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Preface 
This book is primarily for developers who need to write a non-standard device driver, 
either as a VxD or as a DLL. (A non-standard device is anything except a display, 
keyboard, mouse, serial port, or printer.) This second edition expands the coverage of 
VxDs, with particular attention to the issues raised by new Windows 95 features, like 
Plug and Play. 

While not intended for a beginning programmer, it is my intent that this book will 
be accessible and useful to a wide range of readers. If you have written a device driver 
or device interface code for DOS or some other operating system, you should be com
fortable with the material in this book. To get the most from this book, you should 
have a strong working knowledge of C. You should also be able to read 80x86 assem
bly, although this edition uses far less assembly than the first edition. A strong grasp 
of how segments are used by DOS compilers and assemblers will be helpful. You do 
not need to be a Windows application programmer. In fact, you'll find the code inthis 
book bears a much stronger resemblance to conventional DOS code than to the typical 
Windows application. 
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A Step-by-step Approach 
Windows can be an overwhelmingly complex environment. My goal in this book is to 
help you understand· which parts of that environment are really critical to each differ
ent type of driver. Each chapter introduces a new driver, and each chapter introduces 
only as much new material as you need to understand the new example. I've tried to 
keep each example driver as simple as possible so that the critical features are nearly 
self-evident. Most of the example code is written in C and embedded assembly using 
VC++ 4.0. Where necessary, code is written in assembly using Microspft Assembly 
(MASM) v6.1. The code disk includes a library of wrapper functions that allow V xDs 
to be coded almost entirely in C. 

Which Version of Windows? 
This book covers both Windows 95 and Windows 3;x (Enhanced Mode). The focus is 
on Windows 95, but almost all of the material also applies to Windows 3.x. In most 
chapters the differences between the two versions are minimal and Windows 3.x con
siderations are simply highlighted in a separate section at the end of the chapter. In a 
few chapters the differences are larger. In these chapters I fully describe both ver
sions, each in a separate section. 

About the Book 
This book is partitioned into two major sections. Part I (Chapters 2 through 12) covers 
the Windows execution environment and VxDs. Part II (Chapters 13 through 19) cov
ers DLL-based drivers. Within each part, the chapters are ordered so that each builds 
on the prior chapters. Once you have read Chapter 1 and decided whether you need to 
build a VxD or a DLL, you can decide how to read the rest of the book. Nearly every
one should read Chapters 2 and 3. These chapters describe those portions of the Win
dows architecture that are important to device driver writers. The topics covered in 
these chapters are important to both VxD and DLL developers. Those readers who are 
rusty on selectors, descriptors, page tables, and the other architectural details of the 
80x86 family of processors will want to read and refer to Appendix A as they read 
Chapters 2 and 3. Throughout the book, I assume you are comfortably familiar with 
the architectural information in Appendix A. Finally, if it bothers you to have certain 
implementation details hidden, you may want to read portions of Appendix B as you 
study the first example drivers. This appendix is the primary reference for the assem
bly language "wrappers" used throughout the text. 
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Chapter 1 

Introduction 

What is a Driver? 
In its broadest definition, a "driver" is a set of functions that manipulates a hardware 
device. One way of categorizing drivers is by how these functions are packaged. In 
the DOS world, a "driver" can be a module that is linked into the application. EXE, or 
a "driver" can be another piece of software which is completely separate from the 
application (a DOS device driver or a TSR). In the world of Windows, a "driver" can 
be a module that is dynamically linked into the application. EXE (called a DLL), or it 
can be completely separate from the application (called a VxD). 

Privileged and Non-privileged Packages 
Another way of categorizing drivers is privilege. Some operating systems, such as 
UNIX and Windows NT, prohibit applications from manipulating hardware directly. 
In these environments, only privileged pieces of code known as "device drivers" are 
allowed to interface to hardware. Applications that need to control hardware must use 
the services provided by these drivers. 

Windows too supports a privileged driver package. In Windows, these device drivers 
are called VxDs. However, Windows does not require hardware support to be contained 
in a VxD. In Windows, a surprising amount of hardware support is contained in DLLs, 
not VxDs. In Windows, DLLs that interface to hardware are often called "drivers". 

1 



2 - Writing Windows VxDs and Devlce Drivers 

Driver Interfaces 
Yet another way of categorizing a driver is by the interface it presents to the applica
tion and the as kernel. All Windows NT drivers use the same exact interface to the 
NT kernel. The kernel in tum provides a standard interface which applications can use 
to call any driver (open, read, etc.). The privileged driver package in Windows, the 
VxD, is different. Although all Windows VxDs use the same kernel interface, there is 
no standard interface to a VxD from the application level. Instead, each VxD defines 
its own application interface. 

Some Windows drivers packaged as DLLs interface to the kernel and are required 
to export a specific interface to the kernel. Such drivers are sometimes called "system 
drivers". However, note that the interface used by the system keyboard driver looks 
very different than the interface used by the system display driver. Other driver DLLs 
have no required interface to the kernel at all, and the driver developer has a free hand 
in designing whatever kernel interface and application interface he wants. 

What Kind of a Driver Do I Need to Write? 
Clearly there are many different kinds of "drivers" under Windows. Exactly which 
type of driver you need to write depends on several interrelated factors: 

the version of Windows (3.x, 95), 

the class of hardware device (keyboard, network card, custom AID board), 

the kind of hardware interface (110 ports, interrupts), and 

the performance requirements (throughput, interrupt latency). 

Collectively these four factors will determine whether you write your driver as a 
DLL or as a VxD. 

What Class of Device? 
The first factor that will narrow down the decision is the class of device you're sup
porting. Windows dictates a specific driver type for many device classes, so if you're 
supporting one of these, there is no decision to make. Windows dictates both the 
packaging of the driver (DLL or VxD) and its interface. Table 1.1 shows the device 
classes that Windows directly supports and the type of driver required. 

As Table 1.1 shows, for most classes of device, both Windows 3.x and Windows 
95 require exactly the same type of driver(s). The two exceptions are network adapt
ers and block devices, neither of which was supported directly by Windows 3.x (DOS 
drivers were used instead), but both of which now require a VxD under Windows 95. 
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Both a DLL and a VxD are required to support most device classes, with the bulk 
of the work done in the DLL. You should also note that Driver DLLs are always16-bit 
components - even under Windows 95, where native applications and DLLs are 
32-bit instead of 16-bit. 

The multimedia drivers were first introduced in Windows 3.1, where they were 
implemented as DLLs that conformed to a new message-based interface. A driver 
DLL that conformed to this interface was called an "installable driver", and exported 
a Ori verProc (similar to the Wi ndowProc of a Windows application) and responded 
to messages such as ORV_LOAO, ORV_OPEN, ORV_INSTALL, and ORV_CONFIGURE. This 
interface provided the user with a standard mechanism for installing multimedia driv
ers through the Control Panel. The new interface also provided the operating system 
with a standard way of loading, enabling, and disabling multimedia devices. 

Table 1.1 Devices that require a particular type of driver. 

Device Class Windows 3.x Windows 95 

16-bitDLL VxD 16-bitDLL VxD 

Display DISPLAY.DRV VDD.VXD DISPLAY.DRV VDD.VXD 

Printer PRINTER.DRV PRINTER.DRV 

Keyboard KEYBOARD. DRV VKD.VXD KEYBOARD.DRV VKD.VXD 

Mouse MOUSE.DRV VMD.VXD MOUSE.DRV VMD.VXD 

SeriaVParallel Port COMM.DRV VCD.VXD VCOMM 
port driver 

Multimedia installable driver installable 
DLL driver DLL 

Network not a Windows NDIS 3.0 
driver, but a DOS MAC 
device driver or driver 
TSR (e.g. NDIS 
2.00rODI) 

Block Device not a Windows layered 
(Hard Disk, driver, but a DOS block 
CD-ROM) device driver device 

driver 
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During the reign of Windows 3.1, the installable driver DLL soon caught on 
as a driver interface for types of devices other than multimedia. However, 
Microsoft is now pushing VxDs as the recommended driver type. 
Interestingly, multimedia drivers under Windows 95 remain as 16-bit 
installable drivers. Luckily, developers of multimedia drivers don't have to 
worry about thunking issues as other 16-bit driver developers do, because 
Windows itself contains the required thunking layer Gust as it contains 
thunks for lots of other Windows pieces that remain 16-bit, such as USER 
and GDI). See Chapter 18 for a discussion of thunking. 

What Kind of Hardware Interface? 
If you are not writing a driver for one of the device classes in the table above, then 
Windows does not dictate either the driver package (DLL or VxD) or the interface. 
Since for either package you're going to design your own interface, the choice is 
between DLL and VxD. The next factor to consider when choosing a package is the 
hardware interface to your device: 

Is the device I/O-mapped or memory-mapped? 

• Does the device generate interrupts? 

Does the device use DMA? 

It is very easy to talk to an I/O-mapped device from a DLL, both under Windows 
3.x and Windows 95. If your device is I/O-mapped and doesn't generate interrupts or 
DMA, the best choice for you may well be a DLL. 

On the other hand, talking to a memory-mapped device, handling hardware inter
rupts, and performing DMA all are possible from a DLL, but only easy under Win
dows 3.x. Under Windows 95, only 16-bit DLLs are capable of these three operations. 
Native Windows 95 applications are, of course, 32-bit, not 16-bit, so if you use a 
16-bit driver DLL under Windows 95 you also need to develop a separate "thunk 
layer" DLL. This thunk layer converts between the 16-bit world of your driver DLL 
and the 32-bit world of native Windows 95 applications that use your driver. 

Because of the extra work required to develop the thunk DLL, if you're supporting 
Windows 95, there are only two reasons to consider using a driver DLL instead of a 
VxD. One, if you're supporting a very simple I/O-mapped device that doesn't use 
interrupts. In this case, you can write a simple 32-bit DLL that accesses the device. 
Two, if you've already written a 16-bit DLL driver for the device. In this case, add a 
thunk layer and you'll have Windows 95 support. 
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You should also consider how fully you wish to support the capabilities of the 
newer buses. Windows 95 includes built-in support for Plug and Play devices -
which includes PCI, PCMCIA, and VL-Bus. To get full support, the driver for a Plug 
and Play device must be a VxD and interact with the Plug and Play Configuration 
Manager (also implemented as a VxD). See Chapters 10 and 11 for a full discussion 
of Plug and Play and the Configuration Manager. 

If you choose to write a driver DLL instead of a VxD for your Plug and Play 
device, you'll have to use bus-specific BIOS methods to obtain your device's configu
ration information. And since most of these BIOS calls require using a software inter
rupt, and software interrupts aren't supported from 32-bit code (see Chapter 13 for an 
explanation of why this is so), your DLL must be 16-bit with a thunk layer. Thunk 
layers are discussed in Chapter 18. 

What are the Performance Requirements? 
Actual hardware access time, for both la-mapped and memory-mapped devices, is 
roughly the same from either a driver DLL or a VxD. However, interrupt response 
time, also known as interrupt latency, is much faster (orders of magnitude) for a VxD. 
So if your device generates a lot of interrupts and/or doesn'thave much buffering, 
you'll probably want to write a VxD. 

Summary 
With the information in this chapter, you should be able to reach a preliminary deci
sion about what type of driver you need to develop. If a DLL will meet your require
ments, then you can probably skip Chapters 4 through 12, for now, and focus on the 
DLL information in the second part. If you plan to develop a VxD, you will want to 
focus on the information in Part I. 

In either case, you should probably browse through Appendix A sometime before 
you have finished reading Chapter 3. Throughout the book, I will assume you are 
comfortably familiar with the architectural information in that appendix. 

In either case, whether you plan to develop a VxD or a DLL, the next two chapters 
lay an important foundation. Chapter 2 explains the basics of Virtual Machines. Chap
ter 3 explains how Windows exploits the 80x86 architecture to implement its Virtual 
Machines. 
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The Virlual World 
of Windows 

Chapter 2 

Windows 95 runs three different types of applications: DOS applications,. Win16 
applications, and Win32 applications. To overcome the potential incompatibilities 
among these types of applications, Windows executes them on virtual machines in 
virtual environments. When developing applications, Windows programmers can usu
ally ignore the distinction between the virtual environment and the real environment; 
to most applications, the virtual environment is the real environment. 

Writing a VxD, however, is a different matter, because a VxD runs in a supervisor 
context· - meaning it runs outside of any of the virtual machines. In fact, a V xD 
becomes a part of the software which implements the virtual machine. Thus, the VxD 
writer needs a more complete understanding of how the virtual environment differs 
from the physical environment and how Windows creates the illusiqn of the virtual 
machine. A full understanding of the virtual machine is especially important to pro
grammers who are developing VxDs that need to manipulate resources in an applica
tion's virtual environment, as many are. 

This chapter explains the salient aspects of the Windows architecture, including 
how virtual machines are implemented, the major characteristics of the virtual envi
ronments, and the characteristics of the supervisor environment. 

9 
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What is a Virtual Machine? 
A virtual machine is a system-created illusion; virtual resources are emulations of 
hardware (and sometimes software) resources. To qualify as a virtual resource, the 
emulation must be so complete that the typical program can be written just as if the 
hardware were real, not emulated. For example, virtual memory systems use disk 
space, system software, special processor capabilities, and relatively small amounts of 
physical memory to emulate systems with enormous quantities of physical memory. 
The emulation is so convincing that programs running in a virtual environment can be 
written just as if the entire virtual address space were actually populated with physical 
memory. Such a memory system is said to have been "virtualized". 

When a system virtualizes all, or nearly all, program-accessible resources, it cre
ates a "virtual machine", or VM. Program-accessible resources include processor reg
isters, memory, and peripheral devices (display, keyboard, etc.). The real reason 
behind the use of virtual machines under Windows is to support existing DOS appli
cations. A DOS application assumes it is the only application running and often 
accesses hardware directly, uses all of available system memory, and uses all of the 
processor time. Since under Windows the DOS application is not the only one run
ning, Windows creates a virtual machine for the application to run in: access to hard
ware is trapped and may be redirected, disk space may replace physical memory, and 
the VM is "put to sleep" while other VMs get processor time. 

The definition of Virtual Machine is: A task with its own execution environment, 
which includes its own 

address space, 

110 port space, 

interrupt operations, and 

processor registers. 

Virtualizing this much of a machine while still executing the bulk of the code 
directly requires specialized processor support. The 80386 (and upwardly-compatible 
descendants) includes sophisticated processor support for address translation, demand 
paging, I/O trapping, instruction trapping, and interrupt trapping. 

The main supervisor process, called the Virtual Machine Manager (VMM), uses 
these hardware capabilities to create not just one virtual machine, but several indepen
dent virtual machines, each with its own virtual execution environment. All Windows 
applications (both Win32 and Win16) run a single VM, called the System VM, 
whereas each DOS application runs in its own independent VM. Each of these virtual 
environments can differ substantially from the underlying physical machine. 
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Multitasking Model 
Windows 3.x and Windows 95 use slightly different multitasking models. In Windows 
3.x, the VMM preemptively multitasks among VMs. The VMM scheduler picks a VM 
and executes it for an assigned time slice, and when the time slice is up, the scheduler 
executes the next VM. This execution switch is transparent to the application - after 
all, some of the time-shared applications are DOS applications, which certainly aren't 
written to support multitasking. 

Although VMs are unaware of this preemptive timeslicing, the Windows 3.x 
VMM itself is unaware that multiple Windows applications might be running in the 
System VM. To the VMM, all Windows applications are part of the same task. A 
higher layer "kernel" in the KERNEL DLL takes care of non-preemptive multitasking 
among the Windows applications in the System VM. 

Because the Windows 3.x VMM scheduler deals only with VMs, the benefits of pre
emptive multitasking are realized only by users running DOS programs inside Windows. 
Badly behaved Windows programs can and do prevent other Windows applications from 
running, because the Kernel layer scheduler uses non-preemptive multitasking. 

Windows 95 changes all that, bringing the benefits of preemptive multitasking to 
Win32 applications also. In Windows 95, the tasking unit is something new called a 
thread. Each DOS VM has a single thread. Within the System VM, all Win16 pro
cesses share a single thread, while each Win32 process has its own thread. In addition, 
each Win32 process may itself be multithreaded. In a multithreaded Win32 process, 
the main thread creates additional threads during execution. 

In Windows 3.x the VMM switches execution among VMs, and when the System 
VM is run, a higher layer chooses which Windows application runs within the System 
VM. In contrast, the Windows 95 VMM switches execution among threads, not VMs, 
and it's the lowest layer, the VMM, that chooses which thread to run in the System 
VM. Since DOS VMs are always limited to a single thread, sometimes I'll simplify 
and say that the Windows 95 VMM "runs a DOS VM" - while technically speaking, 
it's running the single thread within that DOS VM. 

Virtual Memory through Demand Paging 
Because Windows supports multitasking, it's easy to imagine situations where the 
total amount of memory used by all running programs is greater than the actual mem
ory present in the system. An operating system that limits a user to running just a cou
ple of programs because he only has a small amount of physical memory might be 
useful, but not nearly as useful as one that somehow lets him run lots of programs. 
This problem is hardly unique to Windows, and the solution - demand paged virtual 
memory - isn't unique either: mainframe operating systems have had it for years. 
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The term virtual memory refers to a system that makes more memory available to 
applications than physically exists. "Demand paged" refers to a specific type of vir
tual memory. In a "paged" system, the operating system and processor divide the 
address space into blocks of uniform size, called pages. Windows uses a page size of 
4Kb, since that's what the processor supports. "Demand" means that the virtual mem
ory used by a program is associated with actual physical memory "on demand". Only 
when the program reads, writes, or executes a location on a page in virtual memory do 
the processor and operating system intervene to associate a page of physical memory 
with the virtual page. 

The operating system and the processor work together to implement demand pag
ing. When a program is loaded, Windows first allocates pages in virtual memory to 
hold the program, its data, and its resources. However, these are pages in virtual mem
ory only, not in physical memory. The pages are marked as "not present" in physical 
memory. When the program actually attempts to execute or read from a not-present 
page, the attempted memory access triggers a processor exception called a page fault. 
(An exception is a condition that causes an immediate transfer of control to an excep
tion handler, which is almost always part of the operating system.) The Windows page 
fault handler then allocates physical memory for that page and restarts the instruction 
that caused the page fault. The restarted instruction doesn't cause a fault because the 
page is now present. This fault handling is completely transparent to the application, 
which doesn't realize that all of the memory it's using is not present in physical mem
ory at the same time. 

The other half of demand paging is swapping pages to and from disk storage. 
Even though Windows delays allocating physical memory until it's actually used, at 
some point all physical memory will have been used. When the page fault handler 
finds that it can't allocate a page because physical memory is exhausted, it frees up a 
physical page by writing that page out to disk. The page fault handler then loads the 
needed page into the newly vacated physical page. Later, when the swapped-out page 
is accessed and causes a fault (it's definitely not present; it's on disk), the page fault 
handler first allocates a page (swapping out yet another page if necessary) and then 
checks to see whether this new page was previously written to disk. If it was, it copies 
the page contents from disk to physical memory. When the instruction is restarted, the 
swapped-out page is once again present in physical memory, with exactly the same 
contents as before. 

Processor Modes 
In order to create and maintain virtual machines, the VMM exploits special character
istics of the 80386 family of processors. These processors can operate in any of three 
modes: protected, real, and V86. Windows 95 utilizes two of the modes: protected 
mode and V86 mode. 
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The processor mode determines several important execution characteristics, 
including 

how much memory the processor can address, 

how the processor translates the logical addresses manipulated by software into 
physical addresses placed on the bus, and 

how the processor protects access to memory and I/O ports and prevents execution 
of certain instructions. 

Windows 95 requires an 80386 processor, or one of its upwardly compatible 
descendants: 80486, Pentium, Pentium Pro. From now on when I use the 
term "processor", I mean one of these processors. I'll also use the terms 
"32"bit protected mode" and "16-bit protected mode" to refer to the 
processor when it is in protected mode and executing either 32-bit or 16-bit 
code, respectively. Although technically these two aren't "modes" in the 
same sense that V86 and protected are (i.e. this behavior isn't controlled by 
bits in the flags register), the size or "bitness" of the executing code has such 
an effect on the processor's behavior that 32-bit protected mode can 
essentially be considered a different mode than 16-bit protected mode. 

Protected Mode 
The biggest difference between 32-bit and 16-bit protected mode is the amount of 
addressable memory. In 16-bit protected mode, total addressable memory is only 
16Mb. In 32-bit protected mode, the processor can address 4Gb, which is 232. 
Although 4Gb is such a large number that systems have nowhere near that much 
physical memory, such a large address space is still useful when the operating system 
provides virtual memory. 

Although this difference in total address space is certainly important, what's more 
important is the difference in segment size - the maximum amount of memory 
addressable at once. Appendix A explains segments and other features of the Intel 
80x86 architecture. In 16-bit protected mode, segments are limited to 64Kb (216), and 
developers working on large programs must be aware of segments. In 32-bit protected 
mode, segments can be 4Gb in size - so large that most operating systems that utilize 
32-bit protected mode, including Windows 95, make segmentation invisible to the 
programmer by creating a single segment that addresses all 4Gb. Applications then 
never need to change segments. 
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As used by Windows 95, both 32-bit and 16-bit protected mode use the same 
method to translate the logical addresses used by software into the physical addresses 
placed on the bus. The translation process has two steps. A logical address consisting 
of a selector and offset is translated first to an intermediate form, called a linear 
address, by looking up the selector in a descriptor table which contains the segment's 
base linear address. Then the linear address is translated into a physical address by a 
second step called paging. I'll explain this two-step translation process in much more 
detail later; for now, just remember that the first step uses a selector lookup to find the 
linear address, which is different than the first step used by V86 mode. 

The term "protected mode" came about because it was the first 8OX86 processor 
mode to provide mechanisms to control access to memory and to 110 ports, mecha
nisms which an operating system could use to protect itself from applications. These 
mechanism are all based on the concept of privilege level. Executing code always has 
a privilege level, which Intel jargon calls a "ring", where Ring 0 is the innermost and 
most privileged ring, Ring 3 the outermost and least privileged. 

A code segment's privilege level is determined by the operating system, and this 
privilege level controls which areas of memory and which 110 ports the code can 
access, as well as what instructions it can execute. Ring 0 code - referred to as 
supervisor code earlier - can access any memory location or 110 location and can 
execute any instruction. If an application running at an outer ring attempts an action 
that its privilege level doesn't allow, the processor raises an exception. 

V86Mode 
Whereas protected mode was invented to support bigger programs and more robust 
operating systems, V86 mode exists to emulate real mode, the only mode supported 
by the original PC and the only mode supported by DOS applications even today. This 
emulation allows operating systems like Windows to better multi task DOS applica
tions. V86 mode has a 1Mb address limit like real mode. The V86 mode address 
translation, however, is a cross between real and protected mode. V86 mode takes the 
logical-to-linear translation method from real mode: the segment is simply shifted left 
by 4 bits. (Contrast this to the selector lookup used in protected mode.) V86 mode 
takes the linear-to-physical method from protected mode: paging. The paging is com
pletely transparent to DOS applications. 

To keep multi tasked DOS applications from crashing the system, V86 mode sup
ports some of the same protection mechanisms as protected mode. Any program run
ning in V86 mode will cause an exception (transferring control to the operating 
system) if it attempts to execute certain "privileged" instructions, access certain 110 
ports, or access forbidden areas of memory. Table 2.1 summarizes the 80386+ physi
cal execution environments. 
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Windows Execution Environments 
The Windows 95 architecture supports four fundamentally different types of pro
cesses: supervisor processes, Win32 applications, Win16 applications, and DOS 
applications. Windows 95 runs each of these in a different execution environment. An 
execution environment can be described by processor mode, privilege level, and "bit
ness", which is a fancy term for 16-bitor 32-bit. Table 2.2 summarizes the Windows 
execution environments. 

Table 2.1 Physical execution environments associated 
with various 80386+ processor modes. 

32-bit Protected 16-bit Protected' V86 

Total Address 4Gb (232) 16Mb (224) 1Mb (220) 

Space 

Segment Size 4Gb 64Kb 64Kb 

Address logical to linear: logical to linear: logical to linear: 
Translation selector lookup selector lookup segment« 4 

linear to physical: linear to physical: linear to physical: 
page tables page tables page tables 

Privilege o through 3 o through 3 3 
Level 

Protection yes yes yes 
Mechanisms 

Table 2.2 Windows execution environments associated 
with various process types. 

Process Processor Memory 
Type Mode Privilege Bitness Model VM 

Supervisor protected Ring 0 32-bit flat outside all 

Win32 protected Ring 3 32-bit flat SystemVM 

Win16 protected Ring 3 16-bit segmented SystemVM 

DOS V86 Ring 3 16-bit segmented individual VM 
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The supervisor processes run in protected mode with Ring 0 privilege (the highest 
access privilege), so they are able to see and manipulate the actual hardware environ
ment. That is, the supervisor processes execute on the actual machine, not on a virtual 
machine; or to put it another way, supervisor processes run outside of any VM. Of all 
the components that make up Windows 95, only the VMM and VxDs execute in the 
supervisor environment. All other components run in a VM. 

The supervisor environment is 32-bit, so these processes can address 4Gb of vir
tual memory. Supervisor processes use only two selectors, both of which address 
4Gb. These two selectors differ only in their attributes: one is marked executable and 
loaded into CS; and the other is marked non-executable and loaded into DS, ES, and SS. 
(These selector attributes are stored in the same descriptor table that stores the seg
ment's base linear address.) This type of memory model, where segments are loaded 
once and never again, is called flat model, and makes segmentation essentially invisi
ble to the programmer. 

While supervisor processes run outside of any VM (on the real machine), Win32 
processes run at Ring 3 (the lowest access privilege) in a VM. Furthermore, all Win32 
processes run in the same VM, called the System VM. Win32 processes are 32-bit 
protected mode and use a flat memory model, like supervisor processes, seeing a 4Gb 
address space and for all practical purposes ignoring selectors and segments. 

Winl6 processes run in the same SystemVM as Win32 processes. Win16 pro
cesses run in protected mode with Ring 3 privileges but don't get the luxury of a flat 
memory model. Because they run in 16-bit protected mode, Win16 processes are still 
stuck with a 16Mb address space and must deal with selectors and 64Kb segments. 

Each DOS process gets its own VM. A DOS process doesn't run in protected mode 
like all the other types of processes. Instead, it runs in V86 mode, the 80386 mode built 
specially for emulating an 8086. V86 mode means a segmented memory model with 
8086-type translation plus the addition of paging. V86 mode also implies Ring 3 privi
lege, so access to hardware resources and interrupts is hidden and virtualized. 

Why does each DOS process get its own VM, while all Win32 and all Win16 
applications share the System VM? Because DOS processes are in general unaware 
that they are sharing the system with any other process, and so usually "take over" the 
machine. DOS processes do things like modify the interrupt vector table and write 
directly to the screen. Windows runs each DOS program in a separate virtual machine 
so that each one modifies only its own virtual interrupt vector table, and writes only to 
its own virtual screen. 

Windows applications, on the other hand (both Win32 and Win16), are aware that 
other processes are running. They write only to their own windows, not directly to the 
screen, and use a DOS call to modify the interrupt vector table instead of modifying it 
directly. Windows applications don't need to be protected so much from each other as 
they do from the DOS applications that aren't aware of them. So Windows can safely 
run all Windows applications in the same virtual machine. 
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Summary 
Windows can run Win32, Winl6, and DOS applications and can multitask among 
them. It does this by running the applications not on the real machine, but in virtual 
machines. The Virtual Machine Manager, a supervisor process that runs on the real 
machine, provides each of the different types of applications with a different virtual 
environment. The next chapter will take a closer look at each of the four resources 
in a Virtual Machine - 110 space, interrupt operations, processor registers, and 
address space - and show how Windows utilizes specialized processor features to 
virtualize each. 
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Chapter 3 

How Windows Implements 
the Virtual Environments 
The previous chapter introduced the concept of a virtual machine and the four compo
nents that make up a virtual machine: I/O space, interrupt operations, processor regis
ters,.and address space. It also described the virtual environments seen by each of the 
four different types of processes that run under Windows: Win32, Win16, DOS, and 
supervisor (VMM and VxDs). This chapter will take a closer look at how the VMM 
virtualizes each of the components in the VM, for each different type of process. (This 
chapter assumes you are familiar with the basic features of the Intel 80x86 architec
ture: See Appendix A for a review of the important aspects of the architecture.) 

Trapping I/O Port Access 
Both protected mode and V86 mode incorporate several features that an operating 
system can use to trap I N and OUT instructions and thus prevent an application from 
directly accessing an I/O-mapped device. Memory-mapped devices are accessed via 
any instruction that uses a memory reference, while I/O-mapped devices are accessed 
only via I N and OUT instructions. (For a more detailed discussion of I/O-mapped and 
memory-mapped devices, see Chapter 6.) Windows 95 uses a combination of two pro
cessor features, I/O Privilege Level (IOPL) and the I/O Permission Map (IOPM), to 
control VM access to I/O addresses. 

19 
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In protected mode, every code segment has an associated Descriptor Privilege 
Level stored in· the descriptor table. Each code segment al~o has a separate attclbute 
for 110 Privilege Level, also stored in the descriptor table. When an I N or OUT instruc
tion is executed in protected mode, the processor compares the segment's IOPL to the 
privilege level of the currently executing code segment (called CPL for current privi
lege level). If CPL < IOPL, the segment has enough privilege, and the processor exe
cutes the instruction. If CPL )= IOPL, the processor uses the IOPM as a second level 
of protection. The IOPM is a bit-mapped list of ports: a 1 bit means "access denied", 
and a a bit means "access granted", So if C P L )= lOP L and the IOPM bit for the spe
cific port is clear, the instruction is executed. But if the IOPM bit for thst port is set, 
the processor generates an exception. 

As used by Windows 95, the IOPM is really the dominant privilege mechanism for 
all VMs. In DOS VMs, the IOPM determines the 110 privilege of the application 
because the VMM runs DOS applications in V86 mode where the processor ignores 
the IOPL and looks only at the IOPM when processing I N and OUT instructions. In 
Win16 and Win32 VMs, the IOPM determines the 110 privilege of the application 
because the VMM runs all Win16 and Win32 processes with CPL ) IOPL. Thus, even 
though Win16 and Win32 applications run in protected mode where the processor 
tests the IOPL, the test always results in a further check "through" the IOPM. 

By manipulating the IOPM, Windows 95 can trap accesses to specific ports while 
allowing uninhibited access to other ports. Windows 95 uses this ability to virtualize 
the physical device located at the trapped port address. By routing device accesses 
through virtual device drivers (VxDs), Windows 95 can maintain separate state infor
mation for each of the VMs that might use the device. 

The VMM is responsible for maintaining the IOPM. V:x,Ds call a VMM service to 
request that the VMM trap a particular port. When making this request, the VxD spec
ifies a callback function, called a "port trap handler". The VMM responds to such a 
request by setting the port's bit in the IOPM. When a VM accesses that port. and thus 
causes a fault, the VMM fault handler calls the VxD's registered port trap handler. 
This port trap handler can do anything in response to the 110 access: the VxD may 
ignore the instruction, may execute the instruction, or may substitute a value instead 
(e.g. OUT 3F8h. Olh might become OUT 3F8h. 8lh). 

Windows 95 and its standard component VxDs trap almost all standard PC 110 
devices but never trap non-standard 110 addresses. Table 3.1 lists the port locations 
trapped. A third-party VxD may trap other ports as well. 
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Table 3.1 I/O ports trapped by standard VxDs. 

Windows 3.1 

Port Address VxD Description 

~O-OF /CO-OF VOMAO DMA controller 

20/211 AO/ Al VPICO programmable 
interrupt controller 

40/43 VTO timer 

60/64 VKO keyboard 

3F8-3FE/3E8-3EE/2F8-2FE VCO com port (COMlI2I3) 

1 FO/3F6 WOCTRl hard disk controller 
(if West em Digital 
compatible) 

3B4/3B5/3BA/3CO-3CF/300-30F VOO VGA display 

Windows 95 

Port Address VxD Description 

3FO/3Fl/3F2/3F4/3F5/3F7 VFBACKUP floppy controller 

IFO-IF7 ESOL506 hard disk controller 

378/379/37A VPO printer LPTl 

2F8-2Fe/3F8-3Fe SERIAL serial port COMl 
andCOM2 

61 VSO sound 

3B4/3B5/3Ba/300-30F/3CO-3CF VOO VGAdisplay 

lCE/ICF/2E8/x6EC-EF AT! miniport display 
AEC-EF /xEEC-EF PCI-specific VGA 

00-OF/CO-OF/81/82/83/87/89/8A/83/87/89/8A VOMAO DMA controller 

60/64 VKO keyboard 

40/43 VTO timer 

20/21/AO/Al VPICO programmable 
interrupt controller 
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Trapping Access to Memory-mapped Devices 
While most standard peripherals are I/O-mapped, some are memory-mapped. Win
dows 95 relies primarily upon the page fault mechanism to virtualize access to mem
ory-mapped devices. To trap references to one of these devices, the VxD virtualizing 
the device will mark the page corresponding to the device's physical address as "not 
present", and register its own page fault handler with VMM. When a process running 
in a VM tries to access that page, the access will cause a page fault. Instead of per
forming its default response and attempting to swap a page, the VMM fault handler 
will now call the registered page fault handler in the VxD that is virtualizing the 
device. The VxD handler can then decide what action is consistent with the require
ments of the virtual environment. 

The Virtual Display Device (VDD) uses this mechanism to virtualize the video 
frame buffer. When a DOS program writes to the video buffer at logical address 
BOOO: 0000, the output doesn't appear on the screen because the VDD marks that par
ticular page "not present". Instead, accesses to the video frame buffer are trapped by 
the VxD's page fault handler and redirected to another location in physical memory. 
This redirection causes writes to the video buffer to appear in a window instead of on 
the full screen. The VxD in Chapter 8 uses this same mechanism to arbitrate access to 
another memory-mapped device, a monochrome adapter. 

Trapping Interrupts and Exceptions 
In addition to trapping memory and I/O references, Windows 95 traps certain "privi
leged" instructions. "Privileged" instructions are those that could be used to bypass 
the processor's protection features or that could interfere with the integrity of the vir
tual machine. Privileged instructions include: those that affect the processor interrupt 
flag (CLI, ST!, POPF, I RET); software interrupts (I NT n); and those that load descriptor 
tables (LLOT, LOGT, LI OT). For the most part, Windows 95 traps these instructions to 
protect the integrity of the VM. In the instance of the I NT instructions, Windows 95 
exploits the trap to transparently intercept DOS and BIOS calls. 

Processes running in a VM execute with Ring 3 (least privileged) permissions. 
Code executing at Ring 3 causes an exception when executing one of these "privi
leged" instructions. When this exception is raised, the processor switches to Ring 0 
and then transfers control to an appropriate handler. 

More precisely, each segment has an associated Descriptor Privilege Level (DPL). 
This segment privilege level determines the privilege level of most instructions (e.g. 
LLOT, LGOT). However, a few instructions (those which affect the processor's interrupt 
flag) derive their privilege level from the IOPL, not the DPL. When a Ring 3 process exe
cutes ST! or CLI, for example, the processor will raise an exception only if CPL > IOPL. 

One of the more significant differences between the System VM environment and the 
DOS VM environment relates to these IOPL-based privileges. While the 80386 architec
ture supports trapping of CLI and STI in both protected and V86 modes, Windows 95 
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does not trap the ST I and eLI instructions in V86 mode. The VMM purposely sets C P L = 

IOP L for DOS applications, so that eLI and STI do not cause an exception. What's more, 
even though Windows 95 runs Win16 and Win32 applications with CPL > IOPL, so that 
eLI / STI do cause an exception for Windows applications, the VMM exception handler 
goes ahead and executes the instruction, enabling or disabling interrupts on behalf of the 
application. Apparently the designers decided the overhead of trapping all ST I sand eLI s 
was a bigger performance penalty than they were prepared to pay. 

Processor Registers 
Virtualizing the third resource, processor registers, is trivial when compared to the 
mechanisms required to virtualize 110 port space and interrupt operations. The VMM 
maintains a virtual register data structure for each VM, and each time the VMM switches 
from executing one VM (say, VMl) to executing another VM (say, VM2), it first saves 
the state ofVMl's registers in VMl's virtual register structure then updates the actual 
processor registers from VM2's virtual register structure before executing VM2. 

A Closer Look at Linear Addresses and Paging 
The previous chapter introduced the different processor modes and the address trans
lation used in each. Before explaining how Windows virtualizes the address space, 
this chapter will examine, more closely, the two-step address translation mechanism 
used in both protected and V86 modes. 

As viewed by software, an address has two parts, a selector and an offset. (Or in 
V86 mode, a segment and offset.) This form of address is known as a logical address. 
When software references this address, the processor translates the logical address 
into an intermediate form called a linear address, and then to a physical address which 
is actually placed on the bus and decoded by memory or a device. 

In V86 mode, this first level translation, logical to linear, is very simple. The seg
ment is shifted left by 4 bits and the offset is added in to form a linear address. In pro
tected mode there is no arithmetic relationship between the logical address 
manipulated by the software and the corresponding linear address. Instead, the pro
cessor uses the selector portion of the logical address to index an entry in the Descrip
tor Table. Each entry in this table is a descriptor, a data structure that holds the base 
address of a segment. The processor translates the logical address to a linear address 
by using the selector to index the appropriate descriptor, extracting the base address 
from the descriptor, and adding that base address to the offset portion of the logical 
address. The resulting sum is a linear address. This process is depicted in Figure 3.1. 

The next level of translation, from linear address to physical address, involves 
another set of data structures: the page directory and the page tables, sometimes collec
tively called "the page tables". Together, these structures map every 4Kb page oflinear 
address space onto some 4Kb page of physical memory. (With virtual memory, though, 
this page of "physical memory" can exist either in RAM or on the hard disk.) Windows 
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makes extensive use of the page tables to remap physical memory to meet the varying 
needs of each type of process, as well as to implement virtual memory. Once again, 
there is no arithmetic relationship between linear memory and physical memory. 

The "page tables" are a hierarchical arrangement of a root page directory, multiple page 
tables and multiple page table entries, as illustrated in Figure 3.2. Each Page Table Entry 
(P1E) maps a 4Kb page of linear memory to a physical address. A group of 1024 P1Es 
forms a page table, which maps 4Kb* 1024 = 4Mb of linear memory. A group of 1024 page 
tables forms a page directory, which maps 4Mb* 1024 = 4Gb, all of linear memory. 

Thanks to the hierarchical encoding of the data structures, the linear to physical 
translation can be implemented quite efficiently in hardware. To the processor, a lin
ear address isn't merely a number between 0 and 4Gb - it's actually three bitfields: a 
page directory index, a page table index, and a page offset. Adding together the 
address of the root page directory table (stored in the CR3 register) and the page direc
tory index bits, the processor finds a page directory entry. Inside this entry is the 
address of a page table. Adding together the address of this page table and the page 
table index bits, the processor finds a page table entry. Inside this PTE is a physical 
address. Adding together this physical address and the final bitfield, the page offset, 
the processor forms a final 32-bit physical address. 

Figure 3.1 'Logical-to-linear address translation. 
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Figure 3.2 Illustrates how bitfields from the linear address 
are combined with Page Table Entries (PTEs) 
to construct a physical reference. 
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Competing Address Requirements of 
Win32, Win16, and DOS Applications 
Windows 95 multitasks Win32, Win16, and DOS applications. Each of these three 
types of processes expects to see an address space with different characteristics. By 
address space, here I mean linear address space, not actual physical address space. 
When running under Windows, applications are not even aware of physical addresses 
- the generation of physical addresses by the processor happens "beneath" them. 

Win32 Address Requirements 
Every Win32 application has a 4Gb address space, which is completely separate from 
the address space of all other Win32 applications (Figure 3.3). By "completely sepa
rate", I mean it is literally impossible for one Win32 application to access the memory 
of another Win32 application. However, each Win32 application shares some of its 
vast 4Gb address space with other system components, like system DLLs and 
VMMNxD code. Since all Win32 applications will be using these components, it 
makes sense to share these common components, instead of having a separate copy of 
each of these in physical memory. All Win32 applications can access the shared sys
tem components, but they can't access each other. 

Win16 Address Requirements 
Win16 applications have very different address space requirements than Win32 appli
cations. Win16 applications expect a smaller address space (about 2Gb), and they 
expect to share this smaller address space not only with system components but also 
with all other Win16 applications as well (Figure 3.4). This shared address space is 
the main reason Win16 applications are less robust than Win32 applications. A Win16 
application can obtain a selector - by accident or by design - to a segment belong
ing to another Winl6 application and use that selector to write into the other applica
tion's data segment. Many Win16 applications rely on this shared address space, so in 
order to be backwardly compatible, Windows 95 must run Win16 applications in a 
shared address space. 
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Figure 3.3 linear address space as viewed by Win32 
applications. 
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DOS Address Requirements 
Windows·95 runs DOS applications in V86 mode. In this mode, the processor can 
only generate linear addresses in the O-lMb region. When a DOS application runs 
under Windows 95, it sees certain system components in its address space: TSR or 
device drivers loaded before Windows 95 began, the interrupt vector table and BIOS 
data areas in low memory, and "DOS" itself - COMMAND. COM. When Windows 95 
runs multiple DOS applications, all of the DOS applications will see exactly the same 
set of system components (Figure 3.5). These DOS system components are ~hared 
among the multiple DOS applications, meaning they appear in the address space of 
each DOS application (somewhere below 1Mb), but only one copy of each is in phys
ical memory. 

Satisfying Address Requirements of 
Win16 and DOS Applications: 
How Does Windows 3.x Do It? 
Windows 3.x doesn't run Win32 applications but it still needs to handle Win16 and 
DOS applications. These applications have exactly the same requirements under Win
dows3.x as under Windows 95: Win16 applications run in a shared address space, 
DOS applications in linear O-lMb. 

Figure 3.5 Linear address space as viewed by DOS 
applications. 
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Under Windows 3.x, all types of processes ~ Win16,DOS, and supervisor ~ 
share the same 4Gb linear address space. In fact, they really share less than 4Gb, 
because Windows 3.x uses only a little over a half of the 4Gb address space. Windows 
3.x uses a small portion of the lower half (below 2Gb), and a larger portion of the 
upper half (above 2Gb). (If these numbers sound unusually large, remember, they are 
linear addresses, not physical addresses.) 

The Windows 3.x VMM loads processes into linear address space in 4Mb chunks. 
The vast majority of all processes live in the upper half of the linear address space 
(2Gb and above). Supervisor processes - VMM itself plus VxDs -are loaded in the 
4Mb starting at 2Gb. The VMM loads VMs immediately above these supervisor pro
cesses (Figure 3.6). 

Figure 3.6 Linear address space under Windows 3.x. 
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If a VM switches processor modes, Windows 95 will load both a protected mode 
component and a V86 mode component, each taking up at least 4Mb of address space. 
(Note that in Figure 3.6, VMO has both a "PM" component and a "V86" component.) 
Although the System VM usually runs in protected mode, and DOS VMs usually run 
in V86 mode, VMs can and do flip modes. For example, all VMs, including the Sys
tem VM, start in V86 mode. Once started, any VM can later switch to protected mode. 
In the System VM, the Ring 3 KERNEL module always switches into protected mode 
very early in the Windows initialization process. When a DOS-extended application 
runs under Windows, it too starts life in a VM in V86 mode, then the DOS-extender 
switches into protected mode. 

Protected mode VMs, both the System VM and any DOS-extended VMs, switch 
back to V86 mode to access real mode DOS and BIOS services. Together, these DOS 
and BIOS services and TSRs make up the V86 mode component of the System VM, 
while the Windows applications, DLLs and system modules (KERNEL, USER, etc.) 
make up the protected mode component of the System VM. A DOS VM that runs a 
normal DOS application has only a V86 mode component. On the other hand, a DOS 
VM running a DOS-extended application has a V86 mode component containing 
DOS, BIOS, etc., and a protected mode component containing the DOS-extended 
pieces that run in protected mode. 

Figure 3.7 The page tables while VMl is executing. 
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Figure 3.8 The page tables while VM2 is executing. 
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Copying·Without Copying 

When we say the VMM "copies" the VS6 component down in linear address space, it sounds like a vast 
amount of memory is being copied. In reality, only a single pointer (32 bits) is copied, thanks to the hierarchy 
of the page table structures. Figure 3.7 shows an example load configuration. The VMM uses a single page 
directory, which maps the entire 4Gb of linear address space. Each of the 1024 entries in the page directory 
maps 4Mb (4Gb/I024:::: 4Mb). Look first at the two entries labeled VS6 VMI (at location 2Gb + 4Mb) and 
VS6 VM2 (at location 2Gb + 5Mb). Each of these two page directory entries points to a different page table, 
and the two page tables contain different PTEs. 

Now look at the lowest (0-4Mb) entry in the page directory (labeled Current VM). Note that this entry 
points to one of the two page tables I just described. In Figure 3.7, VM 1 is the currently executing VM, so the 
0-4Mb (CurrentVM) entry points to the page table forVMl. To switch to VM2, the VMM merely updates the 
first entry of the page directory table, causing it point to VM2's page table instead of VMl's page table. 
Changing a single 32-bit entry in the page directory table accomplishes a "move" of 4Mb in linear memory. 

After the switch (Figure 3.S), VM2 is visible at two different locations in linear memory, one below 1Mb 
(0-4Mb) and one above 2Gb (2Gb + 5Mb). The VMM can now begin executing the VS6 component located 
below I Mb and still retain access to the copy above 2Gb. 
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In V86 mode the processor can only generate linear addresses below 1Mb. 
Because of this restriction, the V86 component of the currently executing VM must 
live below 1Mb. More precisely, the currently executing V86 component must occupy 
linear address space below 1Mb. The active V86 component may be located in any 
part of physical memory - as long as the page tables properly map that physical 
image into the correct region of linear address space. 

Thus Windows must remap the lower 4Mb of linear address space each time it 
runs a different VM. Only one active V86 component may occupy the linear space 
below 1 Mb at anyone time. Windows keeps a copy of all VM components (active and 
inactive) above 2Gb, but once a VM becomes active, Windows must "move" its V86 
component to the lower portion of linear address space. Windows exploits the 
page-mapping hardware to effect this "move" without performing a copy. (See the 
sidebar "Copying Without Copying" on page 31.) 

Thanks to the magic of the page mapping hardware, a single physical copy of a VM 
component can be visible at two different positions in linear address space at the same 
time. Windows uses this page table trick to make it more convenient for Ring 0 code to 
manipulate the V86 component. Windows constructs the page tables so that each V86 
component appears at two locations in linear memory: once below 1Mb and once above 
2Gb. These "aliased" page table entries allow Ring 0 code to manipulate a V86 compo
nent without testing to see if the component is part of the currently executing VM. 

To summarize: Windows 3.x loads both a V86 and a PM component for each VM. 
These components always reside above the 2Gb boundary in linear address space, and 
the active V86 component is also mapped into the region below 1Mb. To switch VMs, 
Windows simply switches page tables (see the sidebar). Because Win16 processes run 
in the same VM, switching from one Win16 process to another does not involve any 
change in the page tables. In fact, the Windows 3.x VMM doesn't know anything 
about the multiple Win 16 programs running in the System VM. 

Satisfying Address Requirements of 
Win32, Win16, and DOS Applications: 
How Does Windows 95 Do It? 
Although Windows 3.x uses only a small portion of the 4Gb linear address space, 
Windows 95 uses all of it. Windows 95 divides this 4Gb into several different regions, 
called arenas (Figure 3.9): 

private arena, 

shared arena, 

system arena, and 

DOS arena. 



How Windows Implements the Virtual Environments - 33 

The private arena, from 4Mb-2Gb (almost half the entire 4Gb) is used for Win32 
application code, data, and resources. This arena is private because it's mapped to a 
different location in physical memory for each Win32 application. So when Win32 
Appl accesses linear address 4Mb, it accesses .one set of physical locations, but when 
Win32 App2 accesses the same linear address 4Mb, it accesses a different set of phys
icallocations. Windows 95 achieves this magic by switching the 511 page directory 
entries that map linear 4Mb-2Gb. When executing Win32 Appl, these page directory 
entries point to one set of page tables (Figure 3.10). When Windows 95 switches to 
execute Win32 App2, they point to another set of page tables (Figure 3.11). 

Figure 3.9 The Windows 95 address space. 
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By changing the private arena POEs, Windows 95 protects Win32 applications 
from each other. The page table entries used for Win32 App 1 simply don't contain the 
physical addresses used by App2, and the page table entries used for Win32 App2 
don't contain the physical addresses used by App 1. App 1 and App2 are each literally 
unable to touch the other's resources. 

The shared arena, located at 2Gb-3Gb, contains all Ring 3 code and data that must 
be shared. This arena hosts both Win32 system DLLs (because all Win32 applications 
need to share them) and all Win16 processes (because Win16 processes depend on a 
shared address space). Windows 95 implements the shared arena by more clever use 
of the page directory: Windows 95 never switches the 256-page directory entries that 
map linear 2Gb-3Gb. No matter what process is running, linear 2Gb-3Gb always 
maps to the same location in physical memory. 

The system arena is at the top of address space, from 3Gb-4Gb. Windows 95 uses 
the system arena exclusively for supervisor (Ring 0) components: the VMM and 
VxDs. This arena is shared also, in exactly the same way as the shared arena, by never 
switching the page directory entries that map 3Gb-4Gb. 

Figure 3.10 Before the switch - when Win32 AppJ 
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Many operating systems prevent user-mode components from accessing system 
pages directly by setting the Supervisor bit in the PTEs for system pages, which 
causes a page fault to occur if a system page is accessed from user-mode. Windows 95 
does not use Supervisor bits at all, which makes it easy to pass data between a VxD 
and an application - the V xD can just give the application a pointer, which is directly 
usable by the application. (I'll explain this technique in detail in a later chapter.) 

The DOS arena, at linear 0-4Mb, is devoted to DOS applications and a small por
tion of the Win16 heap. As stated earlier, DOS applications must reside here because 
they run in V86 mode and thus generate linear addresses below 1Mb. A small portion 
of the Win16 heap must also be below 1Mb, for use by Win16 applications and sys
tem DLLs allocating memory for communication with DOS, TSRs, etc. 

Figure 3.11 After the switch - when Win32 App2 
begins executing, the page directory's 
4Mb slot points to a different page table, 
whose PTEs point to pages 0 and 1. 
The page directory entries for the shared 
regions above 2Gb remain the same. 
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Windows 95 manages the page directory entries for the DOS arena in the same 
way that Windows 3.x did. With every VM switch, the V86 component of the cur
rently executing VM is copied in linear space, from above 2Gb to below 1Mb, by sim
ply changing the first entry in the root page directory. 

Windows 95 makes more extensive use of page directory switching than Windows 
3.x. Each time a different Win32 process is executed, the Windows 95 VMM switches 
the page directory entries for the private arena, leaving the page directory entries for 
the shared and system arenas alone. And each time a different VM is executed, the 
Windows 95 VMM switches the single page directory entry for the first 4Mb. 

Summary 
This chapter has explained how the VMM creates appropriate virtual environments 
for Win32, Win16, and DOS applications. The VMM utilizes several privilege-related 
processor features to virtualize access to IO-mapped and memory-mapped devices, as 
well as to control execution of privileged instructions. The VMM also utilizes the pro
cessor's paging features to provide each type of application with the linear address 
space that it expects. The remaining chapters in this section will focus on VxDs, the 
supervisor processes that assist the VM in creating and maintaining the virtual world 
of Windows. 



Chapter 4 

Introduction to VxDs 
Although VxD is an abbreviation for Virtual Device Driver, a VxD can be much more 
than a device driver that virtualizes a particular device. Some VxDs do virtualize a 
device. However, some VxDs act as a device driver, but don't virtualize the device. 
Some VxDs don't interact with any device; they exist merely to provide a service to 
other VxDs or to applications. 

VxDs may be loaded along with the VMM (statically loaded), or on demand 
(dynamically loaded). In both cases, though, the VxD cooperates closely with, and 
shares execution context with the Virtual Machine Manager (VMM). This special 
relationship with the operating system gives a VxD powers that are unavailable to 
Windows and DOS applications. V xDs have unrestricted access to all hardware 
devices, can freely examine operating system data structures (such as descriptor and 
page tables), and can access any memory location. A VxD can also trap software 
interrupts, trap 110 port and memory region accesses, and even intercept hardware 
interrupts. 

Although Windows or DOS applications may be able to do some '~low-Ievel" 
tasks (such as trap software interrupts), an application is always limited. For 
example, a Windows application can trap software interrupts issued by 
another Windows application - but not interrupts issued by a DOS 
application. A VxD would see all interrupts, regardless of source: 

37 
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To support this level of integration with the VMM kernel, both statically loaded 
and dynamically loaded VxDs 

• conform to a standard structure, 

• register their services with the VMM, and 

• service at least parts of a special message protocol. 

This chapter explains how VxDs are loaded and how each type ofVxD conforms 
to these fundamental requirements of a VxD. The following chapters show how VxDs 
can be used to implement different device-related capabilities. 

VxDLoading 
Windows 95 supports both statically loaded and dynamically loaded VxDs. Statically 
10adedVxDs are loaded when Windows initializes and remain loaded for the lifetime 
of Windows. If a VxD is used only by a particular application or exists only to provide 
services to certain applications, the memory it occupies is wasted when the VxD isn't 
actually in use. Static loading is particularly annoying for VxD developers, who must 
exit and restart Windows before they can test a change to a VxD. 

Windows 95 supports two methods for static loading. The first, also supported by 
Windows 3.x, is to name the VxD in a dey i ce= statement in SY STEM. I N I. The second, 
new for Windows 95, is to add a Static VxD named value (e.g. Stat i c VxD = pathname) 
to the registry, under the subkey \HKLM\System\CurrentControl Set\Se.rvi ces\VxD. 

Dynamically loadable VxDs aren't loaded automatically when Windows initial
izes but are instead loaded and unloaded under the control of either an application or 
another VxD. For examp1e, Plug and Play VxDs (discussed in detail in Chapter 10) 
must be dynamically loadable because Windows 95 supports runtime removal and 
reconfiguration of hardware. The VxDs that support this kind of hardware must be 
able to be loaded and unloaded as necessary. 

Dynamically loadable VxDs are also useful as drivers for devices that are used 
only by a particular application. When the application needs to use the device, it loads 
the VxD. When the application is finished with the device, it unloads the VxD. 

Statically and dynamically loaded VxDs respond to slightly different sets ofVMM 
messages. Some messages are seen only by static VxDs, some are seen only by 
dynamic VxDs, but most are seen by both. In fact, it is easy to write a VxDthat sup
ports both methods of loading, simply by responding to both sets of messages. 
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Basic Structure of a VxD 
Although VxDs use the 32-bit flat memory model, VxD code and data are still orga
nized into segments. (In fact, a base plus offset addressing model is a necessary archi
tectural component if a machine is to efficiently load and execute relocatable 
modules.) VxDs use these types of segments: 

real mode initialization, 

protected mode initialization, 

pageable, 

locked (non-pageable), 

static, and 

debug only. 

For each of these segment types, there is a code segment and a data segment, so a 
VxD could have a total of 12 segments. The real mode code and data segments are 
both 16-bit (segmented model), and all other segments are 32-bit (flat model). 

The real mode initialization segment contains code that is executed early in the 
Windows initialization sequence, before the VMM switches into protected mode. This 
early initialization phase gives each statically loaded VxD an opportunity to examine 
the pre-Windows real mode environment, and then decide whether the VxD should 
continue loading. By returning with an exit code in AX, the VxD can tell VMM to con
tinue loading the protected mode portion of the VxD, to abort loading of this VxD, or 
even to abort loading Windows. 

Most VxDs don't need a real mode initialization routine, but the PAGEFILE 
VxD, included as part of VMM. VXD, illustrates a possible use of one. 
PAGEFILE uses several DOS (I NT 21h) calls to· find out if the SMARTDRV 
DOS device driver is loaded. If not, PAGEFILE returns from its real mode 
initialization routine with Carry set, so that VMM never calls PAGEFILE's 
protected mode code. 

After the real mode section of each statically loaded VxD has been executed, 
VMM switches into protected mode and gives each statically loaded VxD an opportu
nity to execute the code in its protected mode initialization segment. The protected 
mode initialization code can also return with an error code to tell VMM that the VxD 
has failed to initialize. If a VxD reports an initialization failure, the VMM marks the 
VxD inactive, and never calls it again. 
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Both real mOde and protected mode initialization segments are discarded after ini
tialization is complete. These segments are loaded before the first VxD is initialized 
and not discarded until all VxDs have finished initialization. 

Most of a VxD resides in one of the other segments. In a statically loaded VxD, 
these other segments exist until Windows terminates. In a dynamically loaded VxD, 
they remain present until the VxD is unloaded. As their names suggest, a pageable 
segment may be paged to disk by the Virtual Memory Manager, while a locked seg
ment will never be paged out. Most VxD code and data should be in a pageable seg
ment, to allow the Virtual Memory Manager to swap out VxD pages and free up 
physical memory. Only the following items should - and must - go in a locked 
segment: 

The Device Control Procedure (the VxD's main entry point). 

Hardware interrupt handlers and all data accessed by them. 

Services that may be called by another VxD's hardware interrupt handler (referred 
to as asynchronous services). 

Static segments are used only by dynamically loadable VxDs, which are discussed 
later in this chapter. The static code and data segments of a dynamically loadable VxD 
will not be unloaded when the rest of the VxD is dynamically unloaded but will 
remain in memory. 

The VMM loads debug-only segments only when the system is running under a 
system debugger like WDEB386 or SoftIcelWindows. By partitioning debugging 
code into a debug-only segment, developers can always build the same executable, 
including the debug code without any run-time code overhead. The VMM will load 
the debug code when a system debugger is present, but omit it during normal load 
cycles (i.e. when no system debugger is present). 

The Device Descriptor Block 
The Device Descriptor Block,-or DDB, is the VMM's "handle" to the VxD. The DDB 
includes information that identifies the VxD and a pointer to the VxD's main entry 
point. The DDB may optionally include pointers to other entry points, used by either 
applications or other VxDs. Table 4.1 shows the fields of the DDB structure that are 
initialized by the VxD. The VMM finds the VxD's DDB, and thus the main entry point, 
as soon as it loads the VxD by looking for the first exported symbol in the module. 
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Even when written in C, a VxD has no rna in procedure. Instead, the Device Con
trol Procedure field in the DDB contains the address of the main entry point into a 
VxD. After real mode initialization, all calls from the VMM come to a VxD through 
this entry point. The VMM uses this entry point to notify a VxD of state changes in 
VMs and in Windows itself, and VxDs do their job by reacting to these events. (I'll 
discuss these evertts in detail a bit later.) 

The DDB Device ID field is used by the VMM to identify the VxD. In particular, 
the VMM relies upon unique IDs to correctly resolve exported PM and V86 API entry 
points. Here are the rules for choosing a Device ID. 

If your VxD is a direct replacement for an existing VxD, use the ID of the existing 
VxD from the VMM header file. 

If your VxD is not a direct replacement, and it exports any entry points to DOS or 
Win16 applications or to other VxDs, you must apply to Microsoft for a uniqueID. 

If your VxD doesn't replace a standard VxD and doesn't export any entry points to 
DOS orWin16 applications, you can use the UNDEFINED_DEVICE_IDconstant 
defined in the VMM header file. 

Table 4.1 The fields of the DDB structure. 

Field Description 

Name 8-byte VxD name 

Major Version ofVxD, not related to Windows version 

Minor Version ofVxD, not related to Windows version 

Device Control Procedure address* of Device Control Procedure 

Device ID same as ID ofVxD being replaced, or unique 
value assigned by Microsoft 

Initialization Order usually Undefi ned_Ini COrder. To forceinti~l-
ization before/after a specific VxD, assign an 
Init_Ord€r in VMM. INC and add/subtract 1. 

Service Table address* of Service Table 

V86 API Procedure address* ofV86 API Procedure 

PM API Procedure address of PM API Procedure 

*32-bit offset 
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If a VxD provides an API for Win16 or DOS applications, its DDB contains the 
address of the API entry point. The DDB contains one field for each type of API: the 
PM API field is the 16-bit protected mode entry point used by Winl6 applications, 
and the V86 API field is the entry point used by DOS applications. Because there is 
only one API entry point for each of these types of application, VxDs typically use a 
function code in a register to determine the specific function needed by the caller 
(much like a software interrupt under DOS). 

A VxD can also export an entry point for use by other VxDs. VxD documentation 
usually refers to this as a "Service", not an API. Services are different from APIs in 
that the DDB contains a field for a service table, not a single service entry point. A 
service table is basically a list of function codes and function addresses. 

One other field in the DDB is sometimes used by a VxD, though the VxD does not 
initialize this field. The Reference_Data field allows the real mode initialization 
piece of a VxD to communicate with the rest of the (protected mode) VxD. When 
the real mode initialization code returns, the VMM copies the value in EDX to the 
Reference_Data field of the VxD's DDB. If the real mode code needs to commu
nicate more than four bytes, it should allocate a block of memory with 
LDSRV_Copy_Extended_Memory and return the address of the block in EDX. The pro
tected mode portion ofthe VxD can then use Reference_Data as a pointer to the allo
cated block. 

Supporting Data Structures 
The DDB is the only data structure actually required of a VxD by the VMM. How
ever, VxDs typically service more than one physical device (e.g. multiple serial ports) 
and interact with more than one Virtual Machine. Most VxDs will need to create their 
own supporting data structures to store per-device and per-VM configuration and state 
infortnation. 

VxDs typically use one or more device context structures to store device-specific 
information like 110 base address, IRQ, etc. These device context structures can be 
allocated statically in the VxD's data segment (locked if used by an interrupt handler) 
or dynamically through VMM services. 

In general, if the number of devices is always fixed, allocate the device structures 
statically, and if the number varies, allocate the structures dynamically. For example, 
all PCs have two DMA controllers, so Virtual DMA Driver (see Chapter 6) declares 
static device structures in its data segment, but the number of serial ports on a PC var
ies, so the serial port driver dynamically allocates a device structure as each serial port 
is discovered. 
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If you dynamically allocate your device structure at runtime, use the VMM service 
_HeapA 11 ocate, which is very similar to rna 11 oc. However, if your device structure 
includes a large buffer (4Kb or larger), you'll want to include only a pointer to the 
buffer in the device structure itself, and then allocate the large buffer separately using 
_PageAllocate. The rule is to use _HeapAllocate for small allocations and 
_PageA 11 ocate for large allocations, where small and large are relative to 4Kb. 

Figure 4.1 Illustrates how Control Block Dflta (CBD) 
can be used to save per-VM state 
information for each multiple device. 
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While managing per-device information is a familiar concept for device drivers, 
managing per-VM or per-device/per-VM information is less common. Fortunately, a 
VxD can ask the VMM to manage per-VM storage on behalf of the VxD. The VMM 
itself allocates and uses a Control Block for each VM. A VxD can use a VMM service 
to reserve its own per-VM data area within the VM Control Block. 

To reserve this Control Block space, the VxD calls the VMM service 
_A 11 oca te_Dev i ce_CB_Area during initialization, requesting a certain size block. 
The VMM will return the allocated block's offset within the entire Control Block. 
Once the VxD has requested this space, the VMM will reserve it at this same offset in 
every VM Control Block. Because the VxD will always have access to the current 
VM's handle, and the VM handle is actually the starting address of the VM Control 
Block, the VxD will always be able to get to this control block data. (I'll explain how 
the VxD gets the current VM handle in the next section.) Figure 4.1 shows how Con
trol Block Data (CBD) can be used to save per-VM state information. 

Just as VxDs have a need for per-VM data, some VxDs also have a need for 
per-thread data. The reason is that Windows 95 schedules threads, not VMs, and the 
System VM may have more than one thread. The mechanism for per-thread storage 
resembles that used for per-VM storage. A VxD allocates per-thread storage during 
VxD initialization by calling the service _All ocateThreadDataSl ot. This service 
returns the offset of the thread data slot, relative to a data structure called the Thread 
Control Block or THCB. The VMM provides the THCB of the currently executing 
thread when it calls a VxD's Device Control Procedure with thread-related messages. 
A VxD can also get the THCB of the currently executing thread by calling the VMM 
service Get_Cur _Thread_Handl e. 

Unlike _All ocate_Devi ce_CB_Area, which can reserve various size data areas, 
_All ocateThreadDataSl ot always allocates 4 bytes of per-thread storage. If your 
VxD's per-thread data won't fit in 4 bytes, use these 4 bytes to store a pointer to a 
larger structure. Your VxD should allocate the larger structure when the thread is cre
ated (Figure 4.2). 
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To examine or modify the state of a VM, a VxD examines or modifies the fields in 
another important data structure, the Client Register Structure. This structure contains 
the VM's current registers and flags. Typically a VxD is interested in the VM state if it 
provides an API for use by PM or V86 mode applications. Such a VxD gets its input 
and provides its output through these client registers. The VMM sets EBP to point to 

Figure 4.2 Illustrates how Thread Data Slots (TDSs) 
can be used to save per-thread information. 
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the Client Register Structure before calling the VxD API entrypoiI1t, so most access 
to the Client Register Structure is done through EBP. A VxD can also find the Client 
Register Structure through the CB_Cl i ent_Poi nter address found in the VM's Con~ 
trol Block. Figure 4.3 shows these relationships. 

Figure 4.3 Illustrates the relationship between the 
current VM handle, the VM control block, 
and the Client Register Structure. 
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Event Notification 
Once real mode initialization is complete, the VMM will notify the VxD about rele
vant events through a special message interface. To send a message to the VxD, the 
VMM obtains the address of the VxD's Device Control Procedure from the VxD's 
DDB and calls this procedure with a message code in EAX and the handle to the cur
rent VM in EBX. The control procedure then branches to message-specific code. The 
VMM uses this interface to notify the VxD of initialization activities, cleanup activi
ties, and VM state changes. 

Although the VxD message interface is conceptually similar to the WinProc 
message interface, the implementation is completely unrelated and 
incompatible. 

The roughly two dozen messages can be divided into eight major categories. The 
messages and their categories are shown in Table 4.2. The messages in the initializa
tion and termination categories are always sent in the order listed. A more detailed list 
of the messages and their register parameters and return codes can be found in the 
Windows 95 DDK documentation. 

Table 4.2 The event notification messages that VMM 
sends to VxDs. 

Message Category Message Description 

System Initialization Sys_Critical_Init Interrupts disabled and remain 
so; minimal processing. 

Devi ce_Init System VM already loaded: 
VxDs do most initialization here. 

IniCComplete Any processing needed after all 
VxDs do Device_Init. 

System Termination System_Exit System VM destroyed, but still in 
memory. 

Sys_Critical_Exit System VM no longer in mem-
ory; interrupts disabled. 
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Many VxDs process only a handful of these messages. The example VxDs begin
ning in the next chapter will illustrate the processing of the most commonly handled 
messages. Most of these messages mark important events in the life of either the VxD 
or a VM. The following section explains how the messages relate to the normal life 
cycle of a VxD and the VMs it services. 

Table 4.2 (continued) The event notification messages 
that VMM sends to VxDs. 

Message Category Message Description 

VM Initialization Create_VM VxDs initialize per-VM data. 

VM_Critical - Init Interrupts disabled. 

VM_Init VM fully created; VxD can now 
call code in VM. 

Sys_VM_Init Equivalent to VM_I nit, but VM is 
SystemVM. 

VM Termination Query-Destroy Abnormal VM termination: 
return Ca rry flag set ifVM 
should not be destroyed. 

VM_Terminate Normal VM termination; VM 
still exists so VxD can call code 
inVM. 

Sys_VM_Terminate Equivalent to VM_Termi nate, but 
VM is System VM. 

VM_Not_Executeable Sent for both normal and abnor-
mal termination; VM still in 
memory, but not executable. 

Destroy-VM VM no longer in memory. 

VM State Change VM_Suspend VM suspended by another VxD; 
VxD should give up any 
resources associated with the VM. 

VM_Resume VM resumed from a suspend. 

Set_Device_ Focus VM has keyboard/mouse focus. 

Begin_PM_App VM has started a protected mode 
application. 

End_PM_App VM has ended a protected mode 
application. 
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Statically Loaded VxD Initialization 
and Termination Messages 

A statically loaded VxD is loaded when Windows initializes and is unloaded when 
Windows terminates. During Windows initialization, a statically loaded VxD will 
receive three messages, one marking each phase of Windows initialization. In 
response to any of the three messages, a VxD may indicate failure by returning with 
the Carry flag set. On such failure, Windows will unload the VxD, and the VxD will 
receive no further messages. 

The first phase of Windows initialization is marked by the Sys_Criti ca 1_1 nit 
message. At this time, interrupts are disabled, so if your d~vice requires uninterruptible 
initialization, do it here. If a V xD exports services to other V xDs, it should perform any 
initialization needed to carry out these services in the handlerfor Sys_Crit i ca 1_1 nit, 
because other VxDs may call the exported services immediately after the exporting 
VxD processes this message. If a VxD virtualizes a memory-mapped adapter that can 
be used by DOS applicatiO)1s, then it should reserve pages in V86 address space here. 
(For example, the virtual display adapter reserves pages for the video frame buffer, 
usually at AOOOOh-COOOOh, in each VM's address space.) 

Table 4.2 (continued) The event notification messages 
that VMM sends to VxDs. 

Message Category Message Description 

Thread Initialization Create_Thread New thread is being created; allo-
cate and initialize THCB data. 

Thread_Init New thread has been created and 
is currently executing. 

Thread Termination Terminate_Thread Thread is about to be terminated; 
release any thread-specific 
resources. 

Thread_Not_Executeable Thread is being terminated and 
will not be executed again. 

Destroy-Thread Thread has been destroyed. 

Miscellaneous Reboot_Processor Handled only by Virtual 
Keyboard Driver. 

Debug_Query Generated on behalf of debugger; 
VxDs display status. 
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All VxDs should defer any other actions until the next phase. Note that services 
such as Simul ate_Int or ExecInt, which execute code in a VM, are not available at 
this time because no VMs have been created yet. (I'll explain the role of 
Simul ate_Int and ExecInt in more detail in Chapter 12.) 

The next message, Devi ce_I nit, notifies a VxD of the second initialization phase, 
which occurs after VMM has created the System VM. Most of a VxD's setup is per
formed during this phase. At this time, a VxD should allocate device context and Con
trol Block memory, hook 110 ports, and hook interrupts. 

I ni t_Comp 1 ete marks the last phase of system initialization. Usually only VxDs 
that allocate pages in V86 address space need to respond to this message. 

Windows also shuts down in three phases. When the system terminates normally 
(i.e. not in a crash), the System VM is terminated first, resulting in a Sys_VM_Termi nate 
message. The System VM has not been destroyed yet, so Si mu 1 a te_I nt and ExecI nt 
services are still available if the V xD needs to ekecute code in the System VM. The next 
message in the shutdown sequence is Sy stem_Ex i t, which occurs during both normal 
and abnormal terminations. At this time, interrupts are enabled but the System VM has 
already been destroyed, so Simul ate_Int and ExecInt are no longer available. Most 
VxDs do their shutdown processing during System_Exi t, shutting down their device. 
The last message is Sys_Critical_Exit, sent with interrupts disabled. Most VxDs 
don't process this message. 

Dynamically Loaded VxD Initialization 
and Termination Messages 
A dynamically loadable V:xD doesn't see the system initialization messages 
(Sys_Critical_Init, Device_Init, and IniCComplete) because it hasn't been 
loaded yet when these messages are sent. However, the VMM provides an analogous 
message to a dynamic VxD during its loading procedure, Sys_Dynami cDevi ce_I ni t, 
and another message when the VxD is unloaded, Sys_Dynami cDevi ce_Exi t. 

A dynamic VxD processes the Sys_Dynami cDevi ce_I nit message much as a 
static VxD would process the system initialization messages - by performing basic 
device initialization, hooking 110 ports, installing hardware interrupt handlers, etc. 
Note that certain VMM services are available only during system initialization and 
therefore may not be used by dynamic VxDs (see the Windows 95 DDK for a list of 
these services). A dynamic VxD may indicate that it failed to load by returning from 
the Sys_Dynami cDevi ce_Init message with the Carry flag set. 
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Although static VxDs receive several system termination messages, static VxDs 
are often careless about releasing resources during termination, since Windows 
itself is terminating. A dynamic VxD must, on the other hand, be very careful to 
free any resources it has allocated. This includes unhooking I/O ports, uninstalling 
hardware interrupt handlers, and unhooking services. In addition, a dynamic VxD 
must cancel all outstanding timeouts and events during Sys_Dynami c_Devi ce_Exi t, 
otherwise the VMM will end up calling code that is no longer loaded and the system 
will probably crash. 

Static code and data segments can be used to solve some of the problems a 
dynamic VxD may encounter in releasing resources. For example, 
sometimes the VMM doesn't provide a "deallocate" service for a particular 
resource, and sometimes the deallocate may fail. In these cases, the code 
using this resource should be in the static code segment and shouldn't take 
any action unless the rest of the VxD is loaded. The VxD should also reuse 
the already allocated resource the next time the VxD is loaded, instead of 
allocating the resource again. 

VM State Change Messages 

Another set of messages tracks the life of VMs. Creation of a new VM also occurs in 
three phases, each with its own message: Create_VM, VM_Cri ti ca1_I nit, and VM_Init. 
For each of these messages, the VM handle is in EBX. 

When the VxD receives the first message, Create_VM, it should initialize any data 
associated with the VM. VM_C ri t i ca 1_1 nit marks the next phase. An error response 
(returning with Carry flag set) to the VM_Critica1_Init message will cause a VM 
termination sequence, starting with VM_Not_Executeab 1 e. (There is no VM termina
tion sequence if VM_C rea te is failed.) The final phase of creation is VM_I nit. At this 
time, the VM has already been created, and Simulate_Int and ExecInt are avail
able for calling software interrupts in the newly created VM. 

A VM's destruction also takes place in three stages, again with the VM handle in 
EBX. A VM that exits gracefully results in a VM_Termi nate message, which indicates 
the VM is "about to die". (An abnormal termination will first generate a 
Query_Destroy, see the following paragraph.) The VxD should take any action 
requiring Simul ate_Int or Exec_Int here, while the VM is still present. The next 
phase, VM_NoLExecuteabl e, occurs both during a graceful exit and an abnormal exit. 
The EDX register contains flag values that indicate the actual cause of termination. 
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These flag values are listed in Table 4.3. Because the VM has already been termi
nated, Simulate_Int and ExecInt are not available. The last phase is marked by 
Destroy_VM. If a VxD doesn't care about the specific reason for VM termination and 
it doesn't need to use Si mul ate_I nt or ExecI nt, it can choose to respond to only 
this final message. 

Before the SHELL VxD shuts down a VM abnormally (typically in response to a 
user request), it will send a Query_Destroy message. A VxD can respond to this mes
sage with the Carry flag set to indicate the SHELL should not destroy the VM. In this 
case, the VxD should also inform the user of the problem, using the SHELL message 
services (covered in Chapter 8, in the "Checking Ownership" section). 

In addition to VM startup and shutdown events, VxDs are also notified about 
scheduling events that change the currently running VM. VM_Suspend and VM_Resume 
messages are sent to VxDs as the VMM scheduler suspends and resumes execution of a VM. 

Although the DDK documentation says to free any resources associated with 
the suspended VM on receipt of a VM_Suspend, only a few of the VxDs 
whose source is provided in the DDK respond to the VM_Suspend and 
VM_Destroy messages. The Virtual Display Driver (VDD) responds to 
VM_Suspend by unlocking the pages of video memory and to VM_Resume by 
locking the pages again. The Virtual Comm Driver (VCD) responds to 
VM_Sus pend by clearing any pending serial port interrupt if the port is owned 
by the VM being suspended. 

Table 4.3 Flag values contained in the fDX register 
that indicate the cause of termination. 

Flag Description 

VNE_Crashed VM crashed. 

VNE_Nuked VM destroyed while still active. 

VNCCreateFai 1 A VxD failed Create_VM. 

VNCCrlni tFai 1 A VxD failed VM_Cri ti ca 1 - Init. 

VNE_InitFail A VxD failed VM_Ini t. 

VNCClosed VM closed properly then destroyed. 
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Thread Messages 
Another set of messages tracks the life of threads, the unit of tasking used by the Win
dows 95 VMM scheduler. These messages are Create_Thread, Thread_Init, 
Term; nate_Thread, Thread_Not_Executeabl e, and Destroy_Thread. However, 
these messages are not sent for the initial thread of a VM, only for subsequently cre
ated threads in a VM. As discussed in an earlier chapter, DOS VMs have exactly one 
thread each, so even though creation of a DOS VM does result in creation of a new 
thread, the VMM does not send a Create_Thread message. (It does however, send a 
Create_VM message.) 

Threads are created and destroyed in stages, similar to VMs. The first message, 
Create_Thread, is sent early in the thread creation process. EDI contains the handle 
(THCB) of the thread being created (which is not the currently executing thread). A 
VxD can return with Carry set and the VMM will not create the thread. A VxD typi
cally allocates and initializes any thread-specific data here. The extra allocation step is 
necessary if the 4 bytes of per-thread data in the THCB (allocated during VxD initial
ization) isn't enough. In this case, a per-thread structure is allocated during 
Create_Thread, and the per-thread data in the THCB is used to store a pointer to this 
newly allocated structure. 

Once the thread has been fully created, the VMM sends out the Thread_In; t mes
sage. EDIonce again contains the handle of the newly created thread, but now the new 
thread is also the currently executing thread. A VxD should delay any initialization that 
requires the new thread to be the currently executing thread until it receives this message. 

Thread destruction also involves multiple messages: Term; nate_Thread, 
Thread_Not_Executeabl e, and Destroy_Thread. When the first message, 
Term; nate_Thread, is sent, the thread is "about to be terminated", but is still capable 
of being executed. V xDs typically respond to this message by freeing any resources 
associated with the thread. The next message, Thread_Not_Executeabl e, is sent 
when the thread will no longer be executed. The last message, Destroy_Thread, 
occurs after the thread has actually been destroyed and gives VxDs a last chance to 
free thread-specific resources. 
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Windows 3.x Differences 
Windows 3.x used only three types of segments: real mode initialization, protected 
mode initialization, and locked (non-pageable). The Windows 3.x VMM never swaps 
out any VxD code or data. 

Windows 3.x doesn't support dynamic VxD loading, only static loading. Static load
ing is specified via a dey; ce= statement in the [386Enh] statement in SYSTEM. I NI, just 
as it is under Windows 95. 

Windows 3.x doesn't support threads. This means there is no need for per-thread 
data, no All acate_Thread_Data_S1 at, and no thread-specific messages. 

Summary 
Despite the hundreds of functions supported by the VMM and other VxDs, for 
many VxD applications you really don't need to know much more than what I've 
covered in this chapter. Unless you are doing something very special (like writing a 
replacement for the VMM), you'll probably never need more than a dozen of the 
functions in that API. 

In the following chapters I'll show you how to build several practical VxDs. Even 
though these VxDs span a wide variety of applications, collectively they use only a 
few functions from the VMMNxD API. As you easily can tell just by scanning some 
of the listings in the chapters ahead, VxDs don't have to be overwhelmingly compli
cated to be useful. 
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A Skeleton VxD 
This chapter will introduce a "skeleton" VxD, one that won't have much functionality 
but will provide the basic framework for future VxDs. This skeleton VxD will simply 
monitor the creation and destruction of VMs and threads and will print out VM and 
thread information during these events. This output is sent both to the debugger and to 
a file, techniques that will be used in later VxDs to provide trace information for 
debugging. 

This chapter will introduce you to two different approaches to developing VxDs in 
C: one using tools from the Windows 95 DDK and the other using the VTooisD prod
uct from Vireo Software. VTooisD gives you a big head start, automatically generat
ing a makefile and a prototype C file. VTooisD also requires no assembly language 
modules. In contrast, the DDK-only process requires one assembly language file. This 
chapter will cover both methods but will focus more on the DDK-only process, since 
it is more complicated. 

Tools for Building VxDs 
In the days of Windows 3.x, VxDs were almost always written in assembly, simply 
because VxDs are 32-bit flat model programs and there were few 32-bit C compilers 
available. Now that 32-bit compilers are the norm, it's possible to write VxDs in C. 
However, your standard 32-bit compiler and linker won't be enough. 

55 
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You'll also need the include (. h) files for VMM and other VxD services, as well as 
a special library for interfacing to the VMM and other VxDs. The routines in the 
library contain glue code that transfonns the register-based interface used by VMM 
and other VxD services into a C-callable interface. The include files and the VMM 
library are available from two different sources: the Windows 95 DDK (Device Driver 
Kit), which is available as part of the Microsoft Developer Network Subscription, and 
the VToolsD toolkit. 

Both the Windows 95 DDK and VToolsD come with the tools you need to write 
VxDs in C - just add a 32-bit compiler and linker. VToolsD explicitly supports both 
Borland and Microsoft compilers, while the Windows 95 DDK supports only 
Microsoft, although it can be coerced to work with Borland. VToolsD includes several 
other features which the Windows 95 DDK does not. One is QuickVxD, a VxD "wiz
ard" that quickly generates a skeleton VxD, including C source, header file, and 
makefile. VToolsD also includes a C run-time library for VxDs. This alternate library 
is useful because a VxD can't just use the C run-time included with a 32-bit compiler; 
the standard compiler-provided libraries make assumptions about the run-time envi
ronment that don't hold true for VxDs. 

Although the DDK technically provides all you need to write VxDs in C, VToolsD 
makes it much easier. The VMM "glue" library provided by both VToolsD and the 
DDK solves only half of the problem, allowing your VxD written in C to call VMM 
and other VxD services, which use register-based parameters. However, only 
VToolsD addresses the problem of register-based parameters in the other direction. 
The messages sent to your VxD's Device Control Procedure, as well as many call
backs (port trap, interrupt, fault handler, etc.), all call into your VxD with parameters 
in registers. When using the DDK, you must either write small stub functions in 
assembly or embed assembly statements directly in your C code in order to extract 
these register parameters. VToolsD, on the other hand, provides a "C framework" that 
passes these parameters on the stack and allows you to write message handlers and 
callbacks all in C. 

Even if you don't use the DDK development tools, you may still find it very valu
able. The DDK also contains the source code for about a dozen of the VxDs that ship 
with Windows 95. These VxDs range from the virtual display driver to the virtual 
DMA driver to the virtual NetBios driver. If you're planning to write a VxD to support 
new hardware that is similar to an existing device, you'll certainly want to invest in 
the DDK and modify the VxD for the existing device. Even if you're creating a brand 
new VxD, taking a look at other VxDs is a great way to learn, and the DDK is the only 
source I know of for non-trivial, real world VxDs. 

You'll also need a debugger to get your VxD working, and the application-level 
debugger shipped with your compiler simply won't do. Only two products can debug 
VxDs: the WDEB386 debugger included with the DDK or SoftIcelWindows by 
NuMega Technologies. Whether to use WDEB386 or SoftIce is largely a matter of 
taste, money, and development preferences. Although both are powerful enough to 
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debug VxDs, Softlee has more user-friendly features: WDEB386 requires a terminal, 
SoftIce does not; SoftleelWindows can debug C at the source level, WDEB386 shows 
you only assembly. 

"DDK" Version Source Files 
The "DDK" version of the SKELETONVxD consists of two source files: 

SKELCTRL.ASM, which contains the Device Descriptor Block (DDB) and Device 
Control Procedure found in every VxD; 

VXDCALL. C, provided free of charge by Vireo (makers ofVToolsD), which con
tains a patch necessary to fix a bug in the Microsoft VC++ 4.1 compiler; and 

SKELETON. C, which contains the message handler functions called by the Device 
Control Procedure. 

Although it's not absolutely necessary to place the DDB and Device Control Pro
cedure in an assembly language file (VToolsD doesn't), I prefer to do so. These very 
small pieces are easily coded in assembly, and putting them in a C file would involve 
writing complicated pre-processor macros and embedded assembly. 

As explained in the last chapter, when a C module calls a VMM or VxD service, 
an assembly language function is required to take parameters from the stack and place 
them in appropriate registers as expected by the specific service. The VXDWRAPS.CLB 
library in the DDK provides wrappers for some commonly used VMM and VxD ser
vices, but SKELETON. VXD uses several services that aren't contained in this library. 
The wrapper functions for these services are in the WRAPPERS. CLB library, provided in 
the \wrappers directory on the code disk. 

This chapter will focus on how SKELETON. C (Listing 5.1, page 69) uses the func
tions in the wrapper library, not on the wrapper functions themselves. Refer to Appen
dix B for a complete description of WRAPPERS.CLB, instructions on how to add new 
VMMNxD services to the module, and how to place these functions in a library. 

If you're using Microsoft VC++ 4.1 to build your VxD, you'll need to link one 
more file, VXDCALL. C, into your VxD. Without this module, a bug in the 4.1 compiler 
makes it worthless for building VxDs. In a nutshell, the compiler generates incorrect 
code when enurrs are used in embedded assembly statements: the VMMca 11 macro in 
VMM. H uses enums. VxDs generated with this incorrect code causes the run-time error 
message, "Unsupported service xx in VxD xx". 

The VXDCALL.C module provided free of charge by Vireo (makers of VToolsD) 
back-patches the incorrect code at run time. Compile the code once and simply link in 
the OBI file to any VxDs built with VC++ 4.1. Note that you must also include the 
accompanying header file, VXDCALL. H, in all your VxD C source files. 
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Although Vireo provides VXDCALL. C on their web page (www.vireo.com). 
you don't need VToolsD to use VXDCALL. C. You need VXDCALL. C if you're 
using VC++ 4.1, regardless of whether your toolkit is the DDK or VToolsD. 

The file SKELCTRL.ASM (Listing 5.2, page 71) provides the building blocks for 
SKELETON. VXD, and for the VxDs in later chapters. SKELCTRL.ASM can be easily adapted 
for use in other VxDs by changing DDB fields (for example, the VxD name) and add
ing/deleting messages from the Device Control Procedure as desired. The other file, 
SKELETON. C, contains the message handler functions, which implement specific VxD 
functionality, and will vary greatly from one VxD to the next. 

Although the specific functionality of the C source file will vary for each of the 
V xDs in this and later chapters, each version of the C source file includes the same basic 
set of header files. The header files, and a description of each, are found in Table 5.1. 

The makefile, SKELETON .MAK (Listing 5.3, page 72) is used to build SKELETON. VXD. 
The makefile compiles, assembles, and links all components needed to build 
SKELETON. VXD. After building SKELETON. VXD, the makefile runs the MAPSYM utility, 
which converts the linker map file into a symbol file usable by either the WDEB386 
or SoftIcelWin debugger. 

The compiler and assembler options (flags) are defined by the macros CVXDFLAGS and 
AFLAGS at the top of the makefile. Tables 5.2 and 5.3 explain the purpose of each of these flags. 

Table 5.1 Header files for SKELETON. C. 

Header Description Directory 
File 

BASEDEF.H constants and types used by other header files i nc32 ofWin95 DDK 

DEBUG.H macros for enabling/disabling debug code i nc32 ofWin95 DDK 

VMM.H constants and types for VMM services i nc32 ofWin95 DDK 

VXDWRAPS.H function prototypes for VMMNxD services i nc32 ofWin95 DDK 
provided in DDK (VXDWRAPS. CLB) 

WRAPPERS .H function prototypes for VMMN xD services wrappers 
provided by WRAPPERS. CLB 

VXDCALL.H function prototype for Vireo VMMcalllVxD- wrappers 
call patch 

INTRINSI.H function prototype for intrinsic string wrappers 
functions 
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Table 5.2 Compiler options and flags for VxDs. 

Option Purpose 
or Flag 

c compile only (no link) 

Gs disable stack overrun checking 

Zdp, Zd name PDB file that stores debug and symbol information 

Zl suppress default Crun-time library name in OBJ; 
prevents accidental link with unsupported C run-time 

D1S_32 specifies 32-bit code, not 16-bit; used by some VxD header files 

DDEBUG enables debug macros and functions in some VxD header files 

DDEBLEVEL=l sets debug level to normal in DEBUG. H 
(choices are reta il, norma 1, or max) 

DWANTVXDWRAPS disable some inline functions in VxD header files, 
forcing ones in wrapper library to be used instead 

Table 5.3 Assembler flags for VxDs. 

Option Purpose 
or Flag 

c assemble only (no link) 

coff output file in COFF format; MS linker now uses COFF, not OMF 

Cx preserve case in publics and extems 

W2 set warning level to 2 

Zd include line number debug information in OBJ 

DIS_32 specifies 32-bit code, not 16-bit (used by some VxD include files) 

DDEBUG enables debug macros and functions in some VxD include files 

DDEBLEVEL =1 sets debug level to normal in DEBUG. INC 
(choices are reta i 1, norma 1, or max) 

DMASM6 specifies assembler is MASM 6.x (used by some VxD include files) 

DBLD_COFF specifies COFF format (used by some VxD include files) 
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TheDDB and Device Control Procedure: 
SKELCTRL. ASM 
The short assembly language module SKELCTRL.ASM (Listing 5.2, page 71) contains 
the DDB and a Device Control Procedure: 

.386p 

include vmm. inc 
include debug.inc 

BeginProc ControlProc 

SKELETON. 1. O. ControlProc. \ 
UNDEFINED_DEVICE_ID. \ 
UNDEFINED_INIT_ORDER 

Control_Dispatch SYS_VM_INIT. _OnSysVmInit. cCall. <ebx> 
Control_Dispatch SYS_VM_TERMINATE. _OnSysVmTerminate. cCall. <ebx> 
Control_Dispatch CREATE_VM. _OnCreateVm. cCall. <ebx> 
Control_Di spatch DESTROY_VM. _OnDestroyVm. cCall. <ebx> 
Control_Dispatch CREATE_THREAD. _OnCreateThread. cCall. <edi> 
Control_Dispatch DESTROY_THREAD. _OnDestroyThread. cCall. <edi> 

clc 
ret 

EndProc ControlProc 

END 

At the top of the file, the DDB is declared with the macro DECLARE_VIRTUAL_
DEVICE. Thismacro's parameters correspond one for one to the DDB fields described 
in the section "The Device Descriptor Block" in Chapter 4. SKELCTRL. ASM uses only 
the first six macro parameters, because theVxD doesn't export either a V86 or a PM 
API. Because SKELETON doesn't export an API or any services, it doesn't need a 
VxD ID, so SKELCTRL.ASM uses UNDEFINED_DEVICE_ID for the Device_Num macro 
parameter (Devi ce~Num is the same as Device ID). SKELETON doesn't have any 
requirements for a particular initialization order, so it uses UNDEFINED_INIT_ORDER 
for the Ini t_Order macro parameter. 
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The last half of SKELCTRL .ASM defines the VxD's Device Control Procedure 
(Control Proc). A VxD's Device Control Procedure must be placed in the locked 
segment, so Control Proc is surrounded by the macros VXD_LOCKED_CODE_SEG and 
VXD_LOCKED_CODE_ENDS. Contra 1 Proc uses a series of Contra LDi spatc h macros to 
generate code for a basic switch statement. For example, the line 

Control_Dispatch SYS_VM_INIT. _OnSysVmlnit. cCall. <ebx> 

translates to code that compares the message code in EAX with SYS_VM_I NIT, and if 
equal, calls the function OnSy s VmI nit in the C module, passing the YM handle in EBX 

J 

as a parameter. 
That's enough information about SKELCTRL ~ ASM to allow you to make minor modi

fications to support other messages in your VxD. Appendix B contains further details, 
including more information on the macros Control_Di spatch and cCall. Appendix B 
also contains information about the wrapper library, WRAP P E RS . C LB, which you'll need 
if you add other VMMNxD service wrappers to the library. In the rest of the chapter, 
I'll concentrate on the real functionality of SKELETON. VXD, contained in SKELETON. C. 

SKELETON.C (Listing 5.1, page 69) contains the message handlers for the 
SKELETON. VXD. The SKELETON VxD processes six messages relating to creation 
and destruction of VMs and threads: Sys_VM_Init, Sys_VM_Terminate, Create_VM, 
Destroy_VM, Create_Thread, and Destroy_Thread. Each time a VM is created, all 
VxDs are sent one of two messages: Sys_VM_I ni t for System VM or Create_VM for 
non-System VMs. VM creation also results in the creation of an initial thread, but no 
message is sent for this thread. Subsequent (non-initial) threads created in a VM do 
result in a message, Create_Thread. As discussed earlier in Chapter 2, each non-Sys
tem VM is limited to a single thread, which means all Create_Thread messages are 
associated with the System VM. 

SKELETON demonstrates this behavior by printing out both VM handle and 
thread handle values for the six messages. The VM message handlers (OnSys VmI nit, 
OnCreateVm, OnDestroyVm, and OnSysVmTermi nate) use the VMM service 
Get_I ni ti a l_Thread_Handl e to obtain the thread handle of the initial thread created 
along with the VM. (This service is not supported by the DDK library VXDWRAPS. CLB, 
so its wrapper is in WRAPPERS. CLB). The thread message handlers Create_Thread and 
Destroy_Thread extractthe VM associated with the thread from the thread handle
which is really a pointer to the thread's control block. One of the fields in the thread 
control block is the handle of the VM associated with the thread. 

Each message handler function prints these VM and thread handle messages to the 
debugger and to a file. The functions use the DPRINTF macro to generate debugger 
output. This macro mimics the useful VTooisD function dpri ntf. The macro com
bines a call to two VMM services: _Spri ntf, which formats a string; and 
Out_Debug_Stri ng which outputs the formatted string to the debugger. Both of the 
services are included in the DDK library VXDWRAPS. CLB. 
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The DPR1 NTF macro expands only if the symbol DEBUG is defined at compile 
time. Typically this symbol is defined via a compiler switch rather than a 
#defi ne in a source file. For example, with Microsoft's compiler you would 
use -DDEBUG= 1. If DEBUG is not defined, the DPRI NTF macro expands to 
nothing. 

To send the messages to a file, the message handlers use the I FSMgr _Ri ngO_
Fi 1 eIO service. The IFSMgr is the Installable File System Manager VxD, the top 
level manager of all the VxDs that together form a file system. Most IFSMgr services 
are used by other VxDs that are part of the file system, but the I FSMgr _Ri ngOJi 1 eIO 
service is useful to any VxD: it lets a VxD perform file 110 at Ring O. The "Ring 0" 
part is significant because before the IFSMgr arrived with Windows for Workgroups 
3.11, a VxD could only perform file 110 by switching to Ring 3, and each individual 
110 operation (open, close, etc.) involved a sequence of several VMM services. Under 
Windows 95, it takes only a single call to IFSMgr to do each file 110 operation. 

The I FSMgr_Ri ngOJil eIO service will not work correctly if used before 
the Sys_1 ni t_Comp 1 ete message. 

Although the actual IFSMgr service uses a single entry point for all 110 operations 
(open, close, etc.) with a function code to distinguish them, it's more convenient to 
have a separate function call for each operation. When creating the wrapper functions 
in WRAPPERS. CLB, I took a cue from VToolsD and provided a different wrapper func
tion for each: I FSMgr _Ri ngO_OpenCreateFi 1 e, I FSMgr _Ri ngO_Wri teFi 1 e, etc. 

During System VM creation, OnSysVm1nit opens the file VXDSKEL. LOG with a call 
to I FSMgr _Ri ngO_OpenCreateFil e. The I FSMgr _Ri ngO_OpenCreateFil e interface 
mimics the I NT 21h Fil e Open interface, with parameters for filename, open mode 
(read, write, and share flags), creation attributes (normal, hidden, etc.), and action (fail 
if file doesn't exist, etc.). In fact, the mode, attributes, and action parameters use 
exactly the same values as the I NT 21h Fi 1 e Open. 

The IFSMgr adds two additional parameters to the Open call that aren't part of the I NT 
21h interface. One is a context boolean: if set, the file is opened in the context of the cur
rent thread and thus can only be accessed when that thread is current. The other parameter 
contains a flag bit which if set means "don't cache reads and writes to this file". 

OnSysVmI ni t uses "create and truncate" for the action parameter, so that the log file 
is created if it doesn't exist or opened and truncated if it already exists. OnSys Vm1 nit 
allows file caching (since 110 to the log file isn't critical) and uses FALSE for the con
text boolean, so that the VxD can do file 110 at any time without worrying about which 
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thread is current. This allows the VxD to open the file during Sys_VM_Init when the 
initial thread of the System VM is current and then to write to the file with the same 
handle during another VM or thread message when another thread is current. 

OnSysVmInit keeps the file open and stores the file handle in the global variable 
fh so that other SKELETON. VXD message handlers can also write to the file. The file is 
closed by the OnSysVmTermi nate message handler when Windows shuts down. 

All the message handlers, including OnSysVmInit, write to this already-open file 
using I FSMgr _Ri ngO_Wri teFi 1 e. This function uses the parameters you'd expect for 
a write: a handle, a buffer, and a count. But where most file 110 functions update file 
position automatically with each read and write, I FSMgr _Ri ngO_Wri teFi 1 e requires 
an explicit file position parameter, which means the caller must keep track of file 
position. SKELETON does this by initializing the global fi 1 e_pos variable to zero 
and incrementing fi 1 e_pos by the number of bytes written with each call to 
I FSMgr _Ri ngO_Wri teFi 1 e. 

I FSMgr _Ri ngO_Wri teFi 1 e performs no formatting, it simply writes a raw buffer. 
So before calling I FSMgr _Ri ngO_Wri teFi 1 e, each message handler first formats the 
buffer using the VMM _Spri ntf service provided in the DDK library VXDWRAPS. CLB. 

VToolsD Version 
To generate the VTooisD version of SKELETON. VXD, I used the QuickVxD "wizard" 
included with VTooisD to quickly generate a prototype VxD. Using QuickVxD is 
simple. You fill in several DDB fields (name, ID, init order, etc.), select which mes
sages your VxD will handle, specify whether or not your VxD supports a V86 or PM 
API, and which (if any) services your VxD provides to other VxDs. 

I used the name SKELETON and left both the ID and init order with the default value, 
which was UNDEFINED. I selected six messages: Sys_VM_Init, Sys_VM_Terminate, 
Create_VM, DestroLVM, Create_Thread, and Termi nate_Thread. Then I clicked on 
"Generate" and QuickVxd generated a single C source file, a header file, a makefile, and a 
definition file (Listings 5.5-5.8, pages 73-77). 

QuickVxD uses the name you specify for your VxD as the base filename. Because 
I chose SKELETON, the source file was named SKELETON. C. This file contained the 
DDB, the Device Control Procedure, and message handler stub functions for the six 
messages I selected. The message handler functions created by QuickVxD all follow 
the same naming convention: OnX, where X is the name of the message. For example, a 
message handler for IniLComplete would be called OnInitComplete (notice the 
underscore is removed). Parameters for the message handlers are message specific, 
but usually include either a VM handle or a thread handle, and sometimes an addi
tional parameter. 
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To complete the VTooisD version of SKELETON. VXD, I added a few global vari
ables and some additional code to each of the stub message handlers. The resulting 
SKELETON.C is shown in the following code. Sections that I added are delimited by 
comments. (Text continues on page 67.) 

1fdefine DEVICE_MAIN 
1finclude ·skeleton.h· 
1fundef DEVICE_MAIN 

//-----------begin section added to prototype 
DWORD filepos = 0; 
HANDLE fh; 
//-----------end section added to prototype 

Declare_Virtual_Device(SKElETON) 

DefineControlHandler(SYS_VM_INIT, OnSysVmInit); 
DefineControlHandler(SYS_VM_TERMINATE, OnSysVmTerminate); 
DefineControlHandler(CREATE_VM, OnCreateVm); 
DefineControlHandler(DESTROY_VM, OnDestroyVm); 
DefineControlHandler(CREATE_THREAD, OnCreateThread); 
Oefi neContro 1 Handl ere DESTROY_THREAD, OnDestroyThread); 

BOOl __ cdecl ControlDispatcher( 
DWORD dwControlMessage, 
DWORD EBX, 
DWORD EDX, 
DWORD ESI, 
DWORD EDI, 
DWORD ECX) 

ON_SYS_VM_INIT(OnSysVmInit); 
ON_SYSTEM_EXIT(OnSysVmTerminate); 
ON_CREATE_VM(OnCreateVm); 
ON_DESTROY_VM(OnDestroyVm); 
ON_CREATE_THREAD(OnCreateThread); 
ON_DESTROY_THREAD(OnDestroyThread); 

return TRUE; 



BOOl OnSysVmlnit(VMHANDlE hVM) 
( 

//-----------begin section added to prototype 
BYTE action; 
WORD err; 
int count=O; 
char buf[80]; 
PTCB tcb; 

tcb = Get_Initial_Thread_Handle(hVM); 
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dprintf(buf, "SysVMlnit: VM=%x tcb=%x\r\n", hVM, tcb )~ 

fh = RO_OpenCreateFile(FAlSE, "vxdskel.log", 
Ox0002, OxOOOO, Ox12, OxOO, 
&err, &action); 

if (!fh) 
( 

dprintf(buf, "Error %x opening file %s\n", err, "vxdskel.log" ); 

else 
{ 

sprintf(buf, "SysVMlnit: VM=%x tcb=%x\r\n", hVM, tcb }; 
count = RO_WriteFile(FAlSE, fh, buf, strlen(buf), filepos, &err); 
filepos += count; 

/!-----~-----end section added to prototype 
return TRUE; 

VOID OnSysVmTerminate(VMHANDlE hVM) 
( 

//-----------begin section added to prototype 
WORD err; 
int count=O; 
cha r buf[80]; 
PTCB tcb; 

tcb = Get_Initial_Thread_Handle(hVM); 
dprintf( buf, "SysVmTerminate VM=%x tcb=%x\r\n" , hVM, tcb ); 
sprintfC buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb ); 
count = RO_WriteFile(FAlSE, fh. buf, strlen(buf), filepos, &err); 
filepos += count; 
RO_CloseFile( fh, &err ); 

//-----------end section added to prototype 
} 
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BOOl OnCreateVm(VMHANDlE hVM) 
( 

//-----------begin section added to prototype 
PTCB tcb; 
WORD err; 
int count=O; 
char buf[80]; 

tcb = Get_Initial_Thread_Handle(hVM); 
dprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb); 
sprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb); 
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err); 
filepos += count; 

//----c------end section added to prototype 
return TRUE; 

VOID OnDestroyVm(VMHANDlE hVM) 
( 

//-----------begin section added to prototype 
WORD err; 
int count=O; 
char buf[80]; 
PTCB tcb; 

tcb = Get_Initial_Thread_Handle(hVM); 
dprintf(buf, "DestroLVM: VM=%x tcb=%x\r\n", hVM, tcb ); 
sprintf(buf, "DestroLVM: VM=%x tcb=%x\r\n", hVM, tcb ); 
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err); 
filepos += count; 

//-----------end section added to prototype 
} 

BOOl OnCreateThread(PTCB tcb) 
( 

//-----------begin section added to prototype 
WORD err; 
int count=O; 
cha r buf[80]; 

dprintf(buf. "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb); 
sprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb); 
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err); 
filepos += count; 

//-----------end section added to prototype 
return TRUE; 



VOID OnDestroyThread(PTCB tcb) 
( 

//-----------begin section added to prototype 
WORD err; 
int count=O; 
cha r buf[80]; 
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dprintf( buf, "Destroy-Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb ); 
sprintf( buf, "Destroy-Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb ); 
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err); 
filepos += count; 

//-----------end section added to prototype 
} 

This code looks similar to the DDK-only version of SKELETON. C. In fact, the indi
vidual message handler functions are almost indistinguishable from their DDK-only 
counterparts. The VtoolsD version uses dpri ntf and spri ntf, whereas the DDK ver
sion uses the DPRI NTF macro and _Spri ntf. The VTooisD version ofIFSMgr services 
is slightly different, using RO_ instead of I FSMgr _Ri ngO_. 

The advantage ofVToolsD is not in the C code you write in your VxD. The advan
tage is that you don't have to write anything other than C code. No assembly language 
modules are required. The DDB and Device Control Procedure are generated by the 
wizard and placed in the same C file, relying on a number of clever macros in the 
VToolsD header files to produce a mixture of C and embedded assembly. More 
importantly, the VTooisD library contains all of the VMM and standard V xD services. 
With VTooisD you will probably never have to write a service wrapper in assembly. 
VToolsD also throws in most ANSI C run-time functions, including spri ntf. 

A Windows 3.x Version of SKELETON 
Structurally, VxDs for Windows 3.x are the same as Windows 95 VxDs. However, 
Windows 95 contains a number of new VMM services and a number of new VxD ser
vices not available under Windows 3.x. A VxD that doesn't use any Windows 95-spe
cific services will run unchanged under Windows 95. But a VxD that uses Windows 
95-specific services will cause an "Unsupported Service" run-time error when run 
under Windows 3.x. 

SKELETON. VXD does use a number of Windows 95-specific services. Windows 3.x 
doesn't have threads, so a Windows 3.x version of SKELETON wouldn't contain the two 
thread message handlers or any calls to Get_Initial_Thread_Handler in the VM 
message handlers. Windows 3.x doesn't have an IFSMgr VxD either, so file I/O must 
be done in V86 mode using ExecVxD_Int instead of at Ring a with IFSMgr. 
(ExecVxD_Int will be covered in Chapter 12.) Last, the VMM in Windows 3.x 
doesn't offer the _Spri ntf service, so formatted output of message strings would have 
to be done in the SKELETON VxD itself (unless you use VToolsD, which provides 
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spri ntf in the run-time library). This VxD doesn't really need the full power offered 
by _Spri ntf, and a simpler method that converts a DWORD to a hex string could be 
used instead. 

VToolsD sells a version of their toolkit for Windows 3.x, and if you plan to write a 
Windows 3.x VxD in C, you need VToolsD. As this chapter showed, writing a Win
dows 95 VxD in C without VToolsD is possible but painful. Writing VxD in C for 
Windows 3.x without VToolsDs is more than painful. It's so much trouble that you 
might as well stick to assembly. 

If you do choose Windows 3.x and C without VToolsD, here's what you're up 
against. While the Windows 95 DDK provided only a partial VMM wrapper library, 
the Windows 3.x DDK doesn't provide one at all. This means each and every VMM or 
VxD service called by your VxD will require you to write an assembly language 
wrapper function and to create an appropriate function prototype in your own VMM 
header file. Also, the Windows 3.x DDK doesn't provide a VMM. H, so you'll have to 
use the one from the Windows 95 DDK, being careful not to use any services not 
present in Windows 3.x. 

Summary 
Even with its limited functionality, SKELETON. VXD illustrates many critical issues of 
VxD development, requiring correct use of structure, interface, and tools. Using the 
wrappers supplied by WRAPPERS. CLB, you can code most of a Windows 95 VxD 
directly in C, even if you have only the DDK development tools. VToolsD makes the 
process even easier by supplying a more complete set of wrappers and convenient 
access to Ring 0 versions of many standard library functions. If you are developing a 
Windows 3.x VxD, VToolsD is more than a convenience. Whichever tool set you are 
using, you are now ready to write a VxD that does something - one that actually 
manipulates the hardware. The next chapter will explain the issues involved in manip~ 
ulating basic hardware resources from Ring 0 code. 
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Listing 5.1 SKELETON. C (DDK-only version) 

'include <basedef.h> 
'include <vmm.h> 
'include <debug.h> 
/finclude "vxdcall.h" 
/finclude <vxdwraps.h> 
/finclude <wrappers.h> 
/finclude "intrinsi .h" 

/fifdef DEBUG 
/fdefine DPRINTF(buf, fmt, argl. arg2) _Sprintf(buf, fmt, argl. arg2 ); 

Out_Debug_String( buf ) 
/felse 
!/defi ne DPRI NTF( buf, fmt, argl. argZ) 
I!encjif 

typedef struct tcb_s *PTCB; 

BOOl OnSysVmlnit(VMHANDlE hVM); 
VOID OnSysVmTerminate(VMHANDlE hVM); 
BOOl OnCreateVm(VMHANDlE hVM); 
VOID OnDestroyVm(VMHANDlE hVM); 
BOOl OnCreateThread(PTCB hThread); 
VOID OnDestroyThread(PTCB hThread); 

/fpragma VxD_lOCKED_DATA_SEG 

DWORD filepos ~ 0; 
HANDLE fh; 
char buf[80]; 

I/pragma VxD_lOCKED_CODE_SEG 

BOOl OnSysVmInit(VMHANDlE hVM) 
( 

BYTE action; 
WORD err; 
int count~O; 

PTCB tcb; 

tcb ~ Get_Initial_Thread_Handle(hVM); 
DPRINTF(buf, "SysVMlnit: VM~%x tcb~%x\r\n", hVM, tcb ); 

fh ~ IFSMgr_RingO_OpenCreateFile(FAlSE, "vxdskel.log", 

if (! fh) 
( 

Ox0002, OxOOOO, Ox12, OxOO, 
&err, &action); 

DPRINTF(buf, "Error %x opening file %s\n", err, "vxdskel.log" ); 
} 
else 
( 

} 

_Sprintf(buf, "SysVMInit: VM~%x tcb~%x\r\n", hVM, tcb ); 
count ~ IFSMgr_RingO_WriteFile(FAlSE, fh, buf, strlen(buf), filepos, &err); 
filepos +~ count; 

retu rn TRUE; 
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Listing 5.1 (continued) 

VOID OnSysVmTerminateCVMHANDlE hVM) 
{ 

WORD err; 
i nt count~O; 
PTCB tcb; 

tcb ~ GeClniti a l_Thread_Handl eC hVM) ; 

SKELETON. C (DDK-only version) 

DPRINTFC buf. "SysVmTerminate VM~%x tcb~%x\r\n". hVM. tcb ); 
_Sprintf( buf. "SysVmTerminate VM~%x tc~%x\r\n". hVM. tcb ); 
count ~ IFSMgr_RingO_WriteFileCFAlSE. fh. buf. strlen(buf). filepos. &er'r); 
fi 1 epos += count; 
I FSMgr _Ri ngO_Cl oseFil e( fh. &err ); 

BOOl OnCreateVm(VMHANDlE hVM) 
( 

PTCB tcb; 
WORD err; 
int count~O; 

tcb ~ Get_Initi al_Thread_Handl e( hVM); 
DPRINTF(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb); 
_Sprintf(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb); 
count ~ IFSMgr_RingO_WriteFile(FAlSE. fh. buf. strlen(buf). filepos. &err); 
fi 1 epos += count; 
return TRUE; 

VOID OnDestroyVm(VMHANDlE hVM) 
{ 

WORD err; 
int count; 
PTCB tcb; 

tcb ~ GeClniti a l_Thread_Handl e( hVM); 
DPRINTF(buf. "Destroy-VM: VM~%x tcb~%x\r\n". hVM. tcb ); 
_Sprintf(buf. "Destroy_VM: VM~%x tcb~%x\r\n". hVM. tcb ); 
count ~ I FSMgr _Ri ngO_WriteFil e( FALSE. fh. buf. s t rl en (count). fil epos. &err); 
fi 1 epos += count; 

BOOl OnCreateThread( PTCB tcb) 
{ 

WORD err; 
int count; 

DPRINTF(buf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb); 
_SprintfCbuf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb); 
count ~ I FSMgr_RingO_WriteFile(FAlSE. fh. buf. strlen(count). filepos. &err); 
fi 1 epos += count; 
return TRUE; 

VOID OnDestroyThread( PTCB tcb) 
( 

WORD err; 
int count; 

DPRINTF( buf. "Destroy-Thread VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb ); 
_Sprintf( buf. "Destroy_Thread VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb ); 
count ~ IFSMgr_RingO_WriteFileCFAlSE. fh. buf. strlen(count). filepos. &err); 
fi 1 epos += count; 
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Listing 5.2 SKELCTRL.ASM (DDK-only version) 

.386p 

. ********************.********************************************************** 
INCLUDES 

;****************************************************************************** 

include vmm.inc 
include debug. inc 

V I R T U A L 0 E V ICE 0 E C L A RAT ION 

PROCEDURE: ControlProc 

DESCRI PTION: 

SKELETON, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \ 
UNDEFINED_INIT_ORDER 

Device control procedure for the SKELETON VxD 

ENTRY: 
EAX ~ Control ca 11 ID 

EXIT: 
If carry clear then 

Successful 
else 

Contra 1 ca 11 fai 1 ed 

USES: 
EAX, EBX, ECX, EDX, ESI, EDI, Flags 

BeginProc ControlProc 
Control_Dispatch SYS_VM_INIT, _OnSysVmlnit, cCall, <ebx> 
Control_Dispatch SYS_VM_TERMINATE, _OnSysVmTerminate, cCall, <ebx> 
Control_Dispatch CREATCVM, _OnCreateVm, cCall, <ebx> 
Control_Dispatch DESTROY_VM, _OnDestroyVm, cCall, <ebx> 
Control_Dispatch CREATE_THREAD, _OnCreateThread, cCall, <edi> 
Control_Dispatch DESTROY_THREAD, _OnDestroyThread, cCall, <edi> 

clc 
ret 

EndProc ControlProc 

VxD_LOCKED_CODE_ENDS 

END 
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Listing 5.3 SKELETON. MAK (DDK-only version) 

CVXDFLAGS ~ -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL~l -DDEBUG -DWANTVXDWRAPS 
AFLAGS = -coff -DBLD_COFF -DI5_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG 

all: skeleton.vxd 

skeleton.obj: skeleton.c 
cl $(CVXDFLAGS) -Fo$@ %s 

skelctrl.obj: skelctrl.asm 
ml $(AFLAGS) -Fo$@ %s 

skel eton. vxd: skel ctrl .obj skel eton. obj .. \ .. \wrappers\ vxdca 11 .obj 
.. \ .. \wrappers\wrappers.clb skeleton.def 

echo >NUL @«skeleton.crf 
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:skeleton.def -OUT:skeleton.vxd -MAP:skeleton.map 
-VXD vxdwraps.clb wrappers.clb skelctrl .obj skeleton.obj vxdcall .obj 
« 

link @skeleton.crf 
mapsym skeleton 

Listing 5.4 SKELETON. DEF (DDK-only version) 

VXD SKELETON 
SEGMENTS 

LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 

LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
IDATA CLASS 'ICODE' 

_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
IMSGDATA CLASS 'MCODE' 

_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
SKELETON_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE 10PL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE 10PL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDI5CARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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Listing 5.5 SKELETON. C (VToolsD version) 

II SKELETON.c - main module for VxD SKELETON e 

t/define DEVICE_MAIN 
t/include "skeleton.h" 
t/undef DEVICE_MAIN 

DWORD va_arg_list[2]; 
DWORD filepos = 0; 
HANDLE fh; 

Declare_Virtual_Device(SKELETON) 

DefineControlHandler(SYS_VM_INIT. OnSysVmInit); 
DefineControlHandler(SYS_VM_TERMINATE. OnSysVmTerminate); 
DefineControlHandler(CREATE_VM. OnCreateVm); 
DefineControlHandler(DESTROY_VM. OnDestroyVm); 
DefineControlHandler(CREATE_THREAD. OnCreateThread); 
DefineControlHandler(DESTROY_THREAD. OnOestroyThread); 

BOOL __ cdecl ControlDispatcher( 
DWORD dwControlMessage. 
DWORD EBX. 
DWORD EDX. 
DWORD EST. 
DWORO EDI. 
DWORD ECX) 

START_CONTROL_DISPATCH 

ON_SYS_VM_INIT(OnSysVmInit); 
ON_SYS_VM_TERMINATE(OnSysVmTerminate); 
ON_CREATE_VM(OnCreateVm); 
ON_DESTROY_VM(OnDestroyVm); 
ON_CREATE_THREAD(OnCreateThread); 
ON_DESTROY_THREAD(OnDestroyThread); 

return TRUE; 
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Listing 5.5 (continued) 

BOOl OnSysVmlnit(VMHANDlE hVM) 
( 

BYTE action; 
WORD err; 
int count; 
char buf[80] ; 
PTCB tcb; 

SKELETON. C (VToolsD version) 

tcb = Get_Initial_Thread_Handle(hVM); 
dprintf("SysVmlnit: VM=%x. tcb=%x\r\n". hVM. tcb); 

fh = RO_OpenCreateFile(FAlSE. "vxdskel.log". Ox0002. OxOOOO. Ox12. OxOO. 
&err. &action); 

if (!fh) 
dprintf("Error Ix opening file\n". err ); 

el se 
( 

} 

count = sprintf(buf. "SysVmlnit: VM=%x tcb=%x\r\n". hVM. tcb ); 
if (count) 
( 

count = RO_WriteFile(FAlSE. fh. buf. count. filepos. &err); 
filepos += count; 

return TRUE; 

VOID OnSysVmTerminate(VMHANDlE hVM) 
( 

WORD err; 
int count; 
cha r buf[80]; 
PTCB tcb; 

tcb = Get_Initial_Thread_Handle(hVM); 
dprintf("SysVmTerminate: VM=%x. tcb=%x\r\n". hVM. tcb); 
count = sprintf(buf. "SysVmTerminate: VM=%x tcb=%x\r\n". hVM. tcb ); 
if (count) 
( 

count = RO_WriteFile(FAlSE. fh. buf. count. filepos. &err); 
filepos += count; 

RO_CloseFile( fh. &err ); 
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Listing 5.5 (continued) SKELETON. C (VToolsD version) 

BOOl OnCreateVm(VMHANDlE hVM) 
( 

WORD err; 
PTCB tcb; 
int count; 
char buf[BO]; 

tcb ~ Get_Initial_Thread_Handle(hVM); 
dprintf("Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb); 

count ~ sprintf(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb ); 
if (count) 
( 

} 

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err); 
filepos += count; 

return TRUE; 

VOID OnDestroyVm(VMHANDlE hVM) 
( 

cha r buf[80]; 
int count; 
WORD err; 

dprintf("Destroy-VM: VM~%x tcb~%x\n". hVM ); 
count ~ spri ntf( buf. "Destroy_VM: VM~%x\ r\n". hVM ); 
if (count) 
( 

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err); 
filepos += count; 

BOOl OnCreateThread(THREADHANDlE hThread) 
{ 

PTCB tcb ~ (PTCB)hThread; 
char buf[BO]; 
int count; 
WORD err; 

dprintf("Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb); 

count ~ sprintf(buf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandl e. tcb ); 
if (count) 
( 

} 

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err); 
filepos +~ count; 

return TRUE; 
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Listing 5.5 (continued) SKELETON. C (VToolsD version) 

VOID OnDestroyThread(THREADHANDLE hThread) 
{ 

PTCB tcb ~ (PTCB)hThread; 
char buf[BO]; 
int count; 
WORD err; 

dprintf("Destroy-Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb); 

count ~ sprintf(buf. "Destroy-Thread: V~%x. tc~%x\r\n". tcb->TCB_VMHandle. tcb ); 
if (count) 
( 

count ~ RO_WriteFile(FALSE. fh. buf. count. filepos. &err); 
filepos += count; 

Listing 5.6 SKELETON.H (VToolsD version) 

II SKELETON.h - include file for VxD SKELETON 

#include <vtoolsc.h> 

ifdefine SKELETON_Major 
ifdefi ne SKELETON_Mi nor 
ifdefine SKELETON_DeviceID 
#define SKELETON_Init_Order 

1 
o 
UNDEFINED_DEVICE_ID 
UNDEFINED_INIT_ORDER 

Listing 5.7 SKELETON.MAK (VToolsD version) 

if SKELETON.mak - makefile for VxD SKELETON 

DEVICENAME ~ SKELETON 
FRAMEWORK ~ C 
DEBUG ~ 1 
OBJECTS ~ skeleton.OBJ 

!include $(VTOOLSD)\include\vtoolsd.mak 
!include $(VTOOLSD)\include\vxdtarg.mak 

skel eton .OBJ: skeleton.c skeleton. 
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Listing 5.8 SKELETON. DEF (VToolsD version) 

VXD SKELETON 
SEGMENTS 

LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
IDATA CLASS 'ICODE' 

_PTEXT CLASS 'PCODE' 
PDATA CLASS 'PCODE' 

_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
IMSGDATA CLASS 'MCODE' 

_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 

16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
_The_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONOISCAROABLE 
PRELOAD NONDISCAROABLE 
PRELOAD NONDISCAROABLE 
OISCARDABLE 
OISCARDABLE 
NONDISCAROABLE 
NONDISCAROABLE 
RESIDENT 
RESIDENT 
PRELOAD NONOISCARDABLE IOPL 
PRELOAD NONOISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONOISCARDABLE CONFORMING 
PRELOAD NONOISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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Chapter 6 

VxD Talks to Hardware 
The last two chapters introduced the basic structure of a VxD and demonstrated a 
skeleton VxD that processed a few messages and did some debug output. In this chap
ter, I'll show you how a VxD communicates with a hardware device. This chapter will 
cover talking to I/O-mapped, memory-mapped, and DMAlbus-master devices. I'll 
save a related subject, interrupt handling, for the next chapter. 

IIO-mapped versus Memory-mapped 
A hardware device on a PC can be located in one of two separate address spaces: 
memory or I/O. A device in the memory address space, called memory-mapped, is 
accessed exactly like memory. It can be accessed via any of the many instructions that 
take a memory reference, such as MOV,ADD, OR, etc. From a high-level language, mem
ory-mapped devices are accessed through a pointer. By contrast, a device in I/O 
address space (I/O-mapped) can be accessed with only a few instructions: I N, OUT, 
and their derivatives. There is no high-level language construct for an I/O-mapped 
device, although many compilers do add support via run-time library functions like 
i np and outp. 

Another difference between the two address spaces is that I/O address space is 
much smaller than memory space. While the 80386 and above processors support a 
4Gb memory address space, I/O address space is only 64Kb on all 80x86 processors. 

79 
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Talking to an IIO-mapped Device 
To communicate with an I/O-mapped device, a VxD directly executes the appropriate 
IN or OUT instructions or their high-level language equivalents. The processor won't 
trap a VxD that executes these instructions, because VxDs run at Ring O. 

If you're writing in assembly, use an I N or OUT instruction with an appropriately 
sized operand. For example, this code fragment writes the byte A5h to the port 300h. 

MOV AL, OA5h 
MOV OX, 300h 
OUT OX, AL 

If you're writing in C, it's easiest to use the C run-time equivalents of I N and OUT 
- as long as these functions are supported by your compiler and you make sure the 
compiler uses the intrinsic, or inline, version. When asked to use the "intrinsic" form 
of a function, the compiler inserts actual I N and OUT instructions instead of making a 
call to the run-time library. It is important to avoid calling the library version. because 
few vendors supply a VxD-callable run-time library. (VToolsD is an exception). 

Microsoft's 32-bit compilers support _ i np and _outp for byte access, _ i npw and 
_outpw for word access. You can force the compiler to generate intrinsic code instead 
of a call to the run-time by using either the -Oi compiler flag, or by using the 
intrinsic pragma in your code. The following code fragment writes the byte 0 to 
the port 300h, and uses the i ntri nsi c pragma to guarantee inline code: 

#pragma i ntri ns i c Coutp) 
_outpe Ox300, 0 ); 

Borland doesn't support IN and OUT equivalents (called _inpb, _inpw, _outpb, 
and _outpw) when generating 32-bit code. If you develop your VxD with Borland's 
compiler, you should use embedded assembly for input and output operations. 

The run-time functions listed above are only for byte- and word-sized port 
accesses. Some devices, particularly recent PCI devices, support dword-sized (32-bit) 
accesses (I N EAX, OX and OUT OX, EAX). Neither Microsoft nor Borland provides a 
run-time equivalent for the dword version of I N and OUT instructions. To exploit 
dword 110 operations, you'll have to use embedded assembly. 
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By default, the Borland compiler uses its built-in assembler to translate 
embedded assembly, which contains only 16-bit instructions. The compiler 
will automatically call the stand-alone TASM32 assembler if the embedded 
assembly contains any 32-bit instructions. Therefore, to use IN EAX. OX and 
OUT OX. EAX, you must have T ASM32 . EX E. 

Talking to a Memory-mapped Device 
To access a memory-mapped device, a VxD must manipulate a specific physical 
address. Unfortunately, manipulating an address in the memory system's physical 
address space isn't as straightforward as manipulating a port in the 1/0 system's port 
address space. Even though VxDs run at Ring 0 (where they see a flat memory 
model), they still manipulate only linear addresses; all VxD memory accesses go 
through the page tables for linear-to-physicaladdress translation. Thus, before a VxD 
can access a particular memory-mapped device, it must configure the page tables to 
assure that the device's physicaiaddress corresponds to a linear address. The resulting 
linear address may then be used as a "plain old pointer". Even though this mapping 
information comes from the page tables, a VxD should never directly manipulate the 
page tables; it should use VMM services instead. 

This procedure takes one of two forms, depending upon whether the device can 
be dynamically reconfigured. Older ISA devices with jumper-selected addresses are 
"statically configured"; they are guaranteed to reside at the same address for the life 
of the Windows session. Many modern devices, however, can be reconfigured at run 
time (for example, PCI, PCMCIA,and ISAPNP devices). As part of its support for 
Plug and Play, Windows 95 may move these dynamically configurable devices 
around (both in I/O and memory space) as the devices are started and stopped. (See 
Chapters 9 and 10 for a full discussion of Windows 95 Plug and Play.) A Windows 95 
VxD obtains a linear address for a statically configured device with a single call to 
MapPhysToL i near - just as in Windows 3.x. If the device is run-timeconfigurable, 
though, the process is more complicated and not Windows 3.x compatible. I'll dis
cuss each situation separately. 
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Statically Configured Memory-mapped Devices 
A VxD for an ISA device can obtain a linear address for its device by calling 
_Ma p P hy s To lin ear. Given a physical address and the region size, _Ma pPhy s Tol i nea r 
returns a linear address that maps to that physical address region. (Both VTooisD and 
the DDK C wrapper libraries contain a wrapper for _MapPhysTol i near.) 

The Calling Interfacefor _MapPhysToLinear 

OWORO _MapPhysTolinear(OWORO PhysAddr, OWORO nBytes, DWORD Flags); 
PhysAddr: physical address to be mapped 
nBytes: size of region to be mapped, in bytes 
Flags: must be zero 
Returns: linear address of region; this linear address is in the 

system arena, and so is valid no matter which Win32 process 
is current 

In the following code fragment, the VxD accesses a device mapped to the 256Kb 
region starting at 16Mb: 

BYTE *lin; 
DWORD phys. size; 

phys = Ox01000000l; 1116Mb 
size = 256*1024; II 256Kb 
lin = (BYTE *)_MapPhysTolinear(&phys, size, Ol) ; 
*lin = OxA5; II write out to device 
if (*lin != OxA5) II read back from same location 

return 0; II error 

Dynamically Configurable Devices 
A VxD for a Plug and Play device shouldn't use _MapPhysTol i nea r because a Plug 
and Play device may change its physical address while Windows 95 is running. More
over, because the linear address returned by _MapPhysTol i nea r maps to the same 
physical address for the life of Windows, calling the service mUltiple times would 
waste page table entries. The VMM provides no "unmap" service. 
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Instead of calling _MapPhysToLinear, a VxD for a device with a dynamically 
reconfigurable physical address must divide the "map" process into multiple steps. 
Each step calls a VMM service that can be reversed: 

• _PageReserve, to allocate a block of linear address space. This is really a set of 
page table entries. 

• _PageCommi tphys, to map the linear address range to the device's physical 
address (by setting the physical address field of the allocated page table entries). 

• _L i nPageLock, to prevent the Virtual Memory Manager from swapping out the 
pages, thus making the linear address usable during interrupt time. 

Here's a function, MyMapPhysToLinear, which performs this three-step mapping 
and returns a linear address: 

DWORD MyMapPhysToLinear( DWORD phys. DWORD size 
{ 

DWORD lin; 
DWORD nPages = size / 4096; 

lin = _PageReserve( PR_SYSTEM. nPages. 0 ); 
if (lin = -1) 

return 0; 
if (!_PageCommitPhys( lin, nPages, phys. PC_INCR I PC_WRITEABLE» 

return 0; 
if (!_LinPageLock( lin, nPages. 0 » 

return 0; . 
r~+ vI'''' I. J J 

This function uses the _PageReserve, _PageCommi tPhys, and _L inPageLock ser
vices. Let's examine each call in detail. 

MyMapPhysToLinear passes PR_SYSTEM into ipage when calling _PageReserve 
(see next page), so that the linear address is valid for any address context, regardless of 
the current Win32 process and current VM. (Note that P~SHARED would have the same 
effect, since that arena is also valid for all processes and VMs.) MyMapPhysToLinear 
doesn't use any of the predefined values for flags. If the call to _Page Reserve fails, 
MyMapPhysToL i nea r immediately returns zero (failure) to its caller. 
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The Calling Interface for _PageReserve 

PVOID _PageReserve (DWORD ipage. DWORD npages. DWORD flags) 
ipage: determines which arena the linear address will be in 

PR_PRIVATE to allocate the linear address in the private arena 
PR_SHARED to allocate the linear address in the shared arena 
PR_SYSTEM to allocate the linear address in the system arena 

nPages: number of pages to allocate 
flags: PR_FIXED prevents PageReallocate from moving pages 

PR_STATIC forces future calls to commit. decommit and frees 
this linear address to also specify PR_STATIC 

PR_4MEG forces linear address on a 4Mb boundary 

MyMapPhysToLinear passes the linear address returned by _PageReserve and the 
caller's physical address to _PageCommitPhys. Calling with the PCINCR flag causes 
an "incremental" wrapping: i.e. the first page in the linear address range maps the first 
page of the physical region; the second page in the linear address range maps the sec
ond page of the physical region; etc. 

The Calling Interface for _PageCommi tPhys 

BOOl _PageCommitPhys(DWORD ipage. DWORD npages. DWORD physpage. DWORD flags); 
ipage: first page number of linear range to be mapped 
npages: number of pages to commit 
physpage: first physical address to be mapped. as a page number (linear » 12) 
flags: PCINCR maps linear pages to successive contiguous physical pages 

(if not set. all linear pages in range are mapped to same physpage) 
PC_USER marks all pages as accessible to Ring 3 
PC_WRITEABlE marks all pages as writeable (else write will page-fault) 

Finally, the same linear page and number of pages is passed to _L i nPageLock. No 
flags are specified because the pages should be locked regardless of the type of swap 
device; the device doesn't use DMA (it's memory-mapped instead), and the linear 
address was already allocated from the system arena. 
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The Calling Interface for _L i nPageLock 

DWORD _LinPageLock(DWORD LinPgNum. DWORD nPages. DWORD Flags); 
LinPgNum: page to lock 
nPages: number of pages to lock 
Flags: PAGELOCKEDIFDP locks pages only if swap device uses DOS or BIOS services 

PAGEMAPGLOBAL returns an ali as 1 i near address in the system arena so 
region can be accessed regardless of current context 

PAGEDIRTY marks dirty bit in page table entry. Use if DMA device will 
be writi ng to pages. because processor won' t know pe'ges are di rty 

To undo the mapping, call _LinPageUnlock, _PageOecommit and _Page Free. 
Each of these calls undoes the work of its counterpart which was called earlier. That's 
all I will say about these services~ because the parameters are all self-explanatory and 
no special flags are required. . 

Another Data Transfer Method: DMA 
When the CPU transfers individual bytes to a device through an 110 port or a memory 
location, the processor must fetch one or more instrUctions· and generate target 
addresses for every single byte of data transferred to or from the device. An alterna
tive method, DMA (Direct Memory Access), can significantly reduce bus traffic dur
ing a transfer. In a DMA transfer, the device itself takes over· the bus from the 
processor and transfers the data, eliminating the instruction fetches associated with a 
CPU-driven transfer. 

There are two trpes of DMA: system· DMA and bus-master DMA. In system 
DMA, the system DMA controller (every PC has two of these) and the device work 
together to take over the bus from the processor and transfer the data. The Sound
Blaster card is the best known system DMA device. In bus-master DMA, the device 
itself acts as "master" of the bus, requiring no help from th~ system DMA controller 
or the processor. Bus-master DMA is common for PCI devices, 

A device that uses DMAas its data transfer method still needs liD-mapped or 
memory-mapped control ports. By writing to the control ports, the processor can tell 
the device where to find the system memory buffer, how large the buffer is, and when 
to start the transfer. A buffer to be used in a DMA transaction must meet a number of 
allocation requirements, which I'll explain in detail later in this chapter. 

VxDs that use DMA - either system or bus-master - for their data transfer 
method should use the services provided by the VDMAD. The VDMAD (Virtual DMA 
Controller) does more than virtualize the PC's two system DMA controllers. It also pro
vides services useful to VxDs that are performing system DMA or bus-master transfers. 
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Using System DMA 
For system DMA, a VxD uses VDMAD services to claim usage of one of the seven 
DMA channels supported by the PC and to request that VDMAD issue appropriate 
instructions to the DMA controller. Note that because VxDs run at Ring 0, there is 
nothing to prevent a VxD from interacting with the controller directly. However, 
doing so could interfere with DMA transfers on other channels, because of the way 
the registers on the DMA controller are laid out. (Specifically, because there is only a 
single mode and a single mask register, not one set for each channel, so the VDMAD 
must be aware of all reads and writes to/from the controller in order to correctly virtu
alize DMA transfers.) 

In addition to using VDMAD services to program the controller, a VxD must also 
allocate a buffer suitable for DMA and obtain the buffer's physical address. A buffer 
used for a system DMA transfer must meet several strict requirements. The DMA 
buffer must be 

• physically contiguous, 

fixed and pagelocked, 

aligned on a 64Kb boundary, and 

located below 16Mb in physical memory. 

These requirements are necessary because the system DMA controller has no 
knowledge of linear addresses or pages and performs no address translation. The con
troller is programmed with a starting physical address and simply increments (or dec
rements) that address with each byte transferred in order to generate the next physical 
address. 

System DMA Buffer Requirements 
The buffer must be physically contiguous because the processor views the linear 
address space as a series of 4Kb pages. Through the page tables, each 4Kb page can 
be mapped to a different location in physical address space. A buffer made up of 
pages that map to noncontiguous physical addresses won't work for DMA, because 
the DMA controller can only increment through a series of physical addresses (or 
decrement through a decreasing series). 

To understand the requirement for fixed and pagelocked memory, consider the sit
uation illustrated in Figure 6.1. The VxD, through VDMAD services, initializes the 
DMA controller with the physical address of the desired buffer and instructs the con
troller to begin the transfer. The controller transfers a byte to physical memory, and 
the processor regains control of the bus. Assuming that the buffer's pages were not 
fixed, the virtual memory manager may then decide to move a page - the one being 
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used in the transfer - by copying the page contents to another location in physical 
memory and then updating the page's linear address in the page tables. 

At some later time the DMA controller steals the bus again and continues the trans
fer, using the original physical address programmed during the initialization process 
(plus one for each byte already transferred). When the transfer completes, the VxD 
examines the new data using the same linear address, but the expected data is not at 
that linear address, because that linear address maps to a new physical address. The 
DMA controller stored the data at the location given by the original physical address. 

Figure 6.1 The DMA requirement for fixed memory. 

Before Transfer 

directory page table 
index index offset 

I 0000 0100 I 0200 I 
I I 

page table entry physical mem ory 

~ 00420000 + buffer 00420020 

After Transfer 

directory page table 
index index offset 

I 0000 0100 I 0200 I . 
I I 

page table entry physical mem ory 

L--. 00800000 4J- data from DMA 00420020 
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Pagelocking the buffer also prevents a similar problem, where the memory man
ager swaps the page contents out to disk during the transfer. The DMA controller con
tinues to store data at the original physical address. But when the VxD accesses the 
page after the transfer, expecting to see the new data, the memory manager swaps the 
page contents in from disk instead, and the VxD sees "old" data. 

The two requirements for physical location below 16Mb and 64Kb alignment 
have nothing to do with either Windows or the processor but are a limitation of the PC 
architecture. The original PC used 20-bit physical addresses, but the PC's DMA con
troller chip had only a 16-bit address register. To make it possible to perform DMA 
transfers anywhere within the entire 1Mb of the PC's address space, the PC system 
designers added a page register external to the DMA controller to store the upper four 
bits of the address. They also added extra logic so that the page register put these 
upper 4 bits onto the address bus at the same time the DMA controller placed its 16 
bits on the bus, forming a full 20-bit address for main memory. 

When the PC-AT was introduced, the page registers grew to 8 bits, and again extra 
logic made those 8 bits appear on the address bus when the DMA controller placed 
the lower 16 bits on the bus. To remflin compatible, today's system designers still use 
this 24-bit DMA scheme even though processors have a 32-bit bus. One side effect of 
this decision is that system DMA can only occur in the lowest 16Mb (24 bits) of 
memory. 

How is this relevant to the 64Kb boundary requirement? Suppose you want to per
form a DMA transfer of lOOOh bytes to physical address 6FOOOh. To do this, you write 
the lower 16 bits (FOOOh) into the DMA controller's address register and the upper 4 
bits (6h) to the proper page register (there is one per DMA channel). You also set the 
controller for a transfer count of lOOOh bytes. The physical address of the very last 
byte is 70000h (6FOOOh + OlOOOh). But the physical address generated when the last 
byte is transferred is actually 60000h. The DMA controller address register correctly 
rolls over from FFFFh to OOOOh, but the page register containing the upper 4 bits 
doesn't increment from 6h to 7h. Therefore, all system DMA transfers must stay on 
the same 64Kb "page". 

A Function for Allocating a 
System DMA Buffer 
Although the VMM provides a number of different types of memory allocation ser
vices for VxDs to use, only one will meet the requirements for a system DMA buffer. 
That service is _PageA 11 ocate. (Note that _PageA 11 ocate is one of the VMM ser
vices provided in the Windows 95 DDK VMM wrapper library.) 
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The Calling Interface for _PageA 77 ocate 

ULONG _PageAl1ocate(ULONG nPages, ULONG pType, ULONG VM, ULONG AlignMask, 
ULONG minPhys, ULONG maxPhys, ULONG *PhysAddr. 
ULONG fl ags); 

nPages: number of 4Kb pages 
pType: PG_VM (specific to VM) 

PG~SYS (valid for all VMs) 
PG_HOOKED (same as PG_VM, hold-over from Win3.x) 

VM: handle of VM or zero if PG_SYS 
AlignMask: used if PAGEUSEALIGN bit in Flags is set 

DOh forces 4Kb, 
OFh forces 64Kb alignment, 
IFh forces 128Kb alignment 

minPhys: minimum acceptable physical page 
maxPhys: maximum acceptable physical page 
*PhysAddr: pointer to DWORD where physical address will be returned 
flags: zero or more of the following bits 

PAGEZEROINIT (pages are filled with zeroes) 
PAGE LOCKED (pages are locked, can be unlocked with _PageUnLock) 
PAGELOCKEDIFDP (locks pages only if the virtual page swap device uses 

MS-DOS or BIOS functions to write to the hardware) 
PAGEFIXED (pages are locked at fixed linear address, 

can't be unlocked or moved) 
PAGEUSEALIGN: pages allocated meet AlignMask, minPhys and maxPhys 

restrictions; ignored unless PAGEFIXED also set 
PAGECONTIG: pages allocated are physically contiguous; ignored unless 

PAGEUSEALIGN is also set 
Note: unless one of PAGELOCKED, PAGELOCKEDIFDP or PAGEFIXED is set, 
no physical pages are allocated, only linear pages 

Returns: linear address of buffer 

The function All ocSysDmaBuffer (contained in the file DMAALLOC. C in the 
\DMAALLOC directory of the code disk) uses _PageA 11 ocate with the appropriate 
parameters to allocate a system DMA buffer. 

DWORD AllocSysDmaBuffer( DWORD nPages, DWORD *pPhysAddr ) 
( 

return _PageA11ocate(nPages, PG_SYS, 0, OxOF, 0, OxlOOO, 
pPhysAddr ,PAGEFIXED I PAGEUSEALIGN 
PAGECONTIG ); 
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PG_SYS allows the VxD to access the buffer at hardware interrupt time, regardless of 
which VM is currently executing at the time of the interrupt. The Ali 9 nMa s k,mi nPhy s, 
and maxPhys parameters, combined with the PAGEUSEALIGN flag bit, correspond exactly 
to the "64Kb alignment" and "below 16Mb" requirements. (Note that the maxPhys 
parameter is not 16Mb, but 16Mb/4Kb, which is the physical address expressed as a 
page number.) The PAGEFIXED flag meets the fixed and pagelocked requirement. The 
function return value is the buffer's linear address, and the physical address is returned 
at PhysAddr. 

In general, a VxD should only pagelock a buffer when it's absolutely necessary
in this case, only for the duration of the DMA transfer. But because of the way 
_PageA 11 ocate uses the F1 ag parameter, the physical contiguity requirement forces 
All ocSysDmaBuffer to allocate a buffer that is permanently fixed and pagelocked. 

A VxD cannot use a buffer allocated by a Win32 application for system 
DMA, because there is no way to force that buffer to meet physical 
contiguity and alignment requirements. 

Overview ofVDMAD Services 
After allocating a system DMA buffer from the VMM, the VxD uses VDMAD ser
vices to program the DMA controller. The standard documentation explains the indi
vidual VDMAD services well enough, but fails to outline the overall sequence of 
services used to perform a transfer. Here is a summary of the overall sequence. 

Before the first transfer, the VxD calls 

• VDMAD_Vi rtua 1 i ze_Channe 1 to reserve the channel and obtain a DMA "handle" 
used in calls to other VDMAD services. 

Then, for every transfer, the V xD calls 

VDMAD_Set_Regi on_I nfo to program the system DMA controller with the 
buffer's physical address and size, 

• VDMAD_SeCPhys_State to program the system DMA controller's mode, and 

VDMAD_Phys_Unmas k_Channe 1 to unmask the channel on the system DMA controller. 

The VMMlVxD library included with VToolsD provides C-callable wrappers for 
all VDMAD services. The Windows 95 DDK wrapper library doesn't have the neces
sary wrappers, but WRAPPERS. CLB does include all VDMAD services discussed in this 
chapter. 
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VDMAD Services in Detail 
VDMAD_Virtualize_Channel can be used to virtualize a channel. If you pass in a 
non-null callback parameter, VDMAD will call your VxD back whenever Ring 3 code 
changes the state of your channel by accessing one of the DMA controller registers. 
By responding to this callback, your VxD can virtualize the channel itself. Or you can 
pass NULL for the callback parameter to tell VDMAD you're not really virtu ali zing the 
channel, you only want the DMA "handle" returned by the service, which you need 
for other VDMAD calls. 

The Calling Interface for VDMAD_Vi rtua 1 i ze_Channe 1 

HANDLE VDMAD_Virtualize_Channel(DWORD Channel. PVOID CallbackProc ); 
Channel: DMA channel to virtualize/use. 0-7 
CallbackProc: called to notify of Ring 3 access to DMA controller 
Returns: DMA handle to be used in calls to other VDMAD services 

or zero if fa il 

The next call is VDMAD_Set_Regi on_I nfo, where "region" refers to the DMA 
buffer. The DMAHandl e is, of course, the one returned by VDMAD_Vi rtua 1 i ze_Channel. 
The Bufferld parameter should be zero if you've allocated your own buffer (other
wise it refers to the buffer ID returned by the service VDMAD_Request_Buffer). The 
documentation says that the LockStatus parameter should be "zero if not locked, 
non-zero iflocked". If this parameter is zero, VDMAD will send a warning message 
to the debugger during the next step (VDMAD_Set_Phys_State) - a gentle reminder 
that you probably forgot to lock. The Regi on parameter, containing the buffer's linear 
address, and the PhysAddr parameter are both provided by the initial call to 
_PageA 11 ocate. 

The Calling Interfacefor VDMAD_Set_Region_Info 

VOID VDMAD_Set_Region_Info(HANDLE DMAHandle. BYTE BufferID. 
BOOLEAN LockStatus. DWORD Region. 
DWORD RegionSize. DWORD PhysAddr); 

DMAHandle: handle returned by VDMAD_Virtualize_Channel 
BufferID: id returned by VDMAD_Request_Buffer. or zero 
LockStatus: zero if pages are not locked. non-zero if locked; 
Region: Linear address of DMA buffer 
RegionSize: size of DMA buffer. in bytes 
PhysAddr: physical address of DA buffer 
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While VDMAD_Set_Regi on_Info gives the VDMAD information about the DMA 
buffer, VDMAD_Set_Phys_State gives VDMAD information about the transfer itself. 
There is no explanation of the VMHandl e parameter in Microsoft's documentation. In 
fact, the VDMAD does nothing more with this parameter than see if it's a valid VM 
handle; if not it sends a warning message to the debugger. To avoid this warning, use 
the handle of the current VM, returned by GeCCur _VM_Handl e. 

void VDMAD_Set_Phys_State<HANDLE DMAHandle, HANDLE VMHandle, 
WORD Mode, WORD ExtMode); 

DMAHandle: handle returned by VDMAD_Virtualize_Channel 
VMHandle: any VM handle 
Mode: bitmap corresponding to system DMA controller's Mode register 

The Mode parameter isn't explained in the documentation either, but it corresponds 
exactly to the mode register of the DMA controller, which controls transfer direction, 
auto-initialization, etc. VxDs should always use the flag DMA_s i ngl e_mode, to be con
sistent with the way PC architecture defines system DMA bus cycles. The VDMAD. H 
provided by VToolsD provides #defi nes for these values, as does the WRAPPERS. H for 
the WRAPPERS. CLB library. The ExtMode parameter, used only in EISA and PS/2 DMA 
transfers, also has #defi nes in VToolsD VDMAD. H and in WRAPPERS. H. 

When VDMAD_Set_Phys_State returns, the VDMAD has programmed the DMA 
controller base register, page register, count (using the address and size from the pre
vious call to VDMAD_Set_Regi on_I nfo), and mode register (with the mode parameter 
from this call). 

The final step is to enable the transfer by unmasking the channel with a call to 
VDMAD_Phys_Unmask_Channel. Once again, the call requires a VM handle, and the 
return value from Get_Cur_VM_Handl e will do. This call unmasks the channel in the 
actual system DMA controller, which means the DMA controller is ready to begin the 
transfer. The transfer will actually begin when your device asserts the proper bus sig
nals (DMA_REQx, DMA_GRANTx). 

The Calling Interface for VDMAD_Phys_Unmask_Channe 7 

void VDMAD_Phys_Unmask_ChannelC HANDLE DMAHandle, HANDLE VMHandle); 
DMAHandle: handle returned by VDMAD_Virtualize_Channel 
VMHandle: any VM handle 
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The following code fragment combines a call to All ocSysDmaBuf with the 
VDMAD calls described above to set up a system DMA transfer on Channel 3. The 
transfer uses DMA_type_wri te mode, meaning the transfer "writes" to memory (from 
the device). This example also specifies DMA_si ngl e_mode, the mode used for normal 
system DMA bus cycles. 

DWORD lin, size, phys; 
BYTE ch; 
DMAHANDLE dmaHnd; 

size = 4 * 4 * 1024; 
ch = 3; 
lin = Al1ocSysDmaBuf( size/4096, &phys ); 
dmaHnd = VDMAD_Virtua1ize_Channe1(ch, NULL ); 
VDMAD_Set_Regionlnfo( dmaHnd, 0, TRUE, lin, size, phys ); 
VDMAD_Set_Phys_State( dmaHnd, Get_Cur_VM_Hand1e(), 

DMA_type_write I DMA_sing1e_mode, 0 ); 
VDMAD_Phys_Unmask_Channe1( dmaHnd ); 

Using Bus-master DMA 
A buffer used for a bus-master transfer has fewer restrictions than a system DMA 
buffer. Bus-master transfers still require fixed and pagelocked buffers, but the new 
buses (like PCI) that support bus-master transfers aren't limited by the old ISA 64Kb 
alignment and 16Mb maximum restrictions. Whether a bus-master transfer requires a 
physically contiguous buffer depends on whether or not the bus-master device sup
ports a feature called "scatter-gather". 

In a "scatter-gather" transfer, the DMA buffer, described by a single linear address 
and size, may be composed of mUltiple physical regions instead of 1;1 single physically 
contiguous region. A "scatter-gather" driver programs a bus-master device with the 
physical address and size of each of these regions, then the device initiates DMA 
transfers to/from each of the regions in turn, without any more intervention from the 
driver - or the processor, for that matter. 

DMA buffers for devices without scatter-gather support must consist of physically 
contiguous pages - i.e. _PageA 11 ocate must be called with the PAGECONTIG flag. The 
following function, All ocBusMasterBuffer (also contained in the file DMAALLOC. C in 
the \DMAALLOC directory of the code disk), uses _PageA 11 ocate with the appropriate 
parameters to allocate a buffer for a bus-master without scatter-gather support. 
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DWORD AllocBusMasterBuffer( DWORD nPages, DWORD *pPhysAddr 
( 

return _PageA11ocate(nPages, PG_SYS, 0, 0, 0, OxlOOOOO, pPhysAddr, 
PAGEFIXED I PAGEUSEALIGN I PAGECONTIG ); 

Note that alignment and maximum physical address requirements have relaxed. 
The AlignMaskparameter now specifies 4Kb instead of 64Kb, and maxPhys now 
specifies the page number for 4Gb. PAGECONTIG is set to get contiguous pages; the 
PAGEUSEALIGN bit is set because PAGECONTIG requires it; and PAGEFIXED is set 
because PAGEUSEALI GN requires it. The function returns the buffer's linear address 
and stores the physical address at *pPhysAddr. This physical address is used to pro
gram the bus-master device with the address ofthe transfer. 

Bus-masters that ~ support scatter-gather don't require physically contiguous 
pages. The following function, All ocScatterGatherBuffer (also contained in the 
file DMAALLOC. C in the \DMAALLOC directory of the code disk), uses _PageA 11 ocate 
with the appropriate parameters to allocate a buffer for a bus-master with scat
ter-gather support. 

DWORD AllocScatterGatherBuffer( DWORD nPages, DWORD *pPhysAddr 
( 

return _PageAllocate(nPages, PG_SYS, 0, 0, 0, OxlOOOOO, 
pPhysAddr, 0 ); 

Notice that the last argument, Flags, in this callto _PageA11ocate is zero. 
PAGECONTIG isn't set, which means PAGEALIGN doesn't need to be set, which means 
PAGEFIXED doesn't need to be set. 

The function return value is the buffer's linear address, but the physical address 
returned at pPhysAddr is not valid. When PAGEFIXED is clear, _PageA11ocate allo
cates linear pages (slots in the page tables) but marks the pages as not present in phys
ical memory. This state is called "committed", but "not present". (Note that 
_PageA 11 ocate behaves a bit differently under Windows 3.x: see the section "Win
dows 3.x Differences" at the end of this chapter). 

The VxD can wait until the time of the actual transfer to allocate physical pages 
(make them "present") and meet the remaining buffer requirements - fixed and 
pagelocked. This strategy reduces overall system demands for physical memory, a 
limited commodity. When the transfer is over, the VxD can unlock the pages again, 
allowing the virtual memory manager the flexibility of swapping these pages to disk 
to free up physical memory for another use. 

In addition to pagelocking the buffer before the scatter-gather transfer, a VxD 
needs to acquire the physical address of each page in the buffer (remember, they're 
not physically contiguous) in order to program the device. for the transfer. The 
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VDMAD provides a service for just this purpose: one call to VDMAD_Scatter _Lock 
will lock all the pages in a linear address range and return the physical address of each 
page. Unfortunately, using this service is tricky. The documentation is incomplete, 
and the VMDAD. H header file (in both VToolsD and the Windows 95 DDK) incorrectly 
defines the structure it uses. 

Examining Linear and Physical Addresses in the Debugger 

Both SoftIceIWijndows and WDEB386 let you examine memory manager data structures. I used this feature 
to verify the behavior of the All ocSysOMABuf, All ocBusMasterBuf. and All ocScatterGatherBuf func
tions. I used the WDEB386 command .m to dump all the memory manager information for the linear address 
range returned by _Pa geA 11 ocate. In each case I allocated four pages, so I dumped four linear addresses. 

WDEB386 shows that All ocSysOMABuf does meet system DMA requirements: is fixed and locked; four 
physical pages are contiguous; each physical page is aligned on a 4Kb boundary (implicitly meeting the 
requirement that the buffer not cross a 64Kb boundary); and each physical page is below 16Mb. 

The Buffer Attributes After a Call to A 77 ocSysDMABuf 

.m C1560000 
C1560000 committed r/w user Fixed present 1 oc ked Phys=00250000 Base=C1560000 
.m C1560100 
C1560100 committed r/w user Fixed present locked Phys=00251000 Base=C1560000 
.m C1560200 
C1560200 committed r/w user Fixed present locked Phys=00252000 Base=C156DOOO 
.m C1560300 
C1560300 committed r/w user Fixed present locked Phys=00253000 Base=C156DOOO 

WDEB386 shows that A 11 ocBusMasterBuf does meet bus-master (no scatter-gather) requirements: is 
fixed and locked; four physical pages are contiguous; each physical page is aligned on a page boundary; and 
each page is located well above 16Mb (my system had 40Mb of physical RAM). 

The Buffer Attributes After a Call to A 7 7 oCBusMasterBuf 

.m C1560000 
C1560000 committed r/w user Fixed present locked Phys=027fcOOO Base=C1560000 
.m C1560100 
C1560100 committed r/w user Fixed present locked Phys=027fdOOO Base=C1560000 
.m C1560200 
C1560200 committed r/w user Fixed present locked Phys=027feOOO Base=C1560000 
. m C1560300 
C1560300 committed r/w user Fi xed present locked Phys=027ffOOO Base=C1560000 
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The Right Way to Use VDMAD-"Scatter _Lock 
The first parameter to VDMAD_Scatter _Lock is a VM handle parameter, and you can 
pass in the return value from Get_Cur _VM_Handl e (see previous "VDMAD Services 
in Detail" section for an explanation of this technique). The other parameters need a 
lot of explanation because the available documentation is incomplete and confusing. 

(Examining Linear and Physical Addresses in the Debugger - continued) 

Finally, WDEB386 shows that All ocScatterBuf doesn't really allocate any physical pages. Though the mem
ory manager says the pages are "committed" (have page table entries), they are marked as "not present", so no 
physical address is shown. 

The Buffer Attributes After a Call to A 77 ocSca tterBuf 

.m Cl573000 
C1560000 committed r/w user Swapped not-present Base=C1573000 
.m C1573100 
C1560100 committed r/w user Swapped not-present Base=C1573000 
.m Cl573200 
C1560200 committed r/w user Swapped not-present Base=C1573000 
.m Cl573300 
C1560300 committed r/w user Swapped not-present Base=Cl573000 

After a call to VOMAO_Scatter _Lock, the same buffer meets bus-master (scatter-gather) requirements. The 
pages are still "swapped" - but this really seems to mean "swappable" as opposed to "fixed". Now, however, the 
pages are present, locked, and have a physical address. Note that the physical addresses are not contiguous and that 
each is located above 16Mb. 

The Buffer Attributes After a Call to VDMAD_Scatter _Lock 

.m Cl573000 
C1573000 committed r/w user Swapped present locked Phys=0155cOOO Base=C1573000 
.m Cl573100 
C1573100 committed r/w user Swapped present locked Phys=015a9000 Base=Cl573000 
.m Cl573200 
C1573100 committed r/w user Swapped present locked Phys=0168bOOO Base=C1573000 
.m Cl5732300 
C1573100 committed r/w user Swapped present locked Phys=0168fOOO Base=C1573000 
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The Calling Interface for VDMAD_Sca tter _Lock 

DWORD VDMAD_Scatter_Lock(HANDLE VMHandle. DWORD Flags. PVOID pODS. 
PDWORD pPTEOffset); 

VMHandle: any VM handle 
Flags: 0: copy phys adddr and size to DDS 

1: copy raw PTE to DDS 
3: don't lock not-present pages 

pODS: pointer to DDS structure 
pPTEOffset: if flags is 1 or 3, contains the 12-bit offset portion 

of the physical address for the first region. 
Returns: 0 if no pages were locked 

1 if all pages were locked 
2 if some pages were locked 

If Bit 0 of the Fl ags parameter is clear, the VDMAD fills in the caller's DDS struc
ture with the physical address and size of each physical region in the buffer's linear 
address range. If Bit 0 is set, the VDMAD fills the DDS structure with the PTE (page 
table entry) for each page in the buffer. Your VxD can then derive the physical address 
and size of each region from the PTEs. For most VxDs, the physical address and size of 
each region is sufficient, so Bit 0 would be clear. A pager VxD would typically set Bit 
0, because it can use the other PTE information (like the present bit and the dirty bit). 

Only a pager VxD would use Bit 1 of the Fl ag parameter (which is ignored unless 
Bit 0 is also set). Setting Bit 1 tells the VDMAD to not lock, or return the address of, 
pages that are not present. Other V xDsusually clear Bit 1 so that the VDMAD locks 
pages whether or not they are marked "present". Because when used for a DMA buffer, 
the pages are already locked and present, Bit 1 doesn't really matter, but it's more effi
cient to tell the VDMAD to ignore the present/not-present attribute by clearing the bit. 

According to the documentation, the second parameter should be a "pointer to the 
extended DDS structure". But the EXTENDED_DDS structure definition in VDMAD.H is 
incorrect. Hereis the definition of the correct structure (DDS) to pass (via a pointer) 
to VDMAD_Scatter _Lock: 

typedef struct 
{ 

EXTENDED_DDS extdds; 
union 
{ 

} 
DDS; 

REGION aRegionlnfo[16]; 
DWORD aPte[16]; 
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typedef struct 
{ 

DWORD 
DWORD 

REGION; 

PhysAddr; 
Size; 

typedef struct Extended_DDS_Struc 
{ 

DWORD DDS_size; 
DWORD DDS_linear; 
WORD DDS_seg; 
WORD RESERVED; 
WORD DDS_avail; 
WORD DDS_used; 

EXTENDED_DDS, *PEXTENDED_DDS; 

The DDS and REGION structures above aren't contained in any VTooisD or Win
dows 95 DDK header files, but they are in WRAPPERS. H. I created them after figuring 
out how VDMAD_Scatter _Lock really uses the structure passed to it (by looking at the 
VDMAD source contained in the Windows 95 DDK). To understand this complicated 
set of structures within structures, it's best to step back and think about what theser
vice is really doing. 

A DMA buffer, described by a single linear address and size, can be composed of 
multiple physical regions, each of varying size. For example, a 16Kb buffer is always 
composed of four pages, 4Kb each. But this buffer can be composed of 1, 2, 3, or 4 
physically contiguous regions. This is illustrated in Figure 6.2. 

VDMAD_Scatter _Lock takes the buffer's linear address and size and returns either: 
the physical address and size of each of the physically contiguous regions (if Bit 0 of 
Fl ags is clear) or the PTE for each of the pages (if Bit 0 of Fl ags is set). All of this 
information is recorded - albeit in a most complicated manner - in the DDS struc
ture described above. 

The VxD fills in (as input) the DDS_si ze (size of buffer, in bytes) and DDS_l i near 
(linear address of buffer) fields of the EXTENDED_DDS structure. VDMAD provides (as 
output) one of the two members of the uni on inside DDS: either the array of REG I ON 
structures or the array of DWORD PTEs, depending on the Fl ags parameter. 

The call to VDMAD passes a pointer to the DDS which contains both pieces, the 
EXTENDED_DDS and the union. YourVxD fills in as input DOS_avail which tells the 
VDMAD the number of REGIONs or DWORDs in the union. The VDMAD fills in 
DDS_used on return, which tells your VxD how many of the REGIONs or DWORDs were 
filled in with physical address and size or with PTEs. 
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Note that in my definition, the two arrays contain 16 elements, which means 
the DDS structure supports a maximum DMA buffer size of 256Mb 
(16*4Kb). A buffer of 16 pages could consist of 16 physically discontiguous 
pages, in which case the VDMAD would need a REGION structure to describe 
each. If your VxD for a bus-master device uses more than 256Kb in a single 
bus-master transfer, increase this array size. 

Using Events with Bus-master DMA Transfers 
Commonly, DMA drivers start the first transfer in non-interrupt code, service an inter
rupt generated by the device when the transfer is complete, and start the next transfer 
directly from the interrupt handler. However, only VxD services marked specifically 
as asynchronous may be called at interrupt time, so it's vital to know which VDMAD 
services are asynchronous. According to the DDK documentation, only 
VDMAD~Physically_Unmask_Channel and VDMAD~Physically_Mask_Channel are 
asynchronous. The VDMAD source code reveals several other asynchronous ser
vices too, including VDMAD_Set_Regi on_Info and VDMAD_Set_Phys_State. But, 
VDMAD_Scatter _Lock and VDMAD_Scatter _Unlock are conspicuously missing. 

A system DMA VxD can make all of its calls from its interrupt handler, because all 
of the VDMAD services it uses are asynchronous (even if not documented as so). But 
a bus-master VxD needs VDMAD_Scatter _Un lock, which can't be called at interrupt 
time. The synchronous services, VDMAD_Scatter _Lock and VDMAD_Scatter ,--Un 1 ock, 
must be called outside of the interrupt handler. This is accomplished by having the 
interrupt handler use VMM services. to schedule an event, and calling VDMAD_
Scatter_Lock and VDMAD_Scatter_Unlock from the event handler. In fact, it's 
really just as easy to do the entire sequence ofVDMAD calls in the event handler. 

Figure 6.2 A 16Kb buffer can be composed of 1, 2, 3, 
or 4 physically contiguous regions. 

Linear Physical Linear 
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If your VxD allocated the DMA buffer itself, you can schedule a global event, 
because any buffer allocated by a VxD comes from the 3Gb-4Gb system arena, 
visible regardless of the currently executing thread and VM. On the other hand, if 
your VxD didn't allocate the buffer, but instead pagelocked a buffer allocated by a 
Win32 process, then that buffer resides in the 2Gb-3Gb private arena and is valid 
only in the context of the same Win32 process that called your VxD for the page
lock. In this case, you must schedule a thread event so that your event handler runs 
in the correct context. Handling interrupts, as well as using thread and global 
events, will be covered in the next chapter. 

Windows 3.x Differences 
There are only minor differences in talking to hardware from a VxD when running 
under Win3.x. 

Accessing I/O-mapped hardware is no different at all- it works exactly as 
described earlier in the chapter. 

When accessing memory-mapped hardware, use _MapPhysToL i nea r, a simpler method 
than multiple VMM calls to _PageReserveCPageCommi tphys/_L i nPageLock. 
The simple method is sufficient because the device's physical address cannot 
change (no Plug and Play). Also, the other VMM services CPageReserve, etc.) 
are Windows 95-specific. 

To perform system DMA, use the VDMAD services as described above. However, 
your VxD must allocate the DMA buffer during Sys_Criti ca l_Init message 
processing because the PAGECONTI G flag passed to _PageA llocate isn't valid after 
initialization. 

Bus-master DMA is no different at all. 

Summary 
Talking to the hardware from your VxD is pretty straightforward if you only need to 
manipUlate I/O ports. Most devices that use memory-mapped I/O are only slightly 
more challenging. Devices that support DMA are considerably more challenging, 
because they interact with physical memory in more complex patterns. Even so, with 
careful consideration of the paging and address translation issues involved, you can 
write a VxD that can manipulate the necessary physical memory. 

I/O ports, memory, and DMA channels, though, are only part of the hardware a 
VxD needs to manipulate. VxDs aren't just called by applications - they are often 
invoked as asynchronous interrupt handlers. The next chapter explains how Windows 
virtualizes interrupts and how to register a VxD as the handler for a particular interrupt. 



Listing 6.1 DMAALLOC.C 

II DMAAllOC.c - main module for VxD DMAEXAMP 
iidefine WANTVXDWRAPS 

iiinclude <basedef.h> 
iiinclude <vmm.h> 
iiinclude <debug.h> 
iiinclude "vxdcall .h" 
iiinclude <vxdwraps.h> 
iiinclude <wrappers.h> 

#ifdef DEBUG 
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iidefine DPRINTFO(buf. fmt) _Sprintf(buf. fmt ); Out_Debug_String( buf ) 
iidefine DPRINTF1(buf. fmt. argl) _Sprintf(buf. fmt. argl ); OuCDebug_String( buf ) 
iidefi ne DPRINTF2 (buf. fmt. a rgl. a rg2) _Spri ntf (buf. fmt. argl. a rg2 ); 

Out_Debug_String( buf ) 
iielse 
iidefine DPRINTFO(buf. fmtl 
#defi ne DPRINTFl(buf. fmt. argl) 
iidefine DPRINTF2(buf. fmt. argl. arg2) 
iiendif 

PYOID AllocSysDmaBuf( DWORD nPages. PYOID pPhysAddr ); 
PYOID AllocBusMasterBuf( DWORD nPages. PYOID pPhysAddr ); 
PYOID AllocScatterGatherBuf( DWORD nPages. PYOID pPhysAddr ); 

PYOID lin; 
char buf[80]; 

BOOl OnSysDynamicDeviceInit(VMHANDlE hVM) 
{ 

BOOl rc; 
DWORD PTEOffset; 
DWORD nPages. phys; 
DOS myOOS; 
int i; 

DPRINTFO(buf. "DynInit\r\n" ); 
nPages ~ 4; 
lin ~ AllocScatterGatherBuf( nPages. &phys ); 
if (! 1 in) 
{ 

DPRINTFO(buf. "ERR PageAlloc\r\n" ); 
} 
else 
{ 

DPRINTF2(buf. "lin~%x. Phys~%x\r\n". lin. phys); 
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Listing 6.1 (continued) DMAALLOC.C 

myDDS.dds.DDS_linear ~ lin; 
myDDS.dds.DDS_size ~ 4 * 4 * 1024; 
myDDS.dds.DDS_seg ~ myDDS.dds.RESERVED ~ 0; 
myDDS.dds.DDS_avail ~ 16; 
rc ~ VDMAD_Scatter_Lock( Get_Cur_VM_Handle(). O. &myDDS. &PTEOffset ); 
DPRINTFl(buf. "Scatter_Lock rc~%x\r\n". rc); 
DPRI NTFl (buf. "nRegi ons~%x\ r\n". myDDS. dds. DDS_used) ; 
for (i~O; i < myDDS.dds.DDS_used; i++) 
{ 

DPRINTF2(buf. "Region phys~%x size~%d\r\n". myDDS.aRegionInfo[j].PhysAddr. 
myDDS.aRegionInfo[i].Size ); 

return TRUE; 

BOOL OnSysDynamicDeviceExit(void) 
{ 

BOOL rc; 
DPRINTFO(buf. "DynExit\r\n" ); 
rc ~ _PageFree( lin. 0 ); 
if (! rc) 

DPRINTFO(buf. "PageFree failed\n"); 
return TRUE; 

PYOID AllocSysDmaBuf( DWORD nPages. PYOID pPhysAddr ) 
{ 

return( _PageAllocate(nPages. PG_SYS. O. OxOF. O. OxlOOOL. pPhysAddr. 
PAGECONTIG I PAGEUSEALIGN I PAGEFIXED ) ); 

PYOID AllocBusMasterBuf( DWORD nPages. PYOID pPhysAddr ) 
{ 

return( _PageAllocate(nPages. PG_SYS. O. O. O. OxlOOOOOL. pPhysAddr. 
PAGECONTIG I PAGEUSEALIGN I PAGEFIXED ) ); 

PYOID AllocScatterGatherBuf( DWORD nPages. PYOID pPhysAddr 
{ 

return( _PageAllocate(nPages. PG_SYS. O. O. O. OxlOOOOOL. pPhysAddr. 0 ) ); 
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Listing 6.2 DMADDB.ASM 

.386p 

.****************************************************************************** 
INCLUDES 

.****************************************************************************** 

include vmm. inc 
include debug.inc 

V I R T U A L 0 E V ICE 0 E C L A RAT ION 

PROCEDURE: ControlProc 

DESCRIPTION: 

DMAALLOC. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \ 
UNDEFINED_INIT_ORDER 

Device control procedure for the SKELETON VxD 

ENTRY: 
EAX = Control call 10 

EXIT: 
If carry clear then 

Successful 
else 

Control call failed 

USES: 
EAX. EBX. ECX. EDX. ESI. EDI. Flags 

BeginProc ControlProc 
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDevicelnit. cCall. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCall. <ebx> 

clc 
ret 

EndProc ControlProc 

VxD_LOCKED_CODE_ENDS 

END 
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Listing 6.3 DMAALLOC. MAK 

CFLAGS 
CVXDFLAGS 
LFLAGS 

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi 
= -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG 
= -machine:i386 -debug:notmapped,full -debugtype:cv 

-subsystem:console kerne132.1ib 
AFLAGS = -coff -OBLO_COFF -0IS_32 -W2 -Zd -c -Cx -OMASM6 -OOEBLEVEL=l -OOEBUG 

all: dmaalloc.vxd 

dmaalloc.obj: dmaalloc.c 
cl $(CVXOFLAGS) -Fo$@ -Fl %s 

dmaddb.obj: dmaddb.asm 
ml $(AFLAGS) -Fo$@ %s 

vxdca 11 . obj: vxdca 11 . c 
cl $(CVXOFLAGS) -Fo$@ %s 

dmaalloc.vxd: dmaddb.obj dmaalloc.obj vxdcall.obj .. \wrappers\wrappers.clb dmaalloc.def 
echo >NUL @«dmaalloc.crf 

-MACHINE:i386 -DEBUG -OEBUGTYPE:MAP -POB:NONE 
-DEF:dmaalloc.def -OUT:dmaalloc.vxd -MAP:dmaalloc.map 
-VXO vxdwraps.clb wrappers.clb vxdcall .obj dmaddb.obj dmaalloc.obj 
« 

link @dmaalloc.crf 
mapsym dmaalloc 
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Listing 6.4 DMAALLOC. DEF 

VXD DMAALLOC DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 

LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
I DATA CLASS 'ICODE' 
PTEXT CLASS 'PCODE' 
PDATA CLASS 'PCODE' 

_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
DMAALLOCDDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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Clwpter7 

Handling Hardware 
Interrupts in a VxD 
Windows' yanslation of hardware interrupts into events that Can trigger execution of ISRs 
residing in\various virtual machines is one of the most confusing and complicated parts of 
the virtual environment. Windows must not only make certain that any associated VxD 
sees the interrupt but also must assure that the appropriate virtual machines see the inter
rupt. This process is not only complicated but also involves a large amount of overhead -
so much overhead that an ISR residing in a DOS program running under Windows can 
exhibit as much as 20 times more latency than the same ISR under pure DOS. (For details, 
see 'The Tao of Interrupts," by David Long, Microsoft Developer Network CD.) 

An interrupt can trigger activity that cascades through four levels of code: 

• the processor vectors to a routine in the VMM; 

• the VMM calls registered handlers in one or more VxDs; 

• the VMM then (potentially) simulates the interrupt for protected mode handlers; and 

• the VMM then (potentially) simulates the interrupt for V86 mode handlers. 

The programmer can install an interrupt handler at any but the first of these levels. 
(Actually, since a VxD runs at Ring 0, it could also install at the first level, directly in 
the actual IDT. Microsoft strongly warns against doing this.) Handlers installed by 
Windows applications qualify as protected mode handlers, running in the System VM. 
Handlers installed by DOS applications qualify as V86 mode handlers, running in the 
same VM as the DOS application. 

107 
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Interrupts and the VMM 
Under Windows, the processor runs in three different states. The processor runs in 
V86 Mode when a DOS application is executing (in a V86 VM). The processor runs 
in Ring 3 protected mode when the System VM (Windows) is executing or when a 
DOS VM has switched into protected mode. The processor runs in Ring 0 protected 
mode when VMM or a VxD is executing. 

Regardless of the processor's current state, when a hardware interrupt occurs, the 
processor switches to protected mode at Ring O. The processor then finds the address 
of the interrupt handler in the IDT and begins executing the handler. This isn't a Win
dows rule - it's the way the 80x86 architecture works. 

As Figure 7.1 shows, however, Windows doesn't use the IDT to vector to what one 
normally thinks of as a interrupt handler. Instead, Windows makes all IDT entries 
point to a routine in the VMM. The VMM routine figures out whether it was called as 
the result of an exception or an interrupt. The VMM manages exceptions itself but 
hands all hardware interrupts to an important VxD called the VPICD (Virtual Pro
grammable Interrupt Controller Device.) VPICD will pass the interrupt on to another 
VxD for servicing if a VxD has registered for the interrupt. If not, the VPICD will 
pass the interrupt on to one of the VMs, a process known as reflection. 

A VxD registers for a specific hardware interrupt by calling the VPICD service 
VP I CD_Vi rtua 1 i ze_I RO and passing to the VPICD the address of a callback routine. 
Once a VxD has registered for an interrupt it may act as a true interrupt handler, ser
vicing the interrupting device itself, or the VxD may use another VPICD service, 

Figure 7.1 Path from IDT to VxD interrupt handler. 
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VPICD_SeLInLRequest, to reflect the interrupt to a VM. That is, instead of servic
ing the device itself, the VxD lets the VM's handler do it. The section "Virtualizing a 
Hardware Interrupt" in Chapter 8 will explain reflection in more detail. (See also the 
sidebar "Interrupt Latency under Windows".) 

Using VPICD Services 
This section will examine the VPICD services used by a VxD that handles a hardware 
interrupt. Although the VPICD exports close to two dozen services, a typical VxD 
uses only a few of them: 

VPI CD_Vi rtua 1 i ze_I RQ to install an interrupt handler. 

VPICD_Phys_Unmask to unmask the interrupt at the PC InterruptController (PIC). 

• VPICD_Phys_EOI to send an EO! to the PIC. 

• VPICD_Phys_Mask to mask the interrupt at the PIC. 

• VPI CDJorce_Default_Behavi or to uninstall an interrupt handler. 

Interrupt Latency under Windows 

The delay between the hardware interrupt signal and the execution of its handler is called interrupt latency. 
Because of the complicated reflection process involved, latency for protected mode or V86 mode handlers can 
be significant - times around I ms are not uncommon. To minimize interrupt latency, handling of hardware 
interrupts should be done in a VxD. 

Unfortunately, not even a VxD can guarantee real-time response to an interrupt. There are several factors 
that make true real"time response impossible under Windows (both 95 and 3.x), including ring transitions and 
the multiple layers ofVMM and VPICD handlers. But the factor that overwhelms all others is the abillity of 
applications to disable processor interrupts. When processor interrupts are disabled, not even a VxD interrupt 
handler can run. 

Th\fVMM allows both DOS and Windows applications (and DLLs) to turn off interrupts. (Refer to the 
section ''Trapping Interrupts and Exceptions" in Chapter 3 for more details). Although applications could also 
turnoff interrupts under plain DOS, the consequences are often worse under Windows simply because users 
typically run multiple applications, and the chances that one application will disable interrupts for a long 
period are increased. 
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The VMMNxD library included with VToolsD provides C-callable wrappers for all 
VPICD services. The Windows 95 DDK wrapper library doesn't, but the WRAPPERS. CLB 
library does include VPICD functions discussed in this chapter as well as the others dis
cussed in the section "Virtualizing a Hardware Interrupt" in Chapter 8. 

The example VxD for this chapter, VXDISR. VXD, demonstrates a simple interrupt 
handler. This VxD services one of the few standard PC devices that isn't already con
trolled by another VxD: the Real Time Clock, which generates an interrupt on IRQ 8. 
The Real Time Clock is not the same as the 8254 Timer device. The timer generates 
an interrupt on IRQ 0, and is controlled by another VxD, the VTD. 

Examining VPICD Services in Detail: VXD IRQ. C 

The VXDISR VxD has only two message handlers, On_Sys_Vm_I ni t and On_Sys_
Vm_Termi nate, which install and uninstall an interrupt handler, respectively. 
On_Sys_Vm_I ni t calls the service VPI CD_Vi rtua 1 i ze_I RQ to install an interrupt handler. 

The Calling Interface for VPICD_Vi rtua 7 ize_IRO 

IRQHANDLE VPICD_Virtualize_IRQ(VPICD_IRQ_DESCRIPTOR *vid); 
vid: pointer to structure which describes the interrupt to be virtualized 
typedef struct 
{ 

USHORT VID_IRQ_Number; II IRQ to virtualize 
USHORT VID_Options; 
II VPICD_OPT_CAN_SHARE: allow other VxDs to virtualize IRQ also 
II VPICD_OPT_REF_DATA: pass VID_Hw_InCRef as param to Hw_Int_Handler 
ULONG VID_Hw_Int_Proc; II callback for hardware interrupt 
ULONG VID_Virt_Int_Proc; 
ULONG VID_EOI_Proc; 
ULONG VID_Mask_Change_Proc; 
ULONG VID_IRET_Proc; 
ULONG VID_IRET_Time_Out; 
PYOID VID_Hw_Int_Ref; II pass this data to Hw_Int_Handler 

VPICD_IRQ_DESCRIPTOR; 
Returns: handle to be used in future VPICD calls 

or zero if call failed (IRQ already virtualized or invalid IRQ) 
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This service is well behaved, i.e. it doesn't install the handler directly into the IDT, 
but simply registers the handler with the VPICD. This service uses only a single 
parameter, a pointer to a VPICD_IRQ_DESCRIPTOR structure. The return value is an 
IRQ "handle", required in calls to other VPICD services. 

Because VXDISR is simply handling an interrupt, as opposed to fully virtu ali zing 
it (I'll discuss virtualization in the next chapter), it uses only a few fields in this struc
ture. VID_IRQ_Number is the number of the IRQ the VxD wants to service. 
V I D_Hw_I nt_Proc is the address of the interrupt service routine. V I D_Opt ions is a 
bitmapped flag. VPICD_OPT_CAN_SHARE allows other VxDs to call VPICD_
Vi rtua 1 i ze_I RQ for the same IRQ. (VXDISR doesn't set this bit: the device itself 
must support IRQ sharing, and simply setting the option bit won't make IRQ-sharing 
work.) The VPICD_OPT_REF ...:.DATA bit works in conjunction with the V ID_Hw_I nt_Ref 
parameter. If VPI CD_OPT_REF _DATA is set, the VPICD passes VI D_Hw_I nt_Ref as a 
parameter when it calls the interrupt handler. V I D_Hw_I nt_Ref is used as reference 
data, so VXDISR passes a pointer to its device context structure. 

Be sure to set the other callback fields (V I 0_ Vi rt_I nCProc, V I D_EO I_P roc, 
V ID_Mask_Change_Proc, and VID_IRET_Proc) to NULL. The VPICD uses 
these callbacks to notify a VxD of other interrupt-related events, such as 
when a V86 mode or protected mode handler. is called. The section 
"Virtualizing a Hardware Interrupt" in Chapter 8 will demonstrate use of 
these other callbacks. 

After installing its interrupt handler, On_Sys_Vm_Init enables the RTC interrupt 
in two steps. In the first it writes to an RTC register to enable the interrupt "at the 
device". In the second step, On_Sys_Vm_Init calls VPICD_Phys ica 11 LUnmask using 
the same IRQ handle returned by VP I CD_Vi rtua 1 i ze_I RQ, which programs the PIC 
to recognize interrupts on IRQ 8. This second step enables the interrupt "at the PIC". 
A VxD should always use the VPICD service instead of writing directly to the PIC 
mask register. 

The Calling Interfacefor VPICD_Physica77y_Unmask 

void VPICD_Physi cally-Unmask( IRQHANDLE hnd); 
hnd: IRQ handle returned by VPICD_Virtualize_IRQ 

The On_Sys_ Vm_ T e rmi nate function reverses the steps taken at initialization, first 
disabling interrupts at the device, then calling V P I CD_Phy sica 11 y-Ma sk to disable the 
interrupt at the PIC, and finally uninstalling the handler with a call to 
VPICDJorcLOefaul CBehavi or. 
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The Calling Interface/or VPICD_Physically_Mask 

void VPICD_Physically_Mask(IRQHANDLE hnd); 
hnd: IRQ handle returned by VPICD_Virtualize_IRQ 

The Calling Interface/or VPICD_Force_Defau7t_Behavior 

void VPICDJorce_DefaulLBehavior(lRQHANDLE hndl; 
hnd: IRQ handle returned by VPICD_Virtualize_IRQ 

Assembly Thunks and CHandlers 
Many VMM and VxD services require a callback function parameter. The VXDISR 
example in this chapter introduces a callback convention that all other VxDs in this 
book will follow. All registered callback functions reside in the VxD's assembly lan
guage file. The name of each registered callback function ends in "Thunk". Each call
back function always transfers parameters from registers to the stack and calls an 
analogous function in the VxD's C file. The name of the C function is similar to the 
callback in the assembly function, except that the C function ends in "Handler" 
instead of in "Thunk". 

The HwlntProc Callback: 
DDBISR.ASMand VXDISR. C 
When a hardware interrupt occurs, the VPICD calls the registered Hw_Int_Proc call
back with the handle of the current VM in EBX and the IRQ handle in EAX. Because 
On_Sys_Vm_Ini t set the VPICD_OPT_REF _DATA bit in VID_Opti ons when registering the 
handler, EDX contains reference data. The registered interrupt handler is 
_HwlntprocThunk in DDBISR.ASM (Listing 7.2, page 122). This function does nothing 
more than push the current VM handle, IRQ handle, and reference data on the stack and 
call the real interrupt handler, HwI ntProcHandl er in VXDI SR. C (Listing 7.1, page 117). 

The first action taken by HwlntprocHandl er is to cast the reference data to a 
pointer to its device context structure. The DEVICE_CONTEXT structure contains all 
the VxD needs to know about the device: its 110 address, state information, etc. 
HwI ntprocHandl er reads from the RTC Status C register to clear the interrupt. 

The Calling Inter/ace/or VPICD_Phys_EOI 

void VPICD_Phys_EOI( IRQHANDLEhnd ); 
hnd: handle returned by VPICD_Virtualize_IRQ 
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Immediately before returning, HwI ntProcHandl er calls VPI CD_Phys_EO I to send an 
EOI (End Of Interrupt) command for IRQ 8 (see the sidebar "EOI Handling in Win
dows"). This EOI tells the PIC to recognize further interrupts from the RTC. A com
mon mistake in coding an interrupt handler is to forget the EO!. The result is an 
interrupt handler that is called once but never again: although the device itself may be 
generating more interrupts, the PIC doesn't let these interrupts through to the proces
sor until an EOI is received. 

HwI ntProcHandl er returns a boolean indicating whether or not it serviced (cleared) 
the interrupt. On return, its caller, _HwlntProcThunk in DDBISR.ASM (Listing 7.2, 
page 122), examines this return value. If true (meaning the interrupt was serviced,) 
_HwlntprocThunk clears the Carry flag before returning to the VPICD, otherwise 
_HwlntprocThunk sets the Ca rry flag. 

The VPICD uses this return value to support shared interrupts. If more than one 
VxD virtualizes the same IRQ, and both set VPICD_OPT_CAN_SHARE during registra
tion, the VPICD keeps the registered interrupt handlers in a list. When the interrupt 
occurs, the VPICD calls the first handler on the list. When that handler returns, the 
VPICD examines the Carry flag. If Carry is set, meaning the interrupt handler did not 
service the interrupt, the VPICD calls the next handler in the list. This continues until 
one of the handlers services the interrupt. 

Event Handling in VXDISR 
In many cases, a VxD's interrupt handler isn't able to fully process the interrupt 
because the VMM or VxD services required aren't asynchronous. (See the section 
"Using Events with Bus-master DMA Transfers" in Chapter 6 for an explanation of 
synchronous and asynchronous services.) In this situation, the interrupt handler must 
schedule an event (which will be called later) and call the needed VMMNxD service 
from the event callback. HwI ntProcHa ndl er demonstrates this technique, even 
though it doesn't really need it (the only VxD service it uses is VPICD_Phys_EOI, 
which is asynchronous). 

EO] Handling in Windows 

Windows uses the interrupt controller's EOI mechanism differently than does DOS. The VPICD is the first 
VxD to be notified of an interrupt, and the VPICD immediately sends a "specific EO!" to the controller -
specifically for the level of the interrupting device. Then the VPICD masks (disables) that particular interrupt 
level on the controller. These two actions allow other interrupt levels to be recognized, including those of 
lesser priority than the interrupting level. When a VxD calls VPICD_Phys:..-EOI before exiting the interrupt han
dler, the VPICD unmasks (enables) interrupts on that same level. 
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The Calling Inter/ace/or Schedu7e_G7oba7_Event 

EVENTHANDLE Schedule_Global_Event(void *EventCallback. void *RefData ); 
EventCallback: pointer to callback function; 
Ref Data: pOinter to reference data to be passsed to callback function 

HwIntProcHandler schedules a global event, meaning that the event callback could 
occur in the context of any VM. A global event is used because the actions taken in the 
event callback aren't specific to anyone VM. The parameters to Schedul e_Gl oba l_Event 
are straightforward: a pointer to the callback function and a pointer to reference data. The 
return value is an EVENTHANDLE, which is used to cancel the event. 

As with the interrupt handler, the function passed to Schedul e_Gl oba l_Event is 
actually a procedure in DDBISR.ASM, called EventThunk. This procedure takes the 
three parameters passed in by the VMM - the current VM handle in EBX, the refer
ence data in EDX and a pointer to the Client Register Structure in EBP - and pushes 
them on the stack before calling the real event handler in VXDI SR. C. (The Client Reg
ister Structure was introduced in Chapter 4.) 

EventHandl er is the name of the real event handler. EventHandl er first casts the 
reference data to a DEVICE_CONTEXT pointer, then zeros out the event handle and 
increments the EventCounter field of the structure. 

If your VxD ever cancels an event from an interrupt handler or timeout, the event 
handler must take special precautions to prevent cancellation of an already-dispatched 
event. Although VXDISR doesn't have cancel code, it follows this rule anyway. An 
event handler guards against this condition by zeroing out the event handle as its very 
first action. This precaution ensures that if the VxD's cancel code interrupts the event 
handler, the handle passed to VMM cancel service will be zero. It's permitted to pass 
the VMM cancel routine a handle of zero, but it's not ok to cast the handle of an event 
that is already in progress. 

Windows 3.x Differences 
There is only one minor difference in handling an IRQ in a Windows 3.x VxD as com
pared to a Windows 95 VxD. The VPICD doesn't support the VPICD_OPT_REF _DATA 
flag for VP I CD_Vi rtua 1 i ze_I RO, so no reference data can be passed to the interrupt 
handler. Since the VXDISR example above used this reference data to provide a 
pointer to the DEVICE_CONTEXT associated with the interrupting device, how does a 
Windows 3.x handler get context information? 

A Windows 3.x interrupt handler must provide its own context information. When 
the VxD supports only a single device instance, this is trivial. The assembly language 
handler pushes the hard-coded address of the one and only device context structure 
before calling the C handler routine. 



Handling Hardware Interrupts in a VxD - 115 

EXTRN ptrDevice:DWORD ;declared in C module, as is Device structure 

BeginProc HwlntProcThunkDev 
mov edi, ptrDevice 
cCall _HwlntHandler, <ebx, eax, edi> 
or eax, eax 
ret 

EndProc HwlntProcThunkDev 

By extending this concept a little further, the VxD can support multiple device 
instances, and thus multiple device contexts. Declare a different"entry point in the 
assembly language module for each device context and have each entry point push the 
address of its own device context structure onto the stack before calling the C routine. 

EXTRN ptrDevicel:DWORD 
EXTRN ptrDevice2:DWORD 

;declared in C module, as is Devicel structure 
;declared in C module, as is Device2 structure 

BeginProc HwlntProcThunkDevl 
mov edi, ptrDevicel 
cCall _HwlntHandler, <ebx, eax, edi> 
or eax, eax 
ret 

EndProc HwlntProcThunkDevl 

BeginProc HwlntProcThunkDev2 
mov edi, ptrDevice2 
cCall _HwlntHandler, <ebx, eax, edi> 
or eax, eax 
ret 

EndProc HwlntProcThunkDev2 

Of course, the initialization code that registers the interrupt handlers with the VPICD 
must change also. When registering a handler for Devi eel, HwlntproeThunkDevl is 
the handler; when registering for Devi ee2, HwlntproeThunkDev2 is the handler. 

Note that for both single and multiple device instances, the real handler in the 
C module remains ignorant of these changes in the assembly language module. 
HwlntproeHandl er keeps its DEVICE_CONTEXT* parameter, only this time it's pro
vided by the HwlntProeThunk instead of the VPICD. 
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Summary 
Once you understand the role of the VPICD with regard to hardware interrupt han
dlers, writing a VxD that services an interrupt isn't much harder than writing a DOS 
ISR. Instead of calling DOS Set Vector, use VPICD_Virtualize_IRQ. Instead of 
writing to the PIC directly to unmask an IRQ, use V P I CD_Unma s k_I RQ, and instead of 
sending an EO! to the PIC directly, use VPICD_Phys_EOI. 

However, you may discover your VxD gets less than exciting performance. Even 
when implemented in a VxD, an ISR running under Windows will show substantially 
worse latency than a similar ISR running under DOS. The fact that a Windows or 
DOS application can actually disable processor interrupts for an indeterminate time 
means that even a VxD ISR can be delayed indefinitely. 

Even so, most modern hardware has quick response time and some buffering. 
These factors mean that a VxD ISR may be an acceptable solution for all but applica
tions with "hard" real-time requirements. 
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Listing 7.1 VXDISR.C 

#include <basedef.h> 
#include <vmm.h> 
#include <debug.h> 
#include <vxdwraps.h> 
#include <vpicd.h> 

#include <vxdcall .h> 
#include <wrappers.h> 
#include <intrinsi.h> 

#define RTC_IRQ 8 

#define RTC_STATUSA OxA 
#define RTC_STATUSB OxB 
#define RTC_STATUSC OxC 

#define STATUSB_ENINT Ox40 

#define CMOS_ADDR Ox?O 
#define CMOS_DATA Ox?l 

typedef struct 
( 

VPICD_IRQ_DESCRIPTOR 
IRQHANDLE 
EVENTHANDLE 
DWORD 
BYTE 
BYTE 

DEV ICE_CONTEXT; 

DEVICE_CONTEXT rtc; 

desc Irq; 
hndlrq; 
hEvent; 
EventCounter; 
StatusA; 
StatusB; 

BOOL OnDevicelnit(VMHANDLE hVM); 
void OnSystemExit(VMHANDLE hVM); 
BOOL _stdcall HwlntProcHandler(VMHANDLE hVM, IRQHANDLE hIRQ, void *Refdata); 
VOID _stdcall EventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs); 
void CmosWriteReg( BYTE reg, BYTE val ); 
BYTE CmosReadReg( BYTE reg ); 
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Listing 7.1 (continued) 

II functions in asm module 
void EventThunkC void ); 
void HwlntProcThunkC void ); 

VXDISR.C 

BOOl OnSysDynamicDevicelnitCVMHANDlE hVM) 
( 

OnDevicelnitC hVM ); 
return TRUE; 

BOOl OnSysDynamicDeviceExitCvoid) 
( 

OnSystemExitCGet_Cur_VM_HandleC) ); 
return TRUE; 

BOOl OnDevicelnitCVMHANDlE hVM) 
( 

rtc.desclrq.VID_IRQ_Number = RTC_IRQ; 
rtc.desclrq.VID_Options = VPICD_OPT_REF_DATA; 
rtc.desclrq.VID_Hw_Int_Ref = &rtc; 
rtc.desclrq.VID_Hw_Int_Proc = CUlONG)HwlntProcThunk; 
rtc.desclrq.VID_EOI_Proc = 
rtc.desclrq.VID_Virt_Int_Proc = 
rtc.desclrq.VID_Mask_Change_Proc = 
rtc.desclrq.VID_IRET_Proc = 0; 

if C!Crtc.hndlrq = VPICO_Virtualize_IRQC&rtc.desclrq») 
return FALSE; 

rtc.StatusA = CmosReadRegCRTC_STATUSA); 
rtc.StatusB = CmosReadRegCRTC_STATUSB); , 
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Listing 7.1 (continued) VXDISR.C 

II set interrupt frequency to only 2 times a sec 
CmosWriteReg(RTC_STATUSA, rtc.StatusA I OxOF ); 
II enable clock interrupts 
CmosWriteReg(RTC_STATUSB, rtc.StatusB I STATUSB_ENINTJ; 
II clear flags 
CmosReadReg(RTC_STATUSC); 

rtc.EventCounter = 0; 

VPICD_Physically_Unmask(rtc.hndIrq); 

return TRUE; 

VOID OnSystemExit(VMHANDLE hVM) 
( 

CmosWriteReg(RTC_STATUSA, rtc.StatusA ); 
CmosWriteReg(RTC_STATUSB, rtc.StatusB ); 

Cancel_Global_Event(rtc.hEvent); 
VPICD_Physically_Mask(rtc.hndIrqJ; 
VPICD_Force_Default_Behavior(rtc.hndIrq); 

BOOL _stdcall HwIntProcHandler(VMHANDLE hVM, LRQHANDLE hIRQ, void *Refdata) 
{ 

DEVICE_CONTEXT *pRtc = (DEVICE_CONTEXT *)Refdata; 

CmosReadReg( RTC_STATUSC ); 

II tell VPICD to clear the interrupt 

pRtc->hEvent = Schedule_Global_Event(EventThunk, (ULONGJpRtc ); 

return TRUE; II thunk will clear carry 
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Listing 7.1 (continued) VXDISR.C 

VOID __ stdeall EventHandler(VMHANDLE hVM. PVOID Refdata. CRS* pRegs) 
{ 

DEVICE_CONTEXT *rte = (DEVICE_CONTEXT *)Refdata; 

rte-)hEvent = 0; 
rte-)EventCounter++; 

BYTE CmosReadReg( BYTE reg 
{ 

BYTE data; 

disable NMI then ints 
mov al. reg 
or al. SOh 
eli 

; first output reg to address port 
out CMOS_ADDR. al 
jmp _1 

; then read data from data port 
in al. CMOS_DATA 
mov data. a 1 
jmp _3 

; reenable NMI then ints 
xor al.al 
out CMOS_ADDR. al 
sti 

return data; 
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Listing 7.1 (continued) VXDISR.C 

void CmosWriteReg( BYTE reg. BYTE val ) 
{ 

4· _. 

disable NMI then ints 
mov al. reg 
or al.80h 
eli 

; first output reg to address port 
out CMOS_ADDR. al 
jmp _1 

; then output val to data port 
mov al. val 
out CMOS_DATA. al 
jrnp _3 

; reenable NMI then ints 
xor a 1. a 1 
out CMOS_ADDR. al 
sti 
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Listing 7.2 DDBISR.ASM 

.386p 

;****************************************************************************** 
INC L U DES 

:****************************************************************************** 

include vmm.inc 
include debug. inc 

V I R T U A L D E V ICE DEC L A RAT ION 

DECLARE_VIRTUAL_DEVICE VXDISR, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \ 
UNDEFINED_INIT_ORDER 

PROCEDURE: ControlProc 

DESCRIPTION: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX = Control call ID 

EXIT: 
If carry clear then 

Successful 
else 

Contro 1 ca 11 fail ed 

USES: 
EAX, EBX, ECX, EDX, ESI, EDI, Flags 

BeginProc ControlProc 
Control_Dispatch DEVICE_INIT, _OnDeviceInit, cCall, <ebx> 
Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx> 

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDeviceInit, cCall, <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall 

clc 
ret 

EndProc ControlProc 
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Listing 7.2 (continued) DDBISR.ASM 

PUBLIC _HwIntProcThunk 
_HwlntProcThunk PROC NEAR ; called from C, needs underscore 

sCall HwlntProcHandler, <ebx, eax, edx> 
or ax, ax 
jnz clearc 
stc 
ret 

clearc: 
clc 
ret 

_HwIntProcThunk ENDP 

BeginProc _EventThunk 

sCall EventHandler, <ebx,edx,ebp> 
ret 

EndProc _EventThunk 

END 
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Listing 7.3 VXDISR.MAK 

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXDWRAPS 
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG 

all: vxdi sr. vxd 

vxdisr.obj: vxdisr.c 
c1 $(CVXDFLAGS) -Fo$@ %s 

ddbisr.obj: ddbisr.asm 
m1 $(AFLAGS) -Fo$@ -F1 %s 

vxdisr.vxd: ddbisr.obj vxdisr.obj .. \wrappers\vxdca11 .obj vxdisr.def 
echo >NUL @«vxdisr.crf 

-MACHINE:i386 -DEBUG -DEBUGTVPE:MAP -PDB:NONE 
-DEF:vxdisr.def -OUT:vxdisr.vxd -MAP:vxdisr.map 
-VXD vxdwraps.c1b wrappers.c1b ddbisr.obj vxdisr.obj vxdca11.obj 
«KEEP 

link @vxdisr.crf 
mapsym vxdisr 
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Listing 7.4 VXDISR.DEF 

VXD VXDISR DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 
_ITEXT CLASS 'ICODE' 

I DATA CLASS 'ICODE' 
_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
VXDISR_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCAROABLE 
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ChapterS 

VxDs for Virtualization 
Earlier chapters explained how to write a "driver" VxD, that is a VxD that interfaces to 
and controls a hardware device. Topics included interfacing to I/O-mapped, mem
ory-mapped, and DMA devices, as well as hardware interrupts. This chapter will focus 
on a different aspect of VxD functionality: how to virtualize a hardware device 
(I/O-mapped or memory-mapped) and how to virtualize a hardware-generated interrupt. 

Windows virtualizes physical devices because with multitasking, there is always 
the possibility of two processes attempting to use a device simultaneously. Virtualiza
tion wouldn't be required if every process went through the same driver to access the 
device; in that case, the driver could serialize the access. 

Unfortunately, some applications (especially DOS applications) attempt to manip
ulate the hardware directly, instead of calling the operating system's driver. Because 
VxDs rely upon the 80x86's port-trapping and page-trapping hardware instead of an 
explicit call to a device driver, the VxD can intercept any VM's attempt to access a 
device. This includes even direct manipulations by a DOS application. Thus, the VxD 
can reliably detect when mUltiple VMs are trying to access the same device. 

Note that Windows does not rely on VxDs to detect conflicts between 
multiple Windows applications trying to access the same device. The 
port-trapping and page-trapping features work on a per-VM basis, and all 
Windows applications live in the same VM. It is the job of a Windows driver 
DLL to serialize access to the device by multiple Windows applications. 

127 
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Thus, a VxD that virtualizes a device is responsible for detecting and resolving 
conflicts between multiple VMs that want to use the same device. The VxD "resolves" 
the conflict by enforcing a particular "arbitration policy". In the Windows environ
ment, the most common policies are: 

Allowing one VM to access the physical device and ignoring the other VMs. The 
VPD (Virtual Printer Device) uses this, the simplest form of virtualization. 

Allowing one VM to access the physical device and virtualizing the device for the 
other VMs. The VKD (Virtual Keyboard Device) takes this approach. The VKD 
assigns one VM to have the input focus, and that VM gets access to the physical 
keyboard, which includes keyboard interrupts. The VKD also makes sure the other 
VMs see an empty keyboard buffer 

Allowing multiple VMs to share the same physical device while maintaining the 
illusion, from the VM point of view, of exclusive access. The VDD (Virtual Dis
play Device) behaves this way. Each windowed DOS VM writes directly to what it 
thinks is display memory, while the VDD remaps this memory to another buffer, 
which appears in a window. 

Allowing one VM to access the virtual device while the VxD independently con
trols the physical device. The VCD (Virtual Com Device) uses this, perhaps the 
most complicated form of virtualization. The VCD buffers incoming serial data, 
and transparently "feeds" it to a VM by reflecting the interrupt and then, when the 
VM interrupt handler reads the serial port data register, substituting an 
already-received byte from the buffer. 

Like physical devices, hardware-generated interrupts must also be virtualized. 
Hardware-generated interrupts have no knowledge of VMs. Interrupts are virtualized 
to assure that each interrupt is visible to every VM that needs it, regardless of which 
VM was running when the interrupt was generated. 

This chapter presents two example VxDs, PORTTRAP and PAGETRAP, that illus
trate the techniques involved in virtualizing both port-mapped and memory-mapped 
devices. A third example, REFLECT, virtualizes a hardware interrupt. All of these 
VxDs use the simplest arbitration policy to resolve access conflicts. Avoiding unneces
sary complexity in the arbitration policy emphasizes the basic techniques that are core 
to all virtualization VxDs: port-trapping, page-trapping, and interrupt reflection. 

VMM and Processor Exceptions 
At Windows startup, the VMM installs handlers in the IDT for all processor excep
tions, including faults, traps, and interrupts. VxDs may then use various VMM services 
to register for notification from the VMM when a particular fault, trap, or interrupt 
occurs. The VPICD always registers with the VMM for all hardware interrupts, then 
other VxDs register with the VPICD to receive notification of hardware interrupts. 
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Although VMM provides a general purpose Hook_VMMJault service, which can be 
used to hook any type of fault, trap, or interrupt, most VxDs should register their han
dlers via more specialized services. The VMM offers other entry points specifically for 
use by port trap handlers and page fault handlers (Install_IO_Handler and 
Hook_V86_Page). By using these specific services, VxDs can take advantage of the 
pre-processing work done by the VMM fault handler, which figures out whichVM 
caused the exception, which port or page the VM accessed, and even the specific 
instruction that causes the trap/fault. Similarly, VxDs should use the VPICD_
Vi rtua 1 i ze_I RQ service to register a hardware interrupt handler rather than calling 
Hook_VMMJaul t. 

The VxDs presented in this chapter will use the specialized VMM and VPICD ser
vices mentioned above. PORTTRAP will use Install_IO_Handler to receive call
backs on 110 port access. PAGETRAP will use Hook_V86_Page to receive callbacks 
on access to memory pages. REFLECT will use VPICD_Virtualize_IRQ service to 
get callbacks on hardware interrupts. 

Device Ownership 
Both PAGETRAP and PORTTRAP use a very simple algorithm for device manage
ment. Succinctly stated, the strategy is: "you touch it, you own it until you die". The 
first VM to access the device is dec1aredthe owner VM, and ownership is relinquished 
when a VM is terminated. If any other VM attempts to access the device while it is 
o~ned, the VxD may ask the user to decide whichVM should be the owner. 

The concept of device ownership is fundamental to a virtualization VxD. Typi
cally the VxD disables local trapping of port 110 or of page faults to allow the owner 
VM direct access to the device without causing a trap, a step which improves perfor
mance. Also, if the device generates interrupts, the VxD makes sure that only the 
owner VM sees them. 

Some VxDs allow access to specific 110 ports within a device without assigning an 
owner, if such accesses are benign and non-destructive. For example, the VCD (Vir
tual Com Device) allows any VM to configure a serial port with baud rate, parity, etc. 
Instead of outputting the bytes to the serial port, however, the VCD stores them in its 
own virtual copy of the serial port registers. Ownership is assigned when a VM 
accesses the serial port's interruptor data registers. As part of assigning ownership, 
the VCD copies the virtual registers for that VM to the real serial port registers. 

Implementing this type of behavior is more complicated and requires in-depth 
knowledge of how VMs are expected to access the device. If a VM accesses the 
device in a way that the VxD doesn't expect and, thus, doesn't handle it properly -
for example, not reading a status register before writing to a register - the device 
won't function as the VM expects. 
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Virtualizing an lID-mapped Device: 
The PORTTRAP Example 
Writing a VxD to demonstrate I/O-mapped virtualization using port-trapping is com
plicated by the fact that Windows contains VxDs that virtualize most of the standard 
PC I/O port devices, and the VMM allows only one VxD to trap access to a given port. 
Rather than take over an existing device, this chapter's PORTTRAP traps the ports of 
an imaginary device at I/O address 300h-307h. 

The PORTTRAP example (Listing 8.1, page 151) is the most elaborate of the 
examples in this chapter. It allocates per-VM storage in the VMM's Control Block 
and allows the user to resolve contention between VMs. Even so, PORTTRAP 
requires a very modest amount of code: only three message handlers (OnDevi ce I ni t, 
OnSystemExi t, and OnVmTermi nate) and a port trap handler. 

The Initialization Routine: OnDevi ce In i t 
BOOl OnDevicelnit(VMHANDlE hVM) 
{ 

i nt i' 

for (i=O; i < device.numloPorts; i++) 
{ 

if (!Install_IO_Handler(device.loBase+i, PortTrapThunk )) 
( 

DPRINTFl(buf. "Error installing handler for io %x\r\n", IO_BASE+i ); 
return FALSE; 

if (device.cbOffset = _Allocate_Device_CB_Area(sizeof(DEVICE_CB), 0)) 
( 

OPRINTFO("Error alloc'ing control block\r\n" ); 
return FALSE; 

return TRUE; 

OnDevi ce I nit calls the VMM service I nsta 11_IO_Handl er to register a port trap 
handler for each of the trapped ports. The VxD calls I nsta 11_IO_Handl er in a loop, 
passing the same callback function each time (PortTrapThunk), but a different port 
number. Because the same callback function is used for all the ports, when the trap 
handler is invoked it will need to determine which port was accessed before it can act 
appropriately. This is an easy decision, because the port number is provided to the 
callback routine. An alternative method is to give each port its own callback routine. 
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The I nsta 11_IO_Handl er service initially enables trapping for all VMs, current 
and future, which means that PORTTRAP doesn't have to take any special action 
when new VMs are created. A VxD could change this initial behavior by calling other 
VMM services: Disable_Global_Trapping and Enable_Global_Trapping change 
the trapping state of a specific port for all VMs; Enable_Local_Trapping and 
Disable_Local_Trapping change the trapping state only for a specific VM and a 
specific port. 

The Calling Interface for lnsta 7 7_l0_Hand7 er 

BOOL Install_IO_Handler(DWORD PortNum, PIO_HANDLER IOCallback); 
PortNum: 1/0 port number 
IOCallback: pointer to callback function, called when VM accesses 

PortNum 

PORTTRAP uses both device context and per-VM data structures. The device 
context structure, DEV I CE_CONTEXT, includes fields for items like the I/O port base 
address and the handle of the owner VM. The per-VM structure, DEVICCCB, consists 
of a single boolean field. This boolean is set whenever a user is asked to choose an 
owner VM from among two contending VMs. OnDevi celnit uses the VMM service 
_A 11 ocate_Devi ce_CB_Area to allocate room for a DEVICE_CB in the VM Control 
Block, then stores the returned offset in the device context. 

Handling Different 10 Types: PortTrapThunk 
When a port trap occurs, the VMM calls the handler registered through 
Install_IO_Handler. As is the case with other example VxDs in this book, the 
actual registered callback is found in the assembly module. In this case the function is 
_PortTrapThunk in the module PORTDDB.ASM (Listing 8.2, page 154), and like the 
other example VxDs we've seen so far, _PortTrapThunk does minimal processing 
before calling the "real" callback in the C module, which is PortTrapHa ndl er. 
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When the VMM invokes a port trap handler, the register data is set up as follows: 

Input: 
EAX=data for OUT instruction 
EBX=current VM handle 
ECX=IOType IIBYTE_INPUT, BYTE_OUTPUT, WORD_INPUT, WORD_OUTPUT, 

IIDWORD_INPUT, DWORD_OUTPUT, STRING_IO, REP_IO, 
IIADDR_32_IO, REVERSE_IO 

EDX=port number 
EBP=address of Client Register Structure 
Output: 
EAX=data returned by IN instruction 

PortTrapThunk passes all these parameters on to the C routine, after some initial 
pre-processing which involves the macro Emul a te_Non_Byte_IO. 

BeginProc PortTrapThunk 

Emulate_Non_Byte_IO 
cCall _PortTrap, <ebx, ecx, edx, ebp, eax> 
ret 

EndProc PortTrapThunk 

The VxD is "emulating" non-byte I/O because its hardware understands only 
byte-sized access. Nothing prevents an application from issuing word or dword 
I N/OUT instructions, or even from performing "string I/O" using REP I NSB/OUTSB. 
The VMM provides the macro Emul a te_Non_Byte_I 0 to allow a VxD port trap han
dler to pass non-byte accesses back to the VMM. This macro expands to 

;Emulate_Non_Byte_IO macro expansion 
cmp ecx, BYTE_OUTPUT 
jbe SHORT Byte_IO 
VMMJmp Simulate_IO 
Byte_IO: 
;cCall macro expansion 
push eax 
push ebp 
push edx 
push ecx 
push ebx 
call _PortTrap 
;C routine returned with data in EAX, just return as is to VMM 
ret 
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lfthe IOType parameter in ECX indicates a byte-sized access, the generated code 
falls through to the code after the macro, which pushes parameters on the stack and 
calls the C routine. If IOType is non-byte, then the code jumps to the VMM service 
S i mu 1 a te_I 0 . This service breaks down a word access into two sequential calls back 
into the port trap handler, each with ECX=BYTE_I NPUT or BYTE_OUTPUT. The service 
similarly breaks down dword and string access into multiple calls into the port trap 
handler. 

The C routine PortTrapHandl er called by _PortTrapThunk passes a return value 
in EAX, which _PortTrapThunk passes on to the VMM when it returns. If IOType was 
an I N of any size, the VMM will move the contents of EAX to the Client Register 
Structure EAX field. The end result is that the return value from _PortTrapThunk 
appears to the VM as the result of an I N instruction. 

If your hardware directly supports word or dword 110, your handler should 
also support these modes directly, rather than using Ernul ate_Non_Byte_IO. 

Checking Ownership: PortTrapHand7 er 
After taking care of non-byte access with the macro Ernul ate_Non_Byte_IO, the 
assembly language routine _PortTrapThunk calls the function PortTrapHandl er in 
the C module to do the real work - to allow port access by the owner VM while pre
venting access from a non-owner VM. 

DWORD _stdcall PortTrapHandler(VMHANDlE hVM. DWORD IOType. DWORD Port. 

DEVICE_CB *pCB; 
BOOl bThisVMlsOwner; 
VMHANDlE newVMOwner; 

bThisVMlsOwner = TRUE; 

if (!device.VMOwner) 
{ 

CLIENT_STRUCT *pcrs. DWORD Data) 

II device doesn't have an owner. assign this VM as owner 
SetOwner(hVM. &device); 
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else if (device.VMOwner && (device.VMOwner != hVM)) 
{ 

II device has an owner, but it's not this VM 
pCB = (DEVICE_CB *)«char *)hVM + device.cbOffset); 
if (pCB->flags & FLAGS_CONTENDED) 
{ 

II this VM has already attempted to grab the device 
bThisVMIsOwner = FALSE; 

else 
( 

newVMOwner = SHELL_Resolve_Contention(device.VMOwner, hVM, 
device.DeviceName ); 

if (newVMOwner != dev;ce.VMOwner) 
{ 

bThisVMIsOwner = FALSE; 
Data = OxFFFFFFFF; 

if (bThisVMIsOwner) 
{ 

if (IOType & BYTE_INPUT) 
( 

Data = _inp( Port ); 

else if (IOType & BYTE_OUTPUT) 
( 

_outp( Port, Data ); 

return Data; 

If the VMOwner field of DEVICE_CONTEXT is set to zero, then the device doesn't 
have an owner yet. In this case, the code calls the subroutine SetOwner to assign the 
VM that caused the trap as the owner. SetOwner updates the VMOwner field of 
DEV ICE_CONTEXT and disables local trapping for the new owner VM, using the VMM 
service Di sabl e_Loca l_Trappi ng. This service takes as parameters a VM handle and 
a port number. SetOwner calls the service in a loop, using the same VM handle (the 
new owner) and changing the port number each time to disable trapping on each of 
the device's ports. With local trapping disabled, the owner VM can now access the 
device without causing a fault and, thus, without interference from PORTTRAP. 
Access by any other VM will still cause a fault and a call to PortTrapHandl er. 
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If the device does have an owner but it's not the VM that caused the trap, PORT
TRAP may use the SHELL_Resol ve_Contenti on service to ask the user which VM 
should be owner: the already-assigned owner VM or the new "contender" VM. How
ever, the VxD doesn't bother the user every time a non-owner VM accesses the 
device, only the very first time. The FLAGS_CONTENDED bit in the Flag field in the 
per-VM control block determines whether theVxD queries the user. 

If FLAGS_CONTENDED is set, it means the VxD has already warned the user once 
that this VM is accessing the port and asked the user to assign an owner. In this case, 
PortTrapHandl er simply sets the local variable bThi sVMI sOwner to FALSE, which 
prevents code executed later in the function from performing the liD access on behalf 
oftheVM. 

If FLGS_CONTENDED is clear, the VxD immediately sets it and then calls 
SHELL_Resol ve_Contenti on, passing as parameters the VM handle of the current 
owner, the VM handle of the "contender" and a pointer to a device name. (See the 
sidebar "Why Blue Text?" for details on the SHELL_Reso 1 ve_Content i on display.) 
The SHELL VxD then displays a dialog box listing the name of each VM (usually 
corresponding to the name of the DOS application running in the VM) and the name 
of the device, and the user chooses which VM should own the device, 

SHELL_Resol ve_Contenti on returns to PortTrapHandl er with the handle of the 
chosen VM as a return value. If the user has not chosen the contending VM as owner, 
then PortTrapHandl er sets the local variable bThi sVMI sOwner to FALSE, so that code 
later in the function will not perform the liD. 

Why Blue Text? 

Why does SHELL_Reso 1 ve,-Content i on sometimes display a blue text screen instead of a dialog box? 
SHELLResolve_Contenti on appears to behave inconsistently, sometimes displaying a true Windows dia

log box on top of the GUI, and sometimes going into full-screen mode and displaying a blue text message. 
Many developers think this blue screen is ugly and would like to force SHELL_Reso 1 ve_Content i on to always 
display a true dialog box. 

Bad news: you can't. The SHELL VxD's behavior depends on the current state of the GUI subsystem of 
the System VM, as well as which VM is current when SHELL_Resol ve_Contenti on is called .. In short, if the 
GUI subsystem is already "busy" when this SHELL function is called, a true dialog box cannot be displayed, 
so the SHELL VxD does the next best thing: switches to text mode and displays an ugly blue screen with the 
message on it. 
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At this point, PortTrapHandl er has determined whether or not the.VM that 
caused the port trap is indeed the owner VM, and thus should be allowed to access the 
port, and has set bThi sVMIsOwner accordingly. If bThi sVMI sOwner is now TRUE, 
PortTrapHandl er carries out the I/O access on behalf of the VM, using the IOType 
parameter to determine whether to execute an I N or OUT and the Port parameter to 
determine the port address. If the access was an OUT, the Data parameter provides the 
output data. If the access was an IN, PortTrapHandl er sets Data to the result of the IN. 
Finally, PortTrapHandl er returns to his caller with Data as a return value. As explained 
in the previous section, the VMM propagates the port trap handler return value back 
to the VM, so the VM sees this value as the result of its I N instruction. 

Processing VM_TERMINATE· 
Once a VM has acquired ownership of a device, it continues to own it until 

• the VM terminates or 

• the user selects a different owner through the Shell_Resol ve_Contenti on service; 

To detect the first case, PORTIRAP processes the VM_TERMINATE message. 
OnVmTermi nate checks to see if the VM being destroyed is the device owner and, if 
so, sets VMOwner to zero to mark the device as unowned. OnVmTerminate does not 
need to re-enable port-trapping for the VM, because the VM itself is being destroyed. 

Using PORTTRAP 
I've implemented PORTTRAP as a static VxD so that it is present for the creation and 
destruction of all VMs. Under Windows 95, you can load a static VxD one of two 
ways: a devi ce= statements in the [386Enh] section of SYSTEM. INI, or a registry 
entry under SYSTEM\CurrentControlSet\Services\VxD. For details on static load 
methods, refer to Chapter 4. 

An easy way of testing PORTTRAP is to open several DOS boxes and use 
DEBUG to access the device through one of the ports at 300h-307h. (Use the ; and 0 

commands for input and output.) You'll see that aftetyou access anyone of the eight 
I/O ports that make up the imaginary device in one DOS box, the first access to the 
device in a different DOS box results in the "Device Contention" dialog box from the 
SHELL VxD. If you assign the original DOS box as owner, subsequent accesses by the 
second DOS box will not result in the dialog box. But if you open up a third DOS box 
and access the port from there, you will once again seethe Device Contention dialog. 
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Virtualizing a Memory-mapped Device: 
The PAGETRAP Example 
A device that is memory-mapped, as opposed to I/O-mapped, may also need a VxD to 
perform device arbitration. The need for such a VxD depends on where the device is 
mapped in memory. A device mapped above 1Mb in physical memory by definition 
cannot be accessed by a DOS application, and so doesn't need to be virtualized. But a 
device mapped below 1Mb can be accessed by a DOS application, and so may need a 
VxD for virtualization. 

Because the only standard PC memory-mapped device is the video adapter, and the 
Video Device Driver (VDD) already virtualizes it, I've designed PAGETRAP (Listing 8.5, 
page 157) to virtualize the monochrome video adapter. If you don't have a mono
chrome video adapter, then PAGETRAP will still work, as PORTTRAP did, on an 
imaginary device. 

The Initialization Routine 
To intercept access to a memory-mapped device, PAGETRAP calls the following 
VMM services in its Dev i ce_I nit message handler: 

• _Ass i gn_Devi ce_V86_Pages, to tell the VMM that the VxD will be using a spe
cific range of pages in V86linear address space (i.e. below 1Mb), 

• _ModifyPageBits, to mark the pages as not present so that VM access to the 
pages will cause a page fault, and 

Hook_V86_Page, to register a page fault handler for those pages. 

Note that PAGETRAP does not allocate pages in physical memory, because 
the memory is already supplied by the device. 

BOOl OnDevicelnit(VMHANDlE hVM) 
{ 

DWORD PageNum = device.RegionPhysAddr » 12; 
DWORD nPages = device.RegionSize I 4096; 

if (!_Assign_Device_V86_Pages(PageNum, nPages, hVM, 0 )) 
( 

DPRINTF("Assign_Dev;ce_V86_Pages failed\r\n"); 
return FALSE; 
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if (!Hook_V86_Page(PageNum. PageFaultThunk » 

( 
DPRINTF( "Hook_V86_Page fai led\r\n"); 
return FALSE; 

if (!_Modi fyPageBits (hVM. PageNum. nPages. -P _AVAI L. O. PG_HOOKED. 0 » 
( 

} 

DPRINTF("ModifyPageBits failed\r\n"); 
return FALSE; 

return TRUE; 

_Assign_Device_V86_Pagesallows a VxD to claim pages in a VM's linear 
address space for use by a device. Later calls will associate physical address space 
with these linear pages. PAGETRAP uses the monochrome video adapter's physical 
address and size, stored inthe DEVICCCONTEXT structure, to derive the values for the 
VMl i nrPage and nPages parameters. 

BOOl _Assign_Device_V86_Pages (DWORD VMLinrPage. DWORD nPages. 
VMHANDLE hVM. DWORD flags); 

VMlinrPage: linear page number (linear address » 12) 
nPages: number of (4 KB) pages 
hVM: zero for global assignment 

non-zero VM handle for local assignment 
flags: reserved; must be 0 

A zero value for the hVM parameter means the assignment is global, that is, the 
pages are assigned to the device in all VMs (present and future). A non-zero value 
means the assignment is local; the pages are assigned to the device only in the VM 
identified by hVM. The VMM will return an error if one VxD has claimed a page glo
bally and another VxD tries to claim the same page, whereas two different VxDs can 
both claim the same page locally without error. PAGETRAP uses zero for hVM, so that 
the device pages are claimed in all VMs. 

Next, the OnDevi celnit routine calls Hook_V86_Page to register a page fault han
dler routine. PAGETRAP only hooks a single page. If you're writing a VxD for a 
device that spans multiple pages, you will need to call this service repeatedly - once 
for each page. I'll explain thepage fault handler code in detail later. 
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The Calling Interface for Hook_V86_Page 

BOOl Hook_V86_Page(DWORD PageNum. PV86Page_HANDLER Callback ); 
PageNum: linear page number 
Callback: pointer to callback function. 

called when any VM causes a page-fault on PageNum 

Last, OnDevi celnit calls _ModifyPageBits to mark the device page as not 
present in the System VM. Once again, the parameters hVM, VMl i nPgNum, and nPages 
are self-explanatory. The bit-mapped values for the bi tAnd and bi tOr parameters 
match the processor's page table entry bits exactly. 

The Calling Interface for _ModifyPageBits 

BOOl _ModifyPageBits(VMHANDlE hVM. DWORD VMlinPgNum. DWORD nPages. 
DWORD bitAnd. DWORD bitOR. DWORD pType. 
DWORD Flags); 

To force a page fault. PAGETRAP must clear the P _PRES, P _WRITE, and P _USER 
bits. The VMM. H header files has a /fdefi ne for this particular combination of bits: 

To clear these three bits and leave all other bits as is, PAGETRAP uses a value of 
(-P _AVA I l) for the b i tAND parameter and 0 for the b i tOR. PAGETRAP uses a value 
of PG_HOOKED for the pType parameter, because the DDK documentation says that 
PG_HOOKED must be used if P _PRES, P _WRITE, or P _USER is being cleared. 

PAGETRAP calls _ModifyPageBits with the very same parameters in its 
OnCreateVm message handler, so that the device pages are also marked as 
not present in the page tables for each new VM. 
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The Fault Handler Routine 
PageFaultHandl er [which is called by _PageFaul tThunk in PAGEDDB. ASM (Listing 8.6, 
page 160)] has two jobs: it arbitrates access to its memory-mapped device, and it 
maps the owner VM's linear address to the device's physical address. PAGETRAP 
uses the same strategy that PORTIRAP did for device arbitration: you touch it, you 
own it. PAGETRAP's implementation is even simpler, though, as it doesn't ask the 
user to resolve contention. This means PAGETRAP uses noper-VM data and thus 
doesn't need to allocate space in the CB. PageFaul tHandl er merely watches for the 
first VM to access the device, and assigns that VM as owner. 

VOID __ stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber) 
{ 

if (device.VMOwner) 
{ 

II device already has an owner, owner wouldn't cause a page 
II fault therefore this VM is not owner 

else 
( 

if (!_MapIntoV86( _GetNulPageHandle(), PageNumber, hVM, 
PageNumber, device.RegionSize I 4096, 0, 0 » 

DPRINTFO("MapIntoV86 failed\r\n"); 

device.VMOwner = hVM; 
_PhysIntoV86( PageNumber, hVM, PageNumber, 

device.RegionSize I 4096, 0 ); 

After an owner has been assigned, PAGETRAP causes all owner VM accesses to 
the memory-mapped device to go straight to the device, while all non-owner accesses 
are either ignored (writes) or return OxFF (reads). To get this behavior, PAGETRAP 
uses the service _PhysIntoV86, which updates the VM's page tables to map a range 
of linear address space to a range of physical memory. 
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The Calling Interfacefor _PhyslntoV86 

BOOl _PhyslntoV86(DWORD PhysPage. VMHANDlE hVM. 
DWORD VMlinPgNum. DWORD nPages. DWORD Flags); 

PageFau1 tHandl er uses the handle of the faulting VM (provided by the caller, 
_PageFaul tThunk) for hVM. Both PhysPage and VMl i nPgNum are set equal to 
device.RegionPhysAddr » 12 and nPages is set to device.RegionSize/4096. 
These values make linear page OxBO in the faulting VM map to physical page OxBO. 
After this call, reads and writes by the VM to the device's linear address go directly to 
the device, without page-faulting. 

This is the action taken by PageFau1 tHand1 er if the device had no owner. On the 
other hand, if the device already has an owner - a VM already accessed the pages 
and was assigned ownership - then PAGETRAP must take another action. Ideally, 
PAGETRAP would make it seem as if the device isn't present at that address, perhaps 
by returning OxFF as a result of the VM's read of this address. But unlike a port trap 
handler, a VxD page fault handler doesn't have a return value that it can use to return 
OxFF for a particular memory read access. 

PAGETRAP has two options to trick the non-owner VM into seeing no device at 
physical address OxBOOOO. One is to _PageA 11 ocate a region of physical memory, fill 
it with OxFF, and, when the page fault occurs, map the VM's pages to the allocated 
page. The VM will then see a region of memory that initially reads OxFFs (although 
the page can be written to and read back with a new value). Presumably the device 
region would not read OxFFs if the device was actually present at that page, and the 
VM would then determine the device wasn't present and would not attempt further 
access. 

The other option achieves the same result with less work. Instead of mapping to a 
target page of OxFFs, the VxD can map the VM's pages to a special page already allo
cated by the VMM called the "null page". The null page is mapped to different loca
tions at different times, so the contents are random. This behavior should also cause 
the VM to determine that the device isn't present and not attempt further access. In 
my experience, the null page often maps to non-existent RAM, which does result in 
reading OxFF. 

PAGETRAP uses the null page approach. If the device is already owned, 
PageFaul tHandl er first calls _GetNu1 PageHandl e to return the memory handle of 
the null page. Then PageFaultHandler calls the VMM service _MaplntoV86 to 
map the VM's linear address space to this null page. 
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The Calling Inter/ace/or _MaplntoV86 

BOOl _MaplntoV86(MEMHANDlE hMem. VMHANDlE hVM. 
DWORD VMlinPageNumber. DWORD nPages. DWORD PageOff. 
DWORD Fl ags) ; 

PAGETRAP uses the handle returned by _GetNul PageHllndl e for the hMem 
parameter and the VM handle of the faulting VM for hVM. Once again, VMLi nPgNumis 
device.RegionPhysAddr » 12 and nPages is set to device.RegionSize/4096. 
This service has an additional parameter, PageOff, which PAGETRAP sets to 0 so the 
first page of the linear region is mapped into the first page of the physical (null page) 
region. After the call to _MaplntoV86 with these parameters, reads and writes by the 
VM to the device's linear address go directly to the null page without page-faulting. 

Processing VM_Terminate 
PAGETRAP also processes the VM....JERMINATE message. OnVmTerminate checks to 
see if the VM being destroyed is the device owner, and if so, sets VMOwner in the 
device context to zero to mark the device as unowned. It is not necessary to do any
thing with the VM's page tables since the VM is being destroyed. 

Using PAGETRAP 
You can test PAGETRAP by opening several DOS prompt windows and using 
DEBUG to read and write to the monochrome adapter at BODO: OOOOh. If you have an 
adapter installed, you should be able to read and write to it via DEBUG in the first 
DOS window that was opened, but you should see random data in the window when 
reading and writing to it from subsequent DOS windows. If you don't have an adapter 
at all, you'll read only OxFFs from the first DOS window and random data from the 
other DOS windows. 
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Virtualizing a Hardware Interrupt 
When virtualizing a device that generates interrupts, a VxD may virtualize the inter
rupt by "reflecting" it to a VM for servicing instead of servicing it in the VxD. A VxD 
reflects an interrupt - causes the interrupt handler in a VM to execute - by using 
VPICD services. A VxD can reflect an interrupt to any VM it chooses, but most VxDs 
assign VM ownership of a device through port-trapping or page-trapping, or even 
through an API, and then reflect all interrupts to the owner VM. 

Because hardware interrupts occur asynchronously, any VM could be executing at 
the time a VxD calls the VPICD service for reflection. As the first step in -reflection, 
the VPICD must force the desired VM to be scheduled. The VPICD forces the sched
uling change by calling the VMM service Ca 11_Pri ori ty-VM_Event with the highest 
priority, Ti me_Crit i ca l_Boost. 

The VPICD provides a callback with this service, so the VMM may notify the 
VPICD when the target VM has been scheduled. The VPICD responds to the callback 
by using anotherVMM service, Simul ate_Int, to modify the VM's execution envi
ronment. Simul ate_Int changes the VM's state information so that it appears to exe
cute an I NT instruction: the VM's CS, I P, and flags registers are pushed onto the VM's 
stack; and the VM's new CS and I P values are fetched from the VM's IVT (location 
0000: OOOOh in the VM's address space). In addition, the VPICD also clears the VM's 
interrupt flag because it's really simulating a hardware interrupt, not a software inter
rupt. When the VPICD returns from this callback and the VMM switches back to V86 
mode, the VM immediately executes the interrupt handler for the hardware interrupt 
that was originally fielded by the VPICD. 

WhichVM? 
The VPICD itself will reflect a hardware interrupt that is not claimed by any other VxD. 
Although the VPICD doesn't know about any other hardware devices besides its own (the 
PIC), it must still decide which VM gets the interrupt. In making this decision, the VPICD 
differentiates between local interrupts and global interrupts. A local interrupt is one that 
was disabled (in the physical PIC) at Windows startup. A global interrupt is one that was 
enabled at Windows startup. Note that since a global interrupt is enabled, a global inter
rupt must already have an interrupt handler installed in the BIOS, in a DOS driver, or in a 
TSR when Windows begins. We'll explore the importance of this statement shortly. 

After Windows initializes, a VM may install an interrupt handler and then enable 
it in the PIC. By definition, that's a local interrupt. The VPICD now considers the VM 
that enabled the interrupt to be its owner, and from this point on the VPICD will 
always reflect this interrupt to the owner VM. This policy makes sense because the 
VM interrupt handler exists only in the installing VM; reflecting the interrupt to any 
other VM would result in calling an invalid address. 
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Global interrupts, on the other hand, do not have owners, but are reflected to what
ever VM happens to be executing at the time the interrupt occurred. This works 
because a global interrupt was enabled when Windows started, and therefore had a 
handler installed when Windows started, which in tum means that the "global" han
dler exists in all VMs. Thus, it really doesn't matter to which VM the VPICD reflects 
a global interrupt - each has an IVT that points to the same handler. The difference 
between global and local interrupts is illustrated in Figure 8.1. 

Once the VPICD has chosen a VM for reflection, it must make another choice: 
whether to call the protected mode or V86 mode handler. As Chapter 4 explained, all 
VMs start in V86 mode, and thus, have a V86 component; some VMs later switch to 
protected mode, and thus have a PM component also. One or both of these two com
ponents may install an interrupt handler. V86 interrupt handlers are those installed by 
a VM's V86-mode component, which includes the BIOS and DOS. PM interrupt han
dlers are those installed by a VM's PM component - usually a Windows DLL, but 
possibly a DOS-extended application using DPMI. 

The VPICD always calls the protected mode handler, if one is installed. Only if no 
protected mode handler has been installed does the VPICD call the V86 mode handler. 
VPICD maintains a pseudo-IDT, which is updated when a protected mode application 
installs an interrupt handler through DOS Set Vector or DPM1 Set Protected Mode 
Vector. This pseudo-IDT is used to get the address of the protected mode handler. 
Similarly, VPICD maintains a pseudo-IVT, which is updated when a DOS application 
installs an interrupt handler (or when a Windows application calls DPM1 Set Real 
Mode Vector), and this pseudo-IVT provides the address of the V86 mode handler. 

The above describes the VPICD's default behavior when no VxD has registered 
for the interrupt. If a VxD has registered for the interrupt and plans to reflect it to a VM, 
then it is the VxD's responsibility to choose the appropriate VM and direct the inter
rupt to the correct handler (protected mode or V86 mode). Typically, a VxD tracks 
ownership of a device and reflects the interrupt to the owner VM. The VxD passes the 
owner's VM handle to the VPICD as part of the call to VP1CD_Set_1nCRequest. 
(This service will be described in detail later in this chapter.) 

A VxD for Hardware Interrupt Reflection 
The REFLECT VxD (Listing 8.9, page 163) illustrates how to reflect an interrupt to 
an owner VM. The example code virtualizes the Real Time Clock interrupt, IRQ 8 
(not to be confused with the timer interrupt on IRQ 0), but can be easily modified to 
work with any IRQ. 

REFLECT virtualizes IRQ 8 during Devi ce_1nit processing with a call to 
VP1 CD_Vi rtua 1 i ze_1 RQ, passing a pointer to its VP I CD_1 R(LDESCR1 PTOR structure, 
I rqDesc. VP1CD_Vi rtual i ze_1 RQ returns an IRQ handle, which REFLECT stores in 
its device context. This handle will be used later when calling other VPICD services. 
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Figure 8.1 VPICD associates an owner with each 
interrupt so that it can force the scheduling 
of the appropriate VM when a local 
interrupt is received. Global interrupts 
go to whichever VM is currently executing. 
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struct VPICD_IRO_Descriptor 
USHORT VID_IRO_Number; 
USHORT VID_Options; 
ULONG VID_Hw_InLProc; 
ULONG VID_Virt_Int_Proc; 
ULONG VID_EOI_Proc; 
ULONG VID_Mask_Change_Proc; 
ULONG VID_IRET_Proc; 
ULONG VID_I RET_Ti me_Out; 
PVOID VID_Hw_Int_Ref; 

The V P I CD_I RO_DESC RI PTOR structure contains pointers to five callback func
tions, which the VPICD uses to notify the VxD of changes to the state of the physical 
and the virtualized IRQ. These callbacks are the key to reflecting an IRQ to an owner 
VM. The VXDISR VxD discussed in a previous chapter used this same structure but 
filled in only the V I D_Hw_I nt_P roc field. REFLECT fills in all five fields. VXDISR 
needed only one callback because it actually serviced the interrupt; REFLECT is only 
reflecting the interrupt to a VM for servicing. 

The VPICD_I RO_DESCRI PTOR structure used by REFLECT is statically initialized 
as follows: 

VPICD_IRO_DESCRIPTOR IrqDesc = { RTC_IRO. VPICD_OPT_REF_DATA. 
HwIntThunk. VirtIntThunk. EOIThunk. 
MaskChangeThunk. IRETThunk. 500. 
&device }; 

REFLECT follows the same framework as the other VxDs in this book: all regis
tered callback functions reside in the assembly language module. The C function 
always ends in the name "Handler". In the sections below, I'll talk only about the han
dler functions in the C module. 

Callbacks: MaskChangeHand7 er 

VOID MaskChangeHandler(VMHANDlE hVM. IROHANDlE hIRO. BOOl bMasking) 
( 

if (!bMasking) 
{ 

if (!device.VMOwner) 
{ 

device.VMOwner = hVM; 



else 
( 

if Cdevice.VMOwner != hVM)) 
( 
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device.VMOwner = SHELL_Resolve_ContentionCdevice.VMOwner, hVM 
device.DeviceName ); 

} 

VPICD_Physically_UnmaskC hIRQ ); 

else 
( 

device.VMOwner = 0; 
VPICD_Physically_MaskC hIRO ); 

When a VM masks or unmasks IRQ 8 in the interrupt controller, the VPICD calls 
MaskChangeHandl er. REFLECT is more interested in unmasking than masking. 
REFLECT's rule for ownership is: "you enable the interrupt in the PIC, you own it". 
So if bMas ki ng is FALSE, the function examines the VMOwner field in the device context 
to see any VM owns the IRQ. If no VM currently owns IRQ 8, MaskChangeHandl er 
assigns the current VM as owner by setting VMOwner to the VM that is doing the 
unmasking, hVM. 

If a VM already owns the IRQ, but a different (non-owner) VM is attempting the 
unmask, then MaskChangeHandl er uses the SHELL_Reso 1 ve_Content i on service to ask 
the user which VM should own the device. (See the earlier discussion of PORTTRAP 
for details on SHELL_Reso 1 ve_Contenti on.) 

After determining the owner VM, MaskChangeHandl er calls VPICD_Physi ca lly_Unmask 
to unmask the interrupt in the actual interrupt controller, then returns to the VPICD. Physi
cally unmasking the interrupt is an important step. If no V xD has virtualized the IRQ, the 
VPICD traps all I Ns and OUTs to the interrupt controller and will unmask the interrupt on the 
VM's behalf. But once a VxD has virtualized an interrupt, the VPICD gets out of the way 
and the VxD must unmask the interrupt on the VM's behalf. The unmask service requires an 
IROHANDLE parameter so MaskChangeHandl er supplies the handle stored in the device 
context (the one returned by V P I CD_Vi rtua 1 i ze_I RO). 

If the VM is masking (disabling) the IRQ, REFLECT sets VMOwner to 0, then passes 
the mask request on to the VPICD with a call to the service VPICD_Phys i ca lly_Mask 
and exits. It's not strictly necessary to set the owner to "none" in response to a mask 
because the interrupt can't even get to the processor while masked. However, the only 
other time the VxD could realistically set the owner to "none" would be in response to a 
VM_ Termi na te message. Setting the owner to "none" in response to a mask is more use
ful, because many applications will disable (mask) the interrupt as soon as they've fin
ished with the device (as opposed to waiting until the user exits the program). By 
un assigning ownership at this time, the VxD can let another VM use the device. 
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Callbacks: HwlntHand7 er 
BOOl _stdcall HwIntHandler(VMHANDlE hVM, IRQHANDlE hIRQ) 
{ 

if (device.VMOwner && !device.bVMIsServicing) 
{ 

VPICD_Set_Int_Request( device.VMOwner, hIRQ ); 

else 
{ 

EatInt(); 

return TRUE; 

The actual reflection process occurs in HwIntHandl er, which the VPICD calls 
whenever an interrupt occurs on IRQ 8. HwlntHandl er then reflects, or simulates, an 
interrupt into the owner VM, but only under certain conditions: 

current (interrupted) VM is the device owner, and 

current VM's handler isn't servicing the device interrupt. 

REFLECT uses the flag bVMI sServi ci ng in the device context to prevent an inter
rupt from being simulated to the VM while the VM is still handling a previous inter
rupt. If the VM is overwhelmed with too many simulated interrupts, the interrupts will 
nest and the VM interrupt handler's stack will overflow. This flag is set and cleared in 
the Vi rtIntHandl er and I RETHandl er routines, which will be discussed shortly. 

If the two conditions are met, REFLECT reflects the interrupt to the owner VM by 
calling VPICD_Set_Int_Request. This service requires two parameters, an I RQHANDlE 
and a VMHANDlE. HwI ntHandl er uses the I RQHANDlE field of the device context for the 
first, and the VMOwner field for the second. Note that when this service returns to 
HwI ntHandl er, the VM interrupt handler has not been called, the VPICD has only 
scheduled an event to take action later. However, HwlntHandl er has done its duty, and 
now returns. 

If HwlntHandler does not reflect the interrupt because conditions aren't right, it 
must service the interrupt itself. It does so by calling the subroutine E a tI n t. Clearing 
the interrupt in the device is an important step. If the interrupt is not cleared at the 
device, then the IRQ will remain asserted and the VPICD will never see another inter
rupt from that device because IRQs for ISA devices are edge-triggered. 



void EatInt( void) 
( 

unsigned char temp; 

temp = CmosReadReg( RTC_STATUSC ); 
VPICD_Phys_EOI( device.IrqHandle }; 
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The behavior of EatInt is specific to the RTC device: it clears the pending device 
interrupt by reading a status register. Because the interrupt was actually serviced, if 
only to be discarded, Eat I n t also calls V P I CD_P hy s_EO I to tell the VPICD to EOI the 
controller. Finally, EatI nt returns to its caller, HwIntHandl er. 

HwIntHandl eralways returns TRUE to its caller, _HwIntThunk. This return causes 
_HwlntThunk to clear the Carry flag before returning to the VPICD. Carry clear on 
return informs the VPICD that theIRQ was processed by the VxD, and so the VPICD 
should not call the next VxD in the sharing chain. As written, REFLECT does not 
share interrupts, because the RTChardware can't share its interrupt with other 
devices. 

If your device does properly support sharing IRQs, you can easily enhance 
the VxD. Your HwIntHandl er should first ask the device if it has an interrupt 
pending and if not, return with FALSE. The _HwIntThunk would then set the . 

. C~rr.x flag. so that the VPICD.calls the next VxD handler in the chain. 

Callbacks: EOIHand7 er 

void _stdcall EOIHandler(VMHANDLE hVM.IRQHANDLE hIRO) 
( 

VPICD_Phys_EOI( hIRQ ); 
VPICD_Clear_Int_RequestC device.VMOwner. ·hIRQ }; 

EO I Ha nd 1 e r is called whenever theVM interrupt handler - executed eventually 
as a result of REFLECT's call to VPICD_Set_Int - issues an EOI to the interrupt 
controller. EOIHandl er first calls VPICD_Phys_EOI on behalf of the VM that 
attempted t()issue an EOI. The only parameter expected by VPICD_Phys_EOI is the 
IRQ handle. Last, EOIHandl er calls VPICD.:,..cl ear _InCRequest, supplying the han
dle of the owner VM as the hVM parameter. 
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This call to VP1 CD_Cl ea r _I nCRequest clears the request set by Hw1 ntHandl er's 
call to VP1CD_SeC1nCRequest. Without this step, the VPICD would again reflect 
the interrupt to the VM handler some time after E01Handl er returned to the VPICD. 

Callbacks: VirtlntHand7erand IRETHand7er 

void Virt1ntHandler(VMHANDLE hVM. 1RQHANDLE h1RQ) 
( 

device.bVM1sServicing = TRUE; 

Vi rt1 ntHandl er is called each time the VPICD begins simulating the interrupt 
into a VM. That is, it marks the beginning of the execution of the VM's interrupt han
dler. Vi rt1ntHandl er sets the bVM1 sServi ci ng flag, which prevents Hw1 ntHandl er 
from reflecting further interrupts into the VM until the VM handler has returned with 
an 1RET. 

void _stdcall 1RETHandler(VMHANDLE hVM. 1RQHANDLE h1RQ) 
{ 

device.bVMIsServicing = FALSE; 

REFLECT knows when the VM handler has returned because another callback, 
I RETHandl er, is called at that time. I RETHandl er clears the bVMI sServi ci ng flag, 
which allows HwlntHandl er to reflect an interrupt once again. 

Summary 
Writing a VxD to virtualize a device is very different than writing a VxD to control a 
device, because it requires a completely different set of VMM and VxD services. 
Many VxDs today don'~ virtualize at all, because they are written for newer devices 
and there are no DOS or Windows applications that use this hardware directly. 

If you do need to virtualize an I/O-mapped or memory-mapped device, trapping 
port or memory accesses is actually pretty easy. Virtualizing an interrupt is more com
plicated, simply because the process of interrupt reflection under Windows is itself 
complicated. 

The last three chapters have talked about controlling hardware in a VxD and virtu
alizing hardware in a VxD. The next two chapters deal with another hardware aspect, 
discovering a device's configuration: I/O address, IRQ, etc. 



Listing 8.1 PORTTRAP. C 

#include <basedef.h> 
#i nc 1 ude <vrnm: h> 
#include <debug.h>. 
#include <vxdwraps.h> 

#include <vxdcall.h> 
#include <wrappers.h> 
#include <intrinsi.h> 

#ifdef DEBUG 
#define DPRINTFO(buf) Out_Debug_String( buf ) 
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#define DPRINTFl(buf, fmt, argl) _Sprintf(buf, fmt, argl ); Out_Debug_String( buf ) 
#else 
#define DPRINTFO(buf) 
#define DPRINTFl(buf, fmt, argl ) 
#endif 

#define IO_BASE Ox300 
#define NUM_IO_PORTS 8 
#define FLAGS_CONTENDED OxOOOl 
typedef struct 
{ 

WORD numloPorts; 
WORD IoBase; 
VMHANDlE VMOwner; 
DWORD cbOffset; 
char DeviceName[8]; 

DEVICE_CONTEXT; 

typedef struct . 
{ 

WORD flags; 
} DEVICLCB; 

DEVICE_CONTEXT device = { NUM_IO_PORTS, IO_BASE, NUll, 0, 
{'P' ,'0'. 'R', 'T', 'T'.'R', 'A', 'P'} }: 

char buf[80]; 

BOUl OnDevicelnit(VMHANDlE hVM); 
void OnSystemExit(VMHANDlE hVM); 
void OnVmTerminate(VMHANDlE hVM); 
void SetOwner( VMHANDlE newVMOwner, DEVICE~CONTEXT *dev ); 
DWORD _stdcal1 PortTrapHandler(VMHANDlE hVM, DWORD IOType, DWORD Port, 

ClIENT_STRUCT *pcrs, DWORD Data); 

/I "funct ions in asm modul e 
void PortTrapThunk( void ); 
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Listing 8.1 (continued) 

BOOL OnDeviceInit(VMHANDLE hVM) 
{ 

int i; 

PORTTRAP.C 

for (i=O; i < device.numIoPorts; i++) 
{ 

} 

if (!Install_IO_Handler(device.IoBase+i. PortTrapThunk » 
{ 

DPRINTF1(buf. "Error install ing handler for io %x\r\n". IO_BASE+i ); 
return FALSE; 

if (device.cbOffset = _Allocate_Device_CB-Area(sizeof(DEVICE_CB). 0» 
{ 

DPRINTFO("Error alloc'ing control block\r\n" ); 
return FALSE; 

return TRUE; 

VOID OnSystemExit(VMHANDLE hVM) 
{ 

int i; 

for (i=O; i < device.numloPorts; i++) 
{ 

} 

if (! Remove_IO_Handl er(devi ce. IoBase+i » 
{ 

DPRINTFl( buf. "Error removi ng handl er for i 0 %x\r\n". devi ce. IoBase+i) ; 
break; 

if (device.cbOffset) 
_Deallocate_Device_CB-Area( device.cbOffset. 0 ); 

VOID OnVmTerminate(VMHANDLE hVM) 
{ 

if (hVM == device.VMOwner) 
{ 

device.VMOwner = 0; 



VxDs for Virtualization - 153 

Listing 8.1 (continued) PORTTRAP. C 

DWORD _stdcall PortTrapHandler(VMHANDlE hVM. DWORD IOType. DWORD Port. 

DEVICE_CB *pCB; 
BOOl bThisVMIsOwner; 
VMHANDlE newVMOwner; 

bThisVMIsOwner ~ TRUE; 

if (!device.VMOwner) 
{ 

ClIENT_STRUCT *pcrs. DWORD Data) 

II device doesn·t have an owner. assign this VM as owner 
SetOwner(hVM. &device); 

else if (device.VMOwner && (device.VMOwner !~ hVM)) 
{ 

II device has an owner. but it's not this VM 
pCB ~ (DEVICE_CB *)«char *)hVM + device.cbOffset); 
if (pCB->flags & FLAGS_CONTENDED) 
{ 

II this VM has already attempted to grab the device 
bThisVMIsOwner ~ FALSE; 

} 

else 
{ 

newVMOwner ~ SHEll_Resolve_Contention(device.VMOwner. hVM. device.DeviceName ); 
if (newVMOwner !~ device.VMOwner) 
{ 

bThisVMIsOwner ~ FALSE; 
Data ~ OxFFFFFFFF; 

if (bThisVMIsOwner) 
{ 

if (IOType & BYTE_INPUT) 
{ 

Data ~ _inp( Port ); 
} 
else if (IOType & BYTE_OUTPUT) 
{ 

_outp( Port. Data ); 

return Data; 
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Listing S.l (continued) PORTTRAP. C 

void SetOwner( VMHANDLE newVMOwner, DEVICE_CONTEXT *dev 
{ 

int i; 

for (i-a; i < dev->numloPorts; i++) 
( 

} 

Disable_Local_Trapping( dev->VMOwner, dev->IoBase+i ); 
Enable_Local_Trapping( newVMOwner, dev->IoBase+i); 

dev->VMOwner - newVMOwner; 

ListingS.2 PORTDDB. ASM 

.386p 

;****************************************************************************** 
INCLUDES 

;************************~***************************************************** 

include vmm.inc 
include debug.inc 

V I R T U A L D E V ICE DEC L A RAT ION 

DECLARE_VIRTUAL_DEVICE PORTTRAP, 1. O. ControlProc, UNDEFINED_DEVICE_ID, \ 
UNDEFINED_INIT_ORDER 

PROCEDURE: ControlProc 

DESCRI PTl ON: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX - Control call ID 

EXIT: 
If carry clear then 

Successful 
else 

Control call failed 

USES: 
EAX, EBX, ECX, EDX, ESI. EDI, Fl ags 
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Listing 8.2 (continued) PORTDDB. ASH 

BeginProc Contro1Proc 
ControLDispatch DEVICE_INIT. _DnDeviceInit. cCall.<ebx> 
Control_Dispatch SYSTEM_EXIT. _DnSystemExit. cCa11. <ebx> 
Control_Dispatch VM-TERMINATE. _DnVmTerminate. CCa11. <ebx> 

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _QnSY5DynamicDeviceInit. cCa11. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _DnSysDynamicDeviceExit. cCa11 

c1c 
ret 

EndProc Contro1Proc 

VxD_LOCKED_CODE_ENDS 

VxD_CODCSEG 

PUBLIC _PortTrapThunk 
_PortTrapThunk PROC NEAR; called from C. needs underscore 

Emu1ate_Non_Byte_IO 
sCa11 PortTrapHand1er. <ebx. ecx. edx. ebp. eax> 
ret 

_PortTrapThunk ENDP 

VXD_CODCENDS 

END 

Listing 8.3 PORTTRAP. MAK 

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXOWRAPS 
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -ODEBUG 

all: porttrap.vxd 

porttrap.obj: porttrap.c 
c1 $(CVXDFLAGS) -Fo$@ %s 

portddb.obj: portddb.asm 
. m1 $(AFLAGS) -Fo$@ %5 

porttrap.vxd: portddb.obj porttrap.obj .. \wrappers\vxdca11.obj porttrap.def 
echo >NUL @«porttrap.crf 

-MACHINE:i3B6 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-OEF:porttrap.def -OUT:porttrap.vxd -MAP:porttrap.map 
-VXD vxdwraps.c1b wrappers.c1b portddb.obj porttrap.obj vxdca11.obj 
« 

1 ink @porttrap.crf 
mapsym porttrap 
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Listing 8.4 PORTTRAP. DEF 

VXD VXDISR DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
I DATA CLASS 'ICODE' 

_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 
_IMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
VXDISR_DDB @l 

PRELOAD NONDISCARDABLE 
P.RELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 



Listing 8.5 PAGETRAP. C 

II PAGETRAP.c - main module for VxD PAGETRAP 

Hinclude <basedef.h> 
Hinclude <vmm.h> 
Hinclude <debug.h) 
Hinclude <vxdwraps.h) 

Hinclude <vxdcall .h> 
Hinclude <wrappers.h> 
#include <intrinsi.h> 

Hi fdef DEBUG 
#define DPRINTFO(buf) OuCDebug_String( buf ) 
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Hdefi ne DPRINTFl (buf. fmt. argl) ,..Spri ntf( buf. fmt. argl); Out_Debug_Stri ng( buf ) 
#else 
Hdefine DPRINTFO(buf) 
ffdefi ne DPRI NTFl( buf. fmt. a rgl) 
ffendi f 

#define DEVICCPHYS_ADDR OxBOOOOL 
ffdefine DEVICCREGION_SIZE 4096 

typedef struct 
{ 

DWORD RegionSize; 
DWORORegi onPhySAddr; 
VMHANDLE VMOwner; 
DWORD 1 i nAddr; 

DEVICE_CONTEXT; 

DEVICE_CONTE~T device = { DEVICCR£GION~SIZ£. OEviCE_PHYS-ADDR }; 

char buf[80]; 

BOOL OnOevicelnit(VM~ANDLE hVM); 
void OnSystemExit(VMHANOLE hVM); 
BOOL OnCreateVm(VMHANDLE hVM); 
void OnVmTerminate(VMHANDLE hVM); 
DWORD _stdcall PageTrapHandler(VMHANDLE hVM.DWORD PageNumber); 

II functions in asm module 
void PageFaultThunk( void ); 

BOOL OnSysDynamicDeviceInit(VMHANOLE hVM) 
{ 

OnDeviceInit(hVM); 
return TRUE; 

BODL OnSysDynamicDeviceExit(void) 
( . 

DnSystemExit(Get_Cur_VM_Handle(»; 
return TRUE; 
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Listing 8.5 (continued) PAGETRAP. C 

BOOL OnDevicelnit(VMHANDLE hVM) 
{ 

DWORD PageNum = device.RegionPhysAddr » 12; 
DWORD nPages = device.RegionSize I 4096; 

if (!_Assign_Device_V86_Pages(PageNum. nPages. hVM. a » 
( 

DPRINTFO( "Ass i gn_Devi ce_V86_Pages fa i 1 ed\ r\n") ; 
return FALSE; 

if (!Hook_V86_Page(PageNum. PageFaultThunk » 
( 

DPRINTFO( "Hook_V86_Page fai 1 ed\r\n"); 
return FALSE; 

if (!_ModifyPageBits(hVM. PageNum. nPages. -P_AVAIL. O. PG_HOOKED. 0 » 
( 

DPRINTFO( "Modi fyPageBits fa i 1 ed\ r\n") ; 
return FALSE; 

return TRUE; 

VOID OnSystemExit(VMHANDLE hVM) 
{ 

DWORD PageNum = device.RegionPhysAddr » 12; 
DWORD nPages = device.RegionSize I 4096; 

if (!Unhook_V86_Page(PageNum. PageFaultThunk » 
( 

DPRINTFO( "Unhook_V86_Page fa i 1 ed\ r\n") ; 
} 

if (!_DeAssign_Device_V86_Pages( PageNum. nPages. hVM. 0» 
( 

DPRINTFO( "DeAss i gn_Devi ce_V86_Pages fa il ed\ r\n") ; 

BOOL OnCreateVm(VMHANDLE hVM) 
{ 

if (!_ModifyPageBits(hVM. device.RegionPhysAddr » 12. device.RegionSize I 4096. 
-P_AVAIL. O. PG_HOOKED. 0 » 

DPRI NTFO( "ModifyPageBits fail ed\ r\n") ; 
return FALSE; 

return TRUE; 



Listing 8.5 (continued) 

VOID OnVmTerminate(VMHANDLE hVM) 
{ 

if (hVM ~ device.VMOwner) 
( 

device.VMOwner = 0; 
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PAGETRAP. C 

VOID __ stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber) 
{ 

if (device.VMOwner) 
{ 

else 
( 

II device already has an owner, owner wouldn't cause a page fault 
II therefore this VM is not owner 
if (!_MaplntoV86( _GetNulPageHandle(), PageNumber, hVM, 

PageNumber, device.RegionSize I 4096, 0, 0 )) 

DPRINTFO("MaplntoV86 failed\r\n"); 

device.VMOwner = hVM; 
_PhyslntoV86( PageNumber, hVM, PageNumber, device.RegionSize I 4096, 0 ); 
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Listing 8.6 PAGEDDB.ASM 

.386p 

.****************************************************************************** 
INCLUDES 

.****************************************************************************** 

include vmm. inc 
include debug.inc 

V I R T U A L D E V ICE DEC L A RAT ION 

DECLARE_VIRTUAL_DEVICE PAGETRAP. 1. D. Contro1Proc. UNDEFINED_DEVICE_ID. \ 
UNDEFINED_INIT_ORDER 

PROCEDURE: Contro1Proc 

DESCRIPTION: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX ~ Control ca 11 ID 

EXIT: 
If carry clear then 

Successful 
else 

Control call failed 

USES: 
EAX. EBX. ECX. EDX. ESLEDI. Flags 

BeginProc Contro1Proc 
Control_Dispatch DEVICE_INIT. _OnDeviceInit. cCa11. <ebx> 
Control_Dispatch SYSTEM_EXIT. _OnSystemExit. cCa11. <ebx> 
Control_Dispatch VM_TERMINATE. _OnVmTerminate. CCa11. <ebx> 

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDeviceInit. cCa11. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCa11 

c1 c 
ret 

EndProc Contro1Proc 
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Listing 8.6 (continued) PAGEDDB.ASM 

PUBLIC _PageFaultThunk 
_PageFaultThunk PROC NEAR called from {, needs underscore 

sCall PageFaultHandler, <eax, ebx> 
ret 

_PageFaultThunk ENDP 

VXD_CODE_ENDS 

END 

Listing 8.7 PAGETRAP. MAK 

CVXDFLAGS ~ -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL~l -DDEBUG -DWANTVXDWRAPS 
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG 

all: pagetrap.vxd 

pagetrap.obj: pagetrap.c 
cl $(CVXDFLAGS) -Fo$@ %s 

pageddb.obj: pageddb.asm 
ml $(AFLAGS) -Fo$@ %s 

pagetrap.vxd: pageddb.obj pagetrap.obj .. \wrappers\vxdcall.obj pagetrap.def 
echo >NUL @«pagetrap.crf 

-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:pagetrap.def -OUT:pagetrap.vxd -MAP:pagetrap.map 
-VXD vxdwraps.clb wrappers.clb pageddb.obj pagetrap.obj vxdcall .obj 
« 

link @pagetrap.crf 
mapsym pagetrap 
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Listing 8.8 PAGETRAP. DEF 

VXD PAGETRAP DYNAMIC 
SEGMENTS 

LTEXT CLASS 'LCODE' 
LDATA CLASS 'LCODE' 

_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 

LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
I DATA CLASS 'ICODE' 

_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
IMSGDATA CLASS 'MCODE' 

_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
PAGETRAP_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 



Listing 8.9 REFLECT. C 

II REFlECT.c - main module for VxD REFLECT 
IIi ncl ude <basedef. h> 
lIinclude <vmm.h> 
lIinclude <debug.h> 
lIinclude <vxdwraps.h> 
lIinclude <vpicd.h> 

l/i nc 1 ude <vxdca 11 . h> 
lIinclude <wrappers.h> 
l/include <intrinsi .h> 

IIdefi ne RTC_I RQ 8 

IIdefine RTC STATUSA OxA 
IIdefine RTC::::STATUSB OxB 
IIdefine RTCSTATUSC OxC 

IIdefine STATUSB ENINT Ox40 

IIdefi ne CMOS ADDR Ox70 
IIdefi ne CMOS::::OATA Ox71 

typedef struct 
{ 

IRQHANDlE 
VMHANDlE 
char 
BODl 

DEVICE_CONTEXT; 

I rqHandl e; 
VMOwner; 
DeviceName[8]; 
bVMIsServicing; 

II functions in asm module 
void HwlntThunk( void ); 
void VirtlntThunk( void ); 
void EOIThunk( void ); 
void MaskChangeThunk( void ); 
void IRETThunk( void ); 

VxDs for Virtualization - 163 

dey i ce ~ { O. O. {' R' .. E' .. F' . ' l' . ' E ' , . C' . 'T'} }; 

VPICD_IRQ_DESCRIPTOR IrqDesc ~ ( RTC_IRQ. VPICD_OPT_REF_DATA. 

BOOl OnDevicelnit(VMHANDlE hVM); 
void OnSystemExit(VMHANDlE hVM); 

HwlntThunk, VirtlntThunk, EOIThunk, 
MaskChangeThunk. IRETThunk, 500. 
&device ]; 

BOOl _stdcall HwlntHandler(VMHANDlE hVM. IRQHANDlE hIRQ); 
void _stdcall EOIHandler(VMHANDlE hVM. IROHANDlE hIRO); 
void _stdcall VirtlntHandler(VMHANDlE hVM. IRQHANDlE hIRQ); 
void _stdca11 IRETHandler(VMHANDlE hVM. IRQHANDlE hIRQ); 
void _stdca11 MaskChangeHandler(VMHANDlE hVM. IRQHANDlE hIRO. BOOl bMasking); 
void Eatlnt( void); 
void CmosWriteReg( BYTE reg. BYTE val ); 
BYTE CmosReadReg( BYTE reg ); 
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Listing 8.9 (continued) REFLECT. C 

BOOl OnSysDynamicDevicelnit(VMHANDlE hVM) 
{ 

OnDevicelnit( hVM ); 
return TRUE; 

BOOl OnSysDynamicDeviceExit(void) 
{ 

OnSystemExit(Get_Cur_VM_Handle() ); 
return TRUE; 

BOOl OnDeviceInit(VMHANDlE hVM) 
{ 

if (!(device.lrqHandle = VPICD_Virtualize_IRQ(&IrqDesc») 
return FALSE; 

return TRUE; 

VOID OnSystemExit(VMHANDlE hVM) 
{ 

VPICD_Force_Default_Behavior(device.IrqHandle); 

BOOl _stdcall HwlntHandler(VMHANDlE hVM. IROHANDlE hIRO) 
{ 

if (device.VMOwner && !device.bVMIsServicing) 
{ 

VPICD_Set_Int_Request( device.VMOwner. hIRO ); 
} 

else 
( 

EatInt(); 
} 

return TRUE; 

void Eatlnt( void 
{ 

unsigned char temp; 

temp = CmosReadReg( RTC_STATUSC ); 
VPICD_Phys_EOI( device.lrqHandle ); 

void _stdcall EOIHandl er(VMHANDlE hVM. IROHANDlE hIRO) 
( 

VPICD_Phys_EOI( hIRO ); 
VPICD_Clear_Int_Request( device.VMOwner. hIRO ); 

void _stdcall VirtlntHandler(VMHANDlE hVM. IROHANDlE hIRO) 
{ 

device.bVMIsServicing = TRUE; 
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Listing 8.9 (continued) REFLECT. C 

void _stdcall IRETHandler(VMHANDlE hVM. IROHANDlE hIRO) 
( 

device.bVMIsServicing ~ FALSE; 

void _stdcall MaskChangeHandler(VMHANDlE hVM. IROHANDlE hIRO. BOOl bMasking) 
( 

if (!bMasking) 
{ 

if (!device.VMOwner) 
{ 

device.VMOwner ~ hVM; 

else 
{ 

if (device.VMOwner !~ hVM) 
( 

device.VMOwner ~ SHEll_Resolve_Contention(device.VMOwner. 

) 
VPICD_Physica"y_Unmask( hIRO ); 

) 
el se 
( 

device.VMOwner ~ 0; 
VPICD_Physically_Mask( hlRO ); 

BYTE CmosReadReg( BYTE reg ) 
{ 

BYTE data; 

disable NMI then ints 
mov al. reg 
or a 1. BOh 
cl i 

; first output reg to address port 
out CMOS_ADDR. al 

jmp _1 

jmp _2 

; then read data from data port 
in al. CMOS_DATA 
mov data. al 

jmp _3 

hVM. device.DeviceName ); 
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Listing 8.9 (continued) 

4' 
; reenable NMI then ints 
xor a 1. a 1 
out CMOS_ADDR. al 
sti 

return data; 

void CmosWriteReg( BYTE reg. BYTE val) 
{ 

disable NMI then ints 
mov al. reg 
or al. BOh 
eli 

REFLECT. C 

; first output reg to address port 

l' 

2' 

3' 

4' 

out CMOS_ADDR. al 
jmp _1 

jmp _2 

; then output val to data port 
mov al. val 
out CMOS_DATA. al 

jmp _3 

jmp _4 

; reenable NMI then ints 
xor a 1. a 1 
out CMOS_ADDR. a 1 
sti 
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Listing 8.10 REFLDDB.ASM 

.386p 

.****************************************************************************** 
INCLUDES 

:****************************************************************************** 

include vrnm. inc 
include debug.inc 

V I R T U A L 0 E V ICE 0 E C L A RAT ION 

DECLARE_VIRTUAL_DEVICE REFLECT. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \ 
UNDEFINED_IN IT_ORDER 

PROCEDURE: ControlProc 

DESCRIPTION: 
Device control procedure for the SKELETON VxO 

ENTRY: 
EAX = Control call 10 

EXIT: 
If carry clear then 

Successful 
else 

Control call failed 

USES: 
EAX. EBX. ECX. EDX. ESI. EDI. Flags 

BeginProc ControlProc 
Control_Dispatch DEVICE_INIT. _OnDeviceInit. eCall. <ebx> 
Control_Dispatch SYSTEM_EXIT. _OnSystemExit. cCall. <ebx> 

Control_Dispatch SYS_OYNAMIC_OEVICE_INIT. _OnSysDynamicDevieeInit. cCall. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICl-EXIT. _OnSysDynamicDevieeExit. cCall 

cle 
ret 

EndProc ControlProc 
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Listing 8.10 (continued) REFLDDB.ASM 

PUBLIC -HwIntThunk 
_HwIntThunk PROC NEAR; called from C. needs underscore 

sCall HwIntHandler. <ebx. eax> 
or ax. ax 
jnz clearc 
stc 
ret 

clearc: 
clc 
ret 

_HwIntThunk ENOP 

VxD_LOCKED_CODE_ENDS 

VxD_CODLSEG 

PUBLIC _VirtIntThunk 
_VirtIntThunk PROC NEAR; called from C. needs underscore 

sCall Vi rtIntHandler. <ebx. eax> 
ret 

_VirtIntThunk ENDP 

PUBLIC _EOIThunk 
_EOIThunk PROC NEAR; called from C. needs underscore 

sCall EOIHandler. <ebx. eax> 
ret 

_EOIThunk ENDP 

PUBLIC _IRETThunk 
_I RETThunk PROC NEAR ca 11 ed from C. needs underscore 

sCall IRETHandler. <ebx. eax> 
ret 

_IRETThunk ENDP 

PUBLIC _MaskChangeThunk 
_MaskChangeThunk PROC NEAR; called from C. needs underscore 

sCall MaskChangeHandler. <ebx. eax. ecx> 
ret 

_MaskChangeThunk ENDP 

VXD_CODE_ENDS 

END 
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Listing 8.11 REFLECT. MAK 

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXDWRAPS 
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG 

all: reflect.vxd 

reflect.obj: reflect.c 
cl $(CVXDFLAGS) -Fo$@ %s 

reflddb.obj: reflddb.asm 
ml $(AFLAGS) -Fo$@ %s 

reflect.vxd: reflddb.obj reflect.obj .. \wrappers\vxdcall.obj reflect.def 
echo >NUL @«reflect.crf 

-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:reflect.def -OUT:reflect.vxd -MAP:reflect.map 
-VXD vxdwraps.clb wrappers.clb reflddb.obj reflect.obj vxdcall .obj 
«KEEP 

link @reflect.crf 
mapsym refl ect 

Listing 8.12 REFLECT.DEF 

VXD REFLECT DYNAMIC 
SEGMENTS 

LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 

LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
IDATA CLASS 'ICODE' 
PTEXT CLASS 'PCODE' 

_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
IMSGDATA CLASS 'MCODE' 

_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
REFLECT_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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Chapter 9 

Plug and Play: 
The Big Picture 
Plug and Play is Microsoft's strategy to make new hardware devices easier to install 
and configure. Plug and Play requires both hardware support (devices that can iden
tify themselves and can be configured via standard software interfaces instead of 
jumpers or proprietary interfaces) and software support (an operating system that can 
assign system resources like I/O addresses and IRQs and drivers that obtain these 
resource settings from the operating system). Microsoft has provided the operating 
system piece in Windows 95, and Windows 95 also provides the interfaces that drivers 
use to retrieve resources assigned to their hardware. 

In Windows 95, there are two categories of hardware devices: Plug and Play 
devices and Legacy devices. Plug and Play devices are those that can identify them
selves, declare their resource requirements, and accept run-time resource assignments. 
Any device for one of the newer expansion buses - PCI, EISA, PCMCIA, etc. - is by 
definition a Plug and Play device. Each of these buses meets the above Plug and Play 
requirements. Some newer ISA cards include specific support for Plug and Play (PNP). 
These cards, known as Plug and Play ISA or PNPISA, are also considered Plug and 
Play devices. Legacy devices are those older ISA cards that do not support new Plug 
and Play features. A Legacy device cannot be dynamically configured; its resources are 
either fixed in the hardware or configured by switches or jumpers. Legacy devices also 
fail to support any vendor-independent method of positively identifying themselves. 

171 
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Plug and Play Components 
The heart of Windows 95 Plug and Play support is a VxD called the Configuration 
Manager. The Configuration Manager relies on other VxDs to do much of the real 
work, including: enumerators, arbitrators, device loaders, and device drivers. Both the 
Configuration Manager and the enumerators make use of a system-wide database 
called the registry to permanently store information about devices and their drivers. 

Enumerators are VxDs that run at boot and determine which hardware devices are 
currently installed and what resource they require. Each bus type has its own enumer
ator: PCI, EISA, PCMCIA, SCSI, etc. Arbitrator VxDs are specific to a type of 
resource: I/O address, memory address, IRQ, DMA channel. The Configuration Man
ager gives an arbitrator information about a set of devices that all need a resource, say 
an IRQ, and the arbitrator comes up with a conflict-free set of assignments, taking 
into account which IRQs are supported by each device and whether or not each device 
can share the IRQ with another. Device Loaders are VxDs that load otherVxDs. Win
dows 95 relies on Device Loaders because many devices are managed by several lay
ers of drivers. The Device Loader knows enough about the layering to load each 
driver at the right time and in the right order. 

The component of greatest concern to a developer is the Plug and Play Device 
Driver VxD. Enumerators, arbitrators, and device loaders are provided by Microsoft 
with the OS, so developers only need to understand how these component VxDs fit 
into the overall picture, not how to write one. A Plug and Play Device Driver VxD is a 
normal VxD that uses Configuration Manager services to obtain its resource assign
ments, instead of using private methods like INI-file settings or hard-coded values
nothing more mysterious than that. A PNP Device Driver still uses VMM and other 
VxD (VPICD, etc.) services to do its real job, which is acting as a driver for its device. 

Figure 9.1 Registry keys, suhkeys, values, and data. 

HKEY_CLASSES_ROOT 
HKEY_CURRENT_USER 
HKEY _LOCALJ,tACHtNE 
HKEY_USERS 
HKEY _CURRENT _CONFIG 

Display 
System 

EY_DVN_DATA 
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If you're supporting a Plug and Play device you should most definitely write a true 
Plug and Play Device Driver VxD instead of using low-level bus-specific methods in 
your VxD (like PCIBIOS, PCMCIA Socket services, etc.). But it's important to 
understand that Plug and Play device drivers aren't just for Plug and Play hardware. 
Plug and Play drivers are also meant for Legacy - standard ISA - hardware. For 
example, standard serial ports are Legacy devices, with a fixed I/O address and IRQ, 
so a serial port driver could be hard-coded to use those settings. But Microsoft's Win
dows 95 driver for standard serial ports, SERIAL. VXD, is a Plug and Play device driver, 
obtaining its settings from the Configuration Manager. (The Configuration Manager 
did, however, retrieve the settings from the registry, rather than from the device itself. 
Settings for Legacy devices are putin the registry by the Device Installer.) Microsoft 
encourages developers to write Plug and Play device drivers for all devices, including 
Legacy devices. 

Plug and Play support is a new feature of Windows 95, not present in 
Windows 3.x. Therefore the information in this chapter and the next applies 
only to VxDs written specifically for Windows 95. A VxD for Windows 3.x 
must use other methods to obtain information about the resources used by its 
device. Other methods include querying the BIOS (e.g. COMl and COM2 
I/O address), reading SYSTEM. I NI entries, or using hard-coded values. 

The rest of this chapter will present an overview of Plug and Play, discussing the 
role of Configuration Manager and the enumerator, device loader, arbitrator, and 
device driver VxDs that it uses to actually implement the Plug and Play feature. The 
next chapter will explain in more detail the specifics of writing a Plug and Play 
Device Driver VxD, including a sample device driver VxD. 

This chapter discusses how Plug and Play works at two times: installation and boot. 
Understanding how the Plug and Play components interact during operating system and 
driver installation is important for understanding the overall Plug and Play picture, because 

The Windows 95 Registry 
The registry is a binary database, accessible to the Windows 95 VMM, VxDs, and applications. The Windows 
95 Plug and Play components use the registry to store and retrieve information about devices and their driv
ers, such as possible device configurations, device manufacturer, and the driver revision number; The registry 
is hierarchically structured, like a tree, where each node is called a key. (Figure 9.1). One or more pieces of 
data, called values, can be associated with each key. A key (node) can also have subkeys, where each subkey 
is itself a tree with its own values and subkeys. 

During installation, Windows 95 creates two keys at the root of the Windows 95 registry and several sub
keys. The two root keys are. HKEY_SYSTEM and HKEY_LOCAL_MACHINE (which is usually abbreviated HKLM). 
Most Plug and Play components other than the Configuration Manager use only two subkeys under those root 
keys, HKLM\ENUM and HKLM\SYSTEM\CurrentContro 1 Set\System\Cl ass. 



174 - Writing Windows VxDs and Device Drivers 

the modifications made to the registry at installation time literally drive the Plug and Play 
boot sequence. (See the sidebar "The Windows 95 Registry" for information on how the 
Plug and Play components store and retrieve information about devices and their drivers.) 

Plug and Play Components 
During Windows 95 Installation 
When Windows 95 is first installed on a system, the Configuration Manager VxD 
identifies all the hardware devices in the system, using bus-specific modules called 
enumerators and detectors. Each enumerator positively identifies devices on a particu
lar bus using bus-specific methods: the PCI enumerator reads PCI configuration 
space, PNPISA uses the Plug and Play isolation procedure, PCMCIA uses the Card 
Information Structure, etc. To find Legacy devices, the Configuration Manager uses 
detection modules instead of enumerators. Because of the limits of the ISA bus, 
detection modules must use less certain methods, such as examining hard-coded I/O 
locations for expected values, to detect standard ISA system hardware like the key
board controller, interrupt controller, etc. 

After an enumerator or detector has identified a new device, a module called the 
Device Installer creates a new hardware sub key for the device in the registry. This 
new key is of the form 

HKLM\ENUM\<enumerator>\<device IO>\<instance 10> 

The <enumerator> portion is either the bus name of the eilUmerator (PCI, SCSI, 
PCMCIA, etc.), or Root for Legacy devices found by detectors. The exact format of 
the <de v ice 10> portion is enumerator-specific, but usually includes a combination 
of vendor id and adapter id, two identifiers supported by all Plug and Play buses. The 
<i nstance 10> uniquely identifies a particular instance of the device, and may be a 
serial number(as in PNPISA) or just an increasing number like 0000, 0001, etc. 

After creating this new hardware key, the Device Installer adds registry subkeys 
under the hardware key, using information from either the device's information (JNF) 
file, supplied by the vendor with the device, or from the device itself. Table 9.1 shows 
the values in a typical hardware key. The Device Installer always adds values called 
Oevi ceOesc and C1 ass - two strings that describe the device and its type (network 
adapter, CD-ROM, etc.). For a Legacy device, the Device Installer also adds informa
tion about the device's current configuration (resource assignments). For a Plug and 
Play device, the Device Installer adds information about possible configurations, but not 
current configuration, because enumerated devices are always configured after boot. 
The Device Installer extracts this possible configuration information from the device 
itself in most cases (PNPISA, PCMCIA), or in some cases from nonvolatile system 
RAM (EISA). 
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The Devic_e Installer always adds one more value, called Dri ver, under the 
hardware key. The data for Dri ver comes from the INF file. The Driver value has 
a misleading name, because it is not the name of the driver for the device. Instead 
it "points" to a software key for the device, which is always found under 
HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS For example, if the Dri ver entry was 
Ports, the software key would be HKLM\SYSTEM\CURRENTCONROLSET\SERVI CES\CLASS\PORTS 

The software key contains values describing the software associated with the 
device. Table 9.2 shows a typical software key. The enumerator or detector always 
adds a DevLoader value. DevLoader names the VxD that will act as a "device loader" 
for the driver for the device. Surprisingly, the software key does Mt contain a stan
dardized value representing the driver name. But the software key does contain 
enough information to allow the device loader to determine the device driver name -
more about this later in the discussion of device loaders and the boot process. 

Table 9.1 Typical hardware key. 

Value Data 

Class "Display" 

CompatibleIDs "PCIICC_0300" 

ConfigFlags 00000000 

DeviceDesc "S3 Inc. Trio32/64 PCI" 

Driver "Display 10001" 

HardwareID "PCIIVEN_ 5333&DEV _8811IBUS_OO&DEV _lO&FUNC_OO" 

HWRevision "067" 

Mfg "S3" 

Table 9.2 Typical software key. 

Value Data 

DevLoader "*vdd" 

DriverDesc " S3 Inc. Trio32/64 PCI" 

InfPath "OEMl.INF" 

InfSection "S3_2" 

Ver "4.0" 
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Plug and Play Components 
During Device Installation 

The process for installation of a new device and its associated driver after initial Win
dows 95 installation is similar. Newly installed Plug and Play devices are discovered 
by an enumerator at the next boot. Newly installed Legacy devices are discovered 
when the user runs the Add New Hardware Wizard. 

Whether the new device is Plug and Play or Legacy, the Device Installer knows 
it's a newly installed device because the device has no hardware key in the registry. 
When a new device is discovered, the Device Installer looks for thedevice's associ
ated INF file, asking the user to specify its location if the file can't be found. Once the 
INF file is located, the enumerator creates a registry hardware key and software key 
and copies the driver from the installation disk, just as during the original Windows 95 
installation. Once added to the registry, the "new" device becomes an "installed" 
device; on subsequent boots, it will be treated just like all the other installed devices. 

Plug and Play Components During Boot 

During installation, Windows 95 is interested only in identifying the system's 
devices and the drivers needed to run them. During the Windows 95 boot process, the 
operating system does more than identify devices and drivers, it also loads the driv
ers and configures the devices. The Configuration Manager VxD is the brains behind 
this boot process, orchestrating enumerators, arbitrators, device loaders, and the 
drivers themselves. 

During the boot process, the Configuration Manager uses enumerator VxDs to 
discover devices, device loader VxDs to load driver VxDs for the devices, and arbi
trator VxDs to assign conflict-free configurations to all the devices. As a last step, the 
Configuration Manager informs each device driver VxD of the configuration 
assigned to its device. The following pseudo-code shows the boot process. The fol
lowing sections will explain in more detail the role of each of these types ofVxDs in 
the boot process. 
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Pseudo-code for the Plug and Play Boot Process 

For each enumerator 
CM calls enumerator to enumerate all devices on its bus 

For each device: 
Enumerator finds device, calls CM 

to create DevNode from Device 1D 
if no hardware key in registry, 

device is new and must be installed 
CM sends DevLoader a PNP_New_DevNode message 

DevLoader loads a Driver VxD 
CM sends Driver VxD a PNP_New_DevNode message 
Driver VxD calls CM_Register_Device_Driver 

to register a configuration callback 
CM returns to the enumerator 

Enumerator returns to CM 
CM links devnodes into a hardware tree 

CM uses arbitrators to assign conflict-free configurations 
CM traverses hardware tree, beginning at root. For each node: 

calls each Driver VxD's registered configuration function 
Dri ver VxD ca 11 s CM_Get_A 11 oCLog_Conf to discover ass i gned resources 

Plug and Play Components During Boot: Enumerators 

During boot, the Configuration Manager runs the same enumerators that were used 
during installation, one for each bus. But instead of running detectors as during instal
lation, at boot the Configuration Manager runs the Root enumerator. The Root enu
merator is different than other enumerators in that it doesn't attempt to identify any 
hardware, it just relies on the information already placed in the registry (in HKLM\ Root) 
by detectors at installation. 

After identifying each device, an enumerator creates a device node, a data structure 
containing basic information about an identified device. The device node contains fields 
for possible configurations, current configuration, status information (disabled, config
ured, etc.), and the driver for the device. The enumerator fills in these fields from values 
stored in the device's hardware key or from information provided by the device itself. 

Device nodes serve as the basic unit of "currency" between Plug and Play compo
nents (Configuration Manager, enumerators, arbitrators, device drivers). In other 
words, device nodes are passed around from one component to another to identify the 
target device. Note that while some of the information in a device node is also found 
in the registry, a device node is different from a registry entry in two ways. One, the 
device node is in memory, not on disk, allowing much faster access. Two, the device 
node represents a device that is physically present on the system, whereas registry 
entries stay even after a device is removed to make device reinstallation easier. 
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As each enumerator creates a device node, it reports the new device node to the 
Configuration Manager. The Configuration Manager then initiates a long sequence 
that eventually results in the driver for the device being loaded. The enumerator then 
proceeds to the next device. When it has processed all device nodes, the Configuration 
Manager calls the next enumerator, which repeats the sequence for its own devices. 
When all enumerators have finished, the Configuration Manager has connected the 
device nodes to form a hierarchical structure called the hardware tree, an in-memory 
representation of the system's hardware devices. 

Plug and Play Components During Boot: Device Loaders 

As each device node is discovered by an enumerator, the Configuration Manager 
attempts to load a device driver for the device node. The Configuration Manager uses 
the DevLoader value in the device's software key (pointed to by the Dri ver value in 
the device's hardware key), which names the VxD responsible for loading the "real" 
device driver. The Configuration Manager sends a PNP _New_DevNode message to the 
VxD named as DevLoader, informing the VxD that a new device node has been cre
ated and that the VxD is to act as the device loader for this new device. 

Two parameters are associated with a PNP _New_DevNode message: a pointer to the 
device node and a reason code describing the action the VxD should take. In this ini
tial message to the device loader, the Configuration Manager uses the 
DLVXD_LOAD_DEVLOADERreason code. The name for this reason code is a bit confus
ing: the Configuration Manager is really telling the VxD to load the driver for the 
device, not to load the device loader for the device. DLVXD_LOAD_DEVLOADER really 
tells a VxD that "you are the device loader". 

The Configuration Manager relies on device loaders instead of loading all drivers 
itself because some devices are managed by several layers of drivers. The device loader 
knows enough about the layering to load each driver at the right time and in the right 
order. The device loader also knows which value in the software key contains the actual 
driver name. For example, SCSI devices use the Mi ni PortDri ver value to store the 
driver name, but COM ports use PortDri ver, and network devices use Dynami cVxD. 

For those device classes that do separate the device loader VxD from the device 
driver VxD, the device loader must respond to the DLVXD_LOAD_DEVLOADER reason 
code by finding and loading the appropriate driver. Device loaders don't do this work 
themselves, but rely on two Configuration Manager services. A device loader uses 
CM_Read_Regi stry_Va 1 ue to obtain the driver name from the appropriate entry in the 
software key and then CM_Load_DLVxDs to actually load the device driver VxD. Its 
job finally done, the device loader VxD returns from PNP _New_DevNode processing, 
back to the Configuration Manager. 
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The Configuration Manager now sends a second PNP _New_DevNode message, this one 
directed to the newly loaded driver VxD. The same device node parameter is used since 
it's still processing the same device, but this time the reason code is DLVXD_LOAD_DRIVER 
Once again, the name is a bit confusing, it doesn't mean "load the driver", it means "you 
are the driver". The driver VxD should respond to this reason code by calling 
eM_Regi ster _Devi ce_Dri ver. 

In cases where layering is not used, the device loader VxD and the device driver VxD 
are one and the same. In this simple case, when the VxD gets the DLVXD_LOAD_DEVLOADER 
reason code it doesn't load another VxD. Instead, the combination device loader/device 
driver VxD tells the Configuration Manager that it is the driver for the device by calling 
the Configuration Manager's eM_Regi ster _Devi ce_Dri ver function during 
DLVXD_LOAD_DEVLOAOER processing. 

One of the parameters that a device driver VxD passes to eM_Regi ster _Devi ce_Dri ver 
is a pointer to a callback function. The Configuration Manager calls this driver VxD func
tion later to inform the device driver VxD of configuration events. The driver callback 
function and the configuration events that it processes will be covered in more detail in a 
later section. 

Plug and Play Components During Boot: Arbitrators 

At this point in the boot process, all hardware devices have been identified and drivers 
have been loaded. Before the drivers can access their devices, the arbitrators must find 
a conflict-free set of configurations for all devices. 

There are four built-in arbitrators, one for each type of system resource: I/O ports, 
memory ranges, IRQs, and DMA channels. The I/O port arbitrator takes a list of 
device nodes and assigns to each the number of I/O ports it requires. The arbitrator 
must select ports that don't conflict with the port assignments for any other device 
node in the list. The other three arbitrators do exactly the same thing, each with their 
own resource type. 

Arbitrators must handle "fussy" devices that support only a single resource assign
ment - e.g. a Legacy device that only supports I/O ports 200h-220h - as well as 
"flexible" devices - e.g. a PCI device that supports any 32-byte block within the 
entire 64 Kb range of I/O space. The IRQ arbitrator handles an additional twist as well, 
because some devices support sharing an IRQ with another device, while others do not. 
An arbitrator returns either a success or failure code to the Configuration Manager, 
indicating whether or not it was successful in finding a set of allocations that worked. 
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The arbitration process would be fairly simple if resources were always indepen
dent of each other - if, for example, the choice for 110 port had no effect on the 
choice for IRQ. However, resource dependencies are common among Legacy devices: 
consider the standard serial port with choices of 110 3F8h plus IRQ 4 or 110 2F8h plus 
IRQ 3. To handle resource dependencies, the Configuration Manager uses the arbitra
tors in an iterative manner, calling each with the ARB_TEST_ALLOC reason code, which 
asks the arbitrator to make a trial allocation. This ARB_TEST_ALLOC allocation may 
occur several times. Later, when all arbitrators have returned a success code, the Con
figuration Manager calls each again with the ARB_SET_ALLOC reason code, telling the 
arbitrators to make this allocation permanent. 

An example will make this process more clear. Consider a list of two devices. One 
is a Legacy mouse that supports any 110 port in the 200h-3FFh range, but only IRQ 4. 
(This resource combination is considered a single "logical configuration".) The other 
is a Legacy serial port that supports either 110 3F8h plus IRQ 4 or 110 2F8h plus IRQ 3. 
(Thus, the serial port is associated with two logical configurations.) To configure these 
two devices, the Configuration Manager must choose a logical configuration for each 
device, using the arbitrators to ensure that the resources that make up each chosen 
configuration don't conflict with each other. 

Before calling the arbitrators, the Configuration Manager makes one of the logical 
configurations the "current" configuration. The arbitrators consider only the resources 
in this current configuration when making allocations - they are unaware of the 
resources available in any other logical configuration. In our example, suppose the 
Configuration Manager chose 3F8hlIRQ 4 as the current configuration for the serial 
port, and 200hlIRQ 4 as the current (and only) configuration for the mouse. It calls the 
port arbitrator first and then the IRQ arbitrator, using the ARB_TEST_ALLOC reason 
code for both. 

In this scenario, the 110 port arbitrator can easily identify a set of non-conflicting 
assignments and returns TRUE, but the IRQ arbitrator cannot (both devices want IRQ 4) 
and returns FALSE. So the Configuration Manager makes 2 F8h1IRQ 3 the current con
figuration for the serial port and tries again, still using the ARB_TEST_ALLOC reason 
code for both arbitrators. This time there is no IRQ conflict (the serial port wants IRQ 3 
and the mouse wants IRQ 4) so both arbitrators return TRUE. Now the Configuration 
Manager calls each arbitrator again with the same current configuration as last time, 
but now with the ARB_SET_ALLOC reason code. When the arbitrators return, both 
devices have been allocated a set of non-conflicting resources: the mouse with 
200hlIRQ 4 and the serial port with 2F8hlIRQ 3. 
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Plug and Play Components During Boot: Device Driver VxDs 

After the Configuration Manager has assigned all devices a conflict-free set of 
resources, it must inform each driver VxD of the configuration assigned to its device. 
The Configuration Manager does this through the callback function registered by each 
driver dliring its call to CM_Regi ster _Devi ce_Dri vet'. 

The Configuration Manager passes a reason code to the configuration callback. 
The CONFIG_START code notifies the driver VxD that a configuration has been 
assigned: CONFIG_START means "start using your device's assigned configuration". A 
Plug and Play device driver isn't supposed to use any of its device's • .resources until it 
gets this notification. Whereas a Windows 3.x VxD usually installed 110 port handlers 
and virtualized an IRQ during system initialization, the rules are different under Win
dows 95. A Windows 95 Plug and Play device driverVxD may be loaded early in the 
boot process, but shouldn't do anything with system resources until explicitly notified 
by the Configuration Manager in this CONFI G_START message. 

At the time of a CONFIG_STARTmessage, the Configuration Manager has already 
assigned the resources, so the driver V xD simply retrieves that assignment. (The Con
figuration Manager could have made it easy on the VxD by passing the resoUrce 
assignments asa parameter to the configuration callback function - but it doesn't.) 
The VxD must make· yet another call to/the ConfigUration Manager, this time to 
CM_Get_A 11 oc_Log_Conf (A 11 oc stands for allocated, Log stands for logicai).This 
call returns with all configuration infonrtation in a single CMCONFIG structure: memory 
ranges, 110 ports, lRQs, DMA channels. Now that the device driver VxD finally 
knows which resourcesits device will be using, it can call VPICD to install an inter~ 
rupthandler,call VDMAD to register aDMA channel, etc. 

Summary. 

This chapter has introduced the component VxDsthat make up Plug and Play in Win
dows ·95 and explained how these components interact to identify devices, assign 
resources, and load drivers. The next chapter will focus specifically on the Plug and 
Play device driver YxD, and you will learn exactly what a driver VxD must do to sup
port a Plug and Play device: which messages and callbacks it musthandie and which 
Configuration Manager services it must call. 
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Plug and Play 
Device Driver VxDs 

Chapter 10 

The last chapter provided an overview of Windows 95 Plug and Play, introducing the 
different kinds of Plug and Play VxDs (Configuration Manager, enumerators, device 
loaders, arbitrators, device drivers) and the role played by each in the Windows 95 
installation and boot processes. This chapter will focus on the Plug and Play Device 
Driver VxD, which I'll define as a VxD that interfaces to a hardware device and that 
obtains a device's configuration using methods that conform to Plug and Play rules. 

This chapter will first explain the steps required to install a Plug and Play Device 
Driver VxD in the Windows 95 environment. Next, you'll see how a Plug and Play Device 
Driver VxD participates in the Windows 95 boot and initialization processes and how it 
handles other Plug and Play configuration scenarios such as device removal. The final sec
tions will discuss in detail the code for a sample Plug and Play Device Driver VxD. 

Plug and Play VxD Installation 
Windows 3.x offered no standardized procedure for installing device drivers, so differ
ent vendors provided different solutions. Some vendors provided an application -
sometimes a Windows program or sometimes a DOS program - that copied the driver 
file and made modifications to system files. Others provided only instructions and 
required the user to do the installation. The Plug and Play support in Windows 95 
addresses this installation deficiency. Windows 95 standardizes the device installation 
process, both from the user perspective and from the driver vendor's perspective. 

183 
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To install a new piece of hardware for Windows 95, the user first physically 
installs the card then boots up Windows 95. If the new hardware is Plug and Play, an 
enumerator automatically identifies the new device and the Device Installer prompts 
the user for a device installation disk. If the new hardware is Legacy, the system can
not identify the new device, and the user is required to run the Add New Hardware 
Wizard. This "wizard" guides the user, step-by-step, through the installation process, 
prompting the user for a device installation disk when required. 

The device installation disk (created by the vendor) includes a device driver, a 
Device Information (INF) file, and optional utility or diagnostic programs used with 
the device. The INF file is an important piece of the Windows 95 Plug and Play stan
dard. It provides the Device Installer with a device description for display to the user 
and an "installation script" to install the device driver. The installation script includes 
items like the name of the driver on the installation disk, the directory the driver 
should be copied to, and any registry entries that must be created or modified during 
driver installation. 

Introducing the INF File 
The INF text file resembles a Windows 3.x INI file. The INF is divided into sections, 
where each section contains one or more items. Each section relates to one step of the 
installation process: one section for files to be copied, another for registry entries to 
be added, etc. As a developer, you can create INF files with any text editor. However, 
Microsoft also provides an INFEDIT tool with the DDK, which allows you to navigate 
and edit the file in a hierarchical manner - sort of like the outline view in a word pro
cessor. Because the sections in an INF file are arranged in a hierarchy, the INFEDIT 
tool is very useful. (See the DDK for an explanation of how to use INFEDIT.) 

The INF file can support complicated installation scenarios, but most developers 
will only need to handle the basics. A basic driver installation scenario includes: 

identifying the device; 

• copying the driver file from the driver disk; 

• identifying the device's resource requirements; and 

• adding a OevLoader registry entry to load the driver when the device is enumerated. 

Tabies 10.1 and 10.2 detail the JNF file sections, and items within those sections, 
that are required to cover this basic installation. For an actual INF file with these sec
tions and items, as well as more details about what they mean, see the section "A 
Sample Plug and Play Driver VxD" later in this chapter. 
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Table 10.1 Standard sections for an INF file. 

Section Type Item Name Item Description 

Version Signature Must be $CHICAGO$ 

Class Choose from list in Table 10.2 

Provider Creator of INF file, typically same as 
vendor name 

Manufacturer Manufacturer Name Vendor name 

Device Description Device Manager and Add New Hard-
ware Wizard show this string to user 

Device 10 ASCII identifier created by hardware 
vendor: 

Consists of * followed by 3-letter 
(EISA format) company ID then four 
hex digit device ID 

Install Section Name Names later section containing instal-
lation instructions 

CopyFiles (None) Destination file name, optional source 
file name 

Add Reg (None) Registry root, optional subkey, value 
name, and value: 

All drivers require one of these to 
specify device loader; for example, 
HKLM,.DevLoader.O.myvxd 

LogConfig IOConfig Describes I/O addresses supported: 
minimum, maximum, size 

USE ONLY IF LEGACY DEVICE 

IRQConfig Describes IRQs supported and 
whether or not sharable 

USE ONLY IF LEGACY DEVICE 

Install Copyfiles Name of CopyFi 1 es section in this 
INF file 

AddReg Name of Add Reg section in this INF 
file 

LogConfig Name of LogConfi 9 section in this 
INF file 
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Table 10.2 Device classes supported by configuration 
manager. 

Class Name Class Name 
in INF File in Device Installer Description 

Adapter CD-ROM controllers Non-SCSI CD-ROM 
controller 

DiskDrive Disk drives 

Keyboard Keyboard 

System System devices Motherboard device 
(PIC, PCI bridge, etc.) 

MEDIA Sound, video, and game Multimedia 
controllers 

Modem Modem 

MultiFunction Multi-function adapters e.g. Combination modem 
and network adapter 

Monitor Monitor 

CDROM CD-ROM 

Display Display 

fdc Floppy disk controllers 

hdc Hard disk controllers 

Mouse Mouse 

Ports Ports (COM & LPT) Serial and parallel 

Printer Printer 

MTD Memory Technology Drivers PCMCIA memory card 

Net Network adapters 

nodri ver Device that requires 
no driver 

PCMCIA PCMCIA socket 

SCSIAdapter SCSI controllers SCSI host adapter 

Unknown Other devices 



Plug and Play Device DriverVxDs - 187 

Plug and Play Boot Process 

Driver VxD Load Sequence 

Though it's not an absolute requirement, almost all Plug and Play Driver VxDs are 
dynamically loadable. Dynamic loading is preferred because it allows the Configura
tion Manager to unload a driver when its associated device is removed, either physi
cally removed in the case of "hot insertion" devices such as PCMCIA, or logically 
rembved when the Configuration Manager detects a device conflict or the user 
chooses Remove in the Device Manager. 

The dynamic load procedure for a Plug and Play VxD is a convoluted process. 
The process begins at boot, when an enumerator identifies a particular device. The 
enumerator passes the Configuration Manager the Device ID and asks the Configura
tion Manager to create a "devnode" (device node) for the device. The Configuration 
Manager forms the device's hardware key by prepending HKLM\ENUM to the ASCII 
Device ID. This hardware key contains a Dri ver value that points to the software key 
under HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS. That software key con
tains a DevLoader value. 

The Configuration Manager then dynamically loads the VxD specified by the 
DevLoader value. As a result, the VxD receives a Sys_Dynami cDevi ce_Ini t mes
sage. Most driver VxDs do minimal processing in the Sys_DynamicDevice.:.Jnit 
handler, perhaps doing some one-time initialization and returning TRUE (Carry clear) 
from the handler to indicate success. A driver V xD does not usually call any Configu
ration Manager services, deferring this until the PNP _New_DevNode message (the next 
step in the Plug and Play sequence). A driver VxD must never access its device or 
install interrupt or port trap handlers during Sys_DynamicDevice_Init handling, 
because the device hasn't yet been assigned an 110 address or an IRQ. 

When building a dynamically loaded driver, you must specify the DYNAMIC 
keyword on the VXD line in your VxD's DEF file. 

In the simplest case, the VxD loaded through DevLoader is the driver VxD that 
interfaces to the enumerated device. However, in some cases the VxD loaded by the 
DevLoader statement isn't the real driver VxD, but is simply a device loader for the 
driver V xD. This capability is used for some of Windows 95 's layered subsystems: the 
lOS VxD loads all block device driver VxDs, the NDIS VxD loads all network driver 
VxDs, and the VCOMM VxD loads all port driver VxDs. 
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Sys_Dynami cDevi ce_I ni t processing for a device loader VxD is the same as for 
a true driver VxD: no interaction with the Configuration Manager; nothing that 
requires an I/O address or IRQ. Like a driver VxD, the device loader VxD will receive 
a PNP _New_DevNode message after returning TRUE from Sys_Dynami cDevi ce_Ini t. 

PNP _New_DevNode Processing 
After loading the VxD specified by the DevLoader registry value, the Configuration 
Manager tells the VxD which devnode caused it to be loaded, by sending the VxD a 
PNP _New_DevNode message. This message has two associated parameters: the 
devnode (passed in EBX) and a reason code (passed in EAX). The reason code must be 
either DL_LOAD_DEVLOADER, DL_LOAD_DRIVER, or DL_LOAD_ENUMERATOR. The 
PNP _New_DevNode message and its associated reason codes are one of the most con
fusing aspects of adding Plug and Play support in a VxD. 

In the simple case, where the VxD loaded by DevLoader is really the driverVxD, 
the VxD's PNP _New_DevNode message handler will first receive a reason code of 
DL_LOAD_DEVLOADER - because the Configuration Manager knows only that this 
VxD is the device loader. In response to this reason code, the VxD should call 
eM_Regi ster _Devi ce_Dri ver to let the Configuration Manager know that this VxD 
is really the device driver as well as the device loader. 

In the more complicated case, where the device loader VxD and the driver VxD 
are separate, the device loader VxD will be loaded first and will then receive the 
PNP _New_DevNode message with a o L_LOAD_D EV LOADER reason code. In response, a 
true device loader VxD uses a Configuration Manager service to load the real driver 
VxD. After loading the driver VxD, the Configuration Manager then sends the driver 
VxD its own PNP _New_DevNode message, this time with a DL_LOAD_DRI V E R message, 
and the driver VxD responds by calling eM_Regi ster _Devi ce_Dri ver. 

In both cases, the driver VxD for a particular devnode ends up calling 
eM_Regi ster _Devi ce_Dri ver. The driver VxD calls this function to trigger the final 
step in the Plug and Play process, receiving configuration notifications, which I'll 
address in the next section. 
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The Calling Interface for CM_Register_Device_Driver 

DWORD CONFIGMG_Register_Device_Driver(DEVNODE node, 
CMCONFIGHANDLER handler, 
DWORD ref Data, DWORD flags); 

node: registering as device driver for this node; 
provided along with PNP_New_DevNode message 

handler: callback function inside the driver VxD 
which will receive configuration notifications 

ref Data: this value will be passed 
as a parameter to the callback function 

flags: CM_REGISTER_DEVICE_DRIVER_STATIC: 
device cannot be reconfigured at run-time 

CM_REGISTER_DEVICE_DRIVER_DISABLEABLE: 
device can be disabled at run-time 

CM_REGISTER_DEVICCDRIVER_REMOVEABLE: 
device can be removed from hardware tree 

VxDs for Plug and Play hardware should set both DISABLEABLE and REMOVEABLE. 
This combination of flags allows the Configuration Manager to reconfigure the device 
to accomodate a newly arrived Plug and Play device. A VxD for a Legacy device 
should set STAT I C, because a Legacy device does not support reconfiguration. If your 
VxD does not set these flags, the Configuration Manager will never attempt to recon
figure your device - it will never send another CONFIG_START message after the ini
tial one. In addition, the debug version of the Configuration Manager will output a 
warning message to the debugger, "Device does not allow rebalance and removal". 

A VxD may also allocate devnode-specific, or "instance", data during 
PNP _New_DevNode. Commonly, a single-driver VxD will support multiple instances of 
the same device, for example COMl, COM2, etc. Such a driver will receive multiple 
PNP _New_DevNode messages (one for each physical device), and will call 
_He a p-.A 11 ocate during PNP _New_DevNode processing to dynamically allocate a 
structure for device-specific context information. A typical COMlICOM2 driver, for 
example, would typically allocate a structure to store the port's I/O base, IRQ, receive 
buffer, and transmit buffer, etc. 
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Confi gHand7 er Processing 

After it has loaded all driver VxDs for Plug and Play devices, the Configuration Man
ager invokes arbitrators to assign resources to all Plug and Play devices. Once the 
arbitrators have made these assignments, the Configuration Manager notifies each 
driver VxD that it may start using the device's assigned configuration. 

A VxD receives this notification through its configuration handler function, regis
tered earlier in a call to CM_Register _Devi ce_Dri ver. The VxD's configuration han
dler must conform to this interface: 

The Calling Interface for a Configuration Callback 

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFunc. SUBCONFIGFUNC scfSubFunc. 
DEVNODE dnDevNode. DWORD dwRefData. ULONG ulFlags); 

cfFunc: function identifier 
scfSubFunc: subfunction identifier 
dnDevNode: devnode handle 
dwRefData: val ue passed as ul RefData parameter to CM_Regi ster _Devi ce_Dri ver 
ulFlags: always zero 

When notifying a VxD of a newly assigned configuration, the Configuration Manager 
sets the cfFunc parameter to CONFI G_START, meaning "start using your assigned configu
ration". When processing CONFIG_START, a VxD discovers this assigned configuration 
with another call to the Configuration Manager, this time to CM_GeCA 11 oCLog_Conf. 

CONFIGRET CM_Get_Alloc_Log_ConfCPCMCONFIG pccBuffer. 
DEVNODE dnOevNode. ULONG ulFlags); 

pccBuffer: pointer to CMCONFIG structure to receive configuration 
dnDevNode: requesting configuration for this devnode 
ulFlags: CM_GET_ALLOC_LOG_CONF_ALLOC to get currently allocated configuration 

CM_GET_ALLOC_LOG_CONF_BOOT_ALLOC to get boot configuration 

This function retrieves either the currently allocated configuration or the boot configu
ration, depending on the value of the u1 F1 ags parameter. When processing CONFIG_START, 
a VxD wants the current configuration, and so uses CM_GET_ALLOCLOG_CONF _ALLOC. 
The configuration is returned in a CM_CONFIG structure that summarizes the system 
resources assigned to the device: memory address, I/O address, IRQ, and/or DMA chan
nel. This structure can be confusing at first glance and isn't documented well in either the 
DDK or VToolsD. The following code shows how the CMCONFI G structure is defined. 



{ 
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II CM_CONFIG is typedef'ed 
II to struct Config_Buff_s 

WORD wNumMemWi ndows; I I Num memory wi ndows 
DWORD dMemBase[MAX_MEM_REGISTERS]; II Memory window base 
DWORD dMemLength[MAX_MEM_REGISTERS]; II Memory window length 
WORD wMemAttrib[MAX_MEM_REGISTERS]; II Memory window Attrib 

II fMD_ROM or fMD_RAM 
II fMD_24 or fMD_32 is number of address lines that device decodes 

WORD wNumIOPorts; II Num 10 ports 
WORD wIOPortBase[MAX_IO_PORTS]; II 1/0 port base 
WORD wIOPortLength[MAX_IO_PORTS]; II 1/0 port length 
WORD wNumIRQs; II Num IRQ info 
BYTE bIRQRegisters[MAX_IRQS]; II IRQ list 
BYTE bIRQAttrib[MAX_IRQS]; II IRQ Attrib list 

II fIRQD_Share if shared with another device 
WORD wNumDMAs; II Num DMA channels 
BYTE bDMALst[MAX_DMA_CHANNELS]; II DMA list 
WORD wDMAAttrib[MAX_DMA_CHANNELSJ; II DMA Attrib list 

II fDD_BYTE if byte size channel 
II fDD_WORD if word size channel 
II fDD_DWORD if dword size channel 

BYTE bReservedl[3]; II Reserved 
} ; 

The fields in the CMCONFIG structure can be partitioned into four groups: the first 
group describes memory resources; the second describes 110 resources; the third 
IRQs; and the last, DMA resources. Each of these groups conforms to a common 
pattern. The first field in the group (wNumMemWi ndows, wNumIOPorts, wNumI RQs, 
wNumDMAs) tells how many assignments of that type were made, and consequently, 
which entries in the related arrays are filled in. 

For example, a zero in wNumMemWi ndows means no memory range was assigned, 
so none of the entries in the three memory-related arrays (dMemBase, dMemLength, 
wMemAttri b) are valid. A value of 2 for wNumIOPorts means two different 1/0 
ranges were assigned, and the first range is described by the first entry in the two 
wIOPort arrays (wIOPortBase, w10PortLength). The second range is described 
by the second entry in each of the two arrays. In other words, wIOPortBase[O] 
and wIOPortLength[O] describe the first 110 range; wIOPortBase[1] and 
wIOPortLength[l] describe the second 110 range. 

After decoding the device's assigned resources from the CMCONFIG structure, a 
VxD's CONFI G_START handler should perform basic device initialization. Other VxDs 
do this during Sys_1 nit or Sys_Dynami cDevi ce_I nit, but a Plug and Play driver 
VxD, although loaded early in the boot process, IS unable to access the device until 
CON FI G_ST ART. The driver VxD may access an IIO-mapped device with nothing more 
than an inp or outp to the 1/0 port range specified in the CMCONF1G, but access to a 
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memory-mapped device requires calls to one or more VMM services to obtain a linear 
address that maps to the device's physical address in CM_CONFIG. Also at this time, a 
VxD will typically register an interrupt handler for the device's IRQ by calling 
VPI CD_Vi rtua 1 i ze_I RO. 

In some cases, the Configuration Handler will also want to process the 
CON F I GJ I L TE R message. Before choosing a logical configuration and sending the 
CONFIG_START message, the Configuration Manager always sends a CONFIG_FILTER 
message. (Note that the VxD will receive a CONFIGJILTER message before every 
CONFIG_START, even if the CONFIG_START was not sent as part of the boot process.) 
The CONFIGJI L TERmessage allows the driver an opportunity to examine and modify 
any of the logical configurations before the Configuration Manager commits to a con
figuration. For example, a device that doesn't require page-alligned memory resources 
might specify an unaligned memory resource in the INF file. By responding to the 
CONFIGJI L TER message, the device's VxD could still attempt to optimize the transfer 
by changing (filtering) each logical configuration to use a page-aligned buffer instead. 

Other Plug and Play Configuration Scenarios 
The previous sections describe how a Plug and Play driver VxD handles boot-related 
configuration events. Not all configuration events, though, relate just to the boot pro
cess. The VxD's Configuration Handler function must also handle notifications trig
gered by such user actions as shutting down, adding devices, and removing devices. 
Table 10.3 summarizes the sequence of configuration events in each of these scenar
ios (the boot sequence is also included for completeness). 

Shutdown 
When a user shuts down Windows 95, each VxD Configuration Handler receives a 
CONFIG_SHUTDOWN notification. The DDK documentation recommends that the driver 
VxD "free system resources and shutdown its device". But it's interesting to note that 
many of the drivers whose source is in the DDK don't follow either of those instruc
tions. It really doesn't matter if a VxD frees its system resources by unvirtualizing its 
IRQ and unhooking its 110 port trap handlers, because the system is shutting down 
anyway. As for "shutting down" your device, the action taken really depends on the 
kind of device. For example, an audio playback driver might stop playback on the 
device, or a modem might hang up a connection. 
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Table 10.3 Plug and Play configuration events. 

Process Function Description 

Shutdown CONFIG_PRESHUTDOWN system about to shut down 

CON FIG_SHUTDOWN system shutting down 

Boot CON FIG_START start using assigned 
configuratioq '" 

CONFIGJILTER driver may filter logical 
configurations 

New CONFIG_STOP stop using assigned 

Configuration configuration 

Assigned CONFIGJI L TER driver may filter logical 
configurations 

CONFIG_START start using (new) assigned 
configuration 

Device Removal CONFIG_TEST ok for device to be 

(Windows 95 knows removed? return 

ahead of time) CR_SUCCESS (ok) or 
CR_REMOVE_VETOED(notok) 

CONFIG_TEST_SUCCEEDED devnode and all its children 
returned ok to CONFI G_TEST, 
device will be removed 

CONFIG_PREREMOVE prepare for device removal 

CONFIG_PREREMOVE2 prepare for device removal 

CON FIG_REMOVE device has been removed 

Device Removal CON FIG_REMOVE device has been removed 

(Windows 95 knows 
after the fact) 
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N ewConfiguration 
Sometimes when a new device is added while the system is running (e.g. by inserting 
a PCMCIA card), that new device requires a resource already assigned to another 
device. In this case, the Configuration Manager may shuffle the resource assignments 
of already-present devices to satisfy the new device. If the Configuration Manager 
does reassign a device's resources, that device's Configuration Handler receives a 
CONFI G_STOP notification followed by a CON FI G_ST ART notification. CONFI G_STOP 
tells the driver to stop using its allocated configuration; CON F I G_ST ART tells the driver 
to start using the (newly) allocated configuration. 

To stop using the device resource, the CONFIG_STOP handler may need to "undo" 
system calls. If the device uses an IRQ, it should be unvirtualized. If the device was 
memory-mapped, the linear-to-physical mapping requested by the CONFIG_START 
handler should be released by unlocking, decomrnitting, and freeing the device's lin
ear address. Review "Talking to a Memory-mapped Device" in Chapter 6 for an 
explanation of these steps. 

It may seem inefficient to free the linear address during CONFIG_STOP if the VxD 
will turn around and allocate a linear address again during the following CON F I G_ST ART; 
however, there is at least one situation where a CONFIG_START does not follow a 
CONFIG_STOP. If the Configuration Manager attempts to reassign resources after boot 
because a new device was added, and the attempt results in an unresolvable conflict, the 
Device Manager will ask the user to choose a device to kill. This device will receive a 
CONFIG_STOP message and nothing else. 

In most cases, the Configuration Manager follows a CON FIG_STOP with a CON FI G_ST ART 
notification for the newly assigned configuration. The VxD's CONFIG_START handler acts 
exactly as it does during boot: it first calls CM_Get_A 11 oCLo9_Conf and then starts using 
the assigned resources returned in the CM_CON FIG structure. No special code is needed in the 
CON FI G_ST ART handler to distinguish reassignment from initial boot-time assignment. 

Device Removal 
There are two kinds of device removal: those where the operating system knows. 
ahead of time that the user is planning to remove the device, and those where the 
operating system learns of the removal after the fact. In the first case, the system can 
warn the device's VxD of the impending removal. The system will have advance 
warning, for example, when the user chooses Remove from Device Manager and when 
the user undocks his laptop from its docking station. In cases like these, the VxD Con
figuration Handler for the "about-to-be-removed" device receives a CONFIG_TEST 
notification before the removal. The VxD can grant its permission for the removal to 
proceed by returning CR_SUCCESS, or can deny permission if the device isn't ready to 
be removed by returning CR_REMOVE_VETOED. 
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If the CONFIG_TEST handler returns CR_SUCCESS, the Configuration Manager fol
lows up with a CONFIG_TEST_SUCCEEDED notification, which requires no handling at 
all by the driver VxD. Finally, after the device is removed, the Configuration Manager 
sends a CON FIG_REMOVE notification. The CONFIG_REMOVE handler should halt use of 
the device resources (unvirtualize the IRQ, etc.). On this event, the driver should also 
free any devnode-specific data. (See the earlier section "Plug and Play BootProcess: 
PNP _New_DevNode Processing" for discussion of allocating devnode-specific data.) 

The second class ofremoval happens when the operating system doesn't find out 
about the removal until after the fact, for example when a PCMCIA card is removed. 
In this case, the VxD for the just-removed device receives a CON F I G_REMOV E notifica
tion after the fact. Once again, a CON F I G_REMOV E handler should stop using device 
resources and free any devnode-specific data. 

A Sample Plug and Play Driver VxD: 
TRICORD. VxD 

The remainder of this chapter will discuss an example Plug and Play Driver VxD, 
TRI CORD. VXD, and its accompanying INF file, TRI CORD. I NF. TRI CORD. VXD is the Plug 
and Play Device Driver V xD for an imaginary Tricorder device produced by an imag
inary vendor, the XYZ1234 Corp. TRICORD. VXD also acts as its own Plug and Play 
Device Loader, a common scenario. 

While the TRICORD VxD isn'ta fully functional device driver - it doesn't talk 
to any real hardware - it is a fully functional Plug and Play Driver VxD - it inter
acts with the Configuration Manager as required to find out what system resources the 
Tricorder device is using. If you already have a driver VxD and you want to add Plug 
and Play support, TRICORD shows you what pieces to add to your existing VxD. Or, 
if you are writing a Plug and Play Driver VxD from scratch, you can use TRICORD 
as a starting point and add device-specific functionality. 

Before running TRICORD for the first time, you must run the Add New Hardware 
Wizard. The wizard will use TRICORD's INF file to add several registry entries and 
copy the VxD file. If TRICORD was a true Plug and Play device, an enumerator 
would automatically recognize it as a new device when first added to the system, and 
the Device Installer would automatically be invoked to process its INF file. But like a 
real Legacy device, the imaginary TRICORD device isn't automatically recognized, 
so you as a developer must explicitly tell Windows 95 about the new device. 
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TRICORD.INFDetails 
TRI CORD. I NF (Listing 10.5, page 213) performs a basic installation scenario as dis
cussed earlier in this chapter. TRI CORD. IN F contains 

• aVers i on section which describes the OS version and the device class (type); 

• a Manufacturer section which describes the device; 

• a CopyFil es section which copies TRI CORD. VXD from the installation disk to the 
hard disk; 

• an AddReg section which adds a single DevLoader entry to the device's software 
subtree in the registry; 

• a LogConfi 9 section which describes the resources (110 port and IRQ) used by the 
device; and 

• an Install section which names the CopyFi 1 es, Add Reg, and LogConfi 9 sections. 

The TRICORD. I NF file is shown in the following code. 

[Version] 
Signature=$CHICAGO$ 
Class=OtherDevices 
Provider=%StringO% 

[DestinationDirs] 
DefaultDestDir=30,BIN 

[Manufacturer] 
%StringO%=SECTION_O 

[SECTION_O] 
%String1% = XYZ1234.Install ,*XYZ1234 

[XYZ1234. I nsta 1.1 ] 
Copyfiles=CopyFiles_XYZ1234 
AddReg=AddReg_XYZ1234 
LogConfig=LogConfig_XYZ1234 

[CopyFi1 es_XYZ1234] 
tricord.vxd 

[Add Reg_XY Z 1234] 
HKR"DevLoader,O,tricord.vxd 
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[LogConfig_XYZ1234] 
ConfigPriority=NORMAL 
IOConfig=4@180-1B3%fffO(3::) 
IRQConfig=4,5,9,lO,ll 

[Strings] 
StringO="XYZ Corp" 
Stringl="Tricorder Model 1234" 

When viewed as a text file, an INF file seems disjointed and unstructured. But an 
INF file has an implicit hierarchical structure, with a root section that refers to branch 
sections, each which refer to other branch sections. The INF file makes more sense 
when viewed as a hierarchy, which is why many developers create and modify INF 
files with the INFEDIT tool in the DDK. The following pseudocode depicts the hier
archical structure ofTRI CORD. IN F. 

[Manufacturer] 
"XYZ Corp" --) [SECTION 0] 

"Tricorder Model 1234" --) [XYZI234.Install] 
CopyFiles ---) [CopyFiles XYZ1234] 

tricord.vxd 

AddReg ----) (AddReg XYZ1234] 
HKR .. DevLoader.O.tricord.vxd 

LogConfig ---) [LogConfig XYZ1234] 
ConfigPriority=NORMAL 
IOConfig=20@200-3ff%3cO(3ff::l 
I!{QConfig=5.7.10.15 

The INFEDIT view makes it clear that the TRICORD. VXD describes only a single 
device ("Tricorder Model 1234") from a single vendor ("XYZ Corp"). This Tri
corder device requires three steps to install (three items in XYZl234. Install). A 
single file (tri cord. vxd) must be copied. A single registry entry must be added 
(DevLoader=tricord.vxd) to the device's hardware key under HKLM\Enum. And, 
the device supports a single logical configuration consisting of a range of 20h I/O 
ports (anywhere between 200h and 3ffh) and an IRQ of 5, 7, 10, or 15. 

You can avoid worrying about the unusual syntax on items like AddReg and 
IOConfi 9 by using the INFEDIT tool to create and modify your INF file. For more 
details on the exact syntax of any INF file section, see the DDK 

Code Details 
Like the earlier examples, the TRICORD source consists of two files. An ASM file 
[TRI CORD. ASM (Listing 10.2, page 210)] contains the DDB and Device Control Proce
dure. A C file [PNP. C (Listing 10.1, page 204)] contains the message handler and call
back functions. 
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TRICORD follows the basic procedures outlined earlier in this chapter. Its Device 
Control Procedure handles only three messages: Sys_Dynami cDevi ce_I nit, Sys_
Dynami cDevi ce_Exi t, and PNP _New_DevNode. The PNP _New_DevNode handler reg
isters a Configuration Handler with the Configuration Manager. This Configuration 
Handler processes CONFIG_START, CONFIG_STOP, CONFIG_REMOVE, and CONFIG_TEST 
notifications. 

By including the DYNAMIC keyword in the VxD DEF file and processing the 
Sys_Dynami cDevi ce_Ini t and Sys_Dynami cDevi ce_Exi t messages, TRICORD 
becomes a dynamically loadable VxD. However, neither message handler does any 
real processing. Both OnSysDynami cDevi ceIni t and SysDynami cDevi ceExi t simply 
return TRUE, indicating success. 

CONFIGRET OnPNPNewDevnode(DEVNODE DevNode, DWORD LoadType) 
{ 

CONFIGRET rc; 
switch (LoadType) 
{ 

case DLVXD_LOAD_DEVLOADER: 
pDeviceContext = (DEVICE_CONTEXT *)_HeapAllocate(sizeof(DEVICE_CONTEXT), 

HEAPZEROINIT ); 

if (!pDeviceContext) 
return CR-FAILURE; 

rc = CM_Register_Device_Driver(DevNode, ConfigHandler, pDeviceContext,O); 
if (rc != CR_SUCCESS) 

return rc; 
return CR_SUCCESS; 

default: 
return(CR_DEFAULT); 

OnPNPNewDevnode does some simple processing. If the LoadType parameter is 
anything other than DLVXD_LOAD_DEVLOADER, the handler returns the CR_DEFAUL T 
value defined by the Configuration Manager. If DevType is DLVXD_LOAD_DEVLOADER, 
the handler first allocates a DEVICE_CONTEXT structure for instance data (data about 
this particular devnode) and then registers as the device driver for the devnode by 
calling CM_Regi ster _Devi ce_Dri ver. As a device driver for the devnode, TRICORD 
will receive configuration notifications from the Configuration Manager through 
the Confi gHandl er callback function, which was passed as a parameter to 
CM_Regi ster _Devi ce_Dri ver. It may seem backwards t<\> register as a device driver 
during DLVXD_LOAD_DEVLOADER processing, and yet ignore the DLVXD_LOAD_DRIVER 
messages, but, as discussed earlier in this chapter, this is indeed proper behavior 
for a VxD that acts as both Plug and Play Device Loader and Device Driver. 
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CONFIGRET CM_HANDLER Confi gHandl er( CONFIGFUNC cfFuncName. 

CMCONFIG Config; 
DWORD rc; 

SUBCONFIGFUNC scfSubFuncName. 
DEVNODE dnToDevNode. 
DWORD dwRefData. ULONG ulFlags) 

DEVICE_CONTEXT *dev ~ (DEVICE_CONTEXT *)dwRefData; 

switch (cfFuncName) 
{ 

case CONFIG_START: 
return ProcessConfigStart(dnToDevNode. dey ); 

case CONFIG_TEST: 
return CR_SUCCESS; 

case CONFIG_STOP: 
return ProcessConfigStop(dnToDevNode. dey ); 

case CONFI~REMOVE: ~ 

return ProcessConfigStop(dnToDevNode. dey );. 

defaul t: 
return CR_DEFAULT; 

The real work in TRICORD. VXD is done by Confi gHandl er, the registered callback 
function. The Configuration Manager passes Confi gHandl er a reason codeparame
ter, cfFuncName, which tells Confi gHandl er the reason for the callback. There are 
well over a dozen reason codes, but like most driver VxDs, TRICORD processes only 
a handful. Another parameter, dwRefData, is used as "reference data". It's actually a 
pointer to the DEVICCCONTEXT structure that TRICORD allocated earlier in its 
OnPNPNewDevnode handler. At that time, TRICORD passed this DEVICE_CONTEXT 
pointer to the Configuration Manager in a call to CM_Regi ster ~Devi ce_Dri ver, and 
the Configuration Manager now passes it back as the dWRefData parameter to 
Confi gHandl er. 

It is important that Confi gHandl er return CR_DEFAULT for any function code 
that wasn't specifically processed. The Microsoft DDK specifically 
recommends this behavior for compatibility with future versions of 
Windows. In fact, the debug version of Windows 95' tests every VxD's 
default response by calling the Configuration Handler function with a bogus 
value of Ox12345678. If a VxD doesn't respond to this message with 
CR_DEFAULT, Windows will output an error message on the debugger screen. 
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Of all the notifications actually processed by Confi gHandl er, CONFI G_TEST 
results in the least processing: TRICORD returns a value of CR_SUCCESS, giving the 
Configuration Manager pennission to either remove or stop using the device. The 
most interesting action in ConfigHandleroccurs for CONFIG_START, CONFIG_STOP, 
and CON FIG_REMOVE notifications. For each of these, Confi gHandl er calls a subrou
tine to do the real work. 

CONFIGRET ProcessConfigStart( DEVNODE devnode, void ~p 
{ 

DEVICCCONTEXT *dev = (DEVICE_CONTEXT *)p; 
CONFIGRET rc; 
CMCONFIG Config; 
MEMREGS *regs; 
WORD reg; 
IROHANDLE hndIrq; 

rc = CM_Get_Alloc_Log_Conf(&Config, devnode, 
CM_GET-ALLOC_LOG_CONF_ALLOC); 

if (rc != CR_SUCCESS) 
( 

DPRINTFl(dbuf. "CM_GeCAllocLo9_Conf fai·led rc=%x\n", rc ); 
return CR_FAILURE; 

Print_Assigned_Resources(&Config); 
if (! ((Config.wNumIROs == 1) && 

(Config.wNumIOPorts == 1 II Config.wNumMemWindows == 1) 

DPRINTFO(dbuf, "Expected resources not assigned" ); 
return CR_FAILURE; 

if (Config.wNumMemWindows) 
( 

dev-)MemBase = Config.dMemBase[O); 
dev-)MemSize = Config.dMemLength[O); 
devc)pMem = (MEMREGS *)MyMapPhysToLinear( dev-)MemBase, 

Config.dMemLength[O) ); 
if (!dev-)pMem) 
( 

} 

DPRINTFO(dbuf, "MyMapPhysToLinear failed" ); 
return CR_FAILURE; 

dev-)pMem-)Ctrl = CTRL_START_DEVICE; 
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dev->IoBase = Config.wIOPortBase[O]; 
reg = dev->IoBase + REG_CTRL; . 
_outpdw( reg, CTRL_START_DEVICE ); 

A CON FIG_START notification tells TRICORD that its device has been assigned 
resources, and that the VxD can now communicate with its device. ProcessConfi gSta rt 
begins by retrieving the assigned resources with a call to CM_GeCA 11 oCLog_Conf, 
using the value CM_GET_ALLOCLOG_CONF _ALLOC for the flags parameter. This flag 
value specifies the allocated logical configuration, as opposed to the logical configura
tion used at boot. The allocated logical configuration is returned in the CMCON FIG 
buffer provided by Confi gHandl er. Confi gHandl er calls a utility function, 
Print~ssigned_Resources, to decode the CMCONFIG buffer and print out the 
assigned resources. 

Pri nCAssi gned_Resources has four blocks, one for each resource type (I/O 
port, memory range, IRQ, and DMA channel). Each block first tests to see if one or 
more resources of that type was actually assigned and, if so, prints the name of the 
resource. Then a for loop prints infonnation about each assigned resource of that type. 
For example, this block processes the I/O port resource: 

if (pConfig->wNumIOPorts) 
{ 

DPRINTFO(dbuf, "10 resources\r\n" ); 
for (i=O; i < pConfig->wNumIOPorts; i++) 
{ 

DPRINTFl(dbuf, "Range H%d: ", pConfig->wNumIOPorts ); 
DPRINTF2(dbuf, "starts at %x len is %d\r\n", 

pConfig->wIOPortBase[i],pConfig->wIOPortLength[i] ); 



202 - Writing Windows VxDs.and Device Drivers 

The Pri nt_Ass i gned_Resources function is included mainly to illustrate decod
ing of the CMCON FIG structure. A V xD usually has some expectation about the number 
and type of resources it will use, while remaining flexible about exactly which IRQ or 
I/O port is assigned. This is true of ProcessConfi gSta rt, which expects a single IRQ 
assignment and either a memory range or an I/O range. If these expectations aren't 
met, ProcessConfi gStart, and in tum Confi gHandl er, returns with an error. 

if (! «Config.wNumIROs == 1) && 
(Config.wNumIOPorts == 1 II Config.wNumMemWindows == 1» 

DPRINTFO("Expected resources not assigned" ); 
return CR-FAILURE; 

After verifying that resources are assigned as expected, ProcessConfigStart 
determines whether the device has been configured as memory-mapped or 
I/O-mapped. If memory-mapped, the function maps the assigned physical base 
memory address to a linear address, using a utility function MyMapPhysToLinear. 
ProcessConfi gStart then uses the linear address as a pointer, writing an initializa
tion value to the device's control register. 

If the device wasn't assigned a memory range, TRICORD uses the assigned 110 
range instead. Once again TRICORD writes an initialization value to the device's control 
register, but this time it uses an OUT instruction instead of a pointer. ProcessConfi gSta rt 
uses the _outpdw macro to perform the OUT since the device has 32-bit registers and the 
C run-time doesn't include a 32-bit form of in or out. 

Finally, ProcessCol')figStart installs an interrupt handler by filling in a 
VPICD_IRfLDESCRIPTOR structure and passing it to the VPICD service VPICD_
Vi rtual i ze_IRO. The structure's VID_I RfLNumber field is the device's assigned IRQ 
(from the CMCONFIG structure). VID_Opti ons is setto VPICD_OPLREF _DATA This field 
works together with the VID_ReCData field, which is set to point to the 
DEV1CCCONTEXT (passed in as dwRefData and originally allocated by the 
PNP _New_DevNode handler). When the VPICD calls the registered interrupt handler, it 
will pass V I D_ReCData (really a DEV I CE_CONTEXT pointer) as a parameter. 

This interrupt handler is specified by the VP I CD_1 RfLDESCR1 PIOR's Hw_I nt_Proc 
field. The registered handler is HwlntProcThunk (in TRICORO's assembly module), 
but this thunk merely grabs the reference data parameter from the EDX register and 
pushes it on the stack before calling the HwlntProcHandl er function in the C module 
to do the real handling. 

ConfigHandler's processing for CONFIG_STOP and CONFIG_REMOVE is much 
simpler than for CONFIG_START. For both of these messages, Confi gHandl er calls 
ProcessConfi gStop. 
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CONFIGRET ProcessConfigStop( DEVNODE devnode. DEVICE_CONTEXT dey ) 
{ 

if (dev->pMem) 
( 

} 

*(pMem->Ctrl) = CTRL_STOP_DEVICE; 
UnMapPhysToLinear( dev->pMem ); 

else if (dev->IoBase) 
( 

VPICD_Force_Default_Behavior( dev->hndIrq ); 
HeapFree( dey. 0 ); 

return CR_SUCCESS; 

This subroutine undoes the actions taken by ProcessConfi gSta rt. First TRI
CORD commands the device itself to stop, then undoes the linear-to-physical mem
ory mapping if necessary, and finally frees the DEV I CE_CONTEXT structure originally 
allocated by the PNP _New_DevNode message handler. 

Summary 
While Plug and Play's Configuration ManagerlEnumerator/Arbitrator mechanism is 
definitely complex, the system-to-VxD Plug and Play interface is reasonably straight
forward. At that system boundary, Plug and Play support only involves handling a few 
well-defined messages and constructing an appropriate INF file. 

Even so, drivers that fully support the flexibility possible under Plug and Play will 
be considerably more complex than, for example, a legacy driver. It's the old generality 
vs simplicity trade-off: a board that can be dynamically reconfigured to use a wide vari
ety of resources won't be as simple as one with fixed addresses; code that "binds" to its 
resources at run-time won't be as simple as code that manipUlates fixed addresses. 

All the same, most commercial drivers probably should include Plug and Play sup
port. The benefits to end-users (and thus the difference in marketability) are significant. 
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Listing 10.1 PNP.C 

Iidefi ne WANTVXDWRAPS 

#include <basedef.h> 
Ilinclude <vmm.h> 
Iii ncl ude <debug. h> 
Ilinclude "vxdcall.h" 
Ilincl ude <vxdwraps. h> 
Ilinclude "intrinsi .h" 
#include <configmg.h> 
#include <vpicd.h> 
Ilinclude "wrappers.h" 

Iii fdef DEBUG 
Iidefi ne DPRINTFO( buf. fmt ) _Spri ntf(buf. fmt ); Out_Debug_Stri ng( buf ) 
Iidefi ne DPRINTFl( buf. fmt. argl) _Spri ntf(buf. fmt. argl ); Out_Debu9-Stri ng( buf ) 
Iidefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2 ); Out_Debu9-String( buf ) 
Ilel se 
Iidefine DPRINTFO(buf. fmt) 
Iidefine DPRINTFl(buf. fmt. argl) 
Iidefine DPRINTF2(buf. fmt. argl. arg2) 
Ilendif 

Iidefine _outpdw( port. val 

Iidefi ne REG_CTRl 0 
Iidefi ne REG_STATUS 1 

Iidefine CTRl_START_DEVICE OxOl 

_asm mov dx. port \ 
_asm mov eax. val \ 
_asm out dx. eax 

Iidefine CTRl_STOP _DEVICE OxOO 

typedef struct 
( 

DWORD Ctrl ; 
DWORD Status; 

MEMREGS; 

typedef struct 
( 

DWORD MemBase; 
DWORD MemSi ze; 
MEMREGS *pMem; 
WORD IoBase; 
WORD Irq; 
I ROHAND lE hnd I rq ; 
VPICD_IRQ..DESCRIPTOR IrqDescr; 

DEV I CCCONTEXT; 

BOOl OnSysDynami cDevi ce I nit (voi d) ; 
BOOl OnSysDynami cDevi ceEx it (voi d) ; 
CONFIGRET OnPNPNewDevnode(DEVNODE DevNode. DWORD loadType); 
CONF IGRET CM_HANDlER Confi gHandl er( CONFIGFUNC cfFuncName. SUBCONFI GFUNC scfSubFuncName. 

DEVNODE dnToDevNode. DWORD dwRefData. UlONG ul Fl ags); 
CONFIGRET ProcessConfigStart( DEVNODE devnode. DEVICE_CONTEXT *dev ); 
CONFIGRET ProcessConfigStop( DEVNODE devnode. DEVICCCONTEXT *dev ); 
void Print_Assigned_Resources( CMCONFIG *pConfig ); 
DWORD MyMapPhysToLinear( DWORD phys. DWORD size ); 
BOOl UnMapPhysTolinear( DWORD lin. DWORD size ); 
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Listing 10.1 (continued) PNP.C 

char dbuf[80]; 
DEVICE_CONTEXT *pDevi ceContext; 

II functions in asm module 
void HwlntProcThunk( void); 

BOOL OnSysDynami cDevi celnitO 
( 

return TRUE; 

BOOL OnSysDynamicDeviceExit() 
( 

return TRUE; 

CONFIGRET OnPNPNewDevnode(OEVNODE DevNode, DWORD LoadType) 
( 

CONFI GRET rc; 

switch (LoadType) 
{ 

case DLVXD_LOAD_DEVLOADER: 
pDevi ceContext - (DEVICCCONTEXT *)_HeapAll ocate( si zeof<DEVICCCONTEXTJ, 

HEAPZEROINIT ); 
if (!pDevieeContextl 

return CRJAILURE; 
rc - CM_Regi ster _Devi ee_Dri ver<DevNode, Confi gHandl er, 

if (re != CR_SUCCESS) 
return re; 

return CR_SUCCESS; 

default : 
return(CR_DEFAUL Tl; 

pDevi eeContext, 
Q1..REGISTER_DEVICLDRIVEICREMOVEABLE I 
CM_REGISTER_DEVICE_DRIVER_DISABLEABLE ); 
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Listing 10.1 (continued) 

Ilpragma VxD_PAGEABLE_DATA_SEG 
ilpragma VxD_PAGEABLE_COOE_SEG 

PNP.C 

CONFI GRET CM_HANDLER Confi gHand1 er( CONF I GFUNC cfFuncName. SUBCONFIGFUNC scfSubFuncName. 
OEVNOOE dnToDevNode. DWORD dwRefData. ULONG ulF1 ags) 

CMCONFIG Config; 
DWORD rc; 
DEVICE_CONTEXT *dev = (DEV ICE_CONTEXT *)dwRefData; 

switch (cfFuncName) 
{ 
case CONFIG_START: 

return ProcessConfigStart(dnToDevNode. dev ); 

case CONFIG_TEST: 
return CR_SUCCESS; 

case CONFI"-STOP: 
return ProcessConfi gStop(dnToDevNode. dev ); 

case CONFIG_REMOVE: 
return ProcessConfigStop(dnToDevNode. dev ); 

default : 
return CR_DEFAULT; 

CONFIGRET ProcessConfigStart( DEVNODE devnode. void *p ) 
{ 

DEVICCCONTEXT *dev = (DEVICE_CONTEXT *)p; 
CONFIGRET rc; 
CMCONFIG Config; 
MEMREGS *regs; 
WORD reg; 
I ROHANDLE hnd I rq; 

rc = CM_Get_A 11 oc_LogJonf (&Confi g. devnode. CM_GET.-ALLOCLOG_CONF _ALLOC) ; 
if (rc != CR_SUCCESS) 
{ 

DPRINTFl(dbuf. "CM_GeCAlloc_Lo9-Conf failed rc=%x\n". rc ); 
return CRJAILURE; 

Pri nt_Ass i gned_Resources (&Confi g) ; 
if (! «Config.wNumIRQs = 1) && (Config.wNumJOPorts = 1 II Config.wNumMemWindows = 1)) ) 
{ 

DPRINTFO(dbuf. "Expected resources not assigned" ); 
return CRJAILURE; 
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Listing 10.1 (continued) PNP.C 

if (Confi g. wNumMemWi ndows) 
{ 

dev->MemBase = Config.dMemBase[O]; 
dev->MemSize = Config.dMemLength[O]; 
dev->pMem = (MEMREGS *)MyMapPhysToLinear( dev->MemBase. Config.dMemLength[O] ); 
if (!dev->pMem) 
( 

} 

DPRI NTFO(dbuf. "MyMapPhys ToLi nea r fa il ed" ); 
return CRJAI LURE; 

dev- >pMem- >Ctrl = CTRL_START_DEVICE; 
} 
else 
( 

} 

dev->IoBase = Config.wIOPortBase[O]; 
reg = dev->IoBase + REG_CTRL; 
_outpdw( reg. CTRL_START _DEV I CE ); 

dev-> I rqDescr. VID_IRQ_Number = Confi g. bIRQRegi sters [0]; 
dev-> I rqDescr. VID_Opti ons = VPICD_OPT_REF _DATA; 
dev->IrqDescr.VID_Hw_Int_Ref = dev; 
dev->IrqDescr.VID_Hw_InCProc = HwlntProcThunk; 
hndlrq = VPICD_Virtualize_IRQ( &dev->IrqDescr ); 
if (!hndlrq) 
( 

DPRINTFO(dbuf. "VPICD_Virt failed" ); 
return CR....FAI LURE; 

return CR....SUCCESS; 

CONFIGRET ProcessConfigStop( DEVNODE devnode. void *p ) 
{ 

DEVICLCONTEXT *dev = (DEVICLCONTEXT *)p; 
WORD reg; 

if (dev->pMem) 
{ 

} 

dev->pMem->Ctrl = CTRL_STOP_DEVICE; 
UnMapPhysToLinear( (DWORD)dev->pMem. dev->MemSize ); 

else if (dev->IoBase) 
( 
reg = dev- > loBase + REG_CTRL; 

_outpdw( reg. CTRL_STOP _DEVICE ); 
} 
VPICDJorce_Default_Behavi ore dev->hndI rq ); 
_HeapFree( dev. ° ); 
return CR_SUCCESS; 
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Listing 10.1 (continued) PNP.C 

void PrinCAssigned_Resources( CMCONFIG *pConfig ) 
{ 

int i; 

if (pConfig->wNumMemWindows) 
( 

OPRINTFO(dbuf. "Mem resources\r\n" ); 
for (i-O; i < pConfig-)wNumMemWindows; i++) 
( 

OPRINTFlCdbuf. "Range il%d: ". pConfig->wNumMemWindows ); 
OPRINTF2(dbuf. "starts at %x 1 en is %d\r\n". 

pConfi g- >dMemBase[ i l. pConfi 9 ->dMemLength [i] ); 

if (pConfig->wNumIOPorts) 
( 

OPRI NTFO(dbuf. "10 resources\r\n" ); 
for (i-O; i < pConfig->wNumIOPorts; i++) 
( 

OPRI NTFlC dbuf. .. Range i/%d: ". pConfi 9 ->wNumIOPorts ); 
OPRINTF2(dbuf. "starts at %x 1 en is %d\r\n". 

pConfi g- >wIOPortBase[i l. pConfi g- >wIOPortLength [i 1 ); 

if (pConfig->wNumIRQs) 
( 

OPRI NTFO( dbuf. "I RQs: " ); 
for (i-O; i < pConfig->wNumIRQs; i++) 
( 

OPRINTFlCdbuf. "%d ". pConfig->bIRQRegisters[il); 
} 
OPRI NTFO (dbuf. "\r\n"); 

if (pConfig->wNumOMAs) 
( 

OPRINTFO(dbuf. "OMA channel s:" ); 
for (i-O; i < pConfig->wNumOMAs; i++) 
( 

OPRINTFl(dbuf. "%d ". pConfig->bOMALst[il); 
} 

DPRINTFO(dbuf. "\r\n"); 
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Listing 10.1 (continued) PNP.C 

DWORD MyMapPhysToLinear( DWORD phys, DWORD si ze ) 
( 

DWORD lin; 
DWORD nPages ~ size / 4096; 

1 i n ~ _PageReserve( PR_SYSTEM, nPages, 0 ); 
if (lin - -1) 

return 0; 
if (!_PageCommitPhys( 1 in, nPages, PCINCR PCWRITEABLE, 0 )) 

return 0; 
if (!_LinPageLock( lin, nPages, 0 )) 

return 0; 
return lin; 

BOOL UnMapPhysToLinear( DWORD lin, DWORD size) 
{ 

DWORD nPages - size / 4096; 

if (!_LinPageUnlock( lin, nPages, 0 )) 
return 0; 

if (!_PageDecommit( lin, nPages, 0)) 
return 0; 

if (!_PageFree( (void *)lin, 0 )) 
return 0; 

return 1; 

BOOL _stdcall HwIntProcHandl er(VMHANDLE hVM, IROHANDLE hI RO, voi d *pRefData) 
( 

DEVICCCONTEXT *dev ~ <DEVICE_CONTEXT *)pRefData; 

return TRUE; 
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Listing 10.2 TRICORD.ASM 

.386p 

;****************************************************************************** 
INCLUDES 

;****************************************************************************** 

include vmm.inc 
include debug.inc 

V I R T U A L D E V ICE DEC L A RAT ION 

PROCEDURE: ControlProc 

DESCRIPTION: 

TRICORD. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \ 
UNDEFINED_INIT_ORDER 

Device control procedure for the SKELETON VxD 

ENTRY: 
EAX - Control call ID 

EXIT: 
If carry clear then 

Successful 
el se 

Control call failed 

USES: 
EAX. EBX. ECX. EDX. ES!. ED!. Flags 

BeginProc ControlProc 
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDevicelnit. cCall. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysOynamicDeviceExit. cCall. <ebx> 

clc 
ret 

EndProc ControlProc 
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Listing 10.2 (continued) TRICORD.ASM 

PUBLIC _HwlntProcThunk 
_HwlntProcThunk PROC NEAR; called from C. needs underscore 

sCalI HwlntProcHandler. <eax. ebx. edx> 
or ax. ax 
jz clearc 
stc 
ret 

cl ea rc: 
clc 
ret 

_HwlntProcThunk ENDP 

VxD_LOCKED_CODE_ENDs 

END 

Listing J 0.3 TRI CORD. MAK 

CFLAGs 
CVXDFLAGs 
LFLAGS 

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi 
= -Zdp -Gs-c -015_32 -Zl -DOEBLEVEL=l -DDEBUG 

AFLAGs 

= -machi ne: i386 -debug: notmapped. full -debugtype: cv 
-subsystem:console kernel32.1ib 

= -coff -DBLD_COFF -015_32 -W2 -Zd -c -Cx -DMAsM6 -DDEBLEVEL=l -DDEBUG 

all: tri cord. vxd 

pnp.obj: pnp.c 
cl $(CVXDFLAGs) -Fo$@ %s 

tricord.obj: tricord.asm 
ml $(AFLAGs) -Fo$@ %s 

tricord.vxd: tricord.obj pnp.obj .. \wrappers\vxdcal] .obj tricord.def 
echo >NUL @«tricord.crf 

-MACHINE:i386 -DEBUG -OEBUGTYPE:MAP -PDB:NONE 
-DEF:tricord.def -OUT:tricord.vxd -MAP:tricord.map 
-VXO vxdwraps.clb wrappers.clb vxdcall .obj tricord.obj pnp.obj 
«KEEP 

link @tricord.crf 
. mapsym tri cord 
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Listing 10.4 TRICORD.DEF 

VXD TRICORD DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
~DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
_I DATA CLASS 'ICODE' 
_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 
_IMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
TRICORD_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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Listing 10.5 TRICORD.INF 

[Version] 
Signature=$CHICAGO$ 
Class=LJnknown 
Provider=%StringO% 
LayoutFile=<Layout File> 

[DestinationDirs] 
DefaultDestDir=lO 

[Manufacturer] 
%String1%=SECTION_O 

[SECTION_OJ 
%Stri ng2%=1234_1 nsta 11 . XYZl234 

[l234_Install] 
CopyFiles=1234_NewFiles 
AddReg=1234_AddReg 
LogConfig=1234_LogConfig 

[l234_NewFi 1 es] 
TRICORD.VXD 

[l234_AddRegJ 
HKR .. DevLoader.O.TRICORD.VXD 

[1234_LogConfig] 
ConfigPriority=NORMAL 
IOConfig=20@200-3ff%ffcO(3ff::) 
IROConfig=5,7.10.15 

[Control Flags] 

[SourceDisksNames] 
1=XYZ1234 Driver Disk .. OOOO-OOOO 

[SourceDisksFiles] 

[Strings] 
StringO="XYZ Corp." 
Stringl="XYZ Corp." 
String2="Tricorder Model 1234" 
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Chapter 11 

Communication from 
Applications to VxDs 
VxDs do much more than just "handle" hardware. In most cases, VxDs also offer an 
interface to applications, so an application can actually do something with the hard
ware. Both Windows 3.x and Windows 95 have mechanisms which allow VxDs and 
applications to communicate in both directions: application-to-VxD and VxD-to-appli
cation. This chapter will cover communication in the· application-to-VxD direction. 
The next chapter will cover VXD-to-application interaction. 

Instead of organizing this chapter around whether the VxD is running under Win
dows 3.x or Windows 95, I've divided the chapter into sections that address either the 
Win16 application interface or the Win32 application interface. That's because the 
interface between a Win16 application and VxD is the same for both Windows 3.x and 
Windows 95. The distinguishing feature is the bitness of the application, not the ver
sion of Windows the VxD runs on. 

215 
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Win16Application to VxD: 
View from VxD Side 
To provide an interface for a Win16 application, a VxD exports what is known as an 
"API procedure". More correctly, a VxD exports a PM API procedure and/or a V86 
API procedure. The PM API procedure is used by 16-bit protected mode applications, 
which includes Win16 applications as well as any DOS-extended (DPMI) applica
tions. The V86 mode API is, of course, used by DOS applications. 

A VxD exports these procedures by naming them in the DDB. VxDs typically use 
the Dec1 are_Vi rtua1_Devi ce macro to declare the DDB. In this case the API proce
dure names go in the V86_Proc and PM_Proc fields. When assembled or compiled, 
these function names become addresses in the DDB, which the VMM uses to call the 
V xD on behalf of the application. 

A VxD must also declare a unique Device ID in the DDB in order to export an API 
procedure. (This field is referred to as the Devi ce_Num in the Dec 1 are_Vi rtua l_Devi ce 
macro). Developers commonly use the value UNDEFINED_DEVICE_ID for VxDs, but 
that's not good enough for a VxD that exports an API procedure or a service. 
Microsoft reserves the values 0-1 FFh, so you're free to choose any value above that as 
long as it's unique. You can ensure that it's unique by registering with Microsoft for 
your very own Device ID. 

When the VMM calls a VxD API procedure on behalf of an application, it puts the 
VM handle in EBX and a pointer to the Client Register Structure in ESP. The VxD must 
examine the Client Register Structure for the parameters passed in by the application 
(including the reason for the call). The VxD developer has total control over all other 
aspects of the interface design. The developer decides what functions to support, what 
registers to use, and what parameters to pass in registers. A common convention is for 
AX to specify the function code, and to use AX=Q for "Get Version". 

Except for pointer parameters, the VxD can examine and use parameter values 
directly. For example, if the convention was for CX to contain a buffer size, the VxD would 
use the construct [EBX] . C1 i ent_CX, or from C, crs - >C1 i enCCX. Pointer parameters 
can't be used "as is", because pointers have a different representation in the application's 
16-bit segmented environment than in the VxD's 32-bit flat-model environment. 

In the segmented world ofWin16 and DOS applications, pointers are 16:16 values: 
either selector:offset for PM applications, or segment:offset for V86 applications. In 
the flat world ofVxDs, pointers are 32-bit linear addresses. When an application passes 
a pointer to a VxD, say in OS: OX, the VxD must transform the segmented representa
tion into a linear address. The VMM service Ma pJ1 a t performs this translation. To 
use this service, you specify a segment/selector and an offset, where each component is 
a field in the C1 i ent_Regs_Struc. The VMM returns a Ring 0 linear address. When 
using the DDK and the WRAPPERS library, this service is accessed via the MAPFLAT 
macro, as in the following code fragment. 



Communication from Applications to VxDs - 217 

pBuf = MAPFLAT(CLIENT_OS, CLIENT_OX); 

You don't even need to tell the VMM whether the pointer is from a PM application 
(selector:offset) or a V86 application (segment:offset). The VMM figures that out for 
itself, based on the execution mode of the currently executing VM. (The current VM is 
the appropriate context, because it will always be the VM that called the VxD's API.) 

What about returning a pointer from the VxD to the application? Clearly a flat 
model linear address must be transformed into a selector:offset or segment offset, but 
either party to the transaction could be responsible for the conversion. There are two 
ways to approach this. The VxD could perform the conversion anQ. give the applica
tion a 16:16 pointer. Alternatively, the VxD could return a linear a'ddress to the appli
cation and leave the conversion to the application. 

Having the VxD do the conversion might seem to be the more natural solu
tion, but is actually more work, mainly because only low-level selector functions 
are available to a VxD. To perform this conversion, a VxD must first obtain a 
selector via Allocate_LOT _Se 1 ector, then fill in the associated descriptor with 
Buil dOescri ptorOWORDS. Using Allocate_LOT _Se 1 ector isn't too bad, but 
Bui 1 dOescri ptorOWOROS is. Your VxD must deal with details such as DPL, granu
larity, and big/default, all requiring intimate knowledge of 80x86 descriptors. 

An application, on the other hand, has a more useful set of high-level selector 
functions (All ocSe 1 ector, SetSe 1 ectorBase, and SetSe 1 ectorL i mit) which it can 
use to transform a linear address into a usable pointer. 

Win16Application to VxD: 
View from Application Side 
To call into a VxD, a Win16 application uses the Windows Get Oevi ce Entry Poi nt 
function, accessed through INT 2Fh. The application puts the numeric Device ID in 
BX, the function code in AX (1684), and calls the VMM via the software interrupt 2Fh. 
On return, ES: DI is a function pointer the application uses to call the VxD's API pro
cedure. This technique works for both protected mode (Winl6 or DOS-extended) 
applications and for V86-mode applications (plain old DOS). 
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The following function, GetVxDApi, encapsulates the I NT 2Fh call. Pass in a VxD 
!D, and it returns the function pointer used to call the VxD. 

typedef void (far *PVOIDFN)(void); 
PVOIDFN GetVxDApi(WORD vxdid) 
{ 

PVOIDFN pfApi; 

_asm { 
push di 
push es 
xor di, di 
moves, di 
mov ax, 1684h 
mov bx, vxdid 
int 2fh 
WORD PTR pfApi+2, es 
WORD PTR pfApi, di 
pop es 
pop di 
} 

return( pfApi ); 

Notice that I said "function pointer the application uses to call the VxD's API pro
cedure" and not "function pointer to the VxD's API procedure". That's because Ring 
3 code can't call Ring 0 code directly. If you dump the code pointed to by ES: 01, 
you'll see I NT 30h followed by another value. The I NT 30h is the VMM's way of 
transferring control from a Ring 3 application to a Ring 0 VxD. Executing a software 
interrupt from Ring 3 causes the processor to switch to Ring O. The I NT 30h handler 
is really the VMM's "call VxD from application" procedure. The VMM uses the bytes 
after the 1NT 30h instruction to determine which VxD the application wants to call, 
gets that VxD's API procedure from the VxD's DDB, sets up EBX to point to the client 
register structure, and, finally, calls the VxD. (However, see the sidebar for informa
tion on an alternative that a Windows 95 application can use to call a VxD.) 

.The above magic is all transparent from the application's point of view. The applica
tion sees only a fa r call to the address returned by the call to Get Devi ce Entry Poi nt. 
The application passes parameters to the VxD in registers, which means you must use 
assembly (or at least embedded assembly) to fill in the parameters. As explained ear
lier, the registers used for the parameters are determined by the VxD developer. 
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Win16Application to VxD: Example Code 
This section details a simple Win16 application and VxD combination that illustrates 
the above techniques. In this example, the application requests the VxD to allocate a 
system DMA buffer on its behalf (something an application can't do itself). The appli
cation initializes a structure that describes the buffer required and gives the VxD a 
pointer to this structure. The VxD allocates a DMA buffer and fills in the application's 
structure with information about the buffer. The application then translates one of the 
structure members into a usable pointer. 

The Example Application 

The application, contained completely in the file WI N16APP. C (Listing 11.1, 
page 233), is one of the world's simplest Win16 applications. It doesn't even have a 
message loop, only a Wi nMa i n. In Wi nMa in, it calls the VxD to allocate a DMA buffer, 
displays information about the allocated buffer, calls the VxD to free the buffer, and 
then exits. 

pfDmaBufApi = GetVxdApiEntryC DMABUF_ID ); 
if C!pfDmaBufApi) 
{ 

printfC"Error! Couldn't get DMABUF Api\n"); 
exit(l); 

Under Windows 95, An Application Can Call a VxD by Name 
Instead of by Device ID 

When a Win16 application knows that it's running under Windows 95 and not Windows 3.x, the application 
can use the VxD's 8-byte name instead of its Device ID to find its entry point. The 8-byte name is the one the 
VxD declares in its DDB, which is usually space padded, and usually does not contain a NU L character at the 
end. This method also uses INT 2FAX=1684h and returns the same far function pointer. However, in this 
case B X must be set to 0 and E S : 0 I is used as an input parameter, pointing to the name. 

Because Windows 95 supports this new VxD calling method, it is no longer strictly necessary to obtain a 
VxD ID in order to provide an API to 16-bit applications running under Windows 95. However, VxD develop
ers that supply a 16-bit API will continue to require a VxD ID as long as they support customers running 
under Windows 3.x - and even after that if Win16 applications that use the old "call by ID" method are 
already in the field. 
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The application first calls a helper function, GetVxdApi Entry, to obtain a function 
pointer to the VxD entry point. The application then fills in the Si ze field of the 
DMA_BUFFER_DESCRIPTOR, telling the VxD what size DMA buffer is required. The 
VxD will fill in the other two fields, PhysAddr and L i nAddr, with the physical address 
and linear address of the allocated buffer. 

mov ax. DMABUF_FUNC_ALLOCBUFFER 
1 ea s i. dmadesc ; small model. don' t need to load DS 
call DWORD PTR pfDmaBufApi 

mov err. ax 

The VxD expects DS: SI to point to the DMA_BUFFER_DESCRI PTOR, so the applica
tion uses embedded assembly to load the two registers with the address of the 
DMA_BUFFER_DESCRIPTOR structure and the AX register with the function code 
DMABUF JUNCALLOCUFFER With the registers initialized as expected by the VxD, the 
application calls the VxD entry point through the function pointer pfDmaBufApi. 

If the VxD was unable to allocate the buffer, it returns with a non-zero value in AX. 
The application tests for this result, producing an error message and exiting. Other
wise, the VxD has allocated the buffer and filled in the PhysAddr and L i nAddr fields. 
An application that was really doing DMA would use the PhysAddr to program the 
DMA controller; this example merely prints out the field's value. 

_asm mov myds, ds 
usSel = AllocSelector( myds ); 
SetSelectorBase( usSel. dmadesc.LinAddr ); 
SetSelectorLimit( usSel. dmadesc.Size ); 
DmaBufPtr = MAKELP( usSel. 0 ); 

The example application does use the L i nAdd r field to obtain a usable pointer to 
the allocated buffer. First, the application obtains a selector via All ocSe 1 ector. Next, 
it calls SetSe 1 ectorBase, passing the newly allocated selector and the linear address 
returned by the VxD. After that, the application uses SetSel ectorL i mit to set the 
size of the newly allocated selector. The example also limits the selector to the size of 
the requested buffer. With this restriction, overwriting the allocated buffer will cause a 
GP fault and the register will terminate the application immediately. The application 
completes the conversion by using the MAKELP macro to tum the selector into a 
pointer. The application now has a usable pointer that maps to the linear address 
returned by the VxD. 
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When this conversion is complete, the application displays a message box show
ing the DMA buffer's physical linear and logical (pointer) address. Finally, the appli
cation prepares for termination. It frees the selector that it just allocated, then calls the 
VxD again, this time using the function code DMABUF JUNCJREEBUFFER, to free the 
allocated buffer. 

The Example VxD 

The DMABUF VxD called by the WIN16APP application is also very simple. To sup
port the Win16 application, the VxD needs only to handle the Init_Comp1 ete mes
sage and support a PM API with only two functions, All ocBuffer and FreeBuffer 
(Listing 11.5, page 236). 

The only reason that DMABUF handles the I ni t_Comp 1 ete message is that under 
Windows 3.x, physically contiguous pages must be allocated during initialization, and 
a system DMA buffer must consist of physically contiguous pages. In Windows 95, 
contiguous pages may be allocated at any time. To accommodate the difference, 
DMABUF's OnlnitComp1ete function checks what version of Windows is running. 
If it is running under Windows 3.x, DMABUF preallocates a DMA buffer of a fixed 
size (64 Kb). The driver saves the buffer's linear and physical addresses in global vari
ables, where they can be retrieved when an application calls the VxD. For more 
details on DMA buffer requirements and PageA 11 ocate, see Chapter 6. The follow
ing code shows the On I ni tComp 1 ete handler. 

BOOl OnlnitComplete(VMHANOLE hVM, PCHAR CommandTail) 
( 

DWORD ver; 

if (HIWORD(ver) <= 3) 
( 

II Win3.x, not 95 
bWi n3x = TRUE; 
1/ must all oc phys contig pages now 
LinAddr = _PageAllocate(nPages, PG_SYS, O. OxOF, 0, OxIOOO, &PhysAddr, 

PAGEFIXED I PAGEUSEAlIGN I PAGECONTIG ); 

return TRUE; 

PM_Api_Hand1 er (shown in the following paragraph of code) is the entry point for 
calls from Win16 applications. Since the application should specify a function code in 
the AX register (found in the C1 tent_AX field of the CLI ENT_STRUCT parameter), 
PM_Api_Hand1 er switches on this value. 
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void __ cdecl PM_Api_Handler(VMHANDLE hVM. CL1ENT_STRUCT *pcrs) 
( 

DMA_8UFFER_DESCR1PTOR *pBufDesc; 

switch( pcrs->CWRS.Client_AX ) 
( 

case DMABUF_FUNC-ALLOCBUFFER: 
pBufDesc = MAPFLAT(Client_DS. Client_S1); 
pcrs-)CWRS.Client-AX = AllocBuffer( pBufDesc ); 
break; 

case DMABUF_FUNC_FREEBUFFER: 
pBufDesc = MAPFLAT(Client_DS. Client_S1); 
pcrs->CWRS.Client-AX = FreeBuffer( pBufDesc ); 
break; 

default: 
pcrs->CWRS.Client_AX = DMABUF_1NVAL1D_FUNC; 
break; 

The DMABUF API consists only of two functions, All ocBuffer and FreeBuffer. 
Inboth cases, the buffer in question is described by a DMA_BUFFER_DESCRI PTOR struc
ture passed by the application in DS: S 1. To access this buffer, the VxD must translate 
the application's selector:offset pointer into a usable flat pointer.· PM_Api_Hand1 er uses 
the VMM service MapJ1 at, accessed via the macro MAPFLAT, to accomplish this con
version. Finally, PM_Api_Hand1 er calls the appropriate subroutine, either All ocBuffer 
or FreeBuffer, passing in the flat pointer to the DMA_BUFFER_DESCRI PTOR. The 
All ocBuffer function is shown in the following code. 

DWORD AllocBuffer( DMA_BUFFER_DESCRIPTOR *pBufDesc 
( 

DWORD rc; 

if (bOwned) 
( 

rc = DMABUF_ALREADY_ALLOCED; 
) 
else 
( 

bOwned = TRUE; 
if (bWin3x) 
( 

if (pBufDesc->Size > 16 * 4 * 1024) 
rc = DMABUF_S1ZE_TOO_B1G; 

else 
{ 

pBufDesc->PhysAddr = PhysAddr; 
pBufDesc-)LinAddr = LinAddr; 
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else 
( 

LinAddr = pBufDesc-)LinAddr 
= PageAllocateCpBufDesc->Size / 4096. 

PG_SYS. O. OxOF. O. OxlOOO. 
&pBufDesc->PhysAddr. 
PAGEFIXED I PAGEUSEALIGN I PAGECONTIG ); 

if (!pBufDesc->LinAddr) 
rc = DMABUF_BUF_NOT_AVAIL; 

return rc; 

For the sake of simplicity, the DMABUF VxD allows only one application to allo
cate a DMA buffer at a time. To enforce this policy, All ocBuffe r checks the global 
variable bOwned. If this boolean is set, All ocBuffer fails the call and returns with the 
error code DMABUF _ALREADY_ALLOCED. 

If no other application has already claimed the buffer, All ocBuffer checks the 
bWi n3x variable set by On I n itComp 1 ete. If this variable is set, then the VxD is run
ning under Windows 3.x and the DMA buffer was preallocated during initialization. 
If the caller requested a larger buffer size than Was allocated, the call fails with a 
return value of DMABUF _SIZE_TOO_BIG. If the buffer size is acceptable, the VxD 
copies the physical and linear addresses returned earlier by _P a geA 11 oca te into 
pBufDesc- >PhysAddr and pBufDesc- > L i nAddr. 

If the VxD is running under Windows 95, the buffer was not preallocated 
during initialization, and so must be allocated now, using the size requested by 
the caller. If _PageA 11 ocate fails for any reason, All ocBuffer returns with 
DMABUF_NOT_AVAIL. If _PageAllocate succeeds, AllocBuffer returns to the caller, 
with pBufDesc- >L i nAddr and pBufDesc- >PhysAddr values provided by _PageA 11 ocate. 
Notice that DMABUF also stores the linear address in the global variable L i nAddr
I'll explain why in a moment. 

FreeBuffer first checks that bOwned was set by All ocBuffer. If not, the function 
returns immediately with DMABUF _NOT_ALLOCED. Next, the function verifies that the 
linear address specified by the caller is the same as the one in pBufDesc- >L i nAddr, 
which was returned by _PageA 11 ocate. If the addresses don't match, FreeBuffer 
returns with DMABUF _NOT_ALLOCED. This precaution prevents the VxD from freeing an 
invalid address passed in by a buggy application. Finally, FreeBuffer may indeed 
free the buffer, but only if running under Windows 95. If under Windows 3.x, the 
buffer allocated during initialization must stay around for future use. The FreeBuffer 
function is shown in the following code. 

/ 



224 - Writing Windows VxDs and Device Drivers 

DWORD FreeBuffer( DMA_BUFFER_DESCRIPTOR *pBufDesc ) 
{ 

DWORD rc; 

if (bOwned) 
{ 

bOwned = FALSE; 
if (pBufDesc->LinAddr == LinAddr) 
{ 

if (!bWin3x) 
{ 

} 

else 
{ 

else 
{ 

PageFree( pBufDesc->LinAddr. 0 ); 

return rc; 

Win32 Application to VxD: 
View from VxD side 
The interface from a Win32 application to a VxD is much different, both viewed from 
the VxD side and from the application side. As before, I'll first explain theVxD side, 
then the application side. 

A VxD doesn't need to export a special procedure in order to support Win32 
applications. Instead, its control procedure must handle a special message, called 
W3LDEVICEIOCONTROL. The VMM sends this message to the VxD on behalf of the 
calling application. 
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Parameters are passed, not through registers, but all bundled up into a D1 OCPARAMETERS 
structure. The VMM puts a pointer to this structure in ESI. Here's the structure: 

typedef struct D10CParams 
DWORD 1nternall; 
DWORD VMHandle; 
DWORD 1nterna12; 
DWORD dw1oControlCode; 
DWORD lpv1nBuffer; 
DWORD cb1nBuffer; 
DWORD lpvOutBuffer; 
DWORD cbOutBuffer; 
DWORD lpcbBytesReturned; 
DWORD lpoOverlapped; 
DWORD hDevice; 
DWORD tagProcess; 

D10CPARAMETERS; 

The D10CPARAMETERS structure is defined in VWIN32. H, not VMM. H. Also note 
that VTooisD uses a different structure name (IOCn P ARAMS) and different 
field names. 

The dwloControl Code field tells the VxD which function to perform. The 
1 pvlnBuffer and cblnBuffer are. pointers to a generic input buffer and the size of 
the input buffer, and 1 pvOutBuffer and cbOutBufferare the same f~r .the generic 
output buffer. Note that these pointer parameters don't needtransbition, but can be 
used directly by the VxD. Both the function code in dwloControlField and the 
meaning of the buffer contents are defined by the VxD. This interface is generic on 
purpose, so that you can do more with a device than just read from and write to it. In 
most cases, both the application and the VxD will treat the generic buffer as a spe
cific structure, casting the buffer pointer to and from a pointer to DIOCPARAMETERS 
as necessary. 
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The VMM will test your VxD to determine if it supports the Win32 
Devi celoContro1 interface by sending a W3LDEVICEIOCONTROL message 
with a dwloContro1 Code of DIOeGET_VERSION. If your VxD doesn't respond 
as expected, the VMM will not pass on further W3LDEVICEIOCONTROL 
messages. The response the VMM is expecting is a return value of zero from 
the message handler. Your VxD may return whatever version information it 
wishes (or none at all) in the 1 pvOutBuffer; all the VMM cares about is the 
return value. 

Win32 Application to VxD: 
View from the Application Side 
A Win32 application calls into a VxD by using the Devi celoContro1 function. One of 
the parameters to this function is a device handle obtained via a call to C rea te File. 
That's right, the same call that creates or opens a file can also open a "channel" to a 
VxD. To open a VxD, rather than a normal file, with CreateFi 1 e, you use a special 
form in place of the filename: 

n\\.\namen 

When using this format in your C code, don't forget that backslash 
represents an escape sequence, so use two consecutive backslashes for each. 

This strange format tells Windows that you don't really want to open a normal file; 
instead, you want Windows to find and load the VxD with that name, and give you a special 
handle to it. Your application can then use this handle with calls to Devi ce I oContro 1. 
Windows turns this call into a W32_DEVICEIOCONTROL message, with all of the appli
cation's parameters neatly bundled up into a single DIOCPARAMETERS structure. 



Communication from Applications to VxDs - 227 

If the filename contains an extension, Windows looks in the standard search path 
for the VxD: current directory, Windows directory, then path environment variable. 
Specifying an extension is the usual method, and the extension is usually VXD. If 
there is no extension, Windows looks in the registry for the KnownVxDs key under 
HKLM\SYSTEM\CURRENTCONTROLSET\CONTROL \SESSIONMANAGER If this key has an 
associated value, Windows treats the value as the VxD's full pathname. If Windows 
can't find the VxD there either, it treats the filename as a VxD module name, and 
searches its internal VxD list for an already-loaded VxD with that name. 

When "opening" a VxD, the VxD name is considered case sensitive. To be 
safe, use all uppercase in both your application and VxD DDB declaration. 

If CreateFil e returns I NVALID_HANDLE_VALUE, you should call GetLastError to 
get error information. There are two possible errors when opening a VxD. 
ERRORJI LE_NOTJOUND indicates that all the methods described above have failed to 
find the specified VxD. ERROR_NOT_SUPPORTED indicates that the VxD was found but 
that it doesn't "support" the Devi celoControl interface - which in many cases 
means the VxD wanted to support Devi celoControl but didn't properly handle the 
DIOCGET_VERSION, as described in the previous section. 

Special care is needed in handling ERROR_NOT_SUPPORTED. The problem is 
that the VxD did load successfully (the actual error was in the VxD's 
response to the W32_DEVI CEIOCONTROL) but CreateFil e returned no handle 
that the application could use to close the VxD and thus unload it. To force 
the VxD to be unloaded, the application must call DeleteFile, using the 
VxD's module name in the DDB, not the filename. A VxD should choose a 
module name equal to the filename minus the extension, although the choice 
of module name is completely up to the VxD 

If the VxD referenced in the CreateFil e is dynamically loadable, the call to 
CreateFi 1 e may do more than open a "channel" to a VxD for future Devi celoControl 
communication. If the VxD is dynamically loadable and isn't yet loaded, Windows 
will automatically load the VxD on behalf of the application and send it a 
Sys_Dynami c_Devi ce_I ni t message. Windows maintains a reference, or usage, count 
for the VxD, so if it's already loaded, a call to CreateFi 1 e doesn't load another copy 
of the VxD. Applications should generally use the value FI LEJLAG_DELETCON_CLOSE 
for the fdwAttrsAndFl ags parameter when calling CreateFi 1 e. This tells Windows 
to unload the VxD when the reference count goes to zero. (A zero reference count 
means that every application that had opened the VxD has now closed it.) 
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If the VxD returns with success to the Sys_Dynami cDevi ce_Ini tmessage, the VMM 
immediately sends the W3LDEVICEIOCONTROl message with the dwIoContro1Code 
parameter set to DIOCGETVERSION. A dynamic VxD does any per-application ini
tialization here. As explained earlier, a VxD must return success for this message, 
otherwise the application sees an ERROR_NOT_SUPPORTED return code. If the VxD 
returns success, the VMM increments its internal reference count for the VxD. If 
another call to CreateFi 1 e is made before a C1 oseHand1 e, the VxD receives 
another message with a dwIoContro1 Code of DIOCGETVERSION - but not another 
Sys_Dynami cDevi ce_Ini t message since the VxD is already loaded. 

After getting a device handle with CreateFi 1 e, your application calls 
Devi ce I oContro 1. The prototype for this function is: 

BOOl DeviceIoContro1( 
HANDLE hDevice. 
DWORD dwIoControlCode. 
lPVOID 1pInBuffer. 
DWORD nlnBufferSize. 
lPVOID lpOutBuffer. 
DWORD nOutBufferSize. 
LPDWORD 1pBytesReturned. 
LPOVERlAPPED 1pOver1apped 

) ; 

The first parameter is the handle returned by CreateFi 1 e, and the next four 
parameters should look familiar: the VxD receives those exact same parameters in its 
W32_DEVICEIOCONTROl message, though for the VxD they're allbundled up into a 
single 01 OCPARAMETERS structure. The 1 pBytes Returned parameter is filled in by the 
VxD, telling the application how many bytes the VxD has copied to the output buffer. 

When your application has finished communicating with the VxD, it closes the 
"channel" by calling C1 oseHand1 e, using the same device handle. If the VxD was 
dynamically loaded, this call to C1 oseHand1 e results in a W32_DEVICEIOCONTROl mes
sage with dwIoContro1 Code of DIOCClOSEHANDlE. When the final C1 oseHand1 e causes 
the reference count to go to zero, the VMM sends a final Sys_Dynami cDevi ce_Exi t 
message and the VMM then unloads the VxD. 

Don't forget to add the DYNAMIC keyword to the VxD statement in your. DEF 
file following the VxD's module name (Listing 11.8, page 242). 
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Win32 Application to VxD: Example Code 
To illustrate how a Win32 application talks to a VxD, I've extended the same 
DMABUF VxD introduced earlier in this chapter and written a simple Win32 applica
tion that uses Devi ceIoControl to talk to the VxD (Listing 11.9, page 243). Once 
again, the application is very simple (nothing but a ma i n),and because it is a Win32 
console application, we can simply use pri nt f - no message boxes. 

This Win32 application is similar in structure to its Winl6 counterpart. The appli
cation "opens" the VxD, initializes a DMA_BUFFER_DESCRI PTOR and then calls the 
VxD to allocate a DMA buffer. When the VxD returns to the applica'fion, the VxD will 
have written the allocated buffer's physical and linear addresses into the 
DMA_BUFFER_DESCRI PTOR Because this is a Win32 application, a linear address is a 
pointer, and no selector magic is needed. 

canst PCHAR VxDName = "\\\\.\\DMABUF.VXD"; 
hDevice = CreateFile(VxDName, 0,0,0, 

CREATE_NEW, FIlE_FlAG_DElETE_ON_ClOSE, 0); 

if ChDevice == INVALID_HANDLE_VALUE) 
{ 

err = GetlastErrorC); 
printfC"Cannot load VxD, error=%08lx\n", err ); 
if (err == ERROR_NOT_SUPPORTED) 
{ 

DeleteFileC"\\\\.\\DMABUF"); 

exitCl) ; 

To "open" a channel to the VxD, the application calls CreateFi 1 e with the file
name \ \. \DMABUF .VXD. lithe call fails, the application uses GetLastError to obtain 
the actual VxD return (error) code, and if the return was ERROR_NOT_SUPPORTED, the 
application calls Del eteFi 1 eto unload the VxD. 

dmadesc.Size = 32 * 1024; 
if Cerr = DeviceIoControlChDevice, DMABUFJUNCAllOCBUFFER, 

&dmadesc, sizeofCDMA_BUFFER_DESCRIPTOR), 
NUll, 0 ,&cbBytes Returned , NULl)) 

printfC"DeviceIoControl failed, error=%x\n", err); 
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If the open succeeded, the application initializes the DMA_BUFFER_DESCRIPTOR 
structure with the size of the requested buffer, then calls Devi ce I oCont ro 1, using a 
dwI oContro 1 Code of DMABUF JUNCALLOCBUFFER. In this example, no output buffer 
is used. Instead, the VxD modifies the caller's input buffer (1 pv I nBuffer). Further
more, because the VxD doesn't copy any bytes to the output buffer, it never fills in the 
application's cbBytesReturned variable. Bending the rules like this is perfectly 
acceptable under Windows 95, and by defining the interface in this way, I was able to 
re-use the exact same VxD code already written for the PM API portion of the VxD. 

else 
( 

printf("Physical=%081X\nLinear=%081X\n", dmadesc.PhysAddr, 
dmadesc.LinAddr ); 

if (err = DeviceloControl(hDevice, DMABUF_FUNC_FREEBUFFER, 
&dmadesc, s i zeof( DMA_BUFFER_DESCRI PTOR) , 
NULL, 0, &cbBytesReturned, NULL)) 

printf("DeviceloControl failed, error=%x\n", err); 

CloseHandle( hDevice ); 

If the ALLOCBUFFER Devi celoControl fails (non-zero return value), the applica
tion prints the error code and exits. Otherwise, the application prints the physi
cal and linear addresses of the allocated buffer, and immediately frees the buffer 
with another Devi ce I oContro 1 call, but this time with a function code of 
DMABUF JUNCJREEBUFFER. Finally, the application closes the channel to the VxD 
with a call to C1 oseHand1 e. If no other application is using the VxD and the VxD is 
dynamically loadable, this close also unloads the VxD from memory. 

To implement the VxD side, I merely added a W3LDEVICEIOCONTROL message 
handler (shown in the following paragraph of code) to the same DMABUF VxD 
developed for the Win16 application. This message handler is even simpler than the 
PM API function, because no translation of pointer parameters is necessary. Because 
both Win32 applications and VxDs use linear addresses, all pointers contained in the 
DroCPARAMETERS structure are directly usable by the VxD. 
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DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p) 
{ 

DWORD rc; 

switch (p->dwIoControlCode) 
{ 

case DIOCOPEN: 
case DIOC_CLOSEHANDLE: 

return 0; 

case DMABUF_FUNC_ALLOCBUFFER: 
if (!_Assert_Range( p->lpvInBuffer. 

s;zeof( DMA_BUFFER_DESCRIPTOR ). 
O. o. ASSERT_RANGE_NULL_BAD» 

return DMABUF _INVALID_PARAMETER; 
else 

return( AllocBuffer( p->lpvlnBuffer ) ); 

case DMABUF_FUNC_FREEBUFFER: 
if (!_Assert_Range( p- > 1 pv InBuffer. 

s;zeof( DMA_BUFFER_DESCRIPTOR ). 
O. o. ASSERT_RANGE_NULL_BAD» 

return DMABUF_INVALID_PARAMETER; 
else 

return( FreeBuffer(p->lpvInBuffer ) ); 

default: 
return -1; 

The message handler specifically checks for dwIoControl Code values of 
DIOCGETVERSION and DIOCCLOSEHANDLE, returning 0 for each. Failure to do so will 
result in failure when the application calls CreateFil e and Cl oseHandl e, respec
tively. The VxD also returns an error code of -1 for unexpected control codes. 

The two expected codes are DMABUF JUNCALLOCBUFFERand DMABUF JUNCJREEBUFFER 
In both cases, the VxD is expecting the caller's input buffer to be a pointer to a 
DMA_BUFFER_DESCRI PTOR, but before using the pointer as such, the VxD validates it. The 
cblnBuffer parameter, though ostensibly for this exact purpose, cannot be used to vali
date the buffer size. cblnBuffer isn't necessarily the size of the input buffer; it only 
reflects the caller's claims about the input buffer size. The VxD guards against both a null 
1 pv I nBuffer value and a buffer that's too small with a single call to the VMM service 
_AssertRange. 
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The Calling Interface for _Assert_Range 

BOOL _cdecl _Assert_Range(DWORD pStruc, DWORD ulSize, 
DWORD signature, DWORD lSignatureOffset, 
DWORD ul Fl ags) ; 

_Assert_Range verifies that the buffer pointed to by pStruc is at least ul Si ze in 
length. In addition, it can check for a signature value at the offset 1 Si gnatureOffset. 
However, DMABUF doesn't use this feature, passing in 0 for si gnature to disable it. 
DMABUF does use the value ASS ERT_RANGE_NU LL_BAD for the ul Fl ags parameter, how
ever, so that a NULL value for pStruc will cause _Assert_Range to fail. If _Assert_Range 
fails, DMABUF returns to the application with a DMABUF _I NVALI D_PARAMETERerror. 

After this validation, the VxD simply casts the caller's input buffer, p- > 1 pvI nBuffer, 
to a pointer to a DMA_BUFFER_DESCRIPTOR, then passes that pointer directly to either 
All ocBuffer or FreeBuffer, depending on the value of p- >dwloControl Code. The 
return value from the helper function is passed directly back to the caller as the return 
from Devi celoControl. Note these two helper functions are unchanged from the 
original DMABUF VxD, which contained only Win16 API support. 

Summary 
If you structure your code right, supporting both Win16 and Win32 applications in your 
VxD isn't much more trouble than supporting just one or the other. The message here is 
that you should put the real work of the API in subroutines that can be called from either 
your PM API procedure or from your W3LDEVICEIOCONTROL message handler. If you 
follow this practice, then all your PM API procedure will do is extract its caller's param
eters from the CLIENT_STRUCT structure. Similarly, the W32_DEVICEIOCONTROL handler 
should merely extract its caller's parameters from the DIOCPARAMETERS structure. Both 
interface procedures then call the same helper subroutines. 

The application interfaces described in this chapter support communications initi
ated by the application: when the application calls the VxD. The next chapter will 
cover the reverse direction: when a VxD calls into an application. 
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Listing 11.1 WIN16APP. C 

#include <string.h> 
#include <windows.h> 

#include "dmabuf.h" 

typedef void (far * PVOIDFN)( void ); 

static char MsgBoxBuf[ 1024 ] = ( 0 ); 
PVOIDFN pfDmaBufApi; 
DMA_BUFFER_DESCRIPTOR dmadesc; 

PVOIDFN GetVxdApiEntry( int Vxdld 
( 

PVOIDFN pfApi; 

xor di, di 
moves, di 
mov bx, Vxdld 
mov ax, 1684h 
i nt 2fh 
mov WORD PTR pfApi+2, es 
mov WORD PTR pfApi, di 

return( pfApi ); 

int PASCAL WinMain( HANDLE hlnstance, HANDLE hPrevInstance, 
LPSTR lpCmdLine, int ncmdShow ) 

char far *DmaBufPtr; 
unsigned short usSel, myds; 
WORD err; 

pfDmaBufApi = GetVxdApiEntry( DMABUF_ID ); 
if (!pfDmaBufApi) 
( 

MessageBox( NULL, "Error, couldn't get VxD API", "USEAPI", MB_OK ); 



234 - Writing Windows VxDs and Device Drivers 

Listing 11.1 (continued) WIN16APP. C 

else 
{ 

dmadesc.Size ~ 32L * 1024L; 
_asm 
{ 

mov ax, DMABUF_FUNC-ALLOCBUFFER 
lea si, dmadesc ; small model, don't need to load DS 
call DWORD PTR pfDmaBufApi 
mov err, ax 

} 

if (err) 
( 

else 
( 

MessageBox( NULL, "Error calling AllocBuffer", 
·USEAPI", MB_OK ); 

_asm mov myds, ds 
usSel = AllocSelector( myds ); 
SetSelectorBase( usSel, dmadesc.LinAddr ); 
SetSelectorLimit( usSel, dmadesc.Size ); 
DmaBufPtr = MAKELP( usSel, 0 ); 
wsprintf( MsgBoxBuf, 

"Physical=%081X\nLinear=%081XSel ector=%X\n" , 
dmadesc.PhysAddr. dmadesc.LinAddr, usSel ); 

MessageBox( NULL, MsgBoxBuf, "USEAPI", MB_OK ); 

FreeSelector( usSel ); 
_asm 
{ 

mov ax, DMABUF_FUNC_FREEBUFFER 
call DWORD PTR pfDmaBufApi 

return 0; 
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Listing 11.2 WIN16APP.MAK 

all: win16app.exe 

win16app.obj: win16app.c 
cl -W3 -c -AS -Gsw2 -I .. \vxd win16app.c 

win16app.exe: win16app.def win16app.obj 
link win16app.obj.win16app.exe.win16app.map 

IMAP ICO,slibcew libw Inod.win16app.def 

Listing 11.3 WIN16APP.DEF 

NAME WIN16APP 
EXETYPE WINDOWS 
CODE PRELOAD MOVEABLE DISCARDABLE 
DATA PRELOAD MOVEABLE 
HEAPSIZE 4096 
STACKSIZE 8192 
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Listing 11.4 DMABUF. H 

II DMABUF.h - include file for VxD DMABUF 
/fdefi ne DMABUF _10 OxDBO 
/fdefine DMABUF_FUNC_ALLOCBUFFER OxlOOO 
#define DMABUFJUNCFREEBUFFER OxlOOI 

#define DMABUF_ALREADY_ALLOCED 
Hdefine DMABUF_S1ZE_TOO_B1G 
#define DMABUF_BUF_NOT_AVA1L 
#define DMABUF_BUF_NOT_ALLOCED 
#define DMABUF_1NVAL1D_PARAMETER 
Hdefine DMABUF_1NVAL1D_FUNC 

typedef struct 
{ 

DWORD Si ze; 
DWORD PhysAddr; 
DWORD LinAddr; 

DMA_BUFFER_DESCR1PTOR; 

Listing 11.5 DMABUF. C 

#define WANTVXDWRAPS 

#include <basedef.h> 
#include <vmm.h> 
#include <debug.h> 
#i ncl ude "vxdca 11 . h" 
#include <vxdwraps.h> 
#include <wrappers.h> 
#include <vwin32.h> 
#incl ude "dmabuf.h" 

#i fdef DEBUG 

OxOOOI 
Ox0002 
Ox0003 
Ox0004 
Ox0005 
Ox0006 

#define DPRINTFO(buf. fmt) 
#define DPRINTFl(buf. fmt. argl) 

_Sprintf(buf. fmt ); Out_Debug_String( buf ) 
~Sprintf(buf. fmt. argl ); 
Out_Debug_String( buf ) 

#define DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2 ); 
Out_Debug_String( buf ) 
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Listing 11.5 (continued) 

!felse 
!fdefine DPRINTFO(buf. fmtl 
!fdefine DPRINTFl(buf. fmt. argl1 
!fdefi ne DPRINTF2 (buf. fmt. argl. arg2 I 
!fendif 

BOOl bOwned = FALSE; 
DWORD nPages = 16; II 64K = 16 * 4K 
void *linAddr; 
DWORD PhysAddr; 
BOOl bWin3x = FALSE; 
char dbgbuf[80); 

DMABUF. C 

DWORD AllocBuffer( DMA_BUFFER-DESCRIPTOR *pBufDesc I; 
DWORD FreeBuffer( DMA_BUFFER_DESCRIPTOR *pBufDesc I; 

BOOlOnSysDynamicDeviceInit(1 
{ 

DPRINTFO(dbgbuf."loading\r\n"l; 
return TRUE; 

BOOlOnSysDynamicDeviceExit(1 
{ 

DPRINTFO(dbgbuf."Unloading\r\n"); 
return TRUE; 

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS pI 
{ 

DPRINTFl(dbgbuf. "W32DevloControl code=%x\n". p-)dwloControlCode J; 

switch (p->dw]oControlCodeJ 
{ 

case DIOC_GETVERSION: 
case DIOC_CLOSEHANDlE: II file closed 

return 0; 

case DMABUF_FUNC_AllOCBUFFER: 
if (!_Assert_Range( p->lpvInBuffer. sizeof( DMA_BUFFER_DESCRIPTOR ). O. 0, 

ASSERT_RANGE_NUll_BADII 
return DMABUF_INVAlID_PARAMETER; . 

else 
return( AllocBuffer( (DMA_BUFFER_DESCRIPTOR *lp->lpvInBuffer ) I; 

case DMABUF_FUNC_FREEBUFFER: 
if (l_Assert_Range( p->lpvInBuffer, sizeof( DMA_BUFFER_DESCRIPTOR ). O. 0, 

ASSERT_RANGE_NUll_BAOII 
return DMABUF_INVAlIO_PARAMETER; 

else 
return( FreeBuffer( (OMA_BUFFER_DESCRIPTOR *lp-)lpvInBuffer ) ); 

default: 
return -1; 
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Listing 11.5 (continued) DMABUF. C 

void __ cdecl PM_Api_Handler(VMHANDLE hVM. CLIENT_STRUCT *pcrs) 
( 

DMA_BUFFER_DESCRIPTOR *pBufDesc; 

switch( pcrs->CWRS.Client_AX ) 
( 
case DMABUF_FUNC_ALLOCBUFFER: 

pBufDesc = MAPFLAT(Client_DS. Client_SI); 
pcrs->CWRS.Client_AX = AllocBuffer( pBufDesc ); 
break; 

case DMABUF_FUNC_FREEBUFFER: 
pBufDesc = MAPFLAT(Client_DS. Client_SI); 
pcrs->CWRS.Client_AX = FreeBuffer( pBufDesc ); 
break; 

default: 
pcrs->CWRS.Client_AX = DMABUF_INVALID_FUNC; 
break: 

DWORD AllocBuffer( DMA_BUFFER_DESCRIPTOR *pBufDesc ) 
{ 

DWORD rc = 0; 

if (bOwned) 
( 

) 
else 
{ 

rc = DMABUF_ALREADY-ALLOCED; 

bOwned = TRUE; 
if (bWin3x) 
{ 

) 
else 
( 

if (pBufDesc->Size > 16 * 4 * 1024) 
rc = DMABUF_SIZE_TOO_BIG; 

else 
( 

pBufDesc->PhysAddr = PhysAddr; 
pBufDesc->LinAddr = LinAddr; 

II Win95. can alloc phys contig pages at any time 
pBufDesc->LinAddr = LinAddr = _PageAllocate(pBufDesc->Size » 12. 

i f (! L i nAdd r ) 
rc = DMABUF_BUF_NOT_AVAIL; 

return rc; 

PG_SYS. O. OxOF. O. OxlOOO. 
&pBufDesc-)PhysAddr. 
PAGEFIXED I PAGEUSEALIGN I \ 
PAGECONTIG ); 
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Listing 11.5 (continued) DMABUF. C 

DWORD FreeBuffer( DMA_BUFFER_DESCRIPTOR *pBufDesc 
{ 

DWORD rc ~ 0; 

if (bOwned) 
{ 

bOwned ~ FALSE; 
II free buffer only if Wing5 
II and don't free buffer unless it's the same one we allocated 
if (pBufDesc-)linAddr ~ linAddr) 
( 

if (!bWin3x) 
( 

_PageFree( pBufDesc->linAddr, 0 ); 

} 

else 
( 

} 

else 
{ 

return rc; 

BOOl OnlnitComplete(VMHANDlE hVM, PCHAR CommandTail) 
( 

DWORD ver; 

Get_VMM_Version(); 

if (HIWORD(ver) <~ 3) 
( 

II Win3.x, not 95 
bWin3x ~ TRUE; 
II must alloc phys contig pages now 
linAddr ~ _PageAllocate(nPages, PG_SYS, 0, OxOF. O. OxIOOO. &PhysAddr. 

PAGEFIXED I PAGEUSEAlIGN I PAGECONTIG ); 
} 
retu rn TRUE; 
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Listing 11.6 DMADDB.ASM 

.386p 

.****************************************************************************** 
INCLUDES 

.****************************************************************************** 

include vmm. inc 
include debug. inc 

V I R T U A L 0 E V ICE 0 E C L A RAT ION 

DMABUF_ID EOU ODBOH 

DECLARE_VIRTUAL_DEVICE 

; must match 10 in DMABUF.H 

DMABUF. 1. D. ControlProc. DMABUF_ID. 
UNDEFINED_INIT_ORDER. O. PM-API 

;extrn _PM-Api_Handler:near 
;extrn _V86_Api_Handler:near 

PROCEDURE: ControlProc 

DESCRI PTI ON: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX ~ Cont ro 1 ca 11 ID 

EXIT: 
If carry clear then 

Successful 
else 

Control call failed 

USES: 
EAX. EBX. ECX. EDX. ESI. EDI. Flags 

BeginProc ControlProc 
Control_Dispatch INIT_COMPLETE. _OnInitComplete. cCall. <ebx> 
Contro l_Di spatch SYS_DYNAMICDEVICE_INIT. _OnSysDynami cDevi ceInit. cCa 11. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCall. <ebx> 
Control_Dispatch W32_DEVICEIOCONTROL. _OnW32Deviceiocontrol. cCall. <esi> 
clc 
ret 

EndProc ControlProc 
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Listing 11.6 (continued) DMADDB.ASM 

BeginPrac PM_API 

cCall _PM_Api_Handler. <ebx. ebp> 
mav [ebpJ.Client_EAX. eax 
ret 

EndPrac PM--.API 

VxD_LOCKEO_CODE_ENDS 

END 

Listing 11.7 DMABUF.MAK 

CFLAGS 
CVXDFLAGS 
LFLAGS 

= -DWIN32 -DCON -Di386 -D X86 -D NTWIN -W3 -Gs -D DEBUG -Zi 
= -Zdp -Gs -c -DIS_32 -Zl--DDEBLEVEL=l -DDEBUG -
= -machine:i386 -debug:notmapped.fu1l -debugtype:cv 

-subsystem:console kerne132.1ib 
AFLAGS = -coff -OBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG 

all: dmabuf.vxd 

dmabuf.obj: dmabuf.c 
c1 $(CVXDFLAGS) -Fo$@ %s 

dmaddb.obj: dmaddb.asm 
m1 $(AFLAGS) -Fa$@ %s 

dmabuf.vxd: dmaddb.obj dmabuf.obj .. \ .. \wrappers\vxdca1l.obj 
.. \ .. \wrappers\wrappers.clb dmabuf.def 

echo >NUL @«dmabuf.crf 
-MACHINE:i386 -DEBUG -DEBUGTVPE:MAP -PDB:NONE 
-DEF:dmabuf.def -OUT:dmabuf.vxd -MAP:dmabuf.map 
-VXD vxdwraps.c1b wrappers.clb vxdca11 .obj dmaddb.obj dmabuf.obj 
« 

link @dmabuf.crf 
mapsym dmabuf 
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Listing 11.8 DMABUF. DEF 

VXD DMABUF DYNAMIC 
SEGMENTS 

LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 
_ITEXT CLASS 'ICODE' 

IDATA CLASS 'ICODE' 
_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 
_IMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
DMABUF_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DISCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 



Communication from Applications to VxDs - 243 

Listing 11.9 WIN32APP.C 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <windows.h> 
#include "dmabuf.h" 

HANDLE hDevice; 
DMA_BUFFE~DESCRIPTOR dmadesc; 

void mainCint ac. char* ave]) 
( 

DWORD cbBytesReturned; 
DWORD err; 

const PCHAR VxDName = "\\\\.\\DMABUF.VXD"; 
hDevice = CreateFileCVxDName. 0.0.0. CREATE_NEW. FILE_FLAG_DELETE_ON_CLOSE. 0); 

if ChDevice == INVALID_HANDLE_VALUE) 
{ 

err = GetLastErrorC); 
fprintfCstderr. "Cannot load VxD. error=%08lx\n". err); 

if Cerr == ERROR_NOT_SUPPORTED) 
{ 

DeleteFileC"\\\\.\\DMABUF"); 
l 
exit(l); 

dmadesc.Size = 32 * 1024; 
if C1DeviceIoControlChDevice. DMABUF_FUNC_ALLOCBUFFER. 

l 
else 
{ 

&dmadesc. sizeofCDMA_BUFFER_DESCRIPTOR). NULL. O. 
&cbBytesReturned. NULL)) 

printfC"DeviceIoControl failed. error=%d\n". GetLastErrorC) ); 

printfC "Physical=%081X\nLinear=%OB1X\n". dmadesc.PhysAddr. dmadesc.LinAddr ); 
if C1DeviceIoControlChDevice. DMABUF_FUNC_FREEBUFFER. 

&dmadesc. sizeofCDMA_BUFFER_DESCRIPTOR). NULL. O. 
&cbBytesReturned. NULL) ) 

printfC"DeviceIoControl failed. error=%d\n". GetLastErrorC) ); 

CloseHandleC hDevice ); 
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Listing 11.10 WIN32APP.MAK 

win32app.exe: win32app.obj 
link @« 

kerne132.1ib user32.1ib gdi32.1ib winspool.lib eomdlg32.1ib advapi32.1ib 
shel132.1ib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:eonsole 
IINCREMENTAL:no IPOB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj 
« 

win32app.obj: win32app.e 
el Ie IML IGX IYX IOd 10 "WIN32" 10 "NOEBUG" 10 "_CONSOLE" -r. .\vxd win32app.e 



Chapter 12 

Communication from VxDs 
to Applications 
While sometimes it's enough for an application to call into a VxD and get the infor
mation or services it needs immediately, other times an application needs to be noti
fied by a VxD asynchronously, that is, when a particular event occurs. Both Windows 
3.x and Windows 95 support mechanisms for communication in this direction (VxD 
to application), but the interface is more complicated compared to the applica
tion-to-VxD methods examined in the last chapter. 

The last chapter was divided into two sections, Win16 and Win32. This chapter 
will be divided into three sections: Windows 3.x VxD to Win16, Windows 95 VxD to 
Win16, and Windows 95 VxD to Win32. Although both Windows 3.x and Windows 
95 VxDs use similar mechanisms when communicating with Win16 applications, the 
VxD running under Windows 95 can take advantage of several SHELL VxD services 
that aren't available under Windows 3.x. These SHELL services simplify the task of 
calling Win16 code. Win32 applications are treated separately because a VxD must 
use a completely different mechanism for communication with Win32 applications. 

245 
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Difficulties with Calling from a VxD 
to a Win16Application 
Assume that a Win16 application has used the INT 2Fh API to pass a VxD the address 
of a callback function inside the application. This VxD must overcome several obsta
cles before it can use the application's callback. A VxD executes outside the context 
of any VM, whereas the Ring 3 callback must execute in the proper VM context -
the SystemVM that registered the callback. So a VxD must first schedule a VM event, 
and be called back in the context of the System VM, that is, when that VM is current. 
From inside this event handler, the VxD can use VMM nested execution services to 
execute the application callback in the System VM. 

If the VxD uses only this simple mechanism, the application callback code is very 
limited in what it can do. In particular, the only Windows API function the callback is 
allowed to use is PostMessage. When called from a VxD via nested execution, an 
application callback function executes much like an ISR and is subject to the same 
kind of constraints. Like an ISR, the callback "interrupts" the VM's execution at some 
unpredictable point - perhaps even in the middle of performing a Windows system 
call. Because Windows isn't re-entrant, it isn't safe for the callback to execute any 
Windows API calls except PostMessage. 

VxDs running under Windows 3.x were stuck with this unhappy state of affairs. 
Windows 3.x VxDs could schedule a VM event and then use nested execution to call 
back into a VM, but the application callback was limited to PostMessage. For this 
reason, it was common practice for the application to pass the VxD the address of the 
Windows PostMessage function along with a window handle, and have the VxD use 
nested execution to call PostMessage directly on behalf ofthe application. 

Windows 95 offers two improvements for VxDs calling into Win16 applications. 
One is the service SHELLPostMessage, which takes care of the details of nested exe
cution on behalf of the calling VxD. The other is a set of "appy-time" (application 
time) services that allow a VxD to schedule an event to run when the system is in a 
"safe state". From the appy-time event, the VxD can use other VMM services (new 
for Windows 95) to call any function in a Win16 DLL, and the Win16 function can 
itself call any Windows function - because it is "safe". 

The POSTVXD example in this chapter illustrates both the PostMessage and the 
appy-time technique. POSTVXD determines at run-time which version of Windows 
it's running under (3.x or 95) and uses the appropriate technique, so that it works cor
rectly on both versions. 



Communication from VxDs to Applications - 247 

The above PostMessage and appy-time solutions apply only to a VxD calling 
into Win16 code. A VxD must use a completely different approach to call 
into a Win32 application. The Win32 approach will be discussed later in this 
chapter. 

VxD to Win16 Application under Windows 3.x 
To call into a Win16 application under Windows 3.x, a VxD must nist schedule a VM 
event for the System VM, and then use nested execution services from the event han
dler to call into the application. Events were introduced in Chapter 7 when hardware 
interrupts were discussed. For a hardware interrupt handler, scheduling an event pro
vides a convenient way to defer processing. the interrupt handler example used a glo
bal event, "global" meaning the VxD didn't care what VM context the event handler ran 
in. The VxD callback will use a VM event instead, that is, an event called in the context 
of a particular VM. In the present situation, the VxD should use a VM event instead of a 
global event because it needs to call PostMessage, which lives in the SystemVM. 

The POSTVXD example (Listing 12.2, page 269) uses the teChniques discussed above 
when running under Windows 3.x. POSTVXD supports a PM API that lets Win16 appli
cations register with theVxD. Using this API, an application passes in a window handle 
and the address of the Windows PostMessage function. The VxD then posts amessage 
to this window whenever a VM is created or destroyed. Before terminating, the appli
cation should also use the VxD API to deregister the window handle, so that the VxD 
stops posting messages to it. 

To interface to a Win16 application, POSTVXD needs only a PM APlprocedure, 
two message handlers (OnVmlnit and OnVmTerminate), and an event callback. The 
source code for the PM API handler follows. 

VOID cdecl PM_Api_Handler(VMHANDLE hVM. CLIENT_STRUCT *pcrsl 
{ 

switch (pcrs->CWRS.Client_AXl 
{ 

case POSTVXD_REGISTER: 
PostMsghWnd = (HANDLElpcrs->CWRS.Client_BX; 
PostMsgSelector = pcrs->CWRS.Client_CX; 
PostMsgOffset = pcrs->CWRS.Client_DX; 
bClientRegistered = TRUE; 
pcrs->CWRS.Client_AX = 0; 
break; 
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case POSTVXD_DEREGISTER: 
bClientRegistered = FALSE; 
pcrs->CWRS.Client_AX = 0; 
break; 

default: 
pcrs->CWRS.Client_AX = Oxffff; 

The PM API procedure handles two function codes, POSTVXD_REGISTER and 
POSTVXD_DEREGI STER, which are defined in the VxD's header file, POSTVXD. H (List
ing 12.1, page 269). The code that handles POSTVXD_REGISTER copies the caller's 
input parameters to the global VxD variables PostMsghWnd, PostMsgSe 1 ector, and 
PostMsgOffset. The application provides the PostMessage address in two separate 
pieces, selector and offset. This 16:16 form is the natural form of a pointer for a 
Win16 application, although VxDs generally deal with 32-bit flat addresses, in this 
case a 16:16 address is better, because the VxD isn't going to use the PostMessage 
address itself. Instead, POSTVXD will pass this address to the VMM 
Si mul ateJar _Ca 11 service, which wants the address in 16:16 form. 

The PM API also sets a global boolean, bCl i entRegi stered, when 
POSTVXD_REGISTERis called, and clears it when POSTVXD_DEREGISTERis called. The 
create and destroy message handlers look at this variable, and only take steps to post a 
message if bCl i entRegi stered has already been set. The code for the POSTVXD 
message handlers follows. 

BOOl OnVmInit(VMHANDlE hVM) 
{ 

VMINFO *pInfo; 

if (bClientRegistered) 
{ 

} 

if (bWin3x) 
{ 

pInfo = (VMINFO *)_HeapAllocate( sizeof( VMINFO ), 0 ); 
if (pInfo) 
( 

J 
else 
{ 

pInfo->hVM = hVM; 
pInfo->bVmCreated - TRUE; 
Call_Priority_VM_Event(lOW_PRI_DEVICE_BOOST. Get_Sys_VM_Handle(). 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT. 
pInfo. PriorityEventThunk. 0 ); 

SHEll_PostMessage( PostMsghWnd. WM_USER_POSTVXD. 1. (DWORDlhVM, 
PostMessageHandler. NUll ); 

return TRUE; 



Communication from VxDs to Applications - 249 

VOID OnVmTerminate(VMHANDLE hVM) 
{ 

VMINFO *plnfo; 

if (bClientRegistered) 
( 

if (bWin3x) 
{ 

pInfo = (VMINFO *)_HeapAllocate( sizeof( VMINFO ), 0 ); 
if (pInfo) 
( 

else 
( 

pInfo->hVM = hVM; 
pInfo->bVmCreated = TRUE; 
Call_Priority_VM_Event(LOW_PRI_OEVICE_BOOST, Get_Sys_VM_Handle(), 

PEF_WAIT_FOR-STI+PEF_WAIT_NOT_CRIT, 
pInfo, PriorityEventThunk, 0 ); 

SHELL_PostMessage( PostMsghWnd, WM_USER_POSTVXD, 0, hVM, 
PostMessageHandler, NULL ); 

The OnVmlnit and OnVmTerminate message handlers are almost identical. After 
verifying that bel i entRegi stered is set, each handler then determines what version of 
Windows is running. In this section, we'll only discuss what happens if the version 
check indicates Windows 3.x - a later section will cover the code for the Windows 
95 case. Each handler dynamically allocates a VM INFO structure (defined at the top of 
POSTVXD. e), initializes the structure, then schedules a VM event. The VMI NFO struc
ture contains the handle of the VM being created or destroyed and a boolean (which is 
set if the VM has been created or clear if destroyed). This data is encapsulated into a 
structure because an event handler gets only a single reference data parameter. By 
using a pointer to the VMINFO structure as reference data, the message handler can 
pass more than one piece of information to the event handler. 

The message handlers schedule a VM event by calling ea 11_Pri ori tLVM_Event. 
This service allows the VxD to specify not only the desired VM, but also additional 
restrictions on when the event handler can be called. 



250 - Writing Windows VxDs and Device Drivers 

The Calling Inter/ace/or Ca 7 7_Priority_VM_Event 

EVENTHANDLE Call_Priority_VM_Event(DWORD PriorityBoost. VMHANDLE hVM. 
DWORD Flags. CONST VOID * Refdata. 
PEventHANDLER EventCallback. 
DWORD Timeout ); 

PriorityBoost: while executing the event callback. increase VM priority 
by this amount; can be LOW_PRI_DEVI CE.:..BOOST. 
HIGH_PRI_DEVICE_BOOST. CRITICAL_SECTION_BOOST. 
TIME_CRITICAL_BOOST 

hVM: event callback will run in context of this VM 
Flags: PEF_TIME_OUT - call event handler when Timeout occurs 

PEF_WAIT_FOR_STI - wait until VM has interrupts enabled 
PEF _WAIT_NOT_CRIT - wait until VM does not own critical section 

Refdata: passed to event callback 
EventCallback: pointer to event callback function 
Timeout: timeout. in ms; ignored unless PEF_TIME_OUT is set 

To schedule the event that will call PostMessage, POSTVXD specifies the System 
VM handle and the restricting flags PEF _WAITJOR_STI and PEF _WAIT_NOT_CRIT. 
These flags prevent the event from interrupting a VMthat is executing with interrupts 
disabled, or one that is executing a critical section; presumably such a VM has some
thing important and/or time-critical to do. Once the VM has re-enabled interrupts or 
has exited the critical section, then the event handler can run and call PostMessage. 

Using Nested Execution Services 
Once inside the event handler Pri ori tyEventHandl er (called via Pri or; tyEventThunk 
in the VxD's assembly module), it's safe to call PostMessage usingVMM's nested exe
cution services. These services are the key to executing Ring 3 code from a VxD. In a 
nutshell, nested execution works like this:. 

• A VxD sets up a VM's registers and stack as desired, changes theVM's CS and I P 
to point to a Ring 3 address, and then tells the VMM "ok; let the VM execute now". 

• The VMM executes the VM, and when the VM executes a RET, the VMM and then 
theVxD regain ",antral. 

After this series of "handoffs", the Ring 3 function has been executed, and the 
VxD has control again. 
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VOID __ stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata, 
PCLI ENT_STRUCT pRegs) 

CLIENT_STRUCT saveRegs; 
VMINFO *plnfo = Refdata; 

Save_Client_State(&saveRegs); 
Begin_Nest_Exec(); 
Simulate_Push(PostMsghWnd); 
Simulate_Push(WM_USER_POSTVXD); 
Simulate_Push(plnfo->bVmCreated); 
Simulate_Push«(DWORD)plnfo->hVM » 16) ): 
Simulate_Push«(DWORDlplnfo->hVM & Oxffffl ); 

II hwnd 
II message 
II wParam 
II lParam 

Si mul ateJa r _Ca II (PostMsgSe ll:ctor, PostMsgOffset); 
Resume_Exec( 1 ; 
End_Nest_Exec() ; 
Restore~Client_State(&saveRegs); 

_HeapFree( plnfo, 0 l; 

Pri orityEventHandl er first saves the current VM state with a call to the VMM 
service Save_C1 i enCState. The VxD supplies the buffer storage, using a local 
CLI ENT...,..STRUCT variable. POSTVXD then enters a "nested execution block"by calling 
Beg i n_Nes t_Exec. This call tells the VMM to prepare to execute Ring 3 code. Inside 
this block, the VxD modifies the VM's environment, first its stack and then its registers. 

Several calls to the VMM service Simu1 ate_Push push onto the VM's stack (notthe 
VxD's) the hWnd, message, and wParam and 1 Param parameters (both zero) expected 
by PostMessage. The VxD extracts these parameter values from the VMINFO structure 
passed as a reference parameter. Note that Pri or; tyEventHand1 er splits the 32-bit VM 
Handle into two 16-bit WORDs and pushes each ort the stack, instead of pushing a single 
32-bit DWORD onto the stack; PostMessage is 16-bit code and expects 16-bit parameters. 

Finally the VxD calls the VMM service S i mul ateJa r _Ca 11, supplying the selec
tor and offset of the target Ring 3 function (in this case stored in PostMsgSe1 ector 
and PostMsgOffset). Si mu1 ateJar _Call modifies both the VM's stack and its reg
isters, pushing the VM's current CS and I P onto the stack (just as a real FAR CALL 
would) before setting the VM's CS and I P to the selector and offset given as parameters. 

So far, the VM's execution environment has been modified (without its knowl
edge), but no VM code has been executed. The next call, to Resume_Exec, makes that 
happen. When a VxD calls Resume_Exec, the VMM temporarily stops executing Ring 
o code and lets the currently scheduled VM run. Because Pri ori tyEventHand1 er has 
modified the System VM's environment, when the System VM runs, it executes the 
Windows function PostMessage, using the parameters supplied by the VxD. When 
the VM"executes a FAR RET from PostMessage, the VMM traps the instruction, and 
the ResumeJxec service returns to POSTVXD. 
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Calling a Real Mode Interrupt Handler from a VxD 

The nested execution services could also be used by a VxD to call a real mode interrupt handler from a VxD, 
for example DOS (INT21h) or the video BIOS (I NT lOh). Instead of using Si mu1 ate_Push to push parame
ters on the VM's stack, a VxD would fill in parameters in registers by modifying the C1 i ent_Reg structure. 
Then, instead of calling Simu1 ate_Fa r _Ca 11, a VxD would use Si mu1 ate_Int. 

However, in most cases you do not want to use nested execution services. Instead, use ExecVxD_Int, 
without a nested execution block. The VTooisD declaration for ExecVxD_Int looks like 

VOID Exec_VxD_Int(DWORD Intnum. ALLREGS* Registers) 

To use it, your VxD fills in an ALLREGS structure with the register parameters to be passed to the real mode 
handler, then passes the service the number of the software interrupt to execute and a pointer to this register 
structure. Your VxD must not change the segment register fields of the ALLREGS structure. If the real mode 
handler expects a pointer to be passed in ES: BX, then your VxD loads a 32-bit flat pointer into the EBX field of 
ALLREGS, leaving the ES field alone. Similarly, if the real mode handler expects a pointer in DS: SI , load the 
flat pointer into the ESI field of ALLREGS. 

Using ExecVxD_Int in a VxD is rather simple, but underneath lies a good deal of complexity. Any flat 
pointer parameters must be translated into segmented pointers before the real mode hander can use them. Fur
thermore, the targeted buffer must be located below 1Mb in order for the real mode handler to access it. Yet any 
buffers owned by the VxD (either statically allocated in the VxD's data segment or dynamically allocated 
through _HeapA 11 ocate/ _PageA 11 ocate) are located above 2Gb, so the buffers owned by the VxD must be 
copied down to a real mode addressable buffer and then the real mode service is given a (segmented) pointer to 
that translation buffer. 

This raises an interesting question. How does the ExecVxD_Int service even know which registers in ALLREGS 
contain pointers? In fact, it doesn't. ExecVxD_Int blindly calls the VxD that has hooked the software interrupt 
in question. For example, if your VxD calls ExecVxD_Int with an i ntnum parameter of lOh, this results in the 
BIOSXLAT VxD being called, because BIOSXLAT used VMM SeCPM_Vector to hook INT lOh during 
Sys_Criti ca l_Init. 

It's the VxD that hooked the software interrupt - in this example, BIOSXLAT - that translates pointers 
and copies the pointer data to a real mode addressable buffer. Only a VxD that knows about INT lOh would 
know what registers are supposed to contain pointers. The software interrupt hook VxD in turn relies on 
another VxD, the V86MMGR, for the most complex part of pointer translation. The V86MMGR VxD owns a 
real mode addressable translation buffer and provides services that other VxDs can use to borrow and copy 
from/to this buffer. 

So ExecVxD_Int really works only when no pointers are being passed to the real mode handler, or when 
pointers are being passed but another VxD has hooked the software interrupt to provide translation services. For
tunately, the standard VxDs provided with Windows do hook the most common software interrupts (lNT 21h, 
INT lOh, INT 13h, etc.), so in most cases yourVxDs can use ExecVxD_Int. 

If your V xD must pass pointers when the real mode interrupt is not hooked by another V xD (and thus does not 
have translation services provided), your VxD will have to do the translation using V86MMGR services. Then 
your VxD would use Si mu1 ate_Int inside a nested execution block to actually call the real mode handler. 
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Before exiting, Pr; or; tyEventHand1 er exits the nested execution block by call
ing End_Nest_Exec and restores the VM to its original state with a call to 
Restore_C1; ent_State, passing a pointer to the same CLI ENT_STRUCT that was used 
in the earlier call to Save_C1; enLState. The next time the VM is scheduled, it will 
continue executing from wherever it was interrupted, unaware that this flow of execu
tion was temporarily interrupted to call PostMessage. Finally, the VxD frees the 
VMINFO structure. (It is safe to do so because PostMessage has been executed by the 
time Resume_Exec returns.) 

As you can see, calling a Win 16 application from a VxD under Windows 3.x is a lot 
of work. A VxD running under Windows 95 has an easier job. (See tq<il-sidebar "Calling 
a Real Mode Interrupt Handler from a VxD" on page 252 for information on how a 
VxD can also use nested execution services to call a real mode interrupt handler.) 

VxD to Win16 Application under Windows 95: 
PostMessage 
The new services provided by the SHELL VxDunder Windows 95 make it much eas
ier for a VxD to notify a Win16 application through PostMessage. A single call to 
SHELL_PostMessage will do the trick. 

The Calling Interface for SHELL_PostMessage 

BOOl SHElL_PostMessage(HANDLE hWnd, DWORD uMsg, WORD wParam, DWORD lParam, 
PPostMessage_HANDLER pCallback, PVOID dwRefData); 

The first four parameters correspond exactly to the real PostMessage parameters. 
The pCa 11 back parameter is a pointer to a callback function that will be called when 
the PostMessage actually completes. The last parameter, dwRefData, is reference 
data to be passed to the callback function. 

The SHELL_PostMessage function itself has a boolean return value, where FALSE 
indicates failure, usuaUy caused by insufficient memory. Note this is not the return 
value from PostMessage, because the execution of PostMessage is asynchronous 
(hence the callback function). The return value of the actual call to PostMessage is 
passed to the callback function, along with a pointer to the same reference data passed 
in to SHELLPostMessage. 

The Calling Interface for SHELL_PostMessage Callback 

void PostMessageHandler( DWORD dwPostMessageReturnCode, void *refdata); 
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So the two-part approach required under Windows 3.x - Ca 11_Pri ori ty_VM_Event 
followed by nested execution services in the event handler - can be replaced by a 
single call to SHELL_PostMessage under Windows 95. If the version check indicates 
Windows 95, the OnVmlni t and OnVmTermi nate handlers in POSTVXD simply do: 

SHELL_PostMessage( PostMsghWnd. WM_USER_POSTVXD.l. 
(DWORD)hVM. PostMessageHandler. NULL ); 

Note that the dynamically allocated VMINFO structure is no longer required, 
because the message handler itself can pass the VM handle and the boolean directly to 
SH E LL_Pos tMess age. 

VxD to Win16 Application under Windows 95: 
Appy Time 
Although it's nice to have SHELL_PostMessage available, a VxD running under Win
dows 95 isn't limited to calling PostMessage to communicate with Win16 code. 
Using the new "appy-time" functions (also provided by SHELL), a Windows 95 VxD 
can call any function in a Win 16 DLL, and the Win 16 callback itself is allowed to call 
any Windows API function. 

To use the appy-time services, you first schedule an appy-time event by calling 
SHELL_Cal 1 AtAppyTime. 

The Calling Interface for Scheduling an Appy-time Event 

APPY_HANDLE SHELL_CallAtAppyTime(APPY_CALLBACK pfnAppyCallBack. 
voi d *dwRefOata. 
DWORD dwFlags. DWORD dwTimeout); 

pfnAppyCallback: pointer to function to be called back at appy time 
dwRefData: passed as parameter to pfnAppyCallback 
dwFlags: describe callback conditions 

if CAAFL_TIMEOUT is set. service will timeout and 
callback will be invoked if appy time isn't 
available within dwTimeout ms 

dwTimeout: timeout used if CAAFL_TIMEOUT is set in Flags 

As with other events, a VxD returns after scheduling an appy-time event. Later, 
when Windows 95 is ina "safe state", the SHELL VxD will call the event handler. 

SHELL supplies two parameters to the event handler callback: the same reference 
data passed in to SHELL_Cal 1 AtAppyTime, and a flag that has CAAFL_TIMEOUT set if 
the timeout occurred. If CAAF L_ TI MEOUT is set, then the event handler is not running 
during appy time and so can't call Win16 code. 
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The Calling Interface for SHELL_Ca 7 7 A tAppyTi me Callback 

void AppyTimeHand1er( void *dwRefData, DWORD dwF1ags ); 

If this flag is not set, the event handler can use another SHELL service, 
SHELL_Ca 11 011, to call any function in any Winl6 DLL. This service will take care of 
loading the DLL, thunking the parameters from 32-bit to 16-bit (see Chapter 18 for a 
full discussion of thunking), and unloading the DLL after the function returns. 

The Calling Interface for SHELL_Ca 7 7 D7 7 

DWORD SHELL_CallDll(PCHAR lpszOll, PCHAR lpszProcName, 
OWORO cbArgs, void *lpvArgs); 

lpszDLL: name of Win16 DLL 
lpszProcName: name of function in DLL 
cbArgs: number of bytes in arguments passed to function 
lpvArgs: pointer to structure containing arguments 

The first two parameters are self-explanatory. The other two parameters, cbArgs 
and 1 pvArgs, describe the arguments to be passed to the DLL function. This short 
piece of code taken directly from the DDK documentation illustrates their use. 

/* PASCAL calling convention passes arguments backwards */ 
struct tagEXITWINOOWARGS { 

WORD wReserved; 
DWORO dwReturnCode; 

} ewa = { 0, EW_REBOOTWINDOWS }; 
SHELL_CallDll("USER", "EXITWINDOWS", sizeof(ewa), &ewa); 

In this example, the VxD is calling the Windows API function Exi tWi ndows, 
which is declared in WINDOWS. Has: 

BOOL _far _pascal ExitWindows(DWORD dwReturnCode, UINT wReserved); 

The VxD declares a structure containing only these two parameters. The order of the 
parameters in the structure is "backward" compared to the function declaration because 
ExitWi ndows is declared with the _pasca 1 keyword. If the DLL function was declared 
as _cdec 1 instead, the structure would contain parameters in the "normal" order. 
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Windows 95 VxD to Win32 Application: 
Asynchronous Procedure Calls 
To communicate with a Win32 application, a Windows 95 VxD uses a completely dif
ferent approach, one that fits naturally with the multi-threaded support in the Win32 
API. There are two slightly different techniques, though both rely on a VxD "waking 
up" a Win32 application thread. 

The simplest mechanism for a VxD to communicate with a Win32 application is 
via an asynchronous procedure call, or APC. This method is relatively simple for both 
the application and the VxD. The application first opens the VxD (CreateFi 1 e) and 
uses DeviceloContro1 to pass to the VxD the address of a callback function. The 
application then puts itself into an "asleep yet alertable" state using the Win32 call 
Sl eepEx. The application must use Sl eepEx, not plain old Sl eep, because only 
Sl eepEx puts the thread into an "alertable" state. While the application's thread is 
asleep, the VxD can call the application's callback function using the QueueUserApc 
service provided by the VWIN32 VxD. 

The APCVXD Example 
The APCVXD example illustrates the techniques discussed above. Like the POSTVXD 
example, APCVXD notifies a registered application whenever a VM is created or 
destroyed. But where POSTVXD notified a Win16 application via PostMessage, 
APCVXD notifies a Win32 application via an Asynchronous Procedure Call. 

APCVXD supports a W32_DEVICEIOCONTROL interface, which lets Win32 appli
cations register a callback function with the VxD. The VxD later calls this applica
tion function whenever a VM is created or destroyed. The VxD passes to the 
callback the address of a VMI NFO structure that contains the VM handle and a bool
ean value (TRUE if create, FALSE if destroy). Inside the callback, after the application 
has printed the contents of the VMINFO structure, it calls Devi celoContro1 with the 
APCVXD_RELEASEMEM control code, telling the VM to free the VMINFO structure. 

The application is a Win32 console application (Listing 12.11, page 279), which 
means it can use standard 110 functions like pri ntf. Itconsists of nothing but a rna in 
and a callback function. 

void main(int ac, char* ave]) 
{ 

OWORO cbBytesReturned; 
OWORD err; 

canst PCHAR VxDName - "\\\\.\\APCVXD.VXO"; 
hDeVice - CreateFile(VxDName, 0,0,0, CREATE_NEW, FI LEJLAG_DELETE_ON_ClOSE , 0); 
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if (hDevice == INVALID_HANDLE_VALUE) 
{ 

err = GetLastError(); 
printf("Cannot load VxD, error=%08Ix\n", err ); 
if (err == ERROR_NOT_SUPPORTED) 
{ 

DeleteFile("\\\\.\\APCVXD"); 
} 
exit(l); 

if (err = DeviceIoControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD, 
sizeof(CallbackFromVxD), NULL, 0, NULL, NULL» 

printf("DeviceIoControl failed, error-%x\n", err); 
} 
else 
{ 

} 

whi I e (TRUE) 
SleepEx(lOOO, TRUE); 

,CloseFile( hDevice ): 

The application's main function uses CreateFil e to get a handle to the VxD, 
then Devi celoContro1 to pass to the VxD the address of its callback function, 
Ca 11 backFromVxD. Finally, the application puts itself into an alertable wait state, 
using the Win32 51 eepEx function with a timeout parameter of one second, and TRUE 
for the bA 1 ertab 1 e parameter. 51 eepEx will block until either the timeout has expired 
or the VxD has called the application's callback. When 51 eepEx returns, the thread 
checks for keyboard input. If input was detected, the program closes the VxD handle 
and exits. Otherwise, it immediately calls 51 eepEx again, waiting for another callback 
from the VxD or another timeout, whichever comes first. 

Note that the timeout in 51 eepEx is only necessary because the application must 
intermittently test for user input. If the application handled user input in a separate 
thread, 51 eepEx would not require a timeout (-1 for timeout parameter) and would 
return only after the VxD called Ca 11 backFromVxD. 

DWORD WINAPI CallbackFromVxD(PVOID param) 
[ 

); 

VMINFO *pVmlnfo = param; 

pri ntf(buf, "VM %081x was %s\r\n", pVmInfo- >hVM, pVmInfo->bCreated ? "created" : "destroyed" ); 
DeviceIoControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmlnfo),O,O,O.O); 
return 0; 

The callback function, Ca 11 backFromVxD, first casts its reference data parameter 
to a pointer to a VM INFO structure. The VM INFO structure contains the handle of the VM 
that was created or destroyed and a boolean indicating creation or destruction. The 
callback prints these two items using pri nt f, since the application is a console appli
cation. Finally, the callback uses Devi cel oContro 1 to call back into the VxD with the 
control code APCVXD_RELEA5EMEM. This code tells the VxD to free the VMINFO struc
ture that was passed in as reference data. 
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The APCVXD code is equally simple (Listing 12.7, page 275). It consists only of 
three message handlers: OnW32Devi cei ocontrol, OnVmlni t, and OnVmTermi nate. 

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p) 
( 

DWORD rc; 

switch (p->dwloControlCode) 
( 

case DIOCOPEN: 
rc = 0; 
break; 

case DIOC_CLOSEHANDLE: 
bClientRegistered = FALSE; 

rc = 0; 
break; 

case APCVXD_REGISTER: 
VmEventApc = p->lpvlnBuffer; 
appThread = Get_Cur_Thread_Handle(); 

bClientRegistered = TRUE; 
rc = 0; II return OK 
break; 

case APCVXD_RELEASEMEM: 
_HeapFree(p->lpvlnBuffer, 0); 
rc = 0; 
break; 

default : 
rc = Oxffffffff; 

return rc; 

Note that OnW32Devi cei ocontro 1 returns zero when the control code indicates 
either DIOCGETVERSION or DIOCCLOSEHANDLE. As mentioned in the last chapter, fail
ure to do so will cause the application call to CreateFi 1 e or C1 oseHand1 e to fail. 
APCVXD also handles two other control codes [defined in APCVXD. H (Listing 12.6, 
page 275)]: APCVXD_REGISTERand APCVXD_RELEASEMEM. 

To process APVXD_REGI STER, APCVXD gt:abs the callback function address from the 
DIOCPARAMETERS input buffer, then calls the VMM service Get_Cur _Thread_Hand1 e 
to obtain the Ring 0 handle for the caller's thread. (This thread handle will be used 
later, during the callback process.) Both the callback address and the thread handle 
are saved in global variables. To process APCVXD_RELEASEMEM, the VxD frees the 
pointer passed in by the caller via the DIOCPARAMETER input buffer. The application 
should have loaded this pointer with the address of a structure that was allocated earlier 
by the VxD (during VM create or destroy) and passed to the application's callback. 
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The VM_Init and VM_Terminate handlers (see the following paragraph of code) 
look something like their counterparts in the earlier POSTVXD (VxD to Win16 appli
cation) example. Each verifies that the boolean bCl i entRegi stered is already set 
and then allocates and initializes a VM INFO structure containing the VM handle and a 
boolean indicating VM creation or destruction. But where the handlers in POSTVXD 
scheduled a VM event, APCVXD uses the VWIN32 service _VWIN32_QueueUserApc 
to queue a call to the registered application callback. 

BOOl OnVmInit(VMHANDlE hVM) 
{ 

VMINFO *pVmInfo; 

if (bClientRegistered) 
{ 

pVmInfo = _HeapAllocate( sizeof(VMINFO), 0 ); 
if (pVmInfo) 
{ 

pVmlnfo->hVM = hVM; 
pVmInfo->bVmCreated = TRUE; 
_VWIN32_0ueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread); 

return TRUE; 

VOID OnVmTerminate(VMHANDlE hVM) 
{ 

VMINFO *pVmInfo; 

if (bClientRegistered) 
{ 

pVmInfo = _HeapAllocate( sizeof(VMINFO), 0 ); 
if (pVmInfo) 
{ 

pVmInfo->hVM = hVM; 
pVmInfo->bVmCreated = FALSE; 
_VWIN32_0ueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread); 

Although both Win32 applications and VxDs support the notion of "thread 
handles", a Ring 3 thread handle (obtained by calling the Win32 API function 
GetCurrentThread) is not the same as a Ring 0 thread handle. Because 
_VWIN32_0ueueUserApc requires a Ring 0 thread handle, APCVXD calls the VMM 
service Get_Cur _Thread_Handl e during W3LDEVICEIOCONTROL processing to obtain 
the Ring 0 handle of the caller's thread. 
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The Calling Interface for VWIN32_QueueUserApc 

VOID _VWIN32_0ueueUserApc(PVOID pR3Proc. DWORD Paramo THREADHANDLE hThread); 
pR3Proc: 1 i near address of Ri ng 3 code to execute 
Param: parameter to pass to Ring 3 code 
hThreadi Ring3 code runs in this thread context 

NOTE: this is a Ring 0 thread handle. not a Ring 3 thread handle 

As the name of the VWIN32 service suggests, the callback is not executed imme
diately but is queued, to be executed at a later time (when the System VM is current, 
etc.) When _VWIN32_QueueUserApc returns, the APCVXD message handler also 
returns, having finished its processing. 

Because APCVXD uses global variables to store both the callback address 
and the thread handle, only one Win32 application can use APCVXD at a 
time. In order to support usage by multiple Win32 applications at the same 
time, APCVXD would need to dynamically allocate a structure to store the 
callback address and the thread handle and then add the dynamically allocated 
structures to a linked list. The create and destroy VM handlers would then 
traverse the list, calling _VWIN32_QueueUserApc for each registered callback 
in the list. 

Windows 95 VxD to Win32 Application: 
Win32 Events 
Although using an APe is probably the easiest. way to implement a VxD-to-applica
tion calling mechanism, there is a much more efficient method. If the Win32 applica
tion is multithreaded, the application can continue to do work in a main thread while a 
second thread is waiting on a wakeup from the VxD. For example, a main thread 
could monitor for user input while a second thread waits on a VxD that is buffering 
incoming data. When the buffered data reaches a threshold level, the VxD wakes up 
the waiting Win32 thread. 

VxDs use thread events for interthread notification, much as multi-threaded 
Win32 applications do. In a multi-threaded Win32 application, Win32 events are 
often used to signal from one thread to another that an operation has been completed, 
for example that a buffer has been read from disk. One thread creates the event, starts 
the second thread, and then waits on the event (which will be signaled by the second 
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thread). Assuming the waiting thread has nothing to do until the data is read, this 
structure is an efficient use of resources; the waiting thread is' blocked and thus con
sumes minimal processor cycles. 

The Win32 API contains the following event functions: 

CreateEvent to create the event and obtain an event handle 

• ResetEvent to set the event to the unsignaled state 

• SetEvent to set the event to the signaled state 

Pul seEvent to set the event to the signaled state and then immediately set it to 
unsignaled 

Wa i tForS i ngl eObj ect to block until the event is signaled 

Wai tForMul tipleObjects to block until any or all the events are signaled 
(depending on flag parameter) 

The following paragraph of code presents a simple multithreaded Win32 applica
tion which illustrates the use of Win32 events. It consists of two threads, where the 
first thread signals the second whenever the users presses the'S' key. The second 
thread prints a message whenever it is signaled. 

DWORD WINAPI SecondThread( HAND.LE hEvent 
{ 

whil e (TRUE) 
{ 

WaitForSingleObject(hEvent. INFINITE ); 
printf("Second thread was signaled\n"); 

return 0; 

void main(int ac. char *av[]) 
{ 

BOOl bExit = FALSE; 
HANDLE hEvent; 
char c; 
DWORD tid; 

hEvent = CreateEvent( O. FALSE. FALSE. NULL ); 
CreateThread( O. OxlOOO, SecondThread. hEvent. O. &tid ); 

printf("Press 'S' to Signal second thread\n"); 
printf("Press 'X' to exit\n"); 
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while (!bExit) 
{ 

c = getch(); 
switch( c ) 
{ 

case '5': 
case's': 

SetEvent( hEvent ); 
break; 

case 'X': 
case 'x': 

bExit = TRUE; 
break; 

VxDs and Win32 Events 
Under Windows 95, VxDs have access to the very same Win32 event API, through a 
set of services provided by the VWIN32 VxD. Using these services, a VxD can signal 
a waiting Win32 application thread, or wait to be signaled by a Win32 application 
thread. The VWIN32 event services are: 

_VWIN32_ResetWin32Event 

_VWIN32_SetWin32Event 

_VWIN32_PulseWin32Event 

• _VWIN32_WaitSingleObject 

• _VWIN32_WaitMultipleObjects 

Unfortunately, a VxD can't obtain a Win32 event handle simply by calling the 
appropriate event service. (Note that a Create Event service is conspicuously missing 
in the above list.) Thus, obtaining an event handle that is usable to a VxD becomes a 
complicated process involving, among other things, an undocumented system call. The 
event is always created by the application, via the Win32 API CreateEvent. The applica
tion must then translate the event handle returned by CreateEvent into a VxD event 
handle, using the undocumented Win32 API function OpenVxDHandl e. The applica
tion then passes the translated (Ring 0) event handle to the VxD via Devi celoControl, 
and the VxD uses this handle as a parameter to the VWIN32 event functions. 
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The EVENTVXD example (Listing 12.15, page 282) uses a Win32 event to signal 
a Win32 application thread from a VxD. Like the POSTVXD and APCVXD examples 
introduced earlier in this chapter, EVENTVXD notifies a registered application when
ever a VM is created or destroyed. But where APCVXD used an Asynchronous Proce
dure Call to notify a Win32 application, EVENTVXD uses a Win32 event. 

EVENTVXD supports the W3LDEVICEIOCONTROL message, which lets a Win32 
application register a Win32 event handle with the VxD. The Win32 thread that regis
tered this event handle should then wait on the event, which the VxD wiII signal 
whenever a VM is created or destroyed. As part of the initial registration, the VxD 
returns to the application the address of a VM INFO structure. When the application 
thread is signaled, this structure wiII contain the handle of the VM that was created or 
destroyed and a boolean indicating creation or destruction. 

Like the earlier APCVXD example, the code for EVENTVXD consists of only 
three message handlers: OnW32Devi cei ocontro 1, OnVmI ni t, and OnVmTermi nate. 

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p) 
{ 

DWORD rc; 

switch (p->dwloControlCode) 
{ 

case DIOCOPEN: 
rc = 0; 
break; 

case DIOC_CLOSEHANDLE: 
bClientRegistered = FALSE; 

rc = 0; 
break; 

case EVENTVXD_REGISTER: 
hWin32Event = p->lpvlnBuffer; 
*«DWORD *)(p->lpvOutBuffer» = (DWORD)&GlobalVMlnfo; 
*«DWORD *)(p->lpcbBytesReturned» = sizeof(DWORD); 
bClientRegistered = TRUE; 
rc = 0; 
break; 

default: 
rc = Oxffffffff; 

return rc; 
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Like the other W32_DEVICEIOCONTROL message handlers we've seen, this one 
returns 0 when the control code indicates either DIOCGETVERSION or 
DIOCCLOSEHANDLE. lithe control code is EVENTVXD_REGISTER, EVENTVXD copies 
the event handle from the DIOCPARAMETERS input buffer into the global variable 
hWi n32Event. 

BOOl OnVmlnitCVMHANDlE hVM) 
{ 

if CbClientRegistered) 
{ 

GlobalVMlnfo.hVM = hVM; 
GlobalVMlnfo.bVmCreated = TRUE; 
Cal l_Priority_VM_EventC lOW_PRI_DEVICE_BOOST, Get_Sys_VM_HandleC), 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT, 
hWin32Event, PriorityEventThunk, 0 ); 

return TRUE; 

VOID OnVmTerminateCVMHANDlE hVM) 
{ 

if CbClientRegistered) 
{ 

GlobalVMlnfo.hVM = hVM; 
GlobalVMlnfo.bVmCreated = FALSE; 
Call_PrioritY_VM_EventClOW_PRI_DEVICE_BOOST, Get_Sys_VM_HandleC), 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT, 
hWin32Event, PriorityEventThunk, 0 ); 

The VM_Init and VM_Terminate handlers (Listing 12.16, page 284) look more 
like their counterparts from the POSTVXD example than the ones from the APCVXD 
example. Like POSTVXD, EVENTVXD must postpone its real work (signaling the 
Win32 event) for a VM event handler, because the VWIN32 event functions may only 
be called when the System VM is current. Unlike POSTVXD, however, EVENTVXD 
does not dynamically allocate a VMINFO structure and pass the structure address to 
the event handler as reference data. Instead, EVENTVXD uses a global VMINFO 
structure, and passes the Win32 event handle as reference data to its event callback. 
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Where both APCVXD and POSTVXD pass a VMINFO pointer to the application 
(POSTVXD via the 1 Param of PostMessage and APCVXD as a reference data 
parameter), EVENTVXD has no way of passing reference data to the Win32 applica
tion. The VxD doesn't call a function in the Win32 application. The Win32 applica
tion simply wakes up from the event it has been waiting on. 

Because the VxD can't pass reference data to the Win32 thread that it's unblock
ing, it must use a different method to pass data. The VxD tells the Win32 application 
ahead of time, through Devi eel oContro 1, the address of a VMl NFO structure that will 
contain VM information. The VxD must then always use this same VMlNFO structure, 
because that's the one the Win32 application knows about. 

VOID __ stdcall PriorityEventHandler(VMHANDLE hVM. PVOID Refdata. CRS *pRegs) 
[ 

HANDLE hWin32Event = Refdata; 

_VWIN32_SetWin32Event( hWin32Event ); 

The VMM calls the System VM event handler, Pri ori tyEventHandl er, once 
the System VM has been scheduled. At this time, Pri ori tyEventHandl er can 
safely call _VWl N3LSetWi n32Event, using the reference data parameter as the 
Win32 event handle. 

The accompanying Win32 application, which uses the EVENTVXD, is more 
complicated than the other Windows example applications, partly because it has two 
threads, but mostly because it must go to great lengths to obtain a usable event handle. 

void maine int ac. char *av[] 
( 

hEventRing3 = CreateEvent( O. FALSE. FALSE, NULL ); 
if (!hEventRing3) 
( 

printf("Cannot create Ring3 event\n"); 
exit(l) ; 

hKerne132Dll = LoadLibrary("kerne132.dll"); 
if (!hKerne132Dll) 
( 

printf("Cannot load KERNEL32.DLL\n"); 
exit(l) ; 
} 
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pfOpenVxDHandle = (HANDLE (WINAPI *) (HANDLE)) 
GetProcAddress( Kerne132Dll, "OpenVxDHandle" ); 
if (!pfOpenVxDHandle) 
( 

printf("Cannot get addr of OpenVxDHandle\n"); 
exit(l) ; 

hEventRingO = (*pfOpenVxDHandle)(hEventRing3); 
if (!hEventRingO) 
( 

printf("Cannot create RingO event\n"); 
exit (1 ) ; 

The main thread must make four different Win32 API calls to create a Win32 
event and then obtain a Ring 0 handle for this event usable by the VxD. Creating 
the event requires only a call to CreateEvent. The application uses FALSE for the 
bManua 1 Reset parameter to obtain an auto-reset event. Windows will automati
cally reset this type.of event to the non-signaled state when it wakes up the wait
ing thread, saving the second thread from explicitly calling ResetEvent. The 
application also specifies FALSE as the blniti al Val ue parameter. Thus, initially 
the event will be in the non-signaled state, causing the second thread to block on 
the event immediately. 

To translate the event handle returned by CreateEvent into a handle usable by the 
VxD, the application must call the OpenVxDHandl e function in KERNEL32. DLL. This 
function is not documented and not in the Win32 import library, thus its address must 
be acquired via run-time dynamic linking. First the application uses La a d Lib r a r y to 
load KERNEL32. DLL. Then it calls GetProcAddress, specifying both the name of the 
function ("OpenVxDHandl eO) and the instance handle returned by LoadL i brary. 

GetprocAddress returns a function pointer, which the application uses to call the 
OpenVxDHandl e function. This function takes as input a Ring 3 event handle, returned 
by CreateEvent and returns another handle for the event (one usable at Ring 0). The 
application stores this Ring 0 handle in hEventRi ngO, to be passed to the 
EVENTVXD via Devi celoControl. 

hDevice = CreateFile( VxDName, 0, 0, 0, CREATE_NEW, 

if (!hDevice) 
( 

FI LE_FLAG_DELETE_ON_CLOSE , 0 ); 

printf("Cannot load VxD error=%x\n", GetLastError() ); 
exit(l) ; 
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if (!DevieeloControl( hDeviee. EVENTVXD_REGISTER. 
hEventRingO. sizeof(hEventRingO). 
&pVMlnfo. sizeof(pVMlnfo). 
&ebBytesReturned. 0 » 

printf( "Devi eeloControl REGISTER failed\n"); 
exit(l); 

The next part of ma i n looks similar to the APC example application described earlier 
in this chapter. The application opens a channel to the VxD and uses Devi eeloControl 
to pass hEventRi ngO to the VxD. 

The function prototype for Devi eel oContro 1 declares both the 1 pI nBuffer and 
the 1 pOutBuffer parameters to be void pointers, but it is always up to the VxD to 
decide exactly how these pointers are used. EVENTVXD expects the input pointer for 
an EVENTVXD_REGISTER control code to be a Ring 0 event handle, not a pointer. 
EVENTVXD expects the output pointer to point to a DWORD, which it fills in with the 
address of a VM INFO structure. 

After giving the event handle to the VxD, the main thread has nothing left to do 
but create the second thread (which will wait to be signaled by the VxD) and wait for 
user input. Because the main thread has nothing else to do but wait for input - it's 
the second thread that's doing the work - it uses the C library function geteh, which 
blocks. When geteh finally returns with a key, the main thread closes the channel to 
the V xD and returns. 

CreateThread( O. OxlOOO. SeeondThread. hEventRing3. O. &tid ); 
printf("Press any key to exit ..... ); 
geteh(); 
CloseHandle( hDeviee ); 

You may notice that the main thread doesn't do anything to terminate the 
second thread. This may seem dangerous, and in fact, Windows 95 won't 
automatically kill off additional threads when the main thread ends. 
However, the C run-time exit code does terminate additional threads when 
ma i n returns. If you want to be extra safe, you can explicitly terminate the 
secondary thread before exiting main by calling TerminateThread and 
passing in the (Ring 3) thread handle returned originally by CreateThread. 

That wraps up the main thread of the application, which exists only to create a 
second thread which does the real work. The second thread, contained in the function 
SeeondThread, is short and simple. 
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DWORD WINAPI SecondThread( PVOID hEventRing3 ) 
( 

while( TRUE) 
( 

WaitForSingleObject«HANDLE)hEventRing3. INFINITE ); 
printf("VM %081x was %x". pVMInfo->hVM. 

pVMInfo->bCreated? "created" : "destroyed" ); 

return 0; 

The reference data parameter gives SecondThread the handle of a Win32 event to 
wait on. SecondThread then waits, with an infinite timeout, on this event. When the 
event is signaled, SecondTh read uses the global variable pVMI nfo to access a VMI NFO 
structure that contains the VM handle and an indication of either creation or destruc
tion. Then SecondThread waits again on the event. Note that SecondThread doesn't 
have to call ResetEvent because the event was created as an auto-reset event. 

Summary 
This chapter covered all the techniques used by VxDs to communicate with applica
tions. All rely on an initial call to the VxD, initiated by the application, to pass infor
mation about a callback function or event handle which the VxD uses later to 
communicate back to the application. Under Windows 3.x, a VxD may not call arbi
trary Win16 code but is essentially limited to calling PostMessage, using the window 
handle and PostMessage address passed in by the application. Under Windows 95, a 
VxD may still communicate with a Win16 application by calling PostMessage, but 
the VxD may also call any function in any Win16 DLL. A VxD has two different 
choices when communicating with a Win32 application: either the simple but not so 
elegant asynchronous procedure call (APC) or the more elegant use of Win32 events 
to signal a waiting Win32 application thread. 
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listing 12.1 POSTVXD.H 

#define POSTVXD_ID 
#define POSTVXD_REGISTER 
#define POSTVXD_DEREGISTER 

OxBADD 
OxlOOO 
OxlOOl 

II based on WM_USER in windows.h 
#define WM_USER_POSTVXD (Ox0400+0xOlOO) 

listing 12.2 

itdefine WANTVXDWRAPS 

itinclude <basedef.h> 
iti nc I ude <vmm. h> 
itinclude <debug.h> 
itinclude "vxdcall.h" 
itinclude <vxdwraps.h) 
itinclude <wrappers.h> 
itinclude <vwin32.h> 
itinclude "postvxd.h" 

iii fdef DEBUG 

POSTVXD. C 

itdefine DPR!NTFO(buf. fmt) _Sprintf(buf. fmt ): Out_Debug_String( buf ) 
41defi ne DPR! NTFl( buf. fmt. argl) _Spri ntf( buf. fmt. argl ): Out_Debug_Stri ng( buf ) 
itdefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2 ): 

lie I se 
itdefine DPRINTFO(buf. fmt) 
itdefine DPRINTFl(buf. fmt. argl) 
itdefine DPRINTF2(buf. fmt. argI. arg2) 
itendif 

Out_Debug_String( buf ) 

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode. PYOID refdata): 

II functions in asm module 
void PriorityEventThunk( void ): 

BOOl bClientRegistered ~ FALSE: 
WORD PostMsgOffset; 
WORD PostMsgSelector; 
HANDLE PostMsghWnd; 
char dbgbuf[80]; 
Baal byJi n3x: 

typedef struct 
{ 

BOOl bVmCreated; 
VMHANDlE hVM; 

VMINFO; 

II True when PM API called to register 
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Listing 12.2 (continued) 

BOOlOnSysDynamicDeviceInit() 
( 

DPRINTFO(dbgbuf,"loading\r\n"); 
return TRUE; 

BOOlOnSysDynamicDeviceExit() 
{ 

DPRINTFO(dbgbuf,"Unloading\r\n"); 
return TRUE; 

BOOl OnInitComplete(VMHANDlE hVM) 
{ 

DWORD ver; 

if (HIWORD(ver) <~ 3) 
( 

II Win3.x, not 95 
bWi n3x ~ TRUE; 

BOOl OnVmlnit(VMHANDlE hVM) 
{ 

VMINFO *pInfo; 

if (bClientRegistered) 
{ 
if (bWin3x) 
{ 

POSTVXD. C 

pInfo ~ (VMINFO *)_HeapAllocate("sizeof( VMINFO ), 0 ); 
if (pInfo) 

1 

{ 

1 
else 
{ 

pInfo->hVM ~ hVM; 
pInfo->bVmCreated ~ TRUE; 
Ca II_Pri ori tY_VM_Event (LOW_PRLDEVICCBOOST, Get_Sys_VM_Handl e( ), 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT, 
pInfo, PriorityEventThunk, 0 ); 

_SHEll_PostMessage( PostMsghWnd, WM_USER_POSTVXD, 1, (DWORD)hVM, 
PostMessageHandler, NUll ); 

return TRUE; 
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Listing 12.2 (continued) POSTVXD.C 

VOID OnVmTerminate(VMHANDLE hVM) 
{ 

VMINFO *pInfo; 

if (bClientRegistered) 
{ 

if (bWin3x) 
{ 

pInfo = (VMINFO *)_HeapAllocate( sizeof( VMINFO ), 0 ); 
if (pInfo) 
{ 

plnfo->hVM = hVM; 
pInfo->bVmCreated = TRUE; 
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(), 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT, 
plnfo, PriorityEventThunk, 0 ); 

) 
else 
{ 

_SHELL_PostMessage( PostMsghWnd, WM_USER_POSTVXD, O. hVM, 
PostMessageHandler, NULL ); 

VOID __ stdcall PriorityEventHandler(VMHANDLE hVM, PYOID Refdata, CRS *pRegs) 
{ 

CLIENT_STRUCT saveRegs; 
VMINFO *plnfo = Refdata; 

Save_Client_State(&saveRegs); 
Begin_Nest_Exec(); 
Simulate_Push(PostMsghWnd); 
Simulate_Push(WM_USER_POSTVXD); 
Simulate_Push(pInfo->bVmCreated); 
Simulate_Push(((DWORD)pInfo->hVM » 16) ); 
Simulate_Push(((DWORD)plnfo->hYM & Oxffff) ); 
Simulate_Far_Call(PostMsgSelector, PostMsgOffset); 
Resume_Exec ( ) ; 
End_Nest_Exec(); 
Restore_Client_State(&saveRegs); 
_HeapFree( pInfo, 0 ); 

1/ hwnd 
II message 
II wParam 
II lParam 

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode, PVOIDrefdata) 
{ 

if (JdwPostMessageReturnCode) 
DPRINTFO(dbgbuf, "PostMessage failedJ\r\n"); 
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Listing 12.2 (continued) POSTVXD.C 

VOID __ cdecl PM_Api_Handler(VMHANOLE hVM. CLIENT_STRUCT *pcrs) 
{ 

switch (pcrs->CWRS.Client_AXl 
{ 
case POSTVXO_REGISTER: 

PostMsghWnd ~ (HANDLElpcrs->CWRS.Client_BX; 
PostMsgSelector ~ pcrs->CWRS.Client_CX; 
PostMsgOffset ~ pcrs->CWRS.Client_OX; 

bClientRegistered ~ TRUE; 
pcrs->CWRS.Client_AX ~ 0; 
break; 

case POSTVXO_OEREGISTER: 
bClientRegistered ~ FALSE; 
pcrs->CWRS.Client_AX ~ 0; 
break; 

default: 
pcrs->CWRS.Client_AX ~ Oxffff; 

listing 12.3 POSTDDB. ASM 

.386p 

.****************************************************************************** 
INC L U 0 E S 

.****************************************************************************** 

i ncl ude vmm. i nc 
include debug. inc 

V I R T U A L 0 E V ICE 0 E C L A RAT ION 

rOSTVXUO EOU OBADOh 

POSTVXD. 1. O. ControlProc. POSTVXO_IO. 
UNOEFINED_INIT_OROER. O. PM_API 
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Listing 12.3 (continued) POSTDDB. ASH 

PROCEDURE: ControlProc 

DESCRIPTION: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX = Control call 10 

EXIT: 
If carry clear then 

Successful 
else 

Contro 1 ca 11 fa i 1 ed 

USES: 
EAX. EBX. ECX. EDX. ESI. EDI. Flags 

BeginProc ControlProc 
Control_Dispatch SYS_DYNAMIC_OEVICE_INIT. _OnSysDynamicDeviceInit. cCall. <ebx> 
Control_Dispatch SYS_OYNAMIC_DEVICE_EXIT. _On5ysDynamicDeviceExit. cCall. <ebx> 
Control_Dispatch INIT_COMPLETE. _OnInitComplete. cCall. <ebx> 
Control_Dispatch VM_INIT. _OnVmInit. cCall. <ebx> 
Control_Dispatch VM_TERMINATE. _OnVmTerminate. cCall. <ebx> 
clc 
ret 

EndProc ControlProc 

BeginProc PM_API 

cCall _PM_Api_Handler. <ebx. ebp> 
ret 

EndProc PM_API 

VxD_LOCKED_CODE_ENDS 

VxD_CODE_SEG 

BeginProc _PriorityEventThunk 

seall PriorityEventHandler. <ebx.edx.ebp> 
ret 

EndProc _PriorityEventThunk 

VxO_CODCENDS 

END 
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listing 12.4 POSTVXD. MAK 

CFLAGs 
CVXDFLAGs 
LFLAGs 

~ -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi 
~ -Zdp -Gs -c -015_32 -Zl -DDEBLEVEl~1 -DDEBUG 
~ -machine:i386 -debug:notmapped,fu11 -debugtype:cv 

-subsystem:conso1e kerne132.lib 
AFLAGS ~ -coff -DBLD_COFF -015_32 -W2 -Zd -c -Cx -DMAsM6 -DDEBLEVEL~1 -DDEBUG 

all: postvxd.vxd 

postvxd.obj: postvxd.c 
c1 $(CVXDFLAGsl -Fo$@ %s 

postddb.obj: postddb.asm 
m1 $(AFLAGsl -Fo$@ %s 

postvxd.vxd: postddb.obj postvxd.obj .. \ .. \wrappers\vxdcall.obj 
.. \ .. \wrappers\wrappers.c1b postvxd.def 

echo >NUL @«postvxd.crf 
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:postvxd.def -OUT:postvxd.vxd -MAP:postvxd.map 
-VXD vxdwraps.clb wrappers.c1b vxdcall .obj postddb.obj postvxd.obj 
« 

link @postvxd.crf 
mapsym postvxd 

listing 12.5 POSTVXD. DEF 

VXD POsTVXD DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 

LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_Bss CLASS 'LCODE' 
_TLs CLASS 'LCODE' 

ITEXT CLASS 'ICODE' 
_I DATA CLASS 'ICODE' 
_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_sTEXT CLASS 'sCODE' 
_sDATA CLASS 'seODE' 
_MsGTABLE CLASS 'MeODE' 
_MSGDATA CLASS 'MeODE' 
_IMSGTABLE CLASS 'MeODE' 

IMsGDATA CLASS 'MCODE' 
_DBOsTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '161CODE' 
_ReODE CLASS' RCODE' 

EXPORTS 
POsTVXD_DDB @1 

PRELOAD NONDIsCARDABLE 
PRELOAD NONDIsCARDABLE 
PRELOAD NONDIsCARDABLE 
PRELOAD NONDIsCARDABLE 
PRELOAD NONDIsCARDABLE 
PRELOAD NONDIsCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDIsCARDABLE 
DISCARDABLE 
DIsCARDABLE 
NONDIsCARDABLE 
NONDIsCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE 10PL 
PRELOAD NONDISCARDABLE 10PL 
PRELOAD DISCARDABLE IOPL 
PRELOAD DIsCARDABLE IOPL 
PRELOAD NONDIsCARDABLE CONFORMING 
PRELOAD NONDIsCAROABLE CONFORMING 
PRELOAD NONDIsCARDABLE CONFORMING 
PRELOAD DIsCARDABLE 
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listing 12.6 APCVXD.H 

#defi ne APCVXD_REGISTER 
#define APCVXD_RELEASEMEM 

typedef struct 
{ 

BOOL 
DWORD 

VMINFO; 

bVmCreated; 
hVM; 

Ox8100 
Ox8101 

listing 12.7 APCVXD.C 

#defi ne WANTVXDWRAPS 

#include <basedef.h> 
#include <vmm.h> 
#include <debug.h> 
#include "vxdcall .h" 

#include <wrappers.h> 
#include <vwin32.h> 
#include "apcvxd.h" 

iii fdef DEBUG 
#defi ne DPRINTFO(buf. fmt) _Spri ntf( buf. fmt ); OuLDebug_Stri ng( buf ) 
#defi ne DPRINTFI (buf. fmt. argll _Spri ntf(buf. fmt. argl ); Out_Debug_Stri ng( buf ) 
#define DPRINTF2(buf. fmt. argl. arg2) _SprintfCbuf. fmt. argl. arg2 ); 

#else 
#define DPRINTFO(buf. fmt) 
#define DPRINTFl(buf. fmt. argl) 
#define DPRINTF2(buf. fmt. argl. arg2) 
fiend if 

typedef struct tcb_s *PTCB; 
char dbgbuf[80]; 

BOOl bClientRegistered ~ FALSE; 
PYOID VmEventApc ~ 0; 
PTCB appThread ~ 0; 

BOOl OnVmInit(VMHANDlE hVM) 
{ 

VMINFO *pVmInfo; 

if (bClientRegistered) 
{ 

Out_Debug_String( buf ) 

pVmlnfo ~ _HeapAllocate( sizeof(VMINFO). 0 ); 
if (pVmlnfo) 
( 

) 

pVmInfo->hVM ~ hVM; 
pVmInfo-)bVmCreated ~ TRUE; 
_VWIN32_QueueUserApc(VmEventApc. CDWORD)pVmlnfo. appThread); 

return TRUE; 
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Listing 12.7 (continued) 

VOID OnVmTerminate(VMHANDlE hVM) 
{ 

VMINFO *pVmlnfo; 

if (bClientRegistered) 
( 

APCVXD.C 

pVmlnfo = _HeapAllocate( sizeof(VMINFO). 0 ); 
if (pVmlnfo) 
{ 

pVmlnfo-)hVM = hVM; 
pVmlnfo-)bVmCreated = FALSE; 
_VWIN32_0ueueUserApc(VmEventApc. (DWORD)pVmlnfo. appThread); 

BOOlOnSysDynamicDevicelnit() 
( 

DPRINTFO( dbgbuf. "loading\r\n"); 
return TRUE; 

BOOlOnSysDynamicDeviceExit() 
( 

DPRINTFO( dbgbuf. "Unloading\r\n"); 
return TRUE; 

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p) 
{ 

DWORD rc; 

switch (p-)dwloControlCode) 
( 
case DIOCOPEN: 

rc = 0; 
break; 

case DIOC_ClOSEHANDlE: 
bClientRegistered = FALSE; 

rc = 0; 
break; 

case APCVXD_REGISTER: 
VmEventApc = p-)lpvlnBuffer; 
appThread = Get_Cur_Thread_Handle(); 

bClientRegistered = TRUE; 
rc = 0; II return OK 
break; 

case APCVXD_RELEASEMEM: 
_HeapFree(p-)lpvlnBuffer. 0); 
rc = 0; 
break; 

default : 
rc = Oxffffffff; 

return rc; 
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listing 12.8 APCDDB.ASM 

.386p 

;****************************************************************************** 
INC L U DES 

.****************************************************************************** 

i ncl ude vmm. i nc 
include debug.inc 

V I R T U A L 0 E V ICE DEC L A RAT ION 
j •• 

APCVXD, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, 
UNOEFINED_INIT_ORDER 

PROCEDURE: ControlProc 

DESCRI PTl ON: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX = Control call ID 

EXIT: 
If carry clear then 

Successful 
else 

Cont ro 1 ca 11 fa il ed 

USES: 
EAX, EBX, ECX, EOX, ESI, EDI, Flags 

BeginProc ControlProc 
Control_Dispatch VM_INIT, _OnVmInit, cCall, <ebx> 
Control_Dispatch VM_TERMINATE, _OnVmTerminate, cCall, <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicOeviceInit, cCall, <ebx> 
Contro l_Di spatch SYS_DYNAMICDEVICCEXIT, _OnSysDynami cDevi ceExit, cCa 11, <ebx> 
Control_Dispatch W32_DEVICEIOCONTROL, _OnW32Deviceiocontrol, cCall, <esi) 
clc 
ret 

EndProc ControlProc 

VxD_LOCKED_CODE_ENDS 

END 
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listing 12.9 APCVXD.MAK 

CFLAGS 
CVXDFLAGS 
LFLAGS 

= -DWlN32 -DCON -Di386 -D_X86_ -D_NTWlN -W3 -Gs -D_DEBUG -Zi 
= -Zdp -Gs -c -DlS_32 -Zl -DDEBLEVEL=1 -DDEBUG 
= -machine:i386 -debug:notmapped,fu11 -debugtype:cv 

-subsystem:conso1e kerne132.1ib 
AFLAGS .= -coff -DBLD_COFF -DlS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG 

all: apcvxd. vxd 

apcvxd.obj: apcvxd.c 
c1 $(CVXDFLAGS) -Fo$@ %s 

apcddb.obj: apcddb.asm 
m1 $(AFLAGS) -Fo$@ %s 

apcvxd.vxd: apcddb.obj apcvxd.obj .. \ .. \ .. \wrappers\vxdca11.obj 
.. \ .. \ .. \wrappers\wrappers.c1b apcvxd.def 

echo >NUL €K(apcvxd.crf 
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:apcvxd.def -OUT:apcvxd.vxd -MAP:apcvxd.map 
-VXD vxdwraps.c1b wrappers.c1b vxdca1l .obj apcddb.obj apcvxd.obj 
« 

link @apcvxd.crf 
mapsym apcvxd 

listing 12.10 APCVXD.DEF 

VXD APCVXD DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CONST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 

lTEXT CLASS 'ICODE' 
I DATA CLASS 'ICODE' 

_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MCODE' 
_MSGDATA CLASS 'MCODE' 

lMSGTABLE CLASS 'MCODE' 
_IMSGDATA CLASS 'MCODE' 
_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16lCODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
APCVXD_DDB @1 

PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
PRELOAD NONDlSCARDABLE 
DlSCARDABLE 
DlSCARDABLE 
NONDlSCARDABLE 
NONDlSCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDlSCARDABLE lDPL 
PRELOAD DlSCARDABLE 10PL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDlSCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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#include <stdio.h> 
#include <conio.h> 
#include <windows.h> 
#include "apcvxd.h" 

HANDLE hDevice; 
char buf[BO]; 
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APC/WIN32APP/WIN32APP.C 

DWORD WINAPI CallbackFromVxD(PVOID param); 

DWORD WINAPI CallbackFromVxD(PVOID param) 
{ 

VMINFO *pVmInfo ~ param; 

printf(buf, "VM %OBlx was %s\r\n", pVmInfo-)hVM. 
pVmInfo-)bVmCreated ? "created" : "destroyed" ); 

DeviceIoControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmInfo),O,O,O,O); 
return 0; 

void main(int ac, char* avE]) 
{ 

DWORD err; 
canst PCHAR VxDName ~ "\\\\.\\APCVXD.VXD"; 

hDevice ~ CreateFile(VxDName, 0,0,0. CREATE_NEW. FILE_FLAG_DELETE_ON_CLOSE, 0); 

if (hDevice ~ INVALID_HANDLE_VALUE) 
{ 

err ~ GetLastError(); 
printf("Cannot load VxD, error~%OBlx\n". err); 
if (err == ERROR-NOT_SUPPORTED) 
{ 

DeleteFile("\\\\.\\APCVXD"); 
) 
exit(l); 

if ( !DeviceIoControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD, sizeof(void *), 
NULL, O. NULL, NULL» 

} 

else 
{ 

printf("DeviceloControl failed, error~%d\n". GetLastError() ); 

printf("press ctrl-C to exit ... \n"); 

whi 1 e (TRUE) 
{ 

SleepEx(-l, TRUE); 
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listing 12.12 APC/WIN32APP/WIN32APP.MAK 

win32app.exe: win32app.obj 
link@« 

kerne132.1ib user32.1ib gdi32.1ib winspool.lib comdlg32.1ib advapi32.1ib 
shel132.lib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:console 
IINCREMENTAL:no IPDB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj 
« 

win32app.obj: win32app.e 
el Ie IML IGX IYX IOd ID "WIN32" ID "NDEBUG" ID "_CONSOLE" -I .. \vxd win32app.e 

listing 12.13 

typedef struet 
{ 

EVENTVXD.H 

BOOL bVmCreated; 
DWORD hVM; 

} VMINFO; 

ifdefine EVENTVXD_REGISTER Ox8100 
ifdefine EVENTVXD_RELEASEMEM Ox8101 

listing 12.14 

ifdefi ne WANTVXDWRAPS 

ifi ncl ude <basedef. h> 
iti ne 1 ude <vmm. h) 
ifinelude <debug.h> 
ifinclude "vxdcall .h" 

IIi nel ude <wrappers. h> 
ifinelude <vwin32.h> 
ifinclude "eventvxd.h" 

ififdef DEBUG 

EVENTVXD.C 

ifdefine DPRINTFO(buf. fmt) _Sprintf(buf. fmt ); Out_Debug_String( buf ) 
ifdefi ne DPRINTFl(buf. fmt. argl) _Spri ntf(buf. fmt. argl ); Out_Debug_Stri ng( buf ) 
ifdefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2 ); 

ifelse 
ifdefine DPRINTFO(buf. fmt) 
ifdefine DPRINTFl(buf. fmt. argl) 
ifdefi ne DPRINTF2( buf. fmt. argl. arg2) 
ifendif 

Out_Debug_String( buf ) 
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Listing 12.14 (continued) EVENTVXD. C 

II functions in asm module 
void PriorityEventThunk( void ); 

typedef VMINFO *PVMINFO; 

VOID _stdcall PriorityEventHandler(VMHANDlE hVM. PYOID Refdata. CRS *pRegs); 

BOOl 
VMINFO 
HANDLE 
char 

bClientRegistered = FALSE; 
GlobalVMlnfo; 
hWin32Event; 
dbgbuf[BO]; 

BOOl OnVmlnit(VMHANDlE hVM) 
{ 

if (bClientRegistered) 
( 

GlobalVMlnfo.hVM = hVM; 
GlobalVMlnfo.bVmCreated = TRUE; 
Call_Priority_VM_Event(lOW_PRI_DEVIC~BOOST. Get_Sys_VM_Handle(). 

J 
return TRUE; 

PEF_WAIT_FO~STI+PEF_WAIT_NOT_CRIT. 
hWin32Event. PriorityEventThunk. 0 ); 

VOID OnVmTerminate(VMHANDlE hVM) 
{ 

if (bClientRegistered) 
( 

GlobalVMInfo.hVM = hVM; 
GlobalVMInfo.bVmCreated = FALSE; 
Call_Priority_V~Event(lOW_PRI_DEVICE_BOOST. Get_Sys_VM_Handle(). 

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT. 
hWi n32Event. Pri orityEventThunk. 0 ); > 

VOID _stdcall PriorityEventHandler(VMHANDlE hVM. PYOID Refdata. CRS *pRegs) 
( 

HANDLE hWin32Event = Refdata; 

_VWIN32_SetWin32Event( hWin32Event ); 

BOOl OnSysDynamicDevicelnit() 
( 

DPRINTFO( dbgbuf. "Loadi ng\r\n"); 
return TRUE; 

BOOlOnSysDynamicDeviceExit() 
( 

DPRINTFO( dbgbuf. "Unloading\r\n"); 
return TRUE; 
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Listing 12.14 (continued) . EVENTVXD. C 

DWORD OnW32Devieeioeontrol(PDIOCPARAMETERS p) 
{ 

DWORD re; 

switch (p->dwIoControlCode) 
{ 
case DIOCOPEN: 

rc = 0; 
break; 

case DIOC_CLOSEHANDLE: 
bClientRegistered - FALSE: 

rc = 0; 
break; 

case EVENTVXD_REGISTER: 
hWin32Event g p->lpvInBuffer; 
*«DWORD *)(p-)lpvOutBuffer» - (DWORD)&GlobalVMlnfo; 
*«DWORD *)(p->lpcbBytesReturned» q s;zeof(DWORD); 
bClientRegistered - TRUE; 
rc - 0; 
break; 

default: 
rc = Oxffffffff; 

return rCi 

listing 12.15 EVENTDDB. ASH 

.386p 

:************************************************************~***************** 

INCLUDES 
:****************************************************************************** 

i ncl ude vnvn. i nc 
include debug.inc 

V I R T U A L 0 E V ICE DEC L A RAT ION 

DECLARE_VIRTUA~DEVICE EVENTVXD, I, 0, ControlProc, UNDEFINED_DEVICE_ID. \ 
UNDEFINED_INIT_ORDER 
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Listing 12.15 (continued) EVENTDDB.ASM 

PROCEDURE: ControlProc 

DESCRIPTION: 
Device control procedure for the SKELETON VxD 

ENTRY: 
EAX = Control call ID 

EXIT: 
If carry clear then 

Successful 
el se 

Contro 1 ca 11 fa 11 ed 

USES: 
EAX. EBX. ECX. EDX. ESI. EDI. Flags 

BeginProc ControlProc 
Control_Dispatch VM_INIT. _OnVmInit. cCall. <ebx> 
Control_Dispatch VM_TERMINATE. _OnVmTerminate. cCall. <ebx> 
Control_Di spatch SYS_DYNAMICDEVICE_INIT. _OnSysDynami cDevi celnit. cCa 11. <ebx> 
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDevicetxit. cCall. <ebx> 
Control_Dispatch W32_DEVICEIOCONTROL. _OnW32Deviceiocontrol. cCall. <esi> 
clc 
ret 

EndProc ControlProc 

VxD_LOCKED_CODE_ENDS 

VxD_CODCSEG 

BeginProc _PriorityEventThunk 

sCall PriorityEventHandler. <ebx.edx.ebp> 
ret 

EndProc _PriorityEventThunk 

VxD_CODCENDS 

END 
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listing 12.16 EVENTVXD.MAK 

CFLAGS 
CVXDFLAGS 
LFLAGS 

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi 
= -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG 
= -machi ne: i 386 -debug: notmapped, full -debugtype: cv 

-subsystem:console kerne132.1ib 
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG 

all: eventvxd.vxd 

eventvxd.obj: eventvxd.c 
cl $(CVXDFLAGS) -Fo$@ %s 

eventddb.obj: eventddb.asm 
ml $(AFLAGS) -Fo$@ %s 

eventvxd.vxd: eventddb.obj eventvxd.obj .. \ .. \ .. \wrappers\vxdcall .obj 
.. \ .. \ .. \wrappers\wrappers.clb eventvxd.def 

echo >NUL @«eventvxd.crf 
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE 
-DEF:eventvxd.def -OUT:eventvxd.vxd -MAP:eventvxd.map 
-VXD vxdwraps.clb wrappers.clb vxdcall .obj eventddb.obj eventvxd.obj 
« 

link @eventvxd.crf 
mapsym eventvxd 

listing 12.17 EVENTVXD.DEF 

VXD EVENTVXD DYNAMIC 
SEGMENTS 

_LTEXT CLASS 'LCODE' 
_LDATA CLASS 'LCODE' 
_TEXT CLASS 'LCODE' 
_DATA CLASS 'LCODE' 
_LPTEXT CLASS 'LCODE' 
_CaNST CLASS 'LCODE' 
_BSS CLASS 'LCODE' 
_TLS CLASS 'LCODE' 
_ITEXT CLASS 'ICODE' 

IDATA CLASS 'ICODE' 
_PTEXT CLASS 'PCODE' 
_PDATA CLASS 'PCODE' 
_STEXT CLASS 'SCODE' 
_SDATA CLASS 'SCODE' 
_MSGTABLE CLASS 'MeaDE' 
_MSGDATA CLASS 'MCODE' 

IMSGTABLE CLASS 'MCODE' 
IMSGDATA CLASS 'MCODE' 

_DBOSTART CLASS 'DBOCODE' 
_DBOCODE CLASS 'DBOCODE' 
_DBODATA CLASS 'DBOCODE' 
_16ICODE CLASS '16ICODE' 
_RCODE CLASS 'RCODE' 

EXPORTS 
EVENTVXD_DDB @1 

PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
PRELOAD NONDISCARDABLE 
DI SCARDABLE 
DISCARDABLE 
NONDISCARDABLE 
NONDISCARDABLE 
RESIDENT 
RESIDENT 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD NONDISCARDABLE IOPL 
PRELOAD DISCARDABLE 10PL 
PRELOAD DISCARDABLE IOPL 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD NONDISCARDABLE CONFORMING 
PRELOAD DISCARDABLE 
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listing 12.18 W32EVENTI WIN32APPI WIN32APP. C 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <windows.h> 
jr;nclude " .. \vxd\eventvxd.h" 

HANDLE hDevice; 
VMINFO *pVMInfo; 

DWORD WINAPI SecondThread( PVOID hEventRing3 ); 

DWORD WINAPI SecondThread( PVOID hEventRing3 
{ 

whil e( TRUE ) 
{ 

} 

WaitForSingleObject«HANDLE)hEventRing3. INFINITE ); 
printf("VM %081x was %s\n". pVMInfo->hVM, 

pVMInfo->bVmCreated ? "created" ': "destroyed" ); 

return 0; 

void maine int ac. char *av[] 
{ 

HINSTANCE hKerne132Dll; . 
HANDLE hEventRirig3. hEventRi'ngO'; 
DWORD tid; 
HANDLE (WINAPI *pfOpenVxDHandle)(HANDLE); 
awORD cb8ytesReturned;' 

const PCHAR VxDName = "\\\\.\\EVENTVXD.VXD"; 

hEventRing3 = CreateEvent( O. FALSE. FALSE. NULL ); 
if (!hEventRing3) 
( 

pri ntf( "Cannot create Ri ng3 event\n"); 
exit(l); 

hKerne132Dll = LoadLibrary("kerne132.dll"); 
if (!hKerne132Dll) 
{ 

pri ntf( "Cannot load KERNEL32 .DLL \n"); 
exit(l); 

pfOpenVxDHandle = (HANDLE (WINAPr *) (HANDLE» 
GetProcAddresS( hKernet32Dll. "OpenVxDHandl e" ); 

if (! pfOpenVxDHandl e) . 
{ 

printf( ·Cannot get addr of OpenVxDHandl e\n"); 
exit(l); ,. 
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Listing 12.18 (continued) W32EVENTIWIN32APPIWIN32APP.C 

hEventRingO ~ (*pfOpenVxDHandle)(hEventRing3); 
if (!hEventRingO) 
{ 

printf("Cannot create RingO event\n"); 
exit( 1); 

hDevice ~ CreateFile( VxDName, 0, 0, 0, CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, ° ); 
if (!hDevice) 
{ 

pri ntf( "Cannot load VxD error~%x\n", GetLastError() ); 
exit (1 ); 

if (!DeviceloControl( hOevice, EVENTVXD_REGISTER, hEventRingO, 
sizeof(hEventRingO), &pVMlnfo, sizeof(pVMlnfo), 
&cbBytesReturned, ° » 

printf("DeviceloControl failed, error~%x\n", GetLastError() ); 
exit(1); 

) 

CreateThread( 0, OxlOOO, SecondThread, hEventRing3, 0, &tid ); 
printf("Press any key to exit. .. "); 
getch() ; 
CloseHandle( hDevice ); 

listing 12.19 W32EVENTIWIN32APPIWIN32APP.MAK 

win32app.exe: win32app.obj 
link @« 

kerne132.1ib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib 
shel132.1ib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:console 
IINCREMENTAL:no IPDB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj 
« 

win32app.obj: win32app.c 
cl Ic IML IGX IYX IOd 10 ·WIN32" 10 "NOEBUG" 10 "_CONSOLE" -I.. \vxd win32app.c 
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Chapter 13 

IntroductiOn to 
16-bit Driver DLLs 
Why Driver DLLs are Always 16-bit 
Back in the days of Windows 3.x, Microsoft recommended that developers package 
all hardware drivers as VxDs, the "true" device drivers for Windows. However, many 
developers - incl\lding Microsoft itself - ignored this advice and instead put driver 
functions into DLLs. After all, the learning curve for VxDs was very steep, and a 
driver packaged as a DLL could do the job adequately. (Notable exceptions were driv
ers, like those for the serial port, that required very fast interrupt response times.) 

Today, Microsoft recommends that developers for Windows 95 package hardware 
drivers as VxDs. This time, however, the recommendation is much more difficult to 
ignore, because Win32 DLLs are forbidden from performing most "driver" type oper
ations. The list of prohibited operations includes 

• accessing memory-mapped hardware, 

• performing DMA transfers, 

• handling hardware interrupts, and 

• issuing software interrupts. 
/ 

As you can see, the only type of driver DLL you could package as a 32-bit DLL 
without breaking these rules is the simplest type: a polled-mode driver (no interrupts) 
for an I/O-mapped device. 

289 
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Many Windows 95 developers are therefore heeding Microsoft's ad'0ce and writing 
VxDs. Nonetheless, you can still write a complex driver as a DLL if you build it as a 
16-bit DLL because 16-bit DLLs aren't governed by the same limitations as Win32 
DLLs. In fact, many of the standard drivers provided by Microsoft (including the mouse 
driver and multimedia drivers) remain 16-bit. Using a 16-bit DLL under Windows 95, 
however, requires writing another DLL in addition to the driver DLL: a tl~unk DLL. 

Interfacing 16-bit DLL to 32-Bit Application 
Requires a Thunk 
In Windows 95, driver DLLs ate always 16-bit, regardless of whether the application 
interfacing to the DLL is an old 16-bit Windows 3.x application or a new 32-bit 
Win32 application. If you want your 16-bit driver DLL to be used.by Win32 applica
tions, you must write a translation layer to convert between the 32-bit world and the 
16-bit world. This translation layer is called a thunk DLL. 

Thunk DLLs will be covered in detail in Chapter 18. For now, just note that choos
ing to implement a driver as a 16-bit DLL implies creating a thunk DLL if you'll be 
supporting Windows 95. Considering the extra work required for the thunk, it may 
make more sense for you to write the driver as a VxD instead. 

The remainder of this chapter introduces the basics of 16-bit Windows DLLs, and 
introduces a skeleton driver DLL. The next two chapters cover how a driver DLL 
interfaces to hardware and handles hardware interrupts. 

The material in this chapter applies specificaly to 16-bit DLLs, and much of 
it is not relevant to 32-bit DLLs. 

Static versus Dynamic Libraries 
1 

Although a DLL can be linked to and executed by an application much as a static 
library can; the DLL is not really a part of any single application. Understanding how 
a DLL differs from a static library will help clarify why drivers are more useful if 
packaged as a DLL rather than as a static library. 

A static library (such as the run-time library for the Ccompiler) is nothing more 
than a collection of one or more precompiled functions. The static library is packaged 
as a single piece from which the linker can extract necessary components. At link 
time, the linker searches your application for references to functions outside of the 
application and resolves these references by searching for them in the library. The 
library functions are then copied into your application's. EXE image. After linking, an 
application calls one of the library functions using the same mechanism it would use 
to call one of its own internal functions. 
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A DLL is also a set of precompiled functions. When these functions are packaged, 
two pieces are created: an import library (. LI B) and a DLL. The DLL contains the 
actual code and data. The import library contains only name and module information 
for the functions. An application that wants to use functions in a DLL links with the 
import library, not the DLL. The linker doesn't fully resolve the application's refer
ences to external functions in the DLL, i.e. the linker does not copy the functions into 
the application's . EXE image. Instead, the linker stores only the function name and 
module from the import library as a placeholder in the .HE. 

The real magic happens at run time, when the application loads. At that time, the 
loader also loads the DLL into memory, thus giving all the DLL functions an address. 
The loader then goes back to the. EXE and fills in the placeholders left at link time 
with the DLL function addresses. 

Why Package Drivers in a DLL? 
DLLs are a convenient way to package driver functions because drivers are often used 
by more than one application, and also because drivers often need to change indepen
dently of the application. With the driver functions in a separate file from the applica
tions, the driver itself can be updated without disturbing the application that uses the 
driver. If a driver is used by multiple applications, a DLL saves memory because only 
one copy of the DLL is in memory, whereas building a driver as a statically linked 
library would force each application that used the driver to have its own copy of the 
driver functions. 

The most important reason for packaging a Windows driver as a DLL is to make it 
possible to replace the DLL with a "true" device driver (VxD or NT kernel mode 
driver). By isolating hardware-dependent code in a DLL, you can replace the DLL 
with a true driver without completely rewriting the applications that use the DLL. Of 
course, the applications will still require some changes, because usually the interface 
presented to the application by your custom driver DLL won't be exactly the same as 
the interface presented by the true driver. 

Applications versus DLLs 
DLLs are different than applications in several fundamental respects. These differ
ences have implications for how a DLL is coded and how it is built. The most obvious 
difference to a user is that a DLL can't be executed directly from the Windows shell. 
It has no life of its own but is loaded when an application that uses it is loaded and is 
unloaded when that application is terminated. 
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Here's a comparison of DLLs and applications, from a developer's point of view: 

An application has its own stack segment. A DLL does not. A DLL uses the stack 
of the calling application. 

If multiple instances of an application are running, all instances share a single 
copy of the application's code segment. Similarly, if more than one application 
uses a DLL, there is still only a single copy of the DLL's code. (That's one of the 
advantages ofDLLs compared to static libraries.) 

• If multiple instances of an application are running, each instance gets its own copy 
of the application's data segment. This is not true for DLLs. If more than one 
application uses a DLL there is still only a single copy of the DLL's data segment. 

Memory dynamically allocated by a DLL may belong to either the calling applica
tion or to the DLL itself, depending on the exact method of allocation. 

These items have ramifications for the DLL developer during both the coding and 
the build process. The following sections address each of these issues in detail. 

DLLs and Stack Segments 
A DLL doesn't have its own stack segment. This leads to some subtle difficulties with 
passing pointers as parameters to other DLL functions. As the following example 
illustrates, pointers passed to a DLL can easily turn into subtle bugs. 

Suppose an application has the following function: 

void FAR Fool( void) 
{ 

int x; 
Foo2( &x ); 

and a DLL contains this function: 

void Foo2( int *x ) 
{ 

i nt y; 
y = *x; 

If this code is compiled as small model, the &x expression in the call to Foo2 is a 
nea r pointer. That means the code generated to push the address of x onto the stack 
will push only the offset of the variable x. When Foo2 gets this offset from the stack 
and dereferences it, Foo2 incorrectly assumes that since this is a near pointer, the off
set is relative to OS (the DLL's data segment). Foo2 doesn't know the offset is really 
relative to SS (the caller's stack segment). The result is that the expression *x accesses 
the wrong location, and Y is assigned an incorrect value. 
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Why do DLLs have this problem and normal applications don't? Because when a 
normal application is running, OS has the same value as SS, so SS-relative is the same 
thing as OS-relative. In a DLL, OS ! = SS. Does this mean DLLs can't pass the address 
of a local variable as a parameter? No, it just means that you must always pass a fa r 
pointer to a DLL, not a model-dependent (no farlnear attribute) pointer. 

There is a compiler option (add w to the memory model option) that will generate a 
warning when the address of a local variable is passed as a model-dependent pointer. 
Use this option, heed the warning, and change those parameters to fa r pointers. 

DLLs and Data Segments 
Even when used simultaneously by different applications, a DLL has only one copy 
of its data segment. This means extra work for the developer if the DLL needs to 
maintain some information on a per-application basis. For example, the DLL could 
encapsulate all per-application information into an Applnstance structure and aIlo
cate a new structure for each application using the DLL. Then at each entry point the 
DLL would need to figure out which application was calling it and reference the 
appropriate Applnstance structure. 

I won't cover this topic any further, because driver DLLs don't usually have this 
problem. Typically, a driver DLL serves to serialize access to a device by multiple 
applications. In other words, if Application 1 is using the device through the DLL, 
Application 2 isn't allowed to use the device. On the other hand, Application 1 might 
use Device 1 and while Application 2 uses Device 2 (where both devices are managed 
by the same DLL). But that situation can be managed as per-device instead of 
per-application data. I'll cover per-device data in more detail in the next chapter. 

DLLs and Ownership of 
Dynamically Allocated Memory 
A Windows DLL must be careful when dynamically allocating memory, for this 
memory may be owned either by the calling application or by the DLL itself, depend
ing on exactly how the allocation was made. Dynamic allocations can be made using 
either the G1 oba 1 All oc call to the Windows memory manager or via the C run-time 
rna 11 oc function. 

When a DLL calls G1 oba 1 All oc directly, the DLL specifies whether the memory 
is to be owned by the DLL or by the calling application. If the DLL uses the 
GMEM_SHARE flag when calling G1 oba 1 All OC, the DLL owns the memory; if not, then 
the application owns it. (I'll explain the parameters used by G1 oba 1 All oc in more 
detail later; for now the only relevant parameter is GMEM_SHARE.) For VC++ l.x, the 
rna 11 oc routine in the C run-time library always uses the GMEM_SHARE flag when called 
by a DLL, so any rna 11 oc-allocated buffers are owned by the DLL. 
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Either an application or a DLL can explicitly free a buffer via a call to Gl oba 1 Free 
or free. The ownership issue becomes important if nobody explicitly frees a dynami
cally allocated buffer. If the DLL allocates the memory but the application owns it, 
then the memory is freed automatically by Windows when the application exits. If the 
DLL owns the memory itself, then the memory is freed by Windows only when the 
DLL unloads - which doesn't happen until all applications using the DLL have exited. 

So who should own a driver-allocated buffer - application or DLL? If a driver is 
not interrupt-driven, it doesn't really matter. In this case, the DLL executes only as a 
result of calls from an application. If the application goes away, it won't call the DLL 
anymore, and that means the DLL won't use the buffer. 

For a driver that does handle interrupts, any dynamically allocated buffers used at 
interrupt time should be owned by the driyer DLL. An example will clarify the issues 
involved. Suppose a driver has an Open entry point and a Close entry point. During 
Open, a buffer is allocated and an interrupt handler installed. At Close, the buffer is 
freed and the handler removed. Now suppose that an application exited without call
ing Close, perhaps because it crashed. Windows itself frees the allocated buffer when 
the application exits. Then the driver's interrupt handler accesses the freed buffer and 
bad things happen - you can't reference memory after it's been freed. If, on the other 
hand, the driver owned the buffer, Windows would not have freed it, and the interrupt 
handler could continue to access the buffer safely. 

DLL Initialization and Termination 
A Windows DLL may contain a special initialization entry point called L i bMa in and a 
special termination entry point called WEP (for Windows Exit Procedure). If present, 
L i bMa i.n is called when the DLL is loaded. If the DLL contains a WEP, it is called 
when the DLL is unloaded. 

For many DLLs, the initialization code in L i bMa in does things like registering 
window classes and initializing the local heap (which is in the DLL's data segment). 
However, driver DLLs don't register windows and generally use the global heap 
instead of the local heap (the local heap is too small). The driver DLLs in this book 
don't contain aLi bMa in. Instead, I prefer to do initialization in another entry point 
called explicitly by an application using the DLL, an Open routine. Similarly, most 
DLLs use the WEP entry point to un-register window classes. Driver DLLs don't have 
window classes, and the driver DLLs in this book do cleanup in a Close entry point. 
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DLL Function Requirements 
Although a DLL can be compiled with any memory model, all functions that the DLL 
exports to an application must be declared far. The reason is simple: a DLL has its 
own code and data segments, which are separate from the calling application's code 
and data segments. If you compile your DLL as medium or large model, all functions 
are, by definition, fa r. On the other hand, if you compile your DLL as small model, 
you must explicitly declare the DLL entry points with the far keyword. I've chosen to 
compile the driver DLLs in this book as small model (for reasons I'll explain in the 
next chapter), so all the driver entry points in these DLLs are declar~~ far. 

The DLLentry points are also declared with the _export keyword. This tells the 
linker to generate a special export definition record for these functions, which the 
loader uses at run time to resolve references to a DLL. 

An exported DLL function must contain a special section of code at the beginning 
and at the end of the function. The code at the beginning is called the prologue: its 
purpose is to fix up the DS register (m<;:aning it must .load DS with the DLL's data seg
ment). The OS fix-up is necessary because on entry to the DLL, DS contains the calling 
application's data segment, which is different from the DLL's data segment. The code 
at the end is called the epilogue; it restores DS to the caller's original data segment. 

A special compiler option tells the compiler which functions need prologue and 
epilogue code. In VC++ l.x, the /GD flag tells the compiler to generate prologue/epi
logue code for all functions declared as _export. The makefiles for the DLLs in this 
book use this / GD flag. 

The Skeleton Driver 
The first sample DLL driver is a skeleton or template driver (Listings 13.1-13.4, pages 
300-302). It doesn't interface with any hardware, but it exports a set of functions that 
are general enough to apply to most types of drivers: Deyi ceOpen, Deyi ceCl ose, 
Deyi ceWrite,Deyi ceRead, Deyi ceGetWri teStatus, Deyi ceGetReadSta tus, Deyi ce
GetDri yerPa rams,Devi ceSetDri verParams, and Devi ceGetDri verCapabi 1 it i es. 

As the example drivers become more involved, I'll add functionality to the functions 
in this skeleton, piece by piece. Of course, your driver may need additional capabilities 
that aren't covered by these functions. In that case, you're free to add functions as 
needed because Windows doesn't dictate a driver interface for non-standard devices. 

Each function in the skeleton driver does nothing more than output a trace mes
sage containing its function name. The driver outputs these messages through the 
Windows API function OutputDebugStri ng. OutputDebugStri ng uses only a simple 
string parameter, but you can also use the more powerful DebugOutput function. 
OebugOutput uses a format string and a variable number of parameters, like spri ntf, 
providing more useful formatting. Windows redirects these strings to the AUX device 
(serial port), but you can also use the DBWIN utility to display them in a window 
(more on DBWIN later). 
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Building the Skeleton Driver 
The steps involved in building the driver DLL are: 

• compile the . C file, 

• link into a .OLL, 

• run the resource compiler, and 

• create the import library. 

To automate the steps required to properly build the driver, I use nmake and a 
makefile (Listing 13.3 on page 302). If you copy my. makefile and source files to the 
current directory, you can build the skeleton driver from scratch, simply by typing 
nmake -fskeleton.mal 

Choosing the proper compiler options is critical to correctly building a Windows 
DLL. The options used by the skeleton DLL are listed in Table 13.1, along with a 
notation of whether the option is mandatory for all DLLs. 

The link process for a Windows DLL is similar to building a DOS application, 
except that you must specify a . OEF file when linking. This. DEF file must include the 
statements EX ETY PEW I NOOWS and LI BRARY. These statements tell the linker to build a 
Windows DLL. The other mandatory DEF statements are CODE and OAT A, which 
determine the attributes of the DLL's code and data segments. I'll discuss these 
attributes in Chapter 15. 

Table 13.1 Options used by the skeleton DLL. 

Option Requirement Description 

e mandatory compile only (no link) 

GO mandatory generate function prologue to fix up OS 

AS optional small model 

Gs mandatory disable stack probes 

Aw recommended generate warnings whenever a DLL uses a near 
pointer to take the address of a local variable 

W3 recommended warning level of 3 (highest is 4) 

G2 recommended generate code for 286+ (speeds execution) 

Zi optional generate CodeView debug information 

Oi optional use intrinsics (faster inp/outp/strepy/memepy 

Fe optional generate assembly output 
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The linker command line for a DOS application doesn't usually specify a library. 
It's not necessary because the C compiler embeds information in the .OBJ file that 
tells the linker which library (small, medium, large) to use. Windows DLLs need a 
special version of the C library, ?dll cew. 1 i b instead of ?l i bcew. 1 i b, where? is an 
abbreviation for the memory model. When using VC++ l.x, you should use the INOD 
ciption so that the linker does not bring in the C library named in the .OBJ file. You 
should also explicitly list the DLL version of the library (?dll cew. 1 i b) as the library 
argument. In addition, you should specify LIBW as a second library. This is the 
import library containing the Windows API functions. 

Last, an import library for the DLL is built using IMPLIB. IMPLIB uses the 
DLL's . DE F file as input and builds a . LI B file containing exported function names 
and modules. This . LI B file is then linked, as a library, to an application that uses the 
DLL. There are no option switches required for IMPLIB. 

The last step in my makefile, copying the driver DLL to the Windows directory, 
isn't strictly required, but it's useful. At run time, Windows uses the same method to 
locate a DLL that it does to locate an . EXE file: search the current directory, the Win
dows directory, the Windows system directory, and the directories listed in the PATH. 
By copying the driver to the Windows directory, I can invoke the application (and thus 
the DLL) regardless of the current directory or PATH variable. 

DLL Requires an Application 
A Windows DLL can't execute on its own. It must be called by a Windows program. 
I've supplied a sample Windows application, TESTDRIV .EXE, which can exercise all 
the functions supported by the driver. 

JESTDRIV is a very rudimentary Windows application. Its user interface contains 
a single menu with several submenu items, one for each exported driver function: 
Devi ceOpen, Devi ceCl ase, Devi ceWrite, Devi ceRead, Devi ceGetWri teStatus, 
DeviceGetReadStatus, DeviceGetDriverParams, and DeviceGetDriverCapabilities. 
Select a menu item, and JESTDRIV calls that function in the driver (Figure 13.1). 
JESTDRIV uses hard-coded values for all driver parameters - you can't specify 
from the user interface which device to open or what data to write. You could easily 
extend JESTDRIV to support user input of driver parameters. 
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If the driver function returns with an error code, TESTDRIV will display a message 
box. If the function is one of the three with output parameters (Devi ceGetReadStatus, 
Devi ceGetWri teStatus, or Devi ceGetDri verCapabi 1 it i es), the output parameters 
are displayed in a message box. 

The next two chapters present two more driver DLLs, each adding more 
functionality to the SKELETON DLL introduced in this chapter. When developing 
this series of DLLs, I was careful to ensure that the three DLLs export exactly the 
same set of functions. For this reason, you can use the same TESTDRIV application 
with all three driver DLLs. In fact, because the driver functions are dynamically, not 
statically, linked to the application, you don't even need to relink TESTDRIV when 
you change the driver DLL implementation. 

Figure 13.1 TESTDRIV. EXE- a sample Windows 
application that makes calls to our driver 
DLL with DBWINactive in the right-hand 
window. 
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Debugging Tools for Driver DLLs 
When using TESTDRIV to explore a driver, it also is useful to run the Windows 
DB WIN application, a utility included with VC++ l.x. DBWIN captures all the 
strings that Windows applications and DLLs output via calls to OutputDebugStri ng 
and DebugOutput. DBWIN redirects the strings to either its client window, a secondary 
monochrome monitor, or a serial port. By adding more of these OutputDebugStri ng 
calls to your driver, you can trace its execution path and thus perfonn rudimentary 
debugging. 

These trace statements, however, won't replace the need for a real debugger. An 
application-level debugger, such as the one provided in the VC++ Integrated Develop
ment Environment, can be used to debug some driver DLLs, unless the driver handles 
interrupts. A better choice would be a system-level debugger, either WDEB386 or 
SoftIcelWindows. 

Summary 
With the information in this chapter, you can set up a test environment for DLL driver 
development and confirm that you have your tools properly configured to create a 
DLL that links to an application. Although this chapter's skeleton driver doesn't really 
do anything, you can still exercise it to confirm that it communicates with an applica
tion. This sets the stage for producing a DLL that actually manipulates some hardware 
- the topic of the next chapter. 
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Listing 13.1 

typedef struct 
{ 

SKELDLL\DRIVER.H 

WORD usDevNumber; 
LPBYTE lpReadBuffer; 

DEVICECONTEXT, FAR *HDEVICE; 

typedef struct 
{ 

WORD usReadBufSize; 
} DRIVERPARAMS, FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD vers i on; 
} DRIVERCAPS, FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

HDEVICE FAR PASCAL DeviceOpen( void ); 
int FAR PASCAL DeviceClose( HDEVICE ); 
int FAR PASCAL DeviceGetWriteStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceGetReadStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceWrite( HDEVICE, LPBYTE lpData, LPWORD pcBytes ); 
int FAR PASCAL DeviceRead( HDEVICE, LPBYTE lpData, LPWORD pcBytes ); 
int FAR PASCAL DeviceSetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverCapabilities( HDEVICE, PPDRIVERCAPS ppDriverCaps ); 

Listing 13.2 

/Iinclude <windows,h> 
/Iinclude "driver,h" 

SKELDLL\SKELETON.C 

DEVICECONTEXT Device1 ~ { 0 }; 
DRIVERPARAMS DefaultParams ~ { 1024 }; 

HDEVICE FAR PASCAL _export DeviceOpen( void 
( 

OutputDebugString( "DeviceOpen\n"); 

return &Device1; 

int FAR PASCAL _export DeviceClose( HDEVICE hDevice 
( 

OutputDebugString( "DeviceClose\n"); 

return 0; 
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Listing 13.2 (continued) SKELDLL\SKELETON.C 

int FAR PASCAL _export DeviceGetWriteStatus( HDEVICE hDevice. LPWORD pusStatus ) 
( 

OutputDebugStri ng( "Devi ceGetWri teStatus\n") ; 

return 0; 

int FAR PASCAL _export DeviceGetReadStatus( HDEVICE hDevice. LPWORD pusStatus ) 
( 

OutputDebugString( "DeviceGetReadStatus\n"); 

return 0; 

int FAR PASCAL _export DeviceWrite( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

OutputDebugString( "DeviceWrite\n"); 

return 0; 

int FAR PASCAL _export DeviceRead( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

OutputDebugString( "DeviceRead\n"); , 

return 0; 

int FAR PASCAL _export DeviceSetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParms ) 
{ 

OutputDebugSt ri ng ( "Devi ceSetDriverPa rams \n" ) ; 

return 0; 

int FAR PASCAL _export DeviceGetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParms ) 
( 

OutputDebugString( "DeviceGetDriverParams\n"); 

return 0; 

int FAR PASCAL _export DeviceGetDriverCapabilities( HDEVICE hDevice. 
PPDRIVERCAPS ppDriverCaps 

OutputDebugString( "DeviceGetDriverCapabilities\n"); 

return 0; 
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Listing 13.3 SKELDLL\SKELETON.MAK 

all: ske1eton.d11 

iF DRIVER DLL 

ske1eton.obj: ske1eton.c driver.h 
c1 -c -W3 -ASw -GD2s -Oi -Fc $*.c 

ske1eton.d11: ske1eton.def ske1eton.obj 
link ske1eton,ske1eton.d11 ,ske1eton.map IMAP, sd11cew 1ibw Inod/noe,ske1eton.def 
imp1ib ske1eton.1ib ske1eton.d11 
copy ske1eton.d11 \windows\driver.d11 

Listing 13.4 SKELDLL\SKELETON.DEF 

LIBRARY DRIVER 
DESCRIPTION "Skeleton Driver" 
EXETYPE WINDOWS 
DATA PRELOAD MOVEABLE SINGLE 
CODE PRELOAD MOVEABLE DISCARDABLE 
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Driver DLLs: 
Connecting to the Hardware 
Unlike DOS, which allows programmers to directly manipulate any device at any 
time, Windows is somewhat protective of the physical machine resources. In a sophis
ticated, high-performance driver, the Windows protection mechanisms can signifi
cantly complicate device access. In simple, polled-mode drivers though, device access 
can still be quite straightforward. 

This chapter shows how to convert the previous chapter's skeleton driver from an 
empty framework into a complete, yet very simple, polled-mode driver that actually 
manipulates a physical device. I'll first illustrate the more simple I/O-mapped case by 
giving a complete polled-mode serial port driver and then show how to modify the 
port-mapped version to access an imaginary memory-mapped device. 

DLLs and Port-access 
One of the big myths of Windows programming is that applications and DLLs are not 
allowed to use _ i np or _Dutp. Here's the real story. 

Under Windows 3.x, there is absolutely nothing wrong with using,... i np or _Dutp 
from a DLL to access a non-standard I/O location: the access will go through to the 
hardware port, without being trapped by Windows. If you access one of the standard 
I/O ports - keyboard, timer, etc. - then a VxD will trap your access and your code 
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may not work as expected. But standard devices require special system driver DLLs 
and VxDs with interfaces defined by Windows, so you shouldn't be doing this from a 
custom driver DLL anyway. 

It is also perfectly acceptable for an application or DLL running under Windows 
95 to use _i np or _outp to access a non-standard 110 location. This is true for both 
16-bit and 32-bit DLLs. However, if you choose to do this in your DLL, your DLL is 
not truly Win32-compatible. The correct way to access hardware from a Win32 appli
cation or DLL (notice I said "Win32", not "Windows 95") is through a true device 
driver, which, under Windows 95, takes the form of a VxD and, under Windows NT, is 
a kernel-mode driver. Windows NT will terminate any Windows application or DLL 
that attempts to access a hardware device, either lO-mapped or memory-mapped. 
Windows 95 happens to be a more forgiving Win32 platform than Windows NT, but 
Microsoft warns that future versions of Windows 95 may be less lenient. To play it 
safe, put all hardware access in a "true" driver, that is, a VxD. 

A Port-mapped Example 
Listings 14.1-14.5 (pages 318-324) make up a simple polled-mode driver for a stan
dard serial port. The serial port makes a good example because every system has one, 
located in the 110 space, and Windows doesn't insist on taking over this device at 
startup. So one can easily install a replacement for the serial port handler without 
causing any confusion for Windows: not true for other standard PC devices like the 
keyboard or timer. 

This driver DLL exports the same public interface as the SKELETON DLL intro
duced in Chapter 13, but this version's routines are more than just stubs. This example 
is not meant to be a high-performance, commercial-quality driver. I've tried to keep 
the driver simple, without sacrificing generality. Thus, it doesn't achieve very high 
throughputs, but it can easily be adapted to support multiple ports or different Univer
sal Asynchronous Receiver-Transmitters (UARTS). Because the point is to illustrate 
techniques and principles that apply to a wide range of drivers, I've also tried to avoid 
getting bogged down by the intricacies of the hardware and the details of serial com
munications. (Figure 14.1 outlines the essentials of the 8250 UART.) By stripping the 
handler to its bare essentials, I hope to make the core structure clear enough that you 
can easily see what is essential and apply that to your own hardware. 
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Although Windows doesn't insist on taking control of the serial port, that is 
its default behavior. When using the serial port driver DLLs under Windows 
3.x, you should prevent the Virtual Comm Device eVCD) from interfering 
with all serial ports by commenting out the devi ce=*vcd statement in the 
[386Enh] section of SYSTEM. IN!. When using the serial port driver DLLs 
under Windows 95, you must modify the registry to prevent the VCOMM 
VxD from interfering with a particular serial port. Change the PortDri ver 
entry under the port's software key 

HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\PORTS\OOOX 

to something other than seri a 1 . vxd, for example _seri a 1 . vxd. In both 
cases, remember to undo these changes when you're finisished with the 
serial port driver DLL. 

Figure 14.1 Outline of 8250 UART registers. 

Offset Name Access 

6 Modem Status R 

5 Line Status (LSR) R 

4 Modem Control RfW 

3 Line Control RfW 

2 Interrupt Ident R 

I Interrupt Enable RfW 

0 Receive Data R 

0 Transmit Data W 

I when LCR bit 7 = I Baud Rate Divisor MSB RfW 

o when LCR bit 7 = I Baud Rate Divisor LSB RfW 
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Driver Design Conventions 
All of the driver DLLs in this book share certain design elements. Each uses a device 
context structure to store all state and addressing information for a single instance of 
the device, specifically the COM 1 serial port. Many developers use this technique 
because it makes it easier to adapt the driver to support multiple devices. The address 
of the context structure is used as a handle to the device. The handle is returned by a 
call to Oevi ceOpen and used as a parameter to all other calls into the driver. 

As explained in Chapter 13, a DLL may be called by multiple applications. A 
driver DLL that allows applications to "share" a device would need to store all context 
information specific to one application in an instance data structure. The example 
Driver DLLs presented here do not use an application-specific instance data structure, 
because the driver interface is designed to allow only a single application to use the 
device at a time. With this restriction, the driver DLL needs only the device context 
structure to find all the relevant data. 

Some build issues (specifically, the SS ]= OS problem described in Chapter 13) 
can be simplified by compiling a DLL as large model. However, the example drivers 
here are all compiled small model, not large model. Actually, both the skeleton driver 
in the last chapter and the polled-mode driver in this chapter would work fine if com
piled as large model. But the interrupt-driven driver of the next chapter must be small 
model to work as designed. (Interrupt handlers must load their own data segments. 
Because a large model DLL has multiple data segments, compiling as large model 
would complicate accessing data in the interrupt handler. Although this data access 
issue can indeed be resolved, it is simpler to keep the driver as small model.) Very few 
drivers will bump up against the 64Kb code or 64Kb data limit of small model. 

All example driver DLL statically allocate their device context, as well as 
most other important data structures. If your driver allocates any memory at 
run time, it is important that the memory be allocated with the GMEM_SHARE 
flag. As discussed in Chapter 13, memory dynamically allocated by a DLL is 
owned by the calling application, not the DLL, unless the DLL uses 
GMEM_SHARE 

The rna 11 oc provided by VC++ 1.x uses GMEM_SHARE, so if you're using it 
you may safely use rna 11 oc for any dynamic allocations in a polled-mode 
driver. An interrupt-driven driver, which will be discussed in detail in the 
next chapter, can dynamically allocate also, but it must use G1 oba 1 All oc 
instead of rna 11 oc. 
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The Polled-mode Driver 
This chapter doesn't contain a detailed discussion ofthe polled-mode driver code. The 
driver is both small and simple. However, a brief discussion of the data structures and 
the parameter validation code used by all of the driver entry points is in order. 

In the example, the capabilities word simply contains the driver's version number. 
More sophisticated drivers might probe the device to determine its specific capabili
ties. For example, a multi-model scanner driver might query the attached driver and 
store maximum resolution and color depth in a capabilities structure. ,This information 
could then control the behavior of other driver routines and also could be used by the 
calling application if appropriate. 

The example driver doesn't use the DRIVERPARAMS structure. Again, a more com
plex driver might offer several configuration options. These options could be recorded 
in the parameters structure and then be referenced by all affected routines. 

When asked to open a new device, the Devi ceOpen routine initializes hDevi ce 
with the address of the static device context structure. The Devi ceOpen routine then 
configures the UART, as shown in the following code. 

II Configure UART. 
outp( hDevice->usloBase + UART_REG_IER. ° ); 
outp( hDevice->usloBase + UART_REG_LCR. UART_LCR_DLAB ); 
outp( hDevice->usloBase + UART_REG_BAUDLO. BAUD_1200 ); 
outp( hDevice->usloBase + UART_REG_BAUDHI. 0 ); 
outp( hDevice->usloBase + UART_REG_LCR. UART_LCR_8Nl ); 
outp( hDevice->usloBase + UART_REG_MCR. UART_MCR_LOOP ); 
inp( hDevice->usloBase + UART_REG_LSR ); 
inp( hDevice->usloBase + UART_REG_RDR ); 

SET( hDevice->bFlags. FLAGS_OPEN); 

The Devi ceO pen routine then sets the FLAGS_OPEN bit. The driver's other routines 
can then check the FLAGS_OPEN bit to verify that a requested service is appropriate for 
the specified device. This chapter's example uses only the FLAGS_OPEN bit in the sta
tus field, although your driver might record additional state information here. 

To make the driver robust, each routine validates the hDevi ce pointer and the 
device's current state. For example, to prevent the driver from attempting to manipu
late a nonexistent device structure, the driver entry points will validate the hDevi ce 
pointer with the test: 

if (!ValidHandle( hDevice » 
return -1; 
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To prevent the driver from being used on a port that hasn't yet been opened, the 
driver routine will test the bF1 ags field: 

if «hDevice->bF1ags & FLAGS_OPEN) == 0) 
return -1; 

The example driver statically allocates only one device control structure. 
Thus, even though the code is structured to support multiple devices, the 
example is limited to one device. To use this driver with more than one serial 
port, you would need to allocate additional device structures (either statically 
or dynamically when DeviceOpen is called) and modify Va1idHand1e to 
keep track of all such structures. 

The Devi ceRead and Devi ceWri te routines have an interface similar to the Standard C 
Library read and wri te routines. The Devi ceRead routine expects a handle to a device con
text, a pointer to a data buffer (1 pData), and a pointer to the number of bytes to read 
(pc Bytes). A polling loop then copies the data from the UART to the buffer, one byte at a time, 
until it has collected the requested number of bytes. The Devi ceWri te routine works identi
cally, but in the reverse direction. It copies the specified number of bytes from the buffer to the 
UART transmit register. The following code shows the main polling loop for each function. 

int FAR PASCAL _export DeviceWrite( HDEVICE hDevice. LPBYTE lpData. 
, LPWORD pcBytes ) 

WORD i ; 

OutputDebugString( "DeviceWrite\n"); 

if (!lpData) 
return -1; 

if (!ValidHandl~( hDevice II 
return -1; 

if ({ hDevi ce- )bFl ags & FLAGS_OPEN) - 0) 
return -1; 

for (i=O; i < *pcBytes; i++) 
{ 

while «inp( hDevice-)usloBase + UART_REG_LSR ) & UART_LSR_THRE) - 0) 

outp(hDevice->usloBase + UART_REG_THR. lpData[ i ]); 

return 0; 
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int FAR PASCAL _export DeviceRead( HDEVICE hDevice, LPBYTE lpData, 
LPWORD pcBytes ) 

WORD i; 

OutputDebugString( "DeviceRead\n"); 

if (l 1 pData ) 
return -1; 

if (lValidHandle( hDevice » 
return -1; 

if ((hDevice->bFlags & FLAGS_OPEN) = 0) 
return -1; 

for (i=O; i < *pcBytes; i++) 
{ 

while ((inp( hDevice->usloBase + UART_REG_LSR ) & UART_LSR_RXRDY) == 0) 

lpData[i] = inp( hDevice->usloBase + UART_REG_RDR ); 

return 0; 

Itmay seem unnecessary to require the caller of Devi ceRead and Devi ceWri te to 
provide a pointer to the number of bytes requested. This interface is indeed overkill 
for a polled-mode driver, where the number of bytes requested is always the same as 
the number of bytes processed. But this feature will support the next chapter's inter
rupt-driven driver without any changes to the interface. Keeping the same exact inter
face means the TESTDRIV application introduced in Chapter 13 works with both the 
polled-mode and the interrupt-driven drivers without even recompiling TESTDRIV. 

Note that each polling loop sits in a busy loop while waiting for the UART to fin
ish processing the current byte. Thus, if the application tried to transmit a full buffer 
of data with a single write, it would lose all data that might be received during the 
time required to transmit the entire buffer. Also, if the application calls the read func
tion when no data has been received, the driver will simply hang in a busy loop until it 
receives some data. 

Even so, one can successfully use a driver of this form for low-speed, full-duplex 
communications by following these conventions: 

Transmit one byte per write or read. 

Never attempt a read unless a call to Devi ceGetReadStatus indicates a byte is 
available. 
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Accessing Memory-mapped Devices 
The designers of the original PC system purposely left a hole in the processor's phys
ical address space between AOOOOh and FOOOOh. No RAM exists at these memory 
locations, leaving them free to be used by memory-mapped devices. To access a 
memory-mapped device under DOS, you form a pointer that addresses that location, 
then dereference the pointer. The basic idea is the same to access the device from a 
16-bit Windows DLL. But the procedure is complicated by address translation issues. 
(See Chapter 3 and Appendix A for a review of these issues.) 

If your device is mapped somewhere in the unused AOOOOh-FOOOOh range of phys
ical address space, there is a very simple method to get a pointer to access the device. 
Windows provides pre-allocated selectors for physical locations AOOOOh, BOOOOh, 
COOOOh, DOOOOh, EOOOOh, and FOOOOh. These selectors are actually variables exported 
from the Windows system DLLs and are named appropriately: _AOOOh, _BOOOh, etc. 
Windows has already set up both the selector's base address and the associated page 
table entries appropriately, so that selector _BOOOh really does map to physical 
address BOOOOh. Each selector has its limit set to 64Kb, so _AOOOh maps 
AOOOO-AFFFF, _BOOOh maps BOOOO-BFFFF, etc. 

Win32 applications or DLLs may not use these prefabricated selectors 
because they are exported from the KERNEL16 module, not by the 
KERNEL32 module linked in by 32-bit code. 

To form a pointer to a device, choose the appropriate selector and offset. For 
example. _DOOOh and an offset of 8000h combine to point to a device at D8000h. Con
verting this selectorloffset combination into a usable pointer is a bit more complicated 
than just a simple MAKELP ( _DOOOh. 8000h ). The following code fragment illus
trates the three steps necessary. 

IIIMPORTANT: double underscore in KERNEL. DOOOh 
II single underscore in #define SelDOOOh( &_MyDOOOh) 
II Access memory-mapped adapter at physical DOOOOh 
I I MUST imp.ort the selector in your . DEF fil e: 
II IMPORTS 
II __ MyDOOOh = KERNEL. __ DOOOh 
extern WORD _MyDOOOh; 
Ifdefi ne Se 1 DOOOh (&_MyDOOOh) 

char far *lpAdapter = MAKELP( SelDOOOh. Ox8000 ); 
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A Memory-mapped Version 
Although you aren't likely to ever encounter a real memory-mapped serial port, if you 
did, you'd find it quite simple to adapt this chapter's example driver. Assuming a sim
ilarlayout of registers, the changes consist primarily of some code in Dev i ceOpen that 
sets up a pointer to the base address of the device and of modifications throughout that 
substitute memory references for _i np and _outp calls. 

Assuming that the port was mapped to physical location D8000h, then 

II IMPORTS in .DfF file: 
II __ MyDOOOh = KERNEL. __ DOOOh 

extern WORD _MyDOOOh; 
#define SelDOOOh (&_MyDOOOh) 

DEVICECONTEXT Devicel = ( 0, MAKELP(SelDOOOh,Ox8000), 0, NULL }; 

would set up the base pointer, assuming that the DEVICECONTEXT structure had been 
modified so that the address field has type char far * 

The main read loop would then become 

for (i=O;i *pcBytes; i++) 
{ 

while « *( hDevice->usloBase + UARLREG_LSR) &UART_LSR_RXRDYl = 0) 

lpData[i] = *( hDevice->usloBase + UARLREG_RDR ); 

If you are willing to forego some of· the efficiencies available to 
memory-mapped JlO, you can handle both memory-mapped and 
port-mapped devices in the same source code by conditionally defining 
appropriate access and initialization macros. 
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Advanced Memory Issues 
Many memory-mapped devices occupy fewer than 64Kb of space in the 
AOOOOh-EFFFFh range. However, devices can be larger and/or located in high memory 
(above 1Mb). If you need to manipulate a device that is larger than 64Kb or that is 
located in high memory, you will not be able to use the pre-constructed selectors. For 
such devices you will need to call a DOS Protected Mode Interface (DPMI) service to 
build the appropriate selector. 

DPMI is a set of services that are provided to applications by Windows but 
accessed through INT 31h instead of through an API function call. DPMI provides 
low-level services for manipulating selectors, manipulating the interrupt vector table, 
switching between real mode and protected mode, and manipulating the page tables. 
Windows 3.x and Windows 95 both support DPMI vO.9. (A later specification for 
DPMI vl.O exists, but is not supported by either. See also the sidebar "DPMI History" 
on page 313.) 

Bypassing the 64Kb Limit 

By using DPMI, you can bypass the 64Kb segment size limit to create a single 
selector that maps a device larger than 64Kb. Although the Windows API function 
SetSelectorBase won't accept a limit greater than 64Kb, the DPMI service 
SetSe 1 ecto r L i mi t will. The tricky part is generating code that uses 32-bit offsets. 

Under Windows 3.x, programs run in a 16-bit code segment, which means mem
ory references use 16-bit o{fsets. It is possible to override the offset size and force the 
processor to use a 32-bit offset by inserting a prefix byte before each instruction. This 
will require coding in assembly. If you'll be moving a lot of bytes, the extra effort is 
probably worth it. 

Software Interrupts Are Not Allowed in Win32 

DPMI services are accessed via a software interrupt, and thus are not available to Win32 applications or DLLs 
because the software interrupt handler in the VMM makes assumptions about the "bitness" of its caller. Spe
cifically, the handler assumes its caller is 16-bit, and saves only 16-bit registers on the stack. Attempting to 
call any software interrupt from 32-bit code therefore results in a crash. 
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The code in the following paragraph (found in the file POLLBASl\MOVE32. ASM on 
the code disk) allocates a single selector that addresses a memory adapter larger than 
64Kb, and then uses that selector to zero out the entire region. Even better, the loca
tions are zeroed 4 bytes (a DWORD) at a time, using 32-bit instructions. This code is 
written in pure assembly, because that's the easiest way to generate 32-bit instructions 
under Windows 3.x . 

. MODEL SMALL 
.CODE 
.386 

zero32 PROC C PhysSi~e:DWORD, PhysBase: DWORD 

mav ax, 0 
mov ex, 1 
int 31h 

DPMI History 

; DPMI Alloe Selector 

Driver developers often use the DPMI services provided by Windows as a back door into Windows to do 
things that the SOO-plus functions in the standard Windows API won't let them do: access devices in physical 
memory and communicate with DOS drivers and TSRs. But Windows really supports DPMI for a completely 
different reason. 

When Windows 3.0 was under development, PC software vendors were already working on several prod
ucts that would break the DOS 640Kb barrier. These products included: 

• DOS extenders, like the one used in Lotus 1-2-3, which let a DOS program use up to 16Mb of memory; 

• expanded memory managers, like Qualitas' 386MAX, which allow a DOS program to use memory above 
640Kb, although only in l6Kb chunks; 

• and DOS-based multitasking environments, like Quarterdeck's Desqview. 

Microsoft worked with the vendors who made these products, among them Intel, Phar Lap, and Rational 
Systems, to design an interface that would allow Windows 3.0 to coexist peacefully with all these products. 
All of these types of products, Windows included, do their magic by using the 80386 processor's advanced 
features, such as paging. The interface that was designed, which became DPMI vO.9, put a single program, the 
DPMI server, in charge of the 80386 advanced features. Other programs then took advantage of the features 
by using services exported by the DPMIserver. 
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mov bx, ax ; selector from All oc 
mov cx, WORD PTR [PhysSize+2] 
mov dx, WORD PTR [PhysSize] 
mov ax, 08h DPMI Set Selector Limit 
int 31h 

mov dx, bx save selector 
mov bx, WORD PTR [PhysBase+2] 
mov cx, WORD PTR [PhysBase] 
mov si , WORD PTR [PhysSize+2] 
mov di, WORD PTR [PhysSize] 
mov ax, 0800h 
int 31h 

push dx 
mov cx, bx 
mov dx, cx 
pop bx 
mov ax, 07h 
int 31h 

moves, bx 
xor edi, edi 
mov ecx, PhysSize 
shr ecx, 2 
xor eax, eax 
rep stosd es:[edi] 

zer032 ENDP 

END 

DPMI Map Physical Address 

save selector 
HI word of linear base 
La word of linear base 
restore selector 
DPMI Set Selector Base 

Devices Mapped Above 1Mb Require DPMI Services 

Although most memory-mapped devices are located between AOOOOh and FFFFFh, it 
is possible to locate a device above FFFFFh (1Mb). RAM is always mapped contigu
ously above the 1Mb boundary, so a device located above FFFFFh must be located 
beyond the last byte of physical memory. Otherwise, a hardware conflict occurs when 
both RAM and the device attempt to decode the same physical address, and the sys
tem won't function properly. 
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Forming a pointer to a memory-mapped device involves setting up both steps in 
the two-step (logical-linear, linear-physical) address translation process described 
in Chapter 3. The first step is setting up the selector's base address and limit. You 
can use the Windows API selector functions (All ocSe 1 ector, SetSe 1 ectorBase, 
and SetSe 1 ectorL i mi t) for this. The second step is setting up the page table entries 
so that the selector's base address maps to the desired physical address. There are 
no Windows API functions that manipulate page tables, but DPMI does provide a 
MapPhys i ca 1 Address function which will do the job. . 

DPMI MapPhysi cal Address takes a physical address as input and returns the lin
ear address that maps (through the page tables) to the physical address. To see how 
this DPMI call can be used, it's helpful to think of the two-step address translation 
process in a different way. Suppose you want a pointer to physical address AOOOOh. 
Because of the effect of paging, allocating a selector and setting its base address to 
AOOOOh doesn't guarantee that the selector translates to a physical address of AOOOOh. 
But notice that it doesn't really matter what the linear address is, as long as it maps to 
physical AOOOOh. 

So, build the mapping backwards, starting with physical address AOOOOh. Give the 
physical address to DPMI MapPhys i ca 1 Address; it will return a linear address, call it 
X. Now give that linear address to SetSelectorBase. The result is a selector that 
maps to linear address X, which maps to physical address AOOOOh. 

There is one detail I haven't covered. The page tables work with 4Kb pages, so 
that a selector with a limit of more than 4Kb is composed of multiple pages. Each 
page can reside anywhere in physical memory - pages do not have to be physically 
contiguous. Devices, however, understand only physically contiguous memory. Thus, 
a useful selector strategy needs to guarantee not only that the first page maps to 
AOOOOh-AOFFFh, but also that the next page maps to AIOOO-AIFFFh, etc. In fact, 
DPMI MapPhysi cal Address does guarantee that the mapped pages are physically 
contiguous, although that's not obvious from the DPMI documentation. 

The following code gives a function that uses Windows selector functions and the 
DPMI MapPhysicalAddress service to get a pointer to a memory-mapped device 
located above 1Mb. The code does nothing more than the four steps described above: 

allocates a selector, 

sets its limit, 

uses DPMI to get a linear address corresponding to a given physical address, 

then sets the selector base to that linear address. 
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void far *MapPhysToPtr( DWORD PhysBase, DWORD PhysSize ) 
{ 

WORD myDs,se1; 
WORD HiBase, LoBase; 

_asm mov myDs, ds 
se1 = A11ocSe1ector( myDs ); 
SetSe1ectorLimit( sel, PhysSize ); 

} 

mov cx, PhysBase 
mov bx, PhysBase+2 
mov di, PhysSize 
mov si, PhysSize+2 
mov ax, 0800h 
int 31h 
mov HiBase, bx 
mov LoBase, cx 

II DPMI Map Phys 

II Set selector's linear address as given by DPMI Map Phys 
SetSelectorBase( sel, MAKELONG( LoBase, HiBase) ); 

return( MAKELP( sel, 0 ) ); 

The only trick to this code is in the call to All ocSe 1 ector. This call takes one 
parameter, a template selector. Because the function is creating a selector to access 
data (not code), the code passes the current value of DS, a valid data selector, as the 
template selector parameter. 

The function in the previous code fragment has a limitation: it works properly 
only for a size ofless than 64Kb. You can easily adapt it to regions greater than 64Kb 
by replacing the Windows selector functions, which don't properly support limits 
greater than 64Kb, with analogous DPMI selector functions, which do support greater 
than 64Kb. Then you would access your device with assembly language code and 
32-bit offsets as illustrated earlier in this chapter. 
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Summary 
Certainly this example isn't a commercial-quality driver, but many of its weaknesses 
are deliberate simplifications that have nothing to do with the Windows environment. 
For example, a commercial-quality driver should test for receiver overrun and various 
framing errors. These tests can be added easily, without any concern for Win
dows-specific implementation issues. 

The major shortcomings, though, are a direct consequence of trying to perform 
full-duplex operations by polling. The polled-mode design forces the application to 
handle the data one byte at a time - or risk missing significant amounts of data in the 
reverse direction. For a simple one-way device, like a dumb printer, such a 
polled-mode driver could perform quite satisfactorily. Thus, for certain devices, Win
dows device drivers can be just this simple. For a bi-directional device like the serial 
port to provide reliable, two-way communication without byte-wise supervision from 
the application, however, requires an interrupt-driven driver. 

Windows does impose additional implementation constraints on interrupt-driven 
drivers, especially those that use memory buffers for communication between the 
application and the driver. The next chapter explains these issues and shows how to 
convert this chapter's polled-mode example into an interrupt-driven driver. 
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Listing 14.1 

typedef struct 
{ 

POLLED.H 

WORD usReadBufSize; 
} DRIVERPARAMS, FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS, FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

typedef struct 
{ 

WORD usDevNumber; 
WORD usloBase; 
BOOL bFlags; 
LPBYTE lpReadBuf; 
DRIVERPARAMS params; 

DEVICECONTEXT, FAR *HDEVICE; 

HDEVICE FAR PASCAL DeviceOpen( HWND hwnd ); 
int FAR PASCAL DeviceClose( HDEVICE ); 
int FAR PASCAL DeviceGetWriteStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceGetReadStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceWrite( HDEVICE, LPBYTE lpData, LPWORD pc Bytes ); 
int FAR PASCAL DeviceRead( HDEVICE, LPBYTE lpData, LPWORD pcBytes ); 
int FAR PASCAL DeviceSetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverCapabilities( HDEVICE, PPDRIVERCAPS ppDriverCaps ); 
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Listing 14.2 UART.H 

Itdefine UART_REG_THR 
Itdefine UART_REG_RDR 
Itdefine UART_REG_IER 
Itdefine UART_REG_IIR 
Ifdefi ne UART_REG_LCR 
Itdefine UART_REG_MCR 
Ifdefine UART_REG_LSR 
Ifdefine UART_REG_BAUDLD 
Ifdefine UART_REG_BAUDHI 

Itdefi ne UART_I I R_NONE 
Ifdefi ne UART_II R_THRE 
Ifdefi ne UART_II R_RXRDY 
Ifdefi ne UART_I ER_THRE 
#defi ne UART_I E~RXRDY 
Ifdefine UART_MCR_OUT2 
Ifdefi ne UART_MC~LOOP 
Ifdefine UART_LSR_THRE 
Ifdefine UART_LCR_DLAB 
Ifdefine UART_LCR_8Nl 
Itdefine UART_LSR_RXRDY 
#define BAUD_1200 
Ifdefine BAUD_110 

OxOO 
OxOO 
OxOl 
Ox02 
Ox03 
Ox04 
Ox05 
OxOO 
OxOl 

OxOl 
Ox02 
Ox04 
Ox02 
OxOl 
Ox08 
OxlO 
Ox20 
Ox80 
Ox03 
OxOl 
Ox60 
Ox0417L 
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Listing 14.3 POLLED.C 

IIdefine _WINDLL 

lIinclude <windows.h> 
lIinclude <conio.h> 
lIinclude "polled.h" 
lIinclude "uart.h" 

IIdefi ne FLAGS_OPEN 

IIdefine SET( value. mask) 
IIdefine CLR( value. mask) 

Ox04 

value I~ mask 
value &~ (-mask) 

DEVICECONTEXT Device1 ~ { O. Ox3F8. O. NULL }; 
DRIVERPARAMS DefaultParams ~ { 1024 }; 
DRIVERCAPS DriverCaps ~ { Ox0101 }; 

BOOL ValidHandle( HDEVICE hDevice ); 

HDEVICE FAR PASCAL _export DeviceOpen( HWND hwnd ) 
( 

HDEVICE hDevice; 

OutputDebugString( "DeviceOpen\n"); 

hDevice ~ &Devicel; 

if (hDevice->bFlags & FLAGS_OPEN) 
return (HDEVICE)-l; 

hDevice->params ~ DefaultParams; 

/1 Configure UART. 
outp( hDevice->usloBase + UART_REG_IER. 0 ); 
outp( hDevice->usloBase + UART_REG_LCR. UART_LCR_DLAB ); 
outp( hDevice->usloBase + UART_REG_BAUDLO. BAUD_1200 ); 
outp( hDevice->usloBase + UART_REG_BAUDHI. 0 ); 
outp( hDevice->usloBase + UART_REG_LCR. UART_LCR_8Nl ); 
outp( hDevice->usloBase + UART_REG_MCR. UART_MCR_LOOP ); 
inp( hDevice->usloBase + UART_REG_LSR ); 
inp( hDevice->usloBase + UART_REG_RDR ); 

SET( hDevice->bFlags. FLAGS_OPEN); 

return hDevi ce; 
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Listing 14.3 (continued) POLLED.C 

int FAR PASCAL _export OeviceClose( HOEVICE hOevice 
( 

OutputOebugString( "OeviceClose\n"); 

if (!ValidHandle( hOevice )) 
return -1; 

if «hOevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

CLR( hOevice-)bFlags. FLAGS_OPEN ); 

return 0; 

int FAR PASCAL _export OeviceGetWriteStatus( HOEVICE hOevice. LPWORD pusStatus ) 
( 

OutputOebugString( "OeviceGetWriteStatus\n"); 

if (!ValidHandle( hDevice )) 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

if (inp( hOevice-)usloBase + UART_RE~L$R ) & UART_LSR_THRE) 
{ 

} 
else 
( 

*pusStatus = 1; 

*pusStatus = 0; 

return 0; 

II ready to transmit 

II not ready to transmit 

int FAR PASCAL _export DeviceGetReadStatus( HDEVICE hOevice. LPWORO pusStatus ) 
( 

OutputDebugString( "OeviceGetReadStatus\n"); 

if (!ValidHandle( hDevice )) 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

if (inp( hDevice->usloBase + UART_REG_LSR ) & UART_LSR_RXROY) 
{ 

} 

else 
{ 

*pusStatus = I; 

*pusStatus = 0; 

return 0; 

II data ready 

I I no data ready 
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Listing 14.3 (continued) POLLED.C 

int FAR PASCAL _export DeviceWrite( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

WORD i; 

OutputDebugString( "DeviceWrite\n"); 

if (llpData) 
return -1; 

if (l Va 1 i dHandl e( hDevi ce )) 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) ~ 0) 
return -1; 

for (i=O; i < *pcBytes; i++) 
{ 

while «inp( hDevice->usloBase + UART_REG_LSR ) & UART_LSR_THRE) ~ 0) 

outp( hDevice->usloBase + UART_REG_THR. lpData[ i ] ); 

return 0; 

int FAR PASCAL _export DeviceRead( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

WORD i; 

OutputDebugString( "DeviceRead\n"); 

if (llpData) 
return -1; 

if (lValidHandle( hDevice )) 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) ~ 0) 
return -1; 

for (i=O; i < *pcBytes; i++) 
{ 

while «inp( hDevice->usloBase + UART_REG_LSR ) & UART_LSR_RXRDY) ~ 0) 

lpData[i] = inp( hDevice->usloBase + UART_REG_RDR ); 

return 0; 
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Listing 14.3 (continued) POLLED.C 

int FAR PASCAL _export DeviceSetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParams ) 
{ 

OutputDebugString( "DeviceSetDriverParams\n"); 

if (!pParams) 
return -1; 

if (!ValidHandle( hDevice )) 
return -1; 

if ((hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

hDevice-)params = *pParams; 

return 0; 

int FAR PASCAL _export DeviceGetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParams ) 
{ 

OutputDebugString( "DeviceGetDriverParams\n"); 

if (! pParams) 
return 1; 

if (!ValidHandle( hDevice » 
return -1; 

if ((hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

*pParams = hDevice->params; 

return 0; 

int FAR PASCAL _export DeviceGetDriverCapabilities( HDEVICE hDevice. 
PPDRIVERCAPS ppDriverCaps 

OutputDebugString( "DeviceGetDriverCapabilities\n"); 

if (!ppDriverCaps) 
return -1; 

if (!ValidHandle( hDevice » 
return -I; 

if ((hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

*ppDriverCaps = &DriverCaps; 

return 0; 

BOOl ValidHandle( HDEVICE hDevice 
{ 

return (hDevice == &Device1); 
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Listing 14.4 POLLED.MAK 

all: po 11 ed . d 11 

If DRIVER DLL 

polled.obj: polled.c polled.h 
cl -c -W3 -ASw -Gsw2 -Oi $*.c 

polled.dll: polled.def polled.obj 
link polled,polled.dl1 ,polled.map ICO IMAP, sdllcew libw Inod/noe,polled.def 
implib driver.lib polled.dll 
copy polled.dl1 \windows\driver.dll 

Listing 14.5 POLLED. DEF 

LIBRARY 
DESCRI PTI ON 
EXETYPE 
DATA 
CODE 

DRIVER 
"Polled Mode Driver" 
WINDOWS 
PRELOAD MOVEABLE SINGLE 
PRELOAD MOVEABLE DISCARDABLE 



Chapter 15 

DriverDLL: 
Interrupt Handling 
This chapter will show how to build a 16-bit, interrupt-driven driver DLL. While a 
polled-mode driver DLL (like that of the last chapter) is certainly simple to build, a 
basic interrupt-driven version is only slightly more complex and offers significant 
advantages. Interrupt-driven drivers can usually offer improved throughput. Inter
rupt-driven drivers are also more "Windows polite" than polled-mode drivers, because 
the interrupt-driven driver doesn't tie up the processor while waiting for the device. 

The basic structure of a Windows interrupt-driven driver is quite similar to the 
structure of a DOS driver: a real-time component (the Interrupt Service Routine, or 
ISR) services hardware events, and a higher-level component (which I'll just refer to 
as the driver) handles communication with the application or operating system. The 
driver and ISR typically communicate through a buffer that must be managed as a 
shared resource. 

An interrupt-driven driver DLL is by definition a 16-bit DLL, because Win32 
DLLs cannot install interrupt handlers. There is no Win32 API to install an 
interrupt handler - because that job should be done in a true driver - and the 
DOS Set Vector call used byWin16 DLLs is not available to Win32 DLLs. 

325 
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Although a Windows driver has a familiar structure, it is complicated by Win
dows' tendency to virtualize services to protect the underlying hardware resources. In 
polled-mode drivers, these virtual services are nearly invisible to the programmer, but 
in an interrupt-driven environment some of these virtualizing mechanisms, in particu
lar the virtual memory system, become more visible. To avoid breaking your applica
tion - or even breaking Windows - you need to understand something about how 
some of these virtual services work and about the conventions you must follow to 
write compatible interrupt-driven code. For the purposes of this chapter, that means: 

understanding how the Windows memory manager works so that you can create 
interrupt-safe code and data structures, 

knowing the conventions you must observe when accessing an interrupt-safe 
buffer or data structure, 

knowing the conventions you must observe when installing your interrupt handler. 

The first half of this chapter is devoted to explaining these three topics. The sec-
ond half of the chapter shows how to use this information to convert the polled-mode 
driver of the last chapter into a basic interrupt-driven driver. 

Windows Memory Management Strategy Overview 
When the Windows memory manager gets an allocation request for a larger block 
than is available, it takes one of the following three actions to free up memory to meet 
this new demand: 

Discard the current contents of an already-allocated block. Here, discard means 
reuse the same block without first saving its contents to disk - presumably 
because a valid copy is known to already exist on disk. 

Rearrange (move) the current contents of memory to create a larger block of con
tiguous memory. 

Swap the current contents of a block to disk. 

Each of these three actions has potentially disastrous implications for an inter-
rupt-driven device driver. In the next few sections, I'll explain: 

why swapped, discarded, or moved blocks create problems for an interrupt-driven 
handler, and 

how to write code and allocate data that won't be swapped, discarded, or moved. 

(See also the sidebar "Layered Memory Managers" on page 327.) 

What Is Discardable? 
Win16 applications are organized into logical components called segments. There are 
three types of segments: code, data, and resource. Code segments contain a program's 
code, data segments contain a program's data (including stack and local heap), and 
resource segments contain user interface resources like menus, icons, bitmaps, etc. 
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All segments, whether allocated statically as part of an executable or dynamically 
by a running application, are allocated by calls to the Win16 memory manager API. 
When a program is first loaded into memory, the Windows loader allocates on behalf 
of the application, making calls to allocate segments to be used for the application's 
code, data, and resources. When an executing program needs additional memory, it 
calls the memory manager API directly. 

Each segment, whether it be code, data, or resource, possesses a set of attributes 
that are tracked by the memory manager. These attributes determine what the memory 
manager mayor may not do with that segment. The memory manager can only dis
card a segment if it is marked as discardable. Other attributes include: non-discard
able, fixed, moveable, swappable, and non-swappable (also called pagelocked). 

Attributes are specified in one of two ways: statically as part of the linking process 
or dynamically as part of the allocation request to the memory manager. The 
attributes of a program's static code, data, and resource segments are specified at 
link time, in the module definition (. DEF) file. The loader then allocates segments 
with these attributes on behalf of the application. The attributes of a segment 
dynamically allocated by a program, via a direct call to the memory manager, are 
specified as parameters to the function call. The program may later change a 
segment's attributes by another call to the memory manager. 

Layered Memory Managers 

In 16-bit Windows, the memory manager functionality is really provided by two different system components. 
One is KERNEL, which is a user-mode DLL. The other is the VMM, a Ring 0 VxD. Win16 applications use the 
memory management functions provided by KERNEL, like G 1 oba 1 All ~c. KERNEL itself uses the services of 
the VMM (Virtual Machine Manager). So you can think of KERNEL as being layered on top ofVMM. 

The KERNEL memory manager deals with segments, which are mapped via the descriptor tables to linear 
address space. To satisfy allocation requests for segments, KERNEL allocates linear address blocks from the 
VMM. KERNEL performs two kinds of memory "management", discarding and moving, which we'll discuss 
in a later section. Both apply strictly to segments, not to the pages that actually make up segments. KERNEL 
has nothing to do with the third kind of "management", which is virtual memory, also known as paging. 

Virtual memory is implemented by the VMM (Virtual Machine Manager, not Virtual Memory Manager). 
The VMM memory manager is responsible for managing physical memory: managing the paging tables, 
which map linear addresses to physical addresses, and swapping pages to and from disk. VMM only deals 
with pages, never segments. 

The KERNEL module described here still exists in Windows 95 - it must, because Windows 95 supports 
Win16 applications - hut is renamed to KERNELl6. Win32 applications use a different memory manage
ment API (e.g. Vi rtua 1 All oc instead of G1 oba 1 All ~c), which is provided by the KERNEL32 module. But 
KERNEL32 is nothing more than a thin wrapper around calls to the VMM, which is still the virtual memory 
manager in Windows 95 as well as in Windows 3.x. 
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When the Windows memory manager discards a segment, the segment is not written to 
disk but is literally discarded. When a program accesses a segment which has been dis
carded, the processor generates a Segment Not Present fault, and the fault handler will 
reread the segment from disk into memory. This behavior implies that every discarded seg
ment must be read-only (never modified) and always available on disk. Code and resource 
segments are usually allocated as discardable. On the other hand, data segments should not 
be discardable, because they can't be recreated by reading the original segment from disk. 

What is Moveable? 
When Windows loads a Win16 program's resources, it loads them segment by seg
ment, placing each individual segment into a contiguous block of linear memory. 
Thus, to load a segment, it isn't enough for Windows to have enough/ree memory, it 
must have enough contiguous free memory. (To be precise, it must have enough free 
linearly contiguous memory; the difference between linear and physical memory was 
discussed in Chapter 3). If the free memory is highly fragmented, then the memory 
manager may need to compact the active blocks to create larger free blocks (see the 
sidebar "Fragmentation"). 

Fragmentation 
When a program requests an allocation from the memory manager, that request can be refused, even if free 
memory is available, if that free memory is scattered in several small pieces instead of a single larger one. 
This problem is known as fragmentation. It exists even under DOS, but multitasking makes the problem much 
worse. Much of the complexity of the Windows memory manager and the memory management API exists to 
combat this problem, so fragmentation merits a closer look. 

Figure 15.1 illustrates the process of fragmentation. Initially, all available memory resides in a single large 
block, called the heap. The first application runs and allocates memory that carves off a block from this heap. 
Next, the same application allocates a second block. Now another application starts up and requests a block. 
Then the first application deallocates the first block it had allocated. Note that this leaves a hole in the heap, so 
that the heap is now composed of two blocks of free memory. 

This condition of having holes in the heap is called fragmentation, and here's why it's a problem. Suppose 
that the second application now requests another allocation, but this time the size of the request is larger than 
either of the two blocks of free memory. The memory manager cannot satisfy the request, even though the size 
of the request is actually less than the total available free memory. 

To handle this problem, the Windows memory manager moves blocks (copies the block's contents from 
one location to another) to coalesce scattered free blocks into a single large free block. Figure 15.2 (see page 
330) is a picture of the fragmented heap in Figure 15.1, before moving blocks and after. Before the move, the 
largest available block was 192Kb. Afterward, it is 320Kb. 

The memory manager can combat fragmentation effectively if all allocated memory is moveable. However, 
there are situations where programmers need to fix a block in place, preventing the memory manager from mov
ing the block. Too many such fixed blocks create sandbars in the heap, as illustrated in Figure 15.3 (see page 
330), and lead to excessive fragmentation. Thus, fixed blocks should be used only when absolutely necessary. 
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Windows relies on the processor's protected mode to efficiently implement move
able memory. In protected mode, a pointer is a logical address consisting of a selector 
and an offset. Because a selector doesn't directly specify a physical address - it 
directly specifies an index into a descriptor table - implementing moveable memory 
in protected mode is easy. To move a segment, Windows copies the segment's con
tents from one linear location to another, then updates the segment's base address in 

Figure 15.1 Fragmentation. 
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the descriptor table. The segment value itself doesn't change, so the index still points 
to the same entry in the descriptor table. Only the base address stored in the descrip
tor changes. This process is illustrated in Figure 15.4 

This means that Windows can move segments around without the application's 
knowledge, because Windows can return a selector at the time of allocation. If the 
system later moves the allocated block, the application would be unaffected because 
the selector returned at allocation time still points (indirectly) to the block. As we'll 
see later, driver DLLs that handle interrupts are often affected by moveable segments. 

Figure 15.2 Moving memory reduces fragmentation. 
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Figure 15.4 Illustrates how Windows moves a memory 
segment. 
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What is Swappable? 

Moving and discarding memory blocks are both useful techniques for the Windows 
memory manager, but don't help when memory is really tight - when there are no 
free blocks remaining and no segments to be discarded. The remaining tool of the 
memory manager, swapping or paging, is the most powerful of all, allowing Windows 
to implement a technique known as virtual memory. Virtual memory is a neat trick 
which allows the memory manager to provide more memory than is physically avail
able in the system. 

Virtual memory requires some help from the processor hardware, specifically the 
paging feature. When memory gets low, the memory manager writes (swaps) a page 
to disk and marks the page as not present in the page tables. If a process later tries to 
access a location in that page, the not-present flag will cause the processor to generate 
a page fault. This fault (a processor exception) will suspend the current process and 
transfer control and the number of the missing page to the page fault handler. This 
handler, which is part of the memory manager, uses the page number to locate the 
page on disk and then reads it into memory. This entire paging process is handled 
dynamically by the operating system in a way that is completely transparent to the 
process that made the memory access. 

If a page fault occurs when there are no free blocks in physical memory, then the 
memory manager must create free space by swapping a currently present page to disk. 

Memory Requirements for an 
Interrupt-safe Driver 
A driver that handles hardware interrupts has strict requirements on the type of mem
ory it allocates. All code and data used at interrupt time must be fixed (non-move
able), pagelocked, and non-discardable. This includes the code for the interrupt 
handler itself, any data in the driver's data segment used at interrupt time, any dynam
ically allocated buffers used at interrupt time, and application-allocated buffers passed 
to the driver and used at interrupt time. 

In the following few paragraphs, I'll explain why an interrupt handler has each of 
these three requirements. These requirements aren't unique to interrupt handlers run
ning under Windows; they also are shared by handlers running under other 80x86 
environments, such as UNIX or OS/2. So in the next few paragraphs when I use the 
terms fixed, pagelocked, and non-discardable, these are all generic memory attributes 
offered by many operating systems. 
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After this generic discussion, I'll talk about how Windows implements these 
same three attributes. When I'm referring specifically to these attributes as imple
mented by Windows, I'll use a slightly different nomenclature: FIXED, PAGE LOCKED, 
and NONDISCARDABLE. This distinction is useful because, for example, FIXED doesn't 
always mean fixed, and PAGELOCKED always means both pagelocked and fixed. 

Reason for Fixed 

To understand why any data used by a hardware interrupt handler must be in a fixed 
segment, consider the following scenario. Suppose the memory manager moves the 
data segment used by an interrupt handler because the segment is marked moveable. 
After a few bytes are copied, a hardware interrupt occurs and the interrupt handler 
executes. The handler updates a variable that resides in the first byte of its data seg
ment (the one that's being moved). Now when the handler finishes executing, the 
memory manager continues with the rest of the copy but the variable just updated by 
the handler is now incorrect. The memory manager copied the old value to the new 
segment and has no way of knowing that the handler later modified the value. Clearly 
the data segment used bya handler must be fixed to prevent this problem. 

Reason for Non-discardable 

The code segment containing a hardware interrupt handler has a different restriction: 
it must be non-discardable. (Note that the data segment must be non-discardable as 
well, but this is true of all data segments., while code segments are usually discard
able.) Suppose that a hardware interrupt occurred, but the memory manager had dis
carded the handler's code segment. A Segment Not Present fault would occur, and the 
Windows fault handler would attempt to reload the segment from disk. If the interrupt 
occurred while the system was already in DOS (for some other reason), the result 
would be an attempt to re-enter DOS. DOS, however, is not reentrant code. Thus, the 
code segment must be non-discardable. 

Reason for Pagelocked 

Both code and data of a hardware interrupt handler must be pagelocked. The reasons 
are similar to those that force the segment to also be non-discardable. An interrupt 
handler accessing a swappable buffer would reslllt in a page fault if that buffer had 
been swapped to disk. The interrupt handler code itself could have been swapped to 
disk, resulting in a page fault during execution. In either case, the page fault could 
cause DOS to be re-entered. 
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Static Interrupt-safe Code and Data: 
The Easy Way 

The easiest way to insure that driver code and data segments are interrupt-safe is to 
mark code and data segments as FIXED and NONDISCARDABLE in the driver's module 
definition file. Note that this technique relies on two well-known Windows behaviors. 
First, Windows ignores the FIXED attribute when used by applications but respects it 
when used by DLLs - thus the driver must be a DLL. Second, when segments are 
marked as FIXED in the module definition file, Windows pagelocks the memory in 
addition to fixing it in linear memory. 

When running under Windows 95, using the FI XED keyword in the module defini
tion file is an easy way for a developer to make his static code and data interrupt-safe. 
The very same technique, when used under Windows 3.x, is easy for the developer, but 
has terrible side effects for the user. This allocation method can easily result in a situa
tion where Windows is unable to start new Windows applications, and the user gets an 
"Insufficient memory to start the application" error message. This can happen even 
when there is plenty of free memory and free system resources. How can this be? 

Use the Right Way under Windows 3.x 
Each time a Windows application runs, the Windows loader allocates a 512-byte 
block for a data structure called the Program Segment Prefix (PSP). The PSP is used 
by DOS as well as Windows, so it must be located below 1Mb. If there is no memory 
available for the PSP, Windows can't run the application. This behavior is true under 
Windows 3.x, and is still true under Windows 95. 

The problem with Windows 3.x is the strategy used by the 3.x memory manager: 
FIXED blocks are allocated from as low in the heap as possible, DISCARDABLE blocks 
come from high in the heap, and MOVEABLE from in between. This strategy helps to 
reduce fragmentation but often results in F I X ED allocations using up precious low 
DOS memory, even when the users of FIXED memory don't need the.memory to come 
from below 1Mb. 

The Windows 95 memory manager uses a slightly different heap strategy, so 
that FIXED allocations do not use low DOS memory. Therefore, if your 
16-bit driver DLL will run under Windows 95 only, you're safe to take the 
easy way out and use FIXED in your DEF file. 
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Here's the right way, which avoids using up precious low memory. First mark 
your driver's code and data segments as MOVEABLE - not FIXED - in the module def
inition file. At run time, before any interrupts occur, you explicitly fix and pagelock 
the segments. But you must be careful with this second step. The Windows API func
tion G1 oba 1 Page Lock will both fix and pagelock a segment but G1 oba 1 Page Lock will 
also move the segment down to low memory (because F I X ED blocks should be low in 
the heap), exactly what we want to avoid. 

What's neededis a way to prevent the memory manager from moving the segment 
before pagelocking it. This can be done by first allocating all the memory below 1Mb, 
calling Gl oba 1 PageLock, and then freeing all the low memory. I've provided a func
tion - called SafePageLock - which does just this, and I'll examine it in more 
detail later. First I'll examine a related issue: how to dynamically allocate inter
rupt-safe buffers. As with the driver's static segments, there is an easy way and a right 
way to do this under Windows 3.x. 

Dynamically Allocating 
Interrupt-safe Buffers: The Easy Way 
The easy way to dynamically allocate an interrupt-safe buffer is to call G 1 oba 1 All oc 
and specify that you want a buffer that is both fixed and pagelocked. G 1 oba 1 All oc 
takes two parameters, a bit-mapped value, representing the attributes of the segment 
to be allocated, and the size of the segment. Allowable values for the flags parameter 
include: GMEMJIXED, GMEM_MOVEABLE, GMEM_DISCARDABLE, GMEM_NODISCARD, and 
GMEM_SHARE. 

The GMEM_SHARE flag was introduced in Chapter l3. Although there is no flag to 
specify an attribute of pagelocked, when used by a DLL the GMEMJIXED flag always 
has the side effect of pagelocking memory. So an allocation for an interrupt-safe 
buffer would use the flags GMEMJIXED, GMEM_NODISCARD, and GMEM_SHARE. 

Although the size parameter to Globa 1 All oc is a 32-bit value, the largest 
allocation permitted is 16Mb-64Kb, much less than 232. 

A return value of NULL from Gl obiil All oc means the segment could not be allo
cated, usually because a free block of that size wasn't available. A non-NULL return 
value is the handle of the memory object. (More about handles and how to turn them 
into useable pointers in the next section.) 
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Dynamically Allocating 
Interrupt-safe Buffers: The Right Way 
This easy method results in exactly the same problem discussed above with Windows 
3.x and fixed driver code and data segments: the buffer is fixed, pagelocked, and 
non-discardable - but is also usually located below 1Mb. The right way is to first 
allocate from G1oba1A11oc using GMEM_MOVEABLE instead of GMEMJIXED and to fix 
and pagelock the buffer later with the SafePageLock function. This function is not 
part of the Windows API, but a function I will present in a later section. The safe func
tion is necessary to prevent the memory manager from moving the buffer to low mem
ory during the pagelock operation, as it would with a simple call to Global PageLock. 

Before examining the code for SafePageLock, I will need to cover one more topic 
relevant to 16-bit drivers under both Windows 3.x and 95: the relationship between 
handles, selectors, and pointers. G 1 oba 1 All oc returns a handle. Functions such as 
G1 oba 1 PageLock and G1 oba 1 Fi x expect a selector, and accessing a dynamically allo
cated buffer requires a pointer. 

Using the Buffer: Handles, Selectors, and Pointers 

The handle returned by G1 oba 1 All oc is not a pointer, it's just a value with special 
meaning to the memory manager. To access the associated memory object, even when 
it is fixed and pagelocked, you must convert this handle to a pointer. This is done by 
calling G1 oba 1 Lock, using as a parameter the handle returned by G1 oba 1 All oc. The 
block is freed with a call to G1 oba 1 Free, passing in the same handle returned by the 
original G1 oba 1 All oc. 

As explained earlier, a protected mode pointer consists of a selector and an offset. 
Some Windows API functions, such as G1 oba 1 Page Lock, take a selector parameter, not 
a handle. To obtain a selector from a far pointer, use the SELECTOROF macro provided 
in WINDOWS.H. Better yet, the G10ba1A11ocPtr and G10ba1A11ocFree macros in 
WINDOWSX. H combine the allocation and lock (handle dereference). The Global A 110cPtr 
macro combines a call to G1 oba 1 All oc with a subsequent call to G1 oba 1 Lock, return
ing a pointer. The Global FreePtr macro combines a call to Global Hand1 e (which 
converts a selector to a handle), G1 oba 1 Un lock, and G1 oba 1 Free. 
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Note that you should not use the C library rna 11 oc function instead of 
G1 oba 1 All oc to allocate an interrupt-safe buffer. The problem is not the 
attributes flag. As explained earlier in Chapter 13, rna 11 oc allocates moveable 
memory, using exactly the same flags you would pass to G1 oba 1 A 110c if you 
were going to fix and pagelock the memory later. The problem is that rna 11 oc 
doesn't usually allocate a segment via G1 oba 1 All oc. Instead, rna 11 oc acts as 
a sub-segment allocator, usually returning an offset into an already-allocated 
segment. So when you call G1 oba 1 PageLock, it will fix and •. pagelock the 
entire segment, not just your portion of it. And the golden rule of Windows 
memory management is to never fix, and never ever pagelock, memory if it's 
not absolutely necessary. 

A Safe Pagelock Function 

There is nothing tricky about Safe Page Lock, shown in the following paragraph of 
code. It takes a single WORD parameter, which is the selector of the buffer you want to 
pagelock, and performs the three steps outlined earlier: 

• Repeatedly calls G1 oba 1 DosA 11 oc until all memory below 1Mb has been allocated. 

• Calls G1 oba 1 Page Lock to fix and pagelock the caller's buffer. This call is now safe 
because the allocated blocks, which completely fill up the area below 1Mb, will 
prevent the heap manager from moving our buffer below 1Mb. 

• Repeatedly calls G1 oba 1 Free to free all memory blocks below 1Mb that were allo
cated earlier. 

UINT SafePageLock( HGLOBAL se1 ) 
{ 

WORD i. rc; 
static WORD SelArray[ 1024 ]; 

rnernset( Se1Array. 1024 * sizeof(WORD). 0 ); 
for (i=O; i < 1024; itt) 
{ 

Se1Array[i] = LOWORD( Globa1DosAlloc( 1024 ) ); 
if (!Se1Array[i]) 

break; 
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rc = GlobalPageLock( sel ); 

for (i=O; i < 1024; itt) 
{ 

if (!SelArray[i] 
break; 

GlobalFree( SelArray[i] ); 

return rc; 

The following code fragment uses SafePageLock to fix and pagelock a driver's 
code and data segments: 

_asm mov myds. ds 
_asm mov mycs. cs 
SafePageLock( myds ); 
SafePageLock( mycs ); 

And the next code fragment dynamically allocates an interrupt-safe buffer the 
right way, by combining a call to Gl oba 1 All oc to get moveable memory with a sub
sequent call to SafePageLock: 

HGLOBAL hnd; 
UINT sel. bufsize. flags; 
bufsize = 8192; 
char far *pBuffer; 

flags = GMEM_MOVEABLE I GMEM_NODISCARD I GMEM_SHARE; 
hnd = GlobalAlloc( flags. bufsize ); 
pBuffer = GlobalLock( hnd ); 
sel = SELECTOROF( pBuffer ); 
SafePageLock( sel ); 

Note that no SafePageUnl ock function is necessary, because the Windows API 
function Gl oba 1 PageUn lock has no undesirable side effects. 
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Installing an Interrupt Handler 
The proper way to install an interrupt handler from a Windows DLL driver is through 
the DOS Set Vector call (I NT 21h AH=25h). A DOS driver written in a high-level 
language like C can use a library function like _dos_setvect to make this DOS call. 
However, the Windows-specific versions of the VC++ l.x run-time library don't con
tain _dos_setvect because the library implementation of the function isn't compati
ble with Windows. 

That leaves two alternatives: make the DOS call through the library routine i ntdosx, 
which is available to Windows programs, or write your own version of _dos_setvect. 
I've chosen the latter approach because it is trivial to code and is more efficient than 
using i ntdosx. (See the sidebar "Initialize Those Registers!") 

If your Windows-specific C library supports a high-level call like _dos_setvect, 
feel free to use it. But if it doesn't, call I NT 21 h with AH=25 h from assembly. Almost all 
compilers that generate Windows applications also support embedded assembly, which 
makes this trivial. Here's a C function that installs a handler using embedded assembly. 

Initialize Those Registers ! 

If you do choose to use i ntdosx, you must carefully initialize both SREGS. es and SREGS. ds. The easiest way 
to do this is through the segread function. This step is necessary because during the i ntdosx call the OS and 
ES registers are loaded from the SREGS structure, and an invalid value in a segment register will cause a pro
cessor exception. 

The following code calls DOS Set Vector through i ntdosx. 

typedef void (FAR interrupt *VOIDINTPROC); 
void OosSetlntVector( BYTE vector, VOIOINTPROC pHandler 
{ 

struct SREGS SegRegs; 
union REGS InRegs, OutRegs; 
segread( &SegRegs ); 
SegRegs.ds = SELECTOROF( pHandler); InRegs.x.bx = OFFSETOF( pHandler ); 
InRegs.h.ah = Ox25; 
intdosx( &InRegs, &OutRegs. &SegRegs ); 
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void Insta11Handler( void far *myHandler. int 
{ 

asm 
{ 
mov 
mov 
push 
lds 
int 
pop 
} 

ah. 
bl. 
ds 
s i . 
21h 
ds 

25h 
intNumber 

don't lose thisl 
myHandler 

put OS backl 

intNumber 

Although you may need assembly code to install the handler, the handler itself can 
be written entirely in C using the interrupt keyword. This keyword instructs the 
compiler to generate special prolog and epilog code. The prolog pushes all registers 
onto the stack and loads OS with the data segment. The epilog pops all registers from 
the stack and returns with an I RET instruction. These entry and exit sequences are 
necessary for the handler to work properly. 

As under DOS, the interrupt handler should not call any C library functions nor 
any DOS or BIOS services. In addition, the only Windows functions that can be called 
safely are listed in Table 15.1. 

The New Driver: An Overview 
To demonstrate these techniques, I've modified the example driver so that the UART's 
receive and transmit buffers are serviced by an interrupt handler. The driver and ISR com
municate through circular buffers. The data area of each buffer is dynamically allocated by 

Table 15.1 Windows functions that can safely be called 
from an interrupt handler. 

Function Type Function Name 

Messaging Functions OutputOebugStr 
PostMessage 
PostAppMessage 

Multimedia Functions timeGetSystemTime 
timeSetEvent 
t i meKi 11 Event 
midiOutShortMsg 
midiOutLongMsg 
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the driver Gust to show the technique). The main driver stores a pointer to each buffer in the 
DEV I CECONTEXT structure so that the ISR will know how to find and manipulate the buffer. 

The largest changes are in the Devi ceOpen and Devi ceCl ose routines. I use these 
routines as hooks to install and remove the ISR. The Devi ceO pen routine allocates the 
buffers, sets up the DEV I CECONTEXT structure, and installs the ISR. The Devi ceCl ose 
routine reverses these steps, un-installing the ISR and freeing the buffers. 

The New Driver: The Code 
To convert the polled driver of the last chapter to an interrupt, one must: 

• add information about the ISR and the interrupt to the DEVICECONTEXT structure, 

add code in Devi ceOpen to allocate interrupt-safe buffers and install the ISR, 

• change the code in Devi ceRead so that it retrieves its data from the receive buffer 
instead of directly from the device, 

• change the code in Devi ceWrite so that it copies its data in the transmit buffer 
instead of writing directly to the device, 

• create an ISR to service the interrupt, and 

• add code in Devi ceCl ose to deallocate the buffers and deactivate the ISR. 

The New DEVICECONTEXT 

The following code shows the C declaration for the new DEVICECONTEXT structure. As 
in earlier examples the driver will define a separate static instance of this structure for 
each supported device. This definition adds fields for the interrupt to be serviced 
(I rq),substructures that describe the two ring buffers (RxBuf and TxBuf), and storage 
for the old interrupt vector so that the driver can properly restore the system state 
when it removes the ISR. 

typedef struct 
{ 

char far 
WORD 
WORD 
WORD 

BUFINFO; 

*Start; 
Size; 
In; 
Out; 
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typedef struct 
[ 

WORD usDevNumber; 
WORD usloBase; 
BYTE blrq; 
BYTE bFlags; 
HWND hwnd; 
VOIDINTPROC pfOldHandler; 
BUFINFO RxBuf; 
BUFINFO TxBuf; 
DRIVERPARAMS params; 

DEVICECONTEXT. FAR *HDEVICE; 

The buffer structures include storage for a pointer to the buffer, the buffer's size, a 
next-in index (In), and a next-out index (Out). Figure 15.5 illustrates how these data 
structures will be used while the driver is running. 

Allocating an Interrupt-safe Buffer 

The Devi ceOpen function allocates the buffers to be used by the interrupt handler. The 
size for each buffer is taken from the DRIVERPARAMS structure. The buffers are allo
cated with the GMEMJIXED flag so that the region is safe for use at interrupt time, a 
critically important step, although the code is relatively simple: 

hDevice->RxBuf.Size = hDevice->params.usReadBufSize; 
hDevice->RxBuf.Start = GlobalAllocPtr( GMEM_SHARE I 

GMEM_MOVEABLE I 
GMEM_NODISCARD. 
hDevice->RxBuf.Size ); 

if (!hDevice->RxBuf.Start) 
[ 

) 

OutputDebugString( "ERROR GlobalAlloc Rx\n"); 
return (HDEVICE)-l; 

SafePageLock( (HGLOBAL)SELECTOROF( hDevice->RxBuf.Start ) ); 

Notice that I've used the Gl oba 1 All ocPtr macro in place of an explicit call to 
Global Lock. I've also allocated the buffer as GMEM_MOVEABLE and used SafePageLock 
to fix and pagelock it, without moving it below 1Mb. 

Finally, Devi ceOpen initializes the ring pointers: 

hDevice->RxBuf.ln = hDevice->RxBuf.Out = 0; 
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Installing the ISR 

Once the buffer is built, Devi ceOpen turns to the task of installing the ISR. To handle 
the general case, Oevi ceOpen must disable interrupts, save the existing vector, install 
the new vector, and then enable interrupts. 

The first step is to disable interrupts from the device by masking the device's inter
rupt level (sometimes called IRQ for Interrupt Request Level) in the Programmable 
Interrupt Controller (PIC). The PC uses two PICs, termed master and slave, which are 
daisy-chained together. The mask register ofthe master PIC is located at 110 port 21h 
and controls IRQs 0-7. Hardware IRQs 8-15 are controlled by the· slave PIC at 110 

Figure 15.5 Illustrates how the buffer structures will be 
used while the driver is running. 

Device Context I/O space 
r--

usIoBase 
I--

r-v'" 
----to ~ 

I 
~ Bufl nfo 

I 
I--I '" I+- Newest RxBuf L..-. I 0 

Size I "0 Received 
I <!) 

o~ Byte 
In I <!) '--

W ~ Out ~ I+- Storage 
Start --- I--

for Next 
Byte 

I Si ze 
I 
I 
I 
I 

I--
I ~ 

~ Oldest 
I ... Received 
I 0 Byte I "0 
I <!) 

I 
;> 0;:; 

I 

~ I 
I '--
I_I 

c.,........ 



344 - Writing Windows VxDs and Device Drivers 

port Alh. The mask registers are both bitmapped, where a 1 in a bit position disables 
the interrupt line, and a 0 enables the interrupt line. For the master, IRQs ° to 7 corre
spond directly to bits ° to 7. For the slave, IRQ 8 corresponds to bit 0, IRQ 9 corre
sponds to bit 1, etc. (See the sidebar "IRQ 2 versus IRQ 9".) 

Now that the device can't generate an interrupt, it's safe to install the interrupt 
handler. Using the DOS Set Vector and Get Vector services (through my 
home-brew functions), Devi ceOpen saves a copy of the current vector and then 
installs a vector that points to the new ISR: 

hDevice->pfOldHandler = DosGetlntVector( bVector ); 
DosSetlntVector( bVector, DeviceIsr ); 

With the ISR properly installed, it's safe to enable interrupts. That means pro
gramming the device to generate interrupts and also unmasking the interrupt in' the 
interrupt controller. 

IRQ 2 Versus IRQ 9 

Developers of Windows device drivers often handle IRQ 9 incorrectly. Here's the problem: The original IBM 
PC bus supports only IRQs 0 through 7, using a single interrupt controller. The two-controller design used by 
the AT bus successor to the PC is used by all of today's systems. The AT design doesn't support IRQ 2 
because the designers used the IRQ 2 input of the master controller to connect it to the slave controller. IBM 
wanted old PC cards that used IRQ 2 to work in an AT, so the IRQ 2 bus signal was re-routed to the IRQ 9 
input on the slave controller. The AT BIOS was also updated so that the default IRQ 9 interrupt handler did 
nothing but call the IRQ 2 handler. 

With this backward-compatible design, the same hardware device and software using IRQ 2 in an older PC 
bus system automatically uses IRQ 9 on today's AT bus system. On the PC bus, the device asserts IRQ 2 on 
the bus, the signal goes to IRQ 2 on the interrupt controller, and the processor vectors to the IRQ 2 handler. 
On an AT bus, that same device asserts IRQ 2 on the bus, but that signal goes to IRQ 9 on the controller, so the 
processor vectors to the IRQ 9 handler. Then the default BIOS handler for IRQ 9 calls the IRQ 2 handler. 

So IBM's improved AT bus design didn't require hardware manufacturers to change their cards or software 
developers to rewrite their drivers. That was a good idea when PC bus and AT bus systems were both in use, 
but almost a decade later there are no PC bus systems. And although many hardware vendors still refer to their 
cards as using IRQ 2, the card really uses IRQ 9. 

It is very important to make this distinction when developing a Windows driver because hooking IRQ 2 
when the device really uses IRQ 9 simply doesn't work under Windows. This worked under DOS because the 
BIOS handler for IRQ 9 called the IRQ 2 handler. Under Windows, the real mode BIOS IRQ 9 handler 
doesn't even see the interrupt if a Windows driver has hooked IRQ 9. If you're writing a Windows driver for 
an IRQ 9 device, hook IRQ 9 during installation and unmask the interrupt level on the slave controller. 
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Programming the COM port to generate interrupts is a two-step process: 

enable the interrupt internally in the UART, and 

enable the interrupt externally (using a spare UART output to gate the signal on the 
serial card). 

The code looks like this: 

outp( hDevice->usloBase + UART_REG_IER. UART_IER_RXRDY ); 
outp( HDevice->usloBase + UART_REG_MCR. UART_MCR_OUT2 ); 

Finally, Devi ceOpen clears the appropriate mask bit in the interrupt controller, 
again paying attention to the chained controllers. 

Processing Interrupts 

If you are familiar with ring buffers, the ISR in Listing 15.5 (see page 359) will be 
straightforward. The handler first detennines the exact cause of the interrupt and then 
branches to service either a receive ready or a transmit complete. The receive ready 
case reads a byte from the UART, copies the byte to the receive ring buffer and updates 
the buffer indices. In addition, if the receive buffer is full, the ISR uses PostMessage to 
post a message to the window whose handle was provided by the caller in Devi ceOpen. 
The transmit complete case either pulls the next byte out of the transmit ring buffer 
and writes it to the UART or, if the transmit buffer is empty, disables the UART's 
transmit interrupt. 

Although it's invisible here, the ISR isn'treally talking to the physical PIC. 
The End Of Interrupt (EOI) write will actually be intercepted by Windows 
(using some of the 386 protection hardware) and redirected to a Virtual PIC, 
the VPICD. See Chapter 7 for more infonnation about the VPICD. 

Both Devi ceGetReadStatus and Devi ceRead in I NTBASI C. C are slightly modified. 
Devi ceGetReadStatus compares buffer indices to decide if characters are available. The 
Devi ceRead routine just copies from the ring buffer to the calling program's buffer. 
Devi ceGetWri teStatus and Devi ceWri te have similar, transmit-oriented modifications. 
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Cleaning Up 

The Dev; ceCl ose routine handles all the clean-up activities. Of course there's a natu
ral symmetry betWeen Dev; ceCl ose and Dev; ceOpen. Inverting the install sequence, 
this function should disl,lble interrupts, install the original vector, re-enable interrupts, 
and then dispose of the buffer memory. 

Summary 
If you are familiar with interrupt-driven drivers under DOS, you should find the basic 
driver of this chapter quite accessible. (In fact, the ISR could easily be a DOS ISR.) If 
you test the performance of this driver and a comparable DOS driver, you may be sur
prised at the difference. The Windows driver will be significantly slower than its DOS 
cousin. 

Although this chapter's ISR looks like it is written directly on the hardware, it 
really isn't. Windows is using the 386 protection hardware to insert a non-trivial layer 
of virtualizing software between your code and the hardware. This layer introduces 
some very significant service delays. A VxD is your best alternative if you need better 
response time from the driver. 
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Listing 15.1 INTBASIC.H 

#define FLAGS_ON_SLAVE_PIC 
#define FLAGS_OPEN 
#define FLAGS_RXQOVER 

#define MASTER_PICCTRL 
#define MASTER_PIC_MASK 
#defi ne SLAVE_PICCTRL 
#define SLAVE_PIC_MASK 
#define EOI 

#define SET( value. mask 
#define CLR( value. mask 

typedef struct 
{ 

WORD usReadBufSize; 

OxOl 
Ox02 
Ox04 

Ox20 
Ox2l 
OxAO 
OxAl 
Ox20 

value I,:, mask 
value &= (-mask) 

} DRIVERPARAMS. FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS. FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

typedef void (FAR interrupt *VOIDINTPROC)(); 

typedef struct 
( 

char far *Start; 
WORD Size; 
WORD In; 
WORD Out; 

BUFINFO; 

typedef struct 
{ 

WORD usDevNumber; 
WORD usloBase; 
BYTE blrq; 
BYTE bFlags; 
HWND hwnd; 
VOIDINTPROC pfOldHandler; 
BUFINFO RxBuf; 
BUFINFO TxBuf; 
DRIVERPARAMS params; 

DEVICECONTEXT. FAR *HDEVICE; 
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Listing 15.1 (continued) I NTBAS Ie. H 

HDEVICE FAR PASCAL DeviceOpen( HWND hwnd ); 
int FAR PASCAL DeviceClose( HDEVICE ); 
int FAR PASCAL DeviceGetWriteStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceGetReadStatus( HDEVICE, LPWORD pusStatus ); 
int FAR PASCAL DeviceWrite( HDEVICE, LPBYTE lpData, LPWORD pcBytes ); 
int FAR PASCAL DeviceRead( HDEVICE, LPBYTE lpData, LPWORD pcBytes ); 
int FAR PASCAL DeviceSetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverParams( HDEVICE, PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverCapabilities( HDEVICE, PPDRIVERCAPS ppDriverCaps ); 

extern DEVICECONTEXT Devicel; 

Listing 15.2 UART. H 

#define UART_REG_THR 
#define UART_REG_RDR 
#define UART_REG_IER 
#define UART_REG_IIR 
#define UART_REG_LCR 
#define UART_REG_MCR 
#define UART_REG_LSR 
#define UART_REG_BAUDLO 
#define UART_REG_BAUDHI 

#defi ne UART_I I R_NONE 
#defi ne UART_II R_THRE 
#defi ne UART_I I R_RXRDY 
#define UART_IER_THRE 
#define UART_IER_RXRDY 
#define UART_MCR_OUT2 
#define UART_MC~LOOP 
#define UART_LS~THRE 
#define UART_LCR_DLAB 
#defi ne UART_LCR_8Nl 
#defi ne UART_LSR_RXRDY 
#define BAUD_1200 
#defi ne BAUD_110 

OxOO 
OxOO 
OxOl 
Ox02 
Ox03 
Ox04 
Ox05 
OxOO 
OxOl 

OxOl 
Ox02 
Ox04 
Ox02 
OxOl 
Ox08 
OxlO 
Ox20 
Ox80 
Ox03 
OxOl 
Ox60 
Ox0417L 
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Listing 15.3 ISR.H 

void interrupt FAR DeviceIsr( void ); 

Listing 15.4 INTBASIC. C 

#include <dos.h> 
#include <conio.h> 
#include <windows.h> 
#include <windowsx.h> 
#include "intbasic.h" 
#include "uart.h" 
#include "isr.h" 
#include "malloc.h" 

#define DOS_GET_INT_VECTOR Ox35 
#define DOS_SET_INT_VECTOR Ox25 

DEVICECONTEXT Devicel = { 0, Ox3F8, 4, 0, NUll }; 
DRIVERPARAMS DefaultParams = { l024}; 
DRIVERCAPS DriverCaps = { OxOlOl }; 

BOOl ValidHandle( HDEVICE hDevice ); 
VOIDINTPROC DosGetIntVector( BYTE Irq ); 
void DosSetIntVector( BYTE Irq, VOIDINTPROC pHandler ); 
void interrupt FAR DeviceIsr( void ); 
UINT SafePagelock( HGlOBAl sel ); 

HDEVICE FAR PASCAL _export DeviceOpen( HWND hwnd ) 
( 

HDEVICE 
BYTE 
WORD 

hDevice; 
bVector, mask; 
mycs, myds; 

OutputDebugString( "DeviceOpen\n"); 

hDevice = &Devicel; 

if (hDevice->bFlags & FLAGS_OPEN) 
( 

OutputDebugString( "ERROR already open\n"); 
return (HDEVICE)-l; 
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Listing 15.4 (continued) INTBASIC. C 

hDevice-)params = DefaultParams; 
hDevice-)hwnd = hwnd; 

hDevice-)RxBuf.Size = hDevice-)params.usReadBufSize; 
hDevice-)RxBuf.Start = GlobalAllocPtr( GMEM_SHARE I 

GMEM~OVEABLE I 
GMEM_NODISCARD. 
hDevice-)RxBuf.Size ); 

if (!hDevice-)RxBuf.Start) 
{ 

OutputDebugString( "ERROR GlobalAlloc Rx\n"); 
return (HDEVICE)-l; 

} 

SafePageLock( (HGLOBAL)SELECTOROF( hDevice-)RxBuf.Start »; 
hDevice-)RxBuf.In = hDevice-)RxBuf.Out =0; 

hDevice-)TxBuf.Size = hDevice-)params.usReadBufSize; 
hDevice-)TxBuf.Start = GlobalAllocPtr( GMEM_SHARE I 

GMEM_MOVEABLE I 
GMEM_NDDISCARD. 

if (!hDevice-)TxBuf.Start) 
{ 

hDevice-)TxBuf.Size ); 

OutputDebugStri ng ( .. ERROR Gl oba 1 All oc Tx\n"); 
return (HDEVICE)-l; 

} 

SafePageLock( (HGLOBAL)SELECTOROF( hDevice-)TxBuf.Start »; 
hDevice-)TxBuf.In = hDevice-)TxBuf.Out = 0; 

_asm mov myds. ds 
_asm mov mycs. cs 
SafePageLock( myds ); 
SafePageLock( mycs ); 

if (hDevice-)bIrq < 8) 
{ 

mask = _inp( MASTER_PIC_MASK ); 
SET( mask. 1 < hDevice-)bIrq ); 
_outp( MASTER_PIC_MASK. mask ); 

else 
{ 

SET( hDevice-)bFlags. FLAGS_ON_SLAVE_PIC ); 
ma.sk = _inp( SLAVE_PICMASK ); 
SET( mask. 1 < (hDevice-)bIrq-8) ); 
_outp( SLAVE_PIC_MASK. mask ); 
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Listing 15.4 (continued) I NTBAS Ie. C 

if (hDevice->bIrq < S) 
bVector = hDevice->bIrq + OxOS; 

else 
bVector = hDevice->bIrq - S + OxlO; 

hDevice->pfOldHandler = DosGetlntVector( bVector ); 
DosSetIntVector( bVector, DeviceIsr ); 

II Configure UART. 
_outp( hDevice->usIoBase+UART_REG_IER, 0 ); 
_outp( hDevice->usIoBase+UART_REG_LCR, UART_LCR_DLAB ); 
_outp( hDevice->usIoBase+UART_REG_BAUDLO, BAUD_1200 ); 
_outp( hDevi ce- >us IoBase+UART_REG_BAUDHI. 0 ); 
_outp( hDevice->usIoSase+UART_REG_LCR, UART_LCR_SNI ); 
_outp( hDevice->usIoBase+UART_REG_IER, UART_IER-RXRDY ); 
_outp( hDevice->usIoBase+UART_REG_MCR, UART_MCR_OUT2 ); 

II Unmask interrupt at PIC. 
if (hDevice->blrq < S) 
( 

mask = _inp( MASTER_PIC_MASK ); 
CLR( mask, (1 < hDevice->bIrq) ); 
_outp( MASTER_PIC_MASK, mask ); 

else 
( 

mask = _inp( SLAVE_PIC_MASK ); 
CLR( mask, (1 < (hDevice->bIrq-S» ); 
_outp( SLAVE_PIC_MASK, mask ); 

SET( hDevice->bFlags, FLAGS_OPEN ); 

return hDevice; 



352 - Writing Windows VxDs and Device Drivers 

Listing 15.4 (continued) J NTBAS Ie. C 

int FAR PASCAL _export DeviceClose( HDEVICE hDevice ) 
{ 

BYTE mask. bVector; 

OutputDebugString( "DeviceClose\n"); 

if (!ValidHandle( hDevice )) 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) == 0) 
return FALSE; 

CLR( hDevice->bFlags. FLAGS_OPEN ); 

II Disable UART interrupts. 
_outp( hDevice->usIoBase + UART_REG_IER. 0 ); 
_outp( hDevice->usIoBase + UART_REG_MCR. 0 ); 

if (hDevice->bIrq < 8) 
{ 

mask = _inp( MASTER_PIC_MASK ); 
SETf mask. 1 < hDevice->bIrq ); 
_outp( MASTER_PIC_MASK. mask ); 

else 
{ 

SET( hDev;ce->bFlags. FLAGS_ON_SLAVE_PIC ); 
·mask = _inp( SLAVE_PIC_MASK ); 
SET( mask. 1 < (hDev;ce->bIrq-8) ); 
_outp( SLAVE_PIC_MASK. mask ); 

if (hDevice->bIrq < 8) 
bVector = hDevice->bIrq + Ox08; 

else 
bVector = hDev;ce->bIrq - 8 + OxlO; 

DosSetIntVector( bVector. hDevice->pfOldHandler ); 

Global FreePtr( hDevice->RxBuf.Start ); 
GlobalFreePtr( hDevice->TxBuf.Start ); 

return 0; 
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Listing 15.4 (continued) INTBASIC. C 

int FAR PASCAL _export DeviceGetWriteStatus( HDEVICE hDevice, 
LPWORD pusStatus 

OutputDebugString( "DeviceGetWriteStatus\n"); 

if (!ValidHandle( hDevice )) 
return -1; 

if ((hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

if (_inp( hDevice->usloBase + UART_REG_LSR ) & UART_LSR_THRE) 
{ 

el se 
{ 

*pusStatus = 1; 

*pusStatus = 0; 

return 0; 

II ready to transmit 

II not ready to transmit 

i nt FAR PASCAL _export Devi ceGetReadStatus ( HDEVICE hDevi ce, LPWORD pusStatus ) 
( 

OutputDebugString( "DeviceGetReadStatus\n"); 

if (!ValidHandle( hDevice )) 
return -1; 

if ((hDevice->bFlags & FLAGS_OPEN) == 0) 
retu rn -1; 

if (hDevice->RxBuf.ln != hDevice->RxBuf.Out) 
{ 

else 
{ 

*pusStatus = 1; 

*pusStatus = 0; 

return 0; 

II data ready 

II no data ready 
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Listing 15.4 (continued) INTBASIC. C 

int FAR PASCAL _export DeviceWrite( HDEVICE hDevice, LPBYTE lpData, 
LPWORD pcBytes ) 

WORD i; 
char ier; 

OutputDebugString( "DeviceWrite\n"); 

if (i lpData) 
( 

OutputDebugString( "ERROR\n"); 
return -1; 

if (iValidHandle( hDevice » 
( 

OutputDebugString( "ERROR\n"); 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) ~ 0) 
{ 

OutputDebugStri ng ( "ERROR\n"); 
return -1; 

for (i~O; i < *pcBytes; i++) 
{ 

hDevice->TxBuf.Start[ hDevice->TxBuf.ln++ ] ~ lpData[ ]; 
if (hDevice->TxBuf.ln >~ hDevice->TxBuf.Size) 

hDevice->TxBuf.ln ~ 0; 

if (UART_LSR_THRE & _inp( hDevice->usloBase+UART_REG_LSR » 
( 

ier ~ _inp( hDevice->usloBase+UART_REG_IER ); 
if «UART_IER_THRE & ier) ~ 0) 
{ 

return 0; 
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Listing 15.4 (continued) INTBASIC. C 

int FAR PASCAL _export DeviceRead( HDEVICE hDevice, LPBYTE lpData, 
LPWORD pcBytes ) 

WORD cBytes, i; 

OutputDebugStri ng( "Devi ceRead\n"); 

if (! 1 pData) 
{ 

OutputDebugStri ng( "ERROR\n"); 
return -1; 

if (!ValidHandle( hDevice )) 
{ 

OutputDebug5tri ng( "ERROR\n"); 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) = 0) 
{ 

OutputDebugString( "ERROR\n"); 
return -1; 

cBytes = *pcBytes; 

for (;=0; i < cBytes; i++) 
{ 

if (hDevice-)RxBuf.ln = hDevice-)RxBuf.Out) 
break; 

lpData[i] - hDevice-)RxBuf.Start[ hDevice-)RxBuf.Out++ ]; 
if (hDevice-)RxBuf.Out )= hDevice-)RxBuf.Size) 

hDevice-)RxBuf.Out - 0; 
*pcBytes--; 

return 0; 
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Listing 15.4 (continued) INTBASIC. C 

int FAR PASCAL _export DeviceSetDriverParams( HDEVICE hDevice. 
PDRIVERPARAMS pParams 

OutputDebugString( "DeviceSetDriverParams\n"); 

if (l pParams) 
return -1; 

if (lValidHandle( hDevice )) 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

hDevice->params = *pParams; 

return 0; 

int FAR PASCAL _export DeviceGetDriverParams( HDEVICE hDevice. 
PDRIVERPARAMS pParams 

OutputDebugString( "DeviceGetDriverParams\n"); 

if (lpParams) 
return -1; 

if (lValidHandle( hDevice )) 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

*pParams = hDevice->params; 

return 0; 
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Listing 15.4 (continued) INTBASIC. C 

int FAR PASCAL _export DeviceGetDriverCapabilities( HDEVICE hDevice. 
PPDRIVERCAPS ppDriverCaps 

OutputDebugString( "DeviceGetDriverCapabilities\n"); 

if (!ppDriverCaps) 
return -1; 

if (!ValidHandle( hDevice )) 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

*ppDriverCaps ~ &DriverCaps; 

return 0; 

BOOl ValidHandle( HDEVICE hDevice 
{ 

return (hDevice == &Device1); 

VOIDINTPROC DosGetlntVector( BYTE vector ) 
{ 

WORD selHandler. off Handler; 

mov al. vector 
mov ah. DOS_GET_INT_VECTOR 
push es 
int 21h 
mov offHandler.bx 
mov selHandler.es 
pop es 

return( MAKElP( selHandler. off Handler ) ); 
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Listing 15.4 (continued) INTBASIC. C 

void DosSetlntVector( BYTE vector, VOIDINTPROC pHandler 
( 

WORD off Handler, selHandler; 

selHandler ~ SELECTOROF( pHandler ); 
off Handler = OFFSETOF( pHandler ); 

mov al, vector 
mov ah, DOS_SET_INT_VECTOR 
mov dx, off Handler 
mav bx, selHandler 
push ds 
mov ds, bx 
i nt 21h 
pop ds 

UINT SafePageLock( HGLOBAL sel ) 
( 

WORD i, rc; 
static WORD SelArray[ 1024 ]; 

memset( SelArray, 1024 * sizeof(WORD), 0 ); 
for (i~O; i < 1024; i++) 
( 

SelArray[i] ~ LOWORD( GlobalDosAlloc( 1024 ) ); 
if (!SelArray[i]) 

break; 

rc = GlobalPageLock( sel ); 

for (i=O; i < 1024; i++) 
( 

if (!SelArray[i]) 
break; 

GlobalFree( SelArray[i] ); 

return rc; 
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#include <conio.h> 
#include <windows.h> 
#include "intbasic.h" 
#include "uart.h" 
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void interrupt FAR DeviceIsr( void) 
{ 

BYTE ier. intid; 
LPBYTE buf; 
DEVICECONTEXT *hDevice; 

hDevice ~ &Devicel; 

whil e ( TRUE ) 
( 

intid = _inp( hDevice->usloBase + UART_REG_IIR ); 
if (intid == UART_IIR_NONE) 

break; 

if (intid == UART_IIR_RXRDY) 
{ 

if «hDevice->RxBuf.ln+l==hDevice->RxBuf.Out) 
II « hDevi ce- >RxBuf. Out == 0) 

&& (hDevice->RxBuf.ln == hDeVice->RxBuf.Size-l))) 

PostMessage( hDevice->hwnd. WM_USER. O. NULL ); 

buf = hDevice->RxBuf.Start; 
buf[ hDevice->RxBuf.ln++ ] = _inp( hDevice->usloBase + 

UART_REG_RDR ); 
if (hDevice->RxBuf.ln )= hDevice->RxBuf.Size) 

hDevice->RxBuf.ln = 0; 

else if (intid == UART_IIR_THRE) 
{ 

if (hDevice->TxBuf.ln==hDevice->TxBuf.Out) 
( 

ier = _inp( hDevice->usloBase + UART_REG_IER ); 
_outpe hDevice->usloBase + UART_REG_IER. 

ier & (-UART_IE~THRE) ); 
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Listing 15.5 (continued) 

else 
( 

ISR.C 

buf ~ hDevice-)TxBuf.Start: 
_outp( hDevice-)usloBase+UART_REG_THR, 

buf[ hDevice-)TxBuf.Out++ ] ): 
if (hDevice-)TxBuf.Out )~ hDevice-)TxBuf.Size) 

hDevice-)TxBuf.Out ~ 0: 

if (hDevice-)bFlags & FLAGS_ON_SLAVE_PIC) 
_outp( SLAVE_PIC_CTRL, EO! ): 

_outp( MASTER_PI C_CTRL , EOI ): 

Listing 15.6 INTBASIC.MAK 

all: intbasic.dll 

if DRIVER DLL 

intbasic.obj: intbasic.c intbasic.h 
cl -c -W3 -ASw -GD2s -Zi -Oi $*.c 

isr.obj: isr.c intbasic.h 
cl -c -W3 -ASw -GD2s -Zi -Oi $*.c 

intbasic.dll: intbasic.def intbasic.obj isr.obj 
link intbasic+isr,intbasic.dll,intbasic.map ICO IMAP, 

sdllcew libw Inod/noe,intbasic.def 
implib intbasic.lib intbasic.dll intbasic.def 
copy intbasic.dll \windows\driver.dll 

Listing 15.7 INTBASIC. DEF 

LI BRARY DRIVER 
DESCRIPTION "Basic Interrupt-Driven Driver" 
EXETYPE WINDOWS 
DATA PRELOAD MOVEABLE SINGLE 
CODE PRELOAD MOVEABLE NDNDISCAROABLE 



Chapter 16 

All of the drivers in earlier chapters have relied on the processor to transfer data to and 
from the device, either with IN/OUT operations on a port address, or with read/write 
operations on a memory address. Devices that manipulate large blocks of data, such as 
disk controllers, are often capable of transferring data directly to memory using Direct 
Memory Access (DMA), thereby reducing the load on the data bus. 

Windows driver DLLs that use DMA are somewhat uncommon because of the dif
ficulties implicit in assuring that the DMA controller device, which always writes to a 
physical address, is writing into the right logical address. This chapter explains the 
requirements for a DMA buffer and shows how to write a driver that uses DMA to 
transfer data. 

DMA Buffer Requirements 
A buffer used for a DMA transfer, either driver-to-device or device-to-driver, must 
meet several strict requirements. The DMA buffer must be: 

physically contiguous, 

• fixed and pagelocked, and 

• aligned on a 64Kb boundary. 

These requirements are necessary because the DMA controller has no knowledge 
of selectors or pages and perfonns no address translation. The controller is pro
grammed with a starting physical address and simply increments (or decrements) that 
address with each byte transferred in order to generate the next physical address. For 
more details on the exact reason for each of the above requirements, refer to the sec
tion "System DMA Buffer Requirements" in Chapter 6. 
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How to Allocate a DMA Buffer 
Chapter 15 showed how to allocate fixed and pagelocked memory. A search of all 
Windows API or DPMI calls reveals no way to specify 64Kb alignment, but there are 
several usable work-arounds. A small buffer is less likely to cross a 64Kb boundary, 
so in this case a good strategy is to keep allocating (fixed and pagelocked) buffers 
until you get a suitable one, then deallocate the unused ones. 

The larger the buffer, however, the greater the chance the buffer will span a 64Kb 
boundary. To get a large buffer, allocate a buffer twice as big as you need and then use 
the half that doesn't span the 64Kb boundary. 

That leaves the last requirement: physically contiguous pages. There is absolutely 
no Windows API or DPMI call to allocate memory with this attribute. (One API can 
do this, discussed in Chapter 6, but it's available only to VxDs.) There is another 
problem as well. Even if such a buffer could be allocated, the driver must obtain its 
physical address to program the DMA controller's base address register, and there is 
no Windows API or DPMI call to obtain a physical address. The closest you can get is 
a linear address, using GetSe 1 ectorBase. 

DMA DOS Applications Under Windows 
It's interesting to note that a DOS application that does DMA transfers works fine 
under Windows, whereas a Windows application must overcome the contiguous pages 
and physical address obstacles in order to do the same task. How is this possible? The 
secret is the Virtual DMA Device (or VDMAD), a VxD that operates behind the 
scenes. VDMAD's main reason for existence is to make sure DOS applications can do 
DMA transparently just as they did under DOS, even though V86 mode memory 
translation is radically different. 

VDMAD does this by trapping all accesses to the DMA controller and caching the 
data internally instead of letting it go through to the controller. VDMAD is particu
larly interested in the controller's base address register. VDMAD knows that because 
a DOS application is running in V86 mode, the address a DOS application programs 
into this register is really a linear address, not a physical address. So VDMAD trans
lates this linear address into a physical address and writes that to the controller's 
address register. In addition, VDMAD pagelocks the entire buffer and verifies that it is 
physically contiguous. 

If the buffer is not contiguous (and it rarely is), VDMAD substitutes the physical 
address of its own buffer, which meets all DMA requirements. At this point VDMAD 
tells the controller to start with the transfer. When the transfer is over - and if the 
VDMAD-owned buffer was used - VDMAD copies data to the DOS application's 
original address. Despite all this interaction, the DOS application sees nothing but a 
DMA transfer as usual - except that the transfer is much slower because of the dou
ble buffering. 
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DMA Windows Applications 
Can Use this Knowledge 
Because VDMAD traps accesses by Windows applications as well as DOS applica
tions, Windows applications can use this knowledge of VDMAD interaction to over
come the contiguous pages and physical address problems explained above. Basically, 
a Windows application: 

• allocates a buffer, 

• gets its linear address, 

• programs the DMA controller with that linear address, and 

• relies on VDMAD to make everything work out right. 

The only trick here is that a Windows application can't use just any buffer. The 
DMA controller's base address register is 24 bits. Both G10ba1A11oc'ed buffers and 
those buffers statically allocated in a driver's data segment are generally located 
above 2Gb in linear address space where addresses can't be represented in 24 bits. 
The proper method is to use a G1 oba 1 DosA 11 oc' ed buffer, which is guaranteed to 
have a linear address below 1Mb that fits into 24 bits. 

Using Virtual DMA Services Is Better 
The solution described above is easy to implement, but there is a price: G1 oba 1 DosA 11 oc 
takes up precious linear memory under 1Mb. Another solution that avoids this problem 
is to use VDMAD's own DMA buffer, just for the duration of the transfer, then copy the 
data to the driver buffer. Borrowing the VDMAD buffer is possible because the 
VDMAD exports services for Win16 applications. This API, available through INT 4Bh, 
is known as Virtual DMA Services (VDS). 

VDS services are not available to Win32 applications, only to Win16 
applications. 
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The VDS interface is listed in Table 16.1. In summary, VDS includes functions to 
pagelock a buffer, request use of the VDS buffer, and copy data between the VDS 
buffer and another buffer. 

Table 16.1 Virtual DMA Services (VDS). 

DWORD Offset 

DWORD Segment/Selector 

DWORD Physical Address 

Lock DMA Region 

Unlock DMA Region 

Scatter/Gather Lock 

Scatter/Gather Unlock 

Request DMA Buffer 

Release DMA Buffer 

Copy Into DMA Buffer 

Copy Out Of DMA Buffer 

Disable DMA Translation 

Enable DMA Translation 

03h 

04h 

05h 

06h 

07h 

08h 

09h 

OAh 

OBh 

OCh 

whether or not memory is physi
cally contiguous 

pagelocks buffer; if buffer not ok 
for DMA, borrows VDS buffer, 
returns its physical address 

pageunlocks buffer 

pagelocks multiple regions 

pageunlocks multiple regions 

borrow VDS buffer for DMA use 

return VDS buffer to VDS 

copy data into VDS buffer 

copy data from VDS buffer 

tells VDS that address pro
grammed into controller is phys
ical not linear 

tells VDS that address pro
grammed into controller is lin
ear not physical 
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To borrow the VDS buffer for a DMA transfer, a driver calls Request DMA Buffer, 
which returns the physical address of the VDS buffer (which meets all DMA require
ments). Before programming this address into the controller's base address register, 
the driver calls Di sa b 1 e DMA T ra n s 1 at i on. This tells VDS that the address is already 
a physical address and needs no translation. Note that a Windows driver that uses 
VDS for buffer services interacts with the DMA controller - programming address, 
count, mode, etc. - in the exact same manner that a DOS DMA application would. 

When borrowing the VDS buffer, if the transfer is from memory to the device, 
then the driver must call Copy Into DMA Buffer before starting the transfer. This call 
copies data from the driver buffer to the VDS buffer. If the transfer is in the opposite 
direction, then the driver calls Copy Out Of DMA Buffer after the transfer completes. 
In both cases, the driver re-enables translation with Enable DMA Translation and 
relinquishes the borrowed buffer with Re 1 ease DMA Buffer. 

It is possible that a buffer that a driver allocates as fixed and pagelocked also hap
pens to be physically contiguous. If so, then a driver that always requests the VDS 
buffer is incurring the performance penalty of an extra copy (before or after the trans
fer) unnecessarily. 

A better alternative, which is no more difficult to code, is to use Lock DMA Regi on 
instead of Request DMA Buffer. Lock DMA Regi on combines several useful func
tions. The driver passes in a buffer pointer, and VDS first checks to see if the buffer is 
64Kb aligned and is physically contiguous. If both conditions are met, VDS then 
locks all the pages in the buffer and returns with the buffer's physical address. The 
buffer now meets all DMA requirements. If the buffer doesn't meet DMA require
ments, VDS returns with the physical address of its own DMA buffer. 

When using Lock DMA Regi on, the driver calls Di sabl e DMA Transl ati on, pro
grams the physical address into the controller, and starts the transfer. When the trans
fer is complete, the driver calls Enable DMA Trans 1 ati on (and Release DMA Buffer, 
as a result of the Lock, if the VDS buffer was used as a result of the Lock). A call to 
Copy Into DMA Buffer or Copy Out Of DMA Buffer is unnecessary, because VDS 
does this copy automatically if the VDS buffer was used. If the driver's buffer was 
used for the transfer, then there is no copy, which is more efficient. 

Using the VDS buffer for a DMA transfer is far from an ideal solution. The single 
VDSNDMAD buffer must be shared among all Windows and DOS applications that 
are using DMA, so a driver may have to wait for the buffer to become available. More 
importantly, using this intermediate buffer results in an extra data copy operation. 
This is the case whether the buffer is used implicitly with the Gl oba 1 DosA 11 oc and 
invisible VDMAD interaction or used explicitly via VDS. 

The best solution is to write a VxD to allocate the DMA buffer and have your 
driver DLL use the services of the VxD to obtain the buffer's physical address. Chap
ter 11 presented such a V xD and Win 16 application. 
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Summary 

While DMA transfers offer significant performance advantages under other operating 
systems, unless you are willing to write a helper VxD or do all of the DMA inside a 
VxD, you will probably not see the same advantages under Windows. Unless you can 
force a contiguous, fixed, and pagelocked buffer, DMA transfers will incur an extra 
copy operation after the DMA transfer, a cost that more than offsets the normal 
advantages of DMA transfers. 



Chapter 17 

Driver DLLs: 
Using Real Mode Services 
Windows applications run in protected mode, but they can and do use real mode DOS 
and BIOS services. Whether a DOS application running under Windows calls the C 
library read function, or a Windows application calls the Windows 1 read function, 
the read eventually boils down to a simple call to DOS through I NT 21 h, just as it 
does in a program running under DOS. In addition to using DOS and BIOS services, 
Windows applications may also use other real mode services such as TSRs or DOS 
device drivers. 

To properly execute real mode code from a protected mode application the pro
grammer must overcome a number of obstacles. First and most obvious is that the 
processor must be switched from protected mode to V86 mode and then back again. 
Addressing and other differences create more subtle obstacles. Protected mode data 
may live above 1Mb where it is inaccessible to real mode code, complicating parame
ter passing. Also, any parameters returned by the real mode code in segment registers 
will cause an exception when the processor switches back into protected mode, since 
they aren't valid selectors. 

Windows application programmers rarely need to worry about any of the above 
issues. By intercepting INT 21h calls and doing the work necessary to take care of all 
of these issues, the Windows kernel makes it very easy for Windows applications to 
use DOS and BIOS services. Windows driver DLLs don't lead such a protected life. 
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Although many Windows applications never use any real mode services other than 
DOS, a Windows driver DLL may use an existing real mode TSR or DOS device 
driver that provides support for a hardware device. In this case, the driver developer 
needs a good understanding of the translation issues mentioned above, because the 
Windows kernel cannot provide this same level of transparent support for TSRs and 
device drivers it knows nothing about. In addition, there are a few INT 21h services 
that Windows doesn't support (Table 17.1), so the driver developer will also need to 
provide translation when using one of these unsupported services. 

Windows does help with some of this work; Windows will automatically switch 
processor modes as necessary whenever an application issues a software interrupt. 
However, Windows can't provide automatic buffer translation for unknown services 
because it doesn't know which registers contain pointers. If a Windows driver DLL 
needs to exchange pointers with a real mode service, it must do some of the transla
tion work itself. 

The following sections explore several alternate techniques for calling real mode 
services and passing parameters to real mode services. 

Talking to a DOS Device Driver 
By definition, a DOS device driver presents a specific interface: an application 
accesses the device driver as if it were a file, using DOS Open, Read, Wri te, and 
Close calls. An application can either make these DOS calls directly through I NT 21h 
or use the C run-time low-level file functions Copen, _read, etc.). In addition to these 
standard calls, many DOS device drivers support an extended interface through 
IOCTL (110 Control) commands. The C run-time offers no support for issuing IOCTL 
commands to device drivers, so if you need to issue IOCTLs you'll have to issue the 
DOS IOCTL command through embedded assembly. 

Windows applications access DOS device drivers through this same file interface. 
The Windows kernel traps TNT 21h and provides any necessary translation for DOS 
device driver access. For example, Windows looks at the buffer address passed to the 
DOS device driver in both Read and Wri te calls and checks to see if this buffer lives 
above 1Mb. If so, this buffer is unacceptable - DOS device drivers execute in V86 
mode and the process can't access anything above 1Mb. So Windows substitutes the 
address of its own buffer, below 1Mb, before calling the DOS device driver. 

In addition, even if the Windows application's buffer happened to be located 
below 1Mb, the buffer address supplied by the Windows application would be a pro
tected mode address, not a real mode address usable by the DOS device driver. So 
Windows must also convert protected mode pointers to real mode pointers. 
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Table 17.1 DOS functions not supported or partially 
supported by Windows. 

Service Description 
INT 20h Terminate program 
INT 25h Absolute disk read 
INT 26h Absolute disk write 
INT 27h Terminate and stay resident 
INT 21h Func OOh Terminate process 
INT 21h Func OFh Open file with FCB 
INT 21h Func 10h Close file with FCB 
INT 21h Func 14h Sequential read 
INT 21h Func 15h Sequential write 
INT 21h Func 16h Create file with FCB 
INT 21h Func 21h Random read 
INT 21h Func 22h Random write 
INT 21h Func 23h Get file size 
INT 21h Func 24h Get relative record 
INT 21h Func 25h Get interrupt vector 

(supported, but gets protected mode interrupt vector) 
INT 21h Func 27h Random block read 
INT 21h Func 28h Random block write 
INT 21h Func 35h Set interrupt vector 

(supported, but sets protected mode interrupt vector) 
INT 21h Func 38h Get country page 

(supported, but returns real mode call address) 
INT 21h Func 44h Subfunc 02 

(fails if buffer address> 1 Mb and buffer size> 4 Kb ) 
INT 21h Func 44h Subfunc 03 

(fails if buffer address> 1Mb and buffer size> 4Kb) 
INT 21h Func 44h Subfunc 04 

(fails if buffer address> 1Mb and buffer size> 4 Kb) 
INT 21h Func 44h Subfunc 05 

(fails if buffer address> 1Mb and buffer size> 4 Kb) 
INT 21h Func 65h Get extended country info 

(supported, but returns real mode call address) 
INT 21h Func 67h Set handle count 
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In addition to file functions like Open, Read, Wri te, and Close, many DOS device 
drivers also support device-specific functionality through the DOS IOCTL function call 
(INT 21h, AH=44h). A specific subfunction is specified in the AL register. Examples of 
IOCTL subfunctions include Recei ve Control Data (AL=2) and Wri te Control Data 
(AL=3). Both of these subfunctions, and some others as well, use a single buffer parame
ter passed in OS: OX. Because the registers used by each subfunction for the buffer param
eter are defined by the IOCTL interface, Windows is able to perform automatic 
translation for all IOCTL buffers. However, the device driver is free to interpret the 
buffer contents in any way it chooses. So a device driver may view the Recei ve Control 
Data buffer as a structure, and that structure could contain pointers. In this case, Win
dows does not know that the buffer contains pointers that need translation. 

TIlatmeansa Wmdowsapplication that calls, forexarnple, the driver's Read Control Data 
through the IOCTL must handle translation of these embedded pointers itself. 

Special Handling for IOCTLs 
This section will explain what a Windows driver DLL needs to do to issue the 
Read Control Data IOCTL call to a DOS device driver that does use embedded 
pointers in this buffer. In this example, the buffer passed to the device driver via 
OS: OX is not just a character buffer but a CONTROL_OAT A structure, shown in the following 
code. The CONTROL_DATA structure contains a pointer to an array of i nts. The device 
driver will fill in the array, allocated by the DLL, with a list of supported speeds. 

typedef struct 
{ 

void far *speeds; 
int numspeeds; 

CONTROL_DATA; 

It's not strictly necessary to allocate the CONTROL_OAT A structure itself below 1Mb 
because the automatic buffer translation provided by Windows knows about the 
pointer in OS: OX. But Windows does not know that CONTROL_OAT A contains a pointer, 
so the Windows driver DLL must ensure that the speeds array lives below 1Mb and 
also that the speeds pointer is a real mode pointer. 

The Windows API function Gl oba 1 DosA 11 oc exists specifically to provide real 
mode buffers and will always allocate below (linear) 1Mb. The DWORD return value 
from Gl oba 1 Dos A 11 oc provides both a selector for addressing the buffer in protected 
mode and a segment for addressing the buffer in real mode. The Windows driver DLL 
uses both portions because it needs a protected mode pointer for normal buffer access 
and a real mode pointer to give to the device driver. The offset portion of the pointer in 
both cases is always zero. 
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The LOWORD macro extracts the selector, and MAKELP turns the selector into a far 
pointer. The Windows driver DLL uses this pointer to initialize the buffer and to 
access the buffer after the device driver fills it in. The real mode segment is extracted 
with the HIWORD macro and formed into a real mode pointer using MAKELP. Just be 
careful not to dereference this real mode pointer - it's not valid in protected mode. 

The following code uses the methods described previously to retrieve device 
information from a DOS device driver. After the speeds array is filled in by the device 
driver, the code scans the array to determine if the device supports high speeds. 

BOOL SupportsHighSpeed( void) 
{ 

CONTROL_DATA cdata; 
BOOL highspeed = 0; 
WORD far *speeds; 
WORD numspeeds = 8; 
DWORD dw; 
WORD i; 

#define IOCTL_READ_CONTROL_DATA 2 
dw = GlobalDosAlloc( numspeeds * sizeof( WORD) ); 
cdata.numspeeds = numspeeds; 
cdata.speeds = MAKELP( HIWORD( dw ). a ); 
speeds = MAKELP( LOWORD( dw ). a ); 
Dosloctl( IOCTL_READ_CONTROL_DATA. &cdata. sizeof( cdata »; 
for (i=O; i < numspeeds; i++) 
{ 

if (*speeds++ > 9600) 
return( TRUE ); 

Windows is only able to provide automatic translation for DOS device drivers 
because it knows that these drivers art: accessed through I NT 21 h. Even when the 
driver is accessed through I NT 21 h, Windows can only provide perfect translation 
when it knows exactly which parameters are expected. Windows knows everything it 
needs to know about read and write, but not always IOCTL. 

TSRs are a different matter, as each TSR has its own interface with its own 
method of parameter passing. For this reason, interfacing Windows code to a TSR 
usually requires more work than interfacing to a DOS device driver. The next section 
will explore this topic. 
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Talking to TSRs 
TSRs are nearly always accessed via a software interrupt, with parameters passed in regis
ters. In some cases, parameters are instead passed on the stack. In this alternate approach, 
an initial call through a software interrupt returns one or more function addresses. Appli
cations later call these addresses directly, passing parameters on the stack. 

The first method, in which an interrupt is used and parameters are passed in regis
ters, is the simpler of the two, so I'll explain it first. To issue a software interrupt, a 
Windows driver DLL uses the same method a DOS program does: either a run-time 
library function like i nt86 or embedded assembly. 

I prefer to use embedded assembly because the i nt86 function uses pointer 
parameters, and passing pointers to any library functions in a DLL means 
worrying about SS != OS issues. (Refer to Chapter 13 for more on this 
issue.) 

Windows traps all software interrupt instructions and first determines if the soft
ware interrupt is a supported interrupt, like DOS or BIOS, that requires special trans
lation handling. (Refer to Table 17.1 for a list of unsupported interrupts.) If no special 
handling is required, Windows does nothing but switch the processor into V86 mode 
and call the software interrupt handler in the V86 mode IVT. When the real mode 
software interrupt handler issues an I RET, Windows switches the processor back to 
protected mode and the Windows application continues executing. 

If your Windows driver DLL doesn't need to pass any pointers to the TSR and the 
TSR doesn't return any pointers to your driver, then your DLL need only initialize 
processor registers and issue the software interrupt. If pointers are exchanged, your 
DLL must do some extra work. 

Passing Data via Buffers 

A Windows driver DLL must take special precautions when calling a DOS TSR and 
exchanging data via a buffer. If the Windows driver DLL supplies the buffer and the 
TSR fills it in, the precautions involve both allocating real-mode-addressable memory 
and passing the buffer address to the TSR. If the transfer is the other way around (where 
the TSR owns the buffer and gives the Windows driver DLL the buffer's address), the 
precautions involve correctly forming a pointer to access the real mode buffer. 
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The TSR Owns the Buffer 
A pointer returned by a TSR through some pair of registers is, by definition, a real 
mode pointer. A Windows driver DLL can't use this pointer directly - doing so 
results in a protection violation. As a protected mode application, a Windows driver 
DLL must use a protected mode pointer. The trick is to turn the TSR's real mode 
pointer into a protected mode pointer which the driver can use. 

A real mode pointer consists of a segment and an offset; a protected mode pointer 
consists of a selector and an offset. A segment and a selector differ in how the proces
sor transforms each into a linear address. In real mode, the processor computes a lin
ear address by performing a simple arithmetic calculation: physi"ca1 address = 

(segment«4 )+offset. In protected mode, there is no arithmetic relationship 
between a selector and a linear address. Instead, each protected mode selector has an 
associated base address (stored in a descriptor table maintained by the operating sys
tem), and the processor adds the offset portion of the pointer to this base address to 
get the linear address. 

The basic idea behind transforming a real mode pointer to a protected mode pointer 
is this: the driver creates a protected mode selector with a base addres~ equal to the same 
linear address generated by the real mode pointer. Windows provides a set of selector 
API functions to perform this conversion: All ocSe1 ector, SetSe1 ectorBase, and 
SetSe1ectorLimi~ 

As its name suggests, All ocSe 1 ecto r allocates a protected mode selector. The 
single parameter is a template selector. To create a selector to address data, pass in the 
value in the DS register. To create a code selector (this is much less common), use the 
value in CS. Failure to pass the right selector as a parameter usually results in a selec
tor of the wrong type, followed by a protection violation when using the selector. 

SetSe1 ectorBase performs the actual conversion. Given a linear address that cor
responds to the real mode pointer, SetSe 1 ectorBase will update the allocated selec
tor so that its base is at that linear address. 

There is one more important step in setting up the protected mode selector: setting 
its limit with SetSe 1 ectorL i mi t. Unlike a real mode segment, a selector has an asso
ciated length, or limit. A memory access past this limit results in a protection viola
tion. For maximum protection, the Windows driver DLL should set this limit to the 
size of the allocated buffer. 
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The following code encapsulates this series of Windows API calls in a single func
tion, which converts a real mode segment and offset to a protected mode pointer. 

void far *RealPtrToProtPtr( WORD seg, WORD off) 
( 

char far *ptrProt; 
WORD myDs,sel; 

_asm mov myDs, ds 
sel = AllocSelector( myDs ); 

II Set selector's linear address to (seg < 4)+offset 
base = (seg « 4) + off; 
SetSelectorBase( sel, base ); 

II Set selector limit to 64K. 
SetSelectorLimit( sel, 64*1024 ); 

return( MAKELP( sel, 0 ) ); 

The Windows Application Owns the Buffer 
Transferring data in the other direction, from Windows driver DLL to TSR, raises 
exactly the same issues as those described in the earlier section on IOCTL handling. 
A buffer passed from a Windows driver DLL to a TSR must be located below 1Mb, 
because when executing the TSR in V86 mode, the processor can address only 1Mb of 
memory. As described earlier (in the section on IOCTL handling), Gl oba 1 DosA 11 oc 
should be used to allocate such a buffer, and the DWORD return value is used to build 
both a protected mode pointer and a real mode pointer to address the buffer. 

Once the buffer is allocated, the driver must pass the buffer's address to the TSR. 
By convention, TSRs expect parameters in registers, not on the stack. This means the 
Windows application must load the real mode segment and a zero offset into which
ever pair of registers the TSR expects. A DOS application calling a TSR would either 
use assembly language to load the processor registers directly and issue the software 
interrupt, or use the C library _i ntdosx function. Whenever a Windows driver DLL 
passes a buffer to a TSR, calling the TSR is not that simple and requires using DPMI. 
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Calling the TSR using DPMI 

The Windows designers realized it was important to allow Windows applications and 
drivers to communicate with TSRs, so Windows provides a set of services to facilitate 
this. These services aren't part of the normal Windows API, but are instead part of the 
DPMI interface supported by Windows through I NT 31 h. DPMI selector services 
were introduced in Chapter 14's discussion of memory-mapped devices. This section 
will introduce another DPMI service, Simulate Real Mode Interrupt. whichwill 
let our driver call the TSR and pass it a buffer pointer. The following pseudocode shows 
the calling parameters for the DPMI Simulate Real Mode Interruptfunction. 

AX = 0300h 
BL = interrupt number 
BH = fl ags 

Bit 0 = 1 to reset interrupt controller and A20 line 
CX = number of words copied from prot. mode stack to real mode stack 
ES:DI = far pointer to real mode call structure 

Simul ate Real Mode Interrupt passes register information through the real 
mode call structure. This structure contains a field for every processor register and is 
similar to the REGS structure used with the C library function _ i ntdosx. The follow
ing code shows the declaration in C. 

struct 
{ 

unsigned long edi; 
unsigned long esi; 
unsigned long ebp; 
unsigned long res1; 
unsigned long ebx; 
unsigned long edx; 
unsigned long ecx; 
unsigned long eax; 
unsigned short flags; 
unsigned short es; 
unsigned short ds; 
unsigned short fs; 
unsigned short gs; 
unsigned short ip; 
unsigned short cs; 
unsigned short sp; 
unsigned short ss; 
REAL_MODE_CALL_STRUC; 
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The driver fills these register fields as required by the TSR. (Note that you don't 
have to Gl oba 1 DosA 11 oc to make the structure itself real mode addressable, because 
DPMI will take care of this.) Then the driver uses embedded assembly to fill the 
actual processor registers - notthe ones in the call structure ~ as required by the 
DPMI service, and issues an I NT 31h. Software interrupt handlers don't use stack 
parameters, so CX will usually be zero. 

When the Windows driver DLL issues the I NT 31 h, DPMI first copies the contents 
of the real mode call structure to an intermediate area which is addressable in V86 
mode. Next, DPMI switches to V86 mode, then copies each field of the call structure 
to the proper processor register. Last, DPMI issues the requested software interrupt. 

The TSR runs,blissfully unaware that it was invoked by a protected mode applica
tion. When the TSR returns, DPMI switches to protected mode and copies from the 
intermediate call structure back to the Windows driver DLL's original structure. So 
any information passed from the TSR to the Windows driver DLL via a register shows 
up afterward in the real mode call structure. To examine the buffer contents after the 
TSR returns, the driver uses the protected mode pointer built earlier with MAKELP and 
the protected mode selector. 

The following example illustrates passing a buffer to a TSR. In this example, the 
TSR is called through INT 14h and expects a pointer to the buffer in ES: BX. 

DWORD dw; 
WORD seg, sel; 
char far *buf; 
REAL_MODE_CALL_STRUC RmCallStruc; 

dw = GlobalDosAlloc( 256 ); 
seg = HIWORD( dw ); 
RmCallStruc.es = seg; 
RmCallStruc.ebx ~ 0; 
_asm 
{ 

mov ax, 0300h II DPMI func Simulate 
mov bl , 14h II Software Interrupt 
xor bh, bh II fl ags 
xor cx, cx 1/ num word passed on 
mov es, SEG RmCallStruc 
mov di, OFF RmCallStruc 
i nt 31h 

} 

buf = MAKELP( LOWORD( dw ), 0 ); 
II buf can now access data filled in by TSR 

Real Mode Int 
Number 

stack 
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Calling a TSR via an Address 
A less common method of calling a real mode TSR is through an address. Your 
program gets the address by calling the TSR once through a software interrupt, 
and the interrupt handler returns one or more function addresses. One example of 
this strategy is the NDIS 2.0 (Network Driver Interface Standard) interface 
between a protocol stack TSR and a network card device driver. Calling a service 
through an address is just a minor variation on the themes described above. 
Instead of using Si mul ate Softwa re I nterrupt, the Windows application uses 
DPMI Call Real Mode Procedure With Far Return Frame(INT 31h,AX=301h). 
The CS and I P fields of the call structure specify the address of the real mode procedure. 

Be sure when you first retrieve this address from the TSR that you do not 
treat it as a pointer. Yes, it has a segment and an offset, but the two don't 
form a valid pointer as long as you're in protected mode. 

The following code fragment obtains a real mode function address 
through software interrupt 50h then makes a call to the function using DPMI 
Call Real Mode Procedure With Far Return Frame. In addition, the call passes 
two parameters to the real mode function. The first parameter is a function code 
(to tell the TSR what to do), and the second is a pointer to a buffer. This buffer 
must be Gl oba 1 DosA 11 oc'ed, and the buffer address we pass to the TSR is, of course, 
the real mode segment returned by Gl oba 1 DosA 11 ~c. 

II TSR expects function code in AX 
REAL_MODE_CALL_STRUC RmCallStruc; 
DWORD dw; 
WORD seg; 

mov RmCallStruc.eax = 7h; 
II Call DPMI Simluate Real Mode 

II Function: Get Entry Point 
Interrupt through INT 31h 

asm -
{ 

mov ax, 
mov bl, 
mov bh, 
xor cx, 
mov es, 
mov di, 
i nt 31h 

0300h 
50h 
0 
cx 
SEG RmCallStruc 
OFF RmCallStruc 

II DPMI function 
II int number 
II flags 
II stack words 
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II TSR returned the entry point address in CX:DX 
II Move it to CS:IP of call structure 
RmCallStruc.cs = (WORD)RmCallStruc.ecx; 
RmCallStruc.ip = (WORD)RmCallStruc.edx; 

II Allocate memory for buffer to give to TSR 
dw = GlobalDosAlloc( sizeof( MyStruc ) ); 
seg = LOWORD( dw ); 

II Call TSR entrypoint. whose function prototype is: 
II void pascal TsrEntry( WORD FunctionCode. char far *pBuffer ) 
_asm 
( 

II Push parameters onto stack using 
II pascal (left-to-right) calling convention 
mov ax. 1 
push ax 
push seg 
mov ax. 0 
push ax 

II Use DPMI Call Real Mode 
mov ax. 0301h 
xor bh. bh 
mov cx. 2 
moves. SEG RmCallStruc 
mov di. OFF RmCallStruc 
int 31h 

Procedure With Far Return 
II DPMI function 
I I fl ags 
II stack words 

TSR Calls a Windows Application 

Frame 

Another common interaction between a Windows application and a TSR 
involves giving the TSR a callback address. The TSR saves the address and calls 
the function later during the execution of an interrupt handler. Usually the TSR 
passes information to the callback function through registers, like a software 
interrupt would. To get this job done from a Windows driver DLL, you need 
DPMI Allocate Real Mode Callback Address (I NT 31h, AX=03h). 

Unfortunately, it's not enough for the Windows driver DLL to give the TSR a real 
mode pointer. Because Windows is a multitasking environment, the TSR must some
how make certain the correct VM is running when it performs the callback. 
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Windows distinguishes between two types of TSRs: local and global. A local TSR 
is mapped into the address space of a single VM, and is created when a user creates a 
new DOS VM and then loads a TSR from the command line. A user can also load a 
TSR local to the System VM, via the WINSTART. BAT file. The other type of TSR is a 
global TSR, loaded before Windows begins. A global TSR is mapped into the address 
space of all VMs - that is, the system VM and any DOS VMs created later. There is 
a single copy of a global TSR (code and data) in memory, but each VM has its own 
linear address that maps to this single copy in physical memory. 

TSRs do their magic by hooking interrupt vectors, both hardware and software. 
When a global TSR hooks a hardware interrupt, there is no particu4rr VM associated 
with the handler. So Windows calls the TSR's interrupt handler immediately, in the 
context of whatever VM was interrupted. If a global TSR's interrupt handler simply 
services a hardware interrupt and has no interaction with an application, then it 
doesn't matter which VM was interrupted. For example, the BIOS keyboard interrupt 
handler (IRQ 1) reads a key from the keyboard controller and stores it in the BIOS 
keyboard buffer - it does not call an application to give it the key. 

But if a global TSR also calls to an application, through a callback, then it matters 
very much indeed which VM was interrupted. Remember, each VM has its own 
address space. Suppose the TSR interrupt handler is using VM1's address space 
(because VMl happened to be the current VM at the time of the interrupt), and the 
callback is in VM2's address space. Then the callback won't work because the call
back address is valid only when VM2 is executing, not when VMl is executing. The 
TSR will call an address that points to garbage in VMl, and the system will probably 
crash. 

Solution to Callbacks 
Making the TSR Windows-aware will solve this problem. A Windows-aware TSR 
won't use the callback directly, but instead will wait until the System VM (where 
Windows applications live) is the current VM. The TSR can force the System VM to 
be scheduled through an INT 2Fh Switch VMs and Callback interface offered by 
the VMM, and the VMM will call back into the TSR when the System VM is current. 
With the System VM running, the TSR can safely use the DPMI callback, which will 
in turn trigger a mode switch from V86 mode to protected mode. Finally, with the pro
cessor in protected mode and the right VM active, the callback in the Windows appli
cation can execute. 

If you are unable to modify the TSR you're using in order to make it 
Windows-aware, you must write a second helper TSR which is Windows-aware 

. and does the VM switch on behalf of the original TSR. 
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Thus, when a Windows driver DLL communicates with a TSR through a callback, 
the communication involves this sequence of steps: 

The Windows driver DLL: 

1. Uses DPMI Allocate Real Mode Call back Address to allocate a callback. 

2. Gives the DPMI callback address to the TSR. 

TSR at interrupt time: 

3. If current VM is System VM, go to step 5. 

4. IfcurrentVMisnotSystemVM,useINT 2Fh Switch VMs and Callbackto 

force System VM to be scheduled. 

System VM is now current: 

5. Calls DPMI callback address, DPMI switches to protected mode and calls Win

dows driver DLL. 

Windows driver DLL: 

6. Callback executes in protected mode, in the System VM, and accesses TSR data 

through the real mode call structure. 

7. Callback adjusts the real mode call structure CS: I P and returns. 

8. DPMI switches back to V86 mode and returns to TSR. 

Callback Coding Details 

The code for the Windows driver DLL will be affected in two places: when registering 
with the TSR for a callback (usually in an initialization or open function) and in the driver 
callback itself. In addition, the TSR needs additional code to handle the VM switch. 

The following code illustrates how a Windows driver DLL would use the DPMI 
A 11 ocate Real Mode Callback Address service. In order to register with the TSR 
for a callback, the Windows driver DLL first needs to obtain a real mode callback 
address, through DPMI Allocate Real Mode Callback Address. The input param
eters to this service are a protected mode pointer to the function to be called and a pro
tected mode pointer to a real mode call structure. DPMI returns the real mode 
segment and offset of a stub function which, when called from V86 mode, will switch 
into protected mode and then call your driver. The driver then gives the real mode seg
ment and offset returned by DPMI to the TSR. 
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void far *pfFoo; 
WORD CallbackSeg; 
WORD CallbackOff; 

pFoo = &Foo; 
_asm 
{ 

} 

mov ax, 0303h II DPMI Allocate RM Callback 
moves, SEG RmCallStruc 
mov di, OFFSET RmCallStruc 
mov si, pFoo 
push ds 
mov ds, pFoo+2 
int 31h 
pop ds 
mov CallbackSeg, cx 
mov CallbackOff, dx 

II Give CallbackSeg and Callback Off to TSR as callback 

Before using the callback address from the Windows driver DLL (which is really a 
DPMI allocated callback, as shown above), the TSR must check the current VM. If the 
System VM is current, the TSR calls through the callback address and returns. If 
another VM is current, the TSR uses the I NT 2Fh service Swi tch VMs and Ca 11 back. 
(The following code lists the parameters for this service.) This I NT 2 Fh service is just 
another way of calling the VMM's Ca 11_Pr; or; ty_VM_Event service - a fact that 
gives the parameters more meaning. 

The Calling Interfacefor Switch VMs and Ca77back 

INT 2Fh 
AX=1685h (functi on code Switch VMs and Call back) 
BX=switch to this VM (id) 
ES:DI=address of function to call when VM is current 
CX=flags 
DS:SI=priority boost 
Flags: PEF_WaitJor_STI (OOOlh) to wait until interrupts are enabled 

PEF_NoCCrit (0002h) to wait until critical section is unowned 
Priority boost: Cur_Run_VM_Boost (00000004h) to run the VM for its full 

time slice 
Low_Pri_Device_Boost (OOOOOOlOh) to give the VM 

moderate priority over other VMs 
High_Pri_Device_Boost (OOOOlOOOh) to give the VM 

significant priority over other VMs 
Critical_Section_Boost (OOlOOOOOh) to give the VM 

same priority as if in critical section 
Time_Critical_Boost (00400000h) to give the VM 

higher priority than,a critical section 
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To use this service, a TSR tells the VMM (through INT 2Fh) which VM to sched
ule, what kind of priority boost to give the VM (to make it get scheduled faster), and 
an address to call when the VM switch has occurred. Because the code that will exe
cute is a Windows driver DLL, the TSR needs to schedule VMl, which is the System 
VM. A TSR doesn't usually need to use a priority boost, so this parameter would usu
ally be zero. Last, the callback address given to VMM is the same one given to the 
TSR by the Windows driver DLL. 

After making the I NT 2 Fh call, theTSR returns. The VMM will schedule the Sys
tem VM, and the System VM will eventually become the current VM. At that time, 
VMM will call the callback address registered with Switch VMs and Callback. 
When that happens, the callback in the Windows driver DLL will finally execute in 
protected mode and in the right VM. The following code fragment illustrates the use 
of Switch VMs and Callback in a TSR 

; TSR uses Switch 
mov ax. 1683h 
int 2fh 
cmp CallbackVM. 1 
jz same_VM 

VMs and Callback 
function Get Current VM 

is SYSVM current? 
yes. no need to switch 

mov ax. 1685h function Switch VM and Callback 
mov bx. 1 switch to SYSVM 
mov cx. 0 fl ags 
mov si. 0 priority boost 
; callback address registered by Windows driver goes in ES:DI 
mov di. WORD PTR CallbackAddr+2 
moves. di 
mov di. WORD PTR CallbackAddr 
int 2fh 
jmp xit 

same_VM: 
pushf ; SYSVM is current. use callback directly 
call DWORD PTR:CallbackAddr 
xit: 

Once the System VM is current, the callback used by the TSR can execute - in the 
right VM. This callback is actually a DPMI stub function with several important duties. 
The stub immediately preserves all V86 mode register values (by copying them into a 
call structure) and then switches into protected mode. Next, the stub loads ES: 01 with 
a pointer to the call structure and loads OS: S I with a protected mode pointer that 
addresses the real mode stack. Finally, the stub calls the Windows driver DLL, at the 
address originally registered by DPMI Allocate Real Mode Call back Address. 
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The driver now executes. Because the driver is running in interrupt context, the usual 
prohibitions apply: no DOS or BIOS functions and only Windows API functions from the 
interrupt-safe list in Chapter 15. Also, any pointers in the real mode call structure (pointed 
to by ES: OI) are real mode pointers and thus can't be used directly but must be trans
lated into protected mode pointers. Earlier in this chapter, I've explained how to perfonn 
this conversion using All ocSe 1 ector, SetSe 1 ectorBase, and Set5e 1 ectorL i mit. 

The driver can access register values passed from the TSR by examining the 
appropriate field of the call structure (pointed to by ES: 01). The driver can also mod
ify the call structure to return register values to the TSR. Moreover, if the TSR com
municates with the driver through stack parameters instead of register parameters, the 
driver can even access the real mode stack, using the protected mode pointer in OS: 51. 
For example, if the TSR pushes a single word value onto the stack and does a far call 
to the callback address, the (real mode) stack looks like: 

SS:SP+4 - parameter 
SS:SP+2 - return address of TSR (segment) 
SS:SP - return address of TSR (offset) 

Thanks to the DPMI stub function, when the Windows driver DLL executes, these 
same values can be accessed relative to OS: S I: 

05:S1+4 - parameter 
OS:S1+2 - return address of TSR (segment) 
05:S1 - return address of TSR (offset) 

When the driver finishes, it can't just exit with a simple iret instruction. When it 
returns and DPMI switches back to V86 mode, DPMI restores all V86 mode registers 
from the call structure, including CS and I P. That means the real mode code will resume 
execution at the CS: I P value in the call structure. Normally you want the TSR to 
resume execution at the instruction/allowing the far call into the callback. Notice these 
desired CS and I P values are on the real mode stack pointed to by OS: SI, at locations 
S I +2 and S I. So the Windows driver DLL retrieves the desired CS and I P from the real 
mode stack and places them in the real mode call structure before doing the iret. 
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The following code illustrates how to fix up the CS: I P in the call structure. This 
fix up should be completed immediately before leaving the callback in the Windows 
driverDLL. 

Callback: 
do your own thing 
access real mode call structure via ES:DI 
if parameters needed from real mode stack, 
use DS:SI 

call DoYourOwnThing 

Extract proper real mode CS and IP from 
top of real mode stack, pointed to by DS:S1. 
Put CS and IP values into real mode call structure 

cld 
lodsw 
mov WORD PTR es:[di .RM_IPJ, ax 
lodsw 
mov WORD PTR es:[di .RM_CSJ, ax 
add WORD PTR es:[di .RM_SPJ, 4 
i ret 

Summary 

real mode IP 

real mode CS 
toss old CS:IP from stack 

The DPMI services make it possible for a Windows driver DLL to communicate with 
DOS TSRs and device drivers. If you already have a DOS driver, then modifying it to 
be Windows-aware may be your shortest development path. 

If, however, you are creating a DOS-based driver from scratch, the information in 
this chapter should make it obvious that a driver that is called via software interrupt and 
that expects all parameters in registers will be the easiest to implement and support. 
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Listing 17.1 DOSTSR.H 

typedef struct 
{ 

WORD usReadBufSize; 
} DRIVERPARAMS. FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS. FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

typedef struct 
{ 

WORD usDevNumber; 
BOOL bFlags; 
DRIVERPARAMS params; 

DEVICECONTEXT. FAR *HDEVICE; 

HDEVICE FAR PASCAL DeviceOpen( void ); 
WORD FAR PASCAL DeviceClose( HDEVICE ); 
WORD FAR PASCAL DeviceGetWriteStatus( HDEVICE. LPWORD pusStatus ); 
WORD FAR PASCAL DeviceGetReadStatus( HDEVICE. LPWORD pusStatus ); 
WORD FAR PASCAL DeviceWrite( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
WORD FAR PASCAL DeviceRead( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
WORD FAR PASCAL DeviceSetDriverParams( HDEVICE. PDRIVERPARAMS pParms ); 
WORD FAR PASCAL DeviceGetDriverParams( HDEVICE. PDRIVERPARAMS pParms ); 
WORD FAR PASCAL DeviceGetDriverCapabilities( HDEVICE. PPDRIVERCAPS ppDriverCaps ); 

Listing 17.2 UART.H 

#define UART_REG_THR OxOO 
#defi ne UART _REG_RDR OxOO 
#define UART_REG_IER OxOl 
#define UART_REG_IIR Ox02 
#define UART_REG_LCR Ox03 
#define UART_REG-MCR Ox04 
#define UART_REG_LSR Ox05 
#define UART_REG-BAUDLO OxOO 
#define UART_REG_BAUDHI OxOl 

#define UART_IIR_NONE OxOl 
#defi ne UART _I I R_ THRE Ox02 
#defi ne UART_IIR_RXRDY Ox04 
#define UART_IER_THRE Ox02 
#defi ne UART_I EfCRXRDY OxOl 
Iidefi ne UART_MCR_OUT2 Ox08 
#define UART_MCR_LOOP OxIO 
#define UART_LSR_THRE Ox20 
I/defi ne UART _LCR_DLAB Ox80 
#define UART_LCR_8NI Ox03 
I/defi ne UART_LSR_RXRDY OxOI 
#define BAUD_1200 Ox60 
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Listing 17.3 DOSTSR. C 

I/include <io.h> 
I/include <fcntl.h> 
I/include <sys\types.h> 
I/include <sys\stat.h> 
I/include <errno.h> 
I/include <stdlib.h> 

I/include <windows.h> 
I/include <conio.h> 
I/include "dostsr.h" 

I/define FLAGS_OPEN Ox04 

I/defi ne TSRJUNCOPEN OxOO 
I/defi ne TSRJUNCREADST ATUS OxOO 
I/define TSRJUNCWRITESTATUS OxOO 
I/define TSRJUNCREAD OxOO 
I/define TSR_FUNC_WRITE OxOO 
I/defi ne TSRJUNCGETPARAMS OxOO 
I/defi ne TSRJUNCGETCAPS OxOO 

I/define SET( value, mask value I~ mask 
I/define ClR( value, mask value &~ (-mask) 

DEVICECONTEXT Device1 ~ { 0 ]; 
DRIVERPARAMS DefaultParams ~ { 1024 }; 
DRIVERCAPS DriverCaps ~ { Ox0101 ]; 

BOOl ValidHandle( HDEVICE hDevice ); 
WORD DosGetStatus( WORD hnd, WORD InOut, BOOl *pReady ); 
WORD DosReadOrWrite( WORD hnd, WORD ReadOrWrite, lPBYTE lpBuf, lPWORD pcbBytes ); 
WORD DosGetDeviceData( WORD hnd, WORD *pData ); 

HDEVICE FAR PASCAL _export DeviceOpen( 
{ 

HDEVICE 
WORD 

hDevice; 
usData; 

OutputDebugString( "DeviceOpen\n"); 

hDevice ~ &Device1; 

if (hDevice->bFlags & FLAGS_OPEN) 
return -1; 

hDevice->usDosHandle ~ open( "com1" O_BINARY O_RDWR); 
if (hDevice->usDosHandle ~ -1) 

return -1; 

hDevice->params ~ DefaultParams; 

SET( hDevice->bFlags, FLAGS_OPEN); 

return hDevice; 
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Listing 17.3 (continued) DOSTSR.C 

WORD FAR PASCAL _export DeviceClose( HDEVICE hDevice 
( 

OutputDebugString( "DeviceClose\n"); 

if (!ValidHandle( hDevice )) 
return -1: 

if «hDevice-)bFlags & FLAGS_OPEN) == 0) 
return -1; 

ClR( hDevice->bFlags. FLAGS_OPEN ); 

close( hDevice->usDosHandle ); 

return 0; 

WORD FAR PASCAL _export DeviceGetWriteStatus( HDEVICE hDevice. lPWORD pusStatus ) 
( 

BOOl bReady; 

OutputDebugString( "DeviceGetWriteStatus\n"); 

if (!ValidHandle( hDevice » 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

DosGetStatus( hDevice->usDosHandle. DOS_STATUS_OUT, &bReady ); 
if (bReady) 
{ 

} 

else 
{ 

*pusStatus ~ 1; 

*pusStatus ~ 0; 

return 0; 

II ready to transmit 

II not ready to transmit 
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Listing 17.3 (continued) DOSTSR. C 

WORD FAR PASCAL _export DeviceGetReadStatus( HDEVICE hDevice. lPWORD pusStatus ) 
( 

BOOl bReady; 

OutputDebugString( "DeviceGetReadStatus\n"); 

if (!ValidHandle( hDevice » 
return -1; 

if ((hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

DosGetStatus( hDevice->usDosHandle. DOS_STATUS_IN. &bReady ); 
if (bReady) 
{ 

} 
else 
( 

*pusStatus = 1; 

*pusStatus = 0; 

return 0; 

II data ready 

II no data ready 

WORD FAR PASCAL _export DeviceWrite( HDEVICE hDevice. lPBYTE lpData. lPWORD pcBytes ) 
( 

OutputDebugString( "DeviceWrite\n"); 

if (! 1 pData) 
return -1; 

if (!ValidHandle( hDevice » 
return -1; 

if ((hDevice->bFlags & FLAGS_OPEN) == 0) 
return -1; 

DosReadOrWrite( hDevice->usDosHandle. DOS_WRITE. lpData. pcBytes ); 

return 0; 
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Listing 17.3 (continued) DOSTSR. C 

WORD FAR PASCAL _export DeviceRead( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
{ 

WORD i; 

OutputDebugStri ng( "Devi ceRead\n"); 

if (! 1 pDa ta ) 
return -1; 

if (!ValidHandle( hDevice » 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) -- 0) 
return -1; 

DosReadOrWrite( hDevice->usDosHandle. DOS_READ. lpData. pcBytes ); 

return 0; 

WORD FAR PASCAL _export DeviceSetDriverParams( HDEVICE hDevice, 
PDRIVERPARAMS pParams 

OutputDebugString( "DeviceSetDriverParams\n"); 

if (!pParams) 
return -1; 

if (IValidHandle( hDevice » 
return -1; 

if «hDevice-)bFlags & FLAGS_OPEN) -- 0) 
return -1; 

hDevice-)params = *pParams; 

return 0; 

WORD FAR PASCAL _export DeviceGetDriverParams( HDEVICE hDevice, 
PDRIVERPARAMS pParams 

OutputDebugStri ng( "Devi ceGetDri verParams\n"); 

if (lpParams) 
return -1; 

if (IValidHandle( hDevice » 
return -1; 

if «hDevice->bFlags & FLAGS_OPEN) -- 0) 
return -1; 

*pParams = hDevice->params; 

return 0; 
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Listing 17.3 (continued) DOSTSR. C 

WORD FAR PASCAL _export DevieeGetDriverCapabilities( HDEVICE hDeviee. 
PPDRIVERCAPS ppDriverCaps 

OutputDebugStri ng( "Devi eeGetDri verCapabi 1 i ti es\n") ; 

if (lppDriverCaps) 
return -I; 

if (lValidHandle( hDeviee » 
return -1; 

if «hDeviee->bFlags & FLAGS_OPEN) == 0) 
return -1; 

*ppDriverCaps = &DriverCaps; 

return 0; 

Baal ValidHandle( HDEVICE hDevice 
{ 

return (hDeviee == &Deviee1); 

WORD DosGetDevieeData( WORD hnd. WORD *pData 
{ 

WORD re = 0; 
WORD data; 

_asm 
{ 

mov ah. Ox44 
mov al. OxOO 
mov bx. hnd 
int 21h 
jne ok 
mov re. ax 
jmp xit 

ok: mov data. ax 
jmp xit 

xit: 
J 

*pData = data; 

return re; 
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Listing 17.3 (continued) DOSTSR. C 

WORD DasGetStatus( WORD hnd. WORD InOut. BOOl *pReady ) 
{ 

WORD re ~ 0; 
BYTE stat; 

*pReady ~ 0; 
asm 

{ 

mav ax. inOut 
mav ah. Ox44 
mav bx. hnd 
int 21h 
jne ak 
mav re. ax 
jmp xit 

ak: mav stat. al 
jmp xit 

xit: 
} 

*pReady ~ (stat ~~ OxFF ? TRUE FALSE); 

return re; 

WORD DasReadOrWrite( WORD hnd. WORD ReadOrWrite. lPBYTE lpBuf. lPWORD pcbBytes ) 
{ 

WORD re ~ 0; 
WORD eBytes ~ *pebBytes; 

_asm 
{ 

mav ax. ReadOrWri te 
xehg ah. al 
mav bx. hnd 
may ex. eBytes 
push ds 
lds di. lpBuf 
mav dx. di 
int 21h 
pap ds 
jne ak 
mav re. ax 
jmp xit 

ak: mav cBytes. ax 
jmp xit 

xit: 
} 

*pebBytes ~ eBytes; 

return re; 
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Listing 17.3 (continued) DOSTSR.C 

lIifdef DDS 
main() 
( 

char abOut[4]. abIn[4]; 
unsigned short status; 
HDEVICE hDev; 
unsigned short cb; 

hDev ~ DeviceOpen(); 
DeviceGetWriteStatus( hDev. &status ); 
cb ~ 3; 
abOut[O] ~ . a' ; 
abOut[1] ~ . t' ; 
abOut[2] ~ '\r'; 
DeviceWrite( hDev. abOut. &cb ); 
DeviceGetReadStatus( hDev. &status ); 
DeviceRead( hDev. abIn. &cb ); 
DeviceC1ose( hDev ); 

} 

lIendif 

Listing 17.4 DOSTSR. MAK 

all: dostsr.dll 

it DRIVER DLL 

dostsr.obj: dostsr.c dostsr.h 
c1 -c -W3 -ASw -Gsw2 -Oi $*.c 

dostsr.d11: dostsr.def dostsr.obj 
link dostsr.dostsr.d11 .dostsr.map ICO IMAP.sd11cew 1ibw Inod/noe.dostsr.def 
imp1ib driver.1ib dostsr.d11 
copy dostsr.d11 \windows\driver.d11 

Listing 17.5 DOSTSR. DEF 

LIBRARY DRIVER 
DESCRIPTION "DLL To Interface to DOS TSR" 
EXETYPE WINDOWS 
DATA PRELOAD MOVEABLE SINGLE 
CODE PRELOAD MOVEABLE DISCARDABLE 



Chapter 18 

Thunks: 
Calling from 32-bit to 16-bit 
Chapter 13 eplained that Win32 DLLs can perform only very limited types of hard
ware interaction. Although a Win32 DLL may issue I N and OUT instructions safely 
when running under Windows 95 (but not under NT), a Win32 DLL may not access a 
memory-mapped device, perform DMA transfers, or handle hardware interrupts. To 
properly implement these tasks under Win32 you should write a true device driver -
a VxD for Windows 95 and a kernel-mode driver for Windows NT. 

If you must support Windows NT, you really must write a driver. But if you're con
cerned only about Windows 95, there is an alternative to writing a VxD. You can put the 
hardware access in a 16-bit DLL (using the techniques in Chapters 14 through 17), and 
then write a translation layer to connect the Win32 application to the 16-bit DLL. The 
translation layer is called a "thunk". Note that Windows 95 uses flat thunks, not to be con
fused with the universal thunks supported by Win32 or the generic thunks supported by 
Windows NT. From now on I'll usually just say thunk, but I will always meanfTat thunk. 

The rest of this chapter will examine: 

What is a flat thunk? 

What tasks are performed by the thunk layer? 

How does the thunk layer do its "magic"? 

What are the steps for implementing a thunk layer? 

How is a thunk layer built? 

393 
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What is a Flat Thunk? 
Suppose you're writing a Win32 application, and you need to call some functions in a 
Win16 DLL. Figure 18.1 shows what you want to do. 

Because of the 32-bitlI6-bit boundary shown in Figure 18.1, simply calling from 
APP32 to DLL16 won't work. In order to successfully call from 32-bit down to 16-bit, 
you must address such issues as: pointer translation (flat vs segment offset) , stack 
addressing (SS: ESP vs SS: SP), and code segment size (16-bit or 32-bit). A thunk is a 
layer of code that handles these issues; that does the "magic" necessary to allow 32-bit 
code to call 16-bit code. Although flat thunks can be used in the other direction, 16-to-32, 
I'll discuss only 32-to-16 here, because hardware access functions are in 16-bit code. 

You should encapsulate the thunk layer in a 32-bit DLL. Create a 32-bit DLL that 
contains the same set of exported functions as the 16-bit DLL you want to call. In 
each of the Win32 DLL's exported functions, the function in the 32-bit DLL calls the 
analogous function in the 16-bit DLL. 

Figure 18.1 Showing why 32-bit applications can't 
call directly to a 16-bit DLL. 

• Pointers are 32-bit flat model 
• Stack addressed as 55: E5P 
• Code segments are 32-bit 

• Pointers are segment offset (16: 16) 
• Stack addressed as 55: 5 P 
• Code segments are 16-bit 
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The 32-bit DLL doesn't call the 16-bit DLL directly, but goes through a thunk layer 
(Figure 18.2). If the Bat-to-segmented pointer conversions and stack switching mentioned 
above sounds too complicated, don't worry - you don't have to write the code in the 
thunk layer. Thunks are automatically generated by the Microsoft Thunk Compiler. You 
provide a "thunk script" (a file containing modified function prototypes) as input, and the 
thunk compiler produces code (an assembly language source file) as output. It is this 
code, linked into both the 32-bit DLL and the 16-bit DLL, that acts as the thunk layer. 

Figure 18.2 Bridging the 16-bit/32-bit boundary with 
a thunk and KERNEL32 services. 

N N 
...... S E S 

ASM source produced by 
Thunk Compiler, then assembled 
with flag - D I 5_32 to produce OBI. 

~ ~ ~ ~ 
- - - - - - - ~u Z - - - - -..... ~ - - 16-bitJ32-bit Boundary - - - - - -

.~ ~ ~~ ~ 
1:~ .~ ~S .~ 

ASM source provided by 
Thunk Compiler, then assembled 
with flag - D I 5_16 to produce OBI. 
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The Thunk Compiler is not provided with the Visual C++ package. It's only 
available in the Win32 SDK, which is itself only available with the MSDN 
CD Professional Subscription. You'll also need the Microsoft Assembler 
(MASM) to assemble the thunk compiler's output. 

The assembly language source produced by the thunk compiler serves double 
duty; it's used on both sides of the 16-bit/32-bit boundary. In building the thunk, the 
assembly file is assembled first as 32-bit code (using the flag -0 I 5_32), producing a 
32-bit OBJ which is linked into the Win32 DLL. Then the same ASM file is assem
bled again as 16-bit code (using the flag -OI5_16), producing a 16-bit OBJ, and 
linked into the 16-bit DLL. 

Thunk Layer Tasks 
The flat thunk layer generated by the Thunk Compiler performs these tasks: 

• translates pointer parameters, 

• translates integer parameters, 

switches from 32-bit to 16-bit stack and back again, 

transfers control from the 32-bit calls to the 16-bit target and back again, and 

• translates return values to the appropriate 32-bit representation. 

When a pointer parameter is passed from 32-bit code to 16-bit code via a thunk, 
the pointer must be translated from a flat (0:32) pointer to a far (16:16) pointer. 
Because a flat pointer is a linear address, the thunk layer's translation involves allocat
ing a selector and setting its base address equal to the flat pointer value. 

A simpler translation must be performed on integer-sized parameters, because an 
integer is 32 bits for 32-bit code but only 16 bits for 16-bit code. To handle an integer 
parameter, the 32-bit caller would push a 32-bit argument on the stack, but the called 
16-bit function would pop only 16 bits off the stack. The thunk code must adjust the 
stack to contain the truncated (16-bit) version of the integer instead. 

After converting parameters, the thunk layer prepares for the trip to 16-bit land by 
switching from a 32-bit stack to a 16-bit stack (i.e. from a stack addressed by 55: E 5 P 
to a stack addressed by 55: 5P). This translation also involves selector allocation and 
manipulation. On the return trip, from 16-bit code back to 32~bit code, the thunk code 
reverses the process to return to the original 32-bit stack. 

Once the parameters and stack have been modified, the thunk layer transfers control 
from 32-bit to 16-bit, but not directly from the thunk compiler code. Instead, the thunk 
compiler code makes a call into a KERNEL32 function; KERNEL32 completes the 
32-to-16 transition, using some fancy stack manipUlation to push the segment and offset 
of the 16-bit target onto the stack, and then uses a RETF to essentially 'jump" into the 
16-bit world. (The next section will explain more about KERNEL32's role in the thunk.) 
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Once the call has returned to 32-bit land, the thunk layer converts the 16-bit 
callee's return value, if it had one. A 16-bit function returns a 32-bit value in two reg
isters, OX :AX. But its 32-bit caller expects a 32-bit return value to be found in EAX, so 
the thunk layer must copy the return value from OX: AX to EAX. 

Thunk Layer Magic 
In this section, we'll examine a simple thunk script and the code produced by the 
thunk compiler to see how a thunk layer performs its magic. 

Below is a thunk script for a 16-bit DLL with a single export~~ function named 
OLL16Foo, which has an integer parameter and a voi d pointer pafameter and returns 
an unsigned long. 

unsigned long DLL16Foo(int nThunk, void *lpvoidThunk) 
{ 

lpvoidThunk = input; 

The thunk script contains something that looks like a function, but acts more like a 
function prototype. Inside the function "body" is additional information about the 
function's pointer parameters, specifying each pointer parameter as an input parame
ter, an output parameter, or both. The input keyword directs the thunk compiler to 
generate code to translate a 32-bit flat pointer to a far pointer before calling the 16-bit 
DLL, the output keyword directs the thunk compiler to generate code that translates 
a far pointer "returned" by the 16-bit DLL to a flat pointer usable by 32-bit code, and 
the i nout keyword results in code that does both. By default, the thunk compiler 
treats all pointers as input. The following fragment shows the assembly code gener
ated for the OLL16Foo thunk script. 

public DLL16Foo@32 
DLLl6Foo@32: 

mov cl,O 
public IIDLL16Foo@8 
IIDLLl6Foo@8: 

push ebp 
move bp,esp 
push ecx 
sub esp,60 
push word ptr [ebp+8J ;nThunk: dword-)word 
call SMapLS_IP_EBP_12 ;lpvoidThunk: flat-)16:16 
push eax 
call dword ptr [pfnOT_Thunk_X2to16J 
shl eax,16 
shrd eax,edx,16 
call SUnMapLS_IP_EBP_12 
1 eave 
retn 8 
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Note that although the thunk script gave the 16-bit DLL's function name as DLL16Foo, 
the name of the function in the generated assembly code is different: DLL16Foo@32. This 
is an example of "name decoration" for the PASCAL naming/calling convention. (The 32 
refers not to 32-bits, but to the total number of bytes used for parameters.) Because 
functions exported by a 16-bitDLL are always declared as PASCAL, the code in the Win32 
DLL that calls DLL16Foo actually results in compiled code that calls DLL16Foo@32. 

Immediately following the function name declaration is a mov instruction and 
another function name declaration: 

DLLl6Foo@32: 
mov cl ,0 

public IIDLL16Foo@8 
IIDLLl6Foo@8: 

This second function, IDLLl6Foo@8, is a helper function which expects the CL reg
ister to contain a "function number" parameter. If the thunk script included multiple 
function prototypes, the thunk compiler code for each of them would have a similar 
MOV CL instruction, but with a different operand, followed by ajump to I IDLLl6Fo0@8. 
So I IDLLl6Foo@8serves as a common intermediate function for all of the 16-bit DLL 
exported functions. 

The first few instructions in I I D L Ll6 F oo@8 are standard prologue code for setting 
up the stack frame and reserving storage for local stack variables. The PUSH ECX puts 
the "function number" parameter from its immediate caller (in this case 
DLLl6Foo@32) on the stack in preparation for a call to another subroutine later. The 
next push, PUSH WORD PTR [EBP+8], is the translation of the 32-bit caller's first 
parameter, an integer. The 32-bit caller pushed a DWORD onto the stack, which now 
lives at EBP+8, and this thunk code takes only a WORD of that parameter and pushes it 
onto the stack as an integer parameter for the 16-bit callee. 

The 32-bit caller's pointer parameter lives at EBP+12, and the next instruction, 
CALL SMapLS_I P _EBP _12, calls a subroutine to translate this pointer. If DLLl6Foo was 
declared such that the pointer parameter ended up at EBP+8 instead (e.g. if there was 
no integer parameter), then the thunk compiler would have generated code to call 
SMapLS_I P _EBP _8 instead. 

SMapLS_I P _EBP _12 is an undocumented function exported by KERNEL32. DLL. 
This function translates the 32-bit flat pointer located at EBP+12 to an equivalent 
16-bit far pointer. Its sibling functions - EBP _8, EBP _10, etc. - act similarly for 
pointers located at EBP+8, EBP+ 10, etc. A flat pointer is really a linear base address, so 
the translation involves nothing more than allocating a 16-bit selector and setting the 
selector's base address equal to the value at EBP+ 12. SMapLS_I P _EBP _12 doesn't actu
ally allocate selectors, but uses the next available Local Descriptor Table (LDT) selec
tor from a pool of already-allocated selectors. This selector is returned to the pool 
when the thunk compiler code calls SUnMapLS_I P _EBP _12. This cleanup call happens 
after the thunk has returned from the call down to the 16-bit DLL. 
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Now that the parameters are translated, the switch from 32-bit to 16-bit happens as 
part of this line: 

call dword ptr [pfnOT_Thunk_X2to16J 

This call through a table of function pointers eventually results in a call to 
another undocumented KERNEL32 function called OT_Thunk. OT_Thunk is passed 
the 16: 16 address of the real OLLl6Foo function. It is OT _Thunk that performs the 
switch from a 32-bit stack to a 16-bit stack and then jumps to the 16: 16 address of 
the real OLLl6Foo function in the real 16-bit DLL. 

The process of initializing the table of function pointers mentioned above involves 
quite a lot of black magic. I won't go into detail, but in short, the 32-bit DLL must call 
a special initialization function, called ThunkConnect32, in its 011 Ma in. The 
ThunkConnect32 function is also generated by the Thunk Compiler and "connects" 
the 32-bit DLL to the 16-bit DLL by initializing the table with the 16: 16 address of 
each of the 16-bit DLL's exported functions. (These addresses aren't known until run 
time, when the 16-bit DLL has been loaded.) ThunkConnect32 uses yet another 
undocumentedKERNEL32 function, Connect32, to obtain these 16: 16 addresses for 
the table. 

Creating a Thunk Layer, Step by Step 
To create a thunk DLL, follow the following procedure: 

1. Create a thunk script by modifying the 16-bit DLL's header file to include input, 

output, and i nout information about each exported function's parameters. 

2. Create a 32-bit DLL with a set of exported functions that match the 16-bit DLL's 

exported functions. 

3. Create a DLL entry point in the 32-bit DLL (usually called 011 EntryPoi nt) 

which calls CThunkConnect16, where X is the name of the thunk script. 

4. Add a new exported function to the 16-bit DLL, called 011 EntryPoi nt, which 
calls X_ThunkConnect32, where X is the name of the thunk script. 

The above procedure, as well as the build procedure in the following section, 
must be followed exactly. Deviation will most likely result in a thunk that 
doesn't build, doesn't work, or both. 
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I'll explain each of these steps in more detail, using the 16-bit SKELETON DLL 
from Chapter 13 as an example. The 32-bit thunk DLL will be called SKEL32. DLL and 
will consist of: SKEL32. C [the 32-bit DLL source file (Listing 18.3, page 408)]; 
SKEL32. H [the header used by Win32 applications (Listing 18.2, page 407)]; 
SKEL32. DEF [the module definition file (Listing 18.5, page 410)]; and SKELETON. THK 
[the thunk script (Listing 18.1, page 405)]. 

The Thunk Script 

The starting point for the script file is the 16-bit DLL's header file, SKELETON. H. The 
first step in creating SKELETON. THK from SKELETON. H is to add the following line: 

enablemapdirect3216 = true; Ilcreates 32 to 16 thunk 

This tells the thunk compiler the direction of the thunk - in this case, from 32-bit to 
16-bit. The next step is to take each function in SKELETON. H, modify its counterpart in 
SKELETON. THK to include a "function body" containing parameter information. The 
function definition is also modified to remove any declaration keywords (such as 
export, far, pascal). Thus, the Devi ceGetWri teStatus definition in SKELETON. H 
(Listing 18.6, page 411), shown below: 

int FAR PASCAL OeviceGetWriteStatus( HOEVICE hOevice, LPWORO usStatus) 

is transformed into this in SKELETON. THK 

int DeviceGetWriteStatus( HDEVICE hDevice, LPWORD pusStatus) 
{ 

II the hDevice pointer is used as input by the 16-bit DLL 
hDevice=input; 

All of the functions except for Devi ceGetDri ve rCapabi 1 it i es use input pointer 
parameters. Devi ceGetDri verCapabi 1 i ti es uses one input and one output parameter: 

int DeviceGetDriverCapabilites( HDEVICE hDevice, 
PDRIVERCAPS *ppDriverCaps ) 

II the hDevice pointer is used as input by the 16-bit DLL 
hDevice=input; 
ppDriverCaps=output; 
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In addition to function prototypes, the real SKELETON. H contains typedefs (HDEV ICE, 
PDRIVERPARAMS, etc.) and includes WI NDOWS. H for additional typedefs (LPBYTE, LPWORD, 
etc.). Because WINDOWS. H contains a lot of other stuff that the thunk compiler wouldn't 
understand, SKELETON. THK doesn't actually include WINDOWS. H. Instead, SKELETON. THK 
directly contains all the necessary typedefs, extracted from WINDOWS. H and SKELETON. H, 
as shown in the following code fragment. 

typedef unsigned char BYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD; 
typedef BYTE far* LPBYTE; 

typedef struct 
{ 

WORD usDevNumber; 
} DEVICECONTEXT 
typedef DEVICECONTEXT FAR *HDEVICE; 

typedef struct 
{ 

WORD usReadBufSize; 
} DRIVERPARAMS; 
typedef DRIVERPARAMS FAR *PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS; 
typedef DRIVERCAPS FAR *PDRIVERCAPS; 
typedef PDRIVERCAPS FAR *PPDRIVERCAPS; 

SKEL32.C 
The 16-bit SKELETON. DLL exports nine functions, so SKEL32. C will contain the same 
nine functions, but with the suffix "32" added to the function name. Here's an exam
ple of one of those nine functions in SKEL32. C: 

1fdefi ne DLLEXPORT _decl spec( dll export 

DLLEXPORT int API ENTRY DeviceGetWriteStatus32( HDEVICE hDevice, 
LPWORD pusStatus) 

return DeviceGetWriteStatus( hDevice, pusStatus ); 
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The OLLEXPORT technique used above to declare an exported function in a 
32-bit DLL is the method recommended by VC++ 4.x. See your compiler 
documentation for details on declaring an exported function. 

SKEL32. C also contains a DLL entry point, 011 EntryPoi nt which does nothing 
but call the function SKELETON_ThunkConnectl6 (which will be provided by the 
assembly language thunk module). Note that the SKELETON_ prefix comes from t 
parameter on the thunk compiler command line. When processing the script file, the 
thunk compiler automatically adds this prefix to the name of each function it creates 
in the assembly language module. 

SKELETON_ThunkConnectl6 takes four parameters: the name of the 16-bit DLL 
("SKELETON. OLL"), the name of the 32-bit DLL (" SKEL32. OLL "), and the hI nst and 
dwReason parameters provided by 011 EntryPoi nt's caller. The following fragment 
shows the code for 011 EntryPoi nt. 

II function prototype for function provided by assembly thunk module 
BOOL FAR PASCAL __ export SKELETON_ThunkConnect16(LPSTR pszDll16. LPSTR pszDl13Z. 

WORD hlnst. DWORD dwReason); 

BOOL FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS. 
WORD wHeapSize. DWORD dwReservedl. 
WORD wReservedZ) 

if (!(SKELETON_ThunkConnect16("SKELETON.DLL". "SKEL3Z.DLL". hlnst. dwReason))) 
{ 

return FALSE; 

retu rn TRUE; 

SKELETON.C 

The source for the 16-bit SKELETON. OLL must be modified slightly also, to add a new 
export function to SKELETON. C. This function must be named 011 EntryPoi nt. It acts 
as the mirror image of its counterpart in the 32-bit DLL, calling SKELETON_Thunk
Connect32 instead of SKELETON_ThunkConnect16. It passes exactly the same 
parameters in exactly the same order. SKELETON_ThunkConnect32 is also provided 
by the assembly language thunk module. The following fragment shows the code for 
011 Mai n. 
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II function prototype for function provided by assembly thunk module 
BOOL WINAPI SKELETON_ThunkConnect32(LPSTR pszDll16. LPSTR pszDl132. DWORD hlinst. 

DWORD dwReason); 

BOOL _stdcall DllMain(DWORD hlnst. DWORD dwReason. DWORD wReserved) 
{ 

if (! (SKE LETON_ThunkConnect32 (" SKELETON. DLL". "SKE L32. DU" .h Inst. dwReason») 
{ 

return FALSE; 

return TRUE; 

Building the Thunk Layer, Step by Step 
Building a thunk layer consisting of a 16-bit and a 32-bit DLL is more complicated 
than building normal 16-bit and 32-bit DLLs. Though the two makefiles (SKELl6. MAK 
and SKELl6 .MAK) hide the complexity, it's worth a closer look at the steps involved. 

The 16-bit DLL must be built first. This is necessary because it's SKE Ll6. MAK that 
executes the thunk compiler to produce the assembly source file SKELETON. ASM, 
which is required by both makefiles. The thunk compiler command line used by 
SKELl6. MAK is 

thunk -t SKELETON -0 skeleton.asm skeleton.thk 

The - t flag specifies a "base name" which the thunk compiler prefixes to the 
names of the ThunkConnect16 and ThunkConnect32 functions in the assembly out
put file. The above command line results in functions named SKELETON_Thunk
Connect16and SKELETON_ThunkConnect32, which matches the names used in the 
OLLEntryPoi nt code in SKELETON. C and SKEL32. C. 

SKELl6.MAK then assembles SKELETON.ASM, using the 101S_16 flag and naming 
the object file thk16. obj. The 10I S_16 flag produces code that implements the 16-bit 
side of the thunk layer depicted in Figure 18.2. 

ml 101S_16 Ie IW3 IFo thk16.obj skeleton.asm 

The link step used by SKELl6 .MAK isn't any different than building a normal16-bit 
DL - other than linking in the thunk code in THK16. OBJ - but there is one final step 
which is unusual. The DLL must be marked as compatible with Windows 95, by run
ning the resource compiler and using the -40 option. Without this mark, Windows 95 
will refuse to load the 32-bit DLL. 
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The makefile for the 32-bit DLL, SKEL32 .MAK, looks almost exactly like a make
file for a normal 32-bit DLL. The only difference is assembling the source generated 
by the thunk compiler, which resides in the 16-bit DLL's directory. This time the 
101S_32 flag is used to produce code that implements the 32-bit side of the thunk 
layer. 

ml 101S_32 Ie IW3 IFo thk32.obj .. \16\skeleton.asm 

I've also included a sample Win32 console application which utilizes the 32-bit 
DLL and, indirectly, the 16-bit DLL. The application does nothing more than call the 
functions Oevi eeOpen32 and Oevi eeel ose32. These functions are implemented in 
SKEL32. OLL, which in turn calls the analogous function in the 16-bit SKELETON. OLL. 
Note that the application is completely unaware of the thunking: the functions it uses 
are all in SKEL32. OLL, and it links only with SKEL32. LI B. 

Summary 
If your driver must support Win32 applications but you're not ready to make the tran
sition to writing a VxD, or if you have already created a 16-bit driver DLL, a thunk 
layer might be your best option. Developing a thunk DLL may not be a lot of creative 
fun, and you do have to be careful to get all the steps right, but if you follow carefully 
the procedures outlined in this chapter, you can create a thunk DLL that allows you to 
keep hardware access in a DLL while still supporting Win32 applications. 
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Listing 18.1 SKELETON. THK 

enablemapdirect3216 = true; 

typedef unsigned char BYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD; 
typedef BYTE *LPBYTE; 
typedef DWORD *LPDWORD; 
typedef WORD *LPWORD; 

typedef struct 
( 

WORD usDevNumber; 
} DEVICECONTEXT; 

typedef OEVICECONTEXT *HDEVICE; 

typedef struct 
( 

WORD usReadBufSize; 
} DRIVERPARAMS; 
typedef DRIVERPARAMS * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS; 
typedef DRIVERCAPS * PDRIVERCAPS; 

HDEVICE DeviceOpen( void ) 
( 
} 
int DeviceClose( HDEVICE hDevice ) 
( 

hDevice=input; 

int DeviceGetWriteStatus( HDEVICE hDevice. LPWORD pusStatus ) 
( 

hDevice=input; 
pusStatus=input; 

int DeviceGetReadStatus( HDEVICE hDevice. LPWORD pusStatus ) 
( 

hDevice=input; 
pusStatus=input; 

int DeviceWrite( HDEVICE hDevice. LPBYTE lpData. LPWDRD pcBytes ) 
( 

hDevice=input; 
1 pData=i nput; 
pcBytes=input; 
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Listing 18.1 (continued) SKELETON. THK 

int DeviceRead( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

hDevice=input; 
lpData=input; 
pcBytes=input; 

int DeviceSetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParms ) 
( 

hDevice=input; 
pParms=input; 

int DeviceGetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParms ) 
( 

hDevice=input; 
pParms=input; 

int DeviceGetDriverCapabilities( HDEVICE hDevice. PDRIVERCAPS *ppDriverCaps ) 
{ 

hDevice=input; 
ppDriverCaps=output; 
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Listing 18.2 SKEL32. H (32-bit DLL) 

#ifndef SKELETON_H 
#define SKELETON_H 

#include <windows.h> 

typedef struct 
{ 

WORD usDevNumber; 
} DEVICECONTEXT. FAR *HDEVICE; 

typedef struct 
{ 

WORD usReadBufSize; 
} DRIVERPARAMS. FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
} DRIVERCAPS. FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

#ifndef DLL 

#define DLLIMPORT __ declspec( dllimport ) 

DLLIMPORT HDEVICE APIENTRY DeviceOpen32( void ); 
DLLIMPORT int APIENTRY DeviceClose32( HDEVICE ); 
DLLIMPORT int API ENTRY DeviceGetWriteStatus32( HDEVICE. LPWORD pusStatus ); 
DLLIMPORT int APIENTRY DeviceGetReadStatus32( HDEVICE. LPWORD pusStatus ); 
DLLIMPORT int APIENTRY DeviceWrite32( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
DLLIMPORT int APIENTRY DeviceRead32( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
DLLIMPORT int APIENTRY DeviceSetDriverParams32( HDEVICE. PDRIVERPARAMS pParms ); 
DLLIMPORT int APIENTRY DeviceGetDriverParams32( HDEVICE. PDRIVERPARAMS pParms ); 
DLLIMPORT int APIENTRY DeviceGetDriverCapabilities32( HDEVICE. 

#endif 

#endif 

PPDRIVERCAPS ppDriverCaps ); 
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Listing 18.3 SKEL32. C (32-bit DLL) 

t/include <windows.h> 
t/include " .. \16\skeleton.h" 

DEVICECONTEXT Devicel = ( 0 ); 
DRIVERPARAMS DefaultParams = ( 1024 ); 

BOOL FAR PASCAL __ export SKELETON_ThunkConnectI6(LPSTR pszDlll6. LPSTR pszDl132. 
WORD hlnst. DWORD dwReason); 

BOOL FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS. 
WORD wHeapSize. DWORD dwReservedl. 
WORD wReserved2) 

if (! (SKELETON_ThunkConnectl6( "SKELETON. DLL" . I I name of 16- bit DLL 
"SKEL32.DLL". II name of 32-bit DLL 
hlnst. dwReason))) 

return FALSE; 
) 
return TRUE; 

t/define DLLEXPORT __ declspec( dllexport ) 

DLLEXPORT void API ENTRY DeviceOpen32( void 
{ 

Devi ceOpen ( ); 

DLLEXPORT int API ENTRY DeviceClose32( HDEVICE hDevice ) 
( 

return DeviceClose( hDevice ); 

DLLEXPORT int API ENTRY DeviceGetWriteStatus32( HDEVICE hDevice. LPWORD pusStatus ) 
( 

return DeviceGetWriteStatus( hDevice. pusStatus ); 

DLLEXPORT int API ENTRY DeviceGetReadStatus32( HDEVICE hDevice. LPWORD pusStatus ) 
( 

return DeviceGetReadStatus( hDevice. pusStatus ); 

DLLEXPORT int API ENTRY DeviceWrite32( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

return DeviceWrite( hDevice. lpData. pcBytes ); 

DLLEXPORT int API ENTRY DeviceRead32( HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes ) 
( 

return DeviceRead( hDevice. lpData. pcBytes ); 
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Listing 18.3 (continued) SKEL32. C (32-bit DLL) 

DLLEXPORT int APIENTRY DeviceSetDriverParams32( HDEVICE hDevice. 
PDRIVERPARAMS pParms 

return DeviceSetDriverParams( hDevice. pParms ); 

DLLEXPORT int API ENTRY DeviceGetDriverParams32( HDEVICE hDevice. 
PDRIVERPARAMS pParms 

return DeviceGetDriverParams( hDevice. pParms ); 

DLLEXPORT int APIENTRY DeviceGetOriverCapabilities32( HDEVICE hOevice. 
PPDRIVERCAPS ppOriverCaps 

return OeviceGetDriverCapabilities( hDevice. ppDriverCaps ); 

Listing 18.4 SKEL32. MAK (32-bit DLL) 

all: ske132.dll 

!message 
!message I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

!message + To make the file dl132.dll, you will need to have the + 
!message + Microsoft Thunk compiler and the Microsoft Macro Assembler + 
!message + (ML) on the path. + 
!message 11111111111111111111111111111111111111111111111111 11111111 11111 

!message 

ske132.obj: ske132.c ske132.h 
cl -c -W3 -Zl -Od-OW1N32 -0_W1N32 -O_MT -O_OLL $*.c 

thk32.obj: .. \16\skeleton.asm 
ml 1015_32 Ic IW3 IFo thk32.obj .. \16\skeleton.asm 
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Listing 18.4 (continued) SKfL32. MAK (32-bit DLL) 

# Build rule for the DLL 
ske13Z.dll: ske13Z.def ske13Z.obj thk3Z.obj 

link INODEFAULTLIB IINCREMENTAL:NO /PDB:NONE /RELEASE \ 
-debug:full -debugtype:cY -align:OxlOOO -dll \ 
-base:OxlCOOOOOO \ 
-entry:_DllMainCRTStartup@lZ \ 
-out:ske13Z.dll \ 
-implib:ske13Z.1ib \ 
ske13Z.obj thk3Z.obj thunk3Z.1ib libc.lib oldnames.lib kerne13Z.1ib 

# Build rule for EXE 
$(PROJ).EXE: $(BASE_OBJS) $(PROJ_OBJS) $(DLLNAME).dll 

$(link) $(linkdebug) $(guilflags4) \ 
$(BASE_OBJS) $ (PROJ_OBJS) $(guilibsdll) $(EXTRA_LIBS) \ 
$(DLLNAME).l ib \ 
-out:$(PROJ).exe $(MAPFILE) 

# Rules for cleaning out those old files 
clean: 

del *.bak *.pdb *.obj *.res *.exp *.map *.sbr *.bsc 

Listing 18.5 SKEL32. DfF (32-bit DLL) 

LI BRARY SKEL32 

DATA READ WRITE 

EXPORTS 
SKELETON_ThunkData32 
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Listing 18.6 SKELETON.H (16-bit DLL) 

#ifndef SKELETON_H 
#define SKELETON_H 

#include <windows.h> 

typedef struct 
{ 

WORD usDevNumber; 
) DEVICECONTEXT. FAR *HDEVICE; 

typedef struct 
{ 

WORD usReadBufSize; 
) DRIVERPARAMS. FAR * PDRIVERPARAMS; 

typedef struct 
{ 

WORD version; 
) DRIVERCAPS. FAR * PDRIVERCAPS; 
typedef PDRIVERCAPS FAR * PPDRIVERCAPS; 

HDEVICE FAR PASCAL DeviceOpen( void ); 
int FAR PASCAL DeviceClose( HDEVICE ); 
int FAR PASCAL DeviceGetWriteStatus( HDEVICE. LPWORD pusStatus ); 
int FAR PASCAL DeviceGetReadStatus( HDEVICE. LPWORD pusStatus ); 
int FAR PASCAL DeviceWrite( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
int FAR PASCAL DeviceRead( HDEVICE. LPBYTE lpData. LPWORD pcBytes ); 
int FAR PASCAL DeviceSetDriverParams( HDEVICE. PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverParams( HDEVICE. PDRIVERPARAMS pParms ); 
int FAR PASCAL DeviceGetDriverCapabilities( HDEVICE. PPDRIVERCAPS ppDriverCaps ); 

#endif 
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Listing 18.7 SKELETON. C (16-bit DLL) 

Iii nc 1 ude <wi ndows. h> 
lIinclude "skeleton.h" 

DEVICECONTEXT Device1 = { 0 }; 
DRIVERPARAMS DefaultParams = { 1024 }; 

BOOL FAR PASCAL __ export SKELETON_ThunkConnect16(lPSTR psZDll16. lPSTR pszDl132. 
WORD hlnst. DWORD dwReason); 

BOOl FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS. 
WORD wHeapSize. DWORD dwReserved1. 
WORD wReserved2) 

if (!(SKElETON_ThunkConnect16("SKElETON.Dll". II name of 16-bit Dll 
"SKEl32.Dll". II name of 32-bit Dll 
hlnst. dwReason») 

return FALSE; 
} 
return TRUE; 

HDEVICE FAR PASCAL _export DeviceOpen( void 
{ 

OutputDebugString( "DeviceOpen\n"); 

return &Device1; 

int FAR PASCAL _export DeviceClose( HDEVICE hDevice 
{ 

OutputDebugString( "DeviceClose\n"); 

return 0; 

int FAR PASCAL _export DeviceGetWriteStatus( HDEVICE hDevice. lPWORD pusStatus ) 
{ 

OutputDebugString( "DeviceGetWriteStatus\n"); 

return 0; 

int FAR PASCAL _export DeviceGetReadStatus( HDEVICE hDevice. lPWORD pusStatus ) 
{ 

OutputDebugString( "DeviceGetReadStatus\n"); 

return 0; 

int FAR PASCAL _export DeviceWrite( HDEVICE hDevice. lPBYTE lpData. lPWORD pcBytes ) 
{ 

OutputDebugString( "DeviceWrite\n"); 

return 0; 
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Listing 18.7 (continued) SKELETON. C(l6-hitDLL) 

int FAR PASCAL _export DeviceRead( HDEVICE hDevice. LPBYTE lpData. LPWDRD pcBytes 
{ 

OutputDebugString( "DeviceRead\n"); 

return 0; 

int FAR PASCAL _export DeviceSetDriverParams( HDEVICE hDevice. PDRIVERPARAMS pParms ) 
{ 

OutputDebugStri ng ( "Devi ceSeWri verParams\n") ; 

return 0; 

int FAR PASCAL _export DeviceGetDriverParams< HDEVICE hDevice. PDRIVERPARAMS pParms ) 
{ 

OutputDebugString( "DeviceGetDriverParams\n"); 

return 0; 

int FAR PASCAL _export DeviceGetDriverCapabilities( HDEVICE hDevice. 
PPDRIVERCAPS ppDriverCaps 

OutputDebugString( "DeviceGetDriverCapabilities\n"); 

return 0; 

Listing 18.8 SKEL16. MAK (l6-hit DLL) 

WIN32SDK_BINW16 = \win32sdk\binw16 

all; skeleton.dll 

!message 
! message I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I L I I I I I I I I I I I I I I 

!message + To make the 16-bit skeleton.dll. you will need to have the + 
!message + Microsoft Thunk compiler and the Microsoft Macro Assembler + 
! message + (Ml) on the path. + 
! message I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

!message 
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Listing18.8 (continued) SKEL16.MAK (16-bit DLL) 

skeleton.obj: skeleton.c skeleton.h 
cl -c -W3 -ASw -G02s -Oi $*.c 

skeleton.asm: skeleton.thk 
thunk -t SKELETON -0 skeleton.asm skeleton.thk 

thk16.obj: skeleton.asm 
ml 101S_16 Ic IW3 IFo thk16.obj skeleton.asm 

skeleton.dll: skeleton.def skeleton.obj thk16.obj 
link skeleton+thk16.skeleton.dll .skeleton.map IMAP.sdllcew libw 

Inod/noe.skeleton.def 
$(WIN32S0K_BINW16)\rc -40 skeleton.dll 
mapsym skeleton 
implib skeleton.lib skeleton.dll 
copy skeleton.dll \windows\driver.dll 

Listing 18.9 SKELETON. DEF (16-bit DLL) 

LIBRARY Skeleton 
DESCRIPTION "Skeleton Driver" 
EXETYPE WINDOWS 
DATA PRELOAD MOVEABLE SINGLE 
CODE PRELOAD MOVEABLE DISCARDABLE 

EXPORTS 
Dll EntryPoi nt 
SKELETON_ThunkData16 

IMPORTS 

@1 RESIDENTNAME 
@2 

C16ThkSLOl = KERNEL.631 
ThunkConnect16 = KERNEL.651 



Chapter 19 

Driver DLLs: Using Timers 
Drivers often need to use some sort of timer service, either to gain control of the pro
cessor on a periodic basis, or to measure elapsed time. The timer services available 
under DOS were well understood. DOS drivers hooked the timer interrupt for peri
odic notification and used the C run-time, DOS, or BIOS services for measuring 
elapsed time. Windows driver DLLs - both 16-bit and 32-bit - also have timer ser
vices available. This chapter will examine the periodic timer and elapsed time mecha
nisms available to Windows driver DLLs. 

Timers/or Periodic Notification 
Drivers use timers to gain control of the processor on a periodic basis in order to poll 
a device, to update some variables, or eVen to refresh the screen. Under DOS, the only 
way to get a periodic notification is to hook the timer interrupt, which normally 
occurs every 55 ms - 18.2 times per second. A DOS application also has the option 
of reprogramming the PC timer hardware so that the interrupt rate is faster. 

A Windows driver that needs periodic control has several different options, from 
using Windows API functions that hook timer interrupts to using a VxD. The follow
ing sections explore each of these options and explain the limitations of each. You 
shouldn't be surprised to learn that achieving precise timing control under Windows is 
more difficult than under DOS. 

415 
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Using SetTimer 
The familiar Windows API timer function SetTi mer is available to both Win32 and 
Win16 DLLs. The timer created by this call can either post a WM_TIMER message or 
invoke a callback function when the timer expires. 

Unfortunately, SetTi mer is not practical for applications that require immediate 
notification, because SetTimer communicates with the timer handler via the messag
ing system - not an interrupt. An indeterminate amount of time can elapse between 
the timer's expiration and the processing of the WM_TIMER message or the invocation 
ofthe callback function. Windows hooks the hardware timer interruptto implement 
these timers, but all that interrupt handler does is set aftag to indicate that a timer event 
has occurred. Later, the application enters its message loop and calls GetMessage. At 
this point, lots of time may have elapsed already since the interrupt. This message 
delay can be surprisingly long because even if the timer event flag is set, GetMessage 
only returns a WM_TIMER message if no other messages are in the application's mesc 

sage queue. Windows considers WM_TIMER messages low priority. 
The same delay occurs even when you use SetTi mer with the callback function 

option (instead of the WM_ TI ME R option) because Windows still treats the timer as a low 
priority event. The callback function is not called directly by the Windows timer .inter
rupt handler. Again, the handler sets the timer event flag and GetMessage later checks 
this flag. But instead of returning a WM_TIMER message, in this case, GetMessage 
directly calls the callback function. 

Hooking INT lChand INT Bh 
A 16-bit Windows driver DLL can choose to avoid the delay described above by 
hooking the timer interrupt directly. Many DOS applications hook the software timer 
interrupt (INT lCh) instead of the hardware timer interrupt (INT Bh). This works 
under DOS because the I NT Bh handler in the BIOS issues an I NT lCh after process
ing the timer interrupt. Hooking INT lCh won't work under Windows, even for a 
16-bit DLL. The Windows handler for the hardware timer interrupt does pass the 
interrupt on to the BIOS I NT Bh handler, but the BIOS runs in V86 mode; when the 
I NT Bh handler calls the I NT 1 Ch handler, the processor is still in V86 mode. So a 
Windows driver that has hooked INT lCh won't see this interrupt because the Win
dows driver runs in protected mode. 

This initialization means a 16-bit driver DLL should hook INT Bh, the hardware 
timer interrupt handler. Windows calls all protected mode I NT Bh handlers first before 
switching to V86 mode and calling the BIOS I NT Bh handler. Unfortunately, this 
solution has the same limitation that any hardware interrupt does: the only useful 
Windows API function available at interrupt time is PostMessage. (See Chapter 15 
for a complete discussion of the restrictions imposed at interrupt time.) 
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An I NT 8h handler should perfonn only truly time-critical actions and defer other 
actions (like updating the client window) by calling PastMessage with a user-defined mes
sage. The window procedure then finishes the processing when it retrieves the message. 

Don't Depend on 18.2 Ticks per Second 
The I NT 8h handler solution is far from perfect. Not only is it available only to 16-bit 
DLLs, but the handler isn't guaranteed to be called every 55 ms. The actual hardware 
timer interrupt is serviced by a VxD, the Virtual Timer Device (VTD). The VTD then 
simulates timer interrupts for VMs. Because VMs are seeing simulated interrupts and 
not the real thing, the frequency of timer interrupts will vary. 

VTD gives the foreground VM (the VM with the display and keyboard focus) 18.2 
timer ticks per second - that is, a nonnal rate .. But each background VM gets many 
fewer than 18.2 ticks per second, usually around three or four. In other words, I NT 8h 
handler's running under Windows, whether in a DOS application or a Win16 driver 
DLL, cannot depend on receiving an interrupt every 55 ms. 

Using timeSetEvent: Pros and Cons 
The most accurate periodic notification available to a Windows driver DLL is pro
vided by ti meSetEvent. This is one of the Windows multimedia functions, available 
to both Win16 and Win32 code. BeforeusingtimeSetEvent, your code should call 
ti meGetDevCaps detennine the timer's minimum period, and then ti meBegi nPeri ad 
to program the timer resolution. 

According to t i meGetDevCaps, the minimum timer period is 1 ms. While not as good 
as the minimum period achievable under DOS (see the sidebar "Reprogramming the 
8254 Timer"), it's good enough for many drivers. Note, however, that this resolution isn't 
guaranteed - it is possible for a callback to be delayed. In fact, actual perfonnance of 
t i meSetEvent varies considerably between Windows 3.x and Windows 95, even though 
ti meGetDevCaps returns the same infonnation under both versions. 

Reprogrammining the 8254 Timer 

To receive more frequent interrupts, a DOS application may reprogram the 8254 timer chip - up to a maxi
mum interrupt frequency of about 1 million times per second. To avoid "breaking" the standard 55 ms 
time-base, the application's I NT 8h handler must track the number of interrupts and call the original I NT 8h 
handler every 55 ms, not every interrupt. This technique isn't possible under Windows because the VTD traps 
access to the 8254 ports and prevents applications (Windows and DOS) from reprogramming the interrupt 
rate. The VTD simply intercepts these accesses and chooses not to pass them on to the timer hardware. 
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Under Windows 3.x, the timer latency doesn't vary much, and only occasionally 
are callbacks delayed - up to roughly 10 ms. The worst-case latency under Windows 
95 is much worse - it can be on the order of a hundred milliseconds! This variation 
is created by the Windows 95 preemptive thread scheduling mechanism. Windows 95 
queues all threads of the same priority together and runs each thread from that queue 
for its entire time slice before starting the next thread. If the time slice is 30 ms, and 
there are three threads ahead of the timer callback thread, then the timer callback 
thread will be delayed by 90 ms. 

Althoughti meSetEvent is now a standard part of Windows (beginning with 
Windows 3.1), it is not packaged as part of the "normal" Windows DLLs 
(USER, KERNEL, and OD!) that all Windows applications link with. When 
using ti meSetEvent, be sure to: include MMSYSTEM. H in your source (to get 
the function prototype); add MMSYSTEM. LIB to the import libraries listed in 
your link command. Both files should be provided by your Windows 
compiler vendor. 

If All Else Fails 000 Use a VxD 
If reprogramming the 8254 is out of the question under Windows, and ti meSetEvent 
isn't really accurate at 1 ms, then how can a driver DLL get an accurate high-fre
quency timer? Unfortunately, it can't. Thus, if you need accurate high-resolution tim
ing, write a VxD. The timing services available to a VxD provide 1 ms resolution and 
aren't subject to the whims of the thread scheduler. 

A VxD can use the VMM Set_Gl obal_Ti me_Out service to force a callback func
tion to be executed after a certain number of milliseconds. This creates a one~shot 
timer. The VxD can call SeCGl abal_Time_Out again in the callback to start another 
timer, thus providing a continuously running timer. 

Normally the resolution of this timeout is 20 ms, but a VxD can get a better reso
lution, up to 1 ms, by calling VTD_Begi n_Mi n_I nt_Peri ad. This service will return 
with an error if the requested resolution is not supported. Be aware that increasing the 
timeout interval can seriously degrade system performance. When the VxD is finished 
with its timing job, it should call VTD_End_Mi n_I nt_Peri od to return the timer fre
quency to its original value. 
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Measuring Elapsed Time 
TIming services are also used to measure the duration of an event. Because PC system 
hardware doesn't include anything as nifty as a stopwatch, applications must derive 
elapsed times by capturing an event's start and end times and calculating the difference. 

Under DOS, there are several different ways to query the current system time. The 
highest level service, DOS Get Time (INT 2lh Func 2Ch), returns time in hours, 
minutes, seconds, and hundredths of seconds - inconvenient for calculating time dif
ferences. The BIOS Get Ti ck Count service. (I NT ISh Func IAh) returns time in a 
more convenient form: ticks (55 ms) since power up. Programs can also directly read 
the current BIOS tick count inthe BIOS data area. All of these methods boil down to 
accessing the same information: the timer tick count, updated every $5 ms by the 
BIOS INT ICh handler (called by the BIOS INT 8h himdler). 

Choices: GetTickCount, timeGetTime, and 
OueryPerformanceCounter 
A 16-bit Windows driver DLL can query the BIOS tick count with a call to the 
Windows API function GetTi ckCount. If a 16-bit only solution with a resolution of 
55 ms is enough for your application. this method will suffice. 

The multimedia timeGetTime service; however, offers significant advantages. It's 
available to both Win16 andWin32 DLLs and has a much better resolution -1 ms. 
Plus, its easier to call a Windows API function than to issue a software interrupt -
even in 16-bit.code. 

If you're not supporting Wmdows 3.xatall, you can use the QueryperformanceCounter 
function offered by the Win32 API. This function (which doesn't rely 'on counting 
timer interrupts but instead reads. the free-running timer hardware) has an incredible 
resolution of 0.8 microseconds! This is one of the few areas where a Win32 driver 
DLL gets performance as good as a DOS application. 

Summary 
Windows wasn't designed to be a real time operating system, and the behavior of the 
various timing functions clearly reflects that. If your application only needs periodic 
notifications and can live with occasional latencies, your best and easiest alternlltiveis 
louse the multimedia functions (which makes sense - after all, sound and video 
need to be near real time). If occasional latencies aren't acceptable, you'll have to 
write a V xD. For measuring elapsed time, use t i meGe t Time if you must support both 
Windows 3.x and Windows 95. Use the more accurate QUeryPerformanceCounter if 
you're supporting only Windows 95. 
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Appendix A 

Intel Architecture 

808618088 and Real Mode 
The Intel 8088, the first processor to be used in a PC, has 16-bit registers. A direct 
addressing scheme using 16 bits allows access to only 216 or 64Kb of memory. Yet the 
8088 can address up to 220 or 1Mb of memory, because the processor uses a memory 
architecture called segmentation. All memory references involve both a 16-bit seg
ment and a 16-bit offset. The segment specifies the base of a 64Kb region, and the off
set specifies the byte within the region. Each of the possible regions is 16 bytes apart, 
which means the last region starts at 64Kb x 16 or 1Mb. This combined segment and 
offset address is known as a logical address. 

Internally, the processor forms a physical address by shifting the segment left by 
four bits and then adding the offset, resulting in a 20-bit physical address. It is this 
physical address that the processor outputs onto the bus. Memory devices don't have 
knowledge of segments or offsets and understand only physical addresses. This 
address translation process is illustrated in Figure A.l. 
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422 -Writing Windows VxDs and Device Drivers 

This original addressing scheme used by the 8088 is now referred to as real mode. 
Real mode has several limitations that make it unsuitable for a sophisticated operating 
system. 

• An address space limited to 1Mb is no longer adequate. 

• The fixed relationship between a logical address and a physical address makes it 
difficult to implement moveable memory. 

• There are no hardware protection mechanisms, allowing a buggy program to crash 
the entire system: 

80286 and Protected Mode 
The next generation Intel processor, the 80286, addresses the deficiencies of the 
8088/8086. Like the 8086, the 80286 has 16-bit registers, uses a segmented architec
ture, and supports real mode. The improvement is a new: operating mode known as 
protected mode. Protected mode offers advanced features such as access to 16Mb of 
memory, more flexible address translation, and various protection mechanisms. 

Figure A.I Real mode address translation. 
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The segmented architecture, where memory references consist of a segment and 
an offset, is still used in protected mode. However, the address translation mechanism, 
which translates a logical (segment and offset) address into a physical address, is 
more sophisticated than in real mode. A segment is now called a selector. Instead of 
shifting a selector by a fixed amount to form a physical address, the processor uses a 
selector as an index into a descriptor table. The descriptor stored in the table, not the 
selector itself, determines the selector's base address. This layer of indirection 
between a selector and a physical address facilitates the implementation of moveable 
memory, which is a necessity for multitasking operating systems. 

Because the 80286 uses 16-bit registers, an offset can only address 64Kb, which 
means a segment is still limited to a maximum size of 64Kb. But the segment's base 
address, stored in the segment descriptor, is a 24-bit value. The processor generates a 
24-bit physical address by adding together the 24-bit base address and the 16-bit off
set, so the processor can address 16Mb (224) of memory. 

Protected mode also offers several types of protection mechanisms which prevent 
one program from interfering with another program or from interfering with the oper
ating system. The three mechanisms are: 

the ability to isolate the operating system from applications, 

the ability to isolate user applications from each other, and 

• the ability to use protected mode to enforce the proper use of segments, so that an 
errant program can't execute from a data segment or address a location beyond the 
limit of the segment. 

Selectors and Descriptors 
A value stored in a segment register, known simply as a segment in real mode, is more 
precisely called a selector in protected mode. In protected mode, a selector specifies a 
descriptor, and a descriptor in turn specifies a segment's base address and length. A 
selector is made up of several fields, as illustrated in Figure A.2. The Table field spec
ifies where the descriptor is located: 0 for the Global Descriptor Table (GDT), or 1 for 
the Local Descriptor Table (LDT). The 13-bit Index field specifies one of the 213 

(8192) descriptors in that table. 

Figure A.2 Selector fields. 
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These two descriptor tables aren't physically located on the processor itself, as reg
isters are, but are located in main memory. Special processor registers, the GDTR and 
the LDTR, hold the physical addresses of these two tables. These two registers are 
implicitly referenced by the LGDT/LLDT (load) and SGDT/SLDT (store) instructions. 

There is only one GDT, designed to be used for selectors that are either used by all 
applications, or shared by applications. The LDT, on the other hand, is designed to be 
used for selectors that are "local" to an application. Multiple LDTs are allowed, 
which allows a multitasking operating system to easily isolate applications from each 
other by allocating a different LDT for each application. The LDTR register always 
holds the address of the current LDT. When the operating system switches from one 
application to another, it also loads the LDTR with the address of the LDT of the new 
application. This wayan Application X can't possibly access code or data belonging 
to Application Y, because all memory references by Application X are resolved using 
X's own LDT. (Note that in all of the Windows versions, all Windows applications 
share the same LDT.) 

A segment descriptor stored in one of these tables consists of 8 bytes, as depicted in 
Figure A.3. Two bytes aren't used but are needed to be compatible with the 32-bit 
80386. The segment's base address takes up 3 bytes, so the highest base address is 224 
or 16Mb. Two bytes hold the segment's limit, or size, resulting in a maximum size of 
64Kb. The remaining byte is an access byte made up of various flag bits. Some flag bits 
specify a segment's type: either a code segment (executable, not writable) or a data seg
ment (read/write, or read-only). Other flag bits include the Present bit, which indicates 
whether the segment is present in main memory, and the Accessed bit, which is set by 
the processor every time a segment is loaded into a segment register. 

Figure A.3 Descriptor bytes. 
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When a segment register (C5, DS, 5S, ES) is loaded, the processor reads the associated 
segment descriptor from the descriptor table in main memory and stores its contents in a 
hidden descriptor cache register. There is one descriptor cache register for each segment 
register, and like all registers, they are located on the processor. Future memory refer
ences involving the same segment register use the descriptor information in the cache 
register, instead of fetching that information from the descriptor table in main memory. 
These cache registers are crucial for good performance in protected mode. 

Interrupts and Exceptions 
The sequential execution of a program can be altered by an unexpected event, either 
an interrupt or an exception. Interrupts may be external, caused by a device asserting 
the processor's INTR pin, or internal, caused by a program executing an I NT instruc
tion. Exceptions result when an instruction completes abnormally. Both interrupts and 
exceptions cause control to be transferred automatically to a handler routine specified 
by the Interrupt Descriptor Table (IDT). 

Each interrupt and exception has an identifying number N, and when inter
rupt/exception N occurs, the processor looks up slot N of the IDT to get the address of 
the handler. The IDT contains a special type of descriptor called a gate, which doesn't 
describe a segment (no base addressor limit fields). Instead, a gate contains an address: 
a selector and an offset. The IDT may contain both interrupt gates and trap gates. The 
only difference is that an interrupt gate causes the processor to clear the interrupt flag 
before calling the handler, preventing further interrupts. Interrupt gates are commonly 
used for hardware interrupts, and trap gates for software interrupts and exceptions. 

An exception that can be corrected by the handler is called a fault. When a fault 
occurs, the processor executes the handler specified in the IDT, then automatically 
modifies C5 and I P so that the faulting instruction is executed again. If the fault han
dler has corrected the condition that caused the exception, the instruction executes 
correctly the second time. Operating systems often use the Segment Fault (number 
11) and the Page Fault (number 14) to implement virtual memory. However, some 
faults, particularly the General Protection Fault (number 13), usually indicate a pro
gram bug. In this case, the fault handler may terminate the program instead of letting 
the instruction execute again. 
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Protection Mechanisms 
The processor performs one set of consistency checks when executing instructions to 
load a segment register and a different set when executing instructions that reference 
memory (which always involve a segment). If one of these consistency checks fails, 
the processor generates an exception. 

When a segment register is loaded with a descriptor, the first check made is to see 
if the selector indexes to a valid entry in the descriptor table. Loading a segment regis
ter with an invalid selector causes a General Protection Fault (number 13). An operat
ing system typically fills all unused table entries with invalid descriptors, which are 
simply descriptors where the Access byte equals zero. Thus, a program is prevented 
from generating its own selector to access data or code, and must use a valid selector 
in the GDT or LDT given to it by the operating system. Also, if an executing program 
transfers control to an invalid location, usually due to a stack pointer mismatch, this 
will result in the CS register being loaded with an invalid selector and will immedi
ately cause this fault. 

Next, the processor ensures that the type of segment defined by the desciptor 
matches the segment register. This is done by examining the Type field of the descrip
tor. For example, the CS register must be loaded with a code segment which has type 
executable and not writable. The OS, ES, and SS registers must be loaded with a data 
segment, which has either type read/write or read-only. If these conditions are not 
met, a General Protection Fault is generated. 

Last, the processor checks the descriptor's Present bit. If not set, the processor gen
erates a Segment Fault. This fault may be used by an operating system to implement 
virtual memory. Under low memory conditions, the operating system writes a segment 
to disk and clears the selector's Present bit. Once the segment is written to disk, the 
memory formerly occupied by the segment is added to the pool of free memory. When 
a program later accesses a location in the original segment, a fault occurs and the oper
ating system reloads the original segment into memory from disk. (Note that Windows 
3.x and Windows 95 use paging to implement virtual memory, not segmentation.) 

If none of these checks results in an exception, the selector has been loaded and 
the processor continues with the next instruction. Now you can appreciate why the 
Intel manuals list the clock cycles for the MOV OS instruction in protected mode as 17, 
where the same instruction takes just two clocks in real mode. 

A different set of checks occurs when the processor executes an instruction that 
uses a memory reference. All memory references involve a segment, whether speci
fied explicitly or implicitly. For example, PUSH and POP implicitly reference the stack 
segment in SS. Note that the segment cache register already contains selector informa
tion (loaded when the segment register was loaded), so the processor doesn't have to 
access the LDT or GDT in memory. Again, if any of these checks fail, the processor 
generates a General Protection Fault. 
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The first check for a memory reference is the limit. The processor compares the 
offset specified in the instruction against the segment's limit and generates an excep
tion if the offset is greater than the limit. This protection mechanism prevents an 
incorrect pointer from writing past the end of a segment. Next, the type information in 
the segment cache register is compared to the type of memory access (read or write). 
Forexample, a write to a location in the CS segment usually results in an exception 
because CS usually contains an execute-only segment. The final check involves verify
ing the segment's privilege leveL 

Privilege Levels 
Before executing an instruction, the processor also checks the application's privilege 
leveL Proper use of privilege levels allows an operating system to isolate itself from 
applications in three different ways. Privilege levels can prevent an application from 
accessing specific data segments and from executing certain code segments. Privilege 
levels can prevent an application from executing specific instructions that affect oper
ating system data structures like the descriptor tables. Privilege levels can also prevent 
an application from executing instructions that control 110 devices or disable/enable 
hardware interrupts. 

Every segment (code or data), has a DPL or Descriptor Privilege LeveL The DPL 
bits are stored in the segment's descriptor. Privilege levels range from 0 to 3, with 0 
being the most privileged or trusted, and 3 the least privileged. System designers can use 
all four levels to fullyisolate system components, perhaps running the operating system 
kernel at DPL 0, device drivers at DPL 1, the file system at DPL 2, and applications at 
DPL 3. However, many operating systems (like Windows) use only two levels, distin
guishing only between the operating system (DPL 0) and applications (DPL 1,2, or 3). 

The basic idea of privilege levels is this: code isn't allowed to access more privi
leged data (data segment with a numerically lower DPL) or to transfer control to more 
privileged code (code segment with a numerically lower DPL). If either of these 
access rules is violated, the processor generates a General Protection FaulL By setting 
operating system data segments to DPL=O and application code segments to DPL>O, 
the operating system can prevent applications from accessing data owned by the oper
ating system. By setting operating system code segments. to DPL=O and application 
code segments to DPL>O, the operating system can prevent an application from call
ing operating system functions with a normal ca 11 instruction. . . 

Although it's a good idea to restrict an application's access to functions in the oper
ating system's code segments, disallowing access completely is unacceptable - appli
cations do need to call operating system services. The solution is not to move operating 
system code to DPL 3 with the applications, but to use a call gate. A call gate allows 
less privileged code to call more privileged code, but in a way that is managed by the 
operating sytem. (Note that Windows 3.x and Windows 95 don't use can gates.) 
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A call gate works much like a software interrupt. When a software interrupt (I NT n) 
is executed, the processor loads CS and I P from the interrupt vector located in slot N 
of the IDT, and resumes execution at the new location. Similarly, when a FAR CALL 
instruction is executed and the destination segment is really a call gate instead of a 
normal code selector, the processor loads CS and I P from the selector and offset fields 
of the call gate, and execution resumes at the new location. 

An operating system can use call gates to provide controlled access to system 
entry points. To call an operating system service, the application makes a FAR CALL to 
a call gate selector, which the operating system has set up to include the address 
(selector and offset) of the service. From the application's point of view, the call gate 
selector, provided by the operating system, is the entry point. The actual entry point 
address is hidden from the application. 

Privilege level also controls an application's ability to issue any of the privileged 
instructions: LGDT, LLDT, Ll DT, LMSW, HALT. These instructions are only allowed for 
DPL=O, and cause a General Protection Fault at any other level. The first three are 
restricted because they manipulate the descriptor tables. The LMSW instruction is used 
to switch to protected mode. HALT stops processor execution. 

A completely separate privilege level called 110 Privilege Level (IOPL) controls 
an application's ability to execute trusted instructions. Trusted instructions are those 
which enable or disable interrupts (STI/CLl) and access 110 devices (all forms of IN 
and OUT including byte, word, string). An application is allowed to issue these instruc
tions only if DPL>IOPL, otherwise a General Protection Fault results. It is also possi
ble for an operating system to allow I N/OUT instructions while preventing STI ICLI by 
having the fault handler determine the faulting instruction and reissuing it if I N or OUT, 
or ignoring it if C Ll 1ST 1. 

80386 and Virtual-8086 Mode 
The 80386 is the first 32-bit processor in the 80x86 family. Both registers and mem
ory references are 32-bits. The 80386 supports protected mode, utilizing selectors, 
descriptors, and descriptor tables with several important additions, such as a 4Gb seg
ment size, paging, and a new mode called Virtual-8086 mode. 

The 64 Kb segment size restriction of real mode and the 80286 protected mode has 
been lifted with the introduction of 32-bit offsets on the 80386. This translates to a 
segment size of 232 or 4Gb. Although the 80386 addressing mechanism always uses 
segmentation, segments become invisible to the programmer if an operating system 
implements a flat memory model. 
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In flat model, the operating system creates a single code segment and a single data 
segment, each with a limit of 4Gb. The CS register is then loaded with the code seg
ment selector, and OS, SS, and ES are loaded with the data segment selector. After this 
initial loading, the segment registers never change again. Both operating system and 
programs can access the entire address space with this single set of selectors. Pro
grammers using flat model thus never need to be aware of segments at all. If paging is 
used, flat model doesn't mean giving up protected mode's protection mechanisms. 

The 80386 paging feature adds another level of address translation, in addition to 
segmentation (Figure A.4). With paging disabled, the 80386 acts like a 80286 with 
32-bit registers: a physical address is formed by adding an offset to a selector's base 
address, found in a descriptor table. With paging enabled, the 80386 adds an offset to 
a selector's base address, found in a descriptor table, to form a linear address. This 
linear address is then transformed into a physical address using page tables. 

The 32-bit linear address is decomposed into three fields: a lO-bit Directory Table 
Entry index (DTE), a lO-bit Page Table Entry index (PTE), and a page offset. The 
process of combining these indexes into a physical address is best described by exam
ining Figure A.4. The CR3 register holds the address of the page directory table. The 
processor adds the address of this table to the lO-bit DTE. The result is the address of 
a page table. A particular entry in this page table is selected by adding thelO-bit PTE 
to the page table's address. Each entry in the page table contains the address of a 4Kb 
page in physical memory. The page offset is added to the the page address, and the 
result is a physical address, which is output to the bus. 

Figure A.4 Paging address translation. 
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An operating system can use paging to implement virtual memory. Paged virtual 
memory usually offers better performance than segmented virtual memory. Pages are 
both fixed in size and small (4Kb) , whereas segments are variable in size and large 
(up to 64Kb). When it comes to swapping a memory block in from disk to memory, it 
is easier to find a free space for a small fixed-sized page than it is for a large vari
able-sized segment. 

Demand-paged memory is implemented using the Page Fault generated when a 
memory reference maps to a page marked "not present" in the page tables. Under low 
memory conditions, the operating system writes a 4Kb page of address space to disk 
and clears the page's Present bit in the page table. Once the page is written to disk, the 
memory occupied by the page is added to the pool of free memory. When a program 
later accesses a location in the original page, a fault occurs and the operating system 
reloads the original page into memory from disk. 

Paging also offers some protection mechanisms, although not as many as are 
available for segments. All pages are represented by a PTE in a page table (although 
the page table itself may be stored on disk). The PTE is illustrated in Figure A.S. A 
PTE contains the Present bit mentioned above, a U/S (User/Supervisor) bit, and a 
R/W (ReadlWrite) bit. A page marked as "User" can be accessed by a code segment 
running at any privilege level. A page marked as "Supervisor" will cause a page fault 
if accessed by a code segment running at Ring 3. This allows an operating system to 
separate operating system code from application code by running applications at Ring 
3 and marking all pages used by the operating system as Supervisor. All pages are 
readable and executable, but the operating system can prevent Ring 3 code from writ
ing to a page by clearing the RIW bit in the PTE. 

Figure A.S Page Table Entry (PTE) 
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Virtual-8086 Mode 
Virtual-8086 (V86) mode was created specifically to allow an operating system to run 
multiple real mode applications, while preventing each real mode application from 
interfering with either the operating system or other applications. On the surface, V86 
mode looks like real mode. All real mode instructions, including 32-bit extensions 
(MOV, ADD, etc.) behave as in real mode. Protected mode instructions (LGDT, LLDT, etc.) 
cause an Invalid Opcode fault, as they do in real mode. However, several important 
differences prevent V86 mode applications from interfering with each other: 

paging is allowed, 

access to individual 110 ports can be controlled, and 

instructions that affect the interrupt flag can be trapped. 

The V86 addressing scheme is basically real mode addressing plus paging. The 
processor shifts a segment register left by 4 bits to form a linear address, and then uses 
the page tables to translate this to a physical address. By maintaining different page 
tables for each V86 program, the operating system can map the address space of each 
program to a different region of physical memory. The operating system can even use 
virtual memory to map some or all of a V86 program's address space to disk. An 
exception or interrupt in V86 mode causes an automatic switch to protected mode at 
Ring 0, so the same page fault handler that provides virtual memory for protected 
mode programs works for V86 programs as well. 

In real mode, access to 110 ports via I N/OUT instructions is never prohibited. In 
protected mode, either all IN/OUT instructions cause an exception, or all IN/OUT 
instructions are executed normally, depending on a program's IOPL. In V86 mode, 
the processor may execute some I N/OUT instructions normally, whereas others may 
cause an exception. The processor examines the 110 Permission Map (IOPM) to make 
this determination. The IOPM is a bitmapped table, I bit for each port address, where 
a O-bit permits access to the port and a I-bit causes a general protection fault. The 
operating system maintains this table, and may have multipletables, one for each exe
cuting V86 program. 

V86 programs also have an IOPL, which does not affect the ability to issue 110 
instructions but does control execution of instructions that affect the processor's Inter
rupt flag. If the operating system runs a V86 program with IOPL < DPL (DPL is 
always 3), those instructions cause an exception. The exception handler then simu
lates the instruction, maintaining a "virtual" Interrupt flag for each executing V86 pro· 
gram. Some operating systems may choose to run with IOPL = DPL, so that these 
instructions are not trapped, which results in better performance. 
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AppendixB 

Using Assembly Language 
with Your VxD Written in C 
If you choose to write your VxDs in C using only the DDK (and not VToolsD), you'll 
need to write a small piece of your VxD in assembly language in order to declare your 
VxD's DDB (Device Descriptor Block) and Device Control Procedure. If you also 
use VMM or VxD services that aren't provided by either the DDK wrapper library 
(VXDWRAPS. CLB) or the wrapper provided with this book (WRAPPERS .CLB), you'll need 
to add new wrappers to the WRAPPER .ASM file discussed in this appendix. 

This appendix will tell you what you need to know to write the assembly language 
modules you require. First I'll show you exactly how to declare a DDB and how to 
write a Device Control Procedure in assembly language. Next, I'll discuss adding 
other entry points to the assembly language module to support registered callbacks of 
all kinds: interrupt handlers, event handlers, port trap handler, page fault handlers, etc. 
Finally, I'll explain the inner workings of the WRAPPERS library so that you can eas
ily add other services to it. 

433 
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Declaring the DDB 
Although written in C, your VxD will always have at least one assembly language 
source file which includes the VxD's DDB and Device Control Procedure. You can 
start with the assembly language module from any of this book's sample VxDs and 
modify it to suit your needs. 

A VxD usually declares its Device Descriptor Block (DDB) at the top of its 
assembly language module, using the macro DECLARCVIRTUAL_DEVICE. Here's the 
macro definition, taken from VMM. INC: 

Declare_Virtual_Device MACRO Name, Major_Ver, Minor_Ver,\ 
Ctrl_Proc, Device_Num, Init_Order,\ 
V86_Proc, PM_Proc, Reference_Data 

These parameters correspond one for one to the DDB fields described in the sec
tion "The Device Descriptor Block" in Chapter 4. 

As an example, SKELCTRL. ASM from the SKELETON VxD in Chapter 5 uses the 
macro like this: 

SKELETON, I, 0, ControlProc, 
UNDEFINED_DEVICE_ID, 
UNDEFINED_INIT_ORDER 

All VxDs are required to supply parameter values for Name, Major _Ver, 
Minor_Ver, and Ctrl_Proc. However, a VxD may use UNDEFINED_DEVICE_ID if it 
doesn't need a unique ID, and UNDEFINED_INIT_ORDERifit doesn't require a particu
lar order in the initialization sequence. SKELETON. VXD doesn't have a V86 or PM API 
procedure, so those parameters are omitted. The final Reference_Data parameter is 
used only by lOS layered block device drivers (a kind ofVxD). An lOS driver would 
initialize this field with a pointer to it's Driver Registration Packet. lOS drivers are not 
discussed in this book; see the DDK. 

Coding the Device Control Procedure 
A VxD's Device Control Procedure, its main entry point, usually follows the DDB 
declaration. Because this procedure must reside in the VxD's locked code segment, its 
declaration is preceded by the macro VXD_LOCKED_CODE_SEG. In SKELCTRL. ASM, the 
Device Control Procedure is called simply Control Proc. 
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BeginProc ControlProc 
Control_Dispatch SYS_CRITICAL_INIT. _OnSysCriticallnit. cCall. <ebx> 
Control_Dispatch SYS_VM_INIT. _OnSysVmlnit. cCall. <ebx> 
Control_Dispatch SYS_VM_TERMINATE. _OnSysVmTerminate. cCall. <ebx> 
Control_Dispatch CREATE_VM. _OnCreateVm. cCall. <ebx> 
Control_Dispatch DESTROY_VM. _OnDestroyVm. cCall. <ebx> 
Control_Dispatch CREATE_THREAD. _OnCreateThread. cCall. <edi> 
Control_Dispatch DESTROY_THREAD. _OnDestroyThread. cCall. <edi> 

clc 
ret 

EndProc ControlProc 

Begi n_Proc and End_Proc macros bracket the Control Proc declaration. These 
two macros are very complex, but you don't have to understand the implementation to 
use them correctly. You can think of them as being the VxD equivalent of the proc 
nea rand endp assembler directives. Just as you would bracket an assembly language 
procedure with proc near and endp, you bracket an assembly language control pro
cedure with Begi nProc and EndProc. 

Within Control Proc, the Control_Di spatch macro generates code for a switch 
statement, where the control variable is the message code in EAX. The declaration of 
Contro l_Di spatch, also in VMM. I NC, is: 

Control_Dispatch MACRO Service. Procedure. callc. arglst 

The first parameter specifies the message, the second specifies the message han
dler, the third is the calling convention of the handler, and the last is the list of argu
ments to be passed to the handler. SKELCTRL. ASM uses the macro like this: 

Control_Dispatch INIT_COMPLETE. _OnlnitComplete. cCall. <ebx> 

The first parameter is obvious, and I'll explain the leading underscore in the second 
parameter in a moment. The last parameter, argl st, represents the VM handle, which 
the VMM always places in EBX before calling a VxD with the INIT_COMPLETE message. 

The calling convention parameter, cCa 11 , is necessary because this assembly mod
ule will be linked with modules written in a different language - SKE LCT RL. ASM is 
calling the message handler On I n itComp 1 ete, which is located in a separate C file. 
Calling conventions are important when mixing languages. A calling convention defines 
two behaviors: the order in which parameters are pushed on the stack (right to left or left 
to right); and who is responsible for removing parameters from the stack after the call 
(callee or caller). Each calling convention implies a naming convention, which defines 
how the compiler "mangles" the procedure name before storing it in the OBJ file. 
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Each high-level language compiler has a "native" calling convention, and some 
also support alternative conventions through keywords. The Microsoft C compiler 
uses the cdec1 convention as its native convention: a function declared without a call
ing convention keyword automatically uses the cdec 1 convention. Microsoft C also 
supports the _stdca11 convention through the _stdca11 keyword. 

Assemblers don't directly support calling conventions, which is why VMM. INC 
defines its own macros for calling a function in a high-level language: cCa 11 and 
sCa 11, which match the C compiler's cdec1 and _stdca 11 keywords. In general, it 
doesn't matter which calling convention is used, as long as both caller and callee use 
the same convention. SKE LCTRL. ASM uses cCa 11 because it's calling a C module, and 
cdec1 is the "native" convention for C code. But the assembly module could use 
sCa 11 instead - if the C module used the _s tdca 11 keyword in the declaration of the 
called function. 

Note that in each of the Control_Di spatch statements, the name of the message 
handler includes a leading underscore. The cdec 1 naming convention adds a leading 
underscore to all exported cdecl functions, which means that an assembly language 
module calling a C module must include this leading underscore in the name of the 
called fuction. The cCa 11 macro in VMM. I NC takes care of the calling convention, 
pushing parameters in the right order and removing parameters from the stack, but 
doesn't take care of the naming convention. So SKELCTRL. ASM must explicitly include 
the leading underscore in the cCall macro's Procedure argument. (In contrast, the 
sCa 11 macro does take care of the naming convention, automatically adding a type 
decoration to the end of the Procedure name.) 

A sure sign of a calling convention mixup is a linker error message like: 

UNRESOLVED EXTERNAL: OnlnitComplete@4. 

The @n is a type decoration, specifying how many bytes the function uses 
for parameters. The name OnlnitCompl ete@4 means OnlnitCompl ete 
uses 4 bytes of parameters. This UNRESOLVED EXTERNAL error would occur 
if SKELCTRL.ASM used sCall when calling OnlnitCompl ete, and 
OnlnitCompl ete was declared as cdecl. sCall adds type decoration but 
cdecl doesn't, so at link time, the names won't match. 
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Adding "Thunks" to Support Callbacks 
from VMMlVxDs 
Many VMM and VxD services require the calling VxD to register a callback function, 
which the VMMNxD invokes later to notify the calling VxD that something interesting 
happened. For example, a VxD might call VPICD_Vi rtual i ze_I RQ to register a hard
ware interrupt handler; the VPICD would then call the registered handler when a hard
ware interrupt occurs. Or, a VxD might call the VMM service Insta 11_IO_Handl er to 
register a port trap handler; the VMM would then call this handler when a Ring 3 appli
cation accesses a specific 110 port. 

In most cases, the parameters provided to the callback function are passed in reg
isters, not on the stack. (A notable exception to this rule is the Configuration Manager 
VxD, which uses the stack to pass parameters to callback functions.) For this reason, 
a registered callback is usually located in an assembly language module, so that the 
callback can access the register parameters. 

The example VxDs in this book all follow this convention. All registered callbacks 
are located in the VxD's assembly module (the same one containing DDB and Device 
Control Procedure), but the callback does minimal processing before calling a func
tion in the VxD's C module to perform real processing. In my example VxDs, the 
name of the assembly callback function always ends in "Thunk", and the name of the 
C function it calls has the same base but ends in "Handler". Thus, the PORTTRAP 
example from Chapter 8 contains the function PortTrapThunk in the VxD's assembly 
language module, and PortTrapThunk calls PortTrapHandl er which is located in the 
VxD's C module. (Note that this usage of the term "thunk" is not related to the flat 
thunks discussed in Chapter 18.) 

Each VMMNxD service that requires a callback uses a different set of registers to 
pass parameters to the callback. Therefore, when using a callback you must refer to 
the service's documentation to discover the register parameters and then write an 
appropriate assembly language "thunk". The VMM service Install_IO_Handl er 
says the port trap handler will be called back with 

Input: 
EAX=data (if OUT instruction) 
EBX=current VM handle 
ECX=IO type //BYTE_INPUT, BYTE_OUTPUT, WORD_INPUT. WORD_OUTPUT, 

//DWORD_INPUT, DWORD_OUTPUT, STRING_IO, REP_IO, 
//ADDR_32_IO, REVERSE_IO 

EDX=port number 
EBP=address of Client Register Structure 

Output: 
EAX=data (if IN instructian) 
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So the PortTrapThunk function in PORTIRAP's assembly file pushes those reg
ister parameters onto the stack and calls PortTrapHandl er, like this: 

BeginProc PortTrapThunk 

Emulate_Non_Byte_IO 
cCall _PortTrapHandler, <ebx, ecx, edx, ebp, eax> 
ret 

EndProc PortTrapThunk 

Notice the order of parameters in the cCall macro exactly matches the Port
TrapHandl er declaration in PORTIRAP's C file: 

DWORD _stdcall PortTrapHandler(VMHANDLE hVM, DWORD IOType, DWORD Port, 
PCLIENT_STRUCT pcrs, DWORD Data) 

The macro takes care of pushing the parameters in the reverse order. The sample 
VxDs demonstrate several types of thunks and handlers: 

• VXDISR uses a VPICD_Virtualize_IRQ callback (for Hw_Int_Proc) and a 
Gl oba l_Event callback 

• PORTIRAP uses an Insta ll_IO_Handl er port trap handler 

• PAGETRAP uses a Hook_V86_Page page fault handler 

If your VxD requires a different kind of callback, see the DDK documentation for 
specific parameter information, then use one of these samples as a starting point. 

Introducing the Wrapper Library 
Although the DDK provides a library of C-callable VMM and VxD services, VXD
WRAPS. CLB, this library only contains a small percentage of the total number of avail
able VMMNxD services. Many of the VxDs in this book use services that aren't 
included in VXDWRAPS. CLB, so I've developed another library, WRAPPERS. CLB. This 
library contains all other services needed by the VxDs in this book: a few more VMM 
services, most VPICD and VDMAD services, a few SHELL and VWIN32 services, 
and three IFSMgr services. A complete list of the services in WRAPPERS. CLB is in 
Table B.l. 

The source file for this library is WRAPPERS.ASM. WRAPPERS.H is the header file 
for modules using WRAPPERS.ASM. (Both are found in a subdirectory of the code 
disk.) The Windows 95 DDK provides an example of both the assembly language 
module and the C header file in the \BASE\VXDWRAPS directory. My WRAPPERS.ASM 
and WRAPPERS. H are based on the DDK example. 
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If you need to call other VMMNxD services that aren't in either the DDK 
VMMWRAPS. CLB or in my WRAPPERS. CLB, you'll need to modify WRAPPERS .ASM and 
WRAPPERS. H to add support for the services you need. 

Table B.l Services provided by WRAPPERS. GLB. 

VMM Services Get_Initial_Thread_Handle 
_Page Reserve 
_PageCommitPhys 
_PageDecomrilit 
Install_IO_Handler 
Remove_IO_Handler 
Enable_Local_Trapping 
Disable_Local_Trapping 
_Assign_Device_V86_Pages 
_DeAssign_Device_V86_Pages 
_ModifyPageBits 
Hook_V86_Page 
Unhook_V86_Page 
_MapIntoV86 
_PhysIntoV86 
MapJlat 
Call_Priority_VM_Event 
Save_Client_State 
Restore_Client_State 
Begin_Nest_Exec 
End_NesCExec 
Simulate_Push 
SimulateJar_Call 

IFSMgr Services IFSMgr_RingO_OpenCreateFile 
IFSMgr_RingO_WriteFile 
IFSMgr_RingO_CloseFile 

VPICD Services VPICD_Virtualize_IRQ 
VPICD_Physi cal ly_Unmask 
VPJCD_Physi cally-Mask 
VPICD_Phys_EOI 
VPICD_Force_Default_Behavior 
VPICD_Set_Int_Request 
VPICD_Clear_Int_Request 
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WRAPPERS.H 
WRAPPERS. H (Listing B.I, page page 448) contains a few constants and typedefs, but 
the two important sections are the MAKE_HEADER section and the section of macro def
initions following it. 

The MAKE_HEADER macro is defined in VXDWRAPS. H, (in the DDK I NC32 directory). 
The parameters to this macro are basically the individual components of a function 
prototype. The macro uses preprocessor tokenizing features to generate multiple func
tion prototypes for a single VxD service. The multiple protoypes are necessary 
because there are actually six different wrappers for every VxD service, one for each 
of the possible code segments the wrapper could be called from. For example, this 
call in WRAPPERS. H: 

MAKE_HEADER(PTHCB._stdcall.Get_Initial_Thread_Handle. (HVM hVM» 

will expand to: 

extern PTHCB _stdcall LCODE_Get_Initial_Thread_Handle(HVM hVM); 
extern PTHCB _stdcall ICODE_Get_Initial_Thread_Handle(HVM hVM); 
extern PTHCB _stdcall PCODE_Get_Initial_Thread_Handle(HVM hVM); 
extern PTHCB _stdcall SCODE_Get_Initial_Thread_Handle(HVM hVM); 
extern PTHCB _stdcall DCODE_Get_Initial_Thread_Handle(HVM hVM); 
extern PTHCB _stdcall CCODE_Get_Initial_Thread_Handle(HVM hVM); 

Immediately following the MAKE_HEADER section in WRAPPERS. H is another section 
of macro definitions. Here each service name is redefined as a macro: 

Table B.l (continued) Services provided by 
WRAPPERS.CLB 

VDMAD Services VDMAD_Virtualize_Channel 
VDMAD_Set_Region_Info 
VDMAD_Set_Phys_State 
VDMAD_Phys_Mask_Channel 
VDMAD_Phys_Unmask_Channel 
VDMAD_Scatter_Lock 

SHELL Services SHELL_Resolve_Contention 
SHELL_PostMessage 

VWIN32 Services _VWIN32_QueueUserApc 
_VWIN32_SetWin32Event 
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The PREP END macro (also in VXDWRAPS. H) prepends the name of the current seg
ment to the service name: LCODE for locked code, I CODE for init code, etc. So when a 
C module calls GeCIni ti al_Thread_Handl efrom the locked code segment, the pre
processor actually produces a call to LCODE_GeCIniti al_Thread_Handl e. 

The MAKE_HEADER section must precede the service name macro definitions 
in the header file. Because of the way the macros are implemented, reversing 
the order will result in incorrect fUllction prototypes being generated by the 
preprocessor. 

These macros in WRAPPERS. H make it easy for a C module to call a service wrap
per. Defining each service name as a macro ensures that code calling the service actu
ally calls the right wrapper, without making the calling code aware of the current 
segment. The MAKLHEADER macro makes it easy for WRAPPERS. H to generate function 
prototypes for each of the six service wrappers, one for each segment. The next sec
tion explains how these service wrappers are implemented. 

Overview of WRAPPERS.ASM 
This section will discuss the details of writing a wrapper module in assembly, using 
WRAPPERS .ASM (Listing B.2, page page 452) as an example. Although WRAPPERS .ASM 
contains dozens of individual wrapper functions, this section will discuss only two of 
them: Get_Initial_Thread_Handle and IFSMgr_RingO_OpenCreateFile. Get_
Ini ti al_Thread_Handl e is an example of a simple wrapper which pops parameters 
off the stack into registers and calls the VMM Get_Initi al_Thread_Handl e service . 
. I FSMgr _Ri ngO_OpenCreateFi 1 e is an example of a more complicated wrapper which 
manipulates its caller's parameters instead of just removing them from the stack. 

Like any other assembly file, WRAPPERS.ASM starts by including header files. A 
wrapper implementation module should always include LOCAL. I NC from the DDK 
base' vxdwraps directory. LOCAL. INC acts as a sort of master header file and includes 
many other include files such as VMM. I NC, DEBUG. I NC, etc. A wrapper module should 
also include the header file of each VxD whose services are being wrapped. In the 
case of WRAPPERS.ASM, they are VDMAD.INC, VPICD.INC, SHELL. INC, VWIN32.INC, 
and IFSMGR. INC. 
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Next, WRAPPERS.ASM defines a few macros. WRAPPERS.ASM uses the macros 
StartStdCall and StartCDec1 to declare _stdcall and cdec1 functions, respec
tively.If a function prototype in WRAPPERS. H (remember that prototypes are buried in 
MAKLHEADER calls) declares a wrapper function as cdecl, that function's implemen
tation in WRAPPERS.ASM uses StartCDec1. Conversely, _stdcall in WRAPPERS.H 
means Sta rtStdCa 11 will be used in WRAPPERS. ASM. 

The Start macros are similar to the BeginProc macro which SKELCTRL.ASM used 
to declare procedures, but the Sta rt macros also take naming conventions into 
account (leading underscore for both and a trailing @ followed by the parameter size 
for _stdcall.) The StartCdec1 macro is defined in the DDK file LOCAL. INC. How
ever, LOCAL. INC doesn't provide StartStdCall, so I wrote my own and defined the 
macro at the top of WRAPPERS. ASM. 

StartStdCa11 MACRO Name. Param 
StartCDecl Name&@&Param 
ENDM 

My StartStdCa11 takes two parameters, Name (function name) and Param (total 
bytes of parameters.) StartStdCa11 performs the type-decoration name mangling by 
concatenating Name and Param, and passes the concatentated name to StartCDec1. 
Sta rtCDec 1 in LOCAL. I NC does the rest of the function declaration, adding the under
score and actually generating the procedure declaration (PROC NEAR). 

The code for the individual VxD wrapper functions follows the macro defiintions. 
The next two sections will examine a simple wrapper, Get_I ni t i a LTh reacLHand1 e, 

and a more complicated wrapper, I FSMgr _Ri ngO_OpenCreateFi 1 e. 

WRAPPER. ASM: Get_In i t i a 7_ Thread_Hand 7 e Details 

Many wrapper functions can be as simple GeClniti a1_Thread_Hand1 e. This wrapper 
is implemented using the _stdcall convention because that convention is slightly 
more efficient than cdec 1 and just as easy to code. Because the basic purpose of a 
wrapper is to move parameters from the stack into those registers expected by the real 
service, GeCI n it i a 1_ Th rea d_Ha nd 1 e efficiently moves the parameters into registers 
and removes them from the stack at the same time. Having the callee remove parame
ters from the stack ( _stdca 11 convention) results in slightly smaller code than having 
the caller remove them (cdecl convention), because the code for removing parameters 
appears only once in the callee, instead of appearing in every instance of the caller. 
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StartStdCall Get_Initial_Thread_Handle. 4 

pop edx ; Get return address 
pop ebx ; Get VMHandle 
VxDCall Get_Initial_Thread_Handle 
mov eax. edi move thread hnd into return 
jmp edx ; return addr still in edx 

Get_Initial_Thread_Handle is declared using the StartStdCall macro. The 
second macro parameter, 4, is the total size of the function arguments, in bytes. This 
size must match the argument sizes in the C function prototype in WRAPPERS. H. In this 
case, Get_I nit i a 1_ Thread_Handl e takes a single DWORD (4-byte) parameter. 

The GeCInitial_Thread_Handle wrapper first pops the caller's return address 
from the stack and then pops the caller's single argument. A function that pops the 
caller's arguments off the stack must pop the return address first, because the return 
address was pushed on the stack last as a result of the call into the function. Get_
Initial_Thread_Handle pops this return address into the EDX register, a register 
which will not be used by the VMM Get_Initi al_Thread_Handl e service (accord
ing to the service's documentation). The caller's parameter, the VM handle, is then 
popped into the EBX register, as expected by the service. 

With the registers set up as expected by the service, the GeCIni ti a l_Thread_Handl e 
wrapper uses the VXDca 11 macro to call the real service. This particular service returns 
with the thread handle in ED I, but a C caller expects the thread handle as a return value, 
.so the wrapper moves the handle into the C return register, EAX. Last, the wrapper 
returns to the caller by doing a JMP to the caller's return address, still stored in EDX. 
Normally a function returns with a RET instruction, but in this case the wrapper has 
already popped the return address off the stack, and so it must use a JMP and not a RET. 

The macro VMMca 11 and its counterpart VxDCa 11 deserve a closer look. Both are 
defined in VMM. I NC. The assembler will expand this call: 

into these instructions 

CD 20 int Dyna_Link_Int 
0001010D dd @@Get_Initial_Thread_Handle+Oint Dyna_Link_Int 
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This instruction sequence works as a dynamic link. The first time the sequence is 
executed, the 1NT 20h handler inside the VMM expects the 2 bytes immediately fol
lowing the I NT instruction to hold the Device ID of the V xD being called. The handler 
expects the 2 bytes following the Device ID to contain the Service Number being 
called. In the example above, 0001 is the VxD ID ofthe VMM, and 0100 is the service 
numberfor Get_1 niti a l_Thread_Handl e. 

The I NT 20h handler determines the address of the service being called by tra
versing the VMM's linked list of DDBs (built by the VMM as VxDs are loaded). The 
handler traverses the list to find a VxD with a matching Device ID. Inside the DDB is 
the VxD's Service Table. The handler uses the Service Number (following the I NT 20h) 
to find the address of the specific service. The handler then dynamically replaces the 
2-byte I NT 20h plus the 4-byte "opcode" with a 6-byte near call to the service 
address. Finally, the handler restarts the instruction by backing up E1 P. This time the 
wrapper code directly calls the VMM Get_I niti al_Thread_Handl e service. 

WRAPPER. ASM: I FSMGR_Ri ngO_OpenCrea teFi 7 e Details 

GeC1nitial_Thread_Handle is a simple wrapper because the underlying service 
returns only one piece of information (a thread handle) which is easily communicated 
back to the C caller through a return value. The VMM service returns with the handle 
in EDI, the wrapper moves it to EAX, and the C caller sees this as a return value. 

I FSMgr _Ri ngO_OpenCreateFil e is a more complicated wrapper precisely 
because it must return two pieces of information back to its C caller (a handle and an 
error code). The underlying service uses two different registers to return this informa
tion, but the wrapper can't return two registers, because it's called by C code. The 
wrapper can use one of the two pieces as an actual return value, but the other must be 
communicated back through a pointer variable. It's this extra pointer parameter that 
complicates the wrapper implementation. 

The I FSMgr _Ri ngO_OpenCreateFi 1 eprototype (found in WRAPPPERS. H) looks like 

HANDLE cdecl IFSMgr_RingO_OpenCreateFile( Baal blnContext. PCHAR filename. 
WORD mode. WORD attrib. BYTE action. 
BYTE flags. WORD *pError. BYTE *pAction); 

The file handle is provided as a return value. The caller must provide a pointer to a 
WORD variable which the wrapper will fill in with an error code. Notice the actual 
IFSMgr service doesn't do anything with this pointer. The service returns the error 
code in a register (EAX), and it's the wrapper's job to move this register value into the 
location targeted by the caller's pointer parameter. Here is the wrapper implementa
tion: 
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Sta rtCdecl I FSMgr _Ri ngO_OpenCreateFi 1 e 

blnContext EQU [ebp+8J 
filename EQU [ebp+12J 
mode EQU [ebp+16J 
attrib EQU [ebp+20J 
action EQU[ebp+24J 
flags EQU [ebp+28J 
pError EQU [ebp+32J 
pAction EQU [ebp+36J 

push ebp 
mov ebp. esp 
mov dl. action 
mov dh. fl ags 
mov cx. attrib 
mov bx. mode 
mov esi. filename 
mov eax. RO_OPENCREATFILE 
cmp WORD PTR blnContext. ° 
je @f 

mov eax. RO_OPENCREAT_IN_CONTEXT 
~: 

VxDCall IFSMgr_RingOJileIO 
mov esi. pError 
jnc @f 

mov WORD PTR [esiJ. ax 
xor eax. eax 

~: 

mov esi. pAction 

;give caller error code 
;return failure to caller 

mov DWORD PTR [esiJ. ecx action performed 
;returning with handle in eax 
pop ebp 
ret 

EndCdecl IFSMgr_RingO_OpenCreateFile 

I FSMgr _Ri ngO_OpenCreateFil e uses Sta rtCdecl to declare the function as 
cdecl. This means the wrapper will leave the parameters on the stack. To enhance 
readability, the I FSMgr _RO_OpenCreateFi 1 e defines several equates (using EQU, the 
assembly equivalent of Jfdefi ne) to refer to parameters on the stack. 

On entry, I FSMgr _Ri ngO_OpenCreateFi 1 e copies parameters from the stack to 
the appropriate register, as expected by the IFSMgr. After the V xDCa 11 to the service, 
the wrapper checks the Carry flag. The IFSMgr sets this flag to denote that an error 
occurred and that EAX contains an error code. If the flag is clear (no error), the wrap
per writes a zero to the location pointed to by the error code pointer and returns to the 
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caller. The C caller's file handle return value is already initialized, because the 
IFSMgr puts the file handle in EAX. If the flag is set (error), the wrapper takes the 
IFSMgr error code in AX, copies it to the location pointed to by the error code pointer, 
and returns with zero in EAX. This tells the C caller that the function failed, and that a 
meaningful value is available in the error code parameter. 

Building the Wrapper Library 
Once you've modified WRAPPERS. ASM to add your own services, you'll need to 
rebuild the WRAPPERS. CLB library. The makefile, WRAPPERS. MAK (Listing B.3, 
page 464), can be found in the subdirectory on the code disk. To build WRAPPERS. CLB, 
type nmake -fwrappers .mak. 

The only unusual thing about the makefile is that the WRAPPERS. ASM source is 
assembled six different times, using a different value for the SEGNUM define, to pro
duce six different OBJs. All six of the OBJs are added to the library. 

SEGNUM isn't used by WRAPPERS .ASM directly. The LOCAL. I NC include file from the 
DDK uses the value of SEGNUM to place a wrapper function in a particular code seg
ment, and to generate a segment-specific function name. Here is an extract from 
LOCAL. INC. 

IFE SEGNUM-l 
SEGB TEXTEQU <VXD_LOCKED_CODE_SEG> 
SEGE TEXTEQU <VXD_LOCKED_CODE_ENDS> 

ELSEIFE SEGNUM-2 
SEGB TEXTEQU <VXD_ICODE_SEG> 
SEGE TEXTEQU <VXD_ICODE_ENDS> 

ELSEIFE SEGNUM-3 
SEGB TEXTEQU <VXD_PAGEABLE_CODE_SEG> 
SEGE TEXTEQU <VXD_PAGEABLE_CODE_ENDS> 

ELSEIFE SEGNUM-4 
SEGB TEXTEQU <VXD_STATIC_CODE_SEG> 
SEGE TEXTEQU <VXD_STATIC_CODE_ENDS> 

ELSEIFE SEGNUM-5 
SEGB TEXTEQU <VXD_DEBUG_ONLY_CODE_SEG> 
SEGE TEXTEQU <VXD_DEBUG_ONLY_CODE_ENDS> 

ELSEIFE SEGNUM-6 
SEGB TEXTEQU <VXD_PNP_CODE_SEG> 
SEGE TEXTEQU <VXD_PNP_CODE_ENDS> 
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You can see that SEGNUM=l corresponds to the LOCKED segment, SEGNUM=2 corre
sponds to the I CODE (initialization) segment, etc. LOCAL. I NC uses these SEGB and 
SEGE equates in the definition of the Sta rtStdCa 11 or Sta rtCDec1 macros. As a 
result, when a wrapper module declares a wrapper function using one of these mac
ros, LOCAL. I NC places the wrapper function in the appropriate segment and also 
prepends the function name with a segment name. For example, when WRAPPERS. ASM 
is assembled with DSEGNUM=l, the following source code 

StartStdCa11 Get_Initia1_Thread_Hand1e. 4 

is translated by the preprocessor into 

PUBLIC LCODE Get_Initia1_Thread_Hand1e@4 
LTEXT SEGMENT 
LCODE_Get_Initia1_Thread_Hand1e@4 PROC NEAR 

As a result of these macros, the WRAPPERS. CLB library contains six different ver
sions of every wrapper function, with six different names. These six names corre
spond to the names generated by the MAKE_HEADER macro in WRAPPERS. H. (Refer to 
the section "WRAPPERS. H" for an explanation of the MAKE_HEADER wrapper and the 
function prototypes it generates.) 

Summary 
The techniques described in this book allow you to write most of your V xD in C using 
only the DDK, without purchasing VToolsD. However, you will still need to write 
small portions of your VxD in assembly. This appendix demonstrates exactly how to 
write the assembly pieces, as well as how to extend the WRAPPERS. CLB C-callable 
wrapper library included with this book. 
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Listing B.I WRAPPERS.H 

1**************************************************************************** 
* * 
* THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY 
* KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
* IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR 
* PURPOSE. 

* Copyright 1993-95 Mi crosoft Corporati on. All Ri ghts Reserved. 
* 

* 
* 
* 
* 
* 
* 

**************************************************************************** / 

i/ifndef _VMMXWRAP_H 
I/define ._VMMXWRAP_H 

I/incl ude <vxdwraps. h> 

/**************************************************************************** 
* * 
* VMM servi ces 
* 

* 
* 

**************************************************************************** I 
typedef DWORD VMHANDLE; 
typedef DWORD EVENTHANDLE; 
typedef DWORD MEMHANDlE; 
typedef DWORD PTHCB; /I pointer to thread control block 
typedef void *CAlLBACK(void); 

MAKE_HEADER( PTHCB ,_stdca 11 ,GeCIniti a l_Thread_Handl e, (HVM hVM» 
MAKE_HEADER(BOOl, _stdca11, Insta11_ID_Handler, COWORD PortNum, CALLBACK Callback » 
MAKE_HEADER(BOOL, _stdca11, Remove_IO_Handl er, COWORD PortNum» 
MAKE_HEADER( voi d, _stdca 11 ,Enabl e_local_Trapping, (VMHANDLE hVM, DWORD PortNum» 
MAKCHEADER(void, _stdca11,Disable_Local_Trapping, (VMHANDlE hVM, DWORD PortNum» 
MAKCHEADER( EVENTHANDLE, cdecl ,Ca l1_Pri ori ty-VM_Event, COWORD Pri orityBoost, VMHANDLE hVM, \ 

DWORD Fl ags, voi d *Refdata, \ 
CALLBACK EventCallback, \ 
DWORD Timeout » 

MAKE_HEADER(voi d, cdecl, _Dea11 ocate_Devi ce_CB_Area, COWORD Offset, DWORD Fl ags » 
MAKE_HEADER( void, cdec1, Save_C1 i ent_State, (CLlENT_STRUCT * pSavedRegs» 
MAKE_HEADER( voi d, cdecl, Restore_Cl i ent_State, (CLI ENT_STRUCT * pSavedRegs» 
MAKE_HEADER( voi d, cdecl, Begi n_NesCExec, (void» 
MAKE_HEADER(void, cdecl, End_Nest_Exec, (void» 
MAKE_HEADER(void, _stdca11, Simu1ateJar_Call, (WORD seg, WORD off» 
MAKE_HEADER( voi d, _stdca 11, Simul ate_Push, COWORD val) 
MAKE_HEADER( BOOL, cdec1 ,_ModifyPageBits, (VMHANDLE hVM, DWORD VMli nPgNum, DWORD nPages, 

DWORD bitAnd, DWORD bitOR, DWORD pType, 
DWORD Fl ags» 

MAKE_HEADER( BOOl ,_stdca 11 ,Hook_V86_Page, COWORD PageNum, CALLBACK Callback» 
MAKE_HEADER( BOOL ,_stdca 11 ,Unhook_V86_Page, (DWORD PageNum, CALLBACK Ca 11 back» 
MAKCHEADER(BOOl, cdecl ,_Ass i gn_Devi ce_V8LPages, COWORD VMl i nrPage, DWORD nPages, 

VMHANDlE hVM, DWORD Flags» 
MAKE_HEADER( BOOL, cdec 1 ,_DeAss i gn_Devi ce_V86_Pages, COWORD VMl i nrPage, DWORD nPages, 

VMHANDlE hVM, WORD Fl ags» 
MAKE_HEADER( BOOl, cdec 1 ,_Phys IntoV86, COWORD PhysPage, VMHANDlE hVM, DWORD VMLi nPgNum, 

DWORD nPages, DWORD Fl ags» 
MAKCHEADER( BOOl, cdec 1 ,_MapIntoVB6, (MEMHANDlE hMem, VMHANDlE hVM, DWORD VMLi nPageNumber, 

DWORD nPages, DWORD PageOff, DWORD F1 ags» 
MAKE_HEADER(MEMHANDLE ,cdecl ,_GetNul PageHandl e, (voi d» 
MAKE_HEADER(UlONG,cdecl,_PageReserve, (UlONG page, UlONG npages, ULONG flags» 
MAKE_HEADER( UlONG, cdec 1 ,_PageCommitPhys, (UlONG page, UlONG npages, ULONG physpg, 

UlONG fl ags» 
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Listing B.l (continued) WRAPPERS.H 

MAKE_HEADER(ULONG, cdecl ,_PageDecommit, (ULONG page, ULONG npages, ULONG fl ags» 
MAKE_HEADER( voi d * ,_stdcall ,MapJl at, (BYTE SegOffset, BYTE Off Offset » 

I/define MAPFLAT<sgmnt,offst) MapJlat«(oWORD)(&«CRS *)O)->sgmnt», 

I/define Map_Flat 
(OWORD)( & « struct Cl i ent_Word_ReLStruc *)0) ->offst» 

PREPENDCMapJl at) 
I/define Call_PrioritLVM_Event 
I/defi ne GeCInit i a l_Thread_Handl e 
I/defi ne Insta 11_IO_Handl er 
I/defi ne Remove_IO_Handl er 
I/define Enable_Local_Trapping 
I/define Disable_Local_Trapping 
I/defi ne _Dea 11 ocate_Devi ceJB_Area 
I/defi ne Save_Cl i enCState 
I/defi ne Restore_Cl i ent_State 
I/define Begin_NesCExec 
I/define End_Nest_Exec 
ildefine SimulateJar_Call 
I/define Simulate_Push 
#defi ne _Modi fyPageBi ts 
ildefi ne Hook_v86_Page 
ildefi ne Unhook_V86_Page 
ildefi ne _Ass i gn_Devi ce_V86_Pages 
I/defi ne _DeAssi gn_Devi ce_V86_Pages 
I/define _PhysIntoV86 
I/defi ne _MapIntoV86 
I/defi ne _GetNul PageHandl e 
I/defi ne _Page Reserve 
I/defi ne _PageCommitPhys 
I/defi ne _PageDecommit 

PREPEND(Ca 11_Pri ori tLVM_Event) 
PREPEND( GeCI ni t i a l_Thread_Handl e) 
PREPEND( Insta 11_IO_Handl er) 
PREPEND( Remove_I O_Handl er) 
PREPEND( Enabl e_Loca l_Trappi ng) 
PREPEND( Di sab 1 e_Loca l_Trappi ng) 
PREPENDLDea 11 ocate_Devi ce_CB_Area) 
PREPEND(Save_Cl i enCState) 
PREPEND( Restore_Cl i ent_State) 
PREPEND( Begi n_NesCExec) 
PREPEND( End_Nes CExec) 
PREPEND( Simul ate_Far _Ca 11 ) 
PREPEND( Si mul ate_Push) 
PREPENDLModi fyPageBi ts) 
PREPEND( Hook_V8LPage) 
PREPEND( Unhook_V86_Page) 
PREPENDLAss i gn_Devi ce_V86_Pages) 
PREPENDLDeAssi gn_Devi ce_V86_Pages) 
PREPENDLPhys IntoV86) 
PREPENDLMapI ntoV86) 
PREPENDLGetNul PageHandl e) 
PREPENDLPageReserve) 
PREPENDLPageCommi tPhys) 
PREPENDLPageDecommi t) 

// the following functions are really in VXDWRAPS.CLB, but aren't prototyped in VXDWRAPS.H 
MAKE_HEADER(OWORD, cdecl, _A llocate_Devi ce_CB_Area, COWORD NumBytes, DWORD Fl ags » 

1**************************************************************************** 
* 
* 
* 

1 FSMgr servi ces 
* 

**************************************************************************** / 

I/define RO_OPENCREATFILE OxD500 /* Open/Create a file */ 
I/define RO_OPENCREAT_IN_CONTEXT OxD501 /* Open/Create file in current context */ 
I/define ROJLOSEFILE OxD700 /* Close file */ 
I/defi ne RO_WRITEFI LE OxD601 /* WRite to a fi 1 e * / 
I/define RO_WRITEFILE_IN_CONTEXT OxD603 /* Write to a file in current context */ 

MAKE_HEADER( HANDLE, cdecl , I FSMgr _Ri ngO_OpenCreateFil e, (BOOL bl nContext, PCHAR fil ename. 
WORD mode, WORD attrib, \ 
BYTE action, BYTE flags, \ 
WORD *pError, BYTE *pAction» 

MAKCHEADER( DWORD, cdecl ,I FSMgr _RingO_WriteFil e, (BOOl blnContext, HANDLE fil ehandl e, \ 
PYOID buf, DWORD count, DWORD fil epos, 
WORD *perr» 

MAKE_HEADER( BOOl, cdecl ,lFSMgr _Ri ngO_Cl oseFil e, (HANDLE fil ehandl e, WORD *pError» 

ildefi ne 1 FSMgr _Ri ngO_OpenCreateFil e PREPEND( 1 FSMgr _Ri ngO_OpenCreateFi 1 e) 
i/defi ne 1 FSMgr _Ri ngO_Wri teFi 1 e PREPEND( 1 FSMgr _Ri ngO_Wri teFi 1 e) 
ildefi ne I FSMgr _Ri ngO_Cl oseFi 1 e PREPEND( IFSMgr _Ri ngO_Cl oseFi 1 e) 
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Listing B.l (continued) WRAPPERS.H 

1**************************************************************************** 
* 

~PICD services 
* 

**************************************************************************** / 

typedef struct 
{ 

WORD VID_I RCLNumber; II I RQ to vi rtua 1 i ze 
WORD VID_Opt ions; 
II VPICD_OPT_CAN_SHARE: allow other VxDs to virtualize IRQ also 
II VPICD_OPT_REF _DATA: pass VID_Hw_Int_Ref as param to Hw_Int_Handl er 
DWORD VID_Hw_Int_Proc; II callback for hardware interrupt 
DWORD VID_Vi rt_InCProc; 
DWORD VID_EOI_Proc; 
DWORD VID_Mask_Change_Proc; 
DWORD V ID_I RET_Proc; 
DWORD VID_IRET_Time_Out; 
PVOID V ID_Hw_InCRef; II pass thi s data to Hw_InCHandl er 

VPICD_IRQ_DESCRI PTOR; 

typedef DWORD I RQHANDLE; 

MAKE_HEADER( IRQHANDLE ._stdcall • VPICD_Vi rtual i ze_IRQ. (VPICD_I RCLDESCRI PTOR *pl rqDesc» 
MAKE_HEADER( voi d ._stdcall • VPICD_Physi cally-Mask. (IRQHANDLE hndl rq» 
MAKCHEADER(void ._stdcall • VPICD_Physi cally_Unmask. (IRQHANDLE hndl rq» 
MAKE_HEADER( voi d ._stdcall • VPICD_Force_Defaul CBehavior. (IRQHANDLE hndl rq» 
MAKE_HEADER(void ._stdcall • VPICD_Phys_EOI. (I RQHANDLE hndl rq» 
MAKE_HEADER(voi d ._stdcall • VPICD_Set_InCRequest. (IRQHANDLE hIRQ. MHANDLE hVM» 
MAKE_HEADER(void._stdcall.VPICD_Clear_lnt_Request. (]RQHANDLE hIRQ. VMHANDLE hVM» 

I/defi ne VPICD_Vi rtua 1 i ze_IRQ 
I/define VPICD_Physically-Mask 
I/define VPICD_Physically-Unmask 
I/defi ne VPICDJorce_Defaul CBehavi or 
I/defi ne VPI CD_Phys_EO I 
I/defi ne VPICD_SeClnCRequest 
I/define VPICD_Clear _lnCRequest 

PREPEND( VPICD_Vi rtua 1 i ze_1 RQ) 
PREPEND(VPICD_Physi cally_Mask) 
PREPEND( VPICD_Physi cally-Unmask) 
PREPEND( VPICD_Force_Defaul t_Behavi or) 
PREPEND(VPICD_Phys_EOI) 
PREPEND( VPICD_Set_1 nCRequest) 
PREPEND(VPICD_Cl ear _lnCRequest) 

/**************************************************************************** 
* * 
* VDMAD servi ces 
* 

* 
* 

**************************************************************************** / 

I/defi ne DMA_type_verify OxOO 
Ildefi ne DMA_type_write Ox04 
I/defi ne DMA_type_read Ox08 
I/define DMA_Autolnit OxlO 
I/defi ne DMA_AdrDec Ox20 
I/defi ne DMA_demand_mode OxOO 
I/define DMA_single_mode Ox40 
I/defi ne DMA_b lock_mode Ox80 
I/define DMA_cascade OxcO 
I/define DMA_mode_mask OxcO II mask to isolate controller mode bits (above) 
I/defi ne DMA_chan_se 1 Ox03 
I/defi ne NONE_LOCKED 0 
I/defi ne ALL_LOCKED 1 
I/defi ne SOME_LOCKED 2 



Listing B.l (continued) 

typedef struct 
{ 

DWORD PhysAdd r; 
DWORD Si ze; 

REGION; 

typedef struct Extended_DDS_Struc 
{ 

DWORD DDS_s i ze; 
DWORD DDS_l i nea r ; 
WORD DDS_seg; 
WORD RESERVED; 
WORD DDS_a vail ; 
WORD DDS_used; 

EXTENDED_DDS. *PEXTENDED_DDS; 

typedef struct 
{ 

EXTENDED_DDS dds; 
union 
{ 

]; 

REGION 
DWORD 

DDS. *PDDS; 

typedef DWORD DMAHANDLE; 

aRegi onInfo[16]; 
aPte[16]; 

Assembly with VxD in C - 451 

WRAPPERS.H 

MAKE_HEADERWWORD. cdecl • VDMAD_Scatter _Lock. ( VMHANDLE hVM. DWORD Fl ags. PODS pODS. \ 
PDWORD pPteOffset )) 

MAKE_HEAOER(DMAHANOLE. cdecl. VDMAD_Vi rtua 1 i ze_Channel. (BYTE ch. CALLBACK pfCall back )) 
MAKCHEADER(Yoid. _stdcall. VDMAD_SeCRegion_Info. WMAHANDLE DMAHandle. BYTE Bufferld. \ 

BOOL LockStatus. DWORD Regi on. \ 
DWORD Regi onSi ze. OWORD PhysAddr )) 

MAKE_HEAOER(void. _stdcall. VDMAD_Set_Phys_State. (DMAHANDLE OMAHandle. VMHANOLE hVM. \ 
WORD Mode. WORD ExtMode )) 

MAKCHEADER(Yoid. _stdcall. VDMAO_Phys_Unmask_Channel. (OMAHANOLE DMAHandle. \ 
VMHANDLE hVM )) 

MAKE_HEADERCvoid. _stdcall. VDMAD_Phys_Mask_Channel. (DMAHANDLE OMAHandle)) 
Iidefi ne VOMAD_Vi rtua 1 i ze_Channel PREPEND( VDMAD_Vi rtual i ze_Channel ) 
Iidefi ne VOMAD_SeCRegi on_Info PREPEND(VOMAD_SetYegi on_Info) 
Iidefi ne VDMAD_Set_Phys_State PREPEND(VDMAD_SeCPhys_State) 
I/define VOMAO_Scatter _Lock PREPEND( VDMAO_Scatter Jock) 
I!defi ne VOMAD_Phys_Unmask_Channel PREPENO(VDMAD_Phys_Unmask_Channel) 
IIdefi ne VDMAO_Phys_Mask_Channel PREPEND(VOMAD_Phys_Unmask_Channel) 
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Listing B.l (continued) WRAPPERS:H 

1**************************************************************************** 
* 

SHELL servi ces * 

**************************************************************************** I 

MAKE_HEADER( VMHANDLE. _stdcall. SHELL_Resol ve_Contenti on. (VMHANDLE hndOwner. \ 
VMHANDLE hndContender. 
char *DeviceName » 

MAKE_HEADER(BOOL.cdecl._SHELL_PostMessage. (HANDLE hWnd. DWORD uMsg. WORD wParam. 
DWORD lParam. CALLBACK pCallback. \ 
void *dwRefData» 

ildefi ne SHELL_Reso 1 ve_Content ion PREPEND( SHELL_Reso 1 ve_Content ion) 
ildefi ne _SHELL_PostMessage PREPEND(_SHELL_PostMessage) 

1**************************************************************************** 
* * 
* VWIN32 services * 

**************************************************************************** / 

MAKLHEADER(void.cdecl._VWIN32_QueueUserApc. (void *pR3Proc. DWORD Paramo PTHCB hThread» 
MAKE_HEADER(BOOL. cdecl ._VWIN32_SetWi n32Event. (EVENTHANDLE hEvent) ) 

ildefi ne _VWI N32_QueueUserApc 
ildefine _VWIN32_SetWin32Event 

PREPENDLVW I N32_QueueUserApc) 
PREPENDLVW IN32_SetWi n32Event) 

ilendif / / _VMMXWRAP_H 

Listing B.2 WRAPPERS. ASM 

include local.inc 
i ncl ude ifsmgr. i nc 
include vdmad.inc 
include vpicd.inc 
i ncl ude vwi n32. i nc 
include shell.inc 

RO_OPENCREATFI LE equ OD500h 
RO_OPENCREAT_IN_CONTEXT equ OD501h 
RO_READFI LE equ OD600h 
RO_WRITEFILE equ OD601h 
RO_READFI LLIN_CONTEXT equ OD602h 
RO_WRITEFILE_IN_CONTEXT equ OD603h 
RO_CLOSEF I LE equ OD700h 
RO_GETF I LES I ZE equ ODBOOh 

StartStdCall MACRO Name. Param 
StartCDecl Name&@&Param 
ENDM 

EndStdCall MACRO Name. Param 
EndCDecl Name&@&Param 
ENDM 

Open/Create a file 
Open/Create fil e in current context 
Read a fil e. no context 
Write toa file. no context 
Read a file, in thread context 
Write to a file, in thread context 
Close a file 
Get size of a file 
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Listing B.2 (continued) WRAPPERS. ASM 

MakeCDecl _Modi fyPageBi ts 

MakeCDecl _Assign_Device_V86_Pages 

MakeCDecl _DeAssign_Device_V86_Pages 

MakeCDecl _PhyslntoV86 

MakeCDecl _MaplntoV86 

MakeCDecl _GetNulPageHandle 

MakeCDecl _PageReserve 

MakeCDecl _PageCommitPhys 

MakeCDecl _PageDecommit 

; void cdecl _Deallocate_Device_CB_Area( DWORD NumBytes. DWORD Flags )) 

MakeCDecl _Deallocate_Device_CB_Area 

EVENTHANDLE Call_Priority_VM_Event(DWORD PriorityBoost. VMHANDLE hVM. DWORD Flags. 
void * Refdata. CALLBACK EventCallback. 

PriorityBoost EQU [ebp+8] 
hVM EQU [ebp+12] 
Flags EQU [ebp+16] 
Refdata EQU [ebp+20] 
EventCallback EQU[ebp+24] 
Timeout EQU [ebp+28] 

push ebp 
mov ebp. esp 

DWORD Timeout ); 

mov eax. DWORD PTR PriorityBoost 
mov ebx. DWORD PTR hVM 
mov ecx. DWORD PTR Flags 
mov edx. DWORD PTR Refdata 
mov esi. DWORD PTR EventCallback 
mov edi. DWORD PTR Timeout 
VMMCall Call_Priority_VM_Event 
mov eax. esi ; eax=event handle 

pop ebp 
ret 

EndCDecl 
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Listing B.2 (continued) WRAPPERS.ASM 

; void * _stdcall MapJlat( BYTE SegOffset, BYTE Off Offset ) 

StartStdCall MapJl at, 8 

pop edx save ret addr in unused reg 
pop ebx segment 
xor bh ,bh BL-segment 
mov ah, bl AH-segment 
pop ebx offset 
xor bh,bh BL-offset 
mov al ,bl AL-offset 
VMMca 11 MapJl at AH-seg AL-off 
jmp edx jump to caller's ret addr 

EndStdCall MapJlat, 8 

; BOOL _stdcall Hook_V86_Page( DWORD PageNum, CALLBACK Call back) 

StartStdCall Hook_V86_Page, 8 

pop edx ; save ret addr in unused reg 
pop eax ; PageNum 
pop eSl ; Callback 
VMMCa 11 Hook_V86_Page 
mov eax, 1 assume TRUE ret val 
jnc @f 
xor eax, eax carry set, error, so FALSE ret val 

@:@: 
jmp edx jump to caller's ret addr 

EndStdCa 11 Hook_V86_Page, 8 

; BOOL _stdcall Unhook_V86_Page( DWORD PageNum, CALLBACK Callback) 

pop edx ; save ret addr in unused reg 
pop eax ; PageNum 
pop esi ; Callback 
VMMCall Unhook_V86_Page 
mov eax, 1 assume TRUE ret val 
jnc @f 
xor eax, eax carry set, error, so FALSE ret val 

@:@: 
jmp edx jump to caller's ret addr 

EndStdCa 11 Unhook_V8LPage, 8 

; PTCB _stdcall Get_Initial_Thread_Handle( VMHANDLE hVM 
StartStdCall Get_Initial_Thread_Handle, 4 

pop edx ; Get return address 
pop ebx ; Get VMHandle 
VxDCall Get_Initial_Thread_Handle 
mov eax, edi ; move thread hnd into return 
jmp edx ; return addr still in edx 

EndStdCa 11 
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Listing B.2 (continued) WRAPPERS.ASM 

; Baal _stdcall Install_IO_Handler( PortNum, Callback 
StartStdCall Install~IO_Handler, 8 

pop ebx ; save ret addr in unused reg 
pop edx ; PortNum 
pop esi ; Callback 
VMMCall Install_la_Handler 
mov eax, 1 assume TRUE ret val 
jnc @f 
xor eax, eax 

@'@: 
carry set, error, so FALSE ret val 

jmp ebx jump to caller's ret addr 

EndStdCall 

Baal _stdcall Remove_IO_Handler( PortNum 

Sta rtStdCa 11 

pop ebx 
pop edx 
VMMCall 
mov eax, 
jnc @f 

; save ret addr in unused reg 
; PortNum 

Remove_10_Handler 
1 assume TRUE ret val 

xor eax, eax 
@'@: 

carry set, error, so FALSE ret val 

jmp ebx jump to caller's ret addr 

EndStdCa 11 

; void _stdcall Enable_local_Trapping( VMHANDlE hVM, DWORD PortNum ) 

StartStdCall Enable_local_Trapping, 8 

pop ecx 
pop ebx 
pop edx 
VMMcall 
jmp ecx 

EndStdCall 

; save ret addr 
; hVM 
; PortNum 

Enable_local_Trapping 

in unused reg 

; void _stdcall Disable_local_Trapping( VMHANDlE hVM, DWORD PortNum ) 

StartStdCall Disabl e_local_Trapping, 8 

pop ecx ; save ret addr in unused reg 
pop ebx ; hVM 
pop edx ; PortNum 
VMMcall Disable_local_Trapping 
jmp ecx 

EndStdCa 11 
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Listing B.2 (continued) WRAPPERS.ASM 

; void cdecl Save_Client_State( CLIENT_STRUCT * pSavedRegs 

StartCdecl 

pSavedRegs EQU [ebp+B] 

push ebp 
mov ebp, esp 

pushad ; service doesn't claim to save any regs 
mov edi. pSavedRegs 
VMMcall Save_Client_State 
popad 

pop ebp 
ret 

EndCdecl 

; void cdecl Restore_Client_State( CLIENT_STRUCT * pRestoredRegs 

StartCdecl 

pSavedRegs EQU [ebp+B] 

push ebp 
mov ebp, esp 

pushad ; service doesn't claim to save any regs 
mov edi, pSavedRegs 
VMMcall Restore_Client_State 
popad 

pop ebp 
ret 

EndCdecl 

; void cdecl Begin_Nest_Exec( void 

StartCdecl 

push ebp 
mov ebp, esp 

pushad ; service doesn't claim to save any regs 
VMMcall Begin_Nest_Exec 
popad 

pop ebp 
ret 

EndCdecl 
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Listing B.2 (continued) WRAPPERS.ASM 

; void cdecl End_Nest_Exec( void 

StartCdecl 

push ebp 
mov ebp, esp 

pushad ; service doesn't claim to save any regs 
VMMcall End_Nest_Exec 
popad 

pop ebp 
ret 

EndCdecl 

; void _stdcall Simulate_Far_Call( WORD seg, WORD off) 

StartStdCa11 SimulateJar_Ca11, 8 

pop eax ; save ret addr in unused reg 
pop ecx ; segment 
pop edx ; offset 
VMMcall Simulate_Far_Call 
jmp eax 

EndStdCall SimulateJar_Ca11, 8 

; void _stdcall Simulate_Push( DWORD val 

StartStdCall Simulate_Push, 4 

pop edx ; save ret addr in unused reg 
pop eax ; val 
VMMcall Simulate_Push 
jmp edx 

EndStdCa 11 

HANDLE cdecl IFSMgr_RingO_OpenCreateFile( Baal blnContext, PCHAR filename, 
WORD mode, WORD attrib, 
BYTE action. BYTE flags, 
WORD *pError, BYTE *pAction) 

StartCdecl IFSMgr_RingO_OpenCreateFile 

blnContext EQU [ebp+8] 
filename EaU [ebp+12] 
mode EaU [ebp+16] 
attrib EQU [ebp+20] 
action EQU[ebp+24] 
flags EQU [ebp+28] 
pError EQU [ebp+32] 
pAction EaU [ebp+36] 
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Listing B.2 (continued) 

@.@: 

push ebp 
mov ebp. esp 
mov dl. action 
mov dh. fl ags 
mov cx. attrib 
mov bx. mode 
mov esi. filename 
mov eax. RO_OPENCREATFILE 
cmp WORD PTR blnContext. a 
je @f 

mov eax. RO_OPENCREAT_IN_CONTEXT 

VxDCa 11 I FSMgr _Ri ngOJil eIO 

WRAPPERS. ASM 

mov esi. pError ; esi->error code 

@.@: 

jnc @f 

mov WORD PTR [esiJ. ax ;give caller error code 
xor eax. eax ;return failure to caller 

mov esi. pAction 
mov DWORD PTR [esiJ. ecx ; action performed 
;returning with handle in eax 

pop ebp 
ret 

EndCdecl IFSMgr_RingO_OpenCreateFile 

StartCdec 1 I FSMgr _Ri ngO_Cl oseFil e 

fil ehandl e EQU [ebp+8l 
pError EQU [ebp+12l 

@@; 

push ebp 
mov ebp. esp 

mov ebx. fil ehandl e 
mov eax. RO_CLOSEFI LE ; func code 
VxDCall IFSMgr_RingOJileIO 
mav ecx. 1 ; assume returning true 
jnc @f 
mov esi. pError 
mov WORD PTR res i l. ax 
xor ecx. ecx ; returni ng false 

mov eax. ecx 

pop ebp 
ret 

; error code or zero 

EndCdecl 
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Listing B.2 (continued) WRAPPERS.ASM 

; BOOl cdecl IFSMgr_RingO_CloseFile(HANDlE filehandle, WORD *pError) 
: DWORD cdecl I FSMgr _RingO_WriteFil e(BOOL blnContext, HANDLE fil ehandl e, PVOID buf, 

DWORD count, DWORD fil epos, WORD *perr» 
StartCdecl IFSMgr _Ri ngO_WriteFil e 

b I nContex t EQU [ebp+8] 
filehandl e EQU [ebp ... 12] 
buf EQU [ebp+16] 
count EGU [ebp+20] 
fil epos EQU [ebp+24] 
pError EQU [ebp+28] 

Il@: 

push ebp 
moy ebp, esp 

moy ebx, filehandle 
moy esi, buf 
moy ecx, count 
moy edx, fil epos 
moy eax, RO_WRITEFILE 
cmp WORD PTR blnContext, 0 
je @f 
moy eax, RO_WRITEF I LCI N_CONTEXT 

VxDCall IFSMgr_RingOJilelO 
jnc @f 
moy eSi, pError 
moY WORD PTR [esi] , ax :9ive caller error code 
xor ecx, ecx :set byte count to zero on error 

; ecx contains count 
moy eax, ecx 

pop ebp 
ret 

EndCdecl 

StartStdCall VPICD_Virtualize_IRO, 4 

@@; 

pop edx ; save ret addr in unused reg 
pop edi ; pI rqDesc 
VxDcall VPICD_Virtualize_IRO 
jnc @f 

xor eax, eax carry set, error, so zero return code 

jmp edx jump to caller's ret addr 

EndStdCall VPICD_Virtualize_IRO, 4 

; void _stdcall VPICD_Physically_Mask(IROHANDLE hndlrq» 

StartStdCall VPICD_Physically_Mask, 4 

pop edx ; save ret addr in unused reg 
pop eax ; hndIrq 
VxDcall VPICD_Physically_Mask 
jmp edx ; jump to caller's ret addr 

EndStdCall 
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Listing B.2 (continued) WRAPPERS. ASM 

; IROHANDlE _stdcall VPICD_Virtualize_IRO (VPICD_IRO_DESCRIPTOR *plrqDesc) 
; void _stdcall VPICD_Physically_Unmask(IROHANDlE hndlrq)) 

StartStdCall VPICD_Physically_Unmask, 4 

pop edx ; save ret addr in unused reg 
pop eax ; hndI rq 
VxDcall VPICD_Physically_Unmask 
jmp edx ; jump to caller's ret addr 

EndStdCall VPICD_Physically_Unmask, 4 

; void _stdcall VPICD_Force_Default_Behavior(IROHANDlE hndlrq)); 
; y 
StartStdCall VPICD_Force_Default_Behavior, 4 

pop edx ; save ret addr in unused reg 
pop eax ; hndl rq 
VxDcall VPICD_Force_Default_Behavior 
jmp edx ; jump to call er' s ret addr 

EndStdCall VPICD_Force_Default_Behavior, 4 

; void _stdcall VPICD_Phys_EOI(IRQHANDlE hndlrq)) 

StartStdCal1 VPICD_Phys_EOI, 4 

pop edx ; save ret addr in unused reg 
pop eax ; hndlrq 
VxDcall VPICD_Phys_EOI 
jmp edx ; jump to caller's ret addr 

EndStdCall VPICD_Phys_EOI, 4 

; void _stdcall VPICD_Set_Int_Request(VMHANDlE hVM" IROHANDlE hndlrq 

StartStdCall VPICD_Set_Int_Request, 8 

pop edx ; save ret addr in unused reg 
pop ebx ; hVM 
pop eax ; hndlrq 
VxDcall VPICD_Set_Int_Request 
jmp edx ; jump to caller's ret addr 

EndStdCall VPICD_Set_Int_Request, 8 

; void _stdcall VPICD_Clear_Int_Request(VMHANDlE hVM, IRQHANDlE hlrq 

StartStdCall VPICD_Clear_Int_Request, 8 

pop edx ; save ret addr in unused reg 
pop ebx ; hVM 
pop eax ; hnd 1 rq 
VxDcall VPICD_Clear_lnt_Request 
jmp edx ; jump to caller's ret addr 
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Listing B.2 (continued) WRAPPERS.ASM 

; DMAHANDLE cdec1 VDMAD_Virtua1ize_ChannelCBYTE ch DMACALLBACK pfCallback ) 
StartCdec 1 VDMAD_Vi rtua 1 i ze_Channe 1 

chan EOU [ebp+8J 
pfCallback EOU [ebp+12J 

@&: 

push ebp 
mov ebp, esp 

movzx eax, BYTE PTR chan 
moves i, pfCa 11 back 
VxDCa 11 VDMAD_Vi rtua 1 i ze_Channe1 
jnc @f 
xor eax, eax 

pop ebp 
ret 

; ca rry set. error so zero return code 

EndCdec 1 VDMAD_Vi rtua 1 i ze_Channe 1 

void _stdcall VDMAD_Set_Region_Info( DMAHANDLE DMAHand1e, BYTE Bufferld, 
BOOL LockStatus, DWORD Regi on, 
DWORD Regi anSi ze, DWORD PhysAddr 

pop edi save ret addr in unused reg 
pop eax DMAHand1e 
pop ebx Buffer I d 
xor bh, bh BL-Bufferld 
pop ecx LockStatus 
sh1 ecx, 4 CX-LockStatus 
xor c1, c1 CH-LockStatus 
or bx. cx BX-LockStatus IBufferld 
pop es i Regi on 
pop ecx Regi anSi ze 
pop edx ; PhysAdd r 
VxDCa 11 VDMAD_Set_Regi on_I nfo 
jmp edi ; jump to caller' 5 ret addr 
ret 

EndStdCa 11 VDMAD_SeCRegi on_I nfo, 24 

; void _stdcall VDMAD_SeCPhys_State( DMAHANDLE DMAHand1e. VMHANDLE hVM, 
BYTE Mode, BYTE ExtMode 

StartStdCall VDMAD_SeCPhys_State, 16 

pop esi save ret addr in unused reg 
pop eax DMAHand1e 
pop ebx hVM 
pop edx Mode 
xor dh, dh DL-Mode 
pop ecx ExtMode 
sh 1 ecx, 4 CH-ExtMode 
xor c1, c1 CH-txtMode 
or dx, cx ; DX-ExtMode I Mode 
VxDca 11 VDMAD_Phys_Unmask_Channe 1 
jmp esi ; jump to caller's ret addr 
ret 

EndStdCall 
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Listing B.2 (continued) WRAPPERS. ASH 

; void _stdcall VDMAD_Phys_Unmask_Channel( DMAHANDLE DMAHandle, VMHANDLE hVMl 

StartStdCall VDMAD_Phys_Unmas"'-Channel, 8 

pop esi ; save ret addr in unused reg 
pop edx ; DMAHandl e 
pop ebx ; hVM 
VxDcall VDMAD_Phys_Unmask_Channel 
jmp esi ; jump to caller's ret addr 
ret 

EndStdCall 

; void _stdcall VDMAD_Phys....Mas",-Channel( DMAHANDLE DMAHandle 

StartStdCall VDMAD_Phys_Mask_Channel, 4 

pop esi ; save ret addr in unused reg 
pop eax ; DMAHandl e 
VxDcal1 VDMAD_Phys....Mask_Channel 
jmp esi ; jump to caller's ret addr 
ret 

EndStdCa11 

; DWORD cdec1 VDMAD_Scatter _Lock< VMHANDLE hVM, DWORD F1 ags, 
PDDW pDDS, PDWORD pPteOffset 

StartCdec1 VDMAD_Scatter_Lock 

hVM EaU [ebp+8] 
F1 ags EaU BYTE PTR [ebp+12] 
pDDS Eau [ebp+16] 
pPteOffset EQU[ebp+20] 

RET_NO_LOCKED Eau 0 
RET~LLLOCKED EQU 1 
RET_PART_LOCKED Eau 2 

push ebp 
mov ebp, esp 

mov al, BYTE PTR Flags 
mov ebx, hVM 
mov edi, pDDS 
VxDCa 11 VDMAD_Scatter _Lock 
jc no_lock 
jz all_lock 
mov eax, RET_PART_LOCKED 
jmp flags_checked 

no_lock: . 
mov eax, RET_NO_LOCKED 
jmp f1 ags_checked 

all_lock: 
mov eax, RET_ALL_LOCKED 

f1 ags_checked: 
mov ebx, pPteOffset 
mov DWORD PTR [ebx], esi 
pop ebp 
ret 

EndCdec1 
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Listing B.2 (continued) WRAPPERS.ASM 

; VMHANDLE cdecl SHELL_Resolve_Contention( VMHANDLE hndOwner, VMHANDLE hndContender, 
char *DeviceName ) 

StartStdCall SHELL_Resolve_Contention, 12 

@@: 

pop edx ; save ret addr in unused reg 
pop eax ; hndOwner 
pop ebx ; hndContende r 
pop esi ; DeviceName 
VxDcall SHELL_Resolve_Contention 
mov eax, edi move VM handle into return 
jnc @f 
xor eax, eax ; carry set, error, so zero return code 

jmp edx 
ret 

; jump to caller's ret addr 

EndStdCa 11 SHELL_Resolve_Contention, 12 

BOOL _SHELL_PostMessage( DWORD hWnd, WORD uMsg, WORD wParam, DWORD lParam, 
CALLBACK pfnCallback, DWORD dwRefData ); 

MakeCDecl _SHELL_PostMessage 

; void VWIN32_0ueueUserApc( void * pfnRing3APC, DWORD dwParam, PTCB hThread); 

MakeCDecl _VWIN32_0ueueUserApc 

; BOOL VWIN32_SetWin32Event(HANDLE hEvent); 

MakeCDecl _VWIN32_SetWin32Event 

END 



464 - Writing Windows VxDs and Device Drivers 

Listing B.3 WRAPPERS. MAK 

AFLAGS = -coff -W2 -c -Cx -DBLD_COFF -DIS_32 -DMASM6 -Sg 

OBJS = wrapperl.obj wrapper2.obj wrapper3.obj wrapper4.obj wrapper5.obj 
wrapper6.obj 

LIBING = $(OBJS: =&A) 
LIBING = $(LIBING:&=) 

target: wrappers.clb 

wrappers.clb: always $(OBJS) 
if exist wrappers.clb lib @«wrappers.lnk 

lout:wrappers.clb 
wrappers.clb 
$(UBING) 
« 

if not exist wrappers.clb lib @«wrappers.lnk 
lout:wrappers.clb 
$(UBING) 
« 
wrapperl.obj: wrappers.asm 

ml $(AFLAGS) -DSEGNUM=l -Fo$*.obj wrappers.asm 

wrapper2.obj: wrappers.asm 
ml $(AFLAGS) -DSEGNUM=2 -Fo$*.obj wrappers.asm 

wrapper3.obj: wrappers.asm 
ml $(AFLAGS) -DSEGNUM=3 -Fo$*.obj wrappers.asm 

wrapper4.obj: wrappers.asm 
ml $(AFLAGS) -DSEGNUM=4 -Fo$*.obj wrappers.asm 

wrapper5.obj: wrappers.asm 
ml $ (AFLAGS) -DSEGNUM=5 -Fo$*. obj wrappers. asm 

wrapper6.obj: wrappers.asm 
ml $(AFLAGS) -DSEGNUM=6 -Fo$*.obj wrappers.asm 

always: 
@rem echo pseudotarget 
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All ocate_DeY; ce_CB_Area 131 
All ocate_LDT_Sel ector 217 
All ocateThreadData.Sl ot 44 
All ocBusMasterBuffer 93 
All ocScatterGatherBuffer 94 
All ocSel ector 220,315,316,373 
All ocSysDmaBuffer 89-90 
APe 256 
API 

multimedia 417, 419 
PM 434 
V86434 
VxD42 

application, loading VxD 38 
"appy time" 246, 254 

465 
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arbitrator 172, 179 
ARB_SET_ALLOC 180 
ARB_TESLALLOC 180 
arena 

DOS 35 
"private 33 
shared 34 
system 34 

assembly language module 56, 67, 112, 
146,396 

Assert Range 232 
=Assi gn=Devi ce_V86_Pages 137 
asynchronous notification, 

VxD to application 245 
Asynchronous Procedure Call, see APe 
asynchronous service 40, 113 
attribute, segment 327 
AUX device 295 

B 
_BOOOh 310 
background VM 417 
base address 14, 23, 424 
Beg; n_NesCExec 251 
Begi n_Proc 435 
BIOS Get Ti ck Count 419 
BIOS service 30, 367,415 
"bitness" 15 
Borland compiler 56, 80 
buffer 

DMA86 
double 362 
ring 345 
used at interrupt time 294 

Bui 1 dDescri ptorDWORDS 217 
bus-master DMA 85, 93 
busy loop 309 

c 
C run-time library 56, 297 
call gate 428 
Call Real Mode Procedure With Far 

Return Frame 377 
calling conventions 435 
Ca ll_Pri ority_VM_Event 143, 249, 

381 
cancel event 114 
CB_Cl i ent_Poi nter 46 
cCall 436 
cdecl calling convention 436, 442 
Cl ass value 174 
CLI instruction 22-23 
Client Register Structure 45,216 
CLI ENT_STRUCT 251 
Cl oseHandl e 228, 230 
CM_CONFIG 190, 194 
CMCONFIG 181,190,202 
CM_GET_ALLOCCONF _ALLOC 201 
CM Get Alloc_Log_Conf181,194,201 
CM-GET-ALLOC_LOG_CONF_ALLOC190 
CM Load DLVxDs 178 
CM=Read=Regi stry-Va 1 ue 178 
CM_Register_Device_Driver 179, 

188, 190, 198 
compiler 

32-bit 56 
Borland 56, 80 
flag 295, 297 

for 16-bit DLL 296 
option 296 
Thunk 395 

CONFIGJILTER 192 
CONFIG_REMOVE 195,202 
CONFIG_SHUTDOWN 192 
CONFIG_START 181,189,191,201 
CONFIG_STOP 194, 202 
CONFI~TEST 194, 200 
CONFIG_TEST_SUCCEEDED195 
Configuration Manager 172 



Control Block 44 
Control Panel 3 
Contro l_Di s patch 61, 435 
Copy Into DMA Buffer J65 
Copy Out Of DMA Buffer 365 
CPL20 
CR3 register 24, 429 
CR_DEFAULT 199 
CreateEvent 262, 266 
CreateFi 1 e 226, 229, 257 
Create_Thread 53,61 
Create_VM 51, 61 
Current Privilege Level, see CPL 

D 
data segment 293 

and static code 51 
DB WIN 295, 299 
DDB 47, 433, 434 

definition 40 
Device 10 41 . 

DDK56 
DDS 97 

extended 97 
DEBUG 136, 142 
debugger 56, 299 

output 61 
debug-only segment 40 
DebugOutput 295, 299 
Dec1are_Virtua1_Device60,216,434 
. DEF file 296, 327 
Del eteFi 1 e 227 
demand paged virtual memory 11 
descriptor 23 
descriptor cache register 425 
Descriptor Privilege Level, see DPL 
descriptor table 14,23,329,423 
Destroy-Thread 53,61 
Destroy_VM 52 
detector 174 

Index-467 

device 
AUX295 
class 2 
context 112,114,131,198,306 

definition 42 
I/O-mapped 4, 19, 79,289 
Legacy 171,173-176 
loader 178 
management 129 
memory-mapped 4, 19, 22, 49, 79~ 

311 
node, definition 177 
non-standard iii 
ownership 129, 143, 147 
Plug and Play. 82, 171 
removal 194-195 
sharing by applications 306 
virtualization 127 

arbitration 128-129 
conflict resolution 128, 140 
I/O-mapped 130 
memory-mapped 137 

"Device Contention" 136 
Device Control Procedure 41,47, 433, 

434 " 
Device Descriptot Block. see DDB 
device driver 

installation. Windows 3.x 183 
non-standard iii 
"true" 289, 291,304 

Device Driver Kit. see DDK 
Device 10 216, 444 

DDB41 
Device Installer 174,176, 184 
Device Loader 172 
DEVICE_CONTEXT 198 
Devi ceDesc value 174 
Device_Init 50,137,144 
DeviceloControl 226,230,257 
DevLoadervalue 175, 178, 187, 188 
DlOCCLOSEHANDLE 228 
DIOCGELVERSION 226 
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DIOCGETVERSION 228 
DIOCPARAMETERS 225, 230 
Directory Table Entry, see DTE 
Disable DMA Translation 365 
DISABLEABLE 189 
Di sab 1 e_Gl oba 1_ Trappi ng 131 
Disable_LocaLTrapping 131,134 
discard, and memory management 326, 

327 
DISCARDABLE 334 
DLL 291 

data segment 293 
definition 1 
differences from application 292 
driver 2-3 
OS != SS issue 293, 306 
exported function 295 
KERNEL 11 
skeleton driver 295 
stack segment 292 
thunk 290 
Win32325 

systems 34 
using software interrupts 312 

011 EntryPoi nt 399, 402 
DLLEXPORT keyword 402 
DCLOAD_DEVLOADER 188,198 
DL_LOAD_DRIVER188 
DLVXD_LOAD_DEVLOADER178 
DLVXD_LOAD_DRIVER 179 
DMA 4, 85, 361 

buffer 86,219 
bus-master 85, 93 
controller 85, 86, 90, 92, 361 

mode register 92 
double buffering side effect 362 
system 85, 86 

DOS 
application 15, 28 
arena 35 
DEBUG program 136, 142 
driver 1 
extender 30, 216, 217 
Get Time 419 
Get Vector 344 
IOCTL 370 
multitasking applications 14 
service 30,367,415 
Set Vector 339, 344 
time-shared applications 11 

DOS Protected Mode Interface, see DPMI 
_dos_setvect 339 
double buffering 362 
DPL 20, 22, 427 
DPMI312 

Allocate Real Mode Callback 
Address 378, 380 

Ca 11 Rea 1 Mode Procedure With 
Far Return Frame 377 

Map Physical Address 315 
Simulate Real Mode Interrupt375 

DPMI Set Real Mode Vector 144 
dpri ntf function 61,67 
DPRI NTF macro 61, 62, 67 
driver 

definition 1 
DLL 2, 3 
DOS 1 
installable 3 
installation 176 

Windows 3.x 183 
layered 172, 178 
multimedia 3 
packaging 289-291 
polled-mode 289,303,309 
privileged 1-2 
skeleton VxD 55 
system 2 
Windows 1 



Dri ver value 175, 178 
Dri verProc 3 
OS != SS 293 
OS fix-up 295 
DTE429 

index 429 
dynamic allocation 

by DLL 292-293 
for use by interrupt handler 335 . 

DYNAMIC keyword 187 
dynamic link, and INT 20h 444 
dynamic loading 187, 227 

VMM37 
'VxD 38 

Dynamic-Link Library, see DLL 

E 
edge-triggered interrupt 148 
EISA 171, 172 
Ernul ate_Non_Byte_IO 132, 133 
enable interrupt "at the PIC" 111 
Enable TranslatiQn 365 
Enabl e_Gl oba l_Trappi ng 131 
Enabl e_Local_Trappi ng 131 
EncLNest_Exec 253 
End_Proc 435 
Enhanced Mode iv 
entry point, VxD 41 
enumerator 172-177 

Root 177 
environment 

execution 10 
supervisor 16 
virtual 9, 19' 

EOl 113,149 
specific 113 

epilogue 295, 340 
event 

cancelling 114 
global 100, 114 
scheduling 99,113,247 
Win32 266, 268 

exception 14, 425 
definition 12 
handler 12 

Index-469 

ExecInt 50-52 
execution environment 10 
ExecVxD_Int 67,252 
_export keyword 295 
extended DDS 97 
EXTENDED_DDS 97 

F 
far pointer 396, 398 
fault 425 
FILE_FLAG_DELETE_ON_CLOSE227 
FIXED 334 
fixed memory 86, 333 
flat memory model 16, 428 
flat pointer 396,398 
flat thunk 393 
flip mode 30 
foreground VM 417 
fragmentation 328, 334 
free 294 

G 
gate 425 
GDT423 
GDTR424 
General Protection Fault, see GPF 
generic thunk 393 
Get Devi ce Entry Poi nt 217 
Get Ti ck CQunt419 
Get Time 419 
Get Vector 344 
Get_Cur_Thread_Handle44,259 
GeCCur _VM_Handl e 92 
Get_Ini ti a l_Thread_Handl e 61 
GetMessage 416 
_GetNul PageHandl e 141-142 
GetProcAddress 266 
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GetSe 1 ectorBase 362 
global 

event 100, 114 
heap 294 
interrupt 143-144 
page assignment, V86 138 
TSR 379 

Global Descriptor Table Register, see 
GDTR 

Global Descriptor Table, see GDT 
GlobalA11oc 293, 306, 335, 338, 363 
GlobalAllocFree 336 
GlobalA11ocPtr 336,342 
Global DosAlloc 337, 365, 370 
Global Free 294,337 
Gl oba 1 Lock 336 
Gl oba 1 Page Lock 335, 337 
"glue" library 56 
GMEMJIXED 335,336 
GMEM~OVEABLE 336,342 
GMEM_SHARE 293, 306 
GPF 425-427 

H 
handle 336 
handler 

exception 12 
interrupt, see interrupt handler 
page fault 12, 22, 129, 438 
port trap 20, 130, 437, 438 
V86mode 144 
VMM exception 23 
VMM fault 20,128-129 

hardware 
interrupt 332 
key 175-178 
subkey 174 
timer interrupt 416 
tree 178 

heap 328 
Win1635 

_Heap_All ocate 189 
_HeapA 11 ocate 43 
high memory 312 
HKEY_LOCAL_MACHINE 173 
HKLM 173 
HKLM\ENUM 173-174, 187 
HKLM\SYSTEM 173, 175, 187,227, 305 
Hook_V86_Page 138, 139 
Hook_VMMJaul t_Handl er 129 
Hw_InCProc 202 

I 
IDT 107-108, 425 

pseudo- 144 
IFSMgr 62, 438 
I FSMgr _Ri ngOJi 1 eIO 62 
IFSMgr_RingO_OpenCreateFile 62, 

441,444-446 
IMPUB 297 
import library 291, 297 
IN instruction 19-20, 79-80, 132, 428, 

431 
32-bit 8(}-81, 202 

INF file 174-176, 184, 192 
INFEDIT 184, 197 
INI file 172 
Init_Compl ete 50 
_inp 303 
inp 79 
install able driver 3 
Insta11_IO_Handler 130·,131 
"Insufficient memory" error message 

334 
INT lCh 416 
INT 20H 444 
INT 21h 

interception by Windows 367 
translation by Windows 368, 371 

INT 2Fh 246 
INT 2Fh Get Device Entry Point217 



INT 2Fh Switch VMs and Callback 
379 

INT 30h 218 
INT 31h 312,375 
INT Sh 416 
i ntS6 372 
_i ntdosx 374 
intdosx 339 
interrupt 425 

edge-triggered 148 
gate 425 
global 143, 144 
handler 

dynamic allocation 335 
memory allocation requirement 

332 
Protected Mode 144 
safe function list 383 
using dynamically allocated buff

er 294 
V86144 

hardware 332 
hardware timer 416 
latency 5, 107 
local 143 
nested 148 
reflection 108, 143, 148 
sequence 107 
shared 113, 149 
software 5, 218, 372 
software timer 416 
virtualizing 128, 143 

Interrupt Descriptor Table, see IDT 
interrupt keyword 340 
Interrupt Service Routine, see ISR 
Interrupt Vector Table, see IVT 
interrupt-safe buffer 335 
interrupt-safe list 383 
intrinsic function 80 
i ntri ns i c pragma 80 
Invalid Opcode fault 431 
I/O address space 79 

Index-471 

I/O Permission Map, see WPM 
I/O ports, trapping by Windows 20, 303 
I/O Privilege Level, see IOPL 
IOCTL 368 

DOS 370 
IOCTLPARAMS 225 
I/O-mapped device 4,19,79,289 

virtualizing 130 
IOPL 19, 20, 22, 428 
IOPM 19, 20, 431 
IRQ 2 344 
IRQ 9344 
ISR 325 
IVT 143,372 

pseudo- 144 

K 
KERNEL 30, 327 
KERNEL DLL 11 
kernel, layer scheduler 11 
KERNEL16 310, 327 
KERNEL32 310, 327, 396 
KERNEL32. DLL 266,398 
key 

hardware 175, 176, 178 
KnownVxDs 227 
software 175,176,187,305 

KnownVxDs key 227 

L 
latency, timer 418 
layered 

device drivers 434 
driver 172, 178 
subsystem 187 

LDSRV_Copy-Extended_Memory 42 
LDT 423 
LDTR424 
Legacy device 171, 173, 174, 176 
LGDT 424 
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LibMain 294 
library 

C run-time 297 
"glue" 56 
import 291, 297 
run-time 56 
static 290 
VXDWRAPS. CLB 57 
wrapper 56, 68, 433 
WRAPPERS.CLB57, 61, 90 

LIBW. LIB 297 
linear address 14, 23 

base 14 
definition 23 

linker 291,295, 296 
_L i nPageLock 83, 84, 85 
LLDT 424 
Load Global Descriptor Table, see LGDT 
Load Local Descriptor Table, see LLDT 
loader 12, 291,295,327, 328, 334 
LoadLi brary 266 
local 

heap 294 
interrupt 143 
page assignment, V86 138 
TSR 379 

Local Descriptor Table Register, see 
LDTR 

Local Descriptor Table, see LDT 
LOCAL. INC 441,446 
Lock DMA Regi on 365 
locked segment 40 
logical address 14, 421 

definition 23 
"logical configuration" 180 

M 
MAKE_HEADER 440 
MAKELP macro 220, 371 
rna 11 oc 43, 293, 306, 337 
map page table 23 
MAP FLAT 216 
MAP FLAT macro 222 
MapJlat VMM service 216,222 
MaplntoV86141,142 
MapPhysicalAddress 315 
_MapPhysToL i nea r 82, 100 
MapPhysToL i nea r 81 
MAPSYM 58 
masking the PIC 113, 147 
MASM iv 
master, PIC 343 
memory 

address space 79 
fixed 86, 333 
high 312 
management 

discarding 326, 327 
moving 326, 327, 328, 329 
swapping 326, 332 

model 
flat 16, 428 
segmented 16 

moveable 333 
non-discardable 333 
pagelocked 86,333 
physical 12, 23 
real-mode-addressable 372 
virtual 12, 24, 327, 332 

memory-mapped device 4, 19, 22, 49, 
79,311 
virtualization 137 

message interface 47 
Microsoft Assembler, see MASM 
MMSYSTEM.H 418 
MMSYSTEM. LIB 418 



mode 
16-bit protected 13 
32-bit protected 13 
processor 12-13 
protected 13-14, 144,422 

address translation 23 
definition 14 

real 14, 422 
register 92 
switching 30 
V86 14,16, 431 

_ModifyPageBits 139 
move, and memory management 326-

329 
MOVEABLE 334 
moveable memory 333 
multimedia 

API 417, 419 
driver 3 
functions 419 

multitasking 
DOS application 11, 14 
non-preemptive 11 
preemptively 11 
Windows application 11 

MyMapPhysToL i near 83,202 

N 
"name decoration" 398 
name mangling 435, 442 
nested 

execution 246-247. 250-252 
interrupts 148 

I NOD option 297 
NONDISCARDABLE 334 
non-discardable memory 333 
non-preemptive multitasking 11 
"not present" 12,332 

Index-473 

o 
OpenVxDHandl e 262, 266 
OUT instruction 19, 20, 79,80, 132,428, 

431 
32-bit 80, 81, 202 

OuLDebug_Stri ng 61 
_outp 303 
outp 79 
OutputDebugStri ng 295, 299 
ownership of device 129, 143, 147 

p 
package hardware driver 289 
page 12 

directory 23 
SWitching 36 

fault 12, 332,425 
handler 12, 22, 129, 438 

not-present 12 
offset 429 
register 88 
size 12 
swapping 12 
table 23 

entry, see PTE 
mapping 23 
switching 32, 34, 36 

Page Table Entry, see PTE 
page trapping 127 
pageable segment 40 
_PageAllocate43, 88-90, 93, 94,100, 

141,223 
_PageCommi tPhys 83, 84 
pagelocked memory 86, 333 
_Page Reserve 83, 84 
PASCAL calling convention 398 
PATH 297 
PC15, 93, 171,172,174 
PCIBIOS 173 
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PCMCIA 5,171,172,174,187,194 
Socket service 173 

per-thread data 44,53 
per-VM data 44,131 
per-VM storage 44 
physical 

address 14, 24, 81, 88, 421 
definition 23 
space 81,310 

memory 12 
physical memory 23 
physically contiguous 86, 221,315,362 
Phys I ntoV86 140 
PIC 

master 343 
slave 343 

Plug and Play 
device 82 

definition 171 
Device DriverVxD 172, 183 
Industry Standard Architecture, see 

PNPlSA 

PM 

ISA, see PNPlSA 
VxD38 

API 42,216,434 
component 144 
interrupt handler 144 

PNPISA 171, 174 
PNP _New_DevNode 178-179,188 
polled-mode driver 289, 303, 309 
port locations trapped 20 
port trap handler 20, 130, 437, 438 
port trapping 127 
PostMessage 246, 247, 250,416 
pragma 

intrinsic 80 
pre-allocated selector 310 
preemptive 

multitasking 11 
scheduler 418 
thread scheduling 418 

prefix byte 312 
PREPEND 441 
Present bit 426, 430 
private arena 33 
privilege level 14, 427 
privileged 

driver 1-2 
instruction 14, 22, 428 

process 
supervisor 15, 16 
V8615 
Win16 15, 16 
Win3215,16 

processor mode 12-13 
Program Segment Prefix, see PSP 
prohibited operation 289 
prologue 295, 340, 398 
protected mode 13-14,144,422 

address translation 23 
component 30 
definition 14 
initialization segment 39 
pointer 368, 370, 373 

protection violation 373 
pseudo-IDT 144 
pseudo-IVT 144 
PSP 334 
PTE 24, 429 

Q 

aliased 32 
index 429 

QT_Thunk 399 
Query-Destroy 51,52 
QueryPerformanceCounter419 
QueueUserApc 256 
QuickVxD 56, 63 



R 
ReadlWrite bit 430 
real mode 14, 422 

addressable memory 372 
call structure 375 
initialization 42 
initialization segment 39 
pointer 368, 370, 373 

Real Time Clock 110,144 
Reference_Data 42 
reflect interrupt 143 
reflection 108, 148 
registry 38, 136, 172, 173, 177 
Rel ease DMA Buffer 365 
REMOVEABLE 189 
REP INSB/OUTSB 132 
Request DMA Buffer 365 
ResetEvent 266 
resolve contention 140 
resource dependency 180 
Restore_Cl i ent_State 253 
Resume_Exec 251 
ring 14 

buffer 345 
Ring 0 14, 22,431 
Ring 3 14, 16,22,34,218 
Root enumerator 177 

S 
SafePageLock 335, 337, 342 
Save_Cl i enCState 251 
sCal1436 
"scatter-gather" 93 
schedule event 99, 113 
Schedul e_Gl obal_Event 114 
scheduler 

preemptive 418 
VMM 11, 53 

script file 400 

segment 16, 39-40, 326 
attribute 327 

Index-475 

data, and static code 51 
debug-only 40 
fault 425 
limit 427, 429 
locked 40 
not present fault 328, 425 
pageable 40 
protected mode initIalization 39 
real mode initialization 39 
size 13 
static 40 
type 424 

segmentation 421, 428 
segmented memory model 16 
SEGNUM 446 
segread 339 
selector 14, 336, 423 
SELECTOROF 336 
serial port 304 
service 

asynchronous 40,113 
DOS and BIOS 30, 367, 415 
table 444 
VxD42 

Set Vector 339, 344 
SeCGl oba l_Ti me_Out 418 
SetSel ectorBase 220,312,315,373 
SetSelectorLimit220, 312, 315, 373 
SetTimer 416 
SGDT 424 
"share" a device 306 
shared arena 34 
sharedintemipts 113, 149 
SHELL VxD 52, 136, 245 
SHELLCallAtAppyTime 254-255 
SHELL_Call Dll 255 
SHELL_PostMessage 253 
SHELL_Resolve_Contention 135-136, 

147 
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shutdown 
Windows 95192 
Windows termination 50 

Simul ate Real Mode Interrupt 375 
Simul ateJar_Cal 1 248,251,252 
Simul ate_Int 50-52,143,252 
Simul ate_IO 133 
Simulate_Push 251,252 
skeleton 

driver 
DLL295 
VxD55 

VxD55 
slave, PIC 343 
SLOT 424 
Sl eepEx 256, 257 
SoftIceIWindows 40, 56, 299 
software 

interrupt 5,218,372 
key 175-176,187,305 
timer interrupt 416 

specific EOI 113 
_Spri ntf 61-63, 67 
sprintf 67,295 
SS 1= OS 306 
stack segment 292 
StartCOec1442 
Sta rtStdCa 11 442 
STATIC 189 
static 

code, and data segment 51 
library 290 
loading 

VMM37 
VxD 38, 49 

segment 40 
VxD 136 

_s tdca 11 calling convention 436, 442 
STI instruction 22, 23 
STI/CLI 428 
Store Global Descriptor Table, see SGOT 
Store Local Descriptor Table, see SLOT 

supervisor 
bit 35 
context 9 
environment 16 
process 15 

definition 16 
swap 

and memory management 326, 332 
pages 12 

switch 
back 30 
page directory 36 
page table 32, 34, 36 

Sys_Criti ca l_Exit 50 
Sys_Critical_Init49,100 
Sys_Oynami cOevi ce_Exi t 50 
Sys_Oynami cOevi ce_Init 50,187 
system 

arena 34 
DMA 85,86 
driver 2 

System VM 10, 16 
System_Exit 50 
SYSTEM. INI 38,54,136,173,305 
Sys_VM_Terminate 50 

T 
TASM3281 
Termi nate_Thread 53 
TESTORIV. EXE 297,309 
THCB 44 
thread 11, 256 

data 44,53 
handles 259 

Thread Control Block. see THeE 
Thread_Init 53 
Thread_NoLExecuteab 1 e 53 



thunk 
DLL290· 
flat 393 
generic 393 
layer 4 
script 395, 397, 400 
universal 393 

Thunk Compiler 395 
ThunkConnect32399 
timeBegi nPeri od 417 
t i meGetDevCaps 417 
timer 

interrupt 
hardware 416 
software 416 

latency 418 
t i meSetEvent417 
translation 

logical address 14 
V86 mode 23 

trap 
gate 425 
110 port 19-20 
your access 303 

"true" device driver 289,291,304 
TSR 28, 35, 372 

global 379 
local 379 
Windows-aware 379 

U 
UART 304 
UNDEFI NED_DEVICCID 41,216,434 
UNDEFINED_I NIT_ORDER 60, 434 
UNDEFINED_VXD",-ID 60 
universalthunk 393 
unmasking the PIC 111, 113, 147 
"Unsupported service" error message 

57,67 
User/Supervisor bit 430 

V 
V86 

address space 28 
API 42,216,434 
component 144 
interrupt handler 144 
mode 14, 16, 431 

Index-477 

1Mb address limit 14 
address translation 14, 23 
component 30 
definition 14 
handler 144 

page assignment 
global 138 
local 138 

process 15 
value 174 

C1 ass 174 
Devi ceDesc 174 
DevLoader 175, 178, 187, 188 
Dri ver 175, 178 

VC++ 
l.x 293,295,299, 306 
4.0 iv 
4.1 57 
4.x 402 

VCD 128-129, 305 
VDD 22, 128, 137 

see also Video Device Driver 
see also Virtual Display Device 

VDMAD 42, 85, 86, 90, 362 
VDMAD_Physi ca11y_Mask_Channe1 99 
VDMAD_Physica11y_Unmask_Channe1 

99 
VDMAD_Phys_Unmask_Channe192 
VDMAD_Scatter _Lock 95,96,99 
VDMAD_Scatter_Un1ock99 
VDMAD_SeCPhys_State 92, 99 
VDMAD Set_Region_Info91, 99 
VDMAD=Virtualize_Channe191 
VDS 363 
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version of Windows 221 
Video Device Driver, see VDD 
VID_Hw_Int~Proc 111,146 
virtual 

environment 9, 19 
machine, see VM 
memory 10, 24, 327, 332 

definition 12 
demand paged 11 

resource 10 
Virtual Com Device, see VCD 
Virtual Device Driver, see VxD 
Virtual Display Device, see VDD 
Virtual DMA Device, see VDMAD 
Virtual DMA Service, see VDS 
Virtual Keyboard Device, see VKD 
Virtual Machine Manager, see VMM 
Virtual Machine, see VM 
Virtual Printer Device, see VPD 
Virtual Programmable Interrupt Control

ler Device, see VPlCD 
Virtual Timer Device, see VTD 
virtualizing 

device 127 
arbitration 128, 129 
conflict resolution 128, 140 
I/O-mapped 130 
memory-mapped 137 

interrupt 128, 143 
VKD 128 
VM 10, 19 

background 417 
data 44,131 
event 247 
foreground 417 
IVT 143 
storage 44 
System 10 

VM_Criti ca l_Init 51 
VM_Init 51,259,264 

VMM 10, 37, 327 
dynamically loaded 37 
exception handler 23 
fault handler 20, 128-129 
scheduler 11,53 
statically loaded 37 

VMMcall 443 
VM_Not_Executeabl e 51 
VM_Resume 52 
VM_Suspend 52 
VM_Termi nate 51, 136, 142, 147, 259, 

264 
VPD 128 
VPICD 108, 143 
VPICD_Clear _Int_Request 149 
VPICD_Force~Default_BehaVior111 

VPICD_IRO_DESCRIPTOR 111,144,146, 
202 

VPICD_OPT_REF _DATA 111, 112,202 
VPICD_Phys_EOI 113, 149 
VPICD_Physi cal ly_Mask 111, 147 
VPICD_Physi call y-Unmask 111, 147 
VPICD_Set_Int 149 
VPICD_Set_Int_Request 109, 144, 

148, 150 
VPI CD_Vi rtua 1 i ze_I RO 108, 110, 144, 

202 
VTD417 
VTD_Begi n_Mi n_I nCPeri od 418 
VTD_End_Mi n_I nCPeri od 418 
VTooIsD 55 

support for Windows 3.x 68 
VWIN32259 
VWIN32 VxD 256, 262 
_VWIN32_Pul seWi n32Event 262 
_VWIN32_0ueueUserApc 259 
_VWIN32_ResetWi n32Event 262 
_VWI N32_SetWi n32Event 262, 265 
_VWIN3LWai tMul ti pl eObjects262 
_VWIN3LWaitSi ngl eObject 262 



VxD 
API 42 

PM 42 
V8642 

definition 37 
dynamically loaded 38 
entry point 41 
loading by application 38 
Plug and Play 38 

Device Driver 172 
Device Driver VxD 183 

Quick 56,63 
Service 42 
SHELL 52, 136, 245 
skeleton 55 
static 136 
statically loaded 38, 49 
VWIN32 256, 262 

VxDCa 11 443 
VXDWRAPS. ClB 438 
VXDWRAPS. ClB library 57 

W 
W32_DEVICEIOCONTROl224, 226, 230 
WDEB38640, 56, 95, 299 
WEP 294 
Win16 

address space 26 
application 15, 26 

interface to VxD 215 
heap 35 
process 15 

definition 16 
Win32 
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