
IFSMgr, the Installable File System Manager

Inside the

A NUTSHELLI>

~ Stan Mitchell

HANDBOOK O'Reilly & Associates, Inc.

Inside the Windows 95 File System

Inside the Windows 95 File System

Stan Mitchell

O'REILLY"
Cambridge • K61n • Paris • Sebastopol • Tokyo

Inside the Windows 95 File System
by Stan Mitchell

Copyright © 1997 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Andrew Schulman

Production Editor: David Futato

Printing History:

May 1997: First Edition

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks, and The Java
Series is a trademark, of O'Reilly & Associates, Inc. The use of the mollusk image in
association with Windows file systems is a trademark of O'Reilly & Associates, Inc. Windows,
Windows NT, and Windows 95 are registered trademarks of Microsoft Corporation. Many of
the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-200-X

Table of Contents

Preface ... ix

1. From IFSMgr to the Internet 1
Long Filenames .. 1

Windows 3.11 Had an IFSMgr? ... 3

Peering "Under the Hood" .. 4
An Overview of IFSMgr ... 4

Loading Netscape Navigator .. 8

Going to www.ora.com .. 14

2. "Where Do Filenames Go? ... 20
What's in a Name? .. 20

Accessing Local Files ... 21

Accessing Remote Files ... ; 24
Accessing Devices .. 26

3. Pathways to the File System: ... 29
The Big Bang ... 29
Accessing IFSMgr ... 41

The Win32 Callback ... 47

4. File System API Mapping ... 53
The Win32 API and KERNEL32 Objects ... 53

Implementation of VWIN32_Int21Dispatch 73

Win16 File Services 77

v

vi Table of Contents

5. The "New" MS-DOS File System 79
Interrupt 21h Handlers .. 79
Interrupt 2Fh Handler .. 92
Interrupt 25h and 26h Handlers .. 94
Interrupt 17h Handler .. 95
IFSMGR's Common Dispatch Routine ... 95

6. Dispatching File System Requests .. 100
The Dispatch Point .. 101

Dispatch Functions ... ; 107

Shell Resources and the FSD's Volume-Based Function Table 113
fhandle Structures and the FSD's Handle-Based Function Table 115

Calling into a File System Driver ... 117

FSDs as Providers ", ,.. 120

Enumerating Shell Resources and fhandles .. 121

7. Monitoring File Activity ... 124
The File System API Hook .. 124

The NetFunction Hook .. 137

Hooking a Path .. 142

8. Anatomy of a File System Driver ... 144
FSD to IFSMgr Linkage .. 144

FSDs Come in Three Flavors ... 145
FSD Mechanics ... 147

FSD Linkage ... 152
MONOCFSD: A Character File System Driver 165
FSINFILE: A Remote File System Driver ... 172

9. VFAr.· The Virtual FAT File System Driver 175
DOS 6.x FAT, Boot Record, and Directory Entries : 176
Windows 95 Directory Entries ... 179
Changes in Disk Layout with FAT32 ... ; 180

lOS and the Layered Driver Model ; ; , 183

VFAT Initialization and Registration .. 185
Mounting a VFAT Volume ... 187
Opening a VFAT File-Top Level ... 193
Opening a VFAT File-Lower Level ... 197

Locating a Directory Entry 199
VFAT's File Structures .. 202

Table of Contents vii

10. Virtual Memory, the Paging File, and Pagers 205
The Windows 95 Paging File .. 205

Pagers ... 213
The System Pagers ... 214

Demand Page Loading ... 225

11. VCACHE: Caches Big and Small .. 234
Where Does Block Cache Memory Come From? 235
How Does the Memory Manager Control Block Cache Size? 237
Block Cache Data Structures ... 239
Block Cache Services ... , ... 241
Monitoring VCache .. 243
The Lookup Cache Data Structures .. 246

Lookup Cache Services .. 247
An Example: IFSMgr's ServerNameCache ... 249

12. A Survey of IFSMgr Services ... 252
IFSMgr Versions ... 253
FSD Registration ... 253

Heap Management ... 254
Time Management ... 257
Network Management .. 259
Event Management ... 260

Codepage and Unicode Conversion ... 263
Filename Manipulation .. 264
Filename Matching .. ; .. 265

Path Parsing .. 266
File Sharing ... 268
Plug-and-Play .. 270

Win32 Support .. , : 270

Ring-O File 1/0 ... 271
Miscellaneous ... 273
Debugging .. 274

13. VREDIR: The Microsoft Networks Client 275
VREDIR and Other Network Components ... 275
VREDIR Interfaces .. 277
The 5MB File Sharing Protocol.. .. 281
Tracing VREDIR Operations .. 288

IPC for Network FSDs .. : ... 291

viii Table of Contents

14. Looking Ahead .. 296
IFSMgr vs. NT's Object Manager ... 296

IFSMgr vs. NT's I/O Manager .. 298

NT Kernel Mode Drivers vs. VxDs .. 300

WDM ... 301

A. MultiMon: Setup, Usage, and Extensions 303

B. MultiMon: Monitor Reference .. 318

C. IFSMgr Data Structures .. , 333

D. IFS Development Aids ... 341

Bibliography ... 347

Index .. 351

Preface

This book will walk you through the inner workings of the Windows 95 file
system. The standard file systems which ship with Windows 95 include: VFAT, the
virtual FAT file system; VREDIR, the Microsoft Networks client; and NWREDIR, the
Microsoft Netware client. These and other file systems supplied by third party
developers register with the Installable File System Manager, or IFSMgr, to make
their services available to the system. IFSMgr manages the resources which are
currently in .use by each file system and routes client requests to the intended file
system.

This book anticipates some of the changes to the file system which will appear in
the successor to Windows 95 (code-named Memphis). These new features include
FAT32 , support for volumes up to 2 terabytes in size, and WDM (the Win32
Driver Model). The Microsoft Networks file and printer sharing protocol-the 5MB
(Server Message Block) protocol-is also undergoing some changes to make it
suitable for accessing the Internet. 5MB's future extension to the Internet as CIFS
(the Common Internet File System) is also examined.

The core of this book is based on the flow of execution through the layers of the
file system (stopping short of the disk system, managed by lOS, the I/O Super
visor). Requests are made of the file system through the application programming
interfaces (APls) that are appropriate for the operating environment (interrupt
21h, Win16, or Win32). These requests ultimately arrive at IFSMgr, which must
find a file system driver to relay the request to. Although three different Windows
95 operating environments generate these requests, IFSMgr relays them to the file
system drivers using a common I/O request packet· structure. A file system driver
doesn't know and doesn't care if the request originated in a DOS application or in
a Win32 program.

Ix

x Preface

As file system requests pass through IFSMgr on their way to file system drivers, a
file system monitor may intercept the I/O request packets. These monitors may
simply report the file system requests and pass them on, or they may change the
operation or direct it to a different driver. This capability provides some inter
esting possibilities for developers.

Of the three Windows 95 programming environments, special attention is given to
the new Win32 environment. The focus will be on the mapping between the
Win32 APIs and the lower level file system functions which are used to imple
ment them. This will also lead us to explore KERNEL32 objects, especially the file
object.

The structure of file system drivers (FSDs) is examined and two sample FSDs are
implemented. One is for a character device which acts as an interface to a mono
chrome display adapter; the other implements a "file system within a file" by
using some of IFSMgr's ring-O services. The VFAT and VREDIR file system drivers
are also scrutinized.

Our coverage will stray a little from IFSMgr and FSDs by examining paging and
cache services. The paging file in Windows 95 is implemented as a VFAT file;
page-ins and page-outs to this file are done using the system pagers, routines
which control the lifecyde of pages. FSDs rely upon VCACHE's services to keep
the most recently used disk blocks in memory, thereby minimizing disk "hits."
Chapter 11, on VCACHE, will explain how these services work.

Since much of this material is new, you are probably wondering: "What is the
source for this information? Do you have access to IFSMgr source code, or do you
have a good connection at Microsoft?" Recently, Geoff Chappell (author of DOS

Internals) was asked a similar question in an Internet newsgroup. His answer says
it all:

Q: So have you gotten your hands on IFSMgr code somehow, or are you just
hacking through it with SojtICE?

A: I have my hands on IFSMgr code. So have you. Source code, of course, is
another matter-but why should I want that? I may be the only person on the
planet who works primarily with VxDs but who doesn't use SoftICE (and
indeed never have), but yes, if I talk of looking over code, I mean the code
that the machine sees. I prefer to think of this as high-quality documentation
written in a language that happens not to be English. It is, however, the only
authoritative, reliable documentation that Microsoft releases.

Preface xi

Versions
Unless otherwise stated, code fragments shown in the book are from Windows 95
build 950. This is the retail release of the product. Some material is specific to
OEM Service Release 2, also known as Windows 95 build 950B. References to this
material are flagged with the abbreviation "OSR2".

Intended Audience
This book is geared to engineers and managers who wish to tap into the new
capabilities of Windows 95. IFSMgr, file system drivers, and file system monitors
are all implemented as kernel mode or ring-O components. In the Windows 95
environment this means they are implemented as virtual device drivers, or VxDs.
First-hand experience with VxDs is not a requirement for reading this book.
However, I do not attempt to provide a tutorial on VxDs.

MultiMon-a Windows 95 internals snooping tool-and the other utilities and
samples on the companion disk can be used for exploration as is. However, if
you intend to write your own drivers and use some of the development aids
which accompany this book, you will need to have a copy of the Windows 95
device driver kit (DDK) as well as a compatible version of Visual C++.

The book takes a hands-on approach and where appropriate demonstrates an
idea with example code. Several working programs are developed over the
course of the book and these are included on the accompanying diskette. Thus,
this book also provides examples that can serve as starting points for your own
projects.

Chapter Summary
This book contains fourteen chapters and four appendixes:

Chapter 1, From IFSMgr to the Internet, introduces and provides an overview of
IFSMgr. MultiMon is used to watch the Netscape web browser load and surf the
Internet.

Chapter 2, W'here Do Filenames Go? traces the path of filenames, UNC names, and
device names as they pass through the file system.

Chapter 3, Pathways to the File System, examines the mechanisms that the kernel
(VMM) uses to allow DOS, Windows 3.x, and Win32 programs access to IFSMgr.

Chapter 4, File System API Mapping, reveals how the Win32 APls create Kernel32
file objects and how file object services ultimately become Interrupt 21h requests.

xii Preface

Chapter 5, The "New" MS-DOS File System, shows that the MS-DOS interrupt inter
faces are still supported but now they are mostly implemented in IFSMgr's ring-O
code.

Chapter 6, Dispatching File System Requests, looks at the how I/O request packets
are routed to file system drivers. Three key IFSMgr data structures are introduced:
the ifsreq structure, the shell resource, and the fhandle structure. These data
structures allow IFSMgr to call into the appropriate file system driver entry points.

Chapter 7, Monitoring File Activity, examines the use of file system hooks and
looks at several example programs. IFSMgcNetFunction and path hooks are also
discussed.

Chapter 8, Anatomy of a File System Driver, looks at the details of the linkage
between file system drivers and IFSMgr. It examines in detail how each type of
FSD handles the mounting and dismounting operations. Two sample FSDs are
described: MONOCFSD, a character FSD, and FSINFILE, a remote FSD.

Chapter 9, VFAY. The Virtual FAT File System Driver, reviews the FAT16 file struc
ture and contrasts it with that of F AT32. Some implementation details of VF AT are
examined, including initialization and registration, mounting a volume, opening a
file, and locating a directory. Some basic lOS data structures and services are
introduced.

Chapter 10, Virtual Memory, the Paging File, and Pagers, shows how the paging
file is accessed via IFSMgr. The use of each of the system pagers is also explored.

Chapter 11, VCACHE: Caches Big and Small, describes the VCache services and
data structures. Many undocumented features are described here.

Chapter 12, A Survey of IFSMgr Services, categorizes and enumerates all IFSMgr
services. It proVides undocumented details on heap management, event manage
ment, and path-parsing services.

Chapter 13, VREDIR: The Microsoft Networks Client, looks at how the redirector
interfaces with other network components. The NetBIOS and 5MB protocols are
introduced and these protocols are traced with MultiMon to see how remote file
system requests are handled. The CIFS protocol is contrasted with the 5MB
protocol.

Chapter 14, Looking Ahead, explores the differences between the Windows NT
and Windows 95 file systems. The impact of WDM is also assessed.

Appendix A, MultiMon: Setup, Usage, and Extensions, describes how to install and
use MultiMon, a Windows 95 internals snooping tool. A sample extension driver
is also described.

Preface xiii

Appendix B, MultiMon: Monitor Reference, is a reference for the set of monitor
drivers which accompany the book. These include file system, Winsock, Devicelo
Control, NetBIOS, 5MB, and other monitors.

Appendix C, IFSMgr Data Structures, provides typedefs and descriptions of some
key (and undocumented) IFSMgr data structures.

Appendix D, IFS Development Aids, describes four tools for VxD writers using the
DDK, including IFSWRAPS, a library of all IFSMgr services, and DEBIFS, a
debugger "dot" command for examining IFSMgr data structures.

Whars on the Diskette?
All of the programs and drivers on the companion disk come with complete
source code. These include:

MultiMon and monitor drivers
A Windows 95 internals snooping tool

Sr
A utility that dumps IFSMgr's local and remote volume data structures

Fh
A utility that dumps IFSMgr's data structures for a volume's open files

Sample file system hook VxDs
Sample VxDs which show techniques for calling into FSDs from a file system
hook

MonoCFSD
A character file system driver for a monochrome display adapter

FSinFile
A remote file system driver that implements a file system within a file

DumpDisk
A utility that displays important FAT16 and FAT32 structures

Pagers
A utility that displays the system pagers

Chentry
A utility for removing leading underscore on VxD's export name

Header Files for File System Development
Supplements to the DDK headers

IFSWraps
A C-callable library of all IFSMgr services

xiv Preface

DebIFS
A debug command for use with WDEB386 or SoftICE

Typographical Conventions
Throughout this book, we have used the following typographic conventions:

Bold
Indicates the name of a Windows API or a VxD service name, functions, moni
tors, and commands. Bold is also used to indicate menus, buttons, dialogs,
and other parts of the Windows 95 GUI.

Italic
Indicates filenames, variables, and is used for emphasis. Manifest constants
are represented by uppercased italicized names, e.g., MAXFUNG.

Constant width
Indicates a language construct such as a data type, a data structure, a macro,
or a code example.

Comments and Corrections
Every effort has been made to verify the accuracy of this book's contents. Please
report any errors and corrections to the author at stanm@sourcequest.com. An
errata sheet will be posted to the web site listed below. We would also like to
hear comments and suggestions you have for improving future editions of this
book.

Getting Updates
Updates to the source code on the companion diskette can be found at:

http./lwww.sourcequest.comlwin95ijS

From time to time, new utilities will be posted there for download.

Acknowledgments
Thanks are due to the many people who have helped make this book possible.

Andrew Schulman, my editor, who saw the significance of the Windows 95 file
system and encouraged me to expose it in a Nutshell series book. This book
would not have been attempted without his encouragement. Although he sparks
controversy by his writings, he has won the admiration and respect of the

Preface xv

developer community with his classic books on undocumented DOS and
Windows. His suggestions and comments helped immensely.

Ron Burk, the editor at Windows/DOS Developer's Journal. When he published my
article "Monitoring Windows 95 File Activity in Ring 0," in July 1995, I had no idea
it would be the seed for a new book.

Andy Cohen, for technical review.

Geoff Chappell, for sharing some of his intimate knowledge of IFSMgr. Material
that he has generously provided is duly noted.

Rajeev Nagar, author of the forthcoming Windows NT File System Internals, for
making suggestions about the content of the "Looking Ahead" chapter.

Mark Russinovich, for supplying me with an advance copy of his Dr. Dobb's
Journal article, "Examining the Windows NT Filesystem" (February 1997), written
with Bryce Cogswell.

Ed Stitt, Steve Farrell, and Gary Schoolcraft, my co-workers at Xerox/XSoft. Our
discussions on the Windows 95 architecture helped me expose the gaps in my
knowledge.

Russ Arun at Microsoft for prying the "IFS Specification" loose and getting it into
developers' hands during the Chicago beta.

The many developers who post file-system related questions in the Internet
newsgroups and CompuServe forums. Some of these questions became the basis
for a book topic or sample program.

The crew at O'Reilly who helped this novice bookwriter learn the ropes. Special
thanks to Troy Mott, my "O'Reilly connection," who helped resolve many issues
that arose during the course of the project. Thanks also to Edie Freedman for her
excellent cover design. Frank Willison, Editor in Chief, who made many sugges
tions for improvement. David Futato, for producing an attractive addition to our
bookshelves.

And last, but not least, Maggie, my wife, for enduring yet another project. Her
support kept me sane during the long haul. She also kept an eye on my schedule
and kept me moving towards the final goal.

From IFSMgr to
the Internet

The file system in Windows 95 resides in a component named the Installable File
System Manager, or IFSMgr. As its name suggests, IFSMgr is responsible for
routing file system requests to the installed file systems. Multiple file systems are
implemented as independent drivers underneath IFSMgr. Thus, it is hard to get a
complete picture of the file system without examining file system drivers (FSDs)
too. Later chapters will focus on the underpinnings of IFSMgr and file system
drivers, but for now let's get a feel for why the file system is so important.

Long Filenames
One of the most touted features of Windows 95 is its support for long filenames.
This support is brought to you through the Win32 API (application programming
interface) and also through the clunky, old Int 21h interface. These two interfaces
cover three of the Windows 95 operating modes: Win32 , Winl6, and DOS box.
But what about MS-DOS mode, the real-mode DOS version 7.n? Does it support
long filenames?

To find out, let's build the simple DOS application in Example 1-1, which uses
one of the new long filename APls (the source and executable for this example
are in the DOSVOL directory of the companion disk).

For brevity, Example 1-1 does not display the implementations of several support
routines such as GetStartupDriveO, GetVolInfoO, etc. These are small C functions
that contain inline assembler Int 21h calls.

This little application prints the MS-DOS version and, if Windows is detected, the
Windows version as well. The function GetVolInfo moves its function arguments
into appropriate registers and then invokes interrupt 21h function 71aOh. This Int
21h service returns volume information for the drive specified by a root path

1

2 Chapter 1: From IFSMgr to the Internet

string, e.g., Co\. If successful, this service returns the file system name, the
maximum length for a filename component, and the maximum length for a fully
qualified filename for the specified volume. This is essentially the DOS equivalent
of the Win32 function GetVolumeInformation

Example 1-1. DOSVOL: Test Application Using Long Filename API

void main(void) {
unsigned short flags, maxfn, maxpath;
char szFS[32], szRootName[4];

printf ("MSDOS Version %d. %02d", GetDosMajorVersion () ,
GetDosMinorVersion());

if WinCheck() == 0)
printf(" - Windows Version %d.%02d\n", GetWinMajorVersion(),

GetWinMinorVersion());
else printf("\n");

strcpy (szRootName, "@: \ \"); / * volume string * /
szRootName[O] += GetStartupDrive();

printf ("Get Volume Information, Int 21h Function 71AOh. \n");
if (lGetVollnfo(szRootName, szFS, sizeof(szFS),

&maxfn, &maxpath, &flags))
printf("Drive %c - FAILED.\n\n", szRootName[O]);

else
printf(" Drive %c - File system: %s MaxFileName: %d "

MaxPathName: %d\n\n", szRootName[O] , szFS, maxfn,
maxpath);

Executing DOSVOL in a Win95 DOS box yields this output:

MSDOS Version 7.00 - Windows Version 4.00
Get Volume Information, Int 21h Function 71AOh.

Drive C - File system: FAT MaxFileName: 255 MaxPathName: 260

Now let's take the same DOS application and execute it in MS-DOS mode. You
reach that mode by selecting "Restart windows in MS-DOS mode" from the Shut
Down Windows dialog. This time you get these results:

MSDOS Version 7.00
Get Volume Information, Int 21h Function 71AOh.

Drive C - FAILED.

Hmm ... long filename support is not available from real-mode DOS! Well, where
is it coming from then? Function 71aOh and the· other long filename (71xxh) func
tions are. supplied by IFSMgr. IFSMgr defines the APls that a file system can
support, but it in turn needs an installed file system driver to fulfill the requests.·
This simple example illustrates that the DOS long filename APls are only available
if VxDs, like IFSMgr, are present to proVide them.

Windows 3.11 Had an IFSMgr? 3

It might appear that IFSMgr is adding features to an MS-DOS base. Actually, the
change is more fundamental than that. Most of the DOS-like functionality that you
enjoy in a Windows 95 DOS box, at least as far as the file system goes, is brought
to you by IFSMgr. It is more accurate to think of IFSMgr as a replacement for the
DOS file system. The MS-DOS code base is still used for some functions, but in a
subservient role"

We've just looked at a single API here, one of many that are documented in "Part
5: Using Microsoft MS-DOS Extensions," of Programmer's Guide to Microsoft
Windows 95. Microsoft calls these new APIs MS-DOS extensions. The name is
significant: they look like good old MS-DOS but they are not a part of a new MS
DOS version. Rather, they are part of IFSMgr, extending it from the baseline imple
mentation that came with Windows 3.11.

Windows 3.11 Had an IFSMgr?
Yes, IFSMgr quietly debuted in Windows for Workgroups version 3.11. That
version of IFSMgr had already implemented a substantial portion of the MS-DOS
interrupt 21h interface. However, where it lacked a complete implementation, it
"gracefully degraded" to using 16-bit file access through MS-DOS.

A good example of this is provided by the DOS subst command. The subst
command, you'll recall, is used to map a drive letter to a local directory. If you
have a Windows 3.11 configuration available, you might want to try this. First you
should make sure that you are currently using 32-bit file access. You do this with
the 386 virtual memory settings from the Control Panel. Once you have 32-bit file
access set up, insert a command like this into autoexec.bat:

subst d: c:\windows\system

where d: is whatever the next available drive letter might be for the system.

Now shut down Windows and reboot the system so that the new line added to
autoexec.bat will execute. After the initial Windows logo screen is displayed, a
blue character mode "pop up" will appear with the following message:

32-bit File System
The 32-bit file system is incompatible with the SUEST utility.
To use 32-bit file access, do not use the SUBST utility before

starting Windows for Workgroups.
Press any key to continue

• This topic is discussed in great detail in Unauthorized Windows 95 by Andrew Schulman (especially
Chapter 8, appropriately entitled "The Case of the Gradually Disappearing DOS"). Also see http://
www.sonic.net/-undoc/.

4 Chapter 1: From IFSMgr to the Internet

If you press Return, Windows continues to start up. But if you check the 386
virtual memory settings in the Control Panel, you will find that you are using 16-
bit file access, even though the checkbox for 32-bit file access is checked. What is
happening here? If IFSMgr detects that you have subst drives in the system during
its initialization, it will not support 32-bit file access on any drive, and drops back
into 16-bit file access using MS-DOS.

subst is only one example where the Windows 3.11 IFSMgr gracefully degrades
back to 16-bit file access; other examples include the presence of a DOS 6.0
DoubleSpace drive, the presence of some other types of compressed drives, and
the existence of open files on a drive when IFSMgr initializes. In contrast,
Windows 95 fully supports subst drives and DoubleSpace drives.

Peering ~(Under the Hood~~
By now you should have a feel for the hands-on approach I will take in this
book. By "hands-on," I mean exploring with tools . like MultiMon-a general
purpose monitor for examining Windows internals, looking at source code or
pseudo-code of portions of Windows 95, and stepping through that code with a
debugger. We'll also be writing some code, including small sample applications
and drivers. (Source and executables for these are provided on the companion
disk.)

MultiMon is an exciting new tool, which you get with this book. It is described in
detail in Appendix A, MultiMon: Setup, Usage, and Extensions, and you also get
complete source code for it. Unlike a lot of other "snooping tools," MultiMon
reveals what is going on at ring-O. It doesn't tell you which Win32 API is being
called; instead, it may reveal a sequence of ring-O APls and events that corre
spond to a single Win32 API.

The experiments we conducted at the beginning of this chapter give you first
hand knowledge about the role IFSMgr plays in Windows 95. Tools like MultiMon
will take you much further and allow you to ferret out many other secrets about
IFSMgr and other Windows 95 internals. Before we put MultiMon to work, let's
digress a bit to get an overview of IFSMgr. The next section may be a little
abstract, but having this conceptual framework will prepare you for what's to
come.

An Overview of IFSMgr
To reiterate, the Installable File System Manager is responsible for routing file
system requests to the installed file systems, and file systems are implemented as
independent drivers under IFSMgr. The target file system for a request depends

An Overview of IFSMgr 5

upon the format of the filename by which the file is initially opened or created.
The forms that a filename may take are discussed in Chapter 2, Where Do Fi/e
names Go?

The system components to which IFSMgr interfaces are shown in Figure 1-1. The
arrows leading in to IFSMgr are from clients that make requests upon a file
system. The arrows leading out from IFSMgr are to file system drivers (FSDs). All
of the components shown here execute in one of the Intel x86 processor's
protected modes. The dark grey boxes indicate components with the least privi
lege level (ring-3) whereas the pale boxes are virtual device drivers with the
highest privilege level (ring-O).

Ring 3

RingO

File System Drivers

Supporting Sub-layers

Figure 1-1. IFSMgr in relation to other system components

IFSMgr's Client Interface

There are many ways in which IFSMgr is called upon to provide services. The
most common request mechanism is for an application to call a published API. In
the Windows 95 environment, there are three operating modes that are the source
of such file system requests. The first of these is MS-DOS executing in a special
Intel x86 processor mode known as vil1ua/-86 mode. Here, file system requests
are made via software interrupt 21h, with CPU registers loaded with command

6 Chapter 1: From IFSMgr to the Internet

parameters. This mode is available in a "DOS box," a window into a virtual 8086
machine executing some DOS application.

The second mode corresponds to a 16-bit Windows application. In this protected
mode, the processor addresses memory using 16-bit selectors and offsets. The
Win16 API supplies the commonly used file system services. Ultimately these func
tions are implemented as calls to software interrupt 21h. Inasmuch as the
processor is in protected mode as opposed to virtual-86 mode, the ring-O handler
for interrupt 21h is different from that used by "DOS box" applications.

The third mode corresponds to a 32-bit Windows application. In this protected
mode, the processor addresses memory using 32-bit linear addresses. The Win32
API supplies applications with a rich set of file system services. A helper VxD
(VWIN32) acts as an intermediary; it takes calls from Kernel32 and in turn
dispatches them to IFSMgr using the ring-O service Exec]M_Int for interrupt 21h.
An intermediary is necessary because issuing a software interrupt 21h from a 32-
bit client will raise an application exception.

Given that all of these application modes ultimately make requests via an inter
rupt 21h interface, it should come as no surprise that this interface is IFSMgr's
primary client interface. However, this interrupt 21h interface is extended beyond
the range of commands currently encountered in the MS-DOS environment. In the
DOS environment, the upper limit is set at function 71h, which corresponds to the
new long-filename commands added as MS-DOS extensions to Windows 95.
IFSMgr maps commands over the range OOh to E7h, with OOh through 71h being
equivalent to MS-DOS usage. (The highest DOS command is 73h in OSR2.)

IFSMgr also has many ring-O clients. Figure 1-1 shows a couple of examples with
VSERVER and VWIN32. VSERVER provides support for the server side of an MS
NET peer-to-peer network. When some remote system requests a file operation of
a server, VSERVER fields the request and routes it directly to IFSMgr. Another
example is provided by VWIN32, the driver which helps KERNEL32 implement
the Win32 APIs. This driver exposes an interrupt 21h dispatcher interface which
ultimately calls into IFSMgr when it executes interrupt 21h requests on behalf of
Win32 applications. Yet another example is provided by DYNAPAGE, the driver
which supports the dynamic paging file. When the memory manager needs to
page-out or page-in some part of virtual memory, it uses IFSMgr to do the reads
and writes via the DYNAPAGE driver.

IFSMgr'sManagement Of Resources and Handles
IFSMgr's job is to field these requests and pass them on to a file system driver
(FSD). It isn't sufficient to just identify the target FSD; it must also specify one of
perhaps several resources the FSD owns. This information and other parameters

An Overview of IFSMgr 7

which are required by the service request are combined in an ifsreq data struc
ture. IFSMgr uses this common ifsreq structure to send commands to all FSDs.
The FSD also uses the ifsreq structure to return the command results.

IFSMgr must keep track of registered resources and the FSDs that registered them.
Resources can include local disk drives, network connections, network drives,
and character devices. When a resource is added to the system, it is registered
with IFSMgr through a "mount" operation. This operation also binds a resource to
a particular FSD. Resources may also be removed from the system through a
"dismount" operation.

Similarly, IFSMgr tracks open file handles and the resources with which they are
associated. A file handle may refer to a mapping between a filename and a disk
allocation, or it can refer to a search context, as in the Win32 functions FindFirst
File and FindNextFile. A file handle may also be used for tracking clients which
are accessing a character device.

Resources and file handles each have their own sets of operations. These opera
tions are exposed by each FSD through two separate function tables: a table of
functions for accessing a resource's services and a table of functions for accessing
services requiring an open file handle. The functions which make up these tables
are defined by the FSD interface; each function expects specific usage of fields in
the ifsreq structure for passing arguments and returning results.

When IFSMgr receives a request, it must convert it into one or more calls to an
FSD's function table. It uses the information in the request to pair up with a partic
ular FSD. In the case of local drives, the volume number provides this association;
in the case of remote drives and connections, the server name and share name
are used; in the case of character devices, the device nam~ is used.

File Systems and Their Drivers
FSDs come in three different flavors: local, remote, and character. Each type has
its own characteristics.

Local drive FSDs (e.g., VFAT) are responsible for implementing the semantics of a
particular file system. They know about things like disk layout, disk storage alloca
tion, and file and directory naming. These FSDs call upon IFSMgr for help with
name parsing but rely upon lOS (I/O Supervisor) for accessing the physical disk.

A local file system is created to provide user-friendly names to chunks of disk
storage and to shield the programmer from the intricacies of hardware. Fixed
disks and disk controllers come in an endless variety. It is the purpose of the lOS
to provide low level services that allow physical locations on a disk to be read
and written. A physical location is identified by head, cylinder, and sector

8 Chapter 1: From IFSMgr to the Internet

coordinates. Local file systems are used to partition the fixed disks and to provide
hardware-independent coordinates for locations on the disk (e.g., volume C,
logical sector 234). The I/O Supervisor is only briefly discussed in this book.

Remonte or network FSDs (e.g., VREDIR) typically package a file system request
in one or more packets and ship it across a network. The request is translated
into a file-sharing protocol (such as 5MB) and transferred using a transport
protocol (such as NETBEUI). These FSDs call upon IFSMgr for help with name
parsing, setting up, and tearing down connections, but rely upon the transport
layer for accessing the remote system.

In terms of the layers of the Open System Interconnect (OSI) Reference Model, a
network FSD or redirector occupies the application and presentation layers and
interfaces at its lower boundary with the session layer (e.g., VNETBIOS).

Character FSDs (e.g., MONOCFSD) model devices that send and receive data one
byte at a time, in a serial fashion.

All FSDs use the same function table structure to interface with IFSMgr. The func
tions that each type of driver exposes can be quite different. If an FSD does not
need to support a particular function, it returns an error if a client should happen
to call it. This is necessary because there is no means of determining in advance
which functions a particular FSD has implemented.

To finish up this introduction, I'll introduce MultiMon by putting it to work, exam
ining the popular web browser Netscape Navigator 3.0. Let's start by looking at
how Netscape utilizes the file system to load as a new process.

Loading Netscape Navigator
From the point of view of the file system, creating a process consists of loading its
image into memory. What starts out as a ShellExecute, WinExec, or CreateProcess
function call for a particular EXE can expand into implicit loads of multiple DLLs.
As a real world example, Figure 1-2 shows a filtered trace that was collected by
MultiMon when loading Netscape Navigator (netscape.exe). Only file opens (FS_
OpenFile) and file closes (FS_CloseFile) were sampled.

The Function column in Figure 1-2 displays the names FS_OpenFile and FS_Close
File. These are the names of entry points provided by a file system driver. The
Device column tells us which file system driver is being used. In this case, all of
the file opens are completed by VFAT, the Virtual FAT file system. The Handle
column contains the numeric value of the handle returned by· the open. Two
ranges of numeric handles will be seen in this column: DOS handles, which are
less than 200h, and extended handles, which are 200h and greater. The Args
column contains the pathname of the file. It is followed by a Flags2 column

Loading Netscape Navigator 9

FILES\NETSCAPE\NAVIGATOR\ ...
Explorer FS_CloseFile (3e) VFAT 028e
"netscepe FS_OpenFile (6e) VFAT 0293" oe

FILES\NETSCAPE\NAVIGATOR\ ..
"netseepe FS_OpenFile (6e) VFAT 0298" oe

M FILES\NETSCAPE\NAVIGATO ...
"netseepe FS_OpenFile (6e) VFAT 0299" oe

C:\WINDOWS\SYSTEM\WSOCK ...
"netseepe FS_OpenFile (6e) VFAT 02ge" oe

C:\ WINDOWS\SYSTEM\MSVCR ...
'netscepe FS_OpenFile (6e) VFAT 029b' oe

FILES\NETSCAPE\NAVIGATOR\ ...
'netseepe FS_OpenFile (6e) VFAT 029c" oe

C:\WINDOWS\SYSTEM\MFC40D ...
Netseepe FS_OpenFile (3d) VFAT oe

C:\WINDOWS\WSOCK.VXD
Netseepe FS_OpenFile (3d) VFAT 0006"

Figure 1-2. MultiMon trace/rom loading Netscape Navigator

which contains "oe" for each of the opens, which indicates open-existing,
meaning the open will fail if the file does not already exist.

In Figure 1-2, we see the span of time which starts with Explorer calling ShellExe
cute until Netscape is an independent process. We are narrowing our focus to
those components that are loaded by the operating system before control is actu
ally passed to the newly-formed Netscape process. During this intermediate stage,
the address space for Netscape is being prepared. It's not quite a complete
process yet, so its module name is flagged with a * prefix. You can see this in the
column labeled Module, where the name changes from "Explorer" to "*netscape"
to "Netscape".

Table 1-1 contains a list of the files that we see being opened in Figure 1-2. At the
bottom of the table, there is an entry for the VxD WSOCK. This is a helper VxD
that wsock32.dll opens when its entry point is called with the DLL]ROCESS_
ATTACH flag. This is after the Netscape process is created, so we will ignore it for
now.

You may feel a little uneasy about what is missing in this Table 1-1. Where are
KERNEL32, USER32, and GDI32? Surely, Netscape uses these ubiquitous system
DLLs. Actually, a better way to get a list of required modules is to look at the
import list for Netscape using a utility like Quick View. Doing this yields the

10 Chapter 1: From IFSMgr to the Internet

following, more complete list of import modules: KERNEL32, USE32, GDI32,
SHELL32, OLE32, OLEAUT32, COMDLG32, ADVAPI32, MFC40, MSVCRT40,
RPCRT4, VERSION,]RT3230, and PR3230.]RT3230 and PR3230 both use imports
from WSOCK32. Why don't we see opens for all of these DLLs?

Table 1-1. Files Opened During Netscape Load

Files Opened

.. \NETSCAPE\NA VlGATOR\PROGRAM\NETSCAPE.EXE

.. \NETSCAPE\NA VlGATOR\PROGRAM\PR3230.DLL

\ WINDOWS\SYSTEM\ WSOCK32.DLL

\ WINDOWS\SYSTEM\MSVCRT40.DLL

.. \NETSCAPE\NA VlGATOR\PROGRAM\]RT3230.DLL

\ WINDOWS\SYS1EM\MFC40.DLL

\ WINDOWS\SYS1EM\ WSOCK. VXD

File Handle

0293h

0298h

0299h

029Ah

029Bh

029Ch

ooo6h

You may be thinking that these DLLs reside in shared memory and so there is no
need to load them for each process. That answer is partially correct. To see why,
let's look at the image base addresses for each of Netscape's imported modules.
The image base address is the preferred address at which a module wishes to be
loaded. If it gets that address, its memory image does not have to be relocated, so
this provides a load-time optimization. (Image base addresses can also be deter
mined using Quick View.)

Table 1-2 shows the modules and their image base addresses in descending
order. The linear address of an application is divided into four regions or arenas:
DOS (O-O03fffffh), private (00400000-7fffffffh), shared (80000000-bfffffffh), and
system (cOOOOOOO-ffbfffffh). The first five modules in Table 1-1 are loaded to the
shared memory arena. To quote the DDK documentation, "This arena is .used for
ring-3 shared code and data." Thus, once one of these DLLs is loaded it will be
visible to all other code and data, such as 16~bit Windows applications and DLLs,
DPMI memory, and 32-bit system DLLs.

Table 1-2. Netscape Import Modules

Module Name Image Base

ADVAPI32 bfefOOOOh

VERSION bfeeOOOOh

KERNEL32 bff70000h

USER32 bff60000h

GDI32 bff30000h

OLE32 7ff60000h

COMDLG32 7fedOOOOh

Loading Netscape Navigator 11

Table 1-2. Netscape Import Modules (continued)

Module Name Image Base

SHELL32 7feOOOOOh

RPCRT4 7fdOOOOOh

WSOCK32 7e2eOOOOh

OLEAUT32 76deOOOOh

MFC40 5f800000h

MSVCRT40 10200000h

]RT3230 lOO50000h

PR3230 lOOOOOOOh

The remaining ten modules in Table 1-2 are destined to be loaded into Netscape's
private arena. The private arena is used for code and data that is private to a
Win32 process. Private means that the page table entries corresponding to the
linear address range are kept separately for each process. Each Win32 process has
its own mapping of pages in its private arena; this mapping is called a memory
context. This is why all applications can load at the same linear address of
400000h.

At this point you are probably comfortable with the idea of sharing DLL code and
data as long as it is in the shared arena. But what if modules are loaded into a
process's private arena-can they still be shared with other processes? We need
more information to answer this. Let's try another MultiMon trace. This time we'll
continue to look at only file opens (FS_OpenFile) and file closes (FS_CloseFile)
but we'll start sampling from the time the system boots and continue until we
have launched Netscape. This, in effect, will give us a list of open modules at the
time we start Netscape.

This experiment produces a lot of output, over 1800 lines for this particular config
uration. Many files go through an open and close cycle; we are not interested in
these. Once we filter out this noise, we are left with files which are opened and
remain opened. Further condensing this list to just the modules which Netscape is
dependent on, we arrive at Table 1-3.

Table 1-3. Modules Opened Before Netscape Is Launched

Module Name Open File Handle

KERNEL32 201h

GDI32 215h

ADVAPI32 216h

USER32 2IDh

SHELL32 252h

12 Chapter 1: From IFSMgr to the Internet

Table 1-3. Modules Opened Before Netscape Is Launched (continued)

Module Name

OLE32

RPCRT4

COMDLG32

OLEAUT32

Open File Handle

2CCh

2CEh

2Flh

2F2h

In this experiment, we get a slightly different list of modules which are opened
and loaded along with netscape.exe. This list is given in Table 1-4.

Table 1-4. Modules Loaded Along with netscape.exe

Module Name Open File Handle

PR3230 280h

WSOCK32 281h

MSVCRT40 282h

JRT3230 283h

VERSION 284h

MFC40 285h

What we see here is that any module that has already been loaded won't be
loaded again. It makes no difference whether the module is loaded into a private
arena; it can still be shared.

How does Windows 95 do this? It turns out that there is an obscure function,
called _PageAttach, made just for this purpose. For example, if I know that the
memory context for explorer.exe contains an image of the module OLE32, I can
map all or some of the pages of that image into my process's memory context.
Selective mapping is necessary because some pages of the image, such as data,
may have to be loaded directly from the source file and not be shared with other
memory contexts.

MultiMon shows us the gory details of OLE32's attachment to the Netscape
process in Figure 1-3. The PageReserve, Page Commit , and PageAttach functions
are Win32 services provided by VMM, the Virtual Machine Manager. The handle
02cch used by the FS_ReadFile calls corresponds to ole32.dll (see Table 1-3).

Here is an interpretation of this trace. Netscape requests that 134 pages of
memory be reserved starting at the linear address 7ff60000h, the image base of
OLE32. The first page is committed and thus is private to Netscape. The next 102
pages starting at linear address 7ff61000h (the . text section) are mapped to the
same set of pages in the memory context whose handle is c10aOe20h (Explorer).
Similarly, the 5 pages starting at linear address 7ffc7000h (the .orpc section) are

Loading Netscape Navigator 13

"netscape FS_ReadFile (3D ols=
"nets cape PageResetve 0007ff60 00000086 00000010
"netscape PageCommit 0007ff60 00000001 09 00b20000 60040000
"nets cape PageAttach 7ff61 c1 OaOe20 7ff61 66
"netscape PageAttach 7ffc7 c1 OaOe20 7ffc7 5
"'nets cape PageCommit 0007ffcc 00000001 01 OObOOOOO 60060000
"netscape PageCommit 0007ffcd 00000001 01 00b50001 60060000
"nets cape PageAttach 7ffce c1 OaOe20 7ffce 1
"netscape PageAttach 7ffd c1 OaOe20 7ffd 6
"netscape PageCommit 0007ffd5 00000003 08 aOb00070 60060000
"netscape PageCommit 0007ffd8 00000001 08 aOb1 007360060000
"netscape PageCommit 0007ffd9 00000002 08 cOb00073 60060000
"netscape PageCommit 0007ffdb 00000001 08 cOb30075 60060000
"netscape PageAttach 7ffdc c1 OaOe20 7ffdc 2
"netscape PageAttach 7ffde c1 OaOe20 7ffde 2
"netscape PageAttach 7ffeO c1 OaOe20 7ffeO 6
"'netscape FS_ReadFile (3D 02cc cnt=1 OOOH 01s=73cOOH ptr=c135fOOOH
"netscape FS_ReadFile (3D 02cc cnt=1 OOOH ols= 74cOOH ptr=c135fOOOH
"netscape FS_ReadFile (3D 02cc cnt=600H ols= 75cOOH ptr=c1351000H
"netscape PageCommit 0007ffd900000001 08 cObOOO?3 60060000
"nets cape FS_ReadFile (3D 02cc cnt=1 OOOH 01s=73cOOH ptr=c135fOOOH

Figure 1-3. Netscape "attaches" to OLE32

also mapped to the same set of pages in Explorer's memory context. You get the
idea: attached pages are mapped and thus shared whereas committed pages are
private. The three FS_ReadFile calls load a private copy of the . idata section, the
module's import table. A summary of how the page ranges are treated is given in
Table 1-5.

Table 1-5. Attachment of OLE32 to Netscape (all values are in HEX)

Base Addr Pages Section Treatment Properties

7ff60000 1 commit

7ff61000 66 . text attach code

7ffc7000 5 .orpc attach code

7ffccOOO 2 .bss commit uninitialized data

7ffceOOO 1 .sdata attach initialized, shared data

7ffcfOOO 6 .rdata attach initialized, read-only data

7ffd5000 3 . data commit initialized, writeable data

7ffd9000 3 .idata commit imports, read from disk

7ffdcOOO 2 .edata attach export table

7ffdeOOO 2 .rsrc attach resources

7ffeOOOO 6 .reloc attach relocation table

14 Chapter 1: From IFSMgr to the Internet

What we have seen in our first example is how the file system intermingles with
operating system internals. Now let's turn our attention to an example from the
application realm.

Going to WWw.ora.com
Now that we have Netscape loaded, it's time to do some web surfing. We're
going to look at a typical surfing operation, connecting to a server and displaying
its home page. Today's web applications, like Netscape, utilize Windows Sockets
for establishing connections and transferring data "over the wire." If we can
monitor Netscape's socket calls, we can get a much clearer picture about how this
application works.

A glance back at Table 1-1 will remind you that Netscape loads wsock32.dll and
then wsock.vxd is opened by WSOCK32. The relationship between these two
components is that of a client and a service provider. WSOCK provides an inter
face to socket services, and WSOCK32 exports the Windows Sockets APIs and
makes calls into WSOCK to implement the APIs. WSOCK32 accesses these ring-O
socket services via the DeviceIoControl Win32 API.

It just so happens that we have a MultiMon extension for monitoring DeviceIoCon
trol calls (see Chapter 3, Pathways to the File System). Each DeviceIoControl call
targets a specific device; it specifies a command code and buffers for input and
output arguments. To report on WSOCK calls, we just need to interpret the argu
ments which are passing through the monitor. A little bit of work leads to the
mapping shown in Table 1-6.

Table 1-6. DeviceioControl Command Codes for Winsock APIs

WSOCK32API WSOCK ControlCode

accept 100h

bind 101h

c1osesocket 102h

connect 103h

getpeername 104h

getsockname 105h

getsockopt 106h

ioctlsocket 107h

listen 10Sh

recv 109h

recvfrom 109h

select lOah

Argument Length

lCh

14h

04h

14h

Och

Och

ISh

Och

OSh

2Sh

2Sh

20h

Going to www.ora.com 15

Table 1-6. DeviceloControl Command Codes for Winsock APls (continued)

WSOCK32API WSOCK Control Code Argument Length

'select lObh ISh

WSAAsyncSelect lOch 10h

send 10dh 2Sh

sendto lOdh 2Sh

setsockopt lOeh ISh

shutdown lOfh OSh

socket 110h I4h

lllh

112h

113h

114h

115h

116h

117h

WsControl l1Sh ISh

SetPostMsgAddr 119h 04h

Arecv llah I4h

Asend Ilbh I4h

Armed with our primitive Winsock monitor we can now see web browser opera
tions in terms of socket calls. For the results which I show here, the Netscape disk
cache was cleared and a connection to my Internet service provider was already
established. To minimize extraneous noise, the display of the default home page
which you connect to should be finished as· well. MultiMon is then started and
monitors are enabled for "VWIN32 DeviceloControl" and "IFSMgr Filehook" (with
FS_Op~nFile, FS_CloseFile, FS_ReadFile, and FS_ WriteFile APls selected). Then go
back to Netscape and at· the Go to: prompt enter http://www.ora.com/and
press Returrt. This will take you to the O'Reilly & Associates, Inc. home page.
Once the status message says "Document Done", you can stop MultiMon.

The output that I got for this experiment is spread over several examples, starting
with Example 1-2. The output has been "cleaned up" by removing traces of swap
file I/O, extra 'select calls, and file I/O for non-web-p'age files.

Example 1-2 shows the steps that are taken just to get connected to
www.ora.com. To establish a connection a socket is opened with the socket API.
Sockets have handles just like files do, but they also have a "handle context,"
which is like a file descriptor stru~ture. The first socket opened returns a handle
of 42h, but is referenced in subequent calls with the handle context of cOflOe50h.

16 Chapter 1: From IFSMgr to the Internet

Next we see several calls setting up the properties and event handlers on this
socket. For instance, the WSAAsyncSelect call requests that notifications for read,
write, connect, accept, etc. be sent as Windows messages to the window with
handle 408h. A single registered message (cffeh) is used with the socket handle
in the wparam and the event in the !paramo The setsockopt API requests that the
socket linger a certain amount of time when it is closed if unsent data is present.
The ioctlsocket call requests that the socket operate in non-blocking mode.

Example 1-2. Resolving the IP Address

Function Device
(socket) WSOCK

Handle Args
42 AF_INET, SOCK_STREAM, IPPROTO~TCP

WSOCK cOf10e50 hWnd=40S, wMsg=cffe, 3f (WSAAsyncSelect)
(setsockopt)

(ioctlsocket)
(select)
(select)

FS_OpenFile (6c)
FS_ReadFile (d6)

FS_CloseFile (3e)

WSOCK cOf10e50 SOL_SOCKET, SO_LINGER, buf=0090f214 len=S
WSOCK cOf10e50 FIONBIO, parm=1

(socket)
(connect)

(send/sendto)

(select)
(recv/recvfrom)

(closesocket)
(connect)
(select)
(select)

(connect)

WSOCK Rd=1 Wr=1 Err=1
WSOCK Rd=1 Wr=1 Err=1

VFAT 2cd*C:\WINDOWS\HOSTS
VFAT 2cd cnt=19H ofs=OH ptr=6eec79H
VFAT 2cd f

WSOCK 62 AF_INET, SOCK_DGRAM, IPPROTO_IP
WSOCK c0f11caS AF_INET, 53, 204.156.12S.1
WSOCK cOf11caS buf=006eeeSO len=1d flags=O

WSOCK
WSOCK
WSOCK
WSOCK
WSOCK
WSOCK
WSOCK

0,3,1,0,0, 1i 0, 0, 0, 0, 0, 0,3,
"www",3, !lora ll ,3, II com II I

0,0,1,0,1,0,0,0
Rd=1 Wr=O .Err=O

cOf11caS buf=00d6ee3S len=400 flags=O
c0f11caS
cOf10e50 AF_INET, SO, 204.14S.40.9

Rd=1 Wr=1 Err=1
Rd=1 Wr=1 Err=1

cOf10e50 AF_INET, SO, 204.14S.40.9

oe

Next we see a couple of select calls. A select is similar to a WaitForMultipleOb
jects call. It could block its thread until it is signaled or a timeout occurs, or (if the
timeout value is 0) it will return irnmediately. A select call takes three lists of
sockets: the first list is interested in whether the socket is readable, the second list
is interested in whether the socket is writeable, and the third list is interested in
any error conditions on the listed sockets. On return from select, each list is
updated to indicate the status of each socket.

At this point socket 42h is poised to connect to www.ora.com. but before it can
do so it needs to know the IP address (204.148.40.9) to connect to. The next few
lines are involved with resolving this name. First, we see a read from the local
HOSTS file to see if there is a matching entry. My HOSTS file only contains names
of local machines so I know that will fail. So Netscape is forced togo to the
Internet to find the IP address for the name. To do this it opens another socket,
number 62h, and connects on that socket to 204.156.128.1, the IP address of my

Going to www.ora.com 17

service provider's DNS (Domain Name System) name server. It connects on the
well-known port 53 for DNS and sends a packet containing information about the
name it is searching. The select call waits for the reply and the subsequent recv
presumably gets a matching IP address back. Now that we have the IP address,
we're done with socket 62h, so closesocket gets rid of it.

Now we're really ready to connect to www.ora.com. The connect call succeeds
on the second try; socket 42h is now connected on the well-known port 80 for
HTTP.

Continuing with the trace in Example 1-3, Netscape sends a packet containing the
string "GET / HTTP/1.0 ... ", which requests the server's home page from the root
directory of the web server. Several recv's are then made on socket 42h, but the
actual amount read is uncertain since the requested amount is usually not the
same as the returned amount. With some portion of the HTML home page read
in, Netscape creates a file named mop17ieO in its . \ cache directory in which to
store it. As more data is received on socket 42h, it is appended to a local buffer.
Finally, at the bottom of Example 1-4, the entire home page has been received
all Oa18h bytes-the socket handle is closed, the buffer is written to mop17ieO,
and the file is closed.

Example 1-3. Retrieving the Home Page

Function Device Handle Args
(send!sendto) WSOCK cOflOe50 buf=01256geO len=a5 flags=O

(recv!recvfrom) WSOCK cOflOe50
(recv!recvfrom) WSOCK cOflOe50

(select) WSOCK
(select) WSOCK

(recv/recvfrom) WSOCK cOflOe50
(recv!recvfrom) WSOCK cOflOe50

FS_OpenFile (6c) VFAT 20e*

"GET! HTTP!l.O",d,a,
"Connection: Keep-Alive",d,a,
IIUser-Age",Ot
buf=0090f534 len=104 flags=O
buf=0090f534 len=104 flags=O
Rd=l Wr=O Err=O
Rd=l Wr=O Err=O
buf=0090f534 len=104 flags=O
buf=0092bc94 len=400 flags=O
.. \NETSCAPE\NAVIGATOR\CACHE\MOP17IEO ca

While the home page is still being read in, sockets 63h, 64h, and 65h are created
in Example 1-4. These sockets are created in the same fashion as socket 42h was.
Note that as these new sockets are added, the socket lists passed to select appear
to include them as well, since the list sizes increase by the same amount. Each of
these sockets is going to handle the transfer of a referenced image in the HTML
page.

The final bit of output that we'll look at, shown in Example 1-5, corresponds to
socket 65h (handle context cOf29a3ch). The output for sockets 63h and 64h is
essentially the same, so there is no need to show that too. After connecting to the
IP address for www.ora.com. Netscape sends a packet containing the string "GET /

18 Chapter 1: From IFSMgr to the Internet

graphics/space.gif HTTP/1.0", which requests the server's space.giffile from the /
graphics directory of the web server. Several recv's are thel1 made on socket 65h.
Once the GIF file has been received, Netscape creates a file named mop17IE3.gif
in its . \ cache directory and then closes socket 65h. At the bottom of Example 1-
5, the received buffer is written to mop17IE3.gif, and the file is closed.

Example 1-4. Create a Socket for Each Embedded GIF

Function ~ fuilllll.e. bl:rul.
(socket) WSOCK 63 AF_INET, SOCK_STREAM, IPPROTO_TCP

(WSAAsyncSelect) WSOCK cOflbcaB hWnd=40B, wMsg=cffe, 3f
(setsockopt) WSOCK cOflbcaB SOL_SOCKET, SO_LINGER, buf=0090efeB len=B

(ioctlsocket) WSOCK cOflbcaB FIONBIO, parm=l
(connect) WSOCK cOflbcaB AF_INET, BO, 19B.112.20B.23

(recv/recvfrom) WSOCK cOflOe50 buf=0092bc94 len=7cOO flags=O

(socket) WSOCK 64 AF_INET, SOCK_STREAM, IPPROTO_TCP
(WSAAsyncSelect) WSOCK cOf25e54 hWnd=40B, wMsg=cffe, 3f

(setsockopt) WSOCK cOf25e54 SOL_SOCKET, SO_LINGER, buf=0090fOfO len=B
Function Device Handle bl:rul.

(ioctlsocket) WSOCK cOf25e54 FIONBIO, parm=l
(connect) WSOCK cOf25e54 AF_INET, BO, 19B.112.20B.23

(recv/recvfrom) WSOCK cOflOe50 buf=0092bc94 len=7cOO flags=O
(select) WSOCK Rd=3 Wr=2 Err=2
(select) WSOCK Rd=3 Wr=2 Err=2

(recv/recvfrom) WSOCK cOflOe50 buf=0092bc94 len=7cOO flags=O

(socket) WSOCK 65 AF_INET, SOCK_STREAM, IPPROTO_TCP
(WSAAsyncSelect) WSOCK cOf29a3c hWnd=40B, wMsg=cffe, 3f

(setsockopt) WSOCK cOf29a3c SOL_SOCKET, SO_LINGER, buf=0090fOfO len=B
(ioctlsocket) WSOCK cOf29a3c FIONBIO, parm=l

(connect) WSOCK cOf29a3c AF_INET, BO, 19B.112.20B.23

(recv/recvfrom) WSOCK cOflOe50 buf=0092bc94 len=7cOO flags=O
(closesocket) WSOCK cOf10e50

FS_WriteFile (d6) VFAT 20e cnt=a1BH ofs=OH ptr=12c661BH
FS_CloseFile (3e) VFAT 20e f

This example illustrates the limits of looking just at the file system. If all we saw
were the opens, writes, and closes, we would be unaware of the concurrency of
these operations. By combining some rudimentary information about Windows
sockets with a trace of file system activity, we see that a socket connection is
assigned to each file transfer, and when the transfer completes, the socket goes
away.

We have covered a lot of territory in this chapter, literally from IFSMgr to the
Internet. I hope it has impressed upon you how pervasive the file system is. In

Going to www.ora.com 19

the next chapter we'll continue our excursion with a look at the varieties of file
names supported by Windows 95.

Example 1-5. Retrieving a GIF file

Function Device Handle Args
(select) WSOCK Rd=3 Wr=3 Err=3
(select) WSOCK Rd=3 Wr=3 Err=3

(connect) WSOCK cOf29a3c AF_INET, BO, 19B.112.20B.23
(send/sendto) WSOCK cOf29a3c buf=012b50fO len=dO flags=O

"GET /graphics/space. gif HTTP/I. 0" ,d, a,
"Referer: http:",O,B,O,O

(recv/recvfrom) WSOCK cOf29a3c buf=0090f534 len=104 flags=O
(recv/recvfrom) WSOCK cOf29a3c buf=0090f534 len=104 flags=O

(select) WSOCK Rd=3 Wr=2 Err=2
(select) WSOCK Rd=3 Wr=2 Err=2

(recv/recvfrom) WSOCK cOf29a3c buf=0090f534 len=104 flags=O
(recv/recvfrom) WSOCK cOf29a3c buf=0092bc94 len=400 flags=O

FS_OpenFile (6c) VFAT 29b* .. \NETSCAPE\N .. R\CACHE\MOP17IE3.GIF ca
(closesocket) WSOCK cOf29a3c

FS_WriteFile (d6) VFAT 29b cnt=39H ofs=OH ptr=12c661BH
FS_CloseFile (3e) VFAT 29b f

2
Where Do
Filenames Go?

A file system is an abstract idea. What you deal with on a daily basis are the
names of files that a file system stores and retrieves. Before Windows 95, DOS
and Windows 3.x users learned to accept the limitations of their systems. Instead
of a descriptive name like FooTech Annual Report 97.doc, they constructed a
name like foo_ar97.doc. Much of the talk about the Windows 95 file system
focuses on this transition from "short names" to "long names." While increasing a
name's length is a long-awaited benefit, there are much more interesting aspects
of a filename.

What's in a Name?
Most of us equate filenames with strings like c: VoobarVoo.txt. This example
adhers to the "8.3" convention of limiting filename components to 8 characters
with an optional dot followed by a three-character extension. Characters like \ (or
/) and . serve as a form of punctuation that allows us to combine simple strings
to represent a disk directory hierarchy. Another special character, the colon (:),
delimits a leading character which stands for a physical or logical volume. The 8.3
naming convention also places the limit on the length of a fully-qualified file
name, including the drive letter, at 64 characters. This kind of naming is used by
the MS-DOS FAT filesystem.

Windows 95 has extended this file-naming convention to now allow filename
components of up to 256 characters in length, including the null terminator. The
length of a fully-qualified filename is limited to 260 characters. The dot character
may now be used like any other character in composing a filename; it is not
limited to marking the start of a three-character extension. Spaces and the + char
acter are also valid path component and filename characters. While filenames are
not case sensitive, case is preserved. This kind of naming is used by the Windows

20

Accessing Local Files 21

95 VFAT file system. VFAT continues to support the 8.3 naming convention and
provides for conversions between long and short forms of pathnames.

We won't delve into the detailed rules governing the construction of valid file
names in the FAT and VFAT systems. These topics have been addressed in other
books and periodicals (see "Long Filenames" in Programmer's Guide to Microsoft
Windows 95, Microsoft Press, 1995).

Another kind of naming that you will encounter follows the Universal Naming
Convention (UNC). A UNC name consists of two leading backslashes followed by
a machine name, a share name, and then directory and filename, as in
\ \ TOPDOG\DEVDISK\ bin \ nmake.exe. These names are used primarily for refer
encing network resources, although a local share can be accessed with a full UNC
name, as in \ \MYMACHINE\MYSHAREVoodirVoojile.txt. The machine name is
limited to 16 characters, including the null terminator, and the share name is
limited to 13 characters, including the null terminator. The remaining portions of a
UNC name follow the VFAT naming conventions.

Some special forms of UNC names are based on the use of a dot (.) for the server
name. These names are used to refer to resources residing on the local machine.
For example, a local mailslot is referenced as \ \. \MAILSL01\jooslot. Windows 95
also uses this form of UNC name for referencing some devices. To open a virtual
device driver, you pass the name \ \. \ VxDName to the Win32 API CreateFile.
VxDName can be either a VxD module name, a VxD file name, or an entry under
the registry key HKLM\System \ CurrentControlSet\ Control\SessionManager\
KnownVxDs. A filename is distinguished by having the name include an explicit
extension.

Another type of device name is used to reference the "standard devices." Some of
these are holdovers from MS-DOS: devices like CON, LPT1, and PRN. New stan
dard device names can be added to the system by implementing a character file
system driver and registering it with IFSMgr.

So we see that Windows 95 supports several kinds of names. Some are meant to
access plain-vanilla disk files, others reach across the network to access a file at a
remote location, and yet others point to a device. Let's look at how Windows 95
deals with these different varieties of names.

Accessing Local Files
Filenames can be introduced into the operating system through a variety of APIs.
The Win32 functions CreateFile, OpenFile, _lcreat, and _lopen are perhaps the
most common ones. The C run-time library offers the more portable wrappers for
these APls with fopen, _creat, and _open. The companion disk contains a sample

22 Chapter 2: Where Do Filenames Go?

application, called NT32, for testing names with the Win32 APIs. It attempts to
open the filename entered on the command line with· the fopen, CreateFile, and
OpenFile functions. If the function is successful, the returned handle is immedi
ately closed. This little application also emits tag strings at each step so that we
may easily trace its execution with MultiMon. Here is the MultiMon trace that was
logged when the command nt32 c:\windows\system.ini was executed:

~ __ ~F£JUb!dndlc<..!t ... i..,OLCn,--__
tag ======== fopen

Flagsl Args

c:\windows\system.ini w21 LFN(71)Ext.Open(6c)
p21 LFN(7l)Ext.Open(6c)
fsh FS_OpenFile (6c) e_cLnu_s .. VFAT
w21 IOCTL(44)GetDevData (00)

c:\windows\system.ini
2da* C:\WINDOWS\SYSTEM.INI
2da

p21 IOCTL(44)GetDevData (00) 2da
w21
p21

Close(3e)
Close(3e)

2da
2da

e_cLnu_s .. VFAT 2da fsh FS_CloseFile {3e)
tag ======== CreateFile
w21 LFN(71)Ext.Open(6c)
p21 LFN(71)Ext.Open(6c)
fsh FS_OpenFile (6c)
w21 Close(3e)

c:\windows\system.ini
c:\windows\system.ini

e_cLnu_s .. VFAT 2e9* C:\WINDOWS\SYSTEM.INI
2e9

p21 Close(3e) 2e9
fsh FS_CloseFile (3e) e_cLnu_s .. VFAT 2e9

======== OpenFile
LFN(71)GetFileAttr(43)
LFN(71)GetFileAttr(43)
FS_FileAttribs(43) e_cLnu_s .. VFAT
LFN(71) Extended Open(6c)

c:\windows\system.ini
c:\windows\system.ini
C:\WINDOWS\SYSTEM.INI
c:\windows\system.ini

tag
w21
p21
fsh
w21
p21
fsh
w21
p21
v21
w21
p21
v21
fsh
w21
fsh
w21
p21

LFN(71)Extended Open(6c) c:\windows\system.ini
FS_OpenFile (6c) e cLnu_s .. VFAT 2f9* C:\WINDOWS\SYSTEM.INI
IOCTL(44)RemDrvChk(09) drive: C
IOCTL (44) RemDrvChk (09)
IOCTL(44)RemDrvChk(09)
IOCTL(44)RemovMedChk(08)
IOCTL(44)RemovMedChk(08)
IOCTL(44)RemovMedChk(08)
FS_Ioctl16Drive(4408) e_cLnu_s .. VFAT
Get File Date/Time (5700) 2f9
FS_FileDateTime(57)
Close(3e)
Close(3e)

fsh FS_CloseFile (3e)

tag ======================

e_cLnu_s .. VFAT 2f9
2f9
2f9

drive: C
drive: C
drive: C
drive: C
drive: C
drive: C

oe

f

oe

f

Gt
Gt
Gt

oe

Gm

f

This output packs quite a bit of information. Let's start by getting familiar with
what each column contains. The first column, Type, tells us which MultiMon
monitor reported the line. This trace contains lines of output contributed by five
different monitors: tag comes from TAGMON, fsh comes from FSHOOK, w21
comes from WIN32CB, and p21 and v21 come from I21HELPl.

Accessing Local Files 23

The next column, labeled Function, contains a description of the API or event
which the line represents. Many of the lines identify functions of the interrupt 21h
interface. Those whose names begin with "FS_" are functions in a file system
driver like VFAT.

The Flagsl column looks like a pattern in a bowl of alphabet soup. All these odd
looking characters are described in detail in Appendix B, MultiMon: Monitor Refer
ence. Each character represents a state flag that is either on-uppercase, or off
lowercase. For instance, the leading e indicates the function call succeeded
whereas an E indicates the function failed .. The next four flags indicate the kind of
resource where a filename resides. In this example, every call into VFAT was
accompanied by the flags eLnu; the capital L signifies local.

The Dev (or Device column) contains the module name of the device that is
receiving the function request. For instance, in this listing, each "FS_" call is to the
VF AT file system driver.

The Hdl (or Handle) column contains the system file number, if the call is handle
based. When a file is initially opened and the handle is first created, it is marked
with an asterisk.

The Args column contains the filename or pathname that is an argument to the
function. There is a limit to how many characters are stored, so you may see trun
cation at the beginning of the name.

Finally, we have another flags column, called Flags2. This column reports flags
that are passed to a function as part of the calling parameters. Here, we have oe
for open existing, f for final, Gt for get attributes, and Qn for get modification
time and date.

Now. that you are little more comfortable with the output, what does it mean?
Start with the fopen call. In our test application, nt32, there are two program
statements:

fh = fopen(argv[il, "r");
if (fh != NULL) fclose(fh);

The first response we see to fopen is an interrupt 21h function 716ch, or
extended file open (the 71h indicates that this is the long filename, or LFN,
variant). We see this request in the w21 for the Int21Dispatch in VWIN32. This is
the result of a call from KERNEL32, via the Win32 API VxDCall, into VWIN32's
ring-O Win32 service for dispatching interrupt 21h requests. VWIN32 acts as a
middle-man and just passes it to the protected-mode interrupt 21h interface,
which is hooked by many VxDs, including IFSMgr. The I21HELPI monitor hooks
the protected-mode interrupt 21h interface just before requests are sent down to
IFSMgr; this is where we get the type p21 line for function 716ch. The next line

24 Chapter 2: Where Do Filenames Go?

that we see is an FS_OpenFile reported by the fsh monitor. This is where IFSMgr
is making a call into the VFAT file system driver. This open succeeds and returns
a handle of Ox2da. Note that this handle is not the same as the handle returned
by CreateFile.

What we have seen so far corresponds to a CreateFile call within the fopen func
tion. Before fopen returns, it also makes a call to the Win32 API GetFileType. This
call appears in the log as two lines reporting the interrupt 21h function 4400h (get
device data). As with the extended file open call, the w21 monitor first picks it up
as a KERNEL32 call into VWIN32. Then VWIN32 passes it to the protected-mode
interrupt 21h interface which generates the p21 monitor line. Since this call is not
sent along any further, i.e., to the file system driver, it is presumably handled by
IFSMgr.

To keep our little program tidy, we close the file descriptor returned by fopen as
soon as fopen returns. The fclose call adds three lines to our trace. These entries
follow the same pattern. We first see the close request in the w21 monitor of
VWIN32. VWIN32 passes the request down to the protected-mode interrupt 21h
interface, which generates the p21 rnonitor line. The next line that we see is an
FS_CloseFile reported by the fsh monitor. Again, we see IFSMgr making a call into
the VF AT file system driver.

I won't prOVide detailed descriptions of the CreateFile and OpenFile traces since
they are very similar. It is interesting that OpenFile is the "busiest" of the three;
apparently it has more work to do to fill in an OFSTRUCT. OpenFile also has
some different sequences than we have seen before. For instance, the removable
media check function 440Sh goes from w21 to p21 to v21 to fsh. The v21
monitor is a virtual-S6 mode interrupt 21h hook; it will see the interrupt before
IFSMgr sees it on its vs6 interrupt 21h hook. By absorbing this interrupt 21h
request much later in the chain, IFSMgr is giving a wider range of drivers an
opportunity to see it.

Before we move on to see how the system handles a UNC name, let's sketch a
picture of the path we have followed. Tracing our path in Figure 1-1, we started
in a Win32 application (nt32), then dropped down into the file system, passing
through KERNEL32, VWIN32, IFSMgr, and finally ended up in VFAT.

Accessing Remote Files
Let's use nt32 again, but this time we'll supply it with the name of a remote file,
or, more accurately, a UNC name of· a remote file. In this example, a second
machine called WETSUIT shares its c: drive as C. The two machines are
connected in a peer-to-peer Microsoft Network.

Accessing Remote Files 25

Here is a portion of the MultiMon trace that was logged when the command nt32
\\WETSUI1\C\windows\system.ini was executed:

~ Fynction Flagsl Dev Hill. Args Flags2
tag ======== fopen
w21 LFN(71)Ext.Open(6c) \\WETSUIT\C\

windows\system.ini
p21 LFN(71)Ext.Open(6c) \\WETSUIT\C\

windows\system.ini
fsh FS_OpenFile (6c) e_clNU_s .. VREDIR 2fa* \WINDOWS\SYSTEM.INI oe
w21 IOCTL(44)GetDevData (00) 2fa
p21 IOCTL(44)GetDevData (00) 2fa
w21 Close(3e) 2fa
p21 Close (3e) 2fa
fsh FS_CloseFile (3e) e_clNU_s .. VREDIR 2fa f
tag ======== CreateFile

Here we only show the response to the fopen call. If you compare this with the
function sequence for a local file system call, you'll see they are the same.
However, if you compare the FS_OpenFile and FS_CloseFiIe calls you'll see that
they reference different devices-in this case VREDIR instead of VFAT. VREDIR is
a network file system driver, also known as a redirector. Note that the Flagsl field
has also changed from eLnu for a local file system call to elNU for a remote file
access. The "N" signifies a network resource is being accessed and the "u" indi
cates that the filename is a UNC name.

In the FS_OpenFiIe call to VREDIR, the server name and share name have been
stripped off; only the directory and filename are supplied (for example,
\ \ WETSUfT\C\windows\system.ini becomes \windows\system.ini). This trun
cated name is passed because there is an implicit connection established with the
server called "WETSUIT" for the share named "C". Once the connection is made
there is no need to keep passing around its name; a resource handle is used
instead. This resource handle is a hidden argument to FS_OpenFiIe.

What we have been looking at is the client side of Microsoft Network. If you have
configured your machine to share files (and printers, too), you can be a server
like WETSUIT in the example above. If we run MultiMon on the server side, we
get a log like this corresponding to the fopen call:

~ Fynction Elag;,l Dev Hdl Arg;, Flag;,2
fsh FS_FindFirstFile(4e) e_cLnu_S .. VFAT 262* C:\WINDOWS\SYSTEM.INI
fsh FS_FindClose(dc) e_cLnu_S .. VFAT 262 h
fsh FS_OpenFile (6c) e_cLnu_S .. VFAT 263* C:\WINDOWS\SYSTEM.INI oe
fsh FS_CloseFile(3e) e - cLnu_S .. VFAT 263 f

What is conspicuously absent is any interrupt 21h call; we only see calls into
VFAT. First there is an attempt to locate the file using FS_FindFirstFiIe, and if that
succeeds an open is attempted. If you have keen eyesight, you might have also
noticed that the S flag is set in the Flagsl column. This flag is set if a file system

26 Chapter 2.: Where Do Filenames Go?

request originates by a call toIFSMgcServerDOSCali. This is sort of a "back door"
into IFSMgr that file servers use to service client requests.

Before we move on to see how the system handles a device name, let's refer back
to Figure 1-1 to trace the the path we have just followed. On the client side, we
started in a Win32 application (nt32) and then dropped down into the file system
passing through KERNEL32, VWIN32, IFSMgr, and finally ending up in VREDIR
and ultimately out onto the LAN. On the server side, packets come in and move
up through the network layers to arrive at VSERVER; it passes the request directly
to IFSMgr, who relays it on to the local file system driver, VFAT.

One type of naming that IFSMgr is unable to cope with is a Uniform Resource
Locator (URL). For example, in Chapter 1, From IFSMgr to the Internet, we
retrieved a graphics image from the O'Reilly & Associates home page using the
URL http.//www.ora.com/graphics/space.gij.Inadditiontotheserver·sdirectory
and filename, /graphics/space.gif, this name specifies a protocol, http, and server
location, www.ora.com. Currently, URLs are handled in the Explorer shell's
namespace using OLE COM (Component Object Model): But there is an effort
underway to extend the 5MB protocol, which is currently used as the LAN file
sharing protocol, to also share files across the Internet. This new file sharing
protocol is called CIFS, for Common Internet File System (see Chapter 13,
VREDIR: The Microsoft Networks Client).

Accessing Devices
To complete our mini-tour of file system names, we'll look at the peculiarities of
using device names. Let's use nt32 again, but this time we'll supply it with the
name of a "standard device." The standard device that we'll access is housed in
the file system driver, MONOCFSD, which is presented in Chapter 8, Anatomy of
a File System Driver (instructions are given there for installation). MONOCFSD
adds a device called "mono" which stands for a monochrome TIL display (as
opposed to a monochrome VGA display). This is a write-only device.

Here is a portion of the MultiMon trace that was logged when the command nt32
mono was executed:

~ Function
tag ======== fopen
w21 LFN(71)Ext.Open(6c)

p21 LFN(71)Ext.Open(6c)

Flagsl llill Args

E: \ifsbook\
nt32\mono

E:\ifsbook\
nt32\mono

• See the article "Sweeper," by Paul DiLascia and Victor Stone, in Microsoft Interactive Developer, available
at http://www.microsoft.comimindl0396Isweeper.sweeper.htm.

Accessing Devices 27

~ ElmS;; t;i. QIl. Elaga;!, ~ H!ll Args ~
fsh FS_MountVolume(OO) e_clnu_s ... MONOCFSD drive: A m
fsh FS~OpenFile (6c) e Clnu_s .. MONOCFSD 2dB* \ IFSBOOK\NT32 \ MONO oe
w2l IOCTL (44) GetDevData (00) 2dB
p21 IOCTL (44) GetDevData (00) 2dB
fsh FS_Ioctl16Drive(4400) e_Clnu_s .. MONOCFSD
w21 Close(3e) . 2dB
p21 Close(3e) 2dB
fsh FS_CloseFile(3e) e_Clnu_s .• MONOCFSD 2dB f
tag ======== CreateFile
w21 LFN (71) Ext-Open (6c) E: \ifsbook\

nt32\mono
p21 LFN(71) Ext.Open(6c) E:\ifsbook\

nt32\mono
fsh FS_OpenFile(6c) e_Clnu_s .. MONOCFSD 2eb* \ IFSBOOK\NT32 \ MONO oe
w21 Close(3e) 2eb
p21 Close(3e) 2eb
fsh FS_CloseFile (3e) e_Clnu_s .. MONOCFSD 2eb f
tag ======== OpenFile

If you compare this with the function sequences for our previous examples, you'll
see they are quite Similar, One call that stands out here is FS_MountVolume. On
the first call to open this device, IFSMgr calls MONOCFSD's mount entry point.
Thjs function establishes the linkage between the me system driver and IFSMgr.
Since this is a character me system driver, subsequent calls into MONOCFSD have
the C flag set in the Flagsl column, to indicate that this is a character resource.

Although we passed mono as the mename ~o fopen and CreateFile, notice that
the argument that the interrupt 21h functions see-and that ultimately gets passed
to FS_OpenFile-is E\ijsbook\nt32\mono. The directory E:\ijsbook\nt32 was the
directory from which I executed nt32. IFSMgr doesn't care because when it comes
to standard device names, it ignores the drive and path.

In the section "What's in a Name?" earlier in this chapter, I mentioned that
another form of device name is used to reference virtual device drivers, Here is
MuitiMon trace that we get when we try the command nt32 \\.\ifsmgr:

~. FunctiQn Flags;!,
tag ======== fopen
tag ======== CreateFile
tag ======== OpenFile
w21 LFN (71) Get.File.Attr (43)
p21 LFN(71)Get File Attr(43)
tag ======================

H!ll . Args

\ \. \ifsmgr
\ \. \ifsmgr

Gt
Gt

In this case, IFSMgr doesn't see these requests. Instead this is a job that VWIN32
assumes as part of· its support for the DeviceIQControl function. If we change

28 Chapter 2: Where Do Filenames Go?

MultiMon's filters to include VWIN32's DeviceIoControl interface, we get a more
informative trace log:

~ Function
tag ======== fopen
dev Open Device
dev Close Device
dev (256)
tag ======== CreateFile
dev Open Device
dev Close Device
dev (256)
tag ======== OpenFile

Flags1

w21 LFN(71)Get File Attr(43)
p21 LFN(71)Get File Attr(43)
dev (256)
tag ======================

Il§y :!:!.ill.

IFSMGR
IFSMGR
TAGMON

IFSMGR
IFSMGR
TAGMON

TAGMON

Args

\ \. \ifsmgr
\ \. \ifsmgr

Gt
Gt

The new lines that we have added, of Type dev, originate in the WlN32CB
monitor. One of the things this driver monitors is VWIN32's ring-O Win32 service
to support KERNEL32's DeviceIoControl interface. This interface is also "wired-up"
to the Win32 functions CreateFile and CloseHandle, when these functions are
referencing a VxD name. That is what we are seeing here, an "Open Device" for
IFSMgr from CreateFile and a "Close Device" for IFSMgr from CloseHandle. The
TAGMON driver, which spits out the tag strings in our trace, also uses DeviceIo
Control to receive tag strings. The private code that it assigns to this function is
256. This trace also shows us that the Win32 OpenFile API doesn't accept VxD
device names.

To finish up our mini-tour of filenames, let's refer back to Figure I-lone last
time. We have traced two different paths for device names. For a standard device
name, we start in a Win32 application, then pass through KERNEL32, VWIN32,
and IFSMgr before ultimately arriving at the character file system driver,
MONOCFSD, in our example. On the other hand, for a VxD device name, only
KERNEL32 and VWIN32 are involved.

Our exploration of filenames was based on a Win32 application. We could easily
repeat these experiments using a Win16 or a DOS-box application. Figure 1-1
shows that a Win16 application interfaces with the 16-bit Kernel, which in tum
issues protected-mode interrupt 21h requests to IFSMgr. A DOS-box application,
on the other hand, issues virtual-86 mode interrupt 21h requests to IFSMgr.

This chapter has been a quick "once-over" to introduce you to some of the
system components which play a role in the file system's operation. I have
thrown out some terms like Win32 services, protected-mode interrupts, and virtual-
86 interrupts. These system features are at the heart of what makes the file system
tick. They are the focus of the next chapter.

Pathways to the
File System

In this chapter we will focus on file system plumbing-those mechanisms that are
used to make file system services available to an array of operating system modes:
DOS/V86, Win16, Win32 , and ring-O. In the next chapter we'll look at what gets
carried through this plumbing: the various APIs.

To carry the plumbing analogy further, when a building is finished the pipes are
hidden from view. To see the plumbing you have to peer into crawl spaces with
a flashlight, or remove wall panels. But, if you visit while the building is going
up, before the floors and walls are erected, the plumbing is in clear view.

Well, we're not going to rebuild Windows 95 from the ground UPi instead we're
going to watch as Windows 95 starts up to get a clearer view of the file system.
We'll be tracing through Windows 95 from the "Big Bang" to its quiescent state,
kernel idle. Armed with this background, we'll come back to the Windows 95
operating system modes, and examine how the file system is accessed from each
of them.

The Big Bang
By the time you type your password to log on as a Windows 95 user, an enor
mous amount of software has executed to prepare the system to do useful work.
Out of this mountain of software, we will concentrate on the main Windows 95
kernel components: vmm32.vxd, krnI386.exe, and kerneI32.dll. VMM32 is a
compressed library of virtual device drivers along with a real mode loader. Each
VxD in the library may execute real mode initialization before the processor is
switched to protected mode. Upon entering protected mode, VMM issues system

29

30 Chapter 3: Pathways to the File System

control messages to notify VxDs of each initialization stage. Here is a summary of
these stages:

L The first stage is System Critical Init. At this point, interrupts are still disabled,
so it provides an opportunity for drivers to install hardware handlers and
perform other critical initialization steps. During this phase there are restric
tions on which services are available to VxDs. For instance, Exec_Int, a
service for executing software interrupts, is not available.

2. Device Init stage follows System Critical Init. During this stage most services
are available to drivers. This is the stage at which most drivers perform the
bulk of their initialization.

3. Init Complete stage follows Device Init. After this stage, VMM discards the
driver initialization code and data segments. Subsequent stages continue the
preparation of the system virtual machine.

4. System VM Init marks the stage at which the system virtual machine has been
created and initialized.

5. Begin PM App marks the execution of KRNL386 in the system VM.

6. Kemel32 Init indicates that KERNEL32 initialization in the system VM is
complete.

These stages provide a timeline along which we can mark important and inter
esting events.

Within each stage, there is another timeline which is based on the initialization
order of devices. Each device specifies a doubleword init order ranging from 0,
the first, to FFFFFFFFh, the last. Each category of VxDs has a specific init order;
for instance, IFSMgr has the value AOOlOOOOh, whereas file system drivers are
assigned AOOIOlOOh. This assures that IFSMgr is initialized prior to the FSDs
which rely upon it.

By the time the kernel components have initialized, many VxDs have hooked
interrupts, installed callbacks, and in other ways have left their imprint on the
final system configuration. MultiMon is an ideal tool for watching these initializa
tion steps.

Sampling the Startup Timeline with MultiMon
To make the sequence of events easier to visualize, we'll be using MultiMon to
log' events of interest during system startup. For a detailed description of
MultiMon and for instructions on installing it, see Appendix A, MultiMon: Setup,
Usage, and Extensions. We will be making use of the BOOTMGR driver, which
allows us to monitor and collect a log of events during the time the system is

The Big Bang 31

booting. More accurately, the log will collect events from System Critical Init until
Kernel Idle.

MultiMon can be configured with a variety of drivers to collect information about
different APIs and events. In this chapter, we are especially interested in looking
at how the interrupt vector tables and callbacks get initialized. With this goal in
mind, I've used the set of MultiMon drivers shown in Table 3-1 to collect the
traces that we will be examining in the coming sections.

Table 3-1, MultiMon Configuration/or Creating a Logj1le

MuitiMon Driver

BOOTMGR

VECTORS

121HELPI

12FMONI

WIN32CB

Monitor

Interrupts & Callbacks

Int21 PM (pre-IFSMgr)

Int21 v86 (pre-IFSMgr)

Int2F PM (pre-IFSMgr)

Int2F v86 (pre-IFSMgr)

VWIN32 DeviceloControl

VWIN32 Win32 Services

VWIN32 Win32 Services

API Selections

Set Vect(25)

Set Vect(25)

Win/386 Multiplex(16)

Win/386 Multiplex(16)

K32Init (36)

ReplGlobalEnv (47)

If you want to repeat this on your own system, you need to follow these steps:

• Install the drivers listed in Table 3-1, using MultiMon's Add/Remove Driver ...
dialog from Options on the main menu.

• You must reboot your system to actually get the drivers loaded, since these
are static VxDs.

• After rebooting, start MultiMon and bring up the Filters dialog to adjust your
session logging options. Make sure the monitors in Table 3-1 are checked off
and other monitors are disabled. Within in each monitor, select only the APIs
listed in Table 3-1.

• After each monitor and its associated APIs are selected, press the dialog but
ton Save As Default. (This button must be pressed once for each monitor.)

• Now reboot your system and this time, as it starts up, a log file will be cre
ated. Once the system has finished initialization, launch MultiMon; you will
be greeted with a message box stating: "BOOTMGR has captured a log file.
Do you wish to display it now?" Answer yes; you may also save the log file
in text form using the Save As ... button.

• To disable MultiMon's "boot-logging" mode later, remove the BOOTMGR
driver using the Add/Remove Driver ... dialog from Options on the main

32 Chapter 3: Pathways to the File System

menu; you may also want to remove other drivers which you don't plan to
use again.

Interpreting MultiMon Output: Pre-System VM

In this section we will examine a typical log file. The example shown here was
collected from a Texas Instruments TM-4000M notebook with Microsoft Networks
client and server installed.

The session log file is subdivided into the following sections:

Initial vs6 Interrupt Vectors
Initial IDT Vectors
Sys Critical Init
Device Init
Init Complete
Sys VM Init
Begin PM App
Kernel32 Initialized

These sections mark easily recognizable stages during system startup and corre
spond to control messages that BOOTMGR receives from VMM. Within each
section, each log entry is divided into columns. The first column is labeled
Module. Generally, this column contains the name of a process that owns the
thread from which the event was generated. In the case of descriptive messages,
the monitor driver that generated the message will be entered here (e.g.,
BOOTMGR or VECTORS). The next column is labeled Type. This column contains
a three-character abbreviation for the name of the monitor, e.g., vec for Interrupts
& Callbacks. The third column is labeled Function. For the early portion of the log
file, these entries will refer to virtual device driver services. The VxD services that
will be seen here are:

GeePM_Ine Vector
Gee V86_Ine Vector
AIlocate_PM_ CalLBack
AIlocate_ V86_Call_Back
SeePM_Ine Vector
Sec V86_Ine Vector
Hook_ V86_IneChain
AIlocate_ V86_Break--,Point

With the exception of the first two services, all of these services are hooked by
vectors.vxd. For these hooked services, VECTORS has installed a preamble and/or
postamble which is executed whenever these services are called.

TbeBigBang 33

In the last two sections of the session logfile, Begin PM App and Kerne132 Initial
ized, we also see other types of entries in the Function column. In these cases,
the line Type will be p21, v21, p2f, v2f, vw32, or dev. The first four refer to inter
rupts 21 and 2f, whereas vw32 and dev refer to the Win32 callback. We have
hooked these interfaces by installing an interrupt handler and chaining it to the
previous handler. Hooking the Win32 callback is a little more involved and we'll
get to the details later in this chapter.

The other columns you will see in the log are:

Flagsl
May contain "Entry" or "Return" to indicate which side of a call the line was
reported from

Device
May contain the name of the VxD which is being called into

Handle
Used to store the interrupt number, as in "Int 21"

A1J?s
A string describing input arguments or return values

Flags2
Not used

Let us examine the output section-by-section, starting with the first two tables,
shown in Figure 3-1. These tables display the values of the v86 and protect mode
interrupt vectors for the five software interrupts which IFSMgr monitors. The v86
vectors are segment:offset pairs that reference code that executes in v86 mode.
The protect mode vectors all have the characteristic 003Bh selector which
earmark it as a protected mode callback. The segment with this selector consists
of an array of Int 30h instructions (interrupt gates) which change the execution
ring level (see the sidebar "Breakpoints and Callbacks") .

•••• S ysCriti nit
txt Initial V861nterrupt Vectors

? vec Get_ V86Jnt Vector Entry Int 17 V86 Vector=DE C:&l28
? vec Get V86Jnt_ Vector Entry Int 21 V86 Vector=DEC:04P.O
? vec Get_ V86Jnt_ Vector Entry Int25 V86 Vector=C9:0FB C
? vec Get_ V86Jnt_ Vector Entry Int26 V86 Vector=C9:0FC6
? vec Get V8Unt_ Vector Entry Int 2F V86 Vector=159B :03CC

txt InitiallDT Vectors
? vec Get_PMJnt Vector Entry Int 17 PM Vector=3B:2E
? vec Get_PMJnt Vector Entry Int 21 PM Vector=3B:42
? vec Get_PMJntYector Entry Int 25 PM Vector=38:4A
? vec Get_PMJntYector Entry Int 26 PM Vector=3B:4C
? vec Vector Int 2F PM Vector=3B:208

Figure 3-1. Initial lIT and IDT Contents

34 Chapter 3: Pathways to the File System

Breakpoints and Callbacks
During VMM initialization, one or more pages are allocated in which system
breakpoints and callbacks are stored. The amount of storage set aside depends
on the value of the MaxBPS key in the [386Enh] section of system.ini. In
Windows 95 Build 950, the default value for Max BPS is 400. The MaxBPSvalue
is rounded upwards to the actual number of breakpoints (ActuaIBPS) so the
storage claimed is the nearest whole number of pages. This storage is divided
into two portions.

The lower portion begins at the base address of the allocation and is Actual
BPS'S in size. Each vs6 callback or PM callback consumes S bytes of this re
gion. A vs6 breakpoint needs twice as much storage as a callback. To get the
additional space, ActualBPS is reduced by one and the freed storage is used
for the breakpoint.

For every callback and breakpoint two doublewords are stored, the Refdata
value and the Callback address as they were passed as arguments to the cor
responding services. Note that this table does not distinguish a vs6 callback
from a PM callback or a vs6 breakpoint. This table grows towards higher ad
dresses, limited only by ActualBPS.

The additional S bytes of storage required for a vs6 breakpoint is also allocated
from this same region but from the other end, i.e., from higher addresses to
wards lower. The first breakpoint would be stored at (ActuaIBPS-l)*S, the next
at (A ctuaIBPS-Z)*S , and so on. Thus as breakpoints are added, the maximum
number of breakpoints (and callbacks) is reduced by one. In the S bytes of ad
ditional storage, the first doubleword is the linear address of the vs6 break
point, followed by a word index into the "Refdata/Callback" array, followed by
the byte replaced with the arpl instruction, and then a byte of Offh for padding
(and probably to assure a mismatch when scanning for a matching CS:EIP).

Immediately following the region just described is a region filled with Int 30h
instructions, the interrupt gates for jumping from ring-3 to ring-O. The size of
this region is defined by the equation (ActuaIBPS+ 100h)*Z bytes. A descriptor
with selector 3Bh is defined just to reference this table. The additional 100h
entries are included for default reflection of protect-mode interrupts to vs6
mode.

When a vs6 callback is called, an invalid opcode fault causes the program to
enter VMM. VMM uses the CS:EIP in the client registers to determine if the call
er came from the arpl byte location. If it did, the actual segment-offset encod
ing of the address is used to look up the entry in the "Refdata/Callback" array.

-Continued-

Tbe Big Bang

When a PM callback executes its matching Int 30h instruction, the interrupt
gate transfers control to VMM. VMM uses the CS:EIP in the client registers to
determine if the interrupt came from code executing with selector 3Bh. If so,
EIP-2 is used to index into the "Refdata/Callback" array.

When a vs6 breakpoint is "hit", an invalid opcode fault causes the program to
enter VMM. In this case, the CS:EIP in the client registers does not point to the
single callback arpl instruction; rather, it points to an arpl that has been inserted
in the instruction stream. VMM uses the CS:EIP value to scan the breakpoint
array to locate a matching CS:EIP. Iffound, the index value is used to look up
the corresponding "Refdata/Callback" entry.

35

IDT stands for interrupt descriptor table. There isn't just one IDT; separate IDTs
exist for virtual-S6 and protected mode. What is more, each virtual machine has
its own pair of vs6 and PM IDTs. The current IDT is constantly changing, as VMM
switches VMs and execution modes are changed within a VM. When SeCPM_Inc
Vector is called it sets the protected mode IDT vector referenced by the current
VM to the speCified handler; the !DT for vs6 mode is not affected. In vs6 mode,
it is the vs6 IDT which is consulted when a hardware or software interrupt
occurs, not the interrupt vector table (IVT) at 0:0 in the current VM. The IVT
comes into play when no protected mode handler services the request. VMM then
reflects the interrupt to "real mode" to the corresponding entry in the IVT. To
assign a vector to the IVT for the current VM, Sec V86_lnc Vector is used. This
service stuffs the vector into the currently mapped VM at 00000000+4*intnum.

Software interrupts or traps occurring in vs6 mode are always going to be initially
serviced at ring-a. In protected mode, the situation is a little more complicated.
Each entry in the PM !DT is a gate with a specific privilege level. When a software
interrupt occurs, the privilege level of the interrupting program is compared
against the privilege level of the gate. The interruptor must be at least the same
privilege level as the gate or a general protection fault is issued against the int n
instruction. This will still force the program to enter VMM, but at the GP fault
handler rather than at the intended interrupt handler.

This property of PM software interrupts also allows the PM IDT to contain
addresses of handlers which reside in a ring-3 DLL. It is also for this reason that
protected mode callbacks go through an interrupt gate· which has a privilege level
of 3.

Now we have seen that SecPM_InC Vector and Sec V86_InC Vector apply to the
current VM, but during System Critical Init, Device Init, etc. a VM does not yet
exist, so what affect do they have at this early stage? The DDK reference tells us

36 Chapter 3: Pathways to the File System

that if these services are called before the System VM Init control message is
broadcast, the installed handler becomes part of the default IDT and IVT which
are used for every VM which is subsequently created.

Another observation we can make from the protected mode vectors shown in
Figure 3-1 is that each one is at an offset of 2*intnum in the Int 30h segment. The
first 100h entries in this array are the default protected mode vectors that are used
for each VM. Their corresponding addresses will be from 3b:OOOO to 3b:Olfe. Note
that the address for the Int 2f handler lies outside this range. This is because VMM
has already overidden the default entry by installing a callback at 3b:020S. The
default protected mode vector which this handler should chain to would be at
3b:005e.

Continuing with the System Critical Init phase, Figure 3-2 shows a few of the
entries from this stage. There are no entries made by IFSMgr, but DOSMGR does
install protected mode handlers for Int 21h, 25h, and 26h, the same interrupts
IFSMgr has an interest in. Note that for each protected mode handler installed,
first a callback is allocated and then the protected mode vector is set to this call
back address. Each of the Allocate_PM_Call_Back calls associates a ring-O
procedure with the callback. For instance, in the case of Int 21h, the ring-O proce
dure is c02201ac. VMM provides a handy service, _GetVxDName, that converts a
ring-O address into a device name, segment, and offset form. For example, the
ring-O address c02201ac is located in DOSMGR segment OAh at an offset of 1ACh
from its origin (DOSMGR(OA) + 00000lAC).

ntry
Allocate_ V86_ CalLB ack Return V86 App Callback: fe65: 18dd

vec Hook_ V86Jnt_Chain Entry Inl2A RingO Hook=c02943cc (DOSMGR(05) + 0000002C)
vec Hook_ V86Jnt_Chain Entry Int 21 RingO Hook=c0220000 (DOSMGR(Otl.) + 00000000)
vec Hook_ V86Jnt_Chain Entry Int24 RingO Hook=c022b270 (DOSMGR(OB) + 000002A4)
vec Hook_ V86JntChain Entry Int 23 RingO Hook=c025a237 (DOSMGR(13) + 0000019B)
vec Hook_ V86Jnl_Chain Entry Int 1B RingO Hook=c025a2d7 (DOSMGR(13) + 0000023B)
vec Aliocate_PM_ CalLBack Entry RingO Function=c02201 ac (DOSMGR(Otl.) + 000001AC)
vec Aliocate_PM_ CalLBack Return PM App Callback: 3b:0330
vec S el_PMJ nt_ Vector Entry Int 21 PM Vector=3B:330
vec Aliocate_PM_ CalLBack Entry RingO Function=c022b77e (DOSMGR(OB) + 000007B2)
vec Aliocate_PM_ CalLB ack Return PM App Callback: 3b:0332
vec Set_PMJnt_ Vector Entry Int 25 PM Vector=3B:332
vec Aliocate_PM_ CalLBack Entry RingO Function=c022b77e (DOSMGR(OB) + 000007B2)
vec Aliocate_PM_ CalLBack Return PM App Callback: 3b: 0334
vec Set_PMJnt_ Vector Entry Int 26 PM Vector=3B:334

Figure 3-2. MultiMon trace fragment from System Critical Init

Hook_ V86_InCChain is used to install vs6 interrupt handlers for lBh, 21h, 23h,
24h, and 2Ah. When VMM receives the interrupt via the vs6 IDT, it will check to
see if any handlers have been installed for the interrupt by the Hook_ V86_Inc

Tbe Big Bang 37

Chain service, and if so, control is passed to the handler. This service may be
used to install multiple v86 handlers for a particular interrupt. The last handler
installed gets the first crack at handling the interrupt. Only if it doesn't handle the
interrupt or wishes other handlers to see the interrupt too, it returns with carry
set. If carry is cleared on return, then VMM does not pass the interrupt on any
further. Only if all of the installed handlers fail to service the interrupt (or if no
ring-O handlers have been installed) VMM consults the IVT for this VM and pass
the interrupt to the "real mode" components in the VM.

Device Init phase is the phase during which devices do most of their initialization.
This is the phase where we see the first entries in the log file for IFSMgr. We see
from the output in Figure 3-3 that IFSMgr is interested in interrupts 17h, 21h, 25h,
26h, and 2Fh. Of these, 21h, 25h, and 26h have protected mode vectors installed
using the Allocate_PM_Call_Back service along with SecPM_Inc Vector, as we
saw with DOSMGR. For the v86 IDT, IFSMgr installs ring-O handlers for interrupts
17h, 21h, 25h, 26h, and 2Fh. The only thing unaccounted for is the vs6 call back.
This callback is passed to the DOS device driver ifshlp.sys. It provides a way for it
to enter IFSMgr (see the section "Bouncing Back from ifshlp.sys" in Chapter 5, The
"New" MS-DOS File System).

Allocate_ Entry RingO Function=cOOaae59 (lFSMGR(01) +
vec Allocate_ V86_CalLBack Return V86 App Callback: lebO: 142d
vec Hook_ V86Jnt_Chain Entry Int 21 RingO Hook=cOOabb22 (IFSMGR(01) + 000011 EA)
vec Aliocate_PM_ CalLB ack Entry RingO Function=cOOaba78 (IFSMGR(01) + 00001140)
vec Aliocate_PM_ CalLB ack Return PM App Callback: 3b:03c6
vec S et_PMJ nt_ Vector Entry Int 21 PM Vector=3B:3C6
vec HookY86Jnt_Chain Entry Int 17 RingO Hook=c0276c1 a (IFSMGR(03) + 0OO016DA)
vec Hook_ V86Jnt_Chain Entry Int 25 RingO Hook=c0276bcc (IFSMGR(03) + 0000168C)
vec Hook_ V86Jnt_Chain Entry Int 26 RingO Hook=c0276bcc (lFSMGR(03) + 0000168C)
vec Allocate_PM_CaILB ack Entry RingO Function=c0276b61 (lFSMGR(03) + 0000162F)
vec Aliocate_PM_CaILB ack Return PM App Callback: 3b: 03c8
vec Set_PMJnt Vector Entry Int 25 PM Vector=3B:3C8
vec Aliocate_PM_ CalLB ack Entry RingO Function=c0276b61 (lFSMGR(03) + 0000162F)
vec Aliocate_PM_ CalLB ack Return PM App Callback: 3b:03ca
vec SetPMJnt Vector Entry Int 26 PM Vector=3B:3CA
vec Hook_ V86Jnt_Chain Entry Int 2F RingO Hook=cOOab81 c (IFSMGR(01) + 00000EE4)

Figure 3-3. MultiMon trace fragment from Device Init

Figure 3-4 shows the entries for the final VMM initialization stage, Init Complete.
Here, we see VMPOLL install both protected mode and v86 mode handlers for
Interrupt 21h.

Interpreting MultiMon Output: Post-System VM
Once the System VM is created, VMM broadcasts the Sys VM Init message, to
allow VxDs to perform any initialization needed for the new VM. The initial vs6

38

vec
vec
vec
vec

Hook_V86JnLChain
Aliocate_PM_ CalLB ack
Aliocate_PM_CaILBack
5 et_PMJ nt_ Vector

Entry
Entry
Return
Entry

Int 21

Int 21

Chapter 3: Pathways to the File System

RingO Hook=c0220310 fl/MPOLL(05) + 0000006B)
RingO Function=c02202fc fl/MPOLL(05) + 00000054)
PM App Callback: 3b:03d6
PM Vector=3B:3D6

Figure 3-4. MultiMon trace fragment from Init Complete

·IVf and protected mode IDT of the system VM are stored away as templates to
be used for creating future VMs.

VMs begin life in V86· mode, and the System VM is no different. To switch the VM
to protected mode requires launching an application in the VM that makes use of
Window's DPMI services to make the change. The application that gets launched
is krnI386.exe, a 16-bit protected mode application. When a protected mode appli
cation starts in a VM, VMM broadcasts the message "Begin PM App." Starting with
this stage, we see ring~3 services added to the MultiMon trace in Figure 3-5.

Many of the services listed in the Function column in Figure 3-5 are ring-3, appli
cation level services. These include:

Win/386 Multiplex, Get Device API (Int 2Fh, AX=1684h)
Win/386 Multiplex, Get DPMI Extension (Int 2Fh, AX=168Ah)
Win/386 Multiplex, Get Win32 API (Int 2Fh, AX=188Dh)
SetVect (Int 21h, AH=25h)
ReplGlobalEnv (VxDCall(002A0031h))
K32Init (VxDCall(002AOOlFh))

These are just a small fraction of the services that could be logged at this stage.
There are numerous Int 21h and Win32 services that don't show up here. The
services that were selected were chosen because they help to account for the ririg-
0, Allocate_PM_Call_Back, andSeCPM_InC Vector calls.

The log shows us that KRNL386 at this stage is concerned with fault and excep
tion handlers. We see it installing protected mode handlers for Interrupts 1 and 3,
the Debug Exception and Debug Breakpoint. We also see several PM callbacks
being allocated to the VMM address c023183bh. These are used to install· excep
tion handlers for interrupts 6, B, C, D, and E: the invalid opcode, segment not
present, stack exception, general protection f~ult, and page fault, respectively.
Presumably DPMI calls are used to set these exception handlers.

There are several Int 2Fh calls to retrieve the protected mode interfaces for
devices. The devices that are interrogated on this systelll are: P AGEFILE, VWIN32 ,
VMM, and VTDAPI. Note that the protected mode callback (which is used for the
PM APIs for these VxDs) is not allocated until some client requests it from the
device.

TbeBig Bang

t~t """" Begin PM ApD
vee Alioeate_PM_CaILBack
vee Alioeate_PM_CaILBack
p2f Win/386 Multiple~(16)DPMIE~t(8a)
p2f Win/386 Multiple~(16)GetDevAPI(84)
vee Aliocate_PM_CatBack
vee Alioeate_PM_CaILBack
p2f Win/386 Multiple~(16)GetDevAPI(84)
vee Alioeate_PM_CaILBaek
vee Alioeate_PM_CaILBack
p2f Win/386 Multiple~(16)GetDevAPI(84)
vec Aliocate_PM_CaILBack
vec Aliocate_PM_CaILBack
vec Aliocate_PM_CatBack
vee Aliocate_PM_CaILBack
p21 Set Vect(25)
vee S et_PMJ nt_ Vector
p21 Set Vect(25)
vec SeLPMJnL Vector
vec Alloeate_PM_CaILBack
vee Aliocate_PM_CaILBack
vec Aliocate_PM_CaILBack
vee Aliocate_PM_CaILBack
vec Aliocate_PM_CaILBack
vec Aliocate_PM_CaILBack
vec Allocate PM Call Back
vec Aliocate=PM=Call)ack
p2f Win1386 Multiple~(16)GetDevAPI(84)
p2f Win/386 Multiple~(16)GetWin32Api. ..
vee Aliocate_PM_CatBack
vee Aliocate_PM_CaILBack
p2f Win/386 Multiple~(16)GetDevAPI(84)
vec Alioeate_PM_CaILBack
vee Allocate_PM_CaILBack
vw32 R eplG lobalE nv(4 7)
vee Aliocate_PM_CaILBack
vec Aliocate_PM_CaILBack
vw32 K32Init(36)

Entry
Return

Entry
Return

Entry
Return

Entry
Return
Entry
Return

Entry

Entry
Entry
Return
Entry
Return
Entry
Return
Entry
Return

Entry
Return

Entry
Return

Entry
Return

PAGEFILE(21 h)

VWIN32 (2Ah)

VMM (1 h)

VWIN32 (2Ah)

VTDAPI (442h)

Figure 3-5. MultiMon trace/rom Begin PM App

RingO F unetion=eOOa9849 (\!VII N 32(01
PM ApD Callback: 3b: 03da

RingO F unction=e0006186 (\1M M (01) +
PM App Callback: 3b: 03dc

RingO F unction=c0006186 (\1M M (01) +
PM App Callback: 3b: 03de

RingO F unction=c0006186 (\1M M (01) +
PM App Callback: 3b: 03eO
RingO F unction=e023183b (\1M M (OD) +
PM App Callback: 3b: 03e2

Int1 PMVeetor=117:ABA

Int 3 PM Veetor=117:AC4
RingO F unction=c023183b (\1M M (OD) +
PM App Callback: 3b: 03e4
RingO F unction=c023183b (\1M M (OD) +
PM App Callback: 3b: 03e6
RingO Function=c023183b (\IMM(OD) +
PM App Callback: 3b: 03e8
RingO F unction=c023183b (\1M M (OD) +
PM App Callback: 3b: 03ea

RingO F unction=eOOdbcff [Vv'1 N 32CB (01
PM App Callback: 3b: 03ec

RingO F unction=c0006186 (\1M M (01) +
PM App Callback: 3b: 03ee

RingO Function=c026f1 ae (\!VIIN32(04)
PM App Callback: 3b: 03fO

39

There are also a couple of rare Int 2Fh calls: 168Ah, which retrieves the protected
mode callback to vendor specific DPMI extensions, and 168Dh, which retrieves
the protected mode callback to Win32 services. It is KERNEL32 which actually
uses this callback to implement the undocumented V:xDCall function. At the time
Get Win32 API is called, a protected mode callback is allocated and asssigned a
ring-O handler in VMM. In order to monitor V:xDCall traffic we install our ring-O
handler in its place and then chain on to the original handler. This allows us to
examine all VxDCall calls, but we only show two at the end of this section of the
log. The first, ReplaceGlobalEnv, is a wrapper for the VMM function VMM_
Replace_GlobaCEnvironment. K32Init is a wrapper for the VMM System_Control
service. It is used to broadcast the control message "Kerne132 Init," which marks
the beginning of the next stage.

After the Kernel32 Initialized message is broadcast, the kernel continues with its
initialization and performs operations similar to what we saw in the previous

40 Chapter 3: Pathways to the File System

stage. The log is much longer for this stage; a portion of it is shown in Figure 3-6.
Again, there are several Int 2Fh calls to retrieve the protected mode interfaces for
devices. The devices that are interrogated on this system include VDD, VIDAPI,
VMOUSE, Device=37h; REBOOT, SHELL, VMM, VFLATD, CONFIGMG,
MMDEVLDR(44ah), VDSPD, and V]OYD.

p21 Set Vect(25}
vec SeLPMJnt_Vector Entry Int2F PM Vector=317:9C47
p21 SetVect(25}
vec Set_PMJnt_ Vector Entry Int 10 PM Vector=317:9C3E
p2f Win/386 Multiple~(16}GetDevAPI(84) VDD (Ah)
p2f Win/386 Multiple~(16)GetCurVMID(".
p21 Set Vect(25)
vec Set_PMJnLVector Entry Int9 PM Vector=247:44
p21 SetVect(25)
vec Set_PMJnt_ Vector Entry Int2F PM Vector=317: 9C47
p21 Set Vect(25)
vec Set_PMJnt_ Vector Entry Int24 PM Vector=117:9094
vec Set_PMJnt_ Vector Entry Int24 PM Vector=3B: 386
p21 Set Vect(25)
vec· S et_PMJ nt_ Vector Entry IntO PM Vector=117:9298
p21 Set Vect(25)
vec S et_PMJ nt_ Vector Entry Int2 PM Vector=117:92BA
p21 SetVect(25)
vec S eLPMJ nt_ Vector Entry Int 4 PM Vector=117:92CO
p21 Set Vect(25}
vec S eLPMJ nt_ Vector Entry Int I) PM Vector=117:92C6
p21 Set Vect(25)
vec Set_PMJnt_ Vector Entry Int 7 PM Vector=117:92CC
p21 Set Vect(25}
vec S et_PMJ nt_ Vector Entry Int 3E PM Vector=117:92D2
p21 5 et Vect(25)
vec 5 et_PMJ nt_ Vector Entry Int 75 PM Vector=117:92D8
p21 Set Vect(25)
vec Set_PMJnt_ Vector Entry Int 31 PM Vector=117:8899
p21 Set Vect(25)
vec SeLPMJnt_ Vector Entry Int21 PM Vector=117:849A
p2f Win/386 Multiple~(16)GetDevAPI(84} VTDAPI (4 ...
p2f Win/386 Multiple~(16)TSRldent(b)
p2f Win/386 Multiple~(16)GetDevAPI(84} SHELL (t..
p2f Win/386 Multiple~(16)GetDevAPI(84) (44Ah)
dev Open Device IFSMGR
dev (IFSJOCTL_21) . AX:5f8a IFSMGR
dev (IFSJOCTL_21) . AX:5f8a IFSMGR

Figure 3-6. MultiMon trace fragment after Kernel32 Init

The kernel also continues to toy with the. protected mode IDT. In this stage we
see handlers installed for interrupts 0, 2, 4, 6, 7, 9, D, 21, 24, 2f, 31, 3e, 71, and
75. The handlers that are getting installed are in ring-3; they are specific to the
System VM. Recall that after System VM Init, SeCPM_InCVector applies to the
current VM. So, the modification of the IDT we have seen here and in the
previous stage only affects the System VM.

This trace shows us traces from the dev monitor for the first time. These lines
come' from the monitor for WlN32 DeviceIoControl. This isn't the Win32 DeviceIo
Control exactly; rather, it is the VWlN32 function that implements a large portion

Accessing IFSMgr 41

of it. We are seeing this function called through the Win32 callback on behalf of
Win32 APIs: DeviceIoControl, CreateFile, and CloseHandle.

Up until now our trace has shown a lot of Int 2Fh calls to retrieve the protected
mode interface for a variety of devices. These protected mode callbacks can only
be used from Win16 programs that still allow Int 2Fh calls. Win32 programs are
required to use a new mechanism for accessing VxDs.

This requirement is that the device be opened by CreateFile, exchanges data or
commands using DeviceIoControl, and· is closed with CloseHandle. All three of
these functions go through the same VWlN32 function. If the dwloControlCode is
o we have an open on behalf of CreateFile (labeled as Open Device in the trace);
if the dwloControlCode is -1 we have a close on behalf of CloseHandle. Other
dwloControlCode values indicate specific DeviceIoControl commands that are
private to the device, i.e., a value of 100 for IFSMgr does not mean the same as a
value of 100 for VREDIR.

For IFSMgr, the dwloControlCode of 100 is defined in ifs.h from the DDK as IFS_
IOCTL_21. The comment with the equate states "These definitions are used by
MSNET32 for making DeviceIoControl calls to IFSMgr." The last two lines in
Figure 3-6 show two such calls with an AX value of 5fSah, indicating a call to the
DOS Int 21h function 5fSah. There are three other dwloControlCodes which
IFSMgr recognizes: IFS_IOCTL_2F(101), IFS_IOCTL_GET_RES(102), and IFS_
IOCTL_GET_NETPRO_NAME_A(103). In the .next chapter we'll take a closer look
at what these functions do.

Accessing IFSMgr
Figure 3-7 illustrates the IFSMgr entry paths from the four Windows 95 execution
modes. IFSMgr is a virtual device driver that executes in ring-a; thus, three of the
paths involve a ring transition from the application level, ring-3, to the kernel
level, ring-O. To support DOS and Windows 3.x applications, we see continued
support for the software interrupt interfaces, whereas for Win32 applications and
ring-a, new interfaces have been introducedc

Accessing IFSMgr from DOS/V86 Mode
The bottom arrow in Figure 3-7 symbolizes pathways from Windows DOS boxes
to IFSMgr.

Recall that in virtual-S6 mode, interrupts are serviced by ring-O handlers in VMM.
Using MultiMon, we traced the installation of these handlers for all interrupts by
hooking the VMM service Hook_ V86_InCChain. Table 3-2 summarizes vs6 inter
rupt handlers for interrupts 17h, 21h, 25h, 26h, and 2fh, the interrupts that IFSMgr

42

Win16 PM/Ril1g3
Int 21h
Int 25h
Int 26h

Figure 3-7. Pathways to IFSMgr

RingO

Int 26h
Int 2fh
Int 17h

Chapter 3: Pathways to the File System

DOSN86 • Ril1g3

monitors. Each column shows the sequence of events for servicing that interrupt.
For instance, interrupt 17h is initially handled by the service routine in the VM's
v86 IDT. This will be a ring-O interrupt handler in VMM that will check for
installed v86 handlers. If handlers have been installed, then the last one installed
is called first, then next most recent, etc., until one services the interrupt. If none
of them service it, then the ring-3 v86 handler in DOS is used.

Table 3-2. Sequence of Events for V86 Interrupt Handlers

Int 17 Int 21 Int 25 Int 26 Int 2f

VM V86 lDT VM V86 lDT VM V86 lDT VM V86 lDT VM V86 lDT

Ring-O lnt Ring-O lnt Ring- lnt Ring-O lnt Ring-O
Hdlr Hdlr Hdlr Hdlr lnt Hdlr

lFSMGR(03) VMPOLL(05) lFSMGR(03) lFSMGR(03) lFSMGR(Ol)
+ 16DA + 68 + 168C + 168C + EE4

VMPOLL(06) SHELL (OA) DOSMGR(05)
+ 30 + 12C + F4

VPD(Ol) + lFSMGR(Ol) VDD (01) +
5C4 + llEA 37B

DOSMGR(OA) VCDFSD(Ol)
+ 0 + 3A

SHELL(Ol)
+ 47C

Accessing IFSMgr 43

Table 3-2. Sequence of Events for V86 Interrupt Handlers (continued)

Int 17 Int 21 Int 25 Int 26 Int 2f

VSHARE(Ol)
+ 29E

V86 hdlr V86 hdlr V86 Hdlr V86 hdlr V86 hdlr
Oc59:0a28 Oc59:04aO 00c9:0fbc 00c9:0fc6 10cO:03cc

A DOS box is a VM that contains an application running in VS6 mode (unless it is
using a DOS extender). This VM's vs6 IDT is cloned from a template that had
been created by the time the "System VM Init" message was broadcast. It doesn't
have the customizations to the protected mode IDT like the System VM does, but
if you are executing in vs6 mode, a program wouldn't use those customizations
anyway. What is important is that IFSMgr (as well as DOSMGR, etc.) are thor
oughly hooked into the interrupt plumbing of a DOS box through the ring-O vs6
interrupt handlers. As we see in Table 3-2, DOS programs which invoke software
interrupts 17h, 21h, 25h, 26h, and 2fh stand a good chance of executing some
IFSMgr code. Whether that happens depends on which function request is being
made and whether IFSMgr is interested in that function or whether a driver
installed later handles it before it gets to IFSMgr.

IFSMgr does not export a VS6 API.

Accessing IFSMgr from Win16/Protect Mode
The left arrow in Figure 3-7 symbolizes pathways from 16-bit Windows to IFSMgr.
The same interrupts that we examined for Dos/vs6 mode are shown in Table
3-3. Here, the interrupts are serviced in 16-bit protected mode, so the System
VM's PM IDT determines the interrupt handler.

Table 3-3. Sequence of Events for PM Intem..tpt Handlers

Int 17 Int 21 Int 25 Int 26 Int 2f

VM PM IDT VM PM IDT VM PM IDT VM PM IDT VM PM IDT

117:849a 3b: 03be 3b: 03cO 30f:026c
(IFSMGR) (IFSMGR)

3b:03c4 3b: 0332 3b: 0334 3b: 03b8
(VMPOLL) (DOSMGR) (DOSMGR) (V86MMGR)

3b: 03bc 3b: 0372
(IFSMGR) (VDD)

3b:0330 3b: 0208
(DOSMGR) (VMM)

3b: 002e 3b: 0042 3b:004a 3b: 004c 3b:005e

44 Chapter 3: Pathways to the File System

The handlers in the protected mode IDT may reside in 16-bit Windows DLLs or in
ring-O VxDs. In Table 3-3, the first handlers to get a shot at Int 21h and Int 2fh
reside in DLLs. All of the other handlers in this table are the addresses of
protected mode callbacks. Each of these callbacks corresponds to an Int 30h inter
rupt gate which maps the callback to a ring-O handler. The VxDs which own
these handlers are shown in parentheses in the table.

As we saw in our trace of MultiMon events, KRNL386 has further customized the
System VM by installing ring-3 protected mode interrupt handlers. This gives
KRNL386 an opportunity to look at some of the interrupt requests before they are
passed down to ring-O drivers. The kernel has a chance to "skim off" some Int
21h requests and handle them internally so they never reach the lower interrupt
chain, or perhaps arrive there in a different form.

At the bottom of each column is the address of the default PM callback. If none of
the PM handlers service the interrupt request, then when VMM sees a default PM
callback it reflects the interrupt to v86 mode. This means the interrupt chain
continues in the corresponding column of Table 3-2.

One exceptional case is Int 17h. It does not have a protected mode interrupt
handler installed for it in the PM IDT. So whatever handler is found here was
installed by VMM during system initialization. If you examine the PM IDT (using
WDEB386 or WinIce) you will find a ring-O interrupt gate in the Int 17h slot.
Gates are like selectors in that they have descriptors which provide details about
their address, type, and privilege level. When issuing a software interrupt from a
protected mode application, the interrupt gate or trap gate must have a privilege
level no higher than that of the application.

In the case of Int 17h, the interrupt gate has a privilge level of 0, but it is being
called by an application with a privilege level of 3; the resuft is a General Protec
tion fault (Int ODh). The fault handler in VMM looks at which instruction caused
the fault; if it was an Int n, it reflects the interrupt to v86 mode as if VMM had
encountered the default PM callback for that interrupt number.

IFSMgr does not export a PM API.

Accessing IFSMgr from Win32/Protect Mode
The previous two sections describe features that are carried over from Windows
3.x to support legacy DOS and Windows applications. In this and the next
section, we'll be describing new interfaces that have been introduced with
Windows 95. We first turn our attention to the right arrow in Figure 3-7, the arrow
which represents the interfaces between Win32 applications and IFSMgr.

Accessing IFSMgr 45

Although we have entered the brave new world of 32-bit Windows development,
maintaining compatibility with 16-bit applications puts some serious constraints
on the Windows 95 architecture. One such constraint is the "bitness" of VMs.

Recall that VMs begin life in virtual-86 mode. If DPMI services are subsequently
used to switch the VM into protected mode, either a 16- or 32-bit mode is
selected as one of the arguments. Thereafter, that VM is marked as either a 16-bit
or 32-bit protected mode VM.

Since the System VM is created to load KRNL386 (a 16-bit protected mode applica
tion), the System VM is marked as a 16-bit protected mode VM. The offshoot of
this is that if Win32 apps were to call into VMM through PM callbacks, VMM
would still perceive them as having a 16-bit stack. This breaks routines like
Simulate_Iret when it manipulates the stack using the contents of the Cliene
Register structure.

For these reasons, Microsoft is endorSing the DeviceIoControl interface as the way
to go. Protected mode callbacks are out. Here is a quote from the introductory
chapter of the DDK reference on VMM:

... Win32 programs will appear as 16-bit applications from VMM's point of view.
In other words, Win32 programs will not be recognized by VMM as 32-bit applica
tions. This should not be a problem because Win32 programs should be using the
DeviceioControl interface to communicate with VxDs. This is merely a warning
not even to try it any other way because it won't work. [my italics]

Despite this dire warning, KERNEL32 continues to use a protected mode callback
to access VxD services, specifically what are called Win32 services. Before
Windows 95, VxDs only exported functions which could be used by other VxDs
as a table of services. With Windows 95, VxDs can now export a table of services
which can be accessed from ring-3 through a special protected mode callback.
The table of Win32 services is constructed much like "regular" VxD services, by
using several macros: Begin_ Win32_Services, End_ Win32_Services, and Dec1are_
Win32_Service. Win32 services are dynamically registered with VMM using the
VMM service Registec Win32_Services. Only a few VxDs export Win32 services at
this time; the most notable are VMM and VWIN32 (IFSMgr does not).

To get the Win32 protected mode callback address, you need to use the Int 2Fh
interface with the function W386_GeeWin32_API(168Dh), which is defined in
int2fapi.h from the DDK. This function returns a PM callback in ES:DI. You can
see the call to this function in the MultiMon trace shown in Figure 3-5. There is a
catch-22 situation here. We need the callback address in a Win32 program but we
can't retrieve it because software interrupts (Int 2Fh) are not allowed in a Win32
application! There are various work-arounds here; perhaps the easiest is to use an
undocumented KERNEL32 function which has Ordinal 1. In the early Windows 95

46 Chapter 3: Pathways to the File System

beta, this function was exported as VxDCall and the name has stuck although the
function is no longer exported by name in the retail release. KERNEL32 relies
heavily on this interface to access Win32 services in VWIN32 and VMM. If you are
curious about the details of how this Win32 callback works, see the section "The
Win32 Callback."

Windows NT, in comparison, has a similar mechanism for user mode (ring-3)
components to call into kernel mode (ring-O). Interrupt 2Eh, the system trap, is
called with EAX holding a function number and EDX pointing to arguments on
the stack. Since both user mode and kernel mode have the same "bitness," 16-bit
and 32-bit stacks do not need to be distinguished.

The Win32 callback is an interface to IFSMgr but not a direct one, since IFSMgr
does not provide Win32 services itself; rather, it is VWIN32 that provides the
connection. Andrew Schulman, in Unauthorized Windows 95, describes the argu
ments required for VxDCall. Here is the passage in which he describes the Win32
service that provides Int 21h:

VxDCallO expects a VxD Win32 service number (such as 2A0010h), and any
values for EAX and ECX on the stack. 2A0010h indicates VxD ID #002Ah, Win32
service #OOlOh. The PM callback in VMM decodes such Win32 service requests.
VxD 2Ah is VWIN32, and the PM callback in VMM will call its Win32 service #10.
VWIN32's Win32 service #lOh issues INT 21h on behalf of Win32 applications by
calling Exec_PM_Int, a VMM service new to Windows 95, with the parameter 21h.

This VWIN32 Win32 service is being called constantly but doesn't show up in our
MultiMon trace because it was filtered out. Many Win32 file operations are
converted into one or more calls to this service and many ultimately are handled
by IFSMgr's protected mode Int 21h callback. There are other VWIN32 Win32
services which call IFSMgr services directly; we will examine these in the next
chapter.

The real meat of the file system services is provided via the Win32 callback by
way of VWIN32. Another Win32 interface to IFSMgr that we uncovered during our
examination of the MultiMon trace is DeviceIoControl. IFSMgr exports this inter
face to MSNET32; the Network API Library for Microsoft Networks.

Accessing IFSMGRfrom Ring-O

Now we tum our attention to the topmost arrow in Figure 3-7, the arrow which
represents the interfaces between ring-O VxDs and IFSMgr. IFSMgr exports 117
services for use by other VxDs. Most of these are only needed by file system
drivers, but others are more general purpose. For instance, using the IFSMGR_
RingO_FileIO services, VxDs may now perform DOS-like file operations.

The Win32 Callback 47

IFSMgr provides services that allow other VxDs to install hooks into the file
system. In some cases, a program needs to only monitor file activity. These
services provide mechanisms for doing so.

IFSMgr also installs service hooks on a number of other VxDs at Init Complete
time. These include:

VWIN32_ActiveTimeBiasSet (2a0015)
Schedule_GlobaLEvent (lOOOe)
Resume_Exec(l0085)
Suspend_ VM(l002b)
Resume_VM(1002c)
No_FaiLResume_ VM(l002d)
Nuke_ VM(l002e)
Close_VM(lOOec)
Crash_Cue VM(1002D

So IFSMgr is even lurking around in VxD-land and doing a number on some stan
dard VxD services.

The Win32 Callback
Many Win32 functions exported by KERNEL32 rely upon the Win32 callback for
their implementation. Let's trace through the GetLocalTime function as an
example. The first code section below is output captured from WinIce while
tracing through this function. The trace skips over some of the initial parameter
checks, etc., and picks up where the kernel is preparing to make an Int 21h func
tion 2ah (Get Date) call. EDI points to a buffer where the return values (in AX,
CX, and DX) will be stored. The function at BFF712B9 expects the DOS function
number in AX and an optional parameter in ECX.

It pushes these registers and the Win32 service number for VWIN32's Int 21h
provider and then calls yet another KERNEL32 service. This function, ORD_OOOI
is exported as ordinal 1; it is also known as VxDCall. This function is a wrapper
for the Win32 callback. It copies the first argument on the stack (the Win32
service number) to EAX and then pops the return address over the top stack argu
ment, replacing the Win32 service number with another copy of the return
address. It then performs an intersegment call using a far pointer (an FWORD in
32-bit land). It should come as no surprise that the address stored in
CS:[BFFBC004] is none other than our Win32 callback address: 003b:000003da.
The Int 30h interrupt gate then transfers us into ring-O.

0137:BFF767F8 MOV
0137:BFF767FB MOV
0137:BFF767FD CALL

EDI, [EBP+08]
AH,2A

BFF712B9

48

0137:BFF712B9 PUSH
0137:BFF712BA PUSH
0137:BFF712BB PUSH
0137:BFF712CO CALL

Chapter 3: Pathways to the File System

ECX
EAX

002A0010
KERNEL32!ORD_0001

KERNEL32!ORD_0001
0137:BFF713D4 MOV
0137:BFF713D8 POP

EAX, [ESP+4]
DWORD PTR [ESP]

0137:BFF713DB CALL FWORD PTR CS:[BFFBC004]
003B:000003DA INT 30; #0028:C0236288 VMM(OD)+1288

0137 :BFF712C5 RET ---- this is where we return

0137:BFF76802 MOV [EDI+02] ,DH
0137 :BFF76805 MOV [EDI+06] ,DL
0137:BFF76808 MOV [EDI] ,CX
0137:BFF7680B SUB AH,AH

0137:BFF7680D MOV [EDI+04] ,AX

Before we look at the Win32 service handler, let's take a quick look at the Int 30h
handler. This is the common entry point in VMM for all protected mode callbacks,
not just for Win32 services. On entry into ring-O, the ring-3 register state is
preserved in the client register structure. VMM checks whether the caller's ring-3
CS was selector 3bh on entry, i.e., VMM is expecting an Int 30h from the break
point segment to get us here. If that is true, then the caller's ElP is decremented
by two to point to the beginning of the Int 30h instruction that caused the
transfer. This value is then used to consult the breakpoint table to load the corre
sponding reference data to EDX before branching to the installed PM callback.
Note that a number of other registers are also initialized before control is trans
ferred: EBX is set to the current VM handle, EDI is set to the current thread
handle, and ESP is set to the current thread's stack. Note also the check for an EIP
value less than 200h; this Signifies a default PM callback and requires a different
handler which is responsible for reflection to v86 mode.

VMM(01)
+ Ob04

+ Ob07
+ Ob08

+ Ob09

+ ObOb

+ ObOe
+ Obll
+ Ob14
+ Ob17
+ Ob1d
+ Oblf
+ Ob23

sub esp,+04

cld
pushad

mov ebp,esp

mov dword ptr [ebp+3c] ,ds

mov dword ptr [ebp+38] ,es
mov dword ptr [ebp+40],fs
mov dword ptr [ebp+44],gs
cmp word ptr [esp+28], +3bh
jnz short L_B5D
mov aX,0030
mov ds,eax

;no error code on stack
;for trap

;complete the client
; register area
;set EBP to client
; register structure
;save segments to client
; registers

;client CS == 3bh?

;set segment registers

The Win32 Callback

+ Ob25
+ Ob2b
+ Ob2d
+ Ob2f
+ Ob31
+ Ob34

+ Ob37
+ Ob3a

+ Ob3d
+ Ob40
+ Ob41

+ Ob46
+ Ob49

+ Ob4f
+ Ob56

+ Ob5d
+ 01;>62

mov ebx,dword ptr D1_F71C
mov eS,eax
mov fs,eax
mov gS,eax
mov eax,dword ptr [ebp+24]
sub eax,+02

mov edi,dword ptr [ebx-20]
mov dword ptr [ebp+24] ,eax

L_B3D:
xchg dword ptr [edi+4c],esp
sti
push offset C1_300

cmp ah,02
jc L_1666

;current VM handle

;client EIP
;backup to Int 30h
; instruction
;current thread handle
;store adjusted EIP

;the handler will return
; to C1_300
;callback offset < 200h?
;branch to V86 reflection

mov edx,dword ptr [eax*4+9390h]
jmp dword ptr [eax*4+938ch]

;retrieve refdata
;branch to ring-O
; handler

L_B5D:
mov esi, OcOh
jmp L_2CO

+ Ob67 nop

49

We've finally arrived at the handler for Win32 services. A close study of this code
reveals some interesting facts. The first thing it does is examine the caller's stack
by testing SS from the client registers. SS is just a selector to which there corre
sponds a descriptor. The LAR assembly instruction returns a byte of attributes
from the descriptor for a given selector. Only one bit is of interest here-the B-bit
(big-bit). It tells us whether the stack segment is 32-bit (pushes and pops are 32
bits at a time) or whether it is 16-bit (pushes and pops are 16 bits at a time). If it
is a 16-bit stack then VMM is careful to clear the upper 16 bits of ESI since it is an
alias for SP and not ESP.

VMM{OD)
+ 1288
+ 128c
+ 128f

+ 1293

+ 1298
+ 129a

mov ds,word ptr [ebp+34]
mov esi,dword ptr [ebp+30]
lar eax,dword ptr [ebp+34]

;client SS
;client ESP
;load attribute byte of

test eax,400000h

jnz short L_129D
movzx esi,si

; SS descriptor
;test B-bit for 32-bit stack
; (ESP)
;branch if 32-bit
;zero extend 16-bit stack
; offset (SP)

Note that DS:ESI now points to the caller's stack, with the follOWing contents:

BFF713E2 - return addr from CALL FWORD
00000137
BFF712C5 - return addr from CALL ORD_0001

50

00002AOO - lnt 21h function number
00000000 - value of ECX pushed
BFF76802 - return address from BFF712B9

Chapter 3: Pathways to the File System

Continuing our trace, we see that VMM discards the Win32 callback and ORD_
0001 return addresses on the client stack by adding 12 to the stack pointer (ESI).
It sets the client CS:EIP to the return instruction in the procedure starting at
BFF712C5, as if returning from ORD_OOOl.

L_129D:
+ 129d mov eax,dword ptr [esi+08] ;get ElP to ORD_OOOI return
+ 12aO mov edx,dword ptr [esi+04] ;get CS to ORD_OOOI return
+ 12a3 mov dword ptr [ebp+24] ,eax ; store to client registers
+ 12a6 mov word ptr [ebp+28],dx
+ 12aa add esi,+Oc ; remove return addresses from stack

Recall that EAX is loaded with the Win32 service number before entering the call
back, so this argument is retrieved here and its device number is extracted. If the
device number is less than 40h, VMM consults a Win32 service table in an array
for faster lookup. If the device number is 40h or higher, the VxD list is searched
for a matching device ID. In either case, if the device ID is found and the device
has Win32 services registered for it, the service number is compared against the
total number of services offered. If this is within range, then a lookup in the
Win32 service table is made for the number of expected arguments (pushed on
the stack) and the address of the service routine.

+ 12ad

+ 12bO
+ 12b2
+ 12b5
+ 12b8

+ 12ba
+ 12c2
+ 12c4

+ 12c6
+ 12c9

+ 12cc

+ 12ce
+ 12cf

+ 12d4

mov

mov
shr
cmp
jnc

eax,dword ptr [ebp+lc]

edx,eax
edx,10
edx,+40
short L_12F4

;get client EAX
; (e.g. 002aOOl0)

;extract device lD to EDX
;device lD less than 40h?
;branch if >= 40h

; Has this device registered win32 services?
mov edx,dword ptr es: [edx*4+0c600h]
or
jz

edx, edx
short service_not_found

lookup_Win32_service:
movzx eax,ax ;extract Win32 service to EAX
cmp dword ptr es: [edx],eax ;number of services>

; requested service# ?
jbe short service_not_found ;branch if service outside

; range

inc
mov

mov

eax
ecx,dword ptr es: [edx+eax*8+04] ;number of args

; on stack
edx,dword ptr es: [edx+eax*8] ;address of service

The Win32 Callback 51

Now prepare the ring-O stack before calling the service. A VWIN32 Int 2Ih service
is passed two arguments on the stack, EAX and ECX, so 8 bytes are reserved on
the ring-O stack for these arguments.

Next, the current VM handle, then the address of the client register structure, and
finally the address of the return procedure, are pushed onto the stack. The passed
arguments are copied from the ring-3 stack to the reserved area on the ring-O
stack. This leaves ESI pointing at BFF76802 (the return address from BFF712B9)
and it is stored as the new ESP in the client registers.

+ 12d8

+ 12d9

+ 12dc
+ 12de
+ 12eO
+ 12el

+ 12e2
. + 12e3

+ 12e6
+ 12e8
+ 12e9

+ 12eb
+ 12ed
+ 12ef

pop

shl

sub
mov
push
push

push
shr
jz
cld
repe

L_12EB:
mov
mov
mov

eax

ecx,02

esp,ecx
edi,esp
ebx
ebp

eax
ecx, 02
short L_12EB

movsd

eax,ss
ds,eax
dword ptr [ebp+30],esi

;temporarily remove return
; proc addr
;allocate stack space for

args*4 bytes

;place current VM on stack
;place client registers on
; stack
;put back return proc addr

;copy ring3 stack args to
; ringO stack

;restore DS

;save new stack ptr to
; client ESP

When control is transferred to the Win32 service, the ring-O stack looks like this:

COOOl300 - return address
EBP - address of client register structure
EBX - current VM handle
00002AOO - Int 21h function number
00000000 - value of ECX pushed

+ 12f2 jmp edx ;branch to Win32 service

+ 12f4

+ 12f9
+ 12fc
+ 12fe
+ 1303

L_12F4: ; device ID is >= 40h
mov ecx,offset Dl_C360 ;get base Device Descriptor

; Block

next_DDB:
mov ecx,dword ptr es: [ecx]
jecxz short service_not_found
cmp word ptr es:[ecx+06],dx
jnz short next_DDB

;last device?
;then exit loop
;matching device ID?
;no, then loop back

52

+ 1305

+ 130c
+ 130e
+ 1312

+ 1314

+ 131b
+ 131d
+ 131£
+ 1322

Chapter 3: Pathways to the File System

test

jz
mov
jmp

word ptr es: [ecx+Oa] ,4000

short service_not_found
edx,dword ptr es: [ecx+38]
short lookup_Win32_service

service_not found:
mov dword ptr [ebp+1c],lh

mov eax,ss
mov dS,eax
mov dword ptr [ebp+30],esi
retn

;device has win32
; services?
;no, then exit
;get Win32 service table

;set carry in client
; flags
;restore DS

;store client ESP
; return

This concludes our examination of the file system plumbing. In the next chapter
we turn our attention to the file system APIs, especially the Win32 API.

File System
API Mapping

In Chapter 3, Pathways to the File System, we saw how file system requests are
channeled in diverse operating environments. The MS-DOS Int 2Ih interface
forms the core API for the operating system modes: DOS/V86, Winl6, and Win32.
To a considerable extent, the Win32 file APls are mapped to the extended MS
DOS API, although some additional assistance is needed from VWIN32 and VMM.

In this chapter, we will survey the Win32 and WinI6 APls and see.how they map
to the extended MS-DOS API. We'll also encounter the concept of KERNEL32
objects, a concept which will provide a framework for our examination of the
Win32 APls. Microsoft has us all believing that Win32 is the API of the future, so
let's begin with a look at how the Win32 APls are implemented, primarily those
related to file I/O.

The Win32 API and KERNEL32 Objects
To begin our excursion, I've chosen GetFileInformationByHandle because it is
short and yet illustrates several key aspects of KERNEL32's implementation.

A Sample Win32 API- GetFilelnformationByHandle
The prototype for GetFilelnformationByHandle and its C pseudocode are shown
in Example 4-1. This function is designed to take a file handle as its input argu~
ment and fill-in and return a BY_HANDLE_FlLE_INFORMATION structure as output.
This structure contains fields for file create, modify, and access times as well as
other information. The real meat of this function is in the assembly language lines
preceding Int21Dispatch. Here we see registers getting loaded with BX set to the
file handle, EDX pointing to the BY_HANDLE_FlLE_INFORMATION structure, and
AX set to the requested function 71A6h.

53

54 Chapter 4: File System API Mapping

Int21Dispatch is a thin wrapper around a callback to VWIN32 Win32 service
Int2l. Here is the actual code:

Int21Dispatch proc near
push ecx
push eax
push 2aOO1Oh
call VxDCa11
retn

Function 71A6H is one of many new Int 21h services that have been added to
Windows 95 to support long filenames and other extensions for MS-DOS and
Win16 applications.'

There are still other calls to Int 21h hiding here. For instance, x_GetExtendedError
is another thin wrapper around a Win32 callback. In this case the code is:

x_GetExtendedError
push ebx
mov eax, 5900h
call Int21Dispatch
movzx eax,ax
pop ebx
retn

Proc Near

The functions x_MaybeChangePSP and x_RestorePSP utilize interrupt 21h function
50h to set the current PSP.t These examples of Int 21h calls are typical of much of
KERNEL32. You can see this for yourself by running MultiMon with the WIN32CB
driver installed and the monitor for VWIN32 Int 21h enabled.

Example 4-1. Pseudo Source Code for GetFilelnformationByHandle

BOOL GetFilelnformationByHandle(HANDLE hFile,
LPBY_HANDLE_FILE_INFORMATION IpFilelnfo) {

DWORD wPSP;
PK32FILEOBJ pK32FileObj;
int retc;

EnterMustComplete();
x_MaybeChangePSP(hFile, &wPSP);
pK32FileObj = retc x_ConvertHandleToK320bject(hFile,

K320BJ_INCREFIK320BJ_FILE_TYPE, 0);
if (pK32FileObj) {

_asm movzx ebx,word ptr pK32FileObj->hExtendedFileHandle
_asm mov edx,dword ptr IpFilelnfo
_asm mov eax,71a6h

, You will find documentation for these functions in the Programmer's Guide to Microsoft Windows 95,
Part 5: Using Microsoft MS-DOS Extensions. See http://www.microsoft.com/msdnlsdklplaiformsidocisdkl
win32195guidelsrci95func_28.htm.

t A PSP (Program Segment Prefix) refers to the DOS data structure that describes a program's execution
environment.

The Win32 API and KERNEL32 Objects

Example 4-1. Pseudo Source Code for GetFilelnjormationByHandle (continued)

_asm ste
rete = Int21Dispateh();
if (earry set) {

if (rete == Ox7100) rete = ERROR_NOT_SUPPORTED;
else rete = x_GetExtendedError();
InternalSetLastError(rete);
rete 0;

else rete 1;

else if (x_ConvertHandleToK320bjeet(hFile,K320BJ_ALL_TYPE,0»
InternalSetLastError(ERROR_NOT_SUPPORTED);
rete = 0;
}

x_RestorepSP(wPSP);
LeaveMustComplete();
return rete;

55

There is a lot more going on in this function besides Win32 callbacks. Let's take a
closer look. First, you'll notice some unfamiliar functions names: EnterMustCom
plete, x_MaybeChangePSP, x_ConvertHandleToK320bject, etc. These are names
I've coined for some internal KERNEL32 functions.

The entire function is sandwiched with the EnterMustComplete and LeaveMust
Complete calls. These place the body of the function in a must-complete section.
This is a type of synchronization primitive that is supported by VMM. To quote
the DDK Reference, a "must-complete section" is "block of code that must be
executed in its entirety before any other thread or virtual machine can run."

Next, we see an inner sandwich of the functions x_MaybeChangePSP and x_
RestorePSP. The first function looks at the Win32 handle and, depending on its
value, may switch the thread to another PSP, storing the original PSP in the vari
able wPSP. On leaving GetFilelnformationByHandle, x_RestorePSP restores the
original PSP if it was changed.

Why would a thread want to change its PSP? In this case, it wants the PSP to
match the owner of the handle. As we'll see later, the handle table is a per
process data structure and handles are indexes into this table. For instance, a
handle of 5 in one process may reference a file, whereas in another process it
may reference a pipe. However, KERNEL32 also recognizes global handles; these
are handles which are associated with the KERNEL32 process and one of its PSPs.
These global handles have a unique signature formed by the index value exclu
sive-ORed with Ox544a4d3f. To test if a handle is global, first AND it with
OxffffOOOO and then compare with Ox544aOOOO.

56 Chapter 4: File System API Mapping

So, x_MaybeChangePSP looks at the Win32 handle and checks whether it is a
global handle. If it is, it switches the thread's PSP to a PSP which is associated
with the KERNEL32 process. It does this using Int21Dispatch, function 50h (Set
PSP), and BX set to the new PSP value. The current PSP is saved in wPSP so it
can later be restored by a call to x_RestorePSP.

The last function that is also preparatory before making the Int21Dispatch is x_
ConvertHandleToK320bject. Basically, this function converts any type of Win32
handle into a pointer to a KERNEL32 data structure that describes that object. In
this case, we are asking it to take what we believe to be a file handle (bFile) and
convert it into a KERNEL32 file data structure. Now, if the caller passes us, say, a
console handle instead, the return value stored in pK32FileObj will be NULL
causing the else if (x_ConvertHandleToK320bject ...) clause to be executed.
This time the call will look for any handle type (K320BLAU_TYPE). If this last
call succeeds, the function fails and an ERROR_NaT_SUPPORTED will be
returned by GetLastError.

If a valid file handle is supplied by the caller, then pK32FileObj will contain a
pointer to a file object structure. The only piece of information we need from it is
yet another file handle, one that IFSMgr will understand, an "extended file
handle" in the field named bExtendedFileHandle. This is the handle that is ulti
mately passed to Int21Dispatch to acquire the BY_HANDLE_FILE_INFORMATION

data structure.

Delving Into KERNEL32 Objects

Just as NT executive objects provide a unifying theme for Windows NT,
KERNEL32 objects do the same for Windows 95. Quoting from Helen Custer
(Inside Windows NT, Microsoft Press):

In the NT executive, an object is a single, runtime instance of a statically defined
object type. An object type comprises a system-defined data type, services that
operate on instances of the data type, and a set of object attributes.

For example, a file is an instance of a file object type and an event is an instance
of an event object type. As with Windows NT, instances of object types are
created by services and are represented by object handles. Again using the same
examples, a file is created by the service CreateFile, which returns a file handle;
and an event is created by the service CreateEvent, which returns an event
handle. Quoting again from Helen Custer, "An NT object handle is an index into a
process-specific object table."

For each indexed entry in the object table there is a pointer to the object instance
and a flags field specifying access rights and inheritance designations. Although
there are a lot of similarities between NT executive objects and Windows 95

The Win32 API and KERNEL32 Objects 57

KERNEL32 objects, the KERNEL32 object is admittedly a very watered-down
version of its NT counterpart; for instance, there is no support for security. Further
more, in Windows NT, objects are created by a separate kernel mode component
called the object manager.

Matt Pietrek has discussed KERNEL32 objects in Chapter 3 of Windows 95 System
Programming Secrets (IDG Books). He has enumerated the 17 KERNEL32 object
types and these are shown in Table 4-1. I have added the service names for
creating and destroying each object type.

Table 4-1. The KERNEL32 Objects

Object ID Constructor Destructor

K320BLSEMAPHORE 1 CreateSemaphore CloseHandle

K320BLEVENT 2 CreateEvent CloseHandle

K320BLMUTEX 3 CreateMutex CloseHandle

K320BLCRITICAL_SECTION 4 InitializeCriticalSec- DeleteCriticalSection
tion

K320B]]ROCESS 5 CreateProcess CloseHandle

K320BLTHREAD 6 CreateThread CloseHandle

K320BLFILE 7 CreateFile CloseHandle

K320BLCHANGE 8 FindFirstChangeNoti- FindCloseChangeNoti-
fication fication

K320BLCONSOLE 9 AllocConsole FreeConsole

K320BLSCREEN_BUFFER 10 AllocConsole FreeConsole

K320BLMEM_MAPPED _FILE 11 CreateFileMapping CloseHandle

K320BLSERIAL 12 CreateFile CloseHandle

K320BLDEVICE_IOCTL 13 CreateFile CloseHandle

K320B]]IPE 14 CreatePipe, CloseHandle
CreateFile

K320BLMAILSLOT 15 CreateMailslot CloseHandle

K320BLTOOLHELP _SNAPSHOT 16 CreateToolhelp32- CloseHandle
Snapshot

K320BLSOCKET 17 socket closesocket

For each of these object types, a block of data is allocated from the KERNEL32
heap to represent an object's instance. The KERNEL32 process object is also
known as the process database, or PDB. Similarly, the KERNEL32 thread object is
also known as the thread database, or TDB. Both of these data structures are
described in detail in Windows 95 System Programming Secrets. Although each
KERNEL32 object is represented by a different data structure, all KERNEL32
objects have the same header:

typedef struct { DWORD dwType; DWORD dwRefCnt; } K320bjectHeader;

58 Chapter 4: File System API Mapping

The dwType field takes a value between 1 and 17 corresponding to its object
type. The dWRefCnt field is used to maintain a usage count for the object. When a
handle is closed and the dwRefCnt of its corresponding object has reached zero,
the object is destroyed.

The KERNEL32 process object contains a member (at offset Ox44) which points to
the table of object handles. The Win32 handles which are returned by CreateFile,
CreateMutex, etc. are simply indices into this table. The function that we met in
the last section, x_ConvertHandleToK320bject, is designed to retrieve an object
from the object handle table given its Win32 handle. Thus given a handle of one
of these 17 object types, we can get the address of its corresponding data struc
ture, which was allocated from the KERNEL32 heap. Actually, there are two fields
for each entry in the object handle table:

typedef struct { DWORD dwFlags; PVOID pK320bject; } TableEntry;

The first DWORD in the object handle table contains the maximum number of
entries in the table, so the handle table can be represented by this structure:

typedef struct { DWORD dwMaxCnt; TableEntry entry[l]; }
ObjHandleTable;

Converting Win32 Handles to KERNEL32 Objects

Let's put together what we have just learned and see how x_Convert
HandleToK320bject works. First, from the listing that follows, we see that this
function immediately calls another function, which I've named x_RefHandleTo
K320bject. One argument is added to this call, a pointer to the current process
database ("PPCurrentProcess).

K320bjectHeader* x_ConvertHandleToK320bject(HANDLE hObject,
DWORD fObjTypes, DWORD fAccess) {

return x_RefHandleToK320bject(*ppCurrentProcess,
hObject, fObjTypes, fAccess);

Dropping down another level, we see in the listing below that x_RefHandle
ToK320bject sandwiches its body by acquiring a KERNEL32 mutex and releasing
it on exit. We also see the reference count for the KERNEL32 object incremented
on return from x_ Win32HandleToK320bject if the K320BJjNCREF flag is set in
fObjTypes.

K320bjectHeader* x_RefHandleToK320bject(PPDB pProcess, HANDLE hObject,
DWORD fObjTypes, DWORD fAccess) {

K320bjectHeader* pK320bj;
DWORD fObjTypeFlags;

_EnterSysLevel(pKrn32Mutex);
fObjTypeFlags = fObjTypes;

The Win32 API and KERNEL32 Objects

pK320bj = x_Win32Hand1eToK320bject(pProcess, hObject,
fObjTypes, fAccess);

if (pK320bj && fObjTypeF1ags & K320BJ_INCREF)
pK320bj->dwRefCnt++;

_LeaveSysLeve1(pKrn32Mutex };
return pK320bj;

59

Drilling down one more level brings us to x_ Win32HandleToK320bject, shown
in Example 4-2. This is where the interesting stuff happens. As we walk through
it, keep in mind that this function is designed to take an object handle (hObject)
from a given process (pProcess) and return its KERNEL32 object. The flags in jObj
Types and jAccess apply additional matching criteria.

Example 4-2. Source for the KERNEL32 Function x_ Win32HandleTo/G20bject

K320bjectHeader* x_Win32Hand1eToK320bject(PPDB pProcess,
HANDLE hObject, DWORD fObjTypes, DWORD fAccess } {

DWORD handle = hObject;
PPDB pPDB;
K320bjectHeader* pK320bj;
ObjHand1eTab1e* pHd1Tb1;

if (hObject & OxffffOOOO == Ox544aOOOO) { /* global handle? */
pPDB = pK32Process;
handle = hObject A Ox544a4d3f;
}

else pPDB =pProcess;

switch (handle } {

case Ox7fffffff: handle
case STD_ERROR_HANDLE: handle
case STD_OUTPUT_HANDLE: handle
case STD_INPUT_HANDLE: handle
case Oxfffffffe:

pK320bj = *ppCurrentThread;

pPDB->pEDB.hProcess; break;
pPDB->pEDB.hStdErr; break;
pPDB->pEDB.hStdOut; break;
pPDB->pEDB.hStdln; break;

if (1 « (pK320bj->dwType-1}) & fObjTypes) return pK320bj;
else { Interna1SetLastError(ERROR_INVALID_HANDLE };

return NULL; }
break;

pHd1Tb1 = pPDB->pHand1eTab1e;
if (pHd1Tb1->dwMaxCnt > handle) {

Tab1eEntry* pEntry;
pEntry = &pHd1Tb1->entry[hand1e];
pK320bj = pEntry->pK320bject;
if (pK320bj && pK320bj != -1

if (fAccess) {
if «(pEntry->dwF1ags & fAccess) & Ox130) != fAccess}

Interna1SetLastError(ERROR_ACCESS_DENIED };
return NULL;

60 Chapter 4: File System API Mapping

Example 4-2. Source jar the KERNEL32 Function x_ Win32HandleToK320bject (continued)

if (1 « (pK320bj->dwType-1)) & fObjTypes) return pK320bj;
}

InternalSetLastError(ERROR_INVALID_HANDLE);
return NULL;

This function can be split into roughly two halves. The first half massages the
input handle to get it into a form that can be used to directly access the process's
object handle table. The second half retrieves the entry in the object handle table
and returns its pK320bject member.

First we see that the high-order word of the handle is tested for the signature
Ox544a. Normally when an application creates KERNEL32 objects, the handles
which are returned are nice small integer numbers, so we are talking handle
values in the range 1 to say 1000. However, if you place a breakpoint at this loca
tion in the function, you will see handles are frequently passed which indeed
have this Ox544a signature. The next two lines in the code help clarify what these
handles signify. First, we switch to a different process (pK32Process), namely
KERNEL32, and then the handle is exclusive-ORed with the value Ox544a4d3f.
After this operation the handle value becomes a "nice small integer."

So what have we done? We have just created an index into KERNEL32's handle
table and ultimately, when we return, we'll be returning a KERNEL32 object that
actually belongs to the KERNEL32 process.

To summarize, the hObjec113 which are passed to x_ Win32HandleToK320bject
come in two flavors:' global handles which have been . exclusive-ORed with
Ox544a4d3f, and private handles which are "small integer numbers." I've called
these KERNEL32 handles "global" because an exported function is used to
produce them, namely, ConvertToGlobalHandle.

In my statements above, I've simplified things a bit by separating handles into just
two groups. There is actually a third group that might be called "standard
handles;" these are handles every process has. For instance, the return value from
GetCurrentProcess is always Ox7fffffff no matter which process you are calling
from. Similarly, the return value from GetCurrentThread is always Oxfffffffe no
matter which thread you call from. These magic values as well as the standard
console handles are just constants that KERNEL32 translates into "real" object
handles. In the switch statement, the first four magic values are translated into
handles by looking up the values in the environment database (pEDE) of the
process. The fifth value in the switch statement represents the handle of the
current thread. Here, it is easier to just look up the KERNEL32 object for the

The Win32 API and KERNEL32 Objects 61

current thread since it is stored in a global variable, rather than determine its
index in the object handle table.

Before the KERNEL32 thread object is returned, we see that some test is
performed. This test is in the form of the following expression:

(1 « (pK320bj->dwType-1)) & fObjTypes

The first half of this expression simply takes a KERNEL32 object type number,
decrements it by 1, and then left-shifts a single bit that number of times. In other
words, it is converting the object type number to a bit position. For example,
OxOOOOl represents K320BLSEMAPHORE, Ox00002 represents K320BLEVENT,
Ox00040 represents K320BLFILE, and Ox10000 represents K320BLSOCKET. fObj
Types is also a bit map of the types· of KERNEL32 objects that the caller will accept
a conversion into. We know that a thread object has a dwType of 6 so its bit map
will be Ox00020. If the caller did not set this bit in fObjTypes, the function will fail
and return NULL; otherwise it will return PK320bj for the thread object.

Now, we are faced with the last half of the function. We have our Win32 handle
massaged so it can index the object handle table, so we first find the object
handle table pHdl1bl in the process database. Then the Win32 handle is
compared with the range of the object handle table by verifying that it is less than
the maximum handle value in the first DWORD of the table. If this test succeeds,
the handle is used as an index into the array of table entries. The KERNEL32
object pointer in the entry is then tested to see that it is non-zero and not -1. If
this holds true· then the fAccess argument is tested for a non-zero value. If the
caller has specified fAccess bits, then these are also tested. Finally, the requested
object types fObjTypes are compared against the returned object type. If these
match, then a pointer to the KERNEL32 object is returned.

Now that your curiosity about KERNEL32 objects has been whetted, let's fill in
some more details about the following types: K320BLFILE, K320BLPIPE,
K320BLMAILSLOT, K320BLCHANGE, K320BLMEM_MAPPED]ILE, and
K320BLDEVICE_IOCTL.

The File Object
A file object represents a local or remote file that has· been created or opened
using the MS-DOS extension function 716ch. Note that this function takes 8.3 or
long filenames as well as UNC filenames. A KERNEL32 file object is represented
by a 28-byte data structure. The members of this structure are as follows:

OOh DWORD dwType
The constant value (Ox7) that represents a KERNEL32 file object.

04h DWORD dwRefCnt
The reference count for this object.

62 Chapter 4: File System API Mapping

OSh DWORD pK32ProcessObject
Pointer to the process database for the owning process.

OCh DWORD pK32EventObject
Pointer to an event object which is created with each file object.

IOh WORD hExtendedFileHandle
The file handle which is used by IFSMgr to reference this file. The undocu
mented Win32 API, Win32HandleToDosFileHandle, returns this value for a
given Win32 file object handle.

12h WORD reserved

I4h DWORD dwModeAndFlags
This member is 0 except for some special cases. If the file is opened with the
FILE_FLAG_DELETE_ON_CLOSE flag, then this member is Oxffffffff. If the file
handle is less than Ox200 (a DOS handle) then store the mode and flags word
used to open or create the file.

ISh DWORD pszFullPath
This member is 0 except for some special cases. If dwModeAndFlags is non
zero, the a heap allocation is made in which the full path of the file is stored;
in that case, this member holds the pointer to that allocation.

There are numerous file object services supplied by the Win32 API. Some of these
services are general purpose and work with many different types of KERNEL32
objects. CreateFile and CloseHandle are good examples of such general purpose
services. Internally they have separate implementations for each object type.
Table 4-2 enumerates the file object services and key Int2IDispatch calls. used in
their implementation. All of the Int 2Ih functions listed are documented.

Table 4-2. File Object Seroices

Win32 API

CioseHandle, _Idose

CopyFile

CreateDirectory

CreateDirectoryEx

CreateFile, _lcreat, _Iopen

DeleteFile

DosDateTimeToFileTime

DuplicateHandle

FileTimeToDosDateTime

FindCIose

FindFirstFile

Key Int21Dispatch Calls

3eh
7143h, 716ch, 42h, 3fh,40h,
71a7h, 57xxh, 3eh
7139h
7143h, 7139h
716ch
7141h
71a7h

71a7h
71alh
714eh

Other Win32 Callbacks

_ VWIN32DupHandle

The Win32 API and KERNEL32 Objects

Table 4-2. File Object Services (continued)

Wm32 API

FindNextFile

FlushFileBuffers

GetCurrentDirectory

GetDiskFreeSpace

GetDiskFreeSpaceEx (OSR2)

GetDriveType

GetFileAttributes

GetFileInformationByHandle

GetFileSize

GetFileTime

GetFileType

GetFullPathName

GetLogicalDrives

GetLogicalDriveStrings

GetShortPathName

GetTempFileName

GetVolumeInformation

LockFile

MoveFile

OpenFile

ReadFile, _bread, _lread

RemoveDirectory

SearchPath

SetCurrentDirectory

SetEndOtFile

SetFileAttributes

SetFilePointer, _llseek

SetFileTime

SetVolumeLabel

UnlockFile

WriteFile, _hwrite, _lwrite

Key Int21Dispatch Calls

714th

6800h

19h, 7147h

3600h

7303h (OSR2)

4408h, 4409h, 714eh, 71alh

7143h

71A6h

4200h,4201h,4202h

5700h, 5704h, 5706h

4400h

19h,7147h

4409h

4409h

7160h, 4300h

7143h, 2ch, 716ch, 3eh

4409h, 440d/66h, 71aOh,
714eh, 71alh

5cOOh

7156h (rename), 7143h, 716ch,
42h, 3th, 40h, 71a7h, 57xxh,
3eh, 7141h (copy/delete)

716ch, 4400h, 4401h

3th

713ah

7143h, 713bh

42h, 40h

7143h

4200h, 4201h, 4202h

5707h, 5705h, 5701h

Thunks1 to KRNL386: 4409h,
2fOOh, laOOh, 4eOOh, 1300h,
3ch,3eh

5cOlh

40h

63

Other Win32 Callbacks

1 A thunk is a small section of code, similiar to a Remote Procedure Call (RPC) that handles the transitions
between 16-bit and 32-bit code.

64 Chapter 4: File System API Mapping

The File-Change Object
A file-change object is created by a call to FindFirstChangeNotification. It returns
a Win32 handle which can be used as an argument to WaitForSingleObject, Wait
ForMultipleObjects, WaitForSingleObjectEx, or WaitForMultipleObjectsEx to wait
for certain file-change notifications within a specified directbry. A KERNEL32 file
change object is represented by a 20-byte data structure. The members of this
structure are as follows:

OOh DWORD dwType
The constant value (Ox8) that represents a KERNEL32 file-change object.

04h DWORD dwRefCnt
The reference count for this object.

OSh DWORD pK32ProcessObject
Pointer to the process database for the owning process.

OCh DWORD pK32EventObject
Pointer to an event object which is created with each file-change object.

lOh DWORD hFcnHandle
IFSMgr's handle to the file-change context.

Table 4-3 enumerates the file-change object services and key Int21Dispatch calls
used in their implementation. All of the Int 21h functions listed are undocumented.

Table 4-3. File-Change Object Services

Win32 API

FindFirstChangeNotification

FindNextChangeNotification

FindCloseChangeNotification

WaitForSingleObject

WaitForSingleObjectEx

WaitForMultipleObjects

WaitForMultipleObjectsEx

The Pipe Object

Key Int21Dispatch Calls

71a3h

71a4h

71a5h

A pipe object can represent an "anonymous pipe," which is created with the
service CreatePipe, or the client-side of a "named-pipe," created with the service
CreateFile. A KERNEL32 pipe object is represented by a 48-byte data structure.
The members of this structure are as follows:

OOh DWORD dwType
The constant value (Oxe) that represents a KERNEL32 pipe object.

The Win32 API and KERNEL32 Objects 65

04h DWORD dwRefCnt
The reference count for this object.

OSh DWORD reserved

OCh LPVOID pPipeBuffer
Item allocated from the KERNEL32 heap.

lOh DWORD hExtendedFileHandle
This is the file handle which is used by IFSMgr to reference the pipe.

I4h DWORD Counter I
Counter which controls when SetEvent is called on pK32EventObjectl.

ISh DWORD Counter2
Counter which controls when SetEvent is called on pK32EventObject2.

I Ch DWORD dwPipeBufferSize
Number of bytes allocated for pipe buffer.

20h DWORD unknowni
24h DWORD unknown2

The usage for these two doublewords is unknown

2Sh DWORD pK32EventObjectl
2Ch DWORD pK32EventObject2

These are pointers to KERNEL32 Event Objects.

Table 4-4 enumerates the pipe object services and key Int21Dispatch calls used in
their implementation. The Int 21h functions in the 5fxxh series are undocu
mented. (See Chapter 13 for more information.)

Table 4-4. Pipe Object Seroices

Win32API

CallNamedPipe

CreateFile

CreatePipe

DuplicateHandle

GetNamedPipeInfo

PeekNamedPipe

ReadFile

ReadFileEx

SetNamedPipeHandleState

TransactNamedPipe

WriteFile

WriteFileEx

Key Int21Dispatch Calls

5f37h

716ch

5f32h, 5f33h

5f35h

5f34h, 5f3hh

5f36h

66 Chapter 4: File System API Mapping

The Mailslot Object
Mailslots have server-side and client-side functions. On the server-side, a mailslot
object is created by the service CreateMailslot and it is read from by ReadFile and
ReadFileEx, and eventually closed by CloseHandle. The client-side uses CreateFile
to create a mailslot object for writing only using WriteFile and WriteFileEx. A
KERNEL32 mailslot object is represented by a 20-byte data structure. The
members of this structure are as follows:

OOh DWORD dwType
The constant value (Oxf) that represents a KERNEL32 mailslot object.

04h DWORD dwRefCnt
The reference count for this object.

OSH DWORD reserved

OCH DWORD pszMailslotName
String tem allocated from the heap.

IOH DWORD hExtendedFileHandle
The file handle used by lFSMgr to reference the mailslot (a DOS handle is
used).

Table 4-5 enumerates the mailslot object services and key Int21Dispatch calls
used in their implementation. The lnt 21h functions in the 5fxxh series are undoc
umented. (See Chapter 13 for more information).

Table 4-5. Mailslot Object Services

Win32 API Key Int21Dispatch Calls Other Win32 Callbacks

CreateFile

CreateMailslot 5f4dh

DuplicateHandle _ VWIN32DupHandle

GetMailslotInfo 5f4fh

ReadFile 3fOOh

ReadFileEx

SetMailslotInfo 5f3bh

WriteFile 5f52h

WriteFileEx

The Memory-Mapped File Object
A memory-mapped file object is created by the service CreateFileMapping. A
KERNEL32 memory-mapped file object is represented by a 48-byte data structure.
The members of this structure are as follows:

The Win32 API and KERNEL32 Objects 67

OOh DWORD dwType
The constant value (Oxb) that represents a KERNEL32 memory-mapped file
object.

04h DWORD dwRefCnt
The reference count for this object.

OSh DWORD reserved

OCh DWORD pMapName
An item allocated from the KERNEL32 heap to hold a copy of the map name
if a map name is specified as a CreateFileMapping argument.

lOh DWORD dwMapSize
Size of the mapping in bytes.

14h DWORD dwLinearBase
This is the linear address of the base of the mapping as returned by
PageReserve.

ISh DWORD dwPagerData
This value, shifted left by 12, is used as the starting value for the pager data
argument to PageCommit.

1 Ch DWORD dwModeAndFlags
If the KERNEL32 file object which is being mapped meets the following
criteria:

hExtendedFileHandle < Ox200,

pszFul!Path is non-zero,

dWModeAndFlags is not Oxffffffff,

and the CreateFileMapping was called with PAGE_READONLYprotection,

then the dwModeAndFlags from the file object is copied here; otherwise it is
assigned Oxffffffff.

20h DWORD pszFullPath
If the KERNEL32 file object which is being mapped meets the following
criteria:

hExtendedFileHandle < Ox200,

pszFullPath is non-zero,

dwModeAndFlags is not Oxffffffff,

and the CreateFileMapping was called with PAGE_READONLYprotection,

then a heap allocation is made and the file object's pszFullPath is copied to it,
and the pointer is stored here; otherwise it is assigned O.

68 Chapter 4: File System API Mapping

24h DWORD pRingOHandle
This is the ringO file handle for the duplicated handle; this is a pointer to a
fhandle structure.

28h DWORD dwFileSize
This is the size in bytes of the mapped file.

2Ch BYTE bProtection
One of the protection flags passed to CreateFileMapping: PAGE_READONLY,

PA GE_READ WRITE, or PAGE_ WRITECOPY.

2Dh BYTE hPager
This is the pager handle which is used by the PageCommit call. (See Chapter
10).

2Eh WORD wPSPSelector
If the mapped file belongs to a Netware-managed drive, the PSP of the
process is stored here; otherwise it is O.

Table 4-6 enumerates the memory-mapped file object APIs and key Win32
services used in their implementation. (See Chapter 10, Virtual Memory, the
Paging File, and Pagers, for more information.)

Table 4-6. Memory-Mapped File Object Seroices

Win32 API

CloseHandle

CreateFileMapping

Flush ViewOfFile

MapViewOfFile

MapViewOfFileEx

OpenFileMapping

UnmapViewOfFile

The Device Object

Other Win32 Callbacks

_ VMMPageFree, _ VWIN32RingOCIoseHandie

_ VWIN32DupHandle

_ VMMPageReserve, _ VMMPageCommit

_ VMMPageReserve, _ VMMPageCommit

A KERNEL32 device object represents a statically or dynamically loaded virtual
device which supports the device IOCTL interface. The CreateFile service can be
used to obtain a handle to a device which meets these requirements. Note that
this excludes virtual devices which do not support an IOCn interface, such as
Windows 3.x virtual drivers. A KERNEL32 device object is represented by a 28-
byte data structure. The members of this structure are as follows:

OOh DWORD dwType
The constant value (Oxd) that represents a KERNEL32 device object.

The Win32 API and KERNEL32 Objects 69

04h DWORD dwRefCnt
The reference count for this object.

OSh DWORD reserved
This member always appears to be o.

OCh DWORD pDDB
Pointer to the ring-O device descriptor block for the virtual device.

IOh DWORD pszLoadPath
If the device object is created with the FILE]LAG_DELETE_ON_CLOSE, this
member contains a pointer to the pathname used to load the device, e.g.,
\ \. \ VTESTD. Later when the device is closed and its dwRecCnt reaches zero,
DeleteFile will be performed on this path.

14h CHAR szDeviceName[S]
The name of the virtual device.

Unlike the file, file-change, pipe, and mailslot object services, which rely on
IFSMgr for implementation support, the device object is dependent on VWIN32 ,
specifically the Win32 service with ordinal Ox2aOOlf. This service takes 12 argu
ments and there appears to be three distinct ways Qf calling it. First, when a
virtual device is loaded or opened by a call to CreateFile, the calling arguments
take this form:

VxDCall(DWORD svc, II has the Win32 service ordinal (Ox2aOOlf)
DDB pDDB, II pointer to device descriptor block
DWORD FuncAddr, II FuncAddr, is the address of a K32 procedure
char* pszDevName, II 8 character device name as it appears in

II the DDB
BOOL bDoLoad, II if TRUE load device, else search DDB list
char* pszLoadPath, II pathname used to load the device
DWORD unusedO, II has the value 0
DWORD unusedl,
DWORD InitialRingOID,
DWORD unused2,
PPDB pProcess,
char* pszReturnName);

II has the value 0
II contains a ring-O THCB
II has the value 0
II pointer to the process database
II pointer at which to store device name

This call is always made with pDDB equal to NULL. There are two variations
based on the value of bDoLoad. If bDoLoad is FALSE, the Device Descriptor Block
list is searched for a device with a name matching pszDeviceName. If bDoLoad is
TRUE, the VXDLDR_LoadDevice service is used to attempt to load the device file
pszDeviceName. It turns out that bDoLoa(i, is TRUE if the device name has an
extension, but FALSE if an extension is not specified. If the device is located or
loaded successfully, the 8-character device name is copied to pszRetumName and
a mOC_OPEN (DIOC.GETVERSION) call is made to the device's control proce
dure. The arguments FuncAddr and InitialRingOID appear to only be used for

70 Chapter 4: File System API Mapping

initialization of VWIN32 variables when the first call is made to Win32 service
Ox2aOOlf.

When a virtual device is unloaded by a call to DeleteFile, the arguments to
VxDCall take this form:

VxDCall(DWORD svc, II has the Win32 service ordinal (Ox2aOOlf)
DDB pDDB, II pointer to device descriptor block
DWORD unusedO, II unused argument
char* pszDevName, II 8 character device name
BOOL bDoLoad, II if TRUE load device, else search DDB list
char*pszLoadPath, II pathname' used to load the device
DWORD unusedl, II unused argument
DWORD unused2, II unused argument
DWORD unused3, II unused argument
DWORD unused4, II unused argument
DWORD unused5, II unused argument
DWORD unused6); II unused argument

Furthermore, pDDB is NULL, pszLoadPath is -1, and bDoLoad is TRUE although
the value is not tested.

Finally, when a virtual device is closed by a call to CloseHandle or an operation is
requested via DeviceIoControl, the calling arguments take this form:

VxDCall(DWORD svc, II has the Win32 service ordinal (Ox2aOOlf)
DDB pDDB, II pointer to device descriptor block
DWORD dwloControlCode, II control code to process
LPVOID lpvlnBuffer, II address of input buffer
DWORD cblnBuffer, II size, in bytes, of input buffer
LPVOID lpvOutBuffer, II address of output buffer
DWORD cbOutBuffer, II size, in bytes, of output buffer
LPDWORD lpcbBytesReturned, II # bytes transferred to

II lpvOutBuffer
LPOVERLAPPED lpo, II address of OVERLAPPED structure,

II if async command
HANDLE hDevice, II Win32 handle to device
PPDB pProcess, II pointer to process database,
char szDeviCeName[]); II pointer to 8 character device name

If the call is on behalf of CloseHandle, dwloControlCode has the value OIOC_
CLOSEHANDLE(-l); lpvlnBujJer, lpvOutBujJer, lpcbBytesRetuned, and lpo are all
NULL; and cblnBujJer and cbOutBujJer are both O. If the call is on behalf of Devi
ceIoControl, dwloControlCode takes a non-zero value which specifies the
operation to perform. Depending on the control code and the manner in which
the VxD processes it, input and output parameters mayor may not be required.

IocrL Services
Once an application retrieves a handle to a device object, it may use that handle
to access IOcn services using the DeviceIoControl API. It turns out that both

The Win32 API and KERNEL32 Objects 71

VWIN32 and IFSMgr offer public services of this kind, each with different sets of
functionality .

VWIN32 provides a DeviceIoControl interface for a limited set of MS-DOS func
tions. It seems that these functions were added primarily for disk utility programs
which require direct access to file system structures and need to request exclusive
volume locks on the drives which are being manipulated. There are four dwIoCon
trolCode values that are defined:

VWIN32_DIOC_DOS_INT13 (4)
This control code is used for BIOS level lnt 13h. It allows access to the phys
ical sectors of a disk drive but only for the floppy disk drives in a system. This
behavior is documented by the MSDN KnowledgeBase Article Q137176: PRE:

DeviceIoControl Int 13h Does Not Support Hard Disks. If you need BIOS lnt
13h services for a fixed disk, this article shows how to thunk to a Win16 DLL
that uses the DPMI Simulate Real Mode Interrupt function to issue lnt 13h.

VWIN32_DIOC_DOS_INT25 (3)

This control code is used for issuing an absolute disk read on a specific
volume. lnt 25h reads chunks of disk storage which are referenced by logical
sectors. To force a read from the physical disk, an exclusive volume lock
needs to be acquired for the volume or the read may actually return cached
data. This interrupt has been superseded by lnt 21h Function 440dh Minor
Code 61h, Read Track on Logical Drive.

VWIN32_DIOC_DOS_INT26 (2)

This control code is used for issuing an absolute disk write on a specific
volume. lnt 26h writes chunks of disk storage which are referenced by logical
sectors. To write to the physical disk, an exclusive volume lock needs to be
acquired for the volume; otherwise a write protect error will be returned. This
interrupt has been superseded by lnt 21h Function 440dh Minor Code 41h,
Write Track on Logical Drive.

VWIN32_DIOC_DOS_IOCTL (1)

This control code is used for issuing lnt 21h Functions in the range 4400h
through 4411h. This range includes the "conventional" DOS IOCTL functions
as well as the new volume locking functions:

To issue the above DeviceIoControl calls, the lpvInBujJer and lpvOutBujJer refer
ence DIOC_REGISTERS structures. These structures define the values of the 32-bit

• See Programmer's Guide to Microsojt Windows 95, Article 25, "Exclusive Volume Locking."

72 Chapter 4: File System API Mapping

registers EAX, EBX, ECX, EDX, EDI, ESI, and flags. Note, however, that the
segment registers are not specified.'

IFSMgr also provides a DeviceIoControl interface for use by Network Provider
DLLs. The API which network programmers are familiar with consists of the
"WNet" functions which are exported by the Multiple Provider Router (MPR) DLL.
The Network Provider DLLs are never called by applications, only by the MPR.
The most common Network Providers are Microsoft MSNet (msnp32.dll) and
Novell Netware (nwnp32.dll). In the case of Microsoft Networks, these Devicelo
Control calls are made by msnet32.dll, on behalf of the Network Provider,
MSNP32. There are four dwloControlCode values that are defined:

IFS_IOCTL_21 (100)

This control code is used for issuing Int 21h functions of the 5Fxxh series
which are handled by IFSMgr's dFunc5F dispatch function (see Chapter 6,
Dispatching File System Requests). Other Int 21h functions are passed to the
IFSMgcNetFunction hook chain (see Chapter 7, Monitoring File Activity). The
lpvlnBuffer and lpvOutBuffer arguments to DeviceloControl reference
win32apireq structures. These structures define the values of the 32-bit regis
ters EAX, EBX, ECX, EDX, EDI, ESI, and EBP. There is also a field that will
give the ID of the Network Provider and a field in which to store a return
code. This structure is defined in ifs.h of the Windows 95 DDK.

IFS_IOCTL_2F (101)

This control code is used for issuing Int 2Fh functions. These are also passed
to the IFSMgcNetFunction hook chain. The same calling arguments are used
as with control code IFSjOCTL_21.

IFS_IOCTL_GELRES (102)

This function takes a WORD size input buffer (lpvlnBuffer) which holds an
SFT or extended file handle that is owned by the calling process. The output
is returned in a DWORD size output buffer (lpvOutBuffer) which holds the
address of the file's fhandle structure after it has been exclusive-O Red with
Oxa5a5a5a5 and rotated left by 13 bit positions.

IFS_IOCTL_GELNETPRO_NAME_A (103)

This function takes a buffer containing an Ascnz UNC pathname (lpvin
Buffer) with the length of the pathname in cblnBuffer. It looks up the Net ID
of the FSD which owns this UNC connection and returns it in the DWORD
size output buffer (lpvOutBuffer). Net IDs are enumerated in the SDK header
file winnetwk.h, e.g., the Net ID for Microsoft Networks is given the manifest
constant WNNCNETjANMAN (Ox00020000).

• For more details on using these functions, see Programmer's Guide to Microsoft Windows 95, Article 20,
"Device I/O Control."

Implementation of VWIN32 Int21Dispatch

Implementation of VWIN32_
Int21Dispatch

73

Our survey of the Win32 API, as summarized in Tables 4-2 through 4-6, has
shown that Int21Dispatch is the primary link that KERNEL32 has to IFSMgr. In
Chapter 3, we traced a Win32 callback into VMM and looked at how a Win32
service was dispatched. For a review of that, see the. section "The Win32 Call
back" in Chapter 3. Now we are going to pick up where we left off there, and
trace into the VWIN32's Win32 service Ox2aOO 10 , which we'll refer to as VWIN32_
Int21Dispatch hereafter. The assembly code for VWIN32_Int21Dispatch is shown
in Examples 4-3 and 4-4.

Example 4-3. Source Code for VWIN32jnt21Dispatcb, Part 1

VWIN32(4}
+ Ob2b
+ Ob31
+ Ob37
+ Ob3d
+ 0b44
+ 0b46

+ Ob4c
+ Ob4e
+ Ob54
+ Ob5a
+ Ob61
+ Ob63

+ Ob69
+ Ob6d
+ Ob71
+ Ob74
+ Ob78
+ Ob7b

+ Ob7e
+ Ob8l
+ Ob83
+ Ob86

VMMcall Get_Cur_Thread_Handle
or dword ptr [edil.TC:B_Flags,THFLAG_EXTENDED_HANDLES
mov ebx,dword ptr pCurrentThread ;current K32 TDB
test dword ptr [ebx].Flags,fOpenExeAsImmovableFile
jz short L_B4C
or dword ptr [edil.TC:B_Flags,THFLAG_OPEN~S_IMMOVABLE_FIL~

L_:B4C:
mov
and
and
test
jz
or

L_B69:
mov
mov
mov
mov
mov
push

;Is the
crop
jz
crop
jz

esi,dword ptr [edil.TC:B_Flags
esi,THFLAG_CHARSET~SK

dword ptr [edi].TC:B_Flags,NOT THFLAG_CHARSET.:...MASK
dword ptr [ebx].Flags,fOkToSetThreadOem
short L_:B69
dword ptr [edi].TCB_Flags,THFLAG_OEM

eax,dword ptr [esp+Oc] ;Int 21h function
edx,dword ptr [esp+04] ;client register structure
dword ptr [edxl.Client_EAX,eax
ecx,dword ptr [esp+10] ;3rd VxDCall arg
dword ptr [edxl.Client_ECX,ecx
dword ptr [edxl.Client_FS ;preserve this

requested Int 21h function a read or write?
ah,3f
short rO_read_or...:.write
ah,40
short rO_read_or_write

nested_exec:
+ Ob88 mov eax,21h
+ Ob8d VMMcall Exec_PM_Int

+ Ob93
+ Ob94

L_:B93:
pop eax
mov edx,dword ptr [esp+04]

74 Chapter 4: File System API Mapping

Example 4-3. Source Code/or VWIN32jnt21Dispatcb, Part 1 (continued)

+ Ob9B
+ Ooge
+ Oba2
+ Oba4
+ Oba6

+ ObaB
Note:

mov word ptr [edx].Client_FS,ax ;restore Client_FS
and dword ptr [edi].TCB_Flags,NOT FILE_MASK
or esi,esi
jz short L_BAB
or dword ptr [edi] .TCB_Flags,esi ;restore eharset flags

L_BAB:
retn 0010

FILE_MASK equ (THFLAG_EXTENDED_HANDLES OR THFLAG_OPEN_AS_IMMOVABLE_FILE)

The raw disassembly has been cleaned up by adding equates from VMM.lNC and
using names that Matt Pietrek has assigned to members of the thread database
structure (roB). In the simplest case this function takes five steps. It modifies the
current thread's flags, it initializes some client registers, it performs the Int 21h
request, it restores some client registers, and it restores the .current thread's flags
before returning. Let's look at each of these steps.

Lines Ob2bh to Ob63h modify the current thread's flags. This starts with a call to
GeCCut_Thread_Handle which returns the handle, which is also the address, of
the thread control block Ctcb_s in vmm.inc). The first field of the thread control
block contains the thread flags, TCB_Flags. The first flag to be modified is
1HFLAG_Extended_Handles; it is simply set. This informs IFSMgr that this thread
uses extended file handles. The next flag which may be modified is 1HFLAG_
Open_Asjmmovable_File. Whether this flag is set depends upon the setting of the
equivalent flag in the ring-3 thread database. Yes, even down in VWIN32 , the
current KERNEL32 thread object is being accessed! The DDK has this to say about
this flag: "Used by VWIN32 to prevent defragmenter from moving an open file."
Moving along to the last set of flags, 1HFLAG_ANSI and 1HFLAG_OEM, are both
cleared, which implies use of the ANSI character set. Then the current KERNEL32
thread object is consulted to see if it is using the OEM character set; if so, the
1HFLAG_OEMbit is set.

Next, in lines Ob69h to Ob7bh, we see the calling arguments being accessed.
Recall that on entry to VWIN32_Int21Dispat<:h the stack looks like this:

ESP Return address

ESP+4 Address of client register structure

ESP+8 Current VM handle

ESP+C 2ndVxDCall argument (Int 21 function)

ESP+ 1 0 3rd VxDCall argument

We see that EAX is loaded with the requested Int 21h function number (the
second VxDCall argument) and EDX is loaded with the address of the client

Implementation of VWIN32jnt21 Dispatch 75

register structure. Then we see EAX stored to ClienCEAX and the third VxDCall
argument stored to ClienCECX Finally, the current value of ClienCFS is pushed
on the stack. These actions prepare the registers that will be used when Int 21h is
invoked.

On lines Ob7eh to' ObS6h, we see a check for AH values 3fh (read) and 40h
(write). If either of these functions is being requested, a branch is made to the
code shown in Example 4-4.

Example 4-4. Source Code for VWIN32jnt21Dispatch, Part 2

rO_read_or_write:
+ Obab push esi
+ Obac
+ Obad
+ Obae
+ Obaf
+ ObbO
+ Obb3
+ Obb6
+ Obbc
+ Obbd
+ Obbe
+ ObcO
+ Obc3
+ Obc6
+ Obcb
+ Obdl
+ Obd2
+ Obd3
+ Obd4
+ Obd7
+ Obd9
+ Obdc
+ Obel
+ Obe5
+ Obe7
+ Obe8
+ Obea
+ Obeb
+ Obfl
+ Obf5

+ Obf6

+ Obf7
+ Obf8
+ Obf9
+ Obfa
+ Obfc

push ebx
push edx
push eax
push ecx
mov ebx,dword ptr [edx] .Client_EBX ;extended handle
mov esi,dword ptr [edx] .Client_EDX ; R/W buffer
VxDcall IFSMgr_Win32_Get_RingO_Handle
pop ecx
pop eax
jc short L_BF7
sub ah,3f
movzx eax,ah
add eax,RO_READFILE_IN_CONTEXT ;Od602h
VxDcall IFSMgr_RingO_FileIO
pop edx
push edx
push eax
mov dword ptr [edx] .Client_EAX,eax ;save xfer count
sbb eax,eax ; carry set if error occurred
and eax,+Ol
and word ptr [edx] .Client_Flags,Offfeh ;clr client carry
or word ptr [edx] . Client_Flags , ax ;set client carry on err
test eax,eax
pop eax
jz short L_BF6
push edi
VMMcall Get_Cur Thread_Handle
mov word ptr [edi+34],ax ;save error code
pop edi

L_BF6:
clc

L_BF7:
pop edx
pop ebx
pop esi
jc short nested_exec try Int 2lh
jmp short L_B93

76 Chapter 4: File System API Mapping

Finally, on lines ObSSh and ObSdh, Int 21h is invoked by the service Exec]M_Int.
This service simulates the interrupt into the current virtual machine (the System
VM). It first assures that the caller is in PM execution mode, and if not calls Sec
PM_Execution_Mode. Then it safeguards its stack from being paged out by
locking it in place, using the service Begin_Use_Locked_PM_Stack. It uses the
Current client registers during the execution of the interrupt, except that a PM call
back is stored in CS:EIP. This breakpoint becomes the return address after the
interrupt completes. The interrupt is then launched by the service Exec_Int,
which in tum performs the Simulate_Int and Resume_Exec services. When the
interrupt returns, control is regained at the breakpoint. Then the service End_Nesc
Exec is called, which restores CS:EIP and the original stack before returning from
Exec_PM_Int.

Exec_PM_Int does pack quite a punch. It has a serious side effect too. The client
registers and flags are modified to reflect the results of the software interrupt that
was performed. Perhaps this is why the DDK warns us: "This service is intended
to be used only by the Windows kernel; external virtual devices should not use it.
External virtual devices should use the Exec_Int service instead."

On lines Ob93h to Ob9Sh, we see the original value of ClienCPS being popped
into EAX and then written back to the client register member ClienCPS. So when
VxDCali returns, the only client register which you can be sure of is FS! On lines
Ob9ch to ObaSh, VWIN32_Int21Dispatch undoes any changes it has made to
thread control block flags and then returns.

Now let's look at the case where the requested function is a read or write. For
these cases, VWIN32 tries to perform an optimization. Instead of sending the
request to the protected mode Int 21h. handler, it attempts to convert the
extended file handle into a ring-O file handle using the IFSMgr service IFSMgC
Win32_GeCRingO_Handle. This service takes an extended file handle in EBX and
returns a ringO handle, also in EBX. Extended file handles are numbers greater
than Ox200, whereas ring-O file handles are ring-O addresses. If this conversion
succeeds, then another IFSMgr service, IFSMgcRingO_FileIO, is used to perform
the file read or write, thereby completely bypassing Int 21h.

IFSMgCRingO_FileIO supports a range of DOS-like file I/O services. For read and
write, it takes the following arguments:

EAX Service number

EEX Ring-O file handle

ECX 32-bit transfer count

EDX File position at which to start operation

ESI Linear address of read/write buffer

Win16 File Services 77

EBX and EDX are returned by IFSMgC Win32_GeCRingO_Handle, whereas ECX
and ESI are set to the equivalent arguments for the Int 2Ih function 3fh or 40h
calls. The service number used is either RO_READFILEjN_CONTEXT (d602h) or
RO_ WRnEFlLEjN_CONTEXT(d603h). The "in context" modifier indicates that the
operation takes place in the context of the current thread as opposed to a global
context. On return, this service sets the carry flag if an error occurred and places
an error code in AX. If the operation is successful, EAX will contain the number
of bytes actually transferred.

·Win16 File Services
This chapter would not be complete without some mention of WinI6 file services.
Table 4-7 summarizes Int 2Ih usage for some common WinI6 APIs. A number of
services have been updated to use the long filename form of the Int 2Ihcalls.
Remember that in the WinI6 environment, software interrupts are allowed and
are serviced by handlers installed in the protected mode IDT. Thus most of the Int
2Ih requests will arrive at the PM Int 2Ih handler installed by IFSMgr, as
discussed in Chapter 3.

Table 4-7. Win16 File Seroices

Win16 API PM Interrupt 21h Thunk to Wm32 API

_lcreat, _lopen 716ch,6000h

_hread,_lread 3th

_hwrite, _lwrite 40h

_llseek 42h

_Idose 3eh

CreateD4-ectory 7139h

DeleteFile 7141h

FindClose FindCloseA

FindFirstFile FindFirstFileA

FindNextFile FindNextFileA

FlushCachedFileHandle 3eh

GetCurrentDirectory GetCurrentDirectoryA

GetDiskFreeSpace 36h

GetDriveType

GetFileAttribtites 7143h

GetTempDrive 19h

GetTempFileName 2ch, 5bOOh, 3eh

OpenFile 3dh

OpenFileEx

78

Table 4-7. Win16 File Services (continued)

Wm16 API

RemoveDirectory

SetCurrentDirectory

SetFileAttributes

PM Interrupt 21h

713ah

7143h

Chapter 4: File System API Mapping

Thunk to Wm32 API

SetCurrentDirectoryA

Table 4-7 shows an added twist for some of the new Win16 MIs. APIs such as'
FindFirstFile, FindNextFile,. and FindClose thunk to the corresponding KERNEL32
routines. Thus, even though thefunctibn originates in a Win16 application, it will
still generate VWIN32_Int21Dispatch calls.

The ((New" MS-DOS
File System

Back in Chapter 3, Pathways to the File System, we saw that IFSMgr hooks several
"legacy" interfaces. In this chapter we'll look at IFSMgr's handlers for these inter
rupts and see to what extent they are passed down the interrupt chain or handled
within IFSMgr. Recall from Chapter 3 that there are five interrupts to be consid
ered and they come in either PM or v86 modes, or both. Here again is the list of
interrupts:

lnt 21h
lnt 25h
lnt 26h
lnt 2fh
lnt 17h

PM and v86
PM and v86
PM and V86
v86
v86

Although the bulk of file I/O continues to be serviced through these interrupt
interfaces, this need not be the case since ring-O file services (IFSMgCRingO_
FileIO) are also available and in a few instances are used directly for performance
or design reasons.

Interrupt 21 h Handlers
IFSMgr's protected mode and virtual-86 mode lnt 21h handlers have many similari
ties. Disassemblies of these handlers are shown in Examples 5-1 and 5-2. Keep in
mind that a protected mode handler consumes an interrupt by returning via
Simulate_Iret and chains to the previous handler by a Simulate_FarJmp. In
Example 5-1, the labels SimIRet and NxtPM21 correspond to these two cases. On
the other hand, a v86 interrupt handler consumes an interrupt by returning with
carry clear and chains to the previous handler by returning with carry set. In
Example 5-2, NextV86Hook and a return through line 1238h both set the carry

79

80 Chapter 5: The "New" MS-DOS File System

flag, so the next v86 interrupt handler will be called. So to see which Int 21h func
tions are handled by IFSMgr and which are passed on, we need to examine how
these handlers decide upon these alternatives.

Initially, both PM and v86 handlers look at the Int 21h function in the AH client
register, to see if it lies below the constant MAXDOSFUNC+l. The functions.
between 0 and MAXDOSFUNC make up the MS-DOS API. For the retail release of
Windows 95, MAXDOSFUNC is 71h, and for OSR2 it is 73h. Function numbers
from MAXDOSFUNC+ 1 to FFh correspond to APls supported by various network
providers, or vendor specific extensions; e.g., function EAh is used to detect if a
Netware client is installed. Each of these groupings has a separate lookup table
for it. The lookup table is indexed by the function number and the table entries
are the addresses of preamble functions.

The first table of functions, called Lower72_Preambles, is filled in with default
. handlers by IFSMgr. The second table of functions, called UpperSE_Preambles, is

not created by IFSMgr until a network provider or other client registers a
preamble for a function in the range MAXDOSFUNC+ 1 to FFh. When the table is
initially created, it is filled with addresses of a preamble function which just sets
carry and returns. A preamble function for either table can be registered using the
IFSMgr service IFSMgcSetReqHook, which is available during Device lnit or Init
Complete phases.

Example 5-1. Protected Mode Int 21b Handler at IFSMGR(1)+ 1140b

PM_Int21_Chain Proc Near
1140 movzx ecx,byte ptr [ebp].Client~
1144 crop cl,72
1147
1149
114b
1152
1154
115b
115d
115e
1164
1168
1169
116b
1170
1172

jnc short FuncGt71
xor edx,edx
test byte ptr HookerFlags,03
jz short TryPreambleO
test byte ptr HookerFlags,02
jz short TryPreamblel
push ebx
add ebx,dword ptr OfsVMCB
test byte ptr [ebx+08] ,10
pop ebx
jz short TryPreambleO
call IS71_A3_A4_A5_A8
jnc short TryPreambleO
jmp short NxtPM21

TryPreamble1:
1174 inc edx

TryPreambleO: .
1175 mov esi,Offffffffh

LOCALINT21 I UNUSEDFLAG

LOCALINT21

LOCALINT21HOOKER

117a call dword ptr Lower72_preambles[ecx*4]
1181 jnc short Dispatch_PM_Int21
1183 cmp ecx,-Ol

Interrupt 21 h Handlers 81

Example 5-1. Protected Mode Int 21 b Handler at IFSMGR(J)+ 1140b (continued)

1186 j z short SimIRet
NxtPM21:

1188 mov ecx,dword ptr NextPM21Sel
118e mov edx,dword ptr NextPM210fs
1194 VMMjmp Simulate_Far_Jmp

FuncGt71:
119a cmp dword ptr Upper8E_Preambles, 00
llal jz short NxtPM21
lla3 mov edx,dword ptr Upper8E_Preambles
lla9 mov esi,Offffffffh
llae call dword ptr [edx+ecx*4-1c8hj
Ilb5 jc short NxtPM21
Ilb7 mov ecx,Od4h

Dispatch_PM_Int21:
Ilbc VxDcal1 IFSMgr_FillHeapSpare
llc2 mov eax,dword ptr OfsVMCB
llc7 mov edx,Offffffffh
llcc call dword ptr [ebx+eax+Ocj
IldO jc short NxtPM21

SimIRet:
Ild2 mov aX,word ptr [ebpj.Client_Flags
Ild6 and aX,+Ol
Ilda VMMcall Simulate_I ret
lleO and word ptr [ebpj.Client_Flags,-02
lle5 or word ptr [ebpj . Client_Flags , ax
lle9 retn

In Examples 5-1 and 5-2, you can see calls to the Lower72_Preambles at lines
117Ah and 122Ah. In each case, the Int 21h function number is multiplied by 4,
the size of each doubleword address in the table, and added to the base of the
table. You can also see calls to the Upper8E_Preambles, at lines llAEh and
124Ah. In these cases, the offset is reduced by 1esh (or 1DOh for OSR2), the
offset to the base of the table ((MAXDOSFUNC+ 1) * 4).

In both Examples 5-1 and 5-2, we see that a number of tests are performed before
a Lower72_Preambles function is called. The first test involves the HookerFlags

variable, which uses two bits of one byte of storage. This variable is global in
scope; that is, it is visible across all VMs. I've called bit 1 LOCALINT21 and bit 0
UNUSEDFLAG. The UNUSEDFLAG bit is always zero. The LOCALINT21 bit is set
when vs6 Int 21h is hooked in any VM. For instance, if I startup a DOS box and
run a DOS application that hooks Int 21h, this flag will be set and will be seen
from the System VM as well as other VMs. So we may interpret the four lines of
code starting at 114bh in Example 5-1 and at 1200h in Example 5-2 as a three-way
test. If both flags are dear, then call the preamble with EDX=O. If only the
UNUSEDFLAG bit is set, call the preamble with EDX=l. And last, if only the
LOCALINT21 bit is set, continue performing additional tests.

82 Chapter 5: The "New" MS-DOS File System

Example 5-2. Virtual-86Int 21h Handler at IFSMGR(1)+ lleah

V86_Int21_Chain Proc Near
l1ea VxDcall IFSMgr_Fi11HeapSpare
l1fO movzx ecx,byte ptr [ebp] .Client_AH
l1f4 mov esi,Offffffffh
l1f9 cmp cl,72
l1fc
llfe
1200
1207
1209
1210
1212
1213
1219
121d
121e
1220
1225
1227

jnc
xor
test
jz
test
jz
push
add
test
pop
jz
call
jnc
jmp

short _FuncGt71
edx,edx
byte ptr HookerFlags,03
short _TryPreambleO
byte ptr HookerFlags,02
short _TryPreamble1
ebx
ebx,dword ptr OfsVMCB
byte ptr [ebx+08],10
ebx
short _TrYPreamb1eO
Is71_A3_A4_A5_A8
short _TryPreambleO
short NextV86Hook

_TryPreamble1:
1229 inc edx

_TryPreambleO:

LOCALINT21 I UNUSEDFLAG

LOCALINT21

LOCALINT21HOOKER

122a call dword ptr Lower72_Preambles[ecx*4]
1231 jnc short Dispatch_V86
1233 cmp ecx,-Ol
1236 jz short _WasHandled
1238 stc

_WasHandled:
1239 retn

L_123A:
123a retn

FuncGt71: -
123b cmp dword ptr Upper8E_Preambles, 00
1242 jz short NextV86Hook
1244 mov edx,dword ptr Upper8E_Preambles
124a call dword ptr [edx+ecx*4-1c8h]
1251 jc short NextV86Hook
1253 mov ecx,Od4h

Dispatch_V86 Proc Near
1258 mov eax,dword ptr lin_SDA_base
125d movzx edx,word ptr [eax+Oe]
1261 movzx eax,word ptr [eax+Oc]
1265 shl edx,04
1268 add edx,eax
126a add edx,dword ptr [ebx+04]
126d mov eax,dword ptrOfsVMCB
1272 jmp dword ptr [ebx+eax+Oc]

NextV86Hook:
1278 stc
1279 retn

Interrupt 21 h Handlers 83

Let's assume only LOCAllNT21 is set. We then drop into another bit test over the
next five lines, starting at 115bh in Example 5-1, and at 1212h in Example 5-2. At
this point, EBX is the current VM handle, which is also the base of the VM control
block. During Device Init, IFSMgr calls _Allocate_Device_CB_Area to allocate a
block of memory which is specific to IFSMgr and which is private to each VM.
This block begins at offset OjsVMCB from the beginning of the VM control block;
thus EBX + OjsVMCB is the address of the base of this pervm data structure (see
Appendix C, IFSMgr Data Structures, for pervrn's typedeD. The pvJlags member
of this structure, a byte at offset S, contains flag bits. Bit 4, which I've named
LOCALINT21HOOKER, indicates whether there is a local Int 21h hooker in this
VM. So this test is checking whether this VM is the VM which has installed the
local hook. If not then the preamble is called with EDX=O.

Ok, now let's assume the LOCAllNT21 bit is set and we are in a VM which has a
local Int 21h hook; then the function Is7CA3_A4_A5_AS is called. This is a simple
function which returns with carry set if the requested function is not 71A3h,
71A4h, 71A5h, or 71ASh. So unless the Int 21h request is for one of these func
tions, the request will be passed to the next PM or vs6 handler. It is interesting to
note that functions 71A3h to 71A5h are undocumented but clearly are related to
the implementation of Find Change Notification. Function 71ASh is used to
generate a short name alias from a long filename.

In any event, if a preamble is called, the carry flag on return determines whether
the function is ultimately dispatched. If the preamble returns with· carry set, then
the function is not handled and is passed on to the next handler. However, if the
preamble returns with carry clear, then the function is dispatched to the file
system at Dispatch_PM_Int21 or Dispatch_ v86. In either case, the address of the
dispatch function is located in the VM's pervm data structure in the member pv_
dispjunc. If the dispatch function fails, it also returns with· carry set, and the func
tion is passed on to the next handler in the chain.

The LOCAllNT21 bit of HookerFlags and the LOCAllNT21HOOKER bit of the pv_
flags member of the VM's pervm structure have a dramatic effect on the routing of
Int 21h requests. When both bits are set for a VM, they essentially shut down the
PM and vs6 Int 21h handlers. This is a pretty drastic measure. Why would IFSMgr
do this? Well, before we explore this mystery let's take a closer look at preamble
functions.

Preamble Functions

Preamble functions are described in the DDK's IFS Specification under the section
on the IFSMgcSetReqHook service. This service takes two arguments, an
unsigned int containing the interrupt number in the high word and the function
number in the low word, and the address of the preamble function to install. At

84 Chapter 5: The "New" MS-DOS File System

this time, this service only installs preambles for Int 21h. IFSMgcSetReqHook
returns the address of the previous preamble function, if successful, or 0 if the
service fails. If a preamble function rejects an Int 21h request, it must chain to the
previous preamble function.

A preamble function receives the following register-based arguments when it is
invoked:

EEX
The current VM handle

Eex

The Int 21h function number

EEP
A pointer to the client register structure

ESI

The provider ID which is initialized to ANYPROID (-1)

The preamble function decides whether to accept or reject the Int 21h request.
There is always a default preamble function installed for a given request number.
The default preamble function will return with carry set if it wishes for the
request to be rejected, and with carry clear if the request is to be accepted. An
installed preamble function will return with carry clear if it accepts the request,
but chains on to the next preamble if it rejects the request. So the net effect of
calling a preamble. function chain is to return with carry set to indicate rejection
or clear to indicate acceptance. Note that this description is at odds with the IFS
Specification, which incorrectly states that an installed preamble function should
return with carry set if it accepts a request.

If an installed preamble function accepts a request, it needs to preserve the EBX
and EBP registers. Optionally, it may set ESI to the specific provider ID of the file
system driver that installed the preamble. If a specific provider ID is returned,
then when the function is dispatched, it will only be seen by the file system driver
for that provider ID. If ESI is left set as ANYPROID (any provider ID), then when
the function is dispatched all file system drivers will be able to see the call.

If an installed preamble function rejects a request, it must preserve all registers
and chain to the previous preamble.

Table 5-1 enumerates the default preamble functions which IFSMgr uses to
initialize Lower72_Preambles. Functions 44h and 71h also have subtables indexed
by the subfunction number in the AL register. These preamble functions are
entered as 44xxh and 71xxh. The 71xxh series functions (except 71aOh-71aah)
are remapped by the preamble into their non-long filename equivalent functions
but with the LFN flag set (bit 30 of the ECX register). Functions 71aOh through

Interrupt 21h Handlers 85

71aah are mapped to a different set of functions, but these also have the LFN flag
set.

The functions which do not appear in Table 5-1 are not accepted by IFSMgr.

Table 5-1. Dfjault Preamble Functions

lnt 2lh Function

OBh

ODh,710dh

OEh

lAh

lBh, lFh

lCh, 36h,47h, 7147h

25h

29h

32h

33h

39h, 3Ah, 3Bh, 3Ch, 3Dh, 4lh, 43h, 4Eh, 56h, 5Bh, 7139h,
713ah, 713bh, 7l4lh, 7143h, 714eh, 7156h

3Eh, 3Fh, 40h, 42h, 4400h, 440lh, 4402h,4403h,4406h,
4407h, 440ah, 4410h, 57h, 5Ch, 6Sh, 7la6h

44h

4404h, 4405h, 440Sh, 4409h,440dh, 440eh, 440fh,4411h

45h,46h

4Bh

4Dh

4Fh,714fh

5Dh

5Eh

5Fh

60h, 6Ch, 7l60h, 716ch, 7la9h

69h

71h

7laOh, 71alh, 71a2h, 71a3h, 71a4h, 71a5h, 71a7h, 71aSh,
71aah

7302h, 7303h, 7304h 7305h (OSR2 only)

Default Preamble

IFSMGR(l)+ 127ch

IFSMGR(3)+ le50h

IFSMGR(3)+ ISf2h

IFSMGR(3)+ IScSh

IFSMGR(3)+ la4eh

IFSMGR(3)+ la6Sh

IFSMGR(3)+ Ib52h

IFSMGR(3)+ Ibcfh

IFSMGR(3)+ la62h

IFSMGR(3)+ le89h

IFSMGR(3)+ lc3fh

IFSMGR(3)+OOOch

IFSMGR(3)+ 19b7h

IFSMGR(3)+ 19dOh

IFSMGR(3)+OOOOh

IFSMGR(3)+ lS2ch

IFSMGR(3)+ 17fch

IFSMGR(3)+ laa5h

IFSMGR(3)+ IdcOh

IFSMGR(3)+ ISbSh

IFSMGR(3)+ lS40h

IFSMGR(3)+ lc38h

IFSMGR(3)+ la3eh

IFSMGR(3)+ 1f14h

IFSMGR(3)+ If8ch

IFSMGR(4)+lfebh (OSR2)

The Preamble for Function 25h, Set Interrupt Vector
In Chapter 8 of Unauthorized Windows 95, entitled "The Case of the Gradually
Disappearing DOS," Andrew Schulman performed some interesting experiments

86 Chapter 5: The "New" MS-DOS File System

with Windows for Workgroups 3.11 and Windows 95. The experiments were
performed with a simple DOS application, TEST21, which hooks Int 21h using
DOS function 25h, set interrupt vector. TEST21 issues a sequence of Int 21h func
tions and tabulates a count of received Int 21h requests. It then compares the sent
versus received counts for each function number.

When TEST21 is executed at the DOS prompt (outside of Windows), the sent and
received counts are equal. However, if TEST21 is executed in a Windows for
Workgroups 3.11 DOS box, the only Int 21h request which is received is the func
tion 25h request; the other calls, functions 3D, 3F, 40, and 3E, are handled by
IFSMgr without being reflected to DOS. When the same test is performed in a
Windows 95 DOS box, all of the Int 21h requests are received by TEST21.

Schulman attributed the difference in behavior between Windows 95 and
Windows for Workgroups 3.11 to the way that IFSMgr handles interrupt 21h func
tion 25h for Windows 95. He found that changing the method used to hook Int
21h to a direct memory write to the interrupt vector table resulted in Windows 95
behaving the same as Windows for Workgroups, i.e., none of the Int 21h calls
sent were received.

This interpretation is in line with Microsoft's documentation on Int 21h hookers.
In a Microsoft white paper by Russ Arun, Chicago File System Features-Tips &

Issues (April 22, 1994), the following explanation is given:

On default all Int 21 interrupts, except file API Int 21s, are passed down to any
hooker present in the system. The file API Int 21s are just passed to VM (local)
hookers, but not to global (autoexec.bat) type hookers. This is done because
there are new file APIs (new Int 21s) that support long filenames for delete,
rename and so on that an older hooker won't understand anyway. Furthermore,
not all file API calls are Int 21 calls. Specifically server calls and swapper calls to
the file system are not Int 21 calls.

TEST21 falls into the category of a "local hooker" since it is executed in a DOS
box (VM) after Windows is running. The reflection of file I/O Int 21h requests to
a local hooker is a change from the Windows for Workgroups 3.11 behavior.
Notice that the intent is not to actually service the interrupt requests in MS-DOS in
virtual-86 mode; after all, that is what Windows 3.1 did. Instead, this change is
intended to increase compatibility with local hookers as well as global hookers by
allowing them to see Int 21h traffic.

By using the HOOKER21 TSR, which is on the companion diskette, you can
confirm this behavior for yourself. HOOKER21 is a minimal TSR that calls set inter
rupt vector to establish a new Int 21h handler that does nothing except chain to
the previous handler. If this TSR is placed in a winstart.bat file in the \windows
directory, it will be executed in the context of the System VM after IFSMgr has

Interrupt 21 h Handlers 87

completed Device Init. Thus IFSMgr detects the re-vectoring of Int 21h and· flags
the System VM for Int 21h reflection.

To see this, perform a "before-and-after" test. Run MultiMon with the monitors
"VWIN32 Int 21" and "v86 Int 21 (post-IFSMgr)" enabled. Generate some file
activity by using the right mouse button to create a shortcut on the desktop. Most
of the Int 21h requests which originate in VWIN32 do not make it as far as the
v86 Int 21h handler. Now, perform the steps above after creating a
\windows\winstart.bat file and having it load hooker21.exe. Then restart the
system. Repeat the MultiMon test and generate some file activity. The MultiMon
trace will now show a matching v86 Int 21h request for each VWIN32 Int 21h
request (at least for the file I/O functions).

We can see why this is happening if we examine the code for the function 25h
preamble in Example 5-3. First we see that this preamble is only interested in
changes to the Int 21h vector and only if they originate in v86 mode. If the client
making the request is executing in protected mode or if the vector being set is not
for Int 21h, the preamble returns immediately. Next, the preamble determines
whether the vector it is restoring is the original vector (whose linear address was
stored in LinV86121 Vee during Device Init) or whether a new vector is being set.
The vector argument in DS:DX is converted to a linear address for comparison
with LinV86121 Vee, and execution continues at the label ResVeet or SetVeet,
depending on the outcome.

The flags which track Int 21h reflection are found in three different locations.
First, there is the pvJlags member of the VM's pervm structure. Next, there are
HookerFlags and HookedVMs variables which reside in global IFSMgr memory.
Finally, there are flags in the DOS device driver, ifshlp.sys. These flags are refer
enced as offsets from lin_IFSHLP_data, the linear address of a shared data area in
ifshlp.sys.

The key flag is LOCALINT21HOOKER of pvJlags in the VM's pervro data struc
ture. If it is getting cleared by the restoration of the Int 21h vector or if it is getting
set because a new vector is installed, then all of the other flags also are updated.
Setting the Int 21h vector multiple times in a VM has no affect on the flags after
the first change.

Recall that when the LOCALINT21 bit of HookerFlags and the
LOCALINT21HOOKER bit of pervm's pvJlags are both set, they essentially shut
down the PM and v86 int 21h handlers for IFSMgr in that VM. We now under
stand the mechanism by which Int 21h is reflected into a VM but the connection
with ijshlp.sys is still unclear. Let's look at the role it plays, shown in Example 5-3.

88 Chapter 5: The "New" MS-DOS File System

Example 5-3. Preamble/or Function 25h at IFSMGR(3) + Ib52h

Preamble_25 Proc Near
1b52 test dword ptr [ebx],VMSTAT_PM_EXEC
1b58 jnz short Reject25
1b5a cmp byte ptr [ebp] .Client_AL,21
1b5e jnz short Reject25
1b60 mov edx,dword ptr OfsVMCB
1b66 add edx,ebx
1b68 mov edi,dword ptr lin_IFSHLP_data
1b6e push ecx
1b6f movzx ecx,word ptr [ebp].Client_DS
1b73 shl ecx,04
1b76 movzx eax,word ptr [ebp] .Client_DX
1b7a add ecx,eax
1b7c cmp ecx,dword ptr LinV86I21Vec
1b82 pop ecx
1b83 jnz short SetVect

ResVect:
1b85 test byte ptr [edx+08] ,10 LOCALINT21HOOKER
1b89 jz short Reject25
1b8b and byte ptr [edx+08],Oef -LOCALINT21HOOKER
1b8f and byte ptr [edi+12eh],Ofe
1b96 dec byte ptr HookedVMs
1b9c jnz short Reject25
1bge and byte ptr HookerFlags,Ofdh -LOCALINT21
1ba5 and byte ptr [edi+ll],Of7
1ba9 jmp short Reject25

SetVect:
1bab test byte ptr [edx+08] ,10 LOCALINT21HOOKER
1baf jnz short Reject25
1bb1 or byte ptr [edx+08] ,10 LOCALINT21HOOKER
1bb5 or byte ptr [edi+12eh] ,01
1bbc inc byte ptr HookedVMs
1bc2 or byte ptr HookerFlags, 02 LOCALINT21
1bc9 or byte ptr [edi+ll] ,08

Reject25:
1bcd stc
1bce retn

Bouncing Back from ifshlp.sys
In Chapter 3, in the section "Accessing IFSMgr," we summarized in Tables 3-2 and
3-3 all of the virtual devices which hooked Int 21h in either protected mode or
virtual-86 mode. If none of these virtual devices accept the Int 21h request, it will
get passed down the chain and arrive at the handler in the virtual-86 IVT (the
"real-mode" interrupt vector table). This is represented by the last entry in the Int
21 column of Table 3-2. The address displayed there, Oc59:04aO, is the handler in
ifshlp.sys.

Interrnpt 21 h Handlers 89

If a VM has a local hooker installed, it will appear before ifshlp.sys in the IVT
chain. There may also be other global hookers installed via autoexec.bat or
corifig.sys that appear in the IVT chain before ifshlp.sys and any local hooker.

If a request gets routed all the way down to ifshlp.sys, what happens to it? Does it
keep going and end up being serviced by MS-DOS? To answer these questions
we'll need to look at the disassembly of the Int 21h handler in ifshlp.sys, shown in
Example 5-4.

Example 5-4. Interrupt 21h Handler in ijShlp.sys

int_21h proc far
04AO cmp ah,72h
04A3 jae next_in_chain
04A5 test cs:flags,2
04AB jz trY.Jlreamble
04AD test cs:flags,OCh
04B3 jz trY.Jlreamble
04B5 test cs:flags,4
04BB jnz haveOverride
04BD test cs:perVM_flags,1
04C3 jz trY.Jlreamble

haveOverride:
04C5 crop ah,OBh
04CB jb try.Jlreamble
04CA push ax
04CB jmp short bounce_back

trY.Jlreamble:
04CD push ax
04CE push bx
04CF mov bl,ah
04Dl mov bh,.O
04D3 mov al,cs:Lower72 [bx]
04DB mov ah,O
04DA pop bx
04DB add aX,offset base Preamble
04DE call ax
04EO jnc bounce_back
04E2 pop ax

next_in_chain:
04E3 jmp far ptr prevInt21

04EB
04E9
04EA
04EC
04EE

bounce_back:
pop
push
mov
sub
jmp

ax
bx
bl,ah
bh,bh
cs:IFSMGR_VB6CalIBack

This handler routes requests in tWo possible directions. If line 4E3 is reached, the
request is being sent down the interrupt chain to the next "real~mode" handler
and may end up being serviced by MS-DOS. If line 4EE is reached, the jmp trans
ferscontrol to aVS6 callback which re-enters IFSMgr.

90 Chapter 5: The "New" MS-DOS File System

This 16-bit code bears some resemblance to the PM_Int2CChain and V86_Int2C
Chain handlers shown in Examples 5-1 and 5-2. The flags variable resides in
global memory and is modified by all VMs. Bit 1 signifies that IFSHLP has been
initialized by a call from IFSMgr, bit 7 is equivalent to the LOCAllNT21 bit of
HookerFlags, and bit 6 is equivalent to the UNUSEDFLAG bit of HookerFlags, as
used in IFSMgr. The other variable tested here is perVM.Jlags. It lies in a region
of IFSHLP which is instanced, i.e., which has a private copy mapped into each
VM's address space.

The v86 callback to IFSMgr is called if, at least, the following conditions are met:

• Bit 1 is set in the flags variable, indicating IFSHLP has been initialized by
IFSMgr;

• Bit 7 is set in the flags variable, indicating that some VM has a local lnt 21h
hooker;

• Bit 0 is set in the perVM.Jlags variable, indicating that the current VM has a
local lnt 21h hooker;

• The function number is OBh or greater but less than 72h.

The callback may also get called if a preamble returns with carry clear. Preambles
may be called on the following lnt 21h functions: OBh, ODh, OEh, 3Eh, 3Fh, 40h,
41h, 42h, 47h, 57h, 5Ch, 5Dh, 5Eh, 5Fh, 68h, and 71h.

One question still remains unanswered: who sets and clears these IFSHLP vari
ables? We can find the answer back in Example 5-3 in the code for Preamble_25.
IFSMgr stores away a linear address On linjFSHLP_data) which points to offset
0024h in IFSHLP, the start of the shared data area. Preamble_25 loads EDI with
linjFSHLP_data and then uses EDI to reference bytes at offsets 11h and 12eh. If
Y9U add 24h to these offsets, you get the addresses of the flags and perVM.Jlags
variables in IFSHLP.

Before we move on, let's recap. Several flags are maintained at a global scope
and at a per-VM scope, to determine whether to reflect an lnt 21h request down
ward towards MS-DOS land. IFSHLP is positioned along this downward path so
that it can snatch up these requests and redirect them back to IFSMgr just before
they drop into MS-DOS. For more details on how IFSMgr and IFSHLP exchange
data, see the sidebar "The IFSHLP /IFSMgr Connection."

This excursion into IFSHLP and its role in Int 21h reflection has uncovered a
"back door" into IFSMgr-that of the v86 callback. The ring-O code for this call
back is shown in Example 5-5. This routine's first order of business is to clean up
the client stack. It does this by Simulating a POP BX and then an lRET. Before BX
is restored, the value of BX in the client registers is loaded into ECX to use as the
function number. Except for the check for a special function value, BDh, which is

Interrupt 21 h Handlers

The IFSHLP/IFSMgr Connection
The connection between IFSHLP and IFSMgr is established during the Device
Init stage. IFSMgr opens a handle to IFSHLP using the MS-DOS device name
"IFSHLP". If successful, the handle is then used to acquire the entry point for
subsequent calls. To do this, DOS function 4402h (receive control data from
character device) is used. The caller passes in an 8-byte buffer, the first two
words of which contain a version code: E970h followed by 3735h. If the call
returns without error and 8 bytes are read, then the buffer should contain the
following information: WORD 3735h, WORD EF70h, WORD entry_ofs, WORD
entry_seg.

A call into IFSHLP takes the following form:

push word offset
push word segment
push word function number
call entry_seg:entry_ofs
add sp,6

The first two arguments (offset and segment) are not always used, although
some values are pushed onto the stack. The function number is in the range 0
to 7. The functions have the following uses:

o returns address of IFSHLP's shared data area in DX:AX

1 enables IFSHLP traps Ont 17h,lbh,21h,2ah,2fh); IFSMgr's v86 callback
passed to IFSHLP on the stack

2 disables IFSHLP traps Ont 17h,lbh,21h,2ah,2fh);

3 unknown

4 unknown

5 unknown (unused by IFSMgr)

6 unknown (unused by IFSMgr)

7 unknown (unused by IFSMgr)

IFSMgr uses the return value from function 0 to initialize the following internal
variables: linjFSHLP_data, linjFSHLP_base, lin_SDA_base.

91

vectored to the Int 17h handler, this code closely follows that of V86_IncChain.
There is one small difference in the arguments to preamble functions: EDX has
the value 2; when preambles are called from PM_Int2CChain and V86_InCChain,
EDX is either 0 or 1. If the preamble function rejects the request, or if IFSMgr fails
the call, then the request is channeled back down the "real-mode" interrupt chain.

92 Chapter 5: The "New" MS-DOS File System

The address of the previous Int 21h handler is loaded from IFSHLP's shared data
area. This address is passed to Build_InCStack_Frame to make it the new CS:EIP
after the client registers Clienc CS and ClienCEIP, and Client Flags are pushed on
the client stack. When the callback returns, execution resumes in the VM at this
previous handler. Note that if the callback services the request, CS:EIP is set to the
instruction following the Int 21h call since the request has been completed.

Example 5-5. V86 Callback Routine at IFSMGR(1) + 521

V86_CaIIBack_From_IFSHLP Proc Near
521 VMMcall Simulate_Pop
527 VMMcall Simulate_Iret
52d
531
535
538
53e
541

movzx ecx,word ptr [ebp] .Client_BX
mov word ptr [ebp].Client_BX,ax
cmp cl,Obdh
jz TO_Int17_Chain
cmp cl,72
jnc short AcceptBounceBack

543 mov edx,2h
548 mov esi,Offffffffh
54d mov eax,21h
552 call dword ptr Lower72_Preambles[ecx*4]
559 jc short SendBackToDOS

AcceptBounceBack:
55b mov eax,dword ptr lin_SDA_base
560 movzx edx,word ptr [eax+Oe]
564 movzx eax,word ptr [eax+Oc]
568 shl edx,04
56b add edx,eax
56d add edx,dword ptr [ebx+04]
570 mov esi,Offffffffh
575 mov eax,dword ptr OfsVMCB
57a call dword ptr [ebx+eax+Oc]
57e
580

jc short SendBackToDOS
retn

SendBackToDOS:
581 mov edx,dword ptr lin_IFSHLP data
587 mov cX,word ptr [edx+lceh]
58e movzx edx,word ptr [edx+lcch]
595 VMMcall Build_Int_Stack_Frame
59b retn

Interrupt 2Fh Handler
IFSMgr's interrupt 2Fh handler is more straightforward than that for Int 21h. Of
the many possible functions which could be intercepted, it is content with
looking at only 05h (Critical Error Handler) and llh (Network Redirector).

The handler for interrupt 2Fh function 05h, shown in Example 5-6, is quite
simple. If AL is zero, the call is an installation check and AL is returned as OFFh

Interrupt 2Fh Handler 93

(installed). If AL is non-zero, the call is a request for an error string corresponding
to the values in AL and BX. This request is converted into a function D2h and
passed to the same dispatch routine utilized by the Int 21h handler, Dispatch_ v86.

Example 5-6. V86Interrupt2Fh Function 05h Handler at IFSMGR(3)+ 1130

Int2f_05xx_Handler Proc Near
1130 rnov edx,dword ptr [ebp] .Client_EAX
1133 test
1135 jnz
1137 rnov
113b retn

L_113C:
113c rnov
1141 push
1142 call
1147 pop
1148 test
114c jnz
114e retn

L 114F: -
114f rnov
1152 stc
1153 retn

dl,dl
short L_l13C
byte ptr [ebp] .Client_AL,Off

ecx,Od2h
edx
Dispatch_V86
edx
byte ptr [ebp] . Client_Flags , 01
short L_114F

dword ptr [ebp] .Client_EAX,edx

The handler for the Network Redirector functions (llxxh) is more complicated.
The disassembly for this routine is shown in Example 5-7. For each minor func
tion number (in client AL), a table in IFSHLP is consulted to see if it is supported.
The linear address for the table is at linjFSHLP_data + 2eh. This table lies in the
instanced portion of the IFSHLP data area, so the address in the current VM's
address space is found by adding [EBXl.CB_High~Linear, where EBX is the current
VM handle. This table is indexed by the minor function number. If the high order
bit of the byte at the indexed location is set, then a function in the array, Table_
2f11, is called. Otherwise, the previously installed v86 Int 2Fh handler will get
control.

Example 5-7. V86 Interrupt 2Fh Function 11 h Handler at IFSMGR(3)+ 11 04

Int2f_llxx_Handler Proc Near
1104 rnovzx ecx,byte ptr [ebp] .Client_AL
1108 rnov
110e add
1111 test
1116 jz
l11c crnp
11lf crnc
1120 sbb
1122 and
1128 jrnp

edx,dword ptr lin_IFSHLP_data
edx,dword ptr [ebx].CB_High_Linear
byte ptr [ecx+edx+2e],80
prev_V86_Int2f
cl,80

edx,edx
edx,Offfffec8h
dword ptr Table_2fll[edx+ecx*4]

94 Chapter 5: The "New" MS-DOS File System

The code which determines the index into Table_2f11 is a little tricky. If the
minor function number is less than SOh, then the comparison at line lllc will set
the carry flag. The instruction at line 111f then complements the carry flag,
thereby clearing it, so that the subtract with borrow at line 1120 makes EDX zero.
The net effect is that Table_2f11 is indexed by (function*4). However, if the minor
function number is SOh or greater, then the comparison at line lllc will clear the
carry flag. Complementing the carry flag then sets it so that the subtract with
borrow leaves EDX equal to ffffffffh. The subsequent AND with fffffecS sets EDX
to that value. This is equivalent to cSh-(SOh*4). The net effect is that minor func
tions SOh or greater index a section of Table_2f11 starting at offset cSh.

Table 5-2 summarizes the functions for which handlers are installed by IFSMgr.
Most of the functions are mapped to a different function number and then sent to
Dispatch_ v86.

Table 5-2. Network Redirector Functions, lnt 2Fh, llxxH

Minor Function

OOh

Olh,02h,03h,04h,05h,ODh,OEh,
OFh, lOh, llh, l2h, l3h, l4h, l5h,
l6h, l7h, l8h, 19h, lBh,2Eh

06h, 08h, 09h

OCh

lAh, lCh

lDh

2lh

23h

25h

3lh

80h,8lh,82h,84h,86h,8Bh,8Ch,
8Dh,8Eh,8Fh,90h,9lh

Handler Action

IFSMGR(3)+ l2a9h

IFSMGR(3)+1411h Dispatch as (minor function +
76h)

IFSMGR(3)+12d6h Dispatch as (minor function +
76h)

IFSMGR(3)+1500h Dispatch as function 82h

IFSMGR(3)+147eh

IFSMGR(3)+ l4b9h Dispatch as function 93h

IFSMGR(3)+13l5h Dispatch as function 97h

IFSMGR(3)+ 1154h

IFSMGR(3)+ 1288h

IFSMGR(3)+ l32eh Dispatch as function b8h

IFSMGR(3)+14blh Dispatch as (minor function +
26h)

Note that in MS-DOS the Network Redirector functions are called by DOS. The
functions which are enumerated here are not called internally. For more informa
tion on the Network Redirector, see Chapter S of Undocumented DOS by Andrew
Schulman et al.

Interrupt 25b and 26b Handlers
Protected mode as well as virtual-S6 mode interrrupt 25h and 26h handlers are
implemented by IFSMgr. The two handlers are very similar, so only the protected

IFSMGR's Common Dispatch Routine 95

mode code is shown here in Example 5-8. On entry, AL contains the drive
number on which the read or write is to be performed. If the drive number is vali
dated, the request is sent to the dispatch point as function DDh for Int 25h or
function DEh for Int 26h. After the request is dispatched and returns, the client
flags are pushed onto the client stack. This is done to simulate the "quirky"
behavior of these software interrupts.

Example 5-8. Protected Mode Int 25h /26h Handler at IFSMGR(3)+ 162/

PM_Int25_26_Chain Proc Near
162f mov eax,edx
1631 movzx edx,byte ptr [ebp] .Client_AL
1635 call ValidateDrive
163a jc
163c mov ecx,Oddh
1641 cmp eax, +25
1644 jz short dispatch_int
1646 mov ecx,Odeh

dispatch_int:
164b VMMcall Simulate_Iret
1651 mov eax,dword ptr OfsVMCB
1656 mov edx,Offffffffh
165b call dword ptr [ebx+eax+Oc]
165f mov eax,dword ptr [ebp] .Client_EFlags
1662 VMMcall Simulate_Push
1668 retn

next....pm_int:
1669 mov ecx,dword ptr NextPM25Sel
166f mov edx,dword ptr NextPM250fs
1675 cmp eax, +25
1678 jz short L_1686
167a mov ecx,dword ptr NextPM26Sel
1680 mov edx,dword ptr NextPM260fs

L_1686:
1686 VMMjmp Simulate_Far_Jmp

Interrupt 17h Handler
The virtual-86 mode Int 17h handler for BIOS printer services would take several
pages if we were to display it all. However, it is relevant to discuss one aspect of
it. This is that even printer services are channeled to the Dispatch_V86 routine.
The function number which they are dispatched under is CCh.

IFSMGR's Common Dispatch Routine
Our survey of IFSMgr's interrupt handlers has revealed a surprising fact. If an inter
rupt request is accepted, in most cases it is directed to a single dispatch routine, a
routine whose address is stored in IFSMgr's pervrn data structure. Placing the

96 Chapter 5: The "New" MS-DOS File System

address in a per-VM data location would seem to lend itself to customization,
depending on the kind of application executing in the VM. There is no evidence
that this is the case since the same dispatch address is used in the System VM as
well as DOS boxes.

Storing the dispatch address in such a convenient location makes it easy to write
a simple hook for monitoring traffic through the dispatch point. The IFSDSPAT
monitor driver does just that. It hooks the dispatch point in all VMs and displays
each dispatched function and some associated registers. This driver works in
conjunction with MultiMon, so its output is displayed in MultiMon's application
window along with the output from other monitors that are also enabled.

The output in Example 5-9 was generated in response to clicking the right mouse
button on the desktop and selecting "New Folder." These are just the first few
lines; the complete trace spans several pages. The lines of output that we see
here are from three different monitors:

• w2I, VWIN32's Int 2Ih dispatcher (WIN32CB)

• p2I, protect-mode Int 2Ih hook before IFSMgr (I2IHELPI)

• dsp, hook at IFSMgr's dispatch point (IFSDSPAT)

Example 5-9. MultiMon Output for Creating a Folder

Explorer p2l Seek(42) (0) handle=024c offs=2b400
Explorer dsp Func= 42 EDX=ffffffff ESI=ffffffff
Explorer p2l Read(3f) handle=024c cnt=1000 buf=7b:fOOO
Explorer dsp Func= 3f EDX=ffffffff ESI=ffffffff
Explorer w2l LFN(7l)Get File Attr(43)
Explorer p2l LFN(7l)Get File Attr(43)
Explorer dsp Func=40000043 EDX=ffffffff ESI=ffffffff
Explorer p2l Seek(42) (0) handle=024c offs=32400
Explorer dsp Func= 42 EDX=ffffffff ESI=ffffffff
Explorer p2l Read(3f) handle=024c cnt=1000 buf=7b:fOOO
Explorer dsp Func= 3f EDX=ffffffff ESI=ffffffff
Explorer p2l Seek(42) (0) handle=024c offs=30400
Explorer dsp Func= 42 EDX=ffffffff ESI=ffffffff
Explorer p2l Read(3f) handle=024c cnt=1000 buf=7b:fOOO
Explorer dsp Func= 3f EDX=ffffffff ESI=ffffffff
Explorer w2l LFN(7l)MkDir(39) C:\WINDOWS\Desktop\New Folder
Explorer p2l LFN(7l)MkDir(39) C:\WINDOWS\Desktop\New Folder
Explorer dsp Func=40000039 EDX=ffffffff ESI=ffffffff
Explorer w21 LFN(71) (a4)
Explorer p2l LFN(7l) (a4)
Explorer dsp Func=400000el EDX=ffffffff ESI=ffffffff

For each Int 2Ih function, two or three lines are displayed. If the interrupt request
originated in VWIN32 , then the trace begins with the Win32 callback shown as a
w2I line. VWIN32's interrupt dispatcher then generates a protected-mode nested

IFSMGR's Common Dispatch Routine 97

execution of the interrupt which produces the p21 line. If the interrupt request is
handled by IFSMgr, then it gets sent to the dispatch point and we get a dsp line.

The Func value shown on each dsp line is the function number. We see that this
is usually the same as the Int 21h function number. The get file attributes func
tion, 7143h, is mapped to function 43h with the long filename flag set in the high
order byte giving us 40000043h. We also see this apply to the make directory func
tion, 7139h. Something different is happening with the last function call in the
trace. Here, 71A4h becomes 400000e1h when it is dispatched. In this case, there
is no standard implementation of function A4h so it is mapped to an available
number above 71h, which happens to be E1h. In fact we have been seeing this
kind of mapping in the handlers for interrupts 2Fh, 25h, 26h, and 17h.

Here is a more formal description of the calling convention for the dispatch point:

ECX

The dispatched function number in the low byte, the high byte consists of
several flag bits

EBX

The current VM handle

EAX

The offset to IFSMgr's pe:rvro data structure for the VM

EBP

Pointer to the client register structure

ESI
The provider ID (usually -1 for ANYPROID)

EDX

? (may be function specific)

EDI

? (may be function specific)

The file API which IFSMgr exports to other VxDs, IFSMgcRingO_FileIO, is also a
thin veneer around a call to the dispatch point. Unfortunately, the dispatch
routine is called directly and not through the entry in IFSMgr's area of the VM
control block. So our hook doesn't show these calls.

Implementing a Dispatch Hook
We've spent a lot of time looking at disassembled code in this chapter, so for a
break let's look at how the IFSDSPAT virtual device is implemented. There are
two interesting problems that need to be resolved to get this monitor to work.

98 Chapter 5: The "New" MS-DOS File System

The first involves determining the offset of IFSMgr's VM control block area, and
the other is how to track the dispatch function for each VM separately.

To get IFSMgr's VMCB offset, I used a direct approach: just load before IFSMgr,
hook the _Allocate_Device_CB_Area service, and watch for IFSMgr's call. The
code for this is shown in Example 5-10. This function has a special header in
order to support Dnhook_Device_Service; HOOK_PREAMBLE is the macro which
achieves this. At the center of the code is the indirect call to pPrevAllocDevCB, a
variable which holds the previous service address when the Hook_Device_Service
returns. The key to knowing which VxD has made the call is to look at the return
address on the stack. This address is passed to _GetVxDName to let it do the
grunge work of figuring out which device that address belongs to. For instance, if
IFSMgr is making the call, the string returned might be "IFSMGR(2)+c01234567".
The intrinsic function memcmpO then compares the first 6 characters returned
against "IFSMGR". If we get a match, then we've got what we're after and store
the returned offset in the global variable OfslftVMCB. Since our hook has served
its purpose, we unhook it before returning-that way it won't get called again.

Example 5-10. Service Hook/or _Allocate_Device_CB_Area

HOOKPROC MyAllocDevCB(void} {
PYOID pReturnAddr;
char szBuf[80];
DWORD dwOfs;
HOOK_PREAMBLE (pPrevAllocDevCB)

"_asm push ebp
_asm mov ebp,esp
_asm sub esp, __ LOCAL_SIZE
_asm pushad

_asm mov eax, [ebp+4]
_asm mov pReturnAddr,eax

_asm push [ebp+Och]
_asm push [ebp+08h]
_asm call dword ptr pPrevAllocDevCB
_asm add esp,8
_asm mov dwOfs,eax

if (_GetVxDName(pReturnAddr, szBuf) &&
!memcmp(szBuf, szMatchStr, 6 } }

OfsIfsVMCB = dwOfs;
Unhook_Device_Service(___ Allocate_Device_CB_Area,

MyAllocDevCB };

_asm popad
_asm mov eax,dwOfs
_asm mov esp,ebp

IFSMGR's Common Dispatch Routine

Example 5-10. Seroice Hook/or _Allocate_Device_CB_Area (continued)

_asm pop ebp
_asm ret

99

The second problem I needed to address was how to keep track of each VM's
dispatch function address so that if MultiMon shuts down, the original dispatch
function can be restored on a per-VM basis. Currently, all VMs use the same
dispatch function but IFSMgr's design allows multiple dispatch addresses, so let's
support that.

The solution to this is fairly simple. IFSDSPAT also uses _Allocate_Device_CB_
Area to allocate a private doubleword in each VM. This is accomplished by these
lines in the Device Init message handler:

_asm push 0 II flags
_asm push 4 II sizeof DWORD
VxDCall(_Allocate_Device_CB_Area };
_asm add esp,8
_asm mov OfsMyVMCB,eax

This doubleword of storage lies at the address VMHandle+O!sMyVMCB for each
VM. The original dispatch address for a VM is stored in this location before it is
replaced with the dispatch hook function.

Dispatching File
System Requests

This chapter is going to look at what is our first taste of the real IFS. So far, we
have been hovering about looking at the various ways we arrive at the IFSMgr
and its services, but now we have arrived. The dispatch point is the ultimate IFS
service. It is the entry point to the file system or systems, the gateway to local and
remote file systems as well as character-based I/O to printers; 1/0 to mailslots and
named-pipes also passes through here. At this point, we start utilizing data struc
tures and file system drivers that are uniquely those of IFSMgr. We are no longer
propping up legacy APIs. However, IFSMgr borrows a lot from DOS and builds
upon it, so we can't claim a clean break with the past.

This dispatch point is just another API of sorts. It is not one that has been docu
mented in the IFS Specification, although key data structures that are part of it
have been partially documented. Unlike the many interrupt-based APIs we have
been looking at, this new API is based upon a packet or block of data describing
a desired operation. This packet is constructed from a set of input parameters,
one of which is a function number. This function number lies in the range a to
MAXIFSFUNG, where MAXIFSFUNC is E7h for the retail release of Windows 95
and EAh for OSR2. The values a through MAXDOSFUNC (see Chapter 5, The
"New" MS-DOS File System) overlap with the corresponding DOS function
numbers, although there are large gaps in the coverage, especially for those func
tions which are not file-related. Other legacy APIs are also mapped in this
function range; for instance, Int 25 and Int 26h are mapped to functions DDh and
DEh, and Int 17h is mapped to function CCh.

100

The Dispatch Point 101

This API is not just a convergence of legacy interrupts into a single linear range of
function numbers; it is more fundamental than that. By moving the function
description into a packet structure, a function request can be more completely
described. It can carry a complete description of the register state and pointers to
important system data structures upon which the command depends. Packets can
also be scheduled to execute as an event providing a mechanism for asynchro
nous operations.

Since the packet is such a key part of this new API, we'll start by examining how
these packets are constructed. The dispatch point is where this process begins.

The Dispatch Point
In the last chapter, we saw that I/O requests from the file system are funneled
through the dispatch point. The dispatch point is not entered as a service or even
as a fixed location, but rather via an indirect call or jump through the pv_dispfunc
member of the pervm structure for the current VM. This allowed us to write a
simple hook to monitor calls through the dispatch point.

Although the dispatch point is primarily the common entry point for ring-3 file
system requests, there are two ring-O IFSMgr services which also use it. First, the
service IFSMgCRingO_FileIO enters the dispatch point directly using a near call.
On the other hand, IFSMgcServerDOSCall enters the dispatch point using an indi
rect jump through pv_dispfunc.

The dispatch point routine needs to do several things. It builds an ifsreq packet
and passes it to a function handler. After the function handler returns, it performs
some optional cleanup and other completion handling chores.

Think for a minute about who will be calling this routine. Just about every compo
nent in the system will be executing this code-applications, system services, and
ring-O clients-on different threads and in different process contexts. Is this inter
face going to be synchronous or asynchronous? Will it be re-entrant? If so, how
might these objectives be achieved?

The standard way to support re-entrancy is by eliminating static variables. You
can't quite get rid of all static variables, but at least you can reduce the number
that need to be worried about. Well, the designers of the file system did just this.
The dispatch point handler builds the ifsreq packet on the stack through a
series of pushes and copies to the stack frame. Note that the ifsreq packet is the
unit which IFSMgr works with. The IFS documentation only describes the ioreq
structure which is a structure nested within the ifsreq. The ifsreqstructure is
260 bytes in length whereas the ioreq structure is only 116 bytes long. (Note that
these sizes are applicable to IFSMgr version Ox22.)

102 Chapter 6: Dispatching File System Requests

Figure 6-1 portrays the ifsreq packet, showing its members and the groupings
which are initialized by the dispatch point handler. For details on each of the
members, see Appendix C, IFSMgr Data Structures. There are four groupings of
members that are distinguished in Figure 6-1. At the bottom of the ifsreq
packet, storage is set aside for saving the client register structure. On top of the
client register structure is a group of members which are undocumented. These
start with the member ifs_pdb and ends with member ifs-VMHandle. These are
all initialized in the dispatch point handler. Then there is a section which is initial
ized to zero, followed by the topmost members of the structure. The topmost
members are documented in the IFS Specification. Of these, members ir_length
through ir_data are initialized by the dispatch point handler.

ifsreq Structure

Figure 6-1. ifsreq structure

It would be interesting to walk through the dispatcher code, but it would take us
four or five pages just to display it in pseudocode form. Instead, Table 6-1 distills
this routine into a chart of ifsreq members and how each member gets its value
from the execution of the dispatcher code. Although the main purpose of the
dispatcher is to get the ifsreq packet into a good known state before passing it on,
it also performs other chores such as passing CTRL-C down to IFSHLP if CTRL-C
checking is turned on and the VM is not the system VM. It also performs a series
of post-dispatch cleanup steps which, under some circumstances may include
suspending a VM, adjusting a thread's execution priority, or even terminating a
Win32 application, to name a few.

The Dispatch Point

Table 6-1. ifsreq Initialization

Member

irJlags

ir_user

ir_sfn

ir-Pid

ir-ppath

ir_aux1

icdata

ir_options

ir_error

ir_rh

irJh

ir_pos

ir_aux2

ir_aux3

ir_pev

irJsd[16J

ifs-pjb

ifs-psft

ifs-psr

ifs-pdb

ifsJunc

ifs_drv

ifs_hflag

Initial Value

rEEP). ClienCECX

rEEP). ClienCAL

from byte at IFSMGR(1) + 64c8h

OOFFh

IFSMgCRingO]ileIO:
FFFFFFFFh

IFSMgcServerDOSCall/LFN:
(DPL32_UlD« 16) + DPL32]ID

FFFFFBBBh

EDX

IFSMgCRingO_FileIO:
rEEP). ClienCESI

IFSMgcServerDOSCaIVLFN:
DPL32_EDX

Other:
rEEP). ClienCDS, rEEP). ClienCDX

o
o
o
o
o
o
o
o
{OJ

o
o
o
IFSMgcRingO_FileIO;

FFFFFFFFh
IFSMgr_ServerDOSCaIVLFN:

FFFFFBDBh
IFSMgcServerDOSCall:

(current PSP) « 4
Other:

(current PSP) « 4

CL, between OOh and MAXISFUNC

ir_vmbc->curdrv + 1

103

Notes

From EBP on entry; only 16 bits
of ECX used if 16-bit PM client

From EBP on entry

From EDX on entry

From CL on entry

From VM's control block

?

104 Chapter 6: Dispatching File System Requests

Table 6-1. ifsreq Initialization (continued)

Member

ifs..,proid

ifs..,pbuffer

ifs-VMHandle

ifs]V

Initial Value

IFSMgCRirigO_FileIO:
ESI

IFSMgcServerDOSCall:
FFFFFFFFh

Other:
ESI

Notes

From ESI on entry

BOh - IFSMgcServerDOSCall From ECX on entry
40h - LFN
20h - Uses Extended Handles
lOh - IFSMgcRingOYileIO
OBh - B.3 Match Semantics
04h - Caller is Win32 app
02h - BCS/Unicode
Olh - ANSI/OEM character set

FFFFFBBBh

EBX(current VM handle) From EBX on entry

EBX(current VM) + EAX(offset to IFS From EBX and EAX on entry
control block)

Copy of VM's client registers; for From EBP on entry
IFSMgcRingO_FileIO calls EBP points
to a shortened register structure of
only 4B bytes; for IFSMgcServerDOS-
Call calls, EBP also points to a short-
ened register structure

Once ifsreqis initialized, it is passed as an argument in a call to a function
handler. The function handlers are arranged in a table which is indexed by the
function number. The function number is stored in ifsJunc. As the ifsreq
packet moves through the routines called by the handler, the members of ifsreq
are interpreted and changed in ways which are unique to each command. On
return, the changes to ifsreq will reflect the results of the function.

Table 6-2 shows the contents of an ifsreq before and after a file. create opera
tion: creating a shortcut on the Windows 95 desktop. The Int 21h function that is

behind the ultimate dispatch call is 716ch.

Table 6-2. ifsreq for a File Create Operation

Entry

ir_length (ir_
attr)

ir..flags

Value

FILE_ATIRIBUfE_
ARCHIVE (20h)

ACCESS_READWRITE I
SHARE_DENYNONE 1
OPEN_FLAGS_NOIN
HERIT (c2h)

. Return

ir_length (ir_
attr)

ir..flags

Value

FILE_ATIRIBUfE_
ARCHIVE (20h)

ACCESS_READWRITE I
SHARE_DENYNONE I
OPEN_FLAGS_NOINHERIT
(c2h)

The Dispatch Point 105

Table 6-2. ifsreq for a File Create Operation (continued)

Entry Value Return Value

ir_user Olh ir_user Olh

ir_ifn OOffh ir_ifn 0248h

ir-pid OOO12le3h ir_pid OOO12le3h

ir-ppath FFFFFBBBh ir-ppath C0087af4h (ParsedPath)

ir_auxl FFFFFFFFh ir_hfunc c1084f38h

ir_data c34000l2h ir_data 0066f450h (Client_ESI)

ir_options 0 ir_options ACTION_CREATED (OOO2h)

ir_error 0 ir_error 0

irJh 0 ir_rh c1058db8h (suh)

irJh 0 irJh c10869b8h (fh_fh)

ir_pos 0 ir_size 0

ir_aux2 0 ir_dostime 205ca94dh

ir_aux3 0 ir_upath cOO87f04h

ir-pev 0 ir-Pev 0

irJsd[16} {OJ irJsd[16} filled by FSD

ifs-Pfh 0 ifs-Pfd cl084f38h (fhandle)

ifs-Psft 0 ifs-psjt 0

ifs-psr 0 ifs-psr c1039b28h (shres)

ifs-pdb 0OO2le20h ifs-pdb 0OO2le20h
~

ifs-Proid FFFFFFFFh ifs-proid FFFFFFFFh

ifsJunc 6Ch ifsJunc 6Ch

ifs_drv 03h ifs_drv 03h

ifs_hflag OOh ifs_hflag OOh

ifsJiflags 60h ifs_riflags 60h

ifs_pbuJfer FFFFFBBBh ifs-pbuJfer c0087af4h (ParsedPath)

ifs-VMHandle c35200e8h ifs- VMHandle c35200e8h

ifs]V c35202ach ifs]V c35202ach

In the Return column, several of the ioreq members have different names than
the operation started with in the Entry column. These represent overlays of
different members of a union. For example, ir_auxl is a union of type aillct.

The ioreq structure declaration in ifs.h declares this member as:

/* secondary user data buffer (CurDTA) */

The ifs.h header file also contains this declaration of the union aux_t:

typedef union {
ubuffer_t aux_buf;
unsigned long aux_ul;

106

dos_time
vfunc_t
hfunc_t
void
string_t
path_t
unsigned int

aux_t;

aux_dt;
aux_vf;
aux_hf;
*aux-ptr;
awcstr;
aux-pp;
aux_ui;

Chapter 6: Dispatching File System Requests

Any of these members can be combined with ir_aux1. So if this field happened
to represent an unsigned long volume handle, then it would be referred to as ir_
auxl.aux_ul, or if it represents a table of handle-based functions, it would be
referred to as icauxl.aux_hf ifs:h has gone further and defined macros for some
common union references:

""define ir_volh
""define ir_hfunc

ir_auxl.aux_ul /* VRP address for Mount */
ir_auxl.aux_hf /* file handle function vector */

The ir~hjunc member is one of the more interesting return values on a file create.
It points to a table of functions in the FSD that support read, write, and other
handle-based operations. The results column also contains three different forms of
handles. The member ir_sfn contains the System File Number for the newly
created file. This is the number that backs up a Win32 file object (see Chapter 4,
File System API Mappin[j). The field ifs-Pfb is a pointer to a fhandle structure
which also happens to be used as a ring-O file handle. And lastly, irJb is a file
handle that is private to the FSD.

It is interesting to follow what has happened to the file name that was passed to
the function. Originally, it was a pointer in the client registers, specifically,
Client_ESI, and it pointed to the long filename C:\ WINDOWS\Desktop\New
Shortcut. Ink.

On return,four different fields contain some representation of the original file
name: ir-/JPath, icc/ata, icupath, and ifs-pbuffer. Now, ir_data just holds the
original pointer to the filename but the other three pointers are different. The
member ir_upath is declared as type string_t, which is unsigned short *, i.e., a
Unicode string. This string is also "unparsed"-it is a straight conversion of the
input path to Unicode. The members ir-ppath and ifs-pbuffer, on the other himd,
are of type ParsedPath. A path which is represented by a parsedPath structure
is called a canonicalized path. Here is the declaration for the ParsedPath type:

struct ParsedPath {

} ;

unsigned shortpp_totalLength;
unsigned short pp-prefixLength;
struct PathElement pp_elements[l];

The member pp_totalLength gives the total length of the pathname including the
size of the ParsedPath structure (4 bytes). The member pp-prejixLength gives

Dispatch Functions 107

the offset of the last path element in the pathname relative to the start of the
ParsedPath structure. These members are followed by zero or more PathEle
ment structures. A PathElem.ent structure has this declaration:

structPathElement

} ;

unsigned short pe_length;
unsigned short pe_unichars[l];

The member pe_length gives the length in bytes of pe_unichars, including its null
termination. The menIber pe_unichars contains the zero or more Unicode charac
ters that make up the path element string. The PathElem.ents in a pathnam,e are
delimited by the path separator character ("\" or "j") but the separator character is
removed from the extracted Unicode string.

An example will make this much more clear. Here is the ParsedPath representa
tion for our "New Shortcut":

0046h 0024h
OOlOh "WINDOWS"
OOlOh "DESKTOP"
0022h "NEW SHORTCUT.LNK"

In this example, the total length of the path, 46h, is equal to the sum of. the
lengths of the PathElem.ents (lOh+lOh+22h) plus the length of the' ParsedPath
structure (4). We also see that pp-prejixLength, which has a value of 24h, gives us
the offset to the filename portion of the path. Note' that all elements are converted
to uppercase and the. strings are in Unicode. These canonicalized paths are
always relative to the root of the volume, and a volume designator is not part of
the path deSCription. For instance, a root path can be represented by a Parsed
Path structure containing a pp_totalLength of 4 and a pp-prefixLength of 4,

There is a lot more information that we could extract from Table 6-2,· but it will
make more sense once we have better grounding in the IFSMgr's internal data
structures.

Dispatch Functions
The dispatch function table' contains fun.ctions for handling each command type,
as shown in Tables 6-3 through 6-5. For instance, the command 6Ch can come in
several forms. If it is function 6Ch using a short filename, then the LPN command
flag will be cleared. However, if it was called using function 716Ch, then the LFN
bit will be set. Or, it may. have been invoked in response to an IFSMgr..:..RingO_
FileIO service and the command LFN and IFSMgr_RingO-,FileIO flags will be set.
Yet another variation in command flags would be seen if the call was made via
IFSMgr_ServerDosCall. Although several different calling methods could be used,
the same dispatch function will service all of these requests for function 6Ch. '

108 Chapter 6: Dispatching File System Requests

Tables 6-3, 6-4, and 6-5 enumerate the functions in the dispatch function table.
Each known function has been given a descriptive name in these tables. These
are simply names that I have created for convenience; you will not find them
documented anywhere. If a function number is not represented in the tables but
lies in the range 0 through MAXIFSUNC, the default handler shown in Example
6-1 is called. This routine does nothing but return with a error code of 1.
However, if a kernel debugger is loaded, a breakpoint will occur at the int 3
instruction. The contents of the ECX, EAX, EDX, and EBX will indicate which
command was attempted and where it originated. In reality, this function should
not get called; the preamble routines should weed out any unsupported functions.

Table 6-3. Dispatch Functions 00-69h

Name Function Number(s)

dResetDrive ODh

dDriveData lBh, lCh,36h

dOpenCreate 3Ch, 3Dh, 5Bh, 6Ch

dGetDefDPB lFh

dGetDPB 32h

dMkRmDir 39h,3Ah

dChDir 3Bh

dClose 3Eh

dReadWrite 3Fh,40h

dDelete 4lh

dSeek 42h

dAttribs 43h

dloctl 44h

dDup 45h

dForceDup 46h

dGetCurDir 47h

dFindFile 4Eh,4Fh

dRename 56h

dFileDateTime 57h

dLock 5Ch

dFunc5E 5Eh

dFunc5F 5Fh'

dGetFullName 60h

dCommit 6Sh

dDiskSerial 69h

Dispatch Functions 109

Table 6-3 consists entirely of Int 21h functions with the table function number
corresponding to the Int 21h function. In Table 6-4, many of the functions are
handlers for the Int 2fh function llxxh interface. Where this is the case, the func
tion number is indicated in parentheses. Similarly, in Table 6-5, where the
originating interrupt is known, it is indicated in parentheses along with a function
number. Table 6-5 contains dispatch functions for many of the Win32 MS-DOS
extensions and several IFSMgcRingO_FileIO functions (those beginning with
"dRO").

Table 6-4. Dispatch Functions 77h-CFh

Name

dFunc77

dChDir

dFunc7C

dFunc7E

dFuncB2

dFuncB3

dFuncB5

dFuncB7

dFuncB9

dFuncBB

dFuncBF

dProcExit

dFunc5F

dFunc5E

dSeek

dNetFunc

dFuncBB

dFuncBE

dFuncC9

dFuncCC

dFuncCD

dFuncCF

Function Number(s)

77h(2f/ll0Ih), 78h(2f/I102h), 79h(2f/ll03h), 7Ah(2f/ll04h)

7Bh(2f/l105h)

7Ch(2f/ll06h)

7Eh(2f/ll08h), 7Fh(2f/ll09h)

82h(2f/ll0Ch)

83h(2f/ll0Dh), 84h(2f/ll0Eh)

85h(2f/ll0Fh), 86h(2f/lllOh)

87h(2f/ll11h), 88h(2f/1112h)

89h(2f/1113h), 8Ah(2f/l1I4h)

8Fh(2f/1119h), 90h(2fh/ll1Ah), 91h(2f/l11Bh), 92h(2f/
I11Ch)

93h(2f/lllDh)

94h(2fh/l11eh)

95h(2f/Illfh)

97h(2f/1121h)

A6(2f/1180h), A7(2f/118Ih), A8(2f/1182h), AAh(1184h),
Bl(2f/118Bh), B2(2f/118Ch), B3(2f/118Dh), B4(2f/118Eh)

B8h(2f/1131h)

BEh,BFh,COh, Clh,C2h,C3h,C4h,C5h,c6h

C9h

CCh

CDh

CFh

Table 6-5. Dispatch Functions DOh-BAh

Name

dFuncCF

dFuncDl

Function Number(s)

DOh

Dlh

110 Chapter 6: Dispatching File System Requests

Table 6-5. Dispatch Functions DOh-BAh (continued)

Name Function Number(s)

dCritErr D2h (2f/OS)

dFuncD3 D3h

dFuncA6 D4h

dRO_OpenCreate DSh

dRO_ReadWrite D6h

dRO_Close D7h

dRO_FileSize D8h

dGetVolInfo DBh (2I/7IAOh)

dFindClose DCh (21/7IAIh)

dAbsReadWrite DDh (2Sh), DEh (26h)

dFuncDF DFh

dFcnFirst EOh (2I/7IA3h)

dFcnNext EIh (2I/71A4h)

dFcnClose E2h (2I/7IASh)

dGetByHandleInfo E3h (2I/7IA6h)

dConvertTime E4h (2I/7IA7h)

dGenShortName ESh (2I/71A8h)

dOpenCreate E6h (2I/7IA9h)

dSubst E7h (2I/7IAah)

dSetDPB (OSR2) E8h (21/7304h)

dSetDPBAllocInfo (OSR2) E9h (2I/730Sh)

dFuncEA (OSR2) Eah

Example 6-1. Default Dispatch Function

mov ecx,dword ptr Cedi] .ifs_func
mov eax,dword ptr Cedi] .ifs_crs.Client_EAX
movzx edx,word ptr Cedi] .ifs_crs.Clierit_CS
mov ebx,dword ptr Cedi] .ifs_crs.Client_EIP
int 3
mov word ptr Cedi] .ir_error,OOOl
retn

To get a feel for how a dispatcher function is implemented, we'll take a look at
the pseudocode for dGetVolInfo, one of the shorter functions (see Example 6-2).
The Programmer's Guide to Microsoft Windows 95 describes the input and output
parameters for this function in the section "Interrupt 21h Function 71AOh Get
Volume Information." There is essentially one input, the root path of the volume
for which information is requested. This string takes the form "C:\". Upon arrival
at dGetVolInfo, the pointer to the rootname, which was originally in DS:DX or

Dispatch Functions

Example 6-2. Pseudocode for dGetVollnfo

void dGetVolInfo(ifsreq* pifs) {
int retc;

retc = _PathToShRes (pifs, 0);
if (!retc) {

if (pifs->ifs_drv == 2 && II drive B
(DriveAttribs[l] & Ox08) && II single drive system
!(DriveAttribs[l] & Ox80) &&
pifs->ifs_VMHandle == hvrnSystem) {

pifs~>ifs_ir.ir_error = ERROR_INVALID_DRIVE;
return;

pifs->ifs_ir.ir_options = 2; II Level 2 Request

if (pifs->ifs_nflags &Ox04) II Win32 call
pifs->ifs_ir.ir_data pifs->ifs_crs.Client_EDI;

else II convert Cliept_ES : Client_DI to linear address
pifs->ifs_ir.ir_data = MapFlat_Seg_Ofs(Ox3800);

111

pifs->ifs_ir.ir_Iength = pifs->ifs_crs.Client_CX;llsize of name buffer
pifs->ifs_ir.ir-pos = 0;

if (! Call_FSD(pifs->ifs-psr->sr_func->vfn_func!VEN_QUERY],
IFSFN_QUERY, pifs, FALSE)) {

pifs->ifs_crs. Client_BX
pifs->ifs_crs.Client_AX

pifs->ifs_ir. ir_options; . 1/ FS flags
pifs->ifs_ir.ir-pos; II cache block size

if (HookerFlags & OxOl) {
pifs->ifs_crs.Client_CX
pifs->ifs_crs.Client_BX
pifs->ifs_crs.Client_DX
}

I I OVERRIDE flag (see Ch. 5)
OxOOOc; II Max fn len
Ox8000; II File system flags
Ox0050; II Max path len

else { 1/ use values returned by FSD for volume
pifs->ifs_crs.Client_CX pifs->ifs_ir.ir_Iength; II Max fn len
pifs->ifs_crs.Client_DX = (pifs->ifs_ir~ir_Iength » 16);
}

return;

if (retc == OxffffffcO) {
if (IsPhysicalDrive(pifs->ifs_drv)) {

pifs->ifs_crs.Client_CX OxOOOc; II Max fn len
pifs->ifs:...crs.Client_BX = Ox8000; II FS flags
pifs->ifs_crs.Client_DX = Ox0050; II Max path len
pifs->ifs_ir.Lr_error = Of
}

else pifs->ifs_ir.ir_error= ERROR_INVALID_DRlVE;
}

112 Chapter 6: Dispatching File System Requests

EDX, is now stored in the ifsreq member ir_data. Other members of ifsreq
are filled in as outlined in Table 6-1.

The. dispatcher function wants to pass the request to a file system driver, specifi
cally the driver's FS_QueryResourceInfo routine which is designed to return its
"Volume Information." To do this, it has to find which FSD handles the requested
volume. The call to _PathToShRes (my name) achieves this by processing the
ifsreq packet. It relies upon the service IFSMgcParsePath to convert the path in
member icdata into a ParsedPath with a pointer to it left in ir_ppath (and ifs
pbuffer) on return. This service also fills in ir_uFName (ir_aux2), ir_upath (ir_
aux3), and, most importantly, ifs_psr. This last member is important because a
ParsedPath only contains the path components and not the drive letter. The ifs
psr member is a pointer to an IFSMgr shell resource;· it describes the volume to
which the ParsedPath refers. When IFSMgcParsePath returns, _PathToShRes
does some additional processing and also fills in the ir_rh member. This is a
resource handle for the volume; a handle which the FSD returned when the
volume was initially mounted.

Once the ifsreqpacket is primed with this information, we know how to call
the FSD. Before doing so, there are few more parameters which need to be set
up: ir_options is set to 2 for a level 2 request, ir_data is now painted at the buffer
which will hold the file system name on return, iclength contains the length of
this buffer, and ir..,pos is set to O. The ifsreq structure is now ready for a FS_
QueryResourceInfocall (for. a description of the calling parameters see the DDK's
IFS Specification).

This brings us to the Call_FSD function. The first argument to this function is
key-it is the address of the FSD function to be called. How does it know which
FSD and which function? By using ifs-psr. This pointer to the shell resource gives
us access to a function "exported" by the FSD. The shell resource's member sr_
June is a pointer to a volfunc structure, which is an array of all of the volume
based entry points in the FSD. This structure is defined in ifs.h along with mani
fest constants for each function. In our case, .we need VFN_QUERY, which
corresponds to FS_QueryResourcelnfo. The pir argument to Call_FSD will be
passed as an argument on the call to the FSD function.

The FSD's FS_QueryResourceInfo function will retrieve various. bits of volume
information and store them in the designated locations of the ifsreq structure.
So on return, we see ir_options, ir..,pos, and ir_length being accessed to transfer
the results back to registers. At this level, we are supporting an Int 21h function,
so the return values are placed into the BX, ex, and DX registers. This is where
having the saved copy of the client register structure included in the ifsreq struc
ture is very convenient. It is this image of the client registers which will be

Shell Resources and the FSD's Volume-Based Function Table 113

restored before the Int 21h request ultimately returns. By changing this image we
are assured that the caller will see the returned values.

From this example we have seen that volume-based FSD Junctions are found in a
shell resource structure for a given local or remote drive. There are also handle
based FSD functions which are found in the fhandle structure corresponding to
the file's SFN. So, just as the ifsreq member ifs--psr is required for volume-based
FSD function calls, ifs--Pfb is required for handle-based FSD function calls.
Detailed descriptions of fhandle structures and shell resource are given in
Appendix C. In the next two sections we will examine these key file system struc
tures in more detail.

Shell Resources and the FSD's
Volume-Based Function Table
IFSMgr maintains several data structures that relate to the mounted volumes in the
system, whether these are local or remote volumes. At the base of the chain of
structures is the system volume table, SysvolTable [], which is an array of
pointers to volinfo structures (see Appendix C for volinfo's typedef).
SysVolTable can hold up to 32 entries and is iildexed by a zero-based drive
number. The volinfo structure contains several members, the most important of
which is the very Hrst entry, a pointer to the volume's shell resource structUre,
shres (see Figure 6-2). SysVolTable and volinfo structures are kept pretty
well hidden, since they are not exposed through any services and they are not
cross referenced by other data structures. The shell resource, however, is included
as an undocumented member of the ifsreq packet. For most dispatch table func
tions, the shell resource is resolved and inserted into the ifsreq structure prior
to dispatching the function.

DeSCriptions of the members of the shell resource are given in Appendix C. For
our purposes now, we are interested in the sr-func->vjn-func and sr_rh entries.
When a file system driver registers with IFSMgr during the Device Init stage, the
address of the FS_MountVolume function provided by the FSD is supplied. When
the first access is made to this volume, the FS_MountVolume function is called to
mount the volume. This establishes its table of volume-based functions and the
FSD returns a unique handle, sr_rh, which is then passed to the FSD on future
calls. This handle is not interpreted by IFSMgr, so the FSD is free to use the
address of a data structure or any other unique value to identify a volume.

The contents of the FSD's volume-based function table is shown in Table 6-6. At
the head of the table, version and revision are given first; followed by the table
size, and then the actual function entries (this structure is defined in ifs.h). The

114 Chapter 6: Dispatching File System Requests

SysVolTable

Figure 6-2. Volume-related data structures

corresponding FS_ function name for each table entry is also shown. These are
the functions which are described in the IPS Specification.

Table 6-6. Volume-Based Function Table

Table Entry

vfn_version

vjnJevision

vfn_size

vfnJunc{VFN_DELETEl

vfnJunc{VFN_DIRl

vfnJunc{VFN_FILEA17RIBl

vfnJunc{VFN_FLUSHl

vfnJunc{VFN_ GE1DISKINFOl

vfnJunc{VFN_ OPEN]

vfnJunc{VFN_RENAMEl

vfnJunc{VFN_SEARCHl

vfnJunc{VFN_QUERYl

vfnJunc{VFN_DISCONNEC17

vfnJunc{VFN_UNCPIPEREQ/

vfnJundVFNjOCn16DRIVEl

vfnJunc{VFN_GE1DISKPARMSl

vfnJunc{VFN_FINDOPEN]

vfnJunc{VFN_DASDIOl

Value

IFS version (030Ah)

IFS interface revision (lOh)

15
FS_DeleteFile

FS_Dir

FS _FileAttributes

FSylushVolume

FS _ GetDiskInfo

FS_OpenFile

FS_RenameFile

FS_SearchFile

FS_ QueryResourcelnfo

FS_DisconnectResource

FS_NamedPipeUNCRequest

FS_Ioct116Drive

FS_ GetDiskParms

FS_FindFirstFile

FS_DirectDiskIO

fhandle Structures and the FSD's Handle-Based Function Table 115

IFSMgr calls an internal function during Device Init to construct the
SysVolTable, its volinfo members, and the shell resource structures. These
initial structures are based upon IRS_drv....get calls to IOS_RequestocService over
the range of drives ending with the DOS last drive. The DOS current directory
structures (CDS) are copied into the volinfo structure for each drive.

/handle Structures and the FSD's
Handle-Based Function Table
IFSMgr maintains several data structures for tracking open files, shown in Figure
6-3. SFNs, or system file numbers, are used to reference each file. SFNs are split
into two groups: those numbering 0 through FFh, which refer to DOS file handles
backed by a VM specific SFT entry, and extended file handles, which are
numbered 200h and above and which are allocated at a global scope-global in
the sense that a single table is shared by all VMs.

SFNBuckets

Figure 6-3. File-related data structures

Several data structures are used to represent a system file number. Initially a
single SFNBucket is allocated; it is a pointer that references a block of storage
able to hold 256 files. As more handles are required, additional SFNBuckets are
allocated by IFSMgr. The maximum number of SFNBuckets that can be accomo
dated is 254, so the file system has a capacity for 65024 files.

Each block of memory referenced by a SFNBucket contains 256 8-byte structures.
The first member of the structure is the owner's process ID (pid, in Figure 6-3)
and the second member is a pointer to a fhandle structure (pjh, in Figure 6-3). A
ring-O file handle, such as that used by the IFSMgcRingO_FileIO service, is the
address of a fhandle structure. The service IFSMgC Win32_GeCRingO_Hand1e is
used to convert an extended file handle to a ring-O handle, i.e., given an SFN it
returns the address of its fhandle structure.

116 Chapter 6: Dispatching File System Requests

Descriptions of the members of the fhandle structure are given in Appendix C.
The first four members of fhandle are provided by the FSD. When a file is opened
on a volume, the volume's FSD returns three pointers: a pointer to a read func
tion, fh_hf.ht.read; a pointer to a write function, fh_hf.hf_ write; and a pointer to
the table of other handle-based functions, fh_hf.hf_misc. The FSD also returns a
unique handle, fh-fh, which is then passed to the FSD on future calls for this file.
As with its shell resource counterpart, fh-fh is not interpreted by IFSMgr; it is
simply treated as a "magic cookie."

The contents of the FSD's handle-based function table is shown in Table 6-7. At
the head of the table, version and revision are given first, followed by the table
size and then the actual function entries (this structure is defined in ijs.h). The
corresponding FS_ function name for each table entry is also shown. Note that the
functions FS_ReadFile and FS_ WriteFile correspond to the members hI-read and
hI-write and are not included in the table pointed to by fh_hf.hCmisc.

Table 6-7. Handle-Based Function Table

Table Entry

hm_version

hm_revision

hm_size

hmJunc{HM_SEEKJ

hmJunc{HM_CLOSEl

hmJunc{HM_COMMfl7

hmJunc{HM]ILELOCKSl

hmJuncfHM_FlLE11MESl

hmJunc{HM_PIPEREQUESTJ

hmJuncfHM_HANDLEINFOl

hmJuncfHM_ENUMHANDLEl

Value

IFS version (030Ah)

IFS interface revision (10h)

8

FS_FileSeek

FS_CloseFile

FS_ CommitFile

FSJ.ockFile

FS_FileDateTime

FS_NamedPipeRequest

FS_NetHandleInfo

FS_EnumerateHandle

The FSD function FS_FindFirstFile is similar to a file open. (FS_OpenFile). It

returns addresses of hI-read, hI-Write, and hI-mise members but their contents
are different. In this case, hI-read contains the address of a FS_FindNextFile func
tion, and hI-write is not defined, so it is set to an error function. Most of the
entries in the table hI-mise are filled with the address of an error function, the
two exceptions being HM_CLOSE, which contains the address of an FS_FindClose
function, and HM_ENUMHANDLE, which contains a pointer to a FS_Enumerate
Handle function.

Calling into a File System Driver 117

Calling into a File System Driver
Now that we know about these FSD function tables, we can re-examine the use
of CaICFSD in dGetVolInfo. Here is the call into CaICFSD as it appears in
assembly language:

push 00
push esi
push +27
mov eax,dword ptr [esi+7c]
mov eax,dword ptr [eax+Oc]
push dword ptr [eax+24]
call Call_FSD
add esp,+10

ESI is a pointer to an ifsreq packet, pifs, and [ESI+7c] references its member ifs
psr, the shell resource. EAX is assigned the address of the shres structure, so
[EAX+Oc] references its member, sr_/une, the volfunc structure. Finally, the func
tion at offset 24h in the structure is pushed on the stack as an argument. This
corresponds to sr_/une->vfnJundVFN_QUERYl In C the function call would
look like this:

Call_FSD{ pifs->ifs-psr->sr_func->vfn_func[VFN_QUERY],
IFSFN_QUERY, pifs, FALSE);

The constant IFSFN_QUERY is part of an enumeration of FSDfunctions that
IFSMgr uses. These are defined in ifs.h.

The volume-based call was straightforward. Now let's take a look at a handle
based call from the dispatch handler: dByHandIeInfo. Here is the call into Call_
FSD as it appears in assembly language:

push 00
push esi
push +11
mov eax, dword ptr [esi+74]
mov eax,dword ptr [eax+08]
push dword ptr [eax+20]
call Call_FSD
add esp,+10

ESI is a pointer to an ioreq packet, pifs, and [ESI+ 74] references its member ifs
pfh, the fhandle structure. EAX is assigned the address of the fhandle structure,
so [EAX+08] references its member, fh_h/->h/_mise, the handle-based function
table. Finally, the function at offset 20h in hI-mise is pushed on the stack as an
argument. This corresponds to fh_hj->hl-mise.hm_/undHM_ENUMHANDLEl . In C
the function call would look like this:

Call_FSD{ pifs->ifs-pfh->fh_hf->hf_misc.hm_func[HM_ENUMHANDLE],
IFSFN_ENUMHANDLE, pifs, FALSE);

118 Chapter 6: Dispatching File System Requests

From these two examples, we see that the first argument toCalCFSD is the
address of either a volume-based or handle-based FSD function. The other argu
ments include a constant· which identifies the FSD function, a pointer to the
ifsreq packet, and a Boolean. To gain some further insight into this function,
take a look at its pseudocode in Example 6-3.

CalCFSD is just a wrapper around the call to the FSD function which is passed as
the first argument. CalCFSD decides whether or not to call a file system API hook
rather than making a direct call to the FSD. The Boolean argument bHookLock
plays a role in making this decision. If bHookLock is FALSE, which is the most
common situation, the file system API hook will not be called if the volume refer
enced by the ifsreq packet has a lock on it.

Example 6-3. Pseudocode for CalCFSD

idefine ALLRES (IFSFH_RES_UNCIIFSFH_RES~ETWORKI
IFSFH_RES_LOCALIIFSFH_RES_CFSD)

int Call_FSD(pIFSFunc FSDFnAdr,int Func,ifsreq* pifs,BOOL bHookLock){
fhandle* pfh = pifs->ifsJ)fh;
shres* psr = pifs->ifsJ)sr;
DWORD flags, drive, rete;
BOOL bCallHook = bHookLock;

if (bHookLock) II decide if hook will be called
if (lpsr->sr_LockType) bCallHook = FALSE;

else if (lpsr->sr_LockType)
bCallHook = TRUE;

II If a file system API hook has·been installed ...
if (pFSHook l= NULL && bCallHook) {

if (Func==IFSFN_CLOSE I I Func==IFSFN_READ) {
if (pfh->fh_type & OxOc) {

if (Func==IFSFN_CLOSE) Func=IFSFN_FINDCLOSE;
else Func=IFSFN_FINDNEXT;
if (pfh->fh_type & Ox08)

if (Func==IFSFN_CLOSE) Func=IFSFN_FCNCLOSE;
else Func=IFSFN_FCNNEXT;

flags = psr->sr_flags;
if (flags & IFSFH_RES~TWORK) {

if(Func <= IFSFN_ENUMHANDLE) drive =Oxffffffff;
else drive = pifs->ifs_drv;
}

else drive = psr->sr_uword + 1;

if (Func == IFSFN_CONNECT && 01_6844
drive = pifs->ifs_drv + 1;

~asm inc cntHookCalls

Calling into a File System Driver

Example 6-3. Pseudocode for CaltFSD (continued)

retc = (*pFSHook) (FSDFnAdr, Func, drive,
flags & ALLRES,
pifs->ifs_nflags & (BCS_WANSI!BCS_OEM),
pifs);

_asm dec cntHookCalls

_asm cmp claimHookerList,Q
_asm jz not - claimed

- asm cmp cntHookCalls,Q

- asm jnz not - claimed
_asm mov claimHookerList,Q
IFSMgr_WakeUp(&claimHookerList);

not_claimed:
return retc;

II No hook call - call direct to FSD
return (*FSDFnAdr) (pifs);
}

119

If it is decided that the file system hook will be called, then some additional work
is needed to prepare the arguments to the hook function. Here is a prototype for
this function:

int FileSystemApiHookFunction(pIFSFunc FSDFnAddr, int FunctionNum,
int Drive, int ResourceFlags,
int CodePage, pioreq pir);

The first argument is simply the address of the FSD function to be called. The
second argument is the function number being called. This is the same as the
second argument to CalLFSD and would be IFSFN_QUERY or IFSFN_ENUM

HANDLE in the examples shown above. There are some special cases, however. If
the second argument to CalLFSD is either IFSFN_ CLOSE or IFSFN_READ, these
may need to be translated. For IFSFN_CLOSE, IFSFN_FINDCLOSE or IFSFN_

FCNCLOSE may be substituted if the fhandle indicates it refers to a find or file
change handle. Similarly, IFSFN_READ may be replaced with IFSFN_FINDNEXT or
IFSFN_FCNNEXT, if appropriate.

The drive argument for a local drive is derived from the sr_uword member of the
shell resource. This is a zero-based drive number so one is added to it. If the
drive is remote, the drive is set to -1 for functions less than IFSFN_

ENUMHANDLE; otherwise the drive number in the ifsreq packet is used. The
ResourceFlags argument is the value of the sr_flags member of the shell resource
ANDed with the mask ALLRES. The CodePage is determined by the corresponding
bits in the ifsreq member ifs_nflags.

Before each call into the file system hook, the global variable cntHookCalls is
incremented; when the file system hook returns, this count is decremented. If this

120 Chapter 6: Dispatching File System Requests

variable is zero, there are no calls executing or blocked which were initiated from
the file system hook chain. A related global variable, claimHookerList, is a
syncronization primitive used to control access to the list of installed file system
hooks. When either IFSMgclnstallFileSystemApiHook or IFSMgcRemoveFileSys
temApiHook attempt to modify the hook list, the critical section around the hook
list needs to be claimed. If cntHookCalls is non-zero, then these services block
until all pending hook calls complete. Threads are blocked waiting for this critical
section when claimHookerList is non-zero. The blocked threads are awakened by
the call IFSMgC WakeUp(&claimHookerList), once cntHookCalls drops to zero.

FSDs as Providers
The idea of a "provider" stems from the WOSA (Windows Open System Architec
ture) concept of a SP and SPI, a service provider and service provider interface.
IFSMgr and its file system drivers are part of the WOSA-SPI layer, and thus are
considered service providers. During the Device Init stage of system initialization,
each FSD registers with IFSMgr using one of the registration services and thereby
establishes its provider ID. There are four types of providers that an FSD can
supply and these have distinct registration functions: IFSMgr_RegisterMount for
local drives, IFSMgr_RegisterNet for remote drives, IFSMgcRegisterCFSD for char
acter devices, and IFSMgr_RegisterMaiISlot for mailslots. Each of these registration
functions returns a provider ID on success.

IFSMgr_RegisterMount allows up to ten providers to register with it. A FSD
supplies its type when it registers, either NORMAL]SD or DEFAULT_FSD. Only
one ·FSD is allowed to register with type DEFAULT]SD; this FSD is used to
mount a drive if all other FSDs refuse to mount it. The provider IDs which IFSMgC
RegisterMount returns are in the range 0 through 9, with 0 reserved for a
DEFAULT_FSD. On each call to IFSMgcRegisterMount, the supplied FSD function
address is added to a table (MountVolTable [n Later, when a local disk volume
is mounted, this table will be consulted to find a potential FS_MountVolume
function.

IFSMgcRegisterNet allows up to eight providers to register with it. A FSD
supplies its Net ID when it registers. The provider IDs which IFSMgr_RegisterNet
returns are in the range OAh through llh. On each call to IFSMgr_RegisterNet, the
supplied FSD function address is added to a table (ConnectNetTable []) and the
supplied Net ID is' also added to another parallel table (NetIDs [D. Later, when a
connection is attempted, the ConnectNetTable table will be consulted to find a
potential FS_ConnectNetResource function.

Enumerating Shell Resources and /handles

Enumerating Shell Resources
and jhandles

121

To make it easy to examine the system shell resources and fhandles, a couple of
windows utilities are included on the companion diskette. sr.exe displays shell
resource structures for all drives reported by a call to the Win32 API GetLogicaID
rives. Figure 6-4 displays some sample output.

G
K

Figure 6-4. SR sample output

c0011de8
cOOHde8 + 0000(1'541
cOO1 Ide8 [VFA T[01 1 + OOOOOF541
c001 IdeS [VFAT[01 1 + 0000OF541
cOfd7554 (CDFS[01j. + 000009441
c00379dO [VREDIR[01 1 + 00004S1 S)

Each colum,n in Figure 6-4 corresponds to a member of the shres structure (see

Appendix C for details) with the exception of the Drive and Sr Address columns
which contain the drive letter and the address of each line's shres structure,
respectively. The shell resource structures are arranged in a singly linked list; the
links are shown in the sr_next column. The lists for local drives and remote drives
are kept separately. ThesrJunc column contains the address of this drive's
volume-based function table .. The address is decomposed .into the FSD's name,
segment, and address, The. system that this output was produced on has a floppy
drive A which has not had a floppy inserted since system startup. Until it sees

some media inserted, the default FSD is used: VDEF. The other local drives all use
VFAT except for a CD-ROM which is using the CDFS driver. A connection to
\ \SERTlER\SERVER_C is mapped to drive K and it is represehted by the MSNet
redirector VREDIR. Note that each of these FSDs has a unique provider ID given
in the sr_Proid column .

. If you run StanDisk on a volume and at the same time capture output from
sr.exe, you will see results like those in Figure6~5. You may refresh the SR
display while the ScanDisk operation proceeds; by selecting Refresh from the
Operations menu.Jn this case, ScanDisk is being executed on drive D. The sr_
LockType column shows the type of volume lock currently active, with 0 corre
sponding to none, 1 to a level 0, 2 to a level 1,3 to a level 2, etc. It is interesting
that the scfunc column hOW indicates that IFSMgr owns the volume function
table for this drive; the original function table address is stored in sr_LockSav
Func. This reflects the fact that IFSMgr takes over the function tables for drives
that are volume locked.

122 Chapter 6: Dispatching File System Requests

cOOl fdeS [VFAT(Ol) + OOOOOF54)
cOOl eSec (fFSMGR(Ol) + 0000SA08)

E . cOOlfde8 [VFAT(Ol) + 00000F54)
F cOOl.fde8 [VFAT(Ol) + 00000F54)
G cOfd7554 (COFS(Ol) + 00000944)
K c00379dO [VRmiR(Ol) + 00004818)

Figure 6-5. SR output with volume lock

To retrieve the shell resource, sr,exe relies upon a dynamically-loaded VxD,
volsr.vxd.This virtual driver supports a DeviceIoControl interface. A shell
resource structure is requested from VOLSR by supplying it with a drive number
and a buffer in which to copy the structure. VOLSR retrieves the shres by
installing a file system hook and the calling IFSMgCRingO_FileIO to get the drive's
the root directory attributes. When the FS_FileAttributes call is detected at the
hook, the shres structure passed in via ift-psr member of the ifsreq structure is
copied. When the IFSMgCRingO_FileIO call completes, the file system hook is
removed and the results are returned to SR.

Another windows utility, jb.exe, displays fhandle structures for currently open
files on a specified volume. Each column in Figure 6-6 corresponds to a member
of the fhandle structure (see AppendixC for details) with the exception of the
sjn, Pathname, and pfb columns which contain the system file number, the associ
ated pathname, and the address of each line's fhandie structure, respectively.
You may select a different drive or refresh the FH display by selecting the corre
sponding option from the Operations menu.

IWiNDOWSISYSfEMIUSER.EXE 0001 0080 021. OOOnB1d
IWiNDOWSIFONfSIVGAOEM.FON 01ffilbSO 0001 0080 0105107ll clO!ia48 0210 OOOnB1d
IWiNDOWSIFONTSIVGARKFON cltaa48 0001 0080 0105lbSO 01051930 0217 OOOnB1d
·IWlNDOWSIFONTSIVGA5YS.FON 01051930 0001 0080 cl05fa4S 01051614 0216 00011B1d
IWiNDOWS\5YSTEMIADVAPl32.DLL 01D51G14 0001 0000 cl05f9lJ cl05f4fc 0215 000n6Gd
IWiNDOWSISYSTEMIGDI3~DLL clCfl4fc 0001 0000 01051614 0105f3d4 0214 000116Gd
IWiNDOWSISYSTEMIGDI.EXE 0105f3d4 0001 0080 01051410 cl05t2bc 0213 00011B1d
IWiNDOWSI5YSTEMICOMM.DRV cl05f2bc 0001 0080 010513d4 cl05f1a4 0212 00011B1d
IWiNDOWS15Y5TEMIMMSOUND.DRV cl05fh4 0001 0000 010512bo cl05fOOc 0211 00011B1d
IWiNDOWSISYSTEMIDIBENG.DLL clOffi1Bc 0001 0000 cl05f1a4 01050174 0210· 0001181d
IWiNDOWSI5Y5TEMIDMSSTL3D.DRV 0105e174 0001 0000 01051000 cl05ee5c Il2!I 0001181d
IWiNDOWSISYSTEMIMOUSE.DRV . cl05ee5c 0001 0080 01050174 cOld04do 020d OoonB1d
IWINDOWSISYSTEMIKEYBDARD.DRV oOfd04do 0001 0080 cl05ee5c cOlde538 02D0 00011e1d
IWINDOWSISYSTEM\5YSTEM.DRV oOfde538 0001 0080 c(fd14dc cOldOOoD 02(1, OOOn81d
IWiNDOWSISYSTEMIUNICODE.NLS cOldOOoO 0001 00.0 01Jde538 01039010 0200 0001181d
IWINDOWS15Y5TEMILOCALE.NLS 01039010 0001 00.0 oOfdlOoO 01039oc:4 0200 00On81d
IWiNDOWSI5Y5TEMICP _ 437.NLS cl039ac4 0001 00.0 01039010 01039188 0204 0001181d
IWiNDOWS15Y5TEMICP_1252.NLS 01039188 00.0 010390<4 cOld57d4 0202 OOOn81d
IWINDOWSISYSTEMIKERNEL32.DLL oOfd57d4 00.0 01039100 00000000 000n81d

Figure 6-6. Sample PH Output

Enumerating Shell Resources and jbandles 123

The first few entries of the list of files open on a system drive (drive C) are shown
in Figure 6-6. The numbers in the sfn column appear to have gaps in the
sequence. In some cases this is because the file was opened as a memory
mapped file. A memory-mapped has two handles refer to it, the initial fhandle

used to open it (fh_sfn) and a duplicate handle used for .the memory-mapping (fh
mmsfn).

To retrieve a list of open files on a volume, jh.exe relies upon a dynamically
loaded VxD, filejh.vxd. This virtual driver supports a DeviceIoControl interface. A
list of open files is requested of FILEFH by supplying it with volume number and
a buffer in which to copy the fhandle structures and associated file names.
FILEFH creates the list by first installing a file system hook and then requesting a
level 1 volume lock on the specified volume. One of the activities associated with
acquiring a level 1 lock is to build a list of open files on the volume. To do this,
the volume locking function (interrupt 2Ih, function 440dh, subfunction 084ah)
calls FS_EnumerateHandle repeatedly to get the names of all the open handles
associated with the volume. As each FS_EnumerateHandle call comes in, the ifs
pjh and ir_sfn members of the ifsreq structure are copied. Mter the FS_Enumer-

. ateHandle call completes, the filename is also copied. When the volume lock
function completes, the volume is immediately unlocked and the file system hook
is removed. One advantage of using a volume lock to get the file list is that it
creates a snapshot at one instant in time.

Monitoring File
Activity

IFSMgr provides at least three methods for hooking file system notifications. The
most general technique is to install a file system API hook. This method allows an
application to see much of the ifsreq packet traffic that passes through to file
system drivers. This method can also change the way a request is handled, and so
can serve to override the behavior of a FSD. Another source of notifications can
be tapped by installing a hook (using Hook_Device_Service) on the service
IFSMgcNetFunction. IFSMgr makes various internal broadcasts through this func
tion, such as when a drive appears in a system or when a drive goes away. This
service is also called when a "hooked" Int 21h function is called. Here, the term
"hooked" means that a preamble has been installed for an Int 21h function which
is greater than 71h. Some Int 2fh functions also generate events here. Yet another
source of notifications can be received by way of IFSMgcParsePath (or IFSMgC
FSDParsePath) to allow a FSD installed path checking routine to get a first crack at
parsing a path. This path checking routine is installed with the service IFSMgC
SetPathHook.

The File System API Hook
One of the most popular IFS features is the file system hook. This hook provides
functionality similar to an Int 21h hook under DOS and Windows 3.x. Unlike its
DOS/Windows 3.x counterpart, there are a variety of APls (besides Int 21h) that
ultimately pass through a file system hook. The hook gets called whenever the
dispatch handler for a particular function calls into a file system driver via CalC
FSD. Unlike the Int 21h hook, the file system hook will only see file-related calls
so it is not appropriate for every need.

A file system API hook is installed using the IFSMgr service IFSMgcInstallFileSys
temApiHook. Once it is installed, it is not permanent, it can be removed using the

124

The File System API Hook 125

companion service IFSMgcRemoveFileSystemApiHook. This makes it easy for a
dynamic VxD to install and remove a file system hook as an adjunct to a Win32
application. However, we will· find it useful to install a file system hook during
Device Init so we can track events during system startup.

Under what conditions is the file system hook called?· Generally, any file system
request, either local or remote, will pass through the installed hook function. The
hook will also see activity on any character FSDs, such as LPTn and PRN of
spooler.vxd and PIPESTDX of vcond.vxd. IFSMgcRingOFileIO and IFSMgcServer
DOSCall services are also routed· through the file system hook.

Having said that, you should be aware of some exceptions. IFSMgr does not
always use Call_FSD as the gateway into file system drivers. For instance, there
are circumstances where FS_MountVolume is called directly using the addresses in
MountVolTable[]. Similarly, FS_ConnectNetResource sometimes is called
directly through ConnectNetTable [] .

Even if Call_FSD is used, recall that one argument to that function controls
whether a file hook will be called when a volume lock is taken. So, if a volume
lock is in place you won't see the· FSD calls on that volume, Another peculiarity
occurs with the functions that support file change notifications. The FindFirstFile
ChangeNotification call does not go through the file system hook although the
FindNextChangeNotification and FindCloseChangeNotification functions do.
Although, some "change" notification functions do go through the file system
hook, they do not get serviced by a file system driver; rather they are routed back
into IFSMgr.

A file system hook has this interface:

intFileSystemApiHookFunction(pIFSFunc FSDFnAddr,
int FunctionNum,int Drive,
int ResourceFlags, int CodePage,
pioreq pir)

We .saw this function called in the routine Call_FSD in the previous chapter.

The first argument, FSDFnAddr, is simply the address of the function to call in the
FSD. It corresponds to one of the addresses in the volume-based or handle-based
tables (see Table 6-6 and Table 6-7). Most commonly this address resides in
another VxD, although there are. cases· where. this address will reside in IFSMgr
(the change notification functions and the mailslot functions).

The value of the FunctionNum argument tells us which FSD function is being
called. There is a mapping between the set of FunctionNum values and the
entries in the FSD's volume-based and handle-based function tables. Table 7-1,
later in the chapter, shows this relationship. There are two exceptions to this nile:
IFSFN_FCNNEXT and IFSFN_FCNCLOSE do nothaveFSD functions· corresponding

126 Chapter 7: Monitoring File Activity

to them. This is because the support for file change notifications is· done entirely
within IFSMgr without the participation of FSDs. Still, these functions are sent
down the file system hook before being processed by IFSMgr, and IFSMgr has an
internal handle-based function table which is referenced by the fhandle structure
which FindFirstChangeNotification creates. FindFirstChangeNotification is not sent
down to the file system hook, so there is no FunctionNum corresponding to it.

The third argument, Drive, is the I-based volume· number to which the function
refers. If the volume resource is a UNC name, this argument has the value -1.
There are situations where Drive can have the value O. This may happen when
the target resource is a character FSD. In general, you can think of Drive as corre
sponding to ir_rh, the resource handle, and ifs-psr, the address of the shell
resource structure.

The fourth argument, ResourceFlags, is a collection of four bits extracted from the
shell resource that indicate whether the resource is a character FSD, whether it is
local, whether it is remote, and whether it is represented by aUNC name.

The CodePage argument indicates which of the ANSI or OEM code page character
sets should be used with the function. The corresponding manifest constants are
BCS_ WANSI and BCS_ OEM.

The last argument, pir, is a pointer to the ioreq or ifsreq structure. This is the
only argument passed to the FSD. The other arguments here are provided as a
convenience to the file hook.

So what can a file system hook do when it gets called? Here is what Microsoft
says, in DOS/Win32 Installable File System Specification, p. 70:

The hooker gets control before the FSD is called to perform the function and it
can do anything it wants. Hookers can do one of four things when they get called
on a hooked call:

Ignore the call and chain on to the previous hooker in the hook chain.

Process the call and return directly to the IFS manager ..

Change the call or make multiple calls to the FSD directly, and then return to the
IFS manager.

It can call down the chain and do some processing on the way back.

BaSically, the hooker has complete control over how it wants to process the call.

From this description it would appear that anything is possible in a hook func
tion. The documentation does not elaborate on how to go about making "multiple
calls to the FSD directly." It does hint that:

The preferred method for hookers to perform other functions while on a hooked
call is to use the ring-O APIs. It is usually quite safe to issue a ring-O API call while
on a file system API hook; the IPS manager is re-entrant.

The File System API Hook 127

These statements bear a closer examination. Re-entrancy comes into play in at
least four possible ways:

• A thread executing a dispatch routine is blocked waiting for results. While it
is blocked other threads may continue to execute within the dispatch routines.

• A thread may deliberately re-enter the dispatch point by calling a ring-O API
such as IFSMgcRingO_FileIO or IFSMgcServerDOSCall from a file system API
hook.

• While executing a dispatch function, a page fault occurs as part of normal sys
tem paging activity; the file system may be re-entered to read-in or write-out
pages.

• If a thread is executing in a dispatch routine and a thread switch occurs
which causes the newly scheduled thread to also execute a dispatch routine.

By "ring-O API call" one would have to consider that both IFSMgcRingO_FileIO
and IFSMgcServerDOSCall are fair game. An equally attractive alternative is to
perform a direct call into the FSD without performing re-entrant calls to the
dispatch point. This requires that we use our knowledge of undocumented fields
in the ifsreq structure, namely ifs_psr and ifs-P/h, to access the volume-based
and handle-based function tables. It is clear that this is what is implied in the state
ment "make multiple calls to the FSD directly." We'll work through a few
examples to give you a feel for these different approaches.

FSHook

FSHook is a file system API hook that reports all FSD calls to MultiMon for
display. Its predecessor, FILEMON, was the basis for an article on monitoring file
system activity in Windows 95 that appeared in what was then called Windows/
DOS Developer's Journal ("Monitoring Windows 95 File System Activity in Ring 0,"
July 1995; now Windows Developer's JournaD. The file monitor presented here is
much improved. It is configurable through MultiMon's filter settings; it spools its
output to a file for later display and the spooler file is accessed using ring-O APIs.
These changes eliminate the buffer overrun problems that FILEMON had. FSHook
output can be combined with other monitor output to gain a multidimensional
picture of system activity.

FSHook displays one line of output for each FSD call. Each FSD call is identified
by a function number (see Table 7-1 for a list of possible values). Output from
FSHook tends to be rather lengthy if all functions are included, so usually it helps
to filter out Read, Write, and Seek functions. Figure 7-1 contains a trace fragment
that was collected during the system's response to a right mouse-button click on
the icon for drive A, when the drive did not contain a floppy diskette. The first
column, which contains "Explorer," is the process which was executing when the

128 Chapter 7: Monitoring File Activity

call was made. fsh is an identifier for file system hook entries in the trace. The
next column contains the name of the operation; here we see FS_MountVolume
for IFSFN_CONNECT, FS_Ioctl16Drive for IFSFN_IOCTL16DRIVE, and FS_FileAt
tribs for IFSFN_FILEATTRIB. The dispatch function (ifs_func) associated with an
operation is shown in parentheses. The Fiagsl column shows the settings for ifs_
nflags and the ResourceFlags passed in to the file hook function. For the FS_
MountVolume entries, if.s_func and if.s_njlags are both 0, indicating that these
FSD calls did not directly originate from a dispatch call; rather, they were "spun
off' to bring the volume online. For the FS_FileAttributes entries we see the
dispatch function 43h, which corresponds to the Int 2Ih function number for
getting or setting file attributes. The ifs_njlags indicate two conditions accompany
this function. It is a long filename call (L) and it uses extended handles (x), i.e.,
this was Int 2Ih function 7I43h. The first five characters in the Fiagsl column are
a sequence of 5 letters, eclnu. An e indicates the call reported an error, a c indi
cates the call is to a character FSD, an 1 indicates the call is to a local FSD, an n
indicates the call is to a network FSD, and a u indicates that the remote volume is
referenced by an UNC name. From this we see that all of the FS_MountVolume
function calls for drive A have failed. The Device column gives the name of the
FSD which was called. Here we see an attempt to mount drive A through VFAT,
but that fails. The next available local FSD is VDEF, the default FSD. A mount is
attempted through its FS_MountVolume, and it also fails. If there were additional
local FSDs in the system, they would be called before VDEF. Finally, we see the
call to FS_FileAttributes getting passed to VDEF and it fails. The Gt Signifies get
attributes and "A:" is the path for which the attributes are requested.

Table 7-1. FSD Function Numbers

FunctionNum FSD Function IFS Specification API

IFSFN_READ (0) hCread FS_ReadFile

IFSFN_ WRITE (1) hCwrite FS_ WriteFile

IFSFNJINDNEXT (2) hCread FS_FindNextFile

IFSFNJCNNEXT (3) hCread

IFSFN_SEEK (10) hmjunc[HM_SEEK] FS_FileSeek

IFSFN_ CLOSE (11) hmjunc[HM_ CLOSE] FS_Close

IFSFN_COMMIT (12) hmjunc[HM_COMM!TI FS_CommitFile

IFSFN_FILELOCKS (13) hmjunc[HM_FILELOCKS] FS_LockFile

IFSFN_FILETIMES (14) hmjunc[HM_FILETIMES] FS_FileDateTime

IFSFN_PIPEREQUEST (15) hmjunc[HM]IPEREQUEST] FS_NamedPipeRequest

IFSFN_HANDLEINFO (16) hm_func[HM_HANDLEINFO] FS_NetHandleInfo

IFSFN_ENUMHANDLE (17) hmjunc[HM""ENUMHANDLE] FS_EnurnerateHandle

IFSFNJINDCLOSE (18) hmjunc[HM_ CLOSE] FS_FindClose

The File System API Hook

Table 7-1. FSD Function Numbers (continued)

FunctionNum

IFSFN]CNCLOSE (19)

IFSFN_CONNECT (30)

FSD Function

hmjunc[HM_CLOSEl

MountVolTable[J,
NetConnectTable[l, ...

IFSFN_DELETE (31)

IFSFN_DIR (32)

IFSFN]ILEATTRIB (33)

IFSFN]LUSH (34)

IFSFN_GETDISKINFO (35)

IFSFN_OPEN (36)

IFSFN_RENAME (37)

IFSFN_SEARCH (38)

IFSFN_QUERY (39)

IFSFN_DISCONNECT (40)

vfnjunc[VFN_DELETEl

vfnjunc[VFN_DIRl

vfnjunc[VFN]ILEATTRIBl

vfnjunc[VFN_FLUSHl

vfnjunc[VFN_GETDISKINFOl

vfnjunc[VFN_ OPENl

vfnjunc[VFN_RENAMEl

vfnjunc[VFN_SEARCHl

vfnjunc[VFN_QUERYl

vfnjunc[VFN_DISCONNEC11

IFSFN_UNCPIPEREQ (41) vfnjunc[VFN_UNCPIPEREQl

IFSFN_IOCTL16DRlVE (42) vfnjunc[VFN_
IOCTL16DRlVEl

IFSFN_GETDISKPARMS (43) vfnjunc[VFN_GETDIS-
KPARMSl

IFSFN]INDOPEN (44) vfn_func[VFN_FINDOPENl

IFSFN_DASDIO (45) vfn_func[VFN_DASDIOl

E~plorer Ish FSJoctl16Drive (440d) e_ cLnu_ slxrmwo,ll, VDEF
Explorer Ish FSJileAttributes (43) e_cLnu_ sl.Xrmwoa VFAT

Explorer fsh FS_MountVolume (DO) E_ clnu_slxrmwoa VDEF
Explorer fsh FSJoctl16Drive (4408) e_ cLnu_ sD<rmwoa VDEF
Explorer fsh FS_MountVolume {~O) E_clnu_slxrmwoa VFAT
Explorer fsh FS_MountVolume {~O) E_ clnu_ slxrmwoa VDEF
Explorer fsh FS JileAttributes (43) E_cLnu_sl.Xrmwoa VDEF

Explorer fsh FS_MountVolume {~O) E_ clnu_ slxrmwoa VFAT
Explorer fsh FS_MountVolume (00) E_ clnu_ slxrmwoa VDEF
Explorer fsh FS JileAttributes (43) E_ cLnu_ sl.Xrmwoa VDEF

Explorer fsh FS JileAttributes (43) e_ cLnu_ sl.Xrmwoa VFAT

Figure 7-1. MultiMon/FSHook sample output.

129

IFS Specification API

FS_MountVolume, FS_
ConnecdNetResource

FS_DeleteFile

FS_Dir

FS_FileAttributes

FS_FlushVolume

FS_ GetDiskInfo

FS_OpenFile

FS_RenameFile

FS_SearchFile

FS_~ueryResourceInfo

FS_DisconnectRe
source

FS_NamedPipeUNCRe
quest

FS_Ioctl16Drive

FS_ GetDiskParms

FS_FindFirstFile

FS_DirectDiskIO

drive: A
Ilt

C:\WIN ...
drive: A m
drive: A
drive: A m
drive: A m

Ilt
A:
drive: A m
drive: A m

Ilt
A:

Ilt
C:\WIN ...

130 Chapter 7: Monitoring File Activity

Figure 7-2 shows another sample fragment. Here we see a sequence of FS_Read
File calls on a local volume supported by the VFAT FSD. For FS_ReadFile and FS_
WriteFile functions, the FSD name is followed by system file number, some func
tion arguments, and another set of flags in the Flags2 column. The possible
characters in the Flags2 column are msn, where an m indicates a memory-mapped
file access, an s indicates a swap file access, and an n indicates that caching
should not be used on the call. What is significant about the calls in this sample is
that they are reads from the paging file and they all have a system file number of
200h, the base value for the range of extended file handles. Also notice the value
of the dispatch function (d6h) and the R flag under Flags1. These indicate that the
read originated as an IFSMgCRingO_FileIO call.

Figure 7-2. A second MultiMon/FSHook sample fragment

For a complete reference to the meanings of the various fields in FSHook output,
see Appendix B, MultiMon: Monitor Reference.

To ease implementation of FSHook (and other samples), all of the IFSMgr services
have been wrapped as C-callable routines and made available through
ifswraps.clb. (For more information see Appendix D, IFS Development Aids.)

The simplest scenario for installing a file system hook would start with a call to
IFSMgcInstallFileSystemApiHook during Device Init phase. This function takes the
address of the hook function to be installed and returns the address of the
previous hook function you chain onto. Example 7-1 shows the simplest possible
hook function, where ppPrevHook is a pointer to the previous hook function. It
simply calls the previous hook function and returns.

Example 7-1. Simplest File System Hook

int __ cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

return (*(*ppPrevHook)) (pfn, fn, drv, res, cp, pir);

In response to System VM Terminate, your driver would remove this hook by
calling IFSMgcRemoveFileSystemApiHook and passing it the address of your file
hook routine.

The FileHook function used by FSHook examines the function number to deter
mine the type of function call and fills in an event structure describing the
function call. When the call into the previous hook function returns, the error
status and sometimes other values are retrieved and added to the event structure

The File System API Hook 131

before it is sent to MultiMon. FSHook uses a passive hook; it doesn't attempt to
modify the call or to make additional calls into the FSD. To see how one might
make additional calls into the FSD, let's look at some examples.

FSHQuery

FSHQuery demonstrates how to "piggyback" an additional call to a FSD whenever
a FS_DeleteFile is attempted. The piggybacked call is a FS_QueryResourceInfo,
the equivalent of a GetVolumeInformation Win32 call for local drives or a WNet
GetConnection for a remote drive. The code for FSHQuery's file system hook
function is shown in Example 7-2. This is a stand-alone driver that is installed by
making an entry in the system.ini file. To see its output you need to execute it
with a kernel debugger (Winlce or WDEB386).

Example 7-2. FSHQuery: FileSystem Hook

int __ cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

II Look for a volume-based FS_DeleteFile call,
if (fn == IFSFN_DELETE) {

ifsreq* pifs:
pIFSFunc pQueryFunc:

II Call-down into the FSD using a modified copy
II of the ifsreq passed in.
pifs = IFSMgr_GetHeap(sizeof(ifsreq)):
if (pifs != NULL) {

memcpy(pifs, pir, sizeof(ifsreq)):
II Get Level 0 Information if we are dealing
II with a Network Resource
if (res & IFSFH_RES_NETWORK) {

_QWORD qw:
ParsedPath* pUniResource:
char* pszName:
pszName = IFSMgr_GetHeap(MAX_PATH):
if (pszName != NULL) {

pUniResource = IFSMgr_GetHeap(1024):
pifs->ir_options = 0; II Level 0
pifs->ir-ppath = (DWORD)pUniResource:
pQueryFunc = pifs->ifs-psr->sr_func->vfn_func[VFN_QUERY]
(*(*ppPrevHook)) (pQueryFunc, IFSFN_QUERY, drv, res,

cp, (pioreq)pifs):
memset(pszName, 0, MAX_PATH);
qw UniToBCSPath(pszName, pUniResource->pp_elements,

MAX_PATH, cp);
if qw.ddLower)

Debug_Printf("Query level 0, drive %d resource name %s\n",
drv, pszName):

IFSMgr_RetHeap(pUniResource):
}

132 Chapter 7: Monitoring File Activity

Example 7-2. FSHQuery: File System Hook (continued)

IFSMgr_RetHeap(pszName);
}

II Get Level 2 Information if we are dealing
II with a Local Resource
else {

char szFileSystemName[32];
pifs->ifs_ir.ir_options = 2; II Level 2
pifs->ifs_ir.ir_length = sizeof(szFileSystemName);
pifs->ifs_ir.ir_data = (DWORD)szFileSystemName;
pQueryFunc = pifs->ifs-psr->sr_func->vfn_func[VFN_QUERY];
(*(*ppPrevHook» (pQueryFunc, IFSFN_QUERY, drv, res,

cp, (pioreq)pifs);
Debug_Printf ("Query level 2, drive = %d file system = %s\n",

drv, szFileSystemName);
Debug_Printf(" maxpath = %d, maxcomp = %d\n",

pifs->ifs_ir.ir_length » 16,
pifs->ifs_ir.ir_length & Oxffff);

Debug_Printf (" flags = %04x, cache block size %d\n",
pifs->ifs_ir.ir_options, pifs->ifs_ir.ir-pos);

IFSMgr_RetHeap(pirx);
}

return (*(*ppPrevHook» (pfn, fn, drv, res, cp, pir);

The general approach is to done the ifsreq packet that is used by the FS_Delete
File call. This gives us a painless way to get the ir-pid, ir_user, ir_rh, ifs-psr, ifs_
VMHandle, and ifs_PV fields. Some of the remaining fields will require initializa
tion for the FS_QueryResourceInfo call. Specifically, it is necessary to set the ir_
options member to the "query level," level 2 for local resources and level 0 for
remote resources. If it is a level 2 query, we need to provide a buffer to hold the
returned file system name string, in ir_data, with the length of the buffer given by
ir_length. On the other hand, for a level 0 query, we just provide a pointer, in ir_
ppath, to a buffer for the returned ParsedPath structure which represents the
name of the remote resource.

Several of the fields require buffers-one to contain the cloned ifsreq, one to
contain a ParsedPath structure, etc. You'll notice that _HeapAllocate is not used
here, but instead IFSMgr's heap routines: IFSMgcGetHeap and IFSMgcRetHeap.
IFSMgr creates its heap in pages of locked system memory. There is a main heap
and a ':spare heap"; the latter is allocated prior to entering the dispatch point by a
call to IFSMgcFillHeapSpare. The advantage of using the IFSMgcGetHeap routine
is that for requests less than a page in size, it will not trigger paging activity. This
is a requirement for file hooks and FSDs that are accessing the swap file or a

The File System API Hook 133

memory-mapped file. IFSMgr's heap routines avoid paging by returning pieces of
its pre-allocated locked heap. (See the section entitled "Heap Management" in
Chapter 12, A Survey of IFSMgr Services.)

In Example 7-2, the actual call into the FSD occurs at the following lines:

pQueryFunc = pifs->ifs-psr->sr~func->vfn~func[VFN~QUERY1;
(*(*ppPrevHook)) (pQueryFunc, IFSFN~QUERY, drv, res, cp, (pioreq)pifs
) ;

The variable pifs is a pointer to the ifsreq structure, which is described in
Appendix C, IFSMgr Data Structures. Its ir -Psr member is a pointer to the shell
resource structure for the volume which is being queried. The declaration of the
shell resource structure is also given in Appendix C. Its srJunc member is a
pointer to the volume-based function table (see Table 6-6). The ifnJunc[VFN~
QUERY} member gives us the FSD's address for the FS~QueryResourceInfo func
tion. The address of this function is then passed to the previous hooker function,
thereby giving downstream file hooks an opportunity to see the request. When
this call returns, the results are stored in the ifsreq structure. The member pifs->
ifs~ir.ir_error is zero if the call succeeded and a non-zero error code otherwise.

Note that the res argument to the FileHook function distinguishes a remote from a
local resource call by the bits IFSFH_RES_NETWORK and IFSFH_RES_LOCAL. If
the resource flags indicate a remote resource, then a level 0 query is performed;
otherwise a level 2 query is performed. On a level 0 query, a ParsedPath struc
ture is returned, which represents the name of the remote resource. To convert
this into a printable form, the IFSMgr service, UniToBCSPath, is used to convert it
into a byte-wide string in the selected character set (ANSI/OEM).

FSHEnum

FSHEnum demonstrates how to piggyback an additional call to a FSD whenever a
FS_CloseFile is attempted. The piggybacked call is a FS_EnumerateHandle,
subfunction ENUMH_ GETFILENAME. There is no Win32 or Int 21h call that
directly maps to this function. The closest ones are GetFileInformationByHandle
which maps to FS_EnumerateHandle, subfunction ENUMH_ GETFILEINFO, and Int
21h Function 440dh Subfunction os6dh, Enumerate Open Files. The code for
FSHEnum's file system hook function is shown in Example 7-3. This is a stand
alone driver that is installed by making an entry in the system.ini file. To see its
output you need to execute it with a kernel debugger (WinIce or WDEB3S6).

Here again we clone the ifsreq packet that, in this case, is used by the FS_Close
File call. This gives us a painless way to get the ir-Pid, ir_user, ir_rh, ir_sfn, ir_
jh, ifs-psr, ifs-pjh, ifs-VMHandle, and ifs_PV fields. Some of the remaining fields
will require initialization for the FS_EnumerateHandle call. Specifically, it is neces-

134 Chapter 7: Monitoring File Activity

sary to set the ir -flags member to ENUMH_ GETFILENAME to request the filename
for the given resource handle Cir_rh) and FSD file handle (ir.Jb). We also need to
provide a pointer, in ir_ppath, to a buffer for the returned ParsedPath structure
which represents the name of the file.

Example 7-3. FSHEnum: File System Hook

int __ cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

II Look for a handle-based FS_CloseFile call,
II but skip any character FSDs
if fn == IFSFN_CLOSE && ! (res & IFSFH_RES_CFSD)) {

II Call-down into the FSD using a modified copy
II of the ifsreq passed in.
_QWORD gyv;
ifsreq ifs;
pIFSFunch pEnumHandle;
ParsedPath* pUniPPath;
char* pszName;
pszName = IFSMgr_GetHeap(MAX_PATH);
if (pzName != NULL) {

pUniPPath = IFSMgr_GetHeap(1024);
if (pUniPPath != NULL) {

memcpy(&ifs, pir, sizeof(ifsreq));
ifs.ifs_ir.ir_flags = ENUMH_GETFILENAME;
ifs.ifs_ir.ir-ppath = (DWORD)pUnippath;
pEnumHandle = ifs.ifs-pfh->fh_hf.hf_misc->hm_func[HM_ENUMHANDLE);
(*(*ppPrevHook)) (pEnumHandle, IFSFN_ENUMHANDLE, drv, res,

cp, (pioreq) &ifs);
memset(pszName, 0, MAX_PATH);
gyv = UniToBCSPath(pszName, pUniPPath->pp_elements, MAX_PATH, cp);
if (gyv.ddLower) {

Debug_Printf{ "Closing file %s\n", pszName);
}

IFSMgr_RetHeap((void*)pUniPPath);
}

IFSMgr_RetHeap(pszName);
}

return (*(*ppPrevHook)) (pfn, fn, drv, res, cp, pir);

It is important to note that the filename is not stored by IFSMgr. It is the job of the
FSD to store this information for files which are opened on its drives. IFSMgr only
holds onto the FSD file handle and fhandle information. When an open occurs
the FSD receives a name in a standard canonicalized form (a ParsedPath).
Whether the drive accepts a particular name depends on its underlying filesystem.
So it makes sense that, given a SFN (System File Number), it would be necessary
to retrieve its name from its FSD.

The File System API Hook

In Example 7-3, the actual call into the FSD occurs at the following line:

pEnumHandle = ifs.ifs-pfh->fh_hf.hf_misc->hm_func[HM_ENUMHANDLEJ;
(*(*ppPrevHook)) (pEnumHandle , I FSFN_ENUMHANDLE, drv, res, cp,

(pioreq) &ifs);

135

The variable ifs is an ifsreq structure as described in Appendix C. Its ifs-Pfh
member is a pointer to the fhandle for the file which is being enumerated. The
declaration of the fhandle structure is also given in Appendix C. Its fh_hfhf
mise member is a pointer to the handle-based function table (see Table 6-7). The
hmJunc!HM_ENUMHANDLEl member gives us the FSD's address for the FS_
EnumerateHandle function. The address of this function is then passed to the
previous hooker function, thereby giving downstream file hooks an opportunity
to see the request. When this call returns, the filename is stored in the buffer
pointed to by ir-ppath. This is a ParsedPath structure, which represents the
canonicalized filename. To convert this into a printable form, the IFSMgr service,
UniToBCSPath, is used to convert it into a byte-wide string in the selected char
acter set (ANSI/OEM) of the current code page.

When I was testing this code with Build 950 of Windows 95, I found an inter
esting bug in VCOND, the virtual console device for Win32 console applications.
VCOND registers a character FSD with IFSMgr called PIPESTDX. This is used
when redirecting output from a console application, such as running NMAKE
from an editor and collecting its output to a file. FS_CloseFile is called on a
handle of this character FSD. The bug appears when attempting to call FS_Enumer
ateHandle for this handle-it will always crash the system. The problem occurs
because VCOND's handle-based function table does not contain a valid function
address for HM_ENUMHANDLE (it is always 00000001h). It should implement an
error handler if it doesn't support the function.

To work around this problem, you'll see the following code:

if (fn == IFSFN_CLOSE && ! (res & IFSFH_RES_CFSD)

This ignores FS_ CloseFile for character FSDs.

FSHAttr

For a final file system hook example, we'll use IFSMgcRingO_FileIO to create a re
entrant call into the dispatch point. We aren't able to take the FSHQuery or
FSHEnum examples and redo them using this ring-O API because they each use
FSD APIs that are not exposed through the ring-O interface. So in some cases, the
"direct call to FSD" approach is the only one viable.

FSHAttr demonstrates how to piggyback a ring-O call to Get File Attributes when
ever a FS_DeleteFile is attempted. The piggybacked call is a IFSMgr_RingO_FileIO,
subfunction RO_FlLEATTRIBUIES. This is equivalent to a Int 2Ih function 7I43h

136 Chapter 7: Monitoring File Activity

call. The code for FSHAttr's file system hook function is shown in Example 7-4.
This is a stand-alone driver that is installed by making an entry in the system.ini
file. To see its effect, you need to look at the trace output from FSHook after
performing some file deletes.

Example 7-4. FSHAttr: File System Hook

int _cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

II Look for a volume-based FS_DeleteFile call,
if (fn == IFSFN_DELETE && (res & IFSFH_RES_LOCAL))

short attr;

II Get file attributes for pathname
_QWORD qw;
char *pszName, *p;

p = pszName = IFSMgr_GetHeap(MAX_PATH);
if (pszName != NULL) {

memset(pszName, 0, MAX_PATH);
*p++ = '@' + drv;
*p++ = I: Ii
qw = UniToBCSPath(p, pir->ir-ppath->pp_elements, MAX_PATH, cp);
if (qw.ddLower) {

EREGS r;
int retc;
r.r_eax = RO_FILEATTRIBUTES I GET_ATTRIBUTES;
r.r_esi = (DWORD)pszName;
retc = IFSMgr_RingO_FileIO(&r);
attr= (retc==O) ? r.r_ecx : 0;
Debug_Printf("FSHATTR: %s attribs: %04x\n", pszName, attr);
}

IFSMgr_RetHeap(pszName);
}

return (*(*ppPrevHook» (pfn, fn, drv, res, cp, pir);

In this example, FS_DeleteFile is called with a complete pathname. We can
convert it from a ParsedPath structure to a byte-string for passage to the ring-O
API. The IFSMgcRingO_FileIO service wrapper provided by iJswraps.clb uses the
EREGS structure to pass values of register-based arguments. The FileAttributes
function requires that the following registers be loaded prior to invoking the
service:

AH = 43h, AL = OOh,
ESI = linear address of pathname.

On return, if carry is clear, then the attributes are in the ex register; if carry is set,
AX holds the error code.

The NetFunction Hook 137

There is an error in the IFS Specification regarding the arguments to this function.
It shows the calling parameters as AH=RO_FlLEA1TRIBllIES. This has the effect of
setting AH to 0 because RO_FlLEA1TRIBllIES is defined as Ox4300 in i]s.h.
Instead, you should set AX=RO_FILEA1TRIBllIES and then adjust AL to 0 for a get
and 1 for a set.

Figure 7-3 shows the FSHook trace when deleting c;\windows\desktop\test.txt
from Explorer. The FS_FileAttributes entry preceding the FS_DeleteFile shows that
the re-entrant ring-O API call goes through the file system hook.

Explorer Ish FS JileAttributes (43) Gt
C:\WINDOWS\DESKTOP\ TEST. TXT

Explorer Ish FS_DeleteFile (41)
C:\WINDOWS\DESKTOP\ TEST. TXT

Figure 7-3. MultiMoniFSHook output on delete

The NetFunction Hook
Another function which IFSMgr uses for notifications is IFSMgcNetFunction.
Unlike the file system hook, this service is used mostly by network redirectors
and other network components. This is not a service which is called but a service
which is intended to be hooked, using VMM's service Hook_Device_Service. On
the occurrence of various events, IFSMgr calls this service as a broadcast to all
hookers.

An IFSMgcNetFunction hook will receive four arguments on each call. These are
a pointer to an ifsreq structure appropriate for the call, a pointer to the client
registers structure, a provider identifier, and a flag indicating whether the call origi
nated from a Win32 API (see Example 7-5). All of the arguments actually
reference the contents of the ifsreq structure, i.e., pRegs is &(pir->i]s_crs), proId
is pir->ifs-proid, and flags is given by .the expression (pir->ifs_nflags & Ox04). A
NetFunction handler will need to examine the CliencAX value in the client regis
ters structure to determine the type of call. The calls can be grouped into three
different categories: IFSMgr broadcasts, dispatch handlers, and DeviceIoControl
handlers.

Example 7-5. Prototype/or IFSMgr_NetFunction

int IFSMgr_NetFunction(pioreq pir, PCRS pRegs, int prold, int flags);

Table 7-2 shows the function values for IFSMgr broadcasts. The first five entries in
the table correspond to events generated by IFSMgr. The function type is given by
the value of CliencAX in the client register structure. Functions 1 and 2 occur
when a drive (local or remote) appears or disappears from the system. When
these events are broadcast, the ifsreq structure contains the resource handle for

138 Chapter 7: Monitoring File Activity

the drive (irJh), the I-based drive letter (ir:...Jlags), and the provider ID for the
FSD which handles the drive (ir_auxl.aux_uD. Functions 3, 4 and S report events
for network printers. For these functions, proId contains the provider ID of the
printer handler, and ifsreq holds the resource handle (ir_rh) for the printer, a
buffer to contain a returned job ID (ir_data), or an index (0-8 for LPTl through
LPT9) to the printer (ir...Jlags). For each of these calls, the return value is stored to
the ir_error member of the ifsreq structure.

Table 7-2. NetFunction Broadcasts

Function Type ifsreq ProviderID Event Description

NF _DRIVEUSE(1) icrh, ir_flags, icauxl ANYPROID new drive appears
in system

NF _DRIVEUNUSE(2) icrh, icflags, icauxl ANYPROID drive goes away

NF _GETPRINTJOBID(3) icrh, icdata ID of printer IFSMgr needs a
handler print job ID from

FSD

NF _PRINTERUSE(4) icrh, icflags ID of printer Network printer is
handler attached

NF]RINTERUNUSE(5) icrh, iCflags ID of printer Network printer is
handler disconnected

NF]ROCEXIT(11 IDh) icpid ANYPROID process exits

The last entry in Table 7-2 corresponds to an lnt 2Fh function call and should be
lumped together with the dispatch handlers. DOSIWin32 Instal/able File System
Specification, p. 91, has this to say about NetFunctions:

This service is provided to export certain functions most of which are specific to
the network FSDs. These functions can come from a variety of sources: Int 21h
and int 2fh functions that the IFS hooks but does not support, Int 21h functions
that the IFS does not support that are hooked via IFSMgr_SetReqHook. ..

Several of the dispatch functions listed in Table 6-3 call into IFSMgcNetFunction.
These include dProcExit, dFunc5F, and dNetFunc. dProcExit corresponds to the
lnt 2fh call 111dh. Some other lnt 2fh functions are sent to dNetFunc: 1180h,
1181h (NF_NetSetUserName) , 1182h, 1184h, 118bh, 118ch, 118dh, and 118eh.
dFunc5F handles several lnt 21h functions in the range SfOOh through 5f53h.
Many of the functions in this range and all those greater than Sf54h are routed to
IFSMgcNetFunction. For some of these functions, IFSMgr does provide an imple
mentation (e.g., dProcExit) and the call to IFSMgcNetFunction is only another
form of broadcast. However, in most cases IFSMgr only goes as far as wiring the
functions up to the dispatcher so that a FSD can use a NetFunction hook to
provide an implementation.

The NetFunction Hook 139

Actually, IFSMgr takes this interface a step further by allowing some Int 21h func
tions to be attached to the dNetFunc dispatch function. This is done by installing
a preamble for the function using IFSMgcSetReqHook. We looked at preamble
functions back in Chapter 6, Dispatching File System Requests. There we concen
trated on the preambles which IFSMgr installs by default for Int 21h functions in
the range 00 through MAXDOSFUNC Here, we are interested in the Int 21h func
tions from MAXDOSFUNC+ 1 to FFh.

The preambie function decides whether it wishes to accept the Int 21h function
call. It "accepts" by returning with the carry flag cleared. For functions greater
than MAXDOSFUNG, an accepted request will be dispatched as command OxOOd4
(see Figure 6-1 and Example 6-1), which has dNetFunc as its handler. The
preamble function only decides whether it wants to accept the call; it is the
IFSMgcNetFunction hook which will actually look for the function call by exam
ining the ClienCAX register value. Unlike the broadcasts from IFSMgr, which
provide information, these calls to IFSMgcNetFunction are requests for a service.
This implies that if a FSD completes the request it should not pass the request
down the chain. Rather, it should return with the same value that it stuffed into ir_
error.

One additional source of calls into IFSMgcNetFunction come from IFSMgr's Devi
ceIoControl interface. In Chapter 4, several IOCTL Services were described. Two
of these, IFS_IOCTL_21 and IFS_IOCTL_2F, use the contents of the win32apireq
structure to fill the client register portion of an ifsreq packet. The remainder of
the packet is initialized and then, for functions of the 5fxxh series, are sent to
dFunc5f. Others are routed to the chain of IFSMgr_NetFunction hooks.

NetFunc

NetFunc is a IFSMgr_NetFunction hook that reports all calls to MultiMon for
display. NetFunc shows one line of output for each NetFunction call. Figure 7-4
shows a sample trace fragment that was collected while running a simple program
from DEBUG in a DOS box. The first column, which contains "VM2", indicates
the process was executing in a second VM (DOS box) when the call was made.
nfn is an identifier for NetFunction entries in the trace. The next column contains
the function number. 8000h corresponds to an Int 21h function that NetFunc has
installed. Function I11dh is recorded when DEBUG is terminated. The Args field
shows the values of the EDX and ESI registers. The four bytes that comprise EDX,
from most significant to least Significant, are: ifs_njlags, ifs_hjlag, ifs_dru, and ifs
June from the ifsreq structure; ESI contains the value of the provider ID passed
to the hook function. In Figure 7-4, we see interrupt 21h function 80h map to the
dispatcher function D4h and we see interrupt 2fh function ll1dh map to
dispatcher function 93h.

140 Chapter 7: Monitoring File Activity

EDX=010003d4 ESI=ffffffff
EDX=01 000393 E S I =ffffffff
E DX=01 000393 E S I =ffffffff

Figure 7-4. NetFunc sample output

The hook function installed by NetFunc is shown in Example 7-6. This function
does not use a stack frame so that the HOOK_PREAMBLE macro can insert extra
information to allow the hook to be removed. This also requires that the calling
arguments be moved into local variables so they can be referenced by C state
ments. There are two main sections here. In the clause beginning if
(bEnabled) "', the routine is checking if MultiMon has enabled monitoring of
IFSMgcNetFunction calls. If so, it prepares a notification structure and sends it.
The next interesting clause begins if (pRegs->Client_AX == Ox8000) This
checks if the function we are being called on is one that we have installed a
handler for. If it is, we just print out a message and return. Otherwise, we restore
the original stack frame and jump to the next hook function.

Example 7-6. IFSMgcNetFunction Hook

HOOKPROC MyNetFunction(pioreq pir, PCRS pRegs, int proId, int flags) {
PEBLOCK pBlk;
ifsreq -pifs;
struct Client_Word_Reg_Struc* -pRegs;
int -provider;
HOOK_PREAMBLE (pPrevNetFunc)
_asm push ebp
_asm mov ebp,esp
_asm sub esp, __ LOCAL_SIZE

_asm mov eax, [ebp+OchJ
_asm mov -pRegs, eax
_asm mov eax, [ebp+10hJ
_asm mov -provider, eax
_asm mov eax, [ebp+8J
_asm mov -pifs, eax

if (bEnabled) II monitor enabled?
if (Get_Cur_Thread_Handle() != pFmon2TCB) { II not MultiMon thread?

if (Directed_Sys_Controll(pFilemon2, REQUEST_EVENT_BLK, &pBlk)) {
FillDispBlk(pBlk, -pRegs->Client_AX, -provider,

-pifs->ifs_func, IFS_NETFUNC);
Directed_Sys_Controll(pFilemon2, EVENT_NOTIFY, pBlk);
}

else if (pBlk != NULL)
pBlk->type = OVR_ERROR;
Directed_Sys_Controll(pFilemon2, EVENT_NOTIFY, pBlk);
}

The NetFunction Hook

Example 7-6. IFSMgr_NetFunction Hook (continued)

II This is for handling our "bogus" Int 21h Function 8000h
if (-pRegs->Client_AX == Ox8000) {

Debug_Printf("Int 21h Function 8000h called\n");
_asm mov esp,ebp
_asm pop ebp
_asm ret

_asm mov esp,ebp
_asm pop ebp
II Chain to the next Net Function Hooker
_asm jmp dword ptr pPrevNetFunc

141

To show how IFSMgcNetFunction and IFSMgcSetReqHook work together,
select an lnt 2Ih function, which is unused by MS-DOS, say SOh. To get our lnt
2Ih Function SOOOh to create IFSMgcNetFunction calls, we install a preamble for
it as shown in Example 7-7. This code fragment is executed as part of Device Init.
The address of the previous preamble function is saved in pPrevPreamble so that
if we decide to reject the request, we can chain on to the previous preamble func
tion.

Example 7- 7. Installation of Preamble During Device Init

pPrevPreamble = IFSMgr_SetReqHook(Ox00210080, MyPreamble);

The actual preamble function, MyPreamble, is shown in Example 7-S. This func
tion simply clears the carry flag and returns. Some logic may be required to
decide whether to accept or reject the request.

Example 7-8. Preamble Functionfor Int 21h Function BOh

void __ declspec(naked) MyPreamble(void) {

#ifdef NOT_HOOKED
II '" If we don't handle it, call the next preamble
_asm jmp dword ptr pPrevPreamble
#else
II '" Do whatever checks are required
_asm clc II Clear carry if we accept the function call
_asm ret
#endif
}

To test our preamble and NetFunction hook we need to generate an lnt 2Ih Func
tion SOh call in either VS6 or protected mode. The simplest way to do this is to

142 Chapter 7: Monitoring File Activity

open a DOS box and run DEBUG. At the - prompt, type the following four-line
program:

-a100
movax,BOOO
int 21
mov aX,4cOO
int 21
-g

Then let it execute. To see the message "Int 21h Function 8000h called," a kernel
debugger will have to be running (WinIce or WDEB386). This little program also
creates the MultiMon trace shown in Figure 7-4 when the IFSMgr NetFunction
filter is enabled.

Hooking a Path
The last hook function that we'll take a look at, IFSMgcSetPathHook, is closely
tied to IFSMgr]arsePath (and IFSMgcFSDParsePath). Recall that IFSMgr]arse
Path is called for the volume-based FSD functions that receive a path string (in
ifsreq member ir_data). In other words, in preparation for calling FS_OpenFile,
FS_FileAttributes, etc., a call into IFSMgcParsePath is needed to set up the
ifsreq packet. By parsing the path string, this service fills in the ifs-psr member
of the ifsreq packet, as well a~ the ParsedPath structure required for ir-ppath.

IFSMgcSetPathHook has the following function prototype:

void* IFSMgr_SetPathHook(void* PathCheckFunc).

This service installs a path check routine and returns a previous path check
routine. The service is available at Device Init or Init Complete time. The path
check routine is called by IFSMgcParsePath if the input path does not contain
leading \, I, or d: characters. What does a path check routine do? Here is what
Microsoft has to say in DOSIWin32 Installable File System Specification, p. 90:

This service has been provided for FSDs to check for special path prefixes and
process them separately. The FSD can register a routine with the IFS manager that
is called every time a path is parsed. If this is a prefix the FSD wants to process, it
can claim it and the IFS manager will then call the FSD directly on the path-based
operation.

If the path check routine does not "claim" the path, then it needs to jump to the
previous path check routine. with all registers preserved. The last path check
routine in the chain is supplied by IFSMgr; it just sets the carry flag and returns.
This tells the parser to use default handling.

The inputs to and outputs from the path check function are summarized in Table
7-3. As you can see it is entirely register-based, so it needs to be written in inline

Hooking a Path 143

assembly code. We also see from the input arguments that by the time the path
check function is called, the ir_data member of ifsreq has been translated into
a Unicode string (ESI); however, the PathElements (EDI) have not been created
yet.

Table 7-3. Path Check Function Arguments and Returns

Input Output

ESI

EDI

EAX

EBX

EDX

ESI

EDI

Carry Flag

Description

Pointer to Unicode pathname

Destination buffer to hold PathElements

Length (pe_length) of last PathElement consumed and
stored to buffer at EDI

Pointer to Unicode string of the last PathElernent
consumed by the FSD

Provider ID of FSD that claimed the path

Pointer to Unicode pathname, next char to parse

Pointer to buffer holding zero or more consumed
PathElements

Return Clear-request is hooked; else jump to previous
path check routine

The path check routine can look for a specific signature at the beginning of the
string pointed to by ESI. This string can be a prefix which is stripped off from the
remainder, or it may convert the prefix into some other string or character and
store it to a PathElement structure in the buffer pointed to by EDI. The prefix
string may also just be copied to a PathElement. There is considerable flexibility
here: from one extreme, the string may be completely parsed into PathElements
before returning; to the other extreme, the entire path might be passed back and
no parsing is done, only the provider ID is set. If any of the string is passed back
to IFSMgcParsePath to complete parsing, then that portion must follow the
convention that elements are delimited by / or \ characters.

In any case, when IFSMgcParsePath returns, ir_ppath will contain a ParsedPath
structure comprised of the PathElements, some or perhaps all of which were
extracted by the path check routine. This canonicalized path is really private to
the FSD that has "claimed" it. The path becomes claimed because IFSMgcParse
Path modifies the contents of the ifsreq structure to earmark it for a specific
FSD. It does this by clearing ifs-psr, to indicate that there is no associated shell
resource and by setting ifs_proid to the FSD's provider ID. The net effect is that
instead of calling a volume-based function based on default parsing behavior, the
volume-based functions that correspond to the specified provider ID are used .

Anatomy of a File
System Driver

Over the course of this book we have progressively stripped away the layers of
the Windows 95 file system. We have seen that the programming APIs converge
upon a dispatch point that has the characteristics of an extended Int 21h interface.
Many of the dispatch functions require support from an underlying file system
driver. In the last chapter we used MultiMon, with the FSHook ddver, to monitor
the calls into the underlying FSDs. In this chapter we will shift our focus to the
file system drivers.

FSD to IFSMgr Linkage
A file system driver is a virtual device driver containing entry points which are
only accessed by IFSMgr (or a file system API hook). There are three stages by
which a FSD exposes these entry points. In the initial registration step, an FSD
passes the address of a FS_MountVolume or FS_ConnectNetResource entry point.
The next stage occurs when a file system resource is first used. IFSMgr determines
which FSD maps to the resource and then performs the "mount" or "connect"
operation by calling the entry point which was supplied during the registration
step. As a result of the mount or connect, IFSMgr is returned the FSD's table of
volume-based entry points. Amongst the entry points in this table, some provide
an "open" type operation. For instance, FS_OpenFile opens a file and FS_FindFirst
File opens a find context. When an open is performed, the FSD exposes its last
layer of entry points. In response to these calls, IFSMgr receives a handle and a
table of handle-based entry points. Table 8-1 illustrates these relationships for a
local FSD; the same relationships apply to remote and character FSDs.

144

FSDs Come in Three Flavors 145

Table 8-1. FSD/IFSMgr Linkage

File System Driver IFSMgr

Registration Pass address of
FS_MountVolume --t IFSMgr_RegisterMount

Volume Mounting FS_MountVolume ~ Mount call
returns volfl.IDC [J --t

File Open FS_OpenFile ~ Open call
returns hdlfl.IDC [J --t

FSDs Come in Three Flavors
Although all FSDs exhibit the linkage characteristics described above, three types
of FSDs are distinguished by IFSMgr: character, local, and remote.

Character FSDs

The term character originated in the UNIX world to distinguish block and char
acter devices. Block devices are characterized by data transfers of blocks of data
of a fixed size (usually the sector size), whereas character devices transfer data
byte-at-a-time in a serial fashion. This is also the meaning attached to character as
it applies to FSDs.

Character FSDs register with IFSMgr by calling the service IFSMgcRegisterCFSD.
The registering FSD passes the address of the FS_MountVolume entry point and a
pointer to an array of pointers to one or more device names. When a listed device
is first accessed, FS_MountVolume is called for its name. Each name registered is
separately mounted. Each successful mount creates a shell resource for the speci
fied device name.

Some examples of character FSDs include vcond.vxd and spooler.vxd. VCOND,
the virtual console driver, exposes a number of Win32 VxD services which are
used by KERNEL32 to provide support for Win32 console applications. Tucked
away inside this driver is a character FSD, which registers under the name
PIPESTDX. This device is opened by redirect. mod, which in turn is loaded by
KERNEL32, to enable redirection for certain kinds of console applications.
SPOOLER, the other example given, is a character FSD registered for the system
printer devices: LPTl through LPT9 and PRN.

Character FSDs are good candidates for modeling devices which transfer data a
byte at a time and which do not already have an existing driver class. It is the
lack of dependency on the I/O subsystem or network protocol stack that makes
this type of FSD most flexible.

146 Chapter 8: Anatomy of a File System Driver

Local FSDs

A local FSD provides support for local storage devices, such as floppy disk drives,
fixed disk drives, and CD-ROM drives.

Local FSDs register with IFSMgr by calling the service IFSMgcRegisterMount. The
registering FSD passes the address of its FS_MountVolume entry point. Local
storage devices are partitioned into volumes, and when a volume is first accessed,
FS_MountVolume is called on each local FSD until one recognizes the media and
claims it. This establishes a shell resource for the local device and the volume
based function table which provides linkage to IFSMgr.

The system registers one default local FSD through IFSMgcRegisterMount. When
IFSMgr searches for a local FSD to claim a volume, the search may fail. The
default local FSD is there to claim those volumes that other local FSDs do not
recognize. Some common situations where this would occur include an unfor
matted volume or a floppy drive without media inserted.

Some examples of local FSDs include vfat.vxd, cdfs.vxd and vdefvxd. VFAT is the
protected mode FAT file system driver that provides access to most floppy and
fixed media. CDFS is the protected mode ISO-9660 file system driver that provides
access to CD-ROM media. VDEF is the default local FSD (the source for vdefvxd
is given in the DDK).

Each storage device present in the system requires one or more hardware drivers
that fall under the umbrella of the I/O subsystem. These drivers hide the differ
ences in bus types and controller chip sets, and present a logically consistent
view of the various devices, to the file system drivers. Thus, local FSDs rely upon
the I/O subsystem services for their implementation. Local FSDs also conceal
knowledge of the disk layout for a specific file system. A local FSD just accepts
properly constructed filenames and returns handles through which logical opera
tions may be performed.

Remote FSDs

A remote FSD connects to a resource which is shared by a server. There are two
scenarios. In a peer-to-peer network, each system may be a client and a server
and the protocol stacks of the client and server match, layer for layer. In a
non-peer-to-peer network, a client PC system connects to a server host; there is
no peer server.

The remote FSD, which resides in a client machine, connects to the server
through some network medium and protocol. IFS requests on the client machine
are redirected by the remote FSD to the server. The shared resource can be a char
acter or block storage device.

FSD Mechanics 147

Remote FSDs register with IFSMgr by calling the service IFSMgcRegisterNet. The
registering FSD passes the address of its FS_ConnectNetResource entry point.
Dynamic connections to remote resources are made using the service IFSMgC
SetupConnection and broken by IFSMgr's internal function IoreqDerefConnection.
These services call FS_ConnectNetResource and FS_DisconnectResource, respec
tively. A connection is attempted when a UNC path is resolved to a remote server
and share. If the connection is mapped to a volume, then the connection persists
until the volume is explicitly unmapped. Each connection to a unique remote
server and share is represented by a shell resource.

To support the Windows 95 peer-to-peer networking, Microsoft Networks and
Microsoft Netware Networks clients and servers are included in the package. The
Microsoft Networks client is the remote FSD, vredir.vxd, and its matching server is
vserver.vxd. These components work with NetBEUI, TCP/IP, and IPX!SPX proto
cols through the NetBIOS interface. When an IFS request is redirected by VREDIR,
it is in the form of the Server Message Block (SMB) protocol. VSERVER interprets
the 5MB protocol and, if appropriate, generates an IFS request on the server
machine using the IFSMgcServerDOSCall service. The results of the request are
then returned via the 5MB protocol.

In a similar fashion, the Netware Networks client is the remote FSD, nwredir.vxd,
and its matching server is nwserver.vxd. These components work with the IPX!
SPX protocols. When an IFS request is redirected by NWREDIR, it is in the form
of the Netware Core Protocol. (NCP). NWSERVER interprets the NCP protocol and,
if appropriate, generates an IFS request on the server machine using the IFSMgC
ServerDOSCall. The results of the request are then returned via NCP.

FSD Mechanics
There are certain characteristics of an FSD that you must understand to use them
properly: the contents of the Device Description Block; whether it is static or
dynamic; how it can be segmented; and how it is affected by multiple threads.

Device Descriptor Block
As with other VxDs, an FSD requires a Device Descriptor Block. Generally, there
is no need to export services or APIs, since linkage with IFSMgr is established
dynamically. This implies that the DDB's protected-mode and virtual-86 API
entries, as well as its service table, will be empty. This rule holds at least for local
FSDs, but the other types of FSDs do not fit this mold. Remote FSDs export
services that are needed by other network components and in the case of
VCOND, a character FSD, it has every possible interface: v86 and PM APIs, Win32
services, and standard VxD services.

148 Chapter 8: Anatomy of a File System Driver

Initialization order for a static FSD is important. The header file vmm.h defines
the manifest constant FSDjNILORDER (Oxa0010100) as the base value for FSDs.
This assures that they load after IFSMgr. This is the IniCOrder assigned to VFAT,
CDFS, and VDEF. But again there are exceptions to the rule. In the case of remote
FSDs, the IniC Order may also require that other network components be loaded
before the FSD. For example, VREDIR has an IniCOrder of Oxa0021000, which
assures that it loads after IFSMgr and also after vnetsup.vxd. VCOND breaks even
this rule by having an IniCOrder of UNDEFINED_ORDER (Ox80000000) that is less
than IFSMgr. It gets away with this because VCOND does not register its character
device with IFSMgr until a v86 API is called in response to running a console
application. This is long after IFSMgr has completed its initialization.

All VxDs have a control procedure and FSDs are no different.

Static or Dynamic?
The DOSIWin32 Installable File System Specifcation is emphatic about FSDs being
static drivers. On page 3, it states:

The FSDs will be loaded and initialized when the system starts up. Once they are
loaded they will remain loaded until the system hardware is shutdown or
rebooted.

This makes sense because a file system has to be in place for the operating
system to start up. However, there may be circumstances where an FSD might
load dynamically; this is especially true of character FSDs.

If you intend to unload the FSD as well, one precaution needs to be observed.
This arises because registering an FSD with IFSMgr creates a permanent linkage to
the mount entry point and, in the case of character FSDs, a list of device names.
Removing these from memory by performing an unload may eventually lead to a
page fault. One work-around is to make the segment containing the mount entry
point and device names a static segment.

OEM Service Release 2 appears to expand the options available to FSDs. Although
the services are undocumented at this time, two new services are provided for
registering and deregistering FSDs with IFSMgr. (See Chapter 12, A Survey of
IFSMgr Services.)

Segmentation
This section may seem to be an anachronism; after all, weren't segments
supposed to go away with 32-bit code? Segmentation as used here might be more
accurately thought of as groupings of code or data with similar attributes. For
instance, some code gets discarded after Device Init, 'other code is locked in

FSD Mechanics 149

memory and never swapped to disk, while pageable code may be paged-out
when demands upon system memory require it. Although these code and data
areas are distinct "objects" with different memory attributes, they are part of the
continuum of the 4-gigabyte address space and thus don't require selector
changes when switching from one to another.

The segmentation of a VxD is rooted in its linear executeable (LE) file format.
Each grouping of code or data is assigned to a distinct object in the file. The
attributes of each object determine what the loader does with it. An object will be
created for each unique (non-empty) segment in the assembly language source.
Traditionally, a macro from vmm.inc is used to specify the segment directives in a
VxD.

Using C to write VxDs is more typical today and this change requires using a
different sort of macro to specify segmentation. These new macros are found in
vmm.h. The more common ones are reproduced in Example 8-1.

Example 8-1. Segmentation Pragmas

#define VXD_LOCKED_CODE_SEG

#define VxD_LOCKED_DATA_SEG

code_seg ("_LTEXT", "LCODE")

data_seg ("_LDATA", "LCODE")

#define VxD_INIT_CODE_SEG code_seg ("_ITEXT", "ICODE")

#def ine VxD_INIT_DATA_SEG da ta_seg ("_IDATA", "ICODE")

#define VXD_PAGEABLE_CODE_SEG code_seg ("_PTEXT", "PCODE")

#define VxD_PAGEABLE_DATA_SEG data_seg ("_PDATA", "PDATA")

#define VxD_STATIC_CODE_SEG

#define VxD_STATIC_DATA_SEG

code_seg ("_STEXT", "SCODE")

data_seg("_SDATA", "SCODE")

The keywords code_seg and data_seg are pragma directives specific to the
Microsoft compiler. The first argument in parentheses is the Portable Executable
section name and the second argument is a class name. At the compile stage, a
COFF object module is created with each segment name mapped to the named
section. At the link stage, instead of creating a portable executeable (PE) format
EXE file, the linker generates a VxD with the OBJ's sections mapped to linear
executeable objects.

Example 8-2 shows a C code fragment using pragmas to set the code and data
segments. The assembly language output from the compiler for this fragment is
given in Example 8-3. To assure that pageabZe_item is assigned to the proper
segment CPDATA), it is necessary to initialize it; otherwise the variable will be
assigned to the _DATA segment, the default segment for uninitialized data.

Segmentation also affects which library routines are statically linked to a VxD. The
libraries VXDWRAPS and IFSWRAPS create six versions of each routine, one
specific to each of the main segment types. The name of a library routine is
prefixed by the name of the segment it resides in. By default, the header file
vxdwraps.h sets the macro CURSEG () to return LCODE, so locked segment

150 Chapter 8: Anatomy 0/ a File System Driver

versions are used. For instance, if you are calling IFSMgCInstallFileSystemApi
Hook only from Device Init, but you link in the "locked" segment version, that
routine will remain part of your memory image after initialization, although you
have no intention of calling it again. To call a library routine in a specific
segment, redefine CURSEG () to the required segment; for example, CURSEG is
defined as PCODE in Example 8-2.

Example 8-2. Pageable C Code and Data

1//11////////////////////////
#pragma VxD_PAGEABLE_CODE_SEG
#pragma VxD_PAGEABLE_DATA_SEG
#pragma warning (disable:4005)
#define CURSEG() PC ODE
#pragma warning (default:4005)
1////////////////////////////
int pageab1e_item = 0;
void pageab1e_func() {}

Example 8-3. Assembly Language/or C Sample

_PDATA
-pageab1e_item DD OOH
_PDATA

SEGMENT

ENDS

PUBLIC
_PTEXT

...pageable_func
SEGMENT

-pageab1e_func PROC NEAR

494 void pageab1e_func() {}

00000 55 push ebp
00001 8b ec mov ebp,
00003 53 push ebx
00004 56 push esi
00005 57 push edi

$L5493:
00006 5f pop edi
00007 5e pop esi
00008 5b pop ebx
00009 c9 leave
OOOOa c3 ret 0

"'pageable_func ENDP
_PTEXT ENDS

The segment prefixes are as follows:

LCODE for VXD_LOCKED_CODE_SEG
ICODE for VxD_INIT_CODE_SEG
PCODE for VXD]AGEABLE_CODE_SEG
SCODE for VXD_STATIC_CODE_SEG

esp

FSD Mechanics

DCODE for VXD_DEBUG_ONLY_CODE_SEG
CCODE for VXD]NP _CODE_SEG

151

An FSD may have a need for all of the segment types in Example 8-1. Only
general recommendations can be given here. Here are some general rules of
thumb for placement of FSD code and data into segments:

• If the code or data will be hit during swap file or memory-mapped file han
dling, then this code and data must be locked. This will apply to most of the
code and data in a local FSD which supports a swap file. We see this with
VFAT, where the bulk of the code lies in VXD_LOCKED_CODE_SEG and
VXD_LOCKED_DATA_SEG.

• A character FSD may place the bulk of its implementation in pageable seg
ments.

• Any initialization code and data, such as routines specific to System Critical
Init, Device Init, and Init Complete phases, should be placed in VXD_INIT_
CODE_SEG and VXD_INIT_DATA_SEG segments. Usually, an FSD will check
the IFSMgr version number and register with IFSMgr at this time. This code is
discarded after Init Complete phase.

• As with other VxDs, the control procedure and device deSCriptor block must
reside in locked code and data segments.

• If the FSD is dynamically loaded and unloaded, place its mount entry point
and device names (if a character FSD) in static code and data segments.

Multi-Threading Considerations
As noted in Chapter 7, Monitoring File Activity, the path through the file system is
multi-threaded. This will have an impact on the design of an FSD. Any global data
accessed by more than one thread in an FSD must be protected by synchroniza
tion primitives. A variety of synchronization services are supplied by VMM to fill
this need:

In the sample FSDs described at the end of this chapter, I use a simple technique
based on blocking identifiers. To gain access to a critical section containing a
shared resource, the following page-locked code acts as a guard:

DWORD claim_resource = -1;

_asm pushfd /* save interrupt flag */
get_resource:

_asm cli

• For a good discussion of synchronization services, see Walter Oney's account in Systems Programming
for Windows 95 (Microsoft Press), Chapter 9.

152 Chapter 8: Anatomy of a File System Driver

inc claim_resource
_asm jz got_resource
_BlockOnID((DWORD)&claim_resource, 0);

jmp short get_resource
got_resource:

_asm popfd /* restore interrupt flag */

The variable claim_resource is initialized to -1. If another thread is currently using
the resource, then on entry claim_resource will be greater than or equal to 0, and
the increment instruction will not set the zero flag. This will cause the thread to
execute the VMM service _BlockOnID, which will block the thread on the speci
fied blocking ID (the address of the variable claim_resource). Interrupts are
disabled to assure that _SignaiID is not called before the thread blocks.

If the resource was not already in use when entering the above code, then claim_
resource will be set to 0 and the thread will continue execution at the label got_
resource. The thread then does whatever it needs to do within the critical
section, and then on leaving it executes this code:

dec
jl

claim_resource
released_resource

asm mov claim_resource,-l
_SignalID((DWORD)&claim_resource);

released_resource:

If only a single thread has attempted to claim the critical section, then on leaving,
the variable claim_resource will be 0, and decrementing it will restore it to -1 and
execution will continue at the label released_resource. However, if one or
more threads have been blocked attempting to get at the resource, then claim_
count will be greater than or equal to zero after the decrement operation. In this
case, claim_resource is reset to -1, all threads which are currently blocked on the
specified blocking ID are signaled by the call to the service _SignalID, and then
the critical section is left. Since all threads blocked on the &claim_resource ID
will be awakened, the first one to retry the get_resource test above will be able
to access the critical section.

FSDLinkage
Although much of IFSMgr's internals are undocumented, perhaps an area where
documentation is most sorely missed is in how IFSMgr and FSDs establish their
linkage. A better understanding of this linkage can help when analyzing certain
kinds of bugs, like "Why doesn't IFSMgr call my FSD?" or "Why isn't my FSD
mounted?"

The process of making a device visible to IFS is called mounting if the device is
local, or connecting if the device is remote. The reverse processes, dismounting
or disconnecting, remove a device from the system. At the FSD level, mounting is

FSDLinkage 153

handled by FS_MountVolume, connecting is handled by FS_ConnectNetResource,
and dismounting and disconnecting are handled by FS_DisconnectResource.

First, we'll review how FSDs register with IFSMgr. Then we'll examine the
processes of mounting and dismounting, as well as connecting and disconnecting,
in detail. In the descriptions which follow, only the commonly traversed pathways
through the file system are examined during the mounting and dismounting of
local drives and character devices. Many "comer cases" are left unexplored so as
not to distract you with additional details that do not clarify the overall picture.

FSD Registration

The FS_MountVolume and FS_ConnectNetResource functions are installed by
each FSD through one of the registration calls to IFSMgr. Recall that there are
three different types of registration: IFSMgcRegisterMount, IFSMgcRegisterNet,
and IFSMgcRegisterCFSD, corresponding to local FSDs, remote FSDs, and char
acter FSDs. The provider IDs returned by IFSMgCRegisterMount and IFSMgC
RegisterNet form a continuous range 0 through 9 for local FSDs and 10 through
17 for remote FSDs. IFSMgr creates a function pointer table, MountVolTable [],
of 18 entries, where FS_MountVolume and FS_ConnectNetResource addresses are
stored. (When searching for a remote FSD, sometimes the elements 10 through 17
are treated as a separate table, ConnectNetTable [].) Given a provider ID, a
mount operation is performed by a call, such as

(*MountVolTable[provider ID]) (pifs)

or, if a file system hook is to see the call, by

Call_FSD(MountVolTable[provider ID], IFSFN_CONNECT, pifs, FALSE)

Character devices store their mount function pointers in a table separate from
local and remote FSDs. The elements in this table are structures with two
members:

typedef struct { int (*mntfunc) (); PathElement* pDevName[]; }
CHARDEV, *PCHARDEV;

The first member, mntfunc, holds the address of the mount function, and the
second member, pDevName, is a pointer to an array of pointers to device names
stored as PatbElements. Up to 8 character FSDs can be registered with IFSMgr
and these are stored in an array I've named MountCharTable []. Once a
matching device name is located in MountCharTable [], its accompanying mount
function can be called like this:

Call_FSD(MountCharTable[i] .mntfunc, IFSFN_CONNECT, pifs, FALSE)

154 Chapter 8: Anatomy of a File System Driver

Mounting a Local Drive

A local drive will be mounted the first time it is accessed and on the first access
after its media has changed. Any file system request that references a volume may
initiate a mount operation if that volume is not already mounted. In practice, the
system drive will be accessed first and mounted first, but only after IFSMgr has
completed its Device Init phase. It is during the Device Init phase that IFSMgr
initializes its internal data structures to reflect known drives in the system as deter
mined by examining the DOS CDS array and querying lOS for drive information.
For each such drive detected, a zero-filled vol info structure is allocated and its
address stored in SysVolTable[]. Recall from Figure 6-2 that for each local
volume (volnum 0-31), SysVolTable [volnum] contains the address of a
vol info structure. The first member of the volinfo structure, vtPsr, is a pointer
to the volume's shell resource structure (see Appendix C, IFSMgr Data Structures,
for details on the vol info structure).

The first access to a local drive typically occurs through IFSMgr's Int 21h dispatch
routines. These routines indirectly rely upon a pair of IFSMgr's internal functions
to check if a mount is needed CNeedMount) and to actually perform the mount
CGen_FSMounCIFSReq). The prototype for _NeedMount has this form:

BOOL _NeedMount(ifsreq* pifs, int Drive, BOOL bChgReset)

If the function returns TRUE, the specified zero-based Drive needs to be mounted.
The variable pifs holds a pointer to the ifsreq structure for the current file system
request, and the variable bChgReset indicates whether the lOS function for media
change reset is to be called.

One indicator that a drive needs to be mounted is given by SysVol Table []. If
the indexed entry is NULL, or if the volinfo member which points to the shell
resource (SysVolTable[drive]->vi..psr) is NULL, the drive needs to be mounted.
After a successful mount, volinfo and shell resource structures are allocated and
initialized.

To do the mounting operation, _Gen_FSMounCIFSReq is called. It has the
prototype:

int _Gen_FSMount_IFSReq(int Drive, int arg2)

This function and subfunctions which it calls ultimately call FS_MountVolume on
the FSD which supports the drive. The steps which are taken can be summarized
as follows:

• Allocate an ifsreq structure and initialize its contents

It If SysVolTable [Drive] is NULL, allocate a volinfo structure and insert it
in SysVolTable [Drive]

FSDLinkage 155

• Allocate a shell resource structure

• Fill in the ifsreq structure with parameters specific to a FS_MountVolume
call:

ir_volh = address of lOS's VRP structure for Drive

ir_rh = address of first DOS DPB

ir --fb = address of shell resource

ir_mntdrv = Drive

irJlags = the type of mount operation CIR_FSD_MOUNl)

ifs_drv = Drive + 1

ifs-psr = address of shell resource

• look up the provider ID in the array Vol_to_Prold [] indexed by Drive

if the value is Oxff, start with provider ID of the last registered local FSD

if the value is 0, start with the provider ID of last registered local FSD

for any other value, use it as an initial provider ID

• Step A: attempt to mount Drive using FS_MountVolume function by calling:

Call_FSD(MountVolTable[provider IDj, IFSFN_CONNECT, pifs, FALSE l;

If mount succeeds, add address of shell resource· to SrTable [] :

1. Fill in the shell resource structure,

2. Insert address of shell resource in the volinfo structure,

3. Send an IFSMgcNetFunction broadcast of type NF_DRIVEUSE,

4. CaICFSDCpifs->pfs_psr->srJunc.vj[VFN_DIR1, IFSFN_DIR, pifs, FALSE) to
check that the directory in the drive's CDS (current directory structure)
exists,

5. Update lOS's VRP structure for Drive,

and save the succeeding provider ID in Vol_to_prold[Drive]; go to step B

• If mount fails, and provider ID > 0, decrement provider ID, and repeat from
step A;

• If mount fails, and provider ID is 0, go to step B;

• Step B: if provider ID > 0, notify lOS of the mount using IRS_MountNotify

• Free the ifsreq structure

• Return the ir_errorvalue

A drive created as a subst alias of an existing logical drive and subdirectory is a
special case. In this case, a vol info structure is created which references the

156 Chapter 8: Anatomy of a File System Driver

parent drive's shell resource. Three members of a volinfo structure are used to
track the subst drive: vCdro contains the volume number for the referenced drive,
vCsubscpath is the null-terminated Unicode string of the complete path to which
the subst drive refers, and vCleng contains the length of the Unicode string in
bytes. While the creation of such a drive generates IFSMgcNetFunction (NF_

DRIVEUSE) notifications, there is no underlying call to the parent FSD's FS_
MountVolume entry point. Figure 8-1 shows the relationships between the various
data structures used to track standard and subst local drives.

SysVolTable

Shell Resource

Figure 8-1. subst drive K mapping to C' \ WIN

Mounting a Character Device
As with local drives, a character device will be mounted the first time it is
accessed. Any file system request that references a registered device name will
initiate a mount operation if that device name is not already mounted. The first
access to a character device typically occurs through IFSMgr's lnt 21h dispatch
routines. These routines rely upon IFSMgr's internal function, _PathToShRes, to
convert a pathname into a shell resource. This function distinguishes device
names, local file pathnames, and UNC names by inspecting an undocumented
return code from IFSMgr_ParsePath (see Chapter 12). The parser always checks
the last PathElement to see if it is a registered device name or a DOS device
name.

The function prototype for _PathToShRes has this form:

int _PathToShRes(ifsreq* pifs, int wildcards)

where pifs is a pointer to the ifsreq structure for the current file system request
and wildcards indicates how wildcards are to be treated; a value of 0 for no

FSDLinkage 157

wildcards, a value of 1 to accept long filename wildcards, and a value of 2 to
accept "8.3" wildcard names. Calling _PathToShRes with pifS->ifs..,psr set to NULL
and with pifS->ir_data containing a pathname which is a device name will initiate
mounting of the character device. Here, in summary, are the steps taken:

• Using the last PathElement parsed in the input pathname, search through
MountCharTable [l for a matching registered device name; if a match is
found, return two indexes, one to MountCharTable [l and one to Mount
CharTable [i 1 • pDevNames [1

• Insert this device into the CharSrTable [l array; each entry consists of two
DWORDS: the first is the pair of indexes returned in the previous step and
the second will hold the address of the corresponding shell resource;
CharSrTable [l can hold up to 64 device names

• Allocate and initialize an ifsreq structure

• Allocate storage for a shell resource

• Fill in the ifsreq structure with parameters specific to a FS_MountVolume
call:

ir_volh = address of lOS's VRP structure for the character device; if one is
returned by IOS_RequestocService, IRS_GET_ VRP; otherwise NULL

ir Jh = address of shell resource

irJlags = the type of mount operation CIR_FSD_MOUNl)

ifS..,psr = address of shell resource

ifS_proid = proVider ID of character device (index to MountCharTable [l)

ir_aux2 = index into MountCharTable [provider IDl . pDevName [1

• Call the FS_MountVolume entry point for the device using:

CalCFSD(MountCharTable(i). mntfunc, IFSFN_ CONNECT, pifS, FALSE)

• If the mount succeeds, insert the address of the shell resource into CharSr
TableD

• Initialize the contents of the shell resource

Figure 8-2 illustrates the relationships between the data structures used to track
character devices.

Dismounting a Local Drive
Mounts of local drives are intended to be static, with the exception of drives
which support removable media. For example, CD-ROM FSDs are provided with.
the services IFSMgCCDROM_Attach and IFSMgCCDROM_Detach, to asynchro
nously mount and dismount a CD-ROM drive. Fixed media drives will only

158 Chapter 8: Anatomy of a File System Driver

MountChar Table CharSr Table

Shell Resource

pDevNames

Figure 8-2. Using a CharSrTable to get device name ("zeta''} and mount function (funcI)

dismount at system shutdown. To be more exact, when IFSMgr receives the
System Exit control message, it will procede to dismount local drives, in reverse
order, from the last mounted to the first.

IFSMgr uses an internal function to perform the dismount (J)ismounCLocaL
Drives). The prototype for _DismounCLocaI_Drives has this form:

void _Dismount_Local_Drives(ifsreq* pifs)

The variable pifs holds an ifsreq structure which has been allocated and initial
ized for the function call.

_DismounCLocaLDrives and the functions it calls attempt to reduce the reference
counts on the various data structures that track the local drives. This involves
closing any open files, reclaiming he.ap allocations, and ultimately calling FS_
DisconnectResource on each volume.

IFSMgr maintains a single table, SrTable, containing addresses of shell resource
structures for local drives and remote connections. Two separate one-way linked
lists thread their way through the table. The heads for these lists are Head_LocaL
Srs, for the shell resources which refer to local drives, and Head_NeCSrs, for shell
resources which refer to network resources. To dismount all local drives, IFSMgr
starts at Head_LocaLSrs and walks the list to remove each shell resource. The
steps which are taken to dismount each shell resource can be summarized as
follows:

1. Walk list of local shell resources (a nested walk) for those having a matching
VRP address close open files on the volume.

FSDLinkage 159

2. Walk list of local shell resources (a nested walk) for those having a matching
VRP address and a non-zero sr_inUse. Remove any remaining references such
as subst drives.

3. Do a final IoreqDerefConnection which reduces the sr_inUse to zero and
forces a FS_DisconnectResource call on the volume; this call also frees the
shell resource structure if it succeeds, followed by removal o(the resource
from the SrTable with adjustment of Head_LocaLSrs.

Finally, for each drive which has been removed, perform these steps:

1. Generate an IFSMgcNetFunction broadcast of type NF_DRIVEUNUSE.

2. Free the vol info structure storage.

3. For subst drives, also copy the complete pathname to the DOS CDS structure.

Dismounting a Character Device
As with local drives, mounts of character devices are usually static, with IFSMgr
automatically dismounting the devices when the system exits and IFSMgr receives
the System Exit control message. However, IFSMgr also provides the service
IFSMgr_FSDUnmountCFSD for dynamically dismounting a character FSD.

IFSMgr uses an internal function to perform the dismount LDismounCChac
Devices). The prototype for _DismounCChaCDevices has this form:

void _Dismount_Char_Devices(ifsreq* pifs)

The variable pifs holds a pointer to an ifsreq structure which has been allocated
and initialized for the function call. _Dismounc ChacDevices and the functions it
calls attempt to reduce the reference counts on the various data structures that
track the character device. This involves closing any open handles, reclaiming
heap allocations, and ultimately calling FS_DisconnectResource on each device.

IFSMgr maintains a separate table, CharSrTable, containing addresses of shell
resources for character devices and printers. A one-way linked list threads
through the table. The head for the list is Head_Char_Srs, and starts with the most
recently mounted character device. To dismount all character devices, IFSMgr
starts at Head_Char_Srs and walks the list, removing the resources associated
with each device. The steps which are taken at each shell resource in the list can
be summarized as follows:

• If the resource has a non-zero sr_inUse and a valid pointer to a chain of fhan
dies, the corresponding handles are closed, thereby reducing the sr_inUse.

• Sr_inUse is decremented.

160 Chapter 8: Anatomy of a File System Driver

• The internal function, loreqDerefConnection, is called for the shell resource;
if the sr_inUse decrements to zero, FS_DisconnectResource is called for the
character device, the heap allocation for the resource is freed, and it is
removed from CharSrTable with adjustment to Head_ChacSrs.

FSD Connecting

Some examples of connections are mapping a local drive letter to a remote server
and share name, and accessing a remote file by a UNC pathname.

Drive-based connections

When mapping a local drive to a remote drive and directory, the standard connec
tion dialog is displayed in response to the WNetConnectionDialogl API. The
information gathered by this dialog is used by the Multiple Provider Router (MPR)
to route the request to an appropriate Network Provider and call that provider's
NPAddConnection SPI.

The Network Provider then passes the request to the remote FSD, using the Devi
ceIoControl, IFS_IOCTI_21, interface. As an example, for Microsoft Networks, Int
21h function 5F47h (NetUseAdd, a Lan Manager DOS extension), is called. This
function receives the following register arguments: BX is the level number, either
1 or 2; CX is the size of the use_info structure; and ES:DI is a pointer to the use_
info structure. The use_info structure which is passed to NetUseAdd is either a
use_info_l or a use_info_2 structure, depending on the level of the call. As
part of its argument checking, IFSMgr verifies the size (ex:) of the use_info struc
ture to be either 26 bytes for use_info_l or 52 bytes for use_info_2. This
function is actually handled by IFSMgr's dispatch function dNetFunc. A similar Int
21h function, Make Net Connection, 5F03h, serves the same purpose but uses
different arguments.

The handlers for Int 21h functions 5F03h and 5F47h massage the input parameters
and call a common internal IFSMgr function which I've named _UseAdd. This
function can also be accessed at ring-O through the service IFSMgcUseAdd. This
internal function, _UseAdd, is a frontend to a call to IFSMgCSetupConnection.
The function prototype for _UseAdd takes this form:

_UseAdd(ifsreq* pifs, void* pinfo, int connstatus, int bStatic)

The calling arguments consist of pifs, a pointer to the ifsreq structure; pin/o, a
structure containing information about the mapping; connstatus, an integer
having the value 0 if the resource is setup connected and 1 if the resource is
setup disconnected; bStatic, a Boolean which is 0 if the connection is to be estab
lished at system startup (static), and 1 if the connection is established by the user.

FSDLinkage

The use_info_l structure has the following declaration:

char
char*
char*
WORD
WORD

WORD
WORD
}

ui2J)ad_l;
ui2_remote;
ui2J)assword;
ui2 _status;
ui2_asg_type;

ui2 _refcount;
ui2 _usecount;

II
II
II
II
II
II
II
II
II

type of resource connected to
(USE_DISKDEv,etc.)

161

The declaration for the use_info_2 structure is given in ifsmgrex.h on the
companion disk. The only members which _UseAdd cares about are ui2_1ocal,
ui2_remote, Ui2-fJassword, and ui2_asgJype, whether pinfo points to a use_
info_lor use_info_2 structure. (Note that the use_info_2 structure given in
the DDK file ifsmgr.inc is not correct.)

_UseAdd performs several preliminaries prior to calling IFSMgCSetupConnection:

• Validates the local drive (from ui2_1ocaD to use in a mapping, and verifies it
is not a drive in use and does not exceed the "last drive" limit; the local drive
number (l-based) is placed into pifs->ifs_drv.

• If a printer port is specified in place of a drive letter, e.g., LPTl, a drive num
ber is assigned in the range 21h to 29h for LPTl to LPT9 and is placed into
pifs->ifLdrv (it isn't clear how generic character devices are redirected).

• Validates the server name and share name (from ui2_remote) via a call to
IFSMgcParsePath; this path must be a UNC path or a path which has been
parsed by a custom parser installed via IFSMgcSetPathHook; the resultant
ParsedPath is stored to pifs->ir-fJpath, e.g., \ \SERVER\SHARE.

• Allocates a volinfo structure which is stored to SysVoITable[pifs->ifs_drv-ll.

_UseAdd then calls IFSMgCSetupConnection with these arguments:

IFSMgr_SetupConnection(pifs, RESOPT_DEV_ATTACH, RESTYPE_DISK

The contents of the ifsreq structure are modified to reflect the arguments passed
to _UseAdd. This form of connection is referred to as a "drive-based" connection
in the IFS specification.

Now what does IFSMgCSetupConnection do internally? Without getting into all of
the details and handling of error and exceptional conditions, here are the basic
steps it takes:

1. Allocate a block in which to store a shell resource structure.

162 Chapter 8: Anatomy of a File System Driver

2. If an explicit ifLproid is stored in ifsreq, then call the FS_ConnectNetRe
source function indexed in the MountVolTable []; this call is direct to the
table function.

3. If ijs-proid is ANYPROID (any provider), then look up the server name in the
name cache and if found, convert the returned NetID to a provider ID; then
call the FS_ConnectNetResource function indexed in MountVolTable []; this
call is made via Callc-FSD, so it will be seen by a file system hook.

4. If ift-proid is ANYPROID and the server name is not in the name cache, then
attempt to call FS_ConnectNetResource for each registered net provider in the
table CormectNetTable [], until one succeeds or the list is exhausted; these
calls are made via Call_FSD, so they will be seen by a file system hook.

5. If FS_ConnectNetResource succeeds, then add the server name to the name
cache; adjust the ir_ppath member of the ifsreq structure to advance past
the first two PathElements for server and share names; insert the address of
the shell resource into the SrTable and, finally, fill in the shell resource struc
ture; the sr .Jlags member of the shell resource has only the IFSFH_RES_
NETWORK attribute.

6. If FS_ConnectNetResource fails, then IFSMgcSetupFailedConnection is called
to give an FSD that hooks this function a chance to emulate network services
when the net provider is not available; the default implementation of this
service by IFSMgr simply returns the error ERROR_BAD_NET_PATH (35h);
finally, the block of memory allocated for the shell resource is freed.

If IFSMgr_SetupConnection returns to _UseAdd without error, the volinfo struc
ture is filled in with the address of the shell resource. An IFSMgcNetFunction
broadcast is generated of type NF _DRIVEUSE, indicating that a new drive has
appeared in the system. The DOS CDS structure for the drive is also updated for
each VM. Finally, a callback is scheduled (using SHELL_CallAtAppyTime) to a
function which broadcasts a plug-and-play event using the function call:

IFSMgr_PNPEv~nt(DBT_DEVICEARRIVAL, drvnum, PNPT_VOLUME I DBTF_NET

_UseAdd also clears the ift-psr member of the ifsreq structure. This step assures
that the connection's reference count is not immediately decremented by a call to
IoreqDerefConnection.

UNGbased connections

The path that we have just traced is the system response to the deliberate
mapping of a drive. IFSMgr_SetupConnection is also called when a UNC path
name is processed by IFSMgr's Int 21h dispatch routines. Many of the dispatch
routines, including dRingO_OpenCreate, dOpenCreate, dMkRmDir, dChDir, dGet
CurDir, dAttribs, dGetVolInfo, dDelete, dGetFullName, dFindFile, dRename,

FSDLinkage 163

dSubst, and dloctl, use IFSMgr's internal function _PathToShRes to convert a path
name, UNC or otherwise, into a shell resource. These "connections on demand"
are made by a call to IFSMgCSetupConnection, which takes this form:

IFSMgr_SetupConnection(pifs, RESOPT_UNC_REQUEST, RESTYPE_WILD

This call establishes what the IFS specification refers to as a UNC-based connec
tion. It follows the same basic steps as described above for drive-based
connections. The sr..Jlags member of the shell resource for a UNC-based connec
tion has both IFSFH_RES_NE1WORK and IFSFH_RES_ UNC attributes set.

One of the main differences between a UNC-based and a drive-based connection
is in the way the connection's reference count is maintained. For a UNC-based
connection the reference count is decremented by a call to 10reqDerefConnection
as soon as the dispatch function completes. This happens because the ifs_psr
member of ifsreq is not cleared before returning to the dispatcher. This would
seem to suggest that UNC-based connections only last for the length of a file
system request if the reference count drops to zero. This is not the case and we'll
see why when we look at how UNC-based disconnection occurs.

FSD Disconnecting

Some examples of disconnection are removing a drive letter mapping to a remote
server and share name and automatic disconnection after a period where a
connection is not used.

Drive-based disconnection

Disconnecting a mapping of a local drive to a remote drive and directory is
accomplished by the WNetCancelConnection2 API. The parameters passed to this
function are used to create a call to NPCancelConnection corresponding to the
Network Provider for the specified server. The Network Provider then passes the
cancel request to the remote FSD, again using the DeviceloControl, IFS_IOCTL_
21, interface. As an example, for Microsoft Networks, Int 21h function 5F48h
(NetUseDel, a Lan Manager DOS extension) is called. This function receives the
local drive name or the remote device UNC name which is to have the mapping
canceled. This function is actually handled by IFSMgr's dispatch function dNet
Func. A similar Int 21h function, Delete Net Connection, 5F04h, serves the same
purpose but uses different arguments.

The handlers for Int 21h functions 5F04h and 5F48h massage the input parameters
and call a common internal IFSMgr function which I've named _UseDel. This func
tion can also be accessed at ring-O through the service IFSMgcUseDel. This
internal function, _UseDel, is a frontend to a call to another internal function,
IoreqDerefConnection.

164 Chapter 8: Anatomy of a File System Driver

The function prototype for _UseDel takes this form:

_UseDel(ifsreq* pifs, int drvnum, int ForceLevel);

The calling arguments include pifs, a pointer to the ifsreq structure; drvnum,
the one-based local drive which is to be unmapped; and ForceLevel, the force
level to use for the disconnection. There are four force levels which are inter
preted differently depending on the resource connected to. In the case of a drive
based disconnection, force levels a and 1 will fail if there are any open files on
the mapped drive or if it is the current drive, whereas force level 2 closes open
files and then disconnects the drive, but will fail if it is the current drive, and force
level 3 closes open files and disconnects the drive even if it is the current drive.

_UseDel performs the following steps when called with a mapped-drive argument:

1. Reconcile drive number, provider ID, and shell resource.

2. Look up vol info structure in SysVolTable [1; if connection is static, fails
the disconnect unless ForceLevel is greater than or equal to 4.

3. Verify that drive's DOS CDS attributes word at offset 43h has the value
OxCOOO.

4. If the ForceLevel is less than 3, check if the mapped drive is the current drive
in any VM; if so, then fail the disconnect.

5. If the ForceLevel is less than 2 and there are open files on the mapped drive,
fail the disconnect; if the ForceLevel is 2 or greater and there are open files on
the mapped drive, close the files one by one.

6. Remove volinfo from SysVolTable [1.

7. Decrement the reference count in the shell resource, vtpsr.

8. Broadcast IFSMgcNetFunction NF_DRIVEUNUSE, to notify that the drive has
gone away.

9. Clear the drive's DOS CDS entries for each VM.

10. Free the memory block used by volinfo.

11. Schedule callback to broadcast a Plug and Play event:

IFSMgr_PNPEvent(DBT_DEVICEREMOVECOMPLETE, drvnum,
PNPT_VOLUMEIDBTF_NET)

12. IoreqDerefConnection decrements the shell resource's reference count; since
it drops to zero and this resource does not have the IFSFH_RES_ UNe

attribute, call FS_DisconnectResource on this resource, remove it from
SrTable, and free the shell resource's memory block.

MONOCFSD: A Character File System Driver 165

UNe-Based Disconnection
UNC-based connections persist as long as the connection's reference count does
not drop to zero. Some actions on a connection keep the connection open until
the actions are explicitly undone, e.g., opening a file will increment the reference
count until a close on that file decrements the reference count.

Other file system requests will only keep the reference count incremented for the
duration of the operation. For example, checking the file attributes on an explicit
UNC pathname will create a UNC-based connection via a call to _PathToShRes.
After the request has been completed, the dispatcher will check for a non-zero ifs
psr member of the ifsreq structure. If it is non-zero, IoreqDerefConnection will
be called to decrement its reference count. If the reference count drops to zero,
then the sr Jlags for the shell resource are checked for the IFSFH_RES_ UNC

attribute. If this attribute is set, the connection is not immediately disconnected, as
would be the case with a drive-based connection. Instead, the shell resource's
reference count is left as zero to mark the connection for removal.

In order for one of these marked UNC-based connections to get removed it needs
to "age" a few minutes. To handle the aging of these connections and their even
tual removal, IFSMgr schedules a recurring event every 120 seconds. The event
handler walks the list of current connections and looks for two special connection
states. The first state is a UNC-based connection which has a reference count of
zero. When a connection with this state is found it is advanced to the next state.
The state change is indicated by modifying the shell resource's srJlags from
IFSFH_RES_NETWORK I IFSFH_RES_ UNC to IFSFH_RES_NETWORK I IFSFH_RES_

UNC I Ox02.

If the connection to this particular server and share gets used before it is
removed, the state gets reset on a call to IoreqDerefConnection. However, if the
connection remains idle for 120 seconds until the next event, the event handler
changes the sCflags once more from IFSFH_RES_NETWORK I IFSFH_RES_UNC I
Ox02 to IFSFH_RES_NETWORK I Ox02.

The connection's reference count is incremented to 1 and then IoreqDeref
Connnection is called. This disconnects the resource, removes it from the shell
resource list, and frees the resource's memory block.

MONOCFSD: A Character File
System Driver
In this section, we'll look at a sample file system driver, MONOCFSD, which is a
character FSD that drives a monochrome monitor. The complete source for

166 Chapter 8: Anatomy of a File System Driver

MONOCFSD is on the companion diskette. This makes a good example for intro
ducing the structure of an FSD since we don't have to worry about lOS or
network protocol details. In the next section, we'll look at an example of a
remote FSD, FSINFILE.

Features
BaSically, MONOCFSD is an FSD for a standard SOx25 monochrome display
adapter. It associates a single device name, MONO, with the character device.
Multiple file handles can be opened on MONO. It accepts independent writes on
these separate open handles. Any programming language that supports file open,
file write, and file close can use MONO as an output device. Multiple processes
can write to MONO simultaneously. MONO is equally accessible from Win32,
Win16, and DOS/vS6 operating environments.

Output to the MONO device is buffered in the driver. A primitive keyboard inter
face allows scrolling of the display using line up, line down, and clear screen
operations, using keys on the numeric keypad.

MONOCFSD fails initialization if a monochrome display adapter is not detected.

DeSign
The design centers on using a file model to interact with the monochrome display
device. A client uses the MONO device much like one would use stdout, except
that an explicit open is required. Thus for a client to use MONO, an open is
performed, which returns a handle if successful. Output is sent to the device by
performing writes to the handle. A separate line buffer is managed for each
handle. A line will be displayed when either a carriage return and line feed are
received or the SO character buffer fills. Thus, all screen output is in complete
lines. This allows multiple processes to interleave lines of output. The combined
output of all clients is stored in a 200-line buffer. Normally, only the most recent
25 lines are displayed. A line-up operation will scroll back through the buffer by
one line; a line-down operation will scroll forward through the buffer by one line.
A keyboard interface to the scroll operations is achieved by assigning each to a
hotkey.

MONOCFSD supports up to 10 clients; this is an arbitrary limit. MONOCFSD loads
as a static VxD.

Implementation
During Device Init phase, MONOCFSD registers with IFSMgr using IFSMgcRegis
terCFSD, passing it the address of a mount function and the single device name,

MONOCFSD: A Character File System Driver 167

MONO. The list of device names is passed as an array of pointers to PathEle
ments, with the end of array marked by a NULL pointer. The device name is
given by the PathElement { 10, 'M', '0', 'N', '0' }. The first element is the total
length of the array which is 5 * sizeof(WORD) since the characters are in Unicode.

The mount function for MONOCFSD will get called the first time the "MONO"
device is accessed. The source for the mount function is shown in Example 8-4.

Example 8-4. MONOCFSD's FS_MountVolume Function

int FS_MountCharDevice(pioreq pir) {
MonoPrint ("FS_MountVolume\n" j;
ifs_resource_hdl = pir->ir_fh; II save shell resource
pir->ir_vfunc = &vf; II return our volume function table
pir->ir_rh = (void*) 'MONO'; II MONO's resource handle
memset (OpenHandles, 0, lO*sizeof (void*»).; I I init file handles
return (pir->ir_error = 0);

The mount function exchanges parameters with IFSMgr using the ioreq structure.
As input, MONOCFSD receives the resource handle that IFSMgr is using to track
this device (what we have referred to as a shell resource). MONOCFSD does not
interpret this handle but does store it away, in ifs_resource_hdl, for possible
future use in calls to certain IFSMgr services. MONOCFSD returns to IFSMgr a
pointer to the structure containing all of the volume-based entry points. This
address is placed in the ioreq member ir_vfunc. This structure is shown in
Example 8-5. The other value returned to IFSMgr is a resource handle known
only to the FSD. This handle is placed in the .ioreq member ir_rh. It can be the
address of an internal data structure or other guaranteed unique value. IFSMgr
does not interpret this value, it simply passes it in on calls into MONOCFSD corre
sponding to this particular mount. The FSD can use this value to validate calls and
also to distinguish mounts under different device names. As an example, the
screen might be split into scrolling and non-scrolling regions, and these could be
given separate device names. The non-scrolling screen might be treated as a fixed
size file, using a file seek to position the output cursor. For our needs it is suffi
cient to use the unique integer value 'MONO'.

Example 8-5. MONOCFSD's Volume-Based Function Table

struct volfuncvf = {
IFS_VERSION, IFS_REVISION, NUM_VOLFUNC,
FailFsdCall, 1* VFN_DELETE *1
FailFsdCall, 1* VFN_DIR *1
FailFsdCall, 1* VFN_FILEATTRIB *1
FailFsdCall, 1* VFN_FLUSH *1
FailFsdCall, 1* VFN_GETDISKINFO */
FS_OpenFile, 1* VFN_OPEN *1
FailFsdCall, 1* VFN_RENAME *1

168 Chapter 8: Anatomy of a File System Driver

Example 8-5. MONOCFSD's Volume-Based Function Table (continued)

FailFsdCall, 1* VFN_SEARCH *1
FailFsdCall , 1* VFN_QUERY * I
FS_Disconnect, 1* VFN_DISCONNECT *1
FailFsdCall, 1* VFN_UNCPIPEREQUEST */
FS_Ioctl, 1* VFN_IOCTL16DRIVE *1
FailFsdCall, 1* VFN_GETDISKPARMS *1
FailFsdCall, 1* VFN_FINDOPEN *1
FailFsdCall, 1* VFN_DASDIO *1
} ;

The volume-based function table in Example 8-5, which supplies the linkage to
IFSMgr, provides a function for every entry in the array. For most of the functions,
the routine Fi:lilFsdCall is used. This function sets the ir_error member of the
ioreq structure to ERRORjNVALID_FUNCTION and returns that value. This
informs IFSMgr that the function is not implemented. The functions which are
implemented include FS_OpenFile, FS_Ioctl, and FS_Disconnect. Of these, FS_
Disconnect has the simplest implementation; it just sets ir_error to ERROR_

SUCCESS and returns that value. This allows MONO to be dismounted without
returning an error.

The FS_Ioctl function, shown in Example 8-6, is required to support the Int 21h
function 4400h, Get Device Data. For all other Ioctl functions, an ERROR_

INVALID_FUNCTION error code is returned. The irJlags member of the ioreq
structure contains the Ioctl subfunction number, and only subfunction 0 is
checked for. Depending on the value of the ir_options member, a pointer to the
client registers structure is retrieved from either ir_data or ir_cregptr (ir_aux2).

Within the client registers, bit 7 of DX is set to 1 to indicate that the handle in BX
refers to a device.

Example 8-6. MONOCFSD's FSjoctl Function

int FS_Ioctl(pioreq pir) {
PCRS pClientRegs;
if (pir->ir_flags == 0) { II "Get Device Data Ox4400"

if (pir->ir_options == IOCTL_PKT_LINEAR_ADDRESS) {
pClientRegs = (PCRS)pir->ir_data;
}

else {
pClientRegs = (PCRS)pir->ir_cregptr;
}

pClientRegs->Client_EDX = Ox00000080; II is a device
return (pir->ir_error = 0);
}

pir->ir_error = ERROR_INVALID_FUNCTION;
return (pir->ir_error);

MONOCFSD: A Character File System Driver 169

Example 8-7 shows the implementation of the FS_OpenFile function. First, a
sanity check is performed on ir_rh, which should have the value 'MONO' that we
returned when the device was mounted. Rather than just return a pointer to a
handle-based function table, the ir_hfunc member contains a pointer to the loca
tion where the handle-based function pointers should be written. This location is
initialized with three addresses: the address of the FS_ReadFile function, the
address of the FS_ WriteFile function, and the address of the "miscellaneous"
handle-based function table (see Example 8-8). Since we don't support a read
operation, the address of FailFsdCall is used for FS_ReadFile. FS_OpenFile then
adds an entry to the OpenHandles array; the entry is the address of an 80-char
acter line buffer structure. This address is also returned in ir.Jh as a unique value
representing this handle; IFSMgr will pass this value to other handle-based func
tions. Note that access to the global array OpenHandles is protected with a claim
and release of the critical section. Finally ir_options is set to the value AC1l0N_
OPENED and ir_error to ERROR_SUCCESS to indicate that the open succeeded.

Example 8-7. MONOCFSD's FS_ OpenFile Function

int FS_OpenFile(pioreq pir) {
struct hndlfunc* phf;
LINE* pI;
int i;

if (pir->ir_rh == (void*) 'MONO') {
phf = pir->ir_hfunc; II get location where IFSMgr expects pointers
phf->hf_read FailFsdCall; II no FS_ReadFile support
phf->hf_write = FS_WriteFile; II .. only write supported
phf->hf_misc = &hm; II .. table of other handle-based functions
ClaimHandleArray(); II Critical section around OpenHandles[]
for (i=O; i<MAXHDL; i++)

if (!OpenHandles[i]) break;
if (i == MAXHDL) {

ReleaseHandleArray() ;
return (pir->ir_error

pI = IFSMgr_GetHeap(sizeof(LINE)); II zero initialized
if (pI == 0) {

ReleaseHandleArray();
return (pir->ir_error 1);

OpenHandles[i] = pI;
ReleaseHandleArray(); II End critical section
II we use the line buffer as our open instance
pir->ir_fh = (void*)pl;
pir->ir_options = ACTION_OPENED;
return (pir->ir_error = 0);

else {
return pir->ir_error 1);

170 Chapter 8: Anatomy of a File System Driver

Only two handle-based functions are supported for the MONO device: FS_ Write
File and FS_CloseFile. The remainder of the functions in the handle-based
function table (see Example 8-8) call into FailFsdCall, to indicate that they are not
implemented.

Example 8-8. MONOCFSD's Miscellaneous Handle-Based Function Table

struct hndlmisc hm = {
IFS_VERSION, IFS_REVISION, NUM_HNDLMISC,

{ FailFsdCall, II HM_SEEK
FS_CloseFile, II HM_CLOSE

II HM_COMMIT FailFsdCall,
FailFsdCall,
FailFsdCall,
FailFsdCall,
FailFsdCall,
FailFsdCall
} ;

II HM_FILELOCKS
II HM_FILETIMES

II HM_PIPEREQUEST
II HM_HANDLEINFO

II HM_ENUMHANDLE

Example 8-9 shows the implementation of the FS_CloseFile function. Again, a
sanity check is performed on ir_rh, which should have the value 'MONO' that we
returned when the device was mounted. The handle to MONO which is being
closed is passed in irJh. It is just the address of one of the line buffer structures
which are stored in the OpenHandles array. To validate the handle, OpenHan

dIes is searched for a matching entry. If a match is found, then the current index
of the buffer is checked to see if anything needs to be flushed to the screen.
Finally, the allocation for the line buffer is freed and irjrror is set to ERROR_

SUCCESS.

Example 8-9. MONOCFSD's FS_CloseFile Function

int FS_CloseFile(pioreq pir) {
void* hMono;
LINE* pI;
int i;

if (pir->ir_rh == (void*) 'MONO') {
hMono = pir->ir_fh;
II First validate the handle
ClaimHandleArray(); II Critical section around OpenHandles[)
for (i=O; i<MAXHDL;i++)

if (OpenHandles[i) == hMono) break;
if (i == MAXHDL) {

ReleaseHandleArray();
return (pir->ir_error = 6);

ReleaseHandleArray();
pI = hMono;
if (pl->idx > 0) {

pl->pLine[pl->idx+l)

II End critical section
II handle is our line buffer
II flush any pending characters
'\0 I;

MONOCFSD: A Character File System Driver

Example 8-9. MONOCFSD's FS_CloseFile Function (continued)

MonoPrint(pl->pLine);
}

IFSMgr_RetHeap(OpenHandles[i]); II free the line buffer

171

ClaimHandleArray(); II Critical section around OpenHandles[]
OpenHandles[i] = 0;
ReleaseHandleArray();
return (pir->ir_error

else {

II End critical section
o);

return pir->ir_error 1);

The last function that we'll take a look at is FS_ WriteFile, shown in Example 8-10.
On each write, ir_length contains the number of characters written, ir_data
contains a pointer to the buffer containing the characters to be written, and irJh
contains the particular MONO handle to which to write the data. The handle in ir_
jh is validated by checking that it is contained in the OpenHandles array. If the
handle is found to be valid, then the handle is cast to a pointer to a line buffer
structure. The characters in the buffer at ir_data are transferred into the line
buffer starting at the current line buffer index. If a carriage return/line feed pair is
encountered or if the line buffer fills (80 characters), the accumulated line is
written to the monochrome monitor, using the MonoPrint function. The index
into the line buffer is then reset to the beginning and the process continues until
ir_length is exhausted. Multiple writes to a handle may be made before the assem
bled line is actually written to the monitor.

Example 8-10. MONOCFSD's FS_ WriteFile Function

int FS_WriteFile(pioreq pir) {
char* pChar;
char lastChar = 0;
int cnt, i;
LINE* pl;
void* hMono;

pChar = pir->ir_data; II characters to be written to MONO
cnt = pir->ir_length; II count of characters
pl = hMono = pir->ir_fh; II line buffer for this handle
II Validate the handle
ClaimHandleArray(); II Critical section around OpenHandles[]
for (i=O; i<MAXHDL; i++)

if (OpenHandles[i] == hMono) break;
if (i == MAXHDL) {

ReleaseHandleArray();
return (pir->ir_error = 6); II ERROR_INVALID_HANDLE

ReleaseHandleArray();
i = pl->idx;

II End critical section
II current index to line buffer

172 Chapter 8: Anatomy of a File System Driver

Example 8-10. MONOCFSD's FS_ WriteFile Function (continued)

while (cnt > 0) {
if (i < 80) pl->pLine[i] = *pChar;
if (lastChar == OxOd && *pChar == OxOa) {

pl->pLine[i+l] = '\0';
MonoPrint(pl->pLine);
II Reset line buffer variables and continue
lastChar = '\0';
pChar++;
i = 0;
cnt--;
continue;

lastChar = *pChar;
pChar++;
if (i < 80) i++;
cnt--;

pl->idx = i; II save the current line buffer index
return (pir->ir_error = 0);

Using MONOCFSD

To illustrate how one might use MONOCFSD, we'll show typical usage from a C
program. First, the device must be opened using statements like the following:

FILE* fMono;
fMono = fopen("mono", "r+");

Then, at points where output is to be displayed, any of the standard C stream I/O
functions could be used with the fMono stream. For example, the following lines
output a single line of text:

fprintf(fmono, "In function %s, SomeVariable=%lx\n" ,
"SomeFunc", SomeVar);

fflush(fmono);

Since stream I/O is buffered by default, fflush forces the text to be written immedi
ately. Another way to accomplish this is to use the functions setbuf or setvbuf to
disable buffering for the stream. Finally, the program would release the MONO
handle with a call to fclose. MONO might also be used from a DOS box as a
target for redirection, as in the command dir > mono.

FSINFILE: A Remote File System Driver
In this section, we'll look at the sample file system driver, FSINFILE, which is a
remote FSD that contains a file-system-in-a-file. The complete source for FSINFILE

FSINFlLE: A Remote File System Driver 173

is on the companion diskette. This example is more complicated than
MONOCFSD, and implements many more FSD functions.

Features
FSINFILE creates a file called fsifbin in the windows directory. The creation of
and reads and writes to this file are done using the IFSMgCRingOFileIO service.
Internally, fsifbin contains the structure of a simple file system. It is divided into
three sections: allocation bitmap, root directory entries, and user space. The unit
of user space is a 512 byte sector. For each sector in user space, there corre
sponds a single bit in the allocation bitmap. If a bit is set, the sector is allocated;
otherwise it is free. Directory entries hold the 8.3 names of files which are stored
in user space, as well as a creation date and time, size, attributes, and a map of
allocated sectors. This is not a "production" file system, but it does provide a great
test-bed for experimenting with FSD functions and exploring interactions with
IFSMgr. A production remote file system would also supply a Network Provider
DLL to support drive enumeration and other WNet functions.

Implementation Notes
The source code for FSINFILE is amply documented, so refer to the companion
disk for complete information. Here, I will just single out one aspect of its imple
mentation that is a little unusual. The file system registers through IFSMgC
RegisterNet as a network FSD. I use a "bogus" Net ID, i.e., a value which lies
outside the range of currently assigned networks. This registration returns a
provider ID which is used with subsequent IFSMgr services.

If you think about it, a remote FSD just maps local file operations to operations in
another domain. This applies equally well to our situation except instead of our
file system residing on another machine across the network, it resides on our
machine and it is embedded in a local file.

The main reason for using this approach is that it is the simplest way to create a
drive. IFSMgr provides facilities which make connections to network drives easy
to setup and tear down. This facility is supported through the services IFSMgr_
UserAdd and IFSMgr_InitUseAdd. I use the latter because it allows us to create the
drive implicitly at system startup by assigning it the next available drive in the
range of available drives as shown in Figure 8-3 (the upper limit is set by the Last
Drive command if it is issued in config.sys, otherwise the default is either 26, or if
you have the Netware client installed, 32). IFSMgrJnitUseAdd uses the supplied
provider ID and use_info_2 structure to create a properly formed IFS request to
the service IFSMgcSetupConnection. The latter prepares the FS_ConnectNetRe
source call into the FSD which matches the provider ID. This initial call is used to

174

3!i Floppy (A:)
Sysroot (C:)
D evtools (D:)
Curwork (E:)
Removable Disk (F:)
(G:)

Local Disk
Local Disk
Local Disk
Removable Disk
CD·RDM Disc
Network Connection
System Folder
System Folder

Chapter 8: Anatomy of a File System Driver

Figure 8-3. Drive H (\ \. \fsinfile), a FSINFILE remote driver

mount our file system, by either creating or opening the file fsif. bin and initial
izing the file system's internal state.

VFAT.· The
Virtual FAT File

System Driver

The FAT file system was invented in 1977 as a method for storing data on floppy
disks for Microsoft Stand-Alone Disk BASIC. It achieved wider usage in 1981. as
the floppy disk storage mechanism used by MS-DOS Version 1 shipped with the
ftrst IBM Pc. At that time, the OS code ran in 8 KB of memory and 5.25" floppy
disk rrtediaonly had a single level directory. With the introduction in 1982 of the
IBM PC-XT with a 10 MB fixed disk, MS-DOS underwent a major revision. In MS
DOS Version 2, we saw the introduction of a hierarchical directory structure,
support for fixed disks as well as floppy disks, and a UNIX-like handle-based file
structure. Filenames were a maximum of 8 characters long with a 3 character
extension and a pathname could be up to 64 characters long. Since then, the
various releases of MS-DOS have extended support for larger and larger hard
disks, but much of the underlying file structure has remained unchanged.

VFAT was introduced with Windows for Workgroups Version 3.11. Up until .that
time, the manipulation of file system structures in Windows 3.x was done by MS
DOS code executing in virtual-86 mode. Although the actual FAT file structures
on the disk still mirrored those of MS-DOS 5 and 6.x, VFAT and IFSMgr provided
file system services that executed in ring-O protected mode.

The latest version of VF AT which accompanied the rollout of Windows 95 goes
further by making some changes to the FAT file structures on the disk in order to
support long filenames. Even more recent changes to VFAT, in OEM Service
Release 2 (October 1996), increased the size of entries in the file allocation from

175

176 Chapter 9: VFAT.· The Virtual FAT File System Driver

16 bits to 32 bits, thereby increasing the maximum allowable drive size to 2047
gigabytes.

The role of VF AT is to control reads from and writes to the disk in accordance
with the FAT file structure. It understands how to convert a pathname into the
chain of disk clusters and then return the contents of those sectors. Or, it can
reverse direction and create long filename directory entries from a pathname and
allocate clusters of storage and save a file's image within them. Before we dig into
some aspects of VFAT's implementation, let's review the FAT file structure. In
large measure, the DOS 6.x structure remains the same in Windows 95.

DOS 6.x FAT, Boot Record, and Directory
Entries
A storage device has natural divisions based upon its design. There are multiple
read/write heads which sweep over platters coated with ferromagnetic material.
The read/write heads trace out concentric rings called tracks, and the tracks are
divided by gaps into sectors. This sector is the unit by which hard disk storage is
read and written and it usually contains 512 bytes of data.

With multiple megabyte and gigabyte storage commonplace, keeping track of in
use and available space at the granularity of a sector would require rather large
data structures. By increasing the granularity to a grouping of sectors, smaller data
structures can be used.

The term cluster is used to refer to the fundamental unit by which disk storage is
allocated. The size of a cluster is measured in sectors. A cluster may contain 1, 2,
4, S, ... sectors; it is always an integral power of 2. The sectors which comprise a
cluster are consecutively numbered logical sectors.

The file allocation table (FAT) is used to track the usage of a volume's clusters.
The table is organized as an array of either 12-bit or 16-bit cluster numbers.
Cluster numbers start at 2, since the first two entries in the table are reserved. For
12-bit cluster numbers the maximum value is FEFh, whereas for 16-bit cluster
numbers the maximum is FFEFh. A cluster number of 0 indicates that the cluster
is available for allocation. The values FF7h or FFF7h are used to flag a cluster
which contains a bad sector.

Directory entries specify a starting cluster number for a file or directory. This
number is used as an index into the FAT. If the value is in the range for a valid
cluster number, then that cluster is allocated to the file or directory and serves as
an index to the next cluster. The total allocation is determined by following this
chain of cluster numbers until the last cluster indicator is reached. The last cluster
indicator is FFS-FFFh for 12-bit FATs, and FFFS-FFFFh for 16-bit FATs.

DOS 6.x FAT, Boot Record, and Directory Entries 177

A volume will usually contain space for two FATs which are mirror images of
each other. The extra FAT is used to detect disk corruption and allows recovery
from some minor FAT problems.

Following the two FATs, space is set aside for the root directory entries. This is a
part of the disk structure that has undergone some change with the Windows 95
version of VFAT. We will take a closer look at directory entries below. The space
following the root directory entries is available for user data, and the first sector
here marks the beginning of cluster number 2.

The boot record is always present as the first sector whether the volume is boot
able or not. In addition to containing the OS boot code, it begins with a
BOOTSECTOR structure which describes the layout of the disk volume. This
includes such parameters as the size of a sector, the size of a cluster, the number
of sectors used up by the FAT, the number of entries in the root directory, and
the total number ·of sectors in the volume.

The information in the boot record is sufficient to delineate the starting positions
of all of the important volume structures. The diskette accompanying this book
contains the utility DUMPDISK, which displays the contents of the boot record,
portions of the FATs, and the root directory entries for a fixed or floppy diskette.
It is a Win32 console application (see source on the diskette) that illustrates use of
the DeviceloControl interface to VWIN32 to do direct disk reads. Some sample
output from DISKDUMP is shown in Example 9-1. In this particular example, a
fixed disk of 455 MB, sectors 0 through 467 are set aside for the boot record, the
FATs, and the root directory entries. The first sector available for allocation to files
and subdirectories is at 468.

Example 9-1. DUMPDISK Sample Output

Sector a - BOOTSECTOR structure
OEM Name:
Bytes/Sector:
Sectors/Cluster:
Reserved Sectors:
Number FATs:

MSWIN4.0
0200
10
0001
02

Number Root Directory Entries: 0200
Total number Sectors: 000d8db5
Media Descriptor:
Number of Sectors/FAT:
Sectors/Track:
Heads:
Hidden Sectors:
BIOS Drive Number:
Boot Signature:
Volume ID:
Volume Label:
File System Type:

F8
00d9
003b
0010
0000003b
80
29
lf285e7a

FAT16

178 Chapter 9: VFAT.· The Virtual FAT File System Driver

Example 9-1. DUMPDISK Sample Output (continued)

Sector 1 - First File Allocation Table ...
fff8 ffff ffff 0004 0005 0006 0007 ffff
0009 OOOa OOOb OOOc ffff OOOe OOOf ffff

Sector 218 - Second File Allocation Table
fff8 ffff ffff 0004 0005 0006 0007 ffff
0009 OOOa OOOb OOOc ffff OOOe OOOf ffff

Sector 435 - Root Directory Entries

Name Attrib Creation Last Start Size Chksum
Date/Time Access Cluster

IO DOS ---shr 08-10-94 13:16:02 xx-xx-xx 0003 40854
MSDOS DOS ---shr 05-31-94 06:22:00 xx-xx-xx 0008 38138
COMMAND DOS -----r 08-10-94 15:54:46 xx-xx-xx 04cf 54710
COMMAND COM a----- 07-11-95 09:50:00 03-29-96 22a8 92870
WET SUIT a-v--- 09-08-95 10:51:42 xx-xx-xx 0000 0
DOS -d---- 09-08-95 11:51:52 xx-xx-xx 0002 0
EXTMSDOS SYS ---shr 12-12-94 14:18:40 xx-xx-xx OOOd 22368
WINA20 386 a----- 05-31-94 06:22:00 12-11-95 01cf 9349
BOOTLOG TXT a---h- 12-21-95 16:50:34 12-21-95 0391 21894
DBLSPACE BIN ---shr 07-11-95 09:50:00 xx-xx-xx 228e 71287
AUTO EXEC BAT a----- 05-02-96 09:14:18 05-20-96 c022 317
SCSI -d---- 09-08-95 12:09:42 xx-xx-xx 03lf 0
CONFIG DOS a----- 09-08-95 12:17:34 xx-xx-xx 0397 270
AUTO EXEC DOS a----- 09-08-95 12:17:34 xx-xx-xx 0396 148
MSDOS ----h- 09-08-95 12:32:22 xx-xx-xx 0755 22
SETUPLOG TXT a---h- 09-08-95 13:10:16 09-08-95 0756 46604
SUHDLOG DAT ----hr 09-08-95 13:01:48 xx-xx-xx 231b 5166
WINDOWS -d---- 09-08-95 12:46:52 xx-xx-xx 07ge 0
DETLOG TXT a--sh- 01-20-96 19:44:40 01-20-96 21be 67944
NET LOG TXT a----- 09-08-95 12:51:36 04-07-96 0798 1364
CONFIG SYS a----- 03-24-96 21:35:00 05-20-96 9398 235
MSDOS SYS a--shr 03-24-96 21:39:28 03-24-96 7dbd 1641
BOOTLOG PRV a---h- 12-21-95 16:39:40 12-21-95 001d 21420

A Program Files --vshr 20
PROGRA-1 -d---r 09-08-95 12:52:40 xx-xx-xx Oac8 0
SYSTEM 1ST ---shr 09-08-95 13:01:36 xx-xx-xx 224d 312424
DRVSPACE BIN ---shr 07-11-95 09:50:00 xx-xx-xx 2298 71287
DETLOG OLD ---sh- 01-18-96 22:52:00 01-18-96 3e90 67946
IO SYS ---shr 07-11-95 09:50:00 xx-xx-xx 22fc 223148

Sector 468 - First available cluster.

Note that the Chksum column is blank except for the longname entry "Program
Files." The checksum is only used on longname entries; however, the checksum
is calculated on its associated alias entry (which follows on the next line).

Windows 95 Directory Entries 179

Windows 95 Directory Entries
Starting with Windows 95, there are now three distinct types of directory entries
written to the disk. The shortname entry is the same as the existing directory
entry used by MS-DOS 5 and 6.x. This directory entry can represent 8.3 filenames,
directory names, and the volume label. The other two types of directory entries
consist of a sequence of one or more longname entries followed by a single alias
entry (see Example 9-2). The alias entry is a shortname entry with an additional
member for the last access date.

The longname directory entry is needed to represent case-preserved names or
long filenames. As you can see in Example 9-2, most of the space in the 32-byte
entry is consumed by 13 Unicode characters. The attribute byte is at the same
offset as it occurs in shortname and alias entries, but because it contains a set of
"impossible" settings, it is not recognized by DOS disk utilities. Thus legacy
programs will only recognize and display the shortname and alias directory
entries.

Example 9-2. Directory Entry Structures

typedef struct _DIRENTRY {
char deName[8];
char deExtension[3];
BYTE deAttributes;
BYTE deReserved[6];
WORD deLastAccessDate;
WORD deEAhandle;
WORD deCreateTime;
WORD deCreateDate;
WORD deStartCluster;
DWORD deFileSize;
}

DIRENTRY, *PDIRENTRY;

typedef struct _LONGDIRENTRY
char leSequence;

wchar_t leName[5];
BYTE leAttributes;
BYTE leType;
BYTE leChksum;
wchar_t leName2[6];
WORD leZero;
wchar_t leName3[2];

II base name
II extension
II file or directory attributes

II *New Win95* - last access date
II
II creation or last modification time
II creation or last modification date
II starting cluster of the file or directory
II size of the file in bytes

II sequence byte:l,2,3", last entry is

II ORed with 40h

II Unicode characters of name
II Attributes: Ofh
II Long Entry Type: 0
II Checksum for matching short name alias
II More Unicode characters of name
II reserved
II More Unicode characters of name

LONGDIRENTRY, *PLONGDIRENTRY;

Since each longname entry can hold 13 characters, if a filename is longer than
that, additional longname entries are needed to store the additional characters.

180 Chapter 9: VFAT.· The Virtual FAT File System Driver

The first byte in a longname entry serves as an integral sequence number starting
at 1. The sequence number of the last longname entry is ORed with 40h. A typical
sequence of longname entries is shown in Example 9-3.

Example 9-3. Directory Entriesfor a Long Filename

Name Attrib

C ilename --vshr
2 ee_direntry_f --vshr
1 This_is_a_thr --vshr

creation
Date/Time

Last
Access

THIS_I-1 a----- 05-20-96 16:57:08 05-20-96

Start
Cluster

247c

Size Chksum

8

1e
1e
1e

This sample sequence of entries (shown in Example 9-3) consists of three long
name entries followed by a single alias entry. The filename which is spread over
the three longname entries is Tbis_is_a_three_direntryJilename. The sequence
numbers are 1, 2, and C (43h). Adjacent to the first longname entry is the alias
entry which contains an 8.3 format name, 11lISj-l, which is a capitalized and
compressed version of the long filename; The alias entry is crucial for recording
the actual attributes, creation date/time, starting cluster, and file size. The
checksum value which is stored in the longname entry is computed on the alias
name. This provides a means for reconciling a longname entry with an alias entry.

Changes in Disk Layout with FAT32
A number of changes have been made to disk data structures in order to accomo
date the new 32-bit FAT. These changes are serious enough that they will break
FAT16 disk utilities. For example, when I first tried DUMPDISK on a FAT32 drive,
it failed miserably. After adding new code to detect and support FAT32 drives, it
displays these disk data structures too. Example 9-4 shows sample output from
DUMPDISK for a 1.79 gigabyte FAT32 partition:

Example 9-4. Sample FAT32 Output from DUMPDISK

Sector 0 - FAT32 BOOTS ECTOR structure ...
OEM Name: MSWIN4.1
Bytes/Sector: 0200
Sectors/Cluster: 08
Reserved Sectors:
Number FATs:

0020
02

Number Root Directory Entries: 0000
Media Descriptor:
Number of Sectors/FAT:
Sectors/Track:
Heads:
Hidden Sectors:
Big Total number Sectors:
*Big Sectors per FAT:

F8
0000
003f
0080
0000003f
00397641
00000e5a

Changes in Disk Layout with FAT32

Example 9-4. Sample FA,T32 Output/rom DUMPDISK (continued)

*Extended flags:
*File System Version:
*Root Dir Start Cluster:
*File System Info Sector:
*Backup Boot Sector:
*Reserved [0] :
*Reserved [1] :
*Reserved[2] :
*Reserved[3]:
*Reserved [4] :
*Reserved[5] :
BIOS Drive Number:
Boot Signature:
Volume ID:
Volume Label:
File System Type:

0000
0000
00000002
0001
0006
0000
0000
0000
0000
0000
0000
80
29
361810f7
NO NAME
FAT32

Sector 1 - FAT32 FS Info Sector ...
Signature: 61417272
Free Clusters: 0005c017
Next Free Cluster: 00031b1a

Sector 32- First File Allocation Table ...
o ffffff8 fffffff fffffff 0000000 0000000
8 0000000 0000000 0000000 0000000 0000000

16 0000000 0000000 0000000 0000000 0000000
24 0000000 0000000 0000000 0000000 0000000
32 0000000 0000000 0000000 0000000 0000000
40 0000000 0000000 0000000 0000000 0000000
48 0000000 0000000 0000000 0000000 0000000
56 0000000 0000000 0000000 0000000 0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Sector 3706 - Second File Allocation Table ...

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

o ffffff8 fffffff fffffff 0000000 0000000 0000000 0000000 0000000
8 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

16 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
24 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
32 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
40 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
48 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
56 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

Sector 7380 - :First available cluster.

Sector 7380 - Root Directory Entries

181

Name Attrib Creation Last Start
Cluster

6bcO
c8Sb

Size Chksum
Date/Time ACCeSS

SUHDLOG DAT ----hj:' 04-15-97 11:26:04 04-16-97
SUHDLOG BAK ----hr 04-15-97 10:35:24 04-15-97

7802
7802

182 Chapter 9: VFAT.· The Virtual FAT File System Driver

Example 9-4. Sample FAT32 Outputfrom DUMPDISK(continued)

BOOTLOG TXT a---h- 04-16-97 17:16:16 04-16-97 3780 53596
IO SYS ---shr 04-08-97 14:23:00 04-15-97 6b84 219158
RECYCLED -d-sh- 03-01-97 19:51:00 03-01-97 84ab 0
AUTOEXEC DOS a----- 03-01-97 18:04:14 04-15-97 OObf 1111
CONFIG DOS a----- 09-29-96 18:04:22 03-02-97 0061 312
WINICE -d---- 03-03-97 11:32:38 03-03-97 2b86 0
SCANDISK LOG a----- 04-16-97 17:10:50 04-16-97 3781 448
CONFIG BAK a----- 04-15-97 10:35:24 04-15-97 c88a 167
CONFIG SYS a----- 04-16-97 17:51:32 04-18-97 3874 167
DETLOG TXT a--sh- 04-16-97 21:39:52 04-16-97 599c 69781
HIMEM SYS a----- 09-29-96 17:32:28 03-02-97 009a 33191
MSDOS SYS a--shr 04-16-97 18:03:40 04-16-97 38a2 1702
SIW95 -d---- 03-10-97 16:35:42 03-10-97 a92e 0
ASPI2DOS SYS a----- 09-27-94 03:10:00 04-15-97 OOaf 28728
ASPICD SYS a---.-- 09-27-94 03:10:00 03-01-97 00b7 29244

A My Documents --vshr d7
MYDOCU;"1 -d---- 03-16-97 18:10:00 03-16-97 142b 0
DBLSPACE BIN ---shr 04-08-97 14:23:00 04-15-97 5c89 65271

The ftrst thing you'll notice is that the boot sector has expanded. Actually, the
SDK does not deftne a BOOTSECTOR structure as was the case with MSDOS.
Instead you have to piece together a "BOOTSECT0R32" structure like this:

typedef struct _BOOTSECT32
BYTE bsJump[3]; II jmp instruction
charbsOemName[8]; /1 OEM name and version

II This portion is the FAT32 BPB
A_BF_BPB bpb;

BYTE bsDriveNumber; II 80h if first hard drive
BYTE bsReserved;
BYTE bsBootSignatlire; II 29h if extended boot-signature record
DWORD bsVolumeID; II volume ID number
char bsvolumeLabel[11]; II volume label
char bsFileSysType[8]; II file-system type (FAT12 or FAT16)

BOOTSECTOR32, *PBOOTSECTOR32;

The structure named A_BF..J3PB is a new expanded BPB (BIOS Parameter Block)
for FAT32. It is documented in the SDK and it is this portion of the
BOOTSECTOR32 structure where the change has occurred. If you look back at
the DUMPDISK output, a range of entries in the BOOTSECTOR area are marked
with asterisks. These members are either new to the FAT32 BPB or are "widened"
members, i.e. they have expanded from 16 to 32 bits. The Reserved Sectors entry
tells us the number of sectors before the start of the first FAT; in this case it is 20h
or 32 sectors. On this particular drive, only 6 of these sectors are put to use. Four
of these sectors are used for the boot sector, two for a primary copy and two for

lOS and the Layered Driver Model 183

a backup copy. Two sectors are now needed for the boot sector because theBPB
has expanded in size causing the boot code to spill over to another sector.

The other two sectors are for a primary and a backup copy of a FS INFO sector.
The SDK describes the structure in this way:

... there is a sector in the reserved area on FAT32 drives that contains values for
the count of free clusters and the cluster number of the most recently allocated
cluster. These values are members oftheBIGFATBOOTFSINFO (FAT32) structure
which is contained within this sector. These additional fields allow the system to
initialize the values without having to read the entire me allocation table.

This sector is sandwiched between the two boot sectors on this particular drive.

Another peculiarity about FAT32 partitions is that the BPB indicates they have 0
root directory entries. Instead of specifying' a fixed number of entries, a FAT32
root directory is treated like a me. It has a minimum size consisting of a single
starting cluster but can be expanded by adding more clusters to its chain. Note
that for the example FAT32 DUMPDISK output above, the ftrst available cluster on
the drive is also the first cluster of the root directory.

As its name implies, FAT32 File Allocation Tables cOhtain 32-bit cluster numbers.
The SDK notes that " .. :the high 4 bits of the 32-bit values in the FAT32 me alloca
tion table are reserved and are riot part of the cluster number. Applications that
directly read a FAT32 me allocation table must mask off these bits and preserve
them when writing new values."The first cluster which can be allocated is
number 2. A look at theFAT tables reveals a Oxffffffffat this location; this signiftes
the end of a cluster chain.

The sample code for DUMPDISK illustrates some techniques for determining
whether a system supports FAT32 and whether a particular drive is a FAT32 drive.
It also includes typedefs for some of the FAT32 data structures.

lOS and the Layered Driver Model
So far in this book, I have avoided discussing the layered nature of the me system
in any detail. This is because IFSMgr has d.:Jser affiliations with application APls
than it does with the underlying hardware. Also, the layered driver model only
applies to local me system drivers; it is not a common structure for all classes of
devices as is the case with the Windows Driver Model (see Chapter 14, Looking
Ahead).

The layered model is comprised of 32 distinct layers of drivers. The layering repre
Sents both the ordering of initialization (from the bottom up), and the servicing of
requests (from the top down) . .At the very top of the hierarchy is IFSMgrand
ill1111ediately beneath it are the me system drivers. The other 30 layers are

184 Chapter 9: VFAr.· The Virtual FAT File System Driver

occupied by drivers that handle physical aspects of disk I/O and are referred to in
the DDK as the Layered Block Device Drivers. The layered driver model in
Windows 95 is implemented in a VxD called the I/O Supervisor (lOS).

The subject of the lOS could easily fill another book.' Here, we will be content
with addressing only two aspects of lOS: .the types of drivers which make up the
layered model and the role which 10Sserves.

Some of the common types of block device drivers which Windows 95 uses fall
into these categories, arranged from highest to lowest:

Volume trackers
The volume tracking driver, or VID, makes sure that the target drive for an
incoming request matches the media that is actually in the drive. The VID is
only needed for drives which have removable media, e.g., floppy drives and
CD-ROMs.

Type-specific drivers
All devices of a certain class have a common type specific driver, or TSD. The
TSD is responsible for casting the logical view of a device, as it is viewed
from an FSD, into its physical view. This might involve· translating a logical
block address into the physical head, cylinder, and sector. TSDs also know
about drive partitions and are able to match up a volume identifier with a sub~
section of a fixed disk as defined in its master boot record.

Vendor-supplied drivers
Several slots in the hierarchy are set aside for vendor supplied drivers, or
VSDs. This is a provision for adding vendor specific functionality for a device
by inserting an auxiliary driver in the path of I/O requests.

SCSI manager and miniport drivers
The SCSI device architecture is inherited from Windows NT. The SCSI
Manager is a device independent layer that abstracts the behavior of SCSI
controller cards. A miniport driver is the lower layer which supports the SCSI
manager for a specific type of SCSI adapter.

Port drivers
For non-SCSI controller cards a port driver is required. The port driver
controls the hardware. It does such things as write to I/O ports, program
DMA transfers, and service hardware interrupts, in order to take control of a
disk drive or· other device which is attached. Port drivers are also inherited
from Windows NT .

• For more extensive coverage, see the DDK, and Walter Oney's book, Systems Programmingjor Win
dows 95, Chapter 15, "Block Device Drivers." For a higher-level account, see Chapter 7, "The Filesystem,"
in Inside Windows 95, by Adrian King.

VFAT Initialization and Registration 185

Real-mode mappers
In cases where no protected-mode driver exists for a piece of hardware, calls
to a real-mode driver are passed from protected mode to real mode using this
type of driver.

Here are a couple of examples. A standard floppy disk drive is represented by
drivers from three layers. It has a volume tracking driver for detecting a media
change; a disk-type specific driver, and a port driver for an NEC floppy controller
card. An IDE fixed disk also has three layer drivers. It has a disk-type specfic
driver, a miscellaneous port driver (layer 19), and a port driver for an IDE
controller card.

Three basic services which lOS supplies to clients are lOS_Register, IOS_SendCom
mand, and IOS_RequestocService. lOS_Register is the means by which lOS
becomes aware of a driver. It receives a DRP (Driver Registration Packet) struc
ture which specifies what level the driver will occupy in the hierarchy. An FSD
will use the IOS_SendCommand interface to make requests of a device. An I/O
packet, or lOP, is passed through this interface and lOS routes it through the
driver layers using the calldown chain. The IOS_RequestocService interface
supplies a number of utility functions for clients.

As drivers initialize during startup, each driver for a device specifies the level at
which it wishes to be called in the layered hierarchy. In response, lOS builds a
chain of target functions, the calldown chain, in the correct order. Later, when an
I/O request is routed to a device, the order of the functions in the calldown chain
determines the order in which the layered drivers will be called. When a driver
receives an I/O packet, it decides what to do with it; it may decide to pass it
down the chain, or possibly complete the request and not pass it down.

VFAT Initialization and Registration
VFAT, as a local FSD, needs to support linkage with IFSMgr and it does this with
volume-based (see Table 6-6) and handle-based (see Table 6-7) function tables.
As with other FSDs, VFAT establishes the first entry point, FS_MountVolume, by
registering with IFSMgr using the IFSMgcRegisterMount service during the Device
Init phase.

In order for VFAT to access the local disk, it relies upon lOS. To gain access to
lOS services, VFAT registers with lOS during the Device Init phase. To register,
VFAT calls the service lOS_Register with a DRP (Driver Registration Packet) struc
ture as an argument. The contents of the DRP are shown in Example 9-5 along
with the values that VFAT uses in its lOS_Register call.

186 Chapter 9: WAT.· The Virtual FAT File System Driver

Example 9-5. DRP Passed to IDS_Register

typedef struct DRP {

CHAR DRP_eyecatch_str[8]; II "xxxxxxxx"
ULONG DRP_LGN; II DRP_TSD
PYOID DRP_aer; II Async_Event_Rtn
PYOID DRP_ilb; II Address of ILB structure
CHAR DRP_ascii_name[16]; II "Flatfat FileSysD"
BYTE DRP_revision; II 0
ULONG DRP_feature_code; II 0
USHORT DRP_if_requirements; II 0
UCHAR DRP_bus_type; II 0
USHORT DRP_reg_result; II 0
ULONG DRP_reference_data; II 0
UCHAR DRP_reservedl[2]; II reserved; must be zero
ULONG DRP_reserved2[1]; II reserved; must be zero

DRP, *PDRP;

The DRP_LGN member specifies the driver's load group and initialization layer.
Each bit of DRP_LGN corresponds to one of 32 initialization layers. The lower the
bit, the higher the layer and the later it will be initialized. At the top of the hier
archy is IFS manager, followed by FSDs, etc. The DRP_LGN value also informs
lOS of the driver's registration type. Noncompliant registration is used for FSD's
and IFS drivers; this means the driver will not receive AEP (asynchronous event
packet) notifications at its asynchronous event routine. Since VFAT supplies an
asynchronous event routine (Aysnc_EvenCRtn), it uses a load group of DRP_TSD,

giving it the same initialization order as a type specific driver.

The DRP_ilb member supplies the address of an lLB (lOS linkage block) struc
ture, which lOS will fill in before returning. The members of this structure are
shown in Example 9-6. This structure contains several lOS entry points for
requesting services.

Example 9-6. lIB Returned by IDS_Register

typedef struct ILB {
PFNISP ILB_service_rtn;
PYOID ILB_dprintf_rtn;
PYOID ILB_Wait_lOth_Sec;
PYOID ILB_internal_request;
PYOID ILB_io_criteria_rtn;
PVOID ILB_int_io_criteria_rtn;
ULONG ILB_dvt;
ULONG ILB_ios_mem_virt;
ULONG ILB_enqueue_iop;
ULONG ILB_dequeue_iop;
ULONG ILB_reserved_l;
ULONG ILB_re.served_2;
USHORT ILB_flags;
CHAR ILB_driver_numb;
CHAR ILB_reserved_3;

ILB, *PILB;

II
1/
II
II
II

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

of
of
of
of
of
of
of
of
of
of

service routine
dprintf routine
wait routine
request routine
lOR criteria routine

Mounting a VFAT Volume 187

The DRP structure resides in a VxD_INIT_DATA_SEG segment and thus is
discarded after initialization completes; however, the ILB is placed in a VxD_
LOCKED_DATA_SEG segment since it will be used for accessing lOS services.

Mounting a VFAT Volume
Example 9-7 shows the top level C pseudocode for the FS_MountVolume func
tion. Of the six different mount types, only the IR_FSD_MOUNT case is shown;
this case corresponds to the standard, mount drive operation. This is truly
pseudocode because VFAT is not implemented using the C language. For
instance, internally the EBP register is used as a pointer to the ioreq structure,
whereas in a C implementation EBP would point to the base of the stack frame.

Example 9-7. VFAr's FS_MountVolume Function

int FS_MountVolume(pioreq pir) {
register PIOREQ ebp-pir = pir;
register short rete;

ebp-pir->ws.ior_error = 0;
ebp-pir->ws.b35 = 0;
ebp-pir->ws.hi_options = 0;
ebp-pir->ws.w38 = 0;

switch (ebp-pir->ir_flags) {
case IR_FSD_MOUNT:

_Claim_Level2();
_asm bts dword ptr Dl_9E66,00

rete = _MountVol();
ebp-pir->ir_vfune = VolFune;

_Release_Level2();
_asm btr dword ptr Dl_9E66,00

if (!rete) ebp-pir->ir_tuna D1_A3AC & 1;
break;

/*** other cases not shown here ***/

default:
rete = ERROR_INVALID_FUNCTION;
break;

return (ebp-pir->ir_error rete);

On entry to FS_MountVolume, the ioreq structure contains four members which
are of special significance to this function call: ir_volh (ir_auxl) contains a
pointer to a VRP (Volume Request Parameters), ir_rh contains the linear address

188 Chapter 9: VFAT.· The Virtual FAT File System Driver

of the DOS DPB (Disk Parameter Block) chain, ir_mntdrv Cir_aux2} contains the
drive number of the volume to be mounted, and ir Jh contains the address of
lFSMgr's as yet unfilled shell resource structure. On return, ir_rh will contain
VFAT's resource handle for the volume and ir_vfunc, will contain the address of
the table of volume-based entry points.

The first four lines in FS_MountVolume (see Example 9-7) initialize members of
the structure WS. Recall that the irJsd member of ioreq is a 64-byte "provider
work space" for use by FSDs. VFAT puts this entire area to use.

Most of the logic for mounting the volume is implemented in the routine
_MountVol. It reads the first logical sector of the volume, which should be a DOS
boot sector. Using the BOOTSECTOR structure (see the Microsoft MS-DOS
Programmer's Reference, Version 5 or newer, for a description of this structure) at
the beginning of this sector, VFAT creates a Resource Block structure for the
volume and adds it to a doubly-linked list of such structures. The C volume gets
special treatment; if it is being mounted, the DOS DPB structure is compared field
by-field with corresponding members of the Resource Block structure. If there is a
mismatch, an error message is displayed via VMM's FataCErrocHandler service.

Using lOS to Read the Boot Sector
Reading a sector using lOS services takes several steps; it's not as straightforward
as using the BIOS lnt 13h interface. The first step is to ask lOS to allocate an lOP
(I/O Request Packet). An lOS service request is made by pushing the address of
an ISP (lOS Services Packet) on the stack and calling the address of the lOS
service routine in the ILB_serviceJtn member of the ILB.

The form and content of the ISP varies from service to service. Example 9-8
shows how the ISP is structured for an ISP _CREATE_lOP service.

Example 9-8. ISP Structure for Create lOP Service

typedef struct lSP_lOP_create
USHORT lSP_func; II lSP_CREATE_lOP
USHORT lSP_result; II filled in on return
USHORT lSP_lOP_size; II size of lOP to allocate (in bytes)
ULONG lSP_delta_to_ior; II offset to lOR within lOP
ULONG lSP_lOP-ptr; lion return: address of lOP
UCHAR lSP_l_c_flags;
UCHAR lSP-pad2[1];
} lSP_lOP_alloc;

II various allocation flags
II pad to DWORD boundary

The first two members of this structure are common to all ISP structures, and the
remaining members are unique to the Create lOP call. The following members are
initialized prior to making the call: ISP Junc is set to ISP_CREATEjOP, ISPjOP_
size is set to pVRP->VRP_max_req_size, ISP_delta_to_ior is set to pVRP->VRP_

Mounting a VFAT Volume 189

delta_to_ior, and ISPj_c.Jlags is set to O. If the service succeeds then on return,
ISPjOP -Ptr contains the address of the allocated lOP. Nested within an lOP is an
lOR (I/O Request Descriptor); in fact, the address of the lOR is given by the
expression ISP_IOP_ptr + ISP_delta_to_ior. It is the lOR that is needed for the
next step.

If you have followed along this far, you'll be relieved to know that we're almost
ready to actually read something from the disk, but first we have to fill in the lOR
structure. The members of the lOR structure are detailed in Example 9-9.

Example 9-9. Contents of JOR Structure for Boot Sector Read

typedef struct _lOR {
ULONG lOR_next;
USHORT lOR_func;
USHORT lOR_status;
ULONG lOR_flags;

CMDCPLT lOR_callback;
ULONG lOR_start_addr[21;
ULONG lOR_xfer_count;
ULONG IOR_buffer-ptr;

lOR-private_client;
IOR-private_lOS;
lOR-private-port;

II lOR_READ: function to perform
II returned status
II lORF_VERSlON_002IlORF_HlGH_PRIORlTYI
II lORF_BYPASS_VOLTRK
II completion callback routine
l/ vol relative starting addr
II sector count of 1
II 2048 byte buffer

ULONG
ULONG
ULONG
union
ULONG
ULONG
ULONG
UCHAR
UCHAR

urequestor_usage _ureq; II 5 dwords, "working area n

lOR_re~re~handle;

lOR_re~vol_handle; II address of volume's VRP
lOR_sgd_lin-phys;
lOR_num_sgds;
lOR_vol_designtr;

USHORT lOR_ios-private_l;
ULONG lOR_reserved_2[21;
} lOR, *PlOR;

II zero-based volume number

I'll confine our discussion to just the elements of lOR that are initialized for the
boot sector read; for more. details on the lOR structure see the Windows 95 DDK
documentation for layered block drivers.

The bits which are not set in the IOR-flags member are more revealing than those
which are. IORF_CHAR_COMMAND flag clear implies IOR_xfeccount refers to
sectors rather than bytes. 10RF_SYNC_COMMAND flag clear implies that the
command is asynchronous and lOR_callback is called on completion. IORF_
LOGICAL_STARLSECTOR flag clear implies that IOR_starcaddr is a physical
address which is in the range pVRP->VRP -partition_offset to pVRP->VRP_
partition_offset + total sectors in the volume.

The address of the lOR is placed in the Est register and EDI is set to the address
of the DCB (Device Control Block) for the physical device which holds the
volume, Then the IOS,,-SendCommand service is invoked to perform the read. This

190 Chapter 9: VFAT.· The Virtual FAT File System Driver

call sets the wheels in motion by passing the request down through the layers of
the lOS subsystem. Before the disk access is completed, IOS_SendCommand will
return, since VF AT made an asynchronous request.

Upon return from IOS_SendCommand, VFAT suspends the current thread until
lOR_callback is called. To coordinate the suspension and resumption of the
thread, the first two doubleword elements of lOR's _ureq member are used; the
first doubleword is used as a simple flag and the address of the second double
word serves as a blocking identifier.

Example 9-10 shows the code used to suspend the thread. Interrupts are disabled
to assure that the test and call to block are treated as an "atomic" operation. The
doublewords at EBX+2Ch and EBX+30h are elements in the _ureq member of
lOR. Bit 0 of the first element is set by the callback handler once the requested
service completes. So on the first execution of this loop, the bit test will return
with the carry flag clear, and the function CIi_Block_Thread will be called. This
function takes the address of a blocking identifier; it increments the contents of
that address and then calls IFSMgCBlock. IFSMgCBlock, in turn, is a wrapper for
the VMM service _BlockOnID, which is passed the same blocking identifier and
the flags BLOCK_ENABLEjNTS and BLOCK_SVCjNTS. These flags force inter
rupts to be re-enabled.

Example 9-10. Suspending Thread

call Send_lOS_Cmd
pop ebx

wait_for_lOR_callback:
cli
bt dword ptr [ebx+2c] ,00
jc short continue
lea eax, [ebx+30]
call Cli_Block_Thread

request boot sector read
restore EBX, ptr to lOR

has callback occurred?

addr of _ureq dword as blocking lD
wrapper to lFSMgr_Block

; thread resumes when signaled by lOR_callback handler
jmp short wait_for_lOR_callback

continue:
sti

The function ClCBlock_Thread will not return until the blocking identifier is
signaled. This, of course, is done in the callback handler and the code fragment
which achieves this is shown in Example 9-11. The Wakeup_Thread function is a
wrapper to IFSMgC Wakeup which in tum, is a call to _SignalID with the given
blocking ID.

Example 9-11. Resuming Thread

or dword ptr [ebx+2c],+01
lea eax, [ebx+30]
jmp Wakeup_Thread wrapper to lFSMgr_Wakeup

Mounting a VFAT Volume 191

When control does return from eli_Block_Thread, the bit test will set the carry
flag, and execution will resume at the label continue. The lOR_status member
will then reveal whether the request was successful. If an error is reported by
lOS, _MountVol calls the lOS service IOSMapIORSToI21, to convert the error code
into an equivalent Int 21h error code before returning.

Creating a VFAT Resource Block Structure
Once VFAT has successfully read in the boot sector, it will proceed to examine
the contents of the BOOTSECTOR structure at the beginning of the buffer. Several
criteria that must be met before VFAT accepts a non-removable volume for
mounting:

• The sector size must be one of 200h, 400h, 800h, or 1000h bytes

• The number of sectors per cluster must be 2 or greater

• The number of FATs must be either 1 or 2

• The number of system sectors must be less than the total number of sectors
on the drive

Once a volume is found to be acceptable, a Resource Block (Example 9-12) is
constructed using the contents of the BOOTSECTOR structure. VFAT maintains a
linked list of mounted volumes. The list can be traversed from the front by
starting with a head pointer or from the backend by starting with the tail pointer.
A Resource Block for a new volume is added at the head of the linked list. Before
a new volume is added, the list is searched for a matching volume. A match is
based on the following Resource Block members: VolumelD, VolumeLabel, and
the range of members from sector_size to w32. If a match is found, the mount is
failed with the error code ERRORjFSVOL_EXISTS (OxllC).

Example 9-12. Resource Block Structure

typedef struct _resource_block {
o struct _resource_block* pnext;
4 struct - resource_block* pprev;
8 DWORD total _sectors; II total sectors in the volume
C DWORD dOC; II number system sectors that are partial 4K
10 DWORD dl0; II value of ebp-pir->ir-pos
14 VRP* pVRP;
18 WORD second_fat; II sector offset to 2nd FAT
lC BYTE dlC; II init'ed to 1
lD BYTE volnum; II zero-based· volume number
lE BYTE mapvol; II mapped volume number
iF BYTE blF;
20 WORD sector _size; II sector size in bytes
22 WORD sector_byte_mask; II sector_size - 1

[92 Chapter 9: VFAT.' The Virtual FAT File System Driver

Example 9-12. Resource Block Structure (continued)

24 BYTE cluster_mask;
25 BYTE cluster_shift;
26 WORD reserved_sectors;

28 WORD root_entries;
2A WORD first _sector;

2C WORD max_cluster;
2E WORD FAT_size;
30 WORD dir_sector;

32 WORD w32;
34 WORD w34;
36 BYTE FAT_count;
37 BYTE cluster_byte_shift;
38 WORD cluster_byte_mask;
3A BYTE sector_byte_shift;
3B BYTE sectors _in-page;
3C BYTE sectors_in-page_mask;
3D BYTE b3D;
3E WORD w3E;
40 WORD flags;
42 char VolumeLabel[111;
4D BYTE b4D;
4E BYTE media;
4F BYTE b4F;
50 DWORD VolumeID;
54 DWORD d54;
58 DWORD d58;
5C DWORD d5C;
60 DWORD d60;
64 DWORD d64;
68 DWORD d68;
6C DWORD buffer_idle_timeout;
70 DWORD buffer_age_timeout;
74 DWORD latest_system_time;
78 DWORD volume_idle_timeout;
7C DWORD d7C;
80 DWORD d80;
84 DWORD d84;
88 DWORD d88;
8C DWORD d8C;
90 DWORD d90;
94 DWORD d94;
98 DWORD d98;
9C DWORD pNameCache;
AD DWORD dAO;
A4 DWORD dA4;
} RESOURCE_BLK, *PRESOURCE_BLK;

II (sectors per cluster) - 1
II sectors per cluster, as power of 2
II sectors used by boot record, etc.,
II before first FAT
II number of entries in root directory
II sector number of first sector
II in the first cluster
II maximum number of clusters in volume
II size of FAT in sectors
II first sector containing the
II root directory
II init'ed to 2
II init'ed to Oxffff
II number of FATs
II cluster size in bytes, power of 2
II size of cluster in bytes, less one
II sector size in bytes, power of 2
II number of sectors in 4K
II sectors_in-page - 1

II F8h for fixed disk

Opening a VFAT File-Top Level 193

Opening a VFAT File-Top Level
Examples 9-13 and 9-14 show the top level C pseudocode for the FS_OpenFile
function. There are many parameters in the ioreq structure which affect this func
tion, these are detailed in the IFS Specification. The ir_options parameter
determines the function to perform; it essentially boils down to opening an
existing file or creating a new file. If creating a file, ir_attr supplies the desired
attributes for the new file. The irJlags parameter specifies the desired access and
share mode for the returned handle. The ir_rh member contains the resource
handle for the volume on which file is opened or created. It is the address of the
VFAT Resource Block structure which was returned when the volume was
mounted. If the call succeeds, ir Jb will return the FSD file handle; this is the
address of a VFAT File Instance Block structure.

To get a feel for how this function works, let's trace through the open of an
existing file. To make it interesting, let's select a long filename, say d:\windows\
desktop\ oldJorum_messages. txt.

Execution begins at lines 10 through 16, in Example 9-13, where several members
of the FSD's working area structure, WS, are initialized. The first test occurs at line
18 where ir_options is examined to separate two distinct types of operations. In
our case, ir_options has the value AC710N_OPENEXIS71NG, so the first half of the
if clause is true and the function _Claim_Levell is called. Under certain conditions
this function will block the current thread; thus this function serves to mark the
beginning of a VFAT critical section. When _Claim_Levell returns, initialization of
the FSD's working area structure continues, with values for new-file_attrib, access_
share_mode, and standard_options retrieved from ioreq members ir_attr, irJlags,
and ir_options, respectively. At line 36, the standard_options are tested for
validity and, if they are found to be invalid, an error return is made.

At line 41, the function _AllocInstanceBlock allocates 44 bytes for a VFAT File
Instance Block. The address of this block is stored to the ir Jb member of the
ioreq structure, and thus is used to represent the FSD's file handle. At line 42,
the pointer to the caller's hndlfunc structure is retrieved from ir_hfunc in the
ioreq structure. At lines 43, 44, and 45, members of the caller's hndlfunc struc
ture are initialized with the addresses of VFAT handle-based function pointers.

With these preliminaries out of the way, standard_options is used once again at
line 48, to decide which action to take. If the open options are· AC710N_ OPENEX
IS71NG(OxOl) or AC710N_OPENALWAYS (Oxll), then the function _OpenExisting
will be called at line 49. If the open options are any of AC110N_CREATENEW
(Oxl0), AC710N_CREATEALWAYS (OxI2), or AC710N_REPlACEEXISTING (Ox02),
then the function _CreateNew_ReplaceExisting at line 63 is called, assuming that
the drive is not write protected (this is checked at line 57).

194 Chapter 9: WAr.· The Virtual FAT File System Driver

Example 9-13. FS_OpenFile Function, Part 1

1 int FS_OpenFile(pioreq pir) {
2 register pioreq ebp-pir = pir;
3 register BYTE opt;
4 register struct hndlfunc* phf;
~ int action, errcode=O;
6 DWORD entry_ir_fh;
7 struct instance_block* poi;
8 struct open_block* pob;
9

10 ebp-pir->ws.special_options = (ebp-pir->ir_options &
11 (OPEN_FLAGS_NO_CACHEIRo_sWAPPER_cALLIRO_MM_READ_WRITE» » 8;
12 ebp-pir->ws.w38 = Ox2000;
13
14
15

ebp-pir->ws.ior_error = 0;
ebp-pir->ws . b3 5 = 0;
ebp-pir->ws.d6C = ebp-pir->ws.vcache_handle

16 entry_ir_fh = ebp-pir->ir_fh;
17

0;

18 if (!ebp-pir->ir_options & (ACTION_CREATENEWIACTION_REPLACEEXISTING»
19 _C1aim_Leve11();
20 else {
21 ebp-pir->ws.w38 1= Ox0800;
22 if (! C_3EF4 ()) C_3FFD () ;
23 }
24
25
26
27
28
29
30
31
32
33
34

ebp-pir->ws.ir_fh 0;
ebp-pir->ws.new_file_attrib
ebp-pir->ws.b45 Ox16;
ebp-pir->ws.b46 = 0;

(BYTE)ebp-pir->ir_attr;

if «ebp-pir->ir_flags & Ox7f) == Ox7f) {
ebp-pir->ir_f1ags = ACCESS_READWRITE;
ebp-pir->ws.access_share_mode = Ox0082;
}

else ebp-pir->ws.access_share_mode = ebp-pir->ir_f1ags & Ox7f;

35 opt = ebp-pir->ws.standard_options = (BYTE)ebp-pir->ir_options;
36 if (opt==O II (opt&Oxf) >2 II opt & OxeO) {
37 errcode = 1;
38 goto error_exit;
39 }
40
41 ebp-pir->ir_fh = _AlloclnstanceBlock();
42 if (carry_flag) goto error_exit;
43 phf = ebp-pir->ir_hfunc;
44 phf->hf_read = FS_ReadFile;
45 phf->hf_write = FS_WriteFile;
46 phf->hf_misc = HdlFunc;
47
48 (ebp-pir->ir_fh)->open_mode = ebp-pir->ws.access_share_mode;
49 if (ebp-pir->ws.standard_options & ACTION_OPENEXISTING) {
50 action = _OpenExisting();
51 if (carry_flag)
52 if ((action != 2) II

Opening a VFAT File-Top Level 195

Example 9-13. FS_OpenFile Function, Part 1 (continued)

53 (! ebp-pir->ws.standard_options & ACTION_CREATENEW»
54 goto error_exit;
55 else goto store_results;
56 }
57 if ((ebp-pir->ir_rh)->pVRP->VRP_event_flags & VRP_ef_write-protected) {
58 errcode = Ox13;
59 goto error_exit;
60
61 if (ebp-pir->ws.new_file_attrib & Ox08
62 ebp-pir->ws.b45 = Ox08;
63 action = _CreateNew_ReplaceExisting();
64 if (carry_flag) goto error_exit;

Since we are tracing the open of an existing file, the function _OpenExisting will
be called. If the function succeeds, the carry flag will be clear on return and the
action variable will be assigned the return value AC110N_ OPENED, . and execution
will continue at line 1 (with the label store_resul ts) in Example 9-14. If the
carry flag is set on return, the open failed and execution continues at line 26
(with the label error_exit) in Example 9-14.

Example 9-14. FS_OpenFile Function, Part 2

1 store_results:
2 poi = (struct instance_block*)ebp-pir->ir_fh;
3 if (ebp-pir->ir_options & OPEN_FLAGS_COMMIT)
4 poi->wOE 1= Ox0083;
5 pob = poi->pob;
6 if (ebp-pir->ws.special_options & RO_SWAPPER_CALL) (
7 Dl_9E3B = ebp-pir->ir_fh;
8 _Init_PageFile();
9 (ebp-pir->ir_rh)->w40 1= Ox4000;
10 if (ebp-pir->ir_rh->pVRP->VRP_demand_flags &
11 VRP_dm~lock_unlock_media)

12 _Lock_Removable_Media();
13
14 if (!ebp-pir->ir_options & OPEN_FLAGS_ALIAS_HINT) &&
15 ebp-pir->ir-pos != 0) (
16 pob->record_lock_list = ebp-pir->ir-pos;
17 IFSMgr_ReassignLockFilelnst(ebp-pir->ir-pos,
18 entry_ir_fh, ebp-pir->ir_fh);
19
20
21
22
23
24

ebp-pir->ir_size
ebp-pir->ir_dostime
ebp-pir->ir_attr
pob->d14--;
if (pob->d14 < 0

pob->file_size;
pob->create_date_time;
pob->fattrib;

C_540D() ;
25 ebp-pir->ir_options = action;
26 error_exit:
27 if (ebp-pir->ws.w38 &Ox2000) {
28 DWORD tmp, tmp2;
29 tmp = ebp-pir->ws.d6C;

196 Chapter 9: VFAr.· The Virtual FAT File System Driver

Example 9-14. FS_OpenFile Function, Part 2 (continued)

30 ebp-pir->ws.d6C = 0;
31 if (tmp) { tmp2 = D1_A260;
32 D1_A260 = tmp;
33 if (tmp2) _HeapFree(tmp2,0);
34 }
35
36 ebp-pir->ir_error = errcode;
37 if (! ebp-pir->ws.special_options &
38 (OPEN_FLAGS_NO_CACHE!RO_SWAPPER_CALL»
39 if (ebp-pir->ws.w38 & Ox0004){
40 BYTE old_ior_err = ebp-pir->ws.ior_error;

ebp-pir->ws.ior_error
new_err = C_979C();
ebp-pir->ws.ior_error

0; 41
42
43
44
45
46

carry_set? new_err:old_ior_err;
ebp-pir->ir_error = new_err;
}

47
48 if Level2_ClaimCnt) {
49 if ((ebp-pir->\o'ls.special_options &

50 (RO_SWAPPER_CALL!RO_MM_READ_WRITE» &&
51 (Level1_ClaimCnt & Oxffffff)) _Release_Level1();
52 else {
53 _Release_Level2();
54 goto finish;
55 }
56 }
57 else _Release_Level1();
58 finish:
59 if (ebp-pir->ws.ior_error) ebp-pir->ir_error = IOSMapIORSToI21();
60 if (ebp-pir->ws.b35) {
61 (ebp-pir->ir_rh)->d1A &= (-(1 « ebp-pir->ws.b35»;
62 if (D1_9DAC) Wakeup_Thread (&D1_9DAC);
63 }
64 II end of FS_OpenFile

After a successful open of an existing file, return values are extracted from the
VF AT File Instance Block and File Open Block structures. These values are stored
to the ir_size, ir_dostime, and ir_attr members of the ioreq structure. The value
of the action variable, returned by _OpenExisting, is stored to ir_options.

The common cleanup code starts at line 27 where the first if clause checks if an
allocation needs to be freed or just placed on the free list. Then at line 36, the
current error code value (0 if no error) is stored to the ir_error member of the
ioreq structure. At line 37, a check is made to see if the file open was for a ring
o swapper file or memory-mapped file; if so special action is taken here.

Finally, at line 48, the Level2_ClaimCnt variable is checked to see if a Claim_
Level2 call has occurred in the interim. If not, the Release_Levell function is
called to "unclaim" the critical section.

Opening a VFAT File-Lower Level 197

This top level view of FS_OpenFile reveals some interesting aspects of VFAT's
implementation, but we need to descend to lower levels to see how the file is
located on the disk and to learn more about the File Instance and Open Block
structures.

Opening a VFAT File-Lower Level
Let's continue to "zoom-in" on FS_OpenFile, by examining one of its core func
tions: _OpenExisting. The pseudocode for this function is shown in Example 9-15.

Example 9-15. Pseudocode for Function _ OpenExisting

int _OpenExisting() {
1 register DWORD eax_reg, ebx_reg, edx_reg, esi_reg;
2 BYTE mode, share_mode;
3 PDIRENTRY pdir;
4 PINST_BLK poi;
5
6 eax_reg = OxcOOO;
7 edx_reg = ebp-pir->ir_attr;
8 _Init_PathAttribs();
9
10 mode = ebp-pir->ws.access_share_mode & Ox77;
11 share_mode = mode & Ox70;
12 if (share_mode > SHARE_DENYNONE) I I
13 (share_mode A mode> 4)) return_carry (OxOc); II invalid access
14
15 eax_reg = ebp-pir->ir-ppath;
16 if (eax_reg == NULL) {
17 esi_reg = ebp-pir->ir_uFName; II SFTOpenlnfo
18 _SFT_Open();
19 if (carry_flag) return_carry (Ox02); II file not found
20 }
21 else {
22 _FindPath();
23 if (carry_flag) {
24 if (zero_flag) return_carry (Ox02); II file not found
25 return_carry (Ox03); II path not found
26 }
27 if (zero_flag) return_carry (Ox05); II access denied
28 }
29 pdir = ebx_reg; II EBX points to directory entry
30 poi =ebp-pir->ir_fh;
31 if (pdir->deAttributes & ATTR-READONLY) {
32 if (ebp-pir->ws.access_share~mode & OxOOBO) {
33 poi->open_mode = SHARE_DENYNONE; IIOx40;
34 ebp-pir->ws.access_share_mode = OxOOcO;
35 }
36 if (poi->open_mode & Ox03 != ACCESS_READONLY) /1 0
37 if (poi->open_mode & Ox03 ! = ACCESS_EXECUTE) I I 3
38 if (ebp-pir->ir_options & OPEN_FLAGS_REOPEN == 0) II Ox800
39 return_carry (Ox05); II access denied

198 Chapter 9: WAT.· The Virtual FAT File System Driver

Example 9-15. Pseudocode for Function _ OpenExisting (continued)

40
41 if (ebp-pir->ws.vcache_handle)
42 VCache_Hold{ ebp-pir->ws.vcache_hand1e);
43 _Add_Open_Instance () ;
44 cf = carry_flag;
45 if (ebp-pir->ws.vcache_handle
46 VCache_Unhold{ ebp-pir->ws.vcache_handle);
47 if (cf) return;
48 if (ebp-pir->ir_options & OPEN_FLAGS_NO_COMPRESS) {
49 poi = ebp-pir->ir_fh;
50 poi->pob->b25 1= Ox10;
51 }
52 if (pdir->deStartCluster == 0) return 1;
53 if (ebp-pir->ws.specia1_options &
54 (OPEN_FLAGS_NO_CACHEIRo_sWAPPER_CALL) return 1;
55 eax_reg = 0; II amount to read
56 edx_reg = 0; II starting read position
57 _ReadAhead{);
58 return 1;
59

This function starts out by extracting the path-parsing flags which were passed
into FS_OpenFile in the upper word of the ir_attr member of the ioreq structure.
This is accomplished by the call to _IniCPathAttribs on line 8. The path-parsing
flags as well as other path-related attributes are combined into ebp_pir->wspath_
attribs, a word-sized member of the ioreq's working area, WS structure.

Next, on lines 10 through 13, the validity of the access and sharing modes is veri
fied. If invalid values are detected here, the error code ERRORjNVALID_ACCESS
COxOc) is returned to the caller and the carry flag is set. These operations are
combined in the macro return_carry () .

At line 15, the EAX register is initialized with the address of ir_ppath, the pointer
to the ParsedPath structure for the canonicalized input filename. A special case
is checked at line 16, where this address is NULL, signifying an open using an
SFTOpenlnfo structure. In this situation, the address of this structure is contained
in the ir_uFName member of the ioreq structure. This is passed via the ESI
register to the function _SFT_Open, where the file is opened not by pathname,
but by logical cluster number, directory entry index, and an 8.3 FCB-style name.
The IFS specification states that, "This special kind of open is issued by the IFS
manager when it is taking over a file handle left open by a TSR before booting
into Windows." We are more interested in the other half of the if clause which
starts at line 22.

The _FindPath function, which is called at line 22, attempts to walk the disk
through each of the path elements in the ir-ppath member of the ioreq struc
ture. It follows a sequence like this: For each path component, starting from the

Locating a Directory Entry 199

root, locate the directory entry for the path component (using the function _Find
DirEntry). A "located" path component has a pointer to a cache buffer containing
the corresponding directory entry. The starting cluster of the directory entry is
then used to retrieve the next directory level, where an attempt is made to locate
the next path component. This process is repeated for all the components in the
path and ultimately, if a filename is specified, it is searched for in the last located
directory.

_FindPath also makes use of the Path Cache and the Name Cache. Before starting
to walk the disk for a pathname, it consults the Path Cache to see if it holds an
entry for the path portion of a filename. If it finds an entry, the starting cluster for
the specified directory is returned, thereby saving one or more directory entry
traversals. Similarly, the Name Cache is consulted to see if it has an entry for the
filename portion of the pathname. If it does, the starting cluster and directory
entry index for the file are used to vector more directly to the file's contents.

Eventually, when _FindPath returns, the EBX register contains a pointer to the
directory entry structure for the file, if the search was successful. An error return is
indicated by setting either the carry flag, the zero flag, or both, and returning an
error code. On a successful return, the' attribute byte in the directory entry is
checked for read-only attributes (see line 31). If this is true, then some special
actions are taken in lines 32 through 40.

The next significant event occurs at line 43. Here, the call to _Add~Open_Instance
uses the information in the file's directory entry to fill in VFAT's file structures.
The first of these structures is a File Instance Block; the address of this block
becomes VFAT's file handle which is returned in the irJh member of ioreq. The
second structure is an Open File Block, which is added to VFAT's table of open
files. Only one Open File Block is created for each unique file, whereas a sepa
rate File Instance Block a created for each file open or create. Note that Vcache_
Hold and Vcache_Unhold calls are used to make sure that the cache block for the
directory entry is not discarded while it is in use during the _Add_Open_Instance
call.

Finally, before returning from _OpenExisting, some of the file is loaded into the
cache. This is accomplished by the call to _ReadAhead at line 57.

Locating a Directory Entry
In the previous section, the _FindPath function was described. It takes a sequence
of path components in a ParsedPath structure and attempts to walk the corre
sponding directories on the disk. The VFAT function _FindDirEntry meets this
need. Let's see how it is used to traverse the path:

d:\windows\desktop\old_forum_messages.txt

200 Chapter 9: VFAT.· The Virtual FAT File System Driver

In this example _FindDirEntry uses three arguments: ECX, an option argument;
EBX, the starting sector of the directory of interest; and EAX, a pointer to the
current pp_elements path component to be found. There are also variables shared
via the irJsd area of the ioreq structure: starting cluster, sectors per cluster, and
starting sector. These are also initialized prior to calling _FindDirEntry.

On entry, _FindDirEntry clears and initializes its workspace buffer, null terminates
the path element it receives, and then makes an initial read from the specified
start sector. The read may actually be avoided if the sector is found in the cache.
Following this initialization, the search loop begins. Here are the various steps
taken:

Next entry:

• If the first byte of the directory entry is 0, then the end of the used portion of
the directory has been reached. Go to Match failed.

• Examine the attribute byte of the directory entry in the cache buffer; if it is a
Ofh attribute, go to Long entry. Otherwise, go to Short entry.

Short entry:

• Copy the 8.3 BCS (byte character set) filename and extension from the direc
tory entry to the workspace buffer·.

• Create a Unicode FCB style name using IFS manager's BCSToUni service to
convert the BCS filename and extension.

• Use the IFS manager service FcbToShort to convert the Unicode FCB style
name to a Unicode 8.3 name with a dot separating primary and extension
components.

• If a longname buffer exists which has been created from long directory
entries preceding the alias directory entry, go to Alias entry.

• Now use the IFS manager service, IFSMgcMetaMatch, to compare the input
Unicode path component with the Unicode 8.3 name created from the direc
tory entry. For this example, the UFLG_NT flag is passed to this service to
select NT matching semantics.

If a match is found go to Match attributes; otherwise, continue at the label
Increment entry.

Long entry:

• If this directory entry has the last-in-sequence indicator (it is encountered
first), the number of directory entries in this sequence is determined from the
first byte of the entry and stored as a counter. The checksum byte for the
shortname alias is also saved.

Locating a Directory Entry 201

• For all long directory entries, append the Unicode characters in the fields of
the directory entry to a longname buffer and decrement the entry count. If
the directory entry does not have the last-in-sequence indicator, compare its
checksum against that which was initially saved. Go to Increment entry.

Alias entry:

• A checksum is calculated on the II-character name in the alias directory entry
and it compared against the value found in the preceding long directory
entries.

• If the path component is a filename, and the path portion was added to the
Path Cache, then the filename portion is added to the Name Cache.

• Now use the IFS manager service IFSMgcMetaMatch to compare the input
Unicode path component with the long filename created from the one or
more long directory entries. For this example, the UFLG_NT flag is passed to
this service to select NT matching semantics. If this match succeeds, perform
an uppercase comparison with the alias name up until the first "-" character
is encountered. If this also succeeds, go to Match attributes.

• If the previous compare fails, use IFSMgr_MetaMatch to compare the input
Unicode path component with the Unicode 8.3 name created from the alias
directory entry. For this example, the UFLG_NTflag is passed to this service to
select NT matching semantics. If this match succeeds, go to Match attributes,
otherwise go to Increment entry.

Match attributes:

• If the directory attributes match the input criteria, then go to Match return;
otherwise go to Increment entry.

Increment entry:

• The directory index is incremented and the cache buffer pointer is advanced
to the next directory entry. If the cache pointer exceeds the cache block
range, then the cache block for the next sector will have to be filled.

• If the end of the directory is reached go to Match failed; otherwise go to Next
entry.

Match return:

• Replace the null termination of the path component with the original value.

• Set EAX to O.

• The EBX register points to the short or alias directory entry for the match.

Match failed:

• Replace the null termination of the path component with the Original value.

• Set carry flag to indicate failure.

202 Chapter 9: VFAT.· The Virtual FAT File System Driver

VFAT's File Structures
In our earlier examination of the function _ OpenExisting, we came across the
routine _Add~Open_Instance. This is where File Open Blocks and File Instance
Blocks are initialized. The declarations for these data structures are shown in
Examples 9-16 and 9-17. VFAT's table of open files is rooted in a header block
containing four pointers (see Example 9-16). The first two pointers appear to be
reserved, but the third pointer addresses the head of the open file list and the
fourth pointer addresses the tail of the open file list. Each entry in this linked list
is an OPEt'LBLK shown in Example 9-17. The links are followed forward with the
pnext member until it reaches the address of the header block. Links can also be
followed backwards with the pprev member.

Example 9-16. Header Block for Open Files

OpenFileTable

0 unused ?

4 unused ?

8 POPEN_BLK first_open_block
C POPEN_BLK last_open_block

When a file is opened, an OPEl'CBLK structure is created for it and the first INST_

BLK structure is created to reference it. As new file handles are requested on the
open file, additional INST_BLK structures are created to reference the single OPEl'C

BLK structure. Initially, the pfirsCinst and plasCinst members of the OPEN_BLK

point to the single INST_BLK structure. As new instances of the file are opened,
each new INST_BLK is added to the head of the list at pfirsCinst. The INST_BLK

structure contains pnext and pprev members for traversing forwards and back
wards through the list of instances. The last pnext pointer and the first pprev
pointer point to the referenced OPEN_BLK structure. There is also a pob member
which points to the common OPEN_BLK structure.

Example 9-17. File Open Block (92 bytes)

typedef struct _open_block {
o struct _instance_block* pfirst_inst;
4 struct _instance_block* plast_inst;
8 struct _open_block* pnext;
C struct _open_block* pprev;
10 DWORD record_lock_1ist;
14 DWORD d14;
18 DWORD d18;
1C DWORD d1C;
20 DWORD d20;
24 BYTE fattrib;
25 BYTE b25;
26 WORD start_clus;

II attribute by tel

II starting cluster numberl

WAr's File Structures

Example 9-17. File Open Block (92 bytes) (continued)

28 DWORD rh;
2C DWORD create_date_time;
30 DWORD file_size;
34 WORD access_date;
36 DWORD d36;
3A BYTE b3A;
3B BYTE b3B;
3C DWORD d3C;
40 DWORD d40;
44 BYTE dir_entry;
45 char fcb_name [11] ;
50 DWORD sector-pos;
54 DWORD cluster_table;
58 WORD table_size;
5A WORD w5A;
} OPEN_BLK, *POPEN_BLK;

1 Value retrieved from directory entry.

II volume's resource handle from ioreq
II creation date & time l

I I file size l

II last access date l

II directory entry index
II FCB format 8.3 name l

II sector offset to beginning of file
II table of clusters in file
II size of cluster table

Example 9-18. File Instance Block (44 bytes)

typedef struct _instance_block {
o struct _instance_block* pnext;
4 struct _instance_block* pprev;
8 struct _open_block* pob;
C WORD open_mode; II
E WORD wOE; II
10 DWORD user; II
14 DWORD pid; II
18 DWORD d18;
lC DWORD dlC;

ir_flags & Ox7f
init'ed to Ox004c
ir_user
ir-pid

20 DWORD d20;
24 DWORD d24;

II init'ed to 1

28 DWORD d28;

203

Recall that the _AllocInstanceBlock function call, in FS_OpenFile, returns an
address which is assigned to ir.Jh. This allocation is an INST_BLK structure in
which a unique file is referenced via a pointer to an OPEN_BLK structure. In the
subsequent call to _Add_Open_Instance, VFAT checks if other open instances of
this file already exist. This check is done by traversing the table of open files and
looking for a match on three keys: directory entry index, sector position, and
resource handle. If no match is found, an OPEN_BLK structure is allocated and its
contents initialized from the directory entry. On the hand, if a match is found,
then the new open will be granted only if the desired access and sharing mode
are permitted by IFSMgr.

To determine if the open should succeed VFAT calls the service IFSMgcCheckAc
cessConfJict. One of the arguments to this service is the address of an
enumeration function. This function is called by IFSMgr for each open instance of

204 Chapter 9: VFAT.· The Virtual FAT File System Driver

the file. On each call to the enumeration function, VFAT returns information
about an instance of the open file. The enumeration function returns 1 for enumer
ation to continue and 0 for enumeration to stop. When the enumeration is
complete, IFSMgcCheckAccessConflict returns 0 if the desired access and sharing
mode can be granted, or an error code if not.

Virtual Memory,
the Paging File,

and Pagers
Virtual memory and paging have been the topics of numerous texts. If you would
like some background in these areas, I recommend Operating System Concepts, by
Abraham Silberschatz and Peter Galvin (Addison-Wesley, March 1994), especially
Chapter 8 on memory management and Chapter 9 on virtual memory. Paging in
Windows 95 is, of course, dependent on hardware support in the x86 family of
microprocessors. Many books have described the details of page directories, page
tables, and page faults of the Intel microprocessors-Programming the 80386 by
John Crawford and Patrick Gelsinger is one that I refer to frequently. This back
ground is really essential to understanding this chapter, although I'll throw in a
brief refresher for some of the thornier topics.

Paging is not new to Windows 95. Earlier versions of Windows utilized the paging
capability of the 386 and 486. Andrew Schulman's article, "Exploring Demand
Paged Virtual Memory in Windows Enhanced Mode," in Microsoft System Journal,
December 1992, examines paging in Windows 3.1. More recently, Matt Pietrek, in
Chapter 5 of his book, Windows 95 System Programming Secrets, looks at
memory paging as a prelude to his in-depth discussion of Win32 memory
management.

The Windows 95 Paging File
One of the new features touted in Windows 95 is the use of a dynamic paging
file. To quote from the Microsoft Windows 95 Resource Kit, p. 562, "It can shrink
or grow based on the operations performed on the system and based on available
disk space."

This is in contrast to the Windows 3.x paging file which, for best performance,
had to be a fixed file contiguously allocated. The file 386part.par was created in

205

206 Chapter 10: Virtual Memory, the Paging File, and Pagers

the root directory with system attributes and accessed via either the Windows
block device driver or Int 13h. In the \ windows directory another file was created
called spartpar, which gave the size and location of 386partpar.

Windows 3.x also had the option to use a temporary swap file which it created
while Windows was running and deleted automatically on exit. It also could grow
or shrink as necessary. This was a DOS file with normal attributes, called
win386.swp. Since access was via Int 21h in virtual-86 mode, performance
suffered compared to the fixed file option. Although the temporary swap file was
not a popular option with Windows 3.x users, it is the only option available in
Windows 95.

Paging or Swapping?
A leisurely scan of the Microsoft Windows 95 Resource Kit reveals several ref
erences to the Windows 95 swap file. For instance, in Chapter 17 on Perfor
mance Tuning, there is a section on "Optimizing the Swap File," and in Chapter
31 on Windows 95 Architecture there is a section on "Windows 95 Swap File."
The file that is being referred to is stored under the filename win386.swp. The
term swapping has traditionally referred to the process of moving entire pro
cesses to and from the disk (see Operating System Concepts, pp. 303-304). This
is not the mechanism used by Windows 95. The technically correct term is pag
ing. The distinction is that a pager moves page-sized chunks (4096 bytes) of
code or data to main memory from the disk but only when that page is needed.
On the other hand, a swapper brings in the code and data for the entire pro
cess, while moving a process to disk to make room. You will see the terms
swapping and paging used interchangeably in Windows 95 documentation.

Exploring with MultiMon

To start our excursion into Windows 95 paging, I'm going to perform a simple
experiment using MultiMon. Here are the steps I used to set up MultiMon to
collect the results shown in Figure 10-1:

1. Launch MultiMon.

2. Select only the FSHook and BOOTMGR monitors in the Add/Remove Drivers
dialog that you get from the Options Menu, Add/Remove Drivers ...
command. FSHook will allow us to capture file system events and, when
used in conjunction with BOOTMGR, we can capture events during system
startup.

3. Bring up the Filter Options dialog by clicking the Filters button on the
toolbar. Select "IFSMgr Filehook" and then check the boxes for the following

The Windows 95 Paging File 207

APIs: FS_GetDiskInfo and RingOSwapperIO. Then press the dialog button
labeled Save As Default.

4. Restart the system. (It isn't necessary to shut down.)

5. Launch MultiMon. You should be greeted with a message box that states
"BOOTMGR has captured a log file. Do you wish to display it now?" Press the
Yes button. You should now be viewing an output screen similar to that
shown in Figure 10-1.

•••• SysCritInit
•••• DevieeInit

FS_OpenFile d5150 --1-
FS_VriteFile d6150 --1-
FS_GetDiskIn 36101 --1-
FS_GetDiskIn 36101 --1-
•••• InitCoaplete
FS GetDiskIn 36 01 --1-
FS=GetDiskIn 36 01 --1-
FS GetDiskIn 36 01 --1-
FS-GetDiskIn 36 01 --1-
FS=GetDiskIn 36 01 --1-
FS GetDiskIn 36 01 --1-
FS-GetDiskIn 36 01 --1-
FS-GetDiskIn 36 01 --1-
FS-GetDiskIn 36 01 --1-
FS=GetDiskIn 36 01 --1-
FS GetDiskIn 36 01 --1-
FS~GetDiskIn Ie 01 --1-
FS=GetDiskIn 36 50 --1-

VriteFile d6 50 --I-
DiskIn 36 50 --1-
teFile d6 50 --1--

VFAT 0200 oa spn C:'VIH386.5VP
VFAT 0200 -sn OH8100000H
VFAT C 033deOOO
VFAT C 033deOOO

VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT C
VFAT 0200
VFAT C
VFAT 0200

033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
033deOOO
-sn OH8180000H
0335eOOO

OH8200000H

Figure 10-1. Paging file activity reported by MultiMon

In Figure 10-1, groups of lines are separated by tags that BOOTMGR inserts to
flag the stages of system initialization: "**** Devicelnit", "**** InitCom
plete", etc. The third line in the listing shows an FS_OpenFile command being
sent to VFAT for the file named c:\win386.swp. The field d5150 indicates the
dispatched command and accompanying flags. Referring back to Chapter 6,
Dispatching File System Requests, we know that the command d5 corresponds to a
ring-O open or create, the function I named dRO_OpenCreate (see Table 6-5). The
flags byte 50 signifies the LFN and IFSMgcRingO_FileIO bits. These pieces of infor
mation point to a IFSMgcRingO_FileIO call and in this case the subfunction RO_
OPENCREATEFILE.

We can read more into this call from the flags which accompany the open. The
characters "oa" signify AC110N_OPENALWAYS, meaning open an existing file but

208 Chapter 10: Virtual Memory, the Paging File, and Pagers

if it doesn't exist, create it. The special options "spn" are "s" for RO_SWAPPER_

CAIL, "p" for OPEN_FLAGS_NO_COMPRESS, and "n" for OPEN_FLAGS_NO_

CACHE. Another thing to note is that the value 200h (ir_sfn) is the first value in
the range of extended file handles.

Scanning down the listing, you will also note a few FS_ WriteFile calls on this
extended file handle using "-sn" attributes: RO_SWAPPER_CAU and RO_NO_

CACHE. It's interesting that the length of the writes is 0 but the position of the
write is not, e.g., OH@100000H. This initial write sets the size of win386.swp to 1
megabyte. If we were to extend our logging and launch some applications, we
would see FS_ WriteFile and FS_ReadFile calls on the handle 200h with lengths
which are a multiple of 1000h, the size of a page.

To sum up, we have found that Windows 95, like Windows 3.x, uses a temporary
file called win386.swp for its paging file. While Windows 3.x used only virtual-86
DOS calls to access this file, Windows 95 uses IFSMgr's ring-O APIs (when the
underlying hardware supports it). As we have seen, these APIs are a thin veneer
to the underlying FSD, VF.A.T. \'FJ.A1T in turn utilizes lOS services. These changes
have breathed new life into what was a sluggish Windows 3.x option.

Who Accesses win386.swp?
A natural question to ask is who is opening, reading from, and writing to
win386.swp? Perhaps the easiest way to answer this is to use a debugger and
place a breakpOint at a well-chosen location. One possibility is to set a breakpoint
at IFSMgcRingO_FileIO and examine the calling parameters in each case. This
would be rather tedious. A better location for the breakpOint would be just before
we chain into the next file system hook (or call into the FSD) in FSHook. This is
after FSHook has decided to report the event but before it passes the request
down to the FSD.

FSHook has a registry option for just such a need. This is not a feature that most
users will want to experiment with, so it is left as a registry entry that is set manu
ally using REGEDIT. In Figure 10-2, the registry values under the MultiMon_
fshook key are shown. The value name "Int30n" will not be defined unless you
have experimented with this feature already. To add this value, select the menu
Edit, submenu New, followed by DWORD Value. Type in Int30n for the value
name. The DWORD associated with this is a Boolean, 1 for "on" and 0 for "off."

A breakpoint is inserted as an assembly language Int 3 instruction. In order for
your kernel debugger to respond to these breakpoints you may have to issue a
command. For instance, with WinIce the command I3Here On must be executed.
Once you have made the necessary adjustments, repeat the experiment we
performed in the last section. Now, when the first FS_OpenFile call is encoun
tered you will break into your debugger.

The Windows 95 Paging File 209

Figure 10-2. Setting FSHOOK's Int30n option using RegEdit

When the breakpoint occurs, execution stops on the instruction following the Int
3. The actual code, in both C and indented assembly, is shown in Example 10-I.
Here you see the call to the previous file system hook function, which looks a
little strange because of the double indirection involved, (*(*ppPrevHook)). Using
the debugger to step forward we can watch as each of the arguments are pushed
onto the stack in preparation for calling down into the FSD. Right now, I'm inter
ested in seeing who is making this call, so I won't step into the FSD code, but
rather step over it. By continuing to step through code we work our way up
through the series of nested functions which initiated the call into FS_OpenFile.

Example 10-1. FSHook Code in Vicinity of Breakpoint

if (bIssueInt3) _asm int 3
CMP DWORD PTR [_bIssueInt3] ,00
JZ COOB59AD
INT 3

rete = (*(*ppPrevHook)) (pfn, fn, drv, res, cp, pir);
MOV EAX, [EBP+IC] ;pir=C33E5CB4 (ptr to ioreq)
PUSH EAX
MOV EAX, [EBP+IB] ;cp=OOOOOOOO (ANSI codepage)
PUSH EAX
MOV EAX, [EBP+14] ;res=OOOOOOIO (local drive)
PUSH EAX
MOV EAX, [EBP+IO] ;drv=00000003 (C drive)
PUSH EAX
MOV EAX, [EBP+OC] ;fn=00000024 (IFSFN_OPEN)
PUSH EAX
MOV EAX, [EBP+OB] ;pfn=COOBFEE4 (FS_OpenFile)
PUSH EAX
MOV EAX, [-ppPrevHook];=C33F709C
CALL [EAX];=COOB6D20
ADD ESP,18

The nested hierarchy of functions is shown in Example 10-2. It shouldn't come as
too big of a surprise that pageswap.vxd and dynapage.vxd are the virtual drivers
from which the paging file calls originated. Although the VxD file has the name

210 Chapter 10: Virtual Memory, the Paging File, and Pagers

DYNAPAGE, internally, in its Device Descriptor Block, this driver goes by the
name PAGEFILE. PAGEFILE and PAGE SWAP are not new to Windows 95. They
are revamped versions of their Windows 3.x counterparts.

Example 10-2. Tracing the Initial Open a/the Paging File

FS_OpenFile
FileHook

Call_FSD
Cl_3A14

dRingO_OpenCreate
Dispatcherl

IFSMgr_RingO_Fileio
PageFile_Init_File

PageSwap_Init_File
VMM(5)+622D

VFAT
FSHOOK
IFSMGR(1)+194a
IFSMGR(1)+3a90
IFSMGR(l) +3939
IFSMGR(1)+07c4
IFSMGR(1)+38a3
PAGEFILE(2)+Olf3
PAGESWAP(2)+OOOe
VMM(5)+622d

The Roles of PAGESWAP and PAGEFILE (DYNAPAGE)

The DDK documentation is not particularly illuminating about the relative roles of
two virtual drivers, PAGESWAP and PAGEFILE. PAGE SWAP exports the services
listed in the first column of Table 10-1. The PAGEFILE services shown in the
second column are called by the PAGESWAP services in the first column. As you
can see, there is almost a one-to-one correspondence. Contrary to the documenta
tion, PAGESWAP is little more than a thin layer over the PAGEFILE services.

Table 10-1. Correspondence Between PAGESWAP and PAGEFILE Services

PAGESWAP Services

PageSwap _lniCFile

PageSwap_Gec Version

PageSwap_TesCIO_ Valid

PageSwap_ Grow]ile

PageSwap_Read_Or_ Write

PAGEFILE Services Used by PAGESWAP

PageFile_Gec Version, PageFile_IniCFile

PageFile_TesUO_ Valid

PageFile_ Grow]ile

PageFile_Read_Oc Write

Fortunately, we are given the entire source code for the P AGEFILE (DYNAPAGE)
driver; it can be found in the Windows 95 DDK directory .. \base\samples\
dynapage. Using this source as a guide, we can place the IFSMgr_RingO_FileIO
call, which we traced above, into the context of PageFile_IniCFile. Here is a
thumbnail sketch of what this function does:

• Gathers the values of the following system.ini profile strings:

Paging. If this Boolean value is off, then paging is disabled and PageFile_
IniCFile returns with EBX equal to 0, to indicate an error.

MinPagingFileSize. This optional setting determines the minimum size of
the paging file in Kbytes. The default is O.

The Windows 95 Paging File 211

MinUserDiskSpace. This optional setting determines the amount of space
(in Kbytes) to reserve as free on the disk containing the paging file. The
default is 512 Kbytes.

MaxPagingFileSize. This optional setting determines what the upper limit
is for growing the paging file. This value is also given in Kbytes. The
default is 2 gigabytes.

PagingFile. This optional entry determines the path and filename for the
paging file. The path must include a drive letter, i.e., it overrides
PagingDrive. The default is win386.swp.

PagingDrive. This optional entry specifies the volume where the paging
file will be created. If this option is specified, the paging file is created in
the root directory of the specified volume; otherwise the Windows drive
and directory are used unless PagingFile is specified.

• Uses IOS_RequestocService, subfunction IRS_IS_DRVCOMPRESSED, to see if
the drive containing the paging file is using a real-mode compression driver;
if so, moves the paging file to the host drive.

• Checks IFSMgr_RingOGetDrivelnfo to see if the paging drive is being handled
by IFS and whether it is using protect-mode or real-mode drivers. Some IFS
drives use real-mode drivers, i.e., real-mode mapper. If the drive doesn't pass
this test, it has to use DOS for paging.

• If the system has a protect-mode IFS driver, double checks the drive using
IOS_RequestocService, sub function IRS_GET_DRVINFO. This will tell us if it
has any DOS-like characteristics, e.g., the driver uses pageable code. If the
drive has any of these "undesireable" characteristics, it too uses DOS for pag
ing.

At this point there are two possibilities: paging is provided through the virtual-86
DOS Int 21h interface, or paging is provided through IFSMgr's ring-O APls. We'll
only show the ring-O case for the remainder.

• Uses IFSMgCRingO_FileIO subfunction RO_OPENCREATEFILE to create the
paging file with normal attributes. Perform the create using the special flags:
RO_SWAPPER....CALL, RO_NO_CACHE, and OPEN_FLAGS_NO_COMPRESS.

• Uses IFSMgcRingO_FileIO subfunction RO_ WRITEFILE to set the initial length
of the paging file to the value specified by MinPagingFileSize. If this fails
then tries again using a different value. If the system has less than 9 mega
bytes of RAM under control of the memory manager (as reported by _GetDe
mandPageInfo), then sets the file size to 9216 Kbytes (amount of physical
RAM in Kbytes). Otherwise retries with a size of 0.

• On success, returns the maximum paging file size in EAX (in pages) and the
current paging file size in EBX (in pages).

212 Chapter 10: Virtual Memory, the Paging File, and Pagers

The call trace shown in Figure 10-1 also reveals several calls to FS_GetDiskInfo.
Those which are marked by command and flag bytes of 36101 are the result of
Int 21h function 36h requests. Note that only the ANSI code page flag is set, so
these calls are not invoked using IFSMgcRingO_FileIO. Instead, they originate as
Exec_ VxD_Int calls in PageFile_GeCSize_Info. This latter function reports the
minimum, maximum, and current size of the paging file. The amount of free
space on the disk containing the paging file enters into the calculations of these
parameters. PageFile_GeCSize_Info, in turn, is called by two VMM services:
_GetDemandPageInfo and _PageGetAIIocInfo.

The last four lines shown in Figure 10-1 are two pairs of FS_GetDiskInfo and FS_
WriteFile calls. Both of these calls are made via IFSMgCRingO_FileIO. Each pair of
calls corresponds to a single call to PageFile_Grow_File requesting that the paging
file grow by SOh pages (512 Kbytes). Growing and shrinking the paging file is an
ongoing process. Any service that commits "swappable pages" (e.g., _Page
Commit) adds that number of pages to a running total. The requests are not acted
on until the total outstanding exceeds the current paging file size by at least SOh
pages. Similarly, decommitting swappable pages reduces the size of the paging
file by a like amount, but the paging file is not shrunk until its new size would be
at least SOh pages less than its current size. While the growth of the paging file
occurs directly in response to committing new swappable pages, shrinking the
paging file goes on as a background process from a callback installed by the
VMM service CalL When_Idle. Pages which are allocated as fixed or which are
subsequently locked do not require space in the paging file, since they will never
be candidates for page-outs. Also, some pages use a different backing file, such as
those for memory-mapped files, and are not counted as swappable.

The key P AGEFILE service for moving pages to and from the paging file is
PageFile_Read_Oc Write. This service takes a single argument, a pointer to a
PageSwapBufferDesc structure (see Example 10-3). PAGEFILE converts the
parameters in this structure into an IFSMgCRingO_FileIO call for either RO_READ
FILE or RO_ WRITEFILE, depending on the value of PS_BD_Cmd.

Example 10-3. Structure Passed into PageFile_Read_Or_ Write

typedef struct {
DWORD PS_BD_Next,
BYTE PS_BD_Cmd;
BYTE PS_BD_Priority,
BYTE PS_BD_Status,
BYTE PS_BD_nPages,
DWORD PS_BD_Buffer_ptr,
DWORD PS_BD_File_Page,
} PageSwapBufferDesc,

II ignored
II PF_Read_Data(Ol or PF_Write_Data(ll
II ignored
II return: PFS_Failure or PFS_Success
II number of pages to read or write
II linear address to transfer to or from
II page offset within paging file

The transfer count is equal to PS_BD_nPages • 4096 bytes. The file position at
which the operation begins is determined by PS_BD_File_Page • 4096. The paging

Pagers 213

file remains open, so the handle returned by the OpenCreateFile call in PageFile_
IniCFile is still valid and used by PAGEFILE here. Note that although we can't
explicitly specify the RO_NO_CACHE, RO_SWAPPER_CALL, and OPEN_FLAGS_NO_

COMPRESS options as we did on the OpenCreateFile call, these attributes are
stored with the fhandle structure. Before the call is passed down to the FSD,
IFSMgr propagates these attributes to the ir_optionsmember of the ifsreq struc
ture, so they will be seen by FS_ WriteFile and FS_ReadFile.

To see how PageFile_Read_Oc Write is put to use, we need to get acquainted
with VMM's pagers.

Pagers
Pagers are a new addition to the VMM in Windows 95. A pager is simply code
called by the VMM to move pages in and out of memory. A pager does not have
to reside in a virtual device, and in fact several pager routines are located in
KERNEL32.

Pagers are used for loading and initializing both swappable and fIxed pages.
Pagers are involved during the entire lifetime of a page, from the time it is
committed until it is freed. Not all pages fall under the control of a pager though;
the exceptions include hooked pages, instanced pages, and pages committed
using the service _PageComrnitPhys.

A pager exposes one or more action functions through a Pager Descriptor (PD)
structure (see Example 10-4). Each pager action function (e.g., pd_virginin) has
the follOWing prototype:

ULONG _cdecl FUNPAGE(PULONG ppagerdata,
PYOID ppage, ULONG faultpage);

If a function pointer member of the PD structure is zero, the pager will not be
notified when the corresponding action is taken. It is customary that a pager will
not implement all action functions.

Example 10-4. Pager DeSCriptor Structure

struct pd_s {
PFUNPAGE pd_virginin;
PFUNPAGE pd_taintedin;
PFUNPAGE pd_cleanout;
PFUNPAGE pd_dirtyout;
PFUNPAGE pd_virginfree;
PFUNPAGE pd_taintedfree;
PFUNPAGE pd_dirty;
ULONG pd_type;
} ;

214 Chapter 10: Virtual Memory, the Paging File, and Pagers

A virtual device may register a pager with VMM using the _PagerRegister service.
This service takes a pointer to a PD structure as its only argument. It returns a
handle, actually a I-based index, that represents the pager. This handle can be
passed to other services, such as _PagerQuery, to retrieve the pager's PD struc
ture, or _PagerDeregister, to remove the pager from VMM.

All system pages which are under control of a pager have such a handle associ
ated with them. The association is made at the time pages are committed through
_PageCommit. Here are the parameters passed in to _PageCommit:

ULONG _PageCommit(ULONG page, ULONG pages,
ULONG hpd, ULONG pagerdata, ULONG flags);

• page is the linear page number, i.e., the linear address returned by _PageRe
serve divided by 4096

• pages specifies the number of pages to commit but can be no larger than the
number of pages initially reserved by the call to YageReserve

• hpd is the handle of the pager whose action functions will be called for these
pages. VMM supplies four internal pagers with handles 1 to 4, which are:

PD_ZEROINIT(1) for swappable zero-initialized pages

PD _NOINIT(2) for swappable uninitialized pages

PD_FIXEDZERO(3) for fixed zero-initialized pages

PD _FIXED(4) for fixed uninitialized pages

• pagerdata is a 32-bit value associated with this page or pages; if used in con
junction with the PCjNCR flag, then pager data is incremented by one for
each page in the range

• flags specifies various options such as whether the pages are permanently
locked, are accessible by ring-3 applications, etc.

A typical Windows 95 configuration will have 12 different pagers. Of these, VMM
contributes its four internal pagers. But where do the other eight come from?
We'll see shortly that VWIN32 and KERNEL32 are responsible.

The System Pagers
On the book's companion diskette, there is a utility called PAGERS which dumps
out all of the registered pagers in a system. Figures 10-3 and 10-4 show its output
for a standard system configuration. Imagine Figure 10-4 as a continuation of
Figure 10-3 to the right. Corresponding lines in the two figures can be found by
matching up the pager handle (hPD) in the first column.

For each pager action function there is a corresponding column, VirginIn, Taint
edIn, etc. The addresses displayed in these columns are given as Device(obj) +

The System Pagers

I

S wappable U n~ nit
Fi~ed Zero-Init
Fi~ed Un-Init
Win32 S.'IS DLL Data
Win32 S.'IS DLL Code
Win32 Zero-I nit S.'IS DLL Data
Win32 EXE/DLL Data
Win32 EXE/DLL Code
Win32 Safe Mapped File
Win32 Unsafe Mapped File
Win32 Copy-On-Write Mappe ...
Test Pager

o
VMM(E)+370
o
VWI N 32(1)+268
VWIN32(1)+268
VMM[E)+370
bff7b4b6
bff7b4b6
bff7eefa
bff7eefa
bff7eefa

VMM)+5843
o
o
VMM(1)+5843
VWIN32(1)+268
VWIN32(1)+268
VMM(1)+5843
o
bff975d7
bff975d7
VMM(1)+5843
_Taintedln

Figure 10-3. First halfofpagers output

1
2 VMM(1)+5670 0 VMM(1)+5868 VMM(1)+58B6
3 0 0 0 0
4 0 0 0 0
5 VMM(1)+5670 0 VMM(1)+5868 VMM(1)+58B6
6 0 0 0 0
7 0 0 0 0
8 VMM[1j+5670 0 VMM(1)+5868 VMM(1)+58B6
9 0 0 0 0
10 VWIN32(1)+FB6 0 0 0
11 VWIN32(1)+FB6 0 0 0
12 VMM[1)+5670 0 VMM(1)+5868 VMM(1)+58B6
13 _DirtyOut _ VirginF ree -T aintedF ree _Dirty

Figure 10-4. Second half of pagers output

215

SWAPPER
PAGERONLY
PAGERONLY
SWAPPER
PAGERONLY
PAGERONLY
SWAPPER
PAGERONLY
PAGERONLY
PAGERONLY
SWAPPER
SWAPPER

oft, where Device is the virtual device, obj is the object or segment number, and
ofs the offset from the beginning of the segment. A zero indicates that the action
function is not implemented for that pager_ In a few cases, a linear address is
given, e.g., bff7b4b6_ This is an address in KERNEL32.

If you compare the pager type with the number of functions it has implemented
you will note that SWAPPER type pagers provide the most functionality. This is
understandable, since these pagers support the movement of data to and from the
paging file. PAGERONLY type pagers do not use the system paging file, either
because the pages are fixed or because they use a different backing file.

Another item of interest is that a pager can "inherit" functions from another pager.
For instance, under the columns TaintedFree and Dirty, all pagers use the same
implementation provided by VMM.

216 Chapter 10: Virtual Memory, the Paging File, and Pagers

Ignore the descriptions column for a moment and just look at the addresses of the
action functions. Handles 8 through 12 are unique in that the action functions are
in KERNEL32's address range. Handles 5, 6, 7, 10, and 11 have action functions
that reside in VWIN32. If the description strings weren't available, this KERNEL32/
VWIN32 association would be enough to suspect that these pagers are used by
Win32.

The descriptions for the pagers with handles 5 through 12 were found by using
the .M debugging command which is built-in to VMM for both the retail and
debug versions. This command can be invoked in either WinIce or WDEB386; it
has many options and reveals a wealth of information about the internal workings
of the memory manager. The subcommand which displays the pager descriptors
is .MG.

The last pager displayed in the output, the one with handle 13, is registered by
qpagers.vxd, the helper VxD which PAGERS uses to collect the information it
displays. We will be using this pager to get a closer look at when and why the
pager action functions are called.

The Pager Action Functions
The pager action functions are given names like "virgin-in" and "tainted-free." Are
these just cute phrases or do they have some significance? There is a special signfi
cance attached to the words virgin, tainted, clean, and dirty as they apply to a
pager's pages. A dirty page is one that has been modified by a write. It will revert
to a clean page when the page has been paged-out to the paging file. Thus, a
page may toggle back and forth between clean and dirty states during its lifetime.
Pages start out as clean and virgin. Once a page has entered the dirty state, it is
thereafter a tainted page-it can not reclaim its virginity, although it can re-enter
the clean state. Thus a virgin page must remain clean.

VMM will call the various pager functions in the PD structure, to control the life of
a page. The function pd_virginin is called to move a page into memory, if the
page is clean and has never been modified. This could involve reading a portion
from the original file on disk into the page or just initialiZing the page contents to
zero. The function pd_taintedin is also used to move a page into memory, but for
pages which have undergone some change. VMM also has two functions for
moving pages out of memory. The first is called pd_c1eanout, which is used to
move out a page which has not been dirtied since the last time it was paged out.
The function pd_dirtyout does the same, but for pages which have not been
paged out since they were dirtied. The destination for a page out could be the
paging file or the backing file for a memory-mapped file.

The System Pagers 217

When a page is decommitted, either explicitly with _PageDecommit or implicitly
with _PageFree, the function pd_virginfree or pd_taintedfree is called. If the page
has never been modified, pd_ virginfree is used, otherwise pd_taintedfree is
called. Finally, the pd_dirty function is called by VMM to inform the pager that a
page has been written to. This is not an immediate notification. If a page is dirtied
in more than one memory context, this function will be called once for each
context.

The Life of a Page
It is more interesting to see pager functions at work. You can trace through a
couple of test routines from PAGERS (see Figure 10-4) by selecting either Testl or
Test2 from the Test menu. These test routines do not send their output to the
Win32 application; rather, you need to run them in conjunction with a kernel
debugger like WinIce or WDEB386, since the output is sent to a debugger
console. The complete source code for pagers.exe and qpagers.vxd can be found
on the companion diskette.

The first test routine is shown in Example 10-5. The sequence that this routine
follows is very simple. It first reserves three pages of memory and then commits
the pages. It then reads a byte and writes a byte to each page. The pages are then
decommitted and then freed. Interspersed with these steps are printouts to the
debug console of several data structures. qpagers.vxd installs its own pager which
is a wrapper around calls to VMM's Swappable Zero-Init pager. As the Testl
routine executes, the calls to the pager's action functions are also logged to the
debug console. This output is shown in Example 10-6.

Example 10-5. Testl Function From qpagers.vxd

void Test1(void) {
PBYTE pBase, p;
DWORD linPageNum, i, cpg 3;
BYTE abyte;
int line=l;

TestNum = 1;
CheckPageRange(0, 0);

pBase = _PageReserve(PR_PRIVATE, cpg, 0);
linPageNum = LinAddr_to_PageNum(pBase);

Debug_Printf("\nTEST1(%d) :_PageReserve: reserve %d pages at
linear addr = %lx\n", line++, cpg, pBase);

for (i=O, p=pBase; i<cpg; i++, p+=Ox1000)
Dump_PTE (LinAddr_to_pageNum(p), 3);

Debug_Printf("\nTEST1(%d): _PageCommit: linear addr = %lx,"
"page number = %lx\n", line++, pBase, linPageNum);

218 Chapter 10: Virtual Memory, the Paging File, and Pagers

Example 10-5. Testl Function From qpagers.vxd (continued)

_PageCommit(linPageNum, cpg, hMyPager, linPageNum,
PC_WRITEABLE!PC_USER!PC_INCR);

for (i=O, p=pBase; i<cpg; i++, p+=OxlOOO
Dump_PTE (LinAddr_to_PageNum(p), 3);

for (i=O, p=pBase; i<cpg; i++, p+=Ox1000) {
Debug_Printf("\nTEST1(%d): Read and write page at %lx\n",

line++, p);

II This will call pd_virginin for pager,
II to load initial contents of page
abyte = *p;
Dump_PTE (LinAddr_to_PageNum(p), 3);
II This will call pd_dirty for pager,
II to flag that page has been modified
*p = la';

Dump_PTE (LinAddr_to_PageNum(p), 3);
}

Debug_Printf("\nTEST1(%d): _PageDecommit: linear addr
line++, pBase);

%lx\n" ,

_PageDecommit(linpageNum, cpg, 0);
for (i=O, p=pBase; i<cpg; i++, p+=Ox1000

Dump_PTE (LinAddr_to_PageNum(p), 3);

Debug_Printf("\nTEST1(%d): _PageFree: linear addr
line++, pBase);

_PageFree(pBase, 0);
for (i=O, p=pBase; i<cpg; i++, p+=Ox1000

Dump_PTE (LinAddr_to_PageNum(p), 3);

TestNum = 0;

Example 10-6. Pager Function Trace-Testl

TEST1(1) :_PageReserve: reserve 3 pages at linear addr
pPTE=FF801D80 reserved PTE=00181000 iAR=0181
pPTE=FF801D84 reserved PTE=00181000 iAR=0181
pPTE=FF801D88 reserved PTE=00181000 iAR=0181

%lx\n" ,

760000

TEST1(2): _PageCommit: linear addr = 760000, page number = 760
pPTE=FF801D80 iVp =0000064A PTE=0064A206: .. cun r/w usr com
pPTE=FF801D84 iVp =00001932 PTE=01932206: .. cun r/w usr com
pPTE=FF801D88 ivp =0000153F PTE=0153F206: .. cun r/w usr com

TEST1(3): Read and write page at 760000
_Virginln(C0411F06[760],C135FOOO,760)

pVP=C0411FOO cRef=OOOl hPD=OD iAR=0181 data=760 B.
pPTE=FF801D80 ivp =0000064A PTE=0064A206: .. cun r/w usr com

pPTE=FF801D80 Frame=000008D3 PTE=008D3227: .. cAP r/w usr com

The System Pagers

Example 10-6. Pager Function Trace-Test1 (continued)

pPTE=FF801D80 Frame=000008D3 PTE=008D3267: .. DAP r/w usr com

TEST1(4): Read and write page at 761000
_Virginln(C041DC16[761],C135FOOO,761)

pVP=C041DC10 cRef=OOOl hPD=OD iAR=0181 data=761 B.
pPTE=FF801D84 iVP =00001932 PTE=01932206: .. cun r/w usr com

pPTE=FF801D84 Frame=0000063F PTE=0063F227: .. cAP r/w usr com
pPTE=FF801D84 Frame=0000063F PTE=0063F267: .. DAP r/w usr com

TEST1(5): Read and write page at 762000
_Virginln(C041B498 [762] ,C135FOOO,762)

pVP=C041B492 cRef=OOOl hPD=OD iAR=0181 data=762 B.
pPTE=FF801D88 ivp =0000153F PTE=0153F206: .. cun r/w usr com

pPTE=FF801D88 Frame=00000244 PTE=00244227: .. cAP r/w usr com
pPTE=FF801D88 Frame=00000244 PTE=00244267: .. DAP r/w usr com

TEST1(6): _PageDecommit: linear addr = 760000
_Dirty(C04072BB[760] ,0,0)

pPF=C04072B7 PVP=C0411FOO data=760 cLock=OOOO cRef=OOOl st=OO
pVP=C0411FOO cRef=OOOO hPD=OD iAR=0181 pPF=C04072B7 TD.P .. B.
pPTE=FF801D80 Frame=000008D3 PTE=008D3267: .. DAP r/w usr com

_TaintedFree(C0411F06[760] ,0,0)
pVP=C0411FOO cRef=OOOO hPD=OD iAR=0181 pPF=760 TD.P .. B.
pPTE=FF801D80 reserved PTE=00181000 iAR=0181

_Dirty(C0405137 [761] ,0,0)
pPF=C0405133 pVP=C041DC10 data=761 cLock=OOOO cRef=OOOl st=OO
pVP=C041DC10 cRef=OOOO hPD=OD iAR=0181 pPF=C0405133 TD.P .. B.
pPTE=FF801D84 Frame=0000063F PTE=0063F267: .. DAP r/w usr com

_TaintedFree(C041DC16 [761] ,0,0)
pVP=C041DC10 cRef=OOOO hPD=OD iAR=0181 pPF=761 TD.P .. B.
pPTE=FF801D84 reserved PTE=00181000 iAR=0181

_Dirty(C0401D78 [762] ,0,0)
pPF=C0401D74 pVP=C041B492 data=762 cLock=OOOO cRef=OOOl st=OO
pVP=C041B492 cRef=OOOO hPD=OD iAR=0181 pPF=C0401D74 TD.P .. B.
pPTE=FF801D88 Frame=00000244 PTE=00244267: .. DAP r/w usr com

_TaintedFree(C041B498 [762] ,0,0)
pVP=C041B492 cRef=OOOO hPD=OD iAR=0181 pPF=762 TD.P .. B.
pPTE=FF801D88 reserved PTE=00181000 iAR=0181

pPTE=FF801D80 reserved PTE=00181000 iAR=0181
pPTE=FF801D84 reserved PTE=00181000 iAR=0181
pPTE=FF801D88 reserved PTE=00181000 iAR=0181

TEST1(7): _PageFree: linear addr = 760000
pPTE=FF801D80 free
pPTE=FF801D84 free
pPTE=FF801D88 free

219

The first group of lines starts at TESTl (1). These show the page table entries for
the three pages reserved in the private arena CPR_PRIVATE). The linear address
for the first page is at 760000h, the second is at 761000h, and the third is at

220 Chapter 10: Virtual Memory, the Paging File, and Pagers

762000h. The corresponding addresses of the page table entries (ppTE) are
FFS01DSOh, FFS01DS4h, and FFS01DSSh. These are computed using the formula:

ff800000h + 4 * [linear page number] = pPTE

At this stage, the page table entries (PTE) at these locations are non-zero but the
flags in the lower 12-bits are all cleared. The number which is stored in page
frame address is an index to an Arena Record GAR).

After committing the pages, the PTE contents are displayed again at TESTl (2).

The lower 12 bits of flags in the PTE now have the value 206h. This corresponds
to the attributes: committed, clean, unaccessed, user, read/write, and not present.
Bits 9, 10, and 11 are not predefined by the xs6 chip, and are used by the
memory manager to indicate whether the page is committed (Bit 9) and whether
the page is physically mapped (Bit 11). The number which is now stored in the
page frame address is an index to a Virtual Page (iVP). At this point, we haven't
actually made the pages physically present. We could have done that by speci
fying the PR_PRESENT flag in our _PageCommit call. What we have done is first,
reserve a swath of the linear address space which is private to our memory
context, and second, commit some pages of virtual memory.

At TESTl (3), TESTl (4), and TESTl (5), a byte of memory gets "touched" in
each of the committed pages. In response, VMM brings these pages into physical
memory, and calls the pager function pd_virginin (here called _ VirginIn). The
arguments to this function follow the FUNPAGE prototype given earlier. The first
argument is a pointer to pagerdata, one of the arguments passed to _Page
Commit. If you refer back to the source, in Example 10-5, you'll see that we are
passing linPageNum as pagerdata and have specified PCjNCR in the flags argu
ment. This means that the first argument to pd_virginin will be a pointer to the
linear page number of the page which needs to be loaded. The second argument
is the linear address of the page's contents (only valid during the pager function
callback). In this particular pager implementation, the page's contents, all 4096
bytes, are blasted with zeros.

Indented under _Virginln .. is a line starting with pVP= This shows the
contents of a Virtual Page structure. It includes such things as the handle to the
pager, the pagerdata passed in to pd_virginin, the index to the Arena Record,
and a flags byte describing the state of the page.

In the mid-section of the Testl routine in Example 10-5, you will notice a for loop
where the page "touching" and "dirtying" is done. A touch occurs when a
memory location in the page is read (abyte = *p), while we make the page
dirty by writing a byte to it (*p = I a '). Examination of the PTEs immediately
following each of these program statements reveals the changes that the page is
undergoing. The dump of the PTE immediately following a touch shows that the

The System Pagers 221

lower 12 bits now have the value 227h, and indicate these attributes: commited,
clean, accessed, user, read/write, and present. After a page has been dirtied, the
lower 12 bits of the PTE have the value 267h, indicating that a single attribute has
changed: it has gone from clean to dirty. Also note that since the present bit is
set, the page frame address now refers to the physical address of a page of some
system memory (it is no longer an iAR or iVP).

Since we dirtied some pages, we would expect to see some pd_dirty pager func
tion calls (here called _Dirty). VMM's memory manager does not guarantee timely
delivery of these notifications, in fact, we don't see them until we are decommit
ting the pages under TESTl (6). The pd_dirty function receives a pointer to the
pVP->pagerdata for the page, but the other arguments do not appear to be valid.
VMM's PD_ZEROINIT pager handles this call by freeing the corresponding swap
file page if one has been allocated in the paging file.

As we leave the Testl routine, we call _PageDecommit and _PageFree for the
pages which we have been using. As each page is decommitted, the pager func
tion, pd_taintedfree (here named _TaintedFree), is called. This call informs the
pager that this is the last reference to the Virtual Page (pVP) before the page is
decommitted. The pd_taintedfree function receives a pointer to p VP->pagerdata
but the other arguments are not valid. VMM's PD_ZEROINIT pager handles this
call by freeing the corresponding swap file page if one has been allocated in the
paging file.

After _PageDecommit returns, a dump of each page's PTE shows that it has been
reverted to its reserved state. _PageFree goes a step further by setting the PTEs to
zero.

The output from the Test2 routine is shown in Example 10-7; the source code for
this routine is similar to that for Testl so it isn't shown here. Like Testl, Test2
reserves and commits two pages, reads from one page and writes to the other,
and then decommits and frees the pages. The additional twist added here is that
Test2 forces these two pages to get written out to the paging file.

Example 10-7. Pager Function Trace Showing Page-Outs & Page-Ins

TEST2(1) :_PageReserve: reserve 2 pages at linear addr = 760000

TEST2(2) :_PageCommit: linear addr = 760000, page number = 760

TEST2(3): Write page at 760000

TEST2(4): Read page at 761000

TEST2(5): Page table entries before _PageDiscardPages
pPTE=FFBOIDBO Frame=000007EE PTE=007EE267: .. DAP r/w usr com
pPTE=FFB01DB4 Frame=00000B30 PTE=00B30227: .. cAP r/w usr com

222 Chapter 10: Virtual Memory, the Paging File, and Pagers

Example 10-7. Pager Function Trace Showing Page-Outs & Page-Ins (continued)

TEST2(6): _PageDiscardPages: mark pages as page-out candidates

TEST2(7): Page table entries after _PageDiscardPages
pPTE=FF80lD80 Frame=000007EE PTE=007EE247: .. DuP r/w usr com
pPTE=FF80lD84 Frame=00000830 PTE=00830207: .. cuP r/wusr com

TEST2(8) :_GetFreePageCount: FreePages = 4F3

TEST2(9): commit a lot of pages until, we get a Dirty-Out ..
4F3 pages

_Dirty(C04067lA[760) ,0,0)
pPF=C04067l6 pVP=C04l33FA data=760 cLock=OOOO cRef=OOOl st=OO
pVP=C04l33FA cRef=OOOl hPD=OD iAR=OlC8 pPF=C04067l6 TD.P
pPTE=FF80lD80 Frame=000007EE PTE=007EE247: .. DuP r/w usr com

5F3 pages
_DirtyOut(C04067lA[760),Cl35FOOO,FFFFFFFF)

pPF=C04067l6 pVP=C04l33FA data=760 cLock=0830 cRef=OOlO st=OO
pVP=C04l33FA cRef=OOOl hPD=OD iAR=OlC8 pPF=C04067l6 TD.PI.B.
pPTE=FF801D80 ivp =00000863 PTE=00863206; .. CUD r/w usr com

_CleanOut(C0406A74[76l),Cl35FOOO,FFFFFFFF)
pPF=C0406A70 pVP=C04lEE8A data=76l cLock=OE4E cRef=OOlO st=OO
pVP=C04lEE8A cRef=OOOl hPD=OD iAR=OlC8 pPF=C0406A70 ... PI.B.
pPTE=FF80lD84 ivp =OOOOlBOB PTE=OlBOB206: .. cun r/w usr com

TEST2(lO): Original pages are no-longer present
pPTE=FF80lD80 iVp =00000863 PTE=00863206: .. cun r/w usr com
pPTE=FF80lD84 ivp =OOOOlBOB PTE=OlBOB206: .. cun r/w usr com

TEST2(ll): Read from each page to force Virgin-in and Tainted-In
_TaintedIn(C04l3400[9F),Cl35FOOO,760)

pVP=C04l33FA cRef=OOOl hPD=OD iAR=OlC8 SF=9F T.S ... B.
pPTE=FF80lD80 ivP =00000863 PTE=00863206: .. cun r/w usr com

_VirginIn(C04lEE90[76l),Cl35FOOO,76l)
pVP=C04lEE8A cRef=OOOl hPD=OD iAR=OlC8 data=76l B.
pPTE=FF80lD84 ivp =OOOOlBOB PTE=OlBOB206: .. cun r/w usr com

TEST2(l2): Original pages are now present ...
pPTE=FF80lD80 Frame=00000337 PTE=00337227: .. cAP r/w usr com
pPTE=FF80lD84 Frame=00000C29 PTE=00C29227: .. cAP r/w usr com

TEST2(l3) :_PageFree: linear addr = 760000
_TaintedFree(C04l3400[760) ,0,0)

pVP=C04133FA cRef=OOOO hPD=OD iAR=OlC8 pPF=760 T.SP .. B.
pPTE=FF80lD80 free

_VirginFree(C04lEE90[76l) ,0,0)
pVP=C04lEE8A cRef=OOOO hPD=OD iAR=OlC8 pPF=76l ... P .. B.
pPTE=FF80lD84 free

Test2 does a couple of things to nudge these pages out. First, it makes use of the
VMM service _PageDiscardPages to mark these pages as unaccessed. An unac
cessed page will get paged out before an accessed one. You can see the

The System Pagers 223

difference in the PTEs before and after the call to _PageDiscardPages, at
TEST2 (5) and TEST2 (7). Also note that one page is dirty and the other is clean.

Next, Test2 needs to overcommit pages to force the memory manager to start
moving some pages from memory to the paging file. As a starting point for deter
mining the minimum number of pages to commit, the VMM service
_GetFreePageCount is used to determine the number of free pages in the system.
These pages are then reserved, committed, and touched to force them to be
present. Once pd_dirtyout has been called, signaling that one of our pages has
been moved to the paging file, a flag is set. If Test2 sees that this flag has been
set, it assumes it has succeeded; if it is not set, this group of pages is freed, and
the process is repeated with the same amount plus 256. At TEST2(9) in Example
10-7, you see that 4f3h pages were committed and touched, but that amount was
not sufficient, so they were freed and then 5f3h pages were tried, this time with
success. The pager functions pd_dirtyout (here named _DirtyOut) and pd_
cleanout (here named _ CleanOut) were called to page out the dirty page and
then the clean page. Only two arguments to these functions are used. The first is
a pointer to pagerdata and the second is the linear address of the page's contents.
The third argument is always -1. This is the primary pager function where
PageFile_Read_Oc Write is called to write the contents of a dirtied page to the
paging file. While a swappable page is in memory, the Virtual Page structure
holds the address of the page's Page Frame structure. When the page is swapped
to the paging file, the Virtual Page structure holds the Swap Frame for the page,
i.e., the offset into the paging file to find the page's contents. You can see this
under TEST2 (11) at the line starting pVP= Here, the SF=9F entry in the VP struc
ture tells us that frame 9fh in the paging file contains this page.

VMM's PD_ZEROINIT pager has no implementation for pd_cleanout. This is
because a clean zero-initialized page can also be created by pd_virginin.

At TEST2 (10), the contents of the page's PTEs are shown after both of the pages
have been paged out. Both pages have the same attributes: committed, clean,
unaccessed, user, read/write, and not present. The page frame field of the PTE
holds the index to the page's Virtual Page structure.

At TEST2 (11), the two pages are accessed by reading a byte from each of them.
For the page Which had been earlier modified, the pager function pd_taintedin
(here named _Taintedln) is called by the memory manager, requesting that the
page's contents be restored. The pager function receives a pointer to pagerdata,
which now contains the swap frame in the paging file; a pointer to a buffer where
the page can be written; and the original linear page number where this page was
committed. This pager function is the counterpart to pd_dirtyout, because this is
the primary pager function where PageFile_Read_Oc Write is used to read the
contents of a tainted page from the paging file. Since the other page was never

224 Chapter 10: Virtual Memory, the Paging File, and Pagers

Page Tables and Page Directories
At the very top of the linear address space, 4 megabytes are set aside for the
system page tables. Recall that to map all linear addresses to physical pages,
220 (232/4096) entries are needed. With each entry occupying a doubleword,
the total space needed works out to 222 bytes or 4 megabytes. Since the top of
the linear address space is at MAXSYSTEMLADDR (FFBFFFFFh), the base ad
dress of the page table is FF800000h.

Within this linear address range, a single page is set aside for a page directory.
It starts at FFBFEOOOh. This page is always present and has a physical address
given by the contents of the CR3 register. Each entry in the page directory cor
responds to a page in the page table, which mayor may not be present. While
Windows 95's layout for its page tables makes it possible to convert a linear
address directly to a page table entry, there is no guarantee that the page con
taining that entry is present. So, the prudent thing to do is first check the page
directory to see if the page containing that entry is present, and only then do
a direct lookup of the page table entry.

Two portions of a linear address are used for referencing these tables. The
most significant 10 bits of a linear address (linaddr» 22) form an index to the
page directory entries (PDEs). The linear page number consisting of the most
significant 20 bits of the linear address (linaddr» 12) provide an index to the
page table entries (PTEs).

modified, pd_ virginin (here named _ Virginln) only needs to create it from scratch
by zero-initializing the page's contents.

At TEST2 (12) the PTEs for these two pages are displayed. Both pages have the
same attributes: committed, clean, accessed, user, read/write, and present. The
fact that one of the pages is tainted is stored in the Virtual Page structure flags.

Finally, at TEST2 (13), we decommit and free the two pages. The page which
was tainted has the pd_taintedfree (here named _TaintedFree) function called for
it whereas the unmodified page has the pd_virginfree (here named _VirginFree)
function called for it. Both functions receive a pointer to the p VP->pagerdata
member of the Virtual Page structure; the other arguments are zero. As noted in
Testl, VMM's PD_ZEROINIT pager handles the pd_taintedfree call by freeing the
corresponding swap file page if one has been allocated in the paging file. VMM's
PS_ZEROINIT pager does not implement the pd_virginfree function.

Demand Page Loading 225

Demand Page Loading
For a process to execute, the kernel needs to load its program image from disk.
Rather than load the entire image all at once, it loads the image a page at a time
as the pages are needed. Windows 95 has several pagers which load executables
or data on demand.

The Kerne132 Loader
Looking back at Figures 10-3 and 10-4, one might wonder how Windows 95
makes use of pagers. The first three pagers that we'll look at are given the descrip
tive names "Win32 Sys DLL Data" (5), "Win32 Sys DLL Code" (6), and "Win32
Zero-Init Sys DLL Data" (7). These pagers are registered by VWIN32 when it
receives the "Begin PM App" control message during system initialization. Recall
that this message arrives when KRNL386 gets loaded into the System VM. At this
point KERNEL32 has not yet been loaded into memory.

After VWIN32 has registered its three pagers, it proceeds to reserve and commit
pages for KERNEL32. To reserve the linear address range needed by KERNEL32, it
issues the service call _PageReserve(Oxbff70, Ox8f, PR_STAnC). This will reserve
the address range BFF70000h to BFFFEFFFh.

Next, VWIN32 commits the first page of the file image using the service call _Page
Commit(Oxbff70, 1, 6, 0, PCjNCRI PC_STATIC I PCUSER). This page contains the
file's DOS header and PE (portable executeable) header. From these, the layout of
the remainder of the file can be determined. In fact, the rest of the file gets
loaded based upon the contents of the PE header's section table:

KERNEL32 contains six sections; their names, sizes, and characteristics are summa
rized in Table 10-2. The VWIN32 loader looks at two characteristics of a PE
section to decide which pager to commit it with. If it is loading a read-only
section without initialized data, then pager 6 is used. If it is loading a read-only
section with initialized data, then pager 7 is used. If it is loading a writeable
section, then pager 5 is used. Here are· the actual service calls which commit
KERNEL32's sections:

_FREQASM (code)
_Pagecommit(Oxbff71,6,6,40000000h,PC_INCRlpc_STATIClpc_uSER)
_PageCommit (Oxbff77,1,6,40010006h,PC_INCRlpc_STATICI PC_U SER)

.text (code)
_Pagecommit(bff78h,41h,6,20000007h,PC_INCRlpC_STATIClpc_uSER)
_pageCommit(bffb9h,1,6,20070048,PC_INCRlpc_STATIClpc,-usER)

• See Chapter 8 of Windows 95 System Programming Secrets, by Matt Pietrek, for details of the PE file
format.

226 Chapter 10: Virtual Memory, the Paging File, and Pagers

_INIT (code)
_pageCornmit(bffbah,1,6,40000048h,PC_INCRlpc_STATIClpc_uSER)
_PageCornmit(bffbbh,1,6,40040049h,PC_INCRlpc_STATIClpc_uSER)

.data (data initialized at compile time)
_pageCornmit(bffbch,3,5,c0000049h, PC_INCRI PC_STATIC I PC_USER I PC_
WRITEABLE)
_PageCornmit(bffbfh,1,5,c001004ch, PC_INCRlpc_STATIClpc_USERlpc_
WRITEABLE)

.edata (exports)
_PageCornmit(bffcOh,4,6,a000004dh,PC_INCRlpc_STATIClpc_uSER)
_pageCornmit(bffc4h,1,6,a0040051h,PC_INCRlpc~STATIClpc_uSER)

.rsrc (resources)
_PageCornmit(bffc5h,12h,6,20000052h,PC_INCRlpc_STATIClpc_USER)
_PageCornmit(bffd7h, 1,6,20060064,PC_INCRI PC_STATIC I PC_US ER)

There are two _PageCommit calls for each section because VWIN32's algorithm
commits the whole pages first and then, if it finds a remainder-a fraction of a
page-it commits one more page for it. The .data section, which is the only
section which is writeable, uses pager 5; all other sections use pager 6.

Table 10-2. PE Sections ofKERNEL32

Name Type Linear Address Size in Bytes Characteristics

JREQASM code BFF71000h 6D70h Executeable, Read-only

.text BFF78000h 41070h Executeable, Read-only

INIT code - BFFBAOOOh 176Bh Executeable, Read-only

.data data BFFBCOOOh 3CCOh Read-write, shared

.edata data BFFCOOOOh 47Elh Read-only

.rsrc data BFFC5000h 123CCh Read-only

The pagerdata value supplied to these _PageCommit calls may look a little
strange. The doubleword has two fields. The most significant 10 bits hold an
index which is used to lookup a file handle. The lower 22 bits hold the file offset
to the raw data to be read into a page; this is the byte offset divided by 512. Now
take that value and rotate it to the right by 3 bits. This last twist has the magic
effect of aligning bit 0 on the page digit. Since the PC_INCR flag is set for these
pages, the pagerdata values will be incremented for each page in the set. This
rotation makes sure the increment actually increases the file offset by lOOOh bytes.

Referring once again to Figures 10-3 and 10-4, you can see that pager 5 is the
same as VMM's Swappable Zero-Init pager, except that pd_virginin has been
replaced with an action function in VWIN32. This same action function is used by
pager 6 for handling both pd_ virginin and pd_taintedin. This action function
switches to KERNEL32's PSP, extracts the file handle index and file offset from the

Demand Page Loading 227

pagerdata, and then proceeds to seek to that location and read the page. The
current PSP is restored and the function returns. The seek and read are executed
using _ExecVxDlntMustComplete.

It is interesting that pager 5 uses the system paging file for backing up changes to
KERNEL32's .data section. Except for the fact the section's initial contents are
loaded directly from the KERNEL32 image, the life of pages in this section will be
the same as those controlled by the PD_ZEROINIT pager.

The three pagers we just examined are only used with KERNEL32. It appears that
at one time, files other than KERNEL32 were demand-paged using this code, since
there is a file index built into the pagerdata value. Perhaps this pager is separate
because it can be put to use before the Win32 subsystem is up and running, and
thus serves as sort of a bootstrap pager.

The Win32 Loader
The next two pagers that we'll look at are given the descriptive names "Win32
EXE/DLL Data" (8) and "Win32 EXE/DLL Code" (9). These pagers are registered
by KERNEL32 during its initialization. Unlike the pagers we have been looking at,
these ones are more a part of KERNEL32 than of VMM. Of course, VMM services
are used but via the Win32 VxDCall interface. Rather than drill down into
KERNEL32's code, I'm going to spy on the VxDCalls for PageReserve and Page
Commit. We can use MultiMon to do this by loading the .WlN32CB and FSHook
drivers and enabling the filters for VMM Win32 Services (PageReserve and Page
Commit) and IFSMgr Filehook (FS_OpenFile). To capture the trace that we'll be
looking at, press the Start button, launch the Notepad application, terminate
Notepad, and then press the Stop button.

After you hit the Show button, scroll through the output until you find the point
where notepad.exe is being opened (FS_OpenFile); you should see something
similar to the output in Figure 10-5. What we see is a trace of the Win32 loader as
it assigns pages and pagers to the sections of Notepad.

Right after the FS_OpenFile line, a PageReserve call is made with these arguments:
linear page number = 400h, number of pages = Och, and flags = 10h CPR_STATIC).

This call is reserving 48Kbytes for the file image of Notepad starting at linear
address 400000h. We can use a tool like the Explorer's QuikView to determine
Notepad's PE file sections. With this information we can interpret the sequence of
PageCommit calls as follows:

PE header
_PageCommit(Ox400,1,9,OOf20000h,PC_INCR!PC_STATIC!PC_USER)

.text (code, 3953h bytes, read-only)
_pageCommit(401h,3,9,40fOOOOOh,PC_INCR!PC_STATIC!PC_USER)

228 Chapter 10: Virtual Memory, the Paging File, and Pagers

PageCo •• it 0008153b 00000001 01 00000000
PageDeco •• it 8153b 1 20000000

FS_OpenFi1e 6cl60 --1-- VFAT 0209 De C:,VIHDOVS,HOTEPAD_
PageReserve 00000(00 OOOOOOOc 00000010

PageCo •• it 00000(00 00000001 09 00£20000 600(0000
PageCo •• it 00000(01 00000003 09 (0£00000 600(0000
PageCo •• it OOOOO(O(00000001 09 (0£50003 600(0000
PageCo •• it 00000(05 00000001 01 00£30000 60060000
PageCo •• it 00000(06 00000001 08 eO£20003 60060000
PageCo •• it 00000(07 00000001 09 20£7000(600(0000
PageCo •• it 00000(08 00000002 09 00£00005 600(0000
PageCo •• it OOOOO(Oa 00000001 09 00£60007 600(0000
PageCo •• it OOOOO(Ob 00000001 09 cO£50007 600(0000

PageReserve 80000(00 00000020 00000000
PageCo •• it 00000(10 00000010 01 00000000 00060000

Figure 10-5_ MultiMon output showing page commits when loading Notepad

_bss (data, 43ah bytes, uninitialized data, read-write)
_PageCommit(405h,1,1,OOf30000h,
PC_INCRI PC_STATIC I PC_USER I PC_WRITEABLE)

_data (data initialized at compile time, 212h bytes, read-write)
_PageCommit(406h,1,8,eOf20003h,
PC_INCRI PC_STATIC I PC_USER I PC_WRITEABLE)

_idata (import table, c9ah bytes)
_Pagecommit(407h,1,9,20f70004h,PC_INCRI PC_STATIC I PC_USE R)

.rsrc (resources, 2b70h bytes)
_PageCommit(408h,2h,9,OOf00005h,PC_INCRlpC_STATIClpc_usER)
_PageCommit(40ah,lh,9,OOf60007h,PC_INCRlpc_STATIClpc_usER)

.reloc (relocation table, 91eh bytes)
_PageCommit(40bh,1,9,cOf50007h,PC_INCRlpc_STATIClpc_USER).

This output appears to be generated by the same algorithm that is used by the
KERNEL32 loader, only different pagers are used. Pager 9, which is used to load
read-only sections of code or data, only implements pd_ virginin. Pager 8, which
is used to load read-write, initialized data sections, uses the same implementation
of pd_virginin, but in other respects is a clone of PD_ZEROINIT. For uninitialized
data sections, VMM's PD_ZEROINIT pager is used. Pages which are under control
of pagers 1 or 8 are backed up by the system paging file.

Demand Page Loading 229

Memory Mapped Files
Of the 12 system pagers we started out with, we are now down to the last three.
These three are responsible for implementing memory-mapped files. They were
given the descriptive names "Win32 Safe Mapped File" (0), "Win32 Unsafe
Mapped File" (1), and "Win32 Copy-On-Write Mapped File" (2). Pagers 10 and
11 are identical except that the pd_type of the "unsafe" pager has the PD_NEST

EXEC bit set. The only information on this flag comes from a comment in vmm.h:
"PD_NESTEXEC-must be specified if either the pd_cleanout or pd_dirtyout func
tions perform nested excecution or block using the BLOCK_SVC_INTS flag. To be
safe, this flag should always be specified if the pager does any sort of file I/O to
anything other than the default paging file." Pagers 10 and 11 implement pd_
virginin, pd_taintedin, and pd_dirtyout. They have a pd_type of PD_PAGERONLY,

so they do not swap to the system paging file.

Standard Win32 code for creating and accessing a mapped file is shown in
Example 10-8. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MeroMapped RIO. The output shown in Figure 10-6 was collected
by MultiMon while this code executed. MultiMon had WIN32CB and FSHook
drivers loaded and the filters for VMM Win32 Services (PageReserve, PageCommit,
and PageFree) and IFSMgr Filehook (FS_OpenFile, FS_ReadFile, FS_ Write File , FS_
FileSeek, and FS_CloseFile).

Example 10-8. MemMapped RIO Test

hFile = CreateFile(szFileName, GENERIC_READ, FILE_SEARE_READ,
NULL,OPEN_EXISTING,O,NULL);

if (hFiie != INVALID_RANDLE_VALUE) {
hMapFile = CreateFileMapping(hFile,NULL,PAGE_READONLY,O,O,NULL);
if (hMapFile != NULL) {

pMapImage = MapViewOfFile(hMapFile, FILE_MAP_READ,O,O,O);
if (pMapImage != NULL) {

fort i=O, p=pMapImage; i<16; i++, p+=Ox1000) ali] = *p;
UnmapViewOfFile(pMapImage);
}

CloseHandle(hMapFile);
}

CloseHandle(hFile);
}

The first line of output is from an attempt to create a new copy of mapfile.tst, a
test file 64 Kbytes in length. In this case, the file had already been created, so the
create call fails, but the subsequent open of the existing file succeeds, and returns
a file handle of 264h. There are three intervening seeks, perhaps to determine the
file size, before the FS_ReadFile call. This read corresponds to the Win32 Create
FileMapping call. It is a special case where ir_length is 0 and the RO_MM_READ_
WRITE flag is set in ir_options. This combination indicates that a memory-

230 Chapter 10: Virtual Memory, the Paging File, and Pagers

Figure 10-6. Accessing a read-only memory mapped file

mapping is being created to an existing open file. This special call originates from
IFSMgC Win32DupHandle when it is called with the DUP_MEMORY_MAPPED flag.
This service duplicates the handle 264h to 26bh before making the FS_ReadFile
call on the duplicated handle:

When the Win32 API MapViewOfFile is called, virtual memory is reserved for the
file image. Since we speCified that the entire file be mapped, an equivalent
number of pages are reserved. The _PageReserve request is for lOh pages in the
shared memory area at 80060000h with the PR_STATIC flag. The subsequent
commit passes in 82869h as the linear page number, so _PageReserve must have
returned 82869000h as the base linear address of the mapping. _PageCommit
commits all 10h pages using pager 10 with PCjNCR, PC_STATIC, and PCUSER

flags. Since we requested FILE_MAP_READ, we are not given the PC_ WRITEABLE

attribute and the mapping is read-only.

Next, we proceed to read the first byte of each page of the mapping. Each read
forces a pd_virginin call for a page which results in the series of FS_ReadFile calls
on the duped handle 26bh. These reads also are marked with the RO_MM_READ_

WRITE flag. Note that if a page out occurs for one of mapped pages, it is essen
tially a discard since the pages can not enter the dirty state. A subsequent access
would restore the page using pd_ virginin. At the bottom of trace, we see the
pages being freed in response to the UnmapViewOfFile, and then the Close
Handle calls for bMapFile and bFile.

Demand Page Loading 231

Very similar Win32 code for creating and accessing a mapped file is shown in
Example 10-9. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MemMapped R/W. The output shown in Figure 10-7 was
collected by MultiMon while this code executed. The difference between this
example and the previous one is in granting the mapping read-write access and
writing to it.

Example 10-9. MemMapped RIW Test

hFile = CreateFile(szFileName, GENERIC_READ I GENERIC_WRITE,
FILE_SHARE_READ,NULL,OPEN_EXISTING,O,NULL);

if (hFile != INVALID_HANDLE_VALUE) {
hMapFile=CreateFileMapping(hFile,NULL,PAGE_READWRITE,O,O,NULL);
if (hMapFile !=NULL) (

pMapImage = MapViewOfFile(hMapFile, FILE_MAP_WRITE,O,O,O);
if (pMapImage != NULL) {

fort i=O, p=pMapImage; i<16; i++, p+=Ox1000) *p = 'A';
UnmapViewOfFi1e(pMapImage);
}

CloseHandle(hMapFile);
}

CloseHandle(hFile);
}

Zeroing in on just those areas which are different in Figure 10-7, we see that
_Page Commit uses the PC_WRfTEABLE attribute since we passed FILE_MAP_

WRITE to MapViewOfFile. Although we are writing a byte to each page of the
mapping, each write forces apd_ virginin call for a page which results in the
series of FS_ReadFile calls on the duped handle. Eventually, whenUnmapViewOf
File is called, we see pd_dirtyout in action as each page which has been dirtied
written out to mapfile.tst.

Example 10-10 again illustrates very similar Win32 code for creating and accessing
a mapped file. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MemMapped WriteCopy. The output shown in Figure 10-8 was
collected by MultiMon while this code executed. The difference between this
example and the previous one is that write access is granted only to a copy of the
mapping file. This difference in behavior is brought about by subtle changes in
the flags to CreateFileMapping, which uses PAGE_ WRITECOPY, and MapViewOf
File, which here uses FILE_MAP_COPY

Underneath the Win32 code, we can see what is going on by looking at the
MultiMon trace in Figure 10-8. When MapViewOfFile commits memory to match
mapfile.tst's file size, it uses pager 12, the one described as Win32 Copy-On-Write
Mapped File. We see this in the _PageCommit call:

_PageCommit(82869h, 10h, 12, 00700000h,
PC_INCRlpc_STATIClpc_USERlpCWRITEABLE)

232 Chapter 10: Virtual Memory, the Paging File, and Pagers

Figure 10-7. Accessing a read-write memory mappedfile

Example 10-10. MemMapped WriteCopy Test

hFile = CreateFile(szFileName, GENERIC_READ I GENERIC_WRITE,
FILE_SHARE_READ,NULL,OFEN_EXISTING., O,NULL);
if (hFile != INVALID_HANDLE_VALUE) {
hMapFile=CreateFileMapping(hFile,NULL,PAGE_WRITECOPY, 0,0, NULL);
if (hMapFile != NULL) {

pMapImage = MapViewOfFile(hMapFile, FILE_MAP_COPY,O,O,O);
if (pMapImage != NULL) {
fort i=O, p=pMapImage; i<16; i++, p+=OxlOOO) *p = 'A';

UnmapviewOfFile(pMapImage);
}

CloseHandle(hMapFile);
}

CloseHandle(hFile);
}

Demand Page Loading 233

The significance of this is that pager 12 has a pd_type of PD_SWAPPER, meaning
that it uses the system paging file as a backing file, not the mapped file. The
mapped file is accessed only on pd_ virginin calls using FS_ReadFile, as we see in
Figure 10-8. Writes to the mapped file only go as far as the memory page. A dirty
page is paged out to the system paging file, not the mapped file.

Figure 10-8. Accessing a write-copy memory mappedfile

Paging aims to minimize disk a<;cess and resource usage by bringing the disk
imae into memory only as needed. In the next chapter we'll look at caching,
which reduces disk access by keeping frequently used portions of the disk image
in main memory.

VCACHE: Caches
Big and Small

The idea of a cache was motivated by the need to reduce costly I/O processing. It
is much faster to read a block of data from memory than it is to read the same
data from a physical disk. The cache keeps some subset of a larger collection of
data within local memory. Often, the items in the cache are determined by usage.
The most recently used items are kept in the cache, and once the cache is full,
the least recently used items are. discarded to make room for new additions. This
algorithm is referred to as least recently used, or LRU.

Windows 95 supplies vcache.vxd to provide two kinds of LRU caches to VxD
writers. The first type of cache, the block cache, deals with 4096 byte memory
pages; the size of the allocation is fixed. A separate data structure, represented by
a cache block handle, is used to track each page. It contains information such as
ownership, lookup keys, lock counts, and usage counts. This is the cache used by
VFAT when accessing the system's disk drives. The second type of cache, the
lookup cache, is suitable for small items; these items may be of variable and arbi
trary size. This cache is the in-memory image of a section of the system registry. A
lookup cache is created as a key with some maximum number of elements. The
elements are just values under the key. The LRU algorithm kicks in when the
number of values added under the key exceeds the maximum number of
elements. The registry file serves as persistent storage for a lookup cache.

234

Where Does Block Cache Memory Come From? 235

The official documentation for VCACHE's services is in the DDK document file
stdvxd.doc. Unfortunately, the information presented there is incomplete. This
chapter will help fill in what's missing and supply additional background
information.

Where Does Block Cache Memory
Come From?
Since the unit of allocation is a page, it should come as no surprise that the block
cache is created using the sparse memory allocator. As we saw in the last chapter,
using this allocator is a two-stage procedure where memory is first reserved and
then committed. The actual call used to reserve the range of memory used for the
block cache looks like this:

linBase =_PageReserve{PR_SYSTEM,maxCache,PR_FIXED)

where PR_SYSTEM requests that the pages be reserved anywhere in the system
arena (COOOOOOOh-FFBFFFFFh) and PR_FlXED says do not move the pages on a
_PageReAllocate. The subsequent call, which commits some of this range to form
the initial cache, takes this form:

_PageCommit{linBase»12,initCache,PD_FIXEDZERO,0,PC_FIXED)

Note that these pages are PC_FIXED, meaning that the memory is permanently
locked. Not all of the pages initially reserved are committed. Instead the following
algorithm is used to determine the initial cache size:

minInitial = (minCache>=64) ? 64 : minCache;
initcache = maxCache - 1024;
if { initCache <= minInitial initCache
if (initCache > maxCache)
if (initCache > 2304)

initCache
initCache

minInitial;
maxCache;
2304;

Put simply, the initial cache size will be 1024 less than the number of reserved
pages but will not exceed 2304.

In somewhat the same way that DYNAPAGE and PAGESWAP use legacy entries
in the system.ini file to set various parameters controlling the paging file, VCache
uses entries in the [vcache] section of the system.ini file to set parameters
controlling the block cache. The keys which VCache retrieves during initialization
are minfilecache, maxfilecache, and CacheBujRRT. The minfilecache and maxfile
cache entries are in units of kilobytes; if a value is not specified in the system. ini
file, a default of 0 is used.

The values of minfilecache and maxfilecache, in turn, determine the values of
min Cache and maxCache; maxCache sets the number pages which are reserved
for the block cache; minCache and maxCache, together determine the value of

236 Chapter 11: VCACHE: Caches Big and Small

initCache, the subset of reserved pages which are initially committed for use. To
get from minfilecache and maxfilecache to the final values of minCache and
maxCache, the following algorithm is used:

max = Get_Profile_Decimal_Int("vcache" ,
min = Get_Profile_Decimal_Int("vcache" ,
maxCache = (max + 3)/4;
minCache = (min + 3)/4;

"maxfilecache" , 0); II kbytes
"minfilecache" , 0);

II round up to nearest page

numFreeLockablePages = _GetFreePageCount(O);
if (minCache == 0)

minCache = (numFreeLockablePages < 1280) ?

II returned in EDX
II using defaults?

numFreeLockablePages/40:
numFreeLockablepages/24;

avail = (numFreeLockablePages >= 392) ? numFreeLockablePages-384 : 8;
if (minCache > avail) mincache = avail;
if (minCache <= 8) minCache = 8;
if (maxCache > avail) maxCache = avail;
if (maxCache > 204800) maxCache = 204800;
if (maxCache < minCache) minCache = maxCache;

Summarizing, if your system is using defaults for its cache size, VCache will deter
mine these values at Device Init time from the number of lockable free pages
returned by _GetFreePageCount. If this function reports 1280 pages or more, the
minimum cache size is the number of free lockable pages divided by 40; if more
than 1280 pages are free, this amount is divided by 24 to arrive at the minimum
size. In no case will the minimum be less than 8 pages. The default setting for the
maximum cache size is the number of free lockable pages minus 384. In no case
will the cache size exceed 204800 pages. Table 11-1 shows default initial cache
sizes for several PC configurations.

Table 11-1. Default Block Cache Sizes for Some Typical Systems

Free Lockable Minimum Maximum Initial Cache
System Description Pages Cache Pages Cache Pages Pages

486DX-66 Desktop, 2074 86 1690 666
12 MB

Pentium-60 Desktop, 2962 123 2578 1554
16MB

486DX-75 Notebook, 4199 174 3815 2304
20MB

What we have described so far is the initial configuration of the cache if you were
to take a snap shot after VCache has finished its initialization. Like the swap file,
cache size is dynamic. Let's take a look at how the memory manager can make
the cache shrink or allow it to grow.

How Does the Memory Manager Control Block Cache Size?

How Does the Memory Manager
Control Block Cache Size?

237

VCache has two services which are used to add or remove a page from those
committed to the cache. The service which is called by the memory manager to
reclaim a page is VCache_RelinquishPage, and to add a page, it calls
VCache_UseThisPage.

A call to VCache_RelinquishPage may be traced back to numerous locations in
VMM: the page fault handler; the various memory manager functions such as
_PageCommit, _LinPageLock, etc.; a callback installed by Call_ When_Idle; or the
ongoing one-second timeout procedure installed by SeCAsync_Time_Out. The
memory manager actually calls VCache_RelinquishPage through a wrapper func
tion that I've named Take_ VCache_Page. VMM will call this function to attempt to
reclaim some of VCache's memory only if there are no free pages available and
other appropriate conditions are met. Here is the pseudocode for Take_ VCache_
Page:

DWORD Take_VCache_Page() {
DWORD linPage, numPage, iCachePage;
if (amtShrinkCache==O I I curCachePages<=minCachePages) return 0;
amtGrowCache = 0;
linPage = VCache_RelinquishPage();
if (linPage == 0) goto not_taken;

II request a page

numPage = linpage»12; II convert linear addr
II to page number

if (numPage < pgnumCacheStart) goto not_taken; II less than
II cache?

iCachePage = numPage - pgnumCacheStart; II page index
if (iCachePage >= maxCachePages) goto not_taken; II greater than

II cache?
_FreeUsedPage(pBitMap_VCachePages, ++iCachePage); II mark page

amtShrinkCache--;
curCachePages--;
return linPage;

not_taken:
amtShrinkCache 0;
return 0;

II
II shrunk by one page
II current cache size is one less
II return linear address of page

unused

II shrink failed, turn off further attempts
II no linear address returned

On entry this function checks several global VMM variables before proceeding.
First, amtShrinkCache should be set to a non-zero value by the memory manager,
to indicate the number of pages to reclaim. Secondly, the current number of
pages in the cache should not drop below minCachePages; if it does then the
request is ignored. If these conditions are met, VCache_RelinquishPage is called to
get the linear address of a page within the cache. In response to this request,
VCache will first give up pages which are on its free list. Once those are

238 Chapter 11: VCACHE: Caches Big and Small

exhausted it will start searching for candidates on its LRU list. Only those which
are not held or dirty, and which have aged sufficiently, will be sacrificed.

If a linear page address is returned by VCache_RelinquishPage, then
Take_ VCache_Page verifies that its page number lies in the range which has been
reserved for the cache. VMM maintains a bit array of used cache pages
CpBitMap_ VCachePages). When a page is reclaimed from the cache, its corre
sponding bit is cleared by the function _FreeUsedPage. VMM's internal counters
(amtShrinkCache and curCachePages) are updated and the linear address of the
page is returned. The caller of Take_ VCache_Page then uncommits the physical
page corresponding to the linear address. This makes the page free to be used for
other needs and at the same time changes the status of the linear address from
committed to reserved.

The opposite of shrinking the cache is growing the cache, and VMM has a global
variable, amtGrowCache, which indicates how many pages to give back to
VCache. This variable is updated at one-second intervals by a timeout procedure
installed by Set_Async_Tinlc_Out. The decision to grow the cache is based on
two statistics returned by VCache_GetStats at these one-second intervals: the
number of cache blocks which have been discarded and the number of cache hits
to the last 26 LRU cache blocks. When conditions are appropriate for growing the
cache, VMM sets up an event callback that will invoke VCache_UseThisPage.
Rather than call this function directly, VMM schedules a wrapper function,
Give_ VCache_Page (my name), as an event using the Call_Restricted_Event
service. The pseudocode for Give_ VCache_Page follows:

void Give_VCache_Page(void) {
DWORD iCachePage,numPage;
if (amtGrowCache == 0) return;
while (TRUE) {

II is VCache getting pages?

iCachePage = _GetUnusedPage(pBitMap_VCachepages,maxCachePages);
if (iCachePage == 0) return;
numPage = pgnumvCacheStart + iCachepage - 1; II new page
if (_Pagecommit(numpage,l,PD_FIXED,O,PC_FIXEDlpC_WRITEABLE)==0)

_FreeUsedPage(pBitMap_VCachePages,iCachePage);
return;

Flush_TLB();
DecCounter(); 1* D1_F7E4 *1
VCache_UseThisPage(numPage«12);
curCachePages++;
if (amtGrowCache == 0) break;
amtGrowCache--;
}

II give page to VCache

This routine first checks that amtGrowCache is non-zero, i.e., there is something
to do. If so, it enters a loop where it attempts to grow the cache a page at a time

Block Cache Data Structures 239

until the requested number of pages has been added. To add a page to the cache
it needs to know the linear address of a page in the cache's address range which
is currently uncommitted. By scanning the bitmap of unused cache pages,
pBitMap_ VCachePages, the index of an unused page is returned by
_GetUnusedPage. This index is converted into a page number and passed to
_PageCommit to map a physical page to a linear address in the cache. That linear
address is then passed to VCache_UseThisPage, to inform VCache that it is
available.

To be complete, I should mention one other method by which the cache can be
made to grow. VMM's Win32 service number Ox28 checks if the current cache size
is at least 128 pages. If it is not, amtGrowCache is set by the following expression:

if (128 <= maxCachePages) amtGrowCache = 128 - curCachePages;
else amtGrowCache = maxCachePages - curCachePages;

and then Give_ VCache_Page is scheduled to run by Call_Restricted_Event.

Block Cache Data Structures
The pages which belong to the block cache are either in use or placed on a free
list. The pages on the free list form a one-way linked list. The head of the free list
is stored in a VCache global variable pFreePageList; each page in the free list
contains a link at byte offset Ox100 from the beginning of the page. A page which
is in use can either contain cache data or cache blocks. The cache block data
structure is 64 bytes in length, so a page can store 64 cache blocks.

Pages which are used to store cache blocks are tracked by an array (pCBPag
esList) of the page linear addresses. The size of this array is determined by the
maximum cache size; it is given by the formula: CCmaxCachePages + 63)/64)*4
bytes. This array is allocated from the heap at Device Init time. Initially it is zero
filled, but as each page is removed from the free list to create new cache blocks,
the page's linear address is added to the first available slot in the array. Once a
page is allocated for creating cache blocks, it is never reclaimed to the free page
pool.

Pages which are used to contain data are referenced by the linear address stored
in the BujPtr member of the cache block data structure (shown below). These
pages come from the same pool of free pages. There is a one-to-one correspon
dence between cache blocks and data pag€s.

This brings us to the cache block, the central data structure used by block cache
services. Here is the layout of this structure:

typedef struct {
struct cb* cb_next; /* 00 - head of free list/collision list */

240

struct cb* cb-prev;
DWORD FSKeyl;

Chapter 11: VCACHE: Caches Big and Small

/* 04 - tail of free list/collision list */
/* 08 - hash key 1 */

DWORD FSKey2; /* OC - hash key 2 */
void* BufPtr; /* 10 - page containing cache data */
DWORD FSDData(7); /* 14 - area reserved for FSD use */
WORD HoldCnt; /* 30 - lock to prevent discard/reclaim */
BYTE Dirty; /* 32 - cache data is modified */
BYTE FSD_ID; /* 33 - ID of FSD which owns page */
DWORD AgeCnt; /* 34 - relative age of block */
struct cb* lru_next; /* 38 - MRU end of list */
struct cb* lru-prev; /* 3C - LRU end of list */
} CB, *PCB;

Cache blocks which are not in use are placed on a free list whose head is given
by a VCache global variable (pCBFreeList). In these cache blocks, the members
cb_next and cb_prev provide linkage for members in the list.

Cache blocks which are in use are strung together on a different list, the LRU list.
The head of this list is a pseudo-cache block in VCache's locked data area. Only
two members of this cache block are used, lru_next and lru-prev. These point to
the head and the tail of the list. The most recently used cache block is at the head
of this list, while the least recently used cache block is at the tail of this list. The
lru_next and lru-Prev members provide the linkage for this doubly-linked list.

Each cache block is uniquely identified by two keys, FSKey 1 and FSKey2, and a
one-byte ownership ID, FSDjD. The FSKeyl and FSKey2 values are allowed any
values other than O. For example, VFAT uses FSKeyl as the logical sector number
and FSKey2 as the volume resource handle. These two keys are used in conjunc
tion with a hash table. Each bucket or entry in the hash table consists of two
pointers. If the bucket is empty, the pointers reference the address of their
bucket. If the bucket contains one cache block, then both bucket pointers point
to the same cache block. Both of the cache block's cb_next and cb_prev pointers
refer back to the hash table bucket. If the bucket contains more than one cache
block, the first bucket pointer refers to the first cache block and the second
bucket pointer refers to the last cache block. The intervening cache blocks that
belong to the bucket are linked by the cb_next and cb-prev members. The
cb_prev pointer of the first cache block and the cb_next pointer of the last cache
block refer back to the hash table bucket. The cache blocks in a bucket have
FSKeyl and FSKey2 values which hash to the same value. This hash value serves
as an index into the hash table.

To calculate a hash value VCache uses a simple hash function which is repre
sented here as C pseudocode:

i = (FSKey1 & OxffffOOOO»>16;
i A= FSKeyl;
i A_ FSKey2;
i &= LookupMask;

Block Cache Services 241

The value i which results from these statements is used to directly index the hash
table. The value i is constrained to the hash table range by the last step where it
is ANDed with the LookupMask. The LookupMask depends upon the hash table
size. If the hash table has 2047 (7ffh) buckets, then the mask will be (7ffh)«3 or
3ff8h. Before a match is returned by a search, the cache blocks in the bucket are
compared with FSKeyl, FSKey2, and FSDjD, to verify it is exact.

VCACHE may have up to 10 clients. Each client registers with VCache at Device·
Init time and if successful receives a unique identifier. This is the value that will
be stored in the FSD_ID member of this client's cache blocks. Internally, VCache
keeps track of its clients using a structure like this:

struct { DWORD BlksInUse;
DWORD BlksReserved;
void (*DiscardFunc) ();
DWORD reserved;
} reg_data [101 ;

The index to reg_data [] is FSDj~Ox64. The BlksReserved and DiscardFunc
members are supplied by the client when it registers. BlksReserved specifies the
minimum number of cache block pages which this client can not drop below (this
value can be 0). DiscardFunc is the address of a function which VCache will call
when it is about to discard a cache block and its data page. This allows an FSD to
update its data structures when a page is no longer in the cache.

An FSD should set the Dirty byte in the cache block structure, to a non-zero value
if the contents of a page have been modified. This flag is controlled by the FSD
and is used to prevent VCache from discarding a page. It is the responsibility of
the FSD to write a dirty page to disk and clear the flag. Another flag which the
FSD can use to prevent a page from being discarded is HoldCnt. This word value
is an unSigned count of locks which have been requested on the page. As long as
at least one lock is outstanding, the page will not be discarded. AnFSD may use
the 28 bytes in FSDData [1 for any information it may wish to store along with a
page. This area is free format, so it is up to the FSD to define how it will be used.

When a new cache block is created, its age, the member AgeCnt, is initialized to
the current value of VCache's global variable nAgeCount, and then nAgeCount is
incremented. This is equivalent to making the cache block most recently used.
This also implies that the block is placed at the head of the MRU list.

Block Cache Services
Table 11-2 summarizes the services which VCache provides to use the block
cache. The first step to using the block cache services is to register with VCache
at Device Init time using VCache_Register. Registration can be undone at a later

242 Chapter 11: VCACHE: Caches Big and Small

time with the service VCache_Deregister. When registering you supply a buffer
discard callback function.

Table 11-2. VCache's Block Cache Services

Service

VCache_AdjustMinimum

VCache_ CheckAvail

VCache_Deregister

VCache_Enum

VCache]indBlock

VCache]reeBlock

VCache_ GetSize

VCache_ GetStats

VCache_Gec Version

VCache_Hold

VCache_MakeMRU

VCache_RecalcSums

VCache_Register

VCache_SwapBuffers

VCache_TestHandle

VCache_TestHold

VCache_Unhold

VCache_ VerifySums

Function

Adjusts the number of reserved blocks for a FSD

Verifies that enough cache blocks are available

Frees cache resources owned by a FSD

Calls enumeration function for all blocks owned by FSD

Finds or creates a cache block

Places a cache block and its data page on free lists

Returns number of blocks in cache

Returns statistics for use by memory manager

Gets Vcache's version number

Increments cache block's Holdent

Moves cache block to head of MRU list

Debugs only (not available in retail release)

Installs discard function and returns FSD ID

Swaps data pages between two cache blocks

Validates a cache block handle

Tests cache block's Holdent

Decrements cache block's Holdent

Debugs only (not available in retail release)

This buffer discard function will receive the address of the cache block which is
being discarded, in the ESI register. Cache block discards may occur in response
to VCache_RelinquishPage and VCache_FindBlock (with the VFCB_Create flag)
calls. A cache block is a candidate for discarding if it has its Dirty flag clear, its
HoldCnt is zero, and its AgeCnt is such that: (nAgeCount - cb.AgeCnt) > AgeDelta.
At initialization time, the global variable AgeDelta is set to initCache / 8 (where
initCache is the initial cache size) or 16, whichever is smaller. As the cache is
dynamically sized, AgeDelta is not adjusted unless the cache size drops below 128
pages, in which case it is recalculated as curTotalCachePages / 8.

The real workhorse of the cache block interface is VCache_FindBlock. It is really
several functions rolled into one. In addition to finding blocks, it can also create
new cache blocks and change the LRU order of blocks. It receives four argu
ments: AH contains the FSD ID, AL contains option flags, EBX contains hash keyl,
and EDI contains hash key2. If AL is zero, a search is performed for a cache block
matching the other three parameters. A successful search is indicated by a carry
clear return. In this case, ESI contains the cache block handle (the address of the

Monitoring VCache 243

cache block) and EAX contains the address of the buffer (the BujPtr member). If
the AL has the VCFB_Create flag set, and a matching cache block is not found, a
new cache block will be created. In this case, the return values refer to the newly
created cache block and buffer. Other flags can be used in AL, such as
VCFB_Hold to increment the HoldCnt of a find, and VCFB_MakeMRU to move a
find to the head of the MRU list. The service VCache_MakeMRU provides a more
efficient way to move a cache block to the head of the MRU list. It takes a cache
block handle in ESI as its single argument.

Before allocating some cache blocks, you can verify that the number of cache
blocks you need are available using the service VCache_CheckAvail. Before
calling, the AH register is loaded with the FSD ID and ECX is loaded with the
desired number of blocks. The result of this call is given by the state of the carry
flag. If the carry flag is set, not enough buffers are available; otherwise the
request can be granted and the number of buffers available is returned in EAX.

The services VCache_Hold, VCache_Unhold, and VCache_TestHold all take a
cache block address in ESI as arguments. The only thing these functions do is
manipulate or test the HoldCnt member of the specified cache block.
VCache_Hold increments HoldCnt, VCache_Unhold decrements HoldCnt, and
VCache_TestHold returns HoldCnt in EAX and the zero flag is set if HoldCnt is O.

VCache_FreeBlock removes a cache block specified by the ESI register and its
associated buffer from the MRU list. The cache block and the buffer page are
placed on their respective free lists.

Monitoring VCache
MultiMon includes a monitor for VCache services. Using it in conjunction with the
file system hook adds some additional detail to our understanding of VFAT's FSD
functions. As an example, I'll execute the DISKDUMP program from Chapter 9
with three monitors: VCHook, FSHook, and TAGMON. Example 11-1 is a small
portion of the trace output.

Note that for vch lines, the dev column contains the FSD ID and the handle
column contains the cache block handle. If the handle is marked with an asterisk,
it represents a newly created cache block.

In this trace, DISKDUMP performs three FS_DirectDiskIO reads. The first read is of
the volume's boot sector, the second is of the first sector of the first FAT, the third
is of the first sector of the second FAT, and at the end of the trace we see the
beginning of a read of the root directory sectors. The fsh entries in the trace are
highlighted; these lines of the trace are added on completion of the
FS_DirectDiskIO calls. The vch entries of the trace record VFAT's calls into
VCache's services.

244 Chapter 11: VCACHE: Caches Big and Small

Example 11-1. Sample Output of Three Trace Monitors

Mon Function Flags1 Dev Handle Args
----------------------- -------------- -------- --------------

tag ==== diskdump (D) ----

tag == Lock Logical Vol
tag == Read Boot Sector (0)
vch VCache_FindBlock FSD(64h) Key1: fffffffd

Key2: c1636614
Ret Carry

vch VCache_FindBlock Creat MkMRU FSD(64h) Key1: fffffffd
Key2: c1636614

Ret Carry c3f60fcO* Buf: c3fb4000
vch VCache_Hold c3f60fcO
vch VCache_Unhold c3f60fcO
vch VCache_Hold c3f60fcO
vch VCache_Unhold c3f60fcO
fsh FS_DirectDiskIO (dd) Rd VFAT cnt=lH sec=OH
tag == Start Read First FAT (lH)
vch VCache_FindBlock FSD(64h) Key1: fffffffd

Key2: c1636614
Ret c3f60fcO Buf: c3fb4000

vch VCache_MakeMRU c3f60fcO
vch VCache_Hold c3f60fcO
vch VCache_Unhold c3f60fcO
fsh FS_DirectDiskIO (dd) Rd VFAT cnt=lH sec=lH
tag == Start Read Second FAT (83H)
vch VCache_FindBlock FSD(64h) Key1: 0000007d

Key2: c1636614
Ret Carry

vch VCache_FindBlock FSD (64h) Key1: 0000007d
Key2: c1636614

Ret Carry
vch VCache_FindBlock FSD(64h) Key1: 0000007d

Key2: c1636614
Ret Carry

vch VCache_FindBlock Creat Hld MkMRU FSD(64h) Key1: 000OOO7d
Key2: c1636614

vch VCache_Hold c3flfOOO
Ret Carry Locked c3flfOOO* Buf: c3fafOOO

vch VCache_Unhold c3 flfOOO
vch VCache_FindBlock Creat MkMRU FSD (64h) Key1: 0OOOOO7d

Key2: c1636614
vch VCache_MakeMRU c3f1fOOO

Ret Locked c3flfOOO Buf: c3fafOOO
vch VCache_Hold c3flfOOO
vch VCache_Unhold c3flfOOO
fsh FS_DirectDiskIO (dd) Rd VFAT cnt=lH sec=83H
tag == Start Read Root DIR (105H)
vch VCache_FindBlock FSD(64h) Key1: 00000105

Key2: c1636614
Ret c3f1ffcO Buf: c3ffOOOO

Monitoring VCache 245

For instance, the following sequence is associated with the read of boot sector 0:

VCache_FindBlock (find fails)
VCache_FindBlock (create and make MRU)
VCache_Hold Clock buffer for read)
VCache_Unhold (unlock)
VCache_Hold Clock buffer for transfer)
VCache_Unhold (unlock)
FS_DirectDiskIO (VFAT returns)

From this sequence we see that VFAT first searches for a cache block for the
needed sector and volume, and only if that fails does it create a new cache block.
We can also infer that VFAT doesn't just read in a single sector; rather, it reads an
entire page. This is revealed by the following sequence for the subsequent read
of the first sector of the first FAT (sector 1):

VCache_FindBlock (find succeeds)
VCache_MakeMRU (make MRU)
VCache_Hold Clock buffer for transfer)
VCache_Unhold (unlock)
FS_DirectDiskIO (VFAT returns)

In this case the search for the cache block succeeds because it is already in
memory, having been loaded along with the boot sector.

The keys which are passed to VCache_FindBlock require some explanation. The
second key is the simply the address of the volume's resource block structure (see
Chapter 9, VFAY. The Virtual FAT File System Driver) which is owned by VFAT.
The first key represents the sector on the volume. But how does sector 0 become
Oxfffffffd? Why do both sector 0 and sector 1 use this same hash key?

To understand this, you need to look at the disk layout. The sectors in a volume
either lie in the system area (boot sector, FATs, root directory entries) or in clus
ters which are assigned to files and subdirectories through the FAT. The line
between these regions is drawn at the first sector of the first available cluster.
Cache blocks are also aligned at this boundary. In our DISKDUMP example,
volume D has the first sector of the first cluster at sector 125h. This value serves
as a key for sectors 125h, 126h, ... 12Ch, since the volume's sector size allows 8
sectors to be stored in a cache page. Since this alignment boundary lies on a
sector which is not an even multiple of 8, the key for the first cache block will
start at (125h mod 8)-8 or -3 (Oxfffffffd), and this value will serve as the key for
sectors -3, -2, -1, 0, 1, 2, 3, and 4.

246 Chapter 11: VCACHE: Caches Big and Small

The Lookup Cache Data Structures
The lookup cache is an in-memory image of the keys and values under the
system registry section: HKLM\System\CurrentControISet\Services\ VxD\ VCache\

Lookup. Figure 11-1 shows this registry section for a typical system which is
attached to a LAN. On this system two caches have been created: ServerName

Cache by IFSMgr and VREDIR_Names by VREDIR. The cache keys consist of the
registry values KeyOOOO, KeyOOOl, and Key0002; the corresponding cache data
items are the registry values DataOOOO, DataOOOl, and Data0002. As shown, Server

NameCache contains 3 items and the NumElements value reflects this. The
MaxElements value, Oxle, indicates that the cache will hold 30 elements in
memory. If the number of elements exceeds this amount, the excess items which
are least recently used are retained in the system registry file. The Flags value
does not appear to be used.

S erverN ameCache
VREDIR_Names

VCDFSD
VCOMM

[Default]
DataOOOO
DataOO01
DataOO02
Flags
KeyOOOO
Key0001
KeyOO02
M a~E lements
NumElements

[value not set]
00000200
00000200
00000200
00000000.
5c 00 53 00 45 00 52 00 56 00
5c 00 5400 4f 00 50 00 44 00
5c 00 4b 00 55 00 4d 00 51 00
1eOOOOOO
0300 00 00

Figure 11-1. Registry editor display of the lookup cache

Internally, VCache uses the IFSMgf_GetHeap service to allocate storage for data
structures and the memory-image of each lookup cache. IFSMgr's heap allocator
disburses blocks from locked pages. Each cache is represented by a single
LOOKUP_KEY data structure and one or more LOOKUP_VAL structures, one for
each cache item. The LOOKUP_KEY structures are strung together in a linked list to
facilitate the validation of lookup cache handles (HLOOKUP) , to determine
whether a cache name is already in use. Here is the layout for a LOOKUP_KEY:

typedef struct
void* next; /* head of list of LOOKUP_VAL structures (mru) */
void* prev; /* tail of list of LOOKUP_VAL structures (lru) */
PLOOKUP_KEY next_cache; /* next lookup cache */
char* pszCacheName; /* name of the cache */
DWORD refcnt; /* number of cache users */
DWORD numElements;
DWORD maxElements;
DWORD Flags;

/* current number of elements */
/* max number of elements retained in memory */
/* determines type of background processing */

Lookup Cache Services 247

HKEY hKey; /* registry key handle */
} LOOKUP_KEY, *PLOOKUP_KEY;

Each cache item is represented by a LOOKUP_VAL structure; it has this declaration:

typedef struct
void* next; /* next LOOKUP_VAL structure */
void* prev;
PLOOKUP_KEY cache;
DWORD KeySum;
DWORD.dwKeyLen;
DWORD dwDataLen;
DWORD iElement;
DWORD Flags;
void* pKey;

/* previous LOOKUP_VAL structure */
/* back pointer to lookup cache */
/* checksum of the Key value */
/* length of the Key value */
/* length of the Data value */
/* zero-based
/* determines
/* pointer to

index of element */
type of background processing */
buffer containing Key */

void* pData; /* pointer to buffer containing Data */
} LOOKUP_VAL, *PLOOKUP_VAL;

These two types of structures are what the lookup cache is built from.

Whenever new items are added to a cache, or when the value of a cache item
changes, or when a lookup occurs which moves an item to the head of the MRU
list, this change needs to be written to the corresponding registry key. These
updates to the registry are deferred until an Appy Time callback is executed. This
callback is scheduled each time a cache change occurs, unless a callback is
already pending; a callback will occur after a 300 second time-out expires. Prior
to scheduling the callback, the Flags members of the affected LOOKUP_KEY and
LOOKUP_VAL structures are set to indicate the kind of processing which is
required. When it is called, the callback handler starts at the head of the
LOOKUP_KEY list and examines the Flags member of each structure. For those
structures needing attention, it first clears the Flags member and then completes
the registry update. While this background processing is taking place, calls to the
lookup services will return with an error code of 1.

Lookup Cache Services
Table 11-3 summarizes the services which VCache provides to use the lookup
cache.

Table 11-3. VCache's Lookup Cache Services

Service

_ VCache_ CloseLookupCache

_ VCache_ CreateLookupCache

_ VCache_DeleteLookupCache

_ VCache_Lookup

_ Vcache_UpdateLookup

Description

Closes registry key and releases storage

Creates or opens a lookup cache

Not implemented, just returns 0

Looks up a cache key and return its data

Adds or updates elements in the cache

248 Chapter 11: VCACHE: Caches Big and Small

Unlike the block cache services which use processor registers for passing argu
ments, the lookup cache services all use a C calling convention. Also, unlike a
block cache which must be registered at Device Init time, a lookup cache can be
created after initialization.

The service _ VCache_CreateLookupCache is called to create a lookup cache. This
function's prototype has this form:

int _VCache_CreateLookupCache(char* psz, DWORD max, DWORD flags,
HLOOKUP* ph)

It receives four arguments. The first is the name of the cache which will become
the name of the registry key which will hold the cache's contents. Additional argu
ments include the maximum number of elements the cache will hold in memory,
a DWORD of flags (initialized to 0), and the address of a doubleword in which a
handle to the lookup structure will be returned. VCache searches through the list
of LOOKUP_KEY structures to see if the named cache already exists. If the
LOOKUP_KEY does not exist, then an attempt is made to open the registry key. If
the registry key is found, then the values under the key are enumerated; a
LOOKUP_KEY and one or more LOOKUP_VAL structures are allocated from IFSMgr's
heap and initialized with the results of this enumeration. The address of the
LOOKUP_KEY is then inserted at the head of list.

If this is a brand new cache without an entry in the registry, then only a
LOOKUP_KEY structure is allocated from IFSMgr's heap, and its address is inserted
at the head of the LOOKUP_KEY list. The registry key is not created until an entry
is added to the cache using _ VCache_UpdateLookup.

A bug is revealed if _ VCache_CreateLookupCache is called with the name of a
key which is already opened. The function will fail in an unexpected way. An
error code is returned which is the content of an uninitialized stack variable. To
work around this, initialize the contents of the ph argument to zero before
invoking this function and check the contents of ph for a non-zero value to verify
that the function has succeeded.

Closing a lookup cache should be accomplished with VCache Close
LookupCache. This service takes a single argument, the HLOOKUP handle. This
function validates the HLOOKUP handle, decrements the LOOKUP_KEY reient
member if it is non-zero, sets the close-bit in the Flags member, then schedules
an Appy Time callback in 300 seconds. What the Appy Time handler is supposed
to do, is remove the LOOKUP_KEY from the list, close the associated registry key,
and release the storage held by the LOOKUP_KEY and any LOOKUP_VALs.
However, yet another bug lurks in _ VCache_CloseLookupCache. When the Appy
Time handler is walking the list of LOOKUP_VALs and reclaiming memory, it enters

An Example: IFSMgr's ServerNameCacbe 249

an infinite loop! Perhaps this is why IFSMgr and VREDIR call this function only at
system shutdown, so the Appy Time callback never gets called.

_ VCache_UpdateLookup is the service used for adding or updating key/data pairs
in a cache. This function's prototype has this form:

int _VCache_UpdateLookup(HLOOKUP h, DWORD keylen, void* pKey,
DWORD datalen, void* pData)

It calculates a checksum value for the specified key's value (pointed to by pKey)
and compares this checksum with the KeySum member of any LOOKUP_VALs in
the cache. If a match is found, the contents of the existing LOOKUP...,:VAL structure
are modified to hold the new values. If no match is found, a new LOOKUP_VAL
structure is allocated and initialized with the pKey and pData values provided as
arguments. In either case, appropriate Flags bits are set and then an Appy Time
callback is scheduled in 300 seconds. The Appy Time handler will refresh or
create keys and values in the registry to reflect the current set of LOOKUP_VAL
structures. Note that if a new value is being added to the cache, its LOOKUP_VAL
moves to the head of the cache's MRU list. Also, once the number of elements in
the cache exceeds maxElements, each addition of an element requires that the
LOOKUP_VAL at the LRU end of the list be removed.

_ VCache_Lookup is the service used for retrieving data for a specified cache key.
This function's prototype has this form:

int _VCache_Lookup(HLOOKUP h, DWORD keylen, void* pKey,
DWORD* pdatalen, void* pData)

It calculates a checksum value for the specified key's value (pointed to by pKey)
and compares this checksum with the KeySum member of any LOOKUP_VALs in
the cache. If a match is found, the data associated with the key is copied to the
buffer at pData. One side effect of this function is that it moves the accessed
cache element to the head of the MRU list.

An Example: IFSMgr~s ServerNameCache
IFSMgr uses the lookup cache to store server names. A connection is made to a
server by calling the FS_ConnectNetResource entry point of its network FSD. To
find the correct entry point, IFSMgr needs to know· the provider ID for the
network. (For a review of provider IDs, see the section "FSD Registration" in
Chapter 8, Anatomy of a File System Driver.) Sometimes the provider ID is known
and the required function can. be found by a table lookup: Mount

Vol Table [provider ID]. In other cases, only the server name· is known, so
each remote FSD is tried in tum until a connect succeeds.

250 Chapter 11: VCACHE: Caches Big and Small

To minimize these trial-and-error connections, IFSMgr maintains a lookup cache
which maps server names to network IDs. Network IDs are manifest constants
enumerated in the Win32 SDK file winnetwk.h. This file includes entries such as:

#define
#define
#define

WNNC~ET_MSNET

WNNC~ET_LANMAN

WNNC_NET_NETWARE

Ox00010000
Ox00020000
Ox00030000

These network IDs are easily mapped to the provider IDs.

The primary service iri which the ServerNameCache is put to use is
IFSMgCSetupConnection. Each time this servic~ successfully completes aconnec
tion it updates the cache by calling the following function:

int UpdateServerNameCaehe(ParsedPath* pp, BYTE proid)
DWORD Data, datalen=sizeof(DWORD);
unsigned short* pUniPath;
DWORD keylen;

if (hServerNameCaehe == 0) return;
Data = NetIDs[proid];
pUniPath = pp->pp_elements[O]->pe_uniehars;
keylen = pp->pp_elements[O]->pe_length - sizeof(short);
return _VCaehe_UpdateLookup(hServerNameCaehe, keylen,

pUniPath, datalen, &Data);

The ParsedPathargument to this function comes from the ir-ppath member of
the ioreq structure. This contains the canonicalized UNC path, starting with the
server name and share name. (For a review of the ParsedPath structure .see
Chapter 6, Dispatching File System Requests.) The first element of the ParsedPath
structure, the Unicode server name, is used as the key for the cache. The second
argument to this function is the provider ID for the FSD which performed the
connection. This value is converted to a NetlD· and it becomes the data associated
with the key.

When IFSMgCSetupConnection gets a request without an explicit provider ID,
then another function is utilized to perform a cache lookup:

int ServerNameToNetID(ParsedPath* pp)
nWORD Data, datalen=sizeof(DWORD);
unsigned short* pUniPath;
DWORD keylen, rete;

if (hServerNameCaehe == 0) return 0;
pUniPath = pp->pp_elements[O]->pe_uniehars;
keylen ~ pp->pp_elements[O]->pe_length - sizeof(short);
rete = _VCaehe_Lookup(hServerNameCaehe, keylen,

puniPath, &datalen, &Data);
if (rete != 0) return 0;
return Data;
}

An Example: IFSMgr's ServerNameCache 251

This function takes a single ParsedPath argument which contains the server
name as its first PathElement. This is used to perform a cache lookup and if
successful, the variable Data will contain the matching NetID. IFSMgr uses
another internal function to convert the NetID into a provider ID.

12
A Survey of IFSMgr
Services

I promised myself that if I ever wrote a book about VxDs, I wouldn't fill it up
with warmed-over API descriptions. The DDK's IFS document and online help file
should be your basic references for API descriptions. But in some cases, the infor
mation these resources contain is inadequate to effectively use IFSMgr's services.
In this chapter, I'll address some of these shortcomings. I'm going to single out
several categories of services and provide more complete documentation for
them. However, all IFSMgr services are summarized in a series of tables.

The summary tables use the following conventions. The Ordinal column contains
the service ordinal number starting with 0. In a few cases the value in this column
will have a subscript; this is the ordinal for the equivalent service in Windows
3.11. The column headings 16, 22, and 22+ refer to the three different versions of
IFSMgr: Windows 3.11, Windows 95 build 950, and build 950B (OEM 2). The
trend is toward providing more services, starting with 61 in Windows 3.11, to 117
in Windows 95 build 950, to 121 in build 950B. These counts include a number of
services which have no implementation, i.e., in the retail builds, at least, the
service returns ° or perhaps sets the carry flag. In the table, these "unimple
mented" services are marked with a u, debug services are marked with a d, and
services which are only available at initialization are indicated by an i. An h

252

FSD Registration 253

indicates that a service is meant to be hooked, and not called directly. The
Segment column indicates whether the function resides in locked or pageable
code. Note that just because a service entry point is in locked code doesn't
preclude it from taking a path through pageable code. The Ref column gives
chapter numbers where a service is used or described.

The descriptions presented here apply to the Windows 95 versions of IFSMgr.
However, the services provided by Windows 3.11 are also tabulated. The
companion disk contains the library iJswraps.clb, a C library of wrapper functions
for all of the IFSMgr services. For more information on the library, see Appendix
D, IFS Development Aids.

IFSMgr Versions
Your first line of attack to determine which version of IFSMgr a system is using
should be to call IFSMgcGeeVersion. For Windows 3.11 this will return Ox16,
and for Windows 95 it will return Ox22. Currently, two versions of Windows 95
exist; the retail build 950 and OEM service release 2, which is referred to as build
950B. The IFSMgr VxDs which accompany these two Windows 95 versions are
somewhat different. If you examine the file properties of these drivers using
Explorer, the file versions reported are 4.00.950 and 4.00.1111. One way to distin
guish these drivers at runtime is to examine the Device Descriptor Block to see
how many services are in the service table. For file version 4.00.950 this value is
117 and version 4.00.1111 it is 121.

FSD Registration
Table 12-1 lists IFSMgr's registration services. For a detailed discussion of these
functions see Chapter 8, Anatomy of a File System Driver.

Table 12-1. IFSMgr FSD Registration Services

Oro Service Name 16 22 22+ Segment Ref

1 IFSMgcRegisterMount x x x locked 8

2 IFSMgcRegisterNet x x x locked 8

3 IFSMgcRegisterMailSlot x x x locked 13

80 IFSMgcFSDUnmountCFSD x x pageable 8

98 IFSMgcRegisterCFSD x x locked 8

117 IFSMgcService_117 (Deregister FSD) x locked

118 IFSMgcService_118 (Register FSD) x locked

254 Chapter 12: A Survey of IFSMgr Services

Services 117 and 118 are new to build 950B. Although these services are not yet
documented, it is clear that they provide FSDs with the capability of registering
and deregistering with IFSMgr.

Heap Management
Given the extensive set of VMM services for memory allocation, you might
wonder why IFSMgr has to offer yet another set of services (see Table 12-2). It is
because FSDs and filehooks can't touch pageable memory and can't invoke
memory allocation services which might cause paging when handling the swap
file and memory-mapped files. The reasons for these requirements are discussed
in Chapter 7, Monitoring File Activity. To work around these restrictions, IFSMgr
allocates some fixed system pages and then disburses blocks from these pages
using the service IFSMgcGetHeap. The blocks are returned to the heap by the
service IFSMgcRetHeap. Beyond these basic functions, there are additional
services for special needs, such as assuring memory is available under critical
conditions. To begin, let's look at how the heap gets initialized and how it is
organized.

Table 12-2. IFSMgr Heap Management Services

Ord Service Name 16 22 22+ Segment Ref

12 IFSMgcRegisterHeap x x x locked 12

13 IFSMgc GetHeap x x x locked 12

14 IFSMgcRetHeap x x x locked 12

15 IFSMgCCheckHeap d d d locked

16 IFSMgC CheckHeapItem d d d locked

17 IFSMgr]illHeapSpare x x x locked 12

Heap Initialization and Data Structures
IFSMgr's heap management services become available after it completes the
System Critical initialization phase. At the end of this initialization, one page of
fixed system memory is allocated to the main heap and another one to the spare
heap.

The main and spare heaps are separate one-way linked lists of heap blocks. A
heap block consists of one or more pages of fixed system memory. At the begin
ning of each heap block, a 32-byte structure is used to manage the heap block's
allocations. This structure has the following layout:

typedef struct tagMemHdr
void* pBlk;
DWORD signature;

/* address of this heap block */
/* IFSMgr's signature, 'IFSH' */

Heap Management 255

struct tagMemHdr* next; /* address of next heap block */
DWORD blksize; /* size of heap block */
void* pEnd; /* offset to last DWORD in block */
void* pAvail; /* available allocation area */
WORD amtFree; /* max allocation size available */
WORD cnt; /* number of allocs in this block */
int alloc[O]; /* size of first allocation */
} MEMHDR, *PMEMHDR;

Allocations are made from the block's memory range starting at alloc and
extending to pEnd. The first available (free) allocation address in the block is at
pAvail. The following diagram illustrates a heap block containing three alloca
tions, A, B, and C.

20

-20

10

00

Aaa

Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Ccccccccccccccccc

« end of block

The four bytes preceding each allocation holds its length. For example, allocation
A is specified by the address of its first byte (represented by the uppercase A); the
length of this allocation is given by the doubleword at address A-4 and is 20 bytes
long. Allocation B has a negative length; this signifies that the 20 byte allocation is
free. It is followed by allocation C with a length of 10 bytes. The length of a heap
block's first allocation is given by alloc [0]. Starting with this first allocation, all
allocations in a heap block can be walked using these length fields. The very last
doubleword in the heap block contains a 0, and marks an allocation of length o.
IFSMgr's allocator uSes a "first-fit" algorithm. The amtFree member of the header
structure indicates the maximum block size that might be allocated from the heap
block. If the amtFree value is large enough to satisfy the requested allocation size,
the first available allocation in the heap block, given by the address pAvail, is
combined with any adjoining free allocations to create a single free allocation. If
this allocation is large enough to satisfy the request, it is used, possibly splitting
the allocation into a used portion and a new free allocation. If the size of the allo
cation is insufficient, this process is repeated for the next free allocation in the
block. If the request is not satisifed in one block, the next block in the heap is
tried. For each successful allocation from a heap block, the cnt member is
incremented.

IFSMgr _GetHeap
IFSMgC GetHeap receives a single argume~t, the requested size of the allocation,
in bytes. If successful it returns the address of the allocation; if it fails it returns
NULL. The actual size of the allocation is adjusted by the formula (req_amt + 7) &

256 Chapter 12: A Survey of IFSMgr Services

Oxfffffffc. This rounds the allocation size up to the nearest multiple of 4 and adds
4 bytes for the doubleword which holds the size of the allocation.

Heap blocks are searched in order for one which will satisfy this allocation
request. When all of the main heap blocks have been searched and none can
satisfy the request, some other stor,age possibilities are tried. First, the registered
heap reclamation functions are called to see if any user can free an allocation of
at ,least the requested size. If that does not succeed, the blocks on the spare heap
are searched to see if they can satisfy the request., If a block on the spare list can
supply the required allocation, the block is moved from the spare list to the main
heap, and the allocation succeeds. Finally, if the spare heap can not meet the
request, the allocation will fail if it is less than or equal to 4096 bytes but will
succeed if it is greater than this amount and the required pages can be allocated.

This distinction between "small" and "large" allocations is important. There are
situations in which you would rather fail an allocation than have the service
attempt to grow the heap by allocating more pages. As long as you stick to alloca
tions of 4096 bytes or less, you will get this behavior. However, if you call IFSMgC
GetHeap at a time when it is safe to perform page allocations, then you can make
multiple page allocations from this service. Then, instead of failing, a new heap
block containing the needed pages will be added to the main heap.

The DDK documentation states that the largest allocation that may be made by
this function is 32 Kbytes or 8 pages. It would seem that the upper limit on alloca
tion size is determined by the amtFree member of the heap block. This member is
an unsigned short so 64 Kbytes or 16 pages appears to be the actual upper limit.
Note that this is a limit imposed by the maximum size of a heap block.

IFSMgr _RegisterHeap
In the description of IFSMgcGetHeap, I referred to a heap rechimation function.
This function is registered by'IFSMgcRegisterHeap. 'Registering a function simply
places it at the current front of a linked list. When reclamation functions are called
by IFSMgcGetHeap, the function at the head of the list is called first, then the
next function, and so forth until the tail of the list is reached. The tail of the list
holds IFSMgr's heap reclamation function; it returns without doing anything.

When a reclamation function is called it receives the requested size of the alloca
tion on the stack in the doubleword at location EBP+OCh. If the function returns
zero in EAX, then it is saying that it can not supply the needed memory.
However, if the function returns a non-zero value in EAX, then the doubleword
stored at location EBP+8 is interpreted as the address of a heap block. IFSMgC
GetHeap will examine the available allocation given by the pAvail member of the

Time Management 257

heap block. If this allocation can not satisfy the request, then IFSMgcGetHeap
will fail; otherwise it will be used to satisfy the request.

IFSMgr _FillHeapSpare

Each call to this service adds a one-page block of fixed memory from the system
arena to the spare heap list. As we have seen, IFSMgcGetHeap uses the blocks
on the spare list as a reserve when an allocation can not be met by the main
heap. Once a block on the spare list is used, it is removed from the spare list and
added to the main heap.

IFSMgr calls this service before dispatching protected mode and v86 mode Int
21h requests.

IFSMgr _RetHeap

This function receives the address of an allocation made via IFSMgr_GetHeap. In
response the function searches the main heap blocks to find one for which the
allocation's address lies between alloe and pEnd. The allocation being freed is
combined with any free allocations which may follow it. This free allocation is
then marked with a negative value equal to its total size. The ent member of the
heap block is then decremented and if the ent has reached 0, this heap block is
moved to the spare heap list.

Reclaiming the Spare Heap

When the heap is initialized during System Critical initialization, a recurring 30-
second event is started which monitors the spare heap list. When this event func
tion is called, any blocks found on the spare heap list are freed back to the
system. This event is scheduled using the service IFSMgcSchedEvent and the EVF_

NOTCRITflag, so that it is safe to use VMM's _PageFree service.

Time Management
The time management services deal with three different time representations:
DOS, Net, and Win32. A DOS time represents a local time; it is stored in a
dostime_t structure which consists of three components:

• Packed 16-bit word containing, year, month, and day: bits 0-4, day (I-31); bits
5-8, month (I-Jan, 2-Feb, etc.); bits 9-15, year offset from 1980.

• Packed 16-bit word containing hour, minute, and second: bits 0-4, seconds
divided by 2; bits 5-10, minute (0-59); and bits 11-15, hour (0-23).

258 Chapter 12: A Survey of IFSMgr Services

• A byte containing the number of 10 millisecond intervals in 2 seconds to add
to the time (0-199).

A Net time is a 32-bit unsigned value which is the number of seconds which have
elapsed since January 1, 1970. This time is in UTC (Coordinated Universal Time)
which used to be known as Greenwich Mean Time (GMT), i.e., the local time at
the Greenwich meridian. A remainder component preserves the number of milli
seconds in a fractional 1 second interval.

A Win32 time is a 64-bit value specifying the number of 100-nanosecond intervals
that have elapsed since 12:00 am, January 1, 1601. A Win32 time is stored in a
_FILETIME structure which stores the 64-bit value as high and low doublewords.
This time is is also in UTe.

Table 12-3 enumerates the time management services which IFSMgr provides. The
services IFSMgcGeCNetTime and IFSMgcGeCDOSTime retrieve the current date
and time as Net time or DOS time, respectively. The next six functions are pairs
of functions which convert a given time representation to one of the other
possible representations, e.g., IFSMgcNetToDosTime converts a Net time to a
DOS time and IFSMgcNetToWin32Time converts a Net time to a Win32 time.
Note that a Win32 time can not be retrieved directly-it must be derived from
either a Net time or DOS time.

Table 12-3. IFSMgr Time Management Services

Ord Service Name 16 22 22+ Segment Ref

6 IFSMgcGeCNetTime x x x locked 12

7 IFSMgr_GeCDOSTime x x x pageable 12

55 IFSMgcNetToDosTime x x pageable 12

56 IFSMgcDosToNetTime x x pageable 12

57 IFSMgcDosToWin32Time x x pageable 12

58 IFSMgr_ Win32ToDosTime x x pageable 12

59 IFSMgcNetToWin32Time x x pageable 12

60 IFSMgc Win32ToNetTime x x pageable 12

96 IFSMgr_ GetTimeZoneBias x x pageable 12

119 IFSMgcService_119 x pageable

The next-to-Iast function in this group, IFSMgcGetTimeZoneBias, retrieves the
offset in minutes which is applied to the local time to convert it to UTe. This
value . is stored in the registry under the key HKLM\System \ CurrentCon

trolSet\Contro!\-TimeZonelnjormation in the variable ActiveTimeBias. The Time
Zone tab under the Control Panel's Date!fime properties is used to change this

Network Management 259

value. IFSMgr is notified of any changes to the ActiveTimeBias by hooking
VWIN32's service, VWIN32_ActiveTimeBiasSet.

Network Management
Table 12-4 lists IFSMgr's network management serVices. Many of these services
are discussed in Chapters 8 and 13. The services in this group can be divided into
server and client categories. The server functions include IFSMgcServerDOSCall,
IFSMgcSetLoopBack, and IFSMgr_ClearLoopBack. IFSMgcServerDOSCall. is the
means that a server uses to execute a local file system request on the behalf of
some network client. How IFSMgr dispatches these requests is described in
Chapter 6, Dispatching File System Requests. A server will also· use IFSMgr_
SetLoopBack and IFSMgr,...ClearLoopBack to maintain loopback paths. A loopback
path refers to a shared network resource on the local machine. For instance, if a
system's serVer name is TOPDOG and it is sharing a directory C·\BIN as DEV,
then· one of the system's loopback paths is the UNC path \ \ TOPDOG\DEV. The
function IFSMgr_SetLoopBack receives pairs of UNC paths and local paths which
allow mapping of local UNC· paths to a local drive and directory, e.g.,
\ \ TOPDOG\DEV maps to Co \BIN. IFSMgr_ParsePath checks the UNG paths it
receives against this loopback list and for matches, it substitutes the local path.

Table 12-4. IFSMgr Network Management Services

Ord Service Name

8 IFSMgCSetupConnection

9 IFSMgcDerefConnection

10 IFSMgr_:'serverDOSCall

25 IFSMgcMakeMailSlot

26 IFSMgcDeleteMailSlot

27 IFSMgc WriteMailSlot

3638 IFSMgcNetFunction

3739 IFSMgr_DoDeW!Uses

4042 IFSMgr_SetReqHook

4143 IFSMgcSetPathHook

4244 IFSMgr.,..UseAdd

4345 IFSMgcUseDel

4446 IFSMgr_lnitUseAdd

4648 IFSMgcDeWlUses

93 IFSMgr]SDMapFHtoIOREQ

106 IFSMgr_CheckDelResource

108 IFSMgr_SetupFailedConnection

16 22

x x

x x

x x

x x

u x

x x

h h

x x

x x

x x

x x

x

x

h

22+

x

x

x

x

x

x
h

x

x

x

x
x

x

h

Segment

pageable

locked

pageable

pageable

pageable

pageable

pageable

pageable

init

init

pageable

pageable

init

pageable

pageable

pageable

pageable

Ref

8

8

6,8

13

13

13

7

5

7

8

8

8

8

260 Chapter 12: A Survey of IFSMgr Services

Table 12-4. IFSMgr Network Management Services (continued)

Ord Service Name 16 22 22+ Segment Ref

113 IFSMgcSetLoopback x x pageable 12

114 IFSMgcClearLoopback x x pageable 12

Event Afanager.nent
Table 12-5 lists IFSMgr's event management services.

Table 12-5. IFSMgr Event Mangement Services

Ord Service Name 16 22 22+ Segment Ref

18 IFSMgcBlock x x x locked

19 IFSMgC Wakeup x x x locked

20 IFSMgc Yield x x x pageable 12

21 IFSMgcSchedEvent x x x locked 12

22 IFSMgcQueueEvent x x x locked 12

23 IFSMgr,-KillEvent x x x locked 12

24 IFSMgr_FreeIOReq x x x locked 12

54 IFSMgr_BlockNoEvents x x locked 12

lOS IFSMgr"':RunScheduledEvents x x locked 12

The event management services in several cases are simply wrappers for VMM
services. Important exceptions are IFSMgcSchedEvent, IFSMgcQueueEvent, and
IFSMgcFreeIoreq. These allow creation of a special kind of IFSMgr event that is
accompanied with an initialized ifsreq structure. Considerable detaU is provided
for these functions, since the DDK documentation is incomplete.

IFSMgr _SchedEvent and IFSMgr JJueueEvent

The prototypes for these functions are given by:

void IFSMgr_SchedEvent(pevent pev, unsigned long time)
void IFSMgr_QueueEvent(pevent pev)

The only difference between these functions is that IFSMgcSchedEvent specifies a
timeout which must elapse before the event is scheduled. An event is described
by the following data structure:

typedef struct tagEvent
DWORD ev_reservl;
DWORDev_handle; /* handle returned by Set_Global_Time_Out,

Call_PrioritY_VM_Event, or
Call_Restricted_Event */

/* VM Handle for EVF_VMEvENT */

Event Management 261

DWORD ev_func; /* event callback function */
DWORD ev_func_data; /* data ptr for use by event callback

function */
BYTE ev_flags; /* flags which define the event type (see

below) */
BYTE ev_reserv2[3];
} event, *pevent;

The type of event which is scheduled depends on the options which are set in
the ev.Jlags member. The following flags are defined: EVF_N07NESTEDEXEC
(Ox08), EVF_TASKTIME (Ox10), EVF_ VMEVENT (Ox20), and EVF_NOTCRIT (Ox40) .
. There are several combinations which are permitted; these are shown in Table
12-6. Most of these flags restrict when the event is scheduled. The one exception
is EVF_TASKI1ME, which determines whether an ifsreq structure is initialized
and passed to the callback.

Table 12-6. Permissible Event Types/or IFSMgr_ScbedEvent

evjlags event type event restrictions boost

o (default) global, Call_Priority_ PEF _ WaiCFocSTI, Ox400000
VM_Event PEF _Always_Sched,

PEF_WaiCCrit

EVF_NOTNESTEDEXEC VM (passed in EBX) PEF _ Wait]ocSTI, o
EVF _ VMEVENT: Call_Restricted_Event PEF _Always_Sched,

PEF.;.. WaiCNocCrit,
PEF _ WaiCNoCNested

EVF _NOTNESTEDEXEC global, Call_Restricted_ PEF _ WaiCFocSTI, o
Event PEF _Always_Sched,

PEF _ WaicNocCrit,
PEF _ WaiCNoCNested

EVF _NOTCRIT global, Call]rioirty_ PEF _ WaiCFocSTI, o
VM_Event PEF _Always_Sched,

PEF _ WaiCNoCCrit

EVF _ VMEVENT VM (passed in PEF _ WaiCFocSTI, OxlOOO
VMHand) Call_Priority_ PEF _Always_Sched
VM_Event

Note that the callback routine is not the event procedure. A single event proce
dure is used for all of the event types. The function evjunc is called from the
common event procedure. The callback function has the follOWing prototype:

void EventCallback(pevent pev, pioreq pir)

TheevJunc_data member may be used to pass a pointer to a data structure or a
doubleword data item to the callback. If the event which scheduled the callback
is not EVF_TASKTIME, then pir will be NULL. According to the DDK documenta
tion, EVF_TASKTIME can be used in conjunction with EVF_NOTCRIT and EVF_

N07NESTEDEXEC

262 Chapter 12: A Survey of IFSMgr Services

This _service may also be used to create initialized ifsreq blocks for calling into
an FSD or IFSMgr. The ifsreq blocks created in this way set the ir...PeV member to
the address of the event structure associated with it; icuser, ir_error, ifs
VMHandle, and ifs_PVare the only other members which are initialized. Although
the documentation refers to the allocated structure as ioreq, a full ifsreq struc
ture is actually allocated (including space for the client register structure). Once
the callback procedure has completed its event processing, it must return the
ifsreq block to IFSMgr using the service IFSMgcFreeIoreq.

IFSMgr _KillEvent

This service can be used to cancel an event -which has been scheduled by either
IFSMgcSchedEvent or IFSMgr_ QueueEvent. It receives the address of the event
structure and, depending on the state of the event and type of event, it may issue
CanceC Time_Out, Cancel_Priority _ VM_Event, or CanceCRestricted_Event.

Wrapped VMM Services

Several of the services in this group are essentially thin wrappers around VMM
synchronization services. IFSMgr_Block, IFSMgr_BlockNoEvents, and, IFSMgr_
Wakeup utilize the _BlockOnID and _SignalID services from VMM. The implemen
tations are as follows:

void IFSMgr_Block(unsigned long BlockID) {
push BLOCK_ENABLE_INTSIBLOCK_SVC_INTS
push BlockID
VMMCall(_BlockOnID);
_asm cld

void IFSMgr_BlockNoEvents (-unsigned long BlockID) {
push 0
push BlockID
VMMCall(_BlockOnID);
_asm cld
}

void IFSMgr_Wakeup(unsigned long BlockID) {
push BlockID
VMMCall(_SignalID);
}

The Windows 3.11 versions of these functions use WaiCSemaphore and Signal_
Semaphore since the thread services are new to Windows 95.

Two other services are provided which allow events to run in a nested execution
block. The main difference between these is that IFSMgcYield enables interrupts
in the VM before running events. Here are the implementations of these functions:

Codepage and Unicode Conversion

void IFSMgr_Yield() {
VMMCall(Begin_Nest_Exec);
VMMCall(Enable_VM_Ints);
VMMCall(Resume_Exec);
VMMCall(End_Nest_Exec);
_asm cld

void IFSMgr_RunScheduledEvents() {
if (bPendingGlobalEvents)

VMMCall(Begin_Nest_Exec);
VMMCall(Resume_Exec);
VMMCall(End_Nest_Exec);
_asm clc

263

The global variable bPendingGlobalEvents is set by a call to Schedule_GlobaC
Events and cleared by a call to Resume_Exec. IFSMgr hooks these two functions
in order to maintain this flag.

Codepage and Unicode Conversion
Windows 95 is a mixed environment, using both BCS and Unicode character
encodings. BCS encodings (single-byte or double-byte character sets) are used
primarily by applications, although some subsystems, such as OLE, do use
Unicode. IFSMgr uses Unicode encodings for file, network, and device names.

BCS encodings are represented by codepages. Two codepages are available for
an application to use: an ANSI codepage and an OEM codepage. The OEM code
page is associated with MS-DOS applications and includes the line-drawing
characters. Win32 console applications also use the OEM codepage by default.
The ANSI codepage is used by Windows 95 applications (Win16 and Win32). The
specific codepages a Windows 95 system uses depends on the locale; for the
United States, the defaults are MS-DOS US codepage 437 for OEM, and US code
page 1252 (Latin 1) for ANSI.

While it is always possible to convert non-Unicode data to Unicode, the reverse is
not always possible. When it isn't possible to convert a Unicode character to a
character of the current codepage, a default character is used (the underscore
character, "_" (Ox5D).

When IFSMgr initializes, it loads conversion tables that map between its local
codepages (OEM and ANSI) and the corresponding subset of Unicode. Addresses
of these tables are returned by IFSMgcGetConversionTablePtrs.

Each of the conversion services shown in Table 12-7 that contain BCS requires an
argument specifying one of the manifest constants BCS_ OEM or BCS_ WANSI to

264 Chapter 12;' A Survey of IFSMgr Services

select a codepage for the conversion. The services BCSToBCS and BCSToBCS
Upper require two such arguments, since· these functions convert a string from
OEM to ANSI codepage or vice versa (the "Upper" version also uppercases the
destination string). The services UniToBCS and BCSToUni convert from Unicode
to BCS or vice versa. UniToBCSPath takes a ParsedPath structure representing a
canonicalized Unicode pathname and converts it to BCS. UniChar'foOEM converts

. a Unicode character to a character of the OEM codepage. UniToUpper converts a
Unicode string to upper case.

Table 12-7. IFSMgr Codepage and Unicode Conversion Services

Ord Service Name 16 22 22+ Segment Ref

291 IFSMgrI6_Service_29 (get translation table) x locked

301 IFSMgr16_Service_30 (translate string) x locked

64 UniToBCS x x pageable 12

65 UniToBCSPath x x pageable 12

66 BCSToUni x x pageable 12

67 UniToUpper x x pageable 12

68 UniCharToOEM x x pageable 12

81 IFSMgc GetConversionTablePtrs x x pageable 12

112 BcsToBcs x x pageable 12

116 BcsToBcsUpper x x pageable 12

1 Services 29 and 30 are specific to Windows 3.11.

Filename Manipulation
There are three fundamental filename types which IFSMgr uses: Unicode FCB
Name, Unicode 8,3 Name, and Unicode Long Name. The FCB is an ancient MS
DOS structure known as the file control block which contains a drive identifier, .
filename, extension, file size, record size, various file pointers, and date and time
stamps. The filename is limited to 8 characters and padded with spaces; similarly,
the extension is limited to 3 characters and also padded with .spaces. The Unicode

. version of this name format is the same except that each character occupies 16
bits. So instead of being an ll-byte name it becomes a 22-byte name.

A Unicode 8.3 Name is also limited to an 8-character filename and 3-character
extension. However, the name and extension are separated by a dot character
and the name and extension are not padded with spaces. If the filename does not
have an extension, then there is no trailing dot. This filename type is also referred
to as "short."

Filename Matching 265

A Unicode Long Name is just a Unicode string. The dot character assumes no
special significance and is treated like any other character. A Unicode 8.3 Name is
a special case of a Unicode Long Name.

The services which IFSMgr supplies for manipulating these types of names are
shown in Table 12-8.

Table 12-8. IFSMgr Filename Manipulation Services

Ord Service Name 16 22 22+ Segment Ref

69 Create Basis x x pageable 12

71 AppendBasisTail x x pageable 12

72 FcbToShort x x pageable 12

73 ShortToFcb x x pageable 12

110 ShortToLossyFcb x x pageable 12

120 IFSMgcService_120 x pageable

IFSMgr provides several services for converting one name type to another. Create
Basis takes a Unicode Long Name and converts it into a Unicode FCB Name (the
"basis") according to a set of truncation and translation rules. FCBToShort
converts a Unicode FCB Name to a Unicode 8.3 Name, whereas ShortToFCB does
just the opposite. The service ShortToLossyFCB also translates a Unicode 8.3
Name to a Unicode FCB Name but uses only Unicode characters which are also
available in the OEM codepage. The AppendBasisTail service adds a "numeric tail"
to the 8 character filename portion of a Unicode FCB Name created by Create
Basis. This function assures that after appending the numeric tail, the filename will
not exceed 8 bytes if it is converted to BCS. This service is used to create short
name aliases for long filenames. One thing that the short to FCB conversion
services fail to do.is convert "*,, into a sequence of "?" characters. You can detect
the presence of this wildcard character by examining the parsing flags; it will be
indicated with the FlLE_FIAG_HAS_STAR bit. This becomes an issue with the
meta-matching services when short name matching semantics are being used. In
this matching mode, only the "?" character is treated as a wildcard ("*" is a literal
character).

Filename Matching
Table 12-9 lists the filename matching services which IFSMgr provides.

When an FSD needs to search media for a matching filename or a set of filenames
that match a wildcard string, IFSMgcMetaMatch is the service to use. This service
takes a pattern string,a filename to test, and flags which control the matching
semantics. If the pattern string and the filename to be tested are in Unicode FCB

266 Chapter 12: A Survey of IFSMgr Services

format, then DOS matching semantics are specified. If the pattern string and file
name are Unicode Long or Unicode 8.3, then NT matching semantics are
specified. When matching a Unicode Long Name pattern against Unicode 8.3
Names, it may be necessary to append a trailing dot to the short name to get DOS
compatible match behavior.

Table 12-9. IFSMgr Filename Matching Services

Ord Service Name 16 22 22+ Segment Ref

61 IFS~gr_~eta11atch x x pageable 12

62 IFS~gcTrans~atch x x pageable 12

70 ~atchBasisName x x pageable 12

MatchBasisName is a specialized match service which serves as an aid in gener
ating unique numeric tails for long filename aliases. This service takes two
Unicode FCB Names. One is generated by CreateBasis from a Unicode Long
Name, and the other comes from a directory entry on the media and may contain
a numeric tail as part of its 8-character filename. The return value from MatchBasis
Name will fall into one of three categories: no match (0), match on directory entry
without numeric tail (-1), or match on directory entry with a numeric tail (value
of numeric tail). After testing the entries ina directory for matches with a basis
name, a list of numeric values already in use will be obtained. A new unique alias
can be generated by calling AppendBasisTail with a value which isn't in use.

IFSMgcTransMatch translates a DOS search structure (srch_entry) into a Win32
find structure CWIN32_FIND_DATA). On entry, the ASCIIZ 8.3 filename returned
by the FSD search is in the se_name member of srch_entry. This name is
converted to Unicode by BCSToUni and deposited in the cFileName member of
_WIN32_FIND_DATA If the 8.3 matching semantics bit in the ifs_nflags member of
the ifsreq structure is set, then both cFileName and the Unicode search pattern
strings are converted to Unicode FCB Names. They are compared by IFSMgC
MetaMatch using short name semantics (UFLG_DOS). If the above mentioned ifs
nflags bit is not set, then Unicode pattern string is compared with cFileName
using longname matching semantics (UFLG_NT). If IFSMgcMetaMatch reports a
match, file attributes, date/time, and file size are translated and copied from srch_

entry to _WIN32_FIND_DATA.

Path ParSing
IFSMgr's path parsing services are listed in Table 12-10. The primary path parsing
service is IFSMgcParsePath. IFSMgcFSDParsePath is a wrapper around IFSMgC

Path Parsing 267

ParsePath and is intended to be used by FSDs. These services take an ifsreq
structure as their only input.

Table 12-10. IFSMgr Path Parsing Services

Ord Service Name 16 22 22+ Segment Ref

74 IFSMgcParsePath x x pageable 7, 8, 12

94 IFSMgr]SDParsePath x x pageable 12

115 IFSMgcParseOneElement x x pageable 12

The ir_data member of ifsreq holds the input path string which is to be parsed.
This string can be encoded as either BCS or Unicode. The ifsJiflags member
contains two bits which indicate the string type. If bit 0 is set, it contains charac
ters which are in the current OEM codepage, whereas if it is clear, characters
come from the current ANSI codepage. If bit 1 is clear, the string uses BCS
encoding, but if it is set, Unicode is used.

The parsing routines require some buffers for working space and to return the
ParsedPath data structure. If the ir_ppath member of ifsreq is initialized to
Oxfffffbbb, then IFSMgr will assign the caller a buffer from its pool of parse
buffers. These buffers are reclaimed by IFSMgr when it performs cleanup after a
command is dispatched. You shouldn't use this facility if you are performing your
own cleanup since the internal functions which are needed are not available to
FSDs. The alternative is to pass in a pointer to your own buffer. You do this by
creating a 1820-byte allocation and assigning its address to both ir-ppath and ifs
pbuffer.

The main result of a parsing operation is a canonicalized path stored in a Parsed
Path structure at ir-ppath. For a review of the ParsedPath data structure see
Chapter 6. Other members which will be filled in include ir_uFName (case
preserved base filename in Unicode), ir_upath (unparsed pathname in Unicode),
and ifs_dro (the local volume referenced in the pathname or Oxff if the path is
remote).

The return value of IFSMgcParsePath also contains information about the path;
the format of the doubleword which is returned is described by Table 12-11. The
DDK documentation only gives descriptions of the parsing flag values; it does not
mention the value returned in the low byte. This value classifies the path type.

Table 12-11. IFSMgr_ParsePath Return Value

Parsing Flag/Path Name Type

Parsing flags:

FILE_FLAG_ WILDCARDS

FILE_FLAG_HAS_STAR

High Byte

80h

40h

Mid Word Low Byte

x x

x x

268 Chapter 12: A Survey of IFSMgr Services

Table 12-11. IFSMgr_ParsePath Return Value (continued)

Parsing Flag/Path Name Type High Byte Mid Word Low Byte

FILE]LAG_LONG] ATH 20h x x

FILE]LAG_KEEP _CASE lOh x x

FILE]LAG_HAS_DOT 08h x x

FILE_FLAG_IS_LFN 04h x x

Path name types:

Standard path x x 0

x x 1

UNC Path x x 2

Invalid Pathname1 x x 3
Path is Hooked x x 4

Network Printer1 x x 5
Invalid Resource1 x x 6
Character FSD Device Name x x 7

DOS Device Name Ix Ix 8

1 Thanks to Geoff Chappell for supplying these entries.

IFSMgcParsePath also performs some substitutions for path componenets. It will
replace subst drives with their alias drives and directories. It will also detect UNC
paths which are in the loop back list and replace them with their local drive and
directory. A path check routine may also be installed and called by IFSMgcParse
Path using the service IFSMgcSetPathHook; see Chapter 7 for details.

IFSMgr calls IFSMgcParsePath to prepare an ifsreq packet before passing it to
an FSD. Chapter 8 describes how this function is indirectly responsible for
mounting drives and devices and establishing connections to network resources.

IFSMgcParseOneElement takes the PathElement member of a ParsedPath struc
ture as argument. It simply returns the parsing flags for the single PathElement.
These are the same flag values returned by IFSMgcParsePath, but in that case
they refer to the entire path.

File Sharing
Table 12-12 lists IFSMgr's file sharing services.

Table 12-12. IFSMgr File Sharing Services

Ord

82

83

Service Name

IFSMgc CheckAccessConflict

IFSMgCLockFile

16 22 22+

x x

x x

Segment

locked

locked

Ref

8

12

File Sharing 269

Table 12-12. IFSMgr File Sharing Services (continued)

Ord Service Name 16 22 22+ Segment Ref

84 IFSMgcUnlockFile x x locked 12

85 IFSMgcRemoveLocks x x locked 12

86 IFSMgc CheckLocks x x locked 12

87 IFSMgc CountLocks x x locked 12

88 IFSMgr_ReassignLockFilelnst x x locked 12

89 IFSMgC UnassignLockList x x locked 12

These services fall into two categories. The first group is used by an FSD to main
tain a lock list for a file handle. IFSMgr is the actual keeper of the active lock list
for a file. To add a lock to a file, IFSMgcLockFile is called like this:

IFSMgr_LockFile(&pFSDLockList, pir->ir-pos, pir->ir_locklen,
pir->ir-pid, pir->ir_fh, pir->ir_options)

This call is shown as it might be made from an FSD's FS_LockFilefunction, which
receives a pointer to the ioreq structure in pir. As you can see, in addition to the
lock's starting position and length, the process, file open instance, and lock
options are recorded as well. The variable pFSDLockList holds the return value,
the head of the lock list for this file. Typically, this would be stored as part of a
data structure that is associated with the open file instance. IFSMgCUnlockFile
removes a single lock; it must be called with the same parameters that were used
in the IFSMgcLockFile call. There are occasions when all locks must be removed
from a single file open instance or all file open instances, such as closing a file or
deleting a file. To handle this situation, use IFSMgcRemoveLocks. Before
touching a locked region of a file, an FSD should call IFSMgcCheckLocks to see
if a read or write operation would violate any active locks. Finally, IFSMgCCount
Locks gives an FSD a means of counting the number of active locks on an open
file instance.

The services IFSMgcUnassignLockList and IFSMgcReassignLockList are used for
saving and restoring locks for files which are temporarily closed during a level 3
volume lock. A level 3 lock prevents all processes except the lock owner from
reading or writing to the disk. In preparation for entering this mode, the files on
the volume are closed with a special ir_options flag CFlIE_CLOSE_FOR_LEVEL3_

LOCIO. On a normal close, the FSD would call IFSMgcRemoveLocks, but when it
receives this flag it should save the lock list for each file by calling IFSMgcUnas
signLockList. Later, when the level 3 volume lock is relinquished, a specialir_
options flag C OPEN_FLAGS_REOPEN) is specified for each file as it is reopened. As
part of opening the file, the FSD needs to restore any locks that previously
existed; IFSMgr_ReassignLockList retrieves the necessary information.

See Chapter 8 for details on using IFSMgcCheckAccessConflict.

270 Chapter 12: A Survey of IFSMgr Services

Plug-and-Play
Table 12-13 lists lFSMgr's plug-and-play services.

Table 12-13. IFSMgr Plug-and-Play Seroices

Ord Service Name 16 22 22+ Segment Ref

76 _VolFlush x x pageable 12

77 NotifyVolumeArrival x x pageable 12

78 NotifyVolumeRemoval x x pageable 12

79 QueryVolumeRemoval x x pageable 12

97 IFSMgr]NPEvent x x pageable 8

Three of these functions are called by lOS (I/O Supervisor) to query or report a
change in state of a plug-and-play drive. NotifyVolumeArrival reports the appear
ance of a new drive to lFSMgr, NotifyVolumeRemoval reports the removal of a
drive, and QueryVolumeRemoval checks the status of a drive prior to removing it.
_ VolFlush is also included under plug-and-play services, since it is usually neces
sary to flush dirty buffers to a volume before removing it from the system. This
service takes a volume number and an optional flag which forces any cached data
to be discarded. This service ultimately results in a FS_FlushVolume call to the
volume's FSD.

IFSMgcPNPEvent is a frontend to the Configuration Manager service CONFIGMG_
BroadcasCDevice_Change_Message. IFSMgcPNPEvent constructs and broadcasts
several types of messages which report the arrival and removal of network
resources, plug-and-play drives, and network transports. Drivers that register with
the Configuration Manager through CONFlGMG_RegistecDevice_Driver supply a
callback entry point that receives these PNP broadcasts. These broadcasts are also
sent to applications via the WM_DEVICECHANGE message.'

Win32 Support
Table 12-14 lists IFSMgr's Win32 support services.

The Win32 Support services all carry the warning: "This service is intended solely
for the purpose of the Win32 subsystem. It should not be used by any other VxD
in the system." OK, you've been warned.

* For an excellent discussion of plug-and-play and the configuration manager, see Chapters 11 and 12 of
Systems Programmingfor Windows 95 by Walter Oney. His book also includes a useful spy utility which
monitors· WM_DEVICECHANGE messages.

Ring-O File I/O 271

Table 12-14. IFSMgr Win32 Support Services

Ord Service Name 16 22 22+ Segment Ref

49 IFSMgc Win32DupHandle x x pageable 10

51 IFSMgr_ Win32_ GeCRingO_Handle x x pageable 6

99 IFSMgc Win32MapExtendedHandleToSFT x x pageable 12

101 IFSMgC Win32MapSFTToExtendedHandle x x pageable 12

107 IFSMgr_ Win32GetVMCurdir x x pageable 12

We already encountered IFSMgr_ Win32DupHandle when we examined the
creation of memory-mapped files in Chapter 10, Virtual Memory, the Paging File,
and Pagers. This function is called in response to the Win32 API CreateFileMap
ping and the duplicated handle is used to refer to the memory-mapping. This
service is also used to create "normal" handle duplicates via the Win32 API,
DuplicateHandle.

IFSMgC Win32_GeCRingO_Handle was discussed in Chapter 6 when we looked at
how IFSMgr tracks open files. This function takes an extended file handle (or
system file number, 200h or greater) and converts it into the address of an fhandle
structure. The latter, of course, is the same as a ring-O file handle as used by
IFSMgr_RingO_FileIO.

IFSMgr_ Win32MapSFTToExtendedHandle and its counterpart, IFSMgr_ Win32Map
ExtendedHandleToSFT, are used to map extended file handles to DOS handles,
and vice versa. These services must be called in the context of the DOS VM.

IFSMgr_ Win32GetVMCurdir returns the current directory for the specified drive in
the context of the current VM. The current directory is stored for a drive as "per
VM" data in the pVJurdir[} member of the VM's pervrn structure (see Appendix
C, IFSMgr Data Structures).

Ring-O File I/O
The service IFSMgr_RingO_FileIO (see Table 12-15) has become very popular
among VxD writers. Finally, there is an easy way to access the file system from
ring-O. This service supplies a subset of the Int 21h interface, including some
commonly used functions. The mechanism IFSMgr uses to dispatch ring-O file
system requests was described in Chapter 6.

Table 12-15. IFSMgr ring-O File I/O Services

Ord Service Name Segment Ref

50 IFSMgcRingO_FileIO locked

272 Chapter 12: A Survey of IFSMgr Services

IFSMgCRingO_FileIO is essentially a ring-O interrupt 21h interface. You load the
EAX, EBX, ECX, EDX, and ESI registers with parameters, invoke the function, and
get the results in the EAX and ECX registers and in buffers referred to by the
input registers. As in the Int 21h interface, the AH portion of EAX input register
holds the function number. Only 15 major functions are supported, some of
which have subfunctions; these are listed in Table 12-16. See the DDK documenta
tion for details on register usage for each function.

Table 12-16. IFSMgr_RingO_FileIO Functions

Function Name Value Preamble Dispatch Segment

RO_OPENCREATFILE D500h RO_MapPath dRO_OpenCreate locked

RO_OPENCREATEFILE_IN_ D501h RO_MapPath dRO_OpenCreate locked
CONTEXT

RO_READFILE D600h RO_Default dRO_ReadWrite locked

RO_ WRITEFILE D601h RO_Default dRO_ReadWrite locked

RO_READFILE_IN_CONTEXT D602h RO_Default dRO_ReadWrite locked

RO_ WRITEFILE_IN_CONTEXT D603h RO_Default dRO_ReadWrite locked

RO_ CLOSEFILE D700h RO_Default dRO_Close locked

RO_GETFILESIZE D800h RO_Default dROJileSize locked

ROJINDFIRSTFILE 4EOOh RO_MapPath dFindFile pageable

ROJINDNEXTFILE 4FOOh None dFindFile pageable

ROJINDCLOSEFILE DCOOh RO_Default dFindClose pageable

RO_FILEATTRIBUTES I 4300h RO_MapPath dAttribs pageable
GET_ATTRIBUTES

RO_FILEATTRIBUTES I 4301h RO_MapPath dAttribs pageabJe
SET_ATTRIBUTES

RO_RENAMEFILE 5600h RO_MapPath dRename pageabJe

RO_DELETEFILE 4100h RO_MapPath dDelete pageable

RO_LOCKFILE 5COOh RO_Default dLock pageable

RO_GETDISKFREESPACE 3600h RO_DriveChkl dDriveData pageable

RO_READABSOLUTEDISK DDOOh RO_DriveChk2 dAbsReadWrite pageable

RO_ WRITEABSOLUTEDISK DEOOh RO_DriveChk2 dAbsReadWrite pageable

RingO Ioctl DFxxh RO_Default dRO_Ioctl locked

As with the protected-mode and virtual-86 mode Int 21h handler, a preamble is
called on each ring-O Int 21h function. If the preamble returns with carry set, the
function is not dispatched. Note that the preamble functions for the ring-O inter
face can not be modified using IFSMgcSetReqHook. For many of the functions,
the RO_Default preamble is used, which simply clears the carry flag and returns,
allowing the function to be dispatched. Functions which receive a pathname as
an argument call RO_MapPath, which in tum calls an Int 21h preamble which uses

Miscellaneous 273

Map_Flat to convert DS:DX into linear addresses and possibly run the path
through IFSMgcParsePath. When this preamble is called from the ring-O interface,

however, it does nothing. The only preambles which actually test the input param
eters are RO_DriveChkl and RO_DriveChk2, and they only validate the zero-based
drive number. So you need to heed the DDK warning: "Users of this service
should be very careful to check that they are passing in valid parameters."

Table 12-16 also enumerates the dispatch routines which are invoked for each
ring-O function. For most of the functions, a common dispatch routine is shared
by the ring-O interface and the pM!v86 mode Int 21h handler. The dispatch
routines which are unique to the ring-O interface have names which begih with

dRO. These routines reside in locked code.

Miscellaneous
Table 12-17 lists IFSMgr's services which don't fall into one of the other categories.

Table 12-17. IFSMgr Miscellaneous Seroices

Ord Service Name 16 22 22+ Segment Ref

0 IFSMgr_ Gee Version x x x locked 12
4 IFSMgcAttach u u u locked

5 IFSMgcDetach u u u locked

11 IFSMgc CompleteAsync x x x pageable

3840 IFSMgcSetErrString x x x pageable

3941 IFSMgr_ GetErrString x x x pageable

4547 IFSMgc ChangeDir x x x pageable

47 IFSMgC CDROM_Attach x x pageable

48 IFSMgc CDROM_Detach x x pageable

5258 IFSMgc GeeDrive_Info x u u locked

53 IFSMgcRingOGetDriveInfo x x locked

63 IFSMgc CallProvider u u locked

75 Query _PhysLock x x locked

90 IFSMgcMountChildVo!ume x x pageable

91 IFSMgc UnmountChildVolume x x pageable

92 IFSMgCSwapDrives x x pageable

95 IFSMgr]SDAttachSIT u u pageable

102 IFSMgcFSDGetCurrentDrive x x pageable

103 IFSMgcInstallFileSystemApiHook x x locked 7
104 IFSMgr_RemoveFileSystemApiHook' x x locked 7

274 Chapter 12: A Survey of IFSMgr Services

Table 12-1 7. IFSMgr Miscellaneous Services (continued)

Ord Service Name 16 22 22+ Segment Ref

109 _GetMappedErr x x locked

111 IFSMgC GetLockState x x locked

Debugging
Table 12-18 lists IFSMgr's debugging services.

Table 12-18. IFSMgr Debugging Services

Ord Service Name· 16 22 22+ Segment Ref

28 IFSMgr_PopUp u u u pageable

29 IFSMgcprintf d d locked

30 IFSMgcAssertFailed d d locked

31 IFSMgCLogEntry d d d locked

32 IFSMgr_DebugMenu d d d locked

33 IFSMgcDebugVars d d d locked

34 IFSMgcGetDebugString d d d locked

35 IFSMgcGetDebugHexNum d d d locked

100 IFSMgcDbgSetFileHandleLimit d d locked

VREDIR:
The Microsoft

Networks Client
The client side of Microsoft Networks file and printer sharing services is brought
to you by VREDIR, the virtual redirector. It is an example of the network redi
rector type of FSD. Microsoft Networks is based upon the Server Message Block
(SMB) file sharing protocol. This protocol was introduced with the original IBM
PC Network. Today it is the protocol that is used to network the PC world,
including MS-DOS, Windows for Workgroups, Windows NT, and OS/2 (not to
mention Windows 95). In August 1996, Microsoft launched an initiative to move
this protocol to the Internet under the name Common Internet File System, or
CIFS.

To aid our exploration of VREDIR, two new monitors for MultiMon are intro
duced. The first is a NetBIOS monitor that displays all calls through VNETBIOS;
the second is a monitor that displays the types of 5MB packets passing through
NetBIOS. While they aren't a substitute for a LAN protocol analyzer or "packet
sniffer," they have the advantage of integrating well with our IFSMgr Filehook
monitor so we can relate file system requests to the resultant network activity.

VREDIR is just one stratum in a sequence of protocols. Let's begin by looking at
VREDIR's place amongst the network components.

VREDIR and Other Network
Components
Figure 13-1 shows IFSMgr at the top of a protocol stack. IFSMgr passes ifsreq
packets to VREDIR for any file system requests that are resolved to a remote
Microsoft Networks server. VREDIR, in tum, generates one or more NetBIOS calls
which send requests to a remote computer using the Server Message Block (SMB)
file sharing protocol. The NetBIOS request may be sent using one of the three

275

276 Chapter 13: VREDIR: The Microsoft Networks Client

transport protocols: NetBEUI, TCP/IP, or IPX!SPX (or any transport that supports
NetBIOS). The last two require shims to convert the NetBIOS request into a form
amenable to TCP /IP or IPX!SPX. These protocols frame the 5MB packet or trans
ferred data with appropriate headers and trailers before passing it to the NDIS
driver. Incoming packets wend their way up to VNETBIOS which notifies clients
of completed requests and the receipt of data. Since VREDIR is the Microsoft
Networks client, it does not accept requests from other systems; VSERVER fulfills
that role.

Figure 13-1. VREDIR's protocol stack

The two interfaces in Figure 13-1 which we are most interested in are the IFSMgr/
VREDIR and VREDIR!VNETBIOS boundaries. IFSMgr and VREDIR use the stan
dard FSD linkage which we explored in Chapter 8, Anatomy of a File System
Driver. For VREDIR to establish a connection to a remote "share," there must be a
server on a remote computer which is sharing it. Although peer-to-peer Windows
95 networks would rely on VSERVER to provide these shares, many other 5MB
server possibilities exist, including Windows for Workgroups, LAN Manager,
Windows NT, OS/2, and UNIXILinux workstations running SAMBA. To represent
a connection, IFSMgr creates a shell resource on the client computer. For
instance, suppose a single server exposes two different directories as shares with
UNC names \ \SERVER\DESKTOP (local directory: c: \windows\Desktop) and
\ \SERVER\PGMS (local directory: c: \Program Files). If a file is opened in each
directory from a remote computer using full UNC paths, two shell resources will
be created, one for each shared resource connection. On the other hand, if we
were to open two files in the remote directory \ \SERVER\DESKTOP only a single
shell resource would be required. In either case, two file handles are needed.

VREDIR Interfaces 277

This mapping of connections represented by \ \server\share names to shell
resources distinguishes network FSDs from local FSDs which map shell resources
to logical volumes.

Our examination of FSDs has emphasized the IFSMgr-to-FSD interface, since this
is a consistent and common interface for all types of FSDs. It is the lower inter
face of an FSD that is unique to each driver; for example with VFAT, the interface
is to lOS; with MONOCFSD the interface is to a monochrome display adapter;
with FSINFILE the interface is to a ring-O file. In the case of VREDIR, the lower
interface is with NetBIOS. NetBIOS is sometimes confused with NetBEUI.
NetBIOS is a programming interface whereas NetBEUI is a transport protocol.

VREDIR Interfaces
The upper side of VREDIR communicates with IFSMgr via the function table inter
face. Network FSDs populate their function tables with somewhat different
routines than a local FSD. Since shared resources may be of several different
types, open operations on these resources may return addresses to one of several
handle-based function tables. The lower side of VREDIR needs to communicate
with the local area network. There are two levels at which this is done. The first is
concerned with the mechanics of sending and receiving packets to specific
servers on the net-this is taken care of by the NetBIOS interface, which we
examine here. The second level concerns the content of these packets, i.e., format
ting the packets according to the protocol expected by the server. This is taken
care of by the 5MB file sharing protocol which we'll examine in the next section.

The FSD Interface

As we saw in Chapter 8, a shell resource is matched with a volume-based func
tion table in the FSD which owns it. In the case of a network FSD, the volume
based table of functions might be thought of as the UNC path-based table of func
tions. Each UNC path corresponds to a specific connection. VREDIR uses a single
volume-based function table which contains the 15 entries shown below:

FS_DeleteFile FS_Dir FS_FileAttributes FS_Search FS_ GetDiskInfo

FS_OpenFile FS_Rename FS_Ioct116Drive FS_Querylnfo FS_Disconnect

FS_NamedPipe- FSylush FS_GetDiskParms FS_FindOpen FS_DASDIO
UNCRequest

The functions which are listed in bold characters are implemented by VREDIR.
Note that FS_Ioctl16Drive, FS_GetDiskParms, and FS_DASDIO are not imple
mented in a network FSD but FS_NamedPipeUNCPipeRequest is. This is in

278 Chapter 13: VREDIR: The Microsoft Networks Client

contrast to a local FSD. FS_NamedPipeUNCRequest is added to provide support
for named pipes.

VREDIR is more complex when it comes to supplying a handle-based function
table via FS_OpenFile. Shell resources for a network FSD can be of several types:
RESTYPE_DISK for a network drive-mapping, RESTYPE_SPOOL for a remote
spooled printer, RESTYPE_ CHARDEV for a remote character device, RESTYPEjPC

for a named pipe to a remote system, and RESTYPE_ WIW for a catch-all group.
(The manifest constants RESTYPE_DISK, etc., are defined in the DDK header file
ifs.h and are passed into several IFSMgr services as well as FS_ConnectNet
Resource.)

Table 13-1 shows the handle-based functions (in bold) for each resource type.
The FS_ReadFile and FS_ WriteFile functions at the top use different routines
depending on the open access mode. A "deny" entry means that the function
both sets ir_error to ERROR_ACCESS_DENIED and returns that error code. A
"zero" entry means that the function sets ir_length to zero and it returns success.

Table 13-1. VREDIR's Handle-Based Function Table

Function WILD DISK SPOOL CHARDEV IPC

FS_ReadFile

ReadOnly deny read! zero deny read2

WriteOnly deny deny deny deny deny

Read/Write deny read! zero deny read2

Execute deny read! zero deny deny

FS_ WriteFile

ReadOnly deny deny deny deny deny

WriteOnly deny write! write! deny write2

Read/Write deny write! write! deny write2

Execute deny deny deny deny deny

FS_SeekFile deny seek! seek! deny zero

FS _ CloseFile close! close! close! close! close!

FS_CommitFile deny commit! commit! deny zero

FS]ileLocks deny lock! lock! deny deny

FS]ileDateTime deny times! times! deny deny

FS_NamedPipeRequest deny deny deny deny pipe!

FS_NamedPipeHandlelnfo deny deny deny deny nethdl!

FS_EnumerateHandle deny enum! enum! deny deny

We can see from the table that all resource types use a common FS_CloseFile func
tion, close1. For RESTYPE_ WILD and RESTYPE_CHARDEV resources, FS_CloseFile

VREDIR Inteifaces 279

is the only function implemented. RESTYPE_DISK and RESTYPE_SPOOL resources
use the same set of functions, except that the spooler doesn't return any data
when a read is attempted. RESTYPEjPC uses a separate set of read and write
routines. It is the only resource type to implement FS_NamedPipeRequest and FS_
NamedPipeHandleInfo. In VREDIR's implementation, the volume-based function
FS_NamedPipeUNCRequest and the handle-based function FS_Named-PipeRe
quest use a common routine. One additional handle-based function table exists
for the function FS_FindFirstFile. It returns FS_FindNextFile as the read function
and FS_FindClose as its FS_CloseFile function. The remaining functions are all
assigned the deny routine.

The NetBIOS Interface
The NetBIOS interface is supplied by the VxD VNETBIOS. A NetBIOS command
is issued by filling a Network Control Block (NCB) structure with command
parameters and then passing it to the NetBIOS entry point. In MS-DOS and Win16
programs, this is accomplished by pointing ES:BX at the NCB and invoking soft
ware Int SCh. Win32 programs may call the C library function Netbios with a
pointer to the NCB. The way that VxDs use NetBIOS is to load the linear address
of the NCB in EBX and call the service VNETBIOS_Submit.

The Network Control Block which is used to request NetBIOS services has the
following layout:

typedef struct _NCB
UCHAR ncb_command;
UCHAR ncb_retcode;
UCHAR ncb_lsn;
UCHAR ncb_num;
PUCHAR ncb_buffer;
WORD ncb_length;
UCHAR ncb_callname[NCBNAMSZ];
UCHAR ncb_name[NCBNAMSZ];
UCHAR ncb_rto;

/*
/*
/*
/*
/*
/*
/*
/*
/*

00 command code */
01 return code */
02 local session number */
03 number of our network name */
04 address of message buffer */
08 size of message buffer */
OA blank-padded name of remote */
1A our blank-padded netname */
2A rcv timeout/retry count */

UCHAR ncb_sto; /* 2B send timeout/sys timeout */
void (*ncb-post) (struct _NCB*);
UCHAR ncb_lana_num;
UCHAR ncb_cmd_cplt;
UCHAR ncb_reserve [10] ;
HANDLE ncb_event;

} NCB, *PNCB;

/* 2C POST routine address */
/* 30 lana (adapter) number */
/* 31 Oxff => commmand pending */
/* 32 reserved, used by BIOS */
1* 3C HANDLE to Win32 event which */
/* will be set to the signalled */
/* state when an ASYNCH command */
/* completes */

This definition comes from the Win32 SDK header file nh30.h; an equivalent
header is not provided in the DDK. Several fields in this structure are used in
every NetBIOS command; others are only needed for certain commands. The

280 Chapter 13: VREDIR: The Microsoft Networks Client

member ncb_command holds the command code. By default, a command does
not return until it completes. Most commands can be issued in asynchronous
fashion by setting the high bit in the command code. This means that the
command returns before completion and the initial return code in ncb_retcode
indicates that the command is pending. When the command does complete, the
routine specified by ncb-post is called with the address of the completing NCB.
The member ncb_lana_num originally was used to specify the network adapter
number, with the first adapter having a value of zero, the second adapter a value
of one, and so forth. The use of ncb_lana_num has since been extended to also
enumerate available protocols. For instance, if a system has two network adapters
and both NetBEUI and IPX/SPX protocols installed, the system would have four
LANA numbers. Each number would correspond to one of the combinations of
adapter and protocol. Windows 95 does not allow the user to control this
mapping except that a default protocol may be selected under the Network prop
erties from Control Panel. The protocol which is selected as the default will have
a LANA number of 0.*

NetBIOS commands are grouped into four broad categories: name support, data
gram support, session support, and utility. The manifest constants which are used
here to refer to NetBIOS commands are defined in the header file nb30.h. The
name commands add and remove names from the local name table. The first
name in this table is the local node name or MAC address and cannot be deleted.
A name is added to the table with the command NCBADDNAME but only if it is
verified to be unique on the LAN. Each name is subsequently referred to by its
index in the local name table. A name is removed from the local name table with
NCBDELNAME. A non-unique group name may also be added to the local name
table using the command NCBADDGRNAME. In order for this command to
succeed, the group name must not have already been claimed as a unique name
on the LAN. Group names are intended to be registered by more than one
network node.

Datagrams are used for non-guaranteed connectionless message transfers. The
send (NCBDGSEND) and receive (NCBDGRECV) datagram commands are used to
send messages to a unique name or a group name on the LAN. To broadcast a
message to all stations on a LAN, the send broadcast datagram (NCBDGSENDBC)
and receive broadcast datagram (NCBDGRECVBC) commands are used.

A session establishes a connection between a server and client station. On the
server side a station will execute a NCBLISTEN command to await a client
request. A client connects to the server by issuing a NCBCALL command. If the

• For more information see How to Use LANA Numbers in a 32-bit Environment, Microsoft Knowledge
Base article Q138037. See http://www.microsoji.comlkb/articles/q138/0/37.htm.

The 5MB File Sbaring Protocol 281

connection succeeds, NetBIOS assigns it an LSN (local session number). The
client and server exchange data over the connection using the NCBSEND and
NCBRECV commands. A session is closed by issuing the NCBHANGUP command
with the corresponding LSN.

The NetBIOS utility commands include NCBRESET, which resets the NetBIOS
name and session tables and aborts any existing sessions; NCBCANCEL, which
cancels a specified NetBIOS command; NCBASTAT, which requests status of a
local or remote adapter. NCBASTAT can be used to retrieve the MAC address of
an adapter:

MultiMon's NetBIOS monitor only sees commands which are issued through
VNETBIOS_Submit. The driver name for this monitor is nbhook.vxd. We will be
using this monitor in a following section to trace VREDIR's operation.

This has been a condensed overview of NetBIOS. For more, see C Programmer's
Guide to NetBIOS, by W. David Schwaderer (Howard Sams & Co., 1988).

The 5MB File Sharing Protocol
5MB has been with us since the introduction of the IBM PC LAN. It has evolved
since then to become the native file-sharing protocol for LAN Manager, Windows
NT, OS/2, and Windows 95. UNIX and Linux platforms can also become 5MB
servers and clients by installing the SAMBA suite. SAMBA is available via FTP
from samba.anu.edu.au and comes bundled with many Linux distributions.

Message Block Format
As I mentioned earlier, 5MB stands for Server Message Block file-sharing protocol.
It provides a command structure for allOWing remote computers to access a
server's resources. The client computer issues commands to a server using a
message block and the server responds with a matching reply. Each message
block has a common header and an area which is specific to a command. Here is
the declaration of the 5MB header structure:t

typedef struct
UCHAR Protocol[4];
UCHAR Command;
union {

struct {
UCHAR ErrorClass;

II 00 Contains OxFF,'SMB'
II 04 Command code

II 05 Error class

• See Getting the MAC Address for an Ethernet Adapter, Microsoft Knowledge Base Article Ql18623. See
http://www.microsoft·comlkb/articles/q118/6/23.htm.

t From the draft document Microsoft Networks 5MB File Sharing Protocol, Document Version 6.op, Jan. 1,
1996, Microsoft Corp.

282 Chapter 13: VREDIR: The Microsoft Networks Client

UCHAR Reserved;
USHORT Error;
} DosError;

ULONG NtStatus;
} Status;

UCHAR Flags;
USHORT Flags2;
union {

USHORT Pad [6] ;

struct
USHORT PidHigh;

struct
ULONG HdrReserved;
USHORT Sid;
USHORT SequenceNurnber;
} Connectionless;

} ;

USHORT Tid;
USHORT Pid;
USHORT Uid;
USHORT Mid;
UCHAR WordCount;

II 06 Reserved for future use
II 07 Error code

II 05 NT-style 32bit error code

II 09 Flags

II OA More flags

II OC Ensure this section

II is 12 bytes

II DC High part of PID

II (NT Create And Xl

II OE Not used
II 12 Session ID
II 14 Sequence number

II IPX

II 18 Tree identifier
II 1A Caller's process id
II 1C Unauthenticated user id
II 1E multiplex id
II 20 Count of parameter words

II The remaining fields depend upon command type
USHORT ParameterWords[WordCount]; II The parameter words
USHORT ByteCount; II Count of bytes
UCHAR Buffer [ByteCount]; II The bytes
} 5MB_HEADER;

In this declaration; UCHAR is unsigned char, USHORT is unsigned short, and
ULONG is unsigned long. Note that the first 33 bytes of every message block have
a common definition. The member WordCount determines the length of the
following parameter section. The member ByteCount determines the length of the
following buffer. The interpretation of the parameter and buffer sections are
specific to each command.

The Command member specifies the operation which the message block refers
to. The same operation code is used whether it is in the message block sent by
the client or in the response message block returned by the server. The Status
member is filled by a server in a response 'message block; depending on the capa
blilties of the client, it may return a 32-bit error code in NtStatus or fill in the
ErrorClass and Error members of DosError. The Flags and Flags2 members use
bits to indicate various client capablities, e.g., strings are represented in ASCII or
Unicode. The ConnectionLess structure is needed only if the underlying trans
port is connectionless, such as UDP or IPX. The Tid, Pid, Uid, and Mid fields are
various IDs. A Tid refers to a resource on the server to which the client has
successfully connected. The client uses the Tid in subsequent requests on that
resource. A Pid is a unique identifier generated by the client to correspond to the

The 5MB File Sharing Protocol 283

calling process. A client uses the Pid value in a response message block to sort
out which process the server is responding to. A Mid would be used by a multi
threaded client to identify a thread within a process. It allows for multiplexing
multiple message blocks on the same connection. A Uid is returned in a server
response message block as an identifier representing a validated account name
and password. Uids are only returned by user level servers but not by share level
servers. A share level server simply makes a resource available on the network to
any client which knows its name; password protection is optional. The last fixed
member in the header is WordCount. It tells us the number of intervening words
between it and the member ByteCount. ByteCount tells us the number of bytes
until the end of the message block.

Commands and Dialects·
Table 13-2 lists all of the 5MB commands which are currently documented. 5MB
clients support varying levels of functionality. When they establish a connection
with a server, the first command which is exchanged is 5MB_CaM_NEGOTIATE.
In this command the client tells the server which versions or dialects of the 5MB
protocol it can understand. For instance, when VREDIR in Windows 95 sends this
message, it lists the following dialects that it can support:

PC NETWORK PROGRAM 1.0
MICROSOFT NETWORKS 3.0
DOS LM1.2X002
DOS LANMAN 2.1
Windows for Workgroups 3.1a
NT LM 0.12.

There are something like 10 different dialects of the 5MB protocol. When a client
claims compatibility with a certain dialect, it is also claiming compatibility with
that dialect's precursors. Table 13-2 indicates the major dialect in which a
command was introduced.

Table 13-2. 5MB File Sharing Protocol Commands

Command Name

5MB_COM_CREATE_DIRECTORY'

5MB_ COM_DELETE_DIRECTORY

5MB_COM_OPEN

5MB_COM_CREATE

5MB_ COM_CLOSE

5MB_COMJLUSH

5MB_ COM_DELETE

Code Dialect

OxOO PCNET PROGRAM 1.0

OxO} PCNET PROGRAM 1.0

Ox02 PCNET PROGRAM 1.0

Ox03 PCNET PROGRAM 1.0

Ox04 PCNET PROGRAM 1.0

Ox05 PCNET PROGRAM 1.0

Ox06 PCNET PROGRAM 1.0

284 Chapter 13: VREDIR: The Microsoft Networks Client

Table 13-2. 5MB File Sharing Protocol Commands (continued)

Command Name Code Dialect

5MB_COM_RENAME Ox07 PCNET PROGRAM 1.0

5MB_COM_QUERY _INFORMATION Ox08 PCNET PROGRAM 1.0

5MB_COM_SET _INFORMATION Ox09 PCNET PROGRAM 1.0

5MB_COM_READ OxOA PCNET PROGRAM 1.0

5MB_COM_ WRITE OxOB PCNET PROGRAM 1.0

5MB_COM_LOCK_BYTE_RANGE OxOC PCNET PROGRAM 1.0

5MB_COM_UNLOCK_BYTE_RANGE OxOD PCNET PROGRAM 1.0

5MB_COM_CREATE_TEMPORARY OxOE PCNET PROGRAM 1.0

5MB_COM_CREATE_NEW OxOF PCNET PROGRAM 1.0

5MB_COM_CHECK_DIRECTORY OxlO PCNET PROGRAM 1.0

5MB_COM]ROCESS_EXIT Ox 11 PCNET PROGRAM 1.0

5MB_COM_SEEK Ox12 PCNET PROGRAM 1.0

5MB_COM_LOCK_AND_READ Ox 13 LANMAN 1.0

5MB_COM_ WRITE_AND_UNLOCK Ox14 LANMAN 1.0

5MB_COM_READ_RA W OxlA LANMAN 1.0

5MB_COM_READ_MPX OxlE LANMAN 1.0

5MB_COM_READ_MPX_SECONDARY OxIC LANMAN 1.0

5MB_COM_ WRITE_RAW OxlD LANMAN 1.0

5MB_COM_ WRITE_MPX OxlE LANMAN 1.0

5MB_COM_ WRITE_COMPLETE Ox20 LANMAN 1.0

5MB_COM_SET_INFORMATION2 Ox22 LANMAN 1.0

5MB_COM_QUERY_INFORMATION2 Ox23 LANMAN 1.0

5MB_COM_LOCKING_ANDX Ox24 LANMAN 1.0

5MB_COM_TRANSACTION Ox25 LANMAN 1.0

5MB_COM_TRANSACTION_SECONDARY Ox26 LANMAN 1.0

5MB_COM_IOCTL Ox27 LANMAN 1.0

5MB_COM_IOCTL_SECONDARY Ox28 LANMAN 1.0

5MB_COM_COPY Ox29 LANMAN 1.0

5MB_COM_MOVE Ox2A LANMAN 1.0

5MB_COM_ECHO Ox2B LANMAN 1.0

5MB_COM_ WRITE_AND_CLOSE Ox2C LANMAN 1.0

5MB_COM_OPEN_ANDX Ox2D LANMAN 1.0

5MB_COM_READ_ANDX Ox2E LANMAN 1.0

5MB_COM_ WRITE_ANDX Ox2F LANMAN 1.0

5MB_COM_ CLOSE_AND _TREE_DISC Ox3l

5MB_COM_TRANSACTION2 Ox32 LM1.2X002

The 5MB File Sharing Protocol 285

Table 13-2. 5MB File Sharing Protocol Commands (continued)

Command Name Code Dialect

5MB_COM_TRANSACTION2_SECONDARY Ox33 LM1.2X002

5MB_COM]IND_CLOSE2 Ox34 LM1.2X002

5MB_COM_FIND_NOTIFY_CLOSE Ox35

5MB_COM3REE_CONNECT Ox70 PCNET PROGRAM 1.0

5MB_COM_TREE_DISCONNECT Ox71 PCNET PROGRAM 1.0

5MB_COM_NEGOTIATE Ox72 PCNET PROGRAM 1.0

5MB_COM_SESSION_SETUP _ANDX Ox73 LANMAN 1.0

5MB_COM_LOGOFF _ANDX Ox74 LM1.2X002

5MB_COM_TREE_CONNECT_ANDX Ox75 LANMAN 1.0

5MB_COM_QUERY_INFORMATION_DISK Ox80 PCNET PROGRAM 1.0

5MB_COM_SEARCH Ox81 PCNET PROGRAM 1.0

5MB_COM]IND Ox82 LANMAN 1.0

5MB_COM_FIND_UNIQUE Ox83 LANMAN 1.0

5MB_COM_NT_TRANSACT OxAO NT LM 0.12

5MB_COM_NT_TRANSACT_SECONDARY OxA1 NT LM 0.12

5MB_COM_NT_CREATE_ANDX OxA2 NT LM 0.12

5MB_CO~NT_CANCEL 0xA4 NT LM 0.12

5MB_COM_OPEN_PRINT_FILE OxCO PCNET PROGRAM 1.0

5MB_ COM_ WRITE_PRINT _FILE OxC1 PCNET PROGRAM 1.0

5MB.:.,.COM_CLOSE]RINT_FILE OxC2 PCNET PROGRAM 1.0

5MB_COM_GET]RINT_QUEUE OXC3 PCNET PROGRAM 1.0

The most basic dialect is that named PCNET PROGRAM 1.0. This is also called the
"core protocol" because it is the minimum 5MB implementation. The next signifi
cant expansion of the protocol occurred with LANMAN 1.0. The other dialects
listed in Table 13-2 are LM1.2X002 for Lan Manager 2.0 and NT LM 0.12, Lan
Manager 2.0 for Windows NT. Windows 95 supports this "highest" dialect.

The names of the commands provide some hint as to what they do. For instance,
5MB_COM_OPEN opens a file on the server, 5MB_COM_QUERY_INFORMA1l0N,
gets file attributes for a file on a server, and 5MB_COM_TREE_CONNECT estab
lishes a connection to a shared directory (or "tree") on the server. You'll notice
many commands have the suffix "ANDX". These commands support a form of
command batching in which a single message block contains more than one
command. For instance, 5MB_COM_OPEN_ANDX will open a file and possibly do
commands "X", where additional commands are defined by fields in the param
eter section of the message block.

286 Chapter 13: VREDIR: The Microsoft Networks Client

Message Flow
To get a feel for how the 5MB protocol is used, let's follow the steps taken in
response to a simple Win32 program that performs these statements:

hFile = CreateFile("\\\\WETSUIT\\DESKTOP\\Notes.doc",
GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

size = GetFileSize(hFile, NULL);
ReadFile(hFile, pBuf, size, &actual, NULL);
CloseHandle(hFile);

Table 13-3 shows the exchange of messages between client and server when this
code executes. The first six lines in the table correspond to the sirigle Win32
CreateFile call. If a connection does not already exist with the specified server
(WETSUIT) then a session is established using 5MB_COM_NEGOTIATE and SMC_
COM_SESSION_SETUP _ANDX. If these commands succeed then a connection is
made to the share named DESKTOP by the command 5MB_COM_TREE_
CONNECT_ANDX. Note that these ANDXcommands are batched together into a
single message block. Once the connection is made, the file open executes and
fmally CreateFile returns. We don't see any evidence of the GetFileSize call being
sent to the server. The next 5MB commands we see corresporid to the file read
and file close. After the file close completes the connection remains set up. If the
shared resource is not accessed for some period of time, then a 5MB_COM_TREE_
DISCONNECT command is sent to the server on the Tid which was returned by
5MB_COM_TREE_CONNECT_ANDX.

Table 13-3. Sample 5MB Client/Server Excbange

Client Sends:

5MB_ COM_SESSION_SETIJP _ANDX and
5MB_COM_TREE_CONNECT_ANDX
specify subdirectory to connect to
(\ \ WEI'SUTI\DESKTOP)

5MB_COM_OPEN_ANDX specify access
and open modes and mename relative to
"virtual root" ("\notes.doc') given by Tid

5MB_COM_READ_RAW specify the Tidand
Fid that read is on as well as ByteCount

Server (WETSUlT) Replies:

5MB_COM_NEGOTlATE--specify dialect to
use

5MB_ COM_SESSION_SETIJP _ANDX and
5MB_COM_TREE_CONNECT_ANDX
returns Tid for connected resource, and
resource type

5MB_COM_OPEN_ANDX returns Fid (me
ID), mesize, attributes, and granted access

The 5MB File Sharing Protocol 287

Table 13-3. Sample 5MB Client/Server Exchange (continued)

Client Sends: Server (WETSUIT) Replies:

Raw data returned in one or more packets

5MB_COM_CLOSE close the specified Fid
(relative to the Tid)

Timeout elapses on the shared resource
without any accesses occurring to it

5MB_COM_TREE_DISCONNECT tell server
that the resource referenced by the Tid is
no longer needed

5MB_COM_CLOSE server acknowledges
close

5MB_COM_TREE_DISCONNECT server
acknowledges disconnect

CIFS: The Common Internet File System
In August 1996, Microsoft proposed a new file sharing protocol for the Internet
called CIFS: Common Internet File System Protocol. The two most common proto
cols used on the Internet today are the Hypertext Transport Protocol (HTTP) and
the File Transfer Protocol (FTP). HTTP is a read-only protocol and FTP is for trans
ferring complete files. CIFS would provide file sharing with read-write access and
thus support collaborative work on files across the Internet. The 5MB protocol,
upon which CIFS is based, already implements a variety of locking and security
features which give clients more optimized access to server files than HTTP or
FTP. CIFS is also intended to given all applications access to files on the Internet,
not just web browsers.

The full specification for CIFS/l.O has been submitted to the Internet Engineering
Task Force (IETF) as an Internet draft document and is available via FTP fromftp://
ietf. cnri. reston. va. uS/internet-drafts! draft-heizer-cifs-v l-spec-OO. txt. More recent
revisions can be found at links from Microsoft's CIFS home page at http;//
www.microsoft.comlintdev!cifs. For an interesting counterpoint, see David Farber's
article "CIFS Considered Harmful," at http://avian.orglavianlpapers!cifs.txt.

Although the CIFS specification does not address the issue of how filenames are
mapped to servers and shares, its does give three examples of how this might be
done. Its first example is the URL, file;/lfs.megacorp.com/userslfred/stufftxt. In this
case, the server name is delimited by the leading double slashes and the next
slash, and everything after that is the relative name, i.e., Js.megacorp.com and
users!fredlstufftxt, respectively. As we saw in Chapter 2, Where Do Filenames Go?
URLs do not make up a part of the operating system's namespace (at least not at

288 Chapter 13: VREDIR: The Microsoft Networks Client

this time)---'a web browser is required to interpret them. The second example the
specification gives is an UNC name, such as \ \corpserver\pub/ic\policy.doc. Here
again, the server name is delimited by the leading double slashes and the next
slash, and everything after that is the relative name, i.e., corpserver and
public\policy.doc, respectively. In the specification's final example, a drive letter
is mapped to a server and relative name, through a lookup table. For instance, if
drive x: is mapped to the server, corpserver, and the relative name is public, then
the name x: \policy. doc is equivalent to our previous example.

Once a server name is extracted from a client URL or UNC name, it needs to be
converted to a server transport address. Again, this is not a part of the CIFS specifi
cation. Traditionally, the 5MB protocol is implemented using the NetBIOS API and
so a server name would be limited by NetBIOS naming conventions (i.e., up to 15
characters and uppercase). However, CIFS is really targeted at servers out on the
Internet and server names should be resolved using DNS (the Domain Name
System). The CIFS specification also notes that a server name may be given using
dotted decimal notation, as in 157.33.135.101. In this case, the server transport
address is simply its 32-bit IP address.

A connection is established with session service TCP port 139 of the server by
sending a session request packet. This packet contains a calling name and called
name. The calling name is used to distinguish clients using the same transport
address. The called name is the invalid NetBIOS name ·SMBSERVER padded with
spaces to 15 characters. A CIFS server should accept a session request with this
called name. Note that CIFS is using NetBIOS on top of TCP as detailed in RFC
1001/1002.*

Once the connection is established with the server, the flow of 5MB commands
would follow the same pattern as we saw in the previous section, "Message
Flow."t

Tracing VREDIR Operations
Now that you have a grasp of the FSD interface, NetBIOS, and 5MB, we can take
a look at how these are used together. We'll use the same example from the
previous section. This time we'll execute it and collect a trace with MultiMon. The

• See Karl Auerbach, Protocol Standard for a Netbios Service on a TcplUdp Transport: Concepts and Meth
ods, RFC 1001, March 1987; and Protocol Standard for a Netbios Service on a TcplUdp Transport: Detailed
Specifications, RFC 1002, March 1987.

t For a readable account of the CIFS/SMB protocol's various types of locks (opportunistic locks, exclusive
locks, batch oplocks, and level II oplocks) see the article by Paul Leach and Dan Perry, CIFS: A Common
Internet File System, in Microsoft Interactive Developer, November, 1996 (this article can be viewed online
at http://www.microsoft.comlmind).

Tracing VREDIR Operations 289

monitors that were used to collect this trace were Int21 Win32 Service (w21),

IFSMgr Filehook (fsh), NetBIOS Calls (ncb), and 5MB Packets (smb):

Monitor Function Status Device Handle Parameters

CreateFile
w21 LFN(71) Extended Open(6c)

\\WETSUIT\DESKTOP\Notes.doc
ncb Call async Lana=07 c16b7640 Callname:WETSUIT
ncb Call post(OO) c16b7640 LSN: 07*
ncb Send async Lana=07 c16b7640 LSN: 07

Buffer:c3a743e4(009a)
smb NEGOTIATE request c16b7640
ncb Send post(OO) c16b7640
ncb Send async Lana=07 c16b7640 LSN: 07

Buffer:c3a743e4(008e)
smb SESSION_SETUP_ANDX

TREE_CONNECT_ANDX request c16b7640 \\WETSUIT\DESKTOP
ncb Send post(OO) c16b7640
ncb Send async Lana=07 c16b7640 LSN: 07

Buffer:c3a743e4(004c)
smb OPEN_ANDX request c16b7640 Notes.doc
ncb Send post(OO) c16b7640
fsh FS_OpenFile (6c) VREDIR 2f2* \NOTES.DOC oe

GetFileSize
w21 Seek(42) 2f2 (1) offs=O
fsh FS_FileSeek (42) VREDIR 2f2 ofs=OH b
w21 Seek(42) 2f2 (2) offs=O
fsh FS_FileSeek (42) VREDIR 2f2 ofs=OH e
w21 Seek(42) 2f2 (0) offs=O
fsh FS_FileSeek (42) VREDIR 2f2 ofs=OH b

ReadFile
w21 Read(3f) 2f2 cnt=4800

buf=13f:d934
ncb Receive async Lana=07 c16b7640 LSN: 07

Buffer:c3ab7934 (4800)
ncb Send async Lana=07 c16b76eO LSN:07

Buffer:c3a743e4(0033)
smb READ_RAW request c16b76eO
ncb Send post(OO) c16b76eO
ncb Receive post(OO) c16b7640
fsh FS ReadFile (d6) VREDIR 2f2 cnt=4800H ofs=OH

ptr=65d934H

CloseHand1e
w21 Close(3e) 2f2
ncb Send async Lana=07 c16b7640 LSN: 07

Buffer:c3a743e4(0029)
smb CLOSE request c16b7640
fsh FS_CloseFile (3e) VREDIR 2f2 f
ncb Send post(OO) c16b7640

290 Chapter 13: VREDIR: The Microsoft Networks Client

The output has been grouped into four sections, one section for each Win32 func
tion call.

Beginning with the CreateFile call, we see that it gets passed to VWIN32 where it
becomes dispatched as a protected-mode Int 21h function 716ch. This function
will enter IFSMgr through the dispatch function which we named dOpenCreate
(see Chapter 6, Dispatching File System Requests). As dOpenCreate prepares an
ifsreq structure, it generates a canonicalized pathname by a call to IFSMgCParse
Path. As we saw in Chapter 7, Monitoring File Activity, this service will establish a
connection to a server and share using IFSMgCSetupConnection, if it is passed an
UNC path. VREDIR is called at this point through its FS_ConnectNetResource
entry point, but this doesn't show up in our trace because the call is made directly
through the table of registered FSDs (ConnectNetTable) and not through the
system ftlehooks.

The first action that we see VREDIR take is to make a NetBIOS Call to the speci
fied server, in this case WETSUIT. The line in the trace indicates that this function
call was made asynchronously to LANA 7 using an NCB at address c16b7640h.
The next line of the trace shows that this command has completed successfully
(post (0)) and a Local Session Number of 7 has been assigned to this connection
with WETSUIT.

Now that a session has been established, VREDIR does a NetBIOS Send, reusing
the same NCB at c16b7640h. This NCB contains a pointer to a buffer at c3a743e4h
which is 9ah bytes in size. This buffer contains the message block for the 5MB_
COM_NEGOTIATE command which is sent to the session partner of LSN 7
(WETSUIT). Again this is an asynchronous command, and we see it complete two
lines down where its matching post (0) is recorded. At this stage, we have noti
fied WETSUIT about the dialects of 5MB which we support The next NetBIOS
Send command transfers a message block containing a batched command
consisting of 5MB_COM_SESSION_SETUP _ANDX and 5MB_COM_TREE_
CONNECT_ANDX. The latter command creates a connection to the subdirectory
\ \ WETSUIT\DESK'l'OP and returns a Tid which is used in subsequent commands
which reference this server and share. When this command completes, we have
seen the last action taken on behalf of FS_ConnectNetResource. From this we see
that VREDIR needs to keep at least two pieces of information about this connec
tion, its LSN and its Tid. The resource handle (ir]h) which VREDIR returns to
IFSMgr retains this and other state information. IFSMgr in turn builds its own shell
resource structure (shres) to represent the connection.

The last NetBIOS Send, under the CreateFile section, transfers a message block
containing a 5MB_COM_OPEN_ANDX command. This requests that the server
WETSUIT open the ftle named Notes.ioc on the Tid for this connection. This
action is taken in response to a call to VREDIR's FS_OpenFile entry pOint. The

/PC for Network FSDs 291

trace output line for this call occurs after the NetBIOS activity, because the me
hook reports function calls after they complete. Just as the resource handle retains
VREDIR's information about a connection, VREDIR's returned me handle (ir.J'h)
retains information about this open me. This would include things such as the Fid
(me identifier) returned by the 5MB_COM_OPEN_ANDX command, its open
mode, and various me attributes. When VREDIR returns, IFSMgr builds its own
me handle structure (fhandle) and assigns it an extended handle of 2f2h.

GetFileSize is implemented as three Int 21h function 42xxh calls via VWIN32. The
Hrst seek moves the me pointer from its current position to offset o. Then a seek
is performed to the end of the me to determine its maximum byte position; then
the me pointer is restored to the beginning of the me. Although VREDIR's FS...;.File
Seek entry point is called on each of these seeks, VREDIR refers to information
stored in its me handle structure to satisfy the requests.

ReadFile becomes an Int 21h function 3th call passed to IFSMgr via VWIN32. This
call then gets passed to' the FS_ReadFile entry point of VREDIR. The first action
we see taken is to initiate an asynchronous NetBIOS Receive command for 4800h
bytes on LSN 7. While this Receive is pending, a NetBIOS' Send transfers a
message block containing a 5MB_COM_READ_RAW command to the server. We
see the read command Hnish, first, followed by the receive. The underlying
protocol handles the assembly of incoming data packets into the 4800h byte
buffer.

Finally, at the end, CloseHandle becomes an Int 21h function 3eh call passed to
IFSMgr via VWIN32. This call then gets passed to the FS_CloseFile entry point of
VREDIR. The NetBIOS Send transfers a message block containing a 5MB_COM_
CLOSE command for the Fid returned by the earlier 5MB_COM_OPEN_ANDX
command.

As noted in Table 13-3, a matching 5MB_COM_TREE_DISCONNECT will not occur
for a few minutes, so the connection remains alive. This allows other mes in this
subdirectory or its subdirectories to be opened using the same LSN and Tid.

[PC for Network FSDs
Some implementation details are unique to network me system drivers. One of
these involves handling inter-process communication OPC). With Microsoft
Networks, two IPC mechanisms are prOVided, mailslots and named Pipes., These
peer-to-peer communication services are implemented. by using commands from
the 5MB protocol.

292 Cbapter 13: VREDIR: The Microsoft Networks Client

Mailslots
The simplest type of interprocess communication (IPC) which VREDIR and
IFSMgr support is the mailslot. A mailslot user plays one of two roles. The
mailslot server creates the mailslot and only. reads from it. The manslot client
opens the manslot and only writes to it. A single process may be both a manslot
client and server. Data is transferred as datagrams and thus its arrival is not
guaranteed.

Registering a mailslot

In order for manslot services to be made available to a system, an FSD registers
with IFSMgr using IFSMgcRegisterMailSlot. Up to four FSDs may register as
manslot providers. Each registrant passes in a FS_ConnectNetResource function.
The contents of the ifsreq structure on entry to FS_ConnectNetResource carry
unique interpretations for a manslot:

irJlags
0, create manslot; 1, delete manslot; 2, write manslot

ir_options
1, Brst manslot create; > 1, subsequent create

irJJpath
canonicalized UNC mailslot name without the leading \MAILSL01\ component

ir_data
supplies address of function to be used for mailslot reads

ir_auxl
IFSMgr's manslot handle (address of manslot block)

ir-pos
TRUE, call originated in an FSD; FALSE, call originated in User API

ichfunc
pointer to handle function table

ifs-psr
pointer to IFSMgr's manslot shell resource

ir_auxl
on return, contains manslot handle created by IFSMgr

ir_error
on return, contains error code (0 if successful)

In Chapter 8 we examined the mounting and connecting functions used by local,
network, and character FSDs. In these cases, the FS_MountVolume or FS_Connect
NetResource functions always returned a volume-based function table. We don't

/PC for Network FSDs 293

see that with mailslots; furthermore, the shell resource structure for mailslots sets
srJunc to NULL. Mailslots, which are created using Win32 and MS-DOS APIs are
represented by an SFT-backed DOS file handle. The fhandle structure associated
with this file handle holds the handle-based function table in the member fb'-hf
The functions which a mailslot implements a(e FS_ReadFile, FS_ WriteFile, FS_
CloseFile, FS_FileDateTime, and FS_NetHandleInfo.

Server-side

TheFS_ConnectNetResource function is not called until a mailslot is created.
There are three ways to do this: use the Win32 API CreateMailslot, use the MS
DOS function 5f4dh (DosMakeMailslot), or use the IFSMgr service IFSMgr_Make
Mailslot. The Win32 API encapsulates the mailslot in a KERNEL32 object. It utilizes
MS-DOS function 5f4dh to create a DOS file handle to the mailslot. IFSMgr_Make
Ma,ilslot works at a lower level. It returns a handle to" a !TIemory block which
contains a definition of the mailslot. For requests which originate at the user level,
the handl,e to this memory block is stored in a fhandle structure in the fbJh
member.

When a mailslot is created, it is given a UNC name of the form
\ \. \MAILSLOT\ testslot. The leading characters, "\ \. \", indicate that a mailslot can
only be created on a local machine. The actual name of the mailslot is the portion
that follows "\ \. \MAILSLOT\". Also note that mailslot names follow the 8.3
naming convention."

To see if the mailslot containS something to be read, theWin32 API
GetMailslotInfo or the MS-DOS function 5f4fh (DosMailslotInfo) is called. One of
the pieces of information it returns is a pointer to a buffer containing the size of
the next waiting message. If no message is waiting, this buffer contains the value
MAILSLOT_NO_MESSAGE.

If a mailslot message is present to be read, the Win32 API ReadFile or one, of the
MS-DOS functions 3fh (Read File) or 5f50h (DosReadMailslot) is called. Ultimately,
these functions utilize FS_ReadFile in the handle-based function ,table which was
setup when the mailslot provider registered itself. The fbJh member of the file's
£handle structure tells us where the mailslot block is located. The read operation
is completed by transferring the requested amount of data from the mailslot's
buffers into the caller's buffer and,adjusting pointers and counts.

The actual reception of datagrams for, a mailslot is pretty involved. Briefly, a
mailslot server issues a NetBIOS Receive Datagram command on a specific local
name number. These commands will be pending until a datagram arrives for the

• This is documented in the Microsoft Knowledge Base article Q139716, BUG: Windows 95 Limits Mailslot
Names to 8.3 Naming Convention. See http://www.microsoft.comlkblarticleslqi3917116.htm. '

294 Chapter 13: VREDIR' The Microsoft Networks Client

name. When a datagram does come in, a Receive Datagram completes and the
post routine is called. The post routine stores an appropriate handler address in
the NCB, and then calls CalCPriority_ VM_Event with an event procedure and the
NCB as reference data. In the event handler, a Receive Datagram command is re
issued for the same local name number and the post handler function is called.
The handler processes the NCB and input buffer. It verifies that the buffer
contains a 5MB message block with a 5MB_COM_TRANSACTION command (sub
command 1). If everything is in order, then a IFSMgC WriteMallslot command is
issued using the contents of the NCB and associated buffer. This service gets an
asynchronous ifsreq packet from IFSMgr, fills it with the service's arguments,
and then calls into the mailslot FS_ WriteFile. When FS_ WriteFile returns, the
ifsreq packet is released by calling IFSMgcFreeiOReq.

Removing a mailslot requires calling the matching close function. For a handle
returned by CreateMailslot use CloseHandle; for a handle returned by MS-DOS
function 5f4dh (DosMakeMailslot), call either MS-DOS function 3eh (Close) or
function 5f4eh (DosDeleteMailslot); for a handle returned· by IFSMgcMakeMailslot
call IFSMgr_DeleteMailslot.·

Client-side

Writing to a mailslot first requires obtaining a mailslot handle. A write-only
mailslot handle is obtained via the Win32 API CreateFile. This only creates a
KERNEL32 mailslot object in which a pointer is stored to the mailslot name. For
the write to be a broadcast to all processes in the local workgroup, a name of the
form \ \ "\MAlISLOT\tests/ot is used. To target a specific machine, use its comput
ername, as in \ \ COMPUl'ERNAME\MAlISLOT\tests/ot. When the mailslot handle
is no longer needed, it is closed by a Win32 CloseHandle call.

A message is actually written to a mailslot when the Win32 WriteFile API is called.
This function, in tum, invokes the MS-DOS function 5f52h (DosWriteMailslot). If
the write Originates in an MS-DOS application or a Win16 program, then only MS
DOS function 5f52h need be called, since the Win32 CreateFile and CloseHandle
calls are only for KERNEL32 object housekeeping. Ultimately the way the write
operation is completed depends on whether the write. is to the local machine or a
remote machine. A write. to a remote machine invokes FS_ConnectNetResource,
with irJlags set to 2, whereas a write to a local machine invokes the mailslot FS_
WriteFile function. FS_ WriteFile looks up the mailslot name which is passed in ir_
ppath to see if it exists. If it does, the address of the mailslot· memory block is
consulted to see if a read function was· supplied when the mailslot was created. If

• Partial documentation for the MS"DOS variants of the mailslot functions can be found in Chapter 19
(LAN Manager) of Uninterrupted Interrupts by Raif Brown and Jim Kyle (Addison~Wesley).

IPC for Network FSDs 295

so, then that function is called, otherwise IFSMgr's implementation is called which
writes to the local mailslot buffer. On the other hand, ·if FS_ConnectNetResource
Cir..Jlag = 2) is called, it will generate a NetBIOS Send Datagram command. The
datagram is a message block containing a 5MB_COM_TRANSACTION command,
subcommand type 1. This message block holds the mailslot name as well as the
data of the mailslot message.

Named Pipes

Unlike mailslots, named pipes fit nicely into the remote FSD model. Windows 95
only supports client-side named pipes. A client connects to a known named pipe
by calling the Win32 API CreateFile using a UNC name of the form
\ \SERVER\PIPE\testpipe. As with other UNC names, a connection is first
attempted to the specified server using the service IFSMgr_SetupConnectlon. A
call to VREDIR's FS_ConnectNetResource entry point attempts to establish the
connection. If the connection succeeds, then a shell resourc~ structure is
constructed for the connection, and, in this case, it is marked with sr_t)!Pe of 4 for
IPC (interprocess communication). The shell resource structure also will receive
srJunc, the address of VREDIR's UNC path-based function table. To ftnishthe
CreateFile call, the FS_OpenFile entry point in this table is called to connect to the
server's named pipe. A successful· return results in a fhandle structure for the
extended me handle which is used to refer to this named pipe in subsequent API
calls. This fhandle structure will hold the FS_ReadFile; FS_ WriteFile, and a
pointer to the miscellaneous handle-based functions in VREDIR.

VREDIR uses a common handler for both FS_NamedPipeUNCRequest (from· the
UNC . path-based function table) and FS~NamedPipeRequest (from the handle
based function table). This works because both functions use the ir-fJags member
of ifsreq to specify a command code. The ir...flags value is used as a subcom
mand to a 5MB_COM_TRANSACTION command, i.e., each of the named pipe
functions is represented by a corresponding 5MB message block. One exception
to this rule is FS_NetHandleInfo (FS_NamedPipeHandleInfo)j it has its own handle
based function for setting and returning a handle's buffering characteristics.

Looking Ahead

DUring the media blitz that accompanied the rollout of Windows 95 in the
summer of 1995, Microsoft kept asking us "Where do you want to go today?"
Now, Microsoft is at work on our destination for tomorrow. Although the Internet
phenomenon caught them off guard, Microsoft is positioning the Windows plat
form as the platform of choice for Internet browsing and establishing personal
intranets. Even if the Internet dominates the future, it will require an infrastructure
to support it on both client and server.

Since the release of Windows 95, we have seen some indications as to what direc
tion these infrastructure changes will take. As of the close of 1996, Microsoft has
completed or announced two enhancements to Windows 95 that are relevant to
the file system. The first is the shipment of OEM Service Release 2, which
included support for FAT32. The second is the WDM (Win32 Driver Model) initia
tive. We looked at FAT32 in Chapter 9, WAT.· The Virtual FAT File System Driver,
but we haven't discussed WDM yet.

What is Significant about WDM is that the Windows NT driver model is becoming
the model for future Windows 95 drivers. To better understand WDM, we need to
look at the Windows NT architecture, especially as it applies to the file system. It
is also important to contrast these systems so that you'll have some idea of how a
Windows 95 file system design would be ported to Windows NT.

IFSMgr vs. NT~s Object Manager
]list as Windows 95 distinguishes code executing at ring-3 and ring-O privilege
levels, Windows NT distinguishes user-mode and kernel-mode execution. In user
mode several . subsystems coexist which support the execution of Win32,
Windows 3.xlMS-DOS, OS/2, and POSIX applications. Each of these subsystems is

296

IFSMgr vs. NT's Object Manager 297

a separate process acting as a server of a particular API, and their clients are appli
cations written to those APIs. In theory, when a client application calls an API the
application makes a request of the server through an inter-process communication
mechanism known as LPC (a local variant of RPC). To improve performance,
requests which don't use or modify the subsystem's global data are serviced
within client-side DLLs.

Ultimately, all subsystems are implemented using a common set of primitive
kernel-mode functions, supplied by the NT Executive. In Windows 95, these
kernel-mode functions would be comparable to the Win32 services supplied by
VMM, VWIN32, and a few other VxDs. The NT Executive is compartmentalized
into several system service groupings such as the object manager, the process
manager, the virtual memory manager, and the I/O manager. Of these, the object
manager and the I/O manager play significant roles in the implementation of
Windows NT file systems.

The object manager is the NT Executive's means of managing system resources.
Each object type corresponds to a shareable system resource. Some of these
object types include process, thread, file, device,driver, object directory, and
symbolic link. As in the object-oriented use of the term, an NT object has
attributes and methods. The attributes describe the state of the object, such as
name or access mode, and the methods provide ways of performing operations
on the objects, such as open, close, or query. Except perhaps for KERNEL32
objects (see Chapter 4, File System API MappiniJ, there is nothing comparable in
Windows 95.

Objects need to be located, retrieved, and shared. This is made possible by giving
them unique names. These names are global to a single computer. An object of
type object directory may contain other objects and object directories. This allows
object names to be structured in a hierarchical fashion, much like pathnames. As

with pathnames, the component object names are separated by backslashes. For
example, \Device\HardDiskO\Partitionl refers to an object directory named
Device which contains a variety of device objects including FloppyO, SerialO,
Serial1, and ParallelO, to name a few. It also contains HardDiskO, which is an
object directory that, in tum, contains the device objects PartitionO and Partitionl.

To minimize name searching, objects are opened by name and returned a unique
handle. Thereafter, other object methods are invoked using the handle. When a
thread is done using the object, it closes the object's handle and thereby relin
quishes its use of the resource.

Symbolic link objects can be used to assign an alias to another object name.
When a lookup is performed for a name, if a symbolic link object is encountered,
the lookup continues with the name which the link references. A special type of

298 Chapter 14: Looking Ahead

symbolic link is used to represent the system's drive letters. For example, when
the object manager is asked to lookup \DosDevices\C, it finds that DosDevices is
a symbolic link to the object directory named ?? The search is continued in the
object directory ?? for C. There, the object C; is located and is found to be a
symbolic link to \Device\HardDiskO\Partitionl. The object manager uses this
technique to associate a specific device with a drive letter or volume. Symbolic
links are also used to associate devices with other names, like LPTl, NUL, PRN,
COMl, PIPE, etc.

We can now begin to see the mechanism that the object manager uses to asso
ciate names in the Windows NT namespace with devices. But does the object
manager know about names that are used by a file system? For example, how is
the name c:lwinntlnotepad.exe treated by the object manager? We know from the
discussion above that c: is a symbolic link which after expansion will leave us
with the complete name, \Device\HardDiskO\Partitionl\winnt\notepad.exe. As
the object manager performs a name search, for each object in a name, it looks to
see if the object has a parse method. This is a method that is unique to some
objects; it is registered with the object manager when these objects are created. If
a parse method is found, then the remainder of the name is passed to the parse
method to locate the object. Thus, a parse method allows an object to extend the
namespace beyond that which object manager is aware of. In the example above,
the device object Partitionl defines a parse method which is responsible for the
namespace on a partition of the hard disk. Depending on whether the partition is
FAT, HPFS, or NTFS, a different parse method will be used to locate members of
the namespace.

If we look at Windows 95 to find similar functionality to what we have described
in the object manager, we would have to select the IFSMgr service, IFSMgcParse
Path. Recall that this service takes a name and converts it into canonicalized form
and also determines its associated shell resource. The shell resource provides the
link to the file system driver. The file system driver may also supply a path check
routine which is called by IFSMgcParsePath to customize parsing.

IFSMgr Vs. NT~s I/O Manager
The object manager is able to use a drive letter to link a filename to a device
object, but how is I/O performed on that device and how is a particular file
system associated with a device? To answer these questions we need to turn our
attention to the I/O manager.

The I/O manager is concerned with three types of NT Executive objects: file,
device, and driver. A file object is an in-memory representation of some physical
device. It could be a text file on a floppy disk, a tape drive, or a serial communica-

IFSMgr vs. NTs I/O Manager 299

tions port, so don't let the word "file" make you think it applies only to disk
subsystems. File objects are different than other objects that are handled by the ..
object manager. Most objects are manipulated directly because the object is a
memory resource. A file object, however, is an intermediary between some phys
ical resource and the object manager. The object manager doesn't know about the
peculiarities of the hardware to which the file object refers. Instead, the object
manager calls the I/O manager to assist with accesses to the device.

When a user-mode program opens a file handle, a new file object is created to
represent the underlying physical resource. More than one process may open a
file handle to a single physical resource and each is represented by a separate file
object. Since multiple processes are accessing a shared resource, they must
synchronize their access using locks or. by opening the file object with exclusive
write access.

A file object exposes a number of services to user-mode applications. These
include create, open, read, write, query file information, set file information, get
attributes, set attributes, lock byte range, unlock byte range, etc. These services
are provided with the assistance of the I/O manager.

When an application opens a file, it supplies a filename. This name contains an
implicit reference to a device object where the file object resides. For example,
c: \autoexec.bat refers to the device \Device\HardDiskO\Partitionl. This device
object has a parse method and so the object manager gives the remainder of the
name to the device. The open then completes with the help of the I/O manager,
which creates a file object.in which it stores a pointer to the device object. Ulti
mately, the application is returned a file handle.

The device object refers to one of three types of NT device drivers. There is the
low-level driver, which corresponds to a device object; a file system driver, which
corresponds to a particular file system such as FAT, HPFS~ or .NTFS, and is repre..,
sented by a driver object; and an intennediate driver, which situates itself
between the other two, e.g., a network transport driver would be above the MAC
layer NDIS· driver but below the. file system redirector driver. Although these
drivers provide drastically different functionality, they an use a common structure.
At a minimum, a device driver· has routines which load and unload it from the
system plus a set of dispatch routines for each operation which it supports.

As I noted above, file objects carry around pointers to the device objects which
contain them. Device objects contain pointers which refer back to the driver
object which is layered above them. Driver objects contain the dispatch routines
which the I/O manager calls when it needs to· satisfy an· I/O request. The driver
object will need to call upon the dispatch· routines ·in the device object to fulfill
these requests. This .. linkage up and down the driver chain is very flexible and

300 Chapter 14: Looking Ahead

allows for the insertion of auxiliary drivers to achieve special needs, such as
providing filtering.

What we have been examining is the linkage used to tie filenames to specific file
system drivers. In Windows 95, linkage ties a filename or file handle to a shell
resource which contains a pointer to the dispatch routines of the responsible file
system driver. Although KERNEL32 creates file objects for Win32 applications, the
actual tracking of file handles occurs within IFSMgr, by its use of fharidle
structures.

One of the most dramatic differences between Windows 95 and Windows NT is
NT's use of the file object to model all system I/O. In Windows 95, each class of
devices has its own peculiar interfaces and driver construction. By contrast, the
Windows Driver Model (or Windows NT uniform driver model) structures file
system drivers the same way as it structures a driver for a SCSI host adapter.

Just as IFSMgr creates ifsreq packets to route I/O requests to file system drivers,
the NT I/O manager creates IRPs (I/O request packets) in response to I/O
requests and routes them through the various driver layers. Unlike the packets
which IFSMgr uses, IRPs contain separate stack locations for each driver which it
will be sent to. For instance, when the I/O manager receives a disk file read
request, it would. create an IRP and fill in the first stack location with parameters
describing th,e operation from the file system driver's point of view. On receiving
the IRP, the file system driver would convert the request into a form that the disk
device driver will understand, and place those parameters in the second stack
location. On return, the I/O manager sends the same IRP to the disk device driver
which then uses the parameters in the second stack locations to perform the
operation.

This has been a very brief look at the file system in Windows NT. Here are some
references for additional information: Helen Custer, 1993, Inside the Windows NT
File System (Microsoft Press, 1993); the online help documents which accompany

. the· NT Device Driver Kit; Mark Russinovich and Bryce Cogswell, "Examining the
Windows NT File System," Dr. Dobb'sjournal (1997); Art Baker, The Windows NT
Device Driver Book: A Guide for Programmers (Prentice-Hall, 1997); Rajeev Nagar,
Windows NT File System Internals (O'Reilly & Associates, Inc., 1997).

NT Kernel Mode Drivers vs. VxDs
With this thumbnail· sketch of the Windows NT file system architecture, it should
be apparent that Windows 95 and Windows NT are drastically different. Although
we have been comparing pieces of two operating systems that execute at ring-O
on x86 microprocessors, the manner in which these systems provide support for

WDM 301

privileged operations is also worlds apart. Windows 95 uses VxDs to provide ring
o support, whereas Windows NT uses kernel-mode drivers.

In terms of its file structure, a kernel-mode driver is like a Win32 dynamic-link
library, i.e. it is a Portable Executable or PE file. A VxD, on the other hand, is a
Linear Executable or LE file. Unlike PE files, LE files have an optional real-mode
initialization section, which is executed before the processor switches into
protected-mode. Windows 95 relies upon this capability when it starts up to learn
about the configuration of and to communicate with its DOS substrate.

The way that these two driver types expose their interfaces is also very different.
A VxD exports the address of its Device Descriptor Block, which contains the
address of its control procedure; optional service table, optional PM and v86
APls, and optional Win32 service table. On the other hand, a kernel-mode driver
exports the names of its entry points, in the same way you would export func
tions in a Win32 DLL. To call ring-O operating system functions in the NT
Executive, you link a kernel-mode driver with the import library NTOSKRNL and
simply call the functions by name (or ordinal). Contrast this with the mechanism
used by a VxD to call a service in another VxD using Int 20h dynalinks.

As you know, writing a VxD requires selecting appropriate services from the
hundreds which are provided by VMM, IFSMgr, VWIN32 , etc. Similarly, writing a
kernel-mode· driver requires selecting appropriate functions from the hundreds
which are provided by NTOSKRNL. Add to this the fundamental architectural
differences which we examined in the last two sections, and you should have a
pretty clear picture of the chasm that separates these two worlds.

Despite the obvious difficulties, Microsoft is building a bridge from Windows 95
to Windows NT by providing support for kernel-mode drivers in Windows 95.
Note that this is a one-way bridge; there has been no announced support for
VxDs in Windows NT. The building of this bridge has been called the Win32
Driver Model (WDM) initiative. See the WDM homepage on Microsoft's site at
http://www.microsoft.comlhwdevlpcfuturelwdm.htm.

WDM
WDM was officially unveiled at the Windows Hardware Engineering Conference
(WinHEC) in April 1996. Although it impacts Windows 95 developers most by
making them prepare for a new driver infrastructure, it also impacts Windows NT
developers by introducing common drivers for plug-and-play, power manage
ment, and the Universal Serial Bus (USB). The presentations emphasized that the
initial focus of WDM would be on device drivers and not file system drivers.
Furthermore, although Windows NT will not support VxDs, VxDs can peacefully

302 Chapter 14: Looking Ahead

coexist with WDM on Windows platforms. WDM will also coexist with existing
class-specific driver models such as mass storage and networking.

Even though the stated focus of WDM will be on new buses and device types, the
changes should impact a lot of system components. This is because drivers
written to this standard require a new and extensive API. Most of this API is
declared in the header file ntddk.h. Services from the I/O manager, the virtual
memory manager, the kernel, etc. are represented here.

At the time this book is being completed, WDM is still under development. At
WinHEC-97, in April 1997, a WDM beta was distributed as well as a Developer's
Release of Memphis. In addition to FAT32, and WDM support for USB, 1394, Plug
and-Play, and Power Management, the next release of Windows (code-named
Memphis) will incorporate WDM streaming-class drivers for audio and video. This
is inline with the Microsoft goal of making the PC the "Entertainment PC" in 1998.
To support this effort, Memphis will ship with DVD drivers, including a new file
system driver called udfvxd for the Universal Disk Format used by the DVD-ROM.

Is WDM on Windows in your future? Probably not any time soon, if you are
working on file system drivers or file system hooks. When I put this question to
one of the Microsoft speakers at the WinHEC-96 conference, their response was
that the Windows platform would probably be phased out before they got around
to converting the mass storage, network, and file system drivers to WDM.

However, WDM is in your future if you plan to do any Windows NT file system
development. As Windows NT continues to build momentum, there may be more
pressure to extend WDM on Windows to a wider array of drivers.

MultiMon: Setup,
Usage, and
Extensions

MultiMon is used throughout this book as a multi-purpose spy program. By
installing this tool you can perform the experiments described in the text and do
exploration on your own. To help you get up to speed with MultiMon, this
appendix will describe what it is; how it works, and how to set it up and use it.
I've also included some background information on its design and implementa
tion. For the· more adventurous, I'll show how to extend its capabilities for your
own purposes.

What Is MultiMon?
Monitor or spy programs are very popular among PC programmers. They afford
the user an opportunity to examine the inner workings of living and breathing
systems and applications. This is a valuable capability because seeing code in
action speaks louder than words. Spy programs also have the annoying habit of
revealing undocumented or incompletely documentedAPIs and data structures.
You will encounter a fair share of undocumented features in this way.

The predecessor to MultiMon was called FileMon. It was the basis for my article
"Monitoring Windows 95 File Activity in Ring 0," in Windows/DOS Developer's
Journal, July 1995. FileMon is a monitoring tool which displays the calls made by
IFSMgr into the underlying me system drivers. It was used to demonStrate how t6
write a Windows 95 file system hook using IFSMgr services. FileMon also illus
trated a Simple technique for exchanging information between a Win32
application and a VxD which allowed the VxD to display its output in a console
application window. MultiMon includes and extends the capabilities that FileMon
had.

303

304 Appendix A: MultiMon: Setup, Usage, and Extensions

MultiMon, which you get on the companion diskette, was designed as a general
purpose tool to use in exploring Windows 95 internals. MultiMon provides a
general. framework for collecting and reporting on events of interest. An event
could be the occurrence of a software interrupt, a call to a hooked VxD service,
or even a direct application call. These events are reported by monitors. A
monitor detects a certain kind of event, encapsulates a description of it in a
generic data structure, and then sends that structure to an event manager. The
event manager acts as a funnel. It receives events from a variety of monitors and
serializes these events in a large queue. The event manager also supplies moni
tors with chunks of memory in which events are recorded. The event manager is
also busy writing portions of the queue to a log file.

Two types of event managers are supplied: a session manager and a boot
manager. The boot manager allows monitoring of events during system startup,
and the session manager is a dynamic VxD loaded by the Win32 reporter applica
tion. The reporter application formats and displays the events so they can be
scrolled or saved to a text me. The reporter is also responsible for displaying the
drivers which are available for installation, the APIs which will be monitored for
each driver, and whether the APIs are to be monitored during system startup.

Some benefits of the MultiMon design are:

• By placing the event manager in a VxD, we are able to report on events from
ring-O as well as ring-3.

• By supporting multiple monitors we are able to add an additional dimension··
to event traces; for example, we can view events in multiple operating system
modes: ring-O, virtual-86, and Win16/ring-3 (1jy hooking services which sup
port these various modes).

• . Supporting multiple monitors also allows us to monitor multiple API types at
the same time.

This approach is inherently extensible and configurable .. Simply add and remove
monitors to get the mix that provides the picture you want.

Using MultiMon
We have included MultiMon on the companion disk. This section explains how to
install, configure, and use MultiMon.

Installation
The installation diskette contains a Setup program for installing MultiMon as well
as other utilities and source code. Simply launch setup.exe from the floppy

Using MultiMon 305

diskette using the standard Windows 95 installation procedure (from Control
Panel select Add/Remove Programs) and follow the steps of the installation
wizard. The installation program will prompt you for a destination directory. Use
any location that is convenient. All of the files transferred to your system end up
in this directory or its subdirectories.

New entries are also added to the system registry. For this reason, MultiMon and
other components are removed by running uninstal.exe using the standard
Windows 95 uninstall procedure (from Control Panel select Add/Remove
Programs) and following the steps of the uninstall wizard.

Selecting Drivers and Monitors
A monitor is supplied in a monitor driver in the form of a VxD: Monitors could
also be implemented as Dlls, TSRs, or DOS device drivers, but we will ·only use
VxDs here. MultiMon distinguishes two types of monitors based on how they are
loaded. A static monitor is already present in memory before the MultiMon appli
cation is executed. A dynamic monitor is loaded by MultiMon before data
collection begins. Astatic monitor is a static VxD whereas a dynamic monitor is a
dynamic VxD. The advantage of using a static monitor is that it can report events
durmg system startup, In the current version, MultiMon only supports static
monitors.

MultiMon maintains entries of known static and dynamic monitors in the system
registry. Candidates for inclusion in the registry are VxDs in the directory from
which MultiMon is launched. Only VxDs which have· a VersionInfo resource with
a File Description containing a "MultiMon" string are included. During initializa~

tion, MultiMon determines which of these monitors are present and displays them
in the Add/Remove Driver dialog box. Dynamic monitors are distinguished from
static monitor$ by having the string "DynamiC" somewhere in their File Descrip
tion string.

MultiMon setup is the initial step where the user selects a set of drivers to be used
for event collection (using the Add/Remove Driver dialog). After a set of drivers
has been selected, it may be necessary to restart the system if the selection
includes static components which are not currently in memory. Figure A-I shows
the Add/Remove Driver dialog which is reached via the Options menu. A driver is
added by selecting it in the uninstalled column and then clicking the Add button.
A driver is removed by selecting it in the installed column and· then clicking the
Remove button. A driver with a ",s" suffix it is a static driver; if it has a ",d" suffIx
it is a dynamic driver.

Once MultiMon detects installed drivers, the Filters dialog will display all available
monitors for those drivers. A driver may contain more than one monitor; each

306. Appendix A: MultiMon: Setup, Usage, and Extensions

Figure A-I. MuitiMon dialog/or installing drivers

monitor is independently enabled and disabled. You enable those which are of
interest and disable the others. Table A-I shows the list of drivers and supported
monitors which are included on the companion diskette. Each of these monitors
is used in this book.

Table A-I. MuitiMon Drivers and Monitors

Driver

fshook

netfunc

ifsdspat

vchook

vectors

nbhook

win32cb

i2Ihe1pI

i2Ihelp2

i2fmonI

bootmgr

sessmgr

Monitor Description

IFSMgr file system hook

IFSMgr_NetFunction hook

IFSMgr dispatcher

VCACHE services

Interrupts and Callbacks

o NetBIOS calls

I 5MB packets

o VWIN32 Int 2Ih Dispatch

I VWIN32 Win32 Services

2 VWIN32 DeviceloControl

3 VMM Win32 Services

o Protect-Mode Int 2Ih hook (pre IFSMgr)

I Virtual-86 Mode lnt 2Ih hook (pre IFSMgr)

o Protect-Mode Int 2Ih hook (post IFSMgr)

I Virtual-86 Mode Int 2Ih hook (post IFSMgr)

o Protect-Mode lnt 2fh hook (pre IFSIvlgr)

I Virtual-86 Mode Int 2fh hook (pre IFSMgr)

Event manager during system startup

Event manager after startup

Using MultiMon 307

Filtering Output
In addition to being able to tum monitors on and off, individual APIs may also be
selectable. For instance, you may enable notifications of Int 21h Function 4ch but
disable notifications of Int 21h Function 2ah. Not all monitors have API selections.
Figure A-2 shows the Filters dialog which is reached via the Filters toolbar button
or the Options menu. It shows two panes. On the left all available monitors are
displayed. If the checkbox in front of the monitor name is checked, that monitor
is enabled. The right pane displays a list of API functions for that monitor. If an
API is checked, it will generate notifications. Two buttons at the bottom of the
dialog provide shortcuts for either selecting all APIs or deselecting all APIs.

Func01
E lapsedT imeM S (2)
Func03
Func04
Func05
Func06
Func07
Create T hd(8)
Sleep(9)

Figure A-2. MultiMon Filters dialog

Saving a Configuration

ll!I WakeThd(a)
ll!I Term Thd(b)
ll!I FuncOC
ll!I Q ueueU serAPC(d)
ll!I FuncOE
ll!I Q ueueKernelil,PC(f)
ll!Ilnt21(10)
ll!IIFS_DupHandle(11)
ll!I BlkThdSetBit(12)
ll!I AdiT hdE ~ecPri(13)

The registry is used to save one default configuration for each monitor. A configu
ration is defined as the enabled! disabled state for a monitor and its map of
enabled/disabled APIs. The configuration for the currently selected monitor is
saved by pressing the Save As Default button. In addition to the convenience of
saving a commonly used configuration, the default configuration is the configura
tion used by BOOTMGR.

Toolbar and Menu Commands
MultiMon consists of a single window with a toolbar with buttons (see Figure A-3)
for convenient access to the common menu commands. Only a handful of
commands are used frequently: Start and Stop for starting and stopping data
collection, Show for displaying a captured log file, Clear for clearing the current
display buffer, Filters for setting up data collection monitors and API filters, and
SaveAs for writing the buffer to a text file.

308 Appendix A: MultiMon: Setup, Usage, and Extensions

Figure A-3. MultiMon s menubar and toolbar

The Options menu under the main menu provides access to the Filters and the
Add/Remove Drivers dialogs, as shown in Figure A-4.

Figure A-4. Accessing MultiMon 's configuration dialogs

A Sample Session
Here are the steps to follow to get a quick sample of the output from the FSHook
monitor.

1. In the Add/Remove Drivers dialog: remove all drivers from the installed
column; add only FSHook. You may be prompted to restart your system to
load the static FSHook driver.

2. In the Filters dialog: under the monitor type column, check "IFSMgr File
Hook"; in the window entitled "APIs for IFSMgr FileHook" check all boxes by
pressing the Select All APIs button.

3. Press the Start button to begin capturing events.

4. Perform some activity you wish to monitor, e.g., pop the Properties dialog for
the desktop window.

5. Press the Stop button to end capturing events.

6. Press the Show button to display the contents of the log file.

Two lines of output from the log file are shown in Figure A-5. This view of the
data is the same as the "Details" view used by the Windows 95 Explorer. A
column can be resized by dragging the right boundary of the column header. If
the current column size truncates data, the display shows an elipsis c. ..) to indi
cate there is more to see.

All monitors use the same column headers for their output. The columns and their
contents are described in Table A-2. These are general guidelines about what to

Using MultiMon 309

C:\WINDOWS\ ...

Figure A-5.MultiMon Sample Output

expect in each column; for specifics about usage for a particular monitor, see
Appendix B, MultiMon: Monitor Reference.

Table A-2. MultiMon Output Format

Column Name

Module

Type

Function

Flagsl

Device

Handle

Args

Flags2

Contents

Module owning the thread which generated the event

A code which identifies the monitor that reported the event

An API name or description

Generic flags

Target device name for the call

File or other handle value

Arguments passed in or return values from the API call

Additional flags specific to the API

Using the Boot Monitor
Normally, MultiMon does not capture events until a session is initiated by the
user. However, sometimes it is desirable to monitor the events occurring during
system startup. This is made possible by using the saved configurations for active
monitors (the active/inactive state of a monitor is stored as part of its default
configuration). This configuration information is stored in the registry under keys
for each driver. When the driver loads, it consults its registry entries to determine
whether it· should be active and which APls to monitor.

At system startup, the file system is not ready to receive writes to a log file. To
circumvent this, an additional driver is used, called bootmgr.vxd. It allocates some
pages of memory in which to temporarily store captured events. Events are
captured until either the buffer fills up or the user launches MultiMon after system
initialization completes. When MultiMon starts, it writes BOOTMGR's buffer to a
boot. log file and then frees the allocated pages. The size of the capture buffer
defaults to 10 pages but a user-defined value can be specified through the registry
value cpglnBuf (a DWORD type) under the key HKIM\System\CurrentCon
trolSet\Services\ VXD\MultiMon_bootmgr.

When MultiMon is initially started· after collecting a trace using BOOTMGR, the
user receives a prompt adviSing him of the captured log and asks if he would like
to view it.

310 Appendix A: MultiMon: Setup, Usage, and Extensions

MultiMon's Use o/the Registry
MultiMon uses two different areas of the registry. First, it uses a typical application
entry under HKEY_LOCAL_MACHINE given by Sojtware\OReilly\MuitiMon. The
LogDir value found here gives the directory where session and boot log files are .
stored. If any dynamic monitors are installed, each driver would have a sub key
under this application key. The subkey would contain the same entries as for a
static monitor which we will describe below.

The second area of the registry which MultiMon utilizes is also under HKEY_
LOCAL~CHINE, in the section which defines the system's static VxDs:
System\CurrentControiSet\Services\ VxD. The Windows 95 loader enumerates the
subkeys in this section. The loader attempts to load each VxD driver name given
by the StaticVxD value in each subkey. The value of StaticVxD is a string which
may contain a fully-qualified path.

MultiMon creates a sub key for each static driver which is displayed in the Add/
Remove Dialog. To prevent name collisions, the key name is formed by
prepending MultiMon_ to the driver or device name. For example, the entry for
fshook.vxd would be MultiMonJshook. The StaticVxD value is defined to point to
the launch directory for MultiMon, where all monitor drivers are kept.

Underneath the MultiMon_ driver key, one key will be defined for each monitor
that the driver supports. Monitor keys start at a and increment by one for each
additional monitor. For example, if the driver has two monitors, then the keys a
and 1 will be defined. Within each monitor key several values will be defined
which are used to record its default configuration. These include the values
Enabled, NumApi, Index, and ApiStates.

MultiMon's Design and Implementation
When I started thinking about what MultiMon should be, I envisioned a frame
work which could support many different kinds of "snooping tools." I knew that
as work on this book continued the need would arise for several small applets
that would demonstrate or prove assertions made here. These applets would
differ in how they insinuate themselves into the system and the kind of data they
would generate but from that point on they were the same: they needed a
conduit to deliver the data to a frontend where it could be formated and
displayed. So rather than write these as several separate utilities, they are imple
mented as different monitor drivers for MultiMon.

MultiMon's Design and Implementation 311

Win32 Frontend
The frontend or reporter portion of MultiMon is a respectable Win32 application
written in C. The user interface is based upon a dialog box which contains a list
view control and status control, so no window creation code is needed for these
parts. A dialog procedure handles the requisite windows messages, like WM_INIT
DIALOG, WM_SIZE, WM_COMMAND, etc.

As far as possible, the Windows 95 common controls were leveraged to increase
functionality without adding a lot of custom code. The listview control is used for
output display. It has several advantages: essentially unlimited buffer size, column
headers for labeling output, and easy column resizing.

At one point, I had output from the monitors being displayed directly to listview.
However, this had a major drawback. Since much of the window drawing code
relies heavily on 16-bit USER and GDI, it is acquiring the Win16Mutex. This
created a severe bottleneck at times. To alleviate this, output is written to a log
file by a separate thread, independently of the user interface thread. This creates
much smoother operation and significantly reduces the impact of monitoring on
system performance.

The main thread handles the message pump and responds to user input. A
secondary thread is dedicated to the interface with the event manager,
sessmgr.vxd. When events are being captured with bootmgr.vxd, the MultiMon
application is not loaded.

VxD/Win32 Interface
When MultiMon initializes it looks to see if bootmgr.vxd is loaded. If it is found, a
DeviceIoControl command is sent to it, requesting that it shut down any active
monitors and save its capture buffer to boot. log. Then sessmgr.vxd is loaded and a
secondary thread is created to interface with it.

SESSMGR also receives a list of drivers, their active monitors, and selected APIs
before event capture begins. SESSMGR uses this list to initialize the monitors.

MultiMon's secondary thread also uses the DeviceIoControl interface to communi
cate with SESSMGR. As part of initialization a Win32 event object is passed to
SESSMGR for synchronization with MultiMon. The secondary thread calls into
SESSMGR using DeviceIoControl and it blocks. After an event or group of events
are written to the log file, SESSMGR Signals the blocked thread and it resumes
execution by returning from DeviceIoControl. MultiMon then checks the return
value from DeviceIoControl. An error return indicates that data collection has
stopped, otherwise the DeviceIoControl call is repeated and the thread blocks

312 Appendix A: MultiMon: Setup, Usage, and Extensions

again. This loop exits with an error when MultiMon sends SESSMGR a DeviceIo
Control command to stop.

During this loop SESSMGR is writing the collected events to a binary log file
named session. log, using IFSMgr's ring-O file I/O functions. When event collection
is stopped, MultiMon reads, formats, and displays the contents of this file into the
listview control.

VxD Monitors
SESSMGR creates a pool of event blocks from an area of locked memory. Event
blocks hold an EBLOCK structure in which a monitor describes an event. Moni
tors request an event block, record the event, and then send it back to the event
manager. The event manager then writes one or more event blocks to the log file
and then frees the event blocks for reuse.

Communication between the event manager and the monitors is by means of
private messages using VMM's Directed_Sys_Control API. The following messages
are used:

• REQUEST_EVENT_BLK is sent by monitors to SESSMGR or BOOTMGR to
request an event block.

• EVENT_NOTIFY is sent by monitors to SESSMGR or BOOTMGR to report an
event.

• PRNATE_ARM_MONITOR is sent by SESSMGR to all known monitors, to
place the each monitor into an "armed" state; the monitor receives a list of
APIs which are to be watched.

• PRNATE_INIT is sent by SESSMGR to all armed monitors, to start event cap
ture.

• PRNATE_SHUTDOWN is sent by SESSMGR or BOOTMGR to all active moni
tors, to stop event capture.

• REGISTER_MONITOR is sent by a static monitor to BOOTMGR to be placed
on a list to receive PRNATE_SHUTDOWNmessages.

A monitor is just a VxD which adds handlers for PRIVATE-.ARM_MONITOR,
PRIVATE_INIT, and PRIVATE_SHUTDOWN, and which sends REQUEST_EVENT_
BLK, EVENT_NOTIFY, and perhaps REGISTER_MONITOR messages to SESSMGR
or BOOTMGR.

Extending MultiMon 313

Extending MultiMon
Extending MultiMon with a new monitor requires additions in two areas. First an
existing VxD needs to be modified or a new VxD must be written, to collect the
desired data. Secondly, the Win32 application has to add a new report routine for
the new type of data.

Writing a Monitor

Writing a monitor involves writing a VxD. VxDs can be written in assembly
language, but it is more common today to use either the C wrappers that accom
pany the Windows 95 DDK or a third party package called VToolsD from Vireo
Software. The examples in the book use C and the DDK.

I won't attempt to review the mechanics of VxD construction here. Appendix D,
IFS Development Aids, describes some extensions that I have added to the DDK to
make the process more palatable. Systems Programming jar Windows 95 by
Walter Oney, 1996, Microsoft Press, is a good book to consult for further
information.

I'd like to give you a feel for how easy it is to write a monitor. To illustrate, I've
come up with an example that is both simple and useful. It is sometimes handy to
output strings to the trace log file to mark various execution points or perhaps
print out a function's return values. This requires that you have the source to the
application you are monitoring so that DeviceIoControl calls can be inserted.
We'll only consider Win32 applications, although the idea could be extended to
WinI6 and DOS applications.

The implementation of the entire monitor VxD is in a single source file, tagmon.c,
which you can find on the companion diskette. It starts off with a Declare_DDB

macro which defines the Device Descriptor Block for the VxD. This specifies the
VxD's name, initialization order, etc. so the loader will install it properly. The
DDB also gives the address of the VxD's control procedure, CtrlMsgDispatch,
which is the heart of our monitor (see Example A-I).

Example A -1. Tagmon's Control Procedure

void __ declspec(naked) CtrlMsgDispatch(void) {
BEGIN_DISPATCH_MAP

ON_DEVICE_INIT(CtrlMsg_Device_Init)
ON_SYS_VM_TERMINATE(CtrlMsg_Sys_VM_Terminate
ON_W32_DEVICEIOCONTROL(CtrlMsg_W32DeviceIoControl
ON_DIRECTEDl(PRIVATE_ARM_MONITOR, CtrlMsg_Arm_Monitor
ON_DIRECTEDl(PRIVATE_INIT, CtrlMsg_Private_Init)
ON_DIRECTEDO(PRIVATE_SHUTDOWN, CtrlMsg_Private_Shutdown
ON_DEFAULT ()

314 Appendix A: MultiMon: Setup, Usage, and Extensions

Example A-1. Tagmon's Control Procedure (continued)

END_DI S PATCH_MAP
}

The system sends messages to each VxD's control procedure to notify it of system
wide events which it may need to respond to. The control procedure only needs
to respond to messages in which it is interested.

Each line between the macros BEGINJ)ISPA'IOCMAP and END_DISPATCH_MAP is
like a "case" statement. For example, you might read the first line as "on receiving
a DEVICE_INIT message call the function CtrlMs!LDevice_Init." From this listing
you see that there are handlers for the three messages which are private to
SESSMGR and our monitor. These are PRIVATE_ARM_MONITOR, PRIVATE_INIT,
and PRIVATE_SHUTDOWN. The handlers for these are responsible for enabling
and disabling the monitor.

The event which our monitor is going to report is actually a DeviceIoControl call
into the VxD. This is handled by the third line, which can be read "on receiving a
W32_DEVICEIOCONTROL message call the function CtrlMs!L W32Devicelo
Control." The code for this handler is shown in Example A-2.

Example A-2. Tagmon's Handler for DeviceloControl

int SYSCTRL_CALLBACK CtrlMsg_W32DeviceIoControl(int service,
PDIOCPARAMETERS pDIOCParams) {

switch (service) {
case DIOC_OPEN:
case DIOC_CLOSEHANDLE:

return 0;

case DIOC TAG_STRING:
if (pDIOCParams->cbInBuffer 0)

return ERROR_NOT_SUPPORTED;

MessageOut((char*)pDIOCparams->lpvInBuffer);
return OL;

default:
return ERROR_NOT_SUPPORTED;

The value of the input variable seroice can be a system-defined value such as
DIOCOPEN or DIOC_CLOSEHANDLE, or it can be a programmer-defined value
like DIOCTAG_STRING. When the DIOC_TAG_STRING service is requested, we
expect the input structure DIOCParams to contain specific values; the member
lpvlnBuffer should point to a buffer containing a string and cblnBuffer should
contain a non-zero count of the length of the string. When set up in this way, the
Win32 application could insert a tag using a call like this:

Extending MuitiMon

char szTagStr[80]; II string to insert in Trace Log
DWORD cb; II count of bytes returned
wsprintf (szTagStr, "Calling from xxx - %d", somevar);
DeviceIoControl(hTagmon, DIOC_TAG_STRING, szTagStr,

lstrlen(szTagStr), NULL, 0, &cb, 0);

315

The function MessageOut is where the monitor's unique functionality resides;
everything else is either part of a standard VxD framework or the handlers for
private messages between TAGMON and SESSMGR.

The implementation of MessageOut is shown in Example A-3. It uses two private
messages to communicate with SESSMGR's control procedure: REQUEST_EVENT_
BLK to get an EBLOCK to report an event, and EVENT_NOTIFY to report the
event. REQUEST_EVENT_BLK returns TRUE and an EBLOCK's address in ph if it
is successful; it returns FALSE and a non-NULL value in ph if this is the last
EBLOCK; it returns FALSE and a NULL value in ph when the buffer is exhausted.
This arrangement gives the caller a chance to report an OVR_ERROR event when
the last EBLOCK is returned.

Example A-3. Inserting a Tag into a Trace Log

void MessageOut(char* pstr) {
PEBLOCK pb;
if (Directed_Sys_Controll(pSessMgr, REQUEST_EVENT_BLK, &pb)) {

II We allocate the block zero initialized
pb->type = TAG_STRING;
memcpy(pb->szModName, TAGMON_DDB.DDB_Name, 8);
memcpy(pb->onestr, pstr, 31);
Directed_Sys_Control1(pSessMgr, EVENT_NOTIFY, pb);
}

else if (pb != NULL) {
pb->type = OVR_ERROR;
Directed_Sys_Control1(pSessMgr, EVENT_NOTIFY, pb);
}

Adding to the Reporter
Let's continue this example by making the necessary additions to MultiMon to
support tag strings. The first place to start is with the header file monitor.h. You
need to make entries for a new monitor in three tables in this header file: Moni
tors [], DisplayHandler [], and Fil terFuncs []. Moni tors [] is an array of
MONDEF structures, one structure per monitor. A MONDEF has the definition given
in Example A-4. To add a new entry to Monitors [] you only need to worry
about a few of MONDEF's members. First you need to give it a name that will be
used in the Filter dialog, e.g., "Tag Strings". Then you should determine a value
for numApis, i.e., how many different APIs you need to distinguish. For instance,
the API monitor for VCACHE has the value 25 which corresponds to the number

316 Appendix A: MultiMon: Setup, Usage, and Extensions

of services which VCACHE exports. Since TAGMON does not have any APIs, we
use O. Next, insert the device name of the driver which is to contain the monitor
in the member szDevName. The rest of the members are initialized to 0 or NULL,
as appropriate. If you have more than one monitor in your driver, you need to
bump iMon by 1 for each additional monitor.

Example A-4. MONDEF Structure

typedef struct {
UINT flags; II bitO:installed, bitl:enabled
BOOL bChecked; II monitor checked in Filters dialog
int iMon; II O-based index for monitor in this driver
char* name; II User-friendly monitor name
int numApis; II number of APIs monitored
UINT* pApiState; II array of enabled/disabled states
char szDevName[9];11 device name for Monitor
} MONDEF, *PMONDEF;

To finish up olir additions to monitor.h, add a display handler function to
DisplayHandler [] and a filter function to Fil terFuncs [l. Precede these tables
with "extern" declarations for these new functions.

The common index to these three data structures is defined by a unqiue manifest
constant which is added to multimon.h. For TAGMON, we will use the constant
TAG_STRING. This index is used as the type in the EBLOCK structure.

With the data structures taken care of,· we need to now write some code-the
display handler and filter function. The display handler function is called to return
a string for each column of the listview display. The prototype for the function
has this form:

void Display_Handler(int iSubItem,PEBLOCK pb,char* pszText)

where iSubltem is the zero-based index to the listview column, pb is a pointer to
a data structure describing the event, and pszText is a pointer to a buffer in which
to insert the string. The contents of an EBLOCK consists of some predefined
header information followed by an area that is free-format. A monitor will typi
cally define a structure to fill this area. The display handler for our TAGMON
monitor is shown in Example A-5.

Example A-5. Display Handler for TAGMON

void Display_Handler_Tagmon(int iSubItem, PEBLOCK pb,
char* pszText) {

*pszText = '\0';
switch (iSubItem) {

case 0 : I I Module - Module Name
strcpy(pszText, pb->szModName);
break;

case 1 : II Type - Type of Monitor

Extending MultiMon

Example A-5. Display Handler for TAGMON

strcpy(pszText, "tag");
break;

case 2 : II Function - Function Name
strcpy(pszText, pb->onestr);
break;

case 3 II Flagsl - flags common to all functions
II Device - Device Name
II Handle - System File Number (SFN)

317

case 4
case 5
case 6
case 7
default:

II Args - arguments specific to this function
II Flags2 - flags specific to this function

break;

The filter function is called to return a string which describes an API. This is used
to populate the listview control in the Filter dialog. The prototype for the function
has this form:

char* Filter_Func(int index)

It returns a pointer to a static string.

The display handler and filter function along with static string tables are placed in
a separate C file and added to the build. Some additional examples of extension
files can be found on the companion diskette: bookmon.e, vemon.e, int2fmon.e,
etc.

MultiMon: Monitor
Reference

MultiMon comes with the monitors listed in Table A-I of Appendix A, MultiMon:
Setup, Usage, and Extensions. The kind of output produced by each of these moni
tors is quite varied and yet MultiMon presents this information using the same
view. This appendix describes in detail the information displayed by each monitor
and thus serves as a reference.

Generally, a single line of output describes a single event. However, in some
instances, the information will not conveniently fit in a single line, and so a
second line of output is reported for the same event. You will see this approach
with the file system hook, FSHook. When displaying traces of services, it is some
times useful to show the entry values on one line and then the return values on a
separate line. Another thing to keep in mind when examining traces is that some
monitors report an event when an API completes, and other monitors report an
event on entry into an API.

In the descriptions that follow, a C printf format is used to define output strings.
These format strings are enclosed in double quotes, while arguments are repre
sented by suggestive variable names, e.g., "drive=%c", drive_letter.

Interrupt 21 h

Driver

12IHelp1

121Help1

121Help2

121Help2

Win32cb

318

Monitor

PM Int21 hook (pre IFSMgr)

vs6 Int21 hook (pre IFSMgr)

PM Int21 hook (post IFSMgr)

vs6 Int21 hook (post IFSMgr)

VWIN32 Int21 Dispatch

Type

p21

v21

p21-

v21-

w21

Interrupt 2Fh

ListView Column Usage

Module:
Module owning execution thread

Function:
Int 21h function name

Flags1:
Not used

Device:
Not used

Handle:

319

DOS (SFT) or extended (SFN) file handle

Ar.gs by function:
39h, 3ah, 3bh, 3ch, 3dh, 41h, 43h, 4bh,
4eh,5ah, Sbh,6ch, 7139h, 713ah, 713bh,
7141h, 7143h, 714eh, 7160h, 716ch

"%s", sZPathname

36h, 47h, 7147h, 4404h,4405h, 4408h,
4409h,440dh, 440eh,440fh, 4411h

"drive=%c", drive_letter

3fh,40h

42h

SOh

Flags2 by function:
7143h

Interrupt 2Fh

Driver

I2fmonl

I2fmonl

"cnt=%x buf=%x:%04x", byte_count,
buffecsegment, buffecoffset

"(%d) offs=%08Ix", seek_mode,
seek_offset

"seg=%04x", PSP _segment

Gt(GET_ATTRIBUTES)
St(SET_ATTRIBUTES)
Gs(GET--,ATTRIB_COMP]ILESIZE)
Sm(SET_ATTRIB_MODIFLDATETIME)
Gm(GET_ATTRIB_MODIFY_DATETIME)
Sa(SET_ATTRIB_LAST_ACCESS_DATETIME)
Ga(GET_ATTRIB_LAST_ACCESS_DATETIME)
Sc(SET_ATTRIB_CREATION_DATE_TIME)
Gc(GET_ATTRIB_CREATION_DATE_TIME)
Gu(GET_ATTRIB_FIRST_CLUST)

Monitor Type

PM Int2f hook (pre IFSMgr) p2f

v86 Int2f hook (pre IFSMgr) v2f

320 Appendix B: MultiMon: Monitor Reference

ListView Column Usage

Module:
Module owning execution thread

Function:
Int 2fh function name

Flags1:
Not used

Device:
For function 1684 only, "%s(%xh)", device_name, device_id

Handle:
Not used

Algs:

Not used

Flags2:
Not used

IFSMgr Dispatcher

Driver Monitor Type

ifsdspat IFSMgr dispatcher dsp

ListView Column Usage

Module:
Module owning execution thread

Function:
"Func=%08lx", register_ECX

Flags1:
Not used

Device:
Not used

Handle:
Not used

Algs:

"EDX=%08lx ESI=%08lx", registecEDX, provider

Flags2:
Not used

IFSMgr File System Hook 321

IFSMgr File System Hook

Driver Monitor Type

fshook IFSMgr file system hook fsh

ListView Column Usage

Module:
Module owning execution thread

Function:
FS_xxx function name

Flags1:
Flags common to all functions represented by string of characters: e_clnu_
slxrmwoa

e command failure

c character resource

I local resource

n network resource

u UNC resource

s IFSMgcServerDOSCall

LFN call

x uses extended handles

r IFSMgCRingO_FileIO

m 8.3 match semantics

w Win32 caller

0 Unicode/BCS string

a ANSI/OEM

Device:
Name of FSD being called

Handle:
System File Number (SFN) asterisk indicates newly created or opened handle

At;gs (line 1):

Arguments specific to a function

cnt=%lxH ofs=%lxH ptr=%lxH, byte_
count, file_position, lineacbuCaddress

ofs=%lxH, file_position

322

IFSFN_GETDISKINFO

IFSFN_QUERY(level 2)

IFSFN_QUERY(level 1)

IFSFN_CONNECT(local disk volume)

IFSFN_IOCTL16DRIVE, IFSFN_GETDIS
KP ARMS, IFSFN]LUSH

IFSFN_DASDIO CDIO_ABS_READ_
SECTORS)-CDIO _ABS_ WRITE_SECTORS)

IFSFN_DASDIO CDIO_SET_LOCK_
CACHE_STATE) .

At;gs (line 2):

Pathname or filename argument

Flags2:

Flags specific to a function

IFSFN_READ, IFSFN_ WRITE

IFSFN_ CLOSE, IFSFN]INDCLOSE,
IFSFN_FCNCLOSE

IFSFN_COMMIT

IFSFN_FILELOCKS

IFSFN]ILETIMES

IFSFN_ENUMHANDLE

Appendix B: MultiMon: Monitor Reference

"drive: %c free: %08lx", drive_letter,
free_space

"Level2 drive: %c", drive_letter

"Levell drive: %c", drive_letter

"drive: %c", drive_letter

"drive: %c", drive_letter

"cnt=%lxH sector=%lxH ptr=%lxH",
byte_count, absolute_sector,
lineacbuCaddress

"Level 0 taken" or "Level 0 released", or
"Level 3 taken" or "Level 3 released"

flags "msn": m- memory-mapped
RO I/O; s-called by swapper; n-no
caching of read/write

flag character: b-seek relative to
beginning of file; e-seek relative to
end of file

flag: f-CLOSE]INAL, p-CLOSE_FOR_
PROCESS, h-CLOSE_HANDLE

flag: a-FILE_COMMIT_ASYNC,
n-FlLE_NO_LAST_ACCESS_DATE

flag: L-LOCK_REGION, U-UNLOCK_
REGION

GmCGET_MODIFY_DATETIME)
SmCSET_MODIFY_DATETIME)
GaCGET_LAST~CCESS_DATETIME)
SaCSET_LAST_ACCESS_DA TETIME)
GcCGET_CREATION_DATE_TIME)
ScCSET_CREATION_DATE_TIME)

fi ENUMH_GETFILEINFO
get file info by handle

fn ENUMH_GETFILENAME
get filename associated with handle

irENUMH_GETFINDINFO
get info for resuming

rf ENUMH_RESUMEFIND
resume find operation

rd ENUMH_RESYNCFILEDIR
resync dir entry info for file

IFSMgr File System Hook

IFSFN_ CONNECT(Network)

IFSFN_CONNECT(Local)

IFSFNJILEATTRIB

IFSFNJILEATTRIB (cont.)

IFSFN_DISCONNECT

flags "x y", where x is:
rCRESOPT_UNCREQUEST)
e(RESOPT_DEVATTACH)
c(RESOPLUNCCONNECT)
d(RESOPT_DISCONNECTED)
n(RESOPT_NO_CREATE)
s(RESOPT_STATIC)
and where y is:
*(RESTYPE_ WILD)
d(RESTYPE_DISK)
s(RESTYPE_SPOOL)
c(RESTYPE_CHARDEV)
i(RESTYPE_IPC)

flag character:
m(IR_FSD _MOUNT)
vCIR_FSD3ERIFY)

gCIR_FSD_UNLOAD)
cCIRJSD_MOUNT_CHILD)
pCIR_FSD_MAP _DRIVE)
uCIR_FSD_UNMAP _DRIVE)

option string: mk(CREATE_DIR),
rm(DELETE_DIR), ck(CHECK_DIR),
83(QUERY83_DIR), lfCQUERYLONG_
DIR)

option string:
Gt(GET_A TTRIBUTES)

323

St(SET _ATTRIBUTES)
Gs(GET_ATTRIB_COMP JILESIZE)
Sm(SET_ATTRIB_MODIFY _DATETIME)
Gm(GET_ATTRIB_MODIFY _DATETIME)
Sa(SET_ATTRIB_LAST_ACCESS_
DATETIME)
Ga(GET_ATTRIB_LAST_ACCESS_
DATETIME)
Sc(SELATTRIB_CREATION_DATE_
TIME)

Gc(GET_ATTRIB_CREATION_DATE_
TIME), Gu(GET_ATTRIBJIRST_CLUST)

flag character:
devOL_DISCARD _CACHE)
revOL_REMOUNT)

flag character:
f(SEARCH_FIRST)
n(SEARCH_NEXT)

flag character:
n(DISCONNECT _NORMAL)
i(DISCONNECT_NO_IO)
s(DISCONNECT_SINGLE)

324

IFSFN_DASDIO -DIO ~BS_READ_
SECTORS

IFSFN_DASDIO -DIO_ABS_ WRITE_
SECTORS

IFSFN_DASDIO -DIO_SELLOCK_
CACHE_STATE

Appendix B: MultiMon: Monitor Reference

option string, "x y" where x is (open
action value):
cn(ACTION_CREATENEW (lOh))
ca(ACTION_CREATEALWAYS (l2h))
oe(ACTION_OPENEXISTING (Olh))
oa(ACTION_OPENALWAYS (llh))
re(ACTION_REPLACEEXISTING (02h))
and y, is (special option):
m(MM_READ_ WRITE (8000h))
c(OPEN_FLAGS_COMMIT (4000h))
e(OPEN_FLAGS_NO_CRITERR (2000h))
s(RO_SWAPPER_CALL (IOOOh))
rCOPEN_FLAGS_REOPEN (0800h))
a(OPEN_FLAGS_ALIAS_HINT (0400h))
p(OPEN]LAGS_NO _COMPRESS
(0200h))
n(OPEN]LAGS_NO_CACHE (OIOOh))
i(OPEN]LAGS_NOINHERIT (0080h))

option string "Read"

option string "Write"

option string "Volume Lock"

IFSMgr _NetFunction Hook

Driver Monitor Type

netfunc IFSMgcNetFunction hook nth

ListView Column Usage

Module:
Module owning execution thread

Function:

Func=%08lx, CliencAX, where ClienCAX contains the following values for

IFS Manager broadcasts:

NF]ROCEXIT (l11Dh)

NF _DRIVEUSE (OOOlh)

NF_DRIVEUNUSE (0002h)

NF _GETPRINTJOBID (0003h)

NF]RINTERUSE (0004h)

NF _PRINTERUNUSE (0005h)

NF _NetSetUserName (l18Ih)

or CliencAX contains the function number for Upper8E_Preambles installed

using IFSMgcSetReqHook.

Interrupts and Callbacks

Flagsl:
Not used

Device:
Not used

Handle:
Not used

At;gs:

"EDX=%08lx ESI=O/O08lx", ifsreq.ifsjunc, provider

Flags2:
Not used

Interrupts and Callbacks

Driver Monitor Type

vectors Interrupts and Callbacks vec

ListView Column Usage

Module:
Module owning execution thread

Function:
VMM Service Names, including:

InstalC v86_Break_Point

Allocate_PM_Call_Back

Gee V86_Ine Vector

GeePM_InC Vector

Flagsl:

Allocate_ V86_Ca1CBack

Hook_ V86_InCChain

Sec v86_Ine Vector

SeCPM_Inc Vector

325

"Entry" or "Return" depending on which side of the service the display line
was generated.

Device:
Not used

Handle:
On entry, interrupt number as a string "Int %x"

326

Ar.gs by service:

On entry:

Install_ VS6_Break]oint

On return:

Allocate_ VS6_Call_Back

Flags2:

Not used

VCACHE Services

Driver Monitor

vchook VCache services

ListView Column Usage

Module:

Module owning execution thread

Function:

Entry: VCACHE service name

Appendix B: MultiMon: Monitor Reference

"vs6 BrkPt=%X:%04X RingO Func
tion=%OSlx (%s)", brk_segment,
brk_offset, funcaddr, VxD_Name

"RingO Function=%OSlx (%s)", func_addr,
Vxd_Name

"RingO Function=%OSlx (%s)", func_addr,
Vxd_Name

"RingO Hook=%OSlx (%s) " , func3ddr,
Vxd_Name

"vs6 Vector=%X:%04X", VS6_segment,
vS6_offset

"PM Vector=%X:%lX", PM_selector,
PM_offset

"vs6 App Callback: %x:%04x",
VS6_callback_segment,
VS6_callback_offset

"PM App Callback: %x:%04x",
PM_callback_selector,
PM_callback_offset

Type
vch

Return: Return, except for VCache_FindBlock, which displays the string
"Return [Carryl [Lockedl"

VCACHE Services 327

Flagsl:

Options on entry to VCache_FindBlock:

Create

LowPri

Device:
FSD cache ID

Handle:
Cache block handle

Algs by function:
VCache_GeC Version(Return)

VCache_Register(Return)

VCache_ GetSize(Return)

VCache_CheckAvai1(Entry)

VCache_ CheckA vai1(Return)

VCacheJindBlock(Entry)

VCacheJindBlock(Return)

VCache_ VerifySums
VCache_RecalcSums

VCache_TestHold(Return)

VCache_GetStats

VCache_AdjustMinimum

VCache_SwapBuffers

VCache_RelinquishPage

VCache_UseThisPage

Hold

MustCreate

MakeMRU

RemoveFromLRU

Ver: o/o04x, version_number

"DiscardFunc: %08ix MinReserv: %ix",
buffee discard_func,
minJeserved_blocks

For a specific FSD ID:
"MaxFSDBlks: %Ix MaxCacheBlks: %ix",
max_blocks_foefsd,
max_num_cache_blocks
For any FSD (id=O):
"CurCacheSize: %ix MaxCacheBlks: %ix",
num_blocks_in_cache,
max_num_cache_blocks

"Needed: %Ix", num_blocks_needed

"Avail: %ix", num_avaiLblocks

"Keyl: %08ix Key2: %08ix" , keyl_value,
key23alue

"Buffer: %08ix" , addeof_buffer Of non
zero handle)

"EnumFunc: %08ix", enum_function_
addr

"SectorSize: %Ix", sectoesize_in_bytes

"HoldCnt: %d", block_hold_count

"Misses: %d Hits: %d Discards: %d
VCache: %08ix", misses_to_last26_
discards, hits_to_last26_lru,
num_discards_since_IasCcall,
linear_base_addr

"New Quota: %08ix", new_quota_size

"BlockHdl1: %08ix BlockHdl2: %08ix" ,
cache_blockl, cache_block2

"RelPage: %08Ix", lineaeaddeoCpage

"AddPage: %08Ix", lineaeaddeoCpage

328

_ VCache_ CreateLookupCache

_ VCache_DeleteLookupCache

_ VCache_Lookup
_ VCache_UpdateLookup

Flags2:
Not used

Appendix B: MultiMon: Monitor Reference

"CacheName: %s MaxElems: %d Flags:
%08lx", lookup_name, max_elements,
ptccache_handle

"CacheName: %s", cache_name

"Key: \%s\ Data len: %d", lookup_name,
data_len

VWIN32 Win32 Services

Driver Monitor

win32cb VWIN32 Win32 Services

ListView Column Usage

Module:
Module owning execution thread

Function:
VWin32 Win32 service name

Flagsl:
Not used

Device:
Not used

Handle:
Not used

Atgs:
Not used

Flags2:
Not used

VWIN32 DeviceloControl
(IFSMgr, VWIN32, WSOCK)

Driver Monitor

win32cb VWIN32 DeviceloControl

Type

vw32

Type

dev

V.MM Win32 Services

ListView Column Usage

Module:
Module owning execution thread

Function:
Func=O/O08Ix, ClienCAX

Function:
Open Device, Close Device, or dwIoControlCode

Control codes for IFSMgr, VWIN32 , and WSOCK are labeled

Flags1:
Not used

Device:
VxD device name

Handle:
For WSOCK calls, handle context address

Ar.gs:
For WSOCK calls, arguments to functions

Flags2:
Not used

VMM Win32 Services

Driver Monitor

win32cb VMM Win32 services

ListView Column Usage

Module:
Module owning execution thread

Function:
VMM Win32 service name

Flags1:
Not used

Device:
Not used

Handle:
Not used

Type

vm32

329

330 Appendix B: MultiMon: Monitor Reference

Ar.gs:
Arguments specific to a function as array of unlabeled doubleword values

Flags2:
Not used

NetBIOS Calls

Driver Monitor

nbhook NetBIOS calls

ListView Column Usage

Module:
Module owning execution thread

Function:
NetBIOS service name

Flags1:

Type

ncb

Entry: if call is asynchronous, "async" will appear here

Return: if call was asynchronous, "post(O/O02x)", ncbjetumcode, will appear
here

Device:
Lana=%02x, lana_number

Handle:
Address of NCB (Network Control Block)

Ar.gs:
Entry arguments specific to a function

NCBCALL, NCBLISTEN,
NCBADDNAME, NCBDELNAME,
NCBADDGRNAME

NCBHANGUP, NCBRESET

NCBSEND, NCBRECV, NCBSENDNA

NCBRECVANY, NCBDGRECV,
NCBDGSENDBC, NCBDGRECVBC,
NCBSSTAT, NCBACTION, NCBENUM,
NCBFINDNAME

NCBCANCEL

NCBDGSEND, NCBASTAT

"Callname: %s", ncb_callname

"LSN: %02x", ncb_lsn

"LSN: %02x Buffer: %08lx(%04x)",
ncb_lsn, ncb_buffer, ncb_length

"Buffer: %08lx(%04x)", ncb_buffer,
ncb_length

"Canceled NCB: %08lx", addcoCncb

"Buffer: %08lx(%04x) Callname: %s",
ncb_buffer, ncb_length, ncb_callname

5MBPackets

Ox48 (Send-Receive)

NCBCHAINSEND, NCBCHAINSENDNA:

NCBTRACE, NCBLANSTALERT,
NCBUNLINK:

Default

At;gs:
Return values specific to a function

NCBCALL

Ox48 (Send-Receive)

NCBRECV ANY:

Flags2:
Flags specific to a function

NCBRECVANY, NCBDGSEND,
NCBDGRECV, NCBDGSENDBC,
NCBDGRECVBC, NCBRESET,
Ox48(Send-Receive)

5MBPackets

Driver I Monitor
nbhook

ListView Column Usage
Module:

Module owning execution thread

Function:

"LSN: %02x SendBuf: %08lx(%04x)
RecvBuf: %08Ix(o/o04x)", ncb_Isn,
ncb_buffer, ncb_length, buffecdword,
buffecword

"LSN: %02x Buffer1: %08lx(%04x)
Buffer2: %08lx(%04x)", ncb_Isn,
ncb_buffer, ncb_length, buffecdword,
buffecword

Nothing displayed

"Buffer: %08Ix(o/o04x) Callname: %s",
ncb_buffer, ncb_length, ncb_callname

"LSN: %02x''', ncb_Isn

"RecvBuf: %08lx(%04x)", ncb_buffer,
ncb_length

"LSN: %02x Length: %04x", ncb_Isn,
ncb_length

"NAME#: %02x", ncb_num

Type

smb

5MB command name; up to three batched commands may be listed

Flagsl:
Entry: request

Return: reply

331

332 Appendix B: MultiMon: Monitor Reference

Device:
Not used

Handle:
Address of NCB (Network Control Block) whose buffer references the 5MB
command

Ar.gs:
Arguments specific to a function

5MB_COM_OPEN
5MB_COM_OPEN_ANDX
5MB_COM_1REE_CONNECT
5MB_COM_SESSION_SETUP _ANDX
5MB_COM_1REE_CONNECT_ANDX

5MB_COM_TRANSACTION

Flags2:

Not used

"%s" , pathname_ocdomain

"%s SubCommand:%02x",
mailsiococnamedpipe,
subcommand_code

Subcommands 0 through OxOe: "%s",
trans2_subcommand_name

IFSMgrData
Structures

Knowing the layout of IFSMgr's key data structures is fundamental to reaching an
understanding of IFSMgr's operation. In this appendix, various undocumented
data structures utilized by IFSMgr are defined. These structures are also available
in the header file ifsmgrex.h on the companion diskette. These data strucutes are
valid for IFSMgr version 22h. Your driver or file hook should verify this version
number before using these structures.

Several of the undocumented structures are displayed by a debug command in
the IFSMgr version which accompanies OSR2. This version of IFSMgr has a so
called "dot" command which is invoked by typing .ifsmgr from the WDEB386 or
WinIce prompt. This command will display the contents (and member names) for
structures such as ifsreq, shres, and fhandle.

The ioreq Structure
This data structure is defined in ifs.h and described in detail in the DDK documen
tation. Many IFSMgr APIs and interfaces are passed a pointer to . an ioreq
structure, which in reality is an ioreq structure embedded in an ifsreq struc
ture. The reason the ioreq structure is emphasized by the DDK is that it is the
only portion of an ifsreq structure which an FSD should know or care about;
the other portions of the ifsreq structure are for IFSMgr's eyes only. The ioreq
structure is discussed at length in Chapter 6, Dispatching File System Requests.

typedef struct {

DWORD ir_length;
BYTE ir_flags;
BYTE ir_user;
WORD ir_sfn;
DWORD ir....pid;
DWORD ir""ppath;

/*
/*
/*
/*
/*
/*

00 - length of user buffer (eCX) */
04 - misc. status flags (AL) */
05 - user ID for this request */
06 - System File Number of file handle */
08 - process ID of requesting task */
OC - pointer to unicode pathname */

333

334

DWORD
DWORD
WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DWORD
} ioreq;

Appendix C: IFSMgr Data Structures

ir_aux1; /* 10 - secondary user data buffer (CurDTA)
ir_data; /* 14 - ptr to user data buffer (DS:eDX) */
ir_options; /* 18 - request handling options */
ir_error; /* 1A - error code (0 if OK) */
ir_rh; /* 1C - resource handle OWNED by FSD */
ir_fh; /* 20 - file (or find) handle OWNED by FSD
ir-pos; /* 24 - file position for request */
ir_aux2; /* 28 - misc. extra API parameters */
ir_aux3; /* 2C - misc. extra API parameters */
ir-pev; /* 30 - ptr to IFSMgr event for async

requests */
ir_fsd[161; /* 34 - Provider work space */

*/

*/

The ifsreq Structure
When an IFSMgr API calls for a pointer to an ioreq structure, it actually receives
an ifsreq structure. This works because the first member of ifsreq is a nested
ioreq structure. This structure is discussed at length in Chapter 6. Member names
are based on output from OSR2's .ifsmgr C01l11nand.

typedefstruct {
ioreq ifs_ir; /* 0 embedded ioreq structure */
/* These members are known only to IFSMgr */
fhand1e* ifs-pfh; /* 74 pointer to fhandle structure */
DWORD ifs-psft; /* 78 pointer to SFT */
shres* ifs-psr; /* 7C pointer to shell resource */
DWORD ifs-pdb; /* 80 linear base of owner PSP */
DWORD ifs-proid; /* 84 provider id */
BYTE ifs_func; /* 88 function of dispatched command */
BYTE ifs_drv; /* 89 drive from dispatched command */
BYTE ifs_hflag; /* 8A flag */
BYTE ifs_nflags; /* 8B flags, see Table C-1 */
void* ifs-pbuffer; /* 8C pointer to parse buffer */
HVM ifs_VMHandle; /* 90 VM of request */
void* /* 94 pointer to "per VM data" area */

union
Client_Register ifs_crs; /* 98 client registers for

dispatch */
/* 98 client registers for

ringO 'file i/o */
/* 98 client registers for

server DosCal1 */

} ifsreq;

Volume Injormation (volinjo)
The volinfo structures are referenced by pointers in the SysvolTable array (see
Chapter 6, Figure 6-2). The vol info structure is used to support subst drives (see

Shell Resource (shres) 335

Table C-l. Bit Usage/or ifs_njlags

Bit Number Meaning

7 IFSMgr_ServerDosCall

6 LFN

5 Uses extended handles

4 IFSMgr_RingO_FileIO

3 8.3 match semantics

2 Win32 API

1 Unicode/BCS

0 OEM/ANSI

Chapter 8, Figure 8-1); it also holds references to the CDS structure and the shell
resource structure.

typedef struct
shres* vi-psr; /* 00
char* vi-pszRootDir; /* 04
WORD vi_Client_CX; /* 08
BYTE vi_unk1; /* OA
BYTE vi_flags; /* OB

WORD vi_leng; /* OC
BYTE vi_unk2; /* OE
BYTE vi_drv; /* OF
string_t vi_subst-path; /* 10
void* vi_CDS_copy; /* 14
} volinfo;

Shell Resource (shres)

ptr shell resource for volume */
path following drive & colon in CDS */

*/
*/
Volume is subst drive

?
?

Static connection
?

length of unicode subst
*/

one-based volume */
Unicode Subst path */
Copy of CDS */

Ox10
Ox08
Ox04
Ox02
Ox01 */
path */

The shell resource is the key data structure used by IFSMgr to represent volumes,
connections to network shares, and character devices. Chapter 6 and Chapter 8
give numerous examples of the creation and use of shell resources. Member
names are based on output from OSR2's .ifsmgr command.

typedef struct
WORD sr_sig; /* 00 signature 'Sri */
BYTE sr_serial; /* 02 */
BYTE sr_idx; /* 03 offset of entry in psr list */
struct shres *sr_next; /* 04 next link in one-way ,linked

list */
DWORD sr_rh; /* 08 FSD's volume handle */
struct volfunc *sr_func; /* DC FSD's volume function table */
DWORD sr_inUse; /* 10 reference count */
WORD sr_uword; /* 14 zero-based volume number */

336

WORD

BYTE
BYTE

BYTE

BYTE

DWORD
void*

fhandle*

DWORD
DWORD
BYTE

BYTE
WORD

DWORD

WORD
WORD
WORD
BYTE
BYTE
void*
} shres;

sr_UNCCnt;
sr_DrvCnt;

Appendix C: IFSMgr Data Structures

/* 16 count of open handles on
volume */

/* lB */
/* 19 number of volinfo structures

referencing this sr*/
/* lA a - wild

1 - local disk
2 - spooled printer
3 - character device
4 - IPC (named pipe) */

/* lB IFSFH_RES_CFSD - Ox80
IFSFH_RES_LOCAL - OxlO
IFSFH_RES_NETWORK, OxOB
IFSFH_RES_UNC, OxOl */

sr_ProID; /* lC index to MountVolTable[] */
sr_Vollnfo; /* 20 pointer to VRP (only local

drive) */
sr_fhandleHead; /* 24 pointer to one-way linked list

of open files */
sr_LockPid; /* 2B pid of lock owner */
sr_LockSavFunc; /* 2C */
sr_LockTypej /* 30 type of volume lock in place:

sr_LockFlags;

a - no lock in effect
1 - level a lock in effect
2 - level 1 lock in effect
3 - level 2 lock in effect
4 - level 3 lock in effect */

/* 31 */
/* 32 flags related to volume lock

state */
/* 34 ring a thread ID of lock

owner * /
sr_LockWaitCnt; /* 3B */
sr_LockReadCnt; /* 3A */
sr_LockWriteCnt; /* 3C */
sr_flags2; /* 3E */
sr_reserved;
sr-pnv;

/* 3F */
/* 40 */

The /handle Structure
The fhandle is the key data structure used by IFSMgr to represent handles to
files and character devices. Chapter 6 gives examples of the use of file handles.
Member names are based on output from OSR2's .ifsmgr command.

typedef struct {

struct hndlfunc fh_hf; /* 00 ptr to FSD's handle-based
function table */

fh_t fh_fh; /* OC FSD's file handle * /
shres* fh-psr; /* 10 ptr to shell resource which

contains object */
void* fh-pSFT ; /* 14 ptr to DOS SFT structure */

The hlockinfo Structure 337

DWORD fh-pos i tion; /* 18 */
WORD fh_devflags; /* 1C */
BYTE fh_hflag; /* 1E */
BYTE fh_type; /* 1F */
WORD fh_ref_count; /* 20 */
WORD fh_mode; /* 22 */
hlockinfo* fh_hlockinfo; /* 24 ptr to hlockinfo structure */
void* fh-prev; /* 28 ptr to previous fhandle in

linked-list * /
void* fh_next; /* 2C ptr to next fhandle in

linked-list */
WORD fh_sfn; /* 30 system file number for

handle */
WORD fh_mmsfn; /* 32 SFN for memory-mapped file

dup */
DWORD fh-pid; /* 34 */
DWORD fh_ntid; /* 38 */
WORD fh_fhFlags; /* 3C */
WORD fh_InCloseCnt; /* 3E */
} fhandle;

The hlockinfo Structure
This structure is used to defined a file lock:

typedef struct {

struct hndlfunc hI; /* 00 */
DWORD hI_lock; /* OC */
DWORD hI_flags; /* 10 *1
DWORD hl-pathlen; /* 14 */
unsigned short hl-pathname[O]; /* 18 */
} hlockinfo;

The SPT Structure
The SFT (System File Tables) is a legacy MS-DOS structure. The following layout
is for DOS 4.0 or newer and is based on Undocumented DOS, Second Edition, by
Andrew Schulman and others (see pages 709-710).

typedef struct
WORD
WORD
BYTE
WORD
void*
WORD
WORD
WORD
DWORD
DWORD
WORD
DWORD

sft_numhandles;
sft_openmode;
sft_attrib;
sft_devinfo;
sft_devheader;
sft_start_cluster;
sft_file_time;
sft_file_date;
sft_file_size;
sft_cur_offset;
sft_rel_cluster;
sft_sector_direntry;

338

BYTE
char
void*
WORD
WORD
WORD
WORD
DWORD
} sft;

sft_num_direntry;
sft_fcbname[ll];
sft-prev;
sft_vmid;
sft-psp_segment;
sft_offset;
sft_abs_cluster;
sft_dos_driver;

The CDS Structure

Appendix C: IFSMgr Data Structures

The CDS (Current Directory Structure) is a legacy MS-DOS structure. The
following layout is for DOS 4.0 or newer and is also based on Undocumented
DOS (see pages 710-711).

typedef ·struct {
char cds_root-pathname[67];
WORD cds_attrib;
BYTE cds-physdrv;
BYTE cds_flag;
WORD cds_cluster-parent_dir;
WORD cds_entry_num;
WORD cds_cluster_current_dir;
WORD cds_media_change;
WORD cds_ofs_visible_dir;
} cds;

Per-VMData

/* 00 ASCIIZ root directory */
/* Drive attributes */

During Device Init, IFSMgr allocates per-VM data using the service Allocate
Device_CB_Area. The size of this area is determined by the following formula:

cb_area_size = sizeof(pervm) + «256 + NumDosFCBs) * sizeof(void*) * 2)

What is returned by this service is the offset to IFSMgr;s per-VM data from the
address given by the VM handle. It is the sum of these two values which is stored
in iJsreq.if.s_Pv.

The layout of IFSMgr's per-VM data is divided into three areas. At the beginning
of the area is the pervro structure given below. It is followed by two additional
tables of equal size which will hold pointers for up to 256 SFT entries plus
pointers for FCB's inherited from MSDOS before Windows 95 started. The second
of these two tables is pointed at by the pervro member pv-ppsft.

typedef struct
void* pv_next; /* 00 */
void* pv-prev; /* 04 */
BYTE pv_flags; /* 08 bit 0 */

/* bit 1 */

Per-Thread Data 339

/*
/*
/*
/*
/*
/*

BYTE pv_cnt; /*
BYTE pv_curdrv; /*
BYTE pv_unk2; /*
void* pv_dispfunc; /*
ifsreq* pv-pifs; /*
pevent pv-pev_vm; /*
DWORD pv_Client_DS; /*
DWORD pv_Client_EDX; /*
HEVENT pV_hev; /*
fhandle* pv-pfh [32] ; /*
pevent pV....Jlev_vm2; /*
void* pv-ppsft; /*
void* pv_curdir[32] ; /*
WORD pv_flags2; /*
WORD pv_unk2; /*
} pervm;

09
OA
OB
oc
10
14
18
1C
20
24
48
4C
50
DO
D2

bit
bit
bit
bit
bit
bit

*/
*/
*/

2
3
4
5
6
7

*/
*/
Local Int21 hooker*/
Control-C check */

*/
*/

address of dispatch function */
active ifsreq */
VM tasktime event */
DS:DX or DS:EDX */

address of Disk Transfer Area */
*/
*/
*/
pointer to second SFT table */
current directory for this VM */

*/
*/

Per-Thread Data
IFSMgr piggybacks a doubleword onto every thread. It does this by allocating a
thread data slot (using VMM service _AllocateThreadDataSlot) at Device Init time.
Unlike some other devices which use this doubleword to store a pointer to a
more substantial data structure, IFSMgr is content with using just the data slot.
The data slot is located by an offset from the address of a thread's control block
which is the same as the ring-O thread handle. The layout 6f IFSMgr's thread
doubleword is as follows:

Bit

Use

31
Marked

30

Blocked

29
NoBlock

28-16

Not used

15-0

Count

If this doubleword is non-zero, then the coresponding thread is "in" IFSMgr.
When a thread enters IFSMgr its count is incremented; when leaving it is decre
mented. The top three bits are used as flags for the state of threads which have
entered IFSMgr.

Geoff Chappell shared his insights regarding the use of these bit flags in a recent
email:

The bit flags are concerned with the status of one thread with respect to threads
that propose to work or have started to work on a volume lock.

Working on a volume lock-for instance, to apply a lock or release one-has a
potentially wide-ranging and even brutal effect on IFS operations that are already
under way (say, in other threads). If a thread wants to work on a volume lock,

340 Appendix C: IFSMgr Data Structures

then it will have to wait until nobody else is working on the same volume lock
but even after then, it will have to wait until no thread is doing anything that
might be affected by the change in the volume's lock state.

At the time that a thread is to start working on a volume lock, there is not much
status information to go on. IFSMgr assumes that just about any thread that is in
an IFS operation is liable to be affected. The general scheme is to set the Marked
flag in each of them.

Some threads will already have the NoBlock flag set because it was deduced at an
earlier stage that their IFS operation could not be affected by work on a volume
lock. For instance, these threads do not get "marked."

Some threads will already have the Blocked flag set because they are blocked at
places in their IFS operations where it is known not to matter if a volume lock
gets worked on. For instance, if a thread has to wait for a parse buffer to become
available, then it is not very far into its IFS operation and certainly a long way
from being worried whether some volume is locked. Threads that have blocked at
safe places do not get "marked" either.

The thread that wants to work on the volume lock blocks on a special key. As the
other threads execute, some may finish their IFS operations. That's good: it makes
one less thread to worry about. The general scheme when the IFSMgr decides a
thread can't be affected by work on a volume lock is that if the thread has its
"Marked" flag set, then the flag is cleared and the thread is deemed to no longer
contribute to the count of threads that could be affected. When there are no
longer any threads that could be affected, all threads waiting to work on volume
locks are Signalled.

Another good outcome, handled the same way, is that a "marked" thread blocks
at a place known to be safe.

Some threads that were blocked at safe places may wake up. These and other
threads (with or without the Marked flag) may eventually reach far enough into
their IFS operation that they want access to a volume whose lock is to be worked
on by some waiting thread. For some operations (such as on the paging file and
on memory-mapped files and on pages opened as immovable), this won't matter,
but in general, a thread that wants to access the volume will have to block until
the work on that particular volume's lock is done. Again, the IFSMgr knows that
the thread cannot now be affected by work on the volume's lock and so again, it
may signal the threads that are waiting to work on volume locks.

In summary, Marked means that the thread is thought (possibly only cautiously)
to prevent proceeding immediately with proposed work on a volume lock,
Blocked means that the thread is blocked at a stage where it can't be affected by
proposed work on a volume lock and NoBlock means that if work on a volume
lock is proposed, then this thread is not to be regarded as preventing the work.

IFS Development Aids

This appendix describes some aids that were used in developing the sample code
which accompanies the book. Since I have adopted the DDK's approach to
writing VxDs in C (see What's New in Windows 95 for VxD Writers? by Ruediger
Asche, April 24, 1994, MSDN CD), these aids fill in a few gaps where I felt there
were some deficiencies.

chentry.exe: No Assembly Required
Usually, a VxD's device descriptor block (DDB) and control message dispatch
procedure are placed in a small assembly language module. This is linked with
the C object modules to build the final VxD. The reason this assembly language
module is needed is that the Microsoft compiler only generates decorated public
names. The least amount of decoration you can achieve is a leading underscore.
Why is this a problem?

A VxD has a single exported symbol which is its device name with the suffix
"_DDB" appended. This points to the device descriptor block and is used by the
loader to find the segments in a VxD when bringing the module into memory.
The C compiler only allows names like _FSHOOK_DDB, where FSHOOK_DDB is
what is really desired. Using the decorated name would require clients of the VxD
to use the name _FSHOOK when referring to it. Clearly this is not desirable.

The chentry.exe utility lets you go ahead and use decorated names by removing
the underscore from the exported name after the VxD is built. If the exported
DDB name does not have a leading underscore, CHENTRY does nothing. To use
CHENTRY, you simply add the command chentry VxdName following the link
step in your makefiles.

341

342 Appendix D: /FS Development Aids

vxd.h: Some Basic Macros
If you use CHENTRY in yout build process, then what you used to maintain in a
separate assembly language module can now be incorporated in your C source
file. This makes single source file VxDs easy to construct.

Every VxD requires two basic structures, a device descriptor block and a control
message dispatch procedure. The primary purpose of vxd.h is to provide macros
for setting up these two constructs.

Setting up a VxD's device descriptor block requires two steps. First, before the
include statement for vxd.h; define the name for your device descriptor block. For
example, these statements set up a device descriptor block for the VECTORS VxD:

#define DDB VECTORS_DDB
.#include "vxd.h"

Inside vxd.h the following macro is defined which will be used from our C source
file to initialize the contents of VECTORS_DDB:

II Declare Device Descriptor Block
#define Declare_DDB(name, major, minor, dispatch, devID, init,

v86proc, pmproc, refdata, svctbl, numsvcs)
struct VxD_Desc_Block

DDB = { 0, DDK_VERSION, devID, major, minor, 0, name, init,
(DWORD) dispatch, (DWORD)v86proc, (DWORD)v86proc,
0, 0, refdata, svctbl, numsvcs, 0, 'Prev',
sizeof(struct VxD_Desc_Block), 'Rsvl', 'Rsv2',
'Rsv3' };

Then from the C source file, within a locked data segment, a global instance of
the DDB is defined like this:

Declare_DDB("VECTORS ·,l,O,CtrlMsgDispatch,
UNDEFINED_DEVICE_ID, VMM_INIT_ORDER,
0, ° ,0, 0, °);

The control message dispatch procedure is constructed from macros that make it
resemble a message map. Here is a typical dispatch procedure for a MultiMon
monitor:

void __ declspec(naked) CtrlMsgDispatch(void) {
BEGIN_DISPATCH~P

ON~SYS_CRITICAL~INIT
ON_DEVICE_INIT
ON_INIT_COMPLETE
ON_SYS_VM_TERMINATE

CtrlMsg_Sys_Crit_Init
CtrlMsg_Device_Init)
CtrlMsg_Init_Complete
CtrlMsg_Sys_VM_Terminate

ON_DIRECTEDl
ON_DIRECTEDl
ON_DIRECTEDO
ON_DEFAULT

PRIVATE-ARM_MONITOR, CtrlMsg_Arm_Monitor
PRIVATE_INIT, CtrlMsg_Private_Init)
PRIVATE_SHUTDOWN, CtrlMsg_Private_Shutdown
)

vxd.h: Some Basic Macros

END_DI S PATCH_MAP
}

343

Between the BEGIN_DISPATGLMAP and END_DISPATCH_MAP macros, one line is
specified for each control message which is to have a handler. The macro ON_

DEFAULT must be the last message handler macro; it returns properly for any
message which does not have a handler. Each message handler macro specifies a
function which is called for a particular control message. For instance, ON_

DEVICE_INIT specifies that CtrlMs8-Device_Init will be called on receipt of a
Device lnit message. This function has a prototype defined in vxd.h as follows:

int SYSCTRL_CALLBACK CtrlMsg_Device_Init{ HVM hSysVM, PCHAR pCmdTail);

These prototypes are required so that the proper arguments are pushed on the
stack prior to calling the handler. The header file vxd.h contains macros and
message handler prototypes for known control messages.

The dispatch macros also handle directed system control messages, those control
messages which are private to a set of cooperating VxDs. The macros ON_

DIRECTEDO and ON_DIRECTEDl take two arguments, the handler function and a
message number (e.g. PRIVATE_INlT). The message number is private to the coop
erating VxDs but is reqUired to be in the range Ox70000000 to Ox7FFFFFFF. The
reason that two ON_DIRECTED macros are used here is that ON_DIRECTEDO calls a
handler that takes no arguments whereas ON_DIRECTEDl calls a handler which
takes one argument which is passed in the EBX register.

One more fundamental macro that is included helps when creating a stack frame
for a "hooked procedure." This is used when declaring a hook procedure for
VMM's Hook_Device_Service, New with Windows 95 is the ability to unhook
these services. To do so requires creating a proper function preamble and this is
done by declaring the function with the HOOK_PREAMBLE macro:

II These two jumps make up the hook preamble
II These are needed to support Unhook_Device_Service
II The real hook procedure begins after these at "real_entry"
#define HOOK_PREAMBLE (prey) \

_asm jmp short real_entry \
_asm jmp dword ptr prey \
_asm real_entry:

The prev argument to this macro is a doubleword storage location which holds
the original service's address. This location is filled in automatically by the Hook_
Device_Service function. Here is an example of how this macro would be used:

II Win9S Hook_Device_Service fills this in!
PFN pPrev_Allocate_PM_Call_Back;

void __ declspec{ naked) MY_Allocate_PM_Call_Back{ void) {
HOOK_PREAMBLE (pPrev_Allocate_PM_Call_Back)
1* body of hook procedure *1

344 Appendix D: IPS Development Aids

_asm ret
}

II This call installs the hook procedure
Hook_Device_Service(GetVxDServiceOrdinal(Allocate_~Call~ack},

My_Allocate_P~Call_Back };
II This call removes the hook procedure
Unhook_Device_Service(GetVxDServiceOrdinal(Allocate_PM_Call_Back},

My~llocate_PM_Call_Back};

vxd.b contains a variety of other simple macros which I leave to you to explore.

IFSWRAPS
IFSWRAPS is a static library, included on the companion diskette, which provides
C callable functions for all IFSMgr services as well as a few VWIN32 and VMM
services. This library was constructed in the same way as VXDWRAPS which
accompanies the DDK. The header file iJswraps.b is included in source files
where you call the library functions.

Most of the services supplied by IFSMgr use the C calling convention. This makes
it almost trivial to make wrappers for these functions since no coding is requir~d.
For these functions, the calling parameters and return values are as described in
the DDK. There are a handful of functions which use registers to pass arguments
and receive return values; only these functions require some special treatment.
These exceptions are described below:

unsigned long IFSMgr_ Win32_ GeCRingO_Handle(sjn_t jbext,DWORD* pFilePos)
On entry, thext contains the extended file handle to be converted. If
successful, the return value .is the ring-O file handle and pFilePos will contain
the current file position for the handle passed in. If the conversion fails, the
function returns 0.

int IFSMgr_RingO_FileIO(EREGS* pRegs)
The pRegs argument points to an EREGS structure containing the input values
of registers:

typedef struct eregs { DWORD r_eax;
DWORD r_ebx;
DWORD r_ecx;
DWORD r_edx;
DWORD r_esi;
DWORD r_edi; } EREGS;

If the return value is 0, the call was successful and the EREGS structure
contains the return values in registers; if the return value is non-zero, it is an
error code. See the DDK for register assignments for each call:

DEBlPS 345

int IFSMgr_RingOGetDrivelnfo(DWORD unit)
The unit argument is zero-based drive number. Returns -1 if the drive is .not
an IFS drive, otherwise returns flags describing the drive (see DDK for flag
bits).

int IFSMgr_SeroerDOSCall(HVM hvm, unsigned int fen,PDPL32 dpl, PCRS pCRegs)
The calling arguments include hvm, the handle of the current VM; fen, the
requested function number; dpl, a pointer to the extended 32-bit DPL (see
DDK for definition); and pCRegs, a pointer to the client register structure.
Returns -1 if the request is not accepted, 0 if request is accepted.

int IFSMgr_Gec Version(VOID)
If 0 is returned, no IFSMgr is loaded; otherwise the return value is the version
number.

BOOL Query_PhysLoek(DWORD unit)
The unit argument is the Int 13h unit number for the disk which is being
queried; if TRUE is returned, the current process owns the volume lock.

The following services are also wrapped by IFSWRAPS:

DWORD VWIN32_ GetCurrentProcessHandle(VOID)
VOID Simulate]arJmp(DWORD selector, DWORD offset)
BOOL GeCPM_Inc Vector(DWORD intnum, PWORD pSel, PDWORD pOfs)
BOOL Hook]M_Interrupt(DWORD intnum, PWORD pSel, PDWORD pOfs,

PYOID handler, DWORD refdata)
BOOL Hook_ V86_InCChain(DWORD intnum, PYOID handler)
BOOL TescSys_ VM_Handle(HVM hvm)
PYOID Map]lat(DWORD segofs, DWORD offof)
BOOL Directed_Sys_ControlO(PVMMDDB pDDB, DWORD SysControl)
BOOL Directed_Sys_Control1(PVMMDDB pDDB, DWORD SysControl,

PYOID argl)
BOOL Directed_Sys_ControI2(PVMMDDB pDDB, DWORD SysControl,

PYOID arg1, PYOID arg2)
PYOID Hook_Device_Service(DWORD svcnum, PYOID handler)
BOOL Unhook_Device_Service(DWORD svcnum, PYOID handler)

DEBIFS
DEBIFS is the name of a VxD, included on the companion diskette, which
contains a dot command. By dot command I mean a command which you enter
in your debugger, like .vmm b. The commands which DEBIFS provides dump out
useful information about IFSMgr's data structures. The available commands are:

346 Appendix D: IFS Development Aids

.debifs i address
Dumps an ifsreq structure at specified address

.debifs s address
Dumps a shres structure at specified address

.debifs f address
Dumps a fhandle structure at specified address

Here is a sample dump of an ifsreq structure:

: .debifs i esi
ifsreq at C1581D38:
ir_1ength(0)=00710000 ir_flags(4)=CO ir_user(5)=01 ir_sfn(6)=00FF
ir-pid(8) =00012437 ir-ppath(C)=FFFFFBBB ir_data(14)=81A30001
ir_aux1(10)=FFFFFFFF ir_aux2(28)=00000000 ir_aux3(2C)=00000000
ir_options (18) =0000 ir_rh(lC) =0000.0000 ir_fh(20) =00000000
ir-pos(24)=00000000 ir-pev(30)=00000000 ·ir_error(lA)=OOOO
ir_fsd[] (34)=00000000, (38)=00000000, (3C)=00000000, (40)=00000000, ...
ifs-pfh(74)=00000000 ifs-psft(78)=00000000 ifs-psr(7C)=00000000
ifs-proid(84)=FFFFFFFF ifs-pdb(80)=00024360
ifs_func(88)=6C ifs_drv(89)=03 ifs_hflag(8A)=00
ifs_nf1ags(8B)=60 { LFN ExtH OEM } .
ifs-pbuffer(8C)=FFFFFBBB ifs_VMHandle(90)=C3D20i54 ifs_PV(94)=C3D203EC
Client registers:

EAX(B4)=00006CCO EBX(A8)=000000CO ECX(BO)=00710000 EDX(AC)=81A30001
EDI(98)=00000003 ESI(9C)=0071F68C DS(D4)=013F ES(DO)=013F

This dump was created from SoftIce for Windows 95. Note that a register name
may be passed as an address; in actuality, any valid debugger expression may be
used for an address. The hexadecimal value in parentheses following each
member name is the offset of the member from the beginning of the structure.

Bibliography

Arun, Russ. 1994. "Chicago File System Features-Tips & Issues," Microsoft Corp.
White Paper, April 22, 1994.

Asche, Ruediger. 1994. "What's New in Windows 95 for VxD Writers?," Microsoft
Developer's Network CD-ROM, April 1994.

Auerbach, Karl. 1987. "Protocol Standard for a Netbios Service on a Tcp/Udp
Transport: Concepts and Methods," RFC 1001.

Auerbach, Karl. 1987. "Protocol Standard for a Netbios Service on a Tcp/Udp
Transport: Detailed Specifications," RFC 1002.

Baker, Art. 1997. The Windows NT Device Driver Book: A Guide for Programmers.
Prentice-Hall, Inc.

Brown, Ralf and Kyle, Jim. 1994. Uninterrupted Interrupts. (A Programmer's CD
ROM Reference to Network APIs and to BIOS, DOS, and Third-Party Calls).
Addison-Wesley Publishing Co.

Crawford, John and Gelsinger, Patrick. 1987. Programming the 80386. SYBEX, Inc.

Custer, Helen. 1993. Inside Windows NT. Microsoft Press.

DiLascia, Paul and Stone, Victor. 1996. "Sweeper," Microsoft Interactive Developer,
voU, no.1 (Spring 1996), p.16

Microsoft Corp. 1993. Microsoft MS-DOS Programmer's Reference (Version 6).
Microsoft Press.

Microsoft Corp. 1995. Windows 95 Device Driver Kit. A component of the
Microsoft Developer's Network (MSDN) subscription.

347

348 Bibliography

Microsoft Corp. 1995. Programmer's Guide to Microsoft Windows 95. Microsoft
Press.

Microsoft Corp. 1995. Microsoft Windows 95 Resource Kit. Microsoft Press.

Microsoft Corp. 1996. "Microsoft Networks 5MB File Sharing Protocol," Document
Version 6.0p.

Mitchell, Stan. 1995. "Monitoring Windows 95 File Activity in Ring 0," Windows/
DOS Developer'sjournal, vo1.6, no.7 (July 1995), p.6

Oney, Walter. 1996. Systems Programmingfor Windows 95. Microsoft Press.

Perry, Dan. 1996. "CIFS: A Common Internet File System," Microsoft Interactive
Developer, voLl, no.5 (November 1996), p.56

Pietrek, Matt. 1996. Windows 95 System Programming Secrets. IDG Books
Worldwide.

Russinovich, Mark and Cogswell, Bryce. 1997. "Examining the Windows NT File
System," Dr. Dobb'sjournal, vol.21, no.2 (February 1997).

Schulman, Andrew. 1992. "Exploring Demand-Paged Virtual Memory in Windows
Enhanced Mode," Microsoft Systems journal, vo1.7, no.8 (December 1992),
p.17.

Schulman, Andrew. 1994. Undocumented DOS, Second Edition. Addison-Wesley
Publishing Co.

Schulman, Andrew. 1994. Unauthorized Windows 95. IDG Books Worldwide.

Schwaderer, W. David. 1988. C Programmer's Guide to NetBIOS. Howard Sams &

Co.

Silberschatz, Abraham and Galvin, Peter. 1994. Operating Systems Concepts.
Addison-Wesley Publishing Co., Fourth Edition.

Bibliography 349

Internet Resources

Windows 95 File System / VxDs

O'Reilly Windows Center

Author Page: "Inside Win95 File System"

Device Driver Development Home Page

Vireo Software Home Page

bttp:llwww.ora.comlcenterslwindowsl

bttp:!lwww.sourcequest.comlwin95ijsl

bttp:!lwww.albany.netl-danortonlddk

bttp:!lwww. vireo. com

UseNet Newsgroup

CIFS/SMB

CIFS and 5MB specifications

CIFS Home Page

SAMBA download

UseNet Newsgroup

comp.os. ms-windows.programmer.vxd

ftp:!/ftp·microsoft·comideveloprldrglCIFS

bttp:llwww.microsoft·comlintdev!cifslcifs·btm

ftp:!lsamba.anu.edu.aulpublsamba

comp.protocols.smb

WDM/Kernel-Mode Drivers

WDM Home Page

WDM for Windows &
Windows NT

NT Internal Home Page

Microsoft Interactive Developer

UseNet Newsgroup

bttp:llwww.microsoft·comlbwdevlpcfuturelwdm.btm

bttp:! Iwww.microsoft.comlbwdevlpcfuturel
wdmview.btm

bttp:!lwww.ntinternals.com

bttp:!lwww.microsoft·comimind

comp.os. ms-windows.programmer. nt.kernel-mode

Symbols
\ (backslash) in filenames, 20
. (dot) in filenames, ·20
+ (plus) in filenames, 20
/ (slash) in filenames, 20

Numbers
Ox544a signature, 60
386part.par file, 205
8.3 filename convention, 20

A
access

to devices, 26-28
file system structures, 71-72
to local fIles, 21-24
to remote files, 24
to Win386.swp .file, 208-210

ActualBPS key, 34
agirig

cache blocks, 241
connections, 165

alias directory entries, 179,201
_Allocate_Device_CB_Area service, 83, 98,

338
Allocate_PM_CaILBack service, 36
allocating memory (see memory)
anonymous pipes, 64
APIs (application programming interfaces)

CloseHandle interface, 41

Index

CreateFile interface, 22, 41
file-change object services, 64
file object services, 62
IOCTL services, 70-72
mailslot object services, 66
memory-mapped file object services, 66
OperiFile interface, 22
pipe object services, 65
UnmapViewOfFile, 68, 230
Win16 file services, 77 .

arenas, 10-11

B
backslash (\) in filenames, 20
BCS encodings, 263
BDDs (block device drivers), 184-185
Begin PM App stage, 30, 38
bitness, VM, 45
block cache, 234

data structures, 239-241
memory source, 235-239
services of, 241-243

block device drivers, 184-185
blockinfo structure, 337
_BlockOnIDservice, 152, 190 .
boot monitor (see BOOTMGR monitor)
boot records, 177
BOOTMGR monitor, 30, 206,309
BOOTSECTOR structure, 177
breakpoints, V86, 34

351

352

c
cache

block cache (see block cache)
lookup (see lookup cache)
ServerNameCache, 249-251
(see also memory)

cache blocks, 239, 242
handle for, 234

Call_FSD function, 112, 117-119
file system hook, 124-137

callbacks, 34
MultiMon reference for, 325
protected-mode, 35, 45
Win32, 46-52

call down chain, 185
canonicalized path, 106
CDFS driver, 146
CDROM FSDs, 157
CDS structure, 338
change notifications (see file change

notifications)
character devices, 8, 145

MONOCFSD, 165-172
mounting!unmounting, 156, 159
registering, 153
(see also FSDs)

CharSrTable table, 159
chentry.exe utility, 341
CIFS (Common Internet File System

Protocol), 287-288
clean pages, 216
Cli_Block_Thread function, 190
client interface, ISFMgr, 5
CloseHandle interface, 41
clusters, 176
code_seg keyword, 149
codepages, 263
commands, 5MB, 283-285
Common Internet File System Protocol

(CIFS), 287-288
connecting FSDs, 160-163
ConnectNetTable array, 125, 153, 290
ConnectNetTable table, 120
CreateFile interface, 22, 41
CreateFileMapping service, 66
CreateMailSlot service, 66
CreatePipe service, 64
creating a new folder, 96
Critical Error Handler function (05h), 92

Index

Current Directory Structure structure, 338
Custer, Helen, 56

D
data_seg keyword, 149
datagrams, 280
DDBs (device descriptor blocks), 147
DEBIFS driver, 345
debugging services, 274
default preamble functions, 84
demand page loading, 225-232
device deSCriptor blocks (DDBs), 147
Device Init stage, 30, 37

establishing proVider ID, 120
device objects, 68-70, 299
DeviceIoControl interface, 14, 28, 40, 45,

70-72
direct disk reads, 177
MultiMon and, 311, 328

devices, accessing, 26-28
(see also FSDs; VxDs)

dGetVolInfo function, 111
dialects, 5MB, 283-285
directories, page, 224
directory entries, 176, 179-185

locating, 199-201
Dirty flag, 241
dirty pages, 216
disconnecting FSDs, 163-165

aging connections, 165
DISKDUMP program, 177, 243
_DismounCLocal_Drives function, 158
dismounting FSDs, 157-160
dispatch functions, 100-113

IFSMgr common dispatch routine, 91-95
IFSMgcNetFunction hooks and, 138
for ring 0 functions, 273

DLLs
loading, 9
Multiple Provider Router (MPR), 72
Network Provider, 72
segmentation and, 149

dNetFunc function, 138
DOS (see MS-DOS)
DOS mode (see v86 mode)
dot (.) in filenames, 20
dProcExit function, 138
drive-based (dis)connections, 160-164

Index

DRP (Driver Registration Packet)
structures, 185

dwloControlCode, 41
dynamic FSDs, 148
DYNAPAGE driver, 6, 210-213

E
encodings, character, 263
EnterMustComplete function, 55
event management services, 260-263
exception handlers, installing, 38
exclusive volume locks, 71
Exec_PM_Int service, 76
exporting Win32 services, 45

F
FAT file system, 175, 176-178

virtual (see VFAT driver)
fault handlers, installing, 38
FCB Name, 264
fclose function, 24
FH.EXE utility, 122
fhandle structure, 115, 121-123, 336
file allocation table (see FAT file system)
file change operation

notification of, and FSD calls, 125
objects for, 64

file create operation, ifsreq packet and, 104
file handles

global, 55
IFSMgr's management of, 6
standard, 60

file sharing
services for, 268
5MB protocol, 281-288, 331

file structure, VFAT, 202-204
file system

layered model of, 183
multithreading, 151

file system drivers (see FSDs)
file system hooks, 124-137

FSHAttr, 135
FSHEnum, 133-135
FSHook, 127-131
FSHQuery, 131-133
MultiMon reference for, 321-324

file sytem drivers, 299
File Transfer Protocol (FTP), 287

Filemon, 303
filenames, 1-3, 20

file objects and, 299
services for, 264-266
Universal Naming Convention

(UNC) , 21
files

file objects, 61-63, 298
local, 21-24
remote, 24
SFNs, 115

353

FileSystemApiHookFunction interface, 125
filtering MultiMon output, 307
]indDirEntry function, 199-201
FindFirstChangeNotification API, 64
]indPath function, 198
first-fit algorithm, 255
fopen function, 22, 24
FS_CloseFile function

FSHEnum hook, 133-135
for MONOCFSD, 170
for VREDIR, 278

FS_ConnectNetResource function, 144
FS_DeleteFile function

FSHAttr hook, 135
FSHQuery hook, 131-133

FS_EnumerateHandle function, 123, 135
FS_GetDiskInfo function, 212
FS_LockFile function, 269
FS_MountVolume function, 144

for VFAT driver, 187
FS_NamedPipeUNCPipeRequest

function, 277
FS_OpenFile function

for MONOCFSD, 169
for VFAT driver, 193-199

FS_ WriteFile function
for MONOCFSD, 171
paging drivers and, 212

FSDs (file system drivers)
calling into (see CalLFSD function)
character (see character devices)
connecting! disconnecting, 160-165
DDBs, 147
FSINFILE remote driver, 172
handle-based function table, 115
IFSMgr and, 6-s
linkage, 144, 152-165
local (see local FSDs)

354

FSDs (file system drivers) (continued)
MONOCFSD character driver, 165-172
mounting!unmounting, 154-160
multithreading, 151
network, 291-295
as providers, 120
registering, 153, 253
remote (see remote FSDs)
requests from dispatcher

functions, 112-113
static versus dynamic, 148
volume-based function table, 113
VREDIR interface with, 277-279
(see also VxDs)

FSHAttr hook, 135
FSHEnum hook, 133-135
FSHook monitor, 127-131, 206
FSHQuery hook, 131-133
FSINFlLE remote driver, 172
FSKeyl, FSKey2 cache keys, 240
FTP (File Transfer Protocol), 287
functions

G

dispatch (see dispatch functions)
handle-based table, 115
preamble (see preamble functions)
volume-based table, 113

MONOCFSD, 168
(see also under specific funciton

number)

gates, interrupt, privileges and, 35, 44
GetFilelnformationByHandle, 53-56
_GetVxDName service, 36
global handles, 55

H
handle-based function table, VREDIR, 278
handlers, interrupt (see interrupts)
handles (see file handles)
heap allocator, 246
heap management services, 254-257
heap routines, 132
HoldCnt and cache locking, 241
Hook_ V86_lnCChain service, 36, 41
HookerFlags variable, 87,90

hooks
file system hook, 124-137
IFSMgcNetFunction hook, 324
IFSMgcSetPathHook, 142-143
Int 21h, 86

Index

HTIP (Hypertext Transport Protocol), 287

I
I/O manager, WinNT, 298-300
I/O Supervisor (see lOS)
IDT (interrupt descriptor table), 35

protected-mode, 35, 40
IFS development aids, 341-346
IFS_IOCTL_21 function, 41
IFSDSPAT monitor driver, 96-99
IFSHLP.SYS driver, 37, 88-92

IFSMgr and, 91
IFSMgr, 4-8

accessing, 41-47
Client interface, 5
common dispatch routine, 91-95
dispatcher, MultiMon reference for, 320
file system hook, 321-324
FSD linkage and, 144
IFSHLP and, 91
interrupt handlers

Int 17h, 95
Int 21h, 79-92
Int 25h, 26h, 94
Int 2fh, 92-94 .

resource and file handle management, 6
ServerNameCache, 249-251
services for (see services)
system startup and, 37
v86 callback (see v86 callback)
versions of, 253
versus WinNT I/O Manager, 298-300
versus WinNT Object Manager, 296-298
VREDIR and, 276-281
Windows for Workgroups 3.11 and, 3

IFSMgr_Block service, 190
IFSMgr~ClearLoopBack service, 259
IFSMgr_FillHeapSpare service, 257
IFSMgr_FSDParsePath service, 266
IFSMgr_GeCDOSTime service, 258
IFSMgr_GeCNetTime service, 258
IFSMgr_GetHeap service, 132, 246, 255
IFSMgr_GetTimeZoneBias service, 258

Index

IFSMgclnstallFileSystemApiHook
service, 124, 130

IFSMgcKillEvent service, 262
IFSMgcLockFile service, 269
IFSMgcMetaMatch service, 265
IFSMgcNetFunction service, 124, 137-142

MultiMon reference for, 324
NetFunc hook, 139-142

IFSMgcParseOneElement service, 268
IFSMgr]arsePath service, 142-143, 266
IFSMgr]NPEvent services, 270
IFSMgcQueueEvent service, 260-262
IFSMgcReassignLockList service, 269
IFSMgcRegisterCFSD service, 145, 153
IFSMgr_RegisterHeap service, 256
IFSMgcRegisterMount service, 120, 153
IFSMgcRegisterNet service, 120, 147, 153
IFSMgcRemoveFileSystemApiHook

service, 125
IFSMgcRetHeap service, 257
IFSMgcRingO]ileIO service, 76, 101, 125,

135,271
dispatch functions for, 109

IFSMgCSchedEvent service, 260-262
IFSMgcServerDOSCall service, 101, 125,

259
IFSMgCSetLoopBack service, 259
IFSMgcSetPathHook hook, 142-143
IFSMgcSetReqHook service, 80, 83

preamble for, 139, 141
IFSMgcSetupConnection service,> 147,

160-162, 250
IFSMgc TransMatch service, 266
IFSMgcUnassignLockList service, 269
IFSMgcUnlockFile function, 269
IFSMgc Wakeup service, 190
IFSMgc Win32_GeCRingO_Handle

service, 115, 271
IFSMgC Win32DupHandle service, 271
IFSMgc Win32GetVMCurdir service, 271
IFSMgC Win32MapExtendedHandleToSFT

service, 271
IFSMgc Win32MapSFTToExtendedHandle

service, 271
ifsreq structure, 7, 334

initializing packet, 101-104
IFSWRAPS library, 344
ILB structure, 186
import modules, loading, 9

Init Complete stage, 30, 37, 47
initializing

file system, 29-41
IFSMgr heap, 254
ifsreq packet, 101-104
VFAT driver, 185

installed preamble functions, 84
installing

exception handlers, 38
interrupt handlers, 38, 44
MultiMon, 304
Netscape Navigator, 8-14

instances of Keme132 object types, 56
Int21Dispatch function, 54, 73-75
intermediate WinNT drivers, 299
inter-process communication

(IPC), 291-295
interrupts

IDT, 35
Int 17h handler, 95
Int 21h, 6

355

25h function, preamble for, 85-88
716ch function (see file objects)
71aOh function, 1
71a3h, 71a4h, 71a5h, 71a8h

functions, 83
71a6h function, 54
dispatch functions, 109
handlers, 79-92
MultiMon reference, 318
v86 handlers, 24

Int 25h, 26h handlers, 94
Int 2fh

05h function, 92
l1h function, 92
168Ah and 168Dh functions, 39
dispatch functions, 109
handler, 92-94
MultiMon reference, 319

Int 30h handler, 48
IVT (interrupt vector table), 35

Int 21h function 25h and, 86
KRNL386 handlers, installing, 38, 44
MultiMon reference for, 325
protected-mode handlers for, 43
System Critical Init stage, 30
v86 handlers for, 41

10CTL services, 70-72
lOR (I/O Request Descriptor), 189

356

ioreq structure, 333
IoreqDerefConnection function, 147, 163
lOS (I/O Supervisor), 184

linkage block (see ILB structure)
reading boot sector, 188

lOS_Register service, 185
IOS_RequestocService service, 185
IOS_SendCommand service, 185, 189
IOSMapIORSToI21 service, 191
IPC (inter-process

communication), 291-295
ichfunc member, 106
IRPs (I/O request packets), 300
Is71_A3_A4_A5_A8 function, 83
ISP (IOS Services Packet), 188
ISP _CREATE_lOP service, 188
IVT (interrupt vector table), 35, 86

K
K32Init cail, 39
K320BL (see Kernel32 objects)
Kernel32

DLL, protected-mode callbacks, 45
Init stage, 30
Initialized message, 39
objects, 53-61

device objects, 68-70
file objects, 61--63

page loader, 225-227
kernel-mode drivers (WinNT), 300
KRNL386, installing in~errupt handlers, 38,

44

L
layered file system model, 183
LeaveMustComplete function, 55
libraries (see DLLs)
linear executeable (LE) file format, 149
link objects, WinNT, 297
linkage, FSD, 144, 152-165
loading virtual devices, 69
local

files, 21-24
FSDs, 7,146

IFSMgcRegisterMount and, 120
mounting!unmounting, 154-159

hookers, 86
long directory entries, 179, 200

long filenames, 1-3, 20
lookup cache, 234, 246-249
Lower72_Preambles table, 80

default preamble functions for, 84
low-level WinNT drivers, 299

M
mailslots, 66, 292-295
main IFSMgr heap, 254
MapViewOfFile API, 68, 230, 231
MatchBasisName service, 266
matching filenames, services for, 265
MaxBPS key, 34
MAXDOSFUNC constant, 80
memory

allocating for breakpoints and
callbacks, 34

block cache and, 235-239
context, 11
DLLs and, 10

Index

heap management services, 254-257
private arena, 11
private VM, allocating, 83
shared arena, 10

memory-mapped files, 66, 229-232
menu commands, MultiMon, 307
message block format, 281-283
Microsoft Netware Networks, 147
Microsoft Networks, 147

VREDIR (see VREDIR)
miniport drivers, 184
monitor drivers, MultiMon, 305

writing, 313-315
MONOCFSD driver, 165-172
mounting

FSDs, 154-157
VFAT volumes, 187-192

_MountVol routine, 188
MountVoITable array, 120, 125, 129, 153
MPR (Multiple ProVider Router) DLL, 72
MS-DOS

API functions, 80
DOS mode (see v86 mode)
SFT and CDS structures, 337-338
time representation, 257

MultiMon utility, 4, 8, 303-310
adding to Reporter, 315-317
design and implemenation, 310-312
filtering output of, 307

Index

FSHook monitor, 127-131
monitoring NetBIOS, 281
NetFunction hook, 139-l42
paging and, 206-208
quick reference, 318-332
sampling startup timeline with, 30
tracing VREDIR operations, 288-291
VCache services and, 243-245

Multiple Provider Router (MPR) DLL, 72
multithreading, 151

per-thread data, 339
must-complete sections, 55

N
Name Cache, 199
named pipes, 64, 295
names

device, 26-28
file (see filenames)

NCB structure, 279
Net time specification, 258
NetBIOS

MultiMon reference for, 330
VREDIR interface with, 279-281

NetFunction hook, 137-l42
MultiMon reference for, 324

NetIDs array, 120
Netscape Navigator, loading, 8-14
Network Control Block (NCB)

structure, 279
network FSDs, IPC for, 291-295
network FSDs (see remote FSDs)
Network Provider DLLs, 72
network redirectors

functions for (llxxh), Int 2fh, 92-94
IFSMgcNetFunction hook, 137"':'142

networks
FSDs (see remote FSDs)
management services for, 259
VREDIR and, 275-277

new folder, creating, 96
NT Executive, 297
nt32 application, 22
NWREDIR driver, 147
NWSERVER driver, 147

o
object manager, WinNT, 296-298
object type instances, 56

357

OpenFile interface, 22, 24
opening files, VFAT driver and, 193-199
ORD_OOOI (see VxDCall function)

. output, MultiMon (see MultiMon utility)

p
_PageAttach service, 12
]ageCommit service, 214,226
PAGEFlLE driver, 210-213
PageReserve service, 227, 230
_PagerRegister service, 214
pagers, 213-224
PAGERS utility, 214
pages, memory (see memory)
PAGESWAP driver, 210-213
paging

demand page loading, 225-232
memory-mapped files and, 229-232
page tables and directories, 224
pager action functions, 216
Pager DeSCriptor (PD) structure, 213
Win95 paging file, 205-213

ParsedPath structure, 106, 267
Path Cache, 199
PathElement structure, 107
pathnames, 20, 106
paths

check routine, 142
hooking, 142~ 143
multithreading~ 151
parsing services, 266-268

]athToShRes function, 112, 156, 163
PD (Pager Descriptor) structure, 213
PDB (process database), 57
per-thread data, 339
per-VM data, 338
Pietrek, Matt, 57,348
pipe objects, 64
pipes, named, 295
PIPESTDX driver, 135, 145
plug-and-play services, 270
plus (+) in filenames,. 20
port drivers, 184
preamble functions, 80, 83-88

IFSMgr..,:SetReqHook, 139
for Int 21h function 25h, 85~8

private memory arena, 11
privileges, interrupt gates and, 35, 44
process database (PDB), 57

358

protected mode, 6
accessing IFSMgr from, 43-46
callbacks, 35, 45
IDT for, 35, 40
interrupt handlers (see interrupts)

providers, FSDs and, 120

Q
QPAGERS driver, 217

R
real-mode drivers, 185
Register_ Win32_Services service, 45
registering

block cache, 241-243
FSDs, 153, 253
mailslots, 292
pagers, 225
VFAT driver, 185

registry, MultiMon and, 310
remote

drives, IFSMgcRegisterNet and, 120
files, 24
FSDs, 8,146

FSINFILE driver, 172
ReplaceGlobalEnv call, 39
resource block structure, VFAT, 191-192
resources, IFSMgr's management of, 6
ring 0

S

accessing IFSMgr from, 46
converting address, 36
dispatch point and, 101
file I/O services, 271-272
IFSMgr clients, 6

Schulman, Andrew, 46, 348
SCSI device architecture, 184
segmentation, VxD; 148--151
select calls, Winsock, 16
ServerNameCache, 249-251
service providers, 120
services

block cache, 241-243
debugging, 274
event management,. 260-263
file-change object, 64
file object, 62

file sharing, 268
filename-related, 264-266
heap management, 254-257
IOCTL, 70-72

Index

ffiailslot object, 66
memory-mapped file object, 66,68
network management, 259
paging and, 210-213
path parsing, 266-268
pipe object, 65
plug and play, 270
for registering FSDs, 253
ring 0 file I/O, 271-272
time management, 257-259
Win16 file services, 77
Win32 support, 270

SeCPM_Inc Vector service, 35, 40
Sec V86_Inc Vector service, 35
SFNs (system file numbers), 115
SFT (System File Tables) structure, 337
shared memory arena, 10
sharing files (see file sharing)
shell resources, 112, 113, 121-123, 335
short directory entries, 179,200
shres structure, 335
_SignalID service, 152
slash (/) in filenames, 20
5MB file sharing protocol, 281-288

MultiMon reference for, 331
sockets, 14-18
space character in filenames, 20.
spare heap, 257
spare IFSMgr heap, 254
sparse memory allocator, 235
SPIs (service provider interfaces), 120
SPOOLER driver, 145
SR.EXE utility, 121
SrTable table, 158
standard devices, 21,.26.
standard handles, 60
startup, file system, 29-41
static FSDs, 148
static variables, 101
subst command, 3
surfing operation, Web (example), 14-18
swapping versus paging, 206, 215

(see also paging)
symbolic link objects, WinNT, 297
synchronization services, VMM, 262

Index

Sys VM Init stage, 37
System_Control service, 39
System Critical Init stage, 30, 36
system file numbers (see SFNs)
System File Tables (SFT) structure, 337
system startup, 29-41
System VM Init stage, 30
system volume table, 113
SysVolTable array, 113-115, 154

T
Table_2f11 table, 94
tainted pages, 216
Take_ VCache_Page (see VCache_

RelinquishPage)
time management services, 257-259
toolbar, MuitiMon, 307
tracing VREDIR operators, 288-291
tracks, '176
TSDs (type-specific drivers), 184
type-specific drivers (TSDs), 184

u
UNC (Universal Naming Convention), 21

UNC-based (dis)connections, 162, 165
Unicode character encodings, 263
Unicode filenames, 264
uniform resource locators CURLs), 26
UniToBCSPath service, 133
Universal Naming Convention (UNC), 21
unloading virtual devices, 70
UnmapViewOfFile API, 68,230
UpdateServerNameCache function, 250
Upper8E]reambles table, 80
URLs (uniform resource locators), 26
use_info_1 structure, 161
_UseAdd function, 160-162
_UseDel function, 163

V
V86callback, 90
V86 mode,S

accessing IFSMgr from, 41
breakpoint storage, 34
IDT for, 35
Int 21h handlers, 24
interrupt handlers (see interrupts)

V86_lnCChain function, 91

variables
IFSHLP ' SYS , 90
static, 101

VCache driver
block cache and, 235
lookup cache (see lookup cache)
monitoring, 243-245

VCACHE, MultiMon reference for, 326

359

_ VCache_CloseLookupCache service, 248
_ VCache_CreateLookupCache service, 248
VCache_Deregister service, 242
VCacheJindBlock service, 242
_ VCache_Lookup service, 249
VCache_Register service, 241
VCache_RelinquishPage service, 237-239
_ VCache_UpdateLookup service, 249
VCache_UseThisPage service, 239
VCOND device

HM_ENUMHANDLE bug, 135
VCOND driver, 145
VDEF driver, 146
VDSs (vendor supplied drivers), 184
vendor supplied drivers (VDSs), 184
versions

IFSMgr, 253
VFAT driver, 175

versions, Windows95, xi
VFAT driver, 21, 146

creating resource block
structure, 191-192

file structure, 202-204
initializing/registering, 185
mounting, 187-192
opening VFAT files, 193-199
versions of, 175

virgin pages, 216
virtual

console driver (see VCOND driver)
devices (see VxDs)
machine, bitness of, 45
pages, 220
redirector (see VREDIR)

Virtual-86 mode (see v86 mode)
VMM

MultiMon reference for, 329
pagers, 213-224
synchronization services, 262

VMM_Replace_GlobaLEnvironment
function, 39

360

VMPOil driver, 37
VNETBIOS driver, 279
volinfo structure, 334
VOLSR.VXD, 122
volume-based function table, 113

MONOCFSD, 168
volume locks, 71

FSD calls and, 125
volume tracking drivers (VTDs), 184
VREDIR driver, 147

IFSMgr interface, 276-281
NetBIOS interface, 279-281
network components and, 275-277
tracing operations, 288-291 .

VSERVER driver, 6,147
VTDs (volume tracking drivers), 184
VWIN32 driver, 6

DeviceloControl interface and, 40,
70-72

MuitiMon reference for, 328
registering pagers, 225
Win32 callback and, 46

VWIN32_Int32Dispatch function, 73-75
vxd.h library, 342-344
VxDCall function, 46, 47
VXDLDR_LoadDevice service, 69
VxDs

DEBIFS driver, 345
device objects, 68-70
initialization order, 30
IOCTL services, 70-72
lOS (see lOS)
kernel-mode drivers versus, 300
loainglunloading, 69
Multimon and, 305
segmentation, 148-151
Win32 services, 45
writing a monitor driver, 313-315
(see also FSDs)

W
W386_Gec Win32_API function, 45
Wakeup_Thread function, 190
WDM (Win32 Driver Model), 301
Web surfing operation (example), 14-18
Win16

API, 6
file services, 77

Index

Winl6/Protect mode (see protected mode)
Win32

APls, 6, 53-61
callback, 46-52
Driver Model (WDM), 301
MultiMon and, 311
page loader, 227-228
services, 45

Win32 callback for, 47-52
support services for, 270
time specification, 258

Win32/Protect mode (see protected mode)
win386.swp file, 208-210
Windows 3.x, paging file for, 205
Windows 95

block device drivers, 184-185
directory entries, 179-185
Int 21h functions and, 86
kernel-mode drivers in, 301
pagers, 213-224
paging file, 205-213
WDM and, 301

Windows for Workgroups 3.11
IFSMgr and, 3
Int 21h functions and, 86

Windows NT
I/O Manager, 298-300
kernel-mode drivers, 300
NT Executive, 297
Object Manager, 296-298
object types, 56
protected-mode callbacks, 46
WDM and, 301

WNetCanceiConnection2 API, 163
WNetConnectionDialogl API, 160
writing a monitor driver, 313-315
WSOCK, 14
WSOCK32, 14

x
x_ ConvertHandieToK320bject

function, 56, 58
x_GetExtendedError function, 54
x_MaybeChangePSP function, 54
x_RefHandleToK320bject function, 58
x_RestorePSP function, 54
x_ Win32HandieToK320bject

function, 58-60

About the Author
Stan Mitchell is a consulting software engineer in Silicon Valley. He specializes in
driver and system level programming on the Wintel platform. Stan earned a Bach
elor of Science degree from Wayne State University in 1970 and a Master of
Science from University of Waterloo in 1976.

He entered the microcomputer field in 1979. His early projects emphasized logic
design of Single-board microcomputers and micro-controllers. The most memo
rable project during this period was the design of a full-SCSI host adapter with
8048 firmware at Adaptec, Inc.

After the introduction of the IBM-PC, Stan shifted his focus to MS-DOS system soft
ware and then to MS-Windows. His recent projects have included developing a
NetBIOS layer over TCP/IP for NetManage and a Windows 95 file system monitor
for Xerox/XSoft.

Stan and his wife Maggie, make Milpitas, CA, their home. In his spare time, he
likes to romp with his dogs (Yanni and Munchkin), playa serious game of table
tennis, and browse the shelves of nearby bookstores.

Colophon
The animal featured on the cover of Inside the Windows 95 File System is a repre
sentative of one of the more than 65,000 species of mollusks. There are six classes
of mollusk. The largest of these classes is the gastropod. The coiled shell on the
animal on the cover of this book is typical of many, but not all, gastropods. This
mollusk may be an Astraea Heliotropium, a native of the waters surrounding New
Zealand. The Astraea Heliotropium grows to a size of three to four inches, and
has a lovely iridescent purplish-pink shell.

No species shows as much diversity of shape and size as the mollusk. Despite this
diversity, most mollusks have the same basic body plan. The word mollusk means
"soft bodied." The soft mollusk body is composed of a combined head-foot
containing the central nervous system and a layer of tissue called the mantle that
covers the internal organs. The mantle also secretes the shell that covers the
mollusk's body. The shell is part of the animal and grows with it.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced with Quark
XPress 3.3 using the ITC Garamond font.

The inside layout was designed by Edie Freedman and Nancy Priest and imple
mented in FrameMaker 5.0 by Mike Sierra. The text and heading fonts are ITC
Garamond Light and Garamond Book. The illustrations that appear in the book
were created in Macromedia Freehand 5.0 by Chris Reilley. This colophon was
written by Clairemarie Fisher O'Leary.

More Titles from O'Reilly
Windows

Inside the Windows 95 Registry
By Ron Petrusha
1st Edition August1996
594 pages, includes diskette
ISBN 1-56592-170-4

This book covers remote registry access,
differences between the Win95 and NT
registries, and registry backnp. You'll also
find a thorough examination of the role
that the registry plays in OLE, coverage of

undocumented registry services, and more. Petrusha shows pro
grammers how to access the Win95 registry from Win32, Win16,
and DOS programs, in C and Visual Basic. VxD sample code is
also included. The book includes a diskette with registry tools
such as REGSPY, a program that shows exactly how Windows
applications, libraries, and drivers use settings in the registry.

Windows NT in a Nutshell
By Eric Pearce
1st EditionJune 1997 (est.)
342Pages, ISBN 1-56592-251-4

Anybody who installs Windows NT, creates a
user, or adds a printer is an NT system

WINDOWS NT administrator (whether they realize it or
IN \ Nl I Sill'! L not). This book organizes NT's complex

,~""'''''"'- 4.0 GUI interface, dialog boxes, and multi-
tude of DOS-shell commands into an easy
to-use quick reference for anybody who

uses or manages an NT system. It features a new tagged callout
approach to documenting the GUI as well as real-life examples of
command usage and strategies for problem solving, with an empha
sis on networking. Windows NT in a Nutshell will be as useful to the
single-system home user as it will be to the administrator of a
1,OOO-node corporate network.

Inside the Windows 95 File System
r--====:!IIIEI By Stan Mitchell

1st Edition May 1997
400 pages, ISBN 1-56592-200-X

This book details the Windows 95 File
System, as well as the new opportunities
and challenges it brings developers. Over
the course of the book, the author pro
gressively strips away the layers of the

9" Win95 File System, which reside in a
component named Installable File System

Manager or IFSMgr, prOviding the reader with information crucial
for effective File System development. Its "hands-on" approach
will help developers become better equipped to make design
decisions using the new Win95 File System features.

Windows Annoyances

workarounds.

By DavidA. Karp
1st Edition June 1997
300 pages (est.), ISBN 1-56592-266-2

Windows Annoyances, a comprehensive
resource for intermediate to advanced
users of Windows 95 and NT 4.0, details
step-by-step how to customize your
Win951NT operating system through an
extensive collection of tips, tricks, and

You'll learn how to customize every. aspect of these systems, far
beyond the intentions of Microsoft. An entire chapter on the reg
istry explains how to back up, repair, compress, and transfer por
tions of the registry for personal customization. Win95 users will
discover how Plug and Play, the technology that makes Win95 so
hardware-compatible, can save time and improve the way you
interact with your computer. You'll also learn how to benefit from
the new 32-bit software and hardware drivers that support such
features as improved multitasking and long filenames.

O'REILLym
TO ORDER: 800-998-9938 • order@ora.com • http://www.ora.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION:' 800-998-9938 • 707-829-0515 • info@ora.com

C and C++
C++: The Core Language

By Gregory Satir & Doug Broum
1st Edition October 1995 ,c ~ 230_, ISBN 1,5659H1~X

">e'o,,'"~. C++: The Core Language is a first book
for C programmers transitioning to C+ +,
an object -oriented enhancement of the
C programming language. Designed to
get readers up to speed quickly, this

, ... ,.&~ .•• ,. book thoroughly explains the important
concepts and features and gives brief overviews of the rest of the
language. Covers features common to all C+ + compilers, includ
ing those on UNIX, Windows NT, Windows, DOS, and Macintosh.

Practical C++ Programming
By Steve Oualline

1st Edition September 1995
584 pages, ISBN 1-56592-139-9

Fast becoming the standard language
of commercial software development,
C+ + is an update of the C progranuuing
language, adding object-oriented features
that are very helpful for today's larger
graphical applications.

Practical C++ Programming is a com
plete introduction to the C+ + language for the beginning pro
grammer, and also for C programmers transitioning to C++.
Topics covered include good progranuuing style, C+ + syntax
(what to use and what not to use), C+ + class design, debugging
and optimization, and common programming mistakes. At the
end of each chapter are a number of exercises you can use to
make sure you've grasped the concepts. Solutions to most are
provided.

Practical C Programming
r--~~~P'"l By Steve Oualline

3rd Editionjuly 1997 (est)
475 pages, ISBN 1-56592-306-5

There are lots of introductory C books,
but this new edition of Practical C
Programming is the one that has the no
nonsense, practical approach that has
made Nutshell Handbooks® so popular. C
programming is more than just getting the

syntax right. Style and debugging also playa tremendous part in
creating programs that run well and are easy to maintain.

The third edition of Practical C Programming teaches how to
create programs that are easyto read, debug, and maintain. It
features more extensive examples, offers an introduction to
graphical development environments, describes Electronic
Archaeology (the art of going through someone else's code), and
stresses practical rules. The book covers several Windows com
pilers, in addition to UNIX compilers. Progl)Ull examples conform
to ANSI C.

Checking C Programs with lint
By Ian R Darwin
1st Edition OCtober 1988
82 pages, ISBN 0-937175-30-7

The lint program checker has proven time
and again to be one of the best tools for
finding portability problems and certain
types of coding errors in C programs. lint
verifies a program or program segments
against standard libraries, checks the code

for common portability errors, and tests
the programming against some tried and true gnidelines. tinting
your code is a necessary (though not sufficient) step in writing
clean, portable, effective programs. This book introduces you to
lint, gnides you through running it on your programs, and helps
you interpret lint's output.

O'REILLym
TO ORDER: 800-998-9938 • order@ora.com • http://www.ora.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 " 707-829-0515 • inio@ora.com

Programming Perl, Second Edition
r---==:-_~ By Larry Wall, Tom Christiansen,

& Randal L. Schwartz
2nd Edition September 1996
676 pages, ISBN 1-56592-149-6

Programming Perl, Second Edition, is
coauthored by Larry Wall, the creator of
Perl. Perl is a language for easily manipu
lating text, files, and processes. I! provides

Ii --.-._,,-_._. a more concise and readable way to do
many jobs that were formerly accom

plished (with difficulty) by programming with C or one of the
shells. This heavily revised second edition contains a full expla
nation of Perl version 5.003.

Learning Perl, Second Edition
By Randal L. Schwartz
Foreword by Larry Wall
2nd Edition july 1997
400 pages, ISBN 1-56592-284-0

This second edition of Learning Perl,
with a foreword by Perl author Larry Wall,
fully covers Perl, Version 5. In this new
edition, program examples and exercise
answers have been radically updated to

reflect typical usage under Perl 5, and nmnerous details have
been added or modified. In addition, you'll find new sections
introducing Perl references and CGI programming.

Learning Perl, Second Edition is ideal for system administra
tors, programmers, and anyone else wanting a down-to-earth
introduction to this useful language. Written by a Perl trainer, its
aim is to make a competent, hands-on Perl programmer out of
the reader as quickly as possible. The book takes a tutorial
approach and includes hundreds of short code examples, along
with some lengthy ones. The relatively inexperienced program
mer will find Learning Perl easily accessible; For a comprehen
sive and detailed guide to advanced programming with Perl, read
O'Reilly's companion book, Programming Perl, Second Edition.

Perl
CGI Programming on the World Wide Web

By Shishir Gundavaram
1st EdItion Marcb 1996 at 450pages, ISBN 1-56592-168-2

This book offers a comprehensive explana
tion of CGI and related techniques for peo

~%"'M. pIe who hold on to the dream of prOviding
_:::.~: their own information servers on the Web.

I! starts at the beginning, explaining the
value of CGI and how it works, then moves swiftly into the subtle
details of programming.

Perl 5 Desktop Reference
By johan Vromans
1st Edition February 1996
44pages, ISBN 1-56592-187-9

This is the standard quick-reference guide for
the Perl programming language. I! provides a
complete overview of the language, from vari
ables to input and output, from flow control to
regular expressions, from functions to docu
ment formats-all packed into a convenient,

carry-around booklet. Updated to cover Perl version 5.003 ..

Mastering Regular Expressions
By jeffrey E. F Friedl
1st Edition january 1997
368pages, ISBN J-56592-257-3

Regular expressions, a powerful tool for
manipulating text and data, are found in
sCripting languages, editors, programming
enviromnents, and specialized tools. In
this book, author Jeffrey Friedl leads you
through the steps of crafting a regular
expression that gets the job done. He

examines a variety of tools and uses them in an extensive array
of examples, dedicating an entire chapter to Perl.

O'REILLY"
TO ORDER: 800-998-9938 • Ord(lf@ora.com • http://www.ora.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@ora.com

How to stay in touch with O'Reilly

1. Visit Our Award-Winning Web Site
http://WWw.ora.com/

*"Top 100 Sites on the Web" -PC Magazine
*"Top 5% Web sites" -Point Communications
*"3-Star site" - The McKinley Group

Our web site contains a library of comprehensiveproduct
information (including book excerpts and tables of
contents), downloadable software, background articles,
interviews with technology leaders, links to relevant sites,
book cover art, and more. File us in your Bookmarks or
Hotlist!

2. Join Our Email Mailing Lists
New Product Releases
To receive automatic email with brief descriptions of all
new O'Reilly products as they are released, send email to:
listproc@online.ora.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe ora-news ''Your Name"of "Your
Organization" (for example: subscribe ora-news Kris
Webber of Fine Enterprises)

O'Reilly Events
If you'd also like us to send information about trade show
events, special promotions, and other O'Reilly events,
send email to:listproc@online.ora.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe ora-events "Your Name" of "Your
Organization"

3. Get Examples from Our Books
via FTP
There are two ways to access an archive of example files
from our books:

Regular FTP
• ftp to:

ftp.ora.com
(login: anonymous
password: your email address)

• Point your web browser to:
ftp://ftp.ora.coml

FTPMAIL
• Send an email message to:

ftpmail@online.ora.com
(Write "help" in the message body)

4. Visit Our Gopher Site
• Connect your gopher to:

gopher.ora.com

• Point your web browser to:
gopher:llgopher.ora.coml

• Temet to:
gopher.ora.com
login: gopher

5. Contact Us via Email
order@ora.com

To place a book or software order online. Good for North
American and international customers.

subscriptions@ora.com
To place an order for any of our newsletters or
periodicals.

books@ora.com
General questions about any of our books.

software@ora.com
For general questions and product information about our
software. Check out O'Reilly Software Online at
http://software.ora.comlfor software and technical
support information. Registered O'Reilly software users
send your questions to: website-support@ora.com

cs@ora.com
For answers to problems regarding your order or our
products.

booktech@ora.com
For book content technical questions or corrections.

proposais@ora.com
To submit new book or software proposals to our
editors and product managers.

internationai@ora.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:
http://www.ora.comlwww/order/country.html

O'Reilly & Associates, Inc.
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938

(6am to 5pm PST)
FAX 707-829-0104

O'REILLY~
TO ORDER: 800-998-9938 • order@ora.com • http://www.ora.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • inio@ora.com

Titles from O'Reilly
Please note that upcoming titles are dispklyed in ita/ie.

WEBPROGRAMMING SYSTEM ADMINISTRATION WEB REVIEW STUDIO BERKELEY 4.4 SOFTWARE
Apache: The Definitive Guide Building Internet Firewalls SERIES DISTRIBUTION
Building Your OWn Web Computer Crime: A Gif Auimation Studio 4.4BSD System Manager's

Conferences Crimefighter's Handbook Shockwave Studio Manual
Building Your OWn Website Computer Security Basics

WINDOWS
4.4BSD User's Reference Manual

Building Your Own Win-CGI DNS and BIND; 2nd Ed.
Dictionary of PC HardWare and 4.4BSD User's Supplementary

Programs . Essential System Administration, Data Commuuications Terms Documents
OOI Progranuuing for the World 2nd Ed.

Inside the Windows 95 ~try 4.4BSD Programmer's Reference
Wide Web Gettiog Connected: The Internet Manual

Designing for the Web at 56Kand Up Inside the Windows 95 File 4.4BSD Programmer's
IITML: The Definitive Guide, Linnx Network Administrator's System Supplementary DoCuments

2nd Ed. Guide Wmdows Annoyances X Prognunming
JavaScript: The Definitive Guide, Managing Internet Information Windows NT File System Vol. 0: X Protocol Reference

2nd Ed. Services Internals Manual
Learoing Perl Managing NFS and NIS Windows NT in a Nutshell Vol. 1: Xlib Progranuuing Manual
Progranuuing Perl, 2nd Ed. Networking Personal Computers PROGRAMMING Vol. 2: Xlib Reference Manual
Mastering Regular Expressions with TCPIIP . Advanced Oracle PIISQL Vol. 3M: X Window System User's
WebMaster in a Nutshell Practical UNIX & Internet Progranuuing Guide, Motif Edition
Web Security & Commerce Security, 2nd Ed. Applying RCS and SCCS Vol. 4M: X Toolkit Intrinsics
web Client Programming with PGP: Pretty Good Privacy C+ +: The Core Language PrognunmingManual,Motif

Perl sendmall, 2nd Ed. Checking C Progrants with lint Edition
World Wide Web Journal sendmall Desktop Reference DCE Security Progranuuing Vol. 5: X Toolkit Intrinsics

USING THE INTERNET
System Performance 1\ming Distributing Applications Across Reference Manual
TCPIIP Network AdminiStration DCE & Windows NT Vol. 6A: Motif Programming

Sntileys
termcap & tenninfo Encyclopedia of Graphics File Manual

The Future Does Not Compute
Using & Managing UUCP Formats, 2nd Ed. VoL6B: Motif Reference Manual

The Whole Internet User's Guide
& Catalog Volume 8: X Window System Guide to Writing DCE Vol. 6C: Motif Tools

Administrator's Guide Applications Vol. 8 : X Wmdow System
The Whole Internet for Win 95

Web Security & Commerce lex &yacc Administrator's Guide
Using Email ElIectively

UNIX
Managing Projects with make Programmer's Supplement for

Bandits on the Information Mastering oracle Power Objects ReleaseG
Superhighway Exploring Expect

Oracle Design: The Definitive X User Tools
JAVA SERIES Learning VBScript Guide The X Wmdow System in a
Exploring Java Learoing GNU Emacs, 2nd Ed. Oracle PerfOrnlance Tuning, 2nd Nutshell
Java AWf Reference Learoing the bash Shell Ed. CAREER & BUSINESS
Java Fundamental Classes Learoing .the Korn Shell Oracle PIISQL Progranuuing Building a Successful Software

Reference Learning the UNIX Operating Porting UNIX Software Business
Java in a Nutshell System POSIX Programmer's Guide The Computer User's Survival
Java Language Reference Leaniing the vi Editor POSIX.4: Progranuuing for the Guide
Java Network Programming Linnx in a Nutshell Real World Love Your Jobl
Java Threads Making TeX Work Power Progranuuing with RPC Electrouic Publishing on CD-
Java Virtoal Machine Linnx Multimedia Guide Practical C Progranuuing ROM

SOFTWARE
Running Linnx; 2nd Ed. Practical C++ Programming TRAVEL sea UNIX in a Nutshell Progranuuing Python WebSite™l.l sed & awk, 2nd Edition Travelers' Tales: Brazil

WebSite Professional™ TeVl'k Tools
Progranuuing with curses Travelers' Tales: Food

Building Your OWn Web UNIX in a Nutshell: System V
Progranuuing with GNU Software Travelers' Tales: France

Conferences Edition
Pthreads Progranuuing Travelers' Tales: Gutsy Women

WebBoard™ UNIX Power Tools
Software Portability with lmake, Travelers' Tales: India

2nd Ed. PolyForm™ Usingcsh & tsch Understanding DCE
Travelers' Tales: Mexico

Statisphere TM When You Can't Find Your UNIX Travelers' Tales: Paris

SONGLtNE GUIDES System Administrator
Understanding Japanese Travelers' Tales: San Francisco Information Processing

Travelers' Tales: Spain NetActivism NetResearch Writil1g GNU Emacs Extensions iJNIx Systems Progranuuing for
Net Law NetSuccess SVR4 Travelers' Tales: thailand

NetLearuing Net1'ravel Travelers' Tales: A Woman's

Net Lessons World

O'REILLY'"
TO ORDER:8D0-998-9938 • order@ora.com • http://www.ora.com/

OUR PRDDUCtSARE AVAILABLE AT A BdoKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • iilfo@ora.com

International Distributors
UK, Europe, Middle East
and Northern Africa (except
France, Germany, Switzerland, &
Austria)
INQUIRIES
International Thomson Publishing
Europe
Berkshire House
168-173 High Holbom
London WCIV 7M, United Kingdom
Telephone: 44-171-497-1422
Fax: 44-171-497-1426
Email: itpint@itps.co.uk
ORDERS
International Thomson Publishing
Services, Ltd.
Cheriton House, North Way
Andover, Hampshire SPI0 5BE,
UniledKingdom
Telephone: 44-264-342-832

(UK orders)
Telephone: 44-264-342-806

(outside UK)
Fax: 44-264-364418 (OK orders)
Fax: 44-264-342761· (outside UK)
UK & Eire orders: itpuk@itps.co.uk
International orders: itpint@itps.co.uk

France
Editions Eyrolles
61 bd Saint-Germain
75240 Paris Cedex 05
France
Fax: 33-01-44-41-11-44

FRENCH LANGUAGE BOOKS
All countries except Canada
Phone: 33-01-44-41-46-16
Email: geodif@eyrolles.com

ENGLISH LANGUAGE BOOKS
Phone: 33-01-44-41-11-87
Email: distribution@eyrolles.com

Australia
WoodsLane Ply. Ltd.
7/5 Vuko Place, Warriewood NSW 2102
p.o. Box 935, Mona Vale NSW 2103
Australia
Telephone: 61-2-9970-5111
Fax: 61-2-9970-5002
Email: info@woodslane.com.au

Germany, Switzerland,
and Austria
INQUIRIES
O'ReillyVerlag
Balthasarstr. 81
D-50670 KoIn
Germany
Telephone: 49-221-97-31-60-0
Fax: 49-221-97-31-60-8
Email:anrragen@oreUJy.de

ORDERS
International Thomson Publishing
Konigswinterer S~ 418
53227 8oun, Germany
Telephone: 49-228-97024 0
Fax: 49-228-441342
Email:order@oreilly.de

Asia (except Japan & India)
INQUIRIES
International Thomson Publishing Asia .
60 Albert Street #15-01
Albert Complex
Singapore 189969
Telephone: 65-336-6411
Fax: 65-336-7411
ORDERS
Telephone: 65-336-6411
Fax: 65-334~ 1617
thomson@signet.com.sg

O'REILLY"

New Zealand
WoodsLane New Zealand Ltd.
21 Cooks Street (P.O. Box 575)
Wanganui, New Zealand
Telephone: 64-6-347-6543
Fax: 64-6-345-4840
Email: lDfo@woodslane.com.au

Japan
O'Reilly Japan, Inc.
Kiyoshige Building 2F
12-Banchi, Sanei-cho
Shinjuku-ku
Tokyo 160 Japan
Telephone: 81-3-3356-5227
Fax: 81-3-3356-5261
Email: kenji@oracom

India
Computer Bookshop (India) PVT .. Il'D.
190 Dr. D.N. Road, Fort
Bombay 400 001
India
Telephone: 91-22-207-0989
Fax: 91-22-262-3551
Email: cbsbom@giasbm01.vsnl.net.in

The Americas
O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472 U.S.A.
Telephone:. 707-829-0515
Telephone: 800-998-9938 (U.S. &
Canada)
fax: 707-829-0104
Email: order@oracom

Southern Africa
International Thomson Publishlng
Southern Africa
Building 18, Constantia Park
240 Old Pretoria Road
P.O. Box 2459
Halfway House, 1685 South Africa
Telephone: 27-11-805-4819
Fax: 27-11-805-3648

TOOROER: 800-998:9938 • ordBr@ora.com • http://WWw.OrB.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@ora.com

~
.....I -W
~
""' o

Whkh hook did this card come from? What is your job description?
o System Administrator o Programmer
o Network Administrator
o Web Developer
o Other _____________ _

o Educatorlfeacher
Where did you buy this book?

U Bookstore 0 Computer Store
o Direct from O'Reilly 0 Class/seminar
f.J Bundled with hardware/software
o Other ____________ _

What operating system do you use?
o UNIX 0 Macintosh
o Windows NT 0 PC(Windows/DOS)
o Other ____________ _

Name Company/Organization

Address

City State Zip/Postal Code Country

Telephone Internet or other email address (specify network)

~ineteenth centnry wood engraving
)f a bear from the O'Reilly &
\ssociates Nntshell Handbook®
'fsing & Managing UUCP.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472-9902

11.1 ••• 1.1 •• 1 •• 11 ••• 1 •• 1.11.1 •• 1.1 •• 11 ••••• 1.1 •• 11.1

PLACE

STAMP

HERE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Windows

Q'REILLyrM

Inside the Windows 95 File System
With so many types of files to support, Windows 95 has a big job to do. It
handles native Windows 95 files , supports the legacy file systems of earlier
Windows systems, and interacts smoothly with files managed by the Windows
NT operating system. It must also support third-party file systems, some of which

are not even designed yet. Windows 97 enhancements are on their way, too, with increased
support for Internet access. The system component that manages this complex set of
interactions is the Installable File System Manager, or IFSMgr. Understanding IFSMgr and its
associated utilities and drivers is a daunting task for the Windows 95 programmer.

Although Microsoft has documented the Installable File System (IFS) in the Windows 95 device
driver kit, many developers have felt the need for more detailed and complete information.
Inside the Windows 95 File System picks up where that documentation leaves off. This book
takes a hands-on approach to the file system, providing example programs, 'background
information, and utilities that let you monitor file system activity. By reading this book, you
can see the file system the way a construction foreman sees a building, before the floors and
walls are erected, while the plumbing and electrical systems are still in clear view.

In addition to providing a detailed look at IFSMgr, Inside the Windows 95 File System
describes:

• The three Application Programming Interfaces (APIs) appropriate to the operating
environment: interrupt 21h, Win16, and Win32

• File system drivers (including VFAT, the Virtual FAT File System Driver) , and how they
interact with IFSMgr

• VCache services and data structures

• System pagers and the paging file

• VREDIR, the virtual redirector, the Microsoft Networks Client, including discussion of
NetBIOS and 5MB protocols

An enclosed disk contains source code for a number of file system drivers and useful utilities
including MultiMon, a Windows 95 internals snooping tool developed by the author.

This book is essential for engineers and their managers who want to take advantage of the
new capabilities of Windows 95.

US $32.95
I SB N 1-565 9 2-2 0 0-X CAN $46.95

90000 RepKover.
~

9 781565 922006 6 Printed on Recycled Paper

