupt-driven drivers without even recompiling TESTDRIV.

Note that each polling loop sits in a busy loop while waiting for the UART to fin-
ish processing the current byte. Thus, if the application tried to transmit a full buffer
of data with a single write, it would lose all data that might be received during the
time required to transmit the entire buffer. Also, if the application calls the read func-
tion when no data has been received, the driver will simply hang in a busy loop until it
receives some data.

Even so, one can successfully use a driver of this form for low-speed, full-duplex
communications by following these conventions:

* Transmit one byte per write or read.

* Never attempt a read unless a call to DeviceGetReadStatus indicates a byte is
available.

310 — Writing Windows VxDs and Device Drivers

Accessing Memory-mapped Devices

The designers of the original PC system purposely left a hole in the processor’s phys-
ical address space between A0000h and FOO00h. No RAM exists at these memory
locations, leaving them free to be used by memory-mapped devices. To access a
memory-mapped device under DOS, you form a pointer that addresses that location,
then dereference the pointer. The basic idea is the same to access the device from a
16-bit Windows DLL. But the procedure is complicated by address translation issues.
(See Chapter 3 and Appendix A for a review of these issues.)

If your device is mapped somewhere in the unused AOO0Oh—F0O000h range of phys-
ical address space, there is a very simple method to get a pointer to access the device.
Windows provides pre-allocated selectors for physical locations AO000h, BOOOOh,
C0000h, DO00Oh, E000Oh, and FOO00h. These selectors are actually variables exported
from the Windows system DLLs and are named appropriately: _A000h, _B0OOh, etc.
Windows has already set up both the selector’s base address and the associated page
table entries appropriately, so that selector _BOOOh really does map to physical
address B000Oh. Each selector has its limit set to 64Kb, so _A00Oh maps
AOOOO—AFFFF, _BOOOh maps BOOOO-BFFFF, etc.

Win32 applications or DLLs may not use these prefabricated selectors
because they are exported from the KERNEL16 module, not by the
KERNEL32 module linked in by 32-bit code.

To form a pointer to a device, choose the appropriate selector and offset. For
example, _D000h and an offset of 8000h combine to point to a device at D8000h. Con-
verting this selector/offset combination into a usable pointer is a bit more complicated
than just a simple MAKELP(_D00Oh, 8000h). The following code fragment illus-
trates the three steps necessary.

//IMPORTANT: double underscore in KERNEL.__DOOOh .
// single underscore in ffdefine Sel1DO00ONh(& MyDOOOh)
// Access memory-mapped adapter at physical D0O00Oh

// MUST import the selector in your .DEF file:

// IMPORTS ,

// __MyD0OOOh = KERNEL.__D00Oh

extern WORD _MyDOOOh;

fidefine Se1D0O00Oh (&_MyDOOOh)

char far *1pAdapter = MAKELP(Se1D000h, 0x8000);

Driver DLLs: Connecting to the Hardware — 311

A Memory-mapped Version

Although you aren’t likely to ever encounter a real memory-mapped serial port, if you
did, you’d find it quite simple to adapt this chapter’s example driver. Assuming a sim-
ilar layout of registers, the changes consist primarily of some code in DeviceOpen that
sets up a pointer to the base address of the device and of modifications throughout that
substitute memory references for _inp and _outp calls.

Assuming that the port was mapped to physical location D8000h, then

// IMPORTS in .DEF file:
// _MyDOOOh = KERNEL.__DO0GCh

" extern WORD _MyD0OOh;
#define Se1D000h (&_MyDOOOh)

DEVICECONTEXT Devicel = { 0, MAKELP(Se1D000h, 0x8000), 0, NULL };

would set up the base pointer, assuming that the DEVICECONTEXT structure had been
modified so that the address field has type char far *, -
The main read loop would then become

for (i=0; i *pcBytes; i++)
{ :
while ((*(hDevice->usIoBase + UART_REG_LSR) & UART_LSR_RXRDY) = 0)

TpDatali] = *(hDevice->usloBase + UART_REG_RDR):

If you are willing to forego some of the efficiencies available to
memory-mapped I/O, you can handle both memory-mapped and
port-mapped devices in the same source code by conditionally defining
appropriate access and initialization macros.

312 — Writing Windows VxDs and Device Drivers

Advanced Memory Issues

Many memory-mapped devices occupy fewer than 64Kb of space in the
AO00Oh-EFFFFh range. However, devices can be larger and/or located in high memory
(above 1Mb). If you need to manipulate a device that is larger than 64Kb or that is
located in high memory, you will not be able to use the pre-constructed selectors. For
such devices you will need to call a DOS Protected Mode Interface (DPMI) service to
build the appropriate selector.

DPMI is a set of services that are provided to applications by Windows but
accessed through INT 31h instead of through an API function call. DPMI provides
low-level services for manipulating selectors, manipulating the interrupt vector table,
switching between real mode and protected mode, and manipulating the page tables.
Windows 3.x and Windows 95 both support DPMI v0.9. (A later specification for
DPMI v1.0 exists, but is not supported by either. See also the sidebar “DPMI History”
on page 313.)

Bypassing the 64Kb Limit

By using DPMI, you can bypass the 64Kb segment size limit to create a single
selector that maps a device larger than 64Kb. Although the Windows API function
SetSelectorBase won’t accept a limit greater than 64Kb, the DPMI service
SetSelectorLimit will. The tricky part is generating code that uses 32-bit offsets.

Under Windows 3.x, programs run in a 16-bit code segment, which means mem-
ory references use 16-bit offsets. It is possible to override the offset size and force the
processor to use a 32-bit offset by inserting a prefix byte before each instruction. This
will require coding in assembly. If you’ll be moving a lot of bytes, the extra effort is
probably worth it.

Software Interrupts Are Not Allowed in Win32

DPMI services are accessed via a software interrupt, and thus are not available to Win32 applications or DLLs
because the software interrupt handler in the VMM makes assumptions about the “bitness” of its caller. Spe-
cifically, the handler assumes its caller is 16-bit, and saves only 16-bit registers on the stack. Attempting to
call any software interrupt from 32-bit code therefore results in a crash.

Driver DLLS: Connecting to the Hardware — 313

The code in the following paragraph (found in the file POLLBAST\MOVE32.ASM on
the code disk) allocates a single selector that addresses a memory adapter larger than
64Kb, and then uses that selector to zero out the entire region. Even better, the loca-
tions are zeroed 4 bytes (a DWORD) at a time, using 32-bit instructions. This code is
written in pure assembly, because that’s the easiest way to generate 32-bit instructions
under Windows 3.x.

.MODEL SMALL
.CODE
.386

zero32 PROC C PhysSize:DWORD, PhysBase: DWORD
mov ax, 0 ; DPMI Alloc Selector

mov ¢x, 1
int 31h

DPMI History

Driver developers often use the DPMI services provided by Windows as a back door into Windows to do
things that the 500-plus functions in the standard Windows API won’t let them do: access devices in physical
memory and communicate with DOS drivers and TSRs. But Windows really supports DPMI for a completely
different reason.

When Windows 3.0 was under development, PC software vendors were already working on several prod-
ucts that would break the DOS 640Kb barrier. These products included:

¢ DOS extenders, like the one used in Lotus 1-2-3, which let a DOS program use up to 16Mb of memory;

« expanded memory managers, like Qualitas’ 386MAX, which allow a DOS program to use memory above
640Kb, although only in 16Kb chunks;

» and DOS-based multitasking environments, like Quarterdeck’s Desqview.

Microsoft worked with the vendors who made these products, among them Intel, Phar Lap, and Rational
Systems, to design an interface that would allow Windows 3.0 to coexist peacefully with all these products.
All of these types of products, Windows included, do their magic by using the 80386 processor’s advanced
features, such as paging. The interface that was designed, which became DPMI v0.9, put a single program, the
DPMI server, in charge of the 80386 advanced features. Other programs then took advantage of the features
by using services exported by the DPMI server.

314 — Writing Windows VxDs and Device Drivers

mov
mov
mov
mov
int

mov
mov
mov
mov
mov
mov
int

bx,
CX,
dx,
ax,
31h

dx,
bx,
cX,
si,
di,
ax,
31h

push dx

mov
mov
pop
mov
int

mov
xor
mov
shr
xor
rep

CX,
dx,
bx

ax,
31h

es,

edi,
ecx,
ecx,
eax,

ax ; selector from Alloc
WORD PTR [PhysSize+2]

WORD PTR [PhysSize]

08h ; DPMI Set Selector Limit

bx ; save selector
WORD PTR [PhysBase+2]

WORD PTR [PhysBase]

WORD PTR [PhysSizet+2]

WORD PTR [PhysSize]

0800h ; DPMI Map Physical Address
; save selector
bx ; HI word of Tinear base
cX ; LO word of linear base
; restore selector
07h ; DPMI Set Selector Base
bx
edi
PhysSize
2
eax

stosd es:[edi]

zero32 ENDP

END

Devices Mapped Above IMb Require DPMI Services

Although most memory-mapped devices are located between AO000h and FFFFFh, it
is-possible to locate a device above FFFFFh (IMb). RAM is always mapped contigu-
ously above the 1Mb boundary, so a device located above FFFFFh must be located
beyond the last byte of physical memory. Otherwise, a hardware conflict occurs when
both RAM and the device attempt to decode the same physical address, and the sys-

tem won’t function properly.

Driver DLLs: Connecting to the Hardware — 315

Forming a pointer to a memory-mapped device involves setting up both steps in
the two-step (logical-linear, linear-physical) address translation process described
in Chapter 3. The first step is setting up the selector’s base address and limit. You
can use the Windows API selector functions (Al1locSelector, SetSelectorBase,
and SetSelectorLimit) for this. The second step is setting up the page table entries
so that the selector’s base address maps to the desired physical address. There are
no Windows API functions that manipulate page tables, but DPMI does provide a
MapPhysicalAddress function which will do the job.

DPMI MapPhysicalAddress takes a physical address as input and returns the lin-
ear address that maps (through the page tables) to the physical address. To see how
this DPMI call can be used, it’s helpful to think of the two-step address translation
process in a different way. Suppose you want a pointer to physical address A000Oh.
Because of the effect of paging, allocating a selector and setting its base address to
A0000h doesn’t guarantee that the selector translates to a physical address of AO0O0Oh.
But notice that it doesn’t really matter what the linear address is, as long as it maps to
physical AO00Oh.

So, build the mapping backwards, starting with physical address AO000h. Give the
physical address to DPMI MapPhysicalAddress; it will return a linear address, call it
X. Now give that linear address to SetSelectorBase. The result is a selector that
maps to linear address X, which maps to physical address AOO0Oh.

There is one detail I haven’t covered. The page tables work with 4Kb pages, so
that a selector with a limit of more than 4Kb is composed of multiple pages. Each
page can reside anywhere in physical memory — pages do not have to be physically
contiguous. Devices, however, understand only physically contiguous memory. Thus,
a useful selector strategy needs to guarantee not only that the first page maps to
A0000h—AQFFFh, but also that the next page maps to A1000-A1FFFh, etc. In fact,
DPMI MapPhysicalAddress does guarantee that the mapped pages are physically
contiguous, although that’s not obvious from the DPMI documentation.

The following code gives a function that uses Windows selector functions and the
DPMI MapPhysicalAddress service to get a pointer to a memory-mapped device
located above 1Mb. The code does nothing more than the four steps described above:

* allocates a selector,

* sets its limit,

* uses DPMI to get a linear address corresponding to a given physical address,
* then sets the selector base to that linear address.

316 — Writing Windows VxDs and Device Drivers

void far *MapPhysToPtr(DWORD PhysBase, DWORD PhysSize)
{
WORD myDs,sel;
WORD HiBase, LoBase;

—asm mov myDs, ds

sel = AllocSelector(myDs);
SetSelectorLimit(sel, PhysSize);
asm

{ o
mov cx, PhysBase

mov bx, PhysBase+?

mov di, PhysSize

mov si, PhysSize+2

mov ax, 0800h : // DPMI Map Phys
int 31h !

mov HiBase, bx

mov LoBase, cx

} ‘

// Set selector's linear address as given by DPMI Map Phys
SetSelectorBase(sel, MAKELONG(LoBase, HiBase));

return(MAKELP(sel, 0));

The only trick to this code is in the call to AlTocSelector. This call takes one
parameter, a template selector. Because the function is creating a selector to access
data (not code), the code passes the current value of DS, a valid data selector, as the
template selector parameter.

The function in the previous code fragment has a limitation: it works properly
only for a size of less than 64Kb. You can easily adapt it to regions greater than 64Kb
by replacing the Windows selector functions, which don’t properly support limits
greater than 64Kb, with analogous DPMI selector functions, which do support greater
than 64Kb. Then you would access your device with assembly language code and
32-bit offsets as illustrated earlier in this chapter.

Driver DLLs: Connecting to the Hardware — 317

Summary

Certainly this example isn’t a commercial-quality driver, but many of its weaknesses
are deliberate simplifications that have nothing to do with the Windows environment.
For example, a commercial-quality driver should test for receiver overrun and various
framing errors. These tests can be added easily, without any concern for Win-
dows-specific implementation issues.

The major shortcomings, though, are a direct consequence of trying to perform
full-duplex operations by polling. The polled-mode design forces the application to
handle the data one byte at a time — or risk missing significant amounts of data in the
reverse direction. For a simple one-way device, like a dumb printer, such a
polled-mode driver could perform quite satisfactorily. Thus, for certain devices, Win-
dows device drivers can be just this simple. For a bi-directional device like the serial
port to provide reliable, two-way communication without byte-wise supervision from
the application, however, requires an interrupt-driven driver.

Windows does impose additional implementation constraints on interrupt-driven
drivers, especially those that use memory buffers for communication between the
application and the driver. The next chapter explains these issues and shows how to
convert this chapter’s polled-mode example into an interrupt-driven driver.

318 — Writing Windows VxDs and Device Drivers

Listing 14.1 POLLED.H

typedef struct
{

WORD usReadBufSize;
} DRIVERPARAMS, FAR * PDRIVERPARAMS;

typedef struct
{
WORD version;
} DRIVERCAPS, FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

typedef struct
{

WORD usDevNumber;
WORD usloBase;
BOOL bFlags;
LPBYTE 1pReadBuf;

DRIVERPARAMS params;
} DEVICECONTEXT, FAR *HDEVICE;

HDEVICE FAR PASCAL DeviceOpen(HWND hwnd);

int FAR PASCAL DeviceClose(HDEVICE);

int FAR PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);

int FAR PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);

int FAR PASCAL DeviceWrite(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

int FAR PASCAL DeviceRead(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

int FAR PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

int FAR PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps

Driver DLLs: Connecting to the Hardware — 319

Listing 14.2 UART.H

fdefine
fidefine
ftdefine
fidefine
ffdefine
fdefine
fdefine
fidefine
Jdefine

ffdefine
fidefine
#define
fdefine
fidefine
#define
fidefine
fidefine
fidefine
fidefine
fHdefine
fdefine
fidefine

UART_REG_THR
UART_REG_RDR
UART_REG_IER
UART_REG_IIR
UART_REG_LCR
UART_REG_MCR
UART_REG_LSR
UART_REG_BAUDLO
UART_REG_BAUDHI

UART_ITR_NONE
UART_IIR_THRE
UART_IIR_RXRDY
UART_IER_THRE
UART_IER_RXRDY
UART_MCR_0UT2
UART_MCR_LOOP
UART_LSR_THRE
UART_LCR_DLAB
UART_LCR_8N1
UART_LSR_RXRDY
BAUD_1200
BAUD_110

0x00
0x00
0x01
0x02
0x03
0x04
0x05
0x00
0x01

0x01
0x02
0x04
0x02
0x01
0x08
0x10
0x20
0x80
0x03
0x01
0x60
0x0417L

320 — Writing Windows VxDs and Device Drivers

Listing 14.3 POLLED.C

fidefine _WINDLL

finclude <windows.h>
#include <conio.h>
fHinclude "polled.h”
finclude "uart.h"

fidefine FLAGS_OPEN 0x04

fidefine SET(value, mask) value |= mask
ffldefine CLR(value, mask) value &= (~mask)

DEVICECONTEXT Devicel = { 0, Ox3F8, 0, NULL };
DRIVERPARAMS DefaultParams = { 1024 };
DRIVERCAPS DriverCaps = { 0x0101 };

BOOL ValidHandle(HDEVICE hDevice);

HDEVICE FAR PASCAL _export DeviceOpen(. HWND hwnd)
{
HDEVICE hDevice;

OutputDebugString("DeviceOpen\n");
hDevice = &Devicel;

if (hDevice->bFlags & FLAGS_OPEN)
return (HDEVICE)-1;

hDevice->params = DefaultParams;

// Configure UART.
outp(hDevice->usloBase + UART_REG_IER, 0);
outp(hDevice->usloBase + UART_REG_LCR, UART_LCR_DLAB);
outp(hDevice->usIoBase + UART_REG_BAUDLO, BAUD_1200);
outp(hDevice->usloBase + UART_REG_BAUDHI, 0);
outp(hDevice->usloBase + UART_REG_LCR, UART_LCR_8N1);
outp(hDevice->usIoBase + UART_REG_MCR, UART_MCR_LOOP);
inp(hDevice->usIoBase + UART_REG_LSR);
inp(hDevice->usIoBase + UART_REG_RDR);

SET(hDevice->bFlags, FLAGS_OPEN);

return hDevice;

Driver DLLs: Connecting to the Hardware — 321

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export DeviceClose(HDEVICE hDevice)
{
QutputDebugString("DeviceClose\n");

if (!validHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

CLR(hDevice->bFlags, FLAGS_OPEN);

return 0;

int FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice, LPWORD pusStatus)
OutputDebugString("DeviceGetWriteStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

if (inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_THRE)

*pusStatus = 1; // ready to transmit
else
{

*pusStatus = 0; // not ready to transmit
return 0;

int FAR PASCAL _export DeviceGetReadStatus(HDEVICE hDevice, LPWORD pusStatus)
{
OutputDebugString("DeviceGetReadStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

if (inp(hDevice->usIoBase + UART_REG_LSR) & UART_LSR_RXRDY)
{

*pusStatus = 1; // data ready
}

else

[
o

*pusStatus // no data ready

return 0;

322 — Writing Windows VxDs and Device Drivers

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice, LPBYTE 1pData, LPWORD pcBytes)
{

WORD i;

QutputDebugString("DeviceWrite\n");

if (!1pData)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

for (i=0; i < *pcBytes; i++)
{
while ((inp(hDevice->usIoBase + UART_REG_LSR) & UART_LSR_THRE) == 0)

outp('hDevice->usIoBase + UART_REG_THR, 1pDatal i 1);
}

return 0;

int FAR PASCAL _export DeviceRead(HDEVICE hDevice, LPBYTE 1pData, LPWORD pcBytes)
WORD i
OutputDebugString("DeviceRead\n");

if (!1pData)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

for (i=0; i < *pcBytes; i++)
while ((inp(hDevice->usIoBase + UART_REG_LSR) & UART_LSR_RXRDY) == 0)

1pDaté[1] = inp(hDevice->usloBase + UART_REG_RDR);

return 0;

Driver DLLs: Connecting to the Hardware — 323

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice, PDRIVERPARAMS pParams)
{
OutputDebugString("DeviceSetDriverParams\n");

if (!pParams)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

hDevice->params = *pParams;

return 0;

int FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice, PDRIVERPARAMS pParams)
OutputDebugString("DeviceGetDriverParams\n");

if (!pParams)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

*pParams = hDevice->params;
return 0;
int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice,
PPDRIVERCAPS ppDriverCaps)
OutputDebugString("DeviceGetDriverCapabilities\n");

if (!ppDriverCaps)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

*ppDriverCaps = &DriverCaps;

return 0;
)

BOOL ValidHandle(HDEVICE hDevice)
{

return (hDevice == &Devicel);

324 — Writing Windows VxDs and Device Drivers

Listing 14.4 POLLED.MAK

all: polled.dll
DRIVER DLL

polled.obj: polled.c polled.h
¢l -c -W3 -ASw -Gsw2 -0i $*.c

polled.d11: polled.def polled.obj

link polled,polled.d11,polled.map /CO /MAP, sdllcew 1ibw /nod/noe,pollied.def
implib driver.1ib polled.dl11

copy polled.d11 \windows\driver.dll

Listing 14.5 POLLED.DEF

LIBRARY DRIVER

DESCRIPTION "Polled Mode Driver"

EXETYPE WINDOWS

DATA PRELOAD MOVEABLE SINGLE

CODE PRELOAD MOVEABLE DISCARDABLE

Chapter 15

Driver DLL:
Interrupt Handling

This chapter will show how to build a 16-bit, interrupt-driven driver DLL. While a
polled-mode driver DLL (like that of the last chapter) is certainly simple to build, a
basic interrupt-driven version is only slightly more complex and offers significant
advantages. Interrupt-driven drivers can usually offer improved throughput. Inter-
rupt-driven drivers are also more “Windows polite” than polled-mode drivers, because
the interrupt-driven driver doesn’t tie up the processor while waiting for the device.

The basic structure of a Windows interrupt-driven driver is quite similar to the
structure of a DOS driver: a real-time component (the Interrupt Service Routine, or
ISR) services hardware events, and a higher-level component (which I’ll just refer to
as the driver) handles communication with the application or operating system. The
driver and ISR typically communicate through a buffer that must be managed as a
shared resource.

An interrupt-driven driver DLL is by definition a 16-bit DLL, because Win32
DLLs cannot install interrupt handlers. There is no Win32 API to install an
interrupt handler — because that job should be done in a true driver — and the
DOS Set Vector call used by Win16 DLLs is not available to Win32 DLLs.

325

326 — Writing Windows VxDs and Device Drivers

Although a Windows driver has a familiar structure, it is complicated by Win-
dows’ tendency to virtualize services to protect the underlying hardware resources. In
polled-mode drivers, these virtual services are nearly invisible to the programmer, but
in an interrupt-driven environment some of these virtualizing mechanisms, in particu-
lar the virtual memory system, become more visible. To avoid breaking your applica-
tion — or even breaking Windows — you need to understand something about how
some of these virtual services work and about the conventions you must follow to
write compatible interrupt-driven code. For the purposes of this chapter, that means:

* understanding how the Windows memory manager works so that you can create
interrupt-safe code and data structures,

* knowing the conventions you must observe when accessing an interrupt-safe
buffer or data structure,

* knowing the conventions you must observe when installing your interrupt handler.

The first half of this chapter is devoted to explaining these three topics. The sec-
ond half of the chapter shows how to use this information to convert the polled-mode
driver of the last chapter into a basic interrupt-driven driver.

Windows Memory Management Strategy Overview

When the Windows memory manager gets an allocation request for a larger block

than is available, it takes one of the following three actions to free up memory to meet

‘this new demand:

¢ Discard the current contents of an already-allocated block. Here, discard means
reuse the same block without first saving its contents to disk — presumably
because a valid copy is known to already exist on disk.

* Rearrange (move) the current contents of memory to create a larger block of con-
tiguous memory.

* Swap the current contents of a block to disk.
Each of these three actions has potentially disastrous implications for an inter-

rupt-driven device driver. In the next few sections, I'll explain:

* why swapped, discarded, or moved blocks create problems for an interrupt-driven
handler, and

* how to write code and allocate data that won’t be swapped, discarded, or moved.

(See also the sidebar “Layered Memory Managers” on page 327.)

What Is Discardable?

Win16 applications are organized into logical components called segments. There are
three types of segments: code, data, and resource. Code segments contain a program’s
code, data segments contain a program’s data (including stack and local heap), and
resource segments contain user interface resources like menus, icons, bitmaps, etc.

Driver DLL: Interrupt Handling — 327

All segments, whether allocated statically as part of an executable or dynamically
by a running application, are allocated by calls to the Win16 memory manager API.
When a program is first loaded into memory, the Windows loader allocates on behalf
of the application, making calls to allocate segments to be used for the application’s
code, data, and resources. When an executing program needs additional memory, it
calls the memory manager API directly.

‘Each segment, whether it be code, data, or resource, possesses a set of attributes
that are tracked by the memory manager. These attributes determine what the memory
manager may or may not do with that segment. The memory manager can only dis-
card a segment if it is marked as discardable. Other attributes include: non-discard-
able, fixed, moveable, swappable, and non-swappable (also called pagelocked).

Attributes are specified in one of two ways: statically as part of the linking process
or dynamically as part of the allocation request to the memory manager. The
attributes of a program’s static code, data, and resource segments are specified at
link time, in the module definition (. DEF) file. The loader then allocates segments
with these attributes on- behalf of the application. The attributes of a segment
dynamically allocated by a program, via a direct call to the memory manager, are
specified as parameters to the function call. The program may later change a
segment’s attributes by another call to the memory manager.

Layered Memory Managers

In 16-bit Windows, the memory manager functionality is really provided by two different system components.
One is KERNEL, which is a user-mode DLL. The other is the VMM, a Ring 0 VxD. Win16 applications use the
memory management functions provided by KERNEL, like G1obalA110c. KERNEL itself uses the services of
the VMM (Virtual Machine Manager). So you can think of KERNEL as being layered on top of VMM.

The KERNEL memory manager deals with segments, which are mapped via the descriptor tables to linear
address space. To satisfy allocation requests for segments, KERNEL allocates linear address blocks from the
~ VMM. KERNEL performs two kinds of memory “management”, discarding and moving, which we’ll discuss
in a later section. Both apply strictly to segments, not to the pages that actually make up segments. KERNEL
has nothing to do with the third kind of “management”, which is virtual memory, also known as paging.

Virtual memory is implemented by the VMM (Virtual Machine Manager, not Virtual Memory Manager).
The VMM memory manager is responsible for managing physical memory: managing the paging tables,
which map linear addresses to physical addresses, and swapping pages to and from disk. VMM only deals
with pages, never segments.

The KERNEL module described here still exists in Windows 95 — it must, because Windows 95 supports
Win16 applications — but is renamed to KERNEL16. Win32 applications use a different memory manage-
ment API (e.g. VirtualAlloc instead of GlobalA11oc), which is provided by the KERNEL32 module. But
KERNEL32 is nothing more than a thin wrapper around calls to the VMM, which is still the virtual memory
manager in Windows 95 as well as in Windows 3.x.

328 — Writing Windows VxDs and Device Drivers

When the Windows memory manager discards a segment, the segment is not written to
disk but is literally discarded. When:a program accesses a segment which has been dis-
carded, the processor generates a Segment Not Present fault, and the fault handler will
reread the segment from disk into memory. This behavior implies that every discarded seg-
ment must be read-only (never modified) and always available on disk. Code and resource
segments are usually allocated as discardable. On the other hand, data segments should not
be discardable, because they can’t be recreated by reading the original segment from disk.

What is Moveable?

When Windows loads a Winl6 program’s resources, it loads them segment by seg-
ment, placing each individual segment into a contiguous block of linear memory.
Thus, to load a segment, it isn’t enough for Windows to have enough free memory, it
must have enough contiguous free memory. (To be precise, it must have enough free
linearly contiguous memory; the difference between linear and physical memory was
discussed in Chapter 3). If the free memory is highly fragmented, then the memory
manager may need to compact the active blocks to create larger free blocks (see the
sidebar “Fragmentation”).

Fragmentation

‘When a program requests an allocation from the memory manager, that request can be refused, even if free
memory is available, if that free memory is scattered in several small pieces instead of a single larger one.
This problem is known as fragmentation. It exists even under DOS, but multitasking makes the problem much
worse. Much of the complexity of the Windows memory manager and the memory management API exists to
combat this problem, so fragmentation merits a closer look.

Figure 15.1 illustrates the process of fragmentation. Initially, all available memory resides in a single large
block, called the heap. The first application runs and allocates memory that carves off a block from this heap.
Next, the same application allocates a second block. Now another application starts up and requests a block.
Then the first application deallocates the first block it had allocated. Note that this leaves a hole in the heap, so
that the heap is now composed of two blocks of free memory.

This condition of having holes in the heap is called fragmentation, and here’s why it’s a problem. Suppose
that the second application now requests another allocation, but this time the size of the request is larger than
either of the two blocks of free memory. The memory manager cannot satisfy the request, even though the size
of the request is actually less than the total available free memory.

To handle this problem, the Windows memory manager moves blocks (copies the block’s contents from
one location to another) to coalesce scattered free blocks into a single large free block. Figure 15.2 (see page
330) is a picture of the fragmented heap in Figure 15.1, before moving blocks and after. Before the move, the
largest available block was 192Kb. Afterward, it is 320Kb.

The memory manager can combat fragmentation effectively if all allocated memory is moveable. However,
there are situations where programmers need to fix a block in place, preventing the memory manager from mov-
ing the block. Too many such fixed blocks create sandbars in the heap, as illustrated in Figure 15.3 (see page
330), and lead to excessive fragmentation. Thus, fixed blocks should be used only when absolutely necessary.

Driver DLL: Interrupt Handling — 329

Windows relies on the processor’s protected mode to efficiently implement move-
able memory. In protected mode, a pointer is a logical address consisting of a selector
and an offset. Because a selector doesn’t directly specify a physical address — it
directly specifies an index into a descriptor table — implementing moveable memory
in protected mode is easy. To move a segment, Windows copies the segment’s con-
tents from one linear location to another, then updates the segment’s base address in

Figure 15.1 Fragmentation.

Initialheap [[[[[[[[| [] Free

First application
allocates 128Kb

First application
allocates 192Kb

Second application
allocates 64Kb

First application
frees 122Kb

Free = 192Kb Free = 128Kb
- J

Second application Free = 320Kb
requests 256Kb;
can't be satisfied

330 — Writing Windows VxDs and Device Drivers

the descriptor table. The segment value itself doesn’t change, so the index still points
to the same entry in the descriptor table. Only the base address stored in the descrip-
tor changes. This process is illustrated in Figure 15.4

This means that Windows can move segments around without the application’s
knowledge, because Windows can return a selector at the time of allocation. If the
system later moves the allocated block, the application would be unaffected because
the selector returned at allocation time still points (indirectly) to the block. As we’ll
see later, driver DLLs that handle interrupts are often affected by moveable segments.

Figure 15.2 Moving memory reduces fragmentation.

Fragmentation
before move

192Kb 128Kb

No fragmentation
after move

Figure 15.3

Before move

After move

After moveable

blocks freed, [I [. l I l ‘
fragmentation

still exists

Driver DLL: Interrupt Handling — 331

Figure 15.4 Illustrates how Windows moves a memory

segment.
Descriptor Table
Selector Linear/Physical
16 ¢
, g
B]
167]B°]
—
A S
Before Move
Descriptor Table
Selector
16¢| - Linear/Physical
16 A I
B —

A 4
! Data “Joe"[

After Move A

332 — Writing Windows VxDs and Device Drivers

What is Swappable?

Moving and discarding memory blocks are both useful techniques for the Windows
memory manager, but don’t help when memory is really tight — when there are no
free blocks remaining and no segments to be discarded. The remaining tool of the
memory manager, swapping or paging, is the most powerful of all, allowing Windows
to implement a technique known as virtual memory. Virtual memory is a neat trick
which allows the memory manager to provide more memory than is physically avail-
able in the system.

Virtual memory requires some help from the processor hardware, specifically the
paging feature. When memory gets low, the memory manager writes (swaps) a page
to disk and marks the page as not present in the page tables. If a process later tries to
access a location in that page, the not-present flag will cause the processor to generate
a page fault. This fault (a processor exception) will suspend the current process and
transfer control and the number of the missing page to the page fault handler. This
handler, which is part of the memory manager, uses the page number to locate the
page on disk and then reads it into memory. This entire paging process is handled
dynamically by the operating system in a way that is completely transparent to the
process that made the memory access.

If a page fault occurs when there are no free blocks in physical memory, then the
memory manager must create free space by swapping a currently present page to disk.

Memory Requirements for an
Interrupt-safe Driver

A driver that handles hardware interrupts has strict requirements on the type of mem-
ory it allocates. All code and data used at interrupt time must be fixed (non-move-
able), pagelocked, and non-discardable. This includes the code for the interrupt
handler itself, any data in the driver’s data segment used at interrupt time, any dynam-
ically allocated buffers used at interrupt time, and application-allocated buffers passed
to the driver and used at interrupt time.

In the following few paragraphs, I'll explain why an interrupt handler has each of
these three requirements. These requirements aren’t unique to interrupt handlers run-
ning under Windows; they also are shared by handlers running under other 80x86
environments, such as UNIX or OS/2. So in the next few paragraphs when I use the
terms fixed, pagelocked, and non-discardable, these are all generic memory attributes
offered by many operating systems. ‘

Driver DLL: Interrupt Handling — 333

After this generic discussion, I'll talk about how Windows implements these
same three attributes. When I'm referring specifically to these attributes as imple-
mented by Windows, I'll use a slightly different nomenclature: FIXED, PAGELOCKED,
and NONDISCARDABLE. This distinction is useful because, for example, FIXED doesn’t
always mean fixed, and PAGELOCKED always means both pagelocked and fixed.

Reason for Fixed

To understand why any data used by a hardware interrupt handler must be in a fixed
segment, consider the following scenario. Suppose the memory manager moves the
data segment used by an interrupt handler because the segment is marked moveable.
After a few bytes are copied, a hardware ‘interrupt occurs and the interrupt handler
executes. The handler updates a variable that resides in the first byte of its data seg-
ment (the one that’s being moved). Now when the handler finishes executing, the
memory manager continues with the rest of the copy but the variable just updated by
the handler is now incorrect. The memory manager copied the old value to the new
segment and has no way of knowing that the handler later modified the value. Clearly
the data segment used by a handler must be fixed to prevent this problem.

Reason for Non-discardable

The code segment containing a hardware interrupt handler has a different restriction:
it must be non-discardable. (Note that the data segment must be non-discardable as
well, but this is true of all data segments, while code segments are usually discard-
able.) Suppose that a hardware interrupt occurred, but the memory manager had dis-
carded the handler’s code segment. A Segment Not Present fault would occur, and the
Windows fault handler would attempt to reload the segment from disk. If the interrupt
occurred while the system was already in DOS (for some other reason), the result
would be an attempt to re-enter DOS. DOS, however, is not reentrant code. Thus, the
code segment must be non-discardable.

Reason for Pagelocked

Both code and data of a hardware interrupt handler must be pagelocked. The reasons
are similar to those that force the segment to also be non-discardable. An interrupt
handler accessing a swappable buffer would result in a page fault if that buffer had
been swapped to disk. The interrupt handler code itself could have been swapped to
disk, resulting in a page fault during execution. In either case, the page fault could
cause DOS to be re-entered.

334 — Writing Windows VxDs and Device Drivers

Static Interrupt-safe Code and Data:
The Easy Way

The easiest way to insure that driver code and data segments are interrupt-safe is to
mark code and data segments as FIXED and NONDISCARDABLE in the driver’s module
definition file. Note that this technique relies on two well-known Windows behaviors.
First, Windows ignores the FIXED attribute when used by applications but respects it
when used by DLLs — thus the driver must be a DLL. Second, when segments are
marked as FIXED in the module definition file, Windows pagelocks the memory in
addition to fixing it in linear memory.

When running under Windows 95, using the FIXED keyword in the module defini-
tion file is an easy way for a developer to make his static code and data interrupt-safe.
The very same technique, when used under Windows 3.x, is easy for the developer, but
has terrible side effects for the user. This allocation method can easily result in a situa-
tion where Windows is unable to start new Windows applications, and the user gets an
“Insufficient memory to start the application” error message. This can happen even
when there is plenty of free memory and free system resources. How can this be?

Use the Right Way under Windows 3.x

Each time a Windows application runs, the Windows loader allocates a 512-byte
block for a data structure called the Program Segment Prefix (PSP). The PSP is used
by DOS as well as Windows, so it must be located below 1Mb. If there is no memory
available for the PSP, Windows can’t run the application. This behavior is true under
Windows 3.x, and is still true under Windows 95.

The problem with Windows 3.x is the strategy used by the 3.x memory manager:
FIXED blocks are allocated from as low in the heap as possible, DISCARDABLE blocks
come from high in the heap, and MOVEABLE from in between. This strategy helps to
reduce fragmentation but often results in FIXED allocations using up precious low
DOS memory, even when the users of FIXED memory don’t need the memory to come
from below 1Mb.

The Windows 95 memory manager uses a slightly different heap strategy, so
that FIXED allocations do not use low DOS memory. Therefore, if your
16-bit driver DLL will run under Windows 95 only, you're safe to take the
easy way out and use FIXED in your DEF file.

Driver DLL: Interrupt Handling — 335

Here’s the right way, which avoids using up precious low memory. First mark
your driver’s code and data segments as MOVEABLE — not FIXED — in the module def-
inition file. At run time, before any interrupts occur, you explicitly fix-and pagelock
the segments. But you must be careful with this second step. The Windows API func-
tion G1obalPagelock will both fix and pagelock a segment but GlobalPagelock will
also move the segment down to low memory (because FIXED blocks should be low in
the heap), exactly what we want to avoid.

What'’s needed is a way to prevent the memory manager from moving the segment
before pagelocking it. This can be done by first allocating all the memory below 1Mb,
calling GlobalPagelock, and then freeing all the low memory. I’ve provided a func-
tion — called SafePagelock — which does just this, and I'll examine it in more
detail later. First I'll examine a related issue: how to dynamically allocate inter-
rupt-safe buffers. As with the driver’s static segments, there is an easy way and a right
way to do this under Windows 3.x.

Dynamically Allocating
Interrupt-safe Buffers: The Easy Way

The easy way to dynamically allocate an interrupt-safe buffer is to call GlobalAlloc
and specify that you want a buffer that is both fixed and pagelocked. G1obalAlloc
takes two parameters, a bit-mapped value, representing the attributes of the segment
to be allocated, and the size of the segment. Allowable values for the flags parameter
include: GMEM_FIXED, GMEM_MOVEABLE, GMEM_DISCARDABLE, GMEM_NODISCARD, and
GMEM_SHARE. ,

The GMEM_SHARE flag was introduced in Chapter 13. Although there is no flag to
specify an attribute of pagelocked, when used by a DLL the GMEM_FIXED flag always
has the side effect of pagelocking memory. So an allocation for an interrupt-safe
buffer would use the flags GMEM_FIXED, GMEM_NODISCARD, and GMEM_SHARE.

Although the size parameter to GlobalAlloc is a 32-bit value, the largest
allocation permitted is 16Mb—64Kb, much less than 2%,

A return value of NULL from GlobalAlloc means the segment could not be allo-
cated, usually because a free block of that size wasn’t available. A non-NULL return
value is the handle of the memory object. (More about handles and how to turn them
into useable pointers in the next section.)

336 — Writing Windows VxDs and Device Drivers

- Dynamically Allocating
Interrupt-safe Buffers: The Right Way

This easy method results in exactly the same problem discussed above with Windows
3.x and fixed driver code and data segments: the buffer is fixed, pagelocked, and
~ non-discardable — but is also usually located below 1Mb. The right way is to first
allocate from GlobalAlloc using GMEM_MOVEABLE instead of GMEM_FIXED and to fix
and pagelock the buffer later with the SafePagelock function. This function is not
part of the Windows API, but a function I will present in a later section. The safe func-
tion is necessary to prevent the memory manager from moving the buffer to low mem-
ory during the pagelock operation, as it would with a simple call to GlobalPagelock.

Before examining the code for SafePagelock, I will need to cover one more topic
relevant to 16-bit drivers under both Windows 3.x and 95: the relationship between
handles, selectors, and pointers. GlobalAlloc returns a handle. Functions such as
GlobalPagelock and GlobalFix expect a selector, and accessing a dynamically allo-
cated buffer requires a pointer.

Using the Buffer: Handles, Selectors, and Pointers

The handle returned by GlobalAlloc is not a pointer, it’s just a value with special
meaning to the memory manager. To access the associated memory object, even when
it is fixed and pagelocked, you must convert this handle to a pointer. This is done by
calling GlobalLlock, using as a parameter the handle returned by GlobalAlloc. The
block is freed with a call to GlobalFree, passing in the same handle returned by the
original GlobalAlloc.

As explained earlier, a protected mode pointer consists of a selector and an offset.
Some Windows API functions, such as G1obalPagelock, take a selector parameter, not
a handle. To obtain a selector from a far pointer, use the SELECTOROF macro provided
in WINDOWS.H. Better yet, the GlobalAllocPtr and GlobalAllocFree macros in
WINDOWSX.H combine the allocation and lock (handle dereference). The GlobalAllocPtr
macro combines a call to GTobalA1710c with a subsequent call to G1oballock, return-
ing a pointer. The GlobalFreePtr macro combines a call to GlobaTHandle (which
converts a selector to a handle), Gl1obalUnlock, and GlobalFree.

Driver DLL: Interrupt Handling — 337

Note that you should not use the C library malloc function instead of
GlobalAlloc to allocate an interrupt-safe buffer. The problem is not the
attributes flag. As explained earlier in Chapter 13, ma11oc allocates moveable
memory, using exactly the same flags you would pass to G1obalAlloc if you
were going to fix and pagelock the memory later. The problem is that malloc
doesn’t usually allocate a segment via G1obalAlloc. Instead, malloc acts as
a sub-segment allocator, usually returning an offset into an already-allocated
segment. So when you call GlobalPagelock, it will fix and_pagelock the
entire segment, not just your portion of it. And the golden rule of Windows
memory management is to never fix, and never ever pagelock, memory if it’s
not absolutely necessary.

A Safe Pagelock Function

There is nothing tricky about SafePagelock, shown in the following paragraph of
code. It takes a single WORD parameter, which is the selector of the buffer you want to
pagelock, and performs the three steps outlined earlier:

* Repeatedly calls G1obalDosA11oc until all memory below 1Mb has been allocated.

» Calls GlobalPagelockto fix and pagelock the caller’s buffer. This call is now safe
because the allocated blocks, which completely fill up the area below 1Mb, will
prevent the heap manager from moving our buffer below 1Mb.

* Repeatedly calls G1obalFree to free all memory blocks below 1Mb that were allo-
cated earlier.

UINT SafePagelLock(HGLOBAL sel)
{

WORD i, rc;

static WORD SelArray[1024 1;

memset(SelArray, 1024 * sizeof(WORD), 0);
for (i=0; i < 1024; i++)
{
SelArray[i] = LOWORD(GlobalDosAlloc(1024));
if (!SelArray[il)
break;

338 — Writing Windows VxDs and Device Drivers

rc = GlobalPageLock(sel);

for (i=0; i < 1024; i++)
{
if (1SelArray[i])
break;
GlobalFree(SelArray[i]);
}

return rc;

The following code fragment uses SafePagelock to fix and pagelock a driver’s
code and data segments:

_asm mov myds, ds
_asm mov mycs, CS
SafePagelock(myds);
SafePagelock(mycs);

And the next code fragment dynamically allocates an interrupt-safe buffer the
right way, by combining a call to GlobalAl10c to get moveable memory with a sub-
sequent call to SafePagelock:

HGLOBAL hnd;

UINT sel, bufsize, flags;
bufsize = 8192;

char far *pBuffer;

flags = GMEM_MOVEABLE | GMEM_NODISCARD | GMEM_SHARE;
hnd = GlobalAlloc(flags, bufsize);

pBuffer = GloballLock(hnd);

sel = SELECTOROF(pBuffer);

SafePagelock(sel);

Note that no SafePageUnlock function is necessary, because the Windows API
function GlobalPageUnlock has no undesirable side effects.

Driver DLL: Interrupt Handling — 339

Installing an Interrupt Handler

The proper way to install an interrupt handler from a Windows DLL driver is through
the DOS Set Vector call (INT 21h AH=25h). A DOS driver written in a high-level
language like C can use a library function like _dos_setvect to make this DOS call.
However, the Windows-specific versions of the VC++ 1.x run-time library don’t con-
tain _dos_setvect because the library implementation of the function isn’t compati-
ble with Windows.

That leaves two alternatives: make the DOS call through the library routine intdosx,
which is available to Windows programs, or write your own version of _dos_setvect.
I’'ve chosen the latter approach because it is trivial to code and is more efficient than
using intdosx. (See the sidebar “Initialize Those Registers!”)

If your Windows-specific C library supports a high-level call like _dos_setvect,
feel free to use it. But if it doesn’t, call INT 21h with AH=25h from assembly. Almost all
compilers that generate Windows applications also support embedded assembly, which
makes this trivial. Here’s a C function that installs a handler using embedded assembly.

Initialize Those Registers!

If you do choose to use intdosx, you must carefully initialize both SREGS . es and SREGS. ds. The easiest way
to do this is through the segread function. This step is necessary because during the intdosx call the DS and
ES registers are loaded from the SREGS structure, and an invalid value in a segment register will cause a pro-
cessor exception.

The following code calls DOS Set Vector through intdosx.

typedef void (FAR interrupt *VOIDINTPROC);

void DosSetIntVector(BYTE vector, VOIDINTPROC pHandler)

{

struct SREGS SegRegs;

union REGS InRegs, OutRegs;

segread(&SegRegs);

SegRegs.ds = SELECTOROF(pHandler); InRegs.x.bx = OFFSETOF(pHandler);
InRegs.h.ah = 0x25;

intdosx(&InRegs, &0utRegs, &SegRegs);

340 — Writing Windows VxDs and Device Drivers

void InstallHandler(void far *myHandler, int intNumber)
{

asm

{

mov ah, 25h

mov b1, intNumber

push ds ; don't Tose this!
1ds si, myHandler

int 21h

pop ds ; put DS back!

}

Although you may need assembly code to install the handler, the handler itself can
be written entirely in C using the interrupt keyword. This keyword instructs the
compiler to generate special prolog and epilog code. The prolog pushes all registers
onto the stack and loads DS with the data segment. The epilog pops all registers from
the stack and returns with an IRET instruction. These entry and exit sequences are
necessary for the handler to work properly.

As under DOS, the interrupt handler should not call any C library functions nor
any DOS or BIOS services. In addition, the only Windows functions that can be called
safely are listed in Table 15.1.

The New Driver: An Overview

To demonstrate these techniques, I've modified the example driver so that the UART’s
receive and transmit buffers are serviced by an interrupt handler. The driver and ISR com-
municate through circular buffers. The data area of each buffer is dynamically allocated by

Table 15.1 Windows functions that can safely be called
Jfrom an interrupt handler.

Function Type Function Name

Messaging Functions OutputDebugStr
PostMessage

PostAppMessage
Multimedia Functions timeGetSystemTime
timeSetEvent
timeKillEvent
midiOutShortMsg
midiOutLongMsg

Driver DLL: Interrupt Handling — 341

the driver (just to show the technique). The main driver stores a pointer to each buffer in the
DEVICECONTEXT structure so that the ISR will know how to find and manipulate the buffer.

The largest changes are in the DeviceOpen and DeviceClose routines. I use these
routines as hooks to install and remove the ISR. The DeviceOpen routine allocates the
buffers, sets up the DEVICECONTEXT structure, and installs the ISR. The DeviceClose
routine reverses these steps, un-installing the ISR and freeing the buffers.

The New Driver: The Code

To convert the polled driver of the last chapter to an interrupt, one must:
» add information about the ISR and the interrupt to the DEVICECONTEXT structure,
* add code in DeviceOpen to allocate interrupt-safe buffers and install the ISR,

* change the code in DeviceRead so that it retrieves its data from the receive buffer
instead of directly from the device,

» change the code in DeviceWrite so that it copies its data in the transmit buffer
instead of writing directly to the device,

» create an ISR to service the interrupt, and
* add code in DeviceClose to deallocate the buffers and deactivate the ISR.

The New DEVICECONTEXT

The following code shows the C declaration for the new DEVICECONTEXT structure. As
in earlier examples the driver will define a separate static instance of this structure for
each supported device. This definition adds fields for the interrupt to be serviced
(Irq), substructures that describe the two ring buffers (RxBuf and TxBuf), and storage
for the old interrupt vector so that the driver can properly restore the system state
when it removes the ISR.

typedef struct
{
char far *Start;

WORD Size;
WORD In;
WORD Out;

} BUFINFO;

342 — Writing Windows VxDs and Device Drivers

typedef struct
{

WORD usDevNumber;
WORD usloBase;
BYTE blrqg;

BYTE bFlags;

HWND hwnd;
VOIDINTPROC pfOldHandler;
BUFINFO RxBuf;
BUFINFO TxBuf;

DRIVERPARAMS params;
} DEVICECONTEXT, FAR *HDEVICE;

The buffer structures include storage for a pointer to the buffer, the buffer’s size, a
next-in index (In), and a next-out index (Out). Figure 15.5 illustrates how these data
structures will be used while the driver is running.

Allocating an Interrupt-safe Buffer

The DeviceOpen function allocates the buffers to be used by the interrupt handler. The
size for each buffer is taken from the DRIVERPARAMS structure. The buffers are allo-
cated with the GMEM_FIXED flag so that the region is safe for use at interrupt time, a
critically important step, although the code is relatively simple:

hDevice->RxBuf.Size = hDevice->params.usReadBufSize;
hDevice->RxBuf.Start = GlobalAllocPtr(GMEM_SHARE |
GMEM_MOVEABLE |
GMEM_NODISCARD,
hDevice->RxBuf.Size);
if (!hDevice->RxBuf.Start)
{
OutputDebugString("ERROR GlobalAlloc Rx\n");
return (HDEVICE)-1;
}
SafePagelock((HGLOBAL)SELECTOROF(hDevice->RxBuf.Start));

Notice that I've used the G1obalAllocPtr macro in place of an explicit call to
Globallock. I've also allocated the buffer as GMEM_MOVEABLE and used SafePagelock
to fix and pagelock it, without moving it below 1Mb.

Finally, DeviceOpen initializes the ring pointers:

hDevice->RxBuf.In = hDevice->RxBuf.Out = 0;

Driver DLL: Interrupt Handling — 343

Installing the ISR

Once the buffer is built, DeviceOpen turns to the task of installing the ISR. To handle
the general case, DeviceOpen must disable interrupts, save the existing vector, install
the new vector, and then enable interrupts.

The first step is to disable interrupts from the device by masking the device’s inter-
rupt level (sometimes called IRQ for Interrupt Request Level) in the Programmable
Interrupt Controller (PIC). The PC uses two PICs, termed master and slave, which are
daisy-chained together. The mask register of the master PIC is located at I/O port 21h
and controls IRQs 0-7. Hardware IRQs 8-15 are controlled by the’slave PIC at /O

Figure 15.5 Illustrates how the buffer structures will be
used while the driver is running.

Device Context 1/0 space
usIoBase &
1
MV z
o
&)
:_. L
s —
RxBuf 0———-————|__~’ Bufinfe : A ¢ Newest
Size : 3| Received
2
n o : 2 Byte L_J
out . | et
u - |« Storage
Start ! for Next
: Byte
|
| >~ Size
|
|
|
|
1
|

> ¢ Oldest
Received
Byte

y_

Received Data

Y

-/

344 — Writing Windows VxDs and Device Drivers

port Alh. The mask registers are both bitmapped, where a 1 in a bit position disables
the interrupt line, and a 0 enables the interrupt line. For the master, IRQs O to 7 corre-
spond directly to bits 0 to 7. For the slave, IRQ 8 corresponds to bit 0, IRQ 9 corre-
sponds to bit 1, etc. (See the sidebar “IRQ 2 versus IRQ 9.)
Now that the device can’t generate an interrupt, it’s safe to install the interrupt
_handler. Using the DOS Set Vector and Get Vector services (through my
home-brew functions), DeviceOpen saves a copy of the current vector and then
installs a vector that points to the new ISR:

hDevice->pfOldHandler = DosGetIntVector(bVector);
DosSetIntVector(bVector, Devicelsr);

With the ISR properly installed, it’s safe to enable interrupts. That means pro-
gramming the device to generate interrupts and also unmasking the interrupt in the
interrupt controller.

IRQ 2 Versus IRQ 9

Developers of Windows device drivers often handle IRQ 9 incorrectly. Here’s the problem: The original IBM
PC bus supports only IRQs 0 through 7, using a single interrupt controller. The two-controller design used by
the AT bus successor to the PC is used by all of today’s systems. The AT design doesn’t support IRQ 2
because the designers used the IRQ 2 input of the master controller to connect it to the slave controller. IBM
wanted old PC cards that used IRQ 2 to work in an AT, so the IRQ 2 bus signal was re-routed to the IRQ 9
input on the slave controller. The AT BIOS was also updated so that the default IRQ 9 interrupt handler did
nothing but call the IRQ 2 handler.

With this backward-compatible design, the same hardware device and software using IRQ 2 in an older PC
bus system automatically uses IRQ 9 on today’s AT bus system. On the PC bus, the device asserts IRQ 2 on
the bus, the signal goes to IRQ 2 on the interrupt controller, and the processor vectors to the IRQ 2 handler.
On an AT bus, that same device asserts IRQ 2 on the bus, but that signal goes to IRQ 9 on the controller, so the
processor vectors to the IRQ 9 handler. Then the default BIOS handler for IRQ 9 calls the IRQ 2 handler.

So IBM’s improved AT bus design didn’t require hardware manufacturers to change their cards or software
developers to rewrite their drivers. That was a good idea when PC bus and AT bus systems were both in use,
but almost a decade later there are no PC bus systems. And although many hardware vendors still refer to their
cards as using IRQ 2, the card really uses IRQ 9.

It is very important to make this distinction when developing a Windows driver because hooking IRQ 2
when the device really uses IRQ 9 simply doesn’t work under Windows. This worked under DOS because the
BIOS handler for IRQ 9 called the IRQ 2 handler. Under Windows, the real mode BIOS IRQ 9 handler
doesn’t even see the interrupt if a Windows driver has hooked IRQ 9. If you’re writing a Windows driver for
an IRQ 9 device, hook IRQ 9 during installation and unmask the interrupt level on the slave controller.

Driver DLL: Interrupt Handling — 345

Programming the COM port to generate interrupts is a two-step process:
* enable the interrupt internally in the UART, and

* enable the interrupt externally (using a spare UART output to gate the signal on the
serial card).

The code looks like this:

outp(hDevice->usIoBase + UART_REG_IER, UART_IER_RXRDY);
outp(HDevice->usIoBase + UART_REG_MCR, UART_MCR_OUT2);

Finally, DeviceOpen clears the appropriate mask bit in the interrupt controller,
again paying attention to the chained controllers.

Processing Interrupts

If you are familiar with ring buffers, the ISR in Listing 15.5 (see page 359) will be
straightforward. The handler first determines the exact cause of the interrupt and then
branches to service either a receive ready or a transmit complete. The receive ready
case reads a byte from the UART, copies the byte to the receive ring buffer and updates
the buffer indices. In addition, if the receive buffer is full, the ISR uses PostMessage to
post a message to the window whose handle was provided by the caller in DeviceOpen.
The transmit complete case either pulls the next byte out of the transmit ring buffer
and writes it to the UART or, if the transmit buffer is empty, disables the UART’s
transmit interrupt.

Although it’s invisible here, the ISR isn’t really talking to the physical PIC.
The End Of Interrupt (EOI) write will actually be intercepted by Windows
(using some of the 386 protection hardware) and redirected to a Virtual PIC,
the VPICD. See Chapter 7 for more information about the VPICD.

Both DeviceGetReadStatus and DeviceRead in INTBASIC.C are slightly modified.
DeviceGetReadStatus compares buffer indices to decide if characters are available. The
DeviceRead routine just copies from the ring buffer to the calling program’s buffer.
DeviceGetWriteStatus and DeviceWrite have similar, transmit-oriented modifications.

346 — Writing Windows VxDs and Device Drivers

Cleaning Up

The DeviceClose routine handles all the clean-up activities. Of course there’s a natu-
ral symmetry between DeviceClose and DeviceOpen. Inverting the install sequence,
this function should disable interrupts, install the original vector, re-enable interrupts,
and then dispose of the buffer memory.

Summary

If you are familiar with interrupt-driven drivers under DOS, you should find the basic
driver of this chapter quite accessible. (In fact, the ISR could easily be a DOS ISR.) If
you test the performance of this driver and a comparable DOS driver, you may be sur-
prised at the difference. The Windows driver will be significantly slower than its DOS
cousin.

Although this chapter’s ISR looks like it is written directly on the hardware, it
really isn’t. Windows is using the 386 protection hardware to insert a non-trivial layer
of virtualizing software between your code and the hardware. This layer introduces
some very significant service delays. A VxD is your best alternative if you need better
response time from the driver.

Driver DLL: Interrupt Handling — 347

Listing 15.1 INTBASIC.H

ftdefine FLAGS_ON_SLAVE_PIC 0x01

jidefine FLAGS_OPEN 0x02
fidefine FLAGS_RXQOVER 0x04
Jidefine MASTER_PIC_CTRL 0x20
jidefine MASTER_PIC_MASK 0x21
fidefine SLAVE_PIC_CTRL 0xAQ
Jidefine SLAVE_PIC_MASK 0xAl
fidefine EOI 0x20

fidefine SET(value, mask) value |= mask
jidefine CLR(value, mask) value &= (~mask)

typedef struct
{
WORD usReadBufSize;
} DRIVERPARAMS, FAR * PDRIVERPARAMS;

typedef struct
{
WORD version;
} DRIVERCAPS, FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

typedef void (FAR interrupt *VOIDINTPROC)();
typedef struct

{
char far *Start;

WORD Size;

WORD In;

WORD Out;
} BUFINFO;

typedef struct
{

WORD usDevNumber;
WORD usloBase;
BYTE blrg;

BYTE bFlags;

HWND hwnd;
VOIDINTPROC pfOldHandler;
BUFINFO RxBuf;
BUFINFO TxBuf;

DRIVERPARAMS params;
} DEVICECONTEXT, FAR *HDEVICE;

348 — Writing Windows VxDs and Device Drivers

Listing 15.1 (continued) INTBASIC.H

HDEVICE
int FAR
int FAR
int FAR
int FAR
int FAR
int FAR
int FAR
int FAR

FAR PASCAL DeviceOpen(HWND hwnd);

PASCAL DeviceClose(HDEVICE);

PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);

PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);

PASCAL DeviceWrite(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

PASCAL DeviceRead(HDEVICE, LPBYTE 1pData, LPWORD pcBytes);

PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);

PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps)

extern DEVICECONTEXT Devicel;

Listing 15.2 UART.H

ftdefine UART_REG_THR 0x00
ffdefine UART_REG_RDR 0x00
ftdefine UART_REG_IER 0x01
fidefine UART_REG_IIR 0x02
ffdefine UART_REG_LCR 0x03
ftdefine UART_REG_MCR 0x04
ffdefine UART_REG_LSR 0x05
ffdefine UART_REG_BAUDLO 0x00
fidefine UART_REG_BAUDHI 0x01
ftdefine UART_IIR_NONE 0x01
ffdefine UART_IIR_THRE 0x02
ffdefine UART_IIR_RXRDY 0x04
ffdefine UART_IER_THRE 0x02
fidefine UART_IER_RXRDY 0x01
jtdefine UART_MCR_OUT2 0x08
ftdefine UART_MCR_LOOP 0x10
ftdefine UART_LSR_THRE 0x20
ftdefine UART_LCR_DLAB 0x80
ffdefine UART_LCR_8N1 0x03
jtdefine UART_LSR_RXRDY 0x01
fidefine BAUD_1200 0x60

jtdefine BAUD_110 0x0417L

Dtiver DLL: Interrupt Handling — 349

Listing 15.3 ISR.H

void interrupt FAR Devicelsr(void);

Listing 15.4 INTBASIC.C

#Hinclude <dos.h>
finclude <conio.h>
#include <windows.h>
#include <windowsx.h>
#include "intbasic.h"
#include "uart.h"
#include "isr.h"
#include "malloc.h"

fidefine DOS_GET_INT_VECTOR 0x35
fidefine DOS_SET_INT_VECTOR 0x25

DEVICECONTEXT Devicel = { 0, Ox3F8, 4, 0, NULL };
DRIVERPARAMS DefaultParams = { 1024 };
DRIVERCAPS DriverCaps = { 0x0101 };

BOOL ValidHandle(HDEVICE hDevice);

VOIDINTPROC DosGetIntVector(BYTE Irqg);

void DosSetIntVector(BYTE Irq, VOIDINTPROC pHandler);
void interrupt FAR Devicelsr(void);

UINT SafePagelock(HGLOBAL sel);

HDEVICE FAR PASCAL _export DeviceOpen(HWND hwnd)
{

HDEVICE hDevice;

BYTE bVector, mask;

WORD mycs, myds;

OutputDebugString("DeviceOpen\n");
hDevice = &Devicel;

if (hDevice->bFlags & FLAGS_OPEN)

{

OutputDebugString("ERROR already open\n");
return (HDEVICE)-1;

350 — Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC.C

hDevice->params = DefaultParams;
hDevice->hwnd = hwnd;

hDevice->RxBuf.Size = hDevice->params.usReadBufSize;
hDevice->RxBuf.Start = GlobalAllocPtr(GMEM_SHARE |
GMEM_MOVEABLE |
GMEM_NODISCARD,
hDevice->RxBuf.Size);
if (!hDevice->RxBuf.Start)
{
OutputDebugString("ERROR GlobalAlloc Rx\n");
return (HDEVICE)-1;
}
SafePagelLock((HGLOBAL)SELECTOROF(hDevice->RxBuf.Start));
hDevice->RxBuf.In = hDevice->RxBuf.Out = 0;

hDevice->TxBuf.Size = hDevice->params.usReadBufSize;
hDevice->TxBuf.Start = GlobalAllocPtr(GMEM_SHARE |
GMEM_MOVEABLE |
GMEM_NODISCARD,
hDevice->TxBuf.Size);
if (!hDevice->TxBuf.Start) '
{
OutputDebugString("ERROR GlobalAlloc Tx\n");
return (HDEVICE)-1;
}
SafePagelock((HGLOBAL)SELECTOROF(hDevice->TxBuf.Start));
hDevice->TxBuf.In = hDevice->TxBuf.Out = 0;

_asm mov myds, ds
_asm mov mycs, cs
SafePagelock(myds);
SafePagelock(mycs);

if (hDevice->bIrg < 8)

{
mask = _inp(MASTER_PIC_MASK);
SET(mask, 1 < hDevice->bIrq);
_outp(MASTER_PIC_MASK, mask);

}

else

{
SET(hDevice->bFlags, FLAGS_ON_SLAVE_PIC);
mask = _inp(SLAVE_PIC_MASK);
SET(mask, 1 < (hDevice->bIrg-8));
_outp(SLAVE_PIC_MASK, mask);

- Driver DLL: Interrupt Handling — 351

Listing 15.4 (continued) INTBASIC.C

if (hDevice->blrg < 8)

bVector = hDevice->bIrqg + 0x08;
else

bVector = hDevice->bIrq - 8 + 0x70;
hDevice->pf0ldHandler = DosGetIntVector(bVector);
DosSetIntVector(bVector, Devicelsr);

// Configure UART.

_outp(hDevice->usloBase+UART_REG_IER, 0);

_outp(hDevice->usloBase+UART_REG_LCR, UART_LCR_DLAB);
_outp(hDevice->usIoBase+UART_REG_BAUDLO, BAUD_1200);
_outp(hDevice->usIoBase+UART_REG_BAUDHI, 0);

_outp(hDevice->usIoBase+UART_REG_LCR, UART_LCR_8N1);
_outp(hDevice->usIoBase+UART_REG_IER, UART_IER_RXRDY);
_outp(hDevice->usloBase+UART_REG_MCR, UART_MCR_OUT2);

// Unmask interrupt at PIC.

if (hDevice->bIrg < 8)

{
mask = _inp(MASTER_PIC_MASK);
CLR(mask, (1 < hDevice->bIrqg));
_outp(MASTER_PIC_MASK, mask);

}

else

{
mask = _inp(SLAVE_PIC_MASK);
CLR(mask, (1 < (hDevice->bIrg-8)));
_outp(SLAVE_PIC_MASK, mask);

}

SET(hDevice->bFlags, FLAGS_OPEN);

return hDevice;

352 — Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceClose(HDEVICE hDevice)
{
BYTE mask, bVector;

OutputDebugString("DeviceClose\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return FALSE;

CLR(hDevice->bFlags, FLAGS_OPEN);

// Disable UART interrupts.
_outp(hDevice->usIoBase + UART_REG_IER, 0);
_outp(hDevice->usIoBase + UART_REG_MCR, 0);

if (hDevice->bIrq < 8)

{
mask = _inp(MASTER_PIC_MASK);
SET(mask, 1 < hDevice->blrq);
_outp(MASTER_PIC_MASK, mask);

}

else

{
SET(hDevice->bFlags, FLAGS_ON_SLAVE_PIC);
‘mask = _inp(SLAVE_PIC_MASK);
SET(mask, 1 < (hDevice->bIrg-8));
_outp(SLAVE_PIC_MASK, mask);

}

if (hDevice->bIrg < 8)

bVector = hDevice->blrg + 0x08;
else

bVector = hDevice->blIrq - 8 + 0x70;
DosSetIntVector(bVector, hDevice->pfOldHandler);

GlobalFreePtr(hDevice->RxBuf.Start);
GlobalFreePtr(hDevice->TxBuf.Start);

return 0;

Driver DLL: Interrupt Handling — 353

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice,

{

*pusStatus = 1; // ready to transmit
}
else
{
*pusStatus = 0; // not ready to transmit
}
return 0;
}
int FAR PASCAL _export DeviceGetReadStatus(HDEVICE hDevice, LPWORD pusStatus)

LPWORD pusStatus)
OutputDebugString("DeviceGetWriteStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

if (_inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_THRE)
{

OutputDebugString("DeviceGetReadStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

if (hDevice->RxBuf.In != hDevice->RxBuf.Out)
{

*pusStatus = 1; // data ready
}
else

{

*pusStatus = 0; // no data ready

}

return 0;

354 — Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice, LPBYTE 1pData,
LPWORD pcBytes)
(
WORD i;
char der;

QutputDebugString("DeviceWrite\n");

if (!1pData)
{ :
OutputDebugString("ERROR\n");
return -1;

}

if (!ValidHandle(hDevice))

{
QutputDebugString("ERROR\n");
return -1;

}

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
{
OutputDebugString("ERROR\n");
return -1;
}

for (i=0; i < *pcBytes; i++)

{

hDevice->TxBuf.Start[hDevice->TxBuf.In++] = 1pDatal i 1;

if (hDevice->TxBuf.In >= hDevice->TxBuf.Size)
hDevice->TxBuf.In = 0;

)

if (UART_LSR_THRE & _inp(hDevice->usIoBase+UART_REG_LSR))
; ier = _inp(hDevice->usIoBase+UART_REG_IER);

if ((UART_IER_THRE & ier) == 0)

(_outp(hDevice->usloBase+UART_REG_IER, ier | UART_IER_THRE);
} }

return 0;

Driver DLL: Interrupt Handling — 355

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceRead(HDEVICE hDevice, LPBYTE 1pData,
LPWORD pcBytes)
{
WORD cBytes, 1i;

OutputDebugString("DeviceRead\n");

if (!1pData)

{
OutputDebugString("ERROR\n");
return -1;

}

if (!ValidHandle(hDevice))

{
OutputDebugString("ERROR\n");
return -1;

}

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
{
OutputDebugString("ERROR\n");
return -1;
}

cBytes = *pcBytes;

for (i=0; i < cBytes; i++)
{
if (hDevice->RxBuf.In == hDevice->RxBuf.0ut)
break;
1pDatali] = hDevice->RxBuf.Start[hDevice->RxBuf.Out++ 1;
if (hDevice->RxBuf.Out >= hDevice->RxBuf.Size)
hDevice->RxBuf.Qut = 0;
*pcBytes--;
}

return 0;

356 — Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice,
PDRIVERPARAMS pParams)
{
OutputDebugString("DeviceSetDriverParams\n");

if (!pParams)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

hDevice->params = *pParams;
return 0;
int FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice,
PDRIVERPARAMS pParams)
QutputDebugString("DeviceGetDriverParams\n");

if (!pParams)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

*pParams = hDevice->params;

return 0;

Driver DLL: Interrupt Handling — 357

Listing 15.4 (continued) INTBASIC.C

int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice,
PPDRIVERCAPS ppDriverCaps)
{
OutputDebugString("DeviceGetDriverCapabilities\n");

if (!ppDriverCaps)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

*ppDriverCaps = &DriverCaps;

return 0;
}

BOOL ValidHandle(HDEVICE hDevice)
{

return (hDevice = &Devicel);
}

VOIDINTPROC DosGetIntVector(BYTE vector)
{
WORD selHandler, offHandler;

_asm
{
mov al, vector
mov ah, DOS_GET_INT_VECTOR
push es
int 21lh
mov offHandler,bx
mov selHandler,es
pop es
}
return(MAKELP(selHandler, offHandler));

358 — Wriiing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC.C

void DosSetIntVector(BYTE vector, VOIDINTPROC pHandler)
{
WORD offHandler, selHandler;

selHandler = SELECTOROF(pHandler);
offHandler = OFFSETOF(pHandler);
asm

{
mov al, vector
mov ah, DOS_SET_INT_VECTOR
mov dx, offHandler
mov bx, selHandler
push ds
mov ds, bx
int 21h
pop ds

}

UINT SafePagelLock(HGLOBAL sel)
{

WORD 1, rc;

static WORD SelArray[1024 7J;

memset(SelArray, 1024 * sizeof(WORD), 0);
for (i=0; i < 1024; i++)
{
SelArray[i] = LOWORD(GlobalDosAlloc(1024));
if (!SelArray[il)
break;
)

rc = GlobalPagelLock(sel);

for (i=0; i < 1024; i++)
{
if (!SelArray[i])
break;
GlobalFree(SelArray[i]);
}

return rc;

Driver DLL: Interrupt Handling — 359

Listing 15.5 ISR.C

f#include <conio.h>
#Hinclude <windows.h>
f#include "intbasic.h"
#include "uart.h"

void interrupt FAR Devicelsr(void)
{

BYTE ider, intid;

LPBYTE buf;

DEVICECONTEXT *hDevice;

hDevice = &Devicel;

while(TRUE)
{
intid = _inp(hDevice->usIoBase + UART_REG_IIR);
if (intid == UART_IIR_NONE)
break;

if (intid == UART_IIR_RXRDY)
{
if ((hDevice->RxBuf.In+l=hDevice->RxBuf.Out)
|| ((hDevice->RxBuf.Out = 0)
&& (hDevice->RxBuf.In == hDevice->RxBuf.Size-1)))
{
PostMessage(hDevice->hwnd, WM_USER, 0, NULL);
}
buf = hDevice->RxBuf.Start;
buf[hDevice->RxBuf.In++] = _inp(hDevice->usloBase +
UART_REG_RDR);
if (hDevice->RxBuf.In >= hDevice->RxBuf.Size)
hDevice->RxBuf.In = 0;
}

else if (intid == UART_IIR_THRE)
{
if (hDevice->TxBuf.In=hDevice->TxBuf.Qut)
{
ier = _inp(hDevice->usloBase + UART_REG_IER);
_outp(hDevice->usIoBase + UART_REG_IER,
ier & (~UART_IER_THRE));

360 — Writing Windows VxDs and Device Drivers

Listing 15.5 (continued) ISR.C

else
{
buf = hDevice->TxBuf.Start;
_outp(hDevice->usIoBase+UART_REG_THR,
buf[hDevice->TxBuf.Qut++ 1);
if (hDevice->TxBuf.Qut >= hDevice->TxBuf.Size)
hDevice->TxBuf.Qut = 0;

}
if (hDevice->bFlags & FLAGS_ON_SLAVE_PIC)

_outp(SLAVE_PIC_CTRL, EOI);
_outp(MASTER_PIC_CTRL, EOI);

Listing 15.6 INTBASIC.MAK

all: intbasic.dl
{#