

Writing Windows
VxDs

and Device Drivers

Karen Hazzah

R&D Books
Lawrence, KS 66046

R&D Books
an imprint of Miller Freeman, Inc.
1601 West 23rd Street, Suite 200
Lawrence, KS 66046
USA

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where R&D is aware of a trademark claim, the product
name appears in initial capital letters, in all capital letters, or in accordance with the ven
dor's capitalization preference. Readers should contact the appropriate companies for
more complete information on trademarks and trademark registrations. All trademarks
and registered trademarks in this book are the property of their respective holders.

Copyright © 1997 by Miller Freeman, Inc., except where noted otherwise. Published
by R&D Books, an imprint of Miller Freeman, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced or distrib
uted in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher; with the exception that the program list
ings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have
been carefully tested, but are not guaranteed for any particular purpose. The publisher
does not offer any warranties and does not guarantee the accuracy, adequacy, or com
pleteness of any information herein and is not responsible for any errors or omissions.
The publisher assumes no liability for damages resulting from the use of the informa
tion in this book or for any infringement of the intellectual property rights of third
parties which would result from the use of this information.

Distributed in the U.S. and Canada by:
Publishers Group West
P.O. Box 8843
Emeryville, CA 94662
ISBN: 0-87930-438-3

Preface
This book is primarily for developers who need to write a non-standard device driver,
either as a VxD or as a DLL. (A non-standard device is anything except a display,
keyboard, mouse, serial port, or printer.) This second edition expands the coverage of
VxDs, with particular attention to the issues raised by new Windows 95 features, like
Plug and Play.

While not intended for a beginning programmer, it is my intent that this book will
be accessible and useful to a wide range of readers. If you have written a device driver
or device interface code for DOS or some other operating system, you should be com
fortable with the material in this book. To get the most from this book, you should
have a strong working knowledge of C. You should also be able to read 80x86 assem
bly, although this edition uses far less assembly than the first edition. A strong grasp
of how segments are used by DOS compilers and assemblers will be helpful. You do
not need to be a Windows application programmer. In fact, you'll find the code inthis
book bears a much stronger resemblance to conventional DOS code than to the typical
Windows application.

iii

A Step-by-step Approach
Windows can be an overwhelmingly complex environment. My goal in this book is to
help you understand· which parts of that environment are really critical to each differ
ent type of driver. Each chapter introduces a new driver, and each chapter introduces
only as much new material as you need to understand the new example. I've tried to
keep each example driver as simple as possible so that the critical features are nearly
self-evident. Most of the example code is written in C and embedded assembly using
VC++ 4.0. Where necessary, code is written in assembly using Microspft Assembly
(MASM) v6.1. The code disk includes a library of wrapper functions that allow V xDs
to be coded almost entirely in C.

Which Version of Windows?
This book covers both Windows 95 and Windows 3;x (Enhanced Mode). The focus is
on Windows 95, but almost all of the material also applies to Windows 3.x. In most
chapters the differences between the two versions are minimal and Windows 3.x con
siderations are simply highlighted in a separate section at the end of the chapter. In a
few chapters the differences are larger. In these chapters I fully describe both ver
sions, each in a separate section.

About the Book
This book is partitioned into two major sections. Part I (Chapters 2 through 12) covers
the Windows execution environment and VxDs. Part II (Chapters 13 through 19) cov
ers DLL-based drivers. Within each part, the chapters are ordered so that each builds
on the prior chapters. Once you have read Chapter 1 and decided whether you need to
build a VxD or a DLL, you can decide how to read the rest of the book. Nearly every
one should read Chapters 2 and 3. These chapters describe those portions of the Win
dows architecture that are important to device driver writers. The topics covered in
these chapters are important to both VxD and DLL developers. Those readers who are
rusty on selectors, descriptors, page tables, and the other architectural details of the
80x86 family of processors will want to read and refer to Appendix A as they read
Chapters 2 and 3. Throughout the book, I assume you are comfortably familiar with
the architectural information in Appendix A. Finally, if it bothers you to have certain
implementation details hidden, you may want to read portions of Appendix B as you
study the first example drivers. This appendix is the primary reference for the assem
bly language "wrappers" used throughout the text.

iv

Table of Contents
Preface ...

• . • • • • • • . . • . • . • • • • • • . • . • . • •.. III

A Step-by-step Approach iv

Which Version of Windows? iv

About the Book iv

Chapter 1 Introduction l
What is a Driver? .. 1

Privileged and Non-privileged Packages , 1

Driver Interfaces. 2

What Kind of a Driver Do I Need to Write? 2

What Class of Device? 2

What Kind of Hardware Interface? 4

What are the Performance Requirements? 5

Summary .. 5

v

Part 1 Windows Execution
Environment and VxDs 7

Chapter 2 The Virtual World of Windows 9
What is a Virtual Machine? 10

Multitasking Model 11

Virtual Memory through Demand Paging 11

Processor Modes 12

Protected Mode 13

V86Mode ... 14

Windows Execution Environments 15

Summary .. 17

Chapter 3 How Windows Implements
the Virtual Environments 19
Trapping liD Port Access 19

Trapping Access to Memory-mapped Devices 22

Trapping Interrupts and Exceptions 22

Processor Registers 23

A Closer Look at Linear Addresses and Paging 23

Competing Address Requirements ofWin32, Winl6, and
DOS Applications 26

Win32 Address Requirements .. : 26

Win 16 Address Requirements 26

DOS Address Requirements 28

Satisfying Address Requirements of Win 16 and
DOS Applications: How Does Windows 3.x Do It? 28

Satisfying Address Requirements of Win32, Win 16, and
'DOS Applications: How Does Windows 95 Do It? 32

Summary .. 36

vi

Chapter 4 Introduction to VxDs 0 0 0 0 00 0 0 037

VxD Loading ' ' ' , 38

Basic Structure of a VxD 39

The Device Descriptor Block ~ 40

Supporting Data Structures : ~' 42

Event Notification 47

Statically Loaded VxD Initialization and
Termination Messages ... ; 49

Dynamically Loaded VxD Initialization and
Termination Messages ',' ,.', .. ',' 50

VM State Change Messages 51

Thread Messages•............ '. 53

Windows 3.x Differences 54

Summary ... 54

Chapter 5 A Skeleton V.xL> 0 0 0 0 • 0 0 0'0 0 • 0 0 0 0 0 0 ••••• • 55
Tools for Building VxDs•....................... 55

"DDK" Versipn Source Files 57

The DDB and Device Contrpl Procedure: SKELCTRL.ASM. '0 •••• 60

VToolsD Version . 63

A Windows 3.x Version of SKELETON 67

. Summary : 68

vii

Chapter 6 VxD Talks to Hardware 79
I/O-mapped versus Memory~mapped 79

Talking to an I/O-mapped Device 80

Talking to a Memory-mapped Device 81

Statically Configured Memory-mapped Devices 82

Dynamically Configurable Devices , 82

Another Data Transfer Method: DMA 85

Using System DMA 86

System DMA Buffer Requirements 86

A Function for Allocating a System DMA Buffer 88

Overview ofVDMAD Services 90

VDMAD Services in Detail 91

Using Bus-master DMA 93

The Right Way to Use VDMAD_5catter _Lock 96

Using Events with Bus-master DMA Transfers 99

Windows 3.x Differences 100

Summary ... 100

Chapter 7 Handling Hardware Interrupts in a VxD ... 107
Interrupts and the VMM 108

Using VPICD Services 109

Examining VPICD Services in Detail: VXDI RQ. C 110

Assembly Thunks and CHandlers 112

The Hwlntproc Callback: DDBISR.ASM and VXDISR.C 112

Event Handling in VXDISR 113

Windows 3.x Differences 114

Summary ... 116

viii

Chapter 8 VxDsJor Virtualization 127
VMM and Processor Exceptions 128

Device Ownership ; 129

Virtualizing an I/O-mapped Device:
The PORTTRAP Example. .. 130

The Initialization Routine: OnDevi ceIn; t 130

Handling Different 10 Types: PortTrapThunk 131

Checking Ownership: PortTrapHandl er ". 133

Processing VM-'-TERMINATE ~•............. 136

UsingPORTTRAP 136

Virtualizing a Memory-mapped Device:
The PAGETRAP Example 137

The Initialization Routine 137

The Fault Handler Routine. • 140

Processing VM....Termi nate 142

UsingPAGETRAP 142

Virtualizing a Hardware Interrupt 143

Which VM? .. 143

AVxD for Hardware Interrupt Reflection 144

Callbacks: MaskChangeHandler 146

Callbacks: HwIntHandl er 148

Callbacks: EOIHandl er 149

Callbacks: VirtlntHandlerand I RETHandler 150

Summary ". .. 150

Chapter 9 Plug and Play: The Big Picture 171
Plug and Play Components 172

Plug and Play Components
During Windows 95 Installation 174

Plug and Play Components
During Device Installation. .. 176

Plug and Play Components During Boot. 176

Summary ~ 181

ix

Chapter 10 Plug and Play Device Driver VxDs ·183
Plug and Play VxD Installation 183

Introducing the INF File 184

Plug and Play Boot Process 187

Other Plug and Play Configuration Scenarios 192

Shutdown ' 192

New Configuration 194

Device Removal 194

A Sample Plug and Play Driver VxD: TRI CORD. VxD 195

TRI CORD. I NF Details 196

Code Details ... 197

Summary ... 203

Chapter 11 Communication from
Applications to VxDs 215
Win16 Application to VxD: View from VxD Side ~ 216

Win16 Application to VxD: View from Application Side 217

Win16 Application to VxD: Example Code 219

Win32 Application to VxD: View from VxD side 224

Win32 Application to VxD: View from the Application Side ... 226

Win32 Application to VxD: Example Code 229
(.

Summary I, •••••••••••••••••••••••••••••••••• 232

x

Chapter 12 Communication from
VxDs to Applications 245
Difficulties with Calling from a VxD to a
Win 16 Application. 246

VxD to Win16 Application under Windows 3.x 247

Using Nested Execution Services 250

VxD to Win 16 Application under Windows 95:
PostMessage 253

VxD to Win16 Application under Windows 95: Appy Time ... 254

Windows 95 VxD to Win32 Application:
Asynchronous Procedure Calls . 256

The APCVXD Example. 256

Windows 95 VxD to Win32 Application: Win32 Events 260

VxDs and Win32 Events 262

Summary . 268

Part 2 DLL-based Drivers 287

Chapter 13 Introduction to 16-bit Driver DLLs 289
Why Driver DLLs are Always 16-bit 289

Interfacing 16-bit DLL to 32-BitApplication
Requires a Thunk . 290

Static versus Dynamic Libraries . 290

Why Package Drivers in a DLL? 291

Applications versus DLLs 291

DLLs and Stack Segments. 292

DLLs and Data Segments 293

DLLs and Ownership of Dynamically Allocated Memory 293

DLL Initialization and Termination. 294

DLL Function Requirements. 295

The Skeleton Driver. 295

Building the Skeleton Driver 296

DLL Requires an Application : 297

Debugging Tools for Driver DLLs 299

Summary . 299

xi

Chapter 14 Driver DLLs:
Connecting to the Hardware . ~ 303
DLLs and Port· access 303

A Port-mapped Example 304

Driver Design Conventions 306

The Polled-mode Driver 307

Accessing Memory-mapped Devices 310

A Memory-mapped Version 311

Advanced Memory Issues 312

Summary ... 317

Chapter 15 Driver DLL: Interrupt Handling 325
Windows Memory Management Strategy Overview 326

Memory Requirements for an Interrupt-safe Driver 332

Static Interrupt-safe Code and Data: The Easy Way 334

Use the Right Way under Windows 3.x 334

Dynamically Allocating Interrupt-safe Buffers:
The Easy Way .. 335

Dynamically Allocating Interrupt-safe Buffers:
The Right Way , , , , . , , .. , , , . , , ,336

Installing an Interrupt Handler , , , 339

The New Driver: An Overview , , .. , , , . , , , , , , , . , , . , ,340

The New Driver: The Code, , " . , , ,. , .341

Summary , 346

Chapter 16 Driver DLLs: Using DMA 361
DMA Buffer Requirements .. , . , ... , , , ... , ... 361

How to Allocate a DMA Buffer , , , , , , , . , , . , , , , , . , .. , , .. ,362

DMA DOS Applications Under Windows , , , . , , , ... , .. 362

DMA Windows Applications Can Use this Knowledge. , 363

Using Virtual DMA Services Is Better 363

Summary , ... ,., 366

xii

Chapter 17 Driver DLLs:
Using Real Mode Services 367
Talking to a DOS Device Driver . 368

Special Handling forIOCTLs ,•................ 370

Talking to TSRs " 372

Summary ' ... ' .. ' 384

Chapter 18 Thunks: Calling from 32~bit to 16 .. bit 393
What is a Flat Thunk? ; . 394

Thunk Layer Tasks. 396

Thunk Layer Magic .. 397

Creating a Thunk Layer, Step by Step 399

Building the Thunk Layer, Step by Step 403

Summary ' ",'" ' 404

Chapter 19 Driver DLLs: Using Timers 415
Timers for Periodic Notification 415

Using SetTimer 416

Hooking INT lCh and INT Sh : : 416

Don't Depend on 18.2 Ticks per Second 417

Using timeSetEvent: Pros and Cons 417

If All Else Fails ... Use a VxD 418

Measuring Elapsed Time 419

Choices: GetTi ckCount, ti meGetTi me; and
QueryPerformanceCounter 419

Summary .' ... 419

xiii

Appendix A Intel Architecture 421
8086/8088 and Real Mode 421

80286 and Protected Mode 422

Selectors and Descriptors 423

Interrupts and Exceptions 425 .

Protection Mechanisms 426

Privilege Levels 427

80386 and Virtual-8086 Mode428

Virtual-8086 Mode431

Appendix B Using Assembly Language with
Your VxD Written in C 433
Declaring the DDB , 434

Coding the Device Control Procedure 434

Adding "Thunks" to Support Callbacks from VMMlVxDs 437

Introducing the Wrapper Library438

WRAPPERS. H ... 440

Overview ofWRAPPERS.ASM 441

Building the Wrapper Library446

Summary ... 447

Index " ' 465

xiv

Chapter 1

Introduction

What is a Driver?
In its broadest definition, a "driver" is a set of functions that manipulates a hardware
device. One way of categorizing drivers is by how these functions are packaged. In
the DOS world, a "driver" can be a module that is linked into the application. EXE, or
a "driver" can be another piece of software which is completely separate from the
application (a DOS device driver or a TSR). In the world of Windows, a "driver" can
be a module that is dynamically linked into the application. EXE (called a DLL), or it
can be completely separate from the application (called a VxD).

Privileged and Non-privileged Packages
Another way of categorizing drivers is privilege. Some operating systems, such as
UNIX and Windows NT, prohibit applications from manipulating hardware directly.
In these environments, only privileged pieces of code known as "device drivers" are
allowed to interface to hardware. Applications that need to control hardware must use
the services provided by these drivers.

Windows too supports a privileged driver package. In Windows, these device drivers
are called VxDs. However, Windows does not require hardware support to be contained
in a VxD. In Windows, a surprising amount of hardware support is contained in DLLs,
not VxDs. In Windows, DLLs that interface to hardware are often called "drivers".

1

2 - Writing Windows VxDs and Devlce Drivers

Driver Interfaces
Yet another way of categorizing a driver is by the interface it presents to the applica
tion and the as kernel. All Windows NT drivers use the same exact interface to the
NT kernel. The kernel in tum provides a standard interface which applications can use
to call any driver (open, read, etc.). The privileged driver package in Windows, the
VxD, is different. Although all Windows VxDs use the same kernel interface, there is
no standard interface to a VxD from the application level. Instead, each VxD defines
its own application interface.

Some Windows drivers packaged as DLLs interface to the kernel and are required
to export a specific interface to the kernel. Such drivers are sometimes called "system
drivers". However, note that the interface used by the system keyboard driver looks
very different than the interface used by the system display driver. Other driver DLLs
have no required interface to the kernel at all, and the driver developer has a free hand
in designing whatever kernel interface and application interface he wants.

What Kind of a Driver Do I Need to Write?
Clearly there are many different kinds of "drivers" under Windows. Exactly which
type of driver you need to write depends on several interrelated factors:

the version of Windows (3.x, 95),

the class of hardware device (keyboard, network card, custom AID board),

the kind of hardware interface (110 ports, interrupts), and

the performance requirements (throughput, interrupt latency).

Collectively these four factors will determine whether you write your driver as a
DLL or as a VxD.

What Class of Device?
The first factor that will narrow down the decision is the class of device you're sup
porting. Windows dictates a specific driver type for many device classes, so if you're
supporting one of these, there is no decision to make. Windows dictates both the
packaging of the driver (DLL or VxD) and its interface. Table 1.1 shows the device
classes that Windows directly supports and the type of driver required.

As Table 1.1 shows, for most classes of device, both Windows 3.x and Windows
95 require exactly the same type of driver(s). The two exceptions are network adapt
ers and block devices, neither of which was supported directly by Windows 3.x (DOS
drivers were used instead), but both of which now require a VxD under Windows 95.

Introduction - 3

Both a DLL and a VxD are required to support most device classes, with the bulk
of the work done in the DLL. You should also note that Driver DLLs are always16-bit
components - even under Windows 95, where native applications and DLLs are
32-bit instead of 16-bit.

The multimedia drivers were first introduced in Windows 3.1, where they were
implemented as DLLs that conformed to a new message-based interface. A driver
DLL that conformed to this interface was called an "installable driver", and exported
a Ori verProc (similar to the Wi ndowProc of a Windows application) and responded
to messages such as ORV_LOAO, ORV_OPEN, ORV_INSTALL, and ORV_CONFIGURE. This
interface provided the user with a standard mechanism for installing multimedia driv
ers through the Control Panel. The new interface also provided the operating system
with a standard way of loading, enabling, and disabling multimedia devices.

Table 1.1 Devices that require a particular type of driver.

Device Class Windows 3.x Windows 95

16-bitDLL VxD 16-bitDLL VxD

Display DISPLAY.DRV VDD.VXD DISPLAY.DRV VDD.VXD

Printer PRINTER.DRV PRINTER.DRV

Keyboard KEYBOARD. DRV VKD.VXD KEYBOARD.DRV VKD.VXD

Mouse MOUSE.DRV VMD.VXD MOUSE.DRV VMD.VXD

SeriaVParallel Port COMM.DRV VCD.VXD VCOMM
port driver

Multimedia installable driver installable
DLL driver DLL

Network not a Windows NDIS 3.0
driver, but a DOS MAC
device driver or driver
TSR (e.g. NDIS
2.00rODI)

Block Device not a Windows layered
(Hard Disk, driver, but a DOS block
CD-ROM) device driver device

driver

4 - Writing Windows VxDs and Device Drivers

During the reign of Windows 3.1, the installable driver DLL soon caught on
as a driver interface for types of devices other than multimedia. However,
Microsoft is now pushing VxDs as the recommended driver type.
Interestingly, multimedia drivers under Windows 95 remain as 16-bit
installable drivers. Luckily, developers of multimedia drivers don't have to
worry about thunking issues as other 16-bit driver developers do, because
Windows itself contains the required thunking layer Gust as it contains
thunks for lots of other Windows pieces that remain 16-bit, such as USER
and GDI). See Chapter 18 for a discussion of thunking.

What Kind of Hardware Interface?
If you are not writing a driver for one of the device classes in the table above, then
Windows does not dictate either the driver package (DLL or VxD) or the interface.
Since for either package you're going to design your own interface, the choice is
between DLL and VxD. The next factor to consider when choosing a package is the
hardware interface to your device:

Is the device I/O-mapped or memory-mapped?

• Does the device generate interrupts?

Does the device use DMA?

It is very easy to talk to an I/O-mapped device from a DLL, both under Windows
3.x and Windows 95. If your device is I/O-mapped and doesn't generate interrupts or
DMA, the best choice for you may well be a DLL.

On the other hand, talking to a memory-mapped device, handling hardware inter
rupts, and performing DMA all are possible from a DLL, but only easy under Win
dows 3.x. Under Windows 95, only 16-bit DLLs are capable of these three operations.
Native Windows 95 applications are, of course, 32-bit, not 16-bit, so if you use a
16-bit driver DLL under Windows 95 you also need to develop a separate "thunk
layer" DLL. This thunk layer converts between the 16-bit world of your driver DLL
and the 32-bit world of native Windows 95 applications that use your driver.

Because of the extra work required to develop the thunk DLL, if you're supporting
Windows 95, there are only two reasons to consider using a driver DLL instead of a
VxD. One, if you're supporting a very simple I/O-mapped device that doesn't use
interrupts. In this case, you can write a simple 32-bit DLL that accesses the device.
Two, if you've already written a 16-bit DLL driver for the device. In this case, add a
thunk layer and you'll have Windows 95 support.

Introduction - 5

You should also consider how fully you wish to support the capabilities of the
newer buses. Windows 95 includes built-in support for Plug and Play devices -
which includes PCI, PCMCIA, and VL-Bus. To get full support, the driver for a Plug
and Play device must be a VxD and interact with the Plug and Play Configuration
Manager (also implemented as a VxD). See Chapters 10 and 11 for a full discussion
of Plug and Play and the Configuration Manager.

If you choose to write a driver DLL instead of a VxD for your Plug and Play
device, you'll have to use bus-specific BIOS methods to obtain your device's configu
ration information. And since most of these BIOS calls require using a software inter
rupt, and software interrupts aren't supported from 32-bit code (see Chapter 13 for an
explanation of why this is so), your DLL must be 16-bit with a thunk layer. Thunk
layers are discussed in Chapter 18.

What are the Performance Requirements?
Actual hardware access time, for both la-mapped and memory-mapped devices, is
roughly the same from either a driver DLL or a VxD. However, interrupt response
time, also known as interrupt latency, is much faster (orders of magnitude) for a VxD.
So if your device generates a lot of interrupts and/or doesn'thave much buffering,
you'll probably want to write a VxD.

Summary
With the information in this chapter, you should be able to reach a preliminary deci
sion about what type of driver you need to develop. If a DLL will meet your require
ments, then you can probably skip Chapters 4 through 12, for now, and focus on the
DLL information in the second part. If you plan to develop a VxD, you will want to
focus on the information in Part I.

In either case, you should probably browse through Appendix A sometime before
you have finished reading Chapter 3. Throughout the book, I will assume you are
comfortably familiar with the architectural information in that appendix.

In either case, whether you plan to develop a VxD or a DLL, the next two chapters
lay an important foundation. Chapter 2 explains the basics of Virtual Machines. Chap
ter 3 explains how Windows exploits the 80x86 architecture to implement its Virtual
Machines.

6 - Writing Windows VxDs and Device Drivers

Paril

Windows Execution
Environment and VxDs

7

8 - Writing Windows VxDs and Device Drivers

The Virlual World
of Windows

Chapter 2

Windows 95 runs three different types of applications: DOS applications,. Win16
applications, and Win32 applications. To overcome the potential incompatibilities
among these types of applications, Windows executes them on virtual machines in
virtual environments. When developing applications, Windows programmers can usu
ally ignore the distinction between the virtual environment and the real environment;
to most applications, the virtual environment is the real environment.

Writing a VxD, however, is a different matter, because a VxD runs in a supervisor
context· - meaning it runs outside of any of the virtual machines. In fact, a V xD
becomes a part of the software which implements the virtual machine. Thus, the VxD
writer needs a more complete understanding of how the virtual environment differs
from the physical environment and how Windows creates the illusiqn of the virtual
machine. A full understanding of the virtual machine is especially important to pro
grammers who are developing VxDs that need to manipulate resources in an applica
tion's virtual environment, as many are.

This chapter explains the salient aspects of the Windows architecture, including
how virtual machines are implemented, the major characteristics of the virtual envi
ronments, and the characteristics of the supervisor environment.

9

10 - Writing Windows VxDs and Device Drivers

What is a Virtual Machine?
A virtual machine is a system-created illusion; virtual resources are emulations of
hardware (and sometimes software) resources. To qualify as a virtual resource, the
emulation must be so complete that the typical program can be written just as if the
hardware were real, not emulated. For example, virtual memory systems use disk
space, system software, special processor capabilities, and relatively small amounts of
physical memory to emulate systems with enormous quantities of physical memory.
The emulation is so convincing that programs running in a virtual environment can be
written just as if the entire virtual address space were actually populated with physical
memory. Such a memory system is said to have been "virtualized".

When a system virtualizes all, or nearly all, program-accessible resources, it cre
ates a "virtual machine", or VM. Program-accessible resources include processor reg
isters, memory, and peripheral devices (display, keyboard, etc.). The real reason
behind the use of virtual machines under Windows is to support existing DOS appli
cations. A DOS application assumes it is the only application running and often
accesses hardware directly, uses all of available system memory, and uses all of the
processor time. Since under Windows the DOS application is not the only one run
ning, Windows creates a virtual machine for the application to run in: access to hard
ware is trapped and may be redirected, disk space may replace physical memory, and
the VM is "put to sleep" while other VMs get processor time.

The definition of Virtual Machine is: A task with its own execution environment,
which includes its own

address space,

110 port space,

interrupt operations, and

processor registers.

Virtualizing this much of a machine while still executing the bulk of the code
directly requires specialized processor support. The 80386 (and upwardly-compatible
descendants) includes sophisticated processor support for address translation, demand
paging, I/O trapping, instruction trapping, and interrupt trapping.

The main supervisor process, called the Virtual Machine Manager (VMM), uses
these hardware capabilities to create not just one virtual machine, but several indepen
dent virtual machines, each with its own virtual execution environment. All Windows
applications (both Win32 and Win16) run a single VM, called the System VM,
whereas each DOS application runs in its own independent VM. Each of these virtual
environments can differ substantially from the underlying physical machine.

The Virtual World of Windows -11

Multitasking Model
Windows 3.x and Windows 95 use slightly different multitasking models. In Windows
3.x, the VMM preemptively multitasks among VMs. The VMM scheduler picks a VM
and executes it for an assigned time slice, and when the time slice is up, the scheduler
executes the next VM. This execution switch is transparent to the application - after
all, some of the time-shared applications are DOS applications, which certainly aren't
written to support multitasking.

Although VMs are unaware of this preemptive timeslicing, the Windows 3.x
VMM itself is unaware that multiple Windows applications might be running in the
System VM. To the VMM, all Windows applications are part of the same task. A
higher layer "kernel" in the KERNEL DLL takes care of non-preemptive multitasking
among the Windows applications in the System VM.

Because the Windows 3.x VMM scheduler deals only with VMs, the benefits of pre
emptive multitasking are realized only by users running DOS programs inside Windows.
Badly behaved Windows programs can and do prevent other Windows applications from
running, because the Kernel layer scheduler uses non-preemptive multitasking.

Windows 95 changes all that, bringing the benefits of preemptive multitasking to
Win32 applications also. In Windows 95, the tasking unit is something new called a
thread. Each DOS VM has a single thread. Within the System VM, all Win16 pro
cesses share a single thread, while each Win32 process has its own thread. In addition,
each Win32 process may itself be multithreaded. In a multithreaded Win32 process,
the main thread creates additional threads during execution.

In Windows 3.x the VMM switches execution among VMs, and when the System
VM is run, a higher layer chooses which Windows application runs within the System
VM. In contrast, the Windows 95 VMM switches execution among threads, not VMs,
and it's the lowest layer, the VMM, that chooses which thread to run in the System
VM. Since DOS VMs are always limited to a single thread, sometimes I'll simplify
and say that the Windows 95 VMM "runs a DOS VM" - while technically speaking,
it's running the single thread within that DOS VM.

Virtual Memory through Demand Paging
Because Windows supports multitasking, it's easy to imagine situations where the
total amount of memory used by all running programs is greater than the actual mem
ory present in the system. An operating system that limits a user to running just a cou
ple of programs because he only has a small amount of physical memory might be
useful, but not nearly as useful as one that somehow lets him run lots of programs.
This problem is hardly unique to Windows, and the solution - demand paged virtual
memory - isn't unique either: mainframe operating systems have had it for years.

12 - Writing Windows VxDs and Device Drivers

The term virtual memory refers to a system that makes more memory available to
applications than physically exists. "Demand paged" refers to a specific type of vir
tual memory. In a "paged" system, the operating system and processor divide the
address space into blocks of uniform size, called pages. Windows uses a page size of
4Kb, since that's what the processor supports. "Demand" means that the virtual mem
ory used by a program is associated with actual physical memory "on demand". Only
when the program reads, writes, or executes a location on a page in virtual memory do
the processor and operating system intervene to associate a page of physical memory
with the virtual page.

The operating system and the processor work together to implement demand pag
ing. When a program is loaded, Windows first allocates pages in virtual memory to
hold the program, its data, and its resources. However, these are pages in virtual mem
ory only, not in physical memory. The pages are marked as "not present" in physical
memory. When the program actually attempts to execute or read from a not-present
page, the attempted memory access triggers a processor exception called a page fault.
(An exception is a condition that causes an immediate transfer of control to an excep
tion handler, which is almost always part of the operating system.) The Windows page
fault handler then allocates physical memory for that page and restarts the instruction
that caused the page fault. The restarted instruction doesn't cause a fault because the
page is now present. This fault handling is completely transparent to the application,
which doesn't realize that all of the memory it's using is not present in physical mem
ory at the same time.

The other half of demand paging is swapping pages to and from disk storage.
Even though Windows delays allocating physical memory until it's actually used, at
some point all physical memory will have been used. When the page fault handler
finds that it can't allocate a page because physical memory is exhausted, it frees up a
physical page by writing that page out to disk. The page fault handler then loads the
needed page into the newly vacated physical page. Later, when the swapped-out page
is accessed and causes a fault (it's definitely not present; it's on disk), the page fault
handler first allocates a page (swapping out yet another page if necessary) and then
checks to see whether this new page was previously written to disk. If it was, it copies
the page contents from disk to physical memory. When the instruction is restarted, the
swapped-out page is once again present in physical memory, with exactly the same
contents as before.

Processor Modes
In order to create and maintain virtual machines, the VMM exploits special character
istics of the 80386 family of processors. These processors can operate in any of three
modes: protected, real, and V86. Windows 95 utilizes two of the modes: protected
mode and V86 mode.

The Virtual World of Windows -13

The processor mode determines several important execution characteristics,
including

how much memory the processor can address,

how the processor translates the logical addresses manipulated by software into
physical addresses placed on the bus, and

how the processor protects access to memory and I/O ports and prevents execution
of certain instructions.

Windows 95 requires an 80386 processor, or one of its upwardly compatible
descendants: 80486, Pentium, Pentium Pro. From now on when I use the
term "processor", I mean one of these processors. I'll also use the terms
"32"bit protected mode" and "16-bit protected mode" to refer to the
processor when it is in protected mode and executing either 32-bit or 16-bit
code, respectively. Although technically these two aren't "modes" in the
same sense that V86 and protected are (i.e. this behavior isn't controlled by
bits in the flags register), the size or "bitness" of the executing code has such
an effect on the processor's behavior that 32-bit protected mode can
essentially be considered a different mode than 16-bit protected mode.

Protected Mode
The biggest difference between 32-bit and 16-bit protected mode is the amount of
addressable memory. In 16-bit protected mode, total addressable memory is only
16Mb. In 32-bit protected mode, the processor can address 4Gb, which is 232.
Although 4Gb is such a large number that systems have nowhere near that much
physical memory, such a large address space is still useful when the operating system
provides virtual memory.

Although this difference in total address space is certainly important, what's more
important is the difference in segment size - the maximum amount of memory
addressable at once. Appendix A explains segments and other features of the Intel
80x86 architecture. In 16-bit protected mode, segments are limited to 64Kb (216), and
developers working on large programs must be aware of segments. In 32-bit protected
mode, segments can be 4Gb in size - so large that most operating systems that utilize
32-bit protected mode, including Windows 95, make segmentation invisible to the
programmer by creating a single segment that addresses all 4Gb. Applications then
never need to change segments.

14 - Writing Windows VxDs and De~ice Drivers

As used by Windows 95, both 32-bit and 16-bit protected mode use the same
method to translate the logical addresses used by software into the physical addresses
placed on the bus. The translation process has two steps. A logical address consisting
of a selector and offset is translated first to an intermediate form, called a linear
address, by looking up the selector in a descriptor table which contains the segment's
base linear address. Then the linear address is translated into a physical address by a
second step called paging. I'll explain this two-step translation process in much more
detail later; for now, just remember that the first step uses a selector lookup to find the
linear address, which is different than the first step used by V86 mode.

The term "protected mode" came about because it was the first 8OX86 processor
mode to provide mechanisms to control access to memory and to 110 ports, mecha
nisms which an operating system could use to protect itself from applications. These
mechanism are all based on the concept of privilege level. Executing code always has
a privilege level, which Intel jargon calls a "ring", where Ring 0 is the innermost and
most privileged ring, Ring 3 the outermost and least privileged.

A code segment's privilege level is determined by the operating system, and this
privilege level controls which areas of memory and which 110 ports the code can
access, as well as what instructions it can execute. Ring 0 code - referred to as
supervisor code earlier - can access any memory location or 110 location and can
execute any instruction. If an application running at an outer ring attempts an action
that its privilege level doesn't allow, the processor raises an exception.

V86Mode
Whereas protected mode was invented to support bigger programs and more robust
operating systems, V86 mode exists to emulate real mode, the only mode supported
by the original PC and the only mode supported by DOS applications even today. This
emulation allows operating systems like Windows to better multi task DOS applica
tions. V86 mode has a 1Mb address limit like real mode. The V86 mode address
translation, however, is a cross between real and protected mode. V86 mode takes the
logical-to-linear translation method from real mode: the segment is simply shifted left
by 4 bits. (Contrast this to the selector lookup used in protected mode.) V86 mode
takes the linear-to-physical method from protected mode: paging. The paging is com
pletely transparent to DOS applications.

To keep multi tasked DOS applications from crashing the system, V86 mode sup
ports some of the same protection mechanisms as protected mode. Any program run
ning in V86 mode will cause an exception (transferring control to the operating
system) if it attempts to execute certain "privileged" instructions, access certain 110
ports, or access forbidden areas of memory. Table 2.1 summarizes the 80386+ physi
cal execution environments.

The Virtual World a/Windows -15

Windows Execution Environments
The Windows 95 architecture supports four fundamentally different types of pro
cesses: supervisor processes, Win32 applications, Win16 applications, and DOS
applications. Windows 95 runs each of these in a different execution environment. An
execution environment can be described by processor mode, privilege level, and "bit
ness", which is a fancy term for 16-bitor 32-bit. Table 2.2 summarizes the Windows
execution environments.

Table 2.1 Physical execution environments associated
with various 80386+ processor modes.

32-bit Protected 16-bit Protected' V86

Total Address 4Gb (232) 16Mb (224) 1Mb (220)

Space

Segment Size 4Gb 64Kb 64Kb

Address logical to linear: logical to linear: logical to linear:
Translation selector lookup selector lookup segment« 4

linear to physical: linear to physical: linear to physical:
page tables page tables page tables

Privilege o through 3 o through 3 3
Level

Protection yes yes yes
Mechanisms

Table 2.2 Windows execution environments associated
with various process types.

Process Processor Memory
Type Mode Privilege Bitness Model VM

Supervisor protected Ring 0 32-bit flat outside all

Win32 protected Ring 3 32-bit flat SystemVM

Win16 protected Ring 3 16-bit segmented SystemVM

DOS V86 Ring 3 16-bit segmented individual VM

16 - Writing Windows VxDs and Device Drivers

The supervisor processes run in protected mode with Ring 0 privilege (the highest
access privilege), so they are able to see and manipulate the actual hardware environ
ment. That is, the supervisor processes execute on the actual machine, not on a virtual
machine; or to put it another way, supervisor processes run outside of any VM. Of all
the components that make up Windows 95, only the VMM and VxDs execute in the
supervisor environment. All other components run in a VM.

The supervisor environment is 32-bit, so these processes can address 4Gb of vir
tual memory. Supervisor processes use only two selectors, both of which address
4Gb. These two selectors differ only in their attributes: one is marked executable and
loaded into CS; and the other is marked non-executable and loaded into DS, ES, and SS.
(These selector attributes are stored in the same descriptor table that stores the seg
ment's base linear address.) This type of memory model, where segments are loaded
once and never again, is called flat model, and makes segmentation essentially invisi
ble to the programmer.

While supervisor processes run outside of any VM (on the real machine), Win32
processes run at Ring 3 (the lowest access privilege) in a VM. Furthermore, all Win32
processes run in the same VM, called the System VM. Win32 processes are 32-bit
protected mode and use a flat memory model, like supervisor processes, seeing a 4Gb
address space and for all practical purposes ignoring selectors and segments.

Winl6 processes run in the same SystemVM as Win32 processes. Win16 pro
cesses run in protected mode with Ring 3 privileges but don't get the luxury of a flat
memory model. Because they run in 16-bit protected mode, Win16 processes are still
stuck with a 16Mb address space and must deal with selectors and 64Kb segments.

Each DOS process gets its own VM. A DOS process doesn't run in protected mode
like all the other types of processes. Instead, it runs in V86 mode, the 80386 mode built
specially for emulating an 8086. V86 mode means a segmented memory model with
8086-type translation plus the addition of paging. V86 mode also implies Ring 3 privi
lege, so access to hardware resources and interrupts is hidden and virtualized.

Why does each DOS process get its own VM, while all Win32 and all Win16
applications share the System VM? Because DOS processes are in general unaware
that they are sharing the system with any other process, and so usually "take over" the
machine. DOS processes do things like modify the interrupt vector table and write
directly to the screen. Windows runs each DOS program in a separate virtual machine
so that each one modifies only its own virtual interrupt vector table, and writes only to
its own virtual screen.

Windows applications, on the other hand (both Win32 and Win16), are aware that
other processes are running. They write only to their own windows, not directly to the
screen, and use a DOS call to modify the interrupt vector table instead of modifying it
directly. Windows applications don't need to be protected so much from each other as
they do from the DOS applications that aren't aware of them. So Windows can safely
run all Windows applications in the same virtual machine.

The Virtual World of Windows -17

Summary
Windows can run Win32, Winl6, and DOS applications and can multitask among
them. It does this by running the applications not on the real machine, but in virtual
machines. The Virtual Machine Manager, a supervisor process that runs on the real
machine, provides each of the different types of applications with a different virtual
environment. The next chapter will take a closer look at each of the four resources
in a Virtual Machine - 110 space, interrupt operations, processor registers, and
address space - and show how Windows utilizes specialized processor features to
virtualize each.

18 - Writing Windows VxDs and Device Drivers

Chapter 3

How Windows Implements
the Virtual Environments
The previous chapter introduced the concept of a virtual machine and the four compo
nents that make up a virtual machine: I/O space, interrupt operations, processor regis
ters,.and address space. It also described the virtual environments seen by each of the
four different types of processes that run under Windows: Win32, Win16, DOS, and
supervisor (VMM and VxDs). This chapter will take a closer look at how the VMM
virtualizes each of the components in the VM, for each different type of process. (This
chapter assumes you are familiar with the basic features of the Intel 80x86 architec
ture: See Appendix A for a review of the important aspects of the architecture.)

Trapping I/O Port Access
Both protected mode and V86 mode incorporate several features that an operating
system can use to trap I N and OUT instructions and thus prevent an application from
directly accessing an I/O-mapped device. Memory-mapped devices are accessed via
any instruction that uses a memory reference, while I/O-mapped devices are accessed
only via I N and OUT instructions. (For a more detailed discussion of I/O-mapped and
memory-mapped devices, see Chapter 6.) Windows 95 uses a combination of two pro
cessor features, I/O Privilege Level (IOPL) and the I/O Permission Map (IOPM), to
control VM access to I/O addresses.

19

20 - Writing Windows VxDs and DeVice Drivers

In protected mode, every code segment has an associated Descriptor Privilege
Level stored in· the descriptor table. Each code segment al~o has a separate attclbute
for 110 Privilege Level, also stored in the descriptor table. When an I N or OUT instruc
tion is executed in protected mode, the processor compares the segment's IOPL to the
privilege level of the currently executing code segment (called CPL for current privi
lege level). If CPL < IOPL, the segment has enough privilege, and the processor exe
cutes the instruction. If CPL)= IOPL, the processor uses the IOPM as a second level
of protection. The IOPM is a bit-mapped list of ports: a 1 bit means "access denied",
and a a bit means "access granted", So if C P L)= lOP L and the IOPM bit for the spe
cific port is clear, the instruction is executed. But if the IOPM bit for thst port is set,
the processor generates an exception.

As used by Windows 95, the IOPM is really the dominant privilege mechanism for
all VMs. In DOS VMs, the IOPM determines the 110 privilege of the application
because the VMM runs DOS applications in V86 mode where the processor ignores
the IOPL and looks only at the IOPM when processing I N and OUT instructions. In
Win16 and Win32 VMs, the IOPM determines the 110 privilege of the application
because the VMM runs all Win16 and Win32 processes with CPL) IOPL. Thus, even
though Win16 and Win32 applications run in protected mode where the processor
tests the IOPL, the test always results in a further check "through" the IOPM.

By manipulating the IOPM, Windows 95 can trap accesses to specific ports while
allowing uninhibited access to other ports. Windows 95 uses this ability to virtualize
the physical device located at the trapped port address. By routing device accesses
through virtual device drivers (VxDs), Windows 95 can maintain separate state infor
mation for each of the VMs that might use the device.

The VMM is responsible for maintaining the IOPM. V:x,Ds call a VMM service to
request that the VMM trap a particular port. When making this request, the VxD spec
ifies a callback function, called a "port trap handler". The VMM responds to such a
request by setting the port's bit in the IOPM. When a VM accesses that port. and thus
causes a fault, the VMM fault handler calls the VxD's registered port trap handler.
This port trap handler can do anything in response to the 110 access: the VxD may
ignore the instruction, may execute the instruction, or may substitute a value instead
(e.g. OUT 3F8h. Olh might become OUT 3F8h. 8lh).

Windows 95 and its standard component VxDs trap almost all standard PC 110
devices but never trap non-standard 110 addresses. Table 3.1 lists the port locations
trapped. A third-party VxD may trap other ports as well.

How Windows Implements the Virtual Environments - 21

Table 3.1 I/O ports trapped by standard VxDs.

Windows 3.1

Port Address VxD Description

~O-OF /CO-OF VOMAO DMA controller

20/211 AO/ Al VPICO programmable
interrupt controller

40/43 VTO timer

60/64 VKO keyboard

3F8-3FE/3E8-3EE/2F8-2FE VCO com port (COMlI2I3)

1 FO/3F6 WOCTRl hard disk controller
(if West em Digital
compatible)

3B4/3B5/3BA/3CO-3CF/300-30F VOO VGA display

Windows 95

Port Address VxD Description

3FO/3Fl/3F2/3F4/3F5/3F7 VFBACKUP floppy controller

IFO-IF7 ESOL506 hard disk controller

378/379/37A VPO printer LPTl

2F8-2Fe/3F8-3Fe SERIAL serial port COMl
andCOM2

61 VSO sound

3B4/3B5/3Ba/300-30F/3CO-3CF VOO VGAdisplay

lCE/ICF/2E8/x6EC-EF AT! miniport display
AEC-EF /xEEC-EF PCI-specific VGA

00-OF/CO-OF/81/82/83/87/89/8A/83/87/89/8A VOMAO DMA controller

60/64 VKO keyboard

40/43 VTO timer

20/21/AO/Al VPICO programmable
interrupt controller

22 - Writing Windows VxDs and Device Drivers

Trapping Access to Memory-mapped Devices
While most standard peripherals are I/O-mapped, some are memory-mapped. Win
dows 95 relies primarily upon the page fault mechanism to virtualize access to mem
ory-mapped devices. To trap references to one of these devices, the VxD virtualizing
the device will mark the page corresponding to the device's physical address as "not
present", and register its own page fault handler with VMM. When a process running
in a VM tries to access that page, the access will cause a page fault. Instead of per
forming its default response and attempting to swap a page, the VMM fault handler
will now call the registered page fault handler in the VxD that is virtualizing the
device. The VxD handler can then decide what action is consistent with the require
ments of the virtual environment.

The Virtual Display Device (VDD) uses this mechanism to virtualize the video
frame buffer. When a DOS program writes to the video buffer at logical address
BOOO: 0000, the output doesn't appear on the screen because the VDD marks that par
ticular page "not present". Instead, accesses to the video frame buffer are trapped by
the VxD's page fault handler and redirected to another location in physical memory.
This redirection causes writes to the video buffer to appear in a window instead of on
the full screen. The VxD in Chapter 8 uses this same mechanism to arbitrate access to
another memory-mapped device, a monochrome adapter.

Trapping Interrupts and Exceptions
In addition to trapping memory and I/O references, Windows 95 traps certain "privi
leged" instructions. "Privileged" instructions are those that could be used to bypass
the processor's protection features or that could interfere with the integrity of the vir
tual machine. Privileged instructions include: those that affect the processor interrupt
flag (CLI, ST!, POPF, I RET); software interrupts (I NT n); and those that load descriptor
tables (LLOT, LOGT, LI OT). For the most part, Windows 95 traps these instructions to
protect the integrity of the VM. In the instance of the I NT instructions, Windows 95
exploits the trap to transparently intercept DOS and BIOS calls.

Processes running in a VM execute with Ring 3 (least privileged) permissions.
Code executing at Ring 3 causes an exception when executing one of these "privi
leged" instructions. When this exception is raised, the processor switches to Ring 0
and then transfers control to an appropriate handler.

More precisely, each segment has an associated Descriptor Privilege Level (DPL).
This segment privilege level determines the privilege level of most instructions (e.g.
LLOT, LGOT). However, a few instructions (those which affect the processor's interrupt
flag) derive their privilege level from the IOPL, not the DPL. When a Ring 3 process exe
cutes ST! or CLI, for example, the processor will raise an exception only if CPL > IOPL.

One of the more significant differences between the System VM environment and the
DOS VM environment relates to these IOPL-based privileges. While the 80386 architec
ture supports trapping of CLI and STI in both protected and V86 modes, Windows 95

How Windows Implements the Virtual Environments - 23

does not trap the ST I and eLI instructions in V86 mode. The VMM purposely sets C P L =

IOP L for DOS applications, so that eLI and STI do not cause an exception. What's more,
even though Windows 95 runs Win16 and Win32 applications with CPL > IOPL, so that
eLI / STI do cause an exception for Windows applications, the VMM exception handler
goes ahead and executes the instruction, enabling or disabling interrupts on behalf of the
application. Apparently the designers decided the overhead of trapping all ST I sand eLI s
was a bigger performance penalty than they were prepared to pay.

Processor Registers
Virtualizing the third resource, processor registers, is trivial when compared to the
mechanisms required to virtualize 110 port space and interrupt operations. The VMM
maintains a virtual register data structure for each VM, and each time the VMM switches
from executing one VM (say, VMl) to executing another VM (say, VM2), it first saves
the state ofVMl's registers in VMl's virtual register structure then updates the actual
processor registers from VM2's virtual register structure before executing VM2.

A Closer Look at Linear Addresses and Paging
The previous chapter introduced the different processor modes and the address trans
lation used in each. Before explaining how Windows virtualizes the address space,
this chapter will examine, more closely, the two-step address translation mechanism
used in both protected and V86 modes.

As viewed by software, an address has two parts, a selector and an offset. (Or in
V86 mode, a segment and offset.) This form of address is known as a logical address.
When software references this address, the processor translates the logical address
into an intermediate form called a linear address, and then to a physical address which
is actually placed on the bus and decoded by memory or a device.

In V86 mode, this first level translation, logical to linear, is very simple. The seg
ment is shifted left by 4 bits and the offset is added in to form a linear address. In pro
tected mode there is no arithmetic relationship between the logical address
manipulated by the software and the corresponding linear address. Instead, the pro
cessor uses the selector portion of the logical address to index an entry in the Descrip
tor Table. Each entry in this table is a descriptor, a data structure that holds the base
address of a segment. The processor translates the logical address to a linear address
by using the selector to index the appropriate descriptor, extracting the base address
from the descriptor, and adding that base address to the offset portion of the logical
address. The resulting sum is a linear address. This process is depicted in Figure 3.1.

The next level of translation, from linear address to physical address, involves
another set of data structures: the page directory and the page tables, sometimes collec
tively called "the page tables". Together, these structures map every 4Kb page oflinear
address space onto some 4Kb page of physical memory. (With virtual memory, though,
this page of "physical memory" can exist either in RAM or on the hard disk.) Windows

24 - Writing Windows VxDs and Device Drivers

makes extensive use of the page tables to remap physical memory to meet the varying
needs of each type of process, as well as to implement virtual memory. Once again,
there is no arithmetic relationship between linear memory and physical memory.

The "page tables" are a hierarchical arrangement of a root page directory, multiple page
tables and multiple page table entries, as illustrated in Figure 3.2. Each Page Table Entry
(P1E) maps a 4Kb page of linear memory to a physical address. A group of 1024 P1Es
forms a page table, which maps 4Kb* 1024 = 4Mb of linear memory. A group of 1024 page
tables forms a page directory, which maps 4Mb* 1024 = 4Gb, all of linear memory.

Thanks to the hierarchical encoding of the data structures, the linear to physical
translation can be implemented quite efficiently in hardware. To the processor, a lin
ear address isn't merely a number between 0 and 4Gb - it's actually three bitfields: a
page directory index, a page table index, and a page offset. Adding together the
address of the root page directory table (stored in the CR3 register) and the page direc
tory index bits, the processor finds a page directory entry. Inside this entry is the
address of a page table. Adding together the address of this page table and the page
table index bits, the processor finds a page table entry. Inside this PTE is a physical
address. Adding together this physical address and the final bitfield, the page offset,
the processor forms a final 32-bit physical address.

Figure 3.1 'Logical-to-linear address translation.

selector descriptor table address
LI ___ ----'1000 1 1
l

offset

l~-v-_-

l'----~-+(+J+-,---'l
descriptor table
base address I limit I other

:
I
I
I
I I ___________ L ______ L _____ _

'--t ::
----------- ------~------

! f

32-bit
linear address

[
I

t ,

i i

I

How Windows Implements the Virtual Environments - 25

Figure 3.2 Illustrates how bitfields from the linear address
are combined with Page Table Entries (PTEs)
to construct a physical reference.

C R3 Register

I Root Page Directory I Index Into

Base Address Page Table Page Table

0 PTE
1 PTE

Index 2 PTE
Into

Root

Page
Page

Directory
Directory 1023 PTE

0 PDE 1023 PTE
I PDE
2 PDE

+ 3 PDE
4 PDE

\ I.d." I,,, '\ P",
Page Table Table

o PTE
I PTE

.
756 PTE . + PTE 757 -...

1023 PTE

1021 PDE
1022 PR.~ Index Into

1023
, -- PDE -, Page Table Page Table
" ~ ,

'1-------- 0 PTE
I PTE
2 PTE

Each PTE occupies .
4 bytes, making

1021 PTE
a 1024 entry page table

1022 PTE
fill a 4Kb page.

1023 PTE

'I '1

Page Offset
0
I
2

.
4094
4094

Page Offset
0
1
2 .

4093
4094
4095

'\
Page Offset

0
1
2

-P
r-' 4093

4094
4095

Page Offset
0
1
2

4093
4094
4095

"I

4Kb Page

'~
4Kb Page

! 4Kb
Page

----- ...
" ""'

4Kb Page

.

Phy sica!
rence Refe

I ,

• Page Directory (10 Bits) I' Page Table Index (10 Bits) • Page Offset (12 Bits) j
\31 21 11 0)

LINEAR ADDRESS

26 - Writing Windows VxDs and Device Drivers

Competing Address Requirements of
Win32, Win16, and DOS Applications
Windows 95 multitasks Win32, Win16, and DOS applications. Each of these three
types of processes expects to see an address space with different characteristics. By
address space, here I mean linear address space, not actual physical address space.
When running under Windows, applications are not even aware of physical addresses
- the generation of physical addresses by the processor happens "beneath" them.

Win32 Address Requirements
Every Win32 application has a 4Gb address space, which is completely separate from
the address space of all other Win32 applications (Figure 3.3). By "completely sepa
rate", I mean it is literally impossible for one Win32 application to access the memory
of another Win32 application. However, each Win32 application shares some of its
vast 4Gb address space with other system components, like system DLLs and
VMMNxD code. Since all Win32 applications will be using these components, it
makes sense to share these common components, instead of having a separate copy of
each of these in physical memory. All Win32 applications can access the shared sys
tem components, but they can't access each other.

Win16 Address Requirements
Win16 applications have very different address space requirements than Win32 appli
cations. Win16 applications expect a smaller address space (about 2Gb), and they
expect to share this smaller address space not only with system components but also
with all other Win16 applications as well (Figure 3.4). This shared address space is
the main reason Win16 applications are less robust than Win32 applications. A Win16
application can obtain a selector - by accident or by design - to a segment belong
ing to another Winl6 application and use that selector to write into the other applica
tion's data segment. Many Win16 applications rely on this shared address space, so in
order to be backwardly compatible, Windows 95 must run Win16 applications in a
shared address space.

How Windows Implements the Virtual Environments - 27

Figure 3.3 linear address space as viewed by Win32
applications.

4Gb 4Gb

Shared Shared

Private Private

o L..-.-_____ -' O'--__ ~ __ ___'

Win32 Appl Win32 App2

Figure 3.4 Linear address space as viewed by Win16
applications.

4Gb

Winl6 App2

Winl6 DLL

Winl6 Appl

o

28 - Writing Windows VxDs and Device Drivers

DOS Address Requirements
Windows·95 runs DOS applications in V86 mode. In this mode, the processor can
only generate linear addresses in the O-lMb region. When a DOS application runs
under Windows 95, it sees certain system components in its address space: TSR or
device drivers loaded before Windows 95 began, the interrupt vector table and BIOS
data areas in low memory, and "DOS" itself - COMMAND. COM. When Windows 95
runs multiple DOS applications, all of the DOS applications will see exactly the same
set of system components (Figure 3.5). These DOS system components are ~hared
among the multiple DOS applications, meaning they appear in the address space of
each DOS application (somewhere below 1Mb), but only one copy of each is in phys
ical memory.

Satisfying Address Requirements of
Win16 and DOS Applications:
How Does Windows 3.x Do It?
Windows 3.x doesn't run Win32 applications but it still needs to handle Win16 and
DOS applications. These applications have exactly the same requirements under Win
dows3.x as under Windows 95: Win16 applications run in a shared address space,
DOS applications in linear O-lMb.

Figure 3.5 Linear address space as viewed by DOS
applications.

1Mb 1Mb

DOS Appl DOS App2

COMMAND.COM COMMAND.COM

o IVT o IVT

How Windows Implements the Virtual Environments - 29

Under Windows 3.x, all types of processes ~ Win16,DOS, and supervisor ~
share the same 4Gb linear address space. In fact, they really share less than 4Gb,
because Windows 3.x uses only a little over a half of the 4Gb address space. Windows
3.x uses a small portion of the lower half (below 2Gb), and a larger portion of the
upper half (above 2Gb). (If these numbers sound unusually large, remember, they are
linear addresses, not physical addresses.)

The Windows 3.x VMM loads processes into linear address space in 4Mb chunks.
The vast majority of all processes live in the upper half of the linear address space
(2Gb and above). Supervisor processes - VMM itself plus VxDs -are loaded in the
4Mb starting at 2Gb. The VMM loads VMs immediately above these supervisor pro
cesses (Figure 3.6).

Figure 3.6 Linear address space under Windows 3.x.

2Gb + 4Mb

29b

4Mb

o

V86ofVM2

V860fVMl

V86ofVMO

PMofVM2

PMofVMO

VxDs

Currently
executing VM

30 - Writing Windows VxDs and Device Drivers

If a VM switches processor modes, Windows 95 will load both a protected mode
component and a V86 mode component, each taking up at least 4Mb of address space.
(Note that in Figure 3.6, VMO has both a "PM" component and a "V86" component.)
Although the System VM usually runs in protected mode, and DOS VMs usually run
in V86 mode, VMs can and do flip modes. For example, all VMs, including the Sys
tem VM, start in V86 mode. Once started, any VM can later switch to protected mode.
In the System VM, the Ring 3 KERNEL module always switches into protected mode
very early in the Windows initialization process. When a DOS-extended application
runs under Windows, it too starts life in a VM in V86 mode, then the DOS-extender
switches into protected mode.

Protected mode VMs, both the System VM and any DOS-extended VMs, switch
back to V86 mode to access real mode DOS and BIOS services. Together, these DOS
and BIOS services and TSRs make up the V86 mode component of the System VM,
while the Windows applications, DLLs and system modules (KERNEL, USER, etc.)
make up the protected mode component of the System VM. A DOS VM that runs a
normal DOS application has only a V86 mode component. On the other hand, a DOS
VM running a DOS-extended application has a V86 mode component containing
DOS, BIOS, etc., and a protected mode component containing the DOS-extended
pieces that run in protected mode.

Figure 3.7 The page tables while VMl is executing.

Page Directory Page Tables Physical
4Gb

V86 VM2e--r--
+8Mb

V86VMl r--
+4Mb

PMVMl Not Present

2Gb

o
Not Present

Linear 0
CurrentVM Not Present

How Windows Implelnents the Virtual Environments - 31

Figure 3.8 The page tables while VM2 is executing.

Page Directory Page Tables Physical
4Gb

VS6 VM2'- -
+SMb

VS6VMl.- - ,.

PMVMl
L-.

r Not Present
+4Mb

2Gb

o
Not Present

Linear 0
CurrentVM .. - Not Present

Copying·Without Copying

When we say the VMM "copies" the VS6 component down in linear address space, it sounds like a vast
amount of memory is being copied. In reality, only a single pointer (32 bits) is copied, thanks to the hierarchy
of the page table structures. Figure 3.7 shows an example load configuration. The VMM uses a single page
directory, which maps the entire 4Gb of linear address space. Each of the 1024 entries in the page directory
maps 4Mb (4Gb/I024:::: 4Mb). Look first at the two entries labeled VS6 VMI (at location 2Gb + 4Mb) and
VS6 VM2 (at location 2Gb + 5Mb). Each of these two page directory entries points to a different page table,
and the two page tables contain different PTEs.

Now look at the lowest (0-4Mb) entry in the page directory (labeled Current VM). Note that this entry
points to one of the two page tables I just described. In Figure 3.7, VM 1 is the currently executing VM, so the
0-4Mb (CurrentVM) entry points to the page table forVMl. To switch to VM2, the VMM merely updates the
first entry of the page directory table, causing it point to VM2's page table instead of VMl's page table.
Changing a single 32-bit entry in the page directory table accomplishes a "move" of 4Mb in linear memory.

After the switch (Figure 3.S), VM2 is visible at two different locations in linear memory, one below 1Mb
(0-4Mb) and one above 2Gb (2Gb + 5Mb). The VMM can now begin executing the VS6 component located
below I Mb and still retain access to the copy above 2Gb.

/

32 - Writing Windows VxDs and Device Drivers

In V86 mode the processor can only generate linear addresses below 1Mb.
Because of this restriction, the V86 component of the currently executing VM must
live below 1Mb. More precisely, the currently executing V86 component must occupy
linear address space below 1Mb. The active V86 component may be located in any
part of physical memory - as long as the page tables properly map that physical
image into the correct region of linear address space.

Thus Windows must remap the lower 4Mb of linear address space each time it
runs a different VM. Only one active V86 component may occupy the linear space
below 1 Mb at anyone time. Windows keeps a copy of all VM components (active and
inactive) above 2Gb, but once a VM becomes active, Windows must "move" its V86
component to the lower portion of linear address space. Windows exploits the
page-mapping hardware to effect this "move" without performing a copy. (See the
sidebar "Copying Without Copying" on page 31.)

Thanks to the magic of the page mapping hardware, a single physical copy of a VM
component can be visible at two different positions in linear address space at the same
time. Windows uses this page table trick to make it more convenient for Ring 0 code to
manipulate the V86 component. Windows constructs the page tables so that each V86
component appears at two locations in linear memory: once below 1Mb and once above
2Gb. These "aliased" page table entries allow Ring 0 code to manipulate a V86 compo
nent without testing to see if the component is part of the currently executing VM.

To summarize: Windows 3.x loads both a V86 and a PM component for each VM.
These components always reside above the 2Gb boundary in linear address space, and
the active V86 component is also mapped into the region below 1Mb. To switch VMs,
Windows simply switches page tables (see the sidebar). Because Win16 processes run
in the same VM, switching from one Win16 process to another does not involve any
change in the page tables. In fact, the Windows 3.x VMM doesn't know anything
about the multiple Win 16 programs running in the System VM.

Satisfying Address Requirements of
Win32, Win16, and DOS Applications:
How Does Windows 95 Do It?
Although Windows 3.x uses only a small portion of the 4Gb linear address space,
Windows 95 uses all of it. Windows 95 divides this 4Gb into several different regions,
called arenas (Figure 3.9):

private arena,

shared arena,

system arena, and

DOS arena.

How Windows Implements the Virtual Environments - 33

The private arena, from 4Mb-2Gb (almost half the entire 4Gb) is used for Win32
application code, data, and resources. This arena is private because it's mapped to a
different location in physical memory for each Win32 application. So when Win32
Appl accesses linear address 4Mb, it accesses .one set of physical locations, but when
Win32 App2 accesses the same linear address 4Mb, it accesses a different set of phys
icallocations. Windows 95 achieves this magic by switching the 511 page directory
entries that map linear 4Mb-2Gb. When executing Win32 Appl, these page directory
entries point to one set of page tables (Figure 3.10). When Windows 95 switches to
execute Win32 App2, they point to another set of page tables (Figure 3.11).

Figure 3.9 The Windows 95 address space.

Linear Address
4Gb

Page Tables

VxDs
VMM

3Gb
System DLLs

Memory-mapped Files
Upper portion of

Win16 global heap

2Gb

Win32 code,
data and resources

(distinct linear to physical mapping
for end process)

Lower portion ofWin16 global heap
MS-DOS

4Mb

o
}

System arena
(Ring 0 shared)

Shared arena
(Ring 3 shared)

Private arena
(per process area)

DOS arena

34 - Writing Windows VxDs and Device Drivers

By changing the private arena POEs, Windows 95 protects Win32 applications
from each other. The page table entries used for Win32 App 1 simply don't contain the
physical addresses used by App2, and the page table entries used for Win32 App2
don't contain the physical addresses used by App 1. App 1 and App2 are each literally
unable to touch the other's resources.

The shared arena, located at 2Gb-3Gb, contains all Ring 3 code and data that must
be shared. This arena hosts both Win32 system DLLs (because all Win32 applications
need to share them) and all Win16 processes (because Win16 processes depend on a
shared address space). Windows 95 implements the shared arena by more clever use
of the page directory: Windows 95 never switches the 256-page directory entries that
map linear 2Gb-3Gb. No matter what process is running, linear 2Gb-3Gb always
maps to the same location in physical memory.

The system arena is at the top of address space, from 3Gb-4Gb. Windows 95 uses
the system arena exclusively for supervisor (Ring 0) components: the VMM and
VxDs. This arena is shared also, in exactly the same way as the shared arena, by never
switching the page directory entries that map 3Gb-4Gb.

Figure 3.10 Before the switch - when Win32 AppJ

3Gb

2Gb

4Mb

Linear 0

is executing,. the page directory's 4Mb slot
points to a page table whose PTEs point
to pages 2, 3, and 4 in physical memory.

Page Directory Page Tables Physical
r-----,

System

Not Present
Shared

Win32
Appl

(Private)

DOS

8

7

6

1------15

1-------14

3

Used 2}
1 only by

App2
o ..

How Windows Implements the Virtual Environments - 35

Many operating systems prevent user-mode components from accessing system
pages directly by setting the Supervisor bit in the PTEs for system pages, which
causes a page fault to occur if a system page is accessed from user-mode. Windows 95
does not use Supervisor bits at all, which makes it easy to pass data between a VxD
and an application - the V xD can just give the application a pointer, which is directly
usable by the application. (I'll explain this technique in detail in a later chapter.)

The DOS arena, at linear 0-4Mb, is devoted to DOS applications and a small por
tion of the Win16 heap. As stated earlier, DOS applications must reside here because
they run in V86 mode and thus generate linear addresses below 1Mb. A small portion
of the Win16 heap must also be below 1Mb, for use by Win16 applications and sys
tem DLLs allocating memory for communication with DOS, TSRs, etc.

Figure 3.11 After the switch - when Win32 App2
begins executing, the page directory's
4Mb slot points to a different page table,
whose PTEs point to pages 0 and 1.
The page directory entries for the shared
regions above 2Gb remain the same.

Page Directory
4Gb

3Gb

2Gb

System

Shared

Win32
App2

(Private)

Page Tables
,------,

Not Present

Not Present

Not Present

4MbL-----~r-------+I----1
DOS Linear 0 '--___ ----'

Physical
8

7

6

5
Used

4 only
for

3 Appl

2

o

.36 - Writing Windows VxDs and Device Drivers

Windows 95 manages the page directory entries for the DOS arena in the same
way that Windows 3.x did. With every VM switch, the V86 component of the cur
rently executing VM is copied in linear space, from above 2Gb to below 1Mb, by sim
ply changing the first entry in the root page directory.

Windows 95 makes more extensive use of page directory switching than Windows
3.x. Each time a different Win32 process is executed, the Windows 95 VMM switches
the page directory entries for the private arena, leaving the page directory entries for
the shared and system arenas alone. And each time a different VM is executed, the
Windows 95 VMM switches the single page directory entry for the first 4Mb.

Summary
This chapter has explained how the VMM creates appropriate virtual environments
for Win32, Win16, and DOS applications. The VMM utilizes several privilege-related
processor features to virtualize access to IO-mapped and memory-mapped devices, as
well as to control execution of privileged instructions. The VMM also utilizes the pro
cessor's paging features to provide each type of application with the linear address
space that it expects. The remaining chapters in this section will focus on VxDs, the
supervisor processes that assist the VM in creating and maintaining the virtual world
of Windows.

Chapter 4

Introduction to VxDs
Although VxD is an abbreviation for Virtual Device Driver, a VxD can be much more
than a device driver that virtualizes a particular device. Some VxDs do virtualize a
device. However, some VxDs act as a device driver, but don't virtualize the device.
Some VxDs don't interact with any device; they exist merely to provide a service to
other VxDs or to applications.

VxDs may be loaded along with the VMM (statically loaded), or on demand
(dynamically loaded). In both cases, though, the VxD cooperates closely with, and
shares execution context with the Virtual Machine Manager (VMM). This special
relationship with the operating system gives a VxD powers that are unavailable to
Windows and DOS applications. V xDs have unrestricted access to all hardware
devices, can freely examine operating system data structures (such as descriptor and
page tables), and can access any memory location. A VxD can also trap software
interrupts, trap 110 port and memory region accesses, and even intercept hardware
interrupts.

Although Windows or DOS applications may be able to do some '~low-Ievel"
tasks (such as trap software interrupts), an application is always limited. For
example, a Windows application can trap software interrupts issued by
another Windows application - but not interrupts issued by a DOS
application. A VxD would see all interrupts, regardless of source:

37

38 - Writing Windows VxDs and Device Drivers

To support this level of integration with the VMM kernel, both statically loaded
and dynamically loaded VxDs

• conform to a standard structure,

• register their services with the VMM, and

• service at least parts of a special message protocol.

This chapter explains how VxDs are loaded and how each type ofVxD conforms
to these fundamental requirements of a VxD. The following chapters show how VxDs
can be used to implement different device-related capabilities.

VxDLoading
Windows 95 supports both statically loaded and dynamically loaded VxDs. Statically
10adedVxDs are loaded when Windows initializes and remain loaded for the lifetime
of Windows. If a VxD is used only by a particular application or exists only to provide
services to certain applications, the memory it occupies is wasted when the VxD isn't
actually in use. Static loading is particularly annoying for VxD developers, who must
exit and restart Windows before they can test a change to a VxD.

Windows 95 supports two methods for static loading. The first, also supported by
Windows 3.x, is to name the VxD in a dey i ce= statement in SY STEM. I N I. The second,
new for Windows 95, is to add a Static VxD named value (e.g. Stat i c VxD = pathname)
to the registry, under the subkey \HKLM\System\CurrentControl Set\Se.rvi ces\VxD.

Dynamically loadable VxDs aren't loaded automatically when Windows initial
izes but are instead loaded and unloaded under the control of either an application or
another VxD. For examp1e, Plug and Play VxDs (discussed in detail in Chapter 10)
must be dynamically loadable because Windows 95 supports runtime removal and
reconfiguration of hardware. The VxDs that support this kind of hardware must be
able to be loaded and unloaded as necessary.

Dynamically loadable VxDs are also useful as drivers for devices that are used
only by a particular application. When the application needs to use the device, it loads
the VxD. When the application is finished with the device, it unloads the VxD.

Statically and dynamically loaded VxDs respond to slightly different sets ofVMM
messages. Some messages are seen only by static VxDs, some are seen only by
dynamic VxDs, but most are seen by both. In fact, it is easy to write a VxDthat sup
ports both methods of loading, simply by responding to both sets of messages.

Introduction to VxDs - 39

Basic Structure of a VxD
Although VxDs use the 32-bit flat memory model, VxD code and data are still orga
nized into segments. (In fact, a base plus offset addressing model is a necessary archi
tectural component if a machine is to efficiently load and execute relocatable
modules.) VxDs use these types of segments:

real mode initialization,

protected mode initialization,

pageable,

locked (non-pageable),

static, and

debug only.

For each of these segment types, there is a code segment and a data segment, so a
VxD could have a total of 12 segments. The real mode code and data segments are
both 16-bit (segmented model), and all other segments are 32-bit (flat model).

The real mode initialization segment contains code that is executed early in the
Windows initialization sequence, before the VMM switches into protected mode. This
early initialization phase gives each statically loaded VxD an opportunity to examine
the pre-Windows real mode environment, and then decide whether the VxD should
continue loading. By returning with an exit code in AX, the VxD can tell VMM to con
tinue loading the protected mode portion of the VxD, to abort loading of this VxD, or
even to abort loading Windows.

Most VxDs don't need a real mode initialization routine, but the PAGEFILE
VxD, included as part of VMM. VXD, illustrates a possible use of one.
PAGEFILE uses several DOS (I NT 21h) calls to· find out if the SMARTDRV
DOS device driver is loaded. If not, PAGEFILE returns from its real mode
initialization routine with Carry set, so that VMM never calls PAGEFILE's
protected mode code.

After the real mode section of each statically loaded VxD has been executed,
VMM switches into protected mode and gives each statically loaded VxD an opportu
nity to execute the code in its protected mode initialization segment. The protected
mode initialization code can also return with an error code to tell VMM that the VxD
has failed to initialize. If a VxD reports an initialization failure, the VMM marks the
VxD inactive, and never calls it again.

40 - Writing Windows VxDs and Device Drivers

Both real mOde and protected mode initialization segments are discarded after ini
tialization is complete. These segments are loaded before the first VxD is initialized
and not discarded until all VxDs have finished initialization.

Most of a VxD resides in one of the other segments. In a statically loaded VxD,
these other segments exist until Windows terminates. In a dynamically loaded VxD,
they remain present until the VxD is unloaded. As their names suggest, a pageable
segment may be paged to disk by the Virtual Memory Manager, while a locked seg
ment will never be paged out. Most VxD code and data should be in a pageable seg
ment, to allow the Virtual Memory Manager to swap out VxD pages and free up
physical memory. Only the following items should - and must - go in a locked
segment:

The Device Control Procedure (the VxD's main entry point).

Hardware interrupt handlers and all data accessed by them.

Services that may be called by another VxD's hardware interrupt handler (referred
to as asynchronous services).

Static segments are used only by dynamically loadable VxDs, which are discussed
later in this chapter. The static code and data segments of a dynamically loadable VxD
will not be unloaded when the rest of the VxD is dynamically unloaded but will
remain in memory.

The VMM loads debug-only segments only when the system is running under a
system debugger like WDEB386 or SoftIcelWindows. By partitioning debugging
code into a debug-only segment, developers can always build the same executable,
including the debug code without any run-time code overhead. The VMM will load
the debug code when a system debugger is present, but omit it during normal load
cycles (i.e. when no system debugger is present).

The Device Descriptor Block
The Device Descriptor Block,-or DDB, is the VMM's "handle" to the VxD. The DDB
includes information that identifies the VxD and a pointer to the VxD's main entry
point. The DDB may optionally include pointers to other entry points, used by either
applications or other VxDs. Table 4.1 shows the fields of the DDB structure that are
initialized by the VxD. The VMM finds the VxD's DDB, and thus the main entry point,
as soon as it loads the VxD by looking for the first exported symbol in the module.

Introduction to VxDs - 41

Even when written in C, a VxD has no rna in procedure. Instead, the Device Con
trol Procedure field in the DDB contains the address of the main entry point into a
VxD. After real mode initialization, all calls from the VMM come to a VxD through
this entry point. The VMM uses this entry point to notify a VxD of state changes in
VMs and in Windows itself, and VxDs do their job by reacting to these events. (I'll
discuss these evertts in detail a bit later.)

The DDB Device ID field is used by the VMM to identify the VxD. In particular,
the VMM relies upon unique IDs to correctly resolve exported PM and V86 API entry
points. Here are the rules for choosing a Device ID.

If your VxD is a direct replacement for an existing VxD, use the ID of the existing
VxD from the VMM header file.

If your VxD is not a direct replacement, and it exports any entry points to DOS or
Win16 applications or to other VxDs, you must apply to Microsoft for a uniqueID.

If your VxD doesn't replace a standard VxD and doesn't export any entry points to
DOS orWin16 applications, you can use the UNDEFINED_DEVICE_IDconstant
defined in the VMM header file.

Table 4.1 The fields of the DDB structure.

Field Description

Name 8-byte VxD name

Major Version ofVxD, not related to Windows version

Minor Version ofVxD, not related to Windows version

Device Control Procedure address* of Device Control Procedure

Device ID same as ID ofVxD being replaced, or unique
value assigned by Microsoft

Initialization Order usually Undefi ned_Ini COrder. To forceinti~l-
ization before/after a specific VxD, assign an
Init_Ord€r in VMM. INC and add/subtract 1.

Service Table address* of Service Table

V86 API Procedure address* ofV86 API Procedure

PM API Procedure address of PM API Procedure

*32-bit offset

42 - Writing Windows VxDs and Device Drivers

If a VxD provides an API for Win16 or DOS applications, its DDB contains the
address of the API entry point. The DDB contains one field for each type of API: the
PM API field is the 16-bit protected mode entry point used by Winl6 applications,
and the V86 API field is the entry point used by DOS applications. Because there is
only one API entry point for each of these types of application, VxDs typically use a
function code in a register to determine the specific function needed by the caller
(much like a software interrupt under DOS).

A VxD can also export an entry point for use by other VxDs. VxD documentation
usually refers to this as a "Service", not an API. Services are different from APIs in
that the DDB contains a field for a service table, not a single service entry point. A
service table is basically a list of function codes and function addresses.

One other field in the DDB is sometimes used by a VxD, though the VxD does not
initialize this field. The Reference_Data field allows the real mode initialization
piece of a VxD to communicate with the rest of the (protected mode) VxD. When
the real mode initialization code returns, the VMM copies the value in EDX to the
Reference_Data field of the VxD's DDB. If the real mode code needs to commu
nicate more than four bytes, it should allocate a block of memory with
LDSRV_Copy_Extended_Memory and return the address of the block in EDX. The pro
tected mode portion ofthe VxD can then use Reference_Data as a pointer to the allo
cated block.

Supporting Data Structures
The DDB is the only data structure actually required of a VxD by the VMM. How
ever, VxDs typically service more than one physical device (e.g. multiple serial ports)
and interact with more than one Virtual Machine. Most VxDs will need to create their
own supporting data structures to store per-device and per-VM configuration and state
infortnation.

VxDs typically use one or more device context structures to store device-specific
information like 110 base address, IRQ, etc. These device context structures can be
allocated statically in the VxD's data segment (locked if used by an interrupt handler)
or dynamically through VMM services.

In general, if the number of devices is always fixed, allocate the device structures
statically, and if the number varies, allocate the structures dynamically. For example,
all PCs have two DMA controllers, so Virtual DMA Driver (see Chapter 6) declares
static device structures in its data segment, but the number of serial ports on a PC var
ies, so the serial port driver dynamically allocates a device structure as each serial port
is discovered.

Introduction to VxDs - 43

If you dynamically allocate your device structure at runtime, use the VMM service
_HeapA 11 ocate, which is very similar to rna 11 oc. However, if your device structure
includes a large buffer (4Kb or larger), you'll want to include only a pointer to the
buffer in the device structure itself, and then allocate the large buffer separately using
_PageAllocate. The rule is to use _HeapAllocate for small allocations and
_PageA 11 ocate for large allocations, where small and large are relative to 4Kb.

Figure 4.1 Illustrates how Control Block Dflta (CBD)
can be used to save per-VM state
information for each multiple device.

Per-VM Storage
Requested by

VxDI

Per-VM Storage
Requested by

VxD2

VxDI

VMl
Control Block

VMM
Data

Per-VMData
forVxDI

Per-VMData
forVxD2

VM2
Handle

Device Context

Pointer to Per-VM Data f-----------l
Offset A

VM2
Control Block

VMM
Data

Per-VMData
forVxDI

Per-VMData
forVxD2

VxD2 . .

VM3
Handle

VM3
Control Block

VMM
Data

Per-VMData
forVxDI

Per-VMData
forVxD2

Device Context

Pointer to Per-VM Data f---------I
Offset B

44 - Writing Windows VxDs and Device Drivers

While managing per-device information is a familiar concept for device drivers,
managing per-VM or per-device/per-VM information is less common. Fortunately, a
VxD can ask the VMM to manage per-VM storage on behalf of the VxD. The VMM
itself allocates and uses a Control Block for each VM. A VxD can use a VMM service
to reserve its own per-VM data area within the VM Control Block.

To reserve this Control Block space, the VxD calls the VMM service
_A 11 oca te_Dev i ce_CB_Area during initialization, requesting a certain size block.
The VMM will return the allocated block's offset within the entire Control Block.
Once the VxD has requested this space, the VMM will reserve it at this same offset in
every VM Control Block. Because the VxD will always have access to the current
VM's handle, and the VM handle is actually the starting address of the VM Control
Block, the VxD will always be able to get to this control block data. (I'll explain how
the VxD gets the current VM handle in the next section.) Figure 4.1 shows how Con
trol Block Data (CBD) can be used to save per-VM state information.

Just as VxDs have a need for per-VM data, some VxDs also have a need for
per-thread data. The reason is that Windows 95 schedules threads, not VMs, and the
System VM may have more than one thread. The mechanism for per-thread storage
resembles that used for per-VM storage. A VxD allocates per-thread storage during
VxD initialization by calling the service _All ocateThreadDataSl ot. This service
returns the offset of the thread data slot, relative to a data structure called the Thread
Control Block or THCB. The VMM provides the THCB of the currently executing
thread when it calls a VxD's Device Control Procedure with thread-related messages.
A VxD can also get the THCB of the currently executing thread by calling the VMM
service Get_Cur _Thread_Handl e.

Unlike _All ocate_Devi ce_CB_Area, which can reserve various size data areas,
_All ocateThreadDataSl ot always allocates 4 bytes of per-thread storage. If your
VxD's per-thread data won't fit in 4 bytes, use these 4 bytes to store a pointer to a
larger structure. Your VxD should allocate the larger structure when the thread is cre
ated (Figure 4.2).

Introduction to VxDs - 45

To examine or modify the state of a VM, a VxD examines or modifies the fields in
another important data structure, the Client Register Structure. This structure contains
the VM's current registers and flags. Typically a VxD is interested in the VM state if it
provides an API for use by PM or V86 mode applications. Such a VxD gets its input
and provides its output through these client registers. The VMM sets EBP to point to

Figure 4.2 Illustrates how Thread Data Slots (TDSs)
can be used to save per-thread information.

Thread 1 Control Block

VMM
Data

TDS for
VxDl • -

TDS for
VxD2

VxDJ Device Context

Offset A

>-Thread
forVxD

2 Data
2

Pointer to
per-thread

data

Thread 2 Control Block

VMM
Data

TDS for
VxDl-- '+

TDS for
VxD2

VxD2 Device Context

Offset B

}
Thread 2 Data
forVxDl

Thread 2 Data
2 forVxD

Pointer to
per-thread

data

46 - Writing Windows VxDs and Device Drivers

the Client Register Structure before calling the VxD API entrypoiI1t, so most access
to the Client Register Structure is done through EBP. A VxD can also find the Client
Register Structure through the CB_Cl i ent_Poi nter address found in the VM's Con~
trol Block. Figure 4.3 shows these relationships.

Figure 4.3 Illustrates the relationship between the
current VM handle, the VM control block,
and the Client Register Structure.

,...---------------- - ---- - - - - - - ---I , , , ,
1 Register values I'
1 when VxD control i
! procedure is invoked* ! , ,

j EBXI

!

i
j

I Current VM Handle

EAX
I Message Code

j,
I,
j

1

!
EBP

, , ,

I

I

!

I Client Reg. Structure I i

t * Not all messages i
------ --------- -,-------------..

CB_Client_Pointer

CurrentVM
Control Block

Client Register
Structure

--

Introduction to VxDs - 47

Event Notification
Once real mode initialization is complete, the VMM will notify the VxD about rele
vant events through a special message interface. To send a message to the VxD, the
VMM obtains the address of the VxD's Device Control Procedure from the VxD's
DDB and calls this procedure with a message code in EAX and the handle to the cur
rent VM in EBX. The control procedure then branches to message-specific code. The
VMM uses this interface to notify the VxD of initialization activities, cleanup activi
ties, and VM state changes.

Although the VxD message interface is conceptually similar to the WinProc
message interface, the implementation is completely unrelated and
incompatible.

The roughly two dozen messages can be divided into eight major categories. The
messages and their categories are shown in Table 4.2. The messages in the initializa
tion and termination categories are always sent in the order listed. A more detailed list
of the messages and their register parameters and return codes can be found in the
Windows 95 DDK documentation.

Table 4.2 The event notification messages that VMM
sends to VxDs.

Message Category Message Description

System Initialization Sys_Critical_Init Interrupts disabled and remain
so; minimal processing.

Devi ce_Init System VM already loaded:
VxDs do most initialization here.

IniCComplete Any processing needed after all
VxDs do Device_Init.

System Termination System_Exit System VM destroyed, but still in
memory.

Sys_Critical_Exit System VM no longer in mem-
ory; interrupts disabled.

48 - Writing Windows VxDs and Device Drivers

Many VxDs process only a handful of these messages. The example VxDs begin
ning in the next chapter will illustrate the processing of the most commonly handled
messages. Most of these messages mark important events in the life of either the VxD
or a VM. The following section explains how the messages relate to the normal life
cycle of a VxD and the VMs it services.

Table 4.2 (continued) The event notification messages
that VMM sends to VxDs.

Message Category Message Description

VM Initialization Create_VM VxDs initialize per-VM data.

VM_Critical - Init Interrupts disabled.

VM_Init VM fully created; VxD can now
call code in VM.

Sys_VM_Init Equivalent to VM_I nit, but VM is
SystemVM.

VM Termination Query-Destroy Abnormal VM termination:
return Ca rry flag set ifVM
should not be destroyed.

VM_Terminate Normal VM termination; VM
still exists so VxD can call code
inVM.

Sys_VM_Terminate Equivalent to VM_Termi nate, but
VM is System VM.

VM_Not_Executeable Sent for both normal and abnor-
mal termination; VM still in
memory, but not executable.

Destroy-VM VM no longer in memory.

VM State Change VM_Suspend VM suspended by another VxD;
VxD should give up any
resources associated with the VM.

VM_Resume VM resumed from a suspend.

Set_Device_ Focus VM has keyboard/mouse focus.

Begin_PM_App VM has started a protected mode
application.

End_PM_App VM has ended a protected mode
application.

Introduction to VxDs - 49

Statically Loaded VxD Initialization
and Termination Messages

A statically loaded VxD is loaded when Windows initializes and is unloaded when
Windows terminates. During Windows initialization, a statically loaded VxD will
receive three messages, one marking each phase of Windows initialization. In
response to any of the three messages, a VxD may indicate failure by returning with
the Carry flag set. On such failure, Windows will unload the VxD, and the VxD will
receive no further messages.

The first phase of Windows initialization is marked by the Sys_Criti ca 1_1 nit
message. At this time, interrupts are disabled, so if your d~vice requires uninterruptible
initialization, do it here. If a V xD exports services to other V xDs, it should perform any
initialization needed to carry out these services in the handlerfor Sys_Crit i ca 1_1 nit,
because other VxDs may call the exported services immediately after the exporting
VxD processes this message. If a VxD virtualizes a memory-mapped adapter that can
be used by DOS applicatiO)1s, then it should reserve pages in V86 address space here.
(For example, the virtual display adapter reserves pages for the video frame buffer,
usually at AOOOOh-COOOOh, in each VM's address space.)

Table 4.2 (continued) The event notification messages
that VMM sends to VxDs.

Message Category Message Description

Thread Initialization Create_Thread New thread is being created; allo-
cate and initialize THCB data.

Thread_Init New thread has been created and
is currently executing.

Thread Termination Terminate_Thread Thread is about to be terminated;
release any thread-specific
resources.

Thread_Not_Executeable Thread is being terminated and
will not be executed again.

Destroy-Thread Thread has been destroyed.

Miscellaneous Reboot_Processor Handled only by Virtual
Keyboard Driver.

Debug_Query Generated on behalf of debugger;
VxDs display status.

50 - Writing Windows VxDs and Device Drivers

All VxDs should defer any other actions until the next phase. Note that services
such as Simul ate_Int or ExecInt, which execute code in a VM, are not available at
this time because no VMs have been created yet. (I'll explain the role of
Simul ate_Int and ExecInt in more detail in Chapter 12.)

The next message, Devi ce_I nit, notifies a VxD of the second initialization phase,
which occurs after VMM has created the System VM. Most of a VxD's setup is per
formed during this phase. At this time, a VxD should allocate device context and Con
trol Block memory, hook 110 ports, and hook interrupts.

I ni t_Comp 1 ete marks the last phase of system initialization. Usually only VxDs
that allocate pages in V86 address space need to respond to this message.

Windows also shuts down in three phases. When the system terminates normally
(i.e. not in a crash), the System VM is terminated first, resulting in a Sys_VM_Termi nate
message. The System VM has not been destroyed yet, so Si mu 1 a te_I nt and ExecI nt
services are still available if the V xD needs to ekecute code in the System VM. The next
message in the shutdown sequence is Sy stem_Ex i t, which occurs during both normal
and abnormal terminations. At this time, interrupts are enabled but the System VM has
already been destroyed, so Simul ate_Int and ExecInt are no longer available. Most
VxDs do their shutdown processing during System_Exi t, shutting down their device.
The last message is Sys_Critical_Exit, sent with interrupts disabled. Most VxDs
don't process this message.

Dynamically Loaded VxD Initialization
and Termination Messages
A dynamically loadable V:xD doesn't see the system initialization messages
(Sys_Critical_Init, Device_Init, and IniCComplete) because it hasn't been
loaded yet when these messages are sent. However, the VMM provides an analogous
message to a dynamic VxD during its loading procedure, Sys_Dynami cDevi ce_I ni t,
and another message when the VxD is unloaded, Sys_Dynami cDevi ce_Exi t.

A dynamic VxD processes the Sys_Dynami cDevi ce_I nit message much as a
static VxD would process the system initialization messages - by performing basic
device initialization, hooking 110 ports, installing hardware interrupt handlers, etc.
Note that certain VMM services are available only during system initialization and
therefore may not be used by dynamic VxDs (see the Windows 95 DDK for a list of
these services). A dynamic VxD may indicate that it failed to load by returning from
the Sys_Dynami cDevi ce_Init message with the Carry flag set.

Introduction to VxDs - 51

Although static VxDs receive several system termination messages, static VxDs
are often careless about releasing resources during termination, since Windows
itself is terminating. A dynamic VxD must, on the other hand, be very careful to
free any resources it has allocated. This includes unhooking I/O ports, uninstalling
hardware interrupt handlers, and unhooking services. In addition, a dynamic VxD
must cancel all outstanding timeouts and events during Sys_Dynami c_Devi ce_Exi t,
otherwise the VMM will end up calling code that is no longer loaded and the system
will probably crash.

Static code and data segments can be used to solve some of the problems a
dynamic VxD may encounter in releasing resources. For example,
sometimes the VMM doesn't provide a "deallocate" service for a particular
resource, and sometimes the deallocate may fail. In these cases, the code
using this resource should be in the static code segment and shouldn't take
any action unless the rest of the VxD is loaded. The VxD should also reuse
the already allocated resource the next time the VxD is loaded, instead of
allocating the resource again.

VM State Change Messages

Another set of messages tracks the life of VMs. Creation of a new VM also occurs in
three phases, each with its own message: Create_VM, VM_Cri ti ca1_I nit, and VM_Init.
For each of these messages, the VM handle is in EBX.

When the VxD receives the first message, Create_VM, it should initialize any data
associated with the VM. VM_C ri t i ca 1_1 nit marks the next phase. An error response
(returning with Carry flag set) to the VM_Critica1_Init message will cause a VM
termination sequence, starting with VM_Not_Executeab 1 e. (There is no VM termina
tion sequence if VM_C rea te is failed.) The final phase of creation is VM_I nit. At this
time, the VM has already been created, and Simulate_Int and ExecInt are avail
able for calling software interrupts in the newly created VM.

A VM's destruction also takes place in three stages, again with the VM handle in
EBX. A VM that exits gracefully results in a VM_Termi nate message, which indicates
the VM is "about to die". (An abnormal termination will first generate a
Query_Destroy, see the following paragraph.) The VxD should take any action
requiring Simul ate_Int or Exec_Int here, while the VM is still present. The next
phase, VM_NoLExecuteabl e, occurs both during a graceful exit and an abnormal exit.
The EDX register contains flag values that indicate the actual cause of termination.

52 - Writing Windows VxDs and Device Drivers

These flag values are listed in Table 4.3. Because the VM has already been termi
nated, Simulate_Int and ExecInt are not available. The last phase is marked by
Destroy_VM. If a VxD doesn't care about the specific reason for VM termination and
it doesn't need to use Si mul ate_I nt or ExecI nt, it can choose to respond to only
this final message.

Before the SHELL VxD shuts down a VM abnormally (typically in response to a
user request), it will send a Query_Destroy message. A VxD can respond to this mes
sage with the Carry flag set to indicate the SHELL should not destroy the VM. In this
case, the VxD should also inform the user of the problem, using the SHELL message
services (covered in Chapter 8, in the "Checking Ownership" section).

In addition to VM startup and shutdown events, VxDs are also notified about
scheduling events that change the currently running VM. VM_Suspend and VM_Resume
messages are sent to VxDs as the VMM scheduler suspends and resumes execution of a VM.

Although the DDK documentation says to free any resources associated with
the suspended VM on receipt of a VM_Suspend, only a few of the VxDs
whose source is provided in the DDK respond to the VM_Suspend and
VM_Destroy messages. The Virtual Display Driver (VDD) responds to
VM_Suspend by unlocking the pages of video memory and to VM_Resume by
locking the pages again. The Virtual Comm Driver (VCD) responds to
VM_Sus pend by clearing any pending serial port interrupt if the port is owned
by the VM being suspended.

Table 4.3 Flag values contained in the fDX register
that indicate the cause of termination.

Flag Description

VNE_Crashed VM crashed.

VNE_Nuked VM destroyed while still active.

VNCCreateFai 1 A VxD failed Create_VM.

VNCCrlni tFai 1 A VxD failed VM_Cri ti ca 1 - Init.

VNE_InitFail A VxD failed VM_Ini t.

VNCClosed VM closed properly then destroyed.

Introduction to VxDs - 53

Thread Messages
Another set of messages tracks the life of threads, the unit of tasking used by the Win
dows 95 VMM scheduler. These messages are Create_Thread, Thread_Init,
Term; nate_Thread, Thread_Not_Executeabl e, and Destroy_Thread. However,
these messages are not sent for the initial thread of a VM, only for subsequently cre
ated threads in a VM. As discussed in an earlier chapter, DOS VMs have exactly one
thread each, so even though creation of a DOS VM does result in creation of a new
thread, the VMM does not send a Create_Thread message. (It does however, send a
Create_VM message.)

Threads are created and destroyed in stages, similar to VMs. The first message,
Create_Thread, is sent early in the thread creation process. EDI contains the handle
(THCB) of the thread being created (which is not the currently executing thread). A
VxD can return with Carry set and the VMM will not create the thread. A VxD typi
cally allocates and initializes any thread-specific data here. The extra allocation step is
necessary if the 4 bytes of per-thread data in the THCB (allocated during VxD initial
ization) isn't enough. In this case, a per-thread structure is allocated during
Create_Thread, and the per-thread data in the THCB is used to store a pointer to this
newly allocated structure.

Once the thread has been fully created, the VMM sends out the Thread_In; t mes
sage. EDIonce again contains the handle of the newly created thread, but now the new
thread is also the currently executing thread. A VxD should delay any initialization that
requires the new thread to be the currently executing thread until it receives this message.

Thread destruction also involves multiple messages: Term; nate_Thread,
Thread_Not_Executeabl e, and Destroy_Thread. When the first message,
Term; nate_Thread, is sent, the thread is "about to be terminated", but is still capable
of being executed. V xDs typically respond to this message by freeing any resources
associated with the thread. The next message, Thread_Not_Executeabl e, is sent
when the thread will no longer be executed. The last message, Destroy_Thread,
occurs after the thread has actually been destroyed and gives VxDs a last chance to
free thread-specific resources.

54 - Writing Windows VxDs and Device Drivers

Windows 3.x Differences
Windows 3.x used only three types of segments: real mode initialization, protected
mode initialization, and locked (non-pageable). The Windows 3.x VMM never swaps
out any VxD code or data.

Windows 3.x doesn't support dynamic VxD loading, only static loading. Static load
ing is specified via a dey; ce= statement in the [386Enh] statement in SYSTEM. I NI, just
as it is under Windows 95.

Windows 3.x doesn't support threads. This means there is no need for per-thread
data, no All acate_Thread_Data_S1 at, and no thread-specific messages.

Summary
Despite the hundreds of functions supported by the VMM and other VxDs, for
many VxD applications you really don't need to know much more than what I've
covered in this chapter. Unless you are doing something very special (like writing a
replacement for the VMM), you'll probably never need more than a dozen of the
functions in that API.

In the following chapters I'll show you how to build several practical VxDs. Even
though these VxDs span a wide variety of applications, collectively they use only a
few functions from the VMMNxD API. As you easily can tell just by scanning some
of the listings in the chapters ahead, VxDs don't have to be overwhelmingly compli
cated to be useful.

ChapterS

A Skeleton VxD
This chapter will introduce a "skeleton" VxD, one that won't have much functionality
but will provide the basic framework for future VxDs. This skeleton VxD will simply
monitor the creation and destruction of VMs and threads and will print out VM and
thread information during these events. This output is sent both to the debugger and to
a file, techniques that will be used in later VxDs to provide trace information for
debugging.

This chapter will introduce you to two different approaches to developing VxDs in
C: one using tools from the Windows 95 DDK and the other using the VTooisD prod
uct from Vireo Software. VTooisD gives you a big head start, automatically generat
ing a makefile and a prototype C file. VTooisD also requires no assembly language
modules. In contrast, the DDK-only process requires one assembly language file. This
chapter will cover both methods but will focus more on the DDK-only process, since
it is more complicated.

Tools for Building VxDs
In the days of Windows 3.x, VxDs were almost always written in assembly, simply
because VxDs are 32-bit flat model programs and there were few 32-bit C compilers
available. Now that 32-bit compilers are the norm, it's possible to write VxDs in C.
However, your standard 32-bit compiler and linker won't be enough.

55

56 - Writing Windows VxDs and Device Drivers

You'll also need the include (. h) files for VMM and other VxD services, as well as
a special library for interfacing to the VMM and other VxDs. The routines in the
library contain glue code that transfonns the register-based interface used by VMM
and other VxD services into a C-callable interface. The include files and the VMM
library are available from two different sources: the Windows 95 DDK (Device Driver
Kit), which is available as part of the Microsoft Developer Network Subscription, and
the VToolsD toolkit.

Both the Windows 95 DDK and VToolsD come with the tools you need to write
VxDs in C - just add a 32-bit compiler and linker. VToolsD explicitly supports both
Borland and Microsoft compilers, while the Windows 95 DDK supports only
Microsoft, although it can be coerced to work with Borland. VToolsD includes several
other features which the Windows 95 DDK does not. One is QuickVxD, a VxD "wiz
ard" that quickly generates a skeleton VxD, including C source, header file, and
makefile. VToolsD also includes a C run-time library for VxDs. This alternate library
is useful because a VxD can't just use the C run-time included with a 32-bit compiler;
the standard compiler-provided libraries make assumptions about the run-time envi
ronment that don't hold true for VxDs.

Although the DDK technically provides all you need to write VxDs in C, VToolsD
makes it much easier. The VMM "glue" library provided by both VToolsD and the
DDK solves only half of the problem, allowing your VxD written in C to call VMM
and other VxD services, which use register-based parameters. However, only
VToolsD addresses the problem of register-based parameters in the other direction.
The messages sent to your VxD's Device Control Procedure, as well as many call
backs (port trap, interrupt, fault handler, etc.), all call into your VxD with parameters
in registers. When using the DDK, you must either write small stub functions in
assembly or embed assembly statements directly in your C code in order to extract
these register parameters. VToolsD, on the other hand, provides a "C framework" that
passes these parameters on the stack and allows you to write message handlers and
callbacks all in C.

Even if you don't use the DDK development tools, you may still find it very valu
able. The DDK also contains the source code for about a dozen of the VxDs that ship
with Windows 95. These VxDs range from the virtual display driver to the virtual
DMA driver to the virtual NetBios driver. If you're planning to write a VxD to support
new hardware that is similar to an existing device, you'll certainly want to invest in
the DDK and modify the VxD for the existing device. Even if you're creating a brand
new VxD, taking a look at other VxDs is a great way to learn, and the DDK is the only
source I know of for non-trivial, real world VxDs.

You'll also need a debugger to get your VxD working, and the application-level
debugger shipped with your compiler simply won't do. Only two products can debug
VxDs: the WDEB386 debugger included with the DDK or SoftIcelWindows by
NuMega Technologies. Whether to use WDEB386 or SoftIce is largely a matter of
taste, money, and development preferences. Although both are powerful enough to

A Skeleton VxD - 57

debug VxDs, Softlee has more user-friendly features: WDEB386 requires a terminal,
SoftIce does not; SoftleelWindows can debug C at the source level, WDEB386 shows
you only assembly.

"DDK" Version Source Files
The "DDK" version of the SKELETONVxD consists of two source files:

SKELCTRL.ASM, which contains the Device Descriptor Block (DDB) and Device
Control Procedure found in every VxD;

VXDCALL. C, provided free of charge by Vireo (makers ofVToolsD), which con
tains a patch necessary to fix a bug in the Microsoft VC++ 4.1 compiler; and

SKELETON. C, which contains the message handler functions called by the Device
Control Procedure.

Although it's not absolutely necessary to place the DDB and Device Control Pro
cedure in an assembly language file (VToolsD doesn't), I prefer to do so. These very
small pieces are easily coded in assembly, and putting them in a C file would involve
writing complicated pre-processor macros and embedded assembly.

As explained in the last chapter, when a C module calls a VMM or VxD service,
an assembly language function is required to take parameters from the stack and place
them in appropriate registers as expected by the specific service. The VXDWRAPS.CLB
library in the DDK provides wrappers for some commonly used VMM and VxD ser
vices, but SKELETON. VXD uses several services that aren't contained in this library.
The wrapper functions for these services are in the WRAPPERS. CLB library, provided in
the \wrappers directory on the code disk.

This chapter will focus on how SKELETON. C (Listing 5.1, page 69) uses the func
tions in the wrapper library, not on the wrapper functions themselves. Refer to Appen
dix B for a complete description of WRAPPERS.CLB, instructions on how to add new
VMMNxD services to the module, and how to place these functions in a library.

If you're using Microsoft VC++ 4.1 to build your VxD, you'll need to link one
more file, VXDCALL. C, into your VxD. Without this module, a bug in the 4.1 compiler
makes it worthless for building VxDs. In a nutshell, the compiler generates incorrect
code when enurrs are used in embedded assembly statements: the VMMca 11 macro in
VMM. H uses enums. VxDs generated with this incorrect code causes the run-time error
message, "Unsupported service xx in VxD xx".

The VXDCALL.C module provided free of charge by Vireo (makers of VToolsD)
back-patches the incorrect code at run time. Compile the code once and simply link in
the OBI file to any VxDs built with VC++ 4.1. Note that you must also include the
accompanying header file, VXDCALL. H, in all your VxD C source files.

58 - Writing Windows VxDs and Device Drivers

Although Vireo provides VXDCALL. C on their web page (www.vireo.com).
you don't need VToolsD to use VXDCALL. C. You need VXDCALL. C if you're
using VC++ 4.1, regardless of whether your toolkit is the DDK or VToolsD.

The file SKELCTRL.ASM (Listing 5.2, page 71) provides the building blocks for
SKELETON. VXD, and for the VxDs in later chapters. SKELCTRL.ASM can be easily adapted
for use in other VxDs by changing DDB fields (for example, the VxD name) and add
ing/deleting messages from the Device Control Procedure as desired. The other file,
SKELETON. C, contains the message handler functions, which implement specific VxD
functionality, and will vary greatly from one VxD to the next.

Although the specific functionality of the C source file will vary for each of the
V xDs in this and later chapters, each version of the C source file includes the same basic
set of header files. The header files, and a description of each, are found in Table 5.1.

The makefile, SKELETON .MAK (Listing 5.3, page 72) is used to build SKELETON. VXD.
The makefile compiles, assembles, and links all components needed to build
SKELETON. VXD. After building SKELETON. VXD, the makefile runs the MAPSYM utility,
which converts the linker map file into a symbol file usable by either the WDEB386
or SoftIcelWin debugger.

The compiler and assembler options (flags) are defined by the macros CVXDFLAGS and
AFLAGS at the top of the makefile. Tables 5.2 and 5.3 explain the purpose of each of these flags.

Table 5.1 Header files for SKELETON. C.

Header Description Directory
File

BASEDEF.H constants and types used by other header files i nc32 ofWin95 DDK

DEBUG.H macros for enabling/disabling debug code i nc32 ofWin95 DDK

VMM.H constants and types for VMM services i nc32 ofWin95 DDK

VXDWRAPS.H function prototypes for VMMNxD services i nc32 ofWin95 DDK
provided in DDK (VXDWRAPS. CLB)

WRAPPERS .H function prototypes for VMMN xD services wrappers
provided by WRAPPERS. CLB

VXDCALL.H function prototype for Vireo VMMcalllVxD- wrappers
call patch

INTRINSI.H function prototype for intrinsic string wrappers
functions

A Skeleton VxD - 59

Table 5.2 Compiler options and flags for VxDs.

Option Purpose
or Flag

c compile only (no link)

Gs disable stack overrun checking

Zdp, Zd name PDB file that stores debug and symbol information

Zl suppress default Crun-time library name in OBJ;
prevents accidental link with unsupported C run-time

D1S_32 specifies 32-bit code, not 16-bit; used by some VxD header files

DDEBUG enables debug macros and functions in some VxD header files

DDEBLEVEL=l sets debug level to normal in DEBUG. H
(choices are reta il, norma 1, or max)

DWANTVXDWRAPS disable some inline functions in VxD header files,
forcing ones in wrapper library to be used instead

Table 5.3 Assembler flags for VxDs.

Option Purpose
or Flag

c assemble only (no link)

coff output file in COFF format; MS linker now uses COFF, not OMF

Cx preserve case in publics and extems

W2 set warning level to 2

Zd include line number debug information in OBJ

DIS_32 specifies 32-bit code, not 16-bit (used by some VxD include files)

DDEBUG enables debug macros and functions in some VxD include files

DDEBLEVEL =1 sets debug level to normal in DEBUG. INC
(choices are reta i 1, norma 1, or max)

DMASM6 specifies assembler is MASM 6.x (used by some VxD include files)

DBLD_COFF specifies COFF format (used by some VxD include files)

60 - Writing Windows VxDs and Device Drivers

TheDDB and Device Control Procedure:
SKELCTRL. ASM
The short assembly language module SKELCTRL.ASM (Listing 5.2, page 71) contains
the DDB and a Device Control Procedure:

.386p

include vmm. inc
include debug.inc

BeginProc ControlProc

SKELETON. 1. O. ControlProc. \
UNDEFINED_DEVICE_ID. \
UNDEFINED_INIT_ORDER

Control_Dispatch SYS_VM_INIT. _OnSysVmInit. cCall. <ebx>
Control_Dispatch SYS_VM_TERMINATE. _OnSysVmTerminate. cCall. <ebx>
Control_Dispatch CREATE_VM. _OnCreateVm. cCall. <ebx>
Control_Di spatch DESTROY_VM. _OnDestroyVm. cCall. <ebx>
Control_Dispatch CREATE_THREAD. _OnCreateThread. cCall. <edi>
Control_Dispatch DESTROY_THREAD. _OnDestroyThread. cCall. <edi>

clc
ret

EndProc ControlProc

END

At the top of the file, the DDB is declared with the macro DECLARE_VIRTUAL_
DEVICE. Thismacro's parameters correspond one for one to the DDB fields described
in the section "The Device Descriptor Block" in Chapter 4. SKELCTRL. ASM uses only
the first six macro parameters, because theVxD doesn't export either a V86 or a PM
API. Because SKELETON doesn't export an API or any services, it doesn't need a
VxD ID, so SKELCTRL.ASM uses UNDEFINED_DEVICE_ID for the Device_Num macro
parameter (Devi ce~Num is the same as Device ID). SKELETON doesn't have any
requirements for a particular initialization order, so it uses UNDEFINED_INIT_ORDER
for the Ini t_Order macro parameter.

A Skeleton VxD - 61

The last half of SKELCTRL .ASM defines the VxD's Device Control Procedure
(Control Proc). A VxD's Device Control Procedure must be placed in the locked
segment, so Control Proc is surrounded by the macros VXD_LOCKED_CODE_SEG and
VXD_LOCKED_CODE_ENDS. Contra 1 Proc uses a series of Contra LDi spatc h macros to
generate code for a basic switch statement. For example, the line

Control_Dispatch SYS_VM_INIT. _OnSysVmlnit. cCall. <ebx>

translates to code that compares the message code in EAX with SYS_VM_I NIT, and if
equal, calls the function OnSy s VmI nit in the C module, passing the YM handle in EBX

J

as a parameter.
That's enough information about SKELCTRL ~ ASM to allow you to make minor modi

fications to support other messages in your VxD. Appendix B contains further details,
including more information on the macros Control_Di spatch and cCall. Appendix B
also contains information about the wrapper library, WRAP P E RS . C LB, which you'll need
if you add other VMMNxD service wrappers to the library. In the rest of the chapter,
I'll concentrate on the real functionality of SKELETON. VXD, contained in SKELETON. C.

SKELETON.C (Listing 5.1, page 69) contains the message handlers for the
SKELETON. VXD. The SKELETON VxD processes six messages relating to creation
and destruction of VMs and threads: Sys_VM_Init, Sys_VM_Terminate, Create_VM,
Destroy_VM, Create_Thread, and Destroy_Thread. Each time a VM is created, all
VxDs are sent one of two messages: Sys_VM_I ni t for System VM or Create_VM for
non-System VMs. VM creation also results in the creation of an initial thread, but no
message is sent for this thread. Subsequent (non-initial) threads created in a VM do
result in a message, Create_Thread. As discussed earlier in Chapter 2, each non-Sys
tem VM is limited to a single thread, which means all Create_Thread messages are
associated with the System VM.

SKELETON demonstrates this behavior by printing out both VM handle and
thread handle values for the six messages. The VM message handlers (OnSys VmI nit,
OnCreateVm, OnDestroyVm, and OnSysVmTermi nate) use the VMM service
Get_I ni ti a l_Thread_Handl e to obtain the thread handle of the initial thread created
along with the VM. (This service is not supported by the DDK library VXDWRAPS. CLB,
so its wrapper is in WRAPPERS. CLB). The thread message handlers Create_Thread and
Destroy_Thread extractthe VM associated with the thread from the thread handle
which is really a pointer to the thread's control block. One of the fields in the thread
control block is the handle of the VM associated with the thread.

Each message handler function prints these VM and thread handle messages to the
debugger and to a file. The functions use the DPRINTF macro to generate debugger
output. This macro mimics the useful VTooisD function dpri ntf. The macro com
bines a call to two VMM services: _Spri ntf, which formats a string; and
Out_Debug_Stri ng which outputs the formatted string to the debugger. Both of the
services are included in the DDK library VXDWRAPS. CLB.

62 - Writing Windows VxDs and Device Drivers

The DPR1 NTF macro expands only if the symbol DEBUG is defined at compile
time. Typically this symbol is defined via a compiler switch rather than a
#defi ne in a source file. For example, with Microsoft's compiler you would
use -DDEBUG= 1. If DEBUG is not defined, the DPRI NTF macro expands to
nothing.

To send the messages to a file, the message handlers use the I FSMgr _Ri ngO_
Fi 1 eIO service. The IFSMgr is the Installable File System Manager VxD, the top
level manager of all the VxDs that together form a file system. Most IFSMgr services
are used by other VxDs that are part of the file system, but the I FSMgr _Ri ngOJi 1 eIO
service is useful to any VxD: it lets a VxD perform file 110 at Ring O. The "Ring 0"
part is significant because before the IFSMgr arrived with Windows for Workgroups
3.11, a VxD could only perform file 110 by switching to Ring 3, and each individual
110 operation (open, close, etc.) involved a sequence of several VMM services. Under
Windows 95, it takes only a single call to IFSMgr to do each file 110 operation.

The I FSMgr_Ri ngOJil eIO service will not work correctly if used before
the Sys_1 ni t_Comp 1 ete message.

Although the actual IFSMgr service uses a single entry point for all 110 operations
(open, close, etc.) with a function code to distinguish them, it's more convenient to
have a separate function call for each operation. When creating the wrapper functions
in WRAPPERS. CLB, I took a cue from VToolsD and provided a different wrapper func
tion for each: I FSMgr _Ri ngO_OpenCreateFi 1 e, I FSMgr _Ri ngO_Wri teFi 1 e, etc.

During System VM creation, OnSysVm1nit opens the file VXDSKEL. LOG with a call
to I FSMgr _Ri ngO_OpenCreateFil e. The I FSMgr _Ri ngO_OpenCreateFil e interface
mimics the I NT 21h Fil e Open interface, with parameters for filename, open mode
(read, write, and share flags), creation attributes (normal, hidden, etc.), and action (fail
if file doesn't exist, etc.). In fact, the mode, attributes, and action parameters use
exactly the same values as the I NT 21h Fi 1 e Open.

The IFSMgr adds two additional parameters to the Open call that aren't part of the I NT
21h interface. One is a context boolean: if set, the file is opened in the context of the cur
rent thread and thus can only be accessed when that thread is current. The other parameter
contains a flag bit which if set means "don't cache reads and writes to this file".

OnSysVmI ni t uses "create and truncate" for the action parameter, so that the log file
is created if it doesn't exist or opened and truncated if it already exists. OnSys Vm1 nit
allows file caching (since 110 to the log file isn't critical) and uses FALSE for the con
text boolean, so that the VxD can do file 110 at any time without worrying about which

A Skeleton VxD - 63

thread is current. This allows the VxD to open the file during Sys_VM_Init when the
initial thread of the System VM is current and then to write to the file with the same
handle during another VM or thread message when another thread is current.

OnSysVmInit keeps the file open and stores the file handle in the global variable
fh so that other SKELETON. VXD message handlers can also write to the file. The file is
closed by the OnSysVmTermi nate message handler when Windows shuts down.

All the message handlers, including OnSysVmInit, write to this already-open file
using I FSMgr _Ri ngO_Wri teFi 1 e. This function uses the parameters you'd expect for
a write: a handle, a buffer, and a count. But where most file 110 functions update file
position automatically with each read and write, I FSMgr _Ri ngO_Wri teFi 1 e requires
an explicit file position parameter, which means the caller must keep track of file
position. SKELETON does this by initializing the global fi 1 e_pos variable to zero
and incrementing fi 1 e_pos by the number of bytes written with each call to
I FSMgr _Ri ngO_Wri teFi 1 e.

I FSMgr _Ri ngO_Wri teFi 1 e performs no formatting, it simply writes a raw buffer.
So before calling I FSMgr _Ri ngO_Wri teFi 1 e, each message handler first formats the
buffer using the VMM _Spri ntf service provided in the DDK library VXDWRAPS. CLB.

VToolsD Version
To generate the VTooisD version of SKELETON. VXD, I used the QuickVxD "wizard"
included with VTooisD to quickly generate a prototype VxD. Using QuickVxD is
simple. You fill in several DDB fields (name, ID, init order, etc.), select which mes
sages your VxD will handle, specify whether or not your VxD supports a V86 or PM
API, and which (if any) services your VxD provides to other VxDs.

I used the name SKELETON and left both the ID and init order with the default value,
which was UNDEFINED. I selected six messages: Sys_VM_Init, Sys_VM_Terminate,
Create_VM, DestroLVM, Create_Thread, and Termi nate_Thread. Then I clicked on
"Generate" and QuickVxd generated a single C source file, a header file, a makefile, and a
definition file (Listings 5.5-5.8, pages 73-77).

QuickVxD uses the name you specify for your VxD as the base filename. Because
I chose SKELETON, the source file was named SKELETON. C. This file contained the
DDB, the Device Control Procedure, and message handler stub functions for the six
messages I selected. The message handler functions created by QuickVxD all follow
the same naming convention: OnX, where X is the name of the message. For example, a
message handler for IniLComplete would be called OnInitComplete (notice the
underscore is removed). Parameters for the message handlers are message specific,
but usually include either a VM handle or a thread handle, and sometimes an addi
tional parameter.

64 - Writing Windows VxDs and Device Drivers

To complete the VTooisD version of SKELETON. VXD, I added a few global vari
ables and some additional code to each of the stub message handlers. The resulting
SKELETON.C is shown in the following code. Sections that I added are delimited by
comments. (Text continues on page 67.)

1fdefine DEVICE_MAIN
1finclude ·skeleton.h·
1fundef DEVICE_MAIN

//-----------begin section added to prototype
DWORD filepos = 0;
HANDLE fh;
//-----------end section added to prototype

Declare_Virtual_Device(SKElETON)

DefineControlHandler(SYS_VM_INIT, OnSysVmInit);
DefineControlHandler(SYS_VM_TERMINATE, OnSysVmTerminate);
DefineControlHandler(CREATE_VM, OnCreateVm);
DefineControlHandler(DESTROY_VM, OnDestroyVm);
DefineControlHandler(CREATE_THREAD, OnCreateThread);
Oefi neContro 1 Handl ere DESTROY_THREAD, OnDestroyThread);

BOOl __ cdecl ControlDispatcher(
DWORD dwControlMessage,
DWORD EBX,
DWORD EDX,
DWORD ESI,
DWORD EDI,
DWORD ECX)

ON_SYS_VM_INIT(OnSysVmInit);
ON_SYSTEM_EXIT(OnSysVmTerminate);
ON_CREATE_VM(OnCreateVm);
ON_DESTROY_VM(OnDestroyVm);
ON_CREATE_THREAD(OnCreateThread);
ON_DESTROY_THREAD(OnDestroyThread);

return TRUE;

BOOl OnSysVmlnit(VMHANDlE hVM)
(

//-----------begin section added to prototype
BYTE action;
WORD err;
int count=O;
char buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);

A Skeleton VxD - 65

dprintf(buf, "SysVMlnit: VM=%x tcb=%x\r\n", hVM, tcb)~

fh = RO_OpenCreateFile(FAlSE, "vxdskel.log",
Ox0002, OxOOOO, Ox12, OxOO,
&err, &action);

if (!fh)
(

dprintf(buf, "Error %x opening file %s\n", err, "vxdskel.log");

else
{

sprintf(buf, "SysVMlnit: VM=%x tcb=%x\r\n", hVM, tcb };
count = RO_WriteFile(FAlSE, fh, buf, strlen(buf), filepos, &err);
filepos += count;

/!-----~-----end section added to prototype
return TRUE;

VOID OnSysVmTerminate(VMHANDlE hVM)
(

//-----------begin section added to prototype
WORD err;
int count=O;
cha r buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "SysVmTerminate VM=%x tcb=%x\r\n" , hVM, tcb);
sprintfC buf, "SysVmTerminate VM=%x tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FAlSE, fh. buf, strlen(buf), filepos, &err);
filepos += count;
RO_CloseFile(fh, &err);

//-----------end section added to prototype
}

66 - Writing Windows VxDs and Device Drivers

BOOl OnCreateVm(VMHANDlE hVM)
(

//-----------begin section added to prototype
PTCB tcb;
WORD err;
int count=O;
char buf[80];

tcb = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
sprintf(buf, "Create_VM: VM=%x, tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err);
filepos += count;

//----c------end section added to prototype
return TRUE;

VOID OnDestroyVm(VMHANDlE hVM)
(

//-----------begin section added to prototype
WORD err;
int count=O;
char buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);
dprintf(buf, "DestroLVM: VM=%x tcb=%x\r\n", hVM, tcb);
sprintf(buf, "DestroLVM: VM=%x tcb=%x\r\n", hVM, tcb);
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err);
filepos += count;

//-----------end section added to prototype
}

BOOl OnCreateThread(PTCB tcb)
(

//-----------begin section added to prototype
WORD err;
int count=O;
cha r buf[80];

dprintf(buf. "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
sprintf(buf, "Create_Thread: VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
count = RO_WriteFile(FAlSE, fh, buf, count, filepos, &err);
filepos += count;

//-----------end section added to prototype
return TRUE;

VOID OnDestroyThread(PTCB tcb)
(

//-----------begin section added to prototype
WORD err;
int count=O;
cha r buf[80];

A Skeleton VxD - 67

dprintf(buf, "Destroy-Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
sprintf(buf, "Destroy-Thread VM=%x, tcb=%x\r\n", tcb->TCB_VMHandle, tcb);
count = RO_WriteFile(FALSE, fh, buf, count, filepos, &err);
filepos += count;

//-----------end section added to prototype
}

This code looks similar to the DDK-only version of SKELETON. C. In fact, the indi
vidual message handler functions are almost indistinguishable from their DDK-only
counterparts. The VtoolsD version uses dpri ntf and spri ntf, whereas the DDK ver
sion uses the DPRI NTF macro and _Spri ntf. The VTooisD version ofIFSMgr services
is slightly different, using RO_ instead of I FSMgr _Ri ngO_.

The advantage ofVToolsD is not in the C code you write in your VxD. The advan
tage is that you don't have to write anything other than C code. No assembly language
modules are required. The DDB and Device Control Procedure are generated by the
wizard and placed in the same C file, relying on a number of clever macros in the
VToolsD header files to produce a mixture of C and embedded assembly. More
importantly, the VTooisD library contains all of the VMM and standard V xD services.
With VTooisD you will probably never have to write a service wrapper in assembly.
VToolsD also throws in most ANSI C run-time functions, including spri ntf.

A Windows 3.x Version of SKELETON
Structurally, VxDs for Windows 3.x are the same as Windows 95 VxDs. However,
Windows 95 contains a number of new VMM services and a number of new VxD ser
vices not available under Windows 3.x. A VxD that doesn't use any Windows 95-spe
cific services will run unchanged under Windows 95. But a VxD that uses Windows
95-specific services will cause an "Unsupported Service" run-time error when run
under Windows 3.x.

SKELETON. VXD does use a number of Windows 95-specific services. Windows 3.x
doesn't have threads, so a Windows 3.x version of SKELETON wouldn't contain the two
thread message handlers or any calls to Get_Initial_Thread_Handler in the VM
message handlers. Windows 3.x doesn't have an IFSMgr VxD either, so file I/O must
be done in V86 mode using ExecVxD_Int instead of at Ring a with IFSMgr.
(ExecVxD_Int will be covered in Chapter 12.) Last, the VMM in Windows 3.x
doesn't offer the _Spri ntf service, so formatted output of message strings would have
to be done in the SKELETON VxD itself (unless you use VToolsD, which provides

68 - Writing Windows VxDs and Device Drivers

spri ntf in the run-time library). This VxD doesn't really need the full power offered
by _Spri ntf, and a simpler method that converts a DWORD to a hex string could be
used instead.

VToolsD sells a version of their toolkit for Windows 3.x, and if you plan to write a
Windows 3.x VxD in C, you need VToolsD. As this chapter showed, writing a Win
dows 95 VxD in C without VToolsD is possible but painful. Writing VxD in C for
Windows 3.x without VToolsDs is more than painful. It's so much trouble that you
might as well stick to assembly.

If you do choose Windows 3.x and C without VToolsD, here's what you're up
against. While the Windows 95 DDK provided only a partial VMM wrapper library,
the Windows 3.x DDK doesn't provide one at all. This means each and every VMM or
VxD service called by your VxD will require you to write an assembly language
wrapper function and to create an appropriate function prototype in your own VMM
header file. Also, the Windows 3.x DDK doesn't provide a VMM. H, so you'll have to
use the one from the Windows 95 DDK, being careful not to use any services not
present in Windows 3.x.

Summary
Even with its limited functionality, SKELETON. VXD illustrates many critical issues of
VxD development, requiring correct use of structure, interface, and tools. Using the
wrappers supplied by WRAPPERS. CLB, you can code most of a Windows 95 VxD
directly in C, even if you have only the DDK development tools. VToolsD makes the
process even easier by supplying a more complete set of wrappers and convenient
access to Ring 0 versions of many standard library functions. If you are developing a
Windows 3.x VxD, VToolsD is more than a convenience. Whichever tool set you are
using, you are now ready to write a VxD that does something - one that actually
manipulates the hardware. The next chapter will explain the issues involved in manip~
ulating basic hardware resources from Ring 0 code.

A Skeleton VxD - 69

Listing 5.1 SKELETON. C (DDK-only version)

'include <basedef.h>
'include <vmm.h>
'include <debug.h>
/finclude "vxdcall.h"
/finclude <vxdwraps.h>
/finclude <wrappers.h>
/finclude "intrinsi .h"

/fifdef DEBUG
/fdefine DPRINTF(buf, fmt, argl. arg2) _Sprintf(buf, fmt, argl. arg2);

Out_Debug_String(buf)
/felse
!/defi ne DPRI NTF(buf, fmt, argl. argZ)
I!encjif

typedef struct tcb_s *PTCB;

BOOl OnSysVmlnit(VMHANDlE hVM);
VOID OnSysVmTerminate(VMHANDlE hVM);
BOOl OnCreateVm(VMHANDlE hVM);
VOID OnDestroyVm(VMHANDlE hVM);
BOOl OnCreateThread(PTCB hThread);
VOID OnDestroyThread(PTCB hThread);

/fpragma VxD_lOCKED_DATA_SEG

DWORD filepos ~ 0;
HANDLE fh;
char buf[80];

I/pragma VxD_lOCKED_CODE_SEG

BOOl OnSysVmInit(VMHANDlE hVM)
(

BYTE action;
WORD err;
int count~O;

PTCB tcb;

tcb ~ Get_Initial_Thread_Handle(hVM);
DPRINTF(buf, "SysVMlnit: VM~%x tcb~%x\r\n", hVM, tcb);

fh ~ IFSMgr_RingO_OpenCreateFile(FAlSE, "vxdskel.log",

if (! fh)
(

Ox0002, OxOOOO, Ox12, OxOO,
&err, &action);

DPRINTF(buf, "Error %x opening file %s\n", err, "vxdskel.log");
}
else
(

}

_Sprintf(buf, "SysVMInit: VM~%x tcb~%x\r\n", hVM, tcb);
count ~ IFSMgr_RingO_WriteFile(FAlSE, fh, buf, strlen(buf), filepos, &err);
filepos +~ count;

retu rn TRUE;

70 - Writing Windows VxDs and Device Drivers

Listing 5.1 (continued)

VOID OnSysVmTerminateCVMHANDlE hVM)
{

WORD err;
i nt count~O;
PTCB tcb;

tcb ~ GeClniti a l_Thread_Handl eC hVM) ;

SKELETON. C (DDK-only version)

DPRINTFC buf. "SysVmTerminate VM~%x tcb~%x\r\n". hVM. tcb);
_Sprintf(buf. "SysVmTerminate VM~%x tc~%x\r\n". hVM. tcb);
count ~ IFSMgr_RingO_WriteFileCFAlSE. fh. buf. strlen(buf). filepos. &er'r);
fi 1 epos += count;
I FSMgr _Ri ngO_Cl oseFil e(fh. &err);

BOOl OnCreateVm(VMHANDlE hVM)
(

PTCB tcb;
WORD err;
int count~O;

tcb ~ Get_Initi al_Thread_Handl e(hVM);
DPRINTF(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb);
_Sprintf(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb);
count ~ IFSMgr_RingO_WriteFile(FAlSE. fh. buf. strlen(buf). filepos. &err);
fi 1 epos += count;
return TRUE;

VOID OnDestroyVm(VMHANDlE hVM)
{

WORD err;
int count;
PTCB tcb;

tcb ~ GeClniti a l_Thread_Handl e(hVM);
DPRINTF(buf. "Destroy-VM: VM~%x tcb~%x\r\n". hVM. tcb);
_Sprintf(buf. "Destroy_VM: VM~%x tcb~%x\r\n". hVM. tcb);
count ~ I FSMgr _Ri ngO_WriteFil e(FALSE. fh. buf. s t rl en (count). fil epos. &err);
fi 1 epos += count;

BOOl OnCreateThread(PTCB tcb)
{

WORD err;
int count;

DPRINTF(buf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);
_SprintfCbuf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);
count ~ I FSMgr_RingO_WriteFile(FAlSE. fh. buf. strlen(count). filepos. &err);
fi 1 epos += count;
return TRUE;

VOID OnDestroyThread(PTCB tcb)
(

WORD err;
int count;

DPRINTF(buf. "Destroy-Thread VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);
_Sprintf(buf. "Destroy_Thread VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);
count ~ IFSMgr_RingO_WriteFileCFAlSE. fh. buf. strlen(count). filepos. &err);
fi 1 epos += count;

A Skeleton VxD - 71

Listing 5.2 SKELCTRL.ASM (DDK-only version)

.386p

. ********************.**
INCLUDES

;**

include vmm.inc
include debug. inc

V I R T U A L 0 E V ICE 0 E C L A RAT ION

PROCEDURE: ControlProc

DESCRI PTION:

SKELETON, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

Device control procedure for the SKELETON VxD

ENTRY:
EAX ~ Control ca 11 ID

EXIT:
If carry clear then

Successful
else

Contra 1 ca 11 fai 1 ed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch SYS_VM_INIT, _OnSysVmlnit, cCall, <ebx>
Control_Dispatch SYS_VM_TERMINATE, _OnSysVmTerminate, cCall, <ebx>
Control_Dispatch CREATCVM, _OnCreateVm, cCall, <ebx>
Control_Dispatch DESTROY_VM, _OnDestroyVm, cCall, <ebx>
Control_Dispatch CREATE_THREAD, _OnCreateThread, cCall, <edi>
Control_Dispatch DESTROY_THREAD, _OnDestroyThread, cCall, <edi>

clc
ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

END

72 - Writing Windows VxDs and Device Drivers

Listing 5.3 SKELETON. MAK (DDK-only version)

CVXDFLAGS ~ -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL~l -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DI5_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG

all: skeleton.vxd

skeleton.obj: skeleton.c
cl $(CVXDFLAGS) -Fo$@ %s

skelctrl.obj: skelctrl.asm
ml $(AFLAGS) -Fo$@ %s

skel eton. vxd: skel ctrl .obj skel eton. obj .. \ .. \wrappers\ vxdca 11 .obj
.. \ .. \wrappers\wrappers.clb skeleton.def

echo >NUL @«skeleton.crf
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:skeleton.def -OUT:skeleton.vxd -MAP:skeleton.map
-VXD vxdwraps.clb wrappers.clb skelctrl .obj skeleton.obj vxdcall .obj
«

link @skeleton.crf
mapsym skeleton

Listing 5.4 SKELETON. DEF (DDK-only version)

VXD SKELETON
SEGMENTS

LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'

LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
IDATA CLASS 'ICODE'

_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
IMSGDATA CLASS 'MCODE'

_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
SKELETON_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE 10PL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE 10PL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDI5CARDABLE CONFORMING
PRELOAD DISCARDABLE

A Skeleton VxD - 73

Listing 5.5 SKELETON. C (VToolsD version)

II SKELETON.c - main module for VxD SKELETON e

t/define DEVICE_MAIN
t/include "skeleton.h"
t/undef DEVICE_MAIN

DWORD va_arg_list[2];
DWORD filepos = 0;
HANDLE fh;

Declare_Virtual_Device(SKELETON)

DefineControlHandler(SYS_VM_INIT. OnSysVmInit);
DefineControlHandler(SYS_VM_TERMINATE. OnSysVmTerminate);
DefineControlHandler(CREATE_VM. OnCreateVm);
DefineControlHandler(DESTROY_VM. OnDestroyVm);
DefineControlHandler(CREATE_THREAD. OnCreateThread);
DefineControlHandler(DESTROY_THREAD. OnOestroyThread);

BOOL __ cdecl ControlDispatcher(
DWORD dwControlMessage.
DWORD EBX.
DWORD EDX.
DWORD EST.
DWORO EDI.
DWORD ECX)

START_CONTROL_DISPATCH

ON_SYS_VM_INIT(OnSysVmInit);
ON_SYS_VM_TERMINATE(OnSysVmTerminate);
ON_CREATE_VM(OnCreateVm);
ON_DESTROY_VM(OnDestroyVm);
ON_CREATE_THREAD(OnCreateThread);
ON_DESTROY_THREAD(OnDestroyThread);

return TRUE;

74 - Writing Windows VxDs and Device Drivers

Listing 5.5 (continued)

BOOl OnSysVmlnit(VMHANDlE hVM)
(

BYTE action;
WORD err;
int count;
char buf[80] ;
PTCB tcb;

SKELETON. C (VToolsD version)

tcb = Get_Initial_Thread_Handle(hVM);
dprintf("SysVmlnit: VM=%x. tcb=%x\r\n". hVM. tcb);

fh = RO_OpenCreateFile(FAlSE. "vxdskel.log". Ox0002. OxOOOO. Ox12. OxOO.
&err. &action);

if (!fh)
dprintf("Error Ix opening file\n". err);

el se
(

}

count = sprintf(buf. "SysVmlnit: VM=%x tcb=%x\r\n". hVM. tcb);
if (count)
(

count = RO_WriteFile(FAlSE. fh. buf. count. filepos. &err);
filepos += count;

return TRUE;

VOID OnSysVmTerminate(VMHANDlE hVM)
(

WORD err;
int count;
cha r buf[80];
PTCB tcb;

tcb = Get_Initial_Thread_Handle(hVM);
dprintf("SysVmTerminate: VM=%x. tcb=%x\r\n". hVM. tcb);
count = sprintf(buf. "SysVmTerminate: VM=%x tcb=%x\r\n". hVM. tcb);
if (count)
(

count = RO_WriteFile(FAlSE. fh. buf. count. filepos. &err);
filepos += count;

RO_CloseFile(fh. &err);

A Skeleton VxD - 75

Listing 5.5 (continued) SKELETON. C (VToolsD version)

BOOl OnCreateVm(VMHANDlE hVM)
(

WORD err;
PTCB tcb;
int count;
char buf[BO];

tcb ~ Get_Initial_Thread_Handle(hVM);
dprintf("Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb);

count ~ sprintf(buf. "Create_VM: VM~%x. tcb~%x\r\n". hVM. tcb);
if (count)
(

}

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err);
filepos += count;

return TRUE;

VOID OnDestroyVm(VMHANDlE hVM)
(

cha r buf[80];
int count;
WORD err;

dprintf("Destroy-VM: VM~%x tcb~%x\n". hVM);
count ~ spri ntf(buf. "Destroy_VM: VM~%x\ r\n". hVM);
if (count)
(

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err);
filepos += count;

BOOl OnCreateThread(THREADHANDlE hThread)
{

PTCB tcb ~ (PTCB)hThread;
char buf[BO];
int count;
WORD err;

dprintf("Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);

count ~ sprintf(buf. "Create_Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandl e. tcb);
if (count)
(

}

count ~ RO_WriteFile(FAlSE. fh. buf. count. filepos. &err);
filepos +~ count;

return TRUE;

76 - Writing Windows VxDs and Device Drivers

Listing 5.5 (continued) SKELETON. C (VToolsD version)

VOID OnDestroyThread(THREADHANDLE hThread)
{

PTCB tcb ~ (PTCB)hThread;
char buf[BO];
int count;
WORD err;

dprintf("Destroy-Thread: VM~%x. tcb~%x\r\n". tcb->TCB_VMHandle. tcb);

count ~ sprintf(buf. "Destroy-Thread: V~%x. tc~%x\r\n". tcb->TCB_VMHandle. tcb);
if (count)
(

count ~ RO_WriteFile(FALSE. fh. buf. count. filepos. &err);
filepos += count;

Listing 5.6 SKELETON.H (VToolsD version)

II SKELETON.h - include file for VxD SKELETON

#include <vtoolsc.h>

ifdefine SKELETON_Major
ifdefi ne SKELETON_Mi nor
ifdefine SKELETON_DeviceID
#define SKELETON_Init_Order

1
o
UNDEFINED_DEVICE_ID
UNDEFINED_INIT_ORDER

Listing 5.7 SKELETON.MAK (VToolsD version)

if SKELETON.mak - makefile for VxD SKELETON

DEVICENAME ~ SKELETON
FRAMEWORK ~ C
DEBUG ~ 1
OBJECTS ~ skeleton.OBJ

!include $(VTOOLSD)\include\vtoolsd.mak
!include $(VTOOLSD)\include\vxdtarg.mak

skel eton .OBJ: skeleton.c skeleton.

A Skeleton VxD - 77

Listing 5.8 SKELETON. DEF (VToolsD version)

VXD SKELETON
SEGMENTS

LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
IDATA CLASS 'ICODE'

_PTEXT CLASS 'PCODE'
PDATA CLASS 'PCODE'

_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
IMSGDATA CLASS 'MCODE'

_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'

16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
_The_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONOISCAROABLE
PRELOAD NONDISCAROABLE
PRELOAD NONDISCAROABLE
OISCARDABLE
OISCARDABLE
NONDISCAROABLE
NONDISCAROABLE
RESIDENT
RESIDENT
PRELOAD NONOISCARDABLE IOPL
PRELOAD NONOISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONOISCARDABLE CONFORMING
PRELOAD NONOISCARDABLE CONFORMING
PRELOAD DISCARDABLE

78 - Writing Windows VxDs and Device Drivers

Chapter 6

VxD Talks to Hardware
The last two chapters introduced the basic structure of a VxD and demonstrated a
skeleton VxD that processed a few messages and did some debug output. In this chap
ter, I'll show you how a VxD communicates with a hardware device. This chapter will
cover talking to I/O-mapped, memory-mapped, and DMAlbus-master devices. I'll
save a related subject, interrupt handling, for the next chapter.

IIO-mapped versus Memory-mapped
A hardware device on a PC can be located in one of two separate address spaces:
memory or I/O. A device in the memory address space, called memory-mapped, is
accessed exactly like memory. It can be accessed via any of the many instructions that
take a memory reference, such as MOV,ADD, OR, etc. From a high-level language, mem
ory-mapped devices are accessed through a pointer. By contrast, a device in I/O
address space (I/O-mapped) can be accessed with only a few instructions: I N, OUT,
and their derivatives. There is no high-level language construct for an I/O-mapped
device, although many compilers do add support via run-time library functions like
i np and outp.

Another difference between the two address spaces is that I/O address space is
much smaller than memory space. While the 80386 and above processors support a
4Gb memory address space, I/O address space is only 64Kb on all 80x86 processors.

79

80 - Writing Windows VxDs and Device Drivers

Talking to an IIO-mapped Device
To communicate with an I/O-mapped device, a VxD directly executes the appropriate
IN or OUT instructions or their high-level language equivalents. The processor won't
trap a VxD that executes these instructions, because VxDs run at Ring O.

If you're writing in assembly, use an I N or OUT instruction with an appropriately
sized operand. For example, this code fragment writes the byte A5h to the port 300h.

MOV AL, OA5h
MOV OX, 300h
OUT OX, AL

If you're writing in C, it's easiest to use the C run-time equivalents of I N and OUT
- as long as these functions are supported by your compiler and you make sure the
compiler uses the intrinsic, or inline, version. When asked to use the "intrinsic" form
of a function, the compiler inserts actual I N and OUT instructions instead of making a
call to the run-time library. It is important to avoid calling the library version. because
few vendors supply a VxD-callable run-time library. (VToolsD is an exception).

Microsoft's 32-bit compilers support _ i np and _outp for byte access, _ i npw and
_outpw for word access. You can force the compiler to generate intrinsic code instead
of a call to the run-time by using either the -Oi compiler flag, or by using the
intrinsic pragma in your code. The following code fragment writes the byte 0 to
the port 300h, and uses the i ntri nsi c pragma to guarantee inline code:

#pragma i ntri ns i c Coutp)
_outpe Ox300, 0);

Borland doesn't support IN and OUT equivalents (called _inpb, _inpw, _outpb,
and _outpw) when generating 32-bit code. If you develop your VxD with Borland's
compiler, you should use embedded assembly for input and output operations.

The run-time functions listed above are only for byte- and word-sized port
accesses. Some devices, particularly recent PCI devices, support dword-sized (32-bit)
accesses (I N EAX, OX and OUT OX, EAX). Neither Microsoft nor Borland provides a
run-time equivalent for the dword version of I N and OUT instructions. To exploit
dword 110 operations, you'll have to use embedded assembly.

VxD Talks to Hardware - 81

By default, the Borland compiler uses its built-in assembler to translate
embedded assembly, which contains only 16-bit instructions. The compiler
will automatically call the stand-alone TASM32 assembler if the embedded
assembly contains any 32-bit instructions. Therefore, to use IN EAX. OX and
OUT OX. EAX, you must have T ASM32 . EX E.

Talking to a Memory-mapped Device
To access a memory-mapped device, a VxD must manipulate a specific physical
address. Unfortunately, manipulating an address in the memory system's physical
address space isn't as straightforward as manipulating a port in the 1/0 system's port
address space. Even though VxDs run at Ring 0 (where they see a flat memory
model), they still manipulate only linear addresses; all VxD memory accesses go
through the page tables for linear-to-physicaladdress translation. Thus, before a VxD
can access a particular memory-mapped device, it must configure the page tables to
assure that the device's physicaiaddress corresponds to a linear address. The resulting
linear address may then be used as a "plain old pointer". Even though this mapping
information comes from the page tables, a VxD should never directly manipulate the
page tables; it should use VMM services instead.

This procedure takes one of two forms, depending upon whether the device can
be dynamically reconfigured. Older ISA devices with jumper-selected addresses are
"statically configured"; they are guaranteed to reside at the same address for the life
of the Windows session. Many modern devices, however, can be reconfigured at run
time (for example, PCI, PCMCIA,and ISAPNP devices). As part of its support for
Plug and Play, Windows 95 may move these dynamically configurable devices
around (both in I/O and memory space) as the devices are started and stopped. (See
Chapters 9 and 10 for a full discussion of Windows 95 Plug and Play.) A Windows 95
VxD obtains a linear address for a statically configured device with a single call to
MapPhysToL i near - just as in Windows 3.x. If the device is run-timeconfigurable,
though, the process is more complicated and not Windows 3.x compatible. I'll dis
cuss each situation separately.

82 - Writing Windows VxDs and Device Drivers

Statically Configured Memory-mapped Devices
A VxD for an ISA device can obtain a linear address for its device by calling
_Ma p P hy s To lin ear. Given a physical address and the region size, _Ma pPhy s Tol i nea r
returns a linear address that maps to that physical address region. (Both VTooisD and
the DDK C wrapper libraries contain a wrapper for _MapPhysTol i near.)

The Calling Interfacefor _MapPhysToLinear

OWORO _MapPhysTolinear(OWORO PhysAddr, OWORO nBytes, DWORD Flags);
PhysAddr: physical address to be mapped
nBytes: size of region to be mapped, in bytes
Flags: must be zero
Returns: linear address of region; this linear address is in the

system arena, and so is valid no matter which Win32 process
is current

In the following code fragment, the VxD accesses a device mapped to the 256Kb
region starting at 16Mb:

BYTE *lin;
DWORD phys. size;

phys = Ox01000000l; 1116Mb
size = 256*1024; II 256Kb
lin = (BYTE *)_MapPhysTolinear(&phys, size, Ol) ;
*lin = OxA5; II write out to device
if (*lin != OxA5) II read back from same location

return 0; II error

Dynamically Configurable Devices
A VxD for a Plug and Play device shouldn't use _MapPhysTol i nea r because a Plug
and Play device may change its physical address while Windows 95 is running. More
over, because the linear address returned by _MapPhysTol i nea r maps to the same
physical address for the life of Windows, calling the service mUltiple times would
waste page table entries. The VMM provides no "unmap" service.

VxD Talks to Hardware - 83

Instead of calling _MapPhysToLinear, a VxD for a device with a dynamically
reconfigurable physical address must divide the "map" process into multiple steps.
Each step calls a VMM service that can be reversed:

• _PageReserve, to allocate a block of linear address space. This is really a set of
page table entries.

• _PageCommi tphys, to map the linear address range to the device's physical
address (by setting the physical address field of the allocated page table entries).

• _L i nPageLock, to prevent the Virtual Memory Manager from swapping out the
pages, thus making the linear address usable during interrupt time.

Here's a function, MyMapPhysToLinear, which performs this three-step mapping
and returns a linear address:

DWORD MyMapPhysToLinear(DWORD phys. DWORD size
{

DWORD lin;
DWORD nPages = size / 4096;

lin = _PageReserve(PR_SYSTEM. nPages. 0);
if (lin = -1)

return 0;
if (!_PageCommitPhys(lin, nPages, phys. PC_INCR I PC_WRITEABLE»

return 0;
if (!_LinPageLock(lin, nPages. 0 »

return 0; .
r~+ vI'''' I. J J

This function uses the _PageReserve, _PageCommi tPhys, and _L inPageLock ser
vices. Let's examine each call in detail.

MyMapPhysToLinear passes PR_SYSTEM into ipage when calling _PageReserve
(see next page), so that the linear address is valid for any address context, regardless of
the current Win32 process and current VM. (Note that P~SHARED would have the same
effect, since that arena is also valid for all processes and VMs.) MyMapPhysToLinear
doesn't use any of the predefined values for flags. If the call to _Page Reserve fails,
MyMapPhysToL i nea r immediately returns zero (failure) to its caller.

84 - Writing Windows VxDs and Device Drivers

The Calling Interface for _PageReserve

PVOID _PageReserve (DWORD ipage. DWORD npages. DWORD flags)
ipage: determines which arena the linear address will be in

PR_PRIVATE to allocate the linear address in the private arena
PR_SHARED to allocate the linear address in the shared arena
PR_SYSTEM to allocate the linear address in the system arena

nPages: number of pages to allocate
flags: PR_FIXED prevents PageReallocate from moving pages

PR_STATIC forces future calls to commit. decommit and frees
this linear address to also specify PR_STATIC

PR_4MEG forces linear address on a 4Mb boundary

MyMapPhysToLinear passes the linear address returned by _PageReserve and the
caller's physical address to _PageCommitPhys. Calling with the PCINCR flag causes
an "incremental" wrapping: i.e. the first page in the linear address range maps the first
page of the physical region; the second page in the linear address range maps the sec
ond page of the physical region; etc.

The Calling Interface for _PageCommi tPhys

BOOl _PageCommitPhys(DWORD ipage. DWORD npages. DWORD physpage. DWORD flags);
ipage: first page number of linear range to be mapped
npages: number of pages to commit
physpage: first physical address to be mapped. as a page number (linear » 12)
flags: PCINCR maps linear pages to successive contiguous physical pages

(if not set. all linear pages in range are mapped to same physpage)
PC_USER marks all pages as accessible to Ring 3
PC_WRITEABlE marks all pages as writeable (else write will page-fault)

Finally, the same linear page and number of pages is passed to _L i nPageLock. No
flags are specified because the pages should be locked regardless of the type of swap
device; the device doesn't use DMA (it's memory-mapped instead), and the linear
address was already allocated from the system arena.

VxD Talks to Hardware - 85

The Calling Interface for _L i nPageLock

DWORD _LinPageLock(DWORD LinPgNum. DWORD nPages. DWORD Flags);
LinPgNum: page to lock
nPages: number of pages to lock
Flags: PAGELOCKEDIFDP locks pages only if swap device uses DOS or BIOS services

PAGEMAPGLOBAL returns an ali as 1 i near address in the system arena so
region can be accessed regardless of current context

PAGEDIRTY marks dirty bit in page table entry. Use if DMA device will
be writi ng to pages. because processor won' t know pe'ges are di rty

To undo the mapping, call _LinPageUnlock, _PageOecommit and _Page Free.
Each of these calls undoes the work of its counterpart which was called earlier. That's
all I will say about these services~ because the parameters are all self-explanatory and
no special flags are required. .

Another Data Transfer Method: DMA
When the CPU transfers individual bytes to a device through an 110 port or a memory
location, the processor must fetch one or more instrUctions· and generate target
addresses for every single byte of data transferred to or from the device. An alterna
tive method, DMA (Direct Memory Access), can significantly reduce bus traffic dur
ing a transfer. In a DMA transfer, the device itself takes over· the bus from the
processor and transfers the data, eliminating the instruction fetches associated with a
CPU-driven transfer.

There are two trpes of DMA: system· DMA and bus-master DMA. In system
DMA, the system DMA controller (every PC has two of these) and the device work
together to take over the bus from the processor and transfer the data. The Sound
Blaster card is the best known system DMA device. In bus-master DMA, the device
itself acts as "master" of the bus, requiring no help from th~ system DMA controller
or the processor. Bus-master DMA is common for PCI devices,

A device that uses DMAas its data transfer method still needs liD-mapped or
memory-mapped control ports. By writing to the control ports, the processor can tell
the device where to find the system memory buffer, how large the buffer is, and when
to start the transfer. A buffer to be used in a DMA transaction must meet a number of
allocation requirements, which I'll explain in detail later in this chapter.

VxDs that use DMA - either system or bus-master - for their data transfer
method should use the services provided by the VDMAD. The VDMAD (Virtual DMA
Controller) does more than virtualize the PC's two system DMA controllers. It also pro
vides services useful to VxDs that are performing system DMA or bus-master transfers.

86 - Writing Windows VxDs and Device Drivers

Using System DMA
For system DMA, a VxD uses VDMAD services to claim usage of one of the seven
DMA channels supported by the PC and to request that VDMAD issue appropriate
instructions to the DMA controller. Note that because VxDs run at Ring 0, there is
nothing to prevent a VxD from interacting with the controller directly. However,
doing so could interfere with DMA transfers on other channels, because of the way
the registers on the DMA controller are laid out. (Specifically, because there is only a
single mode and a single mask register, not one set for each channel, so the VDMAD
must be aware of all reads and writes to/from the controller in order to correctly virtu
alize DMA transfers.)

In addition to using VDMAD services to program the controller, a VxD must also
allocate a buffer suitable for DMA and obtain the buffer's physical address. A buffer
used for a system DMA transfer must meet several strict requirements. The DMA
buffer must be

• physically contiguous,

fixed and pagelocked,

aligned on a 64Kb boundary, and

located below 16Mb in physical memory.

These requirements are necessary because the system DMA controller has no
knowledge of linear addresses or pages and performs no address translation. The con
troller is programmed with a starting physical address and simply increments (or dec
rements) that address with each byte transferred in order to generate the next physical
address.

System DMA Buffer Requirements
The buffer must be physically contiguous because the processor views the linear
address space as a series of 4Kb pages. Through the page tables, each 4Kb page can
be mapped to a different location in physical address space. A buffer made up of
pages that map to noncontiguous physical addresses won't work for DMA, because
the DMA controller can only increment through a series of physical addresses (or
decrement through a decreasing series).

To understand the requirement for fixed and pagelocked memory, consider the sit
uation illustrated in Figure 6.1. The VxD, through VDMAD services, initializes the
DMA controller with the physical address of the desired buffer and instructs the con
troller to begin the transfer. The controller transfers a byte to physical memory, and
the processor regains control of the bus. Assuming that the buffer's pages were not
fixed, the virtual memory manager may then decide to move a page - the one being

VxD Talks to Hardware - 87

used in the transfer - by copying the page contents to another location in physical
memory and then updating the page's linear address in the page tables.

At some later time the DMA controller steals the bus again and continues the trans
fer, using the original physical address programmed during the initialization process
(plus one for each byte already transferred). When the transfer completes, the VxD
examines the new data using the same linear address, but the expected data is not at
that linear address, because that linear address maps to a new physical address. The
DMA controller stored the data at the location given by the original physical address.

Figure 6.1 The DMA requirement for fixed memory.

Before Transfer

directory page table
index index offset

I 0000 0100 I 0200 I
I I

page table entry physical mem ory

~ 00420000 + buffer 00420020

After Transfer

directory page table
index index offset

I 0000 0100 I 0200 I .
I I

page table entry physical mem ory

L--. 00800000 4J- data from DMA 00420020

88 - Writing Windows VxDs and Device Drivers

Pagelocking the buffer also prevents a similar problem, where the memory man
ager swaps the page contents out to disk during the transfer. The DMA controller con
tinues to store data at the original physical address. But when the VxD accesses the
page after the transfer, expecting to see the new data, the memory manager swaps the
page contents in from disk instead, and the VxD sees "old" data.

The two requirements for physical location below 16Mb and 64Kb alignment
have nothing to do with either Windows or the processor but are a limitation of the PC
architecture. The original PC used 20-bit physical addresses, but the PC's DMA con
troller chip had only a 16-bit address register. To make it possible to perform DMA
transfers anywhere within the entire 1Mb of the PC's address space, the PC system
designers added a page register external to the DMA controller to store the upper four
bits of the address. They also added extra logic so that the page register put these
upper 4 bits onto the address bus at the same time the DMA controller placed its 16
bits on the bus, forming a full 20-bit address for main memory.

When the PC-AT was introduced, the page registers grew to 8 bits, and again extra
logic made those 8 bits appear on the address bus when the DMA controller placed
the lower 16 bits on the bus. To remflin compatible, today's system designers still use
this 24-bit DMA scheme even though processors have a 32-bit bus. One side effect of
this decision is that system DMA can only occur in the lowest 16Mb (24 bits) of
memory.

How is this relevant to the 64Kb boundary requirement? Suppose you want to per
form a DMA transfer of lOOOh bytes to physical address 6FOOOh. To do this, you write
the lower 16 bits (FOOOh) into the DMA controller's address register and the upper 4
bits (6h) to the proper page register (there is one per DMA channel). You also set the
controller for a transfer count of lOOOh bytes. The physical address of the very last
byte is 70000h (6FOOOh + OlOOOh). But the physical address generated when the last
byte is transferred is actually 60000h. The DMA controller address register correctly
rolls over from FFFFh to OOOOh, but the page register containing the upper 4 bits
doesn't increment from 6h to 7h. Therefore, all system DMA transfers must stay on
the same 64Kb "page".

A Function for Allocating a
System DMA Buffer
Although the VMM provides a number of different types of memory allocation ser
vices for VxDs to use, only one will meet the requirements for a system DMA buffer.
That service is _PageA 11 ocate. (Note that _PageA 11 ocate is one of the VMM ser
vices provided in the Windows 95 DDK VMM wrapper library.)

VxD Talks to Hardware - 89

The Calling Interface for _PageA 77 ocate

ULONG _PageAl1ocate(ULONG nPages, ULONG pType, ULONG VM, ULONG AlignMask,
ULONG minPhys, ULONG maxPhys, ULONG *PhysAddr.
ULONG fl ags);

nPages: number of 4Kb pages
pType: PG_VM (specific to VM)

PG~SYS (valid for all VMs)
PG_HOOKED (same as PG_VM, hold-over from Win3.x)

VM: handle of VM or zero if PG_SYS
AlignMask: used if PAGEUSEALIGN bit in Flags is set

DOh forces 4Kb,
OFh forces 64Kb alignment,
IFh forces 128Kb alignment

minPhys: minimum acceptable physical page
maxPhys: maximum acceptable physical page
*PhysAddr: pointer to DWORD where physical address will be returned
flags: zero or more of the following bits

PAGEZEROINIT (pages are filled with zeroes)
PAGE LOCKED (pages are locked, can be unlocked with _PageUnLock)
PAGELOCKEDIFDP (locks pages only if the virtual page swap device uses

MS-DOS or BIOS functions to write to the hardware)
PAGEFIXED (pages are locked at fixed linear address,

can't be unlocked or moved)
PAGEUSEALIGN: pages allocated meet AlignMask, minPhys and maxPhys

restrictions; ignored unless PAGEFIXED also set
PAGECONTIG: pages allocated are physically contiguous; ignored unless

PAGEUSEALIGN is also set
Note: unless one of PAGELOCKED, PAGELOCKEDIFDP or PAGEFIXED is set,
no physical pages are allocated, only linear pages

Returns: linear address of buffer

The function All ocSysDmaBuffer (contained in the file DMAALLOC. C in the
\DMAALLOC directory of the code disk) uses _PageA 11 ocate with the appropriate
parameters to allocate a system DMA buffer.

DWORD AllocSysDmaBuffer(DWORD nPages, DWORD *pPhysAddr)
(

return _PageA11ocate(nPages, PG_SYS, 0, OxOF, 0, OxlOOO,
pPhysAddr ,PAGEFIXED I PAGEUSEALIGN
PAGECONTIG);

90 - Writing Windows VxDs and Device Drivers

PG_SYS allows the VxD to access the buffer at hardware interrupt time, regardless of
which VM is currently executing at the time of the interrupt. The Ali 9 nMa s k,mi nPhy s,
and maxPhys parameters, combined with the PAGEUSEALIGN flag bit, correspond exactly
to the "64Kb alignment" and "below 16Mb" requirements. (Note that the maxPhys
parameter is not 16Mb, but 16Mb/4Kb, which is the physical address expressed as a
page number.) The PAGEFIXED flag meets the fixed and pagelocked requirement. The
function return value is the buffer's linear address, and the physical address is returned
at PhysAddr.

In general, a VxD should only pagelock a buffer when it's absolutely necessary
in this case, only for the duration of the DMA transfer. But because of the way
_PageA 11 ocate uses the F1 ag parameter, the physical contiguity requirement forces
All ocSysDmaBuffer to allocate a buffer that is permanently fixed and pagelocked.

A VxD cannot use a buffer allocated by a Win32 application for system
DMA, because there is no way to force that buffer to meet physical
contiguity and alignment requirements.

Overview ofVDMAD Services
After allocating a system DMA buffer from the VMM, the VxD uses VDMAD ser
vices to program the DMA controller. The standard documentation explains the indi
vidual VDMAD services well enough, but fails to outline the overall sequence of
services used to perform a transfer. Here is a summary of the overall sequence.

Before the first transfer, the VxD calls

• VDMAD_Vi rtua 1 i ze_Channe 1 to reserve the channel and obtain a DMA "handle"
used in calls to other VDMAD services.

Then, for every transfer, the V xD calls

VDMAD_Set_Regi on_I nfo to program the system DMA controller with the
buffer's physical address and size,

• VDMAD_SeCPhys_State to program the system DMA controller's mode, and

VDMAD_Phys_Unmas k_Channe 1 to unmask the channel on the system DMA controller.

The VMMlVxD library included with VToolsD provides C-callable wrappers for
all VDMAD services. The Windows 95 DDK wrapper library doesn't have the neces
sary wrappers, but WRAPPERS. CLB does include all VDMAD services discussed in this
chapter.

VxD Talks to Hardware - 91

VDMAD Services in Detail
VDMAD_Virtualize_Channel can be used to virtualize a channel. If you pass in a
non-null callback parameter, VDMAD will call your VxD back whenever Ring 3 code
changes the state of your channel by accessing one of the DMA controller registers.
By responding to this callback, your VxD can virtualize the channel itself. Or you can
pass NULL for the callback parameter to tell VDMAD you're not really virtu ali zing the
channel, you only want the DMA "handle" returned by the service, which you need
for other VDMAD calls.

The Calling Interface for VDMAD_Vi rtua 1 i ze_Channe 1

HANDLE VDMAD_Virtualize_Channel(DWORD Channel. PVOID CallbackProc);
Channel: DMA channel to virtualize/use. 0-7
CallbackProc: called to notify of Ring 3 access to DMA controller
Returns: DMA handle to be used in calls to other VDMAD services

or zero if fa il

The next call is VDMAD_Set_Regi on_I nfo, where "region" refers to the DMA
buffer. The DMAHandl e is, of course, the one returned by VDMAD_Vi rtua 1 i ze_Channel.
The Bufferld parameter should be zero if you've allocated your own buffer (other
wise it refers to the buffer ID returned by the service VDMAD_Request_Buffer). The
documentation says that the LockStatus parameter should be "zero if not locked,
non-zero iflocked". If this parameter is zero, VDMAD will send a warning message
to the debugger during the next step (VDMAD_Set_Phys_State) - a gentle reminder
that you probably forgot to lock. The Regi on parameter, containing the buffer's linear
address, and the PhysAddr parameter are both provided by the initial call to
_PageA 11 ocate.

The Calling Interfacefor VDMAD_Set_Region_Info

VOID VDMAD_Set_Region_Info(HANDLE DMAHandle. BYTE BufferID.
BOOLEAN LockStatus. DWORD Region.
DWORD RegionSize. DWORD PhysAddr);

DMAHandle: handle returned by VDMAD_Virtualize_Channel
BufferID: id returned by VDMAD_Request_Buffer. or zero
LockStatus: zero if pages are not locked. non-zero if locked;
Region: Linear address of DMA buffer
RegionSize: size of DMA buffer. in bytes
PhysAddr: physical address of DA buffer

92 - Writing Windows VxDs and Device Drivers

While VDMAD_Set_Regi on_Info gives the VDMAD information about the DMA
buffer, VDMAD_Set_Phys_State gives VDMAD information about the transfer itself.
There is no explanation of the VMHandl e parameter in Microsoft's documentation. In
fact, the VDMAD does nothing more with this parameter than see if it's a valid VM
handle; if not it sends a warning message to the debugger. To avoid this warning, use
the handle of the current VM, returned by GeCCur _VM_Handl e.

void VDMAD_Set_Phys_State<HANDLE DMAHandle, HANDLE VMHandle,
WORD Mode, WORD ExtMode);

DMAHandle: handle returned by VDMAD_Virtualize_Channel
VMHandle: any VM handle
Mode: bitmap corresponding to system DMA controller's Mode register

The Mode parameter isn't explained in the documentation either, but it corresponds
exactly to the mode register of the DMA controller, which controls transfer direction,
auto-initialization, etc. VxDs should always use the flag DMA_s i ngl e_mode, to be con
sistent with the way PC architecture defines system DMA bus cycles. The VDMAD. H
provided by VToolsD provides #defi nes for these values, as does the WRAPPERS. H for
the WRAPPERS. CLB library. The ExtMode parameter, used only in EISA and PS/2 DMA
transfers, also has #defi nes in VToolsD VDMAD. H and in WRAPPERS. H.

When VDMAD_Set_Phys_State returns, the VDMAD has programmed the DMA
controller base register, page register, count (using the address and size from the pre
vious call to VDMAD_Set_Regi on_I nfo), and mode register (with the mode parameter
from this call).

The final step is to enable the transfer by unmasking the channel with a call to
VDMAD_Phys_Unmask_Channel. Once again, the call requires a VM handle, and the
return value from Get_Cur_VM_Handl e will do. This call unmasks the channel in the
actual system DMA controller, which means the DMA controller is ready to begin the
transfer. The transfer will actually begin when your device asserts the proper bus sig
nals (DMA_REQx, DMA_GRANTx).

The Calling Interface for VDMAD_Phys_Unmask_Channe 7

void VDMAD_Phys_Unmask_ChannelC HANDLE DMAHandle, HANDLE VMHandle);
DMAHandle: handle returned by VDMAD_Virtualize_Channel
VMHandle: any VM handle

VxD Talks to Hardware - 93

The following code fragment combines a call to All ocSysDmaBuf with the
VDMAD calls described above to set up a system DMA transfer on Channel 3. The
transfer uses DMA_type_wri te mode, meaning the transfer "writes" to memory (from
the device). This example also specifies DMA_si ngl e_mode, the mode used for normal
system DMA bus cycles.

DWORD lin, size, phys;
BYTE ch;
DMAHANDLE dmaHnd;

size = 4 * 4 * 1024;
ch = 3;
lin = Al1ocSysDmaBuf(size/4096, &phys);
dmaHnd = VDMAD_Virtua1ize_Channe1(ch, NULL);
VDMAD_Set_Regionlnfo(dmaHnd, 0, TRUE, lin, size, phys);
VDMAD_Set_Phys_State(dmaHnd, Get_Cur_VM_Hand1e(),

DMA_type_write I DMA_sing1e_mode, 0);
VDMAD_Phys_Unmask_Channe1(dmaHnd);

Using Bus-master DMA
A buffer used for a bus-master transfer has fewer restrictions than a system DMA
buffer. Bus-master transfers still require fixed and pagelocked buffers, but the new
buses (like PCI) that support bus-master transfers aren't limited by the old ISA 64Kb
alignment and 16Mb maximum restrictions. Whether a bus-master transfer requires a
physically contiguous buffer depends on whether or not the bus-master device sup
ports a feature called "scatter-gather".

In a "scatter-gather" transfer, the DMA buffer, described by a single linear address
and size, may be composed of mUltiple physical regions instead of 1;1 single physically
contiguous region. A "scatter-gather" driver programs a bus-master device with the
physical address and size of each of these regions, then the device initiates DMA
transfers to/from each of the regions in turn, without any more intervention from the
driver - or the processor, for that matter.

DMA buffers for devices without scatter-gather support must consist of physically
contiguous pages - i.e. _PageA 11 ocate must be called with the PAGECONTIG flag. The
following function, All ocBusMasterBuffer (also contained in the file DMAALLOC. C in
the \DMAALLOC directory of the code disk), uses _PageA 11 ocate with the appropriate
parameters to allocate a buffer for a bus-master without scatter-gather support.

94 - Writing Windows VxDs and Device Drivers

DWORD AllocBusMasterBuffer(DWORD nPages, DWORD *pPhysAddr
(

return _PageA11ocate(nPages, PG_SYS, 0, 0, 0, OxlOOOOO, pPhysAddr,
PAGEFIXED I PAGEUSEALIGN I PAGECONTIG);

Note that alignment and maximum physical address requirements have relaxed.
The AlignMaskparameter now specifies 4Kb instead of 64Kb, and maxPhys now
specifies the page number for 4Gb. PAGECONTIG is set to get contiguous pages; the
PAGEUSEALIGN bit is set because PAGECONTIG requires it; and PAGEFIXED is set
because PAGEUSEALI GN requires it. The function returns the buffer's linear address
and stores the physical address at *pPhysAddr. This physical address is used to pro
gram the bus-master device with the address ofthe transfer.

Bus-masters that ~ support scatter-gather don't require physically contiguous
pages. The following function, All ocScatterGatherBuffer (also contained in the
file DMAALLOC. C in the \DMAALLOC directory of the code disk), uses _PageA 11 ocate
with the appropriate parameters to allocate a buffer for a bus-master with scat
ter-gather support.

DWORD AllocScatterGatherBuffer(DWORD nPages, DWORD *pPhysAddr
(

return _PageAllocate(nPages, PG_SYS, 0, 0, 0, OxlOOOOO,
pPhysAddr, 0);

Notice that the last argument, Flags, in this callto _PageA11ocate is zero.
PAGECONTIG isn't set, which means PAGEALIGN doesn't need to be set, which means
PAGEFIXED doesn't need to be set.

The function return value is the buffer's linear address, but the physical address
returned at pPhysAddr is not valid. When PAGEFIXED is clear, _PageA11ocate allo
cates linear pages (slots in the page tables) but marks the pages as not present in phys
ical memory. This state is called "committed", but "not present". (Note that
_PageA 11 ocate behaves a bit differently under Windows 3.x: see the section "Win
dows 3.x Differences" at the end of this chapter).

The VxD can wait until the time of the actual transfer to allocate physical pages
(make them "present") and meet the remaining buffer requirements - fixed and
pagelocked. This strategy reduces overall system demands for physical memory, a
limited commodity. When the transfer is over, the VxD can unlock the pages again,
allowing the virtual memory manager the flexibility of swapping these pages to disk
to free up physical memory for another use.

In addition to pagelocking the buffer before the scatter-gather transfer, a VxD
needs to acquire the physical address of each page in the buffer (remember, they're
not physically contiguous) in order to program the device. for the transfer. The

VxD Talks to Hardware - 95

VDMAD provides a service for just this purpose: one call to VDMAD_Scatter _Lock
will lock all the pages in a linear address range and return the physical address of each
page. Unfortunately, using this service is tricky. The documentation is incomplete,
and the VMDAD. H header file (in both VToolsD and the Windows 95 DDK) incorrectly
defines the structure it uses.

Examining Linear and Physical Addresses in the Debugger

Both SoftIceIWijndows and WDEB386 let you examine memory manager data structures. I used this feature
to verify the behavior of the All ocSysOMABuf, All ocBusMasterBuf. and All ocScatterGatherBuf func
tions. I used the WDEB386 command .m to dump all the memory manager information for the linear address
range returned by _Pa geA 11 ocate. In each case I allocated four pages, so I dumped four linear addresses.

WDEB386 shows that All ocSysOMABuf does meet system DMA requirements: is fixed and locked; four
physical pages are contiguous; each physical page is aligned on a 4Kb boundary (implicitly meeting the
requirement that the buffer not cross a 64Kb boundary); and each physical page is below 16Mb.

The Buffer Attributes After a Call to A 77 ocSysDMABuf

.m C1560000
C1560000 committed r/w user Fixed present 1 oc ked Phys=00250000 Base=C1560000
.m C1560100
C1560100 committed r/w user Fixed present locked Phys=00251000 Base=C1560000
.m C1560200
C1560200 committed r/w user Fixed present locked Phys=00252000 Base=C156DOOO
.m C1560300
C1560300 committed r/w user Fixed present locked Phys=00253000 Base=C156DOOO

WDEB386 shows that A 11 ocBusMasterBuf does meet bus-master (no scatter-gather) requirements: is
fixed and locked; four physical pages are contiguous; each physical page is aligned on a page boundary; and
each page is located well above 16Mb (my system had 40Mb of physical RAM).

The Buffer Attributes After a Call to A 7 7 oCBusMasterBuf

.m C1560000
C1560000 committed r/w user Fixed present locked Phys=027fcOOO Base=C1560000
.m C1560100
C1560100 committed r/w user Fixed present locked Phys=027fdOOO Base=C1560000
.m C1560200
C1560200 committed r/w user Fixed present locked Phys=027feOOO Base=C1560000
. m C1560300
C1560300 committed r/w user Fi xed present locked Phys=027ffOOO Base=C1560000

96 - Writing Windows VxDs and Device Drivers

The Right Way to Use VDMAD-"Scatter _Lock
The first parameter to VDMAD_Scatter _Lock is a VM handle parameter, and you can
pass in the return value from Get_Cur _VM_Handl e (see previous "VDMAD Services
in Detail" section for an explanation of this technique). The other parameters need a
lot of explanation because the available documentation is incomplete and confusing.

(Examining Linear and Physical Addresses in the Debugger - continued)

Finally, WDEB386 shows that All ocScatterBuf doesn't really allocate any physical pages. Though the mem
ory manager says the pages are "committed" (have page table entries), they are marked as "not present", so no
physical address is shown.

The Buffer Attributes After a Call to A 77 ocSca tterBuf

.m Cl573000
C1560000 committed r/w user Swapped not-present Base=C1573000
.m C1573100
C1560100 committed r/w user Swapped not-present Base=C1573000
.m Cl573200
C1560200 committed r/w user Swapped not-present Base=C1573000
.m Cl573300
C1560300 committed r/w user Swapped not-present Base=Cl573000

After a call to VOMAO_Scatter _Lock, the same buffer meets bus-master (scatter-gather) requirements. The
pages are still "swapped" - but this really seems to mean "swappable" as opposed to "fixed". Now, however, the
pages are present, locked, and have a physical address. Note that the physical addresses are not contiguous and that
each is located above 16Mb.

The Buffer Attributes After a Call to VDMAD_Scatter _Lock

.m Cl573000
C1573000 committed r/w user Swapped present locked Phys=0155cOOO Base=C1573000
.m Cl573100
C1573100 committed r/w user Swapped present locked Phys=015a9000 Base=Cl573000
.m Cl573200
C1573100 committed r/w user Swapped present locked Phys=0168bOOO Base=C1573000
.m Cl5732300
C1573100 committed r/w user Swapped present locked Phys=0168fOOO Base=C1573000

VxD Talks to Hardware - 97

The Calling Interface for VDMAD_Sca tter _Lock

DWORD VDMAD_Scatter_Lock(HANDLE VMHandle. DWORD Flags. PVOID pODS.
PDWORD pPTEOffset);

VMHandle: any VM handle
Flags: 0: copy phys adddr and size to DDS

1: copy raw PTE to DDS
3: don't lock not-present pages

pODS: pointer to DDS structure
pPTEOffset: if flags is 1 or 3, contains the 12-bit offset portion

of the physical address for the first region.
Returns: 0 if no pages were locked

1 if all pages were locked
2 if some pages were locked

If Bit 0 of the Fl ags parameter is clear, the VDMAD fills in the caller's DDS struc
ture with the physical address and size of each physical region in the buffer's linear
address range. If Bit 0 is set, the VDMAD fills the DDS structure with the PTE (page
table entry) for each page in the buffer. Your VxD can then derive the physical address
and size of each region from the PTEs. For most VxDs, the physical address and size of
each region is sufficient, so Bit 0 would be clear. A pager VxD would typically set Bit
0, because it can use the other PTE information (like the present bit and the dirty bit).

Only a pager VxD would use Bit 1 of the Fl ag parameter (which is ignored unless
Bit 0 is also set). Setting Bit 1 tells the VDMAD to not lock, or return the address of,
pages that are not present. Other V xDsusually clear Bit 1 so that the VDMAD locks
pages whether or not they are marked "present". Because when used for a DMA buffer,
the pages are already locked and present, Bit 1 doesn't really matter, but it's more effi
cient to tell the VDMAD to ignore the present/not-present attribute by clearing the bit.

According to the documentation, the second parameter should be a "pointer to the
extended DDS structure". But the EXTENDED_DDS structure definition in VDMAD.H is
incorrect. Hereis the definition of the correct structure (DDS) to pass (via a pointer)
to VDMAD_Scatter _Lock:

typedef struct
{

EXTENDED_DDS extdds;
union
{

}
DDS;

REGION aRegionlnfo[16];
DWORD aPte[16];

98 - Writing Windows VxDs and Device Drivers

typedef struct
{

DWORD
DWORD

REGION;

PhysAddr;
Size;

typedef struct Extended_DDS_Struc
{

DWORD DDS_size;
DWORD DDS_linear;
WORD DDS_seg;
WORD RESERVED;
WORD DDS_avail;
WORD DDS_used;

EXTENDED_DDS, *PEXTENDED_DDS;

The DDS and REGION structures above aren't contained in any VTooisD or Win
dows 95 DDK header files, but they are in WRAPPERS. H. I created them after figuring
out how VDMAD_Scatter _Lock really uses the structure passed to it (by looking at the
VDMAD source contained in the Windows 95 DDK). To understand this complicated
set of structures within structures, it's best to step back and think about what theser
vice is really doing.

A DMA buffer, described by a single linear address and size, can be composed of
multiple physical regions, each of varying size. For example, a 16Kb buffer is always
composed of four pages, 4Kb each. But this buffer can be composed of 1, 2, 3, or 4
physically contiguous regions. This is illustrated in Figure 6.2.

VDMAD_Scatter _Lock takes the buffer's linear address and size and returns either:
the physical address and size of each of the physically contiguous regions (if Bit 0 of
Fl ags is clear) or the PTE for each of the pages (if Bit 0 of Fl ags is set). All of this
information is recorded - albeit in a most complicated manner - in the DDS struc
ture described above.

The VxD fills in (as input) the DDS_si ze (size of buffer, in bytes) and DDS_l i near
(linear address of buffer) fields of the EXTENDED_DDS structure. VDMAD provides (as
output) one of the two members of the uni on inside DDS: either the array of REG I ON
structures or the array of DWORD PTEs, depending on the Fl ags parameter.

The call to VDMAD passes a pointer to the DDS which contains both pieces, the
EXTENDED_DDS and the union. YourVxD fills in as input DOS_avail which tells the
VDMAD the number of REGIONs or DWORDs in the union. The VDMAD fills in
DDS_used on return, which tells your VxD how many of the REGIONs or DWORDs were
filled in with physical address and size or with PTEs.

VxD Talks to Hardware - 99

Note that in my definition, the two arrays contain 16 elements, which means
the DDS structure supports a maximum DMA buffer size of 256Mb
(16*4Kb). A buffer of 16 pages could consist of 16 physically discontiguous
pages, in which case the VDMAD would need a REGION structure to describe
each. If your VxD for a bus-master device uses more than 256Kb in a single
bus-master transfer, increase this array size.

Using Events with Bus-master DMA Transfers
Commonly, DMA drivers start the first transfer in non-interrupt code, service an inter
rupt generated by the device when the transfer is complete, and start the next transfer
directly from the interrupt handler. However, only VxD services marked specifically
as asynchronous may be called at interrupt time, so it's vital to know which VDMAD
services are asynchronous. According to the DDK documentation, only
VDMAD~Physically_Unmask_Channel and VDMAD~Physically_Mask_Channel are
asynchronous. The VDMAD source code reveals several other asynchronous ser
vices too, including VDMAD_Set_Regi on_Info and VDMAD_Set_Phys_State. But,
VDMAD_Scatter _Lock and VDMAD_Scatter _Unlock are conspicuously missing.

A system DMA VxD can make all of its calls from its interrupt handler, because all
of the VDMAD services it uses are asynchronous (even if not documented as so). But
a bus-master VxD needs VDMAD_Scatter _Un lock, which can't be called at interrupt
time. The synchronous services, VDMAD_Scatter _Lock and VDMAD_Scatter ,--Un 1 ock,
must be called outside of the interrupt handler. This is accomplished by having the
interrupt handler use VMM services. to schedule an event, and calling VDMAD_
Scatter_Lock and VDMAD_Scatter_Unlock from the event handler. In fact, it's
really just as easy to do the entire sequence ofVDMAD calls in the event handler.

Figure 6.2 A 16Kb buffer can be composed of 1, 2, 3,
or 4 physically contiguous regions.

Linear Physical Linear

100 - Writing Windows VxDs and Device Drivers

If your VxD allocated the DMA buffer itself, you can schedule a global event,
because any buffer allocated by a VxD comes from the 3Gb-4Gb system arena,
visible regardless of the currently executing thread and VM. On the other hand, if
your VxD didn't allocate the buffer, but instead pagelocked a buffer allocated by a
Win32 process, then that buffer resides in the 2Gb-3Gb private arena and is valid
only in the context of the same Win32 process that called your VxD for the page
lock. In this case, you must schedule a thread event so that your event handler runs
in the correct context. Handling interrupts, as well as using thread and global
events, will be covered in the next chapter.

Windows 3.x Differences
There are only minor differences in talking to hardware from a VxD when running
under Win3.x.

Accessing I/O-mapped hardware is no different at all- it works exactly as
described earlier in the chapter.

When accessing memory-mapped hardware, use _MapPhysToL i nea r, a simpler method
than multiple VMM calls to _PageReserveCPageCommi tphys/_L i nPageLock.
The simple method is sufficient because the device's physical address cannot
change (no Plug and Play). Also, the other VMM services CPageReserve, etc.)
are Windows 95-specific.

To perform system DMA, use the VDMAD services as described above. However,
your VxD must allocate the DMA buffer during Sys_Criti ca l_Init message
processing because the PAGECONTI G flag passed to _PageA llocate isn't valid after
initialization.

Bus-master DMA is no different at all.

Summary
Talking to the hardware from your VxD is pretty straightforward if you only need to
manipUlate I/O ports. Most devices that use memory-mapped I/O are only slightly
more challenging. Devices that support DMA are considerably more challenging,
because they interact with physical memory in more complex patterns. Even so, with
careful consideration of the paging and address translation issues involved, you can
write a VxD that can manipulate the necessary physical memory.

I/O ports, memory, and DMA channels, though, are only part of the hardware a
VxD needs to manipulate. VxDs aren't just called by applications - they are often
invoked as asynchronous interrupt handlers. The next chapter explains how Windows
virtualizes interrupts and how to register a VxD as the handler for a particular interrupt.

Listing 6.1 DMAALLOC.C

II DMAAllOC.c - main module for VxD DMAEXAMP
iidefine WANTVXDWRAPS

iiinclude <basedef.h>
iiinclude <vmm.h>
iiinclude <debug.h>
iiinclude "vxdcall .h"
iiinclude <vxdwraps.h>
iiinclude <wrappers.h>

#ifdef DEBUG

VxD Talks to Hardware -101

iidefine DPRINTFO(buf. fmt) _Sprintf(buf. fmt); Out_Debug_String(buf)
iidefine DPRINTF1(buf. fmt. argl) _Sprintf(buf. fmt. argl); OuCDebug_String(buf)
iidefi ne DPRINTF2 (buf. fmt. a rgl. a rg2) _Spri ntf (buf. fmt. argl. a rg2);

Out_Debug_String(buf)
iielse
iidefine DPRINTFO(buf. fmtl
#defi ne DPRINTFl(buf. fmt. argl)
iidefine DPRINTF2(buf. fmt. argl. arg2)
iiendif

PYOID AllocSysDmaBuf(DWORD nPages. PYOID pPhysAddr);
PYOID AllocBusMasterBuf(DWORD nPages. PYOID pPhysAddr);
PYOID AllocScatterGatherBuf(DWORD nPages. PYOID pPhysAddr);

PYOID lin;
char buf[80];

BOOl OnSysDynamicDeviceInit(VMHANDlE hVM)
{

BOOl rc;
DWORD PTEOffset;
DWORD nPages. phys;
DOS myOOS;
int i;

DPRINTFO(buf. "DynInit\r\n");
nPages ~ 4;
lin ~ AllocScatterGatherBuf(nPages. &phys);
if (! 1 in)
{

DPRINTFO(buf. "ERR PageAlloc\r\n");
}
else
{

DPRINTF2(buf. "lin~%x. Phys~%x\r\n". lin. phys);

102 - Writing Windows VxDs and Device Drivers

Listing 6.1 (continued) DMAALLOC.C

myDDS.dds.DDS_linear ~ lin;
myDDS.dds.DDS_size ~ 4 * 4 * 1024;
myDDS.dds.DDS_seg ~ myDDS.dds.RESERVED ~ 0;
myDDS.dds.DDS_avail ~ 16;
rc ~ VDMAD_Scatter_Lock(Get_Cur_VM_Handle(). O. &myDDS. &PTEOffset);
DPRINTFl(buf. "Scatter_Lock rc~%x\r\n". rc);
DPRI NTFl (buf. "nRegi ons~%x\ r\n". myDDS. dds. DDS_used) ;
for (i~O; i < myDDS.dds.DDS_used; i++)
{

DPRINTF2(buf. "Region phys~%x size~%d\r\n". myDDS.aRegionInfo[j].PhysAddr.
myDDS.aRegionInfo[i].Size);

return TRUE;

BOOL OnSysDynamicDeviceExit(void)
{

BOOL rc;
DPRINTFO(buf. "DynExit\r\n");
rc ~ _PageFree(lin. 0);
if (! rc)

DPRINTFO(buf. "PageFree failed\n");
return TRUE;

PYOID AllocSysDmaBuf(DWORD nPages. PYOID pPhysAddr)
{

return(_PageAllocate(nPages. PG_SYS. O. OxOF. O. OxlOOOL. pPhysAddr.
PAGECONTIG I PAGEUSEALIGN I PAGEFIXED));

PYOID AllocBusMasterBuf(DWORD nPages. PYOID pPhysAddr)
{

return(_PageAllocate(nPages. PG_SYS. O. O. O. OxlOOOOOL. pPhysAddr.
PAGECONTIG I PAGEUSEALIGN I PAGEFIXED));

PYOID AllocScatterGatherBuf(DWORD nPages. PYOID pPhysAddr
{

return(_PageAllocate(nPages. PG_SYS. O. O. O. OxlOOOOOL. pPhysAddr. 0));

VxD Talks to Hardware -103

Listing 6.2 DMADDB.ASM

.386p

.**
INCLUDES

.**

include vmm. inc
include debug.inc

V I R T U A L 0 E V ICE 0 E C L A RAT ION

PROCEDURE: ControlProc

DESCRIPTION:

DMAALLOC. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \
UNDEFINED_INIT_ORDER

Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call 10

EXIT:
If carry clear then

Successful
else

Control call failed

USES:
EAX. EBX. ECX. EDX. ESI. EDI. Flags

BeginProc ControlProc
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDevicelnit. cCall. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCall. <ebx>

clc
ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

END

104 - Writing Windows VxDs and Device Drivers

Listing 6.3 DMAALLOC. MAK

CFLAGS
CVXDFLAGS
LFLAGS

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
= -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG
= -machine:i386 -debug:notmapped,full -debugtype:cv

-subsystem:console kerne132.1ib
AFLAGS = -coff -OBLO_COFF -0IS_32 -W2 -Zd -c -Cx -OMASM6 -OOEBLEVEL=l -OOEBUG

all: dmaalloc.vxd

dmaalloc.obj: dmaalloc.c
cl $(CVXOFLAGS) -Fo$@ -Fl %s

dmaddb.obj: dmaddb.asm
ml $(AFLAGS) -Fo$@ %s

vxdca 11 . obj: vxdca 11 . c
cl $(CVXOFLAGS) -Fo$@ %s

dmaalloc.vxd: dmaddb.obj dmaalloc.obj vxdcall.obj .. \wrappers\wrappers.clb dmaalloc.def
echo >NUL @«dmaalloc.crf

-MACHINE:i386 -DEBUG -OEBUGTYPE:MAP -POB:NONE
-DEF:dmaalloc.def -OUT:dmaalloc.vxd -MAP:dmaalloc.map
-VXO vxdwraps.clb wrappers.clb vxdcall .obj dmaddb.obj dmaalloc.obj
«

link @dmaalloc.crf
mapsym dmaalloc

VxD Talks to Hardware -105

Listing 6.4 DMAALLOC. DEF

VXD DMAALLOC DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'

LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
I DATA CLASS 'ICODE'
PTEXT CLASS 'PCODE'
PDATA CLASS 'PCODE'

_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
DMAALLOCDDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

106 - Writing Windows VxDs and Device Drivers

Clwpter7

Handling Hardware
Interrupts in a VxD
Windows' yanslation of hardware interrupts into events that Can trigger execution of ISRs
residing in\various virtual machines is one of the most confusing and complicated parts of
the virtual environment. Windows must not only make certain that any associated VxD
sees the interrupt but also must assure that the appropriate virtual machines see the inter
rupt. This process is not only complicated but also involves a large amount of overhead -
so much overhead that an ISR residing in a DOS program running under Windows can
exhibit as much as 20 times more latency than the same ISR under pure DOS. (For details,
see 'The Tao of Interrupts," by David Long, Microsoft Developer Network CD.)

An interrupt can trigger activity that cascades through four levels of code:

• the processor vectors to a routine in the VMM;

• the VMM calls registered handlers in one or more VxDs;

• the VMM then (potentially) simulates the interrupt for protected mode handlers; and

• the VMM then (potentially) simulates the interrupt for V86 mode handlers.

The programmer can install an interrupt handler at any but the first of these levels.
(Actually, since a VxD runs at Ring 0, it could also install at the first level, directly in
the actual IDT. Microsoft strongly warns against doing this.) Handlers installed by
Windows applications qualify as protected mode handlers, running in the System VM.
Handlers installed by DOS applications qualify as V86 mode handlers, running in the
same VM as the DOS application.

107

108 -Writing Windows VxDs and Device Drivers

Interrupts and the VMM
Under Windows, the processor runs in three different states. The processor runs in
V86 Mode when a DOS application is executing (in a V86 VM). The processor runs
in Ring 3 protected mode when the System VM (Windows) is executing or when a
DOS VM has switched into protected mode. The processor runs in Ring 0 protected
mode when VMM or a VxD is executing.

Regardless of the processor's current state, when a hardware interrupt occurs, the
processor switches to protected mode at Ring O. The processor then finds the address
of the interrupt handler in the IDT and begins executing the handler. This isn't a Win
dows rule - it's the way the 80x86 architecture works.

As Figure 7.1 shows, however, Windows doesn't use the IDT to vector to what one
normally thinks of as a interrupt handler. Instead, Windows makes all IDT entries
point to a routine in the VMM. The VMM routine figures out whether it was called as
the result of an exception or an interrupt. The VMM manages exceptions itself but
hands all hardware interrupts to an important VxD called the VPICD (Virtual Pro
grammable Interrupt Controller Device.) VPICD will pass the interrupt on to another
VxD for servicing if a VxD has registered for the interrupt. If not, the VPICD will
pass the interrupt on to one of the VMs, a process known as reflection.

A VxD registers for a specific hardware interrupt by calling the VPICD service
VP I CD_Vi rtua 1 i ze_I RO and passing to the VPICD the address of a callback routine.
Once a VxD has registered for an interrupt it may act as a true interrupt handler, ser
vicing the interrupting device itself, or the VxD may use another VPICD service,

Figure 7.1 Path from IDT to VxD interrupt handler.

VMM
IDT fault handler VPICD

GPfault

hw interrupt IRQ x
ISR

page fault

hw interrupt IRQy

VxD registered
for IRQ x

Handling Hardware Interrupts in a VxD - 109

VPICD_SeLInLRequest, to reflect the interrupt to a VM. That is, instead of servic
ing the device itself, the VxD lets the VM's handler do it. The section "Virtualizing a
Hardware Interrupt" in Chapter 8 will explain reflection in more detail. (See also the
sidebar "Interrupt Latency under Windows".)

Using VPICD Services
This section will examine the VPICD services used by a VxD that handles a hardware
interrupt. Although the VPICD exports close to two dozen services, a typical VxD
uses only a few of them:

VPI CD_Vi rtua 1 i ze_I RQ to install an interrupt handler.

VPICD_Phys_Unmask to unmask the interrupt at the PC InterruptController (PIC).

• VPICD_Phys_EOI to send an EO! to the PIC.

• VPICD_Phys_Mask to mask the interrupt at the PIC.

• VPI CDJorce_Default_Behavi or to uninstall an interrupt handler.

Interrupt Latency under Windows

The delay between the hardware interrupt signal and the execution of its handler is called interrupt latency.
Because of the complicated reflection process involved, latency for protected mode or V86 mode handlers can
be significant - times around I ms are not uncommon. To minimize interrupt latency, handling of hardware
interrupts should be done in a VxD.

Unfortunately, not even a VxD can guarantee real-time response to an interrupt. There are several factors
that make true real"time response impossible under Windows (both 95 and 3.x), including ring transitions and
the multiple layers ofVMM and VPICD handlers. But the factor that overwhelms all others is the abillity of
applications to disable processor interrupts. When processor interrupts are disabled, not even a VxD interrupt
handler can run.

Th\fVMM allows both DOS and Windows applications (and DLLs) to turn off interrupts. (Refer to the
section ''Trapping Interrupts and Exceptions" in Chapter 3 for more details). Although applications could also
turnoff interrupts under plain DOS, the consequences are often worse under Windows simply because users
typically run multiple applications, and the chances that one application will disable interrupts for a long
period are increased.

110 - Writing Windows VxDs and Device Drivers

The VMMNxD library included with VToolsD provides C-callable wrappers for all
VPICD services. The Windows 95 DDK wrapper library doesn't, but the WRAPPERS. CLB
library does include VPICD functions discussed in this chapter as well as the others dis
cussed in the section "Virtualizing a Hardware Interrupt" in Chapter 8.

The example VxD for this chapter, VXDISR. VXD, demonstrates a simple interrupt
handler. This VxD services one of the few standard PC devices that isn't already con
trolled by another VxD: the Real Time Clock, which generates an interrupt on IRQ 8.
The Real Time Clock is not the same as the 8254 Timer device. The timer generates
an interrupt on IRQ 0, and is controlled by another VxD, the VTD.

Examining VPICD Services in Detail: VXD IRQ. C

The VXDISR VxD has only two message handlers, On_Sys_Vm_I ni t and On_Sys_
Vm_Termi nate, which install and uninstall an interrupt handler, respectively.
On_Sys_Vm_I ni t calls the service VPI CD_Vi rtua 1 i ze_I RQ to install an interrupt handler.

The Calling Interface for VPICD_Vi rtua 7 ize_IRO

IRQHANDLE VPICD_Virtualize_IRQ(VPICD_IRQ_DESCRIPTOR *vid);
vid: pointer to structure which describes the interrupt to be virtualized
typedef struct
{

USHORT VID_IRQ_Number; II IRQ to virtualize
USHORT VID_Options;
II VPICD_OPT_CAN_SHARE: allow other VxDs to virtualize IRQ also
II VPICD_OPT_REF_DATA: pass VID_Hw_InCRef as param to Hw_Int_Handler
ULONG VID_Hw_Int_Proc; II callback for hardware interrupt
ULONG VID_Virt_Int_Proc;
ULONG VID_EOI_Proc;
ULONG VID_Mask_Change_Proc;
ULONG VID_IRET_Proc;
ULONG VID_IRET_Time_Out;
PYOID VID_Hw_Int_Ref; II pass this data to Hw_Int_Handler

VPICD_IRQ_DESCRIPTOR;
Returns: handle to be used in future VPICD calls

or zero if call failed (IRQ already virtualized or invalid IRQ)

Handling Hardware Interrupts in a VxD - 111

This service is well behaved, i.e. it doesn't install the handler directly into the IDT,
but simply registers the handler with the VPICD. This service uses only a single
parameter, a pointer to a VPICD_IRQ_DESCRIPTOR structure. The return value is an
IRQ "handle", required in calls to other VPICD services.

Because VXDISR is simply handling an interrupt, as opposed to fully virtu ali zing
it (I'll discuss virtualization in the next chapter), it uses only a few fields in this struc
ture. VID_IRQ_Number is the number of the IRQ the VxD wants to service.
V I D_Hw_I nt_Proc is the address of the interrupt service routine. V I D_Opt ions is a
bitmapped flag. VPICD_OPT_CAN_SHARE allows other VxDs to call VPICD_
Vi rtua 1 i ze_I RQ for the same IRQ. (VXDISR doesn't set this bit: the device itself
must support IRQ sharing, and simply setting the option bit won't make IRQ-sharing
work.) The VPICD_OPT_REF ...:.DATA bit works in conjunction with the V ID_Hw_I nt_Ref
parameter. If VPI CD_OPT_REF _DATA is set, the VPICD passes VI D_Hw_I nt_Ref as a
parameter when it calls the interrupt handler. V I D_Hw_I nt_Ref is used as reference
data, so VXDISR passes a pointer to its device context structure.

Be sure to set the other callback fields (V I 0_ Vi rt_I nCProc, V I D_EO I_P roc,
V ID_Mask_Change_Proc, and VID_IRET_Proc) to NULL. The VPICD uses
these callbacks to notify a VxD of other interrupt-related events, such as
when a V86 mode or protected mode handler. is called. The section
"Virtualizing a Hardware Interrupt" in Chapter 8 will demonstrate use of
these other callbacks.

After installing its interrupt handler, On_Sys_Vm_Init enables the RTC interrupt
in two steps. In the first it writes to an RTC register to enable the interrupt "at the
device". In the second step, On_Sys_Vm_Init calls VPICD_Phys ica 11 LUnmask using
the same IRQ handle returned by VP I CD_Vi rtua 1 i ze_I RQ, which programs the PIC
to recognize interrupts on IRQ 8. This second step enables the interrupt "at the PIC".
A VxD should always use the VPICD service instead of writing directly to the PIC
mask register.

The Calling Interfacefor VPICD_Physica77y_Unmask

void VPICD_Physi cally-Unmask(IRQHANDLE hnd);
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

The On_Sys_ Vm_ T e rmi nate function reverses the steps taken at initialization, first
disabling interrupts at the device, then calling V P I CD_Phy sica 11 y-Ma sk to disable the
interrupt at the PIC, and finally uninstalling the handler with a call to
VPICDJorcLOefaul CBehavi or.

112 - Writing Windows VxDs and Device Drivers

The Calling Interface/or VPICD_Physically_Mask

void VPICD_Physically_Mask(IRQHANDLE hnd);
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

The Calling Interface/or VPICD_Force_Defau7t_Behavior

void VPICDJorce_DefaulLBehavior(lRQHANDLE hndl;
hnd: IRQ handle returned by VPICD_Virtualize_IRQ

Assembly Thunks and CHandlers
Many VMM and VxD services require a callback function parameter. The VXDISR
example in this chapter introduces a callback convention that all other VxDs in this
book will follow. All registered callback functions reside in the VxD's assembly lan
guage file. The name of each registered callback function ends in "Thunk". Each call
back function always transfers parameters from registers to the stack and calls an
analogous function in the VxD's C file. The name of the C function is similar to the
callback in the assembly function, except that the C function ends in "Handler"
instead of in "Thunk".

The HwlntProc Callback:
DDBISR.ASMand VXDISR. C
When a hardware interrupt occurs, the VPICD calls the registered Hw_Int_Proc call
back with the handle of the current VM in EBX and the IRQ handle in EAX. Because
On_Sys_Vm_Ini t set the VPICD_OPT_REF _DATA bit in VID_Opti ons when registering the
handler, EDX contains reference data. The registered interrupt handler is
_HwlntprocThunk in DDBISR.ASM (Listing 7.2, page 122). This function does nothing
more than push the current VM handle, IRQ handle, and reference data on the stack and
call the real interrupt handler, HwI ntProcHandl er in VXDI SR. C (Listing 7.1, page 117).

The first action taken by HwlntprocHandl er is to cast the reference data to a
pointer to its device context structure. The DEVICE_CONTEXT structure contains all
the VxD needs to know about the device: its 110 address, state information, etc.
HwI ntprocHandl er reads from the RTC Status C register to clear the interrupt.

The Calling Inter/ace/or VPICD_Phys_EOI

void VPICD_Phys_EOI(IRQHANDLEhnd);
hnd: handle returned by VPICD_Virtualize_IRQ

Handling Hardware Interrupts in a VxD - 113

Immediately before returning, HwI ntProcHandl er calls VPI CD_Phys_EO I to send an
EOI (End Of Interrupt) command for IRQ 8 (see the sidebar "EOI Handling in Win
dows"). This EOI tells the PIC to recognize further interrupts from the RTC. A com
mon mistake in coding an interrupt handler is to forget the EO!. The result is an
interrupt handler that is called once but never again: although the device itself may be
generating more interrupts, the PIC doesn't let these interrupts through to the proces
sor until an EOI is received.

HwI ntProcHandl er returns a boolean indicating whether or not it serviced (cleared)
the interrupt. On return, its caller, _HwlntProcThunk in DDBISR.ASM (Listing 7.2,
page 122), examines this return value. If true (meaning the interrupt was serviced,)
_HwlntprocThunk clears the Carry flag before returning to the VPICD, otherwise
_HwlntprocThunk sets the Ca rry flag.

The VPICD uses this return value to support shared interrupts. If more than one
VxD virtualizes the same IRQ, and both set VPICD_OPT_CAN_SHARE during registra
tion, the VPICD keeps the registered interrupt handlers in a list. When the interrupt
occurs, the VPICD calls the first handler on the list. When that handler returns, the
VPICD examines the Carry flag. If Carry is set, meaning the interrupt handler did not
service the interrupt, the VPICD calls the next handler in the list. This continues until
one of the handlers services the interrupt.

Event Handling in VXDISR
In many cases, a VxD's interrupt handler isn't able to fully process the interrupt
because the VMM or VxD services required aren't asynchronous. (See the section
"Using Events with Bus-master DMA Transfers" in Chapter 6 for an explanation of
synchronous and asynchronous services.) In this situation, the interrupt handler must
schedule an event (which will be called later) and call the needed VMMNxD service
from the event callback. HwI ntProcHa ndl er demonstrates this technique, even
though it doesn't really need it (the only VxD service it uses is VPICD_Phys_EOI,
which is asynchronous).

EO] Handling in Windows

Windows uses the interrupt controller's EOI mechanism differently than does DOS. The VPICD is the first
VxD to be notified of an interrupt, and the VPICD immediately sends a "specific EO!" to the controller -
specifically for the level of the interrupting device. Then the VPICD masks (disables) that particular interrupt
level on the controller. These two actions allow other interrupt levels to be recognized, including those of
lesser priority than the interrupting level. When a VxD calls VPICD_Phys:..-EOI before exiting the interrupt han
dler, the VPICD unmasks (enables) interrupts on that same level.

114 - Writing Windows VxDs and Device Drivers

The Calling Inter/ace/or Schedu7e_G7oba7_Event

EVENTHANDLE Schedule_Global_Event(void *EventCallback. void *RefData);
EventCallback: pointer to callback function;
Ref Data: pOinter to reference data to be passsed to callback function

HwIntProcHandler schedules a global event, meaning that the event callback could
occur in the context of any VM. A global event is used because the actions taken in the
event callback aren't specific to anyone VM. The parameters to Schedul e_Gl oba l_Event
are straightforward: a pointer to the callback function and a pointer to reference data. The
return value is an EVENTHANDLE, which is used to cancel the event.

As with the interrupt handler, the function passed to Schedul e_Gl oba l_Event is
actually a procedure in DDBISR.ASM, called EventThunk. This procedure takes the
three parameters passed in by the VMM - the current VM handle in EBX, the refer
ence data in EDX and a pointer to the Client Register Structure in EBP - and pushes
them on the stack before calling the real event handler in VXDI SR. C. (The Client Reg
ister Structure was introduced in Chapter 4.)

EventHandl er is the name of the real event handler. EventHandl er first casts the
reference data to a DEVICE_CONTEXT pointer, then zeros out the event handle and
increments the EventCounter field of the structure.

If your VxD ever cancels an event from an interrupt handler or timeout, the event
handler must take special precautions to prevent cancellation of an already-dispatched
event. Although VXDISR doesn't have cancel code, it follows this rule anyway. An
event handler guards against this condition by zeroing out the event handle as its very
first action. This precaution ensures that if the VxD's cancel code interrupts the event
handler, the handle passed to VMM cancel service will be zero. It's permitted to pass
the VMM cancel routine a handle of zero, but it's not ok to cast the handle of an event
that is already in progress.

Windows 3.x Differences
There is only one minor difference in handling an IRQ in a Windows 3.x VxD as com
pared to a Windows 95 VxD. The VPICD doesn't support the VPICD_OPT_REF _DATA
flag for VP I CD_Vi rtua 1 i ze_I RO, so no reference data can be passed to the interrupt
handler. Since the VXDISR example above used this reference data to provide a
pointer to the DEVICE_CONTEXT associated with the interrupting device, how does a
Windows 3.x handler get context information?

A Windows 3.x interrupt handler must provide its own context information. When
the VxD supports only a single device instance, this is trivial. The assembly language
handler pushes the hard-coded address of the one and only device context structure
before calling the C handler routine.

Handling Hardware Interrupts in a VxD - 115

EXTRN ptrDevice:DWORD ;declared in C module, as is Device structure

BeginProc HwlntProcThunkDev
mov edi, ptrDevice
cCall _HwlntHandler, <ebx, eax, edi>
or eax, eax
ret

EndProc HwlntProcThunkDev

By extending this concept a little further, the VxD can support multiple device
instances, and thus multiple device contexts. Declare a different"entry point in the
assembly language module for each device context and have each entry point push the
address of its own device context structure onto the stack before calling the C routine.

EXTRN ptrDevicel:DWORD
EXTRN ptrDevice2:DWORD

;declared in C module, as is Devicel structure
;declared in C module, as is Device2 structure

BeginProc HwlntProcThunkDevl
mov edi, ptrDevicel
cCall _HwlntHandler, <ebx, eax, edi>
or eax, eax
ret

EndProc HwlntProcThunkDevl

BeginProc HwlntProcThunkDev2
mov edi, ptrDevice2
cCall _HwlntHandler, <ebx, eax, edi>
or eax, eax
ret

EndProc HwlntProcThunkDev2

Of course, the initialization code that registers the interrupt handlers with the VPICD
must change also. When registering a handler for Devi eel, HwlntproeThunkDevl is
the handler; when registering for Devi ee2, HwlntproeThunkDev2 is the handler.

Note that for both single and multiple device instances, the real handler in the
C module remains ignorant of these changes in the assembly language module.
HwlntproeHandl er keeps its DEVICE_CONTEXT* parameter, only this time it's pro
vided by the HwlntProeThunk instead of the VPICD.

116 - Writing Windows· VxDs and Device Drivers

Summary
Once you understand the role of the VPICD with regard to hardware interrupt han
dlers, writing a VxD that services an interrupt isn't much harder than writing a DOS
ISR. Instead of calling DOS Set Vector, use VPICD_Virtualize_IRQ. Instead of
writing to the PIC directly to unmask an IRQ, use V P I CD_Unma s k_I RQ, and instead of
sending an EO! to the PIC directly, use VPICD_Phys_EOI.

However, you may discover your VxD gets less than exciting performance. Even
when implemented in a VxD, an ISR running under Windows will show substantially
worse latency than a similar ISR running under DOS. The fact that a Windows or
DOS application can actually disable processor interrupts for an indeterminate time
means that even a VxD ISR can be delayed indefinitely.

Even so, most modern hardware has quick response time and some buffering.
These factors mean that a VxD ISR may be an acceptable solution for all but applica
tions with "hard" real-time requirements.

Handling Hardware Interrupts in a VxD -117

Listing 7.1 VXDISR.C

#include <basedef.h>
#include <vmm.h>
#include <debug.h>
#include <vxdwraps.h>
#include <vpicd.h>

#include <vxdcall .h>
#include <wrappers.h>
#include <intrinsi.h>

#define RTC_IRQ 8

#define RTC_STATUSA OxA
#define RTC_STATUSB OxB
#define RTC_STATUSC OxC

#define STATUSB_ENINT Ox40

#define CMOS_ADDR Ox?O
#define CMOS_DATA Ox?l

typedef struct
(

VPICD_IRQ_DESCRIPTOR
IRQHANDLE
EVENTHANDLE
DWORD
BYTE
BYTE

DEV ICE_CONTEXT;

DEVICE_CONTEXT rtc;

desc Irq;
hndlrq;
hEvent;
EventCounter;
StatusA;
StatusB;

BOOL OnDevicelnit(VMHANDLE hVM);
void OnSystemExit(VMHANDLE hVM);
BOOL _stdcall HwlntProcHandler(VMHANDLE hVM, IRQHANDLE hIRQ, void *Refdata);
VOID _stdcall EventHandler(VMHANDLE hVM, PVOID Refdata, CRS *pRegs);
void CmosWriteReg(BYTE reg, BYTE val);
BYTE CmosReadReg(BYTE reg);

118 - Writing Windows VxDs and Device Drivers

Listing 7.1 (continued)

II functions in asm module
void EventThunkC void);
void HwlntProcThunkC void);

VXDISR.C

BOOl OnSysDynamicDevicelnitCVMHANDlE hVM)
(

OnDevicelnitC hVM);
return TRUE;

BOOl OnSysDynamicDeviceExitCvoid)
(

OnSystemExitCGet_Cur_VM_HandleC));
return TRUE;

BOOl OnDevicelnitCVMHANDlE hVM)
(

rtc.desclrq.VID_IRQ_Number = RTC_IRQ;
rtc.desclrq.VID_Options = VPICD_OPT_REF_DATA;
rtc.desclrq.VID_Hw_Int_Ref = &rtc;
rtc.desclrq.VID_Hw_Int_Proc = CUlONG)HwlntProcThunk;
rtc.desclrq.VID_EOI_Proc =
rtc.desclrq.VID_Virt_Int_Proc =
rtc.desclrq.VID_Mask_Change_Proc =
rtc.desclrq.VID_IRET_Proc = 0;

if C!Crtc.hndlrq = VPICO_Virtualize_IRQC&rtc.desclrq»)
return FALSE;

rtc.StatusA = CmosReadRegCRTC_STATUSA);
rtc.StatusB = CmosReadRegCRTC_STATUSB); ,

Handling Hardware Interrupts in aVxD -119

Listing 7.1 (continued) VXDISR.C

II set interrupt frequency to only 2 times a sec
CmosWriteReg(RTC_STATUSA, rtc.StatusA I OxOF);
II enable clock interrupts
CmosWriteReg(RTC_STATUSB, rtc.StatusB I STATUSB_ENINTJ;
II clear flags
CmosReadReg(RTC_STATUSC);

rtc.EventCounter = 0;

VPICD_Physically_Unmask(rtc.hndIrq);

return TRUE;

VOID OnSystemExit(VMHANDLE hVM)
(

CmosWriteReg(RTC_STATUSA, rtc.StatusA);
CmosWriteReg(RTC_STATUSB, rtc.StatusB);

Cancel_Global_Event(rtc.hEvent);
VPICD_Physically_Mask(rtc.hndIrqJ;
VPICD_Force_Default_Behavior(rtc.hndIrq);

BOOL _stdcall HwIntProcHandler(VMHANDLE hVM, LRQHANDLE hIRQ, void *Refdata)
{

DEVICE_CONTEXT *pRtc = (DEVICE_CONTEXT *)Refdata;

CmosReadReg(RTC_STATUSC);

II tell VPICD to clear the interrupt

pRtc->hEvent = Schedule_Global_Event(EventThunk, (ULONGJpRtc);

return TRUE; II thunk will clear carry

120 - Writing Windows VxDs and Device Drivers

Listing 7.1 (continued) VXDISR.C

VOID __ stdeall EventHandler(VMHANDLE hVM. PVOID Refdata. CRS* pRegs)
{

DEVICE_CONTEXT *rte = (DEVICE_CONTEXT *)Refdata;

rte-)hEvent = 0;
rte-)EventCounter++;

BYTE CmosReadReg(BYTE reg
{

BYTE data;

disable NMI then ints
mov al. reg
or al. SOh
eli

; first output reg to address port
out CMOS_ADDR. al
jmp _1

; then read data from data port
in al. CMOS_DATA
mov data. a 1
jmp _3

; reenable NMI then ints
xor al.al
out CMOS_ADDR. al
sti

return data;

Handling Hardware Interrupts in a VxD -121

Listing 7.1 (continued) VXDISR.C

void CmosWriteReg(BYTE reg. BYTE val)
{

4· _.

disable NMI then ints
mov al. reg
or al.80h
eli

; first output reg to address port
out CMOS_ADDR. al
jmp _1

; then output val to data port
mov al. val
out CMOS_DATA. al
jrnp _3

; reenable NMI then ints
xor a 1. a 1
out CMOS_ADDR. al
sti

122 - Writing Windows VxDs and Device Drivers

Listing 7.2 DDBISR.ASM

.386p

;**
INC L U DES

:**

include vmm.inc
include debug. inc

V I R T U A L D E V ICE DEC L A RAT ION

DECLARE_VIRTUAL_DEVICE VXDISR, 1, 0, ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then

Successful
else

Contro 1 ca 11 fail ed

USES:
EAX, EBX, ECX, EDX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch DEVICE_INIT, _OnDeviceInit, cCall, <ebx>
Control_Dispatch SYSTEM_EXIT, _OnSystemExit, cCall, <ebx>

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicDeviceInit, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT, _OnSysDynamicDeviceExit, cCall

clc
ret

EndProc ControlProc

Handling Hardware Interrupts in a VxD - 123

Listing 7.2 (continued) DDBISR.ASM

PUBLIC _HwIntProcThunk
_HwlntProcThunk PROC NEAR ; called from C, needs underscore

sCall HwlntProcHandler, <ebx, eax, edx>
or ax, ax
jnz clearc
stc
ret

clearc:
clc
ret

_HwIntProcThunk ENDP

BeginProc _EventThunk

sCall EventHandler, <ebx,edx,ebp>
ret

EndProc _EventThunk

END

124 - Writing Windows VxDs and Device Drivers

Listing 7.3 VXDISR.MAK

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG

all: vxdi sr. vxd

vxdisr.obj: vxdisr.c
c1 $(CVXDFLAGS) -Fo$@ %s

ddbisr.obj: ddbisr.asm
m1 $(AFLAGS) -Fo$@ -F1 %s

vxdisr.vxd: ddbisr.obj vxdisr.obj .. \wrappers\vxdca11 .obj vxdisr.def
echo >NUL @«vxdisr.crf

-MACHINE:i386 -DEBUG -DEBUGTVPE:MAP -PDB:NONE
-DEF:vxdisr.def -OUT:vxdisr.vxd -MAP:vxdisr.map
-VXD vxdwraps.c1b wrappers.c1b ddbisr.obj vxdisr.obj vxdca11.obj
«KEEP

link @vxdisr.crf
mapsym vxdisr

Handling Hardware Interrupts ina VxD -125

Listing 7.4 VXDISR.DEF

VXD VXDISR DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'
_ITEXT CLASS 'ICODE'

I DATA CLASS 'ICODE'
_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
VXDISR_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCAROABLE

126 - Writing Windows VxDs and Device Drivers

ChapterS

VxDs for Virtualization
Earlier chapters explained how to write a "driver" VxD, that is a VxD that interfaces to
and controls a hardware device. Topics included interfacing to I/O-mapped, mem
ory-mapped, and DMA devices, as well as hardware interrupts. This chapter will focus
on a different aspect of VxD functionality: how to virtualize a hardware device
(I/O-mapped or memory-mapped) and how to virtualize a hardware-generated interrupt.

Windows virtualizes physical devices because with multitasking, there is always
the possibility of two processes attempting to use a device simultaneously. Virtualiza
tion wouldn't be required if every process went through the same driver to access the
device; in that case, the driver could serialize the access.

Unfortunately, some applications (especially DOS applications) attempt to manip
ulate the hardware directly, instead of calling the operating system's driver. Because
VxDs rely upon the 80x86's port-trapping and page-trapping hardware instead of an
explicit call to a device driver, the VxD can intercept any VM's attempt to access a
device. This includes even direct manipulations by a DOS application. Thus, the VxD
can reliably detect when mUltiple VMs are trying to access the same device.

Note that Windows does not rely on VxDs to detect conflicts between
multiple Windows applications trying to access the same device. The
port-trapping and page-trapping features work on a per-VM basis, and all
Windows applications live in the same VM. It is the job of a Windows driver
DLL to serialize access to the device by multiple Windows applications.

127

128 - Writing Windows VxDs and Device Drivers

Thus, a VxD that virtualizes a device is responsible for detecting and resolving
conflicts between multiple VMs that want to use the same device. The VxD "resolves"
the conflict by enforcing a particular "arbitration policy". In the Windows environ
ment, the most common policies are:

Allowing one VM to access the physical device and ignoring the other VMs. The
VPD (Virtual Printer Device) uses this, the simplest form of virtualization.

Allowing one VM to access the physical device and virtualizing the device for the
other VMs. The VKD (Virtual Keyboard Device) takes this approach. The VKD
assigns one VM to have the input focus, and that VM gets access to the physical
keyboard, which includes keyboard interrupts. The VKD also makes sure the other
VMs see an empty keyboard buffer

Allowing multiple VMs to share the same physical device while maintaining the
illusion, from the VM point of view, of exclusive access. The VDD (Virtual Dis
play Device) behaves this way. Each windowed DOS VM writes directly to what it
thinks is display memory, while the VDD remaps this memory to another buffer,
which appears in a window.

Allowing one VM to access the virtual device while the VxD independently con
trols the physical device. The VCD (Virtual Com Device) uses this, perhaps the
most complicated form of virtualization. The VCD buffers incoming serial data,
and transparently "feeds" it to a VM by reflecting the interrupt and then, when the
VM interrupt handler reads the serial port data register, substituting an
already-received byte from the buffer.

Like physical devices, hardware-generated interrupts must also be virtualized.
Hardware-generated interrupts have no knowledge of VMs. Interrupts are virtualized
to assure that each interrupt is visible to every VM that needs it, regardless of which
VM was running when the interrupt was generated.

This chapter presents two example VxDs, PORTTRAP and PAGETRAP, that illus
trate the techniques involved in virtualizing both port-mapped and memory-mapped
devices. A third example, REFLECT, virtualizes a hardware interrupt. All of these
VxDs use the simplest arbitration policy to resolve access conflicts. Avoiding unneces
sary complexity in the arbitration policy emphasizes the basic techniques that are core
to all virtualization VxDs: port-trapping, page-trapping, and interrupt reflection.

VMM and Processor Exceptions
At Windows startup, the VMM installs handlers in the IDT for all processor excep
tions, including faults, traps, and interrupts. VxDs may then use various VMM services
to register for notification from the VMM when a particular fault, trap, or interrupt
occurs. The VPICD always registers with the VMM for all hardware interrupts, then
other VxDs register with the VPICD to receive notification of hardware interrupts.

VxDs for Virtualization - 129

Although VMM provides a general purpose Hook_VMMJault service, which can be
used to hook any type of fault, trap, or interrupt, most VxDs should register their han
dlers via more specialized services. The VMM offers other entry points specifically for
use by port trap handlers and page fault handlers (Install_IO_Handler and
Hook_V86_Page). By using these specific services, VxDs can take advantage of the
pre-processing work done by the VMM fault handler, which figures out whichVM
caused the exception, which port or page the VM accessed, and even the specific
instruction that causes the trap/fault. Similarly, VxDs should use the VPICD_
Vi rtua 1 i ze_I RQ service to register a hardware interrupt handler rather than calling
Hook_VMMJaul t.

The VxDs presented in this chapter will use the specialized VMM and VPICD ser
vices mentioned above. PORTTRAP will use Install_IO_Handler to receive call
backs on 110 port access. PAGETRAP will use Hook_V86_Page to receive callbacks
on access to memory pages. REFLECT will use VPICD_Virtualize_IRQ service to
get callbacks on hardware interrupts.

Device Ownership
Both PAGETRAP and PORTTRAP use a very simple algorithm for device manage
ment. Succinctly stated, the strategy is: "you touch it, you own it until you die". The
first VM to access the device is dec1aredthe owner VM, and ownership is relinquished
when a VM is terminated. If any other VM attempts to access the device while it is
o~ned, the VxD may ask the user to decide whichVM should be the owner.

The concept of device ownership is fundamental to a virtualization VxD. Typi
cally the VxD disables local trapping of port 110 or of page faults to allow the owner
VM direct access to the device without causing a trap, a step which improves perfor
mance. Also, if the device generates interrupts, the VxD makes sure that only the
owner VM sees them.

Some VxDs allow access to specific 110 ports within a device without assigning an
owner, if such accesses are benign and non-destructive. For example, the VCD (Vir
tual Com Device) allows any VM to configure a serial port with baud rate, parity, etc.
Instead of outputting the bytes to the serial port, however, the VCD stores them in its
own virtual copy of the serial port registers. Ownership is assigned when a VM
accesses the serial port's interruptor data registers. As part of assigning ownership,
the VCD copies the virtual registers for that VM to the real serial port registers.

Implementing this type of behavior is more complicated and requires in-depth
knowledge of how VMs are expected to access the device. If a VM accesses the
device in a way that the VxD doesn't expect and, thus, doesn't handle it properly -
for example, not reading a status register before writing to a register - the device
won't function as the VM expects.

130 - Writing Windows VxDs and Device Drivers

Virtualizing an lID-mapped Device:
The PORTTRAP Example
Writing a VxD to demonstrate I/O-mapped virtualization using port-trapping is com
plicated by the fact that Windows contains VxDs that virtualize most of the standard
PC I/O port devices, and the VMM allows only one VxD to trap access to a given port.
Rather than take over an existing device, this chapter's PORTTRAP traps the ports of
an imaginary device at I/O address 300h-307h.

The PORTTRAP example (Listing 8.1, page 151) is the most elaborate of the
examples in this chapter. It allocates per-VM storage in the VMM's Control Block
and allows the user to resolve contention between VMs. Even so, PORTTRAP
requires a very modest amount of code: only three message handlers (OnDevi ce I ni t,
OnSystemExi t, and OnVmTermi nate) and a port trap handler.

The Initialization Routine: OnDevi ce In i t
BOOl OnDevicelnit(VMHANDlE hVM)
{

i nt i'

for (i=O; i < device.numloPorts; i++)
{

if (!Install_IO_Handler(device.loBase+i, PortTrapThunk))
(

DPRINTFl(buf. "Error installing handler for io %x\r\n", IO_BASE+i);
return FALSE;

if (device.cbOffset = _Allocate_Device_CB_Area(sizeof(DEVICE_CB), 0))
(

OPRINTFO("Error alloc'ing control block\r\n");
return FALSE;

return TRUE;

OnDevi ce I nit calls the VMM service I nsta 11_IO_Handl er to register a port trap
handler for each of the trapped ports. The VxD calls I nsta 11_IO_Handl er in a loop,
passing the same callback function each time (PortTrapThunk), but a different port
number. Because the same callback function is used for all the ports, when the trap
handler is invoked it will need to determine which port was accessed before it can act
appropriately. This is an easy decision, because the port number is provided to the
callback routine. An alternative method is to give each port its own callback routine.

VxDs for Virtualization - 131

The I nsta 11_IO_Handl er service initially enables trapping for all VMs, current
and future, which means that PORTTRAP doesn't have to take any special action
when new VMs are created. A VxD could change this initial behavior by calling other
VMM services: Disable_Global_Trapping and Enable_Global_Trapping change
the trapping state of a specific port for all VMs; Enable_Local_Trapping and
Disable_Local_Trapping change the trapping state only for a specific VM and a
specific port.

The Calling Interface for lnsta 7 7_l0_Hand7 er

BOOL Install_IO_Handler(DWORD PortNum, PIO_HANDLER IOCallback);
PortNum: 1/0 port number
IOCallback: pointer to callback function, called when VM accesses

PortNum

PORTTRAP uses both device context and per-VM data structures. The device
context structure, DEV I CE_CONTEXT, includes fields for items like the I/O port base
address and the handle of the owner VM. The per-VM structure, DEVICCCB, consists
of a single boolean field. This boolean is set whenever a user is asked to choose an
owner VM from among two contending VMs. OnDevi celnit uses the VMM service
_A 11 ocate_Devi ce_CB_Area to allocate room for a DEVICE_CB in the VM Control
Block, then stores the returned offset in the device context.

Handling Different 10 Types: PortTrapThunk
When a port trap occurs, the VMM calls the handler registered through
Install_IO_Handler. As is the case with other example VxDs in this book, the
actual registered callback is found in the assembly module. In this case the function is
_PortTrapThunk in the module PORTDDB.ASM (Listing 8.2, page 154), and like the
other example VxDs we've seen so far, _PortTrapThunk does minimal processing
before calling the "real" callback in the C module, which is PortTrapHa ndl er.

132 - Writing Windows VxDs and Device Drivers

When the VMM invokes a port trap handler, the register data is set up as follows:

Input:
EAX=data for OUT instruction
EBX=current VM handle
ECX=IOType IIBYTE_INPUT, BYTE_OUTPUT, WORD_INPUT, WORD_OUTPUT,

IIDWORD_INPUT, DWORD_OUTPUT, STRING_IO, REP_IO,
IIADDR_32_IO, REVERSE_IO

EDX=port number
EBP=address of Client Register Structure
Output:
EAX=data returned by IN instruction

PortTrapThunk passes all these parameters on to the C routine, after some initial
pre-processing which involves the macro Emul a te_Non_Byte_IO.

BeginProc PortTrapThunk

Emulate_Non_Byte_IO
cCall _PortTrap, <ebx, ecx, edx, ebp, eax>
ret

EndProc PortTrapThunk

The VxD is "emulating" non-byte I/O because its hardware understands only
byte-sized access. Nothing prevents an application from issuing word or dword
I N/OUT instructions, or even from performing "string I/O" using REP I NSB/OUTSB.
The VMM provides the macro Emul a te_Non_Byte_I 0 to allow a VxD port trap han
dler to pass non-byte accesses back to the VMM. This macro expands to

;Emulate_Non_Byte_IO macro expansion
cmp ecx, BYTE_OUTPUT
jbe SHORT Byte_IO
VMMJmp Simulate_IO
Byte_IO:
;cCall macro expansion
push eax
push ebp
push edx
push ecx
push ebx
call _PortTrap
;C routine returned with data in EAX, just return as is to VMM
ret

VxDs for Virtualization - 133

lfthe IOType parameter in ECX indicates a byte-sized access, the generated code
falls through to the code after the macro, which pushes parameters on the stack and
calls the C routine. If IOType is non-byte, then the code jumps to the VMM service
S i mu 1 a te_I 0 . This service breaks down a word access into two sequential calls back
into the port trap handler, each with ECX=BYTE_I NPUT or BYTE_OUTPUT. The service
similarly breaks down dword and string access into multiple calls into the port trap
handler.

The C routine PortTrapHandl er called by _PortTrapThunk passes a return value
in EAX, which _PortTrapThunk passes on to the VMM when it returns. If IOType was
an I N of any size, the VMM will move the contents of EAX to the Client Register
Structure EAX field. The end result is that the return value from _PortTrapThunk
appears to the VM as the result of an I N instruction.

If your hardware directly supports word or dword 110, your handler should
also support these modes directly, rather than using Ernul ate_Non_Byte_IO.

Checking Ownership: PortTrapHand7 er
After taking care of non-byte access with the macro Ernul ate_Non_Byte_IO, the
assembly language routine _PortTrapThunk calls the function PortTrapHandl er in
the C module to do the real work - to allow port access by the owner VM while pre
venting access from a non-owner VM.

DWORD _stdcall PortTrapHandler(VMHANDlE hVM. DWORD IOType. DWORD Port.

DEVICE_CB *pCB;
BOOl bThisVMlsOwner;
VMHANDlE newVMOwner;

bThisVMlsOwner = TRUE;

if (!device.VMOwner)
{

CLIENT_STRUCT *pcrs. DWORD Data)

II device doesn't have an owner. assign this VM as owner
SetOwner(hVM. &device);

134 - Writing Windows VxDs and Device Drivers

else if (device.VMOwner && (device.VMOwner != hVM))
{

II device has an owner, but it's not this VM
pCB = (DEVICE_CB *)«char *)hVM + device.cbOffset);
if (pCB->flags & FLAGS_CONTENDED)
{

II this VM has already attempted to grab the device
bThisVMIsOwner = FALSE;

else
(

newVMOwner = SHELL_Resolve_Contention(device.VMOwner, hVM,
device.DeviceName);

if (newVMOwner != dev;ce.VMOwner)
{

bThisVMIsOwner = FALSE;
Data = OxFFFFFFFF;

if (bThisVMIsOwner)
{

if (IOType & BYTE_INPUT)
(

Data = _inp(Port);

else if (IOType & BYTE_OUTPUT)
(

_outp(Port, Data);

return Data;

If the VMOwner field of DEVICE_CONTEXT is set to zero, then the device doesn't
have an owner yet. In this case, the code calls the subroutine SetOwner to assign the
VM that caused the trap as the owner. SetOwner updates the VMOwner field of
DEV ICE_CONTEXT and disables local trapping for the new owner VM, using the VMM
service Di sabl e_Loca l_Trappi ng. This service takes as parameters a VM handle and
a port number. SetOwner calls the service in a loop, using the same VM handle (the
new owner) and changing the port number each time to disable trapping on each of
the device's ports. With local trapping disabled, the owner VM can now access the
device without causing a fault and, thus, without interference from PORTTRAP.
Access by any other VM will still cause a fault and a call to PortTrapHandl er.

VxDs for Virtualization - 135

If the device does have an owner but it's not the VM that caused the trap, PORT
TRAP may use the SHELL_Resol ve_Contenti on service to ask the user which VM
should be owner: the already-assigned owner VM or the new "contender" VM. How
ever, the VxD doesn't bother the user every time a non-owner VM accesses the
device, only the very first time. The FLAGS_CONTENDED bit in the Flag field in the
per-VM control block determines whether theVxD queries the user.

If FLAGS_CONTENDED is set, it means the VxD has already warned the user once
that this VM is accessing the port and asked the user to assign an owner. In this case,
PortTrapHandl er simply sets the local variable bThi sVMI sOwner to FALSE, which
prevents code executed later in the function from performing the liD access on behalf
oftheVM.

If FLGS_CONTENDED is clear, the VxD immediately sets it and then calls
SHELL_Resol ve_Contenti on, passing as parameters the VM handle of the current
owner, the VM handle of the "contender" and a pointer to a device name. (See the
sidebar "Why Blue Text?" for details on the SHELL_Reso 1 ve_Content i on display.)
The SHELL VxD then displays a dialog box listing the name of each VM (usually
corresponding to the name of the DOS application running in the VM) and the name
of the device, and the user chooses which VM should own the device,

SHELL_Resol ve_Contenti on returns to PortTrapHandl er with the handle of the
chosen VM as a return value. If the user has not chosen the contending VM as owner,
then PortTrapHandl er sets the local variable bThi sVMI sOwner to FALSE, so that code
later in the function will not perform the liD.

Why Blue Text?

Why does SHELL_Reso 1 ve,-Content i on sometimes display a blue text screen instead of a dialog box?
SHELLResolve_Contenti on appears to behave inconsistently, sometimes displaying a true Windows dia

log box on top of the GUI, and sometimes going into full-screen mode and displaying a blue text message.
Many developers think this blue screen is ugly and would like to force SHELL_Reso 1 ve_Content i on to always
display a true dialog box.

Bad news: you can't. The SHELL VxD's behavior depends on the current state of the GUI subsystem of
the System VM, as well as which VM is current when SHELL_Resol ve_Contenti on is called .. In short, if the
GUI subsystem is already "busy" when this SHELL function is called, a true dialog box cannot be displayed,
so the SHELL VxD does the next best thing: switches to text mode and displays an ugly blue screen with the
message on it.

136 - Writing Windows VxDs and Device Drivers

At this point, PortTrapHandl er has determined whether or not the.VM that
caused the port trap is indeed the owner VM, and thus should be allowed to access the
port, and has set bThi sVMIsOwner accordingly. If bThi sVMI sOwner is now TRUE,
PortTrapHandl er carries out the I/O access on behalf of the VM, using the IOType
parameter to determine whether to execute an I N or OUT and the Port parameter to
determine the port address. If the access was an OUT, the Data parameter provides the
output data. If the access was an IN, PortTrapHandl er sets Data to the result of the IN.
Finally, PortTrapHandl er returns to his caller with Data as a return value. As explained
in the previous section, the VMM propagates the port trap handler return value back
to the VM, so the VM sees this value as the result of its I N instruction.

Processing VM_TERMINATE·
Once a VM has acquired ownership of a device, it continues to own it until

• the VM terminates or

• the user selects a different owner through the Shell_Resol ve_Contenti on service;

To detect the first case, PORTIRAP processes the VM_TERMINATE message.
OnVmTermi nate checks to see if the VM being destroyed is the device owner and, if
so, sets VMOwner to zero to mark the device as unowned. OnVmTerminate does not
need to re-enable port-trapping for the VM, because the VM itself is being destroyed.

Using PORTTRAP
I've implemented PORTTRAP as a static VxD so that it is present for the creation and
destruction of all VMs. Under Windows 95, you can load a static VxD one of two
ways: a devi ce= statements in the [386Enh] section of SYSTEM. INI, or a registry
entry under SYSTEM\CurrentControlSet\Services\VxD. For details on static load
methods, refer to Chapter 4.

An easy way of testing PORTTRAP is to open several DOS boxes and use
DEBUG to access the device through one of the ports at 300h-307h. (Use the ; and 0

commands for input and output.) You'll see that aftetyou access anyone of the eight
I/O ports that make up the imaginary device in one DOS box, the first access to the
device in a different DOS box results in the "Device Contention" dialog box from the
SHELL VxD. If you assign the original DOS box as owner, subsequent accesses by the
second DOS box will not result in the dialog box. But if you open up a third DOS box
and access the port from there, you will once again seethe Device Contention dialog.

VxDs for Virtualization - 137

Virtualizing a Memory-mapped Device:
The PAGETRAP Example
A device that is memory-mapped, as opposed to I/O-mapped, may also need a VxD to
perform device arbitration. The need for such a VxD depends on where the device is
mapped in memory. A device mapped above 1Mb in physical memory by definition
cannot be accessed by a DOS application, and so doesn't need to be virtualized. But a
device mapped below 1Mb can be accessed by a DOS application, and so may need a
VxD for virtualization.

Because the only standard PC memory-mapped device is the video adapter, and the
Video Device Driver (VDD) already virtualizes it, I've designed PAGETRAP (Listing 8.5,
page 157) to virtualize the monochrome video adapter. If you don't have a mono
chrome video adapter, then PAGETRAP will still work, as PORTTRAP did, on an
imaginary device.

The Initialization Routine
To intercept access to a memory-mapped device, PAGETRAP calls the following
VMM services in its Dev i ce_I nit message handler:

• _Ass i gn_Devi ce_V86_Pages, to tell the VMM that the VxD will be using a spe
cific range of pages in V86linear address space (i.e. below 1Mb),

• _ModifyPageBits, to mark the pages as not present so that VM access to the
pages will cause a page fault, and

Hook_V86_Page, to register a page fault handler for those pages.

Note that PAGETRAP does not allocate pages in physical memory, because
the memory is already supplied by the device.

BOOl OnDevicelnit(VMHANDlE hVM)
{

DWORD PageNum = device.RegionPhysAddr » 12;
DWORD nPages = device.RegionSize I 4096;

if (!_Assign_Device_V86_Pages(PageNum, nPages, hVM, 0))
(

DPRINTF("Assign_Dev;ce_V86_Pages failed\r\n");
return FALSE;

138 - Writing Windows VxDs and Device Drivers

if (!Hook_V86_Page(PageNum. PageFaultThunk »

(
DPRINTF("Hook_V86_Page fai led\r\n");
return FALSE;

if (!_Modi fyPageBits (hVM. PageNum. nPages. -P _AVAI L. O. PG_HOOKED. 0 »
(

}

DPRINTF("ModifyPageBits failed\r\n");
return FALSE;

return TRUE;

_Assign_Device_V86_Pagesallows a VxD to claim pages in a VM's linear
address space for use by a device. Later calls will associate physical address space
with these linear pages. PAGETRAP uses the monochrome video adapter's physical
address and size, stored inthe DEVICCCONTEXT structure, to derive the values for the
VMl i nrPage and nPages parameters.

BOOl _Assign_Device_V86_Pages (DWORD VMLinrPage. DWORD nPages.
VMHANDLE hVM. DWORD flags);

VMlinrPage: linear page number (linear address » 12)
nPages: number of (4 KB) pages
hVM: zero for global assignment

non-zero VM handle for local assignment
flags: reserved; must be 0

A zero value for the hVM parameter means the assignment is global, that is, the
pages are assigned to the device in all VMs (present and future). A non-zero value
means the assignment is local; the pages are assigned to the device only in the VM
identified by hVM. The VMM will return an error if one VxD has claimed a page glo
bally and another VxD tries to claim the same page, whereas two different VxDs can
both claim the same page locally without error. PAGETRAP uses zero for hVM, so that
the device pages are claimed in all VMs.

Next, the OnDevi celnit routine calls Hook_V86_Page to register a page fault han
dler routine. PAGETRAP only hooks a single page. If you're writing a VxD for a
device that spans multiple pages, you will need to call this service repeatedly - once
for each page. I'll explain thepage fault handler code in detail later.

VxDs for Virtualization - 139

The Calling Interface for Hook_V86_Page

BOOl Hook_V86_Page(DWORD PageNum. PV86Page_HANDLER Callback);
PageNum: linear page number
Callback: pointer to callback function.

called when any VM causes a page-fault on PageNum

Last, OnDevi celnit calls _ModifyPageBits to mark the device page as not
present in the System VM. Once again, the parameters hVM, VMl i nPgNum, and nPages
are self-explanatory. The bit-mapped values for the bi tAnd and bi tOr parameters
match the processor's page table entry bits exactly.

The Calling Interface for _ModifyPageBits

BOOl _ModifyPageBits(VMHANDlE hVM. DWORD VMlinPgNum. DWORD nPages.
DWORD bitAnd. DWORD bitOR. DWORD pType.
DWORD Flags);

To force a page fault. PAGETRAP must clear the P _PRES, P _WRITE, and P _USER
bits. The VMM. H header files has a /fdefi ne for this particular combination of bits:

To clear these three bits and leave all other bits as is, PAGETRAP uses a value of
(-P _AVA I l) for the b i tAND parameter and 0 for the b i tOR. PAGETRAP uses a value
of PG_HOOKED for the pType parameter, because the DDK documentation says that
PG_HOOKED must be used if P _PRES, P _WRITE, or P _USER is being cleared.

PAGETRAP calls _ModifyPageBits with the very same parameters in its
OnCreateVm message handler, so that the device pages are also marked as
not present in the page tables for each new VM.

140 -- Writing Windows VxDs and Device Drivers

The Fault Handler Routine
PageFaultHandl er [which is called by _PageFaul tThunk in PAGEDDB. ASM (Listing 8.6,
page 160)] has two jobs: it arbitrates access to its memory-mapped device, and it
maps the owner VM's linear address to the device's physical address. PAGETRAP
uses the same strategy that PORTIRAP did for device arbitration: you touch it, you
own it. PAGETRAP's implementation is even simpler, though, as it doesn't ask the
user to resolve contention. This means PAGETRAP uses noper-VM data and thus
doesn't need to allocate space in the CB. PageFaul tHandl er merely watches for the
first VM to access the device, and assigns that VM as owner.

VOID __ stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber)
{

if (device.VMOwner)
{

II device already has an owner, owner wouldn't cause a page
II fault therefore this VM is not owner

else
(

if (!_MapIntoV86(_GetNulPageHandle(), PageNumber, hVM,
PageNumber, device.RegionSize I 4096, 0, 0 »

DPRINTFO("MapIntoV86 failed\r\n");

device.VMOwner = hVM;
_PhysIntoV86(PageNumber, hVM, PageNumber,

device.RegionSize I 4096, 0);

After an owner has been assigned, PAGETRAP causes all owner VM accesses to
the memory-mapped device to go straight to the device, while all non-owner accesses
are either ignored (writes) or return OxFF (reads). To get this behavior, PAGETRAP
uses the service _PhysIntoV86, which updates the VM's page tables to map a range
of linear address space to a range of physical memory.

VxDs for Virtualization - 141

The Calling Interfacefor _PhyslntoV86

BOOl _PhyslntoV86(DWORD PhysPage. VMHANDlE hVM.
DWORD VMlinPgNum. DWORD nPages. DWORD Flags);

PageFau1 tHandl er uses the handle of the faulting VM (provided by the caller,
_PageFaul tThunk) for hVM. Both PhysPage and VMl i nPgNum are set equal to
device.RegionPhysAddr » 12 and nPages is set to device.RegionSize/4096.
These values make linear page OxBO in the faulting VM map to physical page OxBO.
After this call, reads and writes by the VM to the device's linear address go directly to
the device, without page-faulting.

This is the action taken by PageFau1 tHand1 er if the device had no owner. On the
other hand, if the device already has an owner - a VM already accessed the pages
and was assigned ownership - then PAGETRAP must take another action. Ideally,
PAGETRAP would make it seem as if the device isn't present at that address, perhaps
by returning OxFF as a result of the VM's read of this address. But unlike a port trap
handler, a VxD page fault handler doesn't have a return value that it can use to return
OxFF for a particular memory read access.

PAGETRAP has two options to trick the non-owner VM into seeing no device at
physical address OxBOOOO. One is to _PageA 11 ocate a region of physical memory, fill
it with OxFF, and, when the page fault occurs, map the VM's pages to the allocated
page. The VM will then see a region of memory that initially reads OxFFs (although
the page can be written to and read back with a new value). Presumably the device
region would not read OxFFs if the device was actually present at that page, and the
VM would then determine the device wasn't present and would not attempt further
access.

The other option achieves the same result with less work. Instead of mapping to a
target page of OxFFs, the VxD can map the VM's pages to a special page already allo
cated by the VMM called the "null page". The null page is mapped to different loca
tions at different times, so the contents are random. This behavior should also cause
the VM to determine that the device isn't present and not attempt further access. In
my experience, the null page often maps to non-existent RAM, which does result in
reading OxFF.

PAGETRAP uses the null page approach. If the device is already owned,
PageFaul tHandl er first calls _GetNu1 PageHandl e to return the memory handle of
the null page. Then PageFaultHandler calls the VMM service _MaplntoV86 to
map the VM's linear address space to this null page.

142 - Writing Windows VxDs and Device Drivers

The Calling Inter/ace/or _MaplntoV86

BOOl _MaplntoV86(MEMHANDlE hMem. VMHANDlE hVM.
DWORD VMlinPageNumber. DWORD nPages. DWORD PageOff.
DWORD Fl ags) ;

PAGETRAP uses the handle returned by _GetNul PageHllndl e for the hMem
parameter and the VM handle of the faulting VM for hVM. Once again, VMLi nPgNumis
device.RegionPhysAddr » 12 and nPages is set to device.RegionSize/4096.
This service has an additional parameter, PageOff, which PAGETRAP sets to 0 so the
first page of the linear region is mapped into the first page of the physical (null page)
region. After the call to _MaplntoV86 with these parameters, reads and writes by the
VM to the device's linear address go directly to the null page without page-faulting.

Processing VM_Terminate
PAGETRAP also processes the VM....JERMINATE message. OnVmTerminate checks to
see if the VM being destroyed is the device owner, and if so, sets VMOwner in the
device context to zero to mark the device as unowned. It is not necessary to do any
thing with the VM's page tables since the VM is being destroyed.

Using PAGETRAP
You can test PAGETRAP by opening several DOS prompt windows and using
DEBUG to read and write to the monochrome adapter at BODO: OOOOh. If you have an
adapter installed, you should be able to read and write to it via DEBUG in the first
DOS window that was opened, but you should see random data in the window when
reading and writing to it from subsequent DOS windows. If you don't have an adapter
at all, you'll read only OxFFs from the first DOS window and random data from the
other DOS windows.

VxDsfor Virtualization -143

Virtualizing a Hardware Interrupt
When virtualizing a device that generates interrupts, a VxD may virtualize the inter
rupt by "reflecting" it to a VM for servicing instead of servicing it in the VxD. A VxD
reflects an interrupt - causes the interrupt handler in a VM to execute - by using
VPICD services. A VxD can reflect an interrupt to any VM it chooses, but most VxDs
assign VM ownership of a device through port-trapping or page-trapping, or even
through an API, and then reflect all interrupts to the owner VM.

Because hardware interrupts occur asynchronously, any VM could be executing at
the time a VxD calls the VPICD service for reflection. As the first step in -reflection,
the VPICD must force the desired VM to be scheduled. The VPICD forces the sched
uling change by calling the VMM service Ca 11_Pri ori ty-VM_Event with the highest
priority, Ti me_Crit i ca l_Boost.

The VPICD provides a callback with this service, so the VMM may notify the
VPICD when the target VM has been scheduled. The VPICD responds to the callback
by using anotherVMM service, Simul ate_Int, to modify the VM's execution envi
ronment. Simul ate_Int changes the VM's state information so that it appears to exe
cute an I NT instruction: the VM's CS, I P, and flags registers are pushed onto the VM's
stack; and the VM's new CS and I P values are fetched from the VM's IVT (location
0000: OOOOh in the VM's address space). In addition, the VPICD also clears the VM's
interrupt flag because it's really simulating a hardware interrupt, not a software inter
rupt. When the VPICD returns from this callback and the VMM switches back to V86
mode, the VM immediately executes the interrupt handler for the hardware interrupt
that was originally fielded by the VPICD.

WhichVM?
The VPICD itself will reflect a hardware interrupt that is not claimed by any other VxD.
Although the VPICD doesn't know about any other hardware devices besides its own (the
PIC), it must still decide which VM gets the interrupt. In making this decision, the VPICD
differentiates between local interrupts and global interrupts. A local interrupt is one that
was disabled (in the physical PIC) at Windows startup. A global interrupt is one that was
enabled at Windows startup. Note that since a global interrupt is enabled, a global inter
rupt must already have an interrupt handler installed in the BIOS, in a DOS driver, or in a
TSR when Windows begins. We'll explore the importance of this statement shortly.

After Windows initializes, a VM may install an interrupt handler and then enable
it in the PIC. By definition, that's a local interrupt. The VPICD now considers the VM
that enabled the interrupt to be its owner, and from this point on the VPICD will
always reflect this interrupt to the owner VM. This policy makes sense because the
VM interrupt handler exists only in the installing VM; reflecting the interrupt to any
other VM would result in calling an invalid address.

144 - Writing Windows VxDs and Device Drivers

Global interrupts, on the other hand, do not have owners, but are reflected to what
ever VM happens to be executing at the time the interrupt occurred. This works
because a global interrupt was enabled when Windows started, and therefore had a
handler installed when Windows started, which in tum means that the "global" han
dler exists in all VMs. Thus, it really doesn't matter to which VM the VPICD reflects
a global interrupt - each has an IVT that points to the same handler. The difference
between global and local interrupts is illustrated in Figure 8.1.

Once the VPICD has chosen a VM for reflection, it must make another choice:
whether to call the protected mode or V86 mode handler. As Chapter 4 explained, all
VMs start in V86 mode, and thus, have a V86 component; some VMs later switch to
protected mode, and thus have a PM component also. One or both of these two com
ponents may install an interrupt handler. V86 interrupt handlers are those installed by
a VM's V86-mode component, which includes the BIOS and DOS. PM interrupt han
dlers are those installed by a VM's PM component - usually a Windows DLL, but
possibly a DOS-extended application using DPMI.

The VPICD always calls the protected mode handler, if one is installed. Only if no
protected mode handler has been installed does the VPICD call the V86 mode handler.
VPICD maintains a pseudo-IDT, which is updated when a protected mode application
installs an interrupt handler through DOS Set Vector or DPM1 Set Protected Mode
Vector. This pseudo-IDT is used to get the address of the protected mode handler.
Similarly, VPICD maintains a pseudo-IVT, which is updated when a DOS application
installs an interrupt handler (or when a Windows application calls DPM1 Set Real
Mode Vector), and this pseudo-IVT provides the address of the V86 mode handler.

The above describes the VPICD's default behavior when no VxD has registered
for the interrupt. If a VxD has registered for the interrupt and plans to reflect it to a VM,
then it is the VxD's responsibility to choose the appropriate VM and direct the inter
rupt to the correct handler (protected mode or V86 mode). Typically, a VxD tracks
ownership of a device and reflects the interrupt to the owner VM. The VxD passes the
owner's VM handle to the VPICD as part of the call to VP1CD_Set_1nCRequest.
(This service will be described in detail later in this chapter.)

A VxD for Hardware Interrupt Reflection
The REFLECT VxD (Listing 8.9, page 163) illustrates how to reflect an interrupt to
an owner VM. The example code virtualizes the Real Time Clock interrupt, IRQ 8
(not to be confused with the timer interrupt on IRQ 0), but can be easily modified to
work with any IRQ.

REFLECT virtualizes IRQ 8 during Devi ce_1nit processing with a call to
VP1 CD_Vi rtua 1 i ze_1 RQ, passing a pointer to its VP I CD_1 R(LDESCR1 PTOR structure,
I rqDesc. VP1CD_Vi rtual i ze_1 RQ returns an IRQ handle, which REFLECT stores in
its device context. This handle will be used later when calling other VPICD services.

VxDs for Virtualization - 145

Figure 8.1 VPICD associates an owner with each
interrupt so that it can force the scheduling
of the appropriate VM when a local
interrupt is received. Global interrupts
go to whichever VM is currently executing.

146 - Writing Windows VxDs and Device Drivers

struct VPICD_IRO_Descriptor
USHORT VID_IRO_Number;
USHORT VID_Options;
ULONG VID_Hw_InLProc;
ULONG VID_Virt_Int_Proc;
ULONG VID_EOI_Proc;
ULONG VID_Mask_Change_Proc;
ULONG VID_IRET_Proc;
ULONG VID_I RET_Ti me_Out;
PVOID VID_Hw_Int_Ref;

The V P I CD_I RO_DESC RI PTOR structure contains pointers to five callback func
tions, which the VPICD uses to notify the VxD of changes to the state of the physical
and the virtualized IRQ. These callbacks are the key to reflecting an IRQ to an owner
VM. The VXDISR VxD discussed in a previous chapter used this same structure but
filled in only the V I D_Hw_I nt_P roc field. REFLECT fills in all five fields. VXDISR
needed only one callback because it actually serviced the interrupt; REFLECT is only
reflecting the interrupt to a VM for servicing.

The VPICD_I RO_DESCRI PTOR structure used by REFLECT is statically initialized
as follows:

VPICD_IRO_DESCRIPTOR IrqDesc = { RTC_IRO. VPICD_OPT_REF_DATA.
HwIntThunk. VirtIntThunk. EOIThunk.
MaskChangeThunk. IRETThunk. 500.
&device };

REFLECT follows the same framework as the other VxDs in this book: all regis
tered callback functions reside in the assembly language module. The C function
always ends in the name "Handler". In the sections below, I'll talk only about the han
dler functions in the C module.

Callbacks: MaskChangeHand7 er

VOID MaskChangeHandler(VMHANDlE hVM. IROHANDlE hIRO. BOOl bMasking)
(

if (!bMasking)
{

if (!device.VMOwner)
{

device.VMOwner = hVM;

else
(

if Cdevice.VMOwner != hVM))
(

VxDs for Virtualization - 147

device.VMOwner = SHELL_Resolve_ContentionCdevice.VMOwner, hVM
device.DeviceName);

}

VPICD_Physically_UnmaskC hIRQ);

else
(

device.VMOwner = 0;
VPICD_Physically_MaskC hIRO);

When a VM masks or unmasks IRQ 8 in the interrupt controller, the VPICD calls
MaskChangeHandl er. REFLECT is more interested in unmasking than masking.
REFLECT's rule for ownership is: "you enable the interrupt in the PIC, you own it".
So if bMas ki ng is FALSE, the function examines the VMOwner field in the device context
to see any VM owns the IRQ. If no VM currently owns IRQ 8, MaskChangeHandl er
assigns the current VM as owner by setting VMOwner to the VM that is doing the
unmasking, hVM.

If a VM already owns the IRQ, but a different (non-owner) VM is attempting the
unmask, then MaskChangeHandl er uses the SHELL_Reso 1 ve_Content i on service to ask
the user which VM should own the device. (See the earlier discussion of PORTTRAP
for details on SHELL_Reso 1 ve_Contenti on.)

After determining the owner VM, MaskChangeHandl er calls VPICD_Physi ca lly_Unmask
to unmask the interrupt in the actual interrupt controller, then returns to the VPICD. Physi
cally unmasking the interrupt is an important step. If no V xD has virtualized the IRQ, the
VPICD traps all I Ns and OUTs to the interrupt controller and will unmask the interrupt on the
VM's behalf. But once a VxD has virtualized an interrupt, the VPICD gets out of the way
and the VxD must unmask the interrupt on the VM's behalf. The unmask service requires an
IROHANDLE parameter so MaskChangeHandl er supplies the handle stored in the device
context (the one returned by V P I CD_Vi rtua 1 i ze_I RO).

If the VM is masking (disabling) the IRQ, REFLECT sets VMOwner to 0, then passes
the mask request on to the VPICD with a call to the service VPICD_Phys i ca lly_Mask
and exits. It's not strictly necessary to set the owner to "none" in response to a mask
because the interrupt can't even get to the processor while masked. However, the only
other time the VxD could realistically set the owner to "none" would be in response to a
VM_ Termi na te message. Setting the owner to "none" in response to a mask is more use
ful, because many applications will disable (mask) the interrupt as soon as they've fin
ished with the device (as opposed to waiting until the user exits the program). By
un assigning ownership at this time, the VxD can let another VM use the device.

148 - Writing Windows VxDs and Device Drivers

Callbacks: HwlntHand7 er
BOOl _stdcall HwIntHandler(VMHANDlE hVM, IRQHANDlE hIRQ)
{

if (device.VMOwner && !device.bVMIsServicing)
{

VPICD_Set_Int_Request(device.VMOwner, hIRQ);

else
{

EatInt();

return TRUE;

The actual reflection process occurs in HwIntHandl er, which the VPICD calls
whenever an interrupt occurs on IRQ 8. HwlntHandl er then reflects, or simulates, an
interrupt into the owner VM, but only under certain conditions:

current (interrupted) VM is the device owner, and

current VM's handler isn't servicing the device interrupt.

REFLECT uses the flag bVMI sServi ci ng in the device context to prevent an inter
rupt from being simulated to the VM while the VM is still handling a previous inter
rupt. If the VM is overwhelmed with too many simulated interrupts, the interrupts will
nest and the VM interrupt handler's stack will overflow. This flag is set and cleared in
the Vi rtIntHandl er and I RETHandl er routines, which will be discussed shortly.

If the two conditions are met, REFLECT reflects the interrupt to the owner VM by
calling VPICD_Set_Int_Request. This service requires two parameters, an I RQHANDlE
and a VMHANDlE. HwI ntHandl er uses the I RQHANDlE field of the device context for the
first, and the VMOwner field for the second. Note that when this service returns to
HwI ntHandl er, the VM interrupt handler has not been called, the VPICD has only
scheduled an event to take action later. However, HwlntHandl er has done its duty, and
now returns.

If HwlntHandler does not reflect the interrupt because conditions aren't right, it
must service the interrupt itself. It does so by calling the subroutine E a tI n t. Clearing
the interrupt in the device is an important step. If the interrupt is not cleared at the
device, then the IRQ will remain asserted and the VPICD will never see another inter
rupt from that device because IRQs for ISA devices are edge-triggered.

void EatInt(void)
(

unsigned char temp;

temp = CmosReadReg(RTC_STATUSC);
VPICD_Phys_EOI(device.IrqHandle };

VxDsfor Virtualization - 149

The behavior of EatInt is specific to the RTC device: it clears the pending device
interrupt by reading a status register. Because the interrupt was actually serviced, if
only to be discarded, Eat I n t also calls V P I CD_P hy s_EO I to tell the VPICD to EOI the
controller. Finally, EatI nt returns to its caller, HwIntHandl er.

HwIntHandl eralways returns TRUE to its caller, _HwIntThunk. This return causes
_HwlntThunk to clear the Carry flag before returning to the VPICD. Carry clear on
return informs the VPICD that theIRQ was processed by the VxD, and so the VPICD
should not call the next VxD in the sharing chain. As written, REFLECT does not
share interrupts, because the RTChardware can't share its interrupt with other
devices.

If your device does properly support sharing IRQs, you can easily enhance
the VxD. Your HwIntHandl er should first ask the device if it has an interrupt
pending and if not, return with FALSE. The _HwIntThunk would then set the .

. C~rr.x flag. so that the VPICD.calls the next VxD handler in the chain.

Callbacks: EOIHand7 er

void _stdcall EOIHandler(VMHANDLE hVM.IRQHANDLE hIRO)
(

VPICD_Phys_EOI(hIRQ);
VPICD_Clear_Int_RequestC device.VMOwner. ·hIRQ };

EO I Ha nd 1 e r is called whenever theVM interrupt handler - executed eventually
as a result of REFLECT's call to VPICD_Set_Int - issues an EOI to the interrupt
controller. EOIHandl er first calls VPICD_Phys_EOI on behalf of the VM that
attempted t()issue an EOI. The only parameter expected by VPICD_Phys_EOI is the
IRQ handle. Last, EOIHandl er calls VPICD.:,..cl ear _InCRequest, supplying the han
dle of the owner VM as the hVM parameter.

150 - Writing Windows VxDs and Device Drivers

This call to VP1 CD_Cl ea r _I nCRequest clears the request set by Hw1 ntHandl er's
call to VP1CD_SeC1nCRequest. Without this step, the VPICD would again reflect
the interrupt to the VM handler some time after E01Handl er returned to the VPICD.

Callbacks: VirtlntHand7erand IRETHand7er

void Virt1ntHandler(VMHANDLE hVM. 1RQHANDLE h1RQ)
(

device.bVM1sServicing = TRUE;

Vi rt1 ntHandl er is called each time the VPICD begins simulating the interrupt
into a VM. That is, it marks the beginning of the execution of the VM's interrupt han
dler. Vi rt1ntHandl er sets the bVM1 sServi ci ng flag, which prevents Hw1 ntHandl er
from reflecting further interrupts into the VM until the VM handler has returned with
an 1RET.

void _stdcall 1RETHandler(VMHANDLE hVM. 1RQHANDLE h1RQ)
{

device.bVMIsServicing = FALSE;

REFLECT knows when the VM handler has returned because another callback,
I RETHandl er, is called at that time. I RETHandl er clears the bVMI sServi ci ng flag,
which allows HwlntHandl er to reflect an interrupt once again.

Summary
Writing a VxD to virtualize a device is very different than writing a VxD to control a
device, because it requires a completely different set of VMM and VxD services.
Many VxDs today don'~ virtualize at all, because they are written for newer devices
and there are no DOS or Windows applications that use this hardware directly.

If you do need to virtualize an I/O-mapped or memory-mapped device, trapping
port or memory accesses is actually pretty easy. Virtualizing an interrupt is more com
plicated, simply because the process of interrupt reflection under Windows is itself
complicated.

The last three chapters have talked about controlling hardware in a VxD and virtu
alizing hardware in a VxD. The next two chapters deal with another hardware aspect,
discovering a device's configuration: I/O address, IRQ, etc.

Listing 8.1 PORTTRAP. C

#include <basedef.h>
#i nc 1 ude <vrnm: h>
#include <debug.h>.
#include <vxdwraps.h>

#include <vxdcall.h>
#include <wrappers.h>
#include <intrinsi.h>

#ifdef DEBUG
#define DPRINTFO(buf) Out_Debug_String(buf)

VxDs for Virtualization - 151

#define DPRINTFl(buf, fmt, argl) _Sprintf(buf, fmt, argl); Out_Debug_String(buf)
#else
#define DPRINTFO(buf)
#define DPRINTFl(buf, fmt, argl)
#endif

#define IO_BASE Ox300
#define NUM_IO_PORTS 8
#define FLAGS_CONTENDED OxOOOl
typedef struct
{

WORD numloPorts;
WORD IoBase;
VMHANDlE VMOwner;
DWORD cbOffset;
char DeviceName[8];

DEVICE_CONTEXT;

typedef struct .
{

WORD flags;
} DEVICLCB;

DEVICE_CONTEXT device = { NUM_IO_PORTS, IO_BASE, NUll, 0,
{'P' ,'0'. 'R', 'T', 'T'.'R', 'A', 'P'} }:

char buf[80];

BOUl OnDevicelnit(VMHANDlE hVM);
void OnSystemExit(VMHANDlE hVM);
void OnVmTerminate(VMHANDlE hVM);
void SetOwner(VMHANDlE newVMOwner, DEVICE~CONTEXT *dev);
DWORD _stdcal1 PortTrapHandler(VMHANDlE hVM, DWORD IOType, DWORD Port,

ClIENT_STRUCT *pcrs, DWORD Data);

/I "funct ions in asm modul e
void PortTrapThunk(void);

152 - Writing Windows VxDs and Device Drivers

Listing 8.1 (continued)

BOOL OnDeviceInit(VMHANDLE hVM)
{

int i;

PORTTRAP.C

for (i=O; i < device.numIoPorts; i++)
{

}

if (!Install_IO_Handler(device.IoBase+i. PortTrapThunk »
{

DPRINTF1(buf. "Error install ing handler for io %x\r\n". IO_BASE+i);
return FALSE;

if (device.cbOffset = _Allocate_Device_CB-Area(sizeof(DEVICE_CB). 0»
{

DPRINTFO("Error alloc'ing control block\r\n");
return FALSE;

return TRUE;

VOID OnSystemExit(VMHANDLE hVM)
{

int i;

for (i=O; i < device.numloPorts; i++)
{

}

if (! Remove_IO_Handl er(devi ce. IoBase+i »
{

DPRINTFl(buf. "Error removi ng handl er for i 0 %x\r\n". devi ce. IoBase+i) ;
break;

if (device.cbOffset)
_Deallocate_Device_CB-Area(device.cbOffset. 0);

VOID OnVmTerminate(VMHANDLE hVM)
{

if (hVM == device.VMOwner)
{

device.VMOwner = 0;

VxDs for Virtualization - 153

Listing 8.1 (continued) PORTTRAP. C

DWORD _stdcall PortTrapHandler(VMHANDlE hVM. DWORD IOType. DWORD Port.

DEVICE_CB *pCB;
BOOl bThisVMIsOwner;
VMHANDlE newVMOwner;

bThisVMIsOwner ~ TRUE;

if (!device.VMOwner)
{

ClIENT_STRUCT *pcrs. DWORD Data)

II device doesn·t have an owner. assign this VM as owner
SetOwner(hVM. &device);

else if (device.VMOwner && (device.VMOwner !~ hVM))
{

II device has an owner. but it's not this VM
pCB ~ (DEVICE_CB *)«char *)hVM + device.cbOffset);
if (pCB->flags & FLAGS_CONTENDED)
{

II this VM has already attempted to grab the device
bThisVMIsOwner ~ FALSE;

}

else
{

newVMOwner ~ SHEll_Resolve_Contention(device.VMOwner. hVM. device.DeviceName);
if (newVMOwner !~ device.VMOwner)
{

bThisVMIsOwner ~ FALSE;
Data ~ OxFFFFFFFF;

if (bThisVMIsOwner)
{

if (IOType & BYTE_INPUT)
{

Data ~ _inp(Port);
}
else if (IOType & BYTE_OUTPUT)
{

_outp(Port. Data);

return Data;

154 - Writing Windows VxDs and Device Drivers

Listing S.l (continued) PORTTRAP. C

void SetOwner(VMHANDLE newVMOwner, DEVICE_CONTEXT *dev
{

int i;

for (i-a; i < dev->numloPorts; i++)
(

}

Disable_Local_Trapping(dev->VMOwner, dev->IoBase+i);
Enable_Local_Trapping(newVMOwner, dev->IoBase+i);

dev->VMOwner - newVMOwner;

ListingS.2 PORTDDB. ASM

.386p

;**
INCLUDES

;************************~***

include vmm.inc
include debug.inc

V I R T U A L D E V ICE DEC L A RAT ION

DECLARE_VIRTUAL_DEVICE PORTTRAP, 1. O. ControlProc, UNDEFINED_DEVICE_ID, \
UNDEFINED_INIT_ORDER

PROCEDURE: ControlProc

DESCRI PTl ON:
Device control procedure for the SKELETON VxD

ENTRY:
EAX - Control call ID

EXIT:
If carry clear then

Successful
else

Control call failed

USES:
EAX, EBX, ECX, EDX, ESI. EDI, Fl ags

VxDs for Virtualization - 155

Listing 8.2 (continued) PORTDDB. ASH

BeginProc Contro1Proc
ControLDispatch DEVICE_INIT. _DnDeviceInit. cCall.<ebx>
Control_Dispatch SYSTEM_EXIT. _DnSystemExit. cCa11. <ebx>
Control_Dispatch VM-TERMINATE. _DnVmTerminate. CCa11. <ebx>

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _QnSY5DynamicDeviceInit. cCa11. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _DnSysDynamicDeviceExit. cCa11

c1c
ret

EndProc Contro1Proc

VxD_LOCKED_CODE_ENDS

VxD_CODCSEG

PUBLIC _PortTrapThunk
_PortTrapThunk PROC NEAR; called from C. needs underscore

Emu1ate_Non_Byte_IO
sCa11 PortTrapHand1er. <ebx. ecx. edx. ebp. eax>
ret

_PortTrapThunk ENDP

VXD_CODCENDS

END

Listing 8.3 PORTTRAP. MAK

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXOWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -ODEBUG

all: porttrap.vxd

porttrap.obj: porttrap.c
c1 $(CVXDFLAGS) -Fo$@ %s

portddb.obj: portddb.asm
. m1 $(AFLAGS) -Fo$@ %5

porttrap.vxd: portddb.obj porttrap.obj .. \wrappers\vxdca11.obj porttrap.def
echo >NUL @«porttrap.crf

-MACHINE:i3B6 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-OEF:porttrap.def -OUT:porttrap.vxd -MAP:porttrap.map
-VXD vxdwraps.c1b wrappers.c1b portddb.obj porttrap.obj vxdca11.obj
«

1 ink @porttrap.crf
mapsym porttrap

156 - Writing Windows VxDs and Device Drivers

Listing 8.4 PORTTRAP. DEF

VXD VXDISR DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
I DATA CLASS 'ICODE'

_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'
_IMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
VXDISR_DDB @l

PRELOAD NONDISCARDABLE
P.RELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Listing 8.5 PAGETRAP. C

II PAGETRAP.c - main module for VxD PAGETRAP

Hinclude <basedef.h>
Hinclude <vmm.h>
Hinclude <debug.h)
Hinclude <vxdwraps.h)

Hinclude <vxdcall .h>
Hinclude <wrappers.h>
#include <intrinsi.h>

Hi fdef DEBUG
#define DPRINTFO(buf) OuCDebug_String(buf)

VxDs for Virtualit.ation - 157

Hdefi ne DPRINTFl (buf. fmt. argl) ,..Spri ntf(buf. fmt. argl); Out_Debug_Stri ng(buf)
#else
Hdefine DPRINTFO(buf)
ffdefi ne DPRI NTFl(buf. fmt. a rgl)
ffendi f

#define DEVICCPHYS_ADDR OxBOOOOL
ffdefine DEVICCREGION_SIZE 4096

typedef struct
{

DWORD RegionSize;
DWORORegi onPhySAddr;
VMHANDLE VMOwner;
DWORD 1 i nAddr;

DEVICE_CONTEXT;

DEVICE_CONTE~T device = { DEVICCR£GION~SIZ£. OEviCE_PHYS-ADDR };

char buf[80];

BOOL OnOevicelnit(VM~ANDLE hVM);
void OnSystemExit(VMHANOLE hVM);
BOOL OnCreateVm(VMHANDLE hVM);
void OnVmTerminate(VMHANDLE hVM);
DWORD _stdcall PageTrapHandler(VMHANDLE hVM.DWORD PageNumber);

II functions in asm module
void PageFaultThunk(void);

BOOL OnSysDynamicDeviceInit(VMHANOLE hVM)
{

OnDeviceInit(hVM);
return TRUE;

BODL OnSysDynamicDeviceExit(void)
(.

DnSystemExit(Get_Cur_VM_Handle(»;
return TRUE;

158 - Writing Windows VxDs and Device Drivers

Listing 8.5 (continued) PAGETRAP. C

BOOL OnDevicelnit(VMHANDLE hVM)
{

DWORD PageNum = device.RegionPhysAddr » 12;
DWORD nPages = device.RegionSize I 4096;

if (!_Assign_Device_V86_Pages(PageNum. nPages. hVM. a »
(

DPRINTFO("Ass i gn_Devi ce_V86_Pages fa i 1 ed\ r\n") ;
return FALSE;

if (!Hook_V86_Page(PageNum. PageFaultThunk »
(

DPRINTFO("Hook_V86_Page fai 1 ed\r\n");
return FALSE;

if (!_ModifyPageBits(hVM. PageNum. nPages. -P_AVAIL. O. PG_HOOKED. 0 »
(

DPRINTFO("Modi fyPageBits fa i 1 ed\ r\n") ;
return FALSE;

return TRUE;

VOID OnSystemExit(VMHANDLE hVM)
{

DWORD PageNum = device.RegionPhysAddr » 12;
DWORD nPages = device.RegionSize I 4096;

if (!Unhook_V86_Page(PageNum. PageFaultThunk »
(

DPRINTFO("Unhook_V86_Page fa i 1 ed\ r\n") ;
}

if (!_DeAssign_Device_V86_Pages(PageNum. nPages. hVM. 0»
(

DPRINTFO("DeAss i gn_Devi ce_V86_Pages fa il ed\ r\n") ;

BOOL OnCreateVm(VMHANDLE hVM)
{

if (!_ModifyPageBits(hVM. device.RegionPhysAddr » 12. device.RegionSize I 4096.
-P_AVAIL. O. PG_HOOKED. 0 »

DPRI NTFO("ModifyPageBits fail ed\ r\n") ;
return FALSE;

return TRUE;

Listing 8.5 (continued)

VOID OnVmTerminate(VMHANDLE hVM)
{

if (hVM ~ device.VMOwner)
(

device.VMOwner = 0;

VxDs for Virtualization - 159

PAGETRAP. C

VOID __ stdcall PageFaultHandler(VMHANDLE hVM, DWORD PageNumber)
{

if (device.VMOwner)
{

else
(

II device already has an owner, owner wouldn't cause a page fault
II therefore this VM is not owner
if (!_MaplntoV86(_GetNulPageHandle(), PageNumber, hVM,

PageNumber, device.RegionSize I 4096, 0, 0))

DPRINTFO("MaplntoV86 failed\r\n");

device.VMOwner = hVM;
_PhyslntoV86(PageNumber, hVM, PageNumber, device.RegionSize I 4096, 0);

160 - Writing Windows VxDs and Device Drivers

Listing 8.6 PAGEDDB.ASM

.386p

.**
INCLUDES

.**

include vmm. inc
include debug.inc

V I R T U A L D E V ICE DEC L A RAT ION

DECLARE_VIRTUAL_DEVICE PAGETRAP. 1. D. Contro1Proc. UNDEFINED_DEVICE_ID. \
UNDEFINED_INIT_ORDER

PROCEDURE: Contro1Proc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX ~ Control ca 11 ID

EXIT:
If carry clear then

Successful
else

Control call failed

USES:
EAX. EBX. ECX. EDX. ESLEDI. Flags

BeginProc Contro1Proc
Control_Dispatch DEVICE_INIT. _OnDeviceInit. cCa11. <ebx>
Control_Dispatch SYSTEM_EXIT. _OnSystemExit. cCa11. <ebx>
Control_Dispatch VM_TERMINATE. _OnVmTerminate. CCa11. <ebx>

Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDeviceInit. cCa11. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCa11

c1 c
ret

EndProc Contro1Proc

VxDsfor Virtualization -161

Listing 8.6 (continued) PAGEDDB.ASM

PUBLIC _PageFaultThunk
_PageFaultThunk PROC NEAR called from {, needs underscore

sCall PageFaultHandler, <eax, ebx>
ret

_PageFaultThunk ENDP

VXD_CODE_ENDS

END

Listing 8.7 PAGETRAP. MAK

CVXDFLAGS ~ -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL~l -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG

all: pagetrap.vxd

pagetrap.obj: pagetrap.c
cl $(CVXDFLAGS) -Fo$@ %s

pageddb.obj: pageddb.asm
ml $(AFLAGS) -Fo$@ %s

pagetrap.vxd: pageddb.obj pagetrap.obj .. \wrappers\vxdcall.obj pagetrap.def
echo >NUL @«pagetrap.crf

-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:pagetrap.def -OUT:pagetrap.vxd -MAP:pagetrap.map
-VXD vxdwraps.clb wrappers.clb pageddb.obj pagetrap.obj vxdcall .obj
«

link @pagetrap.crf
mapsym pagetrap

162 --,- Writing Windows VxDs and Device Drivers

Listing 8.8 PAGETRAP. DEF

VXD PAGETRAP DYNAMIC
SEGMENTS

LTEXT CLASS 'LCODE'
LDATA CLASS 'LCODE'

_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'

LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
I DATA CLASS 'ICODE'

_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
IMSGDATA CLASS 'MCODE'

_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
PAGETRAP_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Listing 8.9 REFLECT. C

II REFlECT.c - main module for VxD REFLECT
IIi ncl ude <basedef. h>
lIinclude <vmm.h>
lIinclude <debug.h>
lIinclude <vxdwraps.h>
lIinclude <vpicd.h>

l/i nc 1 ude <vxdca 11 . h>
lIinclude <wrappers.h>
l/include <intrinsi .h>

IIdefi ne RTC_I RQ 8

IIdefine RTC STATUSA OxA
IIdefine RTC::::STATUSB OxB
IIdefine RTCSTATUSC OxC

IIdefine STATUSB ENINT Ox40

IIdefi ne CMOS ADDR Ox70
IIdefi ne CMOS::::OATA Ox71

typedef struct
{

IRQHANDlE
VMHANDlE
char
BODl

DEVICE_CONTEXT;

I rqHandl e;
VMOwner;
DeviceName[8];
bVMIsServicing;

II functions in asm module
void HwlntThunk(void);
void VirtlntThunk(void);
void EOIThunk(void);
void MaskChangeThunk(void);
void IRETThunk(void);

VxDs for Virtualization - 163

dey i ce ~ { O. O. {' R' .. E' .. F' . ' l' . ' E ' , . C' . 'T'} };

VPICD_IRQ_DESCRIPTOR IrqDesc ~ (RTC_IRQ. VPICD_OPT_REF_DATA.

BOOl OnDevicelnit(VMHANDlE hVM);
void OnSystemExit(VMHANDlE hVM);

HwlntThunk, VirtlntThunk, EOIThunk,
MaskChangeThunk. IRETThunk, 500.
&device];

BOOl _stdcall HwlntHandler(VMHANDlE hVM. IRQHANDlE hIRQ);
void _stdcall EOIHandler(VMHANDlE hVM. IROHANDlE hIRO);
void _stdcall VirtlntHandler(VMHANDlE hVM. IRQHANDlE hIRQ);
void _stdca11 IRETHandler(VMHANDlE hVM. IRQHANDlE hIRQ);
void _stdca11 MaskChangeHandler(VMHANDlE hVM. IRQHANDlE hIRO. BOOl bMasking);
void Eatlnt(void);
void CmosWriteReg(BYTE reg. BYTE val);
BYTE CmosReadReg(BYTE reg);

164 - Writing Windows VxDs and Device Drivers

Listing 8.9 (continued) REFLECT. C

BOOl OnSysDynamicDevicelnit(VMHANDlE hVM)
{

OnDevicelnit(hVM);
return TRUE;

BOOl OnSysDynamicDeviceExit(void)
{

OnSystemExit(Get_Cur_VM_Handle());
return TRUE;

BOOl OnDeviceInit(VMHANDlE hVM)
{

if (!(device.lrqHandle = VPICD_Virtualize_IRQ(&IrqDesc»)
return FALSE;

return TRUE;

VOID OnSystemExit(VMHANDlE hVM)
{

VPICD_Force_Default_Behavior(device.IrqHandle);

BOOl _stdcall HwlntHandler(VMHANDlE hVM. IROHANDlE hIRO)
{

if (device.VMOwner && !device.bVMIsServicing)
{

VPICD_Set_Int_Request(device.VMOwner. hIRO);
}

else
(

EatInt();
}

return TRUE;

void Eatlnt(void
{

unsigned char temp;

temp = CmosReadReg(RTC_STATUSC);
VPICD_Phys_EOI(device.lrqHandle);

void _stdcall EOIHandl er(VMHANDlE hVM. IROHANDlE hIRO)
(

VPICD_Phys_EOI(hIRO);
VPICD_Clear_Int_Request(device.VMOwner. hIRO);

void _stdcall VirtlntHandler(VMHANDlE hVM. IROHANDlE hIRO)
{

device.bVMIsServicing = TRUE;

VxDs for Virtualization - 165

Listing 8.9 (continued) REFLECT. C

void _stdcall IRETHandler(VMHANDlE hVM. IROHANDlE hIRO)
(

device.bVMIsServicing ~ FALSE;

void _stdcall MaskChangeHandler(VMHANDlE hVM. IROHANDlE hIRO. BOOl bMasking)
(

if (!bMasking)
{

if (!device.VMOwner)
{

device.VMOwner ~ hVM;

else
{

if (device.VMOwner !~ hVM)
(

device.VMOwner ~ SHEll_Resolve_Contention(device.VMOwner.

)
VPICD_Physica"y_Unmask(hIRO);

)
el se
(

device.VMOwner ~ 0;
VPICD_Physically_Mask(hlRO);

BYTE CmosReadReg(BYTE reg)
{

BYTE data;

disable NMI then ints
mov al. reg
or a 1. BOh
cl i

; first output reg to address port
out CMOS_ADDR. al

jmp _1

jmp _2

; then read data from data port
in al. CMOS_DATA
mov data. al

jmp _3

hVM. device.DeviceName);

166 - Writing Windows VxDs and Device Drivers

Listing 8.9 (continued)

4'
; reenable NMI then ints
xor a 1. a 1
out CMOS_ADDR. al
sti

return data;

void CmosWriteReg(BYTE reg. BYTE val)
{

disable NMI then ints
mov al. reg
or al. BOh
eli

REFLECT. C

; first output reg to address port

l'

2'

3'

4'

out CMOS_ADDR. al
jmp _1

jmp _2

; then output val to data port
mov al. val
out CMOS_DATA. al

jmp _3

jmp _4

; reenable NMI then ints
xor a 1. a 1
out CMOS_ADDR. a 1
sti

VxDs for Virtualization - 167

Listing 8.10 REFLDDB.ASM

.386p

.**
INCLUDES

:**

include vrnm. inc
include debug.inc

V I R T U A L 0 E V ICE 0 E C L A RAT ION

DECLARE_VIRTUAL_DEVICE REFLECT. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \
UNDEFINED_IN IT_ORDER

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxO

ENTRY:
EAX = Control call 10

EXIT:
If carry clear then

Successful
else

Control call failed

USES:
EAX. EBX. ECX. EDX. ESI. EDI. Flags

BeginProc ControlProc
Control_Dispatch DEVICE_INIT. _OnDeviceInit. eCall. <ebx>
Control_Dispatch SYSTEM_EXIT. _OnSystemExit. cCall. <ebx>

Control_Dispatch SYS_OYNAMIC_OEVICE_INIT. _OnSysDynamicDevieeInit. cCall. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICl-EXIT. _OnSysDynamicDevieeExit. cCall

cle
ret

EndProc ControlProc

168 - Writing Windows VxDs and Device Drivers

Listing 8.10 (continued) REFLDDB.ASM

PUBLIC -HwIntThunk
_HwIntThunk PROC NEAR; called from C. needs underscore

sCall HwIntHandler. <ebx. eax>
or ax. ax
jnz clearc
stc
ret

clearc:
clc
ret

_HwIntThunk ENOP

VxD_LOCKED_CODE_ENDS

VxD_CODLSEG

PUBLIC _VirtIntThunk
_VirtIntThunk PROC NEAR; called from C. needs underscore

sCall Vi rtIntHandler. <ebx. eax>
ret

_VirtIntThunk ENDP

PUBLIC _EOIThunk
_EOIThunk PROC NEAR; called from C. needs underscore

sCall EOIHandler. <ebx. eax>
ret

_EOIThunk ENDP

PUBLIC _IRETThunk
_I RETThunk PROC NEAR ca 11 ed from C. needs underscore

sCall IRETHandler. <ebx. eax>
ret

_IRETThunk ENDP

PUBLIC _MaskChangeThunk
_MaskChangeThunk PROC NEAR; called from C. needs underscore

sCall MaskChangeHandler. <ebx. eax. ecx>
ret

_MaskChangeThunk ENDP

VXD_CODE_ENDS

END

VxDs for Virtualization - 169

Listing 8.11 REFLECT. MAK

CVXDFLAGS = -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG -DWANTVXDWRAPS
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG

all: reflect.vxd

reflect.obj: reflect.c
cl $(CVXDFLAGS) -Fo$@ %s

reflddb.obj: reflddb.asm
ml $(AFLAGS) -Fo$@ %s

reflect.vxd: reflddb.obj reflect.obj .. \wrappers\vxdcall.obj reflect.def
echo >NUL @«reflect.crf

-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:reflect.def -OUT:reflect.vxd -MAP:reflect.map
-VXD vxdwraps.clb wrappers.clb reflddb.obj reflect.obj vxdcall .obj
«KEEP

link @reflect.crf
mapsym refl ect

Listing 8.12 REFLECT.DEF

VXD REFLECT DYNAMIC
SEGMENTS

LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'

LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
IDATA CLASS 'ICODE'
PTEXT CLASS 'PCODE'

_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
IMSGDATA CLASS 'MCODE'

_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
REFLECT_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

170 - Writing Windows VxDs and Device Drivers

Chapter 9

Plug and Play:
The Big Picture
Plug and Play is Microsoft's strategy to make new hardware devices easier to install
and configure. Plug and Play requires both hardware support (devices that can iden
tify themselves and can be configured via standard software interfaces instead of
jumpers or proprietary interfaces) and software support (an operating system that can
assign system resources like I/O addresses and IRQs and drivers that obtain these
resource settings from the operating system). Microsoft has provided the operating
system piece in Windows 95, and Windows 95 also provides the interfaces that drivers
use to retrieve resources assigned to their hardware.

In Windows 95, there are two categories of hardware devices: Plug and Play
devices and Legacy devices. Plug and Play devices are those that can identify them
selves, declare their resource requirements, and accept run-time resource assignments.
Any device for one of the newer expansion buses - PCI, EISA, PCMCIA, etc. - is by
definition a Plug and Play device. Each of these buses meets the above Plug and Play
requirements. Some newer ISA cards include specific support for Plug and Play (PNP).
These cards, known as Plug and Play ISA or PNPISA, are also considered Plug and
Play devices. Legacy devices are those older ISA cards that do not support new Plug
and Play features. A Legacy device cannot be dynamically configured; its resources are
either fixed in the hardware or configured by switches or jumpers. Legacy devices also
fail to support any vendor-independent method of positively identifying themselves.

171

172 - Writing Windows VxDs and Device Drivers

Plug and Play Components
The heart of Windows 95 Plug and Play support is a VxD called the Configuration
Manager. The Configuration Manager relies on other VxDs to do much of the real
work, including: enumerators, arbitrators, device loaders, and device drivers. Both the
Configuration Manager and the enumerators make use of a system-wide database
called the registry to permanently store information about devices and their drivers.

Enumerators are VxDs that run at boot and determine which hardware devices are
currently installed and what resource they require. Each bus type has its own enumer
ator: PCI, EISA, PCMCIA, SCSI, etc. Arbitrator VxDs are specific to a type of
resource: I/O address, memory address, IRQ, DMA channel. The Configuration Man
ager gives an arbitrator information about a set of devices that all need a resource, say
an IRQ, and the arbitrator comes up with a conflict-free set of assignments, taking
into account which IRQs are supported by each device and whether or not each device
can share the IRQ with another. Device Loaders are VxDs that load otherVxDs. Win
dows 95 relies on Device Loaders because many devices are managed by several lay
ers of drivers. The Device Loader knows enough about the layering to load each
driver at the right time and in the right order.

The component of greatest concern to a developer is the Plug and Play Device
Driver VxD. Enumerators, arbitrators, and device loaders are provided by Microsoft
with the OS, so developers only need to understand how these component VxDs fit
into the overall picture, not how to write one. A Plug and Play Device Driver VxD is a
normal VxD that uses Configuration Manager services to obtain its resource assign
ments, instead of using private methods like INI-file settings or hard-coded values
nothing more mysterious than that. A PNP Device Driver still uses VMM and other
VxD (VPICD, etc.) services to do its real job, which is acting as a driver for its device.

Figure 9.1 Registry keys, suhkeys, values, and data.

HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY _LOCALJ,tACHtNE
HKEY_USERS
HKEY _CURRENT _CONFIG

Display
System

EY_DVN_DATA

Plug and Play: The Big Picture -173

If you're supporting a Plug and Play device you should most definitely write a true
Plug and Play Device Driver VxD instead of using low-level bus-specific methods in
your VxD (like PCIBIOS, PCMCIA Socket services, etc.). But it's important to
understand that Plug and Play device drivers aren't just for Plug and Play hardware.
Plug and Play drivers are also meant for Legacy - standard ISA - hardware. For
example, standard serial ports are Legacy devices, with a fixed I/O address and IRQ,
so a serial port driver could be hard-coded to use those settings. But Microsoft's Win
dows 95 driver for standard serial ports, SERIAL. VXD, is a Plug and Play device driver,
obtaining its settings from the Configuration Manager. (The Configuration Manager
did, however, retrieve the settings from the registry, rather than from the device itself.
Settings for Legacy devices are putin the registry by the Device Installer.) Microsoft
encourages developers to write Plug and Play device drivers for all devices, including
Legacy devices.

Plug and Play support is a new feature of Windows 95, not present in
Windows 3.x. Therefore the information in this chapter and the next applies
only to VxDs written specifically for Windows 95. A VxD for Windows 3.x
must use other methods to obtain information about the resources used by its
device. Other methods include querying the BIOS (e.g. COMl and COM2
I/O address), reading SYSTEM. I NI entries, or using hard-coded values.

The rest of this chapter will present an overview of Plug and Play, discussing the
role of Configuration Manager and the enumerator, device loader, arbitrator, and
device driver VxDs that it uses to actually implement the Plug and Play feature. The
next chapter will explain in more detail the specifics of writing a Plug and Play
Device Driver VxD, including a sample device driver VxD.

This chapter discusses how Plug and Play works at two times: installation and boot.
Understanding how the Plug and Play components interact during operating system and
driver installation is important for understanding the overall Plug and Play picture, because

The Windows 95 Registry
The registry is a binary database, accessible to the Windows 95 VMM, VxDs, and applications. The Windows
95 Plug and Play components use the registry to store and retrieve information about devices and their driv
ers, such as possible device configurations, device manufacturer, and the driver revision number; The registry
is hierarchically structured, like a tree, where each node is called a key. (Figure 9.1). One or more pieces of
data, called values, can be associated with each key. A key (node) can also have subkeys, where each subkey
is itself a tree with its own values and subkeys.

During installation, Windows 95 creates two keys at the root of the Windows 95 registry and several sub
keys. The two root keys are. HKEY_SYSTEM and HKEY_LOCAL_MACHINE (which is usually abbreviated HKLM).
Most Plug and Play components other than the Configuration Manager use only two subkeys under those root
keys, HKLM\ENUM and HKLM\SYSTEM\CurrentContro 1 Set\System\Cl ass.

174 - Writing Windows VxDs and Device Drivers

the modifications made to the registry at installation time literally drive the Plug and Play
boot sequence. (See the sidebar "The Windows 95 Registry" for information on how the
Plug and Play components store and retrieve information about devices and their drivers.)

Plug and Play Components
During Windows 95 Installation
When Windows 95 is first installed on a system, the Configuration Manager VxD
identifies all the hardware devices in the system, using bus-specific modules called
enumerators and detectors. Each enumerator positively identifies devices on a particu
lar bus using bus-specific methods: the PCI enumerator reads PCI configuration
space, PNPISA uses the Plug and Play isolation procedure, PCMCIA uses the Card
Information Structure, etc. To find Legacy devices, the Configuration Manager uses
detection modules instead of enumerators. Because of the limits of the ISA bus,
detection modules must use less certain methods, such as examining hard-coded I/O
locations for expected values, to detect standard ISA system hardware like the key
board controller, interrupt controller, etc.

After an enumerator or detector has identified a new device, a module called the
Device Installer creates a new hardware sub key for the device in the registry. This
new key is of the form

HKLM\ENUM\<enumerator>\<device IO>\<instance 10>

The <enumerator> portion is either the bus name of the eilUmerator (PCI, SCSI,
PCMCIA, etc.), or Root for Legacy devices found by detectors. The exact format of
the <de v ice 10> portion is enumerator-specific, but usually includes a combination
of vendor id and adapter id, two identifiers supported by all Plug and Play buses. The
<i nstance 10> uniquely identifies a particular instance of the device, and may be a
serial number(as in PNPISA) or just an increasing number like 0000, 0001, etc.

After creating this new hardware key, the Device Installer adds registry subkeys
under the hardware key, using information from either the device's information (JNF)
file, supplied by the vendor with the device, or from the device itself. Table 9.1 shows
the values in a typical hardware key. The Device Installer always adds values called
Oevi ceOesc and C1 ass - two strings that describe the device and its type (network
adapter, CD-ROM, etc.). For a Legacy device, the Device Installer also adds informa
tion about the device's current configuration (resource assignments). For a Plug and
Play device, the Device Installer adds information about possible configurations, but not
current configuration, because enumerated devices are always configured after boot.
The Device Installer extracts this possible configuration information from the device
itself in most cases (PNPISA, PCMCIA), or in some cases from nonvolatile system
RAM (EISA).

Plug and Play: The Big Picture -175

The Devic_e Installer always adds one more value, called Dri ver, under the
hardware key. The data for Dri ver comes from the INF file. The Driver value has
a misleading name, because it is not the name of the driver for the device. Instead
it "points" to a software key for the device, which is always found under
HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS For example, if the Dri ver entry was
Ports, the software key would be HKLM\SYSTEM\CURRENTCONROLSET\SERVI CES\CLASS\PORTS

The software key contains values describing the software associated with the
device. Table 9.2 shows a typical software key. The enumerator or detector always
adds a DevLoader value. DevLoader names the VxD that will act as a "device loader"
for the driver for the device. Surprisingly, the software key does Mt contain a stan
dardized value representing the driver name. But the software key does contain
enough information to allow the device loader to determine the device driver name -
more about this later in the discussion of device loaders and the boot process.

Table 9.1 Typical hardware key.

Value Data

Class "Display"

CompatibleIDs "PCIICC_0300"

ConfigFlags 00000000

DeviceDesc "S3 Inc. Trio32/64 PCI"

Driver "Display 10001"

HardwareID "PCIIVEN_ 5333&DEV _8811IBUS_OO&DEV _lO&FUNC_OO"

HWRevision "067"

Mfg "S3"

Table 9.2 Typical software key.

Value Data

DevLoader "*vdd"

DriverDesc " S3 Inc. Trio32/64 PCI"

InfPath "OEMl.INF"

InfSection "S3_2"

Ver "4.0"

176 - Writing Windows VxDs and Device Drivers

Plug and Play Components
During Device Installation

The process for installation of a new device and its associated driver after initial Win
dows 95 installation is similar. Newly installed Plug and Play devices are discovered
by an enumerator at the next boot. Newly installed Legacy devices are discovered
when the user runs the Add New Hardware Wizard.

Whether the new device is Plug and Play or Legacy, the Device Installer knows
it's a newly installed device because the device has no hardware key in the registry.
When a new device is discovered, the Device Installer looks for thedevice's associ
ated INF file, asking the user to specify its location if the file can't be found. Once the
INF file is located, the enumerator creates a registry hardware key and software key
and copies the driver from the installation disk, just as during the original Windows 95
installation. Once added to the registry, the "new" device becomes an "installed"
device; on subsequent boots, it will be treated just like all the other installed devices.

Plug and Play Components During Boot

During installation, Windows 95 is interested only in identifying the system's
devices and the drivers needed to run them. During the Windows 95 boot process, the
operating system does more than identify devices and drivers, it also loads the driv
ers and configures the devices. The Configuration Manager VxD is the brains behind
this boot process, orchestrating enumerators, arbitrators, device loaders, and the
drivers themselves.

During the boot process, the Configuration Manager uses enumerator VxDs to
discover devices, device loader VxDs to load driver VxDs for the devices, and arbi
trator VxDs to assign conflict-free configurations to all the devices. As a last step, the
Configuration Manager informs each device driver VxD of the configuration
assigned to its device. The following pseudo-code shows the boot process. The fol
lowing sections will explain in more detail the role of each of these types ofVxDs in
the boot process.

Plug and Play: The Big Picture -177

Pseudo-code for the Plug and Play Boot Process

For each enumerator
CM calls enumerator to enumerate all devices on its bus

For each device:
Enumerator finds device, calls CM

to create DevNode from Device 1D
if no hardware key in registry,

device is new and must be installed
CM sends DevLoader a PNP_New_DevNode message

DevLoader loads a Driver VxD
CM sends Driver VxD a PNP_New_DevNode message
Driver VxD calls CM_Register_Device_Driver

to register a configuration callback
CM returns to the enumerator

Enumerator returns to CM
CM links devnodes into a hardware tree

CM uses arbitrators to assign conflict-free configurations
CM traverses hardware tree, beginning at root. For each node:

calls each Driver VxD's registered configuration function
Dri ver VxD ca 11 s CM_Get_A 11 oCLog_Conf to discover ass i gned resources

Plug and Play Components During Boot: Enumerators

During boot, the Configuration Manager runs the same enumerators that were used
during installation, one for each bus. But instead of running detectors as during instal
lation, at boot the Configuration Manager runs the Root enumerator. The Root enu
merator is different than other enumerators in that it doesn't attempt to identify any
hardware, it just relies on the information already placed in the registry (in HKLM\ Root)
by detectors at installation.

After identifying each device, an enumerator creates a device node, a data structure
containing basic information about an identified device. The device node contains fields
for possible configurations, current configuration, status information (disabled, config
ured, etc.), and the driver for the device. The enumerator fills in these fields from values
stored in the device's hardware key or from information provided by the device itself.

Device nodes serve as the basic unit of "currency" between Plug and Play compo
nents (Configuration Manager, enumerators, arbitrators, device drivers). In other
words, device nodes are passed around from one component to another to identify the
target device. Note that while some of the information in a device node is also found
in the registry, a device node is different from a registry entry in two ways. One, the
device node is in memory, not on disk, allowing much faster access. Two, the device
node represents a device that is physically present on the system, whereas registry
entries stay even after a device is removed to make device reinstallation easier.

178 - Writing Windows VxDs and Device Drivers

As each enumerator creates a device node, it reports the new device node to the
Configuration Manager. The Configuration Manager then initiates a long sequence
that eventually results in the driver for the device being loaded. The enumerator then
proceeds to the next device. When it has processed all device nodes, the Configuration
Manager calls the next enumerator, which repeats the sequence for its own devices.
When all enumerators have finished, the Configuration Manager has connected the
device nodes to form a hierarchical structure called the hardware tree, an in-memory
representation of the system's hardware devices.

Plug and Play Components During Boot: Device Loaders

As each device node is discovered by an enumerator, the Configuration Manager
attempts to load a device driver for the device node. The Configuration Manager uses
the DevLoader value in the device's software key (pointed to by the Dri ver value in
the device's hardware key), which names the VxD responsible for loading the "real"
device driver. The Configuration Manager sends a PNP _New_DevNode message to the
VxD named as DevLoader, informing the VxD that a new device node has been cre
ated and that the VxD is to act as the device loader for this new device.

Two parameters are associated with a PNP _New_DevNode message: a pointer to the
device node and a reason code describing the action the VxD should take. In this ini
tial message to the device loader, the Configuration Manager uses the
DLVXD_LOAD_DEVLOADERreason code. The name for this reason code is a bit confus
ing: the Configuration Manager is really telling the VxD to load the driver for the
device, not to load the device loader for the device. DLVXD_LOAD_DEVLOADER really
tells a VxD that "you are the device loader".

The Configuration Manager relies on device loaders instead of loading all drivers
itself because some devices are managed by several layers of drivers. The device loader
knows enough about the layering to load each driver at the right time and in the right
order. The device loader also knows which value in the software key contains the actual
driver name. For example, SCSI devices use the Mi ni PortDri ver value to store the
driver name, but COM ports use PortDri ver, and network devices use Dynami cVxD.

For those device classes that do separate the device loader VxD from the device
driver VxD, the device loader must respond to the DLVXD_LOAD_DEVLOADER reason
code by finding and loading the appropriate driver. Device loaders don't do this work
themselves, but rely on two Configuration Manager services. A device loader uses
CM_Read_Regi stry_Va 1 ue to obtain the driver name from the appropriate entry in the
software key and then CM_Load_DLVxDs to actually load the device driver VxD. Its
job finally done, the device loader VxD returns from PNP _New_DevNode processing,
back to the Configuration Manager.

Plug and Play: The Big Picture -179

The Configuration Manager now sends a second PNP _New_DevNode message, this one
directed to the newly loaded driver VxD. The same device node parameter is used since
it's still processing the same device, but this time the reason code is DLVXD_LOAD_DRIVER
Once again, the name is a bit confusing, it doesn't mean "load the driver", it means "you
are the driver". The driver VxD should respond to this reason code by calling
eM_Regi ster _Devi ce_Dri ver.

In cases where layering is not used, the device loader VxD and the device driver VxD
are one and the same. In this simple case, when the VxD gets the DLVXD_LOAD_DEVLOADER
reason code it doesn't load another VxD. Instead, the combination device loader/device
driver VxD tells the Configuration Manager that it is the driver for the device by calling
the Configuration Manager's eM_Regi ster _Devi ce_Dri ver function during
DLVXD_LOAD_DEVLOAOER processing.

One of the parameters that a device driver VxD passes to eM_Regi ster _Devi ce_Dri ver
is a pointer to a callback function. The Configuration Manager calls this driver VxD func
tion later to inform the device driver VxD of configuration events. The driver callback
function and the configuration events that it processes will be covered in more detail in a
later section.

Plug and Play Components During Boot: Arbitrators

At this point in the boot process, all hardware devices have been identified and drivers
have been loaded. Before the drivers can access their devices, the arbitrators must find
a conflict-free set of configurations for all devices.

There are four built-in arbitrators, one for each type of system resource: I/O ports,
memory ranges, IRQs, and DMA channels. The I/O port arbitrator takes a list of
device nodes and assigns to each the number of I/O ports it requires. The arbitrator
must select ports that don't conflict with the port assignments for any other device
node in the list. The other three arbitrators do exactly the same thing, each with their
own resource type.

Arbitrators must handle "fussy" devices that support only a single resource assign
ment - e.g. a Legacy device that only supports I/O ports 200h-220h - as well as
"flexible" devices - e.g. a PCI device that supports any 32-byte block within the
entire 64 Kb range of I/O space. The IRQ arbitrator handles an additional twist as well,
because some devices support sharing an IRQ with another device, while others do not.
An arbitrator returns either a success or failure code to the Configuration Manager,
indicating whether or not it was successful in finding a set of allocations that worked.

180 - Writing Windows VxDs and Device Drivers

The arbitration process would be fairly simple if resources were always indepen
dent of each other - if, for example, the choice for 110 port had no effect on the
choice for IRQ. However, resource dependencies are common among Legacy devices:
consider the standard serial port with choices of 110 3F8h plus IRQ 4 or 110 2F8h plus
IRQ 3. To handle resource dependencies, the Configuration Manager uses the arbitra
tors in an iterative manner, calling each with the ARB_TEST_ALLOC reason code, which
asks the arbitrator to make a trial allocation. This ARB_TEST_ALLOC allocation may
occur several times. Later, when all arbitrators have returned a success code, the Con
figuration Manager calls each again with the ARB_SET_ALLOC reason code, telling the
arbitrators to make this allocation permanent.

An example will make this process more clear. Consider a list of two devices. One
is a Legacy mouse that supports any 110 port in the 200h-3FFh range, but only IRQ 4.
(This resource combination is considered a single "logical configuration".) The other
is a Legacy serial port that supports either 110 3F8h plus IRQ 4 or 110 2F8h plus IRQ 3.
(Thus, the serial port is associated with two logical configurations.) To configure these
two devices, the Configuration Manager must choose a logical configuration for each
device, using the arbitrators to ensure that the resources that make up each chosen
configuration don't conflict with each other.

Before calling the arbitrators, the Configuration Manager makes one of the logical
configurations the "current" configuration. The arbitrators consider only the resources
in this current configuration when making allocations - they are unaware of the
resources available in any other logical configuration. In our example, suppose the
Configuration Manager chose 3F8hlIRQ 4 as the current configuration for the serial
port, and 200hlIRQ 4 as the current (and only) configuration for the mouse. It calls the
port arbitrator first and then the IRQ arbitrator, using the ARB_TEST_ALLOC reason
code for both.

In this scenario, the 110 port arbitrator can easily identify a set of non-conflicting
assignments and returns TRUE, but the IRQ arbitrator cannot (both devices want IRQ 4)
and returns FALSE. So the Configuration Manager makes 2 F8h1IRQ 3 the current con
figuration for the serial port and tries again, still using the ARB_TEST_ALLOC reason
code for both arbitrators. This time there is no IRQ conflict (the serial port wants IRQ 3
and the mouse wants IRQ 4) so both arbitrators return TRUE. Now the Configuration
Manager calls each arbitrator again with the same current configuration as last time,
but now with the ARB_SET_ALLOC reason code. When the arbitrators return, both
devices have been allocated a set of non-conflicting resources: the mouse with
200hlIRQ 4 and the serial port with 2F8hlIRQ 3.

Plug and Play: The Big Picture - 181

Plug and Play Components During Boot: Device Driver VxDs

After the Configuration Manager has assigned all devices a conflict-free set of
resources, it must inform each driver VxD of the configuration assigned to its device.
The Configuration Manager does this through the callback function registered by each
driver dliring its call to CM_Regi ster _Devi ce_Dri vet'.

The Configuration Manager passes a reason code to the configuration callback.
The CONFIG_START code notifies the driver VxD that a configuration has been
assigned: CONFIG_START means "start using your device's assigned configuration". A
Plug and Play device driver isn't supposed to use any of its device's • .resources until it
gets this notification. Whereas a Windows 3.x VxD usually installed 110 port handlers
and virtualized an IRQ during system initialization, the rules are different under Win
dows 95. A Windows 95 Plug and Play device driverVxD may be loaded early in the
boot process, but shouldn't do anything with system resources until explicitly notified
by the Configuration Manager in this CONFI G_START message.

At the time of a CONFIG_STARTmessage, the Configuration Manager has already
assigned the resources, so the driver V xD simply retrieves that assignment. (The Con
figuration Manager could have made it easy on the VxD by passing the resoUrce
assignments asa parameter to the configuration callback function - but it doesn't.)
The VxD must make· yet another call to/the ConfigUration Manager, this time to
CM_Get_A 11 oc_Log_Conf (A 11 oc stands for allocated, Log stands for logicai).This
call returns with all configuration infonrtation in a single CMCONFIG structure: memory
ranges, 110 ports, lRQs, DMA channels. Now that the device driver VxD finally
knows which resourcesits device will be using, it can call VPICD to install an inter~
rupthandler,call VDMAD to register aDMA channel, etc.

Summary.

This chapter has introduced the component VxDsthat make up Plug and Play in Win
dows ·95 and explained how these components interact to identify devices, assign
resources, and load drivers. The next chapter will focus specifically on the Plug and
Play device driver YxD, and you will learn exactly what a driver VxD must do to sup
port a Plug and Play device: which messages and callbacks it musthandie and which
Configuration Manager services it must call.

182 - Writing Windows VxDs and Device Drivers

Plug and Play
Device Driver VxDs

Chapter 10

The last chapter provided an overview of Windows 95 Plug and Play, introducing the
different kinds of Plug and Play VxDs (Configuration Manager, enumerators, device
loaders, arbitrators, device drivers) and the role played by each in the Windows 95
installation and boot processes. This chapter will focus on the Plug and Play Device
Driver VxD, which I'll define as a VxD that interfaces to a hardware device and that
obtains a device's configuration using methods that conform to Plug and Play rules.

This chapter will first explain the steps required to install a Plug and Play Device
Driver VxD in the Windows 95 environment. Next, you'll see how a Plug and Play Device
Driver VxD participates in the Windows 95 boot and initialization processes and how it
handles other Plug and Play configuration scenarios such as device removal. The final sec
tions will discuss in detail the code for a sample Plug and Play Device Driver VxD.

Plug and Play VxD Installation
Windows 3.x offered no standardized procedure for installing device drivers, so differ
ent vendors provided different solutions. Some vendors provided an application -
sometimes a Windows program or sometimes a DOS program - that copied the driver
file and made modifications to system files. Others provided only instructions and
required the user to do the installation. The Plug and Play support in Windows 95
addresses this installation deficiency. Windows 95 standardizes the device installation
process, both from the user perspective and from the driver vendor's perspective.

183

184 - Writing Windows VxDs and Device Drivers

To install a new piece of hardware for Windows 95, the user first physically
installs the card then boots up Windows 95. If the new hardware is Plug and Play, an
enumerator automatically identifies the new device and the Device Installer prompts
the user for a device installation disk. If the new hardware is Legacy, the system can
not identify the new device, and the user is required to run the Add New Hardware
Wizard. This "wizard" guides the user, step-by-step, through the installation process,
prompting the user for a device installation disk when required.

The device installation disk (created by the vendor) includes a device driver, a
Device Information (INF) file, and optional utility or diagnostic programs used with
the device. The INF file is an important piece of the Windows 95 Plug and Play stan
dard. It provides the Device Installer with a device description for display to the user
and an "installation script" to install the device driver. The installation script includes
items like the name of the driver on the installation disk, the directory the driver
should be copied to, and any registry entries that must be created or modified during
driver installation.

Introducing the INF File
The INF text file resembles a Windows 3.x INI file. The INF is divided into sections,
where each section contains one or more items. Each section relates to one step of the
installation process: one section for files to be copied, another for registry entries to
be added, etc. As a developer, you can create INF files with any text editor. However,
Microsoft also provides an INFEDIT tool with the DDK, which allows you to navigate
and edit the file in a hierarchical manner - sort of like the outline view in a word pro
cessor. Because the sections in an INF file are arranged in a hierarchy, the INFEDIT
tool is very useful. (See the DDK for an explanation of how to use INFEDIT.)

The INF file can support complicated installation scenarios, but most developers
will only need to handle the basics. A basic driver installation scenario includes:

identifying the device;

• copying the driver file from the driver disk;

• identifying the device's resource requirements; and

• adding a OevLoader registry entry to load the driver when the device is enumerated.

Tabies 10.1 and 10.2 detail the JNF file sections, and items within those sections,
that are required to cover this basic installation. For an actual INF file with these sec
tions and items, as well as more details about what they mean, see the section "A
Sample Plug and Play Driver VxD" later in this chapter.

Plug and Play Device Driver VxDs - 185

Table 10.1 Standard sections for an INF file.

Section Type Item Name Item Description

Version Signature Must be $CHICAGO$

Class Choose from list in Table 10.2

Provider Creator of INF file, typically same as
vendor name

Manufacturer Manufacturer Name Vendor name

Device Description Device Manager and Add New Hard-
ware Wizard show this string to user

Device 10 ASCII identifier created by hardware
vendor:

Consists of * followed by 3-letter
(EISA format) company ID then four
hex digit device ID

Install Section Name Names later section containing instal-
lation instructions

CopyFiles (None) Destination file name, optional source
file name

Add Reg (None) Registry root, optional subkey, value
name, and value:

All drivers require one of these to
specify device loader; for example,
HKLM,.DevLoader.O.myvxd

LogConfig IOConfig Describes I/O addresses supported:
minimum, maximum, size

USE ONLY IF LEGACY DEVICE

IRQConfig Describes IRQs supported and
whether or not sharable

USE ONLY IF LEGACY DEVICE

Install Copyfiles Name of CopyFi 1 es section in this
INF file

AddReg Name of Add Reg section in this INF
file

LogConfig Name of LogConfi 9 section in this
INF file

186 - Writing Windows VxDs and Device Drivers

Table 10.2 Device classes supported by configuration
manager.

Class Name Class Name
in INF File in Device Installer Description

Adapter CD-ROM controllers Non-SCSI CD-ROM
controller

DiskDrive Disk drives

Keyboard Keyboard

System System devices Motherboard device
(PIC, PCI bridge, etc.)

MEDIA Sound, video, and game Multimedia
controllers

Modem Modem

MultiFunction Multi-function adapters e.g. Combination modem
and network adapter

Monitor Monitor

CDROM CD-ROM

Display Display

fdc Floppy disk controllers

hdc Hard disk controllers

Mouse Mouse

Ports Ports (COM & LPT) Serial and parallel

Printer Printer

MTD Memory Technology Drivers PCMCIA memory card

Net Network adapters

nodri ver Device that requires
no driver

PCMCIA PCMCIA socket

SCSIAdapter SCSI controllers SCSI host adapter

Unknown Other devices

Plug and Play Device DriverVxDs - 187

Plug and Play Boot Process

Driver VxD Load Sequence

Though it's not an absolute requirement, almost all Plug and Play Driver VxDs are
dynamically loadable. Dynamic loading is preferred because it allows the Configura
tion Manager to unload a driver when its associated device is removed, either physi
cally removed in the case of "hot insertion" devices such as PCMCIA, or logically
rembved when the Configuration Manager detects a device conflict or the user
chooses Remove in the Device Manager.

The dynamic load procedure for a Plug and Play VxD is a convoluted process.
The process begins at boot, when an enumerator identifies a particular device. The
enumerator passes the Configuration Manager the Device ID and asks the Configura
tion Manager to create a "devnode" (device node) for the device. The Configuration
Manager forms the device's hardware key by prepending HKLM\ENUM to the ASCII
Device ID. This hardware key contains a Dri ver value that points to the software key
under HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\CLASS. That software key con
tains a DevLoader value.

The Configuration Manager then dynamically loads the VxD specified by the
DevLoader value. As a result, the VxD receives a Sys_Dynami cDevi ce_Ini t mes
sage. Most driver VxDs do minimal processing in the Sys_DynamicDevice.:.Jnit
handler, perhaps doing some one-time initialization and returning TRUE (Carry clear)
from the handler to indicate success. A driver V xD does not usually call any Configu
ration Manager services, deferring this until the PNP _New_DevNode message (the next
step in the Plug and Play sequence). A driver VxD must never access its device or
install interrupt or port trap handlers during Sys_DynamicDevice_Init handling,
because the device hasn't yet been assigned an 110 address or an IRQ.

When building a dynamically loaded driver, you must specify the DYNAMIC
keyword on the VXD line in your VxD's DEF file.

In the simplest case, the VxD loaded through DevLoader is the driver VxD that
interfaces to the enumerated device. However, in some cases the VxD loaded by the
DevLoader statement isn't the real driver VxD, but is simply a device loader for the
driver V xD. This capability is used for some of Windows 95 's layered subsystems: the
lOS VxD loads all block device driver VxDs, the NDIS VxD loads all network driver
VxDs, and the VCOMM VxD loads all port driver VxDs.

188 - Writing Windows VxDs and Device Drivers

Sys_Dynami cDevi ce_I ni t processing for a device loader VxD is the same as for
a true driver VxD: no interaction with the Configuration Manager; nothing that
requires an I/O address or IRQ. Like a driver VxD, the device loader VxD will receive
a PNP _New_DevNode message after returning TRUE from Sys_Dynami cDevi ce_Ini t.

PNP _New_DevNode Processing
After loading the VxD specified by the DevLoader registry value, the Configuration
Manager tells the VxD which devnode caused it to be loaded, by sending the VxD a
PNP _New_DevNode message. This message has two associated parameters: the
devnode (passed in EBX) and a reason code (passed in EAX). The reason code must be
either DL_LOAD_DEVLOADER, DL_LOAD_DRIVER, or DL_LOAD_ENUMERATOR. The
PNP _New_DevNode message and its associated reason codes are one of the most con
fusing aspects of adding Plug and Play support in a VxD.

In the simple case, where the VxD loaded by DevLoader is really the driverVxD,
the VxD's PNP _New_DevNode message handler will first receive a reason code of
DL_LOAD_DEVLOADER - because the Configuration Manager knows only that this
VxD is the device loader. In response to this reason code, the VxD should call
eM_Regi ster _Devi ce_Dri ver to let the Configuration Manager know that this VxD
is really the device driver as well as the device loader.

In the more complicated case, where the device loader VxD and the driver VxD
are separate, the device loader VxD will be loaded first and will then receive the
PNP _New_DevNode message with a o L_LOAD_D EV LOADER reason code. In response, a
true device loader VxD uses a Configuration Manager service to load the real driver
VxD. After loading the driver VxD, the Configuration Manager then sends the driver
VxD its own PNP _New_DevNode message, this time with a DL_LOAD_DRI V E R message,
and the driver VxD responds by calling eM_Regi ster _Devi ce_Dri ver.

In both cases, the driver VxD for a particular devnode ends up calling
eM_Regi ster _Devi ce_Dri ver. The driver VxD calls this function to trigger the final
step in the Plug and Play process, receiving configuration notifications, which I'll
address in the next section.

Plug and Play Device Driver VxDs - 189

The Calling Interface for CM_Register_Device_Driver

DWORD CONFIGMG_Register_Device_Driver(DEVNODE node,
CMCONFIGHANDLER handler,
DWORD ref Data, DWORD flags);

node: registering as device driver for this node;
provided along with PNP_New_DevNode message

handler: callback function inside the driver VxD
which will receive configuration notifications

ref Data: this value will be passed
as a parameter to the callback function

flags: CM_REGISTER_DEVICE_DRIVER_STATIC:
device cannot be reconfigured at run-time

CM_REGISTER_DEVICE_DRIVER_DISABLEABLE:
device can be disabled at run-time

CM_REGISTER_DEVICCDRIVER_REMOVEABLE:
device can be removed from hardware tree

VxDs for Plug and Play hardware should set both DISABLEABLE and REMOVEABLE.
This combination of flags allows the Configuration Manager to reconfigure the device
to accomodate a newly arrived Plug and Play device. A VxD for a Legacy device
should set STAT I C, because a Legacy device does not support reconfiguration. If your
VxD does not set these flags, the Configuration Manager will never attempt to recon
figure your device - it will never send another CONFIG_START message after the ini
tial one. In addition, the debug version of the Configuration Manager will output a
warning message to the debugger, "Device does not allow rebalance and removal".

A VxD may also allocate devnode-specific, or "instance", data during
PNP _New_DevNode. Commonly, a single-driver VxD will support multiple instances of
the same device, for example COMl, COM2, etc. Such a driver will receive multiple
PNP _New_DevNode messages (one for each physical device), and will call
_He a p-.A 11 ocate during PNP _New_DevNode processing to dynamically allocate a
structure for device-specific context information. A typical COMlICOM2 driver, for
example, would typically allocate a structure to store the port's I/O base, IRQ, receive
buffer, and transmit buffer, etc.

190 - Writing Windows VxDs and Device Drivers

Confi gHand7 er Processing

After it has loaded all driver VxDs for Plug and Play devices, the Configuration Man
ager invokes arbitrators to assign resources to all Plug and Play devices. Once the
arbitrators have made these assignments, the Configuration Manager notifies each
driver VxD that it may start using the device's assigned configuration.

A VxD receives this notification through its configuration handler function, regis
tered earlier in a call to CM_Register _Devi ce_Dri ver. The VxD's configuration han
dler must conform to this interface:

The Calling Interface for a Configuration Callback

CONFIGRET CM_HANDLER ConfigHandler(CONFIGFUNC cfFunc. SUBCONFIGFUNC scfSubFunc.
DEVNODE dnDevNode. DWORD dwRefData. ULONG ulFlags);

cfFunc: function identifier
scfSubFunc: subfunction identifier
dnDevNode: devnode handle
dwRefData: val ue passed as ul RefData parameter to CM_Regi ster _Devi ce_Dri ver
ulFlags: always zero

When notifying a VxD of a newly assigned configuration, the Configuration Manager
sets the cfFunc parameter to CONFI G_START, meaning "start using your assigned configu
ration". When processing CONFIG_START, a VxD discovers this assigned configuration
with another call to the Configuration Manager, this time to CM_GeCA 11 oCLog_Conf.

CONFIGRET CM_Get_Alloc_Log_ConfCPCMCONFIG pccBuffer.
DEVNODE dnOevNode. ULONG ulFlags);

pccBuffer: pointer to CMCONFIG structure to receive configuration
dnDevNode: requesting configuration for this devnode
ulFlags: CM_GET_ALLOC_LOG_CONF_ALLOC to get currently allocated configuration

CM_GET_ALLOC_LOG_CONF_BOOT_ALLOC to get boot configuration

This function retrieves either the currently allocated configuration or the boot configu
ration, depending on the value of the u1 F1 ags parameter. When processing CONFIG_START,
a VxD wants the current configuration, and so uses CM_GET_ALLOCLOG_CONF _ALLOC.
The configuration is returned in a CM_CONFIG structure that summarizes the system
resources assigned to the device: memory address, I/O address, IRQ, and/or DMA chan
nel. This structure can be confusing at first glance and isn't documented well in either the
DDK or VToolsD. The following code shows how the CMCONFI G structure is defined.

{

Plug and Play Device Driver VxDs -191

II CM_CONFIG is typedef'ed
II to struct Config_Buff_s

WORD wNumMemWi ndows; I I Num memory wi ndows
DWORD dMemBase[MAX_MEM_REGISTERS]; II Memory window base
DWORD dMemLength[MAX_MEM_REGISTERS]; II Memory window length
WORD wMemAttrib[MAX_MEM_REGISTERS]; II Memory window Attrib

II fMD_ROM or fMD_RAM
II fMD_24 or fMD_32 is number of address lines that device decodes

WORD wNumIOPorts; II Num 10 ports
WORD wIOPortBase[MAX_IO_PORTS]; II 1/0 port base
WORD wIOPortLength[MAX_IO_PORTS]; II 1/0 port length
WORD wNumIRQs; II Num IRQ info
BYTE bIRQRegisters[MAX_IRQS]; II IRQ list
BYTE bIRQAttrib[MAX_IRQS]; II IRQ Attrib list

II fIRQD_Share if shared with another device
WORD wNumDMAs; II Num DMA channels
BYTE bDMALst[MAX_DMA_CHANNELS]; II DMA list
WORD wDMAAttrib[MAX_DMA_CHANNELSJ; II DMA Attrib list

II fDD_BYTE if byte size channel
II fDD_WORD if word size channel
II fDD_DWORD if dword size channel

BYTE bReservedl[3]; II Reserved
} ;

The fields in the CMCONFIG structure can be partitioned into four groups: the first
group describes memory resources; the second describes 110 resources; the third
IRQs; and the last, DMA resources. Each of these groups conforms to a common
pattern. The first field in the group (wNumMemWi ndows, wNumIOPorts, wNumI RQs,
wNumDMAs) tells how many assignments of that type were made, and consequently,
which entries in the related arrays are filled in.

For example, a zero in wNumMemWi ndows means no memory range was assigned,
so none of the entries in the three memory-related arrays (dMemBase, dMemLength,
wMemAttri b) are valid. A value of 2 for wNumIOPorts means two different 1/0
ranges were assigned, and the first range is described by the first entry in the two
wIOPort arrays (wIOPortBase, w10PortLength). The second range is described
by the second entry in each of the two arrays. In other words, wIOPortBase[O]
and wIOPortLength[O] describe the first 110 range; wIOPortBase[1] and
wIOPortLength[l] describe the second 110 range.

After decoding the device's assigned resources from the CMCONFIG structure, a
VxD's CONFI G_START handler should perform basic device initialization. Other VxDs
do this during Sys_1 nit or Sys_Dynami cDevi ce_I nit, but a Plug and Play driver
VxD, although loaded early in the boot process, IS unable to access the device until
CON FI G_ST ART. The driver VxD may access an IIO-mapped device with nothing more
than an inp or outp to the 1/0 port range specified in the CMCONF1G, but access to a

192 - Writing Windows VxDs and Device Drivers

memory-mapped device requires calls to one or more VMM services to obtain a linear
address that maps to the device's physical address in CM_CONFIG. Also at this time, a
VxD will typically register an interrupt handler for the device's IRQ by calling
VPI CD_Vi rtua 1 i ze_I RO.

In some cases, the Configuration Handler will also want to process the
CON F I GJ I L TE R message. Before choosing a logical configuration and sending the
CONFIG_START message, the Configuration Manager always sends a CONFIG_FILTER
message. (Note that the VxD will receive a CONFIGJILTER message before every
CONFIG_START, even if the CONFIG_START was not sent as part of the boot process.)
The CONFIGJI L TERmessage allows the driver an opportunity to examine and modify
any of the logical configurations before the Configuration Manager commits to a con
figuration. For example, a device that doesn't require page-alligned memory resources
might specify an unaligned memory resource in the INF file. By responding to the
CONFIGJI L TER message, the device's VxD could still attempt to optimize the transfer
by changing (filtering) each logical configuration to use a page-aligned buffer instead.

Other Plug and Play Configuration Scenarios
The previous sections describe how a Plug and Play driver VxD handles boot-related
configuration events. Not all configuration events, though, relate just to the boot pro
cess. The VxD's Configuration Handler function must also handle notifications trig
gered by such user actions as shutting down, adding devices, and removing devices.
Table 10.3 summarizes the sequence of configuration events in each of these scenar
ios (the boot sequence is also included for completeness).

Shutdown
When a user shuts down Windows 95, each VxD Configuration Handler receives a
CONFIG_SHUTDOWN notification. The DDK documentation recommends that the driver
VxD "free system resources and shutdown its device". But it's interesting to note that
many of the drivers whose source is in the DDK don't follow either of those instruc
tions. It really doesn't matter if a VxD frees its system resources by unvirtualizing its
IRQ and unhooking its 110 port trap handlers, because the system is shutting down
anyway. As for "shutting down" your device, the action taken really depends on the
kind of device. For example, an audio playback driver might stop playback on the
device, or a modem might hang up a connection.

Plug 'and Play Device Driver VxDs -193

Table 10.3 Plug and Play configuration events.

Process Function Description

Shutdown CONFIG_PRESHUTDOWN system about to shut down

CON FIG_SHUTDOWN system shutting down

Boot CON FIG_START start using assigned
configuratioq '"

CONFIGJILTER driver may filter logical
configurations

New CONFIG_STOP stop using assigned

Configuration configuration

Assigned CONFIGJI L TER driver may filter logical
configurations

CONFIG_START start using (new) assigned
configuration

Device Removal CONFIG_TEST ok for device to be

(Windows 95 knows removed? return

ahead of time) CR_SUCCESS (ok) or
CR_REMOVE_VETOED(notok)

CONFIG_TEST_SUCCEEDED devnode and all its children
returned ok to CONFI G_TEST,
device will be removed

CONFIG_PREREMOVE prepare for device removal

CONFIG_PREREMOVE2 prepare for device removal

CON FIG_REMOVE device has been removed

Device Removal CON FIG_REMOVE device has been removed

(Windows 95 knows
after the fact)

194 - Writing Windows VxDs and Device Drivers

N ewConfiguration
Sometimes when a new device is added while the system is running (e.g. by inserting
a PCMCIA card), that new device requires a resource already assigned to another
device. In this case, the Configuration Manager may shuffle the resource assignments
of already-present devices to satisfy the new device. If the Configuration Manager
does reassign a device's resources, that device's Configuration Handler receives a
CONFI G_STOP notification followed by a CON FI G_ST ART notification. CONFI G_STOP
tells the driver to stop using its allocated configuration; CON F I G_ST ART tells the driver
to start using the (newly) allocated configuration.

To stop using the device resource, the CONFIG_STOP handler may need to "undo"
system calls. If the device uses an IRQ, it should be unvirtualized. If the device was
memory-mapped, the linear-to-physical mapping requested by the CONFIG_START
handler should be released by unlocking, decomrnitting, and freeing the device's lin
ear address. Review "Talking to a Memory-mapped Device" in Chapter 6 for an
explanation of these steps.

It may seem inefficient to free the linear address during CONFIG_STOP if the VxD
will turn around and allocate a linear address again during the following CON F I G_ST ART;
however, there is at least one situation where a CONFIG_START does not follow a
CONFIG_STOP. If the Configuration Manager attempts to reassign resources after boot
because a new device was added, and the attempt results in an unresolvable conflict, the
Device Manager will ask the user to choose a device to kill. This device will receive a
CONFIG_STOP message and nothing else.

In most cases, the Configuration Manager follows a CON FIG_STOP with a CON FI G_ST ART
notification for the newly assigned configuration. The VxD's CONFIG_START handler acts
exactly as it does during boot: it first calls CM_Get_A 11 oCLo9_Conf and then starts using
the assigned resources returned in the CM_CON FIG structure. No special code is needed in the
CON FI G_ST ART handler to distinguish reassignment from initial boot-time assignment.

Device Removal
There are two kinds of device removal: those where the operating system knows.
ahead of time that the user is planning to remove the device, and those where the
operating system learns of the removal after the fact. In the first case, the system can
warn the device's VxD of the impending removal. The system will have advance
warning, for example, when the user chooses Remove from Device Manager and when
the user undocks his laptop from its docking station. In cases like these, the VxD Con
figuration Handler for the "about-to-be-removed" device receives a CONFIG_TEST
notification before the removal. The VxD can grant its permission for the removal to
proceed by returning CR_SUCCESS, or can deny permission if the device isn't ready to
be removed by returning CR_REMOVE_VETOED.

Plug and Play Device Driver VxDs -195

If the CONFIG_TEST handler returns CR_SUCCESS, the Configuration Manager fol
lows up with a CONFIG_TEST_SUCCEEDED notification, which requires no handling at
all by the driver VxD. Finally, after the device is removed, the Configuration Manager
sends a CON FIG_REMOVE notification. The CONFIG_REMOVE handler should halt use of
the device resources (unvirtualize the IRQ, etc.). On this event, the driver should also
free any devnode-specific data. (See the earlier section "Plug and Play BootProcess:
PNP _New_DevNode Processing" for discussion of allocating devnode-specific data.)

The second class ofremoval happens when the operating system doesn't find out
about the removal until after the fact, for example when a PCMCIA card is removed.
In this case, the VxD for the just-removed device receives a CON F I G_REMOV E notifica
tion after the fact. Once again, a CON F I G_REMOV E handler should stop using device
resources and free any devnode-specific data.

A Sample Plug and Play Driver VxD:
TRICORD. VxD

The remainder of this chapter will discuss an example Plug and Play Driver VxD,
TRI CORD. VXD, and its accompanying INF file, TRI CORD. I NF. TRI CORD. VXD is the Plug
and Play Device Driver V xD for an imaginary Tricorder device produced by an imag
inary vendor, the XYZ1234 Corp. TRICORD. VXD also acts as its own Plug and Play
Device Loader, a common scenario.

While the TRICORD VxD isn'ta fully functional device driver - it doesn't talk
to any real hardware - it is a fully functional Plug and Play Driver VxD - it inter
acts with the Configuration Manager as required to find out what system resources the
Tricorder device is using. If you already have a driver VxD and you want to add Plug
and Play support, TRICORD shows you what pieces to add to your existing VxD. Or,
if you are writing a Plug and Play Driver VxD from scratch, you can use TRICORD
as a starting point and add device-specific functionality.

Before running TRICORD for the first time, you must run the Add New Hardware
Wizard. The wizard will use TRICORD's INF file to add several registry entries and
copy the VxD file. If TRICORD was a true Plug and Play device, an enumerator
would automatically recognize it as a new device when first added to the system, and
the Device Installer would automatically be invoked to process its INF file. But like a
real Legacy device, the imaginary TRICORD device isn't automatically recognized,
so you as a developer must explicitly tell Windows 95 about the new device.

196 - Writing Windows VxDs and Device Drivers

TRICORD.INFDetails
TRI CORD. I NF (Listing 10.5, page 213) performs a basic installation scenario as dis
cussed earlier in this chapter. TRI CORD. IN F contains

• aVers i on section which describes the OS version and the device class (type);

• a Manufacturer section which describes the device;

• a CopyFil es section which copies TRI CORD. VXD from the installation disk to the
hard disk;

• an AddReg section which adds a single DevLoader entry to the device's software
subtree in the registry;

• a LogConfi 9 section which describes the resources (110 port and IRQ) used by the
device; and

• an Install section which names the CopyFi 1 es, Add Reg, and LogConfi 9 sections.

The TRICORD. I NF file is shown in the following code.

[Version]
Signature=$CHICAGO$
Class=OtherDevices
Provider=%StringO%

[DestinationDirs]
DefaultDestDir=30,BIN

[Manufacturer]
%StringO%=SECTION_O

[SECTION_O]
%String1% = XYZ1234.Install ,*XYZ1234

[XYZ1234. I nsta 1.1]
Copyfiles=CopyFiles_XYZ1234
AddReg=AddReg_XYZ1234
LogConfig=LogConfig_XYZ1234

[CopyFi1 es_XYZ1234]
tricord.vxd

[Add Reg_XY Z 1234]
HKR"DevLoader,O,tricord.vxd

Plug and Play Device Driver VxDs -197

[LogConfig_XYZ1234]
ConfigPriority=NORMAL
IOConfig=4@180-1B3%fffO(3::)
IRQConfig=4,5,9,lO,ll

[Strings]
StringO="XYZ Corp"
Stringl="Tricorder Model 1234"

When viewed as a text file, an INF file seems disjointed and unstructured. But an
INF file has an implicit hierarchical structure, with a root section that refers to branch
sections, each which refer to other branch sections. The INF file makes more sense
when viewed as a hierarchy, which is why many developers create and modify INF
files with the INFEDIT tool in the DDK. The following pseudocode depicts the hier
archical structure ofTRI CORD. IN F.

[Manufacturer]
"XYZ Corp" --) [SECTION 0]

"Tricorder Model 1234" --) [XYZI234.Install]
CopyFiles ---) [CopyFiles XYZ1234]

tricord.vxd

AddReg ----) (AddReg XYZ1234]
HKR .. DevLoader.O.tricord.vxd

LogConfig ---) [LogConfig XYZ1234]
ConfigPriority=NORMAL
IOConfig=20@200-3ff%3cO(3ff::l
I!{QConfig=5.7.10.15

The INFEDIT view makes it clear that the TRICORD. VXD describes only a single
device ("Tricorder Model 1234") from a single vendor ("XYZ Corp"). This Tri
corder device requires three steps to install (three items in XYZl234. Install). A
single file (tri cord. vxd) must be copied. A single registry entry must be added
(DevLoader=tricord.vxd) to the device's hardware key under HKLM\Enum. And,
the device supports a single logical configuration consisting of a range of 20h I/O
ports (anywhere between 200h and 3ffh) and an IRQ of 5, 7, 10, or 15.

You can avoid worrying about the unusual syntax on items like AddReg and
IOConfi 9 by using the INFEDIT tool to create and modify your INF file. For more
details on the exact syntax of any INF file section, see the DDK

Code Details
Like the earlier examples, the TRICORD source consists of two files. An ASM file
[TRI CORD. ASM (Listing 10.2, page 210)] contains the DDB and Device Control Proce
dure. A C file [PNP. C (Listing 10.1, page 204)] contains the message handler and call
back functions.

198 - Writing Windows VxDs and Device Drivers

TRICORD follows the basic procedures outlined earlier in this chapter. Its Device
Control Procedure handles only three messages: Sys_Dynami cDevi ce_I nit, Sys_
Dynami cDevi ce_Exi t, and PNP _New_DevNode. The PNP _New_DevNode handler reg
isters a Configuration Handler with the Configuration Manager. This Configuration
Handler processes CONFIG_START, CONFIG_STOP, CONFIG_REMOVE, and CONFIG_TEST
notifications.

By including the DYNAMIC keyword in the VxD DEF file and processing the
Sys_Dynami cDevi ce_Ini t and Sys_Dynami cDevi ce_Exi t messages, TRICORD
becomes a dynamically loadable VxD. However, neither message handler does any
real processing. Both OnSysDynami cDevi ceIni t and SysDynami cDevi ceExi t simply
return TRUE, indicating success.

CONFIGRET OnPNPNewDevnode(DEVNODE DevNode, DWORD LoadType)
{

CONFIGRET rc;
switch (LoadType)
{

case DLVXD_LOAD_DEVLOADER:
pDeviceContext = (DEVICE_CONTEXT *)_HeapAllocate(sizeof(DEVICE_CONTEXT),

HEAPZEROINIT);

if (!pDeviceContext)
return CR-FAILURE;

rc = CM_Register_Device_Driver(DevNode, ConfigHandler, pDeviceContext,O);
if (rc != CR_SUCCESS)

return rc;
return CR_SUCCESS;

default:
return(CR_DEFAULT);

OnPNPNewDevnode does some simple processing. If the LoadType parameter is
anything other than DLVXD_LOAD_DEVLOADER, the handler returns the CR_DEFAUL T
value defined by the Configuration Manager. If DevType is DLVXD_LOAD_DEVLOADER,
the handler first allocates a DEVICE_CONTEXT structure for instance data (data about
this particular devnode) and then registers as the device driver for the devnode by
calling CM_Regi ster _Devi ce_Dri ver. As a device driver for the devnode, TRICORD
will receive configuration notifications from the Configuration Manager through
the Confi gHandl er callback function, which was passed as a parameter to
CM_Regi ster _Devi ce_Dri ver. It may seem backwards t<\> register as a device driver
during DLVXD_LOAD_DEVLOADER processing, and yet ignore the DLVXD_LOAD_DRIVER
messages, but, as discussed earlier in this chapter, this is indeed proper behavior
for a VxD that acts as both Plug and Play Device Loader and Device Driver.

,
Plug and Play Device Driver VxDs -199

CONFIGRET CM_HANDLER Confi gHandl er(CONFIGFUNC cfFuncName.

CMCONFIG Config;
DWORD rc;

SUBCONFIGFUNC scfSubFuncName.
DEVNODE dnToDevNode.
DWORD dwRefData. ULONG ulFlags)

DEVICE_CONTEXT *dev ~ (DEVICE_CONTEXT *)dwRefData;

switch (cfFuncName)
{

case CONFIG_START:
return ProcessConfigStart(dnToDevNode. dey);

case CONFIG_TEST:
return CR_SUCCESS;

case CONFIG_STOP:
return ProcessConfigStop(dnToDevNode. dey);

case CONFI~REMOVE: ~

return ProcessConfigStop(dnToDevNode. dey);.

defaul t:
return CR_DEFAULT;

The real work in TRICORD. VXD is done by Confi gHandl er, the registered callback
function. The Configuration Manager passes Confi gHandl er a reason codeparame
ter, cfFuncName, which tells Confi gHandl er the reason for the callback. There are
well over a dozen reason codes, but like most driver VxDs, TRICORD processes only
a handful. Another parameter, dwRefData, is used as "reference data". It's actually a
pointer to the DEVICCCONTEXT structure that TRICORD allocated earlier in its
OnPNPNewDevnode handler. At that time, TRICORD passed this DEVICE_CONTEXT
pointer to the Configuration Manager in a call to CM_Regi ster ~Devi ce_Dri ver, and
the Configuration Manager now passes it back as the dWRefData parameter to
Confi gHandl er.

It is important that Confi gHandl er return CR_DEFAULT for any function code
that wasn't specifically processed. The Microsoft DDK specifically
recommends this behavior for compatibility with future versions of
Windows. In fact, the debug version of Windows 95' tests every VxD's
default response by calling the Configuration Handler function with a bogus
value of Ox12345678. If a VxD doesn't respond to this message with
CR_DEFAULT, Windows will output an error message on the debugger screen.

200- Writing Windows VxDs and Device Drivers

Of all the notifications actually processed by Confi gHandl er, CONFI G_TEST
results in the least processing: TRICORD returns a value of CR_SUCCESS, giving the
Configuration Manager pennission to either remove or stop using the device. The
most interesting action in ConfigHandleroccurs for CONFIG_START, CONFIG_STOP,
and CON FIG_REMOVE notifications. For each of these, Confi gHandl er calls a subrou
tine to do the real work.

CONFIGRET ProcessConfigStart(DEVNODE devnode, void ~p
{

DEVICCCONTEXT *dev = (DEVICE_CONTEXT *)p;
CONFIGRET rc;
CMCONFIG Config;
MEMREGS *regs;
WORD reg;
IROHANDLE hndIrq;

rc = CM_Get_Alloc_Log_Conf(&Config, devnode,
CM_GET-ALLOC_LOG_CONF_ALLOC);

if (rc != CR_SUCCESS)
(

DPRINTFl(dbuf. "CM_GeCAllocLo9_Conf fai·led rc=%x\n", rc);
return CR_FAILURE;

Print_Assigned_Resources(&Config);
if (! ((Config.wNumIROs == 1) &&

(Config.wNumIOPorts == 1 II Config.wNumMemWindows == 1)

DPRINTFO(dbuf, "Expected resources not assigned");
return CR_FAILURE;

if (Config.wNumMemWindows)
(

dev-)MemBase = Config.dMemBase[O);
dev-)MemSize = Config.dMemLength[O);
devc)pMem = (MEMREGS *)MyMapPhysToLinear(dev-)MemBase,

Config.dMemLength[O));
if (!dev-)pMem)
(

}

DPRINTFO(dbuf, "MyMapPhysToLinear failed");
return CR_FAILURE;

dev-)pMem-)Ctrl = CTRL_START_DEVICE;

else
{

Plug and Play Device Driver VxDs - 201

dev->IoBase = Config.wIOPortBase[O];
reg = dev->IoBase + REG_CTRL; .
_outpdw(reg, CTRL_START_DEVICE);

A CON FIG_START notification tells TRICORD that its device has been assigned
resources, and that the VxD can now communicate with its device. ProcessConfi gSta rt
begins by retrieving the assigned resources with a call to CM_GeCA 11 oCLog_Conf,
using the value CM_GET_ALLOCLOG_CONF _ALLOC for the flags parameter. This flag
value specifies the allocated logical configuration, as opposed to the logical configura
tion used at boot. The allocated logical configuration is returned in the CMCON FIG
buffer provided by Confi gHandl er. Confi gHandl er calls a utility function,
Print~ssigned_Resources, to decode the CMCONFIG buffer and print out the
assigned resources.

Pri nCAssi gned_Resources has four blocks, one for each resource type (I/O
port, memory range, IRQ, and DMA channel). Each block first tests to see if one or
more resources of that type was actually assigned and, if so, prints the name of the
resource. Then a for loop prints infonnation about each assigned resource of that type.
For example, this block processes the I/O port resource:

if (pConfig->wNumIOPorts)
{

DPRINTFO(dbuf, "10 resources\r\n");
for (i=O; i < pConfig->wNumIOPorts; i++)
{

DPRINTFl(dbuf, "Range H%d: ", pConfig->wNumIOPorts);
DPRINTF2(dbuf, "starts at %x len is %d\r\n",

pConfig->wIOPortBase[i],pConfig->wIOPortLength[i]);

202 - Writing Windows VxDs.and Device Drivers

The Pri nt_Ass i gned_Resources function is included mainly to illustrate decod
ing of the CMCON FIG structure. A V xD usually has some expectation about the number
and type of resources it will use, while remaining flexible about exactly which IRQ or
I/O port is assigned. This is true of ProcessConfi gSta rt, which expects a single IRQ
assignment and either a memory range or an I/O range. If these expectations aren't
met, ProcessConfi gStart, and in tum Confi gHandl er, returns with an error.

if (! «Config.wNumIROs == 1) &&
(Config.wNumIOPorts == 1 II Config.wNumMemWindows == 1»

DPRINTFO("Expected resources not assigned");
return CR-FAILURE;

After verifying that resources are assigned as expected, ProcessConfigStart
determines whether the device has been configured as memory-mapped or
I/O-mapped. If memory-mapped, the function maps the assigned physical base
memory address to a linear address, using a utility function MyMapPhysToLinear.
ProcessConfi gStart then uses the linear address as a pointer, writing an initializa
tion value to the device's control register.

If the device wasn't assigned a memory range, TRICORD uses the assigned 110
range instead. Once again TRICORD writes an initialization value to the device's control
register, but this time it uses an OUT instruction instead of a pointer. ProcessConfi gSta rt
uses the _outpdw macro to perform the OUT since the device has 32-bit registers and the
C run-time doesn't include a 32-bit form of in or out.

Finally, ProcessCol')figStart installs an interrupt handler by filling in a
VPICD_IRfLDESCRIPTOR structure and passing it to the VPICD service VPICD_
Vi rtual i ze_IRO. The structure's VID_I RfLNumber field is the device's assigned IRQ
(from the CMCONFIG structure). VID_Opti ons is setto VPICD_OPLREF _DATA This field
works together with the VID_ReCData field, which is set to point to the
DEV1CCCONTEXT (passed in as dwRefData and originally allocated by the
PNP _New_DevNode handler). When the VPICD calls the registered interrupt handler, it
will pass V I D_ReCData (really a DEV I CE_CONTEXT pointer) as a parameter.

This interrupt handler is specified by the VP I CD_1 RfLDESCR1 PIOR's Hw_I nt_Proc
field. The registered handler is HwlntProcThunk (in TRICORO's assembly module),
but this thunk merely grabs the reference data parameter from the EDX register and
pushes it on the stack before calling the HwlntProcHandl er function in the C module
to do the real handling.

ConfigHandler's processing for CONFIG_STOP and CONFIG_REMOVE is much
simpler than for CONFIG_START. For both of these messages, Confi gHandl er calls
ProcessConfi gStop.

Plug and Play Device Driver VxDs - 203

CONFIGRET ProcessConfigStop(DEVNODE devnode. DEVICE_CONTEXT dey)
{

if (dev->pMem)
(

}

*(pMem->Ctrl) = CTRL_STOP_DEVICE;
UnMapPhysToLinear(dev->pMem);

else if (dev->IoBase)
(

VPICD_Force_Default_Behavior(dev->hndIrq);
HeapFree(dey. 0);

return CR_SUCCESS;

This subroutine undoes the actions taken by ProcessConfi gSta rt. First TRI
CORD commands the device itself to stop, then undoes the linear-to-physical mem
ory mapping if necessary, and finally frees the DEV I CE_CONTEXT structure originally
allocated by the PNP _New_DevNode message handler.

Summary
While Plug and Play's Configuration ManagerlEnumerator/Arbitrator mechanism is
definitely complex, the system-to-VxD Plug and Play interface is reasonably straight
forward. At that system boundary, Plug and Play support only involves handling a few
well-defined messages and constructing an appropriate INF file.

Even so, drivers that fully support the flexibility possible under Plug and Play will
be considerably more complex than, for example, a legacy driver. It's the old generality
vs simplicity trade-off: a board that can be dynamically reconfigured to use a wide vari
ety of resources won't be as simple as one with fixed addresses; code that "binds" to its
resources at run-time won't be as simple as code that manipUlates fixed addresses.

All the same, most commercial drivers probably should include Plug and Play sup
port. The benefits to end-users (and thus the difference in marketability) are significant.

204 - Writing Windows VxDs and Device Drivers

Listing 10.1 PNP.C

Iidefi ne WANTVXDWRAPS

#include <basedef.h>
Ilinclude <vmm.h>
Iii ncl ude <debug. h>
Ilinclude "vxdcall.h"
Ilincl ude <vxdwraps. h>
Ilinclude "intrinsi .h"
#include <configmg.h>
#include <vpicd.h>
Ilinclude "wrappers.h"

Iii fdef DEBUG
Iidefi ne DPRINTFO(buf. fmt) _Spri ntf(buf. fmt); Out_Debug_Stri ng(buf)
Iidefi ne DPRINTFl(buf. fmt. argl) _Spri ntf(buf. fmt. argl); Out_Debu9-Stri ng(buf)
Iidefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2); Out_Debu9-String(buf)
Ilel se
Iidefine DPRINTFO(buf. fmt)
Iidefine DPRINTFl(buf. fmt. argl)
Iidefine DPRINTF2(buf. fmt. argl. arg2)
Ilendif

Iidefine _outpdw(port. val

Iidefi ne REG_CTRl 0
Iidefi ne REG_STATUS 1

Iidefine CTRl_START_DEVICE OxOl

_asm mov dx. port \
_asm mov eax. val \
_asm out dx. eax

Iidefine CTRl_STOP _DEVICE OxOO

typedef struct
(

DWORD Ctrl ;
DWORD Status;

MEMREGS;

typedef struct
(

DWORD MemBase;
DWORD MemSi ze;
MEMREGS *pMem;
WORD IoBase;
WORD Irq;
I ROHAND lE hnd I rq ;
VPICD_IRQ..DESCRIPTOR IrqDescr;

DEV I CCCONTEXT;

BOOl OnSysDynami cDevi ce I nit (voi d) ;
BOOl OnSysDynami cDevi ceEx it (voi d) ;
CONFIGRET OnPNPNewDevnode(DEVNODE DevNode. DWORD loadType);
CONF IGRET CM_HANDlER Confi gHandl er(CONFIGFUNC cfFuncName. SUBCONFI GFUNC scfSubFuncName.

DEVNODE dnToDevNode. DWORD dwRefData. UlONG ul Fl ags);
CONFIGRET ProcessConfigStart(DEVNODE devnode. DEVICE_CONTEXT *dev);
CONFIGRET ProcessConfigStop(DEVNODE devnode. DEVICCCONTEXT *dev);
void Print_Assigned_Resources(CMCONFIG *pConfig);
DWORD MyMapPhysToLinear(DWORD phys. DWORD size);
BOOl UnMapPhysTolinear(DWORD lin. DWORD size);

Plug'and Play Device Driver VxDs - 205

Listing 10.1 (continued) PNP.C

char dbuf[80];
DEVICE_CONTEXT *pDevi ceContext;

II functions in asm module
void HwlntProcThunk(void);

BOOL OnSysDynami cDevi celnitO
(

return TRUE;

BOOL OnSysDynamicDeviceExit()
(

return TRUE;

CONFIGRET OnPNPNewDevnode(OEVNODE DevNode, DWORD LoadType)
(

CONFI GRET rc;

switch (LoadType)
{

case DLVXD_LOAD_DEVLOADER:
pDevi ceContext - (DEVICCCONTEXT *)_HeapAll ocate(si zeof<DEVICCCONTEXTJ,

HEAPZEROINIT);
if (!pDevieeContextl

return CRJAILURE;
rc - CM_Regi ster _Devi ee_Dri ver<DevNode, Confi gHandl er,

if (re != CR_SUCCESS)
return re;

return CR_SUCCESS;

default :
return(CR_DEFAUL Tl;

pDevi eeContext,
Q1..REGISTER_DEVICLDRIVEICREMOVEABLE I
CM_REGISTER_DEVICE_DRIVER_DISABLEABLE);

206 - Writing Windows VxDs and Device Drivers

Listing 10.1 (continued)

Ilpragma VxD_PAGEABLE_DATA_SEG
ilpragma VxD_PAGEABLE_COOE_SEG

PNP.C

CONFI GRET CM_HANDLER Confi gHand1 er(CONF I GFUNC cfFuncName. SUBCONFIGFUNC scfSubFuncName.
OEVNOOE dnToDevNode. DWORD dwRefData. ULONG ulF1 ags)

CMCONFIG Config;
DWORD rc;
DEVICE_CONTEXT *dev = (DEV ICE_CONTEXT *)dwRefData;

switch (cfFuncName)
{
case CONFIG_START:

return ProcessConfigStart(dnToDevNode. dev);

case CONFIG_TEST:
return CR_SUCCESS;

case CONFI"-STOP:
return ProcessConfi gStop(dnToDevNode. dev);

case CONFIG_REMOVE:
return ProcessConfigStop(dnToDevNode. dev);

default :
return CR_DEFAULT;

CONFIGRET ProcessConfigStart(DEVNODE devnode. void *p)
{

DEVICCCONTEXT *dev = (DEVICE_CONTEXT *)p;
CONFIGRET rc;
CMCONFIG Config;
MEMREGS *regs;
WORD reg;
I ROHANDLE hnd I rq;

rc = CM_Get_A 11 oc_LogJonf (&Confi g. devnode. CM_GET.-ALLOCLOG_CONF _ALLOC) ;
if (rc != CR_SUCCESS)
{

DPRINTFl(dbuf. "CM_GeCAlloc_Lo9-Conf failed rc=%x\n". rc);
return CRJAILURE;

Pri nt_Ass i gned_Resources (&Confi g) ;
if (! «Config.wNumIRQs = 1) && (Config.wNumJOPorts = 1 II Config.wNumMemWindows = 1)))
{

DPRINTFO(dbuf. "Expected resources not assigned");
return CRJAILURE;

Plug and Play Device Driver VxDs - 207

Listing 10.1 (continued) PNP.C

if (Confi g. wNumMemWi ndows)
{

dev->MemBase = Config.dMemBase[O];
dev->MemSize = Config.dMemLength[O];
dev->pMem = (MEMREGS *)MyMapPhysToLinear(dev->MemBase. Config.dMemLength[O]);
if (!dev->pMem)
(

}

DPRI NTFO(dbuf. "MyMapPhys ToLi nea r fa il ed");
return CRJAI LURE;

dev- >pMem- >Ctrl = CTRL_START_DEVICE;
}
else
(

}

dev->IoBase = Config.wIOPortBase[O];
reg = dev->IoBase + REG_CTRL;
_outpdw(reg. CTRL_START _DEV I CE);

dev-> I rqDescr. VID_IRQ_Number = Confi g. bIRQRegi sters [0];
dev-> I rqDescr. VID_Opti ons = VPICD_OPT_REF _DATA;
dev->IrqDescr.VID_Hw_Int_Ref = dev;
dev->IrqDescr.VID_Hw_InCProc = HwlntProcThunk;
hndlrq = VPICD_Virtualize_IRQ(&dev->IrqDescr);
if (!hndlrq)
(

DPRINTFO(dbuf. "VPICD_Virt failed");
return CR....FAI LURE;

return CR....SUCCESS;

CONFIGRET ProcessConfigStop(DEVNODE devnode. void *p)
{

DEVICLCONTEXT *dev = (DEVICLCONTEXT *)p;
WORD reg;

if (dev->pMem)
{

}

dev->pMem->Ctrl = CTRL_STOP_DEVICE;
UnMapPhysToLinear((DWORD)dev->pMem. dev->MemSize);

else if (dev->IoBase)
(
reg = dev- > loBase + REG_CTRL;

_outpdw(reg. CTRL_STOP _DEVICE);
}
VPICDJorce_Default_Behavi ore dev->hndI rq);
_HeapFree(dev. °);
return CR_SUCCESS;

208 - Writing Windows VxDs and Device Drivers

Listing 10.1 (continued) PNP.C

void PrinCAssigned_Resources(CMCONFIG *pConfig)
{

int i;

if (pConfig->wNumMemWindows)
(

OPRINTFO(dbuf. "Mem resources\r\n");
for (i-O; i < pConfig-)wNumMemWindows; i++)
(

OPRINTFlCdbuf. "Range il%d: ". pConfig->wNumMemWindows);
OPRINTF2(dbuf. "starts at %x 1 en is %d\r\n".

pConfi g- >dMemBase[i l. pConfi 9 ->dMemLength [i]);

if (pConfig->wNumIOPorts)
(

OPRI NTFO(dbuf. "10 resources\r\n");
for (i-O; i < pConfig->wNumIOPorts; i++)
(

OPRI NTFlC dbuf. .. Range i/%d: ". pConfi 9 ->wNumIOPorts);
OPRINTF2(dbuf. "starts at %x 1 en is %d\r\n".

pConfi g- >wIOPortBase[i l. pConfi g- >wIOPortLength [i 1);

if (pConfig->wNumIRQs)
(

OPRI NTFO(dbuf. "I RQs: ");
for (i-O; i < pConfig->wNumIRQs; i++)
(

OPRINTFlCdbuf. "%d ". pConfig->bIRQRegisters[il);
}
OPRI NTFO (dbuf. "\r\n");

if (pConfig->wNumOMAs)
(

OPRINTFO(dbuf. "OMA channel s:");
for (i-O; i < pConfig->wNumOMAs; i++)
(

OPRINTFl(dbuf. "%d ". pConfig->bOMALst[il);
}

DPRINTFO(dbuf. "\r\n");

Plug and Play Device Driver VxDs - 209

Listing 10.1 (continued) PNP.C

DWORD MyMapPhysToLinear(DWORD phys, DWORD si ze)
(

DWORD lin;
DWORD nPages ~ size / 4096;

1 i n ~ _PageReserve(PR_SYSTEM, nPages, 0);
if (lin - -1)

return 0;
if (!_PageCommitPhys(1 in, nPages, PCINCR PCWRITEABLE, 0))

return 0;
if (!_LinPageLock(lin, nPages, 0))

return 0;
return lin;

BOOL UnMapPhysToLinear(DWORD lin, DWORD size)
{

DWORD nPages - size / 4096;

if (!_LinPageUnlock(lin, nPages, 0))
return 0;

if (!_PageDecommit(lin, nPages, 0))
return 0;

if (!_PageFree((void *)lin, 0))
return 0;

return 1;

BOOL _stdcall HwIntProcHandl er(VMHANDLE hVM, IROHANDLE hI RO, voi d *pRefData)
(

DEVICCCONTEXT *dev ~ <DEVICE_CONTEXT *)pRefData;

return TRUE;

210 - Writing Windows VxDs and Device Drivers

Listing 10.2 TRICORD.ASM

.386p

;**
INCLUDES

;**

include vmm.inc
include debug.inc

V I R T U A L D E V ICE DEC L A RAT ION

PROCEDURE: ControlProc

DESCRIPTION:

TRICORD. 1. O. ControlProc. UNDEFINED_DEVICE_ID. \
UNDEFINED_INIT_ORDER

Device control procedure for the SKELETON VxD

ENTRY:
EAX - Control call ID

EXIT:
If carry clear then

Successful
el se

Control call failed

USES:
EAX. EBX. ECX. EDX. ES!. ED!. Flags

BeginProc ControlProc
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT. _OnSysDynamicDevicelnit. cCall. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysOynamicDeviceExit. cCall. <ebx>

clc
ret

EndProc ControlProc

Plug and Play Device Driver VxDs - 211

Listing 10.2 (continued) TRICORD.ASM

PUBLIC _HwlntProcThunk
_HwlntProcThunk PROC NEAR; called from C. needs underscore

sCalI HwlntProcHandler. <eax. ebx. edx>
or ax. ax
jz clearc
stc
ret

cl ea rc:
clc
ret

_HwlntProcThunk ENDP

VxD_LOCKED_CODE_ENDs

END

Listing J 0.3 TRI CORD. MAK

CFLAGs
CVXDFLAGs
LFLAGS

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
= -Zdp -Gs-c -015_32 -Zl -DOEBLEVEL=l -DDEBUG

AFLAGs

= -machi ne: i386 -debug: notmapped. full -debugtype: cv
-subsystem:console kernel32.1ib

= -coff -DBLD_COFF -015_32 -W2 -Zd -c -Cx -DMAsM6 -DDEBLEVEL=l -DDEBUG

all: tri cord. vxd

pnp.obj: pnp.c
cl $(CVXDFLAGs) -Fo$@ %s

tricord.obj: tricord.asm
ml $(AFLAGs) -Fo$@ %s

tricord.vxd: tricord.obj pnp.obj .. \wrappers\vxdcal] .obj tricord.def
echo >NUL @«tricord.crf

-MACHINE:i386 -DEBUG -OEBUGTYPE:MAP -PDB:NONE
-DEF:tricord.def -OUT:tricord.vxd -MAP:tricord.map
-VXO vxdwraps.clb wrappers.clb vxdcall .obj tricord.obj pnp.obj
«KEEP

link @tricord.crf
. mapsym tri cord

212 - Writing Windows VxDs and Device Drivers

Listing 10.4 TRICORD.DEF

VXD TRICORD DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
~DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

ITEXT CLASS 'ICODE'
_I DATA CLASS 'ICODE'
_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'
_IMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
TRICORD_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Plug and Play Device Driver VxDs - 213

Listing 10.5 TRICORD.INF

[Version]
Signature=$CHICAGO$
Class=LJnknown
Provider=%StringO%
LayoutFile=<Layout File>

[DestinationDirs]
DefaultDestDir=lO

[Manufacturer]
%String1%=SECTION_O

[SECTION_OJ
%Stri ng2%=1234_1 nsta 11 . XYZl234

[l234_Install]
CopyFiles=1234_NewFiles
AddReg=1234_AddReg
LogConfig=1234_LogConfig

[l234_NewFi 1 es]
TRICORD.VXD

[l234_AddRegJ
HKR .. DevLoader.O.TRICORD.VXD

[1234_LogConfig]
ConfigPriority=NORMAL
IOConfig=20@200-3ff%ffcO(3ff::)
IROConfig=5,7.10.15

[Control Flags]

[SourceDisksNames]
1=XYZ1234 Driver Disk .. OOOO-OOOO

[SourceDisksFiles]

[Strings]
StringO="XYZ Corp."
Stringl="XYZ Corp."
String2="Tricorder Model 1234"

214 - Writing Windows VxDs and Device Drivers

Chapter 11

Communication from
Applications to VxDs
VxDs do much more than just "handle" hardware. In most cases, VxDs also offer an
interface to applications, so an application can actually do something with the hard
ware. Both Windows 3.x and Windows 95 have mechanisms which allow VxDs and
applications to communicate in both directions: application-to-VxD and VxD-to-appli
cation. This chapter will cover communication in the· application-to-VxD direction.
The next chapter will cover VXD-to-application interaction.

Instead of organizing this chapter around whether the VxD is running under Win
dows 3.x or Windows 95, I've divided the chapter into sections that address either the
Win16 application interface or the Win32 application interface. That's because the
interface between a Win16 application and VxD is the same for both Windows 3.x and
Windows 95. The distinguishing feature is the bitness of the application, not the ver
sion of Windows the VxD runs on.

215

216 - Writing Windows VxDs and Device Drivers

Win16Application to VxD:
View from VxD Side
To provide an interface for a Win16 application, a VxD exports what is known as an
"API procedure". More correctly, a VxD exports a PM API procedure and/or a V86
API procedure. The PM API procedure is used by 16-bit protected mode applications,
which includes Win16 applications as well as any DOS-extended (DPMI) applica
tions. The V86 mode API is, of course, used by DOS applications.

A VxD exports these procedures by naming them in the DDB. VxDs typically use
the Dec1 are_Vi rtua1_Devi ce macro to declare the DDB. In this case the API proce
dure names go in the V86_Proc and PM_Proc fields. When assembled or compiled,
these function names become addresses in the DDB, which the VMM uses to call the
V xD on behalf of the application.

A VxD must also declare a unique Device ID in the DDB in order to export an API
procedure. (This field is referred to as the Devi ce_Num in the Dec 1 are_Vi rtua l_Devi ce
macro). Developers commonly use the value UNDEFINED_DEVICE_ID for VxDs, but
that's not good enough for a VxD that exports an API procedure or a service.
Microsoft reserves the values 0-1 FFh, so you're free to choose any value above that as
long as it's unique. You can ensure that it's unique by registering with Microsoft for
your very own Device ID.

When the VMM calls a VxD API procedure on behalf of an application, it puts the
VM handle in EBX and a pointer to the Client Register Structure in ESP. The VxD must
examine the Client Register Structure for the parameters passed in by the application
(including the reason for the call). The VxD developer has total control over all other
aspects of the interface design. The developer decides what functions to support, what
registers to use, and what parameters to pass in registers. A common convention is for
AX to specify the function code, and to use AX=Q for "Get Version".

Except for pointer parameters, the VxD can examine and use parameter values
directly. For example, if the convention was for CX to contain a buffer size, the VxD would
use the construct [EBX] . C1 i ent_CX, or from C, crs - >C1 i enCCX. Pointer parameters
can't be used "as is", because pointers have a different representation in the application's
16-bit segmented environment than in the VxD's 32-bit flat-model environment.

In the segmented world ofWin16 and DOS applications, pointers are 16:16 values:
either selector:offset for PM applications, or segment:offset for V86 applications. In
the flat world ofVxDs, pointers are 32-bit linear addresses. When an application passes
a pointer to a VxD, say in OS: OX, the VxD must transform the segmented representa
tion into a linear address. The VMM service Ma pJ1 a t performs this translation. To
use this service, you specify a segment/selector and an offset, where each component is
a field in the C1 i ent_Regs_Struc. The VMM returns a Ring 0 linear address. When
using the DDK and the WRAPPERS library, this service is accessed via the MAPFLAT
macro, as in the following code fragment.

Communication from Applications to VxDs - 217

pBuf = MAPFLAT(CLIENT_OS, CLIENT_OX);

You don't even need to tell the VMM whether the pointer is from a PM application
(selector:offset) or a V86 application (segment:offset). The VMM figures that out for
itself, based on the execution mode of the currently executing VM. (The current VM is
the appropriate context, because it will always be the VM that called the VxD's API.)

What about returning a pointer from the VxD to the application? Clearly a flat
model linear address must be transformed into a selector:offset or segment offset, but
either party to the transaction could be responsible for the conversion. There are two
ways to approach this. The VxD could perform the conversion anQ. give the applica
tion a 16:16 pointer. Alternatively, the VxD could return a linear a'ddress to the appli
cation and leave the conversion to the application.

Having the VxD do the conversion might seem to be the more natural solu
tion, but is actually more work, mainly because only low-level selector functions
are available to a VxD. To perform this conversion, a VxD must first obtain a
selector via Allocate_LOT _Se 1 ector, then fill in the associated descriptor with
Buil dOescri ptorOWORDS. Using Allocate_LOT _Se 1 ector isn't too bad, but
Bui 1 dOescri ptorOWOROS is. Your VxD must deal with details such as DPL, granu
larity, and big/default, all requiring intimate knowledge of 80x86 descriptors.

An application, on the other hand, has a more useful set of high-level selector
functions (All ocSe 1 ector, SetSe 1 ectorBase, and SetSe 1 ectorL i mit) which it can
use to transform a linear address into a usable pointer.

Win16Application to VxD:
View from Application Side
To call into a VxD, a Win16 application uses the Windows Get Oevi ce Entry Poi nt
function, accessed through INT 2Fh. The application puts the numeric Device ID in
BX, the function code in AX (1684), and calls the VMM via the software interrupt 2Fh.
On return, ES: DI is a function pointer the application uses to call the VxD's API pro
cedure. This technique works for both protected mode (Winl6 or DOS-extended)
applications and for V86-mode applications (plain old DOS).

218 - Writing Windows VxDs and Device Drivers

The following function, GetVxDApi, encapsulates the I NT 2Fh call. Pass in a VxD
!D, and it returns the function pointer used to call the VxD.

typedef void (far *PVOIDFN)(void);
PVOIDFN GetVxDApi(WORD vxdid)
{

PVOIDFN pfApi;

_asm {
push di
push es
xor di, di
moves, di
mov ax, 1684h
mov bx, vxdid
int 2fh
WORD PTR pfApi+2, es
WORD PTR pfApi, di
pop es
pop di
}

return(pfApi);

Notice that I said "function pointer the application uses to call the VxD's API pro
cedure" and not "function pointer to the VxD's API procedure". That's because Ring
3 code can't call Ring 0 code directly. If you dump the code pointed to by ES: 01,
you'll see I NT 30h followed by another value. The I NT 30h is the VMM's way of
transferring control from a Ring 3 application to a Ring 0 VxD. Executing a software
interrupt from Ring 3 causes the processor to switch to Ring O. The I NT 30h handler
is really the VMM's "call VxD from application" procedure. The VMM uses the bytes
after the 1NT 30h instruction to determine which VxD the application wants to call,
gets that VxD's API procedure from the VxD's DDB, sets up EBX to point to the client
register structure, and, finally, calls the VxD. (However, see the sidebar for informa
tion on an alternative that a Windows 95 application can use to call a VxD.)

.The above magic is all transparent from the application's point of view. The applica
tion sees only a fa r call to the address returned by the call to Get Devi ce Entry Poi nt.
The application passes parameters to the VxD in registers, which means you must use
assembly (or at least embedded assembly) to fill in the parameters. As explained ear
lier, the registers used for the parameters are determined by the VxD developer.

Communication from Applications to VxDs - 219

Win16Application to VxD: Example Code
This section details a simple Win16 application and VxD combination that illustrates
the above techniques. In this example, the application requests the VxD to allocate a
system DMA buffer on its behalf (something an application can't do itself). The appli
cation initializes a structure that describes the buffer required and gives the VxD a
pointer to this structure. The VxD allocates a DMA buffer and fills in the application's
structure with information about the buffer. The application then translates one of the
structure members into a usable pointer.

The Example Application

The application, contained completely in the file WI N16APP. C (Listing 11.1,
page 233), is one of the world's simplest Win16 applications. It doesn't even have a
message loop, only a Wi nMa i n. In Wi nMa in, it calls the VxD to allocate a DMA buffer,
displays information about the allocated buffer, calls the VxD to free the buffer, and
then exits.

pfDmaBufApi = GetVxdApiEntryC DMABUF_ID);
if C!pfDmaBufApi)
{

printfC"Error! Couldn't get DMABUF Api\n");
exit(l);

Under Windows 95, An Application Can Call a VxD by Name
Instead of by Device ID

When a Win16 application knows that it's running under Windows 95 and not Windows 3.x, the application
can use the VxD's 8-byte name instead of its Device ID to find its entry point. The 8-byte name is the one the
VxD declares in its DDB, which is usually space padded, and usually does not contain a NU L character at the
end. This method also uses INT 2FAX=1684h and returns the same far function pointer. However, in this
case B X must be set to 0 and E S : 0 I is used as an input parameter, pointing to the name.

Because Windows 95 supports this new VxD calling method, it is no longer strictly necessary to obtain a
VxD ID in order to provide an API to 16-bit applications running under Windows 95. However, VxD develop
ers that supply a 16-bit API will continue to require a VxD ID as long as they support customers running
under Windows 3.x - and even after that if Win16 applications that use the old "call by ID" method are
already in the field.

220 - Writing Windows VxDs and Device Drivers

The application first calls a helper function, GetVxdApi Entry, to obtain a function
pointer to the VxD entry point. The application then fills in the Si ze field of the
DMA_BUFFER_DESCRIPTOR, telling the VxD what size DMA buffer is required. The
VxD will fill in the other two fields, PhysAddr and L i nAddr, with the physical address
and linear address of the allocated buffer.

mov ax. DMABUF_FUNC_ALLOCBUFFER
1 ea s i. dmadesc ; small model. don' t need to load DS
call DWORD PTR pfDmaBufApi

mov err. ax

The VxD expects DS: SI to point to the DMA_BUFFER_DESCRI PTOR, so the applica
tion uses embedded assembly to load the two registers with the address of the
DMA_BUFFER_DESCRIPTOR structure and the AX register with the function code
DMABUF JUNCALLOCUFFER With the registers initialized as expected by the VxD, the
application calls the VxD entry point through the function pointer pfDmaBufApi.

If the VxD was unable to allocate the buffer, it returns with a non-zero value in AX.
The application tests for this result, producing an error message and exiting. Other
wise, the VxD has allocated the buffer and filled in the PhysAddr and L i nAddr fields.
An application that was really doing DMA would use the PhysAddr to program the
DMA controller; this example merely prints out the field's value.

_asm mov myds, ds
usSel = AllocSelector(myds);
SetSelectorBase(usSel. dmadesc.LinAddr);
SetSelectorLimit(usSel. dmadesc.Size);
DmaBufPtr = MAKELP(usSel. 0);

The example application does use the L i nAdd r field to obtain a usable pointer to
the allocated buffer. First, the application obtains a selector via All ocSe 1 ector. Next,
it calls SetSe 1 ectorBase, passing the newly allocated selector and the linear address
returned by the VxD. After that, the application uses SetSel ectorL i mit to set the
size of the newly allocated selector. The example also limits the selector to the size of
the requested buffer. With this restriction, overwriting the allocated buffer will cause a
GP fault and the register will terminate the application immediately. The application
completes the conversion by using the MAKELP macro to tum the selector into a
pointer. The application now has a usable pointer that maps to the linear address
returned by the VxD.

Communication from Applications to VxDs - 221

When this conversion is complete, the application displays a message box show
ing the DMA buffer's physical linear and logical (pointer) address. Finally, the appli
cation prepares for termination. It frees the selector that it just allocated, then calls the
VxD again, this time using the function code DMABUF JUNCJREEBUFFER, to free the
allocated buffer.

The Example VxD

The DMABUF VxD called by the WIN16APP application is also very simple. To sup
port the Win16 application, the VxD needs only to handle the Init_Comp1 ete mes
sage and support a PM API with only two functions, All ocBuffer and FreeBuffer
(Listing 11.5, page 236).

The only reason that DMABUF handles the I ni t_Comp 1 ete message is that under
Windows 3.x, physically contiguous pages must be allocated during initialization, and
a system DMA buffer must consist of physically contiguous pages. In Windows 95,
contiguous pages may be allocated at any time. To accommodate the difference,
DMABUF's OnlnitComp1ete function checks what version of Windows is running.
If it is running under Windows 3.x, DMABUF preallocates a DMA buffer of a fixed
size (64 Kb). The driver saves the buffer's linear and physical addresses in global vari
ables, where they can be retrieved when an application calls the VxD. For more
details on DMA buffer requirements and PageA 11 ocate, see Chapter 6. The follow
ing code shows the On I ni tComp 1 ete handler.

BOOl OnlnitComplete(VMHANOLE hVM, PCHAR CommandTail)
(

DWORD ver;

if (HIWORD(ver) <= 3)
(

II Win3.x, not 95
bWi n3x = TRUE;
1/ must all oc phys contig pages now
LinAddr = _PageAllocate(nPages, PG_SYS, O. OxOF, 0, OxIOOO, &PhysAddr,

PAGEFIXED I PAGEUSEAlIGN I PAGECONTIG);

return TRUE;

PM_Api_Hand1 er (shown in the following paragraph of code) is the entry point for
calls from Win16 applications. Since the application should specify a function code in
the AX register (found in the C1 tent_AX field of the CLI ENT_STRUCT parameter),
PM_Api_Hand1 er switches on this value.

222 - Writing Windows VxDs and Device Drivers

void __ cdecl PM_Api_Handler(VMHANDLE hVM. CL1ENT_STRUCT *pcrs)
(

DMA_8UFFER_DESCR1PTOR *pBufDesc;

switch(pcrs->CWRS.Client_AX)
(

case DMABUF_FUNC-ALLOCBUFFER:
pBufDesc = MAPFLAT(Client_DS. Client_S1);
pcrs-)CWRS.Client-AX = AllocBuffer(pBufDesc);
break;

case DMABUF_FUNC_FREEBUFFER:
pBufDesc = MAPFLAT(Client_DS. Client_S1);
pcrs->CWRS.Client-AX = FreeBuffer(pBufDesc);
break;

default:
pcrs->CWRS.Client_AX = DMABUF_1NVAL1D_FUNC;
break;

The DMABUF API consists only of two functions, All ocBuffer and FreeBuffer.
Inboth cases, the buffer in question is described by a DMA_BUFFER_DESCRI PTOR struc
ture passed by the application in DS: S 1. To access this buffer, the VxD must translate
the application's selector:offset pointer into a usable flat pointer.· PM_Api_Hand1 er uses
the VMM service MapJ1 at, accessed via the macro MAPFLAT, to accomplish this con
version. Finally, PM_Api_Hand1 er calls the appropriate subroutine, either All ocBuffer
or FreeBuffer, passing in the flat pointer to the DMA_BUFFER_DESCRI PTOR. The
All ocBuffer function is shown in the following code.

DWORD AllocBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc
(

DWORD rc;

if (bOwned)
(

rc = DMABUF_ALREADY_ALLOCED;
)
else
(

bOwned = TRUE;
if (bWin3x)
(

if (pBufDesc->Size > 16 * 4 * 1024)
rc = DMABUF_S1ZE_TOO_B1G;

else
{

pBufDesc->PhysAddr = PhysAddr;
pBufDesc-)LinAddr = LinAddr;

Communication from Applications to VxDs - 223 ,

else
(

LinAddr = pBufDesc-)LinAddr
= PageAllocateCpBufDesc->Size / 4096.

PG_SYS. O. OxOF. O. OxlOOO.
&pBufDesc->PhysAddr.
PAGEFIXED I PAGEUSEALIGN I PAGECONTIG);

if (!pBufDesc->LinAddr)
rc = DMABUF_BUF_NOT_AVAIL;

return rc;

For the sake of simplicity, the DMABUF VxD allows only one application to allo
cate a DMA buffer at a time. To enforce this policy, All ocBuffe r checks the global
variable bOwned. If this boolean is set, All ocBuffer fails the call and returns with the
error code DMABUF _ALREADY_ALLOCED.

If no other application has already claimed the buffer, All ocBuffer checks the
bWi n3x variable set by On I n itComp 1 ete. If this variable is set, then the VxD is run
ning under Windows 3.x and the DMA buffer was preallocated during initialization.
If the caller requested a larger buffer size than Was allocated, the call fails with a
return value of DMABUF _SIZE_TOO_BIG. If the buffer size is acceptable, the VxD
copies the physical and linear addresses returned earlier by _P a geA 11 oca te into
pBufDesc- >PhysAddr and pBufDesc- > L i nAddr.

If the VxD is running under Windows 95, the buffer was not preallocated
during initialization, and so must be allocated now, using the size requested by
the caller. If _PageA 11 ocate fails for any reason, All ocBuffer returns with
DMABUF_NOT_AVAIL. If _PageAllocate succeeds, AllocBuffer returns to the caller,
with pBufDesc- >L i nAddr and pBufDesc- >PhysAddr values provided by _PageA 11 ocate.
Notice that DMABUF also stores the linear address in the global variable L i nAddr
I'll explain why in a moment.

FreeBuffer first checks that bOwned was set by All ocBuffer. If not, the function
returns immediately with DMABUF _NOT_ALLOCED. Next, the function verifies that the
linear address specified by the caller is the same as the one in pBufDesc- >L i nAddr,
which was returned by _PageA 11 ocate. If the addresses don't match, FreeBuffer
returns with DMABUF _NOT_ALLOCED. This precaution prevents the VxD from freeing an
invalid address passed in by a buggy application. Finally, FreeBuffer may indeed
free the buffer, but only if running under Windows 95. If under Windows 3.x, the
buffer allocated during initialization must stay around for future use. The FreeBuffer
function is shown in the following code.

/

224 - Writing Windows VxDs and Device Drivers

DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)
{

DWORD rc;

if (bOwned)
{

bOwned = FALSE;
if (pBufDesc->LinAddr == LinAddr)
{

if (!bWin3x)
{

}

else
{

else
{

PageFree(pBufDesc->LinAddr. 0);

return rc;

Win32 Application to VxD:
View from VxD side
The interface from a Win32 application to a VxD is much different, both viewed from
the VxD side and from the application side. As before, I'll first explain theVxD side,
then the application side.

A VxD doesn't need to export a special procedure in order to support Win32
applications. Instead, its control procedure must handle a special message, called
W3LDEVICEIOCONTROL. The VMM sends this message to the VxD on behalf of the
calling application.

Communication from Applications to VxDs - 225

Parameters are passed, not through registers, but all bundled up into a D1 OCPARAMETERS
structure. The VMM puts a pointer to this structure in ESI. Here's the structure:

typedef struct D10CParams
DWORD 1nternall;
DWORD VMHandle;
DWORD 1nterna12;
DWORD dw1oControlCode;
DWORD lpv1nBuffer;
DWORD cb1nBuffer;
DWORD lpvOutBuffer;
DWORD cbOutBuffer;
DWORD lpcbBytesReturned;
DWORD lpoOverlapped;
DWORD hDevice;
DWORD tagProcess;

D10CPARAMETERS;

The D10CPARAMETERS structure is defined in VWIN32. H, not VMM. H. Also note
that VTooisD uses a different structure name (IOCn P ARAMS) and different
field names.

The dwloControl Code field tells the VxD which function to perform. The
1 pvlnBuffer and cblnBuffer are. pointers to a generic input buffer and the size of
the input buffer, and 1 pvOutBuffer and cbOutBufferare the same f~r .the generic
output buffer. Note that these pointer parameters don't needtransbition, but can be
used directly by the VxD. Both the function code in dwloControlField and the
meaning of the buffer contents are defined by the VxD. This interface is generic on
purpose, so that you can do more with a device than just read from and write to it. In
most cases, both the application and the VxD will treat the generic buffer as a spe
cific structure, casting the buffer pointer to and from a pointer to DIOCPARAMETERS
as necessary.

226 - Writing Windows VxDs and Device Drivers

The VMM will test your VxD to determine if it supports the Win32
Devi celoContro1 interface by sending a W3LDEVICEIOCONTROL message
with a dwloContro1 Code of DIOeGET_VERSION. If your VxD doesn't respond
as expected, the VMM will not pass on further W3LDEVICEIOCONTROL
messages. The response the VMM is expecting is a return value of zero from
the message handler. Your VxD may return whatever version information it
wishes (or none at all) in the 1 pvOutBuffer; all the VMM cares about is the
return value.

Win32 Application to VxD:
View from the Application Side
A Win32 application calls into a VxD by using the Devi celoContro1 function. One of
the parameters to this function is a device handle obtained via a call to C rea te File.
That's right, the same call that creates or opens a file can also open a "channel" to a
VxD. To open a VxD, rather than a normal file, with CreateFi 1 e, you use a special
form in place of the filename:

n\\.\namen

When using this format in your C code, don't forget that backslash
represents an escape sequence, so use two consecutive backslashes for each.

This strange format tells Windows that you don't really want to open a normal file;
instead, you want Windows to find and load the VxD with that name, and give you a special
handle to it. Your application can then use this handle with calls to Devi ce I oContro 1.
Windows turns this call into a W32_DEVICEIOCONTROL message, with all of the appli
cation's parameters neatly bundled up into a single DIOCPARAMETERS structure.

Communication from Applications to VxDs - 227

If the filename contains an extension, Windows looks in the standard search path
for the VxD: current directory, Windows directory, then path environment variable.
Specifying an extension is the usual method, and the extension is usually VXD. If
there is no extension, Windows looks in the registry for the KnownVxDs key under
HKLM\SYSTEM\CURRENTCONTROLSET\CONTROL \SESSIONMANAGER If this key has an
associated value, Windows treats the value as the VxD's full pathname. If Windows
can't find the VxD there either, it treats the filename as a VxD module name, and
searches its internal VxD list for an already-loaded VxD with that name.

When "opening" a VxD, the VxD name is considered case sensitive. To be
safe, use all uppercase in both your application and VxD DDB declaration.

If CreateFil e returns I NVALID_HANDLE_VALUE, you should call GetLastError to
get error information. There are two possible errors when opening a VxD.
ERRORJI LE_NOTJOUND indicates that all the methods described above have failed to
find the specified VxD. ERROR_NOT_SUPPORTED indicates that the VxD was found but
that it doesn't "support" the Devi celoControl interface - which in many cases
means the VxD wanted to support Devi celoControl but didn't properly handle the
DIOCGET_VERSION, as described in the previous section.

Special care is needed in handling ERROR_NOT_SUPPORTED. The problem is
that the VxD did load successfully (the actual error was in the VxD's
response to the W32_DEVI CEIOCONTROL) but CreateFil e returned no handle
that the application could use to close the VxD and thus unload it. To force
the VxD to be unloaded, the application must call DeleteFile, using the
VxD's module name in the DDB, not the filename. A VxD should choose a
module name equal to the filename minus the extension, although the choice
of module name is completely up to the VxD

If the VxD referenced in the CreateFil e is dynamically loadable, the call to
CreateFi 1 e may do more than open a "channel" to a VxD for future Devi celoControl
communication. If the VxD is dynamically loadable and isn't yet loaded, Windows
will automatically load the VxD on behalf of the application and send it a
Sys_Dynami c_Devi ce_I ni t message. Windows maintains a reference, or usage, count
for the VxD, so if it's already loaded, a call to CreateFi 1 e doesn't load another copy
of the VxD. Applications should generally use the value FI LEJLAG_DELETCON_CLOSE
for the fdwAttrsAndFl ags parameter when calling CreateFi 1 e. This tells Windows
to unload the VxD when the reference count goes to zero. (A zero reference count
means that every application that had opened the VxD has now closed it.)

228 - Writing Windows VxDs and Device Drivers

If the VxD returns with success to the Sys_Dynami cDevi ce_Ini tmessage, the VMM
immediately sends the W3LDEVICEIOCONTROl message with the dwIoContro1Code
parameter set to DIOCGETVERSION. A dynamic VxD does any per-application ini
tialization here. As explained earlier, a VxD must return success for this message,
otherwise the application sees an ERROR_NOT_SUPPORTED return code. If the VxD
returns success, the VMM increments its internal reference count for the VxD. If
another call to CreateFi 1 e is made before a C1 oseHand1 e, the VxD receives
another message with a dwIoContro1 Code of DIOCGETVERSION - but not another
Sys_Dynami cDevi ce_Ini t message since the VxD is already loaded.

After getting a device handle with CreateFi 1 e, your application calls
Devi ce I oContro 1. The prototype for this function is:

BOOl DeviceIoContro1(
HANDLE hDevice.
DWORD dwIoControlCode.
lPVOID 1pInBuffer.
DWORD nlnBufferSize.
lPVOID lpOutBuffer.
DWORD nOutBufferSize.
LPDWORD 1pBytesReturned.
LPOVERlAPPED 1pOver1apped

) ;

The first parameter is the handle returned by CreateFi 1 e, and the next four
parameters should look familiar: the VxD receives those exact same parameters in its
W32_DEVICEIOCONTROl message, though for the VxD they're allbundled up into a
single 01 OCPARAMETERS structure. The 1 pBytes Returned parameter is filled in by the
VxD, telling the application how many bytes the VxD has copied to the output buffer.

When your application has finished communicating with the VxD, it closes the
"channel" by calling C1 oseHand1 e, using the same device handle. If the VxD was
dynamically loaded, this call to C1 oseHand1 e results in a W32_DEVICEIOCONTROl mes
sage with dwIoContro1 Code of DIOCClOSEHANDlE. When the final C1 oseHand1 e causes
the reference count to go to zero, the VMM sends a final Sys_Dynami cDevi ce_Exi t
message and the VMM then unloads the VxD.

Don't forget to add the DYNAMIC keyword to the VxD statement in your. DEF
file following the VxD's module name (Listing 11.8, page 242).

Communication from Applications to VxDs - 229

Win32 Application to VxD: Example Code
To illustrate how a Win32 application talks to a VxD, I've extended the same
DMABUF VxD introduced earlier in this chapter and written a simple Win32 applica
tion that uses Devi ceIoControl to talk to the VxD (Listing 11.9, page 243). Once
again, the application is very simple (nothing but a ma i n),and because it is a Win32
console application, we can simply use pri nt f - no message boxes.

This Win32 application is similar in structure to its Winl6 counterpart. The appli
cation "opens" the VxD, initializes a DMA_BUFFER_DESCRI PTOR and then calls the
VxD to allocate a DMA buffer. When the VxD returns to the applica'fion, the VxD will
have written the allocated buffer's physical and linear addresses into the
DMA_BUFFER_DESCRI PTOR Because this is a Win32 application, a linear address is a
pointer, and no selector magic is needed.

canst PCHAR VxDName = "\\\\.\\DMABUF.VXD";
hDevice = CreateFile(VxDName, 0,0,0,

CREATE_NEW, FIlE_FlAG_DElETE_ON_ClOSE, 0);

if ChDevice == INVALID_HANDLE_VALUE)
{

err = GetlastErrorC);
printfC"Cannot load VxD, error=%08lx\n", err);
if (err == ERROR_NOT_SUPPORTED)
{

DeleteFileC"\\\\.\\DMABUF");

exitCl) ;

To "open" a channel to the VxD, the application calls CreateFi 1 e with the file
name \ \. \DMABUF .VXD. lithe call fails, the application uses GetLastError to obtain
the actual VxD return (error) code, and if the return was ERROR_NOT_SUPPORTED, the
application calls Del eteFi 1 eto unload the VxD.

dmadesc.Size = 32 * 1024;
if Cerr = DeviceIoControlChDevice, DMABUFJUNCAllOCBUFFER,

&dmadesc, sizeofCDMA_BUFFER_DESCRIPTOR),
NUll, 0 ,&cbBytes Returned , NULl))

printfC"DeviceIoControl failed, error=%x\n", err);

230 - Writing Windows VxDs and Device Drivers

If the open succeeded, the application initializes the DMA_BUFFER_DESCRIPTOR
structure with the size of the requested buffer, then calls Devi ce I oCont ro 1, using a
dwI oContro 1 Code of DMABUF JUNCALLOCBUFFER. In this example, no output buffer
is used. Instead, the VxD modifies the caller's input buffer (1 pv I nBuffer). Further
more, because the VxD doesn't copy any bytes to the output buffer, it never fills in the
application's cbBytesReturned variable. Bending the rules like this is perfectly
acceptable under Windows 95, and by defining the interface in this way, I was able to
re-use the exact same VxD code already written for the PM API portion of the VxD.

else
(

printf("Physical=%081X\nLinear=%081X\n", dmadesc.PhysAddr,
dmadesc.LinAddr);

if (err = DeviceloControl(hDevice, DMABUF_FUNC_FREEBUFFER,
&dmadesc, s i zeof(DMA_BUFFER_DESCRI PTOR) ,
NULL, 0, &cbBytesReturned, NULL))

printf("DeviceloControl failed, error=%x\n", err);

CloseHandle(hDevice);

If the ALLOCBUFFER Devi celoControl fails (non-zero return value), the applica
tion prints the error code and exits. Otherwise, the application prints the physi
cal and linear addresses of the allocated buffer, and immediately frees the buffer
with another Devi ce I oContro 1 call, but this time with a function code of
DMABUF JUNCJREEBUFFER. Finally, the application closes the channel to the VxD
with a call to C1 oseHand1 e. If no other application is using the VxD and the VxD is
dynamically loadable, this close also unloads the VxD from memory.

To implement the VxD side, I merely added a W3LDEVICEIOCONTROL message
handler (shown in the following paragraph of code) to the same DMABUF VxD
developed for the Win16 application. This message handler is even simpler than the
PM API function, because no translation of pointer parameters is necessary. Because
both Win32 applications and VxDs use linear addresses, all pointers contained in the
DroCPARAMETERS structure are directly usable by the VxD.

Communication from Applications to VxDs - 231

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)
{

DWORD rc;

switch (p->dwIoControlCode)
{

case DIOCOPEN:
case DIOC_CLOSEHANDLE:

return 0;

case DMABUF_FUNC_ALLOCBUFFER:
if (!_Assert_Range(p->lpvInBuffer.

s;zeof(DMA_BUFFER_DESCRIPTOR).
O. o. ASSERT_RANGE_NULL_BAD»

return DMABUF _INVALID_PARAMETER;
else

return(AllocBuffer(p->lpvlnBuffer));

case DMABUF_FUNC_FREEBUFFER:
if (!_Assert_Range(p- > 1 pv InBuffer.

s;zeof(DMA_BUFFER_DESCRIPTOR).
O. o. ASSERT_RANGE_NULL_BAD»

return DMABUF_INVALID_PARAMETER;
else

return(FreeBuffer(p->lpvInBuffer));

default:
return -1;

The message handler specifically checks for dwIoControl Code values of
DIOCGETVERSION and DIOCCLOSEHANDLE, returning 0 for each. Failure to do so will
result in failure when the application calls CreateFil e and Cl oseHandl e, respec
tively. The VxD also returns an error code of -1 for unexpected control codes.

The two expected codes are DMABUF JUNCALLOCBUFFERand DMABUF JUNCJREEBUFFER
In both cases, the VxD is expecting the caller's input buffer to be a pointer to a
DMA_BUFFER_DESCRI PTOR, but before using the pointer as such, the VxD validates it. The
cblnBuffer parameter, though ostensibly for this exact purpose, cannot be used to vali
date the buffer size. cblnBuffer isn't necessarily the size of the input buffer; it only
reflects the caller's claims about the input buffer size. The VxD guards against both a null
1 pv I nBuffer value and a buffer that's too small with a single call to the VMM service
_AssertRange.

232 - Writing Windows VxDs and Device Drivers

The Calling Interface for _Assert_Range

BOOL _cdecl _Assert_Range(DWORD pStruc, DWORD ulSize,
DWORD signature, DWORD lSignatureOffset,
DWORD ul Fl ags) ;

_Assert_Range verifies that the buffer pointed to by pStruc is at least ul Si ze in
length. In addition, it can check for a signature value at the offset 1 Si gnatureOffset.
However, DMABUF doesn't use this feature, passing in 0 for si gnature to disable it.
DMABUF does use the value ASS ERT_RANGE_NU LL_BAD for the ul Fl ags parameter, how
ever, so that a NULL value for pStruc will cause _Assert_Range to fail. If _Assert_Range
fails, DMABUF returns to the application with a DMABUF _I NVALI D_PARAMETERerror.

After this validation, the VxD simply casts the caller's input buffer, p- > 1 pvI nBuffer,
to a pointer to a DMA_BUFFER_DESCRIPTOR, then passes that pointer directly to either
All ocBuffer or FreeBuffer, depending on the value of p- >dwloControl Code. The
return value from the helper function is passed directly back to the caller as the return
from Devi celoControl. Note these two helper functions are unchanged from the
original DMABUF VxD, which contained only Win16 API support.

Summary
If you structure your code right, supporting both Win16 and Win32 applications in your
VxD isn't much more trouble than supporting just one or the other. The message here is
that you should put the real work of the API in subroutines that can be called from either
your PM API procedure or from your W3LDEVICEIOCONTROL message handler. If you
follow this practice, then all your PM API procedure will do is extract its caller's param
eters from the CLIENT_STRUCT structure. Similarly, the W32_DEVICEIOCONTROL handler
should merely extract its caller's parameters from the DIOCPARAMETERS structure. Both
interface procedures then call the same helper subroutines.

The application interfaces described in this chapter support communications initi
ated by the application: when the application calls the VxD. The next chapter will
cover the reverse direction: when a VxD calls into an application.

Communication from Applications to VxDs - 233

Listing 11.1 WIN16APP. C

#include <string.h>
#include <windows.h>

#include "dmabuf.h"

typedef void (far * PVOIDFN)(void);

static char MsgBoxBuf[1024] = (0);
PVOIDFN pfDmaBufApi;
DMA_BUFFER_DESCRIPTOR dmadesc;

PVOIDFN GetVxdApiEntry(int Vxdld
(

PVOIDFN pfApi;

xor di, di
moves, di
mov bx, Vxdld
mov ax, 1684h
i nt 2fh
mov WORD PTR pfApi+2, es
mov WORD PTR pfApi, di

return(pfApi);

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance,
LPSTR lpCmdLine, int ncmdShow)

char far *DmaBufPtr;
unsigned short usSel, myds;
WORD err;

pfDmaBufApi = GetVxdApiEntry(DMABUF_ID);
if (!pfDmaBufApi)
(

MessageBox(NULL, "Error, couldn't get VxD API", "USEAPI", MB_OK);

234 - Writing Windows VxDs and Device Drivers

Listing 11.1 (continued) WIN16APP. C

else
{

dmadesc.Size ~ 32L * 1024L;
_asm
{

mov ax, DMABUF_FUNC-ALLOCBUFFER
lea si, dmadesc ; small model, don't need to load DS
call DWORD PTR pfDmaBufApi
mov err, ax

}

if (err)
(

else
(

MessageBox(NULL, "Error calling AllocBuffer",
·USEAPI", MB_OK);

_asm mov myds, ds
usSel = AllocSelector(myds);
SetSelectorBase(usSel, dmadesc.LinAddr);
SetSelectorLimit(usSel, dmadesc.Size);
DmaBufPtr = MAKELP(usSel, 0);
wsprintf(MsgBoxBuf,

"Physical=%081X\nLinear=%081XSel ector=%X\n" ,
dmadesc.PhysAddr. dmadesc.LinAddr, usSel);

MessageBox(NULL, MsgBoxBuf, "USEAPI", MB_OK);

FreeSelector(usSel);
_asm
{

mov ax, DMABUF_FUNC_FREEBUFFER
call DWORD PTR pfDmaBufApi

return 0;

Communication from Applications to VxDs - 235

Listing 11.2 WIN16APP.MAK

all: win16app.exe

win16app.obj: win16app.c
cl -W3 -c -AS -Gsw2 -I .. \vxd win16app.c

win16app.exe: win16app.def win16app.obj
link win16app.obj.win16app.exe.win16app.map

IMAP ICO,slibcew libw Inod.win16app.def

Listing 11.3 WIN16APP.DEF

NAME WIN16APP
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE
HEAPSIZE 4096
STACKSIZE 8192

236 - Writing Windows VxDs and Device Drivers

Listing 11.4 DMABUF. H

II DMABUF.h - include file for VxD DMABUF
/fdefi ne DMABUF _10 OxDBO
/fdefine DMABUF_FUNC_ALLOCBUFFER OxlOOO
#define DMABUFJUNCFREEBUFFER OxlOOI

#define DMABUF_ALREADY_ALLOCED
Hdefine DMABUF_S1ZE_TOO_B1G
#define DMABUF_BUF_NOT_AVA1L
#define DMABUF_BUF_NOT_ALLOCED
#define DMABUF_1NVAL1D_PARAMETER
Hdefine DMABUF_1NVAL1D_FUNC

typedef struct
{

DWORD Si ze;
DWORD PhysAddr;
DWORD LinAddr;

DMA_BUFFER_DESCR1PTOR;

Listing 11.5 DMABUF. C

#define WANTVXDWRAPS

#include <basedef.h>
#include <vmm.h>
#include <debug.h>
#i ncl ude "vxdca 11 . h"
#include <vxdwraps.h>
#include <wrappers.h>
#include <vwin32.h>
#incl ude "dmabuf.h"

#i fdef DEBUG

OxOOOI
Ox0002
Ox0003
Ox0004
Ox0005
Ox0006

#define DPRINTFO(buf. fmt)
#define DPRINTFl(buf. fmt. argl)

_Sprintf(buf. fmt); Out_Debug_String(buf)
~Sprintf(buf. fmt. argl);
Out_Debug_String(buf)

#define DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2);
Out_Debug_String(buf)

Communication from Applications to VxDs - 237

Listing 11.5 (continued)

!felse
!fdefine DPRINTFO(buf. fmtl
!fdefine DPRINTFl(buf. fmt. argl1
!fdefi ne DPRINTF2 (buf. fmt. argl. arg2 I
!fendif

BOOl bOwned = FALSE;
DWORD nPages = 16; II 64K = 16 * 4K
void *linAddr;
DWORD PhysAddr;
BOOl bWin3x = FALSE;
char dbgbuf[80);

DMABUF. C

DWORD AllocBuffer(DMA_BUFFER-DESCRIPTOR *pBufDesc I;
DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc I;

BOOlOnSysDynamicDeviceInit(1
{

DPRINTFO(dbgbuf."loading\r\n"l;
return TRUE;

BOOlOnSysDynamicDeviceExit(1
{

DPRINTFO(dbgbuf."Unloading\r\n");
return TRUE;

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS pI
{

DPRINTFl(dbgbuf. "W32DevloControl code=%x\n". p-)dwloControlCode J;

switch (p->dw]oControlCodeJ
{

case DIOC_GETVERSION:
case DIOC_CLOSEHANDlE: II file closed

return 0;

case DMABUF_FUNC_AllOCBUFFER:
if (!_Assert_Range(p->lpvInBuffer. sizeof(DMA_BUFFER_DESCRIPTOR). O. 0,

ASSERT_RANGE_NUll_BADII
return DMABUF_INVAlID_PARAMETER; .

else
return(AllocBuffer((DMA_BUFFER_DESCRIPTOR *lp->lpvInBuffer) I;

case DMABUF_FUNC_FREEBUFFER:
if (l_Assert_Range(p->lpvInBuffer, sizeof(DMA_BUFFER_DESCRIPTOR). O. 0,

ASSERT_RANGE_NUll_BAOII
return DMABUF_INVAlIO_PARAMETER;

else
return(FreeBuffer((OMA_BUFFER_DESCRIPTOR *lp-)lpvInBuffer));

default:
return -1;

238 - Writing Windows VxDs and Device Drivers

Listing 11.5 (continued) DMABUF. C

void __ cdecl PM_Api_Handler(VMHANDLE hVM. CLIENT_STRUCT *pcrs)
(

DMA_BUFFER_DESCRIPTOR *pBufDesc;

switch(pcrs->CWRS.Client_AX)
(
case DMABUF_FUNC_ALLOCBUFFER:

pBufDesc = MAPFLAT(Client_DS. Client_SI);
pcrs->CWRS.Client_AX = AllocBuffer(pBufDesc);
break;

case DMABUF_FUNC_FREEBUFFER:
pBufDesc = MAPFLAT(Client_DS. Client_SI);
pcrs->CWRS.Client_AX = FreeBuffer(pBufDesc);
break;

default:
pcrs->CWRS.Client_AX = DMABUF_INVALID_FUNC;
break:

DWORD AllocBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc)
{

DWORD rc = 0;

if (bOwned)
(

)
else
{

rc = DMABUF_ALREADY-ALLOCED;

bOwned = TRUE;
if (bWin3x)
{

)
else
(

if (pBufDesc->Size > 16 * 4 * 1024)
rc = DMABUF_SIZE_TOO_BIG;

else
(

pBufDesc->PhysAddr = PhysAddr;
pBufDesc->LinAddr = LinAddr;

II Win95. can alloc phys contig pages at any time
pBufDesc->LinAddr = LinAddr = _PageAllocate(pBufDesc->Size » 12.

i f (! L i nAdd r)
rc = DMABUF_BUF_NOT_AVAIL;

return rc;

PG_SYS. O. OxOF. O. OxlOOO.
&pBufDesc-)PhysAddr.
PAGEFIXED I PAGEUSEALIGN I \
PAGECONTIG);

Communication from Applications to VxDs - 239

Listing 11.5 (continued) DMABUF. C

DWORD FreeBuffer(DMA_BUFFER_DESCRIPTOR *pBufDesc
{

DWORD rc ~ 0;

if (bOwned)
{

bOwned ~ FALSE;
II free buffer only if Wing5
II and don't free buffer unless it's the same one we allocated
if (pBufDesc-)linAddr ~ linAddr)
(

if (!bWin3x)
(

_PageFree(pBufDesc->linAddr, 0);

}

else
(

}

else
{

return rc;

BOOl OnlnitComplete(VMHANDlE hVM, PCHAR CommandTail)
(

DWORD ver;

Get_VMM_Version();

if (HIWORD(ver) <~ 3)
(

II Win3.x, not 95
bWin3x ~ TRUE;
II must alloc phys contig pages now
linAddr ~ _PageAllocate(nPages, PG_SYS, 0, OxOF. O. OxIOOO. &PhysAddr.

PAGEFIXED I PAGEUSEAlIGN I PAGECONTIG);
}
retu rn TRUE;

240 - Writing Windows VxDs and Device Drivers

Listing 11.6 DMADDB.ASM

.386p

.**
INCLUDES

.**

include vmm. inc
include debug. inc

V I R T U A L 0 E V ICE 0 E C L A RAT ION

DMABUF_ID EOU ODBOH

DECLARE_VIRTUAL_DEVICE

; must match 10 in DMABUF.H

DMABUF. 1. D. ControlProc. DMABUF_ID.
UNDEFINED_INIT_ORDER. O. PM-API

;extrn _PM-Api_Handler:near
;extrn _V86_Api_Handler:near

PROCEDURE: ControlProc

DESCRI PTI ON:
Device control procedure for the SKELETON VxD

ENTRY:
EAX ~ Cont ro 1 ca 11 ID

EXIT:
If carry clear then

Successful
else

Control call failed

USES:
EAX. EBX. ECX. EDX. ESI. EDI. Flags

BeginProc ControlProc
Control_Dispatch INIT_COMPLETE. _OnInitComplete. cCall. <ebx>
Contro l_Di spatch SYS_DYNAMICDEVICE_INIT. _OnSysDynami cDevi ceInit. cCa 11. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDeviceExit. cCall. <ebx>
Control_Dispatch W32_DEVICEIOCONTROL. _OnW32Deviceiocontrol. cCall. <esi>
clc
ret

EndProc ControlProc

Communication from Applications to VxDs - 241

Listing 11.6 (continued) DMADDB.ASM

BeginPrac PM_API

cCall _PM_Api_Handler. <ebx. ebp>
mav [ebpJ.Client_EAX. eax
ret

EndPrac PM--.API

VxD_LOCKEO_CODE_ENDS

END

Listing 11.7 DMABUF.MAK

CFLAGS
CVXDFLAGS
LFLAGS

= -DWIN32 -DCON -Di386 -D X86 -D NTWIN -W3 -Gs -D DEBUG -Zi
= -Zdp -Gs -c -DIS_32 -Zl--DDEBLEVEL=l -DDEBUG -
= -machine:i386 -debug:notmapped.fu1l -debugtype:cv

-subsystem:console kerne132.1ib
AFLAGS = -coff -OBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=l -DDEBUG

all: dmabuf.vxd

dmabuf.obj: dmabuf.c
c1 $(CVXDFLAGS) -Fo$@ %s

dmaddb.obj: dmaddb.asm
m1 $(AFLAGS) -Fa$@ %s

dmabuf.vxd: dmaddb.obj dmabuf.obj .. \ .. \wrappers\vxdca1l.obj
.. \ .. \wrappers\wrappers.clb dmabuf.def

echo >NUL @«dmabuf.crf
-MACHINE:i386 -DEBUG -DEBUGTVPE:MAP -PDB:NONE
-DEF:dmabuf.def -OUT:dmabuf.vxd -MAP:dmabuf.map
-VXD vxdwraps.c1b wrappers.clb vxdca11 .obj dmaddb.obj dmabuf.obj
«

link @dmabuf.crf
mapsym dmabuf

242 - Writing Windows VxDs and Device Drivers

Listing 11.8 DMABUF. DEF

VXD DMABUF DYNAMIC
SEGMENTS

LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'
_ITEXT CLASS 'ICODE'

IDATA CLASS 'ICODE'
_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'
_IMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
DMABUF_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DISCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Communication from Applications to VxDs - 243

Listing 11.9 WIN32APP.C

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <windows.h>
#include "dmabuf.h"

HANDLE hDevice;
DMA_BUFFE~DESCRIPTOR dmadesc;

void mainCint ac. char* ave])
(

DWORD cbBytesReturned;
DWORD err;

const PCHAR VxDName = "\\\\.\\DMABUF.VXD";
hDevice = CreateFileCVxDName. 0.0.0. CREATE_NEW. FILE_FLAG_DELETE_ON_CLOSE. 0);

if ChDevice == INVALID_HANDLE_VALUE)
{

err = GetLastErrorC);
fprintfCstderr. "Cannot load VxD. error=%08lx\n". err);

if Cerr == ERROR_NOT_SUPPORTED)
{

DeleteFileC"\\\\.\\DMABUF");
l
exit(l);

dmadesc.Size = 32 * 1024;
if C1DeviceIoControlChDevice. DMABUF_FUNC_ALLOCBUFFER.

l
else
{

&dmadesc. sizeofCDMA_BUFFER_DESCRIPTOR). NULL. O.
&cbBytesReturned. NULL))

printfC"DeviceIoControl failed. error=%d\n". GetLastErrorC));

printfC "Physical=%081X\nLinear=%OB1X\n". dmadesc.PhysAddr. dmadesc.LinAddr);
if C1DeviceIoControlChDevice. DMABUF_FUNC_FREEBUFFER.

&dmadesc. sizeofCDMA_BUFFER_DESCRIPTOR). NULL. O.
&cbBytesReturned. NULL))

printfC"DeviceIoControl failed. error=%d\n". GetLastErrorC));

CloseHandleC hDevice);

244 - Writing Windows VxDs and Device Drivers

Listing 11.10 WIN32APP.MAK

win32app.exe: win32app.obj
link @«

kerne132.1ib user32.1ib gdi32.1ib winspool.lib eomdlg32.1ib advapi32.1ib
shel132.1ib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:eonsole
IINCREMENTAL:no IPOB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj
«

win32app.obj: win32app.e
el Ie IML IGX IYX IOd 10 "WIN32" 10 "NOEBUG" 10 "_CONSOLE" -r. .\vxd win32app.e

Chapter 12

Communication from VxDs
to Applications
While sometimes it's enough for an application to call into a VxD and get the infor
mation or services it needs immediately, other times an application needs to be noti
fied by a VxD asynchronously, that is, when a particular event occurs. Both Windows
3.x and Windows 95 support mechanisms for communication in this direction (VxD
to application), but the interface is more complicated compared to the applica
tion-to-VxD methods examined in the last chapter.

The last chapter was divided into two sections, Win16 and Win32. This chapter
will be divided into three sections: Windows 3.x VxD to Win16, Windows 95 VxD to
Win16, and Windows 95 VxD to Win32. Although both Windows 3.x and Windows
95 VxDs use similar mechanisms when communicating with Win16 applications, the
VxD running under Windows 95 can take advantage of several SHELL VxD services
that aren't available under Windows 3.x. These SHELL services simplify the task of
calling Win16 code. Win32 applications are treated separately because a VxD must
use a completely different mechanism for communication with Win32 applications.

245

246 - Writing Windows VxDs and Device Drivers

Difficulties with Calling from a VxD
to a Win16Application
Assume that a Win16 application has used the INT 2Fh API to pass a VxD the address
of a callback function inside the application. This VxD must overcome several obsta
cles before it can use the application's callback. A VxD executes outside the context
of any VM, whereas the Ring 3 callback must execute in the proper VM context -
the SystemVM that registered the callback. So a VxD must first schedule a VM event,
and be called back in the context of the System VM, that is, when that VM is current.
From inside this event handler, the VxD can use VMM nested execution services to
execute the application callback in the System VM.

If the VxD uses only this simple mechanism, the application callback code is very
limited in what it can do. In particular, the only Windows API function the callback is
allowed to use is PostMessage. When called from a VxD via nested execution, an
application callback function executes much like an ISR and is subject to the same
kind of constraints. Like an ISR, the callback "interrupts" the VM's execution at some
unpredictable point - perhaps even in the middle of performing a Windows system
call. Because Windows isn't re-entrant, it isn't safe for the callback to execute any
Windows API calls except PostMessage.

VxDs running under Windows 3.x were stuck with this unhappy state of affairs.
Windows 3.x VxDs could schedule a VM event and then use nested execution to call
back into a VM, but the application callback was limited to PostMessage. For this
reason, it was common practice for the application to pass the VxD the address of the
Windows PostMessage function along with a window handle, and have the VxD use
nested execution to call PostMessage directly on behalf ofthe application.

Windows 95 offers two improvements for VxDs calling into Win16 applications.
One is the service SHELLPostMessage, which takes care of the details of nested exe
cution on behalf of the calling VxD. The other is a set of "appy-time" (application
time) services that allow a VxD to schedule an event to run when the system is in a
"safe state". From the appy-time event, the VxD can use other VMM services (new
for Windows 95) to call any function in a Win16 DLL, and the Win16 function can
itself call any Windows function - because it is "safe".

The POSTVXD example in this chapter illustrates both the PostMessage and the
appy-time technique. POSTVXD determines at run-time which version of Windows
it's running under (3.x or 95) and uses the appropriate technique, so that it works cor
rectly on both versions.

Communication from VxDs to Applications - 247

The above PostMessage and appy-time solutions apply only to a VxD calling
into Win16 code. A VxD must use a completely different approach to call
into a Win32 application. The Win32 approach will be discussed later in this
chapter.

VxD to Win16 Application under Windows 3.x
To call into a Win16 application under Windows 3.x, a VxD must nist schedule a VM
event for the System VM, and then use nested execution services from the event han
dler to call into the application. Events were introduced in Chapter 7 when hardware
interrupts were discussed. For a hardware interrupt handler, scheduling an event pro
vides a convenient way to defer processing. the interrupt handler example used a glo
bal event, "global" meaning the VxD didn't care what VM context the event handler ran
in. The VxD callback will use a VM event instead, that is, an event called in the context
of a particular VM. In the present situation, the VxD should use a VM event instead of a
global event because it needs to call PostMessage, which lives in the SystemVM.

The POSTVXD example (Listing 12.2, page 269) uses the teChniques discussed above
when running under Windows 3.x. POSTVXD supports a PM API that lets Win16 appli
cations register with theVxD. Using this API, an application passes in a window handle
and the address of the Windows PostMessage function. The VxD then posts amessage
to this window whenever a VM is created or destroyed. Before terminating, the appli
cation should also use the VxD API to deregister the window handle, so that the VxD
stops posting messages to it.

To interface to a Win16 application, POSTVXD needs only a PM APlprocedure,
two message handlers (OnVmlnit and OnVmTerminate), and an event callback. The
source code for the PM API handler follows.

VOID cdecl PM_Api_Handler(VMHANDLE hVM. CLIENT_STRUCT *pcrsl
{

switch (pcrs->CWRS.Client_AXl
{

case POSTVXD_REGISTER:
PostMsghWnd = (HANDLElpcrs->CWRS.Client_BX;
PostMsgSelector = pcrs->CWRS.Client_CX;
PostMsgOffset = pcrs->CWRS.Client_DX;
bClientRegistered = TRUE;
pcrs->CWRS.Client_AX = 0;
break;

248 - Writing Windows VxDs and Device Drivers

case POSTVXD_DEREGISTER:
bClientRegistered = FALSE;
pcrs->CWRS.Client_AX = 0;
break;

default:
pcrs->CWRS.Client_AX = Oxffff;

The PM API procedure handles two function codes, POSTVXD_REGISTER and
POSTVXD_DEREGI STER, which are defined in the VxD's header file, POSTVXD. H (List
ing 12.1, page 269). The code that handles POSTVXD_REGISTER copies the caller's
input parameters to the global VxD variables PostMsghWnd, PostMsgSe 1 ector, and
PostMsgOffset. The application provides the PostMessage address in two separate
pieces, selector and offset. This 16:16 form is the natural form of a pointer for a
Win16 application, although VxDs generally deal with 32-bit flat addresses, in this
case a 16:16 address is better, because the VxD isn't going to use the PostMessage
address itself. Instead, POSTVXD will pass this address to the VMM
Si mul ateJar _Ca 11 service, which wants the address in 16:16 form.

The PM API also sets a global boolean, bCl i entRegi stered, when
POSTVXD_REGISTERis called, and clears it when POSTVXD_DEREGISTERis called. The
create and destroy message handlers look at this variable, and only take steps to post a
message if bCl i entRegi stered has already been set. The code for the POSTVXD
message handlers follows.

BOOl OnVmInit(VMHANDlE hVM)
{

VMINFO *pInfo;

if (bClientRegistered)
{

}

if (bWin3x)
{

pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
(

J
else
{

pInfo->hVM = hVM;
pInfo->bVmCreated - TRUE;
Call_Priority_VM_Event(lOW_PRI_DEVICE_BOOST. Get_Sys_VM_Handle().

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT.
pInfo. PriorityEventThunk. 0);

SHEll_PostMessage(PostMsghWnd. WM_USER_POSTVXD. 1. (DWORDlhVM,
PostMessageHandler. NUll);

return TRUE;

Communication from VxDs to Applications - 249

VOID OnVmTerminate(VMHANDLE hVM)
{

VMINFO *plnfo;

if (bClientRegistered)
(

if (bWin3x)
{

pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
(

else
(

pInfo->hVM = hVM;
pInfo->bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_OEVICE_BOOST, Get_Sys_VM_Handle(),

PEF_WAIT_FOR-STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);

SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 0, hVM,
PostMessageHandler, NULL);

The OnVmlnit and OnVmTerminate message handlers are almost identical. After
verifying that bel i entRegi stered is set, each handler then determines what version of
Windows is running. In this section, we'll only discuss what happens if the version
check indicates Windows 3.x - a later section will cover the code for the Windows
95 case. Each handler dynamically allocates a VM INFO structure (defined at the top of
POSTVXD. e), initializes the structure, then schedules a VM event. The VMI NFO struc
ture contains the handle of the VM being created or destroyed and a boolean (which is
set if the VM has been created or clear if destroyed). This data is encapsulated into a
structure because an event handler gets only a single reference data parameter. By
using a pointer to the VMINFO structure as reference data, the message handler can
pass more than one piece of information to the event handler.

The message handlers schedule a VM event by calling ea 11_Pri ori tLVM_Event.
This service allows the VxD to specify not only the desired VM, but also additional
restrictions on when the event handler can be called.

250 - Writing Windows VxDs and Device Drivers

The Calling Inter/ace/or Ca 7 7_Priority_VM_Event

EVENTHANDLE Call_Priority_VM_Event(DWORD PriorityBoost. VMHANDLE hVM.
DWORD Flags. CONST VOID * Refdata.
PEventHANDLER EventCallback.
DWORD Timeout);

PriorityBoost: while executing the event callback. increase VM priority
by this amount; can be LOW_PRI_DEVI CE.:..BOOST.
HIGH_PRI_DEVICE_BOOST. CRITICAL_SECTION_BOOST.
TIME_CRITICAL_BOOST

hVM: event callback will run in context of this VM
Flags: PEF_TIME_OUT - call event handler when Timeout occurs

PEF_WAIT_FOR_STI - wait until VM has interrupts enabled
PEF _WAIT_NOT_CRIT - wait until VM does not own critical section

Refdata: passed to event callback
EventCallback: pointer to event callback function
Timeout: timeout. in ms; ignored unless PEF_TIME_OUT is set

To schedule the event that will call PostMessage, POSTVXD specifies the System
VM handle and the restricting flags PEF _WAITJOR_STI and PEF _WAIT_NOT_CRIT.
These flags prevent the event from interrupting a VMthat is executing with interrupts
disabled, or one that is executing a critical section; presumably such a VM has some
thing important and/or time-critical to do. Once the VM has re-enabled interrupts or
has exited the critical section, then the event handler can run and call PostMessage.

Using Nested Execution Services
Once inside the event handler Pri ori tyEventHandl er (called via Pri or; tyEventThunk
in the VxD's assembly module), it's safe to call PostMessage usingVMM's nested exe
cution services. These services are the key to executing Ring 3 code from a VxD. In a
nutshell, nested execution works like this:.

• A VxD sets up a VM's registers and stack as desired, changes theVM's CS and I P
to point to a Ring 3 address, and then tells the VMM "ok; let the VM execute now".

• The VMM executes the VM, and when the VM executes a RET, the VMM and then
theVxD regain ",antral.

After this series of "handoffs", the Ring 3 function has been executed, and the
VxD has control again.

Communication from VxDs to Applications - 251

VOID __ stdcall PriorityEventHandler(VMHANDLE hVM, PVOID Refdata,
PCLI ENT_STRUCT pRegs)

CLIENT_STRUCT saveRegs;
VMINFO *plnfo = Refdata;

Save_Client_State(&saveRegs);
Begin_Nest_Exec();
Simulate_Push(PostMsghWnd);
Simulate_Push(WM_USER_POSTVXD);
Simulate_Push(plnfo->bVmCreated);
Simulate_Push«(DWORD)plnfo->hVM » 16)):
Simulate_Push«(DWORDlplnfo->hVM & Oxffffl);

II hwnd
II message
II wParam
II lParam

Si mul ateJa r _Ca II (PostMsgSe ll:ctor, PostMsgOffset);
Resume_Exec(1 ;
End_Nest_Exec() ;
Restore~Client_State(&saveRegs);

_HeapFree(plnfo, 0 l;

Pri orityEventHandl er first saves the current VM state with a call to the VMM
service Save_C1 i enCState. The VxD supplies the buffer storage, using a local
CLI ENT...,..STRUCT variable. POSTVXD then enters a "nested execution block"by calling
Beg i n_Nes t_Exec. This call tells the VMM to prepare to execute Ring 3 code. Inside
this block, the VxD modifies the VM's environment, first its stack and then its registers.

Several calls to the VMM service Simu1 ate_Push push onto the VM's stack (notthe
VxD's) the hWnd, message, and wParam and 1 Param parameters (both zero) expected
by PostMessage. The VxD extracts these parameter values from the VMINFO structure
passed as a reference parameter. Note that Pri or; tyEventHand1 er splits the 32-bit VM
Handle into two 16-bit WORDs and pushes each ort the stack, instead of pushing a single
32-bit DWORD onto the stack; PostMessage is 16-bit code and expects 16-bit parameters.

Finally the VxD calls the VMM service S i mul ateJa r _Ca 11, supplying the selec
tor and offset of the target Ring 3 function (in this case stored in PostMsgSe1 ector
and PostMsgOffset). Si mu1 ateJar _Call modifies both the VM's stack and its reg
isters, pushing the VM's current CS and I P onto the stack (just as a real FAR CALL
would) before setting the VM's CS and I P to the selector and offset given as parameters.

So far, the VM's execution environment has been modified (without its knowl
edge), but no VM code has been executed. The next call, to Resume_Exec, makes that
happen. When a VxD calls Resume_Exec, the VMM temporarily stops executing Ring
o code and lets the currently scheduled VM run. Because Pri ori tyEventHand1 er has
modified the System VM's environment, when the System VM runs, it executes the
Windows function PostMessage, using the parameters supplied by the VxD. When
the VM"executes a FAR RET from PostMessage, the VMM traps the instruction, and
the ResumeJxec service returns to POSTVXD.

252 - Writing Windows VxDs and Device Drivers

Calling a Real Mode Interrupt Handler from a VxD

The nested execution services could also be used by a VxD to call a real mode interrupt handler from a VxD,
for example DOS (INT21h) or the video BIOS (I NT lOh). Instead of using Si mu1 ate_Push to push parame
ters on the VM's stack, a VxD would fill in parameters in registers by modifying the C1 i ent_Reg structure.
Then, instead of calling Simu1 ate_Fa r _Ca 11, a VxD would use Si mu1 ate_Int.

However, in most cases you do not want to use nested execution services. Instead, use ExecVxD_Int,
without a nested execution block. The VTooisD declaration for ExecVxD_Int looks like

VOID Exec_VxD_Int(DWORD Intnum. ALLREGS* Registers)

To use it, your VxD fills in an ALLREGS structure with the register parameters to be passed to the real mode
handler, then passes the service the number of the software interrupt to execute and a pointer to this register
structure. Your VxD must not change the segment register fields of the ALLREGS structure. If the real mode
handler expects a pointer to be passed in ES: BX, then your VxD loads a 32-bit flat pointer into the EBX field of
ALLREGS, leaving the ES field alone. Similarly, if the real mode handler expects a pointer in DS: SI , load the
flat pointer into the ESI field of ALLREGS.

Using ExecVxD_Int in a VxD is rather simple, but underneath lies a good deal of complexity. Any flat
pointer parameters must be translated into segmented pointers before the real mode hander can use them. Fur
thermore, the targeted buffer must be located below 1Mb in order for the real mode handler to access it. Yet any
buffers owned by the VxD (either statically allocated in the VxD's data segment or dynamically allocated
through _HeapA 11 ocate/ _PageA 11 ocate) are located above 2Gb, so the buffers owned by the VxD must be
copied down to a real mode addressable buffer and then the real mode service is given a (segmented) pointer to
that translation buffer.

This raises an interesting question. How does the ExecVxD_Int service even know which registers in ALLREGS
contain pointers? In fact, it doesn't. ExecVxD_Int blindly calls the VxD that has hooked the software interrupt
in question. For example, if your VxD calls ExecVxD_Int with an i ntnum parameter of lOh, this results in the
BIOSXLAT VxD being called, because BIOSXLAT used VMM SeCPM_Vector to hook INT lOh during
Sys_Criti ca l_Init.

It's the VxD that hooked the software interrupt - in this example, BIOSXLAT - that translates pointers
and copies the pointer data to a real mode addressable buffer. Only a VxD that knows about INT lOh would
know what registers are supposed to contain pointers. The software interrupt hook VxD in turn relies on
another VxD, the V86MMGR, for the most complex part of pointer translation. The V86MMGR VxD owns a
real mode addressable translation buffer and provides services that other VxDs can use to borrow and copy
from/to this buffer.

So ExecVxD_Int really works only when no pointers are being passed to the real mode handler, or when
pointers are being passed but another VxD has hooked the software interrupt to provide translation services. For
tunately, the standard VxDs provided with Windows do hook the most common software interrupts (lNT 21h,
INT lOh, INT 13h, etc.), so in most cases yourVxDs can use ExecVxD_Int.

If your V xD must pass pointers when the real mode interrupt is not hooked by another V xD (and thus does not
have translation services provided), your VxD will have to do the translation using V86MMGR services. Then
your VxD would use Si mu1 ate_Int inside a nested execution block to actually call the real mode handler.

Communication from VxDs to Applications - 253

Before exiting, Pr; or; tyEventHand1 er exits the nested execution block by call
ing End_Nest_Exec and restores the VM to its original state with a call to
Restore_C1; ent_State, passing a pointer to the same CLI ENT_STRUCT that was used
in the earlier call to Save_C1; enLState. The next time the VM is scheduled, it will
continue executing from wherever it was interrupted, unaware that this flow of execu
tion was temporarily interrupted to call PostMessage. Finally, the VxD frees the
VMINFO structure. (It is safe to do so because PostMessage has been executed by the
time Resume_Exec returns.)

As you can see, calling a Win 16 application from a VxD under Windows 3.x is a lot
of work. A VxD running under Windows 95 has an easier job. (See tq<il-sidebar "Calling
a Real Mode Interrupt Handler from a VxD" on page 252 for information on how a
VxD can also use nested execution services to call a real mode interrupt handler.)

VxD to Win16 Application under Windows 95:
PostMessage
The new services provided by the SHELL VxDunder Windows 95 make it much eas
ier for a VxD to notify a Win16 application through PostMessage. A single call to
SHELL_PostMessage will do the trick.

The Calling Interface for SHELL_PostMessage

BOOl SHElL_PostMessage(HANDLE hWnd, DWORD uMsg, WORD wParam, DWORD lParam,
PPostMessage_HANDLER pCallback, PVOID dwRefData);

The first four parameters correspond exactly to the real PostMessage parameters.
The pCa 11 back parameter is a pointer to a callback function that will be called when
the PostMessage actually completes. The last parameter, dwRefData, is reference
data to be passed to the callback function.

The SHELL_PostMessage function itself has a boolean return value, where FALSE
indicates failure, usuaUy caused by insufficient memory. Note this is not the return
value from PostMessage, because the execution of PostMessage is asynchronous
(hence the callback function). The return value of the actual call to PostMessage is
passed to the callback function, along with a pointer to the same reference data passed
in to SHELLPostMessage.

The Calling Interface for SHELL_PostMessage Callback

void PostMessageHandler(DWORD dwPostMessageReturnCode, void *refdata);

254 - Writing Windows VxDs and Device Drivers

So the two-part approach required under Windows 3.x - Ca 11_Pri ori ty_VM_Event
followed by nested execution services in the event handler - can be replaced by a
single call to SHELL_PostMessage under Windows 95. If the version check indicates
Windows 95, the OnVmlni t and OnVmTermi nate handlers in POSTVXD simply do:

SHELL_PostMessage(PostMsghWnd. WM_USER_POSTVXD.l.
(DWORD)hVM. PostMessageHandler. NULL);

Note that the dynamically allocated VMINFO structure is no longer required,
because the message handler itself can pass the VM handle and the boolean directly to
SH E LL_Pos tMess age.

VxD to Win16 Application under Windows 95:
Appy Time
Although it's nice to have SHELL_PostMessage available, a VxD running under Win
dows 95 isn't limited to calling PostMessage to communicate with Win16 code.
Using the new "appy-time" functions (also provided by SHELL), a Windows 95 VxD
can call any function in a Win 16 DLL, and the Win 16 callback itself is allowed to call
any Windows API function.

To use the appy-time services, you first schedule an appy-time event by calling
SHELL_Cal 1 AtAppyTime.

The Calling Interface for Scheduling an Appy-time Event

APPY_HANDLE SHELL_CallAtAppyTime(APPY_CALLBACK pfnAppyCallBack.
voi d *dwRefOata.
DWORD dwFlags. DWORD dwTimeout);

pfnAppyCallback: pointer to function to be called back at appy time
dwRefData: passed as parameter to pfnAppyCallback
dwFlags: describe callback conditions

if CAAFL_TIMEOUT is set. service will timeout and
callback will be invoked if appy time isn't
available within dwTimeout ms

dwTimeout: timeout used if CAAFL_TIMEOUT is set in Flags

As with other events, a VxD returns after scheduling an appy-time event. Later,
when Windows 95 is ina "safe state", the SHELL VxD will call the event handler.

SHELL supplies two parameters to the event handler callback: the same reference
data passed in to SHELL_Cal 1 AtAppyTime, and a flag that has CAAFL_TIMEOUT set if
the timeout occurred. If CAAF L_ TI MEOUT is set, then the event handler is not running
during appy time and so can't call Win16 code.

Communication from VxDs to Applications - 255

The Calling Interface for SHELL_Ca 7 7 A tAppyTi me Callback

void AppyTimeHand1er(void *dwRefData, DWORD dwF1ags);

If this flag is not set, the event handler can use another SHELL service,
SHELL_Ca 11 011, to call any function in any Winl6 DLL. This service will take care of
loading the DLL, thunking the parameters from 32-bit to 16-bit (see Chapter 18 for a
full discussion of thunking), and unloading the DLL after the function returns.

The Calling Interface for SHELL_Ca 7 7 D7 7

DWORD SHELL_CallDll(PCHAR lpszOll, PCHAR lpszProcName,
OWORO cbArgs, void *lpvArgs);

lpszDLL: name of Win16 DLL
lpszProcName: name of function in DLL
cbArgs: number of bytes in arguments passed to function
lpvArgs: pointer to structure containing arguments

The first two parameters are self-explanatory. The other two parameters, cbArgs
and 1 pvArgs, describe the arguments to be passed to the DLL function. This short
piece of code taken directly from the DDK documentation illustrates their use.

/* PASCAL calling convention passes arguments backwards */
struct tagEXITWINOOWARGS {

WORD wReserved;
DWORO dwReturnCode;

} ewa = { 0, EW_REBOOTWINDOWS };
SHELL_CallDll("USER", "EXITWINDOWS", sizeof(ewa), &ewa);

In this example, the VxD is calling the Windows API function Exi tWi ndows,
which is declared in WINDOWS. Has:

BOOL _far _pascal ExitWindows(DWORD dwReturnCode, UINT wReserved);

The VxD declares a structure containing only these two parameters. The order of the
parameters in the structure is "backward" compared to the function declaration because
ExitWi ndows is declared with the _pasca 1 keyword. If the DLL function was declared
as _cdec 1 instead, the structure would contain parameters in the "normal" order.

256 - Writing Windows VxDs and Device Drivers

Windows 95 VxD to Win32 Application:
Asynchronous Procedure Calls
To communicate with a Win32 application, a Windows 95 VxD uses a completely dif
ferent approach, one that fits naturally with the multi-threaded support in the Win32
API. There are two slightly different techniques, though both rely on a VxD "waking
up" a Win32 application thread.

The simplest mechanism for a VxD to communicate with a Win32 application is
via an asynchronous procedure call, or APC. This method is relatively simple for both
the application and the VxD. The application first opens the VxD (CreateFi 1 e) and
uses DeviceloContro1 to pass to the VxD the address of a callback function. The
application then puts itself into an "asleep yet alertable" state using the Win32 call
Sl eepEx. The application must use Sl eepEx, not plain old Sl eep, because only
Sl eepEx puts the thread into an "alertable" state. While the application's thread is
asleep, the VxD can call the application's callback function using the QueueUserApc
service provided by the VWIN32 VxD.

The APCVXD Example
The APCVXD example illustrates the techniques discussed above. Like the POSTVXD
example, APCVXD notifies a registered application whenever a VM is created or
destroyed. But where POSTVXD notified a Win16 application via PostMessage,
APCVXD notifies a Win32 application via an Asynchronous Procedure Call.

APCVXD supports a W32_DEVICEIOCONTROL interface, which lets Win32 appli
cations register a callback function with the VxD. The VxD later calls this applica
tion function whenever a VM is created or destroyed. The VxD passes to the
callback the address of a VMI NFO structure that contains the VM handle and a bool
ean value (TRUE if create, FALSE if destroy). Inside the callback, after the application
has printed the contents of the VMINFO structure, it calls Devi celoContro1 with the
APCVXD_RELEASEMEM control code, telling the VM to free the VMINFO structure.

The application is a Win32 console application (Listing 12.11, page 279), which
means it can use standard 110 functions like pri ntf. Itconsists of nothing but a rna in
and a callback function.

void main(int ac, char* ave])
{

OWORO cbBytesReturned;
OWORD err;

canst PCHAR VxDName - "\\\\.\\APCVXD.VXO";
hDeVice - CreateFile(VxDName, 0,0,0, CREATE_NEW, FI LEJLAG_DELETE_ON_ClOSE , 0);

Communication from VxDs to Applications - 257

if (hDevice == INVALID_HANDLE_VALUE)
{

err = GetLastError();
printf("Cannot load VxD, error=%08Ix\n", err);
if (err == ERROR_NOT_SUPPORTED)
{

DeleteFile("\\\\.\\APCVXD");
}
exit(l);

if (err = DeviceIoControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD,
sizeof(CallbackFromVxD), NULL, 0, NULL, NULL»

printf("DeviceIoControl failed, error-%x\n", err);
}
else
{

}

whi I e (TRUE)
SleepEx(lOOO, TRUE);

,CloseFile(hDevice):

The application's main function uses CreateFil e to get a handle to the VxD,
then Devi celoContro1 to pass to the VxD the address of its callback function,
Ca 11 backFromVxD. Finally, the application puts itself into an alertable wait state,
using the Win32 51 eepEx function with a timeout parameter of one second, and TRUE
for the bA 1 ertab 1 e parameter. 51 eepEx will block until either the timeout has expired
or the VxD has called the application's callback. When 51 eepEx returns, the thread
checks for keyboard input. If input was detected, the program closes the VxD handle
and exits. Otherwise, it immediately calls 51 eepEx again, waiting for another callback
from the VxD or another timeout, whichever comes first.

Note that the timeout in 51 eepEx is only necessary because the application must
intermittently test for user input. If the application handled user input in a separate
thread, 51 eepEx would not require a timeout (-1 for timeout parameter) and would
return only after the VxD called Ca 11 backFromVxD.

DWORD WINAPI CallbackFromVxD(PVOID param)
[

);

VMINFO *pVmlnfo = param;

pri ntf(buf, "VM %081x was %s\r\n", pVmInfo- >hVM, pVmInfo->bCreated ? "created" : "destroyed");
DeviceIoControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmlnfo),O,O,O.O);
return 0;

The callback function, Ca 11 backFromVxD, first casts its reference data parameter
to a pointer to a VM INFO structure. The VM INFO structure contains the handle of the VM
that was created or destroyed and a boolean indicating creation or destruction. The
callback prints these two items using pri nt f, since the application is a console appli
cation. Finally, the callback uses Devi cel oContro 1 to call back into the VxD with the
control code APCVXD_RELEA5EMEM. This code tells the VxD to free the VMINFO struc
ture that was passed in as reference data.

258 - Writing Windows VxDs and Device Drivers

The APCVXD code is equally simple (Listing 12.7, page 275). It consists only of
three message handlers: OnW32Devi cei ocontrol, OnVmlni t, and OnVmTermi nate.

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)
(

DWORD rc;

switch (p->dwloControlCode)
(

case DIOCOPEN:
rc = 0;
break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;

rc = 0;
break;

case APCVXD_REGISTER:
VmEventApc = p->lpvlnBuffer;
appThread = Get_Cur_Thread_Handle();

bClientRegistered = TRUE;
rc = 0; II return OK
break;

case APCVXD_RELEASEMEM:
_HeapFree(p->lpvlnBuffer, 0);
rc = 0;
break;

default :
rc = Oxffffffff;

return rc;

Note that OnW32Devi cei ocontro 1 returns zero when the control code indicates
either DIOCGETVERSION or DIOCCLOSEHANDLE. As mentioned in the last chapter, fail
ure to do so will cause the application call to CreateFi 1 e or C1 oseHand1 e to fail.
APCVXD also handles two other control codes [defined in APCVXD. H (Listing 12.6,
page 275)]: APCVXD_REGISTERand APCVXD_RELEASEMEM.

To process APVXD_REGI STER, APCVXD gt:abs the callback function address from the
DIOCPARAMETERS input buffer, then calls the VMM service Get_Cur _Thread_Hand1 e
to obtain the Ring 0 handle for the caller's thread. (This thread handle will be used
later, during the callback process.) Both the callback address and the thread handle
are saved in global variables. To process APCVXD_RELEASEMEM, the VxD frees the
pointer passed in by the caller via the DIOCPARAMETER input buffer. The application
should have loaded this pointer with the address of a structure that was allocated earlier
by the VxD (during VM create or destroy) and passed to the application's callback.

Communicat'ionfrom VxDs to Applications - 259

The VM_Init and VM_Terminate handlers (see the following paragraph of code)
look something like their counterparts in the earlier POSTVXD (VxD to Win16 appli
cation) example. Each verifies that the boolean bCl i entRegi stered is already set
and then allocates and initializes a VM INFO structure containing the VM handle and a
boolean indicating VM creation or destruction. But where the handlers in POSTVXD
scheduled a VM event, APCVXD uses the VWIN32 service _VWIN32_QueueUserApc
to queue a call to the registered application callback.

BOOl OnVmInit(VMHANDlE hVM)
{

VMINFO *pVmInfo;

if (bClientRegistered)
{

pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{

pVmlnfo->hVM = hVM;
pVmInfo->bVmCreated = TRUE;
_VWIN32_0ueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);

return TRUE;

VOID OnVmTerminate(VMHANDlE hVM)
{

VMINFO *pVmInfo;

if (bClientRegistered)
{

pVmInfo = _HeapAllocate(sizeof(VMINFO), 0);
if (pVmInfo)
{

pVmInfo->hVM = hVM;
pVmInfo->bVmCreated = FALSE;
_VWIN32_0ueueUserApc(VmEventApc, (DWORD)pVmInfo, appThread);

Although both Win32 applications and VxDs support the notion of "thread
handles", a Ring 3 thread handle (obtained by calling the Win32 API function
GetCurrentThread) is not the same as a Ring 0 thread handle. Because
_VWIN32_0ueueUserApc requires a Ring 0 thread handle, APCVXD calls the VMM
service Get_Cur _Thread_Handl e during W3LDEVICEIOCONTROL processing to obtain
the Ring 0 handle of the caller's thread.

260 - Writing Windows VxDs and Device Drivers

The Calling Interface for VWIN32_QueueUserApc

VOID _VWIN32_0ueueUserApc(PVOID pR3Proc. DWORD Paramo THREADHANDLE hThread);
pR3Proc: 1 i near address of Ri ng 3 code to execute
Param: parameter to pass to Ring 3 code
hThreadi Ring3 code runs in this thread context

NOTE: this is a Ring 0 thread handle. not a Ring 3 thread handle

As the name of the VWIN32 service suggests, the callback is not executed imme
diately but is queued, to be executed at a later time (when the System VM is current,
etc.) When _VWIN32_QueueUserApc returns, the APCVXD message handler also
returns, having finished its processing.

Because APCVXD uses global variables to store both the callback address
and the thread handle, only one Win32 application can use APCVXD at a
time. In order to support usage by multiple Win32 applications at the same
time, APCVXD would need to dynamically allocate a structure to store the
callback address and the thread handle and then add the dynamically allocated
structures to a linked list. The create and destroy VM handlers would then
traverse the list, calling _VWIN32_QueueUserApc for each registered callback
in the list.

Windows 95 VxD to Win32 Application:
Win32 Events
Although using an APe is probably the easiest. way to implement a VxD-to-applica
tion calling mechanism, there is a much more efficient method. If the Win32 applica
tion is multithreaded, the application can continue to do work in a main thread while a
second thread is waiting on a wakeup from the VxD. For example, a main thread
could monitor for user input while a second thread waits on a VxD that is buffering
incoming data. When the buffered data reaches a threshold level, the VxD wakes up
the waiting Win32 thread.

VxDs use thread events for interthread notification, much as multi-threaded
Win32 applications do. In a multi-threaded Win32 application, Win32 events are
often used to signal from one thread to another that an operation has been completed,
for example that a buffer has been read from disk. One thread creates the event, starts
the second thread, and then waits on the event (which will be signaled by the second

Communication from VxDs to Applications - 261

thread). Assuming the waiting thread has nothing to do until the data is read, this
structure is an efficient use of resources; the waiting thread is' blocked and thus con
sumes minimal processor cycles.

The Win32 API contains the following event functions:

CreateEvent to create the event and obtain an event handle

• ResetEvent to set the event to the unsignaled state

• SetEvent to set the event to the signaled state

Pul seEvent to set the event to the signaled state and then immediately set it to
unsignaled

Wa i tForS i ngl eObj ect to block until the event is signaled

Wai tForMul tipleObjects to block until any or all the events are signaled
(depending on flag parameter)

The following paragraph of code presents a simple multithreaded Win32 applica
tion which illustrates the use of Win32 events. It consists of two threads, where the
first thread signals the second whenever the users presses the'S' key. The second
thread prints a message whenever it is signaled.

DWORD WINAPI SecondThread(HAND.LE hEvent
{

whil e (TRUE)
{

WaitForSingleObject(hEvent. INFINITE);
printf("Second thread was signaled\n");

return 0;

void main(int ac. char *av[])
{

BOOl bExit = FALSE;
HANDLE hEvent;
char c;
DWORD tid;

hEvent = CreateEvent(O. FALSE. FALSE. NULL);
CreateThread(O. OxlOOO, SecondThread. hEvent. O. &tid);

printf("Press 'S' to Signal second thread\n");
printf("Press 'X' to exit\n");

262 - Writing Windows VxDs and Device Drivers

while (!bExit)
{

c = getch();
switch(c)
{

case '5':
case's':

SetEvent(hEvent);
break;

case 'X':
case 'x':

bExit = TRUE;
break;

VxDs and Win32 Events
Under Windows 95, VxDs have access to the very same Win32 event API, through a
set of services provided by the VWIN32 VxD. Using these services, a VxD can signal
a waiting Win32 application thread, or wait to be signaled by a Win32 application
thread. The VWIN32 event services are:

_VWIN32_ResetWin32Event

_VWIN32_SetWin32Event

_VWIN32_PulseWin32Event

• _VWIN32_WaitSingleObject

• _VWIN32_WaitMultipleObjects

Unfortunately, a VxD can't obtain a Win32 event handle simply by calling the
appropriate event service. (Note that a Create Event service is conspicuously missing
in the above list.) Thus, obtaining an event handle that is usable to a VxD becomes a
complicated process involving, among other things, an undocumented system call. The
event is always created by the application, via the Win32 API CreateEvent. The applica
tion must then translate the event handle returned by CreateEvent into a VxD event
handle, using the undocumented Win32 API function OpenVxDHandl e. The applica
tion then passes the translated (Ring 0) event handle to the VxD via Devi celoControl,
and the VxD uses this handle as a parameter to the VWIN32 event functions.

Communication from VxDs to Applications - 263

The EVENTVXD example (Listing 12.15, page 282) uses a Win32 event to signal
a Win32 application thread from a VxD. Like the POSTVXD and APCVXD examples
introduced earlier in this chapter, EVENTVXD notifies a registered application when
ever a VM is created or destroyed. But where APCVXD used an Asynchronous Proce
dure Call to notify a Win32 application, EVENTVXD uses a Win32 event.

EVENTVXD supports the W3LDEVICEIOCONTROL message, which lets a Win32
application register a Win32 event handle with the VxD. The Win32 thread that regis
tered this event handle should then wait on the event, which the VxD wiII signal
whenever a VM is created or destroyed. As part of the initial registration, the VxD
returns to the application the address of a VM INFO structure. When the application
thread is signaled, this structure wiII contain the handle of the VM that was created or
destroyed and a boolean indicating creation or destruction.

Like the earlier APCVXD example, the code for EVENTVXD consists of only
three message handlers: OnW32Devi cei ocontro 1, OnVmI ni t, and OnVmTermi nate.

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)
{

DWORD rc;

switch (p->dwloControlCode)
{

case DIOCOPEN:
rc = 0;
break;

case DIOC_CLOSEHANDLE:
bClientRegistered = FALSE;

rc = 0;
break;

case EVENTVXD_REGISTER:
hWin32Event = p->lpvlnBuffer;
*«DWORD *)(p->lpvOutBuffer» = (DWORD)&GlobalVMlnfo;
*«DWORD *)(p->lpcbBytesReturned» = sizeof(DWORD);
bClientRegistered = TRUE;
rc = 0;
break;

default:
rc = Oxffffffff;

return rc;

264 - Writing Windows VxDs and Device Drivers

Like the other W32_DEVICEIOCONTROL message handlers we've seen, this one
returns 0 when the control code indicates either DIOCGETVERSION or
DIOCCLOSEHANDLE. lithe control code is EVENTVXD_REGISTER, EVENTVXD copies
the event handle from the DIOCPARAMETERS input buffer into the global variable
hWi n32Event.

BOOl OnVmlnitCVMHANDlE hVM)
{

if CbClientRegistered)
{

GlobalVMlnfo.hVM = hVM;
GlobalVMlnfo.bVmCreated = TRUE;
Cal l_Priority_VM_EventC lOW_PRI_DEVICE_BOOST, Get_Sys_VM_HandleC),

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);

return TRUE;

VOID OnVmTerminateCVMHANDlE hVM)
{

if CbClientRegistered)
{

GlobalVMlnfo.hVM = hVM;
GlobalVMlnfo.bVmCreated = FALSE;
Call_PrioritY_VM_EventClOW_PRI_DEVICE_BOOST, Get_Sys_VM_HandleC),

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
hWin32Event, PriorityEventThunk, 0);

The VM_Init and VM_Terminate handlers (Listing 12.16, page 284) look more
like their counterparts from the POSTVXD example than the ones from the APCVXD
example. Like POSTVXD, EVENTVXD must postpone its real work (signaling the
Win32 event) for a VM event handler, because the VWIN32 event functions may only
be called when the System VM is current. Unlike POSTVXD, however, EVENTVXD
does not dynamically allocate a VMINFO structure and pass the structure address to
the event handler as reference data. Instead, EVENTVXD uses a global VMINFO
structure, and passes the Win32 event handle as reference data to its event callback.

Communication from VxDs to Applications - 265

Where both APCVXD and POSTVXD pass a VMINFO pointer to the application
(POSTVXD via the 1 Param of PostMessage and APCVXD as a reference data
parameter), EVENTVXD has no way of passing reference data to the Win32 applica
tion. The VxD doesn't call a function in the Win32 application. The Win32 applica
tion simply wakes up from the event it has been waiting on.

Because the VxD can't pass reference data to the Win32 thread that it's unblock
ing, it must use a different method to pass data. The VxD tells the Win32 application
ahead of time, through Devi eel oContro 1, the address of a VMl NFO structure that will
contain VM information. The VxD must then always use this same VMlNFO structure,
because that's the one the Win32 application knows about.

VOID __ stdcall PriorityEventHandler(VMHANDLE hVM. PVOID Refdata. CRS *pRegs)
[

HANDLE hWin32Event = Refdata;

_VWIN32_SetWin32Event(hWin32Event);

The VMM calls the System VM event handler, Pri ori tyEventHandl er, once
the System VM has been scheduled. At this time, Pri ori tyEventHandl er can
safely call _VWl N3LSetWi n32Event, using the reference data parameter as the
Win32 event handle.

The accompanying Win32 application, which uses the EVENTVXD, is more
complicated than the other Windows example applications, partly because it has two
threads, but mostly because it must go to great lengths to obtain a usable event handle.

void maine int ac. char *av[]
(

hEventRing3 = CreateEvent(O. FALSE. FALSE, NULL);
if (!hEventRing3)
(

printf("Cannot create Ring3 event\n");
exit(l) ;

hKerne132Dll = LoadLibrary("kerne132.dll");
if (!hKerne132Dll)
(

printf("Cannot load KERNEL32.DLL\n");
exit(l) ;
}

266 - Writing Windows VxDs and Device Drivers

pfOpenVxDHandle = (HANDLE (WINAPI *) (HANDLE))
GetProcAddress(Kerne132Dll, "OpenVxDHandle");
if (!pfOpenVxDHandle)
(

printf("Cannot get addr of OpenVxDHandle\n");
exit(l) ;

hEventRingO = (*pfOpenVxDHandle)(hEventRing3);
if (!hEventRingO)
(

printf("Cannot create RingO event\n");
exit (1) ;

The main thread must make four different Win32 API calls to create a Win32
event and then obtain a Ring 0 handle for this event usable by the VxD. Creating
the event requires only a call to CreateEvent. The application uses FALSE for the
bManua 1 Reset parameter to obtain an auto-reset event. Windows will automati
cally reset this type.of event to the non-signaled state when it wakes up the wait
ing thread, saving the second thread from explicitly calling ResetEvent. The
application also specifies FALSE as the blniti al Val ue parameter. Thus, initially
the event will be in the non-signaled state, causing the second thread to block on
the event immediately.

To translate the event handle returned by CreateEvent into a handle usable by the
VxD, the application must call the OpenVxDHandl e function in KERNEL32. DLL. This
function is not documented and not in the Win32 import library, thus its address must
be acquired via run-time dynamic linking. First the application uses La a d Lib r a r y to
load KERNEL32. DLL. Then it calls GetProcAddress, specifying both the name of the
function ("OpenVxDHandl eO) and the instance handle returned by LoadL i brary.

GetprocAddress returns a function pointer, which the application uses to call the
OpenVxDHandl e function. This function takes as input a Ring 3 event handle, returned
by CreateEvent and returns another handle for the event (one usable at Ring 0). The
application stores this Ring 0 handle in hEventRi ngO, to be passed to the
EVENTVXD via Devi celoControl.

hDevice = CreateFile(VxDName, 0, 0, 0, CREATE_NEW,

if (!hDevice)
(

FI LE_FLAG_DELETE_ON_CLOSE , 0);

printf("Cannot load VxD error=%x\n", GetLastError());
exit(l) ;

Communication from VxDs to Applications - 267

if (!DevieeloControl(hDeviee. EVENTVXD_REGISTER.
hEventRingO. sizeof(hEventRingO).
&pVMlnfo. sizeof(pVMlnfo).
&ebBytesReturned. 0 »

printf("Devi eeloControl REGISTER failed\n");
exit(l);

The next part of ma i n looks similar to the APC example application described earlier
in this chapter. The application opens a channel to the VxD and uses Devi eeloControl
to pass hEventRi ngO to the VxD.

The function prototype for Devi eel oContro 1 declares both the 1 pI nBuffer and
the 1 pOutBuffer parameters to be void pointers, but it is always up to the VxD to
decide exactly how these pointers are used. EVENTVXD expects the input pointer for
an EVENTVXD_REGISTER control code to be a Ring 0 event handle, not a pointer.
EVENTVXD expects the output pointer to point to a DWORD, which it fills in with the
address of a VM INFO structure.

After giving the event handle to the VxD, the main thread has nothing left to do
but create the second thread (which will wait to be signaled by the VxD) and wait for
user input. Because the main thread has nothing else to do but wait for input - it's
the second thread that's doing the work - it uses the C library function geteh, which
blocks. When geteh finally returns with a key, the main thread closes the channel to
the V xD and returns.

CreateThread(O. OxlOOO. SeeondThread. hEventRing3. O. &tid);
printf("Press any key to exit);
geteh();
CloseHandle(hDeviee);

You may notice that the main thread doesn't do anything to terminate the
second thread. This may seem dangerous, and in fact, Windows 95 won't
automatically kill off additional threads when the main thread ends.
However, the C run-time exit code does terminate additional threads when
ma i n returns. If you want to be extra safe, you can explicitly terminate the
secondary thread before exiting main by calling TerminateThread and
passing in the (Ring 3) thread handle returned originally by CreateThread.

That wraps up the main thread of the application, which exists only to create a
second thread which does the real work. The second thread, contained in the function
SeeondThread, is short and simple.

268 - Writing Windows VxDs and Device Drivers

DWORD WINAPI SecondThread(PVOID hEventRing3)
(

while(TRUE)
(

WaitForSingleObject«HANDLE)hEventRing3. INFINITE);
printf("VM %081x was %x". pVMInfo->hVM.

pVMInfo->bCreated? "created" : "destroyed");

return 0;

The reference data parameter gives SecondThread the handle of a Win32 event to
wait on. SecondThread then waits, with an infinite timeout, on this event. When the
event is signaled, SecondTh read uses the global variable pVMI nfo to access a VMI NFO
structure that contains the VM handle and an indication of either creation or destruc
tion. Then SecondThread waits again on the event. Note that SecondThread doesn't
have to call ResetEvent because the event was created as an auto-reset event.

Summary
This chapter covered all the techniques used by VxDs to communicate with applica
tions. All rely on an initial call to the VxD, initiated by the application, to pass infor
mation about a callback function or event handle which the VxD uses later to
communicate back to the application. Under Windows 3.x, a VxD may not call arbi
trary Win16 code but is essentially limited to calling PostMessage, using the window
handle and PostMessage address passed in by the application. Under Windows 95, a
VxD may still communicate with a Win16 application by calling PostMessage, but
the VxD may also call any function in any Win16 DLL. A VxD has two different
choices when communicating with a Win32 application: either the simple but not so
elegant asynchronous procedure call (APC) or the more elegant use of Win32 events
to signal a waiting Win32 application thread.

Communication from VxDs to Applications - 269

listing 12.1 POSTVXD.H

#define POSTVXD_ID
#define POSTVXD_REGISTER
#define POSTVXD_DEREGISTER

OxBADD
OxlOOO
OxlOOl

II based on WM_USER in windows.h
#define WM_USER_POSTVXD (Ox0400+0xOlOO)

listing 12.2

itdefine WANTVXDWRAPS

itinclude <basedef.h>
iti nc I ude <vmm. h>
itinclude <debug.h>
itinclude "vxdcall.h"
itinclude <vxdwraps.h)
itinclude <wrappers.h>
itinclude <vwin32.h>
itinclude "postvxd.h"

iii fdef DEBUG

POSTVXD. C

itdefine DPR!NTFO(buf. fmt) _Sprintf(buf. fmt): Out_Debug_String(buf)
41defi ne DPR! NTFl(buf. fmt. argl) _Spri ntf(buf. fmt. argl): Out_Debug_Stri ng(buf)
itdefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2):

lie I se
itdefine DPRINTFO(buf. fmt)
itdefine DPRINTFl(buf. fmt. argl)
itdefine DPRINTF2(buf. fmt. argI. arg2)
itendif

Out_Debug_String(buf)

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode. PYOID refdata):

II functions in asm module
void PriorityEventThunk(void):

BOOl bClientRegistered ~ FALSE:
WORD PostMsgOffset;
WORD PostMsgSelector;
HANDLE PostMsghWnd;
char dbgbuf[80];
Baal byJi n3x:

typedef struct
{

BOOl bVmCreated;
VMHANDlE hVM;

VMINFO;

II True when PM API called to register

270 - Writing Windows VxDs and Device Drivers

Listing 12.2 (continued)

BOOlOnSysDynamicDeviceInit()
(

DPRINTFO(dbgbuf,"loading\r\n");
return TRUE;

BOOlOnSysDynamicDeviceExit()
{

DPRINTFO(dbgbuf,"Unloading\r\n");
return TRUE;

BOOl OnInitComplete(VMHANDlE hVM)
{

DWORD ver;

if (HIWORD(ver) <~ 3)
(

II Win3.x, not 95
bWi n3x ~ TRUE;

BOOl OnVmlnit(VMHANDlE hVM)
{

VMINFO *pInfo;

if (bClientRegistered)
{
if (bWin3x)
{

POSTVXD. C

pInfo ~ (VMINFO *)_HeapAllocate("sizeof(VMINFO), 0);
if (pInfo)

1

{

1
else
{

pInfo->hVM ~ hVM;
pInfo->bVmCreated ~ TRUE;
Ca II_Pri ori tY_VM_Event (LOW_PRLDEVICCBOOST, Get_Sys_VM_Handl e(),

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
pInfo, PriorityEventThunk, 0);

_SHEll_PostMessage(PostMsghWnd, WM_USER_POSTVXD, 1, (DWORD)hVM,
PostMessageHandler, NUll);

return TRUE;

Communication from VxDs to Applications - 271

Listing 12.2 (continued) POSTVXD.C

VOID OnVmTerminate(VMHANDLE hVM)
{

VMINFO *pInfo;

if (bClientRegistered)
{

if (bWin3x)
{

pInfo = (VMINFO *)_HeapAllocate(sizeof(VMINFO), 0);
if (pInfo)
{

plnfo->hVM = hVM;
pInfo->bVmCreated = TRUE;
Call_Priority_VM_Event(LOW_PRI_DEVICE_BOOST, Get_Sys_VM_Handle(),

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT,
plnfo, PriorityEventThunk, 0);

)
else
{

_SHELL_PostMessage(PostMsghWnd, WM_USER_POSTVXD, O. hVM,
PostMessageHandler, NULL);

VOID __ stdcall PriorityEventHandler(VMHANDLE hVM, PYOID Refdata, CRS *pRegs)
{

CLIENT_STRUCT saveRegs;
VMINFO *plnfo = Refdata;

Save_Client_State(&saveRegs);
Begin_Nest_Exec();
Simulate_Push(PostMsghWnd);
Simulate_Push(WM_USER_POSTVXD);
Simulate_Push(pInfo->bVmCreated);
Simulate_Push(((DWORD)pInfo->hVM » 16));
Simulate_Push(((DWORD)plnfo->hYM & Oxffff));
Simulate_Far_Call(PostMsgSelector, PostMsgOffset);
Resume_Exec () ;
End_Nest_Exec();
Restore_Client_State(&saveRegs);
_HeapFree(pInfo, 0);

1/ hwnd
II message
II wParam
II lParam

VOID _cdecl PostMessageHandler(DWORD dwPostMessageReturnCode, PVOIDrefdata)
{

if (JdwPostMessageReturnCode)
DPRINTFO(dbgbuf, "PostMessage failedJ\r\n");

272 - Writing Windows VxDs and Device Drivers

Listing 12.2 (continued) POSTVXD.C

VOID __ cdecl PM_Api_Handler(VMHANOLE hVM. CLIENT_STRUCT *pcrs)
{

switch (pcrs->CWRS.Client_AXl
{
case POSTVXO_REGISTER:

PostMsghWnd ~ (HANDLElpcrs->CWRS.Client_BX;
PostMsgSelector ~ pcrs->CWRS.Client_CX;
PostMsgOffset ~ pcrs->CWRS.Client_OX;

bClientRegistered ~ TRUE;
pcrs->CWRS.Client_AX ~ 0;
break;

case POSTVXO_OEREGISTER:
bClientRegistered ~ FALSE;
pcrs->CWRS.Client_AX ~ 0;
break;

default:
pcrs->CWRS.Client_AX ~ Oxffff;

listing 12.3 POSTDDB. ASM

.386p

.**
INC L U 0 E S

.**

i ncl ude vmm. i nc
include debug. inc

V I R T U A L 0 E V ICE 0 E C L A RAT ION

rOSTVXUO EOU OBADOh

POSTVXD. 1. O. ControlProc. POSTVXO_IO.
UNOEFINED_INIT_OROER. O. PM_API

Communication from VxDs to Applications - 273

Listing 12.3 (continued) POSTDDB. ASH

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call 10

EXIT:
If carry clear then

Successful
else

Contro 1 ca 11 fa i 1 ed

USES:
EAX. EBX. ECX. EDX. ESI. EDI. Flags

BeginProc ControlProc
Control_Dispatch SYS_DYNAMIC_OEVICE_INIT. _OnSysDynamicDeviceInit. cCall. <ebx>
Control_Dispatch SYS_OYNAMIC_DEVICE_EXIT. _On5ysDynamicDeviceExit. cCall. <ebx>
Control_Dispatch INIT_COMPLETE. _OnInitComplete. cCall. <ebx>
Control_Dispatch VM_INIT. _OnVmInit. cCall. <ebx>
Control_Dispatch VM_TERMINATE. _OnVmTerminate. cCall. <ebx>
clc
ret

EndProc ControlProc

BeginProc PM_API

cCall _PM_Api_Handler. <ebx. ebp>
ret

EndProc PM_API

VxD_LOCKED_CODE_ENDS

VxD_CODE_SEG

BeginProc _PriorityEventThunk

seall PriorityEventHandler. <ebx.edx.ebp>
ret

EndProc _PriorityEventThunk

VxO_CODCENDS

END

274 - Writing Windows VxDs and Device Drivers

listing 12.4 POSTVXD. MAK

CFLAGs
CVXDFLAGs
LFLAGs

~ -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
~ -Zdp -Gs -c -015_32 -Zl -DDEBLEVEl~1 -DDEBUG
~ -machine:i386 -debug:notmapped,fu11 -debugtype:cv

-subsystem:conso1e kerne132.lib
AFLAGS ~ -coff -DBLD_COFF -015_32 -W2 -Zd -c -Cx -DMAsM6 -DDEBLEVEL~1 -DDEBUG

all: postvxd.vxd

postvxd.obj: postvxd.c
c1 $(CVXDFLAGsl -Fo$@ %s

postddb.obj: postddb.asm
m1 $(AFLAGsl -Fo$@ %s

postvxd.vxd: postddb.obj postvxd.obj .. \ .. \wrappers\vxdcall.obj
.. \ .. \wrappers\wrappers.c1b postvxd.def

echo >NUL @«postvxd.crf
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:postvxd.def -OUT:postvxd.vxd -MAP:postvxd.map
-VXD vxdwraps.clb wrappers.c1b vxdcall .obj postddb.obj postvxd.obj
«

link @postvxd.crf
mapsym postvxd

listing 12.5 POSTVXD. DEF

VXD POsTVXD DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'

LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_Bss CLASS 'LCODE'
_TLs CLASS 'LCODE'

ITEXT CLASS 'ICODE'
_I DATA CLASS 'ICODE'
_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_sTEXT CLASS 'sCODE'
_sDATA CLASS 'seODE'
_MsGTABLE CLASS 'MeODE'
_MSGDATA CLASS 'MeODE'
_IMSGTABLE CLASS 'MeODE'

IMsGDATA CLASS 'MCODE'
_DBOsTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '161CODE'
_ReODE CLASS' RCODE'

EXPORTS
POsTVXD_DDB @1

PRELOAD NONDIsCARDABLE
PRELOAD NONDIsCARDABLE
PRELOAD NONDIsCARDABLE
PRELOAD NONDIsCARDABLE
PRELOAD NONDIsCARDABLE
PRELOAD NONDIsCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDIsCARDABLE
DISCARDABLE
DIsCARDABLE
NONDIsCARDABLE
NONDIsCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE 10PL
PRELOAD NONDISCARDABLE 10PL
PRELOAD DISCARDABLE IOPL
PRELOAD DIsCARDABLE IOPL
PRELOAD NONDIsCARDABLE CONFORMING
PRELOAD NONDIsCAROABLE CONFORMING
PRELOAD NONDIsCARDABLE CONFORMING
PRELOAD DIsCARDABLE

Communication from VxDs to Applications - 275

listing 12.6 APCVXD.H

#defi ne APCVXD_REGISTER
#define APCVXD_RELEASEMEM

typedef struct
{

BOOL
DWORD

VMINFO;

bVmCreated;
hVM;

Ox8100
Ox8101

listing 12.7 APCVXD.C

#defi ne WANTVXDWRAPS

#include <basedef.h>
#include <vmm.h>
#include <debug.h>
#include "vxdcall .h"

#include <wrappers.h>
#include <vwin32.h>
#include "apcvxd.h"

iii fdef DEBUG
#defi ne DPRINTFO(buf. fmt) _Spri ntf(buf. fmt); OuLDebug_Stri ng(buf)
#defi ne DPRINTFI (buf. fmt. argll _Spri ntf(buf. fmt. argl); Out_Debug_Stri ng(buf)
#define DPRINTF2(buf. fmt. argl. arg2) _SprintfCbuf. fmt. argl. arg2);

#else
#define DPRINTFO(buf. fmt)
#define DPRINTFl(buf. fmt. argl)
#define DPRINTF2(buf. fmt. argl. arg2)
fiend if

typedef struct tcb_s *PTCB;
char dbgbuf[80];

BOOl bClientRegistered ~ FALSE;
PYOID VmEventApc ~ 0;
PTCB appThread ~ 0;

BOOl OnVmInit(VMHANDlE hVM)
{

VMINFO *pVmInfo;

if (bClientRegistered)
{

Out_Debug_String(buf)

pVmlnfo ~ _HeapAllocate(sizeof(VMINFO). 0);
if (pVmlnfo)
(

)

pVmInfo->hVM ~ hVM;
pVmInfo-)bVmCreated ~ TRUE;
_VWIN32_QueueUserApc(VmEventApc. CDWORD)pVmlnfo. appThread);

return TRUE;

276 - Writing Windows VxDs and Device Drivers

Listing 12.7 (continued)

VOID OnVmTerminate(VMHANDlE hVM)
{

VMINFO *pVmlnfo;

if (bClientRegistered)
(

APCVXD.C

pVmlnfo = _HeapAllocate(sizeof(VMINFO). 0);
if (pVmlnfo)
{

pVmlnfo-)hVM = hVM;
pVmlnfo-)bVmCreated = FALSE;
_VWIN32_0ueueUserApc(VmEventApc. (DWORD)pVmlnfo. appThread);

BOOlOnSysDynamicDevicelnit()
(

DPRINTFO(dbgbuf. "loading\r\n");
return TRUE;

BOOlOnSysDynamicDeviceExit()
(

DPRINTFO(dbgbuf. "Unloading\r\n");
return TRUE;

DWORD OnW32Deviceiocontrol(PDIOCPARAMETERS p)
{

DWORD rc;

switch (p-)dwloControlCode)
(
case DIOCOPEN:

rc = 0;
break;

case DIOC_ClOSEHANDlE:
bClientRegistered = FALSE;

rc = 0;
break;

case APCVXD_REGISTER:
VmEventApc = p-)lpvlnBuffer;
appThread = Get_Cur_Thread_Handle();

bClientRegistered = TRUE;
rc = 0; II return OK
break;

case APCVXD_RELEASEMEM:
_HeapFree(p-)lpvlnBuffer. 0);
rc = 0;
break;

default :
rc = Oxffffffff;

return rc;

Communicati(Jfljrom VxDs to Applications - 277

listing 12.8 APCDDB.ASM

.386p

;**
INC L U DES

.**

i ncl ude vmm. i nc
include debug.inc

V I R T U A L 0 E V ICE DEC L A RAT ION
j ••

APCVXD, 1, 0, ControlProc, UNDEFINED_DEVICE_ID,
UNOEFINED_INIT_ORDER

PROCEDURE: ControlProc

DESCRI PTl ON:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then

Successful
else

Cont ro 1 ca 11 fa il ed

USES:
EAX, EBX, ECX, EOX, ESI, EDI, Flags

BeginProc ControlProc
Control_Dispatch VM_INIT, _OnVmInit, cCall, <ebx>
Control_Dispatch VM_TERMINATE, _OnVmTerminate, cCall, <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_INIT, _OnSysDynamicOeviceInit, cCall, <ebx>
Contro l_Di spatch SYS_DYNAMICDEVICCEXIT, _OnSysDynami cDevi ceExit, cCa 11, <ebx>
Control_Dispatch W32_DEVICEIOCONTROL, _OnW32Deviceiocontrol, cCall, <esi)
clc
ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

END

278 - Writing Windows VxDs and Device Drivers

listing 12.9 APCVXD.MAK

CFLAGS
CVXDFLAGS
LFLAGS

= -DWlN32 -DCON -Di386 -D_X86_ -D_NTWlN -W3 -Gs -D_DEBUG -Zi
= -Zdp -Gs -c -DlS_32 -Zl -DDEBLEVEL=1 -DDEBUG
= -machine:i386 -debug:notmapped,fu11 -debugtype:cv

-subsystem:conso1e kerne132.1ib
AFLAGS .= -coff -DBLD_COFF -DlS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: apcvxd. vxd

apcvxd.obj: apcvxd.c
c1 $(CVXDFLAGS) -Fo$@ %s

apcddb.obj: apcddb.asm
m1 $(AFLAGS) -Fo$@ %s

apcvxd.vxd: apcddb.obj apcvxd.obj .. \ .. \ .. \wrappers\vxdca11.obj
.. \ .. \ .. \wrappers\wrappers.c1b apcvxd.def

echo >NUL €K(apcvxd.crf
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:apcvxd.def -OUT:apcvxd.vxd -MAP:apcvxd.map
-VXD vxdwraps.c1b wrappers.c1b vxdca1l .obj apcddb.obj apcvxd.obj
«

link @apcvxd.crf
mapsym apcvxd

listing 12.10 APCVXD.DEF

VXD APCVXD DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CONST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'

lTEXT CLASS 'ICODE'
I DATA CLASS 'ICODE'

_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MCODE'
_MSGDATA CLASS 'MCODE'

lMSGTABLE CLASS 'MCODE'
_IMSGDATA CLASS 'MCODE'
_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16lCODE'
_RCODE CLASS 'RCODE'

EXPORTS
APCVXD_DDB @1

PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
PRELOAD NONDlSCARDABLE
DlSCARDABLE
DlSCARDABLE
NONDlSCARDABLE
NONDlSCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDlSCARDABLE lDPL
PRELOAD DlSCARDABLE 10PL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDlSCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

listing 12.11

#include <stdio.h>
#include <conio.h>
#include <windows.h>
#include "apcvxd.h"

HANDLE hDevice;
char buf[BO];

Communication from VxDs to Applications - 279

APC/WIN32APP/WIN32APP.C

DWORD WINAPI CallbackFromVxD(PVOID param);

DWORD WINAPI CallbackFromVxD(PVOID param)
{

VMINFO *pVmInfo ~ param;

printf(buf, "VM %OBlx was %s\r\n", pVmInfo-)hVM.
pVmInfo-)bVmCreated ? "created" : "destroyed");

DeviceIoControl(hDevice, APCVXD_RELEASEMEM, pVmInfo, sizeof(pVmInfo),O,O,O,O);
return 0;

void main(int ac, char* avE])
{

DWORD err;
canst PCHAR VxDName ~ "\\\\.\\APCVXD.VXD";

hDevice ~ CreateFile(VxDName, 0,0,0. CREATE_NEW. FILE_FLAG_DELETE_ON_CLOSE, 0);

if (hDevice ~ INVALID_HANDLE_VALUE)
{

err ~ GetLastError();
printf("Cannot load VxD, error~%OBlx\n". err);
if (err == ERROR-NOT_SUPPORTED)
{

DeleteFile("\\\\.\\APCVXD");
)
exit(l);

if (!DeviceIoControl(hDevice, APCVXD_REGISTER, &CallbackFromVxD, sizeof(void *),
NULL, O. NULL, NULL»

}

else
{

printf("DeviceloControl failed, error~%d\n". GetLastError());

printf("press ctrl-C to exit ... \n");

whi 1 e (TRUE)
{

SleepEx(-l, TRUE);

280 - Writing Windows VxDs and Device Drivers

listing 12.12 APC/WIN32APP/WIN32APP.MAK

win32app.exe: win32app.obj
link@«

kerne132.1ib user32.1ib gdi32.1ib winspool.lib comdlg32.1ib advapi32.1ib
shel132.lib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:console
IINCREMENTAL:no IPDB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj
«

win32app.obj: win32app.e
el Ie IML IGX IYX IOd ID "WIN32" ID "NDEBUG" ID "_CONSOLE" -I .. \vxd win32app.e

listing 12.13

typedef struet
{

EVENTVXD.H

BOOL bVmCreated;
DWORD hVM;

} VMINFO;

ifdefine EVENTVXD_REGISTER Ox8100
ifdefine EVENTVXD_RELEASEMEM Ox8101

listing 12.14

ifdefi ne WANTVXDWRAPS

ifi ncl ude <basedef. h>
iti ne 1 ude <vmm. h)
ifinelude <debug.h>
ifinclude "vxdcall .h"

IIi nel ude <wrappers. h>
ifinelude <vwin32.h>
ifinclude "eventvxd.h"

ififdef DEBUG

EVENTVXD.C

ifdefine DPRINTFO(buf. fmt) _Sprintf(buf. fmt); Out_Debug_String(buf)
ifdefi ne DPRINTFl(buf. fmt. argl) _Spri ntf(buf. fmt. argl); Out_Debug_Stri ng(buf)
ifdefine DPRINTF2(buf. fmt. argl. arg2) _Sprintf(buf. fmt. argl. arg2);

ifelse
ifdefine DPRINTFO(buf. fmt)
ifdefine DPRINTFl(buf. fmt. argl)
ifdefi ne DPRINTF2(buf. fmt. argl. arg2)
ifendif

Out_Debug_String(buf)

Communication from VxDs to Applications - 281

Listing 12.14 (continued) EVENTVXD. C

II functions in asm module
void PriorityEventThunk(void);

typedef VMINFO *PVMINFO;

VOID _stdcall PriorityEventHandler(VMHANDlE hVM. PYOID Refdata. CRS *pRegs);

BOOl
VMINFO
HANDLE
char

bClientRegistered = FALSE;
GlobalVMlnfo;
hWin32Event;
dbgbuf[BO];

BOOl OnVmlnit(VMHANDlE hVM)
{

if (bClientRegistered)
(

GlobalVMlnfo.hVM = hVM;
GlobalVMlnfo.bVmCreated = TRUE;
Call_Priority_VM_Event(lOW_PRI_DEVIC~BOOST. Get_Sys_VM_Handle().

J
return TRUE;

PEF_WAIT_FO~STI+PEF_WAIT_NOT_CRIT.
hWin32Event. PriorityEventThunk. 0);

VOID OnVmTerminate(VMHANDlE hVM)
{

if (bClientRegistered)
(

GlobalVMInfo.hVM = hVM;
GlobalVMInfo.bVmCreated = FALSE;
Call_Priority_V~Event(lOW_PRI_DEVICE_BOOST. Get_Sys_VM_Handle().

PEF_WAIT_FOR_STI+PEF_WAIT_NOT_CRIT.
hWi n32Event. Pri orityEventThunk. 0); >

VOID _stdcall PriorityEventHandler(VMHANDlE hVM. PYOID Refdata. CRS *pRegs)
(

HANDLE hWin32Event = Refdata;

_VWIN32_SetWin32Event(hWin32Event);

BOOl OnSysDynamicDevicelnit()
(

DPRINTFO(dbgbuf. "Loadi ng\r\n");
return TRUE;

BOOlOnSysDynamicDeviceExit()
(

DPRINTFO(dbgbuf. "Unloading\r\n");
return TRUE;

282 - Writing WindoWs VxDsandDevice Drivers

Listing 12.14 (continued) . EVENTVXD. C

DWORD OnW32Devieeioeontrol(PDIOCPARAMETERS p)
{

DWORD re;

switch (p->dwIoControlCode)
{
case DIOCOPEN:

rc = 0;
break;

case DIOC_CLOSEHANDLE:
bClientRegistered - FALSE:

rc = 0;
break;

case EVENTVXD_REGISTER:
hWin32Event g p->lpvInBuffer;
*«DWORD *)(p-)lpvOutBuffer» - (DWORD)&GlobalVMlnfo;
*«DWORD *)(p->lpcbBytesReturned» q s;zeof(DWORD);
bClientRegistered - TRUE;
rc - 0;
break;

default:
rc = Oxffffffff;

return rCi

listing 12.15 EVENTDDB. ASH

.386p

:**~*****************

INCLUDES
:**

i ncl ude vnvn. i nc
include debug.inc

V I R T U A L 0 E V ICE DEC L A RAT ION

DECLARE_VIRTUA~DEVICE EVENTVXD, I, 0, ControlProc, UNDEFINED_DEVICE_ID. \
UNDEFINED_INIT_ORDER

Communication from VxDs to Applications - 283

Listing 12.15 (continued) EVENTDDB.ASM

PROCEDURE: ControlProc

DESCRIPTION:
Device control procedure for the SKELETON VxD

ENTRY:
EAX = Control call ID

EXIT:
If carry clear then

Successful
el se

Contro 1 ca 11 fa 11 ed

USES:
EAX. EBX. ECX. EDX. ESI. EDI. Flags

BeginProc ControlProc
Control_Dispatch VM_INIT. _OnVmInit. cCall. <ebx>
Control_Dispatch VM_TERMINATE. _OnVmTerminate. cCall. <ebx>
Control_Di spatch SYS_DYNAMICDEVICE_INIT. _OnSysDynami cDevi celnit. cCa 11. <ebx>
Control_Dispatch SYS_DYNAMIC_DEVICE_EXIT. _OnSysDynamicDevicetxit. cCall. <ebx>
Control_Dispatch W32_DEVICEIOCONTROL. _OnW32Deviceiocontrol. cCall. <esi>
clc
ret

EndProc ControlProc

VxD_LOCKED_CODE_ENDS

VxD_CODCSEG

BeginProc _PriorityEventThunk

sCall PriorityEventHandler. <ebx.edx.ebp>
ret

EndProc _PriorityEventThunk

VxD_CODCENDS

END

284 - Writing Windows VxDs and Device Drivers

listing 12.16 EVENTVXD.MAK

CFLAGS
CVXDFLAGS
LFLAGS

= -DWIN32 -DCON -Di386 -D_X86_ -D_NTWIN -W3 -Gs -D_DEBUG -Zi
= -Zdp -Gs -c -DIS_32 -Zl -DDEBLEVEL=l -DDEBUG
= -machi ne: i 386 -debug: notmapped, full -debugtype: cv

-subsystem:console kerne132.1ib
AFLAGS = -coff -DBLD_COFF -DIS_32 -W2 -Zd -c -Cx -DMASM6 -DDEBLEVEL=1 -DDEBUG

all: eventvxd.vxd

eventvxd.obj: eventvxd.c
cl $(CVXDFLAGS) -Fo$@ %s

eventddb.obj: eventddb.asm
ml $(AFLAGS) -Fo$@ %s

eventvxd.vxd: eventddb.obj eventvxd.obj .. \ .. \ .. \wrappers\vxdcall .obj
.. \ .. \ .. \wrappers\wrappers.clb eventvxd.def

echo >NUL @«eventvxd.crf
-MACHINE:i386 -DEBUG -DEBUGTYPE:MAP -PDB:NONE
-DEF:eventvxd.def -OUT:eventvxd.vxd -MAP:eventvxd.map
-VXD vxdwraps.clb wrappers.clb vxdcall .obj eventddb.obj eventvxd.obj
«

link @eventvxd.crf
mapsym eventvxd

listing 12.17 EVENTVXD.DEF

VXD EVENTVXD DYNAMIC
SEGMENTS

_LTEXT CLASS 'LCODE'
_LDATA CLASS 'LCODE'
_TEXT CLASS 'LCODE'
_DATA CLASS 'LCODE'
_LPTEXT CLASS 'LCODE'
_CaNST CLASS 'LCODE'
_BSS CLASS 'LCODE'
_TLS CLASS 'LCODE'
_ITEXT CLASS 'ICODE'

IDATA CLASS 'ICODE'
_PTEXT CLASS 'PCODE'
_PDATA CLASS 'PCODE'
_STEXT CLASS 'SCODE'
_SDATA CLASS 'SCODE'
_MSGTABLE CLASS 'MeaDE'
_MSGDATA CLASS 'MCODE'

IMSGTABLE CLASS 'MCODE'
IMSGDATA CLASS 'MCODE'

_DBOSTART CLASS 'DBOCODE'
_DBOCODE CLASS 'DBOCODE'
_DBODATA CLASS 'DBOCODE'
_16ICODE CLASS '16ICODE'
_RCODE CLASS 'RCODE'

EXPORTS
EVENTVXD_DDB @1

PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
PRELOAD NONDISCARDABLE
DI SCARDABLE
DISCARDABLE
NONDISCARDABLE
NONDISCARDABLE
RESIDENT
RESIDENT
PRELOAD NONDISCARDABLE IOPL
PRELOAD NONDISCARDABLE IOPL
PRELOAD DISCARDABLE 10PL
PRELOAD DISCARDABLE IOPL
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD NONDISCARDABLE CONFORMING
PRELOAD DISCARDABLE

Communication from VxDs to Applications - 285

listing 12.18 W32EVENTI WIN32APPI WIN32APP. C

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <windows.h>
jr;nclude " .. \vxd\eventvxd.h"

HANDLE hDevice;
VMINFO *pVMInfo;

DWORD WINAPI SecondThread(PVOID hEventRing3);

DWORD WINAPI SecondThread(PVOID hEventRing3
{

whil e(TRUE)
{

}

WaitForSingleObject«HANDLE)hEventRing3. INFINITE);
printf("VM %081x was %s\n". pVMInfo->hVM,

pVMInfo->bVmCreated ? "created" ': "destroyed");

return 0;

void maine int ac. char *av[]
{

HINSTANCE hKerne132Dll; .
HANDLE hEventRirig3. hEventRi'ngO';
DWORD tid;
HANDLE (WINAPI *pfOpenVxDHandle)(HANDLE);
awORD cb8ytesReturned;'

const PCHAR VxDName = "\\\\.\\EVENTVXD.VXD";

hEventRing3 = CreateEvent(O. FALSE. FALSE. NULL);
if (!hEventRing3)
(

pri ntf("Cannot create Ri ng3 event\n");
exit(l);

hKerne132Dll = LoadLibrary("kerne132.dll");
if (!hKerne132Dll)
{

pri ntf("Cannot load KERNEL32 .DLL \n");
exit(l);

pfOpenVxDHandle = (HANDLE (WINAPr *) (HANDLE»
GetProcAddresS(hKernet32Dll. "OpenVxDHandl e");

if (! pfOpenVxDHandl e) .
{

printf(·Cannot get addr of OpenVxDHandl e\n");
exit(l); ,.

286 - Writing Windows VxDs and Device Drivers

Listing 12.18 (continued) W32EVENTIWIN32APPIWIN32APP.C

hEventRingO ~ (*pfOpenVxDHandle)(hEventRing3);
if (!hEventRingO)
{

printf("Cannot create RingO event\n");
exit(1);

hDevice ~ CreateFile(VxDName, 0, 0, 0, CREATE_NEW, FILE_FLAG_DELETE_ON_CLOSE, °);
if (!hDevice)
{

pri ntf("Cannot load VxD error~%x\n", GetLastError());
exit (1);

if (!DeviceloControl(hOevice, EVENTVXD_REGISTER, hEventRingO,
sizeof(hEventRingO), &pVMlnfo, sizeof(pVMlnfo),
&cbBytesReturned, ° »

printf("DeviceloControl failed, error~%x\n", GetLastError());
exit(1);

)

CreateThread(0, OxlOOO, SecondThread, hEventRing3, 0, &tid);
printf("Press any key to exit. .. ");
getch() ;
CloseHandle(hDevice);

listing 12.19 W32EVENTIWIN32APPIWIN32APP.MAK

win32app.exe: win32app.obj
link @«

kerne132.1ib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shel132.1ib ole32.1ib oleaut32.1ib uuid.lib INOLOGO ISUBSYSTEM:console
IINCREMENTAL:no IPDB:none IMACHINE:I386 IOUT:win32app.exe win32app.obj
«

win32app.obj: win32app.c
cl Ic IML IGX IYX IOd 10 ·WIN32" 10 "NOEBUG" 10 "_CONSOLE" -I.. \vxd win32app.c

Part 2

DLL-basedDrivers

287

288 - Writing Windows VxDs and Device Drivers

Chapter 13

IntroductiOn to
16-bit Driver DLLs
Why Driver DLLs are Always 16-bit
Back in the days of Windows 3.x, Microsoft recommended that developers package
all hardware drivers as VxDs, the "true" device drivers for Windows. However, many
developers - incl\lding Microsoft itself - ignored this advice and instead put driver
functions into DLLs. After all, the learning curve for VxDs was very steep, and a
driver packaged as a DLL could do the job adequately. (Notable exceptions were driv
ers, like those for the serial port, that required very fast interrupt response times.)

Today, Microsoft recommends that developers for Windows 95 package hardware
drivers as VxDs. This time, however, the recommendation is much more difficult to
ignore, because Win32 DLLs are forbidden from performing most "driver" type oper
ations. The list of prohibited operations includes

• accessing memory-mapped hardware,

• performing DMA transfers,

• handling hardware interrupts, and

• issuing software interrupts.
/

As you can see, the only type of driver DLL you could package as a 32-bit DLL
without breaking these rules is the simplest type: a polled-mode driver (no interrupts)
for an I/O-mapped device.

289

290 - Writing Windows VxDs and Device Drivers

Many Windows 95 developers are therefore heeding Microsoft's ad'0ce and writing
VxDs. Nonetheless, you can still write a complex driver as a DLL if you build it as a
16-bit DLL because 16-bit DLLs aren't governed by the same limitations as Win32
DLLs. In fact, many of the standard drivers provided by Microsoft (including the mouse
driver and multimedia drivers) remain 16-bit. Using a 16-bit DLL under Windows 95,
however, requires writing another DLL in addition to the driver DLL: a tl~unk DLL.

Interfacing 16-bit DLL to 32-Bit Application
Requires a Thunk
In Windows 95, driver DLLs ate always 16-bit, regardless of whether the application
interfacing to the DLL is an old 16-bit Windows 3.x application or a new 32-bit
Win32 application. If you want your 16-bit driver DLL to be used.by Win32 applica
tions, you must write a translation layer to convert between the 32-bit world and the
16-bit world. This translation layer is called a thunk DLL.

Thunk DLLs will be covered in detail in Chapter 18. For now, just note that choos
ing to implement a driver as a 16-bit DLL implies creating a thunk DLL if you'll be
supporting Windows 95. Considering the extra work required for the thunk, it may
make more sense for you to write the driver as a VxD instead.

The remainder of this chapter introduces the basics of 16-bit Windows DLLs, and
introduces a skeleton driver DLL. The next two chapters cover how a driver DLL
interfaces to hardware and handles hardware interrupts.

The material in this chapter applies specificaly to 16-bit DLLs, and much of
it is not relevant to 32-bit DLLs.

Static versus Dynamic Libraries
1

Although a DLL can be linked to and executed by an application much as a static
library can; the DLL is not really a part of any single application. Understanding how
a DLL differs from a static library will help clarify why drivers are more useful if
packaged as a DLL rather than as a static library.

A static library (such as the run-time library for the Ccompiler) is nothing more
than a collection of one or more precompiled functions. The static library is packaged
as a single piece from which the linker can extract necessary components. At link
time, the linker searches your application for references to functions outside of the
application and resolves these references by searching for them in the library. The
library functions are then copied into your application's. EXE image. After linking, an
application calls one of the library functions using the same mechanism it would use
to call one of its own internal functions.

Introduction to 16-bit Driver DLLs - 291

A DLL is also a set of precompiled functions. When these functions are packaged,
two pieces are created: an import library (. LI B) and a DLL. The DLL contains the
actual code and data. The import library contains only name and module information
for the functions. An application that wants to use functions in a DLL links with the
import library, not the DLL. The linker doesn't fully resolve the application's refer
ences to external functions in the DLL, i.e. the linker does not copy the functions into
the application's . EXE image. Instead, the linker stores only the function name and
module from the import library as a placeholder in the .HE.

The real magic happens at run time, when the application loads. At that time, the
loader also loads the DLL into memory, thus giving all the DLL functions an address.
The loader then goes back to the. EXE and fills in the placeholders left at link time
with the DLL function addresses.

Why Package Drivers in a DLL?
DLLs are a convenient way to package driver functions because drivers are often used
by more than one application, and also because drivers often need to change indepen
dently of the application. With the driver functions in a separate file from the applica
tions, the driver itself can be updated without disturbing the application that uses the
driver. If a driver is used by multiple applications, a DLL saves memory because only
one copy of the DLL is in memory, whereas building a driver as a statically linked
library would force each application that used the driver to have its own copy of the
driver functions.

The most important reason for packaging a Windows driver as a DLL is to make it
possible to replace the DLL with a "true" device driver (VxD or NT kernel mode
driver). By isolating hardware-dependent code in a DLL, you can replace the DLL
with a true driver without completely rewriting the applications that use the DLL. Of
course, the applications will still require some changes, because usually the interface
presented to the application by your custom driver DLL won't be exactly the same as
the interface presented by the true driver.

Applications versus DLLs
DLLs are different than applications in several fundamental respects. These differ
ences have implications for how a DLL is coded and how it is built. The most obvious
difference to a user is that a DLL can't be executed directly from the Windows shell.
It has no life of its own but is loaded when an application that uses it is loaded and is
unloaded when that application is terminated.

292 - Writing Windows VxDs and Device Drivers

Here's a comparison of DLLs and applications, from a developer's point of view:

An application has its own stack segment. A DLL does not. A DLL uses the stack
of the calling application.

If multiple instances of an application are running, all instances share a single
copy of the application's code segment. Similarly, if more than one application
uses a DLL, there is still only a single copy of the DLL's code. (That's one of the
advantages ofDLLs compared to static libraries.)

• If multiple instances of an application are running, each instance gets its own copy
of the application's data segment. This is not true for DLLs. If more than one
application uses a DLL there is still only a single copy of the DLL's data segment.

Memory dynamically allocated by a DLL may belong to either the calling applica
tion or to the DLL itself, depending on the exact method of allocation.

These items have ramifications for the DLL developer during both the coding and
the build process. The following sections address each of these issues in detail.

DLLs and Stack Segments
A DLL doesn't have its own stack segment. This leads to some subtle difficulties with
passing pointers as parameters to other DLL functions. As the following example
illustrates, pointers passed to a DLL can easily turn into subtle bugs.

Suppose an application has the following function:

void FAR Fool(void)
{

int x;
Foo2(&x);

and a DLL contains this function:

void Foo2(int *x)
{

i nt y;
y = *x;

If this code is compiled as small model, the &x expression in the call to Foo2 is a
nea r pointer. That means the code generated to push the address of x onto the stack
will push only the offset of the variable x. When Foo2 gets this offset from the stack
and dereferences it, Foo2 incorrectly assumes that since this is a near pointer, the off
set is relative to OS (the DLL's data segment). Foo2 doesn't know the offset is really
relative to SS (the caller's stack segment). The result is that the expression *x accesses
the wrong location, and Y is assigned an incorrect value.

Introduction to 16-bit Driver DLLs - 293

Why do DLLs have this problem and normal applications don't? Because when a
normal application is running, OS has the same value as SS, so SS-relative is the same
thing as OS-relative. In a DLL, OS ! = SS. Does this mean DLLs can't pass the address
of a local variable as a parameter? No, it just means that you must always pass a fa r
pointer to a DLL, not a model-dependent (no farlnear attribute) pointer.

There is a compiler option (add w to the memory model option) that will generate a
warning when the address of a local variable is passed as a model-dependent pointer.
Use this option, heed the warning, and change those parameters to fa r pointers.

DLLs and Data Segments
Even when used simultaneously by different applications, a DLL has only one copy
of its data segment. This means extra work for the developer if the DLL needs to
maintain some information on a per-application basis. For example, the DLL could
encapsulate all per-application information into an Applnstance structure and aIlo
cate a new structure for each application using the DLL. Then at each entry point the
DLL would need to figure out which application was calling it and reference the
appropriate Applnstance structure.

I won't cover this topic any further, because driver DLLs don't usually have this
problem. Typically, a driver DLL serves to serialize access to a device by multiple
applications. In other words, if Application 1 is using the device through the DLL,
Application 2 isn't allowed to use the device. On the other hand, Application 1 might
use Device 1 and while Application 2 uses Device 2 (where both devices are managed
by the same DLL). But that situation can be managed as per-device instead of
per-application data. I'll cover per-device data in more detail in the next chapter.

DLLs and Ownership of
Dynamically Allocated Memory
A Windows DLL must be careful when dynamically allocating memory, for this
memory may be owned either by the calling application or by the DLL itself, depend
ing on exactly how the allocation was made. Dynamic allocations can be made using
either the G1 oba 1 All oc call to the Windows memory manager or via the C run-time
rna 11 oc function.

When a DLL calls G1 oba 1 All oc directly, the DLL specifies whether the memory
is to be owned by the DLL or by the calling application. If the DLL uses the
GMEM_SHARE flag when calling G1 oba 1 All OC, the DLL owns the memory; if not, then
the application owns it. (I'll explain the parameters used by G1 oba 1 All oc in more
detail later; for now the only relevant parameter is GMEM_SHARE.) For VC++ l.x, the
rna 11 oc routine in the C run-time library always uses the GMEM_SHARE flag when called
by a DLL, so any rna 11 oc-allocated buffers are owned by the DLL.

294 - Writing Windows VxDs and Device Drivers

Either an application or a DLL can explicitly free a buffer via a call to Gl oba 1 Free
or free. The ownership issue becomes important if nobody explicitly frees a dynami
cally allocated buffer. If the DLL allocates the memory but the application owns it,
then the memory is freed automatically by Windows when the application exits. If the
DLL owns the memory itself, then the memory is freed by Windows only when the
DLL unloads - which doesn't happen until all applications using the DLL have exited.

So who should own a driver-allocated buffer - application or DLL? If a driver is
not interrupt-driven, it doesn't really matter. In this case, the DLL executes only as a
result of calls from an application. If the application goes away, it won't call the DLL
anymore, and that means the DLL won't use the buffer.

For a driver that does handle interrupts, any dynamically allocated buffers used at
interrupt time should be owned by the driyer DLL. An example will clarify the issues
involved. Suppose a driver has an Open entry point and a Close entry point. During
Open, a buffer is allocated and an interrupt handler installed. At Close, the buffer is
freed and the handler removed. Now suppose that an application exited without call
ing Close, perhaps because it crashed. Windows itself frees the allocated buffer when
the application exits. Then the driver's interrupt handler accesses the freed buffer and
bad things happen - you can't reference memory after it's been freed. If, on the other
hand, the driver owned the buffer, Windows would not have freed it, and the interrupt
handler could continue to access the buffer safely.

DLL Initialization and Termination
A Windows DLL may contain a special initialization entry point called L i bMa in and a
special termination entry point called WEP (for Windows Exit Procedure). If present,
L i bMa i.n is called when the DLL is loaded. If the DLL contains a WEP, it is called
when the DLL is unloaded.

For many DLLs, the initialization code in L i bMa in does things like registering
window classes and initializing the local heap (which is in the DLL's data segment).
However, driver DLLs don't register windows and generally use the global heap
instead of the local heap (the local heap is too small). The driver DLLs in this book
don't contain aLi bMa in. Instead, I prefer to do initialization in another entry point
called explicitly by an application using the DLL, an Open routine. Similarly, most
DLLs use the WEP entry point to un-register window classes. Driver DLLs don't have
window classes, and the driver DLLs in this book do cleanup in a Close entry point.

Introduction to J6-bit Driver DLLs - 295

DLL Function Requirements
Although a DLL can be compiled with any memory model, all functions that the DLL
exports to an application must be declared far. The reason is simple: a DLL has its
own code and data segments, which are separate from the calling application's code
and data segments. If you compile your DLL as medium or large model, all functions
are, by definition, fa r. On the other hand, if you compile your DLL as small model,
you must explicitly declare the DLL entry points with the far keyword. I've chosen to
compile the driver DLLs in this book as small model (for reasons I'll explain in the
next chapter), so all the driver entry points in these DLLs are declar~~ far.

The DLLentry points are also declared with the _export keyword. This tells the
linker to generate a special export definition record for these functions, which the
loader uses at run time to resolve references to a DLL.

An exported DLL function must contain a special section of code at the beginning
and at the end of the function. The code at the beginning is called the prologue: its
purpose is to fix up the DS register (m<;:aning it must .load DS with the DLL's data seg
ment). The OS fix-up is necessary because on entry to the DLL, DS contains the calling
application's data segment, which is different from the DLL's data segment. The code
at the end is called the epilogue; it restores DS to the caller's original data segment.

A special compiler option tells the compiler which functions need prologue and
epilogue code. In VC++ l.x, the /GD flag tells the compiler to generate prologue/epi
logue code for all functions declared as _export. The makefiles for the DLLs in this
book use this / GD flag.

The Skeleton Driver
The first sample DLL driver is a skeleton or template driver (Listings 13.1-13.4, pages
300-302). It doesn't interface with any hardware, but it exports a set of functions that
are general enough to apply to most types of drivers: Deyi ceOpen, Deyi ceCl ose,
Deyi ceWrite,Deyi ceRead, Deyi ceGetWri teStatus, Deyi ceGetReadSta tus, Deyi ce
GetDri yerPa rams,Devi ceSetDri verParams, and Devi ceGetDri verCapabi 1 it i es.

As the example drivers become more involved, I'll add functionality to the functions
in this skeleton, piece by piece. Of course, your driver may need additional capabilities
that aren't covered by these functions. In that case, you're free to add functions as
needed because Windows doesn't dictate a driver interface for non-standard devices.

Each function in the skeleton driver does nothing more than output a trace mes
sage containing its function name. The driver outputs these messages through the
Windows API function OutputDebugStri ng. OutputDebugStri ng uses only a simple
string parameter, but you can also use the more powerful DebugOutput function.
OebugOutput uses a format string and a variable number of parameters, like spri ntf,
providing more useful formatting. Windows redirects these strings to the AUX device
(serial port), but you can also use the DBWIN utility to display them in a window
(more on DBWIN later).

296 - Writing Windows VxDs and Device Drivers

Building the Skeleton Driver
The steps involved in building the driver DLL are:

• compile the . C file,

• link into a .OLL,

• run the resource compiler, and

• create the import library.

To automate the steps required to properly build the driver, I use nmake and a
makefile (Listing 13.3 on page 302). If you copy my. makefile and source files to the
current directory, you can build the skeleton driver from scratch, simply by typing
nmake -fskeleton.mal

Choosing the proper compiler options is critical to correctly building a Windows
DLL. The options used by the skeleton DLL are listed in Table 13.1, along with a
notation of whether the option is mandatory for all DLLs.

The link process for a Windows DLL is similar to building a DOS application,
except that you must specify a . OEF file when linking. This. DEF file must include the
statements EX ETY PEW I NOOWS and LI BRARY. These statements tell the linker to build a
Windows DLL. The other mandatory DEF statements are CODE and OAT A, which
determine the attributes of the DLL's code and data segments. I'll discuss these
attributes in Chapter 15.

Table 13.1 Options used by the skeleton DLL.

Option Requirement Description

e mandatory compile only (no link)

GO mandatory generate function prologue to fix up OS

AS optional small model

Gs mandatory disable stack probes

Aw recommended generate warnings whenever a DLL uses a near
pointer to take the address of a local variable

W3 recommended warning level of 3 (highest is 4)

G2 recommended generate code for 286+ (speeds execution)

Zi optional generate CodeView debug information

Oi optional use intrinsics (faster inp/outp/strepy/memepy

Fe optional generate assembly output

Introduction to 16-bit Driver DLLs - 297

The linker command line for a DOS application doesn't usually specify a library.
It's not necessary because the C compiler embeds information in the .OBJ file that
tells the linker which library (small, medium, large) to use. Windows DLLs need a
special version of the C library, ?dll cew. 1 i b instead of ?l i bcew. 1 i b, where? is an
abbreviation for the memory model. When using VC++ l.x, you should use the INOD
ciption so that the linker does not bring in the C library named in the .OBJ file. You
should also explicitly list the DLL version of the library (?dll cew. 1 i b) as the library
argument. In addition, you should specify LIBW as a second library. This is the
import library containing the Windows API functions.

Last, an import library for the DLL is built using IMPLIB. IMPLIB uses the
DLL's . DE F file as input and builds a . LI B file containing exported function names
and modules. This . LI B file is then linked, as a library, to an application that uses the
DLL. There are no option switches required for IMPLIB.

The last step in my makefile, copying the driver DLL to the Windows directory,
isn't strictly required, but it's useful. At run time, Windows uses the same method to
locate a DLL that it does to locate an . EXE file: search the current directory, the Win
dows directory, the Windows system directory, and the directories listed in the PATH.
By copying the driver to the Windows directory, I can invoke the application (and thus
the DLL) regardless of the current directory or PATH variable.

DLL Requires an Application
A Windows DLL can't execute on its own. It must be called by a Windows program.
I've supplied a sample Windows application, TESTDRIV .EXE, which can exercise all
the functions supported by the driver.

JESTDRIV is a very rudimentary Windows application. Its user interface contains
a single menu with several submenu items, one for each exported driver function:
Devi ceOpen, Devi ceCl ase, Devi ceWrite, Devi ceRead, Devi ceGetWri teStatus,
DeviceGetReadStatus, DeviceGetDriverParams, and DeviceGetDriverCapabilities.
Select a menu item, and JESTDRIV calls that function in the driver (Figure 13.1).
JESTDRIV uses hard-coded values for all driver parameters - you can't specify
from the user interface which device to open or what data to write. You could easily
extend JESTDRIV to support user input of driver parameters.

298 - Writing Windows VxDs and Device Drivers

If the driver function returns with an error code, TESTDRIV will display a message
box. If the function is one of the three with output parameters (Devi ceGetReadStatus,
Devi ceGetWri teStatus, or Devi ceGetDri verCapabi 1 it i es), the output parameters
are displayed in a message box.

The next two chapters present two more driver DLLs, each adding more
functionality to the SKELETON DLL introduced in this chapter. When developing
this series of DLLs, I was careful to ensure that the three DLLs export exactly the
same set of functions. For this reason, you can use the same TESTDRIV application
with all three driver DLLs. In fact, because the driver functions are dynamically, not
statically, linked to the application, you don't even need to relink TESTDRIV when
you change the driver DLL implementation.

Figure 13.1 TESTDRIV. EXE- a sample Windows
application that makes calls to our driver
DLL with DBWINactive in the right-hand
window.

Introduction to 16-bit Driver DLLs - 299

Debugging Tools for Driver DLLs
When using TESTDRIV to explore a driver, it also is useful to run the Windows
DB WIN application, a utility included with VC++ l.x. DBWIN captures all the
strings that Windows applications and DLLs output via calls to OutputDebugStri ng
and DebugOutput. DBWIN redirects the strings to either its client window, a secondary
monochrome monitor, or a serial port. By adding more of these OutputDebugStri ng
calls to your driver, you can trace its execution path and thus perfonn rudimentary
debugging.

These trace statements, however, won't replace the need for a real debugger. An
application-level debugger, such as the one provided in the VC++ Integrated Develop
ment Environment, can be used to debug some driver DLLs, unless the driver handles
interrupts. A better choice would be a system-level debugger, either WDEB386 or
SoftIcelWindows.

Summary
With the information in this chapter, you can set up a test environment for DLL driver
development and confirm that you have your tools properly configured to create a
DLL that links to an application. Although this chapter's skeleton driver doesn't really
do anything, you can still exercise it to confirm that it communicates with an applica
tion. This sets the stage for producing a DLL that actually manipulates some hardware
- the topic of the next chapter.

300 - Writing Windows VxDs and Device Drivers

Listing 13.1

typedef struct
{

SKELDLL\DRIVER.H

WORD usDevNumber;
LPBYTE lpReadBuffer;

DEVICECONTEXT, FAR *HDEVICE;

typedef struct
{

WORD usReadBufSize;
} DRIVERPARAMS, FAR * PDRIVERPARAMS;

typedef struct
{

WORD vers i on;
} DRIVERCAPS, FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

HDEVICE FAR PASCAL DeviceOpen(void);
int FAR PASCAL DeviceClose(HDEVICE);
int FAR PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceWrite(HDEVICE, LPBYTE lpData, LPWORD pcBytes);
int FAR PASCAL DeviceRead(HDEVICE, LPBYTE lpData, LPWORD pcBytes);
int FAR PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps);

Listing 13.2

/Iinclude <windows,h>
/Iinclude "driver,h"

SKELDLL\SKELETON.C

DEVICECONTEXT Device1 ~ { 0 };
DRIVERPARAMS DefaultParams ~ { 1024 };

HDEVICE FAR PASCAL _export DeviceOpen(void
(

OutputDebugString("DeviceOpen\n");

return &Device1;

int FAR PASCAL _export DeviceClose(HDEVICE hDevice
(

OutputDebugString("DeviceClose\n");

return 0;

Introduction to 16-bit Driver DLLs - 301

Listing 13.2 (continued) SKELDLL\SKELETON.C

int FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice. LPWORD pusStatus)
(

OutputDebugStri ng("Devi ceGetWri teStatus\n") ;

return 0;

int FAR PASCAL _export DeviceGetReadStatus(HDEVICE hDevice. LPWORD pusStatus)
(

OutputDebugString("DeviceGetReadStatus\n");

return 0;

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

OutputDebugString("DeviceWrite\n");

return 0;

int FAR PASCAL _export DeviceRead(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

OutputDebugString("DeviceRead\n"); ,

return 0;

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParms)
{

OutputDebugSt ri ng ("Devi ceSetDriverPa rams \n") ;

return 0;

int FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParms)
(

OutputDebugString("DeviceGetDriverParams\n");

return 0;

int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice.
PPDRIVERCAPS ppDriverCaps

OutputDebugString("DeviceGetDriverCapabilities\n");

return 0;

302 - Writing Windows VxDs and Device Drivers

Listing 13.3 SKELDLL\SKELETON.MAK

all: ske1eton.d11

iF DRIVER DLL

ske1eton.obj: ske1eton.c driver.h
c1 -c -W3 -ASw -GD2s -Oi -Fc $*.c

ske1eton.d11: ske1eton.def ske1eton.obj
link ske1eton,ske1eton.d11 ,ske1eton.map IMAP, sd11cew 1ibw Inod/noe,ske1eton.def
imp1ib ske1eton.1ib ske1eton.d11
copy ske1eton.d11 \windows\driver.d11

Listing 13.4 SKELDLL\SKELETON.DEF

LIBRARY DRIVER
DESCRIPTION "Skeleton Driver"
EXETYPE WINDOWS
DATA PRELOAD MOVEABLE SINGLE
CODE PRELOAD MOVEABLE DISCARDABLE

Chapter 14

Driver DLLs:
Connecting to the Hardware
Unlike DOS, which allows programmers to directly manipulate any device at any
time, Windows is somewhat protective of the physical machine resources. In a sophis
ticated, high-performance driver, the Windows protection mechanisms can signifi
cantly complicate device access. In simple, polled-mode drivers though, device access
can still be quite straightforward.

This chapter shows how to convert the previous chapter's skeleton driver from an
empty framework into a complete, yet very simple, polled-mode driver that actually
manipulates a physical device. I'll first illustrate the more simple I/O-mapped case by
giving a complete polled-mode serial port driver and then show how to modify the
port-mapped version to access an imaginary memory-mapped device.

DLLs and Port-access
One of the big myths of Windows programming is that applications and DLLs are not
allowed to use _ i np or _Dutp. Here's the real story.

Under Windows 3.x, there is absolutely nothing wrong with using,... i np or _Dutp
from a DLL to access a non-standard I/O location: the access will go through to the
hardware port, without being trapped by Windows. If you access one of the standard
I/O ports - keyboard, timer, etc. - then a VxD will trap your access and your code

303

304 - Writing Windows VxDs and Device Drivers

may not work as expected. But standard devices require special system driver DLLs
and VxDs with interfaces defined by Windows, so you shouldn't be doing this from a
custom driver DLL anyway.

It is also perfectly acceptable for an application or DLL running under Windows
95 to use _i np or _outp to access a non-standard 110 location. This is true for both
16-bit and 32-bit DLLs. However, if you choose to do this in your DLL, your DLL is
not truly Win32-compatible. The correct way to access hardware from a Win32 appli
cation or DLL (notice I said "Win32", not "Windows 95") is through a true device
driver, which, under Windows 95, takes the form of a VxD and, under Windows NT, is
a kernel-mode driver. Windows NT will terminate any Windows application or DLL
that attempts to access a hardware device, either lO-mapped or memory-mapped.
Windows 95 happens to be a more forgiving Win32 platform than Windows NT, but
Microsoft warns that future versions of Windows 95 may be less lenient. To play it
safe, put all hardware access in a "true" driver, that is, a VxD.

A Port-mapped Example
Listings 14.1-14.5 (pages 318-324) make up a simple polled-mode driver for a stan
dard serial port. The serial port makes a good example because every system has one,
located in the 110 space, and Windows doesn't insist on taking over this device at
startup. So one can easily install a replacement for the serial port handler without
causing any confusion for Windows: not true for other standard PC devices like the
keyboard or timer.

This driver DLL exports the same public interface as the SKELETON DLL intro
duced in Chapter 13, but this version's routines are more than just stubs. This example
is not meant to be a high-performance, commercial-quality driver. I've tried to keep
the driver simple, without sacrificing generality. Thus, it doesn't achieve very high
throughputs, but it can easily be adapted to support multiple ports or different Univer
sal Asynchronous Receiver-Transmitters (UARTS). Because the point is to illustrate
techniques and principles that apply to a wide range of drivers, I've also tried to avoid
getting bogged down by the intricacies of the hardware and the details of serial com
munications. (Figure 14.1 outlines the essentials of the 8250 UART.) By stripping the
handler to its bare essentials, I hope to make the core structure clear enough that you
can easily see what is essential and apply that to your own hardware.

Driver DLLs: Connecting to the Hardware - 305

Although Windows doesn't insist on taking control of the serial port, that is
its default behavior. When using the serial port driver DLLs under Windows
3.x, you should prevent the Virtual Comm Device eVCD) from interfering
with all serial ports by commenting out the devi ce=*vcd statement in the
[386Enh] section of SYSTEM. IN!. When using the serial port driver DLLs
under Windows 95, you must modify the registry to prevent the VCOMM
VxD from interfering with a particular serial port. Change the PortDri ver
entry under the port's software key

HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\PORTS\OOOX

to something other than seri a 1 . vxd, for example _seri a 1 . vxd. In both
cases, remember to undo these changes when you're finisished with the
serial port driver DLL.

Figure 14.1 Outline of 8250 UART registers.

Offset Name Access

6 Modem Status R

5 Line Status (LSR) R

4 Modem Control RfW

3 Line Control RfW

2 Interrupt Ident R

I Interrupt Enable RfW

0 Receive Data R

0 Transmit Data W

I when LCR bit 7 = I Baud Rate Divisor MSB RfW

o when LCR bit 7 = I Baud Rate Divisor LSB RfW

306 - Writing Windows VxDs and Device Drivers

Driver Design Conventions
All of the driver DLLs in this book share certain design elements. Each uses a device
context structure to store all state and addressing information for a single instance of
the device, specifically the COM 1 serial port. Many developers use this technique
because it makes it easier to adapt the driver to support multiple devices. The address
of the context structure is used as a handle to the device. The handle is returned by a
call to Oevi ceOpen and used as a parameter to all other calls into the driver.

As explained in Chapter 13, a DLL may be called by multiple applications. A
driver DLL that allows applications to "share" a device would need to store all context
information specific to one application in an instance data structure. The example
Driver DLLs presented here do not use an application-specific instance data structure,
because the driver interface is designed to allow only a single application to use the
device at a time. With this restriction, the driver DLL needs only the device context
structure to find all the relevant data.

Some build issues (specifically, the SS]= OS problem described in Chapter 13)
can be simplified by compiling a DLL as large model. However, the example drivers
here are all compiled small model, not large model. Actually, both the skeleton driver
in the last chapter and the polled-mode driver in this chapter would work fine if com
piled as large model. But the interrupt-driven driver of the next chapter must be small
model to work as designed. (Interrupt handlers must load their own data segments.
Because a large model DLL has multiple data segments, compiling as large model
would complicate accessing data in the interrupt handler. Although this data access
issue can indeed be resolved, it is simpler to keep the driver as small model.) Very few
drivers will bump up against the 64Kb code or 64Kb data limit of small model.

All example driver DLL statically allocate their device context, as well as
most other important data structures. If your driver allocates any memory at
run time, it is important that the memory be allocated with the GMEM_SHARE
flag. As discussed in Chapter 13, memory dynamically allocated by a DLL is
owned by the calling application, not the DLL, unless the DLL uses
GMEM_SHARE

The rna 11 oc provided by VC++ 1.x uses GMEM_SHARE, so if you're using it
you may safely use rna 11 oc for any dynamic allocations in a polled-mode
driver. An interrupt-driven driver, which will be discussed in detail in the
next chapter, can dynamically allocate also, but it must use G1 oba 1 All oc
instead of rna 11 oc.

Driver DUs: Connecting to the Hardware - 307

The Polled-mode Driver
This chapter doesn't contain a detailed discussion ofthe polled-mode driver code. The
driver is both small and simple. However, a brief discussion of the data structures and
the parameter validation code used by all of the driver entry points is in order.

In the example, the capabilities word simply contains the driver's version number.
More sophisticated drivers might probe the device to determine its specific capabili
ties. For example, a multi-model scanner driver might query the attached driver and
store maximum resolution and color depth in a capabilities structure. ,This information
could then control the behavior of other driver routines and also could be used by the
calling application if appropriate.

The example driver doesn't use the DRIVERPARAMS structure. Again, a more com
plex driver might offer several configuration options. These options could be recorded
in the parameters structure and then be referenced by all affected routines.

When asked to open a new device, the Devi ceOpen routine initializes hDevi ce
with the address of the static device context structure. The Devi ceOpen routine then
configures the UART, as shown in the following code.

II Configure UART.
outp(hDevice->usloBase + UART_REG_IER. °);
outp(hDevice->usloBase + UART_REG_LCR. UART_LCR_DLAB);
outp(hDevice->usloBase + UART_REG_BAUDLO. BAUD_1200);
outp(hDevice->usloBase + UART_REG_BAUDHI. 0);
outp(hDevice->usloBase + UART_REG_LCR. UART_LCR_8Nl);
outp(hDevice->usloBase + UART_REG_MCR. UART_MCR_LOOP);
inp(hDevice->usloBase + UART_REG_LSR);
inp(hDevice->usloBase + UART_REG_RDR);

SET(hDevice->bFlags. FLAGS_OPEN);

The Devi ceO pen routine then sets the FLAGS_OPEN bit. The driver's other routines
can then check the FLAGS_OPEN bit to verify that a requested service is appropriate for
the specified device. This chapter's example uses only the FLAGS_OPEN bit in the sta
tus field, although your driver might record additional state information here.

To make the driver robust, each routine validates the hDevi ce pointer and the
device's current state. For example, to prevent the driver from attempting to manipu
late a nonexistent device structure, the driver entry points will validate the hDevi ce
pointer with the test:

if (!ValidHandle(hDevice »
return -1;

308 - Writing WindowsVxDs and Device Drivers

To prevent the driver from being used on a port that hasn't yet been opened, the
driver routine will test the bF1 ags field:

if «hDevice->bF1ags & FLAGS_OPEN) == 0)
return -1;

The example driver statically allocates only one device control structure.
Thus, even though the code is structured to support multiple devices, the
example is limited to one device. To use this driver with more than one serial
port, you would need to allocate additional device structures (either statically
or dynamically when DeviceOpen is called) and modify Va1idHand1e to
keep track of all such structures.

The Devi ceRead and Devi ceWri te routines have an interface similar to the Standard C
Library read and wri te routines. The Devi ceRead routine expects a handle to a device con
text, a pointer to a data buffer (1 pData), and a pointer to the number of bytes to read
(pc Bytes). A polling loop then copies the data from the UART to the buffer, one byte at a time,
until it has collected the requested number of bytes. The Devi ceWri te routine works identi
cally, but in the reverse direction. It copies the specified number of bytes from the buffer to the
UART transmit register. The following code shows the main polling loop for each function.

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice. LPBYTE lpData.
, LPWORD pcBytes)

WORD i ;

OutputDebugString("DeviceWrite\n");

if (!lpData)
return -1;

if (!ValidHandl~(hDevice II
return -1;

if ({ hDevi ce-)bFl ags & FLAGS_OPEN) - 0)
return -1;

for (i=O; i < *pcBytes; i++)
{

while «inp(hDevice-)usloBase + UART_REG_LSR) & UART_LSR_THRE) - 0)

outp(hDevice->usloBase + UART_REG_THR. lpData[i]);

return 0;

Driver DLLs: Connecting to the Hardware - 309

int FAR PASCAL _export DeviceRead(HDEVICE hDevice, LPBYTE lpData,
LPWORD pcBytes)

WORD i;

OutputDebugString("DeviceRead\n");

if (l 1 pData)
return -1;

if (lValidHandle(hDevice »
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) = 0)
return -1;

for (i=O; i < *pcBytes; i++)
{

while ((inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_RXRDY) == 0)

lpData[i] = inp(hDevice->usloBase + UART_REG_RDR);

return 0;

Itmay seem unnecessary to require the caller of Devi ceRead and Devi ceWri te to
provide a pointer to the number of bytes requested. This interface is indeed overkill
for a polled-mode driver, where the number of bytes requested is always the same as
the number of bytes processed. But this feature will support the next chapter's inter
rupt-driven driver without any changes to the interface. Keeping the same exact inter
face means the TESTDRIV application introduced in Chapter 13 works with both the
polled-mode and the interrupt-driven drivers without even recompiling TESTDRIV.

Note that each polling loop sits in a busy loop while waiting for the UART to fin
ish processing the current byte. Thus, if the application tried to transmit a full buffer
of data with a single write, it would lose all data that might be received during the
time required to transmit the entire buffer. Also, if the application calls the read func
tion when no data has been received, the driver will simply hang in a busy loop until it
receives some data.

Even so, one can successfully use a driver of this form for low-speed, full-duplex
communications by following these conventions:

Transmit one byte per write or read.

Never attempt a read unless a call to Devi ceGetReadStatus indicates a byte is
available.

310-- Writing Windows VxDs and Device Drivers

Accessing Memory-mapped Devices
The designers of the original PC system purposely left a hole in the processor's phys
ical address space between AOOOOh and FOOOOh. No RAM exists at these memory
locations, leaving them free to be used by memory-mapped devices. To access a
memory-mapped device under DOS, you form a pointer that addresses that location,
then dereference the pointer. The basic idea is the same to access the device from a
16-bit Windows DLL. But the procedure is complicated by address translation issues.
(See Chapter 3 and Appendix A for a review of these issues.)

If your device is mapped somewhere in the unused AOOOOh-FOOOOh range of phys
ical address space, there is a very simple method to get a pointer to access the device.
Windows provides pre-allocated selectors for physical locations AOOOOh, BOOOOh,
COOOOh, DOOOOh, EOOOOh, and FOOOOh. These selectors are actually variables exported
from the Windows system DLLs and are named appropriately: _AOOOh, _BOOOh, etc.
Windows has already set up both the selector's base address and the associated page
table entries appropriately, so that selector _BOOOh really does map to physical
address BOOOOh. Each selector has its limit set to 64Kb, so _AOOOh maps
AOOOO-AFFFF, _BOOOh maps BOOOO-BFFFF, etc.

Win32 applications or DLLs may not use these prefabricated selectors
because they are exported from the KERNEL16 module, not by the
KERNEL32 module linked in by 32-bit code.

To form a pointer to a device, choose the appropriate selector and offset. For
example. _DOOOh and an offset of 8000h combine to point to a device at D8000h. Con
verting this selectorloffset combination into a usable pointer is a bit more complicated
than just a simple MAKELP (_DOOOh. 8000h). The following code fragment illus
trates the three steps necessary.

IIIMPORTANT: double underscore in KERNEL. DOOOh
II single underscore in #define SelDOOOh(&_MyDOOOh)
II Access memory-mapped adapter at physical DOOOOh
I I MUST imp.ort the selector in your . DEF fil e:
II IMPORTS
II __ MyDOOOh = KERNEL. __ DOOOh
extern WORD _MyDOOOh;
Ifdefi ne Se 1 DOOOh (&_MyDOOOh)

char far *lpAdapter = MAKELP(SelDOOOh. Ox8000);

Driver DLLs: Connecting to the Hardware -- 311

A Memory-mapped Version
Although you aren't likely to ever encounter a real memory-mapped serial port, if you
did, you'd find it quite simple to adapt this chapter's example driver. Assuming a sim
ilarlayout of registers, the changes consist primarily of some code in Dev i ceOpen that
sets up a pointer to the base address of the device and of modifications throughout that
substitute memory references for _i np and _outp calls.

Assuming that the port was mapped to physical location D8000h, then

II IMPORTS in .DfF file:
II __ MyDOOOh = KERNEL. __ DOOOh

extern WORD _MyDOOOh;
#define SelDOOOh (&_MyDOOOh)

DEVICECONTEXT Devicel = (0, MAKELP(SelDOOOh,Ox8000), 0, NULL };

would set up the base pointer, assuming that the DEVICECONTEXT structure had been
modified so that the address field has type char far *

The main read loop would then become

for (i=O;i *pcBytes; i++)
{

while « *(hDevice->usloBase + UARLREG_LSR) &UART_LSR_RXRDYl = 0)

lpData[i] = *(hDevice->usloBase + UARLREG_RDR);

If you are willing to forego some of· the efficiencies available to
memory-mapped JlO, you can handle both memory-mapped and
port-mapped devices in the same source code by conditionally defining
appropriate access and initialization macros.

312 - Writing Windows VxDsand Device Drivers

Advanced Memory Issues
Many memory-mapped devices occupy fewer than 64Kb of space in the
AOOOOh-EFFFFh range. However, devices can be larger and/or located in high memory
(above 1Mb). If you need to manipulate a device that is larger than 64Kb or that is
located in high memory, you will not be able to use the pre-constructed selectors. For
such devices you will need to call a DOS Protected Mode Interface (DPMI) service to
build the appropriate selector.

DPMI is a set of services that are provided to applications by Windows but
accessed through INT 31h instead of through an API function call. DPMI provides
low-level services for manipulating selectors, manipulating the interrupt vector table,
switching between real mode and protected mode, and manipulating the page tables.
Windows 3.x and Windows 95 both support DPMI vO.9. (A later specification for
DPMI vl.O exists, but is not supported by either. See also the sidebar "DPMI History"
on page 313.)

Bypassing the 64Kb Limit

By using DPMI, you can bypass the 64Kb segment size limit to create a single
selector that maps a device larger than 64Kb. Although the Windows API function
SetSelectorBase won't accept a limit greater than 64Kb, the DPMI service
SetSe 1 ecto r L i mi t will. The tricky part is generating code that uses 32-bit offsets.

Under Windows 3.x, programs run in a 16-bit code segment, which means mem
ory references use 16-bit o{fsets. It is possible to override the offset size and force the
processor to use a 32-bit offset by inserting a prefix byte before each instruction. This
will require coding in assembly. If you'll be moving a lot of bytes, the extra effort is
probably worth it.

Software Interrupts Are Not Allowed in Win32

DPMI services are accessed via a software interrupt, and thus are not available to Win32 applications or DLLs
because the software interrupt handler in the VMM makes assumptions about the "bitness" of its caller. Spe
cifically, the handler assumes its caller is 16-bit, and saves only 16-bit registers on the stack. Attempting to
call any software interrupt from 32-bit code therefore results in a crash.

Driver DLLs: Connecting to the Hardware - 313

The code in the following paragraph (found in the file POLLBASl\MOVE32. ASM on
the code disk) allocates a single selector that addresses a memory adapter larger than
64Kb, and then uses that selector to zero out the entire region. Even better, the loca
tions are zeroed 4 bytes (a DWORD) at a time, using 32-bit instructions. This code is
written in pure assembly, because that's the easiest way to generate 32-bit instructions
under Windows 3.x .

. MODEL SMALL
.CODE
.386

zero32 PROC C PhysSi~e:DWORD, PhysBase: DWORD

mav ax, 0
mov ex, 1
int 31h

DPMI History

; DPMI Alloe Selector

Driver developers often use the DPMI services provided by Windows as a back door into Windows to do
things that the SOO-plus functions in the standard Windows API won't let them do: access devices in physical
memory and communicate with DOS drivers and TSRs. But Windows really supports DPMI for a completely
different reason.

When Windows 3.0 was under development, PC software vendors were already working on several prod
ucts that would break the DOS 640Kb barrier. These products included:

• DOS extenders, like the one used in Lotus 1-2-3, which let a DOS program use up to 16Mb of memory;

• expanded memory managers, like Qualitas' 386MAX, which allow a DOS program to use memory above
640Kb, although only in l6Kb chunks;

• and DOS-based multitasking environments, like Quarterdeck's Desqview.

Microsoft worked with the vendors who made these products, among them Intel, Phar Lap, and Rational
Systems, to design an interface that would allow Windows 3.0 to coexist peacefully with all these products.
All of these types of products, Windows included, do their magic by using the 80386 processor's advanced
features, such as paging. The interface that was designed, which became DPMI vO.9, put a single program, the
DPMI server, in charge of the 80386 advanced features. Other programs then took advantage of the features
by using services exported by the DPMIserver.

314"'- Writing Windows VxDs and Device Drivers

mov bx, ax ; selector from All oc
mov cx, WORD PTR [PhysSize+2]
mov dx, WORD PTR [PhysSize]
mov ax, 08h DPMI Set Selector Limit
int 31h

mov dx, bx save selector
mov bx, WORD PTR [PhysBase+2]
mov cx, WORD PTR [PhysBase]
mov si , WORD PTR [PhysSize+2]
mov di, WORD PTR [PhysSize]
mov ax, 0800h
int 31h

push dx
mov cx, bx
mov dx, cx
pop bx
mov ax, 07h
int 31h

moves, bx
xor edi, edi
mov ecx, PhysSize
shr ecx, 2
xor eax, eax
rep stosd es:[edi]

zer032 ENDP

END

DPMI Map Physical Address

save selector
HI word of linear base
La word of linear base
restore selector
DPMI Set Selector Base

Devices Mapped Above 1Mb Require DPMI Services

Although most memory-mapped devices are located between AOOOOh and FFFFFh, it
is possible to locate a device above FFFFFh (1Mb). RAM is always mapped contigu
ously above the 1Mb boundary, so a device located above FFFFFh must be located
beyond the last byte of physical memory. Otherwise, a hardware conflict occurs when
both RAM and the device attempt to decode the same physical address, and the sys
tem won't function properly.

Driver !JUs: Connecting to the Hardware -:- 315

Forming a pointer to a memory-mapped device involves setting up both steps in
the two-step (logical-linear, linear-physical) address translation process described
in Chapter 3. The first step is setting up the selector's base address and limit. You
can use the Windows API selector functions (All ocSe 1 ector, SetSe 1 ectorBase,
and SetSe 1 ectorL i mi t) for this. The second step is setting up the page table entries
so that the selector's base address maps to the desired physical address. There are
no Windows API functions that manipulate page tables, but DPMI does provide a
MapPhys i ca 1 Address function which will do the job. .

DPMI MapPhysi cal Address takes a physical address as input and returns the lin
ear address that maps (through the page tables) to the physical address. To see how
this DPMI call can be used, it's helpful to think of the two-step address translation
process in a different way. Suppose you want a pointer to physical address AOOOOh.
Because of the effect of paging, allocating a selector and setting its base address to
AOOOOh doesn't guarantee that the selector translates to a physical address of AOOOOh.
But notice that it doesn't really matter what the linear address is, as long as it maps to
physical AOOOOh.

So, build the mapping backwards, starting with physical address AOOOOh. Give the
physical address to DPMI MapPhys i ca 1 Address; it will return a linear address, call it
X. Now give that linear address to SetSelectorBase. The result is a selector that
maps to linear address X, which maps to physical address AOOOOh.

There is one detail I haven't covered. The page tables work with 4Kb pages, so
that a selector with a limit of more than 4Kb is composed of multiple pages. Each
page can reside anywhere in physical memory - pages do not have to be physically
contiguous. Devices, however, understand only physically contiguous memory. Thus,
a useful selector strategy needs to guarantee not only that the first page maps to
AOOOOh-AOFFFh, but also that the next page maps to AIOOO-AIFFFh, etc. In fact,
DPMI MapPhysi cal Address does guarantee that the mapped pages are physically
contiguous, although that's not obvious from the DPMI documentation.

The following code gives a function that uses Windows selector functions and the
DPMI MapPhysicalAddress service to get a pointer to a memory-mapped device
located above 1Mb. The code does nothing more than the four steps described above:

allocates a selector,

sets its limit,

uses DPMI to get a linear address corresponding to a given physical address,

then sets the selector base to that linear address.

316 - Writing Windows VxDs and Device Drivers

void far *MapPhysToPtr(DWORD PhysBase, DWORD PhysSize)
{

WORD myDs,se1;
WORD HiBase, LoBase;

_asm mov myDs, ds
se1 = A11ocSe1ector(myDs);
SetSe1ectorLimit(sel, PhysSize);

}

mov cx, PhysBase
mov bx, PhysBase+2
mov di, PhysSize
mov si, PhysSize+2
mov ax, 0800h
int 31h
mov HiBase, bx
mov LoBase, cx

II DPMI Map Phys

II Set selector's linear address as given by DPMI Map Phys
SetSelectorBase(sel, MAKELONG(LoBase, HiBase));

return(MAKELP(sel, 0));

The only trick to this code is in the call to All ocSe 1 ector. This call takes one
parameter, a template selector. Because the function is creating a selector to access
data (not code), the code passes the current value of DS, a valid data selector, as the
template selector parameter.

The function in the previous code fragment has a limitation: it works properly
only for a size ofless than 64Kb. You can easily adapt it to regions greater than 64Kb
by replacing the Windows selector functions, which don't properly support limits
greater than 64Kb, with analogous DPMI selector functions, which do support greater
than 64Kb. Then you would access your device with assembly language code and
32-bit offsets as illustrated earlier in this chapter.

Driver DUs: Connecting to the Hardware - 317

Summary
Certainly this example isn't a commercial-quality driver, but many of its weaknesses
are deliberate simplifications that have nothing to do with the Windows environment.
For example, a commercial-quality driver should test for receiver overrun and various
framing errors. These tests can be added easily, without any concern for Win
dows-specific implementation issues.

The major shortcomings, though, are a direct consequence of trying to perform
full-duplex operations by polling. The polled-mode design forces the application to
handle the data one byte at a time - or risk missing significant amounts of data in the
reverse direction. For a simple one-way device, like a dumb printer, such a
polled-mode driver could perform quite satisfactorily. Thus, for certain devices, Win
dows device drivers can be just this simple. For a bi-directional device like the serial
port to provide reliable, two-way communication without byte-wise supervision from
the application, however, requires an interrupt-driven driver.

Windows does impose additional implementation constraints on interrupt-driven
drivers, especially those that use memory buffers for communication between the
application and the driver. The next chapter explains these issues and shows how to
convert this chapter's polled-mode example into an interrupt-driven driver.

318 - Writing Windows VxDs and Device Drivers

Listing 14.1

typedef struct
{

POLLED.H

WORD usReadBufSize;
} DRIVERPARAMS, FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS, FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

typedef struct
{

WORD usDevNumber;
WORD usloBase;
BOOL bFlags;
LPBYTE lpReadBuf;
DRIVERPARAMS params;

DEVICECONTEXT, FAR *HDEVICE;

HDEVICE FAR PASCAL DeviceOpen(HWND hwnd);
int FAR PASCAL DeviceClose(HDEVICE);
int FAR PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceWrite(HDEVICE, LPBYTE lpData, LPWORD pc Bytes);
int FAR PASCAL DeviceRead(HDEVICE, LPBYTE lpData, LPWORD pcBytes);
int FAR PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps);

Driver DUs: Connecting to the Hardware - 319

Listing 14.2 UART.H

Itdefine UART_REG_THR
Itdefine UART_REG_RDR
Itdefine UART_REG_IER
Itdefine UART_REG_IIR
Ifdefi ne UART_REG_LCR
Itdefine UART_REG_MCR
Ifdefine UART_REG_LSR
Ifdefine UART_REG_BAUDLD
Ifdefine UART_REG_BAUDHI

Itdefi ne UART_I I R_NONE
Ifdefi ne UART_II R_THRE
Ifdefi ne UART_II R_RXRDY
Ifdefi ne UART_I ER_THRE
#defi ne UART_I E~RXRDY
Ifdefine UART_MCR_OUT2
Ifdefi ne UART_MC~LOOP
Ifdefine UART_LSR_THRE
Ifdefine UART_LCR_DLAB
Ifdefine UART_LCR_8Nl
Itdefine UART_LSR_RXRDY
#define BAUD_1200
Ifdefine BAUD_110

OxOO
OxOO
OxOl
Ox02
Ox03
Ox04
Ox05
OxOO
OxOl

OxOl
Ox02
Ox04
Ox02
OxOl
Ox08
OxlO
Ox20
Ox80
Ox03
OxOl
Ox60
Ox0417L

320 - Writing Windows VxDs and Device Drivers

Listing 14.3 POLLED.C

IIdefine _WINDLL

lIinclude <windows.h>
lIinclude <conio.h>
lIinclude "polled.h"
lIinclude "uart.h"

IIdefi ne FLAGS_OPEN

IIdefine SET(value. mask)
IIdefine CLR(value. mask)

Ox04

value I~ mask
value &~ (-mask)

DEVICECONTEXT Device1 ~ { O. Ox3F8. O. NULL };
DRIVERPARAMS DefaultParams ~ { 1024 };
DRIVERCAPS DriverCaps ~ { Ox0101 };

BOOL ValidHandle(HDEVICE hDevice);

HDEVICE FAR PASCAL _export DeviceOpen(HWND hwnd)
(

HDEVICE hDevice;

OutputDebugString("DeviceOpen\n");

hDevice ~ &Devicel;

if (hDevice->bFlags & FLAGS_OPEN)
return (HDEVICE)-l;

hDevice->params ~ DefaultParams;

/1 Configure UART.
outp(hDevice->usloBase + UART_REG_IER. 0);
outp(hDevice->usloBase + UART_REG_LCR. UART_LCR_DLAB);
outp(hDevice->usloBase + UART_REG_BAUDLO. BAUD_1200);
outp(hDevice->usloBase + UART_REG_BAUDHI. 0);
outp(hDevice->usloBase + UART_REG_LCR. UART_LCR_8Nl);
outp(hDevice->usloBase + UART_REG_MCR. UART_MCR_LOOP);
inp(hDevice->usloBase + UART_REG_LSR);
inp(hDevice->usloBase + UART_REG_RDR);

SET(hDevice->bFlags. FLAGS_OPEN);

return hDevi ce;

Driver DLLs: Connecting to the Hardware - 321

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export OeviceClose(HOEVICE hOevice
(

OutputOebugString("OeviceClose\n");

if (!ValidHandle(hOevice))
return -1;

if «hOevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

CLR(hOevice-)bFlags. FLAGS_OPEN);

return 0;

int FAR PASCAL _export OeviceGetWriteStatus(HOEVICE hOevice. LPWORD pusStatus)
(

OutputOebugString("OeviceGetWriteStatus\n");

if (!ValidHandle(hDevice))
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

if (inp(hOevice-)usloBase + UART_RE~L$R) & UART_LSR_THRE)
{

}
else
(

*pusStatus = 1;

*pusStatus = 0;

return 0;

II ready to transmit

II not ready to transmit

int FAR PASCAL _export DeviceGetReadStatus(HDEVICE hOevice. LPWORO pusStatus)
(

OutputDebugString("OeviceGetReadStatus\n");

if (!ValidHandle(hDevice))
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

if (inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_RXROY)
{

}

else
{

*pusStatus = I;

*pusStatus = 0;

return 0;

II data ready

I I no data ready

322 - Writing Windows VxDs and Device Drivers

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

WORD i;

OutputDebugString("DeviceWrite\n");

if (llpData)
return -1;

if (l Va 1 i dHandl e(hDevi ce))
return -1;

if «hDevice->bFlags & FLAGS_OPEN) ~ 0)
return -1;

for (i=O; i < *pcBytes; i++)
{

while «inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_THRE) ~ 0)

outp(hDevice->usloBase + UART_REG_THR. lpData[i]);

return 0;

int FAR PASCAL _export DeviceRead(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

WORD i;

OutputDebugString("DeviceRead\n");

if (llpData)
return -1;

if (lValidHandle(hDevice))
return -1;

if «hDevice->bFlags & FLAGS_OPEN) ~ 0)
return -1;

for (i=O; i < *pcBytes; i++)
{

while «inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_RXRDY) ~ 0)

lpData[i] = inp(hDevice->usloBase + UART_REG_RDR);

return 0;

Driver DLLs: Connecting to the Hardware - 323

Listing 14.3 (continued) POLLED.C

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParams)
{

OutputDebugString("DeviceSetDriverParams\n");

if (!pParams)
return -1;

if (!ValidHandle(hDevice))
return -1;

if ((hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

hDevice-)params = *pParams;

return 0;

int FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParams)
{

OutputDebugString("DeviceGetDriverParams\n");

if (! pParams)
return 1;

if (!ValidHandle(hDevice »
return -1;

if ((hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

*pParams = hDevice->params;

return 0;

int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice.
PPDRIVERCAPS ppDriverCaps

OutputDebugString("DeviceGetDriverCapabilities\n");

if (!ppDriverCaps)
return -1;

if (!ValidHandle(hDevice »
return -I;

if ((hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

*ppDriverCaps = &DriverCaps;

return 0;

BOOl ValidHandle(HDEVICE hDevice
{

return (hDevice == &Device1);

324 - Writing Windows VxDs and Device Drivers

Listing 14.4 POLLED.MAK

all: po 11 ed . d 11

If DRIVER DLL

polled.obj: polled.c polled.h
cl -c -W3 -ASw -Gsw2 -Oi $*.c

polled.dll: polled.def polled.obj
link polled,polled.dl1 ,polled.map ICO IMAP, sdllcew libw Inod/noe,polled.def
implib driver.lib polled.dll
copy polled.dl1 \windows\driver.dll

Listing 14.5 POLLED. DEF

LIBRARY
DESCRI PTI ON
EXETYPE
DATA
CODE

DRIVER
"Polled Mode Driver"
WINDOWS
PRELOAD MOVEABLE SINGLE
PRELOAD MOVEABLE DISCARDABLE

Chapter 15

DriverDLL:
Interrupt Handling
This chapter will show how to build a 16-bit, interrupt-driven driver DLL. While a
polled-mode driver DLL (like that of the last chapter) is certainly simple to build, a
basic interrupt-driven version is only slightly more complex and offers significant
advantages. Interrupt-driven drivers can usually offer improved throughput. Inter
rupt-driven drivers are also more "Windows polite" than polled-mode drivers, because
the interrupt-driven driver doesn't tie up the processor while waiting for the device.

The basic structure of a Windows interrupt-driven driver is quite similar to the
structure of a DOS driver: a real-time component (the Interrupt Service Routine, or
ISR) services hardware events, and a higher-level component (which I'll just refer to
as the driver) handles communication with the application or operating system. The
driver and ISR typically communicate through a buffer that must be managed as a
shared resource.

An interrupt-driven driver DLL is by definition a 16-bit DLL, because Win32
DLLs cannot install interrupt handlers. There is no Win32 API to install an
interrupt handler - because that job should be done in a true driver - and the
DOS Set Vector call used byWin16 DLLs is not available to Win32 DLLs.

325

326 - Writing Windows VxDs and Device Drivers

Although a Windows driver has a familiar structure, it is complicated by Win
dows' tendency to virtualize services to protect the underlying hardware resources. In
polled-mode drivers, these virtual services are nearly invisible to the programmer, but
in an interrupt-driven environment some of these virtualizing mechanisms, in particu
lar the virtual memory system, become more visible. To avoid breaking your applica
tion - or even breaking Windows - you need to understand something about how
some of these virtual services work and about the conventions you must follow to
write compatible interrupt-driven code. For the purposes of this chapter, that means:

understanding how the Windows memory manager works so that you can create
interrupt-safe code and data structures,

knowing the conventions you must observe when accessing an interrupt-safe
buffer or data structure,

knowing the conventions you must observe when installing your interrupt handler.

The first half of this chapter is devoted to explaining these three topics. The sec-
ond half of the chapter shows how to use this information to convert the polled-mode
driver of the last chapter into a basic interrupt-driven driver.

Windows Memory Management Strategy Overview
When the Windows memory manager gets an allocation request for a larger block
than is available, it takes one of the following three actions to free up memory to meet
this new demand:

Discard the current contents of an already-allocated block. Here, discard means
reuse the same block without first saving its contents to disk - presumably
because a valid copy is known to already exist on disk.

Rearrange (move) the current contents of memory to create a larger block of con
tiguous memory.

Swap the current contents of a block to disk.

Each of these three actions has potentially disastrous implications for an inter-
rupt-driven device driver. In the next few sections, I'll explain:

why swapped, discarded, or moved blocks create problems for an interrupt-driven
handler, and

how to write code and allocate data that won't be swapped, discarded, or moved.

(See also the sidebar "Layered Memory Managers" on page 327.)

What Is Discardable?
Win16 applications are organized into logical components called segments. There are
three types of segments: code, data, and resource. Code segments contain a program's
code, data segments contain a program's data (including stack and local heap), and
resource segments contain user interface resources like menus, icons, bitmaps, etc.

Driver DLL: Interrupt Handling - 327

All segments, whether allocated statically as part of an executable or dynamically
by a running application, are allocated by calls to the Win16 memory manager API.
When a program is first loaded into memory, the Windows loader allocates on behalf
of the application, making calls to allocate segments to be used for the application's
code, data, and resources. When an executing program needs additional memory, it
calls the memory manager API directly.

Each segment, whether it be code, data, or resource, possesses a set of attributes
that are tracked by the memory manager. These attributes determine what the memory
manager mayor may not do with that segment. The memory manager can only dis
card a segment if it is marked as discardable. Other attributes include: non-discard
able, fixed, moveable, swappable, and non-swappable (also called pagelocked).

Attributes are specified in one of two ways: statically as part of the linking process
or dynamically as part of the allocation request to the memory manager. The
attributes of a program's static code, data, and resource segments are specified at
link time, in the module definition (. DEF) file. The loader then allocates segments
with these attributes on behalf of the application. The attributes of a segment
dynamically allocated by a program, via a direct call to the memory manager, are
specified as parameters to the function call. The program may later change a
segment's attributes by another call to the memory manager.

Layered Memory Managers

In 16-bit Windows, the memory manager functionality is really provided by two different system components.
One is KERNEL, which is a user-mode DLL. The other is the VMM, a Ring 0 VxD. Win16 applications use the
memory management functions provided by KERNEL, like G 1 oba 1 All ~c. KERNEL itself uses the services of
the VMM (Virtual Machine Manager). So you can think of KERNEL as being layered on top ofVMM.

The KERNEL memory manager deals with segments, which are mapped via the descriptor tables to linear
address space. To satisfy allocation requests for segments, KERNEL allocates linear address blocks from the
VMM. KERNEL performs two kinds of memory "management", discarding and moving, which we'll discuss
in a later section. Both apply strictly to segments, not to the pages that actually make up segments. KERNEL
has nothing to do with the third kind of "management", which is virtual memory, also known as paging.

Virtual memory is implemented by the VMM (Virtual Machine Manager, not Virtual Memory Manager).
The VMM memory manager is responsible for managing physical memory: managing the paging tables,
which map linear addresses to physical addresses, and swapping pages to and from disk. VMM only deals
with pages, never segments.

The KERNEL module described here still exists in Windows 95 - it must, because Windows 95 supports
Win16 applications - hut is renamed to KERNELl6. Win32 applications use a different memory manage
ment API (e.g. Vi rtua 1 All oc instead of G1 oba 1 All ~c), which is provided by the KERNEL32 module. But
KERNEL32 is nothing more than a thin wrapper around calls to the VMM, which is still the virtual memory
manager in Windows 95 as well as in Windows 3.x.

328 - Writing Windows VxDs and Device Drivers

When the Windows memory manager discards a segment, the segment is not written to
disk but is literally discarded. When a program accesses a segment which has been dis
carded, the processor generates a Segment Not Present fault, and the fault handler will
reread the segment from disk into memory. This behavior implies that every discarded seg
ment must be read-only (never modified) and always available on disk. Code and resource
segments are usually allocated as discardable. On the other hand, data segments should not
be discardable, because they can't be recreated by reading the original segment from disk.

What is Moveable?
When Windows loads a Win16 program's resources, it loads them segment by seg
ment, placing each individual segment into a contiguous block of linear memory.
Thus, to load a segment, it isn't enough for Windows to have enough/ree memory, it
must have enough contiguous free memory. (To be precise, it must have enough free
linearly contiguous memory; the difference between linear and physical memory was
discussed in Chapter 3). If the free memory is highly fragmented, then the memory
manager may need to compact the active blocks to create larger free blocks (see the
sidebar "Fragmentation").

Fragmentation
When a program requests an allocation from the memory manager, that request can be refused, even if free
memory is available, if that free memory is scattered in several small pieces instead of a single larger one.
This problem is known as fragmentation. It exists even under DOS, but multitasking makes the problem much
worse. Much of the complexity of the Windows memory manager and the memory management API exists to
combat this problem, so fragmentation merits a closer look.

Figure 15.1 illustrates the process of fragmentation. Initially, all available memory resides in a single large
block, called the heap. The first application runs and allocates memory that carves off a block from this heap.
Next, the same application allocates a second block. Now another application starts up and requests a block.
Then the first application deallocates the first block it had allocated. Note that this leaves a hole in the heap, so
that the heap is now composed of two blocks of free memory.

This condition of having holes in the heap is called fragmentation, and here's why it's a problem. Suppose
that the second application now requests another allocation, but this time the size of the request is larger than
either of the two blocks of free memory. The memory manager cannot satisfy the request, even though the size
of the request is actually less than the total available free memory.

To handle this problem, the Windows memory manager moves blocks (copies the block's contents from
one location to another) to coalesce scattered free blocks into a single large free block. Figure 15.2 (see page
330) is a picture of the fragmented heap in Figure 15.1, before moving blocks and after. Before the move, the
largest available block was 192Kb. Afterward, it is 320Kb.

The memory manager can combat fragmentation effectively if all allocated memory is moveable. However,
there are situations where programmers need to fix a block in place, preventing the memory manager from mov
ing the block. Too many such fixed blocks create sandbars in the heap, as illustrated in Figure 15.3 (see page
330), and lead to excessive fragmentation. Thus, fixed blocks should be used only when absolutely necessary.

Driver DLL: Interrupt Handling - 329

Windows relies on the processor's protected mode to efficiently implement move
able memory. In protected mode, a pointer is a logical address consisting of a selector
and an offset. Because a selector doesn't directly specify a physical address - it
directly specifies an index into a descriptor table - implementing moveable memory
in protected mode is easy. To move a segment, Windows copies the segment's con
tents from one linear location to another, then updates the segment's base address in

Figure 15.1 Fragmentation.

Initial heap

First application
allocates 128Kb

First application
allocates 192Kb

Second application
allocates 64Kb

First application
frees 122Kb

Second application
requests 256Kb;
can't be satisfied

Free = 192Kb Free = 128Kb
l J

'V'"

Free = 320Kb

D Free

In use

330 - Writing Windows VxDs and Device Drivers

the descriptor table. The segment value itself doesn't change, so the index still points
to the same entry in the descriptor table. Only the base address stored in the descrip
tor changes. This process is illustrated in Figure 15.4

This means that Windows can move segments around without the application's
knowledge, because Windows can return a selector at the time of allocation. If the
system later moves the allocated block, the application would be unaffected because
the selector returned at allocation time still points (indirectly) to the block. As we'll
see later, driver DLLs that handle interrupts are often affected by moveable segments.

Figure 15.2 Moving memory reduces fragmentation.

Fragmentation
before move

No fragmentation
after move

~

192Kb
L-,,-J

128Kb

------v-----'
320Kb

Figure 15.3 Fixed memory increases fragmentation.

Before move D Free

In use, moveable

II In use, fixed

After move

After moveable '--'-""'----'11
blocks freed, . ,-, --'----'----'-----l
fragmentation
still exists

I

Driver DLL: Interrupt Handling - 331

Figure 15.4 Illustrates how Windows moves a memory
segment.

S 1 e ector
Descriptor Table

Lin earlPhysical

I 16 I
f-:-

"8

" "
I B r-!

16 B 'I
I--

A I--

Before Move

Descriptor Table

Selector

1 16 Lin earIPhysical

I--

16 A j

B I--

r,-
~
" 1;1
0

After Move A I--

332 - Writing Windows VxDs and Device Drivers

What is Swappable?

Moving and discarding memory blocks are both useful techniques for the Windows
memory manager, but don't help when memory is really tight - when there are no
free blocks remaining and no segments to be discarded. The remaining tool of the
memory manager, swapping or paging, is the most powerful of all, allowing Windows
to implement a technique known as virtual memory. Virtual memory is a neat trick
which allows the memory manager to provide more memory than is physically avail
able in the system.

Virtual memory requires some help from the processor hardware, specifically the
paging feature. When memory gets low, the memory manager writes (swaps) a page
to disk and marks the page as not present in the page tables. If a process later tries to
access a location in that page, the not-present flag will cause the processor to generate
a page fault. This fault (a processor exception) will suspend the current process and
transfer control and the number of the missing page to the page fault handler. This
handler, which is part of the memory manager, uses the page number to locate the
page on disk and then reads it into memory. This entire paging process is handled
dynamically by the operating system in a way that is completely transparent to the
process that made the memory access.

If a page fault occurs when there are no free blocks in physical memory, then the
memory manager must create free space by swapping a currently present page to disk.

Memory Requirements for an
Interrupt-safe Driver
A driver that handles hardware interrupts has strict requirements on the type of mem
ory it allocates. All code and data used at interrupt time must be fixed (non-move
able), pagelocked, and non-discardable. This includes the code for the interrupt
handler itself, any data in the driver's data segment used at interrupt time, any dynam
ically allocated buffers used at interrupt time, and application-allocated buffers passed
to the driver and used at interrupt time.

In the following few paragraphs, I'll explain why an interrupt handler has each of
these three requirements. These requirements aren't unique to interrupt handlers run
ning under Windows; they also are shared by handlers running under other 80x86
environments, such as UNIX or OS/2. So in the next few paragraphs when I use the
terms fixed, pagelocked, and non-discardable, these are all generic memory attributes
offered by many operating systems.

Driver DLL: Interrupt Handling - 333

After this generic discussion, I'll talk about how Windows implements these
same three attributes. When I'm referring specifically to these attributes as imple
mented by Windows, I'll use a slightly different nomenclature: FIXED, PAGE LOCKED,
and NONDISCARDABLE. This distinction is useful because, for example, FIXED doesn't
always mean fixed, and PAGELOCKED always means both pagelocked and fixed.

Reason for Fixed

To understand why any data used by a hardware interrupt handler must be in a fixed
segment, consider the following scenario. Suppose the memory manager moves the
data segment used by an interrupt handler because the segment is marked moveable.
After a few bytes are copied, a hardware interrupt occurs and the interrupt handler
executes. The handler updates a variable that resides in the first byte of its data seg
ment (the one that's being moved). Now when the handler finishes executing, the
memory manager continues with the rest of the copy but the variable just updated by
the handler is now incorrect. The memory manager copied the old value to the new
segment and has no way of knowing that the handler later modified the value. Clearly
the data segment used bya handler must be fixed to prevent this problem.

Reason for Non-discardable

The code segment containing a hardware interrupt handler has a different restriction:
it must be non-discardable. (Note that the data segment must be non-discardable as
well, but this is true of all data segments., while code segments are usually discard
able.) Suppose that a hardware interrupt occurred, but the memory manager had dis
carded the handler's code segment. A Segment Not Present fault would occur, and the
Windows fault handler would attempt to reload the segment from disk. If the interrupt
occurred while the system was already in DOS (for some other reason), the result
would be an attempt to re-enter DOS. DOS, however, is not reentrant code. Thus, the
code segment must be non-discardable.

Reason for Pagelocked

Both code and data of a hardware interrupt handler must be pagelocked. The reasons
are similar to those that force the segment to also be non-discardable. An interrupt
handler accessing a swappable buffer would reslllt in a page fault if that buffer had
been swapped to disk. The interrupt handler code itself could have been swapped to
disk, resulting in a page fault during execution. In either case, the page fault could
cause DOS to be re-entered.

334 - Writing Windows VxDs and Device Drivers

Static Interrupt-safe Code and Data:
The Easy Way

The easiest way to insure that driver code and data segments are interrupt-safe is to
mark code and data segments as FIXED and NONDISCARDABLE in the driver's module
definition file. Note that this technique relies on two well-known Windows behaviors.
First, Windows ignores the FIXED attribute when used by applications but respects it
when used by DLLs - thus the driver must be a DLL. Second, when segments are
marked as FIXED in the module definition file, Windows pagelocks the memory in
addition to fixing it in linear memory.

When running under Windows 95, using the FI XED keyword in the module defini
tion file is an easy way for a developer to make his static code and data interrupt-safe.
The very same technique, when used under Windows 3.x, is easy for the developer, but
has terrible side effects for the user. This allocation method can easily result in a situa
tion where Windows is unable to start new Windows applications, and the user gets an
"Insufficient memory to start the application" error message. This can happen even
when there is plenty of free memory and free system resources. How can this be?

Use the Right Way under Windows 3.x
Each time a Windows application runs, the Windows loader allocates a 512-byte
block for a data structure called the Program Segment Prefix (PSP). The PSP is used
by DOS as well as Windows, so it must be located below 1Mb. If there is no memory
available for the PSP, Windows can't run the application. This behavior is true under
Windows 3.x, and is still true under Windows 95.

The problem with Windows 3.x is the strategy used by the 3.x memory manager:
FIXED blocks are allocated from as low in the heap as possible, DISCARDABLE blocks
come from high in the heap, and MOVEABLE from in between. This strategy helps to
reduce fragmentation but often results in F I X ED allocations using up precious low
DOS memory, even when the users of FIXED memory don't need the.memory to come
from below 1Mb.

The Windows 95 memory manager uses a slightly different heap strategy, so
that FIXED allocations do not use low DOS memory. Therefore, if your
16-bit driver DLL will run under Windows 95 only, you're safe to take the
easy way out and use FIXED in your DEF file.

Driver DLL: Interrupt Handling - 335

Here's the right way, which avoids using up precious low memory. First mark
your driver's code and data segments as MOVEABLE - not FIXED - in the module def
inition file. At run time, before any interrupts occur, you explicitly fix and pagelock
the segments. But you must be careful with this second step. The Windows API func
tion G1 oba 1 Page Lock will both fix and pagelock a segment but G1 oba 1 Page Lock will
also move the segment down to low memory (because F I X ED blocks should be low in
the heap), exactly what we want to avoid.

What's neededis a way to prevent the memory manager from moving the segment
before pagelocking it. This can be done by first allocating all the memory below 1Mb,
calling Gl oba 1 PageLock, and then freeing all the low memory. I've provided a func
tion - called SafePageLock - which does just this, and I'll examine it in more
detail later. First I'll examine a related issue: how to dynamically allocate inter
rupt-safe buffers. As with the driver's static segments, there is an easy way and a right
way to do this under Windows 3.x.

Dynamically Allocating
Interrupt-safe Buffers: The Easy Way
The easy way to dynamically allocate an interrupt-safe buffer is to call G 1 oba 1 All oc
and specify that you want a buffer that is both fixed and pagelocked. G 1 oba 1 All oc
takes two parameters, a bit-mapped value, representing the attributes of the segment
to be allocated, and the size of the segment. Allowable values for the flags parameter
include: GMEMJIXED, GMEM_MOVEABLE, GMEM_DISCARDABLE, GMEM_NODISCARD, and
GMEM_SHARE.

The GMEM_SHARE flag was introduced in Chapter l3. Although there is no flag to
specify an attribute of pagelocked, when used by a DLL the GMEMJIXED flag always
has the side effect of pagelocking memory. So an allocation for an interrupt-safe
buffer would use the flags GMEMJIXED, GMEM_NODISCARD, and GMEM_SHARE.

Although the size parameter to Globa 1 All oc is a 32-bit value, the largest
allocation permitted is 16Mb-64Kb, much less than 232.

A return value of NULL from Gl obiil All oc means the segment could not be allo
cated, usually because a free block of that size wasn't available. A non-NULL return
value is the handle of the memory object. (More about handles and how to turn them
into useable pointers in the next section.)

336 - Writing Windows VxDs and Device Drivers

Dynamically Allocating
Interrupt-safe Buffers: The Right Way
This easy method results in exactly the same problem discussed above with Windows
3.x and fixed driver code and data segments: the buffer is fixed, pagelocked, and
non-discardable - but is also usually located below 1Mb. The right way is to first
allocate from G1oba1A11oc using GMEM_MOVEABLE instead of GMEMJIXED and to fix
and pagelock the buffer later with the SafePageLock function. This function is not
part of the Windows API, but a function I will present in a later section. The safe func
tion is necessary to prevent the memory manager from moving the buffer to low mem
ory during the pagelock operation, as it would with a simple call to Global PageLock.

Before examining the code for SafePageLock, I will need to cover one more topic
relevant to 16-bit drivers under both Windows 3.x and 95: the relationship between
handles, selectors, and pointers. G 1 oba 1 All oc returns a handle. Functions such as
G1 oba 1 PageLock and G1 oba 1 Fi x expect a selector, and accessing a dynamically allo
cated buffer requires a pointer.

Using the Buffer: Handles, Selectors, and Pointers

The handle returned by G1 oba 1 All oc is not a pointer, it's just a value with special
meaning to the memory manager. To access the associated memory object, even when
it is fixed and pagelocked, you must convert this handle to a pointer. This is done by
calling G1 oba 1 Lock, using as a parameter the handle returned by G1 oba 1 All oc. The
block is freed with a call to G1 oba 1 Free, passing in the same handle returned by the
original G1 oba 1 All oc.

As explained earlier, a protected mode pointer consists of a selector and an offset.
Some Windows API functions, such as G1 oba 1 Page Lock, take a selector parameter, not
a handle. To obtain a selector from a far pointer, use the SELECTOROF macro provided
in WINDOWS.H. Better yet, the G10ba1A11ocPtr and G10ba1A11ocFree macros in
WINDOWSX. H combine the allocation and lock (handle dereference). The Global A 110cPtr
macro combines a call to G1 oba 1 All oc with a subsequent call to G1 oba 1 Lock, return
ing a pointer. The Global FreePtr macro combines a call to Global Hand1 e (which
converts a selector to a handle), G1 oba 1 Un lock, and G1 oba 1 Free.

,
Driver DLL: Interrupt Handling - 337

Note that you should not use the C library rna 11 oc function instead of
G1 oba 1 All oc to allocate an interrupt-safe buffer. The problem is not the
attributes flag. As explained earlier in Chapter 13, rna 11 oc allocates moveable
memory, using exactly the same flags you would pass to G1 oba 1 A 110c if you
were going to fix and pagelock the memory later. The problem is that rna 11 oc
doesn't usually allocate a segment via G1 oba 1 All oc. Instead, rna 11 oc acts as
a sub-segment allocator, usually returning an offset into an already-allocated
segment. So when you call G1 oba 1 PageLock, it will fix and •. pagelock the
entire segment, not just your portion of it. And the golden rule of Windows
memory management is to never fix, and never ever pagelock, memory if it's
not absolutely necessary.

A Safe Pagelock Function

There is nothing tricky about Safe Page Lock, shown in the following paragraph of
code. It takes a single WORD parameter, which is the selector of the buffer you want to
pagelock, and performs the three steps outlined earlier:

• Repeatedly calls G1 oba 1 DosA 11 oc until all memory below 1Mb has been allocated.

• Calls G1 oba 1 Page Lock to fix and pagelock the caller's buffer. This call is now safe
because the allocated blocks, which completely fill up the area below 1Mb, will
prevent the heap manager from moving our buffer below 1Mb.

• Repeatedly calls G1 oba 1 Free to free all memory blocks below 1Mb that were allo
cated earlier.

UINT SafePageLock(HGLOBAL se1)
{

WORD i. rc;
static WORD SelArray[1024];

rnernset(Se1Array. 1024 * sizeof(WORD). 0);
for (i=O; i < 1024; itt)
{

Se1Array[i] = LOWORD(Globa1DosAlloc(1024));
if (!Se1Array[i])

break;

338 - Writing Windows VxDs and Device Drivers

rc = GlobalPageLock(sel);

for (i=O; i < 1024; itt)
{

if (!SelArray[i]
break;

GlobalFree(SelArray[i]);

return rc;

The following code fragment uses SafePageLock to fix and pagelock a driver's
code and data segments:

_asm mov myds. ds
_asm mov mycs. cs
SafePageLock(myds);
SafePageLock(mycs);

And the next code fragment dynamically allocates an interrupt-safe buffer the
right way, by combining a call to Gl oba 1 All oc to get moveable memory with a sub
sequent call to SafePageLock:

HGLOBAL hnd;
UINT sel. bufsize. flags;
bufsize = 8192;
char far *pBuffer;

flags = GMEM_MOVEABLE I GMEM_NODISCARD I GMEM_SHARE;
hnd = GlobalAlloc(flags. bufsize);
pBuffer = GlobalLock(hnd);
sel = SELECTOROF(pBuffer);
SafePageLock(sel);

Note that no SafePageUnl ock function is necessary, because the Windows API
function Gl oba 1 PageUn lock has no undesirable side effects.

Driver DLL: Interrupt Handling - 339

Installing an Interrupt Handler
The proper way to install an interrupt handler from a Windows DLL driver is through
the DOS Set Vector call (I NT 21h AH=25h). A DOS driver written in a high-level
language like C can use a library function like _dos_setvect to make this DOS call.
However, the Windows-specific versions of the VC++ l.x run-time library don't con
tain _dos_setvect because the library implementation of the function isn't compati
ble with Windows.

That leaves two alternatives: make the DOS call through the library routine i ntdosx,
which is available to Windows programs, or write your own version of _dos_setvect.
I've chosen the latter approach because it is trivial to code and is more efficient than
using i ntdosx. (See the sidebar "Initialize Those Registers!")

If your Windows-specific C library supports a high-level call like _dos_setvect,
feel free to use it. But if it doesn't, call I NT 21 h with AH=25 h from assembly. Almost all
compilers that generate Windows applications also support embedded assembly, which
makes this trivial. Here's a C function that installs a handler using embedded assembly.

Initialize Those Registers !

If you do choose to use i ntdosx, you must carefully initialize both SREGS. es and SREGS. ds. The easiest way
to do this is through the segread function. This step is necessary because during the i ntdosx call the OS and
ES registers are loaded from the SREGS structure, and an invalid value in a segment register will cause a pro
cessor exception.

The following code calls DOS Set Vector through i ntdosx.

typedef void (FAR interrupt *VOIDINTPROC);
void OosSetlntVector(BYTE vector, VOIOINTPROC pHandler
{

struct SREGS SegRegs;
union REGS InRegs, OutRegs;
segread(&SegRegs);
SegRegs.ds = SELECTOROF(pHandler); InRegs.x.bx = OFFSETOF(pHandler);
InRegs.h.ah = Ox25;
intdosx(&InRegs, &OutRegs. &SegRegs);

340 - Writing Windows VxDs and Device Drivers

void Insta11Handler(void far *myHandler. int
{

asm
{
mov
mov
push
lds
int
pop
}

ah.
bl.
ds
s i .
21h
ds

25h
intNumber

don't lose thisl
myHandler

put OS backl

intNumber

Although you may need assembly code to install the handler, the handler itself can
be written entirely in C using the interrupt keyword. This keyword instructs the
compiler to generate special prolog and epilog code. The prolog pushes all registers
onto the stack and loads OS with the data segment. The epilog pops all registers from
the stack and returns with an I RET instruction. These entry and exit sequences are
necessary for the handler to work properly.

As under DOS, the interrupt handler should not call any C library functions nor
any DOS or BIOS services. In addition, the only Windows functions that can be called
safely are listed in Table 15.1.

The New Driver: An Overview
To demonstrate these techniques, I've modified the example driver so that the UART's
receive and transmit buffers are serviced by an interrupt handler. The driver and ISR com
municate through circular buffers. The data area of each buffer is dynamically allocated by

Table 15.1 Windows functions that can safely be called
from an interrupt handler.

Function Type Function Name

Messaging Functions OutputOebugStr
PostMessage
PostAppMessage

Multimedia Functions timeGetSystemTime
timeSetEvent
t i meKi 11 Event
midiOutShortMsg
midiOutLongMsg

Driver DLL: Interrupt Handling - 341

the driver Gust to show the technique). The main driver stores a pointer to each buffer in the
DEV I CECONTEXT structure so that the ISR will know how to find and manipulate the buffer.

The largest changes are in the Devi ceOpen and Devi ceCl ose routines. I use these
routines as hooks to install and remove the ISR. The Devi ceO pen routine allocates the
buffers, sets up the DEV I CECONTEXT structure, and installs the ISR. The Devi ceCl ose
routine reverses these steps, un-installing the ISR and freeing the buffers.

The New Driver: The Code
To convert the polled driver of the last chapter to an interrupt, one must:

• add information about the ISR and the interrupt to the DEVICECONTEXT structure,

add code in Devi ceOpen to allocate interrupt-safe buffers and install the ISR,

• change the code in Devi ceRead so that it retrieves its data from the receive buffer
instead of directly from the device,

• change the code in Devi ceWrite so that it copies its data in the transmit buffer
instead of writing directly to the device,

• create an ISR to service the interrupt, and

• add code in Devi ceCl ose to deallocate the buffers and deactivate the ISR.

The New DEVICECONTEXT

The following code shows the C declaration for the new DEVICECONTEXT structure. As
in earlier examples the driver will define a separate static instance of this structure for
each supported device. This definition adds fields for the interrupt to be serviced
(I rq),substructures that describe the two ring buffers (RxBuf and TxBuf), and storage
for the old interrupt vector so that the driver can properly restore the system state
when it removes the ISR.

typedef struct
{

char far
WORD
WORD
WORD

BUFINFO;

*Start;
Size;
In;
Out;

342 - Writing Windows VxDs and Device Drivers

typedef struct
[

WORD usDevNumber;
WORD usloBase;
BYTE blrq;
BYTE bFlags;
HWND hwnd;
VOIDINTPROC pfOldHandler;
BUFINFO RxBuf;
BUFINFO TxBuf;
DRIVERPARAMS params;

DEVICECONTEXT. FAR *HDEVICE;

The buffer structures include storage for a pointer to the buffer, the buffer's size, a
next-in index (In), and a next-out index (Out). Figure 15.5 illustrates how these data
structures will be used while the driver is running.

Allocating an Interrupt-safe Buffer

The Devi ceOpen function allocates the buffers to be used by the interrupt handler. The
size for each buffer is taken from the DRIVERPARAMS structure. The buffers are allo
cated with the GMEMJIXED flag so that the region is safe for use at interrupt time, a
critically important step, although the code is relatively simple:

hDevice->RxBuf.Size = hDevice->params.usReadBufSize;
hDevice->RxBuf.Start = GlobalAllocPtr(GMEM_SHARE I

GMEM_MOVEABLE I
GMEM_NODISCARD.
hDevice->RxBuf.Size);

if (!hDevice->RxBuf.Start)
[

)

OutputDebugString("ERROR GlobalAlloc Rx\n");
return (HDEVICE)-l;

SafePageLock((HGLOBAL)SELECTOROF(hDevice->RxBuf.Start));

Notice that I've used the Gl oba 1 All ocPtr macro in place of an explicit call to
Global Lock. I've also allocated the buffer as GMEM_MOVEABLE and used SafePageLock
to fix and pagelock it, without moving it below 1Mb.

Finally, Devi ceOpen initializes the ring pointers:

hDevice->RxBuf.ln = hDevice->RxBuf.Out = 0;

Driver DLL: Interrupt Handling - 343

Installing the ISR

Once the buffer is built, Devi ceOpen turns to the task of installing the ISR. To handle
the general case, Oevi ceOpen must disable interrupts, save the existing vector, install
the new vector, and then enable interrupts.

The first step is to disable interrupts from the device by masking the device's inter
rupt level (sometimes called IRQ for Interrupt Request Level) in the Programmable
Interrupt Controller (PIC). The PC uses two PICs, termed master and slave, which are
daisy-chained together. The mask register ofthe master PIC is located at 110 port 21h
and controls IRQs 0-7. Hardware IRQs 8-15 are controlled by the· slave PIC at 110

Figure 15.5 Illustrates how the buffer structures will be
used while the driver is running.

Device Context I/O space
r--

usIoBase
I--

r-v'"
----to ~

I
~ Bufl nfo

I
I--I '" I+- Newest RxBuf L..-. I 0

Size I "0 Received
I <!)

o~ Byte
In I <!) '--

W ~ Out ~ I+- Storage
Start --- I--

for Next
Byte

I Si ze
I
I
I
I

I--
I ~

~ Oldest
I ... Received
I 0 Byte I "0
I <!)

I
;> 0;:;

I

~ I
I '--
I_I

c.,........

344 - Writing Windows VxDs and Device Drivers

port Alh. The mask registers are both bitmapped, where a 1 in a bit position disables
the interrupt line, and a 0 enables the interrupt line. For the master, IRQs ° to 7 corre
spond directly to bits ° to 7. For the slave, IRQ 8 corresponds to bit 0, IRQ 9 corre
sponds to bit 1, etc. (See the sidebar "IRQ 2 versus IRQ 9".)

Now that the device can't generate an interrupt, it's safe to install the interrupt
handler. Using the DOS Set Vector and Get Vector services (through my
home-brew functions), Devi ceOpen saves a copy of the current vector and then
installs a vector that points to the new ISR:

hDevice->pfOldHandler = DosGetlntVector(bVector);
DosSetlntVector(bVector, DeviceIsr);

With the ISR properly installed, it's safe to enable interrupts. That means pro
gramming the device to generate interrupts and also unmasking the interrupt in' the
interrupt controller.

IRQ 2 Versus IRQ 9

Developers of Windows device drivers often handle IRQ 9 incorrectly. Here's the problem: The original IBM
PC bus supports only IRQs 0 through 7, using a single interrupt controller. The two-controller design used by
the AT bus successor to the PC is used by all of today's systems. The AT design doesn't support IRQ 2
because the designers used the IRQ 2 input of the master controller to connect it to the slave controller. IBM
wanted old PC cards that used IRQ 2 to work in an AT, so the IRQ 2 bus signal was re-routed to the IRQ 9
input on the slave controller. The AT BIOS was also updated so that the default IRQ 9 interrupt handler did
nothing but call the IRQ 2 handler.

With this backward-compatible design, the same hardware device and software using IRQ 2 in an older PC
bus system automatically uses IRQ 9 on today's AT bus system. On the PC bus, the device asserts IRQ 2 on
the bus, the signal goes to IRQ 2 on the interrupt controller, and the processor vectors to the IRQ 2 handler.
On an AT bus, that same device asserts IRQ 2 on the bus, but that signal goes to IRQ 9 on the controller, so the
processor vectors to the IRQ 9 handler. Then the default BIOS handler for IRQ 9 calls the IRQ 2 handler.

So IBM's improved AT bus design didn't require hardware manufacturers to change their cards or software
developers to rewrite their drivers. That was a good idea when PC bus and AT bus systems were both in use,
but almost a decade later there are no PC bus systems. And although many hardware vendors still refer to their
cards as using IRQ 2, the card really uses IRQ 9.

It is very important to make this distinction when developing a Windows driver because hooking IRQ 2
when the device really uses IRQ 9 simply doesn't work under Windows. This worked under DOS because the
BIOS handler for IRQ 9 called the IRQ 2 handler. Under Windows, the real mode BIOS IRQ 9 handler
doesn't even see the interrupt if a Windows driver has hooked IRQ 9. If you're writing a Windows driver for
an IRQ 9 device, hook IRQ 9 during installation and unmask the interrupt level on the slave controller.

Driver DLL: Interrupt Handling - 345

Programming the COM port to generate interrupts is a two-step process:

enable the interrupt internally in the UART, and

enable the interrupt externally (using a spare UART output to gate the signal on the
serial card).

The code looks like this:

outp(hDevice->usloBase + UART_REG_IER. UART_IER_RXRDY);
outp(HDevice->usloBase + UART_REG_MCR. UART_MCR_OUT2);

Finally, Devi ceOpen clears the appropriate mask bit in the interrupt controller,
again paying attention to the chained controllers.

Processing Interrupts

If you are familiar with ring buffers, the ISR in Listing 15.5 (see page 359) will be
straightforward. The handler first detennines the exact cause of the interrupt and then
branches to service either a receive ready or a transmit complete. The receive ready
case reads a byte from the UART, copies the byte to the receive ring buffer and updates
the buffer indices. In addition, if the receive buffer is full, the ISR uses PostMessage to
post a message to the window whose handle was provided by the caller in Devi ceOpen.
The transmit complete case either pulls the next byte out of the transmit ring buffer
and writes it to the UART or, if the transmit buffer is empty, disables the UART's
transmit interrupt.

Although it's invisible here, the ISR isn'treally talking to the physical PIC.
The End Of Interrupt (EOI) write will actually be intercepted by Windows
(using some of the 386 protection hardware) and redirected to a Virtual PIC,
the VPICD. See Chapter 7 for more infonnation about the VPICD.

Both Devi ceGetReadStatus and Devi ceRead in I NTBASI C. C are slightly modified.
Devi ceGetReadStatus compares buffer indices to decide if characters are available. The
Devi ceRead routine just copies from the ring buffer to the calling program's buffer.
Devi ceGetWri teStatus and Devi ceWri te have similar, transmit-oriented modifications.

346 - Writing Windows VxDs and Device Drivers

Cleaning Up

The Dev; ceCl ose routine handles all the clean-up activities. Of course there's a natu
ral symmetry betWeen Dev; ceCl ose and Dev; ceOpen. Inverting the install sequence,
this function should disl,lble interrupts, install the original vector, re-enable interrupts,
and then dispose of the buffer memory.

Summary
If you are familiar with interrupt-driven drivers under DOS, you should find the basic
driver of this chapter quite accessible. (In fact, the ISR could easily be a DOS ISR.) If
you test the performance of this driver and a comparable DOS driver, you may be sur
prised at the difference. The Windows driver will be significantly slower than its DOS
cousin.

Although this chapter's ISR looks like it is written directly on the hardware, it
really isn't. Windows is using the 386 protection hardware to insert a non-trivial layer
of virtualizing software between your code and the hardware. This layer introduces
some very significant service delays. A VxD is your best alternative if you need better
response time from the driver.

Driver DLL: Interrupt Handling - 347

Listing 15.1 INTBASIC.H

#define FLAGS_ON_SLAVE_PIC
#define FLAGS_OPEN
#define FLAGS_RXQOVER

#define MASTER_PICCTRL
#define MASTER_PIC_MASK
#defi ne SLAVE_PICCTRL
#define SLAVE_PIC_MASK
#define EOI

#define SET(value. mask
#define CLR(value. mask

typedef struct
{

WORD usReadBufSize;

OxOl
Ox02
Ox04

Ox20
Ox2l
OxAO
OxAl
Ox20

value I,:, mask
value &= (-mask)

} DRIVERPARAMS. FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS. FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

typedef void (FAR interrupt *VOIDINTPROC)();

typedef struct
(

char far *Start;
WORD Size;
WORD In;
WORD Out;

BUFINFO;

typedef struct
{

WORD usDevNumber;
WORD usloBase;
BYTE blrq;
BYTE bFlags;
HWND hwnd;
VOIDINTPROC pfOldHandler;
BUFINFO RxBuf;
BUFINFO TxBuf;
DRIVERPARAMS params;

DEVICECONTEXT. FAR *HDEVICE;

348 - Writing Windows VxDs and Device Drivers

Listing 15.1 (continued) I NTBAS Ie. H

HDEVICE FAR PASCAL DeviceOpen(HWND hwnd);
int FAR PASCAL DeviceClose(HDEVICE);
int FAR PASCAL DeviceGetWriteStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceGetReadStatus(HDEVICE, LPWORD pusStatus);
int FAR PASCAL DeviceWrite(HDEVICE, LPBYTE lpData, LPWORD pcBytes);
int FAR PASCAL DeviceRead(HDEVICE, LPBYTE lpData, LPWORD pcBytes);
int FAR PASCAL DeviceSetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverParams(HDEVICE, PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE, PPDRIVERCAPS ppDriverCaps);

extern DEVICECONTEXT Devicel;

Listing 15.2 UART. H

#define UART_REG_THR
#define UART_REG_RDR
#define UART_REG_IER
#define UART_REG_IIR
#define UART_REG_LCR
#define UART_REG_MCR
#define UART_REG_LSR
#define UART_REG_BAUDLO
#define UART_REG_BAUDHI

#defi ne UART_I I R_NONE
#defi ne UART_II R_THRE
#defi ne UART_I I R_RXRDY
#define UART_IER_THRE
#define UART_IER_RXRDY
#define UART_MCR_OUT2
#define UART_MC~LOOP
#define UART_LS~THRE
#define UART_LCR_DLAB
#defi ne UART_LCR_8Nl
#defi ne UART_LSR_RXRDY
#define BAUD_1200
#defi ne BAUD_110

OxOO
OxOO
OxOl
Ox02
Ox03
Ox04
Ox05
OxOO
OxOl

OxOl
Ox02
Ox04
Ox02
OxOl
Ox08
OxlO
Ox20
Ox80
Ox03
OxOl
Ox60
Ox0417L

Driver DLL: Interrupt Handling - 349

Listing 15.3 ISR.H

void interrupt FAR DeviceIsr(void);

Listing 15.4 INTBASIC. C

#include <dos.h>
#include <conio.h>
#include <windows.h>
#include <windowsx.h>
#include "intbasic.h"
#include "uart.h"
#include "isr.h"
#include "malloc.h"

#define DOS_GET_INT_VECTOR Ox35
#define DOS_SET_INT_VECTOR Ox25

DEVICECONTEXT Devicel = { 0, Ox3F8, 4, 0, NUll };
DRIVERPARAMS DefaultParams = { l024};
DRIVERCAPS DriverCaps = { OxOlOl };

BOOl ValidHandle(HDEVICE hDevice);
VOIDINTPROC DosGetIntVector(BYTE Irq);
void DosSetIntVector(BYTE Irq, VOIDINTPROC pHandler);
void interrupt FAR DeviceIsr(void);
UINT SafePagelock(HGlOBAl sel);

HDEVICE FAR PASCAL _export DeviceOpen(HWND hwnd)
(

HDEVICE
BYTE
WORD

hDevice;
bVector, mask;
mycs, myds;

OutputDebugString("DeviceOpen\n");

hDevice = &Devicel;

if (hDevice->bFlags & FLAGS_OPEN)
(

OutputDebugString("ERROR already open\n");
return (HDEVICE)-l;

350 - Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC. C

hDevice-)params = DefaultParams;
hDevice-)hwnd = hwnd;

hDevice-)RxBuf.Size = hDevice-)params.usReadBufSize;
hDevice-)RxBuf.Start = GlobalAllocPtr(GMEM_SHARE I

GMEM~OVEABLE I
GMEM_NODISCARD.
hDevice-)RxBuf.Size);

if (!hDevice-)RxBuf.Start)
{

OutputDebugString("ERROR GlobalAlloc Rx\n");
return (HDEVICE)-l;

}

SafePageLock((HGLOBAL)SELECTOROF(hDevice-)RxBuf.Start »;
hDevice-)RxBuf.In = hDevice-)RxBuf.Out =0;

hDevice-)TxBuf.Size = hDevice-)params.usReadBufSize;
hDevice-)TxBuf.Start = GlobalAllocPtr(GMEM_SHARE I

GMEM_MOVEABLE I
GMEM_NDDISCARD.

if (!hDevice-)TxBuf.Start)
{

hDevice-)TxBuf.Size);

OutputDebugStri ng (.. ERROR Gl oba 1 All oc Tx\n");
return (HDEVICE)-l;

}

SafePageLock((HGLOBAL)SELECTOROF(hDevice-)TxBuf.Start »;
hDevice-)TxBuf.In = hDevice-)TxBuf.Out = 0;

_asm mov myds. ds
_asm mov mycs. cs
SafePageLock(myds);
SafePageLock(mycs);

if (hDevice-)bIrq < 8)
{

mask = _inp(MASTER_PIC_MASK);
SET(mask. 1 < hDevice-)bIrq);
_outp(MASTER_PIC_MASK. mask);

else
{

SET(hDevice-)bFlags. FLAGS_ON_SLAVE_PIC);
ma.sk = _inp(SLAVE_PICMASK);
SET(mask. 1 < (hDevice-)bIrq-8));
_outp(SLAVE_PIC_MASK. mask);

Driver DLL: Interrupt Handling - 351

Listing 15.4 (continued) I NTBAS Ie. C

if (hDevice->bIrq < S)
bVector = hDevice->bIrq + OxOS;

else
bVector = hDevice->bIrq - S + OxlO;

hDevice->pfOldHandler = DosGetlntVector(bVector);
DosSetIntVector(bVector, DeviceIsr);

II Configure UART.
_outp(hDevice->usIoBase+UART_REG_IER, 0);
_outp(hDevice->usIoBase+UART_REG_LCR, UART_LCR_DLAB);
_outp(hDevice->usIoBase+UART_REG_BAUDLO, BAUD_1200);
_outp(hDevi ce- >us IoBase+UART_REG_BAUDHI. 0);
_outp(hDevice->usIoSase+UART_REG_LCR, UART_LCR_SNI);
_outp(hDevice->usIoBase+UART_REG_IER, UART_IER-RXRDY);
_outp(hDevice->usIoBase+UART_REG_MCR, UART_MCR_OUT2);

II Unmask interrupt at PIC.
if (hDevice->blrq < S)
(

mask = _inp(MASTER_PIC_MASK);
CLR(mask, (1 < hDevice->bIrq));
_outp(MASTER_PIC_MASK, mask);

else
(

mask = _inp(SLAVE_PIC_MASK);
CLR(mask, (1 < (hDevice->bIrq-S»);
_outp(SLAVE_PIC_MASK, mask);

SET(hDevice->bFlags, FLAGS_OPEN);

return hDevice;

352 - Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) J NTBAS Ie. C

int FAR PASCAL _export DeviceClose(HDEVICE hDevice)
{

BYTE mask. bVector;

OutputDebugString("DeviceClose\n");

if (!ValidHandle(hDevice))
return -1;

if «hDevice->bFlags & FLAGS_OPEN) == 0)
return FALSE;

CLR(hDevice->bFlags. FLAGS_OPEN);

II Disable UART interrupts.
_outp(hDevice->usIoBase + UART_REG_IER. 0);
_outp(hDevice->usIoBase + UART_REG_MCR. 0);

if (hDevice->bIrq < 8)
{

mask = _inp(MASTER_PIC_MASK);
SETf mask. 1 < hDevice->bIrq);
_outp(MASTER_PIC_MASK. mask);

else
{

SET(hDev;ce->bFlags. FLAGS_ON_SLAVE_PIC);
·mask = _inp(SLAVE_PIC_MASK);
SET(mask. 1 < (hDev;ce->bIrq-8));
_outp(SLAVE_PIC_MASK. mask);

if (hDevice->bIrq < 8)
bVector = hDevice->bIrq + Ox08;

else
bVector = hDev;ce->bIrq - 8 + OxlO;

DosSetIntVector(bVector. hDevice->pfOldHandler);

Global FreePtr(hDevice->RxBuf.Start);
GlobalFreePtr(hDevice->TxBuf.Start);

return 0;

Driver DLL: Interrupt Handling - 353

Listing 15.4 (continued) INTBASIC. C

int FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice,
LPWORD pusStatus

OutputDebugString("DeviceGetWriteStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

if (_inp(hDevice->usloBase + UART_REG_LSR) & UART_LSR_THRE)
{

el se
{

*pusStatus = 1;

*pusStatus = 0;

return 0;

II ready to transmit

II not ready to transmit

i nt FAR PASCAL _export Devi ceGetReadStatus (HDEVICE hDevi ce, LPWORD pusStatus)
(

OutputDebugString("DeviceGetReadStatus\n");

if (!ValidHandle(hDevice))
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
retu rn -1;

if (hDevice->RxBuf.ln != hDevice->RxBuf.Out)
{

else
{

*pusStatus = 1;

*pusStatus = 0;

return 0;

II data ready

II no data ready

354 - Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC. C

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice, LPBYTE lpData,
LPWORD pcBytes)

WORD i;
char ier;

OutputDebugString("DeviceWrite\n");

if (i lpData)
(

OutputDebugString("ERROR\n");
return -1;

if (iValidHandle(hDevice »
(

OutputDebugString("ERROR\n");
return -1;

if «hDevice->bFlags & FLAGS_OPEN) ~ 0)
{

OutputDebugStri ng ("ERROR\n");
return -1;

for (i~O; i < *pcBytes; i++)
{

hDevice->TxBuf.Start[hDevice->TxBuf.ln++] ~ lpData[];
if (hDevice->TxBuf.ln >~ hDevice->TxBuf.Size)

hDevice->TxBuf.ln ~ 0;

if (UART_LSR_THRE & _inp(hDevice->usloBase+UART_REG_LSR »
(

ier ~ _inp(hDevice->usloBase+UART_REG_IER);
if «UART_IER_THRE & ier) ~ 0)
{

return 0;

Driver DLL: Interrupt Handling - 355

Listing 15.4 (continued) INTBASIC. C

int FAR PASCAL _export DeviceRead(HDEVICE hDevice, LPBYTE lpData,
LPWORD pcBytes)

WORD cBytes, i;

OutputDebugStri ng("Devi ceRead\n");

if (! 1 pData)
{

OutputDebugStri ng("ERROR\n");
return -1;

if (!ValidHandle(hDevice))
{

OutputDebug5tri ng("ERROR\n");
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) = 0)
{

OutputDebugString("ERROR\n");
return -1;

cBytes = *pcBytes;

for (;=0; i < cBytes; i++)
{

if (hDevice-)RxBuf.ln = hDevice-)RxBuf.Out)
break;

lpData[i] - hDevice-)RxBuf.Start[hDevice-)RxBuf.Out++];
if (hDevice-)RxBuf.Out)= hDevice-)RxBuf.Size)

hDevice-)RxBuf.Out - 0;
*pcBytes--;

return 0;

356 - Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC. C

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice.
PDRIVERPARAMS pParams

OutputDebugString("DeviceSetDriverParams\n");

if (l pParams)
return -1;

if (lValidHandle(hDevice))
return -1;

if «hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

hDevice->params = *pParams;

return 0;

int FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice.
PDRIVERPARAMS pParams

OutputDebugString("DeviceGetDriverParams\n");

if (lpParams)
return -1;

if (lValidHandle(hDevice))
return -1;

if «hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

*pParams = hDevice->params;

return 0;

Driver DLL: Interrupt Handling - 357

Listing 15.4 (continued) INTBASIC. C

int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice.
PPDRIVERCAPS ppDriverCaps

OutputDebugString("DeviceGetDriverCapabilities\n");

if (!ppDriverCaps)
return -1;

if (!ValidHandle(hDevice))
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

*ppDriverCaps ~ &DriverCaps;

return 0;

BOOl ValidHandle(HDEVICE hDevice
{

return (hDevice == &Device1);

VOIDINTPROC DosGetlntVector(BYTE vector)
{

WORD selHandler. off Handler;

mov al. vector
mov ah. DOS_GET_INT_VECTOR
push es
int 21h
mov offHandler.bx
mov selHandler.es
pop es

return(MAKElP(selHandler. off Handler));

358 - Writing Windows VxDs and Device Drivers

Listing 15.4 (continued) INTBASIC. C

void DosSetlntVector(BYTE vector, VOIDINTPROC pHandler
(

WORD off Handler, selHandler;

selHandler ~ SELECTOROF(pHandler);
off Handler = OFFSETOF(pHandler);

mov al, vector
mov ah, DOS_SET_INT_VECTOR
mov dx, off Handler
mav bx, selHandler
push ds
mov ds, bx
i nt 21h
pop ds

UINT SafePageLock(HGLOBAL sel)
(

WORD i, rc;
static WORD SelArray[1024];

memset(SelArray, 1024 * sizeof(WORD), 0);
for (i~O; i < 1024; i++)
(

SelArray[i] ~ LOWORD(GlobalDosAlloc(1024));
if (!SelArray[i])

break;

rc = GlobalPageLock(sel);

for (i=O; i < 1024; i++)
(

if (!SelArray[i])
break;

GlobalFree(SelArray[i]);

return rc;

Listing 15.5 ISR.C

#include <conio.h>
#include <windows.h>
#include "intbasic.h"
#include "uart.h"

Driver DLL: Interrupt Handling - 359

void interrupt FAR DeviceIsr(void)
{

BYTE ier. intid;
LPBYTE buf;
DEVICECONTEXT *hDevice;

hDevice ~ &Devicel;

whil e (TRUE)
(

intid = _inp(hDevice->usloBase + UART_REG_IIR);
if (intid == UART_IIR_NONE)

break;

if (intid == UART_IIR_RXRDY)
{

if «hDevice->RxBuf.ln+l==hDevice->RxBuf.Out)
II « hDevi ce- >RxBuf. Out == 0)

&& (hDevice->RxBuf.ln == hDeVice->RxBuf.Size-l)))

PostMessage(hDevice->hwnd. WM_USER. O. NULL);

buf = hDevice->RxBuf.Start;
buf[hDevice->RxBuf.ln++] = _inp(hDevice->usloBase +

UART_REG_RDR);
if (hDevice->RxBuf.ln)= hDevice->RxBuf.Size)

hDevice->RxBuf.ln = 0;

else if (intid == UART_IIR_THRE)
{

if (hDevice->TxBuf.ln==hDevice->TxBuf.Out)
(

ier = _inp(hDevice->usloBase + UART_REG_IER);
_outpe hDevice->usloBase + UART_REG_IER.

ier & (-UART_IE~THRE));

360 - Writing Windows VxDs and Device Drivers

Listing 15.5 (continued)

else
(

ISR.C

buf ~ hDevice-)TxBuf.Start:
_outp(hDevice-)usloBase+UART_REG_THR,

buf[hDevice-)TxBuf.Out++]):
if (hDevice-)TxBuf.Out)~ hDevice-)TxBuf.Size)

hDevice-)TxBuf.Out ~ 0:

if (hDevice-)bFlags & FLAGS_ON_SLAVE_PIC)
_outp(SLAVE_PIC_CTRL, EO!):

_outp(MASTER_PI C_CTRL , EOI):

Listing 15.6 INTBASIC.MAK

all: intbasic.dll

if DRIVER DLL

intbasic.obj: intbasic.c intbasic.h
cl -c -W3 -ASw -GD2s -Zi -Oi $*.c

isr.obj: isr.c intbasic.h
cl -c -W3 -ASw -GD2s -Zi -Oi $*.c

intbasic.dll: intbasic.def intbasic.obj isr.obj
link intbasic+isr,intbasic.dll,intbasic.map ICO IMAP,

sdllcew libw Inod/noe,intbasic.def
implib intbasic.lib intbasic.dll intbasic.def
copy intbasic.dll \windows\driver.dll

Listing 15.7 INTBASIC. DEF

LI BRARY DRIVER
DESCRIPTION "Basic Interrupt-Driven Driver"
EXETYPE WINDOWS
DATA PRELOAD MOVEABLE SINGLE
CODE PRELOAD MOVEABLE NDNDISCAROABLE

Chapter 16

All of the drivers in earlier chapters have relied on the processor to transfer data to and
from the device, either with IN/OUT operations on a port address, or with read/write
operations on a memory address. Devices that manipulate large blocks of data, such as
disk controllers, are often capable of transferring data directly to memory using Direct
Memory Access (DMA), thereby reducing the load on the data bus.

Windows driver DLLs that use DMA are somewhat uncommon because of the dif
ficulties implicit in assuring that the DMA controller device, which always writes to a
physical address, is writing into the right logical address. This chapter explains the
requirements for a DMA buffer and shows how to write a driver that uses DMA to
transfer data.

DMA Buffer Requirements
A buffer used for a DMA transfer, either driver-to-device or device-to-driver, must
meet several strict requirements. The DMA buffer must be:

physically contiguous,

• fixed and pagelocked, and

• aligned on a 64Kb boundary.

These requirements are necessary because the DMA controller has no knowledge
of selectors or pages and perfonns no address translation. The controller is pro
grammed with a starting physical address and simply increments (or decrements) that
address with each byte transferred in order to generate the next physical address. For
more details on the exact reason for each of the above requirements, refer to the sec
tion "System DMA Buffer Requirements" in Chapter 6.

361

362 - Writing Windows VxDs and Device Drivers

How to Allocate a DMA Buffer
Chapter 15 showed how to allocate fixed and pagelocked memory. A search of all
Windows API or DPMI calls reveals no way to specify 64Kb alignment, but there are
several usable work-arounds. A small buffer is less likely to cross a 64Kb boundary,
so in this case a good strategy is to keep allocating (fixed and pagelocked) buffers
until you get a suitable one, then deallocate the unused ones.

The larger the buffer, however, the greater the chance the buffer will span a 64Kb
boundary. To get a large buffer, allocate a buffer twice as big as you need and then use
the half that doesn't span the 64Kb boundary.

That leaves the last requirement: physically contiguous pages. There is absolutely
no Windows API or DPMI call to allocate memory with this attribute. (One API can
do this, discussed in Chapter 6, but it's available only to VxDs.) There is another
problem as well. Even if such a buffer could be allocated, the driver must obtain its
physical address to program the DMA controller's base address register, and there is
no Windows API or DPMI call to obtain a physical address. The closest you can get is
a linear address, using GetSe 1 ectorBase.

DMA DOS Applications Under Windows
It's interesting to note that a DOS application that does DMA transfers works fine
under Windows, whereas a Windows application must overcome the contiguous pages
and physical address obstacles in order to do the same task. How is this possible? The
secret is the Virtual DMA Device (or VDMAD), a VxD that operates behind the
scenes. VDMAD's main reason for existence is to make sure DOS applications can do
DMA transparently just as they did under DOS, even though V86 mode memory
translation is radically different.

VDMAD does this by trapping all accesses to the DMA controller and caching the
data internally instead of letting it go through to the controller. VDMAD is particu
larly interested in the controller's base address register. VDMAD knows that because
a DOS application is running in V86 mode, the address a DOS application programs
into this register is really a linear address, not a physical address. So VDMAD trans
lates this linear address into a physical address and writes that to the controller's
address register. In addition, VDMAD pagelocks the entire buffer and verifies that it is
physically contiguous.

If the buffer is not contiguous (and it rarely is), VDMAD substitutes the physical
address of its own buffer, which meets all DMA requirements. At this point VDMAD
tells the controller to start with the transfer. When the transfer is over - and if the
VDMAD-owned buffer was used - VDMAD copies data to the DOS application's
original address. Despite all this interaction, the DOS application sees nothing but a
DMA transfer as usual - except that the transfer is much slower because of the dou
ble buffering.

Driver DLLs: Using DMA - 363

DMA Windows Applications
Can Use this Knowledge
Because VDMAD traps accesses by Windows applications as well as DOS applica
tions, Windows applications can use this knowledge of VDMAD interaction to over
come the contiguous pages and physical address problems explained above. Basically,
a Windows application:

• allocates a buffer,

• gets its linear address,

• programs the DMA controller with that linear address, and

• relies on VDMAD to make everything work out right.

The only trick here is that a Windows application can't use just any buffer. The
DMA controller's base address register is 24 bits. Both G10ba1A11oc'ed buffers and
those buffers statically allocated in a driver's data segment are generally located
above 2Gb in linear address space where addresses can't be represented in 24 bits.
The proper method is to use a G1 oba 1 DosA 11 oc' ed buffer, which is guaranteed to
have a linear address below 1Mb that fits into 24 bits.

Using Virtual DMA Services Is Better
The solution described above is easy to implement, but there is a price: G1 oba 1 DosA 11 oc
takes up precious linear memory under 1Mb. Another solution that avoids this problem
is to use VDMAD's own DMA buffer, just for the duration of the transfer, then copy the
data to the driver buffer. Borrowing the VDMAD buffer is possible because the
VDMAD exports services for Win16 applications. This API, available through INT 4Bh,
is known as Virtual DMA Services (VDS).

VDS services are not available to Win32 applications, only to Win16
applications.

364 - Writing Windows VxDs and Device Drivers

The VDS interface is listed in Table 16.1. In summary, VDS includes functions to
pagelock a buffer, request use of the VDS buffer, and copy data between the VDS
buffer and another buffer.

Table 16.1 Virtual DMA Services (VDS).

DWORD Offset

DWORD Segment/Selector

DWORD Physical Address

Lock DMA Region

Unlock DMA Region

Scatter/Gather Lock

Scatter/Gather Unlock

Request DMA Buffer

Release DMA Buffer

Copy Into DMA Buffer

Copy Out Of DMA Buffer

Disable DMA Translation

Enable DMA Translation

03h

04h

05h

06h

07h

08h

09h

OAh

OBh

OCh

whether or not memory is physi
cally contiguous

pagelocks buffer; if buffer not ok
for DMA, borrows VDS buffer,
returns its physical address

pageunlocks buffer

pagelocks multiple regions

pageunlocks multiple regions

borrow VDS buffer for DMA use

return VDS buffer to VDS

copy data into VDS buffer

copy data from VDS buffer

tells VDS that address pro
grammed into controller is phys
ical not linear

tells VDS that address pro
grammed into controller is lin
ear not physical

Driver DLLs: Using DMA - 365

To borrow the VDS buffer for a DMA transfer, a driver calls Request DMA Buffer,
which returns the physical address of the VDS buffer (which meets all DMA require
ments). Before programming this address into the controller's base address register,
the driver calls Di sa b 1 e DMA T ra n s 1 at i on. This tells VDS that the address is already
a physical address and needs no translation. Note that a Windows driver that uses
VDS for buffer services interacts with the DMA controller - programming address,
count, mode, etc. - in the exact same manner that a DOS DMA application would.

When borrowing the VDS buffer, if the transfer is from memory to the device,
then the driver must call Copy Into DMA Buffer before starting the transfer. This call
copies data from the driver buffer to the VDS buffer. If the transfer is in the opposite
direction, then the driver calls Copy Out Of DMA Buffer after the transfer completes.
In both cases, the driver re-enables translation with Enable DMA Translation and
relinquishes the borrowed buffer with Re 1 ease DMA Buffer.

It is possible that a buffer that a driver allocates as fixed and pagelocked also hap
pens to be physically contiguous. If so, then a driver that always requests the VDS
buffer is incurring the performance penalty of an extra copy (before or after the trans
fer) unnecessarily.

A better alternative, which is no more difficult to code, is to use Lock DMA Regi on
instead of Request DMA Buffer. Lock DMA Regi on combines several useful func
tions. The driver passes in a buffer pointer, and VDS first checks to see if the buffer is
64Kb aligned and is physically contiguous. If both conditions are met, VDS then
locks all the pages in the buffer and returns with the buffer's physical address. The
buffer now meets all DMA requirements. If the buffer doesn't meet DMA require
ments, VDS returns with the physical address of its own DMA buffer.

When using Lock DMA Regi on, the driver calls Di sabl e DMA Transl ati on, pro
grams the physical address into the controller, and starts the transfer. When the trans
fer is complete, the driver calls Enable DMA Trans 1 ati on (and Release DMA Buffer,
as a result of the Lock, if the VDS buffer was used as a result of the Lock). A call to
Copy Into DMA Buffer or Copy Out Of DMA Buffer is unnecessary, because VDS
does this copy automatically if the VDS buffer was used. If the driver's buffer was
used for the transfer, then there is no copy, which is more efficient.

Using the VDS buffer for a DMA transfer is far from an ideal solution. The single
VDSNDMAD buffer must be shared among all Windows and DOS applications that
are using DMA, so a driver may have to wait for the buffer to become available. More
importantly, using this intermediate buffer results in an extra data copy operation.
This is the case whether the buffer is used implicitly with the Gl oba 1 DosA 11 oc and
invisible VDMAD interaction or used explicitly via VDS.

The best solution is to write a VxD to allocate the DMA buffer and have your
driver DLL use the services of the VxD to obtain the buffer's physical address. Chap
ter 11 presented such a V xD and Win 16 application.

366 - Writing Windows VxDs and Device Drivers

Summary

While DMA transfers offer significant performance advantages under other operating
systems, unless you are willing to write a helper VxD or do all of the DMA inside a
VxD, you will probably not see the same advantages under Windows. Unless you can
force a contiguous, fixed, and pagelocked buffer, DMA transfers will incur an extra
copy operation after the DMA transfer, a cost that more than offsets the normal
advantages of DMA transfers.

Chapter 17

Driver DLLs:
Using Real Mode Services
Windows applications run in protected mode, but they can and do use real mode DOS
and BIOS services. Whether a DOS application running under Windows calls the C
library read function, or a Windows application calls the Windows 1 read function,
the read eventually boils down to a simple call to DOS through I NT 21 h, just as it
does in a program running under DOS. In addition to using DOS and BIOS services,
Windows applications may also use other real mode services such as TSRs or DOS
device drivers.

To properly execute real mode code from a protected mode application the pro
grammer must overcome a number of obstacles. First and most obvious is that the
processor must be switched from protected mode to V86 mode and then back again.
Addressing and other differences create more subtle obstacles. Protected mode data
may live above 1Mb where it is inaccessible to real mode code, complicating parame
ter passing. Also, any parameters returned by the real mode code in segment registers
will cause an exception when the processor switches back into protected mode, since
they aren't valid selectors.

Windows application programmers rarely need to worry about any of the above
issues. By intercepting INT 21h calls and doing the work necessary to take care of all
of these issues, the Windows kernel makes it very easy for Windows applications to
use DOS and BIOS services. Windows driver DLLs don't lead such a protected life.

367

368 - Writing Windows VxDs and Device Drivers

Although many Windows applications never use any real mode services other than
DOS, a Windows driver DLL may use an existing real mode TSR or DOS device
driver that provides support for a hardware device. In this case, the driver developer
needs a good understanding of the translation issues mentioned above, because the
Windows kernel cannot provide this same level of transparent support for TSRs and
device drivers it knows nothing about. In addition, there are a few INT 21h services
that Windows doesn't support (Table 17.1), so the driver developer will also need to
provide translation when using one of these unsupported services.

Windows does help with some of this work; Windows will automatically switch
processor modes as necessary whenever an application issues a software interrupt.
However, Windows can't provide automatic buffer translation for unknown services
because it doesn't know which registers contain pointers. If a Windows driver DLL
needs to exchange pointers with a real mode service, it must do some of the transla
tion work itself.

The following sections explore several alternate techniques for calling real mode
services and passing parameters to real mode services.

Talking to a DOS Device Driver
By definition, a DOS device driver presents a specific interface: an application
accesses the device driver as if it were a file, using DOS Open, Read, Wri te, and
Close calls. An application can either make these DOS calls directly through I NT 21h
or use the C run-time low-level file functions Copen, _read, etc.). In addition to these
standard calls, many DOS device drivers support an extended interface through
IOCTL (110 Control) commands. The C run-time offers no support for issuing IOCTL
commands to device drivers, so if you need to issue IOCTLs you'll have to issue the
DOS IOCTL command through embedded assembly.

Windows applications access DOS device drivers through this same file interface.
The Windows kernel traps TNT 21h and provides any necessary translation for DOS
device driver access. For example, Windows looks at the buffer address passed to the
DOS device driver in both Read and Wri te calls and checks to see if this buffer lives
above 1Mb. If so, this buffer is unacceptable - DOS device drivers execute in V86
mode and the process can't access anything above 1Mb. So Windows substitutes the
address of its own buffer, below 1Mb, before calling the DOS device driver.

In addition, even if the Windows application's buffer happened to be located
below 1Mb, the buffer address supplied by the Windows application would be a pro
tected mode address, not a real mode address usable by the DOS device driver. So
Windows must also convert protected mode pointers to real mode pointers.

Driver DLLs: Using Real Mode Services - 369

Table 17.1 DOS functions not supported or partially
supported by Windows.

Service Description
INT 20h Terminate program
INT 25h Absolute disk read
INT 26h Absolute disk write
INT 27h Terminate and stay resident
INT 21h Func OOh Terminate process
INT 21h Func OFh Open file with FCB
INT 21h Func 10h Close file with FCB
INT 21h Func 14h Sequential read
INT 21h Func 15h Sequential write
INT 21h Func 16h Create file with FCB
INT 21h Func 21h Random read
INT 21h Func 22h Random write
INT 21h Func 23h Get file size
INT 21h Func 24h Get relative record
INT 21h Func 25h Get interrupt vector

(supported, but gets protected mode interrupt vector)
INT 21h Func 27h Random block read
INT 21h Func 28h Random block write
INT 21h Func 35h Set interrupt vector

(supported, but sets protected mode interrupt vector)
INT 21h Func 38h Get country page

(supported, but returns real mode call address)
INT 21h Func 44h Subfunc 02

(fails if buffer address> 1 Mb and buffer size> 4 Kb)
INT 21h Func 44h Subfunc 03

(fails if buffer address> 1Mb and buffer size> 4Kb)
INT 21h Func 44h Subfunc 04

(fails if buffer address> 1Mb and buffer size> 4 Kb)
INT 21h Func 44h Subfunc 05

(fails if buffer address> 1Mb and buffer size> 4 Kb)
INT 21h Func 65h Get extended country info

(supported, but returns real mode call address)
INT 21h Func 67h Set handle count

370 - Writing Windows VxDs and Device Drivers

In addition to file functions like Open, Read, Wri te, and Close, many DOS device
drivers also support device-specific functionality through the DOS IOCTL function call
(INT 21h, AH=44h). A specific subfunction is specified in the AL register. Examples of
IOCTL subfunctions include Recei ve Control Data (AL=2) and Wri te Control Data
(AL=3). Both of these subfunctions, and some others as well, use a single buffer parame
ter passed in OS: OX. Because the registers used by each subfunction for the buffer param
eter are defined by the IOCTL interface, Windows is able to perform automatic
translation for all IOCTL buffers. However, the device driver is free to interpret the
buffer contents in any way it chooses. So a device driver may view the Recei ve Control
Data buffer as a structure, and that structure could contain pointers. In this case, Win
dows does not know that the buffer contains pointers that need translation.

TIlatmeansa Wmdowsapplication that calls, forexarnple, the driver's Read Control Data
through the IOCTL must handle translation of these embedded pointers itself.

Special Handling for IOCTLs
This section will explain what a Windows driver DLL needs to do to issue the
Read Control Data IOCTL call to a DOS device driver that does use embedded
pointers in this buffer. In this example, the buffer passed to the device driver via
OS: OX is not just a character buffer but a CONTROL_OAT A structure, shown in the following
code. The CONTROL_DATA structure contains a pointer to an array of i nts. The device
driver will fill in the array, allocated by the DLL, with a list of supported speeds.

typedef struct
{

void far *speeds;
int numspeeds;

CONTROL_DATA;

It's not strictly necessary to allocate the CONTROL_OAT A structure itself below 1Mb
because the automatic buffer translation provided by Windows knows about the
pointer in OS: OX. But Windows does not know that CONTROL_OAT A contains a pointer,
so the Windows driver DLL must ensure that the speeds array lives below 1Mb and
also that the speeds pointer is a real mode pointer.

The Windows API function Gl oba 1 DosA 11 oc exists specifically to provide real
mode buffers and will always allocate below (linear) 1Mb. The DWORD return value
from Gl oba 1 Dos A 11 oc provides both a selector for addressing the buffer in protected
mode and a segment for addressing the buffer in real mode. The Windows driver DLL
uses both portions because it needs a protected mode pointer for normal buffer access
and a real mode pointer to give to the device driver. The offset portion of the pointer in
both cases is always zero.

Driver DLLs: Using Real Mode Services - 371

The LOWORD macro extracts the selector, and MAKELP turns the selector into a far
pointer. The Windows driver DLL uses this pointer to initialize the buffer and to
access the buffer after the device driver fills it in. The real mode segment is extracted
with the HIWORD macro and formed into a real mode pointer using MAKELP. Just be
careful not to dereference this real mode pointer - it's not valid in protected mode.

The following code uses the methods described previously to retrieve device
information from a DOS device driver. After the speeds array is filled in by the device
driver, the code scans the array to determine if the device supports high speeds.

BOOL SupportsHighSpeed(void)
{

CONTROL_DATA cdata;
BOOL highspeed = 0;
WORD far *speeds;
WORD numspeeds = 8;
DWORD dw;
WORD i;

#define IOCTL_READ_CONTROL_DATA 2
dw = GlobalDosAlloc(numspeeds * sizeof(WORD));
cdata.numspeeds = numspeeds;
cdata.speeds = MAKELP(HIWORD(dw). a);
speeds = MAKELP(LOWORD(dw). a);
Dosloctl(IOCTL_READ_CONTROL_DATA. &cdata. sizeof(cdata »;
for (i=O; i < numspeeds; i++)
{

if (*speeds++ > 9600)
return(TRUE);

Windows is only able to provide automatic translation for DOS device drivers
because it knows that these drivers art: accessed through I NT 21 h. Even when the
driver is accessed through I NT 21 h, Windows can only provide perfect translation
when it knows exactly which parameters are expected. Windows knows everything it
needs to know about read and write, but not always IOCTL.

TSRs are a different matter, as each TSR has its own interface with its own
method of parameter passing. For this reason, interfacing Windows code to a TSR
usually requires more work than interfacing to a DOS device driver. The next section
will explore this topic.

372 - Writing Windows VxDs and Device Drivers

Talking to TSRs
TSRs are nearly always accessed via a software interrupt, with parameters passed in regis
ters. In some cases, parameters are instead passed on the stack. In this alternate approach,
an initial call through a software interrupt returns one or more function addresses. Appli
cations later call these addresses directly, passing parameters on the stack.

The first method, in which an interrupt is used and parameters are passed in regis
ters, is the simpler of the two, so I'll explain it first. To issue a software interrupt, a
Windows driver DLL uses the same method a DOS program does: either a run-time
library function like i nt86 or embedded assembly.

I prefer to use embedded assembly because the i nt86 function uses pointer
parameters, and passing pointers to any library functions in a DLL means
worrying about SS != OS issues. (Refer to Chapter 13 for more on this
issue.)

Windows traps all software interrupt instructions and first determines if the soft
ware interrupt is a supported interrupt, like DOS or BIOS, that requires special trans
lation handling. (Refer to Table 17.1 for a list of unsupported interrupts.) If no special
handling is required, Windows does nothing but switch the processor into V86 mode
and call the software interrupt handler in the V86 mode IVT. When the real mode
software interrupt handler issues an I RET, Windows switches the processor back to
protected mode and the Windows application continues executing.

If your Windows driver DLL doesn't need to pass any pointers to the TSR and the
TSR doesn't return any pointers to your driver, then your DLL need only initialize
processor registers and issue the software interrupt. If pointers are exchanged, your
DLL must do some extra work.

Passing Data via Buffers

A Windows driver DLL must take special precautions when calling a DOS TSR and
exchanging data via a buffer. If the Windows driver DLL supplies the buffer and the
TSR fills it in, the precautions involve both allocating real-mode-addressable memory
and passing the buffer address to the TSR. If the transfer is the other way around (where
the TSR owns the buffer and gives the Windows driver DLL the buffer's address), the
precautions involve correctly forming a pointer to access the real mode buffer.

Driver D£Ls: Using Real Mode Services - 373

The TSR Owns the Buffer
A pointer returned by a TSR through some pair of registers is, by definition, a real
mode pointer. A Windows driver DLL can't use this pointer directly - doing so
results in a protection violation. As a protected mode application, a Windows driver
DLL must use a protected mode pointer. The trick is to turn the TSR's real mode
pointer into a protected mode pointer which the driver can use.

A real mode pointer consists of a segment and an offset; a protected mode pointer
consists of a selector and an offset. A segment and a selector differ in how the proces
sor transforms each into a linear address. In real mode, the processor computes a lin
ear address by performing a simple arithmetic calculation: physi"ca1 address =

(segment«4)+offset. In protected mode, there is no arithmetic relationship
between a selector and a linear address. Instead, each protected mode selector has an
associated base address (stored in a descriptor table maintained by the operating sys
tem), and the processor adds the offset portion of the pointer to this base address to
get the linear address.

The basic idea behind transforming a real mode pointer to a protected mode pointer
is this: the driver creates a protected mode selector with a base addres~ equal to the same
linear address generated by the real mode pointer. Windows provides a set of selector
API functions to perform this conversion: All ocSe1 ector, SetSe1 ectorBase, and
SetSe1ectorLimi~

As its name suggests, All ocSe 1 ecto r allocates a protected mode selector. The
single parameter is a template selector. To create a selector to address data, pass in the
value in the DS register. To create a code selector (this is much less common), use the
value in CS. Failure to pass the right selector as a parameter usually results in a selec
tor of the wrong type, followed by a protection violation when using the selector.

SetSe1 ectorBase performs the actual conversion. Given a linear address that cor
responds to the real mode pointer, SetSe 1 ectorBase will update the allocated selec
tor so that its base is at that linear address.

There is one more important step in setting up the protected mode selector: setting
its limit with SetSe 1 ectorL i mi t. Unlike a real mode segment, a selector has an asso
ciated length, or limit. A memory access past this limit results in a protection viola
tion. For maximum protection, the Windows driver DLL should set this limit to the
size of the allocated buffer.

374 - Writing Windows VxDs and Device Drivers

The following code encapsulates this series of Windows API calls in a single func
tion, which converts a real mode segment and offset to a protected mode pointer.

void far *RealPtrToProtPtr(WORD seg, WORD off)
(

char far *ptrProt;
WORD myDs,sel;

_asm mov myDs, ds
sel = AllocSelector(myDs);

II Set selector's linear address to (seg < 4)+offset
base = (seg « 4) + off;
SetSelectorBase(sel, base);

II Set selector limit to 64K.
SetSelectorLimit(sel, 64*1024);

return(MAKELP(sel, 0));

The Windows Application Owns the Buffer
Transferring data in the other direction, from Windows driver DLL to TSR, raises
exactly the same issues as those described in the earlier section on IOCTL handling.
A buffer passed from a Windows driver DLL to a TSR must be located below 1Mb,
because when executing the TSR in V86 mode, the processor can address only 1Mb of
memory. As described earlier (in the section on IOCTL handling), Gl oba 1 DosA 11 oc
should be used to allocate such a buffer, and the DWORD return value is used to build
both a protected mode pointer and a real mode pointer to address the buffer.

Once the buffer is allocated, the driver must pass the buffer's address to the TSR.
By convention, TSRs expect parameters in registers, not on the stack. This means the
Windows application must load the real mode segment and a zero offset into which
ever pair of registers the TSR expects. A DOS application calling a TSR would either
use assembly language to load the processor registers directly and issue the software
interrupt, or use the C library _i ntdosx function. Whenever a Windows driver DLL
passes a buffer to a TSR, calling the TSR is not that simple and requires using DPMI.

Driver DLLs: Using Real Mode Services - 375

Calling the TSR using DPMI

The Windows designers realized it was important to allow Windows applications and
drivers to communicate with TSRs, so Windows provides a set of services to facilitate
this. These services aren't part of the normal Windows API, but are instead part of the
DPMI interface supported by Windows through I NT 31 h. DPMI selector services
were introduced in Chapter 14's discussion of memory-mapped devices. This section
will introduce another DPMI service, Simulate Real Mode Interrupt. whichwill
let our driver call the TSR and pass it a buffer pointer. The following pseudocode shows
the calling parameters for the DPMI Simulate Real Mode Interruptfunction.

AX = 0300h
BL = interrupt number
BH = fl ags

Bit 0 = 1 to reset interrupt controller and A20 line
CX = number of words copied from prot. mode stack to real mode stack
ES:DI = far pointer to real mode call structure

Simul ate Real Mode Interrupt passes register information through the real
mode call structure. This structure contains a field for every processor register and is
similar to the REGS structure used with the C library function _ i ntdosx. The follow
ing code shows the declaration in C.

struct
{

unsigned long edi;
unsigned long esi;
unsigned long ebp;
unsigned long res1;
unsigned long ebx;
unsigned long edx;
unsigned long ecx;
unsigned long eax;
unsigned short flags;
unsigned short es;
unsigned short ds;
unsigned short fs;
unsigned short gs;
unsigned short ip;
unsigned short cs;
unsigned short sp;
unsigned short ss;
REAL_MODE_CALL_STRUC;

376 - Writing Windows VxDs and Device Drivers

The driver fills these register fields as required by the TSR. (Note that you don't
have to Gl oba 1 DosA 11 oc to make the structure itself real mode addressable, because
DPMI will take care of this.) Then the driver uses embedded assembly to fill the
actual processor registers - notthe ones in the call structure ~ as required by the
DPMI service, and issues an I NT 31h. Software interrupt handlers don't use stack
parameters, so CX will usually be zero.

When the Windows driver DLL issues the I NT 31 h, DPMI first copies the contents
of the real mode call structure to an intermediate area which is addressable in V86
mode. Next, DPMI switches to V86 mode, then copies each field of the call structure
to the proper processor register. Last, DPMI issues the requested software interrupt.

The TSR runs,blissfully unaware that it was invoked by a protected mode applica
tion. When the TSR returns, DPMI switches to protected mode and copies from the
intermediate call structure back to the Windows driver DLL's original structure. So
any information passed from the TSR to the Windows driver DLL via a register shows
up afterward in the real mode call structure. To examine the buffer contents after the
TSR returns, the driver uses the protected mode pointer built earlier with MAKELP and
the protected mode selector.

The following example illustrates passing a buffer to a TSR. In this example, the
TSR is called through INT 14h and expects a pointer to the buffer in ES: BX.

DWORD dw;
WORD seg, sel;
char far *buf;
REAL_MODE_CALL_STRUC RmCallStruc;

dw = GlobalDosAlloc(256);
seg = HIWORD(dw);
RmCallStruc.es = seg;
RmCallStruc.ebx ~ 0;
_asm
{

mov ax, 0300h II DPMI func Simulate
mov bl , 14h II Software Interrupt
xor bh, bh II fl ags
xor cx, cx 1/ num word passed on
mov es, SEG RmCallStruc
mov di, OFF RmCallStruc
i nt 31h

}

buf = MAKELP(LOWORD(dw), 0);
II buf can now access data filled in by TSR

Real Mode Int
Number

stack

Driver DLLs: Using Real Mode Services - 377

Calling a TSR via an Address
A less common method of calling a real mode TSR is through an address. Your
program gets the address by calling the TSR once through a software interrupt,
and the interrupt handler returns one or more function addresses. One example of
this strategy is the NDIS 2.0 (Network Driver Interface Standard) interface
between a protocol stack TSR and a network card device driver. Calling a service
through an address is just a minor variation on the themes described above.
Instead of using Si mul ate Softwa re I nterrupt, the Windows application uses
DPMI Call Real Mode Procedure With Far Return Frame(INT 31h,AX=301h).
The CS and I P fields of the call structure specify the address of the real mode procedure.

Be sure when you first retrieve this address from the TSR that you do not
treat it as a pointer. Yes, it has a segment and an offset, but the two don't
form a valid pointer as long as you're in protected mode.

The following code fragment obtains a real mode function address
through software interrupt 50h then makes a call to the function using DPMI
Call Real Mode Procedure With Far Return Frame. In addition, the call passes
two parameters to the real mode function. The first parameter is a function code
(to tell the TSR what to do), and the second is a pointer to a buffer. This buffer
must be Gl oba 1 DosA 11 oc'ed, and the buffer address we pass to the TSR is, of course,
the real mode segment returned by Gl oba 1 DosA 11 ~c.

II TSR expects function code in AX
REAL_MODE_CALL_STRUC RmCallStruc;
DWORD dw;
WORD seg;

mov RmCallStruc.eax = 7h;
II Call DPMI Simluate Real Mode

II Function: Get Entry Point
Interrupt through INT 31h

asm -
{

mov ax,
mov bl,
mov bh,
xor cx,
mov es,
mov di,
i nt 31h

0300h
50h
0
cx
SEG RmCallStruc
OFF RmCallStruc

II DPMI function
II int number
II flags
II stack words

378 - Writing Windows VxDs and Device Drivers

II TSR returned the entry point address in CX:DX
II Move it to CS:IP of call structure
RmCallStruc.cs = (WORD)RmCallStruc.ecx;
RmCallStruc.ip = (WORD)RmCallStruc.edx;

II Allocate memory for buffer to give to TSR
dw = GlobalDosAlloc(sizeof(MyStruc));
seg = LOWORD(dw);

II Call TSR entrypoint. whose function prototype is:
II void pascal TsrEntry(WORD FunctionCode. char far *pBuffer)
_asm
(

II Push parameters onto stack using
II pascal (left-to-right) calling convention
mov ax. 1
push ax
push seg
mov ax. 0
push ax

II Use DPMI Call Real Mode
mov ax. 0301h
xor bh. bh
mov cx. 2
moves. SEG RmCallStruc
mov di. OFF RmCallStruc
int 31h

Procedure With Far Return
II DPMI function
I I fl ags
II stack words

TSR Calls a Windows Application

Frame

Another common interaction between a Windows application and a TSR
involves giving the TSR a callback address. The TSR saves the address and calls
the function later during the execution of an interrupt handler. Usually the TSR
passes information to the callback function through registers, like a software
interrupt would. To get this job done from a Windows driver DLL, you need
DPMI Allocate Real Mode Callback Address (I NT 31h, AX=03h).

Unfortunately, it's not enough for the Windows driver DLL to give the TSR a real
mode pointer. Because Windows is a multitasking environment, the TSR must some
how make certain the correct VM is running when it performs the callback.

Driver DLLs: Using Real Mode Services - 379

Windows distinguishes between two types of TSRs: local and global. A local TSR
is mapped into the address space of a single VM, and is created when a user creates a
new DOS VM and then loads a TSR from the command line. A user can also load a
TSR local to the System VM, via the WINSTART. BAT file. The other type of TSR is a
global TSR, loaded before Windows begins. A global TSR is mapped into the address
space of all VMs - that is, the system VM and any DOS VMs created later. There is
a single copy of a global TSR (code and data) in memory, but each VM has its own
linear address that maps to this single copy in physical memory.

TSRs do their magic by hooking interrupt vectors, both hardware and software.
When a global TSR hooks a hardware interrupt, there is no particu4rr VM associated
with the handler. So Windows calls the TSR's interrupt handler immediately, in the
context of whatever VM was interrupted. If a global TSR's interrupt handler simply
services a hardware interrupt and has no interaction with an application, then it
doesn't matter which VM was interrupted. For example, the BIOS keyboard interrupt
handler (IRQ 1) reads a key from the keyboard controller and stores it in the BIOS
keyboard buffer - it does not call an application to give it the key.

But if a global TSR also calls to an application, through a callback, then it matters
very much indeed which VM was interrupted. Remember, each VM has its own
address space. Suppose the TSR interrupt handler is using VM1's address space
(because VMl happened to be the current VM at the time of the interrupt), and the
callback is in VM2's address space. Then the callback won't work because the call
back address is valid only when VM2 is executing, not when VMl is executing. The
TSR will call an address that points to garbage in VMl, and the system will probably
crash.

Solution to Callbacks
Making the TSR Windows-aware will solve this problem. A Windows-aware TSR
won't use the callback directly, but instead will wait until the System VM (where
Windows applications live) is the current VM. The TSR can force the System VM to
be scheduled through an INT 2Fh Switch VMs and Callback interface offered by
the VMM, and the VMM will call back into the TSR when the System VM is current.
With the System VM running, the TSR can safely use the DPMI callback, which will
in turn trigger a mode switch from V86 mode to protected mode. Finally, with the pro
cessor in protected mode and the right VM active, the callback in the Windows appli
cation can execute.

If you are unable to modify the TSR you're using in order to make it
Windows-aware, you must write a second helper TSR which is Windows-aware

. and does the VM switch on behalf of the original TSR.

380 - Writing Windows VxDs and Device Drivers

Thus, when a Windows driver DLL communicates with a TSR through a callback,
the communication involves this sequence of steps:

The Windows driver DLL:

1. Uses DPMI Allocate Real Mode Call back Address to allocate a callback.

2. Gives the DPMI callback address to the TSR.

TSR at interrupt time:

3. If current VM is System VM, go to step 5.

4. IfcurrentVMisnotSystemVM,useINT 2Fh Switch VMs and Callbackto

force System VM to be scheduled.

System VM is now current:

5. Calls DPMI callback address, DPMI switches to protected mode and calls Win

dows driver DLL.

Windows driver DLL:

6. Callback executes in protected mode, in the System VM, and accesses TSR data

through the real mode call structure.

7. Callback adjusts the real mode call structure CS: I P and returns.

8. DPMI switches back to V86 mode and returns to TSR.

Callback Coding Details

The code for the Windows driver DLL will be affected in two places: when registering
with the TSR for a callback (usually in an initialization or open function) and in the driver
callback itself. In addition, the TSR needs additional code to handle the VM switch.

The following code illustrates how a Windows driver DLL would use the DPMI
A 11 ocate Real Mode Callback Address service. In order to register with the TSR
for a callback, the Windows driver DLL first needs to obtain a real mode callback
address, through DPMI Allocate Real Mode Callback Address. The input param
eters to this service are a protected mode pointer to the function to be called and a pro
tected mode pointer to a real mode call structure. DPMI returns the real mode
segment and offset of a stub function which, when called from V86 mode, will switch
into protected mode and then call your driver. The driver then gives the real mode seg
ment and offset returned by DPMI to the TSR.

Driver DLLs: Using Real Mode Services - 381

void far *pfFoo;
WORD CallbackSeg;
WORD CallbackOff;

pFoo = &Foo;
_asm
{

}

mov ax, 0303h II DPMI Allocate RM Callback
moves, SEG RmCallStruc
mov di, OFFSET RmCallStruc
mov si, pFoo
push ds
mov ds, pFoo+2
int 31h
pop ds
mov CallbackSeg, cx
mov CallbackOff, dx

II Give CallbackSeg and Callback Off to TSR as callback

Before using the callback address from the Windows driver DLL (which is really a
DPMI allocated callback, as shown above), the TSR must check the current VM. If the
System VM is current, the TSR calls through the callback address and returns. If
another VM is current, the TSR uses the I NT 2Fh service Swi tch VMs and Ca 11 back.
(The following code lists the parameters for this service.) This I NT 2 Fh service is just
another way of calling the VMM's Ca 11_Pr; or; ty_VM_Event service - a fact that
gives the parameters more meaning.

The Calling Interfacefor Switch VMs and Ca77back

INT 2Fh
AX=1685h (functi on code Switch VMs and Call back)
BX=switch to this VM (id)
ES:DI=address of function to call when VM is current
CX=flags
DS:SI=priority boost
Flags: PEF_WaitJor_STI (OOOlh) to wait until interrupts are enabled

PEF_NoCCrit (0002h) to wait until critical section is unowned
Priority boost: Cur_Run_VM_Boost (00000004h) to run the VM for its full

time slice
Low_Pri_Device_Boost (OOOOOOlOh) to give the VM

moderate priority over other VMs
High_Pri_Device_Boost (OOOOlOOOh) to give the VM

significant priority over other VMs
Critical_Section_Boost (OOlOOOOOh) to give the VM

same priority as if in critical section
Time_Critical_Boost (00400000h) to give the VM

higher priority than,a critical section

382 - Writing Windows VxDs and Device Drivers

To use this service, a TSR tells the VMM (through INT 2Fh) which VM to sched
ule, what kind of priority boost to give the VM (to make it get scheduled faster), and
an address to call when the VM switch has occurred. Because the code that will exe
cute is a Windows driver DLL, the TSR needs to schedule VMl, which is the System
VM. A TSR doesn't usually need to use a priority boost, so this parameter would usu
ally be zero. Last, the callback address given to VMM is the same one given to the
TSR by the Windows driver DLL.

After making the I NT 2 Fh call, theTSR returns. The VMM will schedule the Sys
tem VM, and the System VM will eventually become the current VM. At that time,
VMM will call the callback address registered with Switch VMs and Callback.
When that happens, the callback in the Windows driver DLL will finally execute in
protected mode and in the right VM. The following code fragment illustrates the use
of Switch VMs and Callback in a TSR

; TSR uses Switch
mov ax. 1683h
int 2fh
cmp CallbackVM. 1
jz same_VM

VMs and Callback
function Get Current VM

is SYSVM current?
yes. no need to switch

mov ax. 1685h function Switch VM and Callback
mov bx. 1 switch to SYSVM
mov cx. 0 fl ags
mov si. 0 priority boost
; callback address registered by Windows driver goes in ES:DI
mov di. WORD PTR CallbackAddr+2
moves. di
mov di. WORD PTR CallbackAddr
int 2fh
jmp xit

same_VM:
pushf ; SYSVM is current. use callback directly
call DWORD PTR:CallbackAddr
xit:

Once the System VM is current, the callback used by the TSR can execute - in the
right VM. This callback is actually a DPMI stub function with several important duties.
The stub immediately preserves all V86 mode register values (by copying them into a
call structure) and then switches into protected mode. Next, the stub loads ES: 01 with
a pointer to the call structure and loads OS: S I with a protected mode pointer that
addresses the real mode stack. Finally, the stub calls the Windows driver DLL, at the
address originally registered by DPMI Allocate Real Mode Call back Address.

Driver DLLs: Using Real Mode Services - 383

The driver now executes. Because the driver is running in interrupt context, the usual
prohibitions apply: no DOS or BIOS functions and only Windows API functions from the
interrupt-safe list in Chapter 15. Also, any pointers in the real mode call structure (pointed
to by ES: OI) are real mode pointers and thus can't be used directly but must be trans
lated into protected mode pointers. Earlier in this chapter, I've explained how to perfonn
this conversion using All ocSe 1 ector, SetSe 1 ectorBase, and Set5e 1 ectorL i mit.

The driver can access register values passed from the TSR by examining the
appropriate field of the call structure (pointed to by ES: 01). The driver can also mod
ify the call structure to return register values to the TSR. Moreover, if the TSR com
municates with the driver through stack parameters instead of register parameters, the
driver can even access the real mode stack, using the protected mode pointer in OS: 51.
For example, if the TSR pushes a single word value onto the stack and does a far call
to the callback address, the (real mode) stack looks like:

SS:SP+4 - parameter
SS:SP+2 - return address of TSR (segment)
SS:SP - return address of TSR (offset)

Thanks to the DPMI stub function, when the Windows driver DLL executes, these
same values can be accessed relative to OS: S I:

05:S1+4 - parameter
OS:S1+2 - return address of TSR (segment)
05:S1 - return address of TSR (offset)

When the driver finishes, it can't just exit with a simple iret instruction. When it
returns and DPMI switches back to V86 mode, DPMI restores all V86 mode registers
from the call structure, including CS and I P. That means the real mode code will resume
execution at the CS: I P value in the call structure. Normally you want the TSR to
resume execution at the instruction/allowing the far call into the callback. Notice these
desired CS and I P values are on the real mode stack pointed to by OS: SI, at locations
S I +2 and S I. So the Windows driver DLL retrieves the desired CS and I P from the real
mode stack and places them in the real mode call structure before doing the iret.

384 - Writing Windows VxDs and Device Drivers

The following code illustrates how to fix up the CS: I P in the call structure. This
fix up should be completed immediately before leaving the callback in the Windows
driverDLL.

Callback:
do your own thing
access real mode call structure via ES:DI
if parameters needed from real mode stack,
use DS:SI

call DoYourOwnThing

Extract proper real mode CS and IP from
top of real mode stack, pointed to by DS:S1.
Put CS and IP values into real mode call structure

cld
lodsw
mov WORD PTR es:[di .RM_IPJ, ax
lodsw
mov WORD PTR es:[di .RM_CSJ, ax
add WORD PTR es:[di .RM_SPJ, 4
i ret

Summary

real mode IP

real mode CS
toss old CS:IP from stack

The DPMI services make it possible for a Windows driver DLL to communicate with
DOS TSRs and device drivers. If you already have a DOS driver, then modifying it to
be Windows-aware may be your shortest development path.

If, however, you are creating a DOS-based driver from scratch, the information in
this chapter should make it obvious that a driver that is called via software interrupt and
that expects all parameters in registers will be the easiest to implement and support.

Driver D£Ls: Using Real Mode Services - 385

Listing 17.1 DOSTSR.H

typedef struct
{

WORD usReadBufSize;
} DRIVERPARAMS. FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS. FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

typedef struct
{

WORD usDevNumber;
BOOL bFlags;
DRIVERPARAMS params;

DEVICECONTEXT. FAR *HDEVICE;

HDEVICE FAR PASCAL DeviceOpen(void);
WORD FAR PASCAL DeviceClose(HDEVICE);
WORD FAR PASCAL DeviceGetWriteStatus(HDEVICE. LPWORD pusStatus);
WORD FAR PASCAL DeviceGetReadStatus(HDEVICE. LPWORD pusStatus);
WORD FAR PASCAL DeviceWrite(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
WORD FAR PASCAL DeviceRead(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
WORD FAR PASCAL DeviceSetDriverParams(HDEVICE. PDRIVERPARAMS pParms);
WORD FAR PASCAL DeviceGetDriverParams(HDEVICE. PDRIVERPARAMS pParms);
WORD FAR PASCAL DeviceGetDriverCapabilities(HDEVICE. PPDRIVERCAPS ppDriverCaps);

Listing 17.2 UART.H

#define UART_REG_THR OxOO
#defi ne UART _REG_RDR OxOO
#define UART_REG_IER OxOl
#define UART_REG_IIR Ox02
#define UART_REG_LCR Ox03
#define UART_REG-MCR Ox04
#define UART_REG_LSR Ox05
#define UART_REG-BAUDLO OxOO
#define UART_REG_BAUDHI OxOl

#define UART_IIR_NONE OxOl
#defi ne UART _I I R_ THRE Ox02
#defi ne UART_IIR_RXRDY Ox04
#define UART_IER_THRE Ox02
#defi ne UART_I EfCRXRDY OxOl
Iidefi ne UART_MCR_OUT2 Ox08
#define UART_MCR_LOOP OxIO
#define UART_LSR_THRE Ox20
I/defi ne UART _LCR_DLAB Ox80
#define UART_LCR_8NI Ox03
I/defi ne UART_LSR_RXRDY OxOI
#define BAUD_1200 Ox60

386 - Writing Windows VxDs and Device Drivers

Listing 17.3 DOSTSR. C

I/include <io.h>
I/include <fcntl.h>
I/include <sys\types.h>
I/include <sys\stat.h>
I/include <errno.h>
I/include <stdlib.h>

I/include <windows.h>
I/include <conio.h>
I/include "dostsr.h"

I/define FLAGS_OPEN Ox04

I/defi ne TSRJUNCOPEN OxOO
I/defi ne TSRJUNCREADST ATUS OxOO
I/define TSRJUNCWRITESTATUS OxOO
I/define TSRJUNCREAD OxOO
I/define TSR_FUNC_WRITE OxOO
I/defi ne TSRJUNCGETPARAMS OxOO
I/defi ne TSRJUNCGETCAPS OxOO

I/define SET(value, mask value I~ mask
I/define ClR(value, mask value &~ (-mask)

DEVICECONTEXT Device1 ~ { 0];
DRIVERPARAMS DefaultParams ~ { 1024 };
DRIVERCAPS DriverCaps ~ { Ox0101];

BOOl ValidHandle(HDEVICE hDevice);
WORD DosGetStatus(WORD hnd, WORD InOut, BOOl *pReady);
WORD DosReadOrWrite(WORD hnd, WORD ReadOrWrite, lPBYTE lpBuf, lPWORD pcbBytes);
WORD DosGetDeviceData(WORD hnd, WORD *pData);

HDEVICE FAR PASCAL _export DeviceOpen(
{

HDEVICE
WORD

hDevice;
usData;

OutputDebugString("DeviceOpen\n");

hDevice ~ &Device1;

if (hDevice->bFlags & FLAGS_OPEN)
return -1;

hDevice->usDosHandle ~ open("com1" O_BINARY O_RDWR);
if (hDevice->usDosHandle ~ -1)

return -1;

hDevice->params ~ DefaultParams;

SET(hDevice->bFlags, FLAGS_OPEN);

return hDevice;

Driver DLLs: Using Real Mode Services - 387

Listing 17.3 (continued) DOSTSR.C

WORD FAR PASCAL _export DeviceClose(HDEVICE hDevice
(

OutputDebugString("DeviceClose\n");

if (!ValidHandle(hDevice))
return -1:

if «hDevice-)bFlags & FLAGS_OPEN) == 0)
return -1;

ClR(hDevice->bFlags. FLAGS_OPEN);

close(hDevice->usDosHandle);

return 0;

WORD FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice. lPWORD pusStatus)
(

BOOl bReady;

OutputDebugString("DeviceGetWriteStatus\n");

if (!ValidHandle(hDevice »
return -1;

if «hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

DosGetStatus(hDevice->usDosHandle. DOS_STATUS_OUT, &bReady);
if (bReady)
{

}

else
{

*pusStatus ~ 1;

*pusStatus ~ 0;

return 0;

II ready to transmit

II not ready to transmit

388 - Writing Windows VxDs and Device Drivers

Listing 17.3 (continued) DOSTSR. C

WORD FAR PASCAL _export DeviceGetReadStatus(HDEVICE hDevice. lPWORD pusStatus)
(

BOOl bReady;

OutputDebugString("DeviceGetReadStatus\n");

if (!ValidHandle(hDevice »
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

DosGetStatus(hDevice->usDosHandle. DOS_STATUS_IN. &bReady);
if (bReady)
{

}
else
(

*pusStatus = 1;

*pusStatus = 0;

return 0;

II data ready

II no data ready

WORD FAR PASCAL _export DeviceWrite(HDEVICE hDevice. lPBYTE lpData. lPWORD pcBytes)
(

OutputDebugString("DeviceWrite\n");

if (! 1 pData)
return -1;

if (!ValidHandle(hDevice »
return -1;

if ((hDevice->bFlags & FLAGS_OPEN) == 0)
return -1;

DosReadOrWrite(hDevice->usDosHandle. DOS_WRITE. lpData. pcBytes);

return 0;

DriverDLLs: Using Real Mode Services - 389

Listing 17.3 (continued) DOSTSR. C

WORD FAR PASCAL _export DeviceRead(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
{

WORD i;

OutputDebugStri ng("Devi ceRead\n");

if (! 1 pDa ta)
return -1;

if (!ValidHandle(hDevice »
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) -- 0)
return -1;

DosReadOrWrite(hDevice->usDosHandle. DOS_READ. lpData. pcBytes);

return 0;

WORD FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice,
PDRIVERPARAMS pParams

OutputDebugString("DeviceSetDriverParams\n");

if (!pParams)
return -1;

if (IValidHandle(hDevice »
return -1;

if «hDevice-)bFlags & FLAGS_OPEN) -- 0)
return -1;

hDevice-)params = *pParams;

return 0;

WORD FAR PASCAL _export DeviceGetDriverParams(HDEVICE hDevice,
PDRIVERPARAMS pParams

OutputDebugStri ng("Devi ceGetDri verParams\n");

if (lpParams)
return -1;

if (IValidHandle(hDevice »
return -1;

if «hDevice->bFlags & FLAGS_OPEN) -- 0)
return -1;

*pParams = hDevice->params;

return 0;

390 - Writing Windows VxDs and Device Drivers

Listing 17.3 (continued) DOSTSR. C

WORD FAR PASCAL _export DevieeGetDriverCapabilities(HDEVICE hDeviee.
PPDRIVERCAPS ppDriverCaps

OutputDebugStri ng("Devi eeGetDri verCapabi 1 i ti es\n") ;

if (lppDriverCaps)
return -I;

if (lValidHandle(hDeviee »
return -1;

if «hDeviee->bFlags & FLAGS_OPEN) == 0)
return -1;

*ppDriverCaps = &DriverCaps;

return 0;

Baal ValidHandle(HDEVICE hDevice
{

return (hDeviee == &Deviee1);

WORD DosGetDevieeData(WORD hnd. WORD *pData
{

WORD re = 0;
WORD data;

_asm
{

mov ah. Ox44
mov al. OxOO
mov bx. hnd
int 21h
jne ok
mov re. ax
jmp xit

ok: mov data. ax
jmp xit

xit:
J

*pData = data;

return re;

Driver DLLs: Using Real Mode Services - 391

Listing 17.3 (continued) DOSTSR. C

WORD DasGetStatus(WORD hnd. WORD InOut. BOOl *pReady)
{

WORD re ~ 0;
BYTE stat;

*pReady ~ 0;
asm

{

mav ax. inOut
mav ah. Ox44
mav bx. hnd
int 21h
jne ak
mav re. ax
jmp xit

ak: mav stat. al
jmp xit

xit:
}

*pReady ~ (stat ~~ OxFF ? TRUE FALSE);

return re;

WORD DasReadOrWrite(WORD hnd. WORD ReadOrWrite. lPBYTE lpBuf. lPWORD pcbBytes)
{

WORD re ~ 0;
WORD eBytes ~ *pebBytes;

_asm
{

mav ax. ReadOrWri te
xehg ah. al
mav bx. hnd
may ex. eBytes
push ds
lds di. lpBuf
mav dx. di
int 21h
pap ds
jne ak
mav re. ax
jmp xit

ak: mav cBytes. ax
jmp xit

xit:
}

*pebBytes ~ eBytes;

return re;

392 - Writing Windows VxDs and Device Drivers

Listing 17.3 (continued) DOSTSR.C

lIifdef DDS
main()
(

char abOut[4]. abIn[4];
unsigned short status;
HDEVICE hDev;
unsigned short cb;

hDev ~ DeviceOpen();
DeviceGetWriteStatus(hDev. &status);
cb ~ 3;
abOut[O] ~ . a' ;
abOut[1] ~ . t' ;
abOut[2] ~ '\r';
DeviceWrite(hDev. abOut. &cb);
DeviceGetReadStatus(hDev. &status);
DeviceRead(hDev. abIn. &cb);
DeviceC1ose(hDev);

}

lIendif

Listing 17.4 DOSTSR. MAK

all: dostsr.dll

it DRIVER DLL

dostsr.obj: dostsr.c dostsr.h
c1 -c -W3 -ASw -Gsw2 -Oi $*.c

dostsr.d11: dostsr.def dostsr.obj
link dostsr.dostsr.d11 .dostsr.map ICO IMAP.sd11cew 1ibw Inod/noe.dostsr.def
imp1ib driver.1ib dostsr.d11
copy dostsr.d11 \windows\driver.d11

Listing 17.5 DOSTSR. DEF

LIBRARY DRIVER
DESCRIPTION "DLL To Interface to DOS TSR"
EXETYPE WINDOWS
DATA PRELOAD MOVEABLE SINGLE
CODE PRELOAD MOVEABLE DISCARDABLE

Chapter 18

Thunks:
Calling from 32-bit to 16-bit
Chapter 13 eplained that Win32 DLLs can perform only very limited types of hard
ware interaction. Although a Win32 DLL may issue I N and OUT instructions safely
when running under Windows 95 (but not under NT), a Win32 DLL may not access a
memory-mapped device, perform DMA transfers, or handle hardware interrupts. To
properly implement these tasks under Win32 you should write a true device driver -
a VxD for Windows 95 and a kernel-mode driver for Windows NT.

If you must support Windows NT, you really must write a driver. But if you're con
cerned only about Windows 95, there is an alternative to writing a VxD. You can put the
hardware access in a 16-bit DLL (using the techniques in Chapters 14 through 17), and
then write a translation layer to connect the Win32 application to the 16-bit DLL. The
translation layer is called a "thunk". Note that Windows 95 uses flat thunks, not to be con
fused with the universal thunks supported by Win32 or the generic thunks supported by
Windows NT. From now on I'll usually just say thunk, but I will always meanfTat thunk.

The rest of this chapter will examine:

What is a flat thunk?

What tasks are performed by the thunk layer?

How does the thunk layer do its "magic"?

What are the steps for implementing a thunk layer?

How is a thunk layer built?

393

394 - Writing Windows VxDs and Device Drivers

What is a Flat Thunk?
Suppose you're writing a Win32 application, and you need to call some functions in a
Win16 DLL. Figure 18.1 shows what you want to do.

Because of the 32-bitlI6-bit boundary shown in Figure 18.1, simply calling from
APP32 to DLL16 won't work. In order to successfully call from 32-bit down to 16-bit,
you must address such issues as: pointer translation (flat vs segment offset) , stack
addressing (SS: ESP vs SS: SP), and code segment size (16-bit or 32-bit). A thunk is a
layer of code that handles these issues; that does the "magic" necessary to allow 32-bit
code to call 16-bit code. Although flat thunks can be used in the other direction, 16-to-32,
I'll discuss only 32-to-16 here, because hardware access functions are in 16-bit code.

You should encapsulate the thunk layer in a 32-bit DLL. Create a 32-bit DLL that
contains the same set of exported functions as the 16-bit DLL you want to call. In
each of the Win32 DLL's exported functions, the function in the 32-bit DLL calls the
analogous function in the 16-bit DLL.

Figure 18.1 Showing why 32-bit applications can't
call directly to a 16-bit DLL.

• Pointers are 32-bit flat model
• Stack addressed as 55: E5P
• Code segments are 32-bit

• Pointers are segment offset (16: 16)
• Stack addressed as 55: 5 P
• Code segments are 16-bit

Thunks: Calling from 32-bit to 16-bit - 395

The 32-bit DLL doesn't call the 16-bit DLL directly, but goes through a thunk layer
(Figure 18.2). If the Bat-to-segmented pointer conversions and stack switching mentioned
above sounds too complicated, don't worry - you don't have to write the code in the
thunk layer. Thunks are automatically generated by the Microsoft Thunk Compiler. You
provide a "thunk script" (a file containing modified function prototypes) as input, and the
thunk compiler produces code (an assembly language source file) as output. It is this
code, linked into both the 32-bit DLL and the 16-bit DLL, that acts as the thunk layer.

Figure 18.2 Bridging the 16-bit/32-bit boundary with
a thunk and KERNEL32 services.

N N
...... S E S

ASM source produced by
Thunk Compiler, then assembled
with flag - D I 5_32 to produce OBI.

~ ~ ~ ~
- - - - - - - ~u Z - - - - -..... ~ - - 16-bitJ32-bit Boundary - - - - - -

.~ ~ ~~ ~
1:~ .~ ~S .~

ASM source provided by
Thunk Compiler, then assembled
with flag - D I 5_16 to produce OBI.

396 - Writing Windows VxDs and Device Drivers

The Thunk Compiler is not provided with the Visual C++ package. It's only
available in the Win32 SDK, which is itself only available with the MSDN
CD Professional Subscription. You'll also need the Microsoft Assembler
(MASM) to assemble the thunk compiler's output.

The assembly language source produced by the thunk compiler serves double
duty; it's used on both sides of the 16-bit/32-bit boundary. In building the thunk, the
assembly file is assembled first as 32-bit code (using the flag -0 I 5_32), producing a
32-bit OBJ which is linked into the Win32 DLL. Then the same ASM file is assem
bled again as 16-bit code (using the flag -OI5_16), producing a 16-bit OBJ, and
linked into the 16-bit DLL.

Thunk Layer Tasks
The flat thunk layer generated by the Thunk Compiler performs these tasks:

• translates pointer parameters,

• translates integer parameters,

switches from 32-bit to 16-bit stack and back again,

transfers control from the 32-bit calls to the 16-bit target and back again, and

• translates return values to the appropriate 32-bit representation.

When a pointer parameter is passed from 32-bit code to 16-bit code via a thunk,
the pointer must be translated from a flat (0:32) pointer to a far (16:16) pointer.
Because a flat pointer is a linear address, the thunk layer's translation involves allocat
ing a selector and setting its base address equal to the flat pointer value.

A simpler translation must be performed on integer-sized parameters, because an
integer is 32 bits for 32-bit code but only 16 bits for 16-bit code. To handle an integer
parameter, the 32-bit caller would push a 32-bit argument on the stack, but the called
16-bit function would pop only 16 bits off the stack. The thunk code must adjust the
stack to contain the truncated (16-bit) version of the integer instead.

After converting parameters, the thunk layer prepares for the trip to 16-bit land by
switching from a 32-bit stack to a 16-bit stack (i.e. from a stack addressed by 55: E 5 P
to a stack addressed by 55: 5P). This translation also involves selector allocation and
manipulation. On the return trip, from 16-bit code back to 32~bit code, the thunk code
reverses the process to return to the original 32-bit stack.

Once the parameters and stack have been modified, the thunk layer transfers control
from 32-bit to 16-bit, but not directly from the thunk compiler code. Instead, the thunk
compiler code makes a call into a KERNEL32 function; KERNEL32 completes the
32-to-16 transition, using some fancy stack manipUlation to push the segment and offset
of the 16-bit target onto the stack, and then uses a RETF to essentially 'jump" into the
16-bit world. (The next section will explain more about KERNEL32's role in the thunk.)

ThunkS: Calling from 32-bit to 16-bit - 397

Once the call has returned to 32-bit land, the thunk layer converts the 16-bit
callee's return value, if it had one. A 16-bit function returns a 32-bit value in two reg
isters, OX :AX. But its 32-bit caller expects a 32-bit return value to be found in EAX, so
the thunk layer must copy the return value from OX: AX to EAX.

Thunk Layer Magic
In this section, we'll examine a simple thunk script and the code produced by the
thunk compiler to see how a thunk layer performs its magic.

Below is a thunk script for a 16-bit DLL with a single export~~ function named
OLL16Foo, which has an integer parameter and a voi d pointer pafameter and returns
an unsigned long.

unsigned long DLL16Foo(int nThunk, void *lpvoidThunk)
{

lpvoidThunk = input;

The thunk script contains something that looks like a function, but acts more like a
function prototype. Inside the function "body" is additional information about the
function's pointer parameters, specifying each pointer parameter as an input parame
ter, an output parameter, or both. The input keyword directs the thunk compiler to
generate code to translate a 32-bit flat pointer to a far pointer before calling the 16-bit
DLL, the output keyword directs the thunk compiler to generate code that translates
a far pointer "returned" by the 16-bit DLL to a flat pointer usable by 32-bit code, and
the i nout keyword results in code that does both. By default, the thunk compiler
treats all pointers as input. The following fragment shows the assembly code gener
ated for the OLL16Foo thunk script.

public DLL16Foo@32
DLLl6Foo@32:

mov cl,O
public IIDLL16Foo@8
IIDLLl6Foo@8:

push ebp
move bp,esp
push ecx
sub esp,60
push word ptr [ebp+8J ;nThunk: dword-)word
call SMapLS_IP_EBP_12 ;lpvoidThunk: flat-)16:16
push eax
call dword ptr [pfnOT_Thunk_X2to16J
shl eax,16
shrd eax,edx,16
call SUnMapLS_IP_EBP_12
1 eave
retn 8

398 - Writing Windows VxDs and Device Drivers

Note that although the thunk script gave the 16-bit DLL's function name as DLL16Foo,
the name of the function in the generated assembly code is different: DLL16Foo@32. This
is an example of "name decoration" for the PASCAL naming/calling convention. (The 32
refers not to 32-bits, but to the total number of bytes used for parameters.) Because
functions exported by a 16-bitDLL are always declared as PASCAL, the code in the Win32
DLL that calls DLL16Foo actually results in compiled code that calls DLL16Foo@32.

Immediately following the function name declaration is a mov instruction and
another function name declaration:

DLLl6Foo@32:
mov cl ,0

public IIDLL16Foo@8
IIDLLl6Foo@8:

This second function, IDLLl6Foo@8, is a helper function which expects the CL reg
ister to contain a "function number" parameter. If the thunk script included multiple
function prototypes, the thunk compiler code for each of them would have a similar
MOV CL instruction, but with a different operand, followed by ajump to I IDLLl6Fo0@8.
So I IDLLl6Foo@8serves as a common intermediate function for all of the 16-bit DLL
exported functions.

The first few instructions in I I D L Ll6 F oo@8 are standard prologue code for setting
up the stack frame and reserving storage for local stack variables. The PUSH ECX puts
the "function number" parameter from its immediate caller (in this case
DLLl6Foo@32) on the stack in preparation for a call to another subroutine later. The
next push, PUSH WORD PTR [EBP+8], is the translation of the 32-bit caller's first
parameter, an integer. The 32-bit caller pushed a DWORD onto the stack, which now
lives at EBP+8, and this thunk code takes only a WORD of that parameter and pushes it
onto the stack as an integer parameter for the 16-bit callee.

The 32-bit caller's pointer parameter lives at EBP+12, and the next instruction,
CALL SMapLS_I P _EBP _12, calls a subroutine to translate this pointer. If DLLl6Foo was
declared such that the pointer parameter ended up at EBP+8 instead (e.g. if there was
no integer parameter), then the thunk compiler would have generated code to call
SMapLS_I P _EBP _8 instead.

SMapLS_I P _EBP _12 is an undocumented function exported by KERNEL32. DLL.
This function translates the 32-bit flat pointer located at EBP+12 to an equivalent
16-bit far pointer. Its sibling functions - EBP _8, EBP _10, etc. - act similarly for
pointers located at EBP+8, EBP+ 10, etc. A flat pointer is really a linear base address, so
the translation involves nothing more than allocating a 16-bit selector and setting the
selector's base address equal to the value at EBP+ 12. SMapLS_I P _EBP _12 doesn't actu
ally allocate selectors, but uses the next available Local Descriptor Table (LDT) selec
tor from a pool of already-allocated selectors. This selector is returned to the pool
when the thunk compiler code calls SUnMapLS_I P _EBP _12. This cleanup call happens
after the thunk has returned from the call down to the 16-bit DLL.

Thunks: Calling from 32~bit to 16-bit - 399

Now that the parameters are translated, the switch from 32-bit to 16-bit happens as
part of this line:

call dword ptr [pfnOT_Thunk_X2to16J

This call through a table of function pointers eventually results in a call to
another undocumented KERNEL32 function called OT_Thunk. OT_Thunk is passed
the 16: 16 address of the real OLLl6Foo function. It is OT _Thunk that performs the
switch from a 32-bit stack to a 16-bit stack and then jumps to the 16: 16 address of
the real OLLl6Foo function in the real 16-bit DLL.

The process of initializing the table of function pointers mentioned above involves
quite a lot of black magic. I won't go into detail, but in short, the 32-bit DLL must call
a special initialization function, called ThunkConnect32, in its 011 Ma in. The
ThunkConnect32 function is also generated by the Thunk Compiler and "connects"
the 32-bit DLL to the 16-bit DLL by initializing the table with the 16: 16 address of
each of the 16-bit DLL's exported functions. (These addresses aren't known until run
time, when the 16-bit DLL has been loaded.) ThunkConnect32 uses yet another
undocumentedKERNEL32 function, Connect32, to obtain these 16: 16 addresses for
the table.

Creating a Thunk Layer, Step by Step
To create a thunk DLL, follow the following procedure:

1. Create a thunk script by modifying the 16-bit DLL's header file to include input,

output, and i nout information about each exported function's parameters.

2. Create a 32-bit DLL with a set of exported functions that match the 16-bit DLL's

exported functions.

3. Create a DLL entry point in the 32-bit DLL (usually called 011 EntryPoi nt)

which calls CThunkConnect16, where X is the name of the thunk script.

4. Add a new exported function to the 16-bit DLL, called 011 EntryPoi nt, which
calls X_ThunkConnect32, where X is the name of the thunk script.

The above procedure, as well as the build procedure in the following section,
must be followed exactly. Deviation will most likely result in a thunk that
doesn't build, doesn't work, or both.

400 - Writing Windows VxDs and Device Drivers

I'll explain each of these steps in more detail, using the 16-bit SKELETON DLL
from Chapter 13 as an example. The 32-bit thunk DLL will be called SKEL32. DLL and
will consist of: SKEL32. C [the 32-bit DLL source file (Listing 18.3, page 408)];
SKEL32. H [the header used by Win32 applications (Listing 18.2, page 407)];
SKEL32. DEF [the module definition file (Listing 18.5, page 410)]; and SKELETON. THK
[the thunk script (Listing 18.1, page 405)].

The Thunk Script

The starting point for the script file is the 16-bit DLL's header file, SKELETON. H. The
first step in creating SKELETON. THK from SKELETON. H is to add the following line:

enablemapdirect3216 = true; Ilcreates 32 to 16 thunk

This tells the thunk compiler the direction of the thunk - in this case, from 32-bit to
16-bit. The next step is to take each function in SKELETON. H, modify its counterpart in
SKELETON. THK to include a "function body" containing parameter information. The
function definition is also modified to remove any declaration keywords (such as
export, far, pascal). Thus, the Devi ceGetWri teStatus definition in SKELETON. H
(Listing 18.6, page 411), shown below:

int FAR PASCAL OeviceGetWriteStatus(HOEVICE hOevice, LPWORO usStatus)

is transformed into this in SKELETON. THK

int DeviceGetWriteStatus(HDEVICE hDevice, LPWORD pusStatus)
{

II the hDevice pointer is used as input by the 16-bit DLL
hDevice=input;

All of the functions except for Devi ceGetDri ve rCapabi 1 it i es use input pointer
parameters. Devi ceGetDri verCapabi 1 i ti es uses one input and one output parameter:

int DeviceGetDriverCapabilites(HDEVICE hDevice,
PDRIVERCAPS *ppDriverCaps)

II the hDevice pointer is used as input by the 16-bit DLL
hDevice=input;
ppDriverCaps=output;

Thunks: Calling from 32-bit to 16-bit - 401

In addition to function prototypes, the real SKELETON. H contains typedefs (HDEV ICE,
PDRIVERPARAMS, etc.) and includes WI NDOWS. H for additional typedefs (LPBYTE, LPWORD,
etc.). Because WINDOWS. H contains a lot of other stuff that the thunk compiler wouldn't
understand, SKELETON. THK doesn't actually include WINDOWS. H. Instead, SKELETON. THK
directly contains all the necessary typedefs, extracted from WINDOWS. H and SKELETON. H,
as shown in the following code fragment.

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef BYTE far* LPBYTE;

typedef struct
{

WORD usDevNumber;
} DEVICECONTEXT
typedef DEVICECONTEXT FAR *HDEVICE;

typedef struct
{

WORD usReadBufSize;
} DRIVERPARAMS;
typedef DRIVERPARAMS FAR *PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS;
typedef DRIVERCAPS FAR *PDRIVERCAPS;
typedef PDRIVERCAPS FAR *PPDRIVERCAPS;

SKEL32.C
The 16-bit SKELETON. DLL exports nine functions, so SKEL32. C will contain the same
nine functions, but with the suffix "32" added to the function name. Here's an exam
ple of one of those nine functions in SKEL32. C:

1fdefi ne DLLEXPORT _decl spec(dll export

DLLEXPORT int API ENTRY DeviceGetWriteStatus32(HDEVICE hDevice,
LPWORD pusStatus)

return DeviceGetWriteStatus(hDevice, pusStatus);

402 - Writing Windows VxDs and Device Drivers

The OLLEXPORT technique used above to declare an exported function in a
32-bit DLL is the method recommended by VC++ 4.x. See your compiler
documentation for details on declaring an exported function.

SKEL32. C also contains a DLL entry point, 011 EntryPoi nt which does nothing
but call the function SKELETON_ThunkConnectl6 (which will be provided by the
assembly language thunk module). Note that the SKELETON_ prefix comes from t
parameter on the thunk compiler command line. When processing the script file, the
thunk compiler automatically adds this prefix to the name of each function it creates
in the assembly language module.

SKELETON_ThunkConnectl6 takes four parameters: the name of the 16-bit DLL
("SKELETON. OLL"), the name of the 32-bit DLL (" SKEL32. OLL "), and the hI nst and
dwReason parameters provided by 011 EntryPoi nt's caller. The following fragment
shows the code for 011 EntryPoi nt.

II function prototype for function provided by assembly thunk module
BOOL FAR PASCAL __ export SKELETON_ThunkConnect16(LPSTR pszDll16. LPSTR pszDl13Z.

WORD hlnst. DWORD dwReason);

BOOL FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS.
WORD wHeapSize. DWORD dwReservedl.
WORD wReservedZ)

if (!(SKELETON_ThunkConnect16("SKELETON.DLL". "SKEL3Z.DLL". hlnst. dwReason)))
{

return FALSE;

retu rn TRUE;

SKELETON.C

The source for the 16-bit SKELETON. OLL must be modified slightly also, to add a new
export function to SKELETON. C. This function must be named 011 EntryPoi nt. It acts
as the mirror image of its counterpart in the 32-bit DLL, calling SKELETON_Thunk
Connect32 instead of SKELETON_ThunkConnect16. It passes exactly the same
parameters in exactly the same order. SKELETON_ThunkConnect32 is also provided
by the assembly language thunk module. The following fragment shows the code for
011 Mai n.

Thunks: Calling from 32-bit to 16-bit - 403

II function prototype for function provided by assembly thunk module
BOOL WINAPI SKELETON_ThunkConnect32(LPSTR pszDll16. LPSTR pszDl132. DWORD hlinst.

DWORD dwReason);

BOOL _stdcall DllMain(DWORD hlnst. DWORD dwReason. DWORD wReserved)
{

if (! (SKE LETON_ThunkConnect32 (" SKELETON. DLL". "SKE L32. DU" .h Inst. dwReason»)
{

return FALSE;

return TRUE;

Building the Thunk Layer, Step by Step
Building a thunk layer consisting of a 16-bit and a 32-bit DLL is more complicated
than building normal 16-bit and 32-bit DLLs. Though the two makefiles (SKELl6. MAK
and SKELl6 .MAK) hide the complexity, it's worth a closer look at the steps involved.

The 16-bit DLL must be built first. This is necessary because it's SKE Ll6. MAK that
executes the thunk compiler to produce the assembly source file SKELETON. ASM,
which is required by both makefiles. The thunk compiler command line used by
SKELl6. MAK is

thunk -t SKELETON -0 skeleton.asm skeleton.thk

The - t flag specifies a "base name" which the thunk compiler prefixes to the
names of the ThunkConnect16 and ThunkConnect32 functions in the assembly out
put file. The above command line results in functions named SKELETON_Thunk
Connect16and SKELETON_ThunkConnect32, which matches the names used in the
OLLEntryPoi nt code in SKELETON. C and SKEL32. C.

SKELl6.MAK then assembles SKELETON.ASM, using the 101S_16 flag and naming
the object file thk16. obj. The 10I S_16 flag produces code that implements the 16-bit
side of the thunk layer depicted in Figure 18.2.

ml 101S_16 Ie IW3 IFo thk16.obj skeleton.asm

The link step used by SKELl6 .MAK isn't any different than building a normal16-bit
DL - other than linking in the thunk code in THK16. OBJ - but there is one final step
which is unusual. The DLL must be marked as compatible with Windows 95, by run
ning the resource compiler and using the -40 option. Without this mark, Windows 95
will refuse to load the 32-bit DLL.

404 - Writing Windows VxDs and Device Drivers

The makefile for the 32-bit DLL, SKEL32 .MAK, looks almost exactly like a make
file for a normal 32-bit DLL. The only difference is assembling the source generated
by the thunk compiler, which resides in the 16-bit DLL's directory. This time the
101S_32 flag is used to produce code that implements the 32-bit side of the thunk
layer.

ml 101S_32 Ie IW3 IFo thk32.obj .. \16\skeleton.asm

I've also included a sample Win32 console application which utilizes the 32-bit
DLL and, indirectly, the 16-bit DLL. The application does nothing more than call the
functions Oevi eeOpen32 and Oevi eeel ose32. These functions are implemented in
SKEL32. OLL, which in turn calls the analogous function in the 16-bit SKELETON. OLL.
Note that the application is completely unaware of the thunking: the functions it uses
are all in SKEL32. OLL, and it links only with SKEL32. LI B.

Summary
If your driver must support Win32 applications but you're not ready to make the tran
sition to writing a VxD, or if you have already created a 16-bit driver DLL, a thunk
layer might be your best option. Developing a thunk DLL may not be a lot of creative
fun, and you do have to be careful to get all the steps right, but if you follow carefully
the procedures outlined in this chapter, you can create a thunk DLL that allows you to
keep hardware access in a DLL while still supporting Win32 applications.

Thunks: Calling from 32-bit to 16-bit - 405

Listing 18.1 SKELETON. THK

enablemapdirect3216 = true;

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef BYTE *LPBYTE;
typedef DWORD *LPDWORD;
typedef WORD *LPWORD;

typedef struct
(

WORD usDevNumber;
} DEVICECONTEXT;

typedef OEVICECONTEXT *HDEVICE;

typedef struct
(

WORD usReadBufSize;
} DRIVERPARAMS;
typedef DRIVERPARAMS * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS;
typedef DRIVERCAPS * PDRIVERCAPS;

HDEVICE DeviceOpen(void)
(
}
int DeviceClose(HDEVICE hDevice)
(

hDevice=input;

int DeviceGetWriteStatus(HDEVICE hDevice. LPWORD pusStatus)
(

hDevice=input;
pusStatus=input;

int DeviceGetReadStatus(HDEVICE hDevice. LPWORD pusStatus)
(

hDevice=input;
pusStatus=input;

int DeviceWrite(HDEVICE hDevice. LPBYTE lpData. LPWDRD pcBytes)
(

hDevice=input;
1 pData=i nput;
pcBytes=input;

406 - Writing Windows VxDs and Device Drivers

Listing 18.1 (continued) SKELETON. THK

int DeviceRead(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

hDevice=input;
lpData=input;
pcBytes=input;

int DeviceSetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParms)
(

hDevice=input;
pParms=input;

int DeviceGetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParms)
(

hDevice=input;
pParms=input;

int DeviceGetDriverCapabilities(HDEVICE hDevice. PDRIVERCAPS *ppDriverCaps)
{

hDevice=input;
ppDriverCaps=output;

Thunks: Calling from 32-bit to 16-bit - 407

Listing 18.2 SKEL32. H (32-bit DLL)

#ifndef SKELETON_H
#define SKELETON_H

#include <windows.h>

typedef struct
{

WORD usDevNumber;
} DEVICECONTEXT. FAR *HDEVICE;

typedef struct
{

WORD usReadBufSize;
} DRIVERPARAMS. FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
} DRIVERCAPS. FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

#ifndef DLL

#define DLLIMPORT __ declspec(dllimport)

DLLIMPORT HDEVICE APIENTRY DeviceOpen32(void);
DLLIMPORT int APIENTRY DeviceClose32(HDEVICE);
DLLIMPORT int API ENTRY DeviceGetWriteStatus32(HDEVICE. LPWORD pusStatus);
DLLIMPORT int APIENTRY DeviceGetReadStatus32(HDEVICE. LPWORD pusStatus);
DLLIMPORT int APIENTRY DeviceWrite32(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
DLLIMPORT int APIENTRY DeviceRead32(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
DLLIMPORT int APIENTRY DeviceSetDriverParams32(HDEVICE. PDRIVERPARAMS pParms);
DLLIMPORT int APIENTRY DeviceGetDriverParams32(HDEVICE. PDRIVERPARAMS pParms);
DLLIMPORT int APIENTRY DeviceGetDriverCapabilities32(HDEVICE.

#endif

#endif

PPDRIVERCAPS ppDriverCaps);

408 - Writing Windows VxDs and Device Drivers

Listing 18.3 SKEL32. C (32-bit DLL)

t/include <windows.h>
t/include " .. \16\skeleton.h"

DEVICECONTEXT Devicel = (0);
DRIVERPARAMS DefaultParams = (1024);

BOOL FAR PASCAL __ export SKELETON_ThunkConnectI6(LPSTR pszDlll6. LPSTR pszDl132.
WORD hlnst. DWORD dwReason);

BOOL FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS.
WORD wHeapSize. DWORD dwReservedl.
WORD wReserved2)

if (! (SKELETON_ThunkConnectl6("SKELETON. DLL" . I I name of 16- bit DLL
"SKEL32.DLL". II name of 32-bit DLL
hlnst. dwReason)))

return FALSE;
)
return TRUE;

t/define DLLEXPORT __ declspec(dllexport)

DLLEXPORT void API ENTRY DeviceOpen32(void
{

Devi ceOpen ();

DLLEXPORT int API ENTRY DeviceClose32(HDEVICE hDevice)
(

return DeviceClose(hDevice);

DLLEXPORT int API ENTRY DeviceGetWriteStatus32(HDEVICE hDevice. LPWORD pusStatus)
(

return DeviceGetWriteStatus(hDevice. pusStatus);

DLLEXPORT int API ENTRY DeviceGetReadStatus32(HDEVICE hDevice. LPWORD pusStatus)
(

return DeviceGetReadStatus(hDevice. pusStatus);

DLLEXPORT int API ENTRY DeviceWrite32(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

return DeviceWrite(hDevice. lpData. pcBytes);

DLLEXPORT int API ENTRY DeviceRead32(HDEVICE hDevice. LPBYTE lpData. LPWORD pcBytes)
(

return DeviceRead(hDevice. lpData. pcBytes);

Thunks: Calling from 32-bit to 16-bit - 409

Listing 18.3 (continued) SKEL32. C (32-bit DLL)

DLLEXPORT int APIENTRY DeviceSetDriverParams32(HDEVICE hDevice.
PDRIVERPARAMS pParms

return DeviceSetDriverParams(hDevice. pParms);

DLLEXPORT int API ENTRY DeviceGetDriverParams32(HDEVICE hDevice.
PDRIVERPARAMS pParms

return DeviceGetDriverParams(hDevice. pParms);

DLLEXPORT int APIENTRY DeviceGetOriverCapabilities32(HDEVICE hOevice.
PPDRIVERCAPS ppOriverCaps

return OeviceGetDriverCapabilities(hDevice. ppDriverCaps);

Listing 18.4 SKEL32. MAK (32-bit DLL)

all: ske132.dll

!message
!message I

!message + To make the file dl132.dll, you will need to have the +
!message + Microsoft Thunk compiler and the Microsoft Macro Assembler +
!message + (ML) on the path. +
!message 11 11111111 11111

!message

ske132.obj: ske132.c ske132.h
cl -c -W3 -Zl -Od-OW1N32 -0_W1N32 -O_MT -O_OLL $*.c

thk32.obj: .. \16\skeleton.asm
ml 1015_32 Ic IW3 IFo thk32.obj .. \16\skeleton.asm

410- Writing Windows VxDs and Device Drivers

Listing 18.4 (continued) SKfL32. MAK (32-bit DLL)

Build rule for the DLL
ske13Z.dll: ske13Z.def ske13Z.obj thk3Z.obj

link INODEFAULTLIB IINCREMENTAL:NO /PDB:NONE /RELEASE \
-debug:full -debugtype:cY -align:OxlOOO -dll \
-base:OxlCOOOOOO \
-entry:_DllMainCRTStartup@lZ \
-out:ske13Z.dll \
-implib:ske13Z.1ib \
ske13Z.obj thk3Z.obj thunk3Z.1ib libc.lib oldnames.lib kerne13Z.1ib

Build rule for EXE
$(PROJ).EXE: $(BASE_OBJS) $(PROJ_OBJS) $(DLLNAME).dll

$(link) $(linkdebug) $(guilflags4) \
$(BASE_OBJS) $ (PROJ_OBJS) $(guilibsdll) $(EXTRA_LIBS) \
$(DLLNAME).l ib \
-out:$(PROJ).exe $(MAPFILE)

Rules for cleaning out those old files
clean:

del *.bak *.pdb *.obj *.res *.exp *.map *.sbr *.bsc

Listing 18.5 SKEL32. DfF (32-bit DLL)

LI BRARY SKEL32

DATA READ WRITE

EXPORTS
SKELETON_ThunkData32

Thunks: Calling from 32-bit to 16-bit - 411

Listing 18.6 SKELETON.H (16-bit DLL)

#ifndef SKELETON_H
#define SKELETON_H

#include <windows.h>

typedef struct
{

WORD usDevNumber;
) DEVICECONTEXT. FAR *HDEVICE;

typedef struct
{

WORD usReadBufSize;
) DRIVERPARAMS. FAR * PDRIVERPARAMS;

typedef struct
{

WORD version;
) DRIVERCAPS. FAR * PDRIVERCAPS;
typedef PDRIVERCAPS FAR * PPDRIVERCAPS;

HDEVICE FAR PASCAL DeviceOpen(void);
int FAR PASCAL DeviceClose(HDEVICE);
int FAR PASCAL DeviceGetWriteStatus(HDEVICE. LPWORD pusStatus);
int FAR PASCAL DeviceGetReadStatus(HDEVICE. LPWORD pusStatus);
int FAR PASCAL DeviceWrite(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
int FAR PASCAL DeviceRead(HDEVICE. LPBYTE lpData. LPWORD pcBytes);
int FAR PASCAL DeviceSetDriverParams(HDEVICE. PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverParams(HDEVICE. PDRIVERPARAMS pParms);
int FAR PASCAL DeviceGetDriverCapabilities(HDEVICE. PPDRIVERCAPS ppDriverCaps);

#endif

412 - Writing Windows VxDs and Device Drivers

Listing 18.7 SKELETON. C (16-bit DLL)

Iii nc 1 ude <wi ndows. h>
lIinclude "skeleton.h"

DEVICECONTEXT Device1 = { 0 };
DRIVERPARAMS DefaultParams = { 1024 };

BOOL FAR PASCAL __ export SKELETON_ThunkConnect16(lPSTR psZDll16. lPSTR pszDl132.
WORD hlnst. DWORD dwReason);

BOOl FAR PASCAL __ export DllEntryPoint(DWORD dwReason. WORD hlnst. WORD wDS.
WORD wHeapSize. DWORD dwReserved1.
WORD wReserved2)

if (!(SKElETON_ThunkConnect16("SKElETON.Dll". II name of 16-bit Dll
"SKEl32.Dll". II name of 32-bit Dll
hlnst. dwReason»)

return FALSE;
}
return TRUE;

HDEVICE FAR PASCAL _export DeviceOpen(void
{

OutputDebugString("DeviceOpen\n");

return &Device1;

int FAR PASCAL _export DeviceClose(HDEVICE hDevice
{

OutputDebugString("DeviceClose\n");

return 0;

int FAR PASCAL _export DeviceGetWriteStatus(HDEVICE hDevice. lPWORD pusStatus)
{

OutputDebugString("DeviceGetWriteStatus\n");

return 0;

int FAR PASCAL _export DeviceGetReadStatus(HDEVICE hDevice. lPWORD pusStatus)
{

OutputDebugString("DeviceGetReadStatus\n");

return 0;

int FAR PASCAL _export DeviceWrite(HDEVICE hDevice. lPBYTE lpData. lPWORD pcBytes)
{

OutputDebugString("DeviceWrite\n");

return 0;

Thunks: Calling from 32-bit to 16-bit - 413

Listing 18.7 (continued) SKELETON. C(l6-hitDLL)

int FAR PASCAL _export DeviceRead(HDEVICE hDevice. LPBYTE lpData. LPWDRD pcBytes
{

OutputDebugString("DeviceRead\n");

return 0;

int FAR PASCAL _export DeviceSetDriverParams(HDEVICE hDevice. PDRIVERPARAMS pParms)
{

OutputDebugStri ng ("Devi ceSeWri verParams\n") ;

return 0;

int FAR PASCAL _export DeviceGetDriverParams< HDEVICE hDevice. PDRIVERPARAMS pParms)
{

OutputDebugString("DeviceGetDriverParams\n");

return 0;

int FAR PASCAL _export DeviceGetDriverCapabilities(HDEVICE hDevice.
PPDRIVERCAPS ppDriverCaps

OutputDebugString("DeviceGetDriverCapabilities\n");

return 0;

Listing 18.8 SKEL16. MAK (l6-hit DLL)

WIN32SDK_BINW16 = \win32sdk\binw16

all; skeleton.dll

!message
! message I L I I I I I I I I I I I I I I

!message + To make the 16-bit skeleton.dll. you will need to have the +
!message + Microsoft Thunk compiler and the Microsoft Macro Assembler +
! message + (Ml) on the path. +
! message I

!message

414 - Writing Windows VxDs and Device Drivers

Listing18.8 (continued) SKEL16.MAK (16-bit DLL)

skeleton.obj: skeleton.c skeleton.h
cl -c -W3 -ASw -G02s -Oi $*.c

skeleton.asm: skeleton.thk
thunk -t SKELETON -0 skeleton.asm skeleton.thk

thk16.obj: skeleton.asm
ml 101S_16 Ic IW3 IFo thk16.obj skeleton.asm

skeleton.dll: skeleton.def skeleton.obj thk16.obj
link skeleton+thk16.skeleton.dll .skeleton.map IMAP.sdllcew libw

Inod/noe.skeleton.def
$(WIN32S0K_BINW16)\rc -40 skeleton.dll
mapsym skeleton
implib skeleton.lib skeleton.dll
copy skeleton.dll \windows\driver.dll

Listing 18.9 SKELETON. DEF (16-bit DLL)

LIBRARY Skeleton
DESCRIPTION "Skeleton Driver"
EXETYPE WINDOWS
DATA PRELOAD MOVEABLE SINGLE
CODE PRELOAD MOVEABLE DISCARDABLE

EXPORTS
Dll EntryPoi nt
SKELETON_ThunkData16

IMPORTS

@1 RESIDENTNAME
@2

C16ThkSLOl = KERNEL.631
ThunkConnect16 = KERNEL.651

Chapter 19

Driver DLLs: Using Timers
Drivers often need to use some sort of timer service, either to gain control of the pro
cessor on a periodic basis, or to measure elapsed time. The timer services available
under DOS were well understood. DOS drivers hooked the timer interrupt for peri
odic notification and used the C run-time, DOS, or BIOS services for measuring
elapsed time. Windows driver DLLs - both 16-bit and 32-bit - also have timer ser
vices available. This chapter will examine the periodic timer and elapsed time mecha
nisms available to Windows driver DLLs.

Timers/or Periodic Notification
Drivers use timers to gain control of the processor on a periodic basis in order to poll
a device, to update some variables, or eVen to refresh the screen. Under DOS, the only
way to get a periodic notification is to hook the timer interrupt, which normally
occurs every 55 ms - 18.2 times per second. A DOS application also has the option
of reprogramming the PC timer hardware so that the interrupt rate is faster.

A Windows driver that needs periodic control has several different options, from
using Windows API functions that hook timer interrupts to using a VxD. The follow
ing sections explore each of these options and explain the limitations of each. You
shouldn't be surprised to learn that achieving precise timing control under Windows is
more difficult than under DOS.

415

416 - Writing Windows VxDs and Device Drivers

Using SetTimer
The familiar Windows API timer function SetTi mer is available to both Win32 and
Win16 DLLs. The timer created by this call can either post a WM_TIMER message or
invoke a callback function when the timer expires.

Unfortunately, SetTi mer is not practical for applications that require immediate
notification, because SetTimer communicates with the timer handler via the messag
ing system - not an interrupt. An indeterminate amount of time can elapse between
the timer's expiration and the processing of the WM_TIMER message or the invocation
ofthe callback function. Windows hooks the hardware timer interruptto implement
these timers, but all that interrupt handler does is set aftag to indicate that a timer event
has occurred. Later, the application enters its message loop and calls GetMessage. At
this point, lots of time may have elapsed already since the interrupt. This message
delay can be surprisingly long because even if the timer event flag is set, GetMessage
only returns a WM_TIMER message if no other messages are in the application's mesc

sage queue. Windows considers WM_TIMER messages low priority.
The same delay occurs even when you use SetTi mer with the callback function

option (instead of the WM_ TI ME R option) because Windows still treats the timer as a low
priority event. The callback function is not called directly by the Windows timer .inter
rupt handler. Again, the handler sets the timer event flag and GetMessage later checks
this flag. But instead of returning a WM_TIMER message, in this case, GetMessage
directly calls the callback function.

Hooking INT lChand INT Bh
A 16-bit Windows driver DLL can choose to avoid the delay described above by
hooking the timer interrupt directly. Many DOS applications hook the software timer
interrupt (INT lCh) instead of the hardware timer interrupt (INT Bh). This works
under DOS because the I NT Bh handler in the BIOS issues an I NT lCh after process
ing the timer interrupt. Hooking INT lCh won't work under Windows, even for a
16-bit DLL. The Windows handler for the hardware timer interrupt does pass the
interrupt on to the BIOS I NT Bh handler, but the BIOS runs in V86 mode; when the
I NT Bh handler calls the I NT 1 Ch handler, the processor is still in V86 mode. So a
Windows driver that has hooked INT lCh won't see this interrupt because the Win
dows driver runs in protected mode.

This initialization means a 16-bit driver DLL should hook INT Bh, the hardware
timer interrupt handler. Windows calls all protected mode I NT Bh handlers first before
switching to V86 mode and calling the BIOS I NT Bh handler. Unfortunately, this
solution has the same limitation that any hardware interrupt does: the only useful
Windows API function available at interrupt time is PostMessage. (See Chapter 15
for a complete discussion of the restrictions imposed at interrupt time.)

Driver DLLs: Using Timers - 417

An I NT 8h handler should perfonn only truly time-critical actions and defer other
actions (like updating the client window) by calling PastMessage with a user-defined mes
sage. The window procedure then finishes the processing when it retrieves the message.

Don't Depend on 18.2 Ticks per Second
The I NT 8h handler solution is far from perfect. Not only is it available only to 16-bit
DLLs, but the handler isn't guaranteed to be called every 55 ms. The actual hardware
timer interrupt is serviced by a VxD, the Virtual Timer Device (VTD). The VTD then
simulates timer interrupts for VMs. Because VMs are seeing simulated interrupts and
not the real thing, the frequency of timer interrupts will vary.

VTD gives the foreground VM (the VM with the display and keyboard focus) 18.2
timer ticks per second - that is, a nonnal rate .. But each background VM gets many
fewer than 18.2 ticks per second, usually around three or four. In other words, I NT 8h
handler's running under Windows, whether in a DOS application or a Win16 driver
DLL, cannot depend on receiving an interrupt every 55 ms.

Using timeSetEvent: Pros and Cons
The most accurate periodic notification available to a Windows driver DLL is pro
vided by ti meSetEvent. This is one of the Windows multimedia functions, available
to both Win16 and Win32 code. BeforeusingtimeSetEvent, your code should call
ti meGetDevCaps detennine the timer's minimum period, and then ti meBegi nPeri ad
to program the timer resolution.

According to t i meGetDevCaps, the minimum timer period is 1 ms. While not as good
as the minimum period achievable under DOS (see the sidebar "Reprogramming the
8254 Timer"), it's good enough for many drivers. Note, however, that this resolution isn't
guaranteed - it is possible for a callback to be delayed. In fact, actual perfonnance of
t i meSetEvent varies considerably between Windows 3.x and Windows 95, even though
ti meGetDevCaps returns the same infonnation under both versions.

Reprogrammining the 8254 Timer

To receive more frequent interrupts, a DOS application may reprogram the 8254 timer chip - up to a maxi
mum interrupt frequency of about 1 million times per second. To avoid "breaking" the standard 55 ms
time-base, the application's I NT 8h handler must track the number of interrupts and call the original I NT 8h
handler every 55 ms, not every interrupt. This technique isn't possible under Windows because the VTD traps
access to the 8254 ports and prevents applications (Windows and DOS) from reprogramming the interrupt
rate. The VTD simply intercepts these accesses and chooses not to pass them on to the timer hardware.

418 - Writing Windows VxDs and Device Drivers

Under Windows 3.x, the timer latency doesn't vary much, and only occasionally
are callbacks delayed - up to roughly 10 ms. The worst-case latency under Windows
95 is much worse - it can be on the order of a hundred milliseconds! This variation
is created by the Windows 95 preemptive thread scheduling mechanism. Windows 95
queues all threads of the same priority together and runs each thread from that queue
for its entire time slice before starting the next thread. If the time slice is 30 ms, and
there are three threads ahead of the timer callback thread, then the timer callback
thread will be delayed by 90 ms.

Althoughti meSetEvent is now a standard part of Windows (beginning with
Windows 3.1), it is not packaged as part of the "normal" Windows DLLs
(USER, KERNEL, and OD!) that all Windows applications link with. When
using ti meSetEvent, be sure to: include MMSYSTEM. H in your source (to get
the function prototype); add MMSYSTEM. LIB to the import libraries listed in
your link command. Both files should be provided by your Windows
compiler vendor.

If All Else Fails 000 Use a VxD
If reprogramming the 8254 is out of the question under Windows, and ti meSetEvent
isn't really accurate at 1 ms, then how can a driver DLL get an accurate high-fre
quency timer? Unfortunately, it can't. Thus, if you need accurate high-resolution tim
ing, write a VxD. The timing services available to a VxD provide 1 ms resolution and
aren't subject to the whims of the thread scheduler.

A VxD can use the VMM Set_Gl obal_Ti me_Out service to force a callback func
tion to be executed after a certain number of milliseconds. This creates a one~shot
timer. The VxD can call SeCGl abal_Time_Out again in the callback to start another
timer, thus providing a continuously running timer.

Normally the resolution of this timeout is 20 ms, but a VxD can get a better reso
lution, up to 1 ms, by calling VTD_Begi n_Mi n_I nt_Peri ad. This service will return
with an error if the requested resolution is not supported. Be aware that increasing the
timeout interval can seriously degrade system performance. When the VxD is finished
with its timing job, it should call VTD_End_Mi n_I nt_Peri od to return the timer fre
quency to its original value.

Driver DLLs: Using Timers - 419

Measuring Elapsed Time
TIming services are also used to measure the duration of an event. Because PC system
hardware doesn't include anything as nifty as a stopwatch, applications must derive
elapsed times by capturing an event's start and end times and calculating the difference.

Under DOS, there are several different ways to query the current system time. The
highest level service, DOS Get Time (INT 2lh Func 2Ch), returns time in hours,
minutes, seconds, and hundredths of seconds - inconvenient for calculating time dif
ferences. The BIOS Get Ti ck Count service. (I NT ISh Func IAh) returns time in a
more convenient form: ticks (55 ms) since power up. Programs can also directly read
the current BIOS tick count inthe BIOS data area. All of these methods boil down to
accessing the same information: the timer tick count, updated every $5 ms by the
BIOS INT ICh handler (called by the BIOS INT 8h himdler).

Choices: GetTickCount, timeGetTime, and
OueryPerformanceCounter
A 16-bit Windows driver DLL can query the BIOS tick count with a call to the
Windows API function GetTi ckCount. If a 16-bit only solution with a resolution of
55 ms is enough for your application. this method will suffice.

The multimedia timeGetTime service; however, offers significant advantages. It's
available to both Win16 andWin32 DLLs and has a much better resolution -1 ms.
Plus, its easier to call a Windows API function than to issue a software interrupt -
even in 16-bit.code.

If you're not supporting Wmdows 3.xatall, you can use the QueryperformanceCounter
function offered by the Win32 API. This function (which doesn't rely 'on counting
timer interrupts but instead reads. the free-running timer hardware) has an incredible
resolution of 0.8 microseconds! This is one of the few areas where a Win32 driver
DLL gets performance as good as a DOS application.

Summary
Windows wasn't designed to be a real time operating system, and the behavior of the
various timing functions clearly reflects that. If your application only needs periodic
notifications and can live with occasional latencies, your best and easiest alternlltiveis
louse the multimedia functions (which makes sense - after all, sound and video
need to be near real time). If occasional latencies aren't acceptable, you'll have to
write a V xD. For measuring elapsed time, use t i meGe t Time if you must support both
Windows 3.x and Windows 95. Use the more accurate QUeryPerformanceCounter if
you're supporting only Windows 95.

420 - Writing Windows VxDs and Device Drivers

Appendix A

Intel Architecture

808618088 and Real Mode
The Intel 8088, the first processor to be used in a PC, has 16-bit registers. A direct
addressing scheme using 16 bits allows access to only 216 or 64Kb of memory. Yet the
8088 can address up to 220 or 1Mb of memory, because the processor uses a memory
architecture called segmentation. All memory references involve both a 16-bit seg
ment and a 16-bit offset. The segment specifies the base of a 64Kb region, and the off
set specifies the byte within the region. Each of the possible regions is 16 bytes apart,
which means the last region starts at 64Kb x 16 or 1Mb. This combined segment and
offset address is known as a logical address.

Internally, the processor forms a physical address by shifting the segment left by
four bits and then adding the offset, resulting in a 20-bit physical address. It is this
physical address that the processor outputs onto the bus. Memory devices don't have
knowledge of segments or offsets and understand only physical addresses. This
address translation process is illustrated in Figure A.l.

421

422 -Writing Windows VxDs and Device Drivers

This original addressing scheme used by the 8088 is now referred to as real mode.
Real mode has several limitations that make it unsuitable for a sophisticated operating
system.

• An address space limited to 1Mb is no longer adequate.

• The fixed relationship between a logical address and a physical address makes it
difficult to implement moveable memory.

• There are no hardware protection mechanisms, allowing a buggy program to crash
the entire system:

80286 and Protected Mode
The next generation Intel processor, the 80286, addresses the deficiencies of the
8088/8086. Like the 8086, the 80286 has 16-bit registers, uses a segmented architec
ture, and supports real mode. The improvement is a new: operating mode known as
protected mode. Protected mode offers advanced features such as access to 16Mb of
memory, more flexible address translation, and various protection mechanisms.

Figure A.I Real mode address translation.

Segment Reg

I 16 bits

y
20 lbits

I 0000
(shift left 4)

Offset Linear Memory

116 bits 1 Himem

)

t 20 bits

64Kb
1Mb

64Kb

o

Intel Architecture - 423

The segmented architecture, where memory references consist of a segment and
an offset, is still used in protected mode. However, the address translation mechanism,
which translates a logical (segment and offset) address into a physical address, is
more sophisticated than in real mode. A segment is now called a selector. Instead of
shifting a selector by a fixed amount to form a physical address, the processor uses a
selector as an index into a descriptor table. The descriptor stored in the table, not the
selector itself, determines the selector's base address. This layer of indirection
between a selector and a physical address facilitates the implementation of moveable
memory, which is a necessity for multitasking operating systems.

Because the 80286 uses 16-bit registers, an offset can only address 64Kb, which
means a segment is still limited to a maximum size of 64Kb. But the segment's base
address, stored in the segment descriptor, is a 24-bit value. The processor generates a
24-bit physical address by adding together the 24-bit base address and the 16-bit off
set, so the processor can address 16Mb (224) of memory.

Protected mode also offers several types of protection mechanisms which prevent
one program from interfering with another program or from interfering with the oper
ating system. The three mechanisms are:

the ability to isolate the operating system from applications,

the ability to isolate user applications from each other, and

• the ability to use protected mode to enforce the proper use of segments, so that an
errant program can't execute from a data segment or address a location beyond the
limit of the segment.

Selectors and Descriptors
A value stored in a segment register, known simply as a segment in real mode, is more
precisely called a selector in protected mode. In protected mode, a selector specifies a
descriptor, and a descriptor in turn specifies a segment's base address and length. A
selector is made up of several fields, as illustrated in Figure A.2. The Table field spec
ifies where the descriptor is located: 0 for the Global Descriptor Table (GDT), or 1 for
the Local Descriptor Table (LDT). The 13-bit Index field specifies one of the 213

(8192) descriptors in that table.

Figure A.2 Selector fields.

15 32 1 0

INDEX

424 - Writing Windows VxDs and Device Drivers

These two descriptor tables aren't physically located on the processor itself, as reg
isters are, but are located in main memory. Special processor registers, the GDTR and
the LDTR, hold the physical addresses of these two tables. These two registers are
implicitly referenced by the LGDT/LLDT (load) and SGDT/SLDT (store) instructions.

There is only one GDT, designed to be used for selectors that are either used by all
applications, or shared by applications. The LDT, on the other hand, is designed to be
used for selectors that are "local" to an application. Multiple LDTs are allowed,
which allows a multitasking operating system to easily isolate applications from each
other by allocating a different LDT for each application. The LDTR register always
holds the address of the current LDT. When the operating system switches from one
application to another, it also loads the LDTR with the address of the LDT of the new
application. This wayan Application X can't possibly access code or data belonging
to Application Y, because all memory references by Application X are resolved using
X's own LDT. (Note that in all of the Windows versions, all Windows applications
share the same LDT.)

A segment descriptor stored in one of these tables consists of 8 bytes, as depicted in
Figure A.3. Two bytes aren't used but are needed to be compatible with the 32-bit
80386. The segment's base address takes up 3 bytes, so the highest base address is 224
or 16Mb. Two bytes hold the segment's limit, or size, resulting in a maximum size of
64Kb. The remaining byte is an access byte made up of various flag bits. Some flag bits
specify a segment's type: either a code segment (executable, not writable) or a data seg
ment (read/write, or read-only). Other flag bits include the Present bit, which indicates
whether the segment is present in main memory, and the Accessed bit, which is set by
the processor every time a segment is loaded into a segment register.

Figure A.3 Descriptor bytes.

Reserved

p I DPLI s ITypel AI Base 23-16

Base 15-0

Limit 15-0

15 7

+8 bytes

+6 bytes

+4 bytes

+2 bytes

+0 bytes

o

Intel Architecture - 425

When a segment register (C5, DS, 5S, ES) is loaded, the processor reads the associated
segment descriptor from the descriptor table in main memory and stores its contents in a
hidden descriptor cache register. There is one descriptor cache register for each segment
register, and like all registers, they are located on the processor. Future memory refer
ences involving the same segment register use the descriptor information in the cache
register, instead of fetching that information from the descriptor table in main memory.
These cache registers are crucial for good performance in protected mode.

Interrupts and Exceptions
The sequential execution of a program can be altered by an unexpected event, either
an interrupt or an exception. Interrupts may be external, caused by a device asserting
the processor's INTR pin, or internal, caused by a program executing an I NT instruc
tion. Exceptions result when an instruction completes abnormally. Both interrupts and
exceptions cause control to be transferred automatically to a handler routine specified
by the Interrupt Descriptor Table (IDT).

Each interrupt and exception has an identifying number N, and when inter
rupt/exception N occurs, the processor looks up slot N of the IDT to get the address of
the handler. The IDT contains a special type of descriptor called a gate, which doesn't
describe a segment (no base addressor limit fields). Instead, a gate contains an address:
a selector and an offset. The IDT may contain both interrupt gates and trap gates. The
only difference is that an interrupt gate causes the processor to clear the interrupt flag
before calling the handler, preventing further interrupts. Interrupt gates are commonly
used for hardware interrupts, and trap gates for software interrupts and exceptions.

An exception that can be corrected by the handler is called a fault. When a fault
occurs, the processor executes the handler specified in the IDT, then automatically
modifies C5 and I P so that the faulting instruction is executed again. If the fault han
dler has corrected the condition that caused the exception, the instruction executes
correctly the second time. Operating systems often use the Segment Fault (number
11) and the Page Fault (number 14) to implement virtual memory. However, some
faults, particularly the General Protection Fault (number 13), usually indicate a pro
gram bug. In this case, the fault handler may terminate the program instead of letting
the instruction execute again.

426 - Writing Windows VxDs and Device Drivers

Protection Mechanisms
The processor performs one set of consistency checks when executing instructions to
load a segment register and a different set when executing instructions that reference
memory (which always involve a segment). If one of these consistency checks fails,
the processor generates an exception.

When a segment register is loaded with a descriptor, the first check made is to see
if the selector indexes to a valid entry in the descriptor table. Loading a segment regis
ter with an invalid selector causes a General Protection Fault (number 13). An operat
ing system typically fills all unused table entries with invalid descriptors, which are
simply descriptors where the Access byte equals zero. Thus, a program is prevented
from generating its own selector to access data or code, and must use a valid selector
in the GDT or LDT given to it by the operating system. Also, if an executing program
transfers control to an invalid location, usually due to a stack pointer mismatch, this
will result in the CS register being loaded with an invalid selector and will immedi
ately cause this fault.

Next, the processor ensures that the type of segment defined by the desciptor
matches the segment register. This is done by examining the Type field of the descrip
tor. For example, the CS register must be loaded with a code segment which has type
executable and not writable. The OS, ES, and SS registers must be loaded with a data
segment, which has either type read/write or read-only. If these conditions are not
met, a General Protection Fault is generated.

Last, the processor checks the descriptor's Present bit. If not set, the processor gen
erates a Segment Fault. This fault may be used by an operating system to implement
virtual memory. Under low memory conditions, the operating system writes a segment
to disk and clears the selector's Present bit. Once the segment is written to disk, the
memory formerly occupied by the segment is added to the pool of free memory. When
a program later accesses a location in the original segment, a fault occurs and the oper
ating system reloads the original segment into memory from disk. (Note that Windows
3.x and Windows 95 use paging to implement virtual memory, not segmentation.)

If none of these checks results in an exception, the selector has been loaded and
the processor continues with the next instruction. Now you can appreciate why the
Intel manuals list the clock cycles for the MOV OS instruction in protected mode as 17,
where the same instruction takes just two clocks in real mode.

A different set of checks occurs when the processor executes an instruction that
uses a memory reference. All memory references involve a segment, whether speci
fied explicitly or implicitly. For example, PUSH and POP implicitly reference the stack
segment in SS. Note that the segment cache register already contains selector informa
tion (loaded when the segment register was loaded), so the processor doesn't have to
access the LDT or GDT in memory. Again, if any of these checks fail, the processor
generates a General Protection Fault.

Intel Architecture - 427

The first check for a memory reference is the limit. The processor compares the
offset specified in the instruction against the segment's limit and generates an excep
tion if the offset is greater than the limit. This protection mechanism prevents an
incorrect pointer from writing past the end of a segment. Next, the type information in
the segment cache register is compared to the type of memory access (read or write).
Forexample, a write to a location in the CS segment usually results in an exception
because CS usually contains an execute-only segment. The final check involves verify
ing the segment's privilege leveL

Privilege Levels
Before executing an instruction, the processor also checks the application's privilege
leveL Proper use of privilege levels allows an operating system to isolate itself from
applications in three different ways. Privilege levels can prevent an application from
accessing specific data segments and from executing certain code segments. Privilege
levels can prevent an application from executing specific instructions that affect oper
ating system data structures like the descriptor tables. Privilege levels can also prevent
an application from executing instructions that control 110 devices or disable/enable
hardware interrupts.

Every segment (code or data), has a DPL or Descriptor Privilege LeveL The DPL
bits are stored in the segment's descriptor. Privilege levels range from 0 to 3, with 0
being the most privileged or trusted, and 3 the least privileged. System designers can use
all four levels to fullyisolate system components, perhaps running the operating system
kernel at DPL 0, device drivers at DPL 1, the file system at DPL 2, and applications at
DPL 3. However, many operating systems (like Windows) use only two levels, distin
guishing only between the operating system (DPL 0) and applications (DPL 1,2, or 3).

The basic idea of privilege levels is this: code isn't allowed to access more privi
leged data (data segment with a numerically lower DPL) or to transfer control to more
privileged code (code segment with a numerically lower DPL). If either of these
access rules is violated, the processor generates a General Protection FaulL By setting
operating system data segments to DPL=O and application code segments to DPL>O,
the operating system can prevent applications from accessing data owned by the oper
ating system. By setting operating system code segments. to DPL=O and application
code segments to DPL>O, the operating system can prevent an application from call
ing operating system functions with a normal ca 11 instruction. . .

Although it's a good idea to restrict an application's access to functions in the oper
ating system's code segments, disallowing access completely is unacceptable - appli
cations do need to call operating system services. The solution is not to move operating
system code to DPL 3 with the applications, but to use a call gate. A call gate allows
less privileged code to call more privileged code, but in a way that is managed by the
operating sytem. (Note that Windows 3.x and Windows 95 don't use can gates.)

428 - Writing Windows VxDs and Device Drivers

A call gate works much like a software interrupt. When a software interrupt (I NT n)
is executed, the processor loads CS and I P from the interrupt vector located in slot N
of the IDT, and resumes execution at the new location. Similarly, when a FAR CALL
instruction is executed and the destination segment is really a call gate instead of a
normal code selector, the processor loads CS and I P from the selector and offset fields
of the call gate, and execution resumes at the new location.

An operating system can use call gates to provide controlled access to system
entry points. To call an operating system service, the application makes a FAR CALL to
a call gate selector, which the operating system has set up to include the address
(selector and offset) of the service. From the application's point of view, the call gate
selector, provided by the operating system, is the entry point. The actual entry point
address is hidden from the application.

Privilege level also controls an application's ability to issue any of the privileged
instructions: LGDT, LLDT, Ll DT, LMSW, HALT. These instructions are only allowed for
DPL=O, and cause a General Protection Fault at any other level. The first three are
restricted because they manipulate the descriptor tables. The LMSW instruction is used
to switch to protected mode. HALT stops processor execution.

A completely separate privilege level called 110 Privilege Level (IOPL) controls
an application's ability to execute trusted instructions. Trusted instructions are those
which enable or disable interrupts (STI/CLl) and access 110 devices (all forms of IN
and OUT including byte, word, string). An application is allowed to issue these instruc
tions only if DPL>IOPL, otherwise a General Protection Fault results. It is also possi
ble for an operating system to allow I N/OUT instructions while preventing STI ICLI by
having the fault handler determine the faulting instruction and reissuing it if I N or OUT,
or ignoring it if C Ll 1ST 1.

80386 and Virtual-8086 Mode
The 80386 is the first 32-bit processor in the 80x86 family. Both registers and mem
ory references are 32-bits. The 80386 supports protected mode, utilizing selectors,
descriptors, and descriptor tables with several important additions, such as a 4Gb seg
ment size, paging, and a new mode called Virtual-8086 mode.

The 64 Kb segment size restriction of real mode and the 80286 protected mode has
been lifted with the introduction of 32-bit offsets on the 80386. This translates to a
segment size of 232 or 4Gb. Although the 80386 addressing mechanism always uses
segmentation, segments become invisible to the programmer if an operating system
implements a flat memory model.

Intel Architecture - 429

In flat model, the operating system creates a single code segment and a single data
segment, each with a limit of 4Gb. The CS register is then loaded with the code seg
ment selector, and OS, SS, and ES are loaded with the data segment selector. After this
initial loading, the segment registers never change again. Both operating system and
programs can access the entire address space with this single set of selectors. Pro
grammers using flat model thus never need to be aware of segments at all. If paging is
used, flat model doesn't mean giving up protected mode's protection mechanisms.

The 80386 paging feature adds another level of address translation, in addition to
segmentation (Figure A.4). With paging disabled, the 80386 acts like a 80286 with
32-bit registers: a physical address is formed by adding an offset to a selector's base
address, found in a descriptor table. With paging enabled, the 80386 adds an offset to
a selector's base address, found in a descriptor table, to form a linear address. This
linear address is then transformed into a physical address using page tables.

The 32-bit linear address is decomposed into three fields: a lO-bit Directory Table
Entry index (DTE), a lO-bit Page Table Entry index (PTE), and a page offset. The
process of combining these indexes into a physical address is best described by exam
ining Figure A.4. The CR3 register holds the address of the page directory table. The
processor adds the address of this table to the lO-bit DTE. The result is the address of
a page table. A particular entry in this page table is selected by adding thelO-bit PTE
to the page table's address. Each entry in the page table contains the address of a 4Kb
page in physical memory. The page offset is added to the the page address, and the
result is a physical address, which is output to the bus.

Figure A.4 Paging address translation.

Index

GDT orL
register

'-4

DT -

Selector Linear Address

16 bits I ,....---. DTE I PTE I Page Offset I
31 22 21 12 11

Descriptor Table Page Directory Page Tables

32-bit Linear I- - l -

CR3 _

0

Physical Memory
4G

4Kb

0

430 - Writing Windows VxDs and Device Drivers

An operating system can use paging to implement virtual memory. Paged virtual
memory usually offers better performance than segmented virtual memory. Pages are
both fixed in size and small (4Kb) , whereas segments are variable in size and large
(up to 64Kb). When it comes to swapping a memory block in from disk to memory, it
is easier to find a free space for a small fixed-sized page than it is for a large vari
able-sized segment.

Demand-paged memory is implemented using the Page Fault generated when a
memory reference maps to a page marked "not present" in the page tables. Under low
memory conditions, the operating system writes a 4Kb page of address space to disk
and clears the page's Present bit in the page table. Once the page is written to disk, the
memory occupied by the page is added to the pool of free memory. When a program
later accesses a location in the original page, a fault occurs and the operating system
reloads the original page into memory from disk.

Paging also offers some protection mechanisms, although not as many as are
available for segments. All pages are represented by a PTE in a page table (although
the page table itself may be stored on disk). The PTE is illustrated in Figure A.S. A
PTE contains the Present bit mentioned above, a U/S (User/Supervisor) bit, and a
R/W (ReadlWrite) bit. A page marked as "User" can be accessed by a code segment
running at any privilege level. A page marked as "Supervisor" will cause a page fault
if accessed by a code segment running at Ring 3. This allows an operating system to
separate operating system code from application code by running applications at Ring
3 and marking all pages used by the operating system as Supervisor. All pages are
readable and executable, but the operating system can prevent Ring 3 code from writ
ing to a page by clearing the RIW bit in the PTE.

Figure A.S Page Table Entry (PTE)

32 12 11,10,9 8,7 6 4,3 °
Physical Address Available Intel Dirty Accessed Unused UIS Writable Present

for U/S reserved

Intel Architecture - 431

Virtual-8086 Mode
Virtual-8086 (V86) mode was created specifically to allow an operating system to run
multiple real mode applications, while preventing each real mode application from
interfering with either the operating system or other applications. On the surface, V86
mode looks like real mode. All real mode instructions, including 32-bit extensions
(MOV, ADD, etc.) behave as in real mode. Protected mode instructions (LGDT, LLDT, etc.)
cause an Invalid Opcode fault, as they do in real mode. However, several important
differences prevent V86 mode applications from interfering with each other:

paging is allowed,

access to individual 110 ports can be controlled, and

instructions that affect the interrupt flag can be trapped.

The V86 addressing scheme is basically real mode addressing plus paging. The
processor shifts a segment register left by 4 bits to form a linear address, and then uses
the page tables to translate this to a physical address. By maintaining different page
tables for each V86 program, the operating system can map the address space of each
program to a different region of physical memory. The operating system can even use
virtual memory to map some or all of a V86 program's address space to disk. An
exception or interrupt in V86 mode causes an automatic switch to protected mode at
Ring 0, so the same page fault handler that provides virtual memory for protected
mode programs works for V86 programs as well.

In real mode, access to 110 ports via I N/OUT instructions is never prohibited. In
protected mode, either all IN/OUT instructions cause an exception, or all IN/OUT
instructions are executed normally, depending on a program's IOPL. In V86 mode,
the processor may execute some I N/OUT instructions normally, whereas others may
cause an exception. The processor examines the 110 Permission Map (IOPM) to make
this determination. The IOPM is a bitmapped table, I bit for each port address, where
a O-bit permits access to the port and a I-bit causes a general protection fault. The
operating system maintains this table, and may have multipletables, one for each exe
cuting V86 program.

V86 programs also have an IOPL, which does not affect the ability to issue 110
instructions but does control execution of instructions that affect the processor's Inter
rupt flag. If the operating system runs a V86 program with IOPL < DPL (DPL is
always 3), those instructions cause an exception. The exception handler then simu
lates the instruction, maintaining a "virtual" Interrupt flag for each executing V86 pro·
gram. Some operating systems may choose to run with IOPL = DPL, so that these
instructions are not trapped, which results in better performance.

432 - Writing Windows VxDs and Device Drivers

AppendixB

Using Assembly Language
with Your VxD Written in C
If you choose to write your VxDs in C using only the DDK (and not VToolsD), you'll
need to write a small piece of your VxD in assembly language in order to declare your
VxD's DDB (Device Descriptor Block) and Device Control Procedure. If you also
use VMM or VxD services that aren't provided by either the DDK wrapper library
(VXDWRAPS. CLB) or the wrapper provided with this book (WRAPPERS .CLB), you'll need
to add new wrappers to the WRAPPER .ASM file discussed in this appendix.

This appendix will tell you what you need to know to write the assembly language
modules you require. First I'll show you exactly how to declare a DDB and how to
write a Device Control Procedure in assembly language. Next, I'll discuss adding
other entry points to the assembly language module to support registered callbacks of
all kinds: interrupt handlers, event handlers, port trap handler, page fault handlers, etc.
Finally, I'll explain the inner workings of the WRAPPERS library so that you can eas
ily add other services to it.

433

434 - Writing Windows VxDs and Device Drivers

Declaring the DDB
Although written in C, your VxD will always have at least one assembly language
source file which includes the VxD's DDB and Device Control Procedure. You can
start with the assembly language module from any of this book's sample VxDs and
modify it to suit your needs.

A VxD usually declares its Device Descriptor Block (DDB) at the top of its
assembly language module, using the macro DECLARCVIRTUAL_DEVICE. Here's the
macro definition, taken from VMM. INC:

Declare_Virtual_Device MACRO Name, Major_Ver, Minor_Ver,\
Ctrl_Proc, Device_Num, Init_Order,\
V86_Proc, PM_Proc, Reference_Data

These parameters correspond one for one to the DDB fields described in the sec
tion "The Device Descriptor Block" in Chapter 4.

As an example, SKELCTRL. ASM from the SKELETON VxD in Chapter 5 uses the
macro like this:

SKELETON, I, 0, ControlProc,
UNDEFINED_DEVICE_ID,
UNDEFINED_INIT_ORDER

All VxDs are required to supply parameter values for Name, Major _Ver,
Minor_Ver, and Ctrl_Proc. However, a VxD may use UNDEFINED_DEVICE_ID if it
doesn't need a unique ID, and UNDEFINED_INIT_ORDERifit doesn't require a particu
lar order in the initialization sequence. SKELETON. VXD doesn't have a V86 or PM API
procedure, so those parameters are omitted. The final Reference_Data parameter is
used only by lOS layered block device drivers (a kind ofVxD). An lOS driver would
initialize this field with a pointer to it's Driver Registration Packet. lOS drivers are not
discussed in this book; see the DDK.

Coding the Device Control Procedure
A VxD's Device Control Procedure, its main entry point, usually follows the DDB
declaration. Because this procedure must reside in the VxD's locked code segment, its
declaration is preceded by the macro VXD_LOCKED_CODE_SEG. In SKELCTRL. ASM, the
Device Control Procedure is called simply Control Proc.

Assembly with VxD in C - 435

BeginProc ControlProc
Control_Dispatch SYS_CRITICAL_INIT. _OnSysCriticallnit. cCall. <ebx>
Control_Dispatch SYS_VM_INIT. _OnSysVmlnit. cCall. <ebx>
Control_Dispatch SYS_VM_TERMINATE. _OnSysVmTerminate. cCall. <ebx>
Control_Dispatch CREATE_VM. _OnCreateVm. cCall. <ebx>
Control_Dispatch DESTROY_VM. _OnDestroyVm. cCall. <ebx>
Control_Dispatch CREATE_THREAD. _OnCreateThread. cCall. <edi>
Control_Dispatch DESTROY_THREAD. _OnDestroyThread. cCall. <edi>

clc
ret

EndProc ControlProc

Begi n_Proc and End_Proc macros bracket the Control Proc declaration. These
two macros are very complex, but you don't have to understand the implementation to
use them correctly. You can think of them as being the VxD equivalent of the proc
nea rand endp assembler directives. Just as you would bracket an assembly language
procedure with proc near and endp, you bracket an assembly language control pro
cedure with Begi nProc and EndProc.

Within Control Proc, the Control_Di spatch macro generates code for a switch
statement, where the control variable is the message code in EAX. The declaration of
Contro l_Di spatch, also in VMM. I NC, is:

Control_Dispatch MACRO Service. Procedure. callc. arglst

The first parameter specifies the message, the second specifies the message han
dler, the third is the calling convention of the handler, and the last is the list of argu
ments to be passed to the handler. SKELCTRL. ASM uses the macro like this:

Control_Dispatch INIT_COMPLETE. _OnlnitComplete. cCall. <ebx>

The first parameter is obvious, and I'll explain the leading underscore in the second
parameter in a moment. The last parameter, argl st, represents the VM handle, which
the VMM always places in EBX before calling a VxD with the INIT_COMPLETE message.

The calling convention parameter, cCa 11 , is necessary because this assembly mod
ule will be linked with modules written in a different language - SKE LCT RL. ASM is
calling the message handler On I n itComp 1 ete, which is located in a separate C file.
Calling conventions are important when mixing languages. A calling convention defines
two behaviors: the order in which parameters are pushed on the stack (right to left or left
to right); and who is responsible for removing parameters from the stack after the call
(callee or caller). Each calling convention implies a naming convention, which defines
how the compiler "mangles" the procedure name before storing it in the OBJ file.

436 - Writing Windows VxDs and Device Drivers

Each high-level language compiler has a "native" calling convention, and some
also support alternative conventions through keywords. The Microsoft C compiler
uses the cdec1 convention as its native convention: a function declared without a call
ing convention keyword automatically uses the cdec 1 convention. Microsoft C also
supports the _stdca11 convention through the _stdca11 keyword.

Assemblers don't directly support calling conventions, which is why VMM. INC
defines its own macros for calling a function in a high-level language: cCa 11 and
sCa 11, which match the C compiler's cdec1 and _stdca 11 keywords. In general, it
doesn't matter which calling convention is used, as long as both caller and callee use
the same convention. SKE LCTRL. ASM uses cCa 11 because it's calling a C module, and
cdec1 is the "native" convention for C code. But the assembly module could use
sCa 11 instead - if the C module used the _s tdca 11 keyword in the declaration of the
called function.

Note that in each of the Control_Di spatch statements, the name of the message
handler includes a leading underscore. The cdec 1 naming convention adds a leading
underscore to all exported cdecl functions, which means that an assembly language
module calling a C module must include this leading underscore in the name of the
called fuction. The cCa 11 macro in VMM. I NC takes care of the calling convention,
pushing parameters in the right order and removing parameters from the stack, but
doesn't take care of the naming convention. So SKELCTRL. ASM must explicitly include
the leading underscore in the cCall macro's Procedure argument. (In contrast, the
sCa 11 macro does take care of the naming convention, automatically adding a type
decoration to the end of the Procedure name.)

A sure sign of a calling convention mixup is a linker error message like:

UNRESOLVED EXTERNAL: OnlnitComplete@4.

The @n is a type decoration, specifying how many bytes the function uses
for parameters. The name OnlnitCompl ete@4 means OnlnitCompl ete
uses 4 bytes of parameters. This UNRESOLVED EXTERNAL error would occur
if SKELCTRL.ASM used sCall when calling OnlnitCompl ete, and
OnlnitCompl ete was declared as cdecl. sCall adds type decoration but
cdecl doesn't, so at link time, the names won't match.

Assembly with VxD in C - 437

Adding "Thunks" to Support Callbacks
from VMMlVxDs
Many VMM and VxD services require the calling VxD to register a callback function,
which the VMMNxD invokes later to notify the calling VxD that something interesting
happened. For example, a VxD might call VPICD_Vi rtual i ze_I RQ to register a hard
ware interrupt handler; the VPICD would then call the registered handler when a hard
ware interrupt occurs. Or, a VxD might call the VMM service Insta 11_IO_Handl er to
register a port trap handler; the VMM would then call this handler when a Ring 3 appli
cation accesses a specific 110 port.

In most cases, the parameters provided to the callback function are passed in reg
isters, not on the stack. (A notable exception to this rule is the Configuration Manager
VxD, which uses the stack to pass parameters to callback functions.) For this reason,
a registered callback is usually located in an assembly language module, so that the
callback can access the register parameters.

The example VxDs in this book all follow this convention. All registered callbacks
are located in the VxD's assembly module (the same one containing DDB and Device
Control Procedure), but the callback does minimal processing before calling a func
tion in the VxD's C module to perform real processing. In my example VxDs, the
name of the assembly callback function always ends in "Thunk", and the name of the
C function it calls has the same base but ends in "Handler". Thus, the PORTTRAP
example from Chapter 8 contains the function PortTrapThunk in the VxD's assembly
language module, and PortTrapThunk calls PortTrapHandl er which is located in the
VxD's C module. (Note that this usage of the term "thunk" is not related to the flat
thunks discussed in Chapter 18.)

Each VMMNxD service that requires a callback uses a different set of registers to
pass parameters to the callback. Therefore, when using a callback you must refer to
the service's documentation to discover the register parameters and then write an
appropriate assembly language "thunk". The VMM service Install_IO_Handl er
says the port trap handler will be called back with

Input:
EAX=data (if OUT instruction)
EBX=current VM handle
ECX=IO type //BYTE_INPUT, BYTE_OUTPUT, WORD_INPUT. WORD_OUTPUT,

//DWORD_INPUT, DWORD_OUTPUT, STRING_IO, REP_IO,
//ADDR_32_IO, REVERSE_IO

EDX=port number
EBP=address of Client Register Structure

Output:
EAX=data (if IN instructian)

438 - Writing Windows VxDs and Device Drivers

So the PortTrapThunk function in PORTIRAP's assembly file pushes those reg
ister parameters onto the stack and calls PortTrapHandl er, like this:

BeginProc PortTrapThunk

Emulate_Non_Byte_IO
cCall _PortTrapHandler, <ebx, ecx, edx, ebp, eax>
ret

EndProc PortTrapThunk

Notice the order of parameters in the cCall macro exactly matches the Port
TrapHandl er declaration in PORTIRAP's C file:

DWORD _stdcall PortTrapHandler(VMHANDLE hVM, DWORD IOType, DWORD Port,
PCLIENT_STRUCT pcrs, DWORD Data)

The macro takes care of pushing the parameters in the reverse order. The sample
VxDs demonstrate several types of thunks and handlers:

• VXDISR uses a VPICD_Virtualize_IRQ callback (for Hw_Int_Proc) and a
Gl oba l_Event callback

• PORTIRAP uses an Insta ll_IO_Handl er port trap handler

• PAGETRAP uses a Hook_V86_Page page fault handler

If your VxD requires a different kind of callback, see the DDK documentation for
specific parameter information, then use one of these samples as a starting point.

Introducing the Wrapper Library
Although the DDK provides a library of C-callable VMM and VxD services, VXD
WRAPS. CLB, this library only contains a small percentage of the total number of avail
able VMMNxD services. Many of the VxDs in this book use services that aren't
included in VXDWRAPS. CLB, so I've developed another library, WRAPPERS. CLB. This
library contains all other services needed by the VxDs in this book: a few more VMM
services, most VPICD and VDMAD services, a few SHELL and VWIN32 services,
and three IFSMgr services. A complete list of the services in WRAPPERS. CLB is in
Table B.l.

The source file for this library is WRAPPERS.ASM. WRAPPERS.H is the header file
for modules using WRAPPERS.ASM. (Both are found in a subdirectory of the code
disk.) The Windows 95 DDK provides an example of both the assembly language
module and the C header file in the \BASE\VXDWRAPS directory. My WRAPPERS.ASM
and WRAPPERS. H are based on the DDK example.

Assembly with VxD in C - 439

If you need to call other VMMNxD services that aren't in either the DDK
VMMWRAPS. CLB or in my WRAPPERS. CLB, you'll need to modify WRAPPERS .ASM and
WRAPPERS. H to add support for the services you need.

Table B.l Services provided by WRAPPERS. GLB.

VMM Services Get_Initial_Thread_Handle
_Page Reserve
_PageCommitPhys
_PageDecomrilit
Install_IO_Handler
Remove_IO_Handler
Enable_Local_Trapping
Disable_Local_Trapping
_Assign_Device_V86_Pages
_DeAssign_Device_V86_Pages
_ModifyPageBits
Hook_V86_Page
Unhook_V86_Page
_MapIntoV86
_PhysIntoV86
MapJlat
Call_Priority_VM_Event
Save_Client_State
Restore_Client_State
Begin_Nest_Exec
End_NesCExec
Simulate_Push
SimulateJar_Call

IFSMgr Services IFSMgr_RingO_OpenCreateFile
IFSMgr_RingO_WriteFile
IFSMgr_RingO_CloseFile

VPICD Services VPICD_Virtualize_IRQ
VPICD_Physi cal ly_Unmask
VPJCD_Physi cally-Mask
VPICD_Phys_EOI
VPICD_Force_Default_Behavior
VPICD_Set_Int_Request
VPICD_Clear_Int_Request

440 - Writing Windows VxDs and Device Drivers

WRAPPERS.H
WRAPPERS. H (Listing B.I, page page 448) contains a few constants and typedefs, but
the two important sections are the MAKE_HEADER section and the section of macro def
initions following it.

The MAKE_HEADER macro is defined in VXDWRAPS. H, (in the DDK I NC32 directory).
The parameters to this macro are basically the individual components of a function
prototype. The macro uses preprocessor tokenizing features to generate multiple func
tion prototypes for a single VxD service. The multiple protoypes are necessary
because there are actually six different wrappers for every VxD service, one for each
of the possible code segments the wrapper could be called from. For example, this
call in WRAPPERS. H:

MAKE_HEADER(PTHCB._stdcall.Get_Initial_Thread_Handle. (HVM hVM»

will expand to:

extern PTHCB _stdcall LCODE_Get_Initial_Thread_Handle(HVM hVM);
extern PTHCB _stdcall ICODE_Get_Initial_Thread_Handle(HVM hVM);
extern PTHCB _stdcall PCODE_Get_Initial_Thread_Handle(HVM hVM);
extern PTHCB _stdcall SCODE_Get_Initial_Thread_Handle(HVM hVM);
extern PTHCB _stdcall DCODE_Get_Initial_Thread_Handle(HVM hVM);
extern PTHCB _stdcall CCODE_Get_Initial_Thread_Handle(HVM hVM);

Immediately following the MAKE_HEADER section in WRAPPERS. H is another section
of macro definitions. Here each service name is redefined as a macro:

Table B.l (continued) Services provided by
WRAPPERS.CLB

VDMAD Services VDMAD_Virtualize_Channel
VDMAD_Set_Region_Info
VDMAD_Set_Phys_State
VDMAD_Phys_Mask_Channel
VDMAD_Phys_Unmask_Channel
VDMAD_Scatter_Lock

SHELL Services SHELL_Resolve_Contention
SHELL_PostMessage

VWIN32 Services _VWIN32_QueueUserApc
_VWIN32_SetWin32Event

Assembly with VxD in C - 441

The PREP END macro (also in VXDWRAPS. H) prepends the name of the current seg
ment to the service name: LCODE for locked code, I CODE for init code, etc. So when a
C module calls GeCIni ti al_Thread_Handl efrom the locked code segment, the pre
processor actually produces a call to LCODE_GeCIniti al_Thread_Handl e.

The MAKE_HEADER section must precede the service name macro definitions
in the header file. Because of the way the macros are implemented, reversing
the order will result in incorrect fUllction prototypes being generated by the
preprocessor.

These macros in WRAPPERS. H make it easy for a C module to call a service wrap
per. Defining each service name as a macro ensures that code calling the service actu
ally calls the right wrapper, without making the calling code aware of the current
segment. The MAKLHEADER macro makes it easy for WRAPPERS. H to generate function
prototypes for each of the six service wrappers, one for each segment. The next sec
tion explains how these service wrappers are implemented.

Overview of WRAPPERS.ASM
This section will discuss the details of writing a wrapper module in assembly, using
WRAPPERS .ASM (Listing B.2, page page 452) as an example. Although WRAPPERS .ASM
contains dozens of individual wrapper functions, this section will discuss only two of
them: Get_Initial_Thread_Handle and IFSMgr_RingO_OpenCreateFile. Get_
Ini ti al_Thread_Handl e is an example of a simple wrapper which pops parameters
off the stack into registers and calls the VMM Get_Initi al_Thread_Handl e service .
. I FSMgr _Ri ngO_OpenCreateFi 1 e is an example of a more complicated wrapper which
manipulates its caller's parameters instead of just removing them from the stack.

Like any other assembly file, WRAPPERS.ASM starts by including header files. A
wrapper implementation module should always include LOCAL. I NC from the DDK
base' vxdwraps directory. LOCAL. INC acts as a sort of master header file and includes
many other include files such as VMM. I NC, DEBUG. I NC, etc. A wrapper module should
also include the header file of each VxD whose services are being wrapped. In the
case of WRAPPERS.ASM, they are VDMAD.INC, VPICD.INC, SHELL. INC, VWIN32.INC,
and IFSMGR. INC.

442 - Writing Windows VxDs and Device Drivers

Next, WRAPPERS.ASM defines a few macros. WRAPPERS.ASM uses the macros
StartStdCall and StartCDec1 to declare _stdcall and cdec1 functions, respec
tively.If a function prototype in WRAPPERS. H (remember that prototypes are buried in
MAKLHEADER calls) declares a wrapper function as cdecl, that function's implemen
tation in WRAPPERS.ASM uses StartCDec1. Conversely, _stdcall in WRAPPERS.H
means Sta rtStdCa 11 will be used in WRAPPERS. ASM.

The Start macros are similar to the BeginProc macro which SKELCTRL.ASM used
to declare procedures, but the Sta rt macros also take naming conventions into
account (leading underscore for both and a trailing @ followed by the parameter size
for _stdcall.) The StartCdec1 macro is defined in the DDK file LOCAL. INC. How
ever, LOCAL. INC doesn't provide StartStdCall, so I wrote my own and defined the
macro at the top of WRAPPERS. ASM.

StartStdCa11 MACRO Name. Param
StartCDecl Name&@&Param
ENDM

My StartStdCa11 takes two parameters, Name (function name) and Param (total
bytes of parameters.) StartStdCa11 performs the type-decoration name mangling by
concatenating Name and Param, and passes the concatentated name to StartCDec1.
Sta rtCDec 1 in LOCAL. I NC does the rest of the function declaration, adding the under
score and actually generating the procedure declaration (PROC NEAR).

The code for the individual VxD wrapper functions follows the macro defiintions.
The next two sections will examine a simple wrapper, Get_I ni t i a LTh reacLHand1 e,

and a more complicated wrapper, I FSMgr _Ri ngO_OpenCreateFi 1 e.

WRAPPER. ASM: Get_In i t i a 7_ Thread_Hand 7 e Details

Many wrapper functions can be as simple GeClniti a1_Thread_Hand1 e. This wrapper
is implemented using the _stdcall convention because that convention is slightly
more efficient than cdec 1 and just as easy to code. Because the basic purpose of a
wrapper is to move parameters from the stack into those registers expected by the real
service, GeCI n it i a 1_ Th rea d_Ha nd 1 e efficiently moves the parameters into registers
and removes them from the stack at the same time. Having the callee remove parame
ters from the stack (_stdca 11 convention) results in slightly smaller code than having
the caller remove them (cdecl convention), because the code for removing parameters
appears only once in the callee, instead of appearing in every instance of the caller.

Assembly with VxD in C - 443

StartStdCall Get_Initial_Thread_Handle. 4

pop edx ; Get return address
pop ebx ; Get VMHandle
VxDCall Get_Initial_Thread_Handle
mov eax. edi move thread hnd into return
jmp edx ; return addr still in edx

Get_Initial_Thread_Handle is declared using the StartStdCall macro. The
second macro parameter, 4, is the total size of the function arguments, in bytes. This
size must match the argument sizes in the C function prototype in WRAPPERS. H. In this
case, Get_I nit i a 1_ Thread_Handl e takes a single DWORD (4-byte) parameter.

The GeCInitial_Thread_Handle wrapper first pops the caller's return address
from the stack and then pops the caller's single argument. A function that pops the
caller's arguments off the stack must pop the return address first, because the return
address was pushed on the stack last as a result of the call into the function. Get_
Initial_Thread_Handle pops this return address into the EDX register, a register
which will not be used by the VMM Get_Initi al_Thread_Handl e service (accord
ing to the service's documentation). The caller's parameter, the VM handle, is then
popped into the EBX register, as expected by the service.

With the registers set up as expected by the service, the GeCIni ti a l_Thread_Handl e
wrapper uses the VXDca 11 macro to call the real service. This particular service returns
with the thread handle in ED I, but a C caller expects the thread handle as a return value,
.so the wrapper moves the handle into the C return register, EAX. Last, the wrapper
returns to the caller by doing a JMP to the caller's return address, still stored in EDX.
Normally a function returns with a RET instruction, but in this case the wrapper has
already popped the return address off the stack, and so it must use a JMP and not a RET.

The macro VMMca 11 and its counterpart VxDCa 11 deserve a closer look. Both are
defined in VMM. I NC. The assembler will expand this call:

into these instructions

CD 20 int Dyna_Link_Int
0001010D dd @@Get_Initial_Thread_Handle+Oint Dyna_Link_Int

444 - Writing Windows VxDs and Device Drivers

This instruction sequence works as a dynamic link. The first time the sequence is
executed, the 1NT 20h handler inside the VMM expects the 2 bytes immediately fol
lowing the I NT instruction to hold the Device ID of the V xD being called. The handler
expects the 2 bytes following the Device ID to contain the Service Number being
called. In the example above, 0001 is the VxD ID ofthe VMM, and 0100 is the service
numberfor Get_1 niti a l_Thread_Handl e.

The I NT 20h handler determines the address of the service being called by tra
versing the VMM's linked list of DDBs (built by the VMM as VxDs are loaded). The
handler traverses the list to find a VxD with a matching Device ID. Inside the DDB is
the VxD's Service Table. The handler uses the Service Number (following the I NT 20h)
to find the address of the specific service. The handler then dynamically replaces the
2-byte I NT 20h plus the 4-byte "opcode" with a 6-byte near call to the service
address. Finally, the handler restarts the instruction by backing up E1 P. This time the
wrapper code directly calls the VMM Get_I niti al_Thread_Handl e service.

WRAPPER. ASM: I FSMGR_Ri ngO_OpenCrea teFi 7 e Details

GeC1nitial_Thread_Handle is a simple wrapper because the underlying service
returns only one piece of information (a thread handle) which is easily communicated
back to the C caller through a return value. The VMM service returns with the handle
in EDI, the wrapper moves it to EAX, and the C caller sees this as a return value.

I FSMgr _Ri ngO_OpenCreateFil e is a more complicated wrapper precisely
because it must return two pieces of information back to its C caller (a handle and an
error code). The underlying service uses two different registers to return this informa
tion, but the wrapper can't return two registers, because it's called by C code. The
wrapper can use one of the two pieces as an actual return value, but the other must be
communicated back through a pointer variable. It's this extra pointer parameter that
complicates the wrapper implementation.

The I FSMgr _Ri ngO_OpenCreateFi 1 eprototype (found in WRAPPPERS. H) looks like

HANDLE cdecl IFSMgr_RingO_OpenCreateFile(Baal blnContext. PCHAR filename.
WORD mode. WORD attrib. BYTE action.
BYTE flags. WORD *pError. BYTE *pAction);

The file handle is provided as a return value. The caller must provide a pointer to a
WORD variable which the wrapper will fill in with an error code. Notice the actual
IFSMgr service doesn't do anything with this pointer. The service returns the error
code in a register (EAX), and it's the wrapper's job to move this register value into the
location targeted by the caller's pointer parameter. Here is the wrapper implementa
tion:

Assembly with VxD in C - 445

Sta rtCdecl I FSMgr _Ri ngO_OpenCreateFi 1 e

blnContext EQU [ebp+8J
filename EQU [ebp+12J
mode EQU [ebp+16J
attrib EQU [ebp+20J
action EQU[ebp+24J
flags EQU [ebp+28J
pError EQU [ebp+32J
pAction EQU [ebp+36J

push ebp
mov ebp. esp
mov dl. action
mov dh. fl ags
mov cx. attrib
mov bx. mode
mov esi. filename
mov eax. RO_OPENCREATFILE
cmp WORD PTR blnContext. °
je @f

mov eax. RO_OPENCREAT_IN_CONTEXT
~:

VxDCall IFSMgr_RingOJileIO
mov esi. pError
jnc @f

mov WORD PTR [esiJ. ax
xor eax. eax

~:

mov esi. pAction

;give caller error code
;return failure to caller

mov DWORD PTR [esiJ. ecx action performed
;returning with handle in eax
pop ebp
ret

EndCdecl IFSMgr_RingO_OpenCreateFile

I FSMgr _Ri ngO_OpenCreateFil e uses Sta rtCdecl to declare the function as
cdecl. This means the wrapper will leave the parameters on the stack. To enhance
readability, the I FSMgr _RO_OpenCreateFi 1 e defines several equates (using EQU, the
assembly equivalent of Jfdefi ne) to refer to parameters on the stack.

On entry, I FSMgr _Ri ngO_OpenCreateFi 1 e copies parameters from the stack to
the appropriate register, as expected by the IFSMgr. After the V xDCa 11 to the service,
the wrapper checks the Carry flag. The IFSMgr sets this flag to denote that an error
occurred and that EAX contains an error code. If the flag is clear (no error), the wrap
per writes a zero to the location pointed to by the error code pointer and returns to the

446 - Writing Windows VxDs and Device Drivers

caller. The C caller's file handle return value is already initialized, because the
IFSMgr puts the file handle in EAX. If the flag is set (error), the wrapper takes the
IFSMgr error code in AX, copies it to the location pointed to by the error code pointer,
and returns with zero in EAX. This tells the C caller that the function failed, and that a
meaningful value is available in the error code parameter.

Building the Wrapper Library
Once you've modified WRAPPERS. ASM to add your own services, you'll need to
rebuild the WRAPPERS. CLB library. The makefile, WRAPPERS. MAK (Listing B.3,
page 464), can be found in the subdirectory on the code disk. To build WRAPPERS. CLB,
type nmake -fwrappers .mak.

The only unusual thing about the makefile is that the WRAPPERS. ASM source is
assembled six different times, using a different value for the SEGNUM define, to pro
duce six different OBJs. All six of the OBJs are added to the library.

SEGNUM isn't used by WRAPPERS .ASM directly. The LOCAL. I NC include file from the
DDK uses the value of SEGNUM to place a wrapper function in a particular code seg
ment, and to generate a segment-specific function name. Here is an extract from
LOCAL. INC.

IFE SEGNUM-l
SEGB TEXTEQU <VXD_LOCKED_CODE_SEG>
SEGE TEXTEQU <VXD_LOCKED_CODE_ENDS>

ELSEIFE SEGNUM-2
SEGB TEXTEQU <VXD_ICODE_SEG>
SEGE TEXTEQU <VXD_ICODE_ENDS>

ELSEIFE SEGNUM-3
SEGB TEXTEQU <VXD_PAGEABLE_CODE_SEG>
SEGE TEXTEQU <VXD_PAGEABLE_CODE_ENDS>

ELSEIFE SEGNUM-4
SEGB TEXTEQU <VXD_STATIC_CODE_SEG>
SEGE TEXTEQU <VXD_STATIC_CODE_ENDS>

ELSEIFE SEGNUM-5
SEGB TEXTEQU <VXD_DEBUG_ONLY_CODE_SEG>
SEGE TEXTEQU <VXD_DEBUG_ONLY_CODE_ENDS>

ELSEIFE SEGNUM-6
SEGB TEXTEQU <VXD_PNP_CODE_SEG>
SEGE TEXTEQU <VXD_PNP_CODE_ENDS>

Assembly with VxD in C - 447

You can see that SEGNUM=l corresponds to the LOCKED segment, SEGNUM=2 corre
sponds to the I CODE (initialization) segment, etc. LOCAL. I NC uses these SEGB and
SEGE equates in the definition of the Sta rtStdCa 11 or Sta rtCDec1 macros. As a
result, when a wrapper module declares a wrapper function using one of these mac
ros, LOCAL. I NC places the wrapper function in the appropriate segment and also
prepends the function name with a segment name. For example, when WRAPPERS. ASM
is assembled with DSEGNUM=l, the following source code

StartStdCa11 Get_Initia1_Thread_Hand1e. 4

is translated by the preprocessor into

PUBLIC LCODE Get_Initia1_Thread_Hand1e@4
LTEXT SEGMENT
LCODE_Get_Initia1_Thread_Hand1e@4 PROC NEAR

As a result of these macros, the WRAPPERS. CLB library contains six different ver
sions of every wrapper function, with six different names. These six names corre
spond to the names generated by the MAKE_HEADER macro in WRAPPERS. H. (Refer to
the section "WRAPPERS. H" for an explanation of the MAKE_HEADER wrapper and the
function prototypes it generates.)

Summary
The techniques described in this book allow you to write most of your V xD in C using
only the DDK, without purchasing VToolsD. However, you will still need to write
small portions of your VxD in assembly. This appendix demonstrates exactly how to
write the assembly pieces, as well as how to extend the WRAPPERS. CLB C-callable
wrapper library included with this book.

448 - Writing Windows VxDs and Device Drivers

Listing B.I WRAPPERS.H

1**
* *
* THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
* PURPOSE.

* Copyright 1993-95 Mi crosoft Corporati on. All Ri ghts Reserved.
*

*
*
*
*
*
*

** /

i/ifndef _VMMXWRAP_H
I/define ._VMMXWRAP_H

I/incl ude <vxdwraps. h>

/**
* *
* VMM servi ces
*

*
*

** I
typedef DWORD VMHANDLE;
typedef DWORD EVENTHANDLE;
typedef DWORD MEMHANDlE;
typedef DWORD PTHCB; /I pointer to thread control block
typedef void *CAlLBACK(void);

MAKE_HEADER(PTHCB ,_stdca 11 ,GeCIniti a l_Thread_Handl e, (HVM hVM»
MAKE_HEADER(BOOl, _stdca11, Insta11_ID_Handler, COWORD PortNum, CALLBACK Callback »
MAKE_HEADER(BOOL, _stdca11, Remove_IO_Handl er, COWORD PortNum»
MAKE_HEADER(voi d, _stdca 11 ,Enabl e_local_Trapping, (VMHANDLE hVM, DWORD PortNum»
MAKCHEADER(void, _stdca11,Disable_Local_Trapping, (VMHANDlE hVM, DWORD PortNum»
MAKCHEADER(EVENTHANDLE, cdecl ,Ca l1_Pri ori ty-VM_Event, COWORD Pri orityBoost, VMHANDLE hVM, \

DWORD Fl ags, voi d *Refdata, \
CALLBACK EventCallback, \
DWORD Timeout »

MAKE_HEADER(voi d, cdecl, _Dea11 ocate_Devi ce_CB_Area, COWORD Offset, DWORD Fl ags »
MAKE_HEADER(void, cdec1, Save_C1 i ent_State, (CLlENT_STRUCT * pSavedRegs»
MAKE_HEADER(voi d, cdecl, Restore_Cl i ent_State, (CLI ENT_STRUCT * pSavedRegs»
MAKE_HEADER(voi d, cdecl, Begi n_NesCExec, (void»
MAKE_HEADER(void, cdecl, End_Nest_Exec, (void»
MAKE_HEADER(void, _stdca11, Simu1ateJar_Call, (WORD seg, WORD off»
MAKE_HEADER(voi d, _stdca 11, Simul ate_Push, COWORD val)
MAKE_HEADER(BOOL, cdec1 ,_ModifyPageBits, (VMHANDLE hVM, DWORD VMli nPgNum, DWORD nPages,

DWORD bitAnd, DWORD bitOR, DWORD pType,
DWORD Fl ags»

MAKE_HEADER(BOOl ,_stdca 11 ,Hook_V86_Page, COWORD PageNum, CALLBACK Callback»
MAKE_HEADER(BOOL ,_stdca 11 ,Unhook_V86_Page, (DWORD PageNum, CALLBACK Ca 11 back»
MAKCHEADER(BOOl, cdecl ,_Ass i gn_Devi ce_V8LPages, COWORD VMl i nrPage, DWORD nPages,

VMHANDlE hVM, DWORD Flags»
MAKE_HEADER(BOOL, cdec 1 ,_DeAss i gn_Devi ce_V86_Pages, COWORD VMl i nrPage, DWORD nPages,

VMHANDlE hVM, WORD Fl ags»
MAKE_HEADER(BOOl, cdec 1 ,_Phys IntoV86, COWORD PhysPage, VMHANDlE hVM, DWORD VMLi nPgNum,

DWORD nPages, DWORD Fl ags»
MAKCHEADER(BOOl, cdec 1 ,_MapIntoVB6, (MEMHANDlE hMem, VMHANDlE hVM, DWORD VMLi nPageNumber,

DWORD nPages, DWORD PageOff, DWORD F1 ags»
MAKE_HEADER(MEMHANDLE ,cdecl ,_GetNul PageHandl e, (voi d»
MAKE_HEADER(UlONG,cdecl,_PageReserve, (UlONG page, UlONG npages, ULONG flags»
MAKE_HEADER(UlONG, cdec 1 ,_PageCommitPhys, (UlONG page, UlONG npages, ULONG physpg,

UlONG fl ags»

Assembly with VxD in C - 449

Listing B.l (continued) WRAPPERS.H

MAKE_HEADER(ULONG, cdecl ,_PageDecommit, (ULONG page, ULONG npages, ULONG fl ags»
MAKE_HEADER(voi d * ,_stdcall ,MapJl at, (BYTE SegOffset, BYTE Off Offset »

I/define MAPFLAT<sgmnt,offst) MapJlat«(oWORD)(&«CRS *)O)->sgmnt»,

I/define Map_Flat
(OWORD)(& « struct Cl i ent_Word_ReLStruc *)0) ->offst»

PREPENDCMapJl at)
I/define Call_PrioritLVM_Event
I/defi ne GeCInit i a l_Thread_Handl e
I/defi ne Insta 11_IO_Handl er
I/defi ne Remove_IO_Handl er
I/define Enable_Local_Trapping
I/define Disable_Local_Trapping
I/defi ne _Dea 11 ocate_Devi ceJB_Area
I/defi ne Save_Cl i enCState
I/defi ne Restore_Cl i ent_State
I/define Begin_NesCExec
I/define End_Nest_Exec
ildefine SimulateJar_Call
I/define Simulate_Push
#defi ne _Modi fyPageBi ts
ildefi ne Hook_v86_Page
ildefi ne Unhook_V86_Page
ildefi ne _Ass i gn_Devi ce_V86_Pages
I/defi ne _DeAssi gn_Devi ce_V86_Pages
I/define _PhysIntoV86
I/defi ne _MapIntoV86
I/defi ne _GetNul PageHandl e
I/defi ne _Page Reserve
I/defi ne _PageCommitPhys
I/defi ne _PageDecommit

PREPEND(Ca 11_Pri ori tLVM_Event)
PREPEND(GeCI ni t i a l_Thread_Handl e)
PREPEND(Insta 11_IO_Handl er)
PREPEND(Remove_I O_Handl er)
PREPEND(Enabl e_Loca l_Trappi ng)
PREPEND(Di sab 1 e_Loca l_Trappi ng)
PREPENDLDea 11 ocate_Devi ce_CB_Area)
PREPEND(Save_Cl i enCState)
PREPEND(Restore_Cl i ent_State)
PREPEND(Begi n_NesCExec)
PREPEND(End_Nes CExec)
PREPEND(Simul ate_Far _Ca 11)
PREPEND(Si mul ate_Push)
PREPENDLModi fyPageBi ts)
PREPEND(Hook_V8LPage)
PREPEND(Unhook_V86_Page)
PREPENDLAss i gn_Devi ce_V86_Pages)
PREPENDLDeAssi gn_Devi ce_V86_Pages)
PREPENDLPhys IntoV86)
PREPENDLMapI ntoV86)
PREPENDLGetNul PageHandl e)
PREPENDLPageReserve)
PREPENDLPageCommi tPhys)
PREPENDLPageDecommi t)

// the following functions are really in VXDWRAPS.CLB, but aren't prototyped in VXDWRAPS.H
MAKE_HEADER(OWORD, cdecl, _A llocate_Devi ce_CB_Area, COWORD NumBytes, DWORD Fl ags »

1**
*
*
*

1 FSMgr servi ces
*

** /

I/define RO_OPENCREATFILE OxD500 /* Open/Create a file */
I/define RO_OPENCREAT_IN_CONTEXT OxD501 /* Open/Create file in current context */
I/define ROJLOSEFILE OxD700 /* Close file */
I/defi ne RO_WRITEFI LE OxD601 /* WRite to a fi 1 e * /
I/define RO_WRITEFILE_IN_CONTEXT OxD603 /* Write to a file in current context */

MAKE_HEADER(HANDLE, cdecl , I FSMgr _Ri ngO_OpenCreateFil e, (BOOL bl nContext, PCHAR fil ename.
WORD mode, WORD attrib, \
BYTE action, BYTE flags, \
WORD *pError, BYTE *pAction»

MAKCHEADER(DWORD, cdecl ,I FSMgr _RingO_WriteFil e, (BOOl blnContext, HANDLE fil ehandl e, \
PYOID buf, DWORD count, DWORD fil epos,
WORD *perr»

MAKE_HEADER(BOOl, cdecl ,lFSMgr _Ri ngO_Cl oseFil e, (HANDLE fil ehandl e, WORD *pError»

ildefi ne 1 FSMgr _Ri ngO_OpenCreateFil e PREPEND(1 FSMgr _Ri ngO_OpenCreateFi 1 e)
i/defi ne 1 FSMgr _Ri ngO_Wri teFi 1 e PREPEND(1 FSMgr _Ri ngO_Wri teFi 1 e)
ildefi ne I FSMgr _Ri ngO_Cl oseFi 1 e PREPEND(IFSMgr _Ri ngO_Cl oseFi 1 e)

450 - Writing Windows VxDs and Device Drivers

Listing B.l (continued) WRAPPERS.H

1**
*

~PICD services
*

** /

typedef struct
{

WORD VID_I RCLNumber; II I RQ to vi rtua 1 i ze
WORD VID_Opt ions;
II VPICD_OPT_CAN_SHARE: allow other VxDs to virtualize IRQ also
II VPICD_OPT_REF _DATA: pass VID_Hw_Int_Ref as param to Hw_Int_Handl er
DWORD VID_Hw_Int_Proc; II callback for hardware interrupt
DWORD VID_Vi rt_InCProc;
DWORD VID_EOI_Proc;
DWORD VID_Mask_Change_Proc;
DWORD V ID_I RET_Proc;
DWORD VID_IRET_Time_Out;
PVOID V ID_Hw_InCRef; II pass thi s data to Hw_InCHandl er

VPICD_IRQ_DESCRI PTOR;

typedef DWORD I RQHANDLE;

MAKE_HEADER(IRQHANDLE ._stdcall • VPICD_Vi rtual i ze_IRQ. (VPICD_I RCLDESCRI PTOR *pl rqDesc»
MAKE_HEADER(voi d ._stdcall • VPICD_Physi cally-Mask. (IRQHANDLE hndl rq»
MAKCHEADER(void ._stdcall • VPICD_Physi cally_Unmask. (IRQHANDLE hndl rq»
MAKE_HEADER(voi d ._stdcall • VPICD_Force_Defaul CBehavior. (IRQHANDLE hndl rq»
MAKE_HEADER(void ._stdcall • VPICD_Phys_EOI. (I RQHANDLE hndl rq»
MAKE_HEADER(voi d ._stdcall • VPICD_Set_InCRequest. (IRQHANDLE hIRQ. MHANDLE hVM»
MAKE_HEADER(void._stdcall.VPICD_Clear_lnt_Request. (]RQHANDLE hIRQ. VMHANDLE hVM»

I/defi ne VPICD_Vi rtua 1 i ze_IRQ
I/define VPICD_Physically-Mask
I/define VPICD_Physically-Unmask
I/defi ne VPICDJorce_Defaul CBehavi or
I/defi ne VPI CD_Phys_EO I
I/defi ne VPICD_SeClnCRequest
I/define VPICD_Clear _lnCRequest

PREPEND(VPICD_Vi rtua 1 i ze_1 RQ)
PREPEND(VPICD_Physi cally_Mask)
PREPEND(VPICD_Physi cally-Unmask)
PREPEND(VPICD_Force_Defaul t_Behavi or)
PREPEND(VPICD_Phys_EOI)
PREPEND(VPICD_Set_1 nCRequest)
PREPEND(VPICD_Cl ear _lnCRequest)

/**
* *
* VDMAD servi ces
*

*
*

** /

I/defi ne DMA_type_verify OxOO
Ildefi ne DMA_type_write Ox04
I/defi ne DMA_type_read Ox08
I/define DMA_Autolnit OxlO
I/defi ne DMA_AdrDec Ox20
I/defi ne DMA_demand_mode OxOO
I/define DMA_single_mode Ox40
I/defi ne DMA_b lock_mode Ox80
I/define DMA_cascade OxcO
I/define DMA_mode_mask OxcO II mask to isolate controller mode bits (above)
I/defi ne DMA_chan_se 1 Ox03
I/defi ne NONE_LOCKED 0
I/defi ne ALL_LOCKED 1
I/defi ne SOME_LOCKED 2

Listing B.l (continued)

typedef struct
{

DWORD PhysAdd r;
DWORD Si ze;

REGION;

typedef struct Extended_DDS_Struc
{

DWORD DDS_s i ze;
DWORD DDS_l i nea r ;
WORD DDS_seg;
WORD RESERVED;
WORD DDS_a vail ;
WORD DDS_used;

EXTENDED_DDS. *PEXTENDED_DDS;

typedef struct
{

EXTENDED_DDS dds;
union
{

];

REGION
DWORD

DDS. *PDDS;

typedef DWORD DMAHANDLE;

aRegi onInfo[16];
aPte[16];

Assembly with VxD in C - 451

WRAPPERS.H

MAKE_HEADERWWORD. cdecl • VDMAD_Scatter _Lock. (VMHANDLE hVM. DWORD Fl ags. PODS pODS. \
PDWORD pPteOffset))

MAKE_HEAOER(DMAHANOLE. cdecl. VDMAD_Vi rtua 1 i ze_Channel. (BYTE ch. CALLBACK pfCall back))
MAKCHEADER(Yoid. _stdcall. VDMAD_SeCRegion_Info. WMAHANDLE DMAHandle. BYTE Bufferld. \

BOOL LockStatus. DWORD Regi on. \
DWORD Regi onSi ze. OWORD PhysAddr))

MAKE_HEAOER(void. _stdcall. VDMAD_Set_Phys_State. (DMAHANDLE OMAHandle. VMHANOLE hVM. \
WORD Mode. WORD ExtMode))

MAKCHEADER(Yoid. _stdcall. VDMAO_Phys_Unmask_Channel. (OMAHANOLE DMAHandle. \
VMHANDLE hVM))

MAKE_HEADERCvoid. _stdcall. VDMAD_Phys_Mask_Channel. (DMAHANDLE OMAHandle))
Iidefi ne VOMAD_Vi rtua 1 i ze_Channel PREPEND(VDMAD_Vi rtual i ze_Channel)
Iidefi ne VOMAD_SeCRegi on_Info PREPEND(VOMAD_SetYegi on_Info)
Iidefi ne VDMAD_Set_Phys_State PREPEND(VDMAD_SeCPhys_State)
I/define VOMAO_Scatter _Lock PREPEND(VDMAO_Scatter Jock)
I!defi ne VOMAD_Phys_Unmask_Channel PREPENO(VDMAD_Phys_Unmask_Channel)
IIdefi ne VDMAO_Phys_Mask_Channel PREPEND(VOMAD_Phys_Unmask_Channel)

452 -Writing Windows VxDs and Device Drivers

Listing B.l (continued) WRAPPERS:H

1**
*

SHELL servi ces *

** I

MAKE_HEADER(VMHANDLE. _stdcall. SHELL_Resol ve_Contenti on. (VMHANDLE hndOwner. \
VMHANDLE hndContender.
char *DeviceName »

MAKE_HEADER(BOOL.cdecl._SHELL_PostMessage. (HANDLE hWnd. DWORD uMsg. WORD wParam.
DWORD lParam. CALLBACK pCallback. \
void *dwRefData»

ildefi ne SHELL_Reso 1 ve_Content ion PREPEND(SHELL_Reso 1 ve_Content ion)
ildefi ne _SHELL_PostMessage PREPEND(_SHELL_PostMessage)

1**
* *
* VWIN32 services *

** /

MAKLHEADER(void.cdecl._VWIN32_QueueUserApc. (void *pR3Proc. DWORD Paramo PTHCB hThread»
MAKE_HEADER(BOOL. cdecl ._VWIN32_SetWi n32Event. (EVENTHANDLE hEvent))

ildefi ne _VWI N32_QueueUserApc
ildefine _VWIN32_SetWin32Event

PREPENDLVW I N32_QueueUserApc)
PREPENDLVW IN32_SetWi n32Event)

ilendif / / _VMMXWRAP_H

Listing B.2 WRAPPERS. ASM

include local.inc
i ncl ude ifsmgr. i nc
include vdmad.inc
include vpicd.inc
i ncl ude vwi n32. i nc
include shell.inc

RO_OPENCREATFI LE equ OD500h
RO_OPENCREAT_IN_CONTEXT equ OD501h
RO_READFI LE equ OD600h
RO_WRITEFILE equ OD601h
RO_READFI LLIN_CONTEXT equ OD602h
RO_WRITEFILE_IN_CONTEXT equ OD603h
RO_CLOSEF I LE equ OD700h
RO_GETF I LES I ZE equ ODBOOh

StartStdCall MACRO Name. Param
StartCDecl Name&@&Param
ENDM

EndStdCall MACRO Name. Param
EndCDecl Name&@&Param
ENDM

Open/Create a file
Open/Create fil e in current context
Read a fil e. no context
Write toa file. no context
Read a file, in thread context
Write to a file, in thread context
Close a file
Get size of a file

Assembly with VxD in C - 453

Listing B.2 (continued) WRAPPERS. ASM

MakeCDecl _Modi fyPageBi ts

MakeCDecl _Assign_Device_V86_Pages

MakeCDecl _DeAssign_Device_V86_Pages

MakeCDecl _PhyslntoV86

MakeCDecl _MaplntoV86

MakeCDecl _GetNulPageHandle

MakeCDecl _PageReserve

MakeCDecl _PageCommitPhys

MakeCDecl _PageDecommit

; void cdecl _Deallocate_Device_CB_Area(DWORD NumBytes. DWORD Flags))

MakeCDecl _Deallocate_Device_CB_Area

EVENTHANDLE Call_Priority_VM_Event(DWORD PriorityBoost. VMHANDLE hVM. DWORD Flags.
void * Refdata. CALLBACK EventCallback.

PriorityBoost EQU [ebp+8]
hVM EQU [ebp+12]
Flags EQU [ebp+16]
Refdata EQU [ebp+20]
EventCallback EQU[ebp+24]
Timeout EQU [ebp+28]

push ebp
mov ebp. esp

DWORD Timeout);

mov eax. DWORD PTR PriorityBoost
mov ebx. DWORD PTR hVM
mov ecx. DWORD PTR Flags
mov edx. DWORD PTR Refdata
mov esi. DWORD PTR EventCallback
mov edi. DWORD PTR Timeout
VMMCall Call_Priority_VM_Event
mov eax. esi ; eax=event handle

pop ebp
ret

EndCDecl

454 - Writing Windows VxDs and Device Drivers

Listing B.2 (continued) WRAPPERS.ASM

; void * _stdcall MapJlat(BYTE SegOffset, BYTE Off Offset)

StartStdCall MapJl at, 8

pop edx save ret addr in unused reg
pop ebx segment
xor bh ,bh BL-segment
mov ah, bl AH-segment
pop ebx offset
xor bh,bh BL-offset
mov al ,bl AL-offset
VMMca 11 MapJl at AH-seg AL-off
jmp edx jump to caller's ret addr

EndStdCall MapJlat, 8

; BOOL _stdcall Hook_V86_Page(DWORD PageNum, CALLBACK Call back)

StartStdCall Hook_V86_Page, 8

pop edx ; save ret addr in unused reg
pop eax ; PageNum
pop eSl ; Callback
VMMCa 11 Hook_V86_Page
mov eax, 1 assume TRUE ret val
jnc @f
xor eax, eax carry set, error, so FALSE ret val

@:@:
jmp edx jump to caller's ret addr

EndStdCa 11 Hook_V86_Page, 8

; BOOL _stdcall Unhook_V86_Page(DWORD PageNum, CALLBACK Callback)

pop edx ; save ret addr in unused reg
pop eax ; PageNum
pop esi ; Callback
VMMCall Unhook_V86_Page
mov eax, 1 assume TRUE ret val
jnc @f
xor eax, eax carry set, error, so FALSE ret val

@:@:
jmp edx jump to caller's ret addr

EndStdCa 11 Unhook_V8LPage, 8

; PTCB _stdcall Get_Initial_Thread_Handle(VMHANDLE hVM
StartStdCall Get_Initial_Thread_Handle, 4

pop edx ; Get return address
pop ebx ; Get VMHandle
VxDCall Get_Initial_Thread_Handle
mov eax, edi ; move thread hnd into return
jmp edx ; return addr still in edx

EndStdCa 11

Assembly with VxD in C - 455

Listing B.2 (continued) WRAPPERS.ASM

; Baal _stdcall Install_IO_Handler(PortNum, Callback
StartStdCall Install~IO_Handler, 8

pop ebx ; save ret addr in unused reg
pop edx ; PortNum
pop esi ; Callback
VMMCall Install_la_Handler
mov eax, 1 assume TRUE ret val
jnc @f
xor eax, eax

@'@:
carry set, error, so FALSE ret val

jmp ebx jump to caller's ret addr

EndStdCall

Baal _stdcall Remove_IO_Handler(PortNum

Sta rtStdCa 11

pop ebx
pop edx
VMMCall
mov eax,
jnc @f

; save ret addr in unused reg
; PortNum

Remove_10_Handler
1 assume TRUE ret val

xor eax, eax
@'@:

carry set, error, so FALSE ret val

jmp ebx jump to caller's ret addr

EndStdCa 11

; void _stdcall Enable_local_Trapping(VMHANDlE hVM, DWORD PortNum)

StartStdCall Enable_local_Trapping, 8

pop ecx
pop ebx
pop edx
VMMcall
jmp ecx

EndStdCall

; save ret addr
; hVM
; PortNum

Enable_local_Trapping

in unused reg

; void _stdcall Disable_local_Trapping(VMHANDlE hVM, DWORD PortNum)

StartStdCall Disabl e_local_Trapping, 8

pop ecx ; save ret addr in unused reg
pop ebx ; hVM
pop edx ; PortNum
VMMcall Disable_local_Trapping
jmp ecx

EndStdCa 11

456 - Writing Windows VxDs and Device Drivers

Listing B.2 (continued) WRAPPERS.ASM

; void cdecl Save_Client_State(CLIENT_STRUCT * pSavedRegs

StartCdecl

pSavedRegs EQU [ebp+B]

push ebp
mov ebp, esp

pushad ; service doesn't claim to save any regs
mov edi. pSavedRegs
VMMcall Save_Client_State
popad

pop ebp
ret

EndCdecl

; void cdecl Restore_Client_State(CLIENT_STRUCT * pRestoredRegs

StartCdecl

pSavedRegs EQU [ebp+B]

push ebp
mov ebp, esp

pushad ; service doesn't claim to save any regs
mov edi, pSavedRegs
VMMcall Restore_Client_State
popad

pop ebp
ret

EndCdecl

; void cdecl Begin_Nest_Exec(void

StartCdecl

push ebp
mov ebp, esp

pushad ; service doesn't claim to save any regs
VMMcall Begin_Nest_Exec
popad

pop ebp
ret

EndCdecl

Assembly with VxD in C - 457

Listing B.2 (continued) WRAPPERS.ASM

; void cdecl End_Nest_Exec(void

StartCdecl

push ebp
mov ebp, esp

pushad ; service doesn't claim to save any regs
VMMcall End_Nest_Exec
popad

pop ebp
ret

EndCdecl

; void _stdcall Simulate_Far_Call(WORD seg, WORD off)

StartStdCa11 SimulateJar_Ca11, 8

pop eax ; save ret addr in unused reg
pop ecx ; segment
pop edx ; offset
VMMcall Simulate_Far_Call
jmp eax

EndStdCall SimulateJar_Ca11, 8

; void _stdcall Simulate_Push(DWORD val

StartStdCall Simulate_Push, 4

pop edx ; save ret addr in unused reg
pop eax ; val
VMMcall Simulate_Push
jmp edx

EndStdCa 11

HANDLE cdecl IFSMgr_RingO_OpenCreateFile(Baal blnContext, PCHAR filename,
WORD mode, WORD attrib,
BYTE action. BYTE flags,
WORD *pError, BYTE *pAction)

StartCdecl IFSMgr_RingO_OpenCreateFile

blnContext EQU [ebp+8]
filename EaU [ebp+12]
mode EaU [ebp+16]
attrib EQU [ebp+20]
action EQU[ebp+24]
flags EQU [ebp+28]
pError EQU [ebp+32]
pAction EaU [ebp+36]

458 - Writing Windows VxDs and Device Drivers

Listing B.2 (continued)

@.@:

push ebp
mov ebp. esp
mov dl. action
mov dh. fl ags
mov cx. attrib
mov bx. mode
mov esi. filename
mov eax. RO_OPENCREATFILE
cmp WORD PTR blnContext. a
je @f

mov eax. RO_OPENCREAT_IN_CONTEXT

VxDCa 11 I FSMgr _Ri ngOJil eIO

WRAPPERS. ASM

mov esi. pError ; esi->error code

@.@:

jnc @f

mov WORD PTR [esiJ. ax ;give caller error code
xor eax. eax ;return failure to caller

mov esi. pAction
mov DWORD PTR [esiJ. ecx ; action performed
;returning with handle in eax

pop ebp
ret

EndCdecl IFSMgr_RingO_OpenCreateFile

StartCdec 1 I FSMgr _Ri ngO_Cl oseFil e

fil ehandl e EQU [ebp+8l
pError EQU [ebp+12l

@@;

push ebp
mov ebp. esp

mov ebx. fil ehandl e
mov eax. RO_CLOSEFI LE ; func code
VxDCall IFSMgr_RingOJileIO
mav ecx. 1 ; assume returning true
jnc @f
mov esi. pError
mov WORD PTR res i l. ax
xor ecx. ecx ; returni ng false

mov eax. ecx

pop ebp
ret

; error code or zero

EndCdecl

Assembly with VxD in C - 459

Listing B.2 (continued) WRAPPERS.ASM

; BOOl cdecl IFSMgr_RingO_CloseFile(HANDlE filehandle, WORD *pError)
: DWORD cdecl I FSMgr _RingO_WriteFil e(BOOL blnContext, HANDLE fil ehandl e, PVOID buf,

DWORD count, DWORD fil epos, WORD *perr»
StartCdecl IFSMgr _Ri ngO_WriteFil e

b I nContex t EQU [ebp+8]
filehandl e EQU [ebp ... 12]
buf EQU [ebp+16]
count EGU [ebp+20]
fil epos EQU [ebp+24]
pError EQU [ebp+28]

Il@:

push ebp
moy ebp, esp

moy ebx, filehandle
moy esi, buf
moy ecx, count
moy edx, fil epos
moy eax, RO_WRITEFILE
cmp WORD PTR blnContext, 0
je @f
moy eax, RO_WRITEF I LCI N_CONTEXT

VxDCall IFSMgr_RingOJilelO
jnc @f
moy eSi, pError
moY WORD PTR [esi] , ax :9ive caller error code
xor ecx, ecx :set byte count to zero on error

; ecx contains count
moy eax, ecx

pop ebp
ret

EndCdecl

StartStdCall VPICD_Virtualize_IRO, 4

@@;

pop edx ; save ret addr in unused reg
pop edi ; pI rqDesc
VxDcall VPICD_Virtualize_IRO
jnc @f

xor eax, eax carry set, error, so zero return code

jmp edx jump to caller's ret addr

EndStdCall VPICD_Virtualize_IRO, 4

; void _stdcall VPICD_Physically_Mask(IROHANDLE hndlrq»

StartStdCall VPICD_Physically_Mask, 4

pop edx ; save ret addr in unused reg
pop eax ; hndIrq
VxDcall VPICD_Physically_Mask
jmp edx ; jump to caller's ret addr

EndStdCall

460 - Writing Windows VxDs and Device Drivers

Listing B.2 (continued) WRAPPERS. ASM

; IROHANDlE _stdcall VPICD_Virtualize_IRO (VPICD_IRO_DESCRIPTOR *plrqDesc)
; void _stdcall VPICD_Physically_Unmask(IROHANDlE hndlrq))

StartStdCall VPICD_Physically_Unmask, 4

pop edx ; save ret addr in unused reg
pop eax ; hndI rq
VxDcall VPICD_Physically_Unmask
jmp edx ; jump to caller's ret addr

EndStdCall VPICD_Physically_Unmask, 4

; void _stdcall VPICD_Force_Default_Behavior(IROHANDlE hndlrq));
; y
StartStdCall VPICD_Force_Default_Behavior, 4

pop edx ; save ret addr in unused reg
pop eax ; hndl rq
VxDcall VPICD_Force_Default_Behavior
jmp edx ; jump to call er' s ret addr

EndStdCall VPICD_Force_Default_Behavior, 4

; void _stdcall VPICD_Phys_EOI(IRQHANDlE hndlrq))

StartStdCal1 VPICD_Phys_EOI, 4

pop edx ; save ret addr in unused reg
pop eax ; hndlrq
VxDcall VPICD_Phys_EOI
jmp edx ; jump to caller's ret addr

EndStdCall VPICD_Phys_EOI, 4

; void _stdcall VPICD_Set_Int_Request(VMHANDlE hVM" IROHANDlE hndlrq

StartStdCall VPICD_Set_Int_Request, 8

pop edx ; save ret addr in unused reg
pop ebx ; hVM
pop eax ; hndlrq
VxDcall VPICD_Set_Int_Request
jmp edx ; jump to caller's ret addr

EndStdCall VPICD_Set_Int_Request, 8

; void _stdcall VPICD_Clear_Int_Request(VMHANDlE hVM, IRQHANDlE hlrq

StartStdCall VPICD_Clear_Int_Request, 8

pop edx ; save ret addr in unused reg
pop ebx ; hVM
pop eax ; hnd 1 rq
VxDcall VPICD_Clear_lnt_Request
jmp edx ; jump to caller's ret addr

Assembly with VxD in C - 461

Listing B.2 (continued) WRAPPERS.ASM

; DMAHANDLE cdec1 VDMAD_Virtua1ize_ChannelCBYTE ch DMACALLBACK pfCallback)
StartCdec 1 VDMAD_Vi rtua 1 i ze_Channe 1

chan EOU [ebp+8J
pfCallback EOU [ebp+12J

@&:

push ebp
mov ebp, esp

movzx eax, BYTE PTR chan
moves i, pfCa 11 back
VxDCa 11 VDMAD_Vi rtua 1 i ze_Channe1
jnc @f
xor eax, eax

pop ebp
ret

; ca rry set. error so zero return code

EndCdec 1 VDMAD_Vi rtua 1 i ze_Channe 1

void _stdcall VDMAD_Set_Region_Info(DMAHANDLE DMAHand1e, BYTE Bufferld,
BOOL LockStatus, DWORD Regi on,
DWORD Regi anSi ze, DWORD PhysAddr

pop edi save ret addr in unused reg
pop eax DMAHand1e
pop ebx Buffer I d
xor bh, bh BL-Bufferld
pop ecx LockStatus
sh1 ecx, 4 CX-LockStatus
xor c1, c1 CH-LockStatus
or bx. cx BX-LockStatus IBufferld
pop es i Regi on
pop ecx Regi anSi ze
pop edx ; PhysAdd r
VxDCa 11 VDMAD_Set_Regi on_I nfo
jmp edi ; jump to caller' 5 ret addr
ret

EndStdCa 11 VDMAD_SeCRegi on_I nfo, 24

; void _stdcall VDMAD_SeCPhys_State(DMAHANDLE DMAHand1e. VMHANDLE hVM,
BYTE Mode, BYTE ExtMode

StartStdCall VDMAD_SeCPhys_State, 16

pop esi save ret addr in unused reg
pop eax DMAHand1e
pop ebx hVM
pop edx Mode
xor dh, dh DL-Mode
pop ecx ExtMode
sh 1 ecx, 4 CH-ExtMode
xor c1, c1 CH-txtMode
or dx, cx ; DX-ExtMode I Mode
VxDca 11 VDMAD_Phys_Unmask_Channe 1
jmp esi ; jump to caller's ret addr
ret

EndStdCall

462 - Writing Windows VxDs and Device Drivers

Listing B.2 (continued) WRAPPERS. ASH

; void _stdcall VDMAD_Phys_Unmask_Channel(DMAHANDLE DMAHandle, VMHANDLE hVMl

StartStdCall VDMAD_Phys_Unmas"'-Channel, 8

pop esi ; save ret addr in unused reg
pop edx ; DMAHandl e
pop ebx ; hVM
VxDcall VDMAD_Phys_Unmask_Channel
jmp esi ; jump to caller's ret addr
ret

EndStdCall

; void _stdcall VDMAD_Phys....Mas",-Channel(DMAHANDLE DMAHandle

StartStdCall VDMAD_Phys_Mask_Channel, 4

pop esi ; save ret addr in unused reg
pop eax ; DMAHandl e
VxDcal1 VDMAD_Phys....Mask_Channel
jmp esi ; jump to caller's ret addr
ret

EndStdCa11

; DWORD cdec1 VDMAD_Scatter _Lock< VMHANDLE hVM, DWORD F1 ags,
PDDW pDDS, PDWORD pPteOffset

StartCdec1 VDMAD_Scatter_Lock

hVM EaU [ebp+8]
F1 ags EaU BYTE PTR [ebp+12]
pDDS Eau [ebp+16]
pPteOffset EQU[ebp+20]

RET_NO_LOCKED Eau 0
RET~LLLOCKED EQU 1
RET_PART_LOCKED Eau 2

push ebp
mov ebp, esp

mov al, BYTE PTR Flags
mov ebx, hVM
mov edi, pDDS
VxDCa 11 VDMAD_Scatter _Lock
jc no_lock
jz all_lock
mov eax, RET_PART_LOCKED
jmp flags_checked

no_lock: .
mov eax, RET_NO_LOCKED
jmp f1 ags_checked

all_lock:
mov eax, RET_ALL_LOCKED

f1 ags_checked:
mov ebx, pPteOffset
mov DWORD PTR [ebx], esi
pop ebp
ret

EndCdec1

Assembly with VxD in C - 463

Listing B.2 (continued) WRAPPERS.ASM

; VMHANDLE cdecl SHELL_Resolve_Contention(VMHANDLE hndOwner, VMHANDLE hndContender,
char *DeviceName)

StartStdCall SHELL_Resolve_Contention, 12

@@:

pop edx ; save ret addr in unused reg
pop eax ; hndOwner
pop ebx ; hndContende r
pop esi ; DeviceName
VxDcall SHELL_Resolve_Contention
mov eax, edi move VM handle into return
jnc @f
xor eax, eax ; carry set, error, so zero return code

jmp edx
ret

; jump to caller's ret addr

EndStdCa 11 SHELL_Resolve_Contention, 12

BOOL _SHELL_PostMessage(DWORD hWnd, WORD uMsg, WORD wParam, DWORD lParam,
CALLBACK pfnCallback, DWORD dwRefData);

MakeCDecl _SHELL_PostMessage

; void VWIN32_0ueueUserApc(void * pfnRing3APC, DWORD dwParam, PTCB hThread);

MakeCDecl _VWIN32_0ueueUserApc

; BOOL VWIN32_SetWin32Event(HANDLE hEvent);

MakeCDecl _VWIN32_SetWin32Event

END

464 - Writing Windows VxDs and Device Drivers

Listing B.3 WRAPPERS. MAK

AFLAGS = -coff -W2 -c -Cx -DBLD_COFF -DIS_32 -DMASM6 -Sg

OBJS = wrapperl.obj wrapper2.obj wrapper3.obj wrapper4.obj wrapper5.obj
wrapper6.obj

LIBING = $(OBJS: =&A)
LIBING = $(LIBING:&=)

target: wrappers.clb

wrappers.clb: always $(OBJS)
if exist wrappers.clb lib @«wrappers.lnk

lout:wrappers.clb
wrappers.clb
$(UBING)
«

if not exist wrappers.clb lib @«wrappers.lnk
lout:wrappers.clb
$(UBING)
«
wrapperl.obj: wrappers.asm

ml $(AFLAGS) -DSEGNUM=l -Fo$*.obj wrappers.asm

wrapper2.obj: wrappers.asm
ml $(AFLAGS) -DSEGNUM=2 -Fo$*.obj wrappers.asm

wrapper3.obj: wrappers.asm
ml $(AFLAGS) -DSEGNUM=3 -Fo$*.obj wrappers.asm

wrapper4.obj: wrappers.asm
ml $(AFLAGS) -DSEGNUM=4 -Fo$*.obj wrappers.asm

wrapper5.obj: wrappers.asm
ml $ (AFLAGS) -DSEGNUM=5 -Fo$*. obj wrappers. asm

wrapper6.obj: wrappers.asm
ml $(AFLAGS) -DSEGNUM=6 -Fo$*.obj wrappers.asm

always:
@rem echo pseudotarget

Numerics
16-bit protected mode 13
16Mb limit 88
32-bit

compiler 56
I N instruction 8~1, 202
instruction 313
OUT instruction 8~1, 202
protected mode 13

64Kb alignment 88, 362
80286422
8088421
8250 UART 304
8254418
8254 Timer 110, 417

A
_AOOOh 310
Add New Hardware Wizard 176 184 , ,

195
address

1Mb limit 14, 28-32, 314
base 14, 23, 424
linear 14, 23

definition 23
logical 14, 421

definition 23
physical 14, 24, 81, 88,421

definition 23

Index

address - continued
space 13, 29

I/O 79
memory 79
physical 81, 310
V8628
Win1626
Win3226
Windows 95 32

translation
protected mode 14, 23
V86 mode 14, 23

"alertable" state 256
"aliased" P1E 32
Allocate Real Mode Callback Address

378,380
_A 11 ocate_Dey; ce_CB_Area 44
All ocate_DeY; ce_CB_Area 131
All ocate_LDT_Sel ector 217
All ocateThreadData.Sl ot 44
All ocBusMasterBuffer 93
All ocScatterGatherBuffer 94
All ocSel ector 220,315,316,373
All ocSysDmaBuffer 89-90
APe 256
API

multimedia 417, 419
PM 434
V86434
VxD42

application, loading VxD 38
"appy time" 246, 254

465

466 ~ WFiti'ng Windows VxDs and Device Drivers

arbitrator 172, 179
ARB_SET_ALLOC 180
ARB_TESLALLOC 180
arena

DOS 35
"private 33
shared 34
system 34

assembly language module 56, 67, 112,
146,396

Assert Range 232
=Assi gn=Devi ce_V86_Pages 137
asynchronous notification,

VxD to application 245
Asynchronous Procedure Call, see APe
asynchronous service 40, 113
attribute, segment 327
AUX device 295

B
_BOOOh 310
background VM 417
base address 14, 23, 424
Beg; n_NesCExec 251
Begi n_Proc 435
BIOS Get Ti ck Count 419
BIOS service 30, 367,415
"bitness" 15
Borland compiler 56, 80
buffer

DMA86
double 362
ring 345
used at interrupt time 294

Bui 1 dDescri ptorDWORDS 217
bus-master DMA 85, 93
busy loop 309

c
C run-time library 56, 297
call gate 428
Call Real Mode Procedure With Far

Return Frame 377
calling conventions 435
Ca ll_Pri ority_VM_Event 143, 249,

381
cancel event 114
CB_Cl i ent_Poi nter 46
cCall 436
cdecl calling convention 436, 442
Cl ass value 174
CLI instruction 22-23
Client Register Structure 45,216
CLI ENT_STRUCT 251
Cl oseHandl e 228, 230
CM_CONFIG 190, 194
CMCONFIG 181,190,202
CM_GET_ALLOCCONF _ALLOC 201
CM Get Alloc_Log_Conf181,194,201
CM-GET-ALLOC_LOG_CONF_ALLOC190
CM Load DLVxDs 178
CM=Read=Regi stry-Va 1 ue 178
CM_Register_Device_Driver 179,

188, 190, 198
compiler

32-bit 56
Borland 56, 80
flag 295, 297

for 16-bit DLL 296
option 296
Thunk 395

CONFIGJILTER 192
CONFIG_REMOVE 195,202
CONFIG_SHUTDOWN 192
CONFIG_START 181,189,191,201
CONFIG_STOP 194, 202
CONFI~TEST 194, 200
CONFIG_TEST_SUCCEEDED195
Configuration Manager 172

Control Block 44
Control Panel 3
Contro l_Di s patch 61, 435
Copy Into DMA Buffer J65
Copy Out Of DMA Buffer 365
CPL20
CR3 register 24, 429
CR_DEFAULT 199
CreateEvent 262, 266
CreateFi 1 e 226, 229, 257
Create_Thread 53,61
Create_VM 51, 61
Current Privilege Level, see CPL

D
data segment 293

and static code 51
DB WIN 295, 299
DDB 47, 433, 434

definition 40
Device 10 41 .

DDK56
DDS 97

extended 97
DEBUG 136, 142
debugger 56, 299

output 61
debug-only segment 40
DebugOutput 295, 299
Dec1are_Virtua1_Device60,216,434
. DEF file 296, 327
Del eteFi 1 e 227
demand paged virtual memory 11
descriptor 23
descriptor cache register 425
Descriptor Privilege Level, see DPL
descriptor table 14,23,329,423
Destroy-Thread 53,61
Destroy_VM 52
detector 174

Index-467

device
AUX295
class 2
context 112,114,131,198,306

definition 42
I/O-mapped 4, 19, 79,289
Legacy 171,173-176
loader 178
management 129
memory-mapped 4, 19, 22, 49, 79~

311
node, definition 177
non-standard iii
ownership 129, 143, 147
Plug and Play. 82, 171
removal 194-195
sharing by applications 306
virtualization 127

arbitration 128-129
conflict resolution 128, 140
I/O-mapped 130
memory-mapped 137

"Device Contention" 136
Device Control Procedure 41,47, 433,

434 "
Device Descriptot Block. see DDB
device driver

installation. Windows 3.x 183
non-standard iii
"true" 289, 291,304

Device Driver Kit. see DDK
Device 10 216, 444

DDB41
Device Installer 174,176, 184
Device Loader 172
DEVICE_CONTEXT 198
Devi ceDesc value 174
Device_Init 50,137,144
DeviceloControl 226,230,257
DevLoadervalue 175, 178, 187, 188
DlOCCLOSEHANDLE 228
DIOCGELVERSION 226

468 - Writing Windows VxDs and Device Drivers

DIOCGETVERSION 228
DIOCPARAMETERS 225, 230
Directory Table Entry, see DTE
Disable DMA Translation 365
DISABLEABLE 189
Di sab 1 e_Gl oba 1_ Trappi ng 131
Disable_LocaLTrapping 131,134
discard, and memory management 326,

327
DISCARDABLE 334
DLL 291

data segment 293
definition 1
differences from application 292
driver 2-3
OS != SS issue 293, 306
exported function 295
KERNEL 11
skeleton driver 295
stack segment 292
thunk 290
Win32325

systems 34
using software interrupts 312

011 EntryPoi nt 399, 402
DLLEXPORT keyword 402
DCLOAD_DEVLOADER 188,198
DL_LOAD_DRIVER188
DLVXD_LOAD_DEVLOADER178
DLVXD_LOAD_DRIVER 179
DMA 4, 85, 361

buffer 86,219
bus-master 85, 93
controller 85, 86, 90, 92, 361

mode register 92
double buffering side effect 362
system 85, 86

DOS
application 15, 28
arena 35
DEBUG program 136, 142
driver 1
extender 30, 216, 217
Get Time 419
Get Vector 344
IOCTL 370
multitasking applications 14
service 30,367,415
Set Vector 339, 344
time-shared applications 11

DOS Protected Mode Interface, see DPMI
_dos_setvect 339
double buffering 362
DPL 20, 22, 427
DPMI312

Allocate Real Mode Callback
Address 378, 380

Ca 11 Rea 1 Mode Procedure With
Far Return Frame 377

Map Physical Address 315
Simulate Real Mode Interrupt375

DPMI Set Real Mode Vector 144
dpri ntf function 61,67
DPRI NTF macro 61, 62, 67
driver

definition 1
DLL 2, 3
DOS 1
installable 3
installation 176

Windows 3.x 183
layered 172, 178
multimedia 3
packaging 289-291
polled-mode 289,303,309
privileged 1-2
skeleton VxD 55
system 2
Windows 1

Dri ver value 175, 178
Dri verProc 3
OS != SS 293
OS fix-up 295
DTE429

index 429
dynamic allocation

by DLL 292-293
for use by interrupt handler 335 .

DYNAMIC keyword 187
dynamic link, and INT 20h 444
dynamic loading 187, 227

VMM37
'VxD 38

Dynamic-Link Library, see DLL

E
edge-triggered interrupt 148
EISA 171, 172
Ernul ate_Non_Byte_IO 132, 133
enable interrupt "at the PIC" 111
Enable TranslatiQn 365
Enabl e_Gl oba l_Trappi ng 131
Enabl e_Local_Trappi ng 131
EncLNest_Exec 253
End_Proc 435
Enhanced Mode iv
entry point, VxD 41
enumerator 172-177

Root 177
environment

execution 10
supervisor 16
virtual 9, 19'

EOl 113,149
specific 113

epilogue 295, 340
event

cancelling 114
global 100, 114
scheduling 99,113,247
Win32 266, 268

exception 14, 425
definition 12
handler 12

Index-469

ExecInt 50-52
execution environment 10
ExecVxD_Int 67,252
_export keyword 295
extended DDS 97
EXTENDED_DDS 97

F
far pointer 396, 398
fault 425
FILE_FLAG_DELETE_ON_CLOSE227
FIXED 334
fixed memory 86, 333
flat memory model 16, 428
flat pointer 396,398
flat thunk 393
flip mode 30
foreground VM 417
fragmentation 328, 334
free 294

G
gate 425
GDT423
GDTR424
General Protection Fault, see GPF
generic thunk 393
Get Devi ce Entry Poi nt 217
Get Ti ck CQunt419
Get Time 419
Get Vector 344
Get_Cur_Thread_Handle44,259
GeCCur _VM_Handl e 92
Get_Ini ti a l_Thread_Handl e 61
GetMessage 416
_GetNul PageHandl e 141-142
GetProcAddress 266

470 - Writing Windows VxDs and Device Drivers

GetSe 1 ectorBase 362
global

event 100, 114
heap 294
interrupt 143-144
page assignment, V86 138
TSR 379

Global Descriptor Table Register, see
GDTR

Global Descriptor Table, see GDT
GlobalA11oc 293, 306, 335, 338, 363
GlobalAllocFree 336
GlobalA11ocPtr 336,342
Global DosAlloc 337, 365, 370
Global Free 294,337
Gl oba 1 Lock 336
Gl oba 1 Page Lock 335, 337
"glue" library 56
GMEMJIXED 335,336
GMEM~OVEABLE 336,342
GMEM_SHARE 293, 306
GPF 425-427

H
handle 336
handler

exception 12
interrupt, see interrupt handler
page fault 12, 22, 129, 438
port trap 20, 130, 437, 438
V86mode 144
VMM exception 23
VMM fault 20,128-129

hardware
interrupt 332
key 175-178
subkey 174
timer interrupt 416
tree 178

heap 328
Win1635

_Heap_All ocate 189
_HeapA 11 ocate 43
high memory 312
HKEY_LOCAL_MACHINE 173
HKLM 173
HKLM\ENUM 173-174, 187
HKLM\SYSTEM 173, 175, 187,227, 305
Hook_V86_Page 138, 139
Hook_VMMJaul t_Handl er 129
Hw_InCProc 202

I
IDT 107-108, 425

pseudo- 144
IFSMgr 62, 438
I FSMgr _Ri ngOJi 1 eIO 62
IFSMgr_RingO_OpenCreateFile 62,

441,444-446
IMPUB 297
import library 291, 297
IN instruction 19-20, 79-80, 132, 428,

431
32-bit 8(}-81, 202

INF file 174-176, 184, 192
INFEDIT 184, 197
INI file 172
Init_Compl ete 50
_inp 303
inp 79
install able driver 3
Insta11_IO_Handler 130·,131
"Insufficient memory" error message

334
INT lCh 416
INT 20H 444
INT 21h

interception by Windows 367
translation by Windows 368, 371

INT 2Fh 246
INT 2Fh Get Device Entry Point217

INT 2Fh Switch VMs and Callback
379

INT 30h 218
INT 31h 312,375
INT Sh 416
i ntS6 372
_i ntdosx 374
intdosx 339
interrupt 425

edge-triggered 148
gate 425
global 143, 144
handler

dynamic allocation 335
memory allocation requirement

332
Protected Mode 144
safe function list 383
using dynamically allocated buff

er 294
V86144

hardware 332
hardware timer 416
latency 5, 107
local 143
nested 148
reflection 108, 143, 148
sequence 107
shared 113, 149
software 5, 218, 372
software timer 416
virtualizing 128, 143

Interrupt Descriptor Table, see IDT
interrupt keyword 340
Interrupt Service Routine, see ISR
Interrupt Vector Table, see IVT
interrupt-safe buffer 335
interrupt-safe list 383
intrinsic function 80
i ntri ns i c pragma 80
Invalid Opcode fault 431
I/O address space 79

Index-471

I/O Permission Map, see WPM
I/O ports, trapping by Windows 20, 303
I/O Privilege Level, see IOPL
IOCTL 368

DOS 370
IOCTLPARAMS 225
I/O-mapped device 4,19,79,289

virtualizing 130
IOPL 19, 20, 22, 428
IOPM 19, 20, 431
IRQ 2 344
IRQ 9344
ISR 325
IVT 143,372

pseudo- 144

K
KERNEL 30, 327
KERNEL DLL 11
kernel, layer scheduler 11
KERNEL16 310, 327
KERNEL32 310, 327, 396
KERNEL32. DLL 266,398
key

hardware 175, 176, 178
KnownVxDs 227
software 175,176,187,305

KnownVxDs key 227

L
latency, timer 418
layered

device drivers 434
driver 172, 178
subsystem 187

LDSRV_Copy-Extended_Memory 42
LDT 423
LDTR424
Legacy device 171, 173, 174, 176
LGDT 424

472 - Writing Windows VxDs and Device Drivers

LibMain 294
library

C run-time 297
"glue" 56
import 291, 297
run-time 56
static 290
VXDWRAPS. CLB 57
wrapper 56, 68, 433
WRAPPERS.CLB57, 61, 90

LIBW. LIB 297
linear address 14, 23

base 14
definition 23

linker 291,295, 296
_L i nPageLock 83, 84, 85
LLDT 424
Load Global Descriptor Table, see LGDT
Load Local Descriptor Table, see LLDT
loader 12, 291,295,327, 328, 334
LoadLi brary 266
local

heap 294
interrupt 143
page assignment, V86 138
TSR 379

Local Descriptor Table Register, see
LDTR

Local Descriptor Table, see LDT
LOCAL. INC 441,446
Lock DMA Regi on 365
locked segment 40
logical address 14, 421

definition 23
"logical configuration" 180

M
MAKE_HEADER 440
MAKELP macro 220, 371
rna 11 oc 43, 293, 306, 337
map page table 23
MAP FLAT 216
MAP FLAT macro 222
MapJlat VMM service 216,222
MaplntoV86141,142
MapPhysicalAddress 315
_MapPhysToL i nea r 82, 100
MapPhysToL i nea r 81
MAPSYM 58
masking the PIC 113, 147
MASM iv
master, PIC 343
memory

address space 79
fixed 86, 333
high 312
management

discarding 326, 327
moving 326, 327, 328, 329
swapping 326, 332

model
flat 16, 428
segmented 16

moveable 333
non-discardable 333
pagelocked 86,333
physical 12, 23
real-mode-addressable 372
virtual 12, 24, 327, 332

memory-mapped device 4, 19, 22, 49,
79,311
virtualization 137

message interface 47
Microsoft Assembler, see MASM
MMSYSTEM.H 418
MMSYSTEM. LIB 418

mode
16-bit protected 13
32-bit protected 13
processor 12-13
protected 13-14, 144,422

address translation 23
definition 14

real 14, 422
register 92
switching 30
V86 14,16, 431

_ModifyPageBits 139
move, and memory management 326-

329
MOVEABLE 334
moveable memory 333
multimedia

API 417, 419
driver 3
functions 419

multitasking
DOS application 11, 14
non-preemptive 11
preemptively 11
Windows application 11

MyMapPhysToL i near 83,202

N
"name decoration" 398
name mangling 435, 442
nested

execution 246-247. 250-252
interrupts 148

I NOD option 297
NONDISCARDABLE 334
non-discardable memory 333
non-preemptive multitasking 11
"not present" 12,332

Index-473

o
OpenVxDHandl e 262, 266
OUT instruction 19, 20, 79,80, 132,428,

431
32-bit 80, 81, 202

OuLDebug_Stri ng 61
_outp 303
outp 79
OutputDebugStri ng 295, 299
ownership of device 129, 143, 147

p
package hardware driver 289
page 12

directory 23
SWitching 36

fault 12, 332,425
handler 12, 22, 129, 438

not-present 12
offset 429
register 88
size 12
swapping 12
table 23

entry, see PTE
mapping 23
switching 32, 34, 36

Page Table Entry, see PTE
page trapping 127
pageable segment 40
_PageAllocate43, 88-90, 93, 94,100,

141,223
_PageCommi tPhys 83, 84
pagelocked memory 86, 333
_Page Reserve 83, 84
PASCAL calling convention 398
PATH 297
PC15, 93, 171,172,174
PCIBIOS 173

474 - Writing Windows VxDs and Device Drivers

PCMCIA 5,171,172,174,187,194
Socket service 173

per-thread data 44,53
per-VM data 44,131
per-VM storage 44
physical

address 14, 24, 81, 88, 421
definition 23
space 81,310

memory 12
physical memory 23
physically contiguous 86, 221,315,362
Phys I ntoV86 140
PIC

master 343
slave 343

Plug and Play
device 82

definition 171
Device DriverVxD 172, 183
Industry Standard Architecture, see

PNPlSA

PM

ISA, see PNPlSA
VxD38

API 42,216,434
component 144
interrupt handler 144

PNPISA 171, 174
PNP _New_DevNode 178-179,188
polled-mode driver 289, 303, 309
port locations trapped 20
port trap handler 20, 130, 437, 438
port trapping 127
PostMessage 246, 247, 250,416
pragma

intrinsic 80
pre-allocated selector 310
preemptive

multitasking 11
scheduler 418
thread scheduling 418

prefix byte 312
PREPEND 441
Present bit 426, 430
private arena 33
privilege level 14, 427
privileged

driver 1-2
instruction 14, 22, 428

process
supervisor 15, 16
V8615
Win16 15, 16
Win3215,16

processor mode 12-13
Program Segment Prefix, see PSP
prohibited operation 289
prologue 295, 340, 398
protected mode 13-14,144,422

address translation 23
component 30
definition 14
initialization segment 39
pointer 368, 370, 373

protection violation 373
pseudo-IDT 144
pseudo-IVT 144
PSP 334
PTE 24, 429

Q

aliased 32
index 429

QT_Thunk 399
Query-Destroy 51,52
QueryPerformanceCounter419
QueueUserApc 256
QuickVxD 56, 63

R
ReadlWrite bit 430
real mode 14, 422

addressable memory 372
call structure 375
initialization 42
initialization segment 39
pointer 368, 370, 373

Real Time Clock 110,144
Reference_Data 42
reflect interrupt 143
reflection 108, 148
registry 38, 136, 172, 173, 177
Rel ease DMA Buffer 365
REMOVEABLE 189
REP INSB/OUTSB 132
Request DMA Buffer 365
ResetEvent 266
resolve contention 140
resource dependency 180
Restore_Cl i ent_State 253
Resume_Exec 251
ring 14

buffer 345
Ring 0 14, 22,431
Ring 3 14, 16,22,34,218
Root enumerator 177

S
SafePageLock 335, 337, 342
Save_Cl i enCState 251
sCal1436
"scatter-gather" 93
schedule event 99, 113
Schedul e_Gl obal_Event 114
scheduler

preemptive 418
VMM 11, 53

script file 400

segment 16, 39-40, 326
attribute 327

Index-475

data, and static code 51
debug-only 40
fault 425
limit 427, 429
locked 40
not present fault 328, 425
pageable 40
protected mode initIalization 39
real mode initialization 39
size 13
static 40
type 424

segmentation 421, 428
segmented memory model 16
SEGNUM 446
segread 339
selector 14, 336, 423
SELECTOROF 336
serial port 304
service

asynchronous 40,113
DOS and BIOS 30, 367, 415
table 444
VxD42

Set Vector 339, 344
SeCGl oba l_Ti me_Out 418
SetSel ectorBase 220,312,315,373
SetSelectorLimit220, 312, 315, 373
SetTimer 416
SGDT 424
"share" a device 306
shared arena 34
sharedintemipts 113, 149
SHELL VxD 52, 136, 245
SHELLCallAtAppyTime 254-255
SHELL_Call Dll 255
SHELL_PostMessage 253
SHELL_Resolve_Contention 135-136,

147

476 - Writing Windows VxDs and Device Drivers

shutdown
Windows 95192
Windows termination 50

Simul ate Real Mode Interrupt 375
Simul ateJar_Cal 1 248,251,252
Simul ate_Int 50-52,143,252
Simul ate_IO 133
Simulate_Push 251,252
skeleton

driver
DLL295
VxD55

VxD55
slave, PIC 343
SLOT 424
Sl eepEx 256, 257
SoftIceIWindows 40, 56, 299
software

interrupt 5,218,372
key 175-176,187,305
timer interrupt 416

specific EOI 113
_Spri ntf 61-63, 67
sprintf 67,295
SS 1= OS 306
stack segment 292
StartCOec1442
Sta rtStdCa 11 442
STATIC 189
static

code, and data segment 51
library 290
loading

VMM37
VxD 38, 49

segment 40
VxD 136

_s tdca 11 calling convention 436, 442
STI instruction 22, 23
STI/CLI 428
Store Global Descriptor Table, see SGOT
Store Local Descriptor Table, see SLOT

supervisor
bit 35
context 9
environment 16
process 15

definition 16
swap

and memory management 326, 332
pages 12

switch
back 30
page directory 36
page table 32, 34, 36

Sys_Criti ca l_Exit 50
Sys_Critical_Init49,100
Sys_Oynami cOevi ce_Exi t 50
Sys_Oynami cOevi ce_Init 50,187
system

arena 34
DMA 85,86
driver 2

System VM 10, 16
System_Exit 50
SYSTEM. INI 38,54,136,173,305
Sys_VM_Terminate 50

T
TASM3281
Termi nate_Thread 53
TESTORIV. EXE 297,309
THCB 44
thread 11, 256

data 44,53
handles 259

Thread Control Block. see THeE
Thread_Init 53
Thread_NoLExecuteab 1 e 53

thunk
DLL290·
flat 393
generic 393
layer 4
script 395, 397, 400
universal 393

Thunk Compiler 395
ThunkConnect32399
timeBegi nPeri od 417
t i meGetDevCaps 417
timer

interrupt
hardware 416
software 416

latency 418
t i meSetEvent417
translation

logical address 14
V86 mode 23

trap
gate 425
110 port 19-20
your access 303

"true" device driver 289,291,304
TSR 28, 35, 372

global 379
local 379
Windows-aware 379

U
UART 304
UNDEFI NED_DEVICCID 41,216,434
UNDEFINED_I NIT_ORDER 60, 434
UNDEFINED_VXD",-ID 60
universalthunk 393
unmasking the PIC 111, 113, 147
"Unsupported service" error message

57,67
User/Supervisor bit 430

V
V86

address space 28
API 42,216,434
component 144
interrupt handler 144
mode 14, 16, 431

Index-477

1Mb address limit 14
address translation 14, 23
component 30
definition 14
handler 144

page assignment
global 138
local 138

process 15
value 174

C1 ass 174
Devi ceDesc 174
DevLoader 175, 178, 187, 188
Dri ver 175, 178

VC++
l.x 293,295,299, 306
4.0 iv
4.1 57
4.x 402

VCD 128-129, 305
VDD 22, 128, 137

see also Video Device Driver
see also Virtual Display Device

VDMAD 42, 85, 86, 90, 362
VDMAD_Physi ca11y_Mask_Channe1 99
VDMAD_Physica11y_Unmask_Channe1

99
VDMAD_Phys_Unmask_Channe192
VDMAD_Scatter _Lock 95,96,99
VDMAD_Scatter_Un1ock99
VDMAD_SeCPhys_State 92, 99
VDMAD Set_Region_Info91, 99
VDMAD=Virtualize_Channe191
VDS 363

478 - Writing Windows VxDs and Device Drivers

version of Windows 221
Video Device Driver, see VDD
VID_Hw_Int~Proc 111,146
virtual

environment 9, 19
machine, see VM
memory 10, 24, 327, 332

definition 12
demand paged 11

resource 10
Virtual Com Device, see VCD
Virtual Device Driver, see VxD
Virtual Display Device, see VDD
Virtual DMA Device, see VDMAD
Virtual DMA Service, see VDS
Virtual Keyboard Device, see VKD
Virtual Machine Manager, see VMM
Virtual Machine, see VM
Virtual Printer Device, see VPD
Virtual Programmable Interrupt Control

ler Device, see VPlCD
Virtual Timer Device, see VTD
virtualizing

device 127
arbitration 128, 129
conflict resolution 128, 140
I/O-mapped 130
memory-mapped 137

interrupt 128, 143
VKD 128
VM 10, 19

background 417
data 44,131
event 247
foreground 417
IVT 143
storage 44
System 10

VM_Criti ca l_Init 51
VM_Init 51,259,264

VMM 10, 37, 327
dynamically loaded 37
exception handler 23
fault handler 20, 128-129
scheduler 11,53
statically loaded 37

VMMcall 443
VM_Not_Executeabl e 51
VM_Resume 52
VM_Suspend 52
VM_Termi nate 51, 136, 142, 147, 259,

264
VPD 128
VPICD 108, 143
VPICD_Clear _Int_Request 149
VPICD_Force~Default_BehaVior111

VPICD_IRO_DESCRIPTOR 111,144,146,
202

VPICD_OPT_REF _DATA 111, 112,202
VPICD_Phys_EOI 113, 149
VPICD_Physi cal ly_Mask 111, 147
VPICD_Physi call y-Unmask 111, 147
VPICD_Set_Int 149
VPICD_Set_Int_Request 109, 144,

148, 150
VPI CD_Vi rtua 1 i ze_I RO 108, 110, 144,

202
VTD417
VTD_Begi n_Mi n_I nCPeri od 418
VTD_End_Mi n_I nCPeri od 418
VTooIsD 55

support for Windows 3.x 68
VWIN32259
VWIN32 VxD 256, 262
_VWIN32_Pul seWi n32Event 262
_VWIN32_0ueueUserApc 259
_VWIN32_ResetWi n32Event 262
_VWI N32_SetWi n32Event 262, 265
_VWIN3LWai tMul ti pl eObjects262
_VWIN3LWaitSi ngl eObject 262

VxD
API 42

PM 42
V8642

definition 37
dynamically loaded 38
entry point 41
loading by application 38
Plug and Play 38

Device Driver 172
Device Driver VxD 183

Quick 56,63
Service 42
SHELL 52, 136, 245
skeleton 55
static 136
statically loaded 38, 49
VWIN32 256, 262

VxDCa 11 443
VXDWRAPS. ClB 438
VXDWRAPS. ClB library 57

W
W32_DEVICEIOCONTROl224, 226, 230
WDEB38640, 56, 95, 299
WEP 294
Win16

address space 26
application 15, 26

interface to VxD 215
heap 35
process 15

definition 16
Win32

address space 26
application 15, 26, 304

interface to VxD 215
DLL 304,325

accessing 110 ports 304
limitations 289
using software interrupts 312

Win32 - continued
event 260, 266, 268

handle 262
process 15

definition 16
system DLL 34

Windows

Index-479

automatic translation of I NT 21 h 371
driver 1
error message

"Device Contention" 136
"Insufficient memory" 334
"Unsupported service" 57, 67

initialization
protected mode 49
real mode 39

intercepting I NT 21h 367
multitasking applications 11
termination 50
translating I NT 21 h 368
version checking 221

Windows 3.x
address space 29
driver installation 183

Windows 95
address space 32
boot process 176
installation 174
layered subsystem 187
shutdown 192

Windows-aware TSR 379
WINSTART.BAT 379
WM_TIMER 416
wrapper library 56, 68, 433
WRAPPERS. ClB library 57, 61, 90, 433,

438

480 - Writing Windows VxDs and Device Drivers

