
Microsoft"
Windows95

.' ___ .. ' e

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. Companies, names, and data used in examples herein are
fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or
by any means, electronic or mechanical, for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual prop
erty rights covering subject matter in this document. The furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property rights.

Library of Congress Cataloging-in-Publication Data
Programmer's guide to Microsoft Windows 95 1 by Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-55615-834-3
1. Operating systems (Computers) 2. Microsoft Windows 95.

I. Microsoft Corporation.
QA76.76.063P7677 1995
005.265--dc20

Printed and bound in the United States of America.

23456789 MLML 098765

95-13785
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your, local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

PostScript is a trademark of Adobe Systems, Inc. TrueType is a registered trademark of Apple Computer,
Inc. Sound Blaster is a trademark of Creative Labs, Inc. PANOSE is a trademark of ElseWare Corporation.
Hayes is a registered trademark of Hayes Microcomputer Products, Inc. Intel is a registered trademark of
Intel Corporation. OS/2 and PS/2 are registered trademarks of International Business Machines Corporation.
1-2-3 and Lotus are registered trademarks of Lotus Development Corporation. Microsoft, Microsoft Press,
the Microsoft Press logo, MS, MS-DOS, Win32, Win32s, Windows, and the Windows logo are registered
trademarks and Windows NT is a trademark of Microsoft Corporation. Arial is a registered trademark of The
Monotype Corporation PLC. NetWare and Novell are registered trademarks of Novell, Inc. Unicode is a
trademark of Unicode, Inc.

iii

Contents

Introduction .. xvii
Conventions .. xviii
Acknowledgments .. xviii

Part 1 Understanding· Windows 95

Article 1 Windows 95 Architecture. .. 3
About Windows 95 Architecture . 3
Software Components. 3

Virtual Machine Manager. 3

Virtual Devices . 4
Device Drivers. 5
Dynamic-Link Libraries .. 5

MS-DOS - Based Applications 6
Windows-Based Applications .. 7

Shell Features and Extensions . 7
Shell Namespace .. 8
Shortcuts. 8

Shell Extensions. 8
File Viewers and Parsers '. 9
Control Panel Applications . 9
Screen Savers. .. 10

System Features. .. 10
Registry .. 10
Fonts ... 10
Printing. 11

File System .. , 12
Plug and Play .. .' ... 13

iv Contents

Win32 Application Programming Interface 14
Graphics Device Interface. 15
Window~anagement ... 15
System Services . 17
~ultimedia . 18
Remote Procedure Calls. 19
Extension Libraries ... 20
Win32 Software Development Kit 21

OLE .. 22
Telephony Application Programming Interface. 23
~essaging Application Programming Interface. 25
Pen ... 26
International Applications. 27

Article 2 Creating Great Applications. 29
About Creating Great Applications 29
File Information. 29
Long Filenames . 31
Context ~enus .. 32
Icons ... ' 33
Shortcuts ... 33
Clipboard Data Transfer Operations . 34
Cornmon Controls and Dialog Boxes . 34

Cornmon Controls ... 35
Cornmon Dialog Boxes .. 37
Other Development Considerations. 38

Windows 95 Help .. 38
~ultiple Instances ... 39
Pen Input. .. 40
Application Installation Guidelines 40
Registry ' 41
Windows 95 Logo Requirements 42

General Requirements for Applications 42
Personal Computer Systems ... 45
Hardware Peripheral Devices 46

Contents v

Article 3 Win32 Limitations in Windows 95 , " 51
About Windows 95 System Limitations. 51
General Limitations. 51
Window Management (User) .. 52

Graphics Device Interface (GDI) 53
System Services (Kernel) ... 58
Multimedia. 62

Article 4 Version Differences, " 63
About Version Differences. 63

General Window Management Differences. 63
Dialog Boxes. 65
Buttons ... 65

Edit Controls . 66
List Boxes . 66
Combo Boxes ... 67
Menus ... 68
System Bitmaps and Colors . 68

System Metrics . 69
Parameter Validation. 70

Part 2 Developing Applications for Windows 95

Article 5 Using Common Controls and Dialog Boxes , " 73
About Using Common Controls and Dialog Boxes 73
Appearance of Windows 95 Explorer 73
Designing the Sample Application. 74

Creating the Common Control Windows 76
Sizing Issues . 83
Parsing and Storing the Data . 84

Using the Common Dialog Boxes 85
Handling Notification Messages .. 91
Adding Pop-up Context Menus. 96

Incorporating Property Sheets ... ~ 97

vi Contents

Article 6 Using the Registry. .. 101
About Using the Registry . 101
Introducing the Registry . 102
Registering Application State Infonnation. 103
Registering Application Path Infonnation . 104
Registering Filename Extensions . 105

Registering Data Files for Creation . 106
Registering Icons. 106

Registering Icon Commands .. 107
Registering Uninstall Infonnation 108

Article 7 Dragging and Dropping. .. 113
About Dragging and Dropping .. 113

General OLE Concepts " 113
Adding Drop Source Capabilities . 115

Adding Drop Target Capabilities . 116
Other Drag and Drop Considerations . 118

Scrap Files . 118
Clipboard Fonnats for Shell Data Transfers. 119
Additional Infonnation. 122

Reference. 122

Article 8 Creating Multimedia Applications. .. 125
About Multimedia Applications 125

Future Directions in Multimedia 125
Introduction to Writing Multimedia Applications 126

Classes of Applications . 126
Video Perfonnance Guidelines 127
General Programming Guidelines 129

Article 9 Displaying and Using Pen Data " 133
About Displaying and Using Pen 133

Overview of Pen Services. 134
Data Collection and Recognition 134
Display of Data . 135

Contents vii

Functions in the Pen Display Library 136

Creating Pen Data Objects .. 137
Scaling Pen Data .. 137
Displaying Pen Data ... 138

Examining Pen Data .. 139
Editing or Copying Pen Data. .. 140

Compressing Pen Data. 141
Using Inkset Objects .. 141

AN_PKPD Sample Application. 142

Reading, Writing, and Compressing Pen Data. 142
Scaling and Trimming Pen Data. .. 147
Displaying the Pen Data .. 152

Enabling Your Applications For Pen-Based Systems 159
Handwriting Edit Controls ... 159

Lens Buttons .. 160

Article 10 Installing Applications .. 161
About Installing Applications. 161
Installation Program . 161

Designing the Installation Program 162
Determining the Configuration. 163
Copying Files .. 163

Using a WININIT.INI File to Replace DLLs in Windows 95 165
Setting Up the Environment .. 166

Setting Initialization Files . 166
Adding Entries to the Registry .. 166
Supporting Context Menu Operations. 168

Adding the Application to the Start Button 168
Using Filename Extensions. 169
Register Document Types 172

Network Issues . 173
CD-ROM Considerations .. 175
Installing Fonts . 175

Removing an Application .. 176
Quick Checklist for Planning an Installation Program . 178

viii Contents

Part 3 Extending the Windows 95 Shell

Article 11 Shell's Namespace .. 181
About the Shell's Namespace ... 181

Folders and File Objects . 181
Item Identifiers and Pointers to Item Identifier Lists . 182

Folder Locations ... 183
Item Enumeration. 183
Display Names and Filenames 184

Object Attributes and Interfaces . 184
Using the Shell's Namespace ... 185

Using PIDLs and Display Names 185
Browsing for Folders . 189

Reference . 190

Interfaces and Member Functions. 190
Functions ... 201
Structures, Macros, and Types 211

Article 12 Shell Extensions. 219
About Shell Extensions .. 219

Shell Extension Terms .. 220

Registry Entries for Extending the Shell 221
How the Shell Accesses Shell Extension Handlers 226
Context Menu Handlers ... 228
Drag and Drop Handlers .. 231
Icon Handlers ... 232

Property Sheet Handlers .. 233
Copy Hook Handlers ... 235
Data Handlers : 236
Drop Handlers .. 236

Reference ... 237

Interfaces and Member Functions 237
Structures .. 247

Contents ix

Article 13 Application Desktop Toolbars .. 251
About Application Desktop Toolbars 251

Sending Messages . 251
Registration .. 252

Size and Position .. 252
Autohide Application Desktop Toolbars 253
Notification Messages .. 254

Using Application Desktop Toolbars 255
Registering an Application Desktop Toolbar 255
Setting the Size and Position 256
Processing Notification Messages 258

Reference. 260
Function and Structure. 260

Messages . 262
Notification Messages. 266

Article 14 Shell Links. .. 269
About Shell Links . 269

Link Resolution ... 270
Link Files .. 271
Item Identifiers and Identifier Lists \. 273

Using Shell Links .. 274
Creating a Shortcut to a File . 274

Resolving A Shortcut. 275
Creating a Link to a Nonfile Object 277

Reference ... 278

Interfaces and Member Functions. 278

Article 15 Taskbar Notification Area. .. 289
About the Taskbar Notification Area 289

Sending Messages . 289
Receiving Callback Messages. 290

Using the Taskbar Notification Area 290

Adding and Deleting Icons . 290
Receiving Mouse Events .. 292

Reference. 293
Function and Structure. 293
Messages . 294

x Contents

Part 4 Using Windows 95 Features

Article 16 File Viewers. .. 299
About File Viewers ... 299

Adding or Replacing File Viewers . 300
File Viewer Registration .. 301

Quick View Program ... 305
File Viewer Structure and Implementation 310
File Viewer User Interface Guidelines 314
Drag and Drop Functionality 321

Sophisticated File Viewers .. 321
Reference ... 322

Interfaces and Member Functions 322
Structure ... 325

Article 17 File Parsers. .. 327
About File Parsers .. 327

Adding or Removing File Parsers 328
File Parser Functions ... 328
Restartable Parsing .. 330
Word Processing Sections ... 330
Spreadsheet Sections ... 333
Database Sections ... 335
Bitmapped Sections ' 335
Vector Graphics Sections .. 337

Writing a File Parser -......... 338
Reference ... 340

Functions ... 340
Helper Functions .. 344
Macros .. 370
Structures .. 371

Constants ' ... 392

Contents xi

Article 18 Briefcase Reconcilers 399
About Briefcase Reconcilers .. 399

Reconciliation ... 399
Creating a Briefcase Reconciler . 400
User Interaction . 401
Embedded Objects ... 402
Residues . 403

Reference .. .- 403
Interfaces and Member Functions. 403

Article 19 Passwords Control Panel. .. 411
About the Passwords Control Panel. 411

Adding a Property Sheet Page. 412
Managing Passwords ... 413
Change Password Dialog Boxes 416

Using the Passwords Control Panel . 417
Reference. 419

Article 20 Device I/O Control. .. 425
About Device 110 Control .. 425
Input and Output Control in Applications 425

Opening the VxD .. 426
Sending Commands .. 427
Closing a VxD .. 428
Asynchronous Operations ... 429
Using VWIN32 to Carry Out MS-DOS Functions 429

Supporting Input-Output Control in VxDs 431
Loading and Opening the VxD 432
Processing Control Codes ... 433
Asynchronous Operations ... 433

Reference. 434
Structures . 434
System Message ... , 436
Service .. 437

xii Contents

Article 21 System Policies . .. 439
About System Policies ... 439

Registry Settings ... 439
Policy Editors and Downloaders 440

Architecture ... 440
Policy Primitives .. 441

Policy Information ... 441
Default User and Computer Names 442

Policy Downloading .. 442
Policy Editor User Interface .. 443
Template File Format. ... 445

Categories .. 446

Policies .. 446
Policy Parts ... 447
Part Types .. 447

Action Lists ... 451
Comments .. 452

Conditional Expressions .. 452
Policy File Format .. 453

Control Codes ... 454
Computers Key .. 455
Groups and GroupData Keys 455
Users Key .. 456

Misc Key .. 456
Installable Policy Downloaders .. 456

Article 22 Tool Help Functions 459
About Tool Help Functions ... 459

Snapshots of the System ... 459

Process Walking ... 460
Thread Walking ... 461
Module Walking ... 461
Heap Lists and Heap Walking 462

Contents xiii

Using the Tool Help Functions. 462
Accessing the Tool Help Functions. 463
Taking a Snapshot and Viewing Processes. 464
Traversing the Thread List . 466
Traversing the Module List. 467

Reference. 468

Functions . 468
Structures .. 476

Part 5 Using Microsoft MS-DOS Extensions

Article 23 MS-DOS Extensions .. 483
About MS-DOS Extensions .. 483

Windows 95 Version of MS-DOS 483
File System Support. 484
Command Interpreter for Command 488
Long Command Lines .. 488

Reference ... 489

Functions .. 489
Structures . 497

Article 24 Long Filenames. .. 501
About Long Filenames .. 501

Long Filenames and the Protected-Mode FAT File System. 501
Filename Aliases . 503
File and Directory Management . 505

File Searches . 506
Down-Level Systems ... 506
Last Access Date . 507

Reference. 508
Functions . 510
Structures .. 540

xiv Contents

Article 25 Exclusive Volume Locking. 545
About Exclusive Volume Locking 545

Direct Access ... 545
Exclusive Use Lock .. 546

Level 0 Lock .. 548
Locking Hierarchy ... 549

Swap File .. 553
Virtual Devices .. 553
Volume-Locking Guidelines 554

Special Considerations for 32-bit Windows-Based Applications 555
Special Considerations for 16-bit Windows-Based Applications 555
Special Considerations for MS- DOS - Based Applications 555
Functions ... 556

Reference ... 556
Functions ... ' 556

Article 26 Program Information File Management . 567
About Program Information File Management. 567

Program Information Files ... 567
Properties .. 569
Property Sheets .. 570

Property Libraries ... 571
Properties and Virtual Devices 571

Reference ... 572
Functions .. ' ' 572
Structure ... 581

Article 27 Virtual Machine Services. 583
About Virtual Machine Services 583

Window Title ... 583
Close-Aware Applications ... 584

Reference ... 586
Window Title Functions ... 586
Close-Aware Application Functions 589

Contents xv

Part 6 Applications for International Markets

Article 28 International Guidelines. .. 593
About International Guidelines. 593
Windows 95 Platform Strategy. 593

WE Platform ... 594
ME Platform. .. 594
FE Platform. .. 594

International Language Requirements 595
Localization . 595
National Language Support Functions 596

Multilingual Content Support . 596
Using the Far-Eastern Platform 598

Using the Middle-Eastern Platform. 598

Article 29 Using Double-Byte Characters. .. 599
About Using Double-Byte Characters 599

Code Pages ... 599
Double-Byte Character Sets 600

Using Double-Byte Characters in an Application 601

Article 30 Using Input Method Editors .. 603
About Using Input Method Editors. 603

Handling Character Input . 603

Managing the !ME ... 604
Managing the IME Window 606

Monitoring the Composition . 606
Customizing the User Interface. 608
Setting the !ME Context . 613
Compatibility . 614

Article 31 Writing Applications for Middle-Eastern Languages. 615
About Writing Applications for Middle-Eastern Languages 615

Middle-Eastern Language Elements 615

System Resources and Text Handling 616

xvi Contents

Part 7 Advanced Programming

Article 32 Thunk Compiler. 621
About the Thunk Compiler ... 621

Thunking Mechanics ... 622

Thunking Benefits and Drawbacks 623
Generic Thunking Mechanism .. 626
Using the Thunk Compiler .. 627

Script Files ... 629
Procedure for Adding Flat Thunks 631
Implementing a Thunking Layer 632

Translating Pointers Outside Thunks 634
Late Loading .. 635

Troubleshooting .. 636

Reference ... 637
16-bit WOW Functions ... 637
32-bit WOW Functions ... 641

Index '. 649

xvii

Introduction
The Programmer's Guide to Microsoft® Windows® 95 presents a series of articles
covering programming issues specific to the Windows 95 operating system. This
guide provides conceptual and reference information that is not available in any
other document. Topics range widely from issues regarding the Win32® applica
tion programming interface (API) to how to take advantage of Windows 95 features
to extend existing MS-DOS®-based applications. To better focus this range of
topics, the guide has been divided into these seven parts:

• Part 1, "Understanding Windows 95," discusses the Windows 95 architecture
and the API differences between version 3.x-based and Windows 95-based
applications.

• Part 2, "Developing Applications for Windows 95," discusses common controls
and dialog boxes, the registry, and dragging and dropping. This part also
discusses how to create applications for multimedia and pen, and it provides an
overview about installing applications.

• Part 3, "Extending the Windows 95 Shell," discusses the shell's namespace,
shell extensions, application desktop toolbars, shell links, and the taskbar
notification area.

• Part 4, "Using Windows 95 Features," discusses file viewers, file parsers,
briefcase reconcilers, the Passwords Control Panel, device 110 control, system
policies, and tool help functions.

• Part 5, "Using Microsoft MS-DOS Extensions," discusses MS-DOS extensions,
long filenames, exclusive volume locking, program information file (PIP)
management, and virtual machine services.

• Part 6, "Applications for International Markets," discusses guidelines for
developing international applications. This part also covers the use of double
byte characters and input method editors (IMEs), and it outlines how to write
Middle-Eastern applications.

• Part 7, "Advanced Programming," discusses the Thunk Compiler, a tool that
assists developers in porting existing applications to the Win32 API.

xviii Introduction

Conventions
The following terms, text formats, and symbols are used throughout the printed
documentation for Windows 95.

Convention

Bold

Italic

ALL UPPERCASE

Monospace

Windows directory

Meaning

Indicates the commands, words, or characters that you
type in a dialog box or at the command prompt.

Indicates a placeholder for information or parameters
that you must provide. For example, if a procedure asks
you to type a filename, you must type the name
of the file.

Indicates a directory, filename, or acronym. You can
use lowercase letters when you type directory names or
filenames in a dialog box or at the command prompt,
unless otherwise indicated for a specific application or
utility.

Represents examples of screen text or entries that you
might type at the command line or in initialization
files.

Refers to the Windows 95 system directory tree. This
can be \ WINDOWS or whatever directory name you
specified when installing Windows 95.

Acknowledgments
Certain articles in this guide are based on white papers published originally in
Microsoft Systems Journal, Microsoft Developer Network News, and the
Microsoft Developer Network Development Library. These papers have been
updated and appear here courtesy of their original authors.

PAR T 1

Understanding
Windows 95

Article 1 Windows 95 Architecture. 3

Article 2 Creating Great Applications. 29

Article 3 Win32 Limitations in Windows 95 . 51

Article 4 Version Differences . 63

ARTICLE 1

Windows 95 Architecture

About Windows 95 Architecture
This article introduces the types of software components that you can build for
Microsoft® Windows® 95, and it briefly describes the features of Windows 95
that those components can use.

Software Components
The operating environment for Windows 95 consists of a computer's hardware
devices and the following software components:

• Virtual machine manager (VMM).

• Virtual devices (VxDs).

• Read-only memory (ROM) basic input and output system (BIOS).

• Installable device drivers and terminate-and-stay-resident (TSR) programs.

• 16- and 32-bit Windows dynamic-link libraries (DLLs).

• Microsoft® MS-DOS®-based applications ..

16- and 32-bit Windows-based applications.

Virtual Machine Manager
The virtual machine manager (VMM) is the 32-bit protected-mode operating
system at the core of Windows 95. Its primary responsibility is to create, run,
monitor, and terminate virtual machines. The VMM provides services that manage
memory, processes, interrupts, and exceptions such as general protection faults.
The VMM works with virtual devices, 32-bit protected-mode modules, to allow
the virtual devices to intercept interrupts and faults to control the access that an
application has to hardware devices and installed software.

3

4 Programmer's Guide to Microsoft Windows 95

Both the VMM and virtual devices run in a single, 32-bit, flat model address space
at privilege level 0 (also called ring 0). The system creates two global descriptor
table (GDT) selectors, one for code and the other for data, and uses the selectors in
the CS, DS, SS, and ES segment registers. Both selectors have a base address of
zero and a limit of 4 gigabytes (GBs), so all the segment registers point to the same
range of addresses. The VMM and virtual devices never change these registers.

The VMM provides multiple-threaded, preemptive multitasking. It runs multiple
applications simultaneously by sharing CPU (central processing unit) time between
the virtual machines in which the applications run. The VMM is also nonreentrant.
This means that virtual devices must synchronize access to the VMM services.
The VMM provides services, such as semaphores and events, to help virtual devices
prevent reentering the VMM.

For more information about the VMM, including descriptions of the services that
it provides to virtual devices, see the documentation included in the Microsoft
Windows 95 Device Driver Kit (DDK).

Virtual Devices
Virtual devices (VxDs) are 32-bit programs that support the device-independent
VMM by managing the computer's hardware devices and supporting software.
VxDs support all hardware devices for a typical computer, including the
programmable interrupt controller (PIC), timer, direct memory access (DMA)
device, disk controller, serial ports, parallel ports, keyboard, and display adapter.
A VxD is required for any hardware device that has settable operating modes or
retains data over any period of time. In other words, if the state of the hardware
device can be disrupted by switching between multiple virtual machines or
applications, the device must have a corresponding VxD.

Some VxDs support software, but no corresponding hardware device. In general,
a VxD can provide any kind of services for the VMM and other virtual devices.
Windows 95 allows the user to install new virtual device drivers to support an add
on hardware device or provide some system-wide software service.

A VxD can also provide application programming interface (API) functions for
applications running in virtual 8086 mode or protected mode. These functions can
give applications direct access to the features of the VxD.

Windows 95 includes a device input and output control (IOCTL) interface that
allows Microsoft® Win32®-based applications to communicate directly with
VxDs. Applications typically use this interface to carry out selected MS-DOS
system functions, to obtain information about a device, or to carry out input and
output (I/O) operations that are not available through standard Win32 functions.
For more information about the device IOCTL interface, see Article 20, "Device
I/O Control."

Article 1 Windows 95 Architecture 5

For more information about virtual devices, see the documentation included in the
Windows 95 DDK.

Device Drivers
A Windows device driver is a DLL that Windows uses to interact with a hard
ware device, such as a display or keyboard. Rather than access devices directly,
Windows loads device drivers and calls functions in the drivers to carry out actions
on the device. Each device driver exports a set of functions; Windows calls these
functions to complete an action, such as drawing a circle or translating a keyboard
scan code. The driver functions also contain the device-specific code needed to
carry out actions on the device.

Windows requires device drivers for the display, keyboard, and communication
ports. Other drivers may also be required if the user adds optional devices to the
system.

The Windows 95 DDK provides independent hardware and software vendors
(IHVs and ISVs) with the resources to build device drivers and VxDs that are
compatible with the Windows 95 operating system. The resources include a con
figurable development environment, documentation, tools, and header files and
libraries for several device types. The Windows 95 DDK contains the following
components:

• Header files and libraries for building device drivers and VxDs.

Sample source code for device drivers and VxDs.

16- and 32-bit versions of the driver development tools.

Dynamic-Link Libraries
Dynamic linking provides a mechanism for linking applications to libraries of
functions at run time. The libraries reside in their own executable files and are not
copied into an application's executable file as with static linking. These libraries
are "dynamically linked" because they are linked to an application when it is loaded
and executed rather than when it is linked. When an application uses a DLL, the
operating system loads the DLL into memory, resolves references to functions in
the DLL so that they can be called by the application, and unloads the DLL when it
is no longer needed. Dynamic linking can be performed explicitly by applications or
implicitly by the operating system.

DLLs are designed to provide resources to applications. Many applications can use
the code in a DLL, meaning that only one copy of the code is resident inthe system.
Also, it is possible to update a DLL without changing applications that use the DLL
as long as the interface to the functions in the DLL does not change.

6 Programmer's Guide to Microsoft Windows 95

Software developers can extend the Windows environment by creating a DLL that
contains routines for performing operations and then making the DLL available to
other Windows-based applications (in addition to internal Windows routines).
DLLs most often appear as fIles with a .DLL fIlename extension; however, they
may also have an .EXE or other fIlename extension.

Windows 95 supports 32-bit DLLs as well as 16-bit DLLs that were written for
Windows version 3.x. For a discussion of the issues involved in mixing 16- and
32-bit components in the Windows 95 environment, see Article 32, "Thunk
Compiler."

For more information about dynamic-link libraries, see the documentation included
in the Microsoft Win32 Software Development Kit (SDK).

MS-DOS - Based Applications
Windows 95 supports applications written for MS-DOS. Each MS-DOS-based
application can run as a full-screen application, or it can run in a window on the
Windows 95 desktop.

The system can run multiple MS-DOS - based applications at the same time.
To do so, it creates a separate virtual machine (VM) for each MS-DOS-based
application and shares the microprocessor among the MS-DOS VMs and the
system VM (which contains all Windows-based applications). A VM can run an
MS-DOS-based application in either the virtual 8086 mode or protected mode of
the microprocessor.

Although most MS-DOS-based applications run fIne in a window or as a full
screen application, some may not. To ensure absolute backward compatibility for
all MS-DOS - based applications, Windows 95 provides a separate operating mode
called "single MS-DOS application mode." When in this mode, Windows 95 runs
only one MS-DOS-based application at a time. No Windows-based applications
run in that mode; in fact, none of the graphical user interface (GUI) components
of the system are even loaded.

Windows 95 supports the complete set of MS-DOS system functions and interrupts
and provides extensions that permit MS-DOS - based applications to take advantage
of long fIlenames and other Windows 95 features, such as exclusive volume lock
ing, virtual machine services, and program information fIle management.

Disk utilities and other applications that directly modify fIle system structures,
such as directory entries, must request exclusive use of the volume before making
modifIcations to the structures. Windows 95 provides a set of input and output
control (IOCTL) functions to manage exclusive volume use. Exclusive use prevents
applications from inadvertently changing the fIle system while a disk utility is trying
modify it.

Article 1 Windows 95 Architecture 7

Virtual machine services enable Microsoft MS-DOS-based applications to take
advantage of features provided by Windows 95 when the applications run in a
window. MS-DOS-based applications can retrieve and, optionally, set the
title of the window in which they run. Virtual machine services also allow
MS-DOS-based applications to periodically check the state of an internal close
flag and terminate if the flag is set. Windows 95 sets this flag when the user
chooses the Close command from the system menu of the window in which the
MS-DOS-based application runs. Close-aware applications enable the Close
command, which gives the user an alternate way to exit the application and close
the window.

Program information file management lets Microsoft Windows - based applications
create, examine, and modify program information files (.PIF files). These files
contain the detailed information needed by the operating system to prepare virtual
machines for running Microsoft MS-DOS - based applications. Installation pro
grams and other applications can open the files, retrieve and set information in the
files, and display the information to the user for editing.

For more information, see the following articles in this guide: Article 23,
"MS-DOS Extensions," Article 24, "Long Filenames," Article 25, "Exclusive
Volume Locking," Article 26, "Program Information File Management," and
Article 27, "Virtual Machine Services."

Windows-Based Applications
Windows 95 supports 16-bit applications written for Windows version 3.x as well
as 32-bit applications that use the Win32 or Microsoft® Win32s® API. For 16-bit
applications, Windows 95 preserves the cooperative multitasking model used in
Windows version 3.x; that is, all 16-bit applications share the same virtual address
space, the same message queue, and the same thread of execution. By contrast,
each 32-bit Windows-based application has its own address space, a private
message queue, and one or more threads of execution. In addition, each 32-bit
thread is preemptively multitasked.

All new applications should be 32-bit applications developed using the Win32
API. For information about porting a 16-bit application to Win32, see Article 4,
"Version Differences."

Shell Features and Extensions
Windows 95 includes a number of component object module (COM) interfaces
and functions that applications can use to enhance various aspects of the shell.
This section describes the aspects of the shell that applications can enhance.

8 Programmer's Guide to Microsoft Windows 95

Shell Namespace

Shortcuts

A namespace is a collection of symbols, such as file and directory names or
database keys. The Windows 95 shell uses a single hierarchical namespace to
organize all objects of interest to the user, including files, storage devices, printers,
and network resources-in short, anything that can be viewed using Windows
Explorer. The namespace is similar to the directory structure of a file system
except that the namespace contains objects other than files and directories.

The Windows 95 shell provides a COM interface and several functions that allow
an application to browse the namespace and retrieve information about the objects
in the namespace. For more information about the shell's namespace, its COM
interface, and related functions, see Article 11, "Shell's Namespace."

A shortcut (also called a shell link) is a data object that contains information used
to access another object located anywhere in the shell's namespace. A shortcut
allows an application to access an object without having to know the current name
and location of the object. Objects that can be accessed through shortcuts include
files, folders, disk drives, printers, and network resources.

Windows 95 includes a COM interface that an application can use to implement
shortcuts. For example, an application that manipulates documents might use
shortcuts to provide the user with a list of the most recently opened documents.
For more information about shortcuts, see Article 14, "Shell Links."

Shell Extensions
An application developer can extend the Windows 95 shell in a number of different
ways. Extending the shell involves adding information to the system registry or
writing an OLE COM in-process server (InProcServer32).

A context menu handler is a type of shell extension that modifies the contents of a
context menu. The system displays a context menu when the user clicks or drags
an object using mouse button 2. The context menu contains commands that apply
specifically to the object that was clicked or dragged. .

Most context menus have a Properties command that displays the property sheet
for the selected item. A property sheet contains information about an object in a set
of overlapping windows called pages. A property sheet handler is a shell extension
that adds pages to a system-defined property sheet or replaces pages in a Control
Panel application's property sheet.

Article 1 Windows 95 Architecture 9

The system uses icons to represent files in the shell's namespace. By default, the
system displays the same icon for all files that have the same filename extension.
An icon handler can override the default and set the icon for a particular file.

A copy hook handler is an shell extension that approves or disapproves the moving,
copying, deleting, or renaming of a file object.

For more information about extending the shell, see Article 12, "Shell Extensions."

File Viewers and Parsers
The shell includes a Quick View command that allows the user to view the contents
of a file without having to run the application that created it and without even
requiring the presence of the application. When the user chooses Quick View
from the File menu or from the context menu for a file, the system runs the file
viewer associated with the selected file. The shell uses the filename extension to
determine which viewer to run.

A file viewer provides the user interface for viewing a file. It is an OLE component
object implemented in an in-process server DLL. You can provide file viewers
for new file formats or replace an existing viewer with one that includes more
functionality. For more information about file viewers, see Article 16, "File
Viewers."

A file viewer works in conjunction with a file parser, which is a DLL that provides
the low-level parsing needed to generate the "quick view" of a file of a given type.
You can extend the file viewing capabilities of Windows 95 by supplying additional
file parsers. Each file parser is responsible for a specific type or class of file and
is associated with a display engine. For example, you can allow a quick view to
be generated for a .DOC file by creating a file parser to support the file type and
associating the file parser with the word processor display engine. For more
information about file parsers, see Article 17, "File Parsers."

Control Panel Applications
A Control Panel application is a special purpose DLL that lets the user configure
the Windows environment. Even though Windows provides a number of standard
Control Panel applications, you can create additional applications to let the user
examine and modify the settings and operation modes of specific hardware and
software. For information about creating Control Panel applications, see the
documentation included in the Win32 SDK.

10 Programmer's Guide to Microsoft Windows 95

Screen Savers
A screen saver is an application that the system automatically starts when the
mouse and keyboard have been idle for a period of time. A screen saver avoids
damage to the display caused by static images on the screen or conceals sensitive
information left on the screen. The property sheet for the display allows the user
to select from a list of screen savers, specify how much time should elapse before
the screen saver is started, configure screen savers, and preview screen savers.
For information about how to create a screen saver, see the documentation included
in the Win32 SDK.

System Features

Registry

Fonts

This section describes some of the main features of Windows 95 that you can use in
your Windows-based applications.

The registry is a central storage location that contains current information about
the computer hardware configuration, installed software applications, settings and
preferences of the current user, and associations between types of files and the
applications that access and manipulate their contents. Much of the information
that was stored in initialization files in previous versions of the Windows operating
system is now stored in the Windows 95 registry.

Mentions of the registry occur in several places in documentation for Windows
and Win32. The Windows Interface Guidelines for Software Design has a chapter
containing a general discussion of the registry. A chapter in the Microsoft Windows
95 Resource Kit explains how to integrate an application into Windows 95 by
storing information in the registry. This guide also includes an article that addresses
registry coding issues for a program that installs a software application. Finally, the
documentation included in the Win32 SDK provides a detailed description of the
functions and structures that provide'an application with access to the registry.

Fonts are used to draw text on video displays and other output devices. In Windows
95, afont is a collection of characters and symbols that share a common design.
The three major elements of this design are typeface, style, and size. A typeface is
a set of characters that share 'common characteristics, such as stroke width and the
presence or absence of serifs. For example, Arial® and Courier are each typefaces.
The font style refers to font characteristics, such as italic and bold. Font size refers
to the point size of a font. Applications may use the Font common dialog box
to display available fonts and allow users to select the typeface, style, and size.

Printing

Article 1 Windows 95 Architecture 11

Windows 95 provides functions and related structures that allow applications to
enumerate the available fonts on the system and select a specific font.

In addition to enumerating and selecting fonts, Windows 95 provides a set of
functions and related structures that allow developers to perform the following
tasks:

• Use a stock font to draw text.

Check the text capabilities of a device.

Set the text alignment.

• Draw text from different fonts on the same line ..

• Rotate lines of text.

• Retrieve character outlines of a TrueType font.

Use portable TrueType metrics to achieve a WYSIWYG (what you see is
what you get) effect.

Use P ANOSETM numbers of a TrueType font.

Create and install customized fonts.

For more information about fonts, see the documentation included in the
Win32 SDK.

Windows 95 provides a complete set of functions that allow applications to print
on a variety of devices: laser printers, vector plotters, raster printers, and fax
machines. One of the chief features of these functions is their support of device
independence. Instead of issuing device-specific commands to draw output on a
particular printer or plotter, an application calls high-level functions from graphics
device interface (GDI). The various printing components in Windows 95 interact
with GDI to convert the high-level commands to raw device commands and spool
the print job to the printer.

In addition to GDI, the following Windows 95 components are involved in printing.

Device driver A Windows DLL that supports the Windows device driver
interface (DDI). A device driver generates raw device
commands when it processes calls to DDI functions made
by GDI. The commands are processed by the printer when it
prints the image.

12 Programmer's Guide to Microsoft Windows 95

File System

Print spooler

Print processor

Port monitor

The primary component of the printing interface. The print
spooler is a Windows executable file that manages the
printing process. Print management involves retrieving
the location of the correct printer driver, loading the driver,
converting high-level function calls to journal records,
storing the journal records on disk as a print job, and so on.

A Windows DLL that reads and converts journal records into
DDI calls.

A Windows DLL that passes the raw device commands over
the network, through a parallel port, or through a serial port to
the device.

Windows 95 provides functions that allow applications to monitor many aspects
of the printing process. Applications may enumerate and obtain information about
these aspects:

Monitors for a specified server.

Print jobs for a specified printer.

Ports that are available for printing on a specified server.

Printer drivers installed on a specified printer server.

Available printers, print servers, domains, or print providers.

Print processors installed on the specified server.

Data types that a specified print processor supports.

For more information about printing, see the documentation included in the
Win32 SDK.

The file allocation table (FAT) file system is the original file system of MS-DOS.
Except for the introduction of 16-bit FAT in MS-DOS version 3.0, this file system
has remained essentially unchanged since MS-DOS version 2.0. Windows 95,
however, introduces the following major change: the enhancement of the FAT file
system to support long filenames. A long filename is a name for a file or directory
that exceeds the standard 8.3 filename format.

The protected-mode FAT file system is the default file system used by Windows 95
for mass storage devices, such as hard disk and floppy disk drives. Protected-mode
FAT is compatible with the MS-DOS FAT file system, using file allocation tables
and directory entries to store information about the contents of a disk drive. The
protected-mode FAT file system also supports long filenames, storing these names
as well as the date and time that the file was created and the date that the file was
last accessed in the FAT file system structures.

Article 1 Windows 95 Architecture 13

Win32-based applications automatically have access to long filenames through the
use of the Win32 file management functions as well as the common dialog boxes
used to open and save files. Applications should support long filenames and use
long filenames for displaying all document and data filenames in the shell, in title
bars, in dialog boxes and controls, and with icons.

For more information about the file system, see Article 23, "MS-DOS Extensions"
and Article 24, "Long Filenames."

Plug and Play
Plug and Play is the name of a new industry standard for personal computers that
lets personal computers (PCs) and attached hardware work together automatically.
The goal of the Plug and Play technology is to make it easier than ever before for
users to change the hardware configuration of their computers.

The most obvious beneficiaries of Plug and Play are the users of mobile PCs, whose
hardware configurations change whenever they use a PCMCIA (Personal Computer
Memory Card International Association) card or docking station. Every PC user,
though, will benefit from Plug and Play; anyone who has ever had trouble setting up
a new modem, sound card, or compact disc read-only memory (CD-ROM) drive
understands the need for this technology.

Most of the Plug and Play architecture is implemented in new hardware, updated
device drivers, and Windows itself; for most Windows-based applications, little
extra code is required to support Plug and Play. A Windows-based application
should be enabled for Plug and Play if it uses hardware thClt could be reconfigured,
added to a system, or removed from a system while the application is running.
Any Windows-based application that can be run on a mobile PC or that depends on
the state of the monitor or other external devices should check for changes to the
system hardware and take appropriate action when changes occur.

The system uses the following messages to send information about configuration
changes to Windows applications.

WM_DEVICECHANGE

WM_DISPLA YCHANGE

WM_POWERBROADCAST

Tells applications about device changes. It is the
most important Plug and Play message. The wParam
parameter of this message contains an event code
that an application can use to react to the change.
For example, the DBT_DEVICEQUERYREMOVE
event code asks an application for permission to
remove a device. An application can return TRUE
to grant permission or FALSE to deny it.

Alerts applications to changes in the resolution of
the screen.

Tells applications about changes in the system's
power status, including pending standby requests.

14 Programmer's Guide to Microsoft Windows 95

For more information about these messages, see the documentation included in the
Win32 SDK. For information about the Plug and Play system architecture and how
to write Plug and Play device drivers, see the Windows 95 DDK. For information
about the design of Plug and Play hardware, see the Hardware Design Guide for
Microsoft Windows 95.

Win32 Application Programming Interface
The Microsoft Win32 API allows applications to exploit the power of 32 bits
using the Windows family of operating systems. The Win32 functions, messages,
and structures form a consistent and uniform API for all of Microsoft's 32-bit
platforms: Windows 95, Microsoft® Windows NTTM, and Windows version 3.1 with
Win32s. Using the Win32 API, you can develop applications that run successfully
on all platforms while still being able to take advantage of unique features and
capabilities of any given platform.

With a few minor exceptions, Microsoft ensures consistent and uniform behavior
of the Win32 API across all platforms. Differences in the implementation of the
Win32 functions depend on the capabilities of the underlying features of the
platform. The most notable difference is that some Win32 functions carry out their
tasks only on the more powerful platforms. For example, security functions are only
available on the Windows NT operating system. Most other differences are system
limitations, such as restrictions on the range of values or the number of items a
given function can manage. For more information about system limitations, see
Article 3, "Win32 Limitations in Windows 95."

The Win32 API provides a wide and varied set of functions, messages, and
structures that give your 32-bit applications access to the unique features and
capabilities of the Windows operating system. The Win32 API can be grouped
into these functional categories:

• Graphics Device Interface (GDI)

• Windows Management

• System Services

• Multimedia

• Remote Procedure Calls (RPC)

Article 1 Windows 95 Architecture 15

Graphics Device Interface
Graphics device interface (ODI) provides functions and related structures that an
application can use to generate graphical output for displays, printers, and other
devices. Using GDI functions, you can draw lines, curves, closed figures, paths,
text, and bitmapped images. The color and style of the items you draw depends on
the drawing objects - that is, pens, brushes, and fonts - that you create. You can
use pens to draw lines and curves, brushes to fill the interiors of closed figures, and
fonts to write text.

Applications direct output to a given device by creating a device context (DC) for
the device. The device context is a GDI-managed structure containing information
about the device, such as its operating modes and current selections. An application
creates a DC by using device context functions. GDI returns a device context
handle, which is used in subsequent calls to identify the device. For example,
using the handle, an application can retrieve information about the capabilities of
the device, such as its technology type (display, printer, or other device) and the
dimensions and resolution of the display surface.

Applications can direct output to a physical device, such as a display or printer, or
to a "logical" device, such as a memory device or metafile. Logical devices give
applications the means to store output in a form that is easy to send subsequently
to a physical device. Once an application records output in a metafile, it can play
that metafile any number of times, sending the output to any number of physical
devices.

Applications use attribute functions to set the operating modes and current
selections for the device. The operating modes include the text and background
colors, the mixing mode (also called the binary raster operation) that specifies
how colors in a pen or brush combine with colors already on the display surface,
and the mapping mode that specifies how GDI maps the coordinates used by the
application to the coordinate system of the device. The current selections identify
which drawing objects are used when drawing output.

Window Management
Window management gives applications the means to create and manage a user
interface. Using the window management functions, you create and use windows
to display output, prompt.for user input, and carry out the other tasks necessary to
support interaction with the user. Nearly all applications create at least one main
window.

16 Programmer's Guide to Microsoft Windows 95

Applications define the general behavior and appearance of their windows by
creating window classes and corresponding window procedures. The window
class identifies default characteristics, such as whether the window processes
double clicks of the mouse buttons or has a menu. The window procedure contains
the code that defines the behavior of the window, carries out requested tasks, and
processes user input.

Applications generate output for a window using the GDI functions. Because all
windows share the display screen, applications do not receive access to the entire
screen. Instead, the system manages all output so that it is aligned and clipped to fit
within the corresponding window. Applications can draw in a window in response
to a request from the system or while processing input messages. When the size
or position of a window changes, the system typically sends a message to the
application requesting that it paint any previously unexposed area of its window.

Appliq!tions receive mouse and keyboard input in the form of messages. The sys
tem translates mouse movement, mouse button clicks, and keystrokes into input
messages and places these messages in the message queue for the application.
The system automatically provides a queue for each application. The application
uses message functions to extract messages from the queue and dispatch them to
the appropriate window procedure for processing.

Applications can process the mouse and keyboard input directly or let the system
translate this low-level input into command messages by using menus and keyboard
accelerators. You use menus to present a list of commands to the user. The system
manages all the actions required to let the user choose a command and then sends
a message identifying the choice to the window procedure. Keyboard accelerators
are application-defined combinations of keystrokes that the system translates into
messages. Accelerators typically correspond to commands in a menu and generate
the same messages.

Applications often respond to command messages by prompting the user for
additional information with dialog boxes. A dialog box is a temporary window
that displays information or requests input. A dialog box typically includes
controls - small, single-purpose windows - that represent buttons and boxes
through which the user makes choices or enters information. There are controls
for entering text, scrolling text, selecting items from a list of items, and so on.
Dialog boxes manage and process the input from these controls, making this
information available to the application so that it can complete the requested
command.

Window management functions provide other features related to windows. For
example, the clipboard functions provide the means to copy and paste information
within the same window, between windows in the same application, and between
windows in different applications. Applications also use the clipboard functions to
carry out dynamic data exchange (DDE). DDE operations let applications exchange
information without requiring specific direction from the user.

Article 1 Windows 95 Architecture 17

System Services
System services are a set of functions that give applications access to the
resources of the computer and the features of the underlying operating system,
such as memory, file systems, and processes. An application uses system services
functions to manage and monitor the resources that it needs to complete its work.
For example, an application uses memory management functions to allocate and
free memory and uses process management and synchronization functions to start
and coordinate the operation of multiple applications or multiple threads of
execution within a single application.

System services functions provide access to files, directories, and input and output
(I/O) devices. The file I/O functions give applications access to files and directories

. on disks and other the storage devices on a given computer and on computers in a
network. These functions support a variety of file systems, from the MS-DOS FAT
file system to the CD-ROM file system (CDFS). The network functions create and
manage connections to shared resources, such as directories and printers, on com
puters in the network. Communications functions read from and write to communi
cations ports as well as control the operating modes of these ports.

System services functions provide methods for applications. to share resources
with other applications. For example, you can make useful procedures available
to all applications by placing these procedures in DLLs. Applications access these
procedures by using DLL functions to load the libraries and retrieve the addresses
of the procedures. You can share useful data, such as bitmaps, icons, fonts, and
strings, by adding this data as "resources" to the file for an application or DLL.
Applications retrieve the data by using the resource functions to locate the resources
and load them into memory.

System services functions provide access to information about the system and
other applications. System information functions let applications determine specific
characteristic about the computer, such as whether a mouse is present and what
dimensions elements of the screen have. Registry and initialization functions let
applications store application-specific information in system files so that new
instances of the application or even other applications can retrieve and use the
information.

System services also let applications share information with applications running on
the same computer or on other computers in a network. Applications can copy
information between processes by using the mailslot and pipe functions to carry out
interprocess communication (IPC). For operating systems that provide security
features, the security functions give applications access to secure data as well as
protect data from intentional or unintentional access or damage.

18 Programmer's Guide to Microsoft Windows 95

Multimedia

System services functions provide features that applications can use to handle
special conditions during execution, such as handling errors, logging events, and
handling exceptions. There are features that applications can use to debug and
improve performance. For example, debugging functions permit single-step
control of the execution of other processes, and performance monitoring allows
for detailing the path of execution through a process.

Multimedia functions give applications access to high-quality audio and video.
Multimedia functions let you enhance and expand the capabilities of your
application, giving users the ability to combine these forms of communication
with more traditional forms of computer output. Using multimedia functions,
applications can create documents and presentations that incorporate music,
sound effects, and video clips as well as text and graphics. The multimedia
functions provide services for audio, video, file 110, media control, joysticks,
and timers.

Applications use audio functions to play and record audio data using waveform,
Musical Instrument Digital Interface (MIDI), and auxiliary audio formats. When
playing audio, an application can mix sounds by routing selected audio to specified
devices. To ensure efficient storage of audio data, the audio functions provide
access to audio compressors and decompressors through the Audio Compression
Manager (ACM).

Applications use video functions to capture video clips, compress the clips,
and control their playback. An application captures video clips by using simple
messages to access video and wave audio acquisition hardware, such as a video
tape machine, and to stream selected video clips to disk. To store video data
efficiently, an application can use the video compressors and decompressors
provided by the Installable Compression Manager (ICM). Applications can play
back video dips either on the computer screen or on other media devices by
using the Media Control Interface (MCI) indirectly through the functions of the
MCIWnd window class.

Applications use file 110 functions to store and retrieve the different types
of multimedia data. An application can use unbuffered and buffered 110 with
multimedia files, access and navigate Resource Interchange File Format (RIFF)
files, and integrate custom 110 functions for multimedia data types. Of particular
significance is the audio-video interleaved (A VI) file format, which provides for
storing digital video clips consisting of both video and audio data. An A VI file is
a RIFF file that has an extensible file architecture. This means that an application
can customize A VI files to store and retrieve nonstandard data streams.

Article 1 Windows 95 Architecture 19

The Media Control Interface (MCI) provides a common set of high-level commands
through which applications control media devices, such as animation devices,
audio compact discs (CDs), digital-video devices, MIDI sequencers, video overlay
devices, video disks, VISCA tape recorders (VCRs), and waveform (digital sound)
devices. To communicate with a device, an application sends messages or command
strings through MCI. The corresponding device handler interprets the message or
string and executes the appropriate command at the device.

Applications use joystick functions to provide support for up to two joystick
devices. An application can retrieve information about a joystick, calibrate the
sensitivity of the device, and receive messages related to movement and button
activity. Multimedia timer functions provide high-resolution timing for single or
periodic events.

Remote Procedure Calls
Remote procedure calls (RPCs) give applications the means to carry out distrib
uted computing, enabling them to tap the resources and computational power
of computers on a network. Using RPC, you create distributed applications, each
consisting of a client that presents information to the user and a server that stores,
retrieves, and manipulates data and generally handles the bulk of the computing
tasks for the client. Shared databases, remote file servers, and remote printer
servers are examples of distributed applications.

A distributed application, running as a process in one address space, makes
procedure calls that execute in an address space on another computer. Within the
application, such calls appear to be standard local procedure calls, but these calls
activate stub procedures that interact with the RPC run-time library to carry out
the necessary steps to execute the call in the remote address space. RPC manages
the network communications needed to support these calls, even the details such as
network protocols. This means distributed applications need little or no network
specific code, making development of such applications relatively easy.

Microsoft RPC is just one part of a complete environment for distributed computing
defined by the Open Software Foundation (aSP), a consortium of companies
that was formed to defme the components of a complete environment supporting
distributed computing. Microsoft's implementation of RPC is compatible with the
OSF standard with minor differences. Client or server applications written using
Microsoft RPC version 1.0 will interoperate with any Distributed Computing
Environment (DCE) RPC client or server whose run-time libraries implement the
connection-based model and run over a supported protocol.

20 Programmer's Guide to Microsoft Windows 95

Extension Libraries
Extension libraries give applications services and capabilities beyond the basic
services of the Win32 API. The extension libraries either expand on services
already provided by the Win32 API or provide unique services that are commonly
used by Win32 applications. There are the following extension libraries:

• Common Controls

• Common Dialog Boxes

• Data Decompression

• File Installation

• Dynamic Data Exchange (DDE) Management

• Network DDE

Common Controls and Dialog Boxes
The Windows 95 shell incorporates a number of control windows and dialog boxes
that help give Windows 95 its distinctive look and feel. Because these controls
and dialog boxes are supported by DLLs that are a part of Windows 95, they are
available to all applications. Using the common controls and dialog boxes helps
keep an application's user interface consistent with that of the shell and other
applications. Because developing a control or dialog box can be a substantial
undertaking, using the common controls and dialog boxes can also save you a
significant amount of development time.

The common controls are a set of control windows that are supported by the
common control library, COMCTL32.DLL. Like other control windows, a com
mon control is a child window that an application uses in conjunction with another
window to perform 110 tasks. The common control DLL includes a programming
interface that applications use to create and manipulate the controls as well as to
receive user input from them. For more information about common controls, see
the documentation included in the Win32 SDK.

The common dialog boxes provide a ready-made user interface that you can use
to retrieve various kinds of information from the user. They are supported by the
common dialog box library, COMDLG32.DLL. The library includes dialog boxes
for selecting and creating colors, finding and replacing strings, opening and saving
files; and setting printer options. For more information about the common dialog
boxes, see the documentation included in the Win32 SDK.

Article 1 Windows 95 Architecture 21

Data Decompression and File Installation
The data decompression and file installation libraries provide useful functions for
applications that install files. The data decompression library provides functions
that applications use to expand files that have been compressed using the Microsoft
File Compression Utility (COMPRESS.EXE). The file installation library provides
functions that make it easier for applications to analyze currently installed files and
install new files properly.

DDEML and Network DDE
The DDE management and network DDE libraries simplify the process of
exchanging data with other applications. The DDE management library (DDEML)
provides functions that minimize the amount of code needed in an application to
carry out dynamic data exchange and gives an application the means to exchange
data without requiring user interaction. The network DDE library provides func
tions that an application can use to connect to DDE servers on other computers in
the network. The functions minimize the amount of code that an application needs
to access the network; they also ensure security across network connections.

Win32 Software Development Kit
The Win32 SDK includes the tools and resources you need to build 32-bit
applications that use the Win32 API. The Win32 SDK contains the following
components:

• Win32s components for building Win32-based applications that run on
Windows version 3.x platforms.

• 32-bit header files and libraries for building Win32 applications that run
with the Windows 95 and Windows NT operating systems.

• Retail and debug versions of the Windows 95 core system DLLs.

• Applications and utilities that aid in the development process.

• Sample source code that demonstrates how to implement the Win32 API.

• Documentation of the Win32 API and information describing how to use
Win32 to develop Windows 95-based applications.

• Online text of the style guide for Windows-based applications, The Windows
Interface Guidelines for Software Design.

• Articles from the Windows 95 Knowledge Base.

For a description of the features and contents of the Win32 SDK as well as
instructions on how to install and use it, see the Getting Started booklet included
in the Win32 SDK.

22 Programmer's Guide to Microsoft Windows 95

OLE
OLE is a set of API services that allows an application to create documents
consisting of information from different applications. Each piece of information
is represented as an object and can consist of text, bitmap images, vector graphics,
and even voice annotation and video clips. Representing information as objects
makes it easier for applications to exchange, incorporate, and process data from
applications created by different vendors. Applications that take advantage of
OLE can interact seamlessly, allowing the user to focus on creating and managing
information rather than on remembering how to perform procedures.

OLE associates two major types of data with an object: presentation data and native
data. An object's presentation data is information needed to render the object on a
display device, while its native data is all the information needed for an application
to edit the object.

An object can be linked to or embedded in a document. Linking is a process
whereby only an object's presentation data and a reference (or pointer) to its
native data are placed in a document. The actual native data associated with the
object exists in another location, such as in a file on disk. Whenever an application
updates the object, it appears updated within the document. To the user, a linked
object acts as if it were wholly contained within the document. In contrast,
embedding places an object's presentation data and its native data physically
within a document. All information necessary to edit the object is contained in
the document.

Embedding makes a document larger, but it allows the object to be transferred
with the document to another computer and to be edited on a different computer.
Linked objects cannot "travel" with documents outside the local file system of
the computer, but they are more efficient than embedded objects because a single
instance of the object's data can serve many different documents.

OLE not only gives applications the ability to add linked and embedded objects to
documents but also includes the following powerful features that you incorporate
into your Windows-based applications.

Visual editing

Nested objects

Lets the user directly activate an object in-place
within a document without switching to a different
window. This includes operations such as in-place
editing, displaying, recording, and playing.

Lets the user directly manipulate an object nested
within another other object and to establish links to
nested objects.

Drag and drop

Storage-independent links

Adaptable links

OLE automation

Version management

Object conversion

Article 1 Windows 95 Architecture 23

Lets the user drag an object from one application
window to another or to drop an object inside
another object.

Allows links between embedded objects that are
not stored as files on disk, enabling embedded
objects within the same or different documents to
update one another's data, whether or not they are
recognized by the file system.

Enables links between objects to be maintained in
certain move or copy operations.

Enables the creation of command sets that operate
both within and across applications. For example, a
user can activate a command from a word processing
application that sorts a range of cells in a spread
sheet created by a different application.

Allows an object to contain information about the
application and the version of the application that
created it.

Allows an object type to be converted so that
different applications can be used with the same
object. For example, an object created with one
brand of spreadsheet could be converted so that
it could be interpreted by a different spreadsheet
application for editing.

OLE is supported by Windows version 3.1, Windows NT, and Windows 95,
allowing your application to work the same way on all Windows platforms.
The OLE documentation included in the Win32 SDK contains a set of DLLs,
sample source code, extensive online information, and tools to assist in adding
OLE capabilit~es to Windows-based applications.

Telephony Application Programming Interface
Telephony application programming interface (T API) makes it possible to create
applications that combine the capabilities of the personal computer with the
telephone. T API was created in cooperation with telecommunications companies,
personal computer manufacturers, and software vendors as the standard for
integrating telephones with pes running the Windows operating system.

24 Programmer's Guide to Microsoft Windows 95

By integrating the PC and the telephone networks, T API makes possible the
following new classes of applications.

Screen-based telephony

Communications management

Personal productivity

Integrated messaging

Ubiquitous voice on the desktop

Conferencing

Wide area data networking

Vertical solutions

Provides a visual interface for accessing
existing phone features and makes new
features possible that cannot be implemented
due to the today's limited telephone user
interface.

Provides end-user programmability that
enables intelligent filtering and forwarding
of telephone communications.

Automates telephone calls and integrates
them into personal productivity software.
Calls can be automatically dialed to save time,
and call details can be logged.

Allows the user to access their different
electronic communications media, such as
electronic mail, voice mail, and faxes from a
single point on the desktop or from a remote
location.

Digitizes audio from the telephone directly
into the PC, or retrieves audio seamlessly
from a voice server and plays it back over a
phone's speaker.

Provides video conferences as well as less
bandwidth intensive tasks, such as sharing
documents or "virtual whiteboards," to
create a richer communications medium and
attain the benefits of proximity at a distance.

Provides cleaner integration with the global
telephone network, which facilitates fax and
data communications from the PC.

Integrates telephone communications with
business information systems. For example,
an incoming call can be routed to the first
available agent by a computer-based queuing
system, and the customer's record "popped"
onto the agent's screen before they even
pick up the phone with caller identification-like
functionality.

Article 1 Windows 95 Architecture 25

T API provides a standard interface, allowing an application to take advantage
of the many capabilities and services of the telephone. At the same time, T API
isolates an application from the complexity and variability of the underlying
telephone network, greatly simplifying the application development task. In
addition, T API is independent of the method of connection between the PC and
telephone. This gives maximum flexibility to integrate the PC with the telephone
system.

T API is part of the Microsoft Windows Open Services Architecture (WOSA),
which provides a single set of open-ended interfaces to enterprise computing
services. WOSA services, such as T API, consist of two interfaces. Developers
write to an applications programming interface (API). The other interface, referred
to as the service provider interface (SPI), is used to establish the connection to
the specific telephone network.

Applications can combine T API with other capabilities of Windows to provide a
combination of services. For example, an application can use T API to establish
a connection and then use the Windows audio functionality to record and play back
voice information over the connection.

For more information about T API, see the documentation included in the
Win32 SDK.

Messaging Application Programming Interface
Windows 95 includes the messaging application programming interface (MAPI).
You can use MAPI to add messaging features to your Windows-based applications
that make it easy for users to electronically share information, such as charts and
reports.

The MAPI architecture is designed to make it easy to write powerful messaging
enabled applications that are independent of the underlying messaging system. To
achieve this, MAPI provides two interfaces: the API, which provides messaging
services to an application, and the service-provider interface (SPI), which provides
the link to the messaging system. MAPI provides a layer of functionality between
an application and the underlying messaging system, allowing them to be developed
independently of one other.

MAPI services are high-level (compared to most networking functions) and allow
you to implement sophisticated messaging features with a small amount of code.
You deal only with functions for sending, receiving, and addressing messages;
the underlying messaging system is completely transparent. MAPI also provides
other functionality such as access to address books-that is, customized lists of
message recipients.

26 Programmer's Guide to Microsoft Windows 95

Pen

MAPI supports existing standards such as the X.400 API Association's Common
Messaging Calls (CMC). By using the CMC or Simple MAPI, you can easily add
message capabilities to an existing application's user interface. For example,
a word processing program can include a Send Message command that sends a
document as a mail message to a recipient. MAPI also supports application macro
languages, such as those used in Microsoft® Excel and Word. For example, a
spreadsheet user can write a macro that automatically sends a monthly budget
spreadsheet to a designated recipient when the file is updated with new sales
figures.

You can also use CMC or Simple MAPI to create an application that is centered
around messaging capabilities. One example is a scheduling application in which
users can view the schedules of their coworkers and send meeting requests to
the coworkers' calendars. Another example is a forms-routing application that
sends an expense report to a series of recipients and records their approval or
disapproval.

MAPI also supports workgroup applications that require full access to all of
the back-end messaging services, including the message store, address book or
directory, and transport functions. These applications include e-mail clients,
workflow automation programs, and bulletin board services. For example, a
workflow application might allow a user to inspect a message stored in a certain
project folder to see if the appropriate workers have signed off on their tasks.
This application could also include a sophisticated search and store feature
that retrieves relevant files from a bulletin board system and stores them in the
folders of certain recipients. Advanced workgroup applications take advantage
of Extended MAPI.

For more information about MAPI, see the documentation included in the
Win32 SDK.

Every computer running Windows 95 can display and manipulate data that was
collected on a pen-enabled system. These capabilities are provided by a dynamic
link library, either PKPD.DLL or PKPD32.DLL. A Windows-based application
can use pen data in the following ways:

• To display a signature for letters or faxes.

• To verify signatures collected on a pen-based mobile computer.

• To display graphics, maps, or handwritten notes that have been drawn on a pen
based system.

Article 1 Windows 95 Architecture 27

Displaying and manipulating ink, the common term for pen data, is only a subset of
the pen services available to Windows-based applications. Pen-enabled applications
use the entire set of Pen functions to add ink collection and recognition to their
feature sets. Pen services for Microsoft Windows 95 requires the PENWIN.DLL
or·PENWIN32.DLL library for all of the functionality of pen data collection.
The library is supplied by the pen tablet or computer manufacturer that bundles
Microsoft pen services with their product. (Pen-enabled systems use the same pen
display library that is available on every Windows 95 computer for pen data
manipulation and display: PKPD.DLL or PKPD32.DLL.)

For more information about the pen capabilities of Windows 95, see Article 9,
"Displaying and Using Pen Data." The Programmer's Guide to Pen Services for
Microsoft Windows 95, which is included in the Win32 SDK, provides information
about using the entire set of pen API to collect, recognize, manipulate, and dis
play ink.

International Applications
Within six months of its final release, Windows 95 will be available in 30 different
language versions. To support all of these languages, Microsoft has developed three
separate code bases: one for single-byte character sets (SBCS), one for double-byte
character sets (DBCS), and one for the languages of the Middle East.

The DBCS versions, which ship to the Far East, include the input method editor
(IME) for complex writing systems, an end-user defined character (EUDC) editor,
and all the code for passing DBCS (mixture of 8- or 16-bit) characters through the
user interface. For more information about the input method editor, see Article 30,
"Using Input Method Editors." For more information about creating applications
that can handle DBCS characters, see Article 29, "Using Double-Byte Characters."

The versions for the Middle East support both left to right and right to left text
placement as well as special ligature and text justification (Kashida) handling.
For more information about developing applications for the Middle East, see
Article 31, "Writing Applications for Middle-Eastern Languages."

To make localization easy, you should develop all language-dependent user
interface elements as Win32 resources. Using resources allows you to create
versions of your application in any number of languages without having to
recompile your application's components. For more information about
resources, see the documentation included in the Win32 SDK.

For more information about internationalization issues, see Article 28,
"International Guidelines," and read the International Handbook for Software
Design, which is available in the Microsoft Developer Network Development
Library.

29

ARTICLE 2

Creating Great Applications

About Creating Great Applications
The Microsoft® Windows® 95 user interface is based on a datacentric design; that
is, rather than focusing on applications, the user interface design emphasizes data
and tasks that involve the manipulation of data. The interface has been designed to
allow the user to browse for data and documents and to edit them directly without
necessarily having to locate an appropriate editor or application first. This type of
design frees the user to focus on information and tasks rather than on applications
and how they interact.

This article briefly describes some of the features you should use and guidelines
you should follow to ensure that your application is a "great" Windows 95-based
application. A great Windows 95 - based application is one that integrates seam
lessly with the user interface in Windows 95 and conforms to the system's data
centric design principles. In addition to reading this article, you should follow
the user interface guidelines presented in The Windows Interface Guidelines for
Software Design.

File Information
Throughout the Windows 95 shell, files appear as icons. When you click on a
file's icon using mouse button 2, the system displays a context menu containing
commands that perform actions on the file. One of the commands, Properties,
displays a special dialog box called a property sheet that contains information about
the file. By viewing a file's property sheet, the user can find out information about
a file without having to open it.

30 Programmer's Guide to Microsoft Windows 95

By default, a file's property sheet contains general information about the file,
including its name, size, location, creation date, attributes, and so on. The follow
ing illustration shows the default property sheet for a typical file.

If your application creates files with additional properties that the user may be
interested in, you should add more pages to the property sheets for the files.
One way to add property sheet pages to an application using OLE structured
storage is to store documents in compound files (also called docfiles) and use
the Document Summary Information Property Set to store summary information
and editing statistics for the documents. When the user activates the property sheet
for the document, the shell automatically gathers the summary information and
editing statistics from the document and adds them to the property sheet as two
additional pages. The following illustration shows a property sheet with Summary
and Statistics pages added based on data gathered from the document.

Article 2 Creating Great Applications 31

For more information about saving document information using the OLE Document
Summary Information Property Set, see the OLE documentation included in the
Microsoft® Win32® Software Development Kit (SDK).

Another way to add pages to file property sheets is to write a shell extension
(OLE InProcServer32) that includes a property sheet handler. Whenever the user
activates the property sheet for a file, the system checks the registry to see if any
property sheet handlers are registered for the file type. If there are some registered,
the system calls the handlers before displaying the property sheet. The handlers can
add any number of pages to the property sheet before it is displayed. For more
information about shell extensions and property sheet handlers, see Article 12,
"Shell Extensions."

Long Filenames
Windows 95 allows users and applications to create and use long filenames for their
files and directories. A long filename is a name for a file or directory that is longer
than the standard 8.3 filename format. In the past, long filenames typically appeared
on network servers that used file systems other than the Microsoft® MS-DOS® file
allocation table (FAT) file system. In Windows 95, however, long filenames are
available for use with network servers and with local disk drives supporting the
protected-mode FAT file system.

32 Programmer's Guide to Microsoft Windows 95

An application should support long filenames and display them correctly. You can
use the SHGetFilelnfo function in your application to retrieve the long filename
for a file as well as the file's icon, type name, attributes, and so on. If you include
the File Open and Save As common dialog boxes in your application, you can use
the OFN_LONGNAMES value to direct the dialog boxes to display. and return
long filenames. Before an application displays a long filename, it should hide the
filename extension. For example, the application should display a filename like
"My letter to Mom" instead of "My letter to Mom.Doc." An application can hide
filename extensions on a file-specific basis by using the SHGetFilelnfo function.

The following illustration shows a folder containing documents with long filenames.

If an application is used to view or edit a document or data file, the title bar of the
window that contains the file should display the long filename for the file. If the
title bar also includes the application's name, it should appear to the right of the
filename. Displaying the filename fIrst places the emphasis on the document or
data rather than on the application. For more information about long filenames,
see Article 24, "Long Filenames."

You should also support Universal Naming Convention (UNC) path names for files
in your application. Using UNC names enables users to browse documents on the
network directly and to open an application's files on remote machines without
needing to know the location of the file on the network or having to make an
explicit network connection.

Context Menus
A context menu is a pop-up menu containing a set of commands that are specific
to a particular object. Window 95 provides a context menu for all objects that
appear in the shell, including files, folders, printers, and so on. A context menu
appears when the user clicks an object using mouse button 2. Because context
menus are displayed at the pointer's current location, they eliminate the need for
the user to move the pointer to the menu bar or toolbar. They also help eliminate
screen clutter.

Icons

Shortcuts

Article 2 Creating Great Applications 33

You should provide context menus for all objects in an application and should
display the context menu whenever the user clicks an object using mouse button 2.
Each context menu should include a Properties command that displays a property
sheet for the object.

In addition to displaying a context menu for objects, an application should also
display a context menu when the user clicks the small icon in the title bar using
mouse button 2. The commands in the context menu should operate on the object
that is open in the window, not on the window itself. To see an example of a context
menu associated with a title bar icon, click the title bar icon of a folder window in
the shell using mouse button 2. For more information about context menus, see
Article 12, "Shell Extensions."

If your application supports OLE, you should make sure that the icons for your
embedded and linked objects are consistent with the shell. For example, when the
user drags an icon from the shell into your container, the icon and its name should
stay the same.

You should support interactions with embedded icons the same way that the shell
does. For example, when the user selects the icon for an embedded object, you
should dither the icon with the system highlight color rather than enclosing it in
a rectangle that has resizing handles.

A shortcut (also called a shell link) is a data object that contains information used
to access another object in the system, such as a file, folder, disk drive, or printer.
A shortcut has an icon associated with it; the user accesses the object associated
with a shortcut by double-clicking the shortcut's icon. The associated object can
be stored anywhere in the system.

Typically, the user creates shortcuts to gain quick access to objects stored in
subfolders on the same machine or to shared folders on other machines. For
example, the user can create a shortcut to a Microsoft Word document located
in a subfolder and can place the shortcut icon on the desktop. The user can later
start Word and open the document simply by double-clicking the shortcut icon.
If the document is later moved or renamed, the system takes steps to update the
shortcut the next time the user selects it.

34 Programmer's Guide to Microsoft Windows 95

An application should support shortcuts. For example, a word processing appli
cation might allow the user to drag and drop a shortcut icon into a document file.
An application should also correctly dereference shortcuts. For example, if the user
specifies the filename of a shortcut when using an application's Open command on
the File menu, the application should open the object associated with the shortcut,
not the shortcut file itself. For more information about shortcuts, see Article 14,
"Shell Links."

Clipboard Data Transfer Operations
Windows 95 supports two types of clipboard data transfer operations - those
involving menu commands (such as Cut, Copy, and Paste) and those involving the
direct manipulation of objects (drag and drop). An application should support both
types extensively.

You should support the OLE style of drag and drop. If you support drag and drop,
the user can easily move data among the desktop, folders, and other applications.
You should support dragging with mouse button 2 and display a context menu at
the end of the drag operation, as the shell does. At a minimum, the menu should
include these commands: Move Here, Copy Here, Create Shortcut(s) Here, and
Cancel. For more information about supporting the OLE style of drag and drop,
see Article 7, "Dragging and Dropping."

You should make sure your application's menu-based data transfer model works
well with the shell. You should test various scenarios, such as copying a shortcut
or file in a shell folder to the clipboard and then pasting the shortcut or file into
your application. Also, if your application supports shortcuts to its documents, you
should offer a link to your OLE data object when the user drags an object out of a
document.

Common Controls and Dialog Boxes
The Windows 95 shell incorporates a number of control windows and dialog
boxes that help give Windows 95 its distinctive look and feel. Because these
controls and dialog boxes are supported by DLLs that are a part of Windows 95,
they are available to all applications. You should use the common controls and
dialog boxes-rather than developing similar controls and dialog boxes of your
own-because they help keep your application's user interface consistent with
that of the shell and other applications. Because developing a control or dialog box
can be a substantial undertaking, using the common controls and dialog boxes can
also save you a significant amount of development time.

Article 2 Creating Great Applications 35

Common Controls
The common controls are a set of control windows that are supported by the
common control library, which is a DLL called COMCTRL32.DLL. Like other
control windows, a common control is a child window that an application uses
in conjunction with another window to perform input and output (I/O) tasks.
The common control DLL includes a programming interface that you use to create
and manipulate the controls and dialog boxes and to receive user input from them.
This section describes some of the controls provided by the common control DLL.

Property Sheet. A property sheet displays the
properties of an object, such as a document file
or a cell in a spreadsheet. Related properties
can be grouped together and placed on separate,
overlapping pages within the property sheet.
Each page has a tab that the user can select
to bring the page to the foreground.

An application can create a special type
of property sheet called a wizard controL

. The control displays a sequence of pages
that guide the user through the steps of an
operation, such as setting up a device or
creating a birthday card.

Header Control. A header control provides
headings·for columns of text or numbers.
It can be divided into many parts, and each
part can have its own heading text. The user
can adjust the width of the columns by drag
ging the dividers that separate the parts.

36 Programmer's Guide to Microsoft Windows 95

Up-Down Control. An up-down control consists of a pair of arrow buttons
that the user can click to increment or decrement a value, such as a scroll
position or a number displayed in an accompanying edit control.

Tree View Control. A tree view control displays a
hierarchical list of items, such as the headings
in a document, the entries in an index, or the files
and directories on a disk. By clicking an item, the
user can expand or collapse the associated list of
subordinate items. The user can select items, edit
item labels, and drag items from one location to
another.

Toolbar. A toolbarcontains buttons that carry out
commands when the user selects them. Typically,
the buttons correspond to menu items, providing a
quicker, more direct way for the user to access an
application's commands.

QJI How To ...

• Run Programs QJI---Finding a document

ffiI Opening a document you've used recently

~ Seeing what's on your computer

ffiI Copying a file· or folder

III! Moving a file or folder

~ Deleting a file or folder

III! Retrieving a deleted file or folder

I ~ Copying a file to a floppy disk

ffiI Creating a folder

I ffiI Changing the name of a file or folder

• Print
L __ __ ___ ____ __

Status Window. A status
window displays informa
tion that may be useful
to the user. It is typically
positioned along the bot
tom of a window and can
be divided into parts to
display different types of
information simultaneously.

Progress Bar. A progress bar indicates the progress
of a lengthy operation. It consists of a rectangle
that is gradually filled with color, from left to right,
as the operation progresses.

Article 2 Creating Great Applications 37

List View Control. A list view control displays a collection of
related items, each consisting of an icon and a descriptive label.
The items can be arranged and displayed in different ways to suit
the user's preferences. The user can select items, edit item labels,
and drag items from one location to another. !:~:~:m:~:?! Multimedia System Tools

Common Dialog Boxes

Dial·Up Direct Cable HyperTermi ...
Networking Connection Connections

• WinPad Word Pad
Organizer

Trackbar. A trackbar allows the user to select a value from
a range of consecutive values. To select a value, the user
drags the trackbar's slider to the desired position.

Windows 95 provides several common dialog boxes that your application can use to
obtain various kinds of information from the user. There are the following types of
common dialog boxes.

Dialog box

Color

Find

Open

Page Setup

Print

Replace

Save As

Description

Enables the user to select and create colors.

Enables the user to specify a search string.

Enables the user to specify the location and filename of a file to be
opened.

Enables the user to set the attributes of a printed page, including
the paper type, the paper source, the page orientation, and the width
of the page margins.

Enables the user to configure a printer for a particular print job.
The user can set print job parameters, such as the print quality, print
range, and number of copies.

Enables the user to specify strings for use in a search and replace
operation.

Enables the user to specify the location and name of a file to be saved.

For more information about the common dialog boxes, see the documentation
included in the Win32 SDK. Note that the Print Setup dialog box provided in
previous versions of Windows is now obsolete; new applications should use
the Page Setup dialog box.

38 Programmer's Guide to Microsoft Windows 95

The Open and Save As common dialog boxes accessed from the File menu are
especially useful because they support many features of the Windows 95 shell,
including shell links, long filenames, and direct browsing of the network. If you
cannot use the Open and Save As dialog boxes, you should incorporate the fol
lowing features into your open and save dialog boxes to ensure that they are
consistent with the shell, the Windows accessories, and other applications:

• Support the same namespace hierarchy as the shell; that is, Desktop should be
at the root of the hierarchy, followed by all folders and objects on the desktop,
including My Computer, My Network, and so on. For more information about
the shell namespace, see Article 11, "Shell's N amespace."

• Support shortcuts (also known as shell links). Note that opening a shortcut
should open the target of the shortcut rather than the shortcut file itself.
For more information about shortcuts, see Article 14, "Shell Links."

• Display filenames with the corresponding icons and filename extensions
removed, as the shell does.

• Allow the user to browse the network hierarchy directly.

• Make sure that all of your dialog boxes (not just your open and save dialog
boxes) use only nonbold fonts. In addition, you should use the DS_3DLOOK
style to give your dialog boxes the three-dimensional look used throughout
the system.

Other Development Considerations
In addition to supporting common controls and dialog boxes, an application should
include other new shell features, such as context menus, property sheets (with
extensions), the details view, and so on. For more information about context
menus and property sheets, see Article 12, "Shell Extensions."

If your application supports 256 colors, you should use the Windows halftone
palette, as the shell does. It helps system performance because the system does
not need to load a new palette every time the execution focus switches between
the shell and your application. For more information about palettes, see the
documentation included in the Win32 SDK.

Windows 95 Help
The Windows Help application has been improved for Windows 95. It includes
many new features that you can use to provide help information that is task-or
object-specific as well as readily accessible and unobtrusive. You should consider
including the following features in your application's help file:

• Provide context-sensitive help for your dialog boxes and documents. The user
can access context-sensitive help by clicking mouse button 2 (if there is no
context menu available) or pressing the Fl key to display help information for

Article 2 Creating Great Applications 39

a specific object or element in the application. The following illustration shows
context-sensitive help for a control in a dialog box.

D se secondary windows for procedural help. A secondary window does not
have menus, and it remains open until it is explicitly closed.

Embed shortcut buttons in your help text. A shortcut button allows the user to
start an application from within a help file.

D se sizable topic windows to make help text easier to read.

Consider using the built-in support for training cards.

For more information about the Windows 95 Help application, see the documen
tation included in the Win32 SDK and the documentation included with the
Microsoft Windows Help Compiler.

Multiple Instances
You should not let the user open multiple views of the same document. Multiple
views confuse the user and conflict with the datacentric design of Windows 95.

When the user attempts to open a document file associated with an application,
typically by double-clicking the document file's icon, the application should
determine if the document file is already open. If it is, the application should check
whether the current user has attempted to open the file. The application should do
more than just compare user names because the user may be logged onto more
than one computer. If the current user already has the document file open, the
application should immediately restore the window containing the open document
file.

If the current user has not attempted to open the document file (meaning that
someone else on the network has), the application should prompt the user with
the following message.

40 Programmer's Guide to Microsoft Windows 95

Pen Input

This document has already been opened by <name>. Would you like to
make a copy?

If the user does not want to make a copy, the application should exit; otherwise, it
should make a copy.

You should also handle the case where the user double-clicks an application's
icon when the application is already running. If the application's default action is
to open a blank document when the user double-clicks the icon, the application
should present the user with a list of currently opened documents. Opening a new
document, however, should be the default action.

An application should support pen input so that it is easy to use on pen-based
platforms, such as notebook computers and desktop tablets. The following list
briefly describes what you need to do to support pen input:

• Use functions from the Windows pen application programming interface (API)
to activate the pen in your application. If you activate the pen, the user can
enter text using handwriting recognition and edit documents using gestures.

• Incorporate ink-edit controls into your application. Ink-edit controls allow the
user to enter scribbled notes, drawings, and signatures.

• Add other natural pen-oriented features and gestures to your application.

For more information about supporting pen input, see Article 9, "Displaying and
Using Pen Data."

Application Installation Guidelines
You should follow the Windows 95 guidelines for installing your application so that
it works well when running with Windows 95. Some of the important installation
guidelines follow:

• Create a subdirectory in the Applications directory at the root of the hard
disk and store your application's executable file and any sample files there.
If the Applications directory does not exist at the root of the hard disk, your
installation program should create it. If you have any other executable or data
files, such as .DLL and .HLP files that are specific to your application, your
program should create another subdirectory named Application Extensions in
the Applications directory. It should copy the remaining files (except shared
files) to this new subdirectory.

• Copy all system-wide shared files (files shared by applications from many
different vendors) to the \Applications\Shared Components directory. If this
directory does not exist, your installation program should create it. If a given

Registry

Article 2 Creating Great Applications 41

file already exists in this directory, your program should overwrite it with your
file only if your file is a more recent version.

• Copy all shared files (files shared by applications from the same vendor) to a
vendor-specific directory in the \Applications\Shared Components directory.
If the vendor-specific directory does not exist, your installation program should
create it.

• Place a single icon (shortcut) for your main application either directly in the
Programs folder of the Start menu or in a subfolder of the Programs folder.
If your installation program adds a shortcut, the user can easily start your
application from the Start menu. However, your program should not overload
the Start menu. To prevent overloading that menu, you may want your
installation program to prompt the user to choose which shortcuts to add.

• Register your application-specific icons and commands as described in
"Registry" later in this article.

Support the AddlRemove Programs application in Control Panel so that the
shell automatically runs your installation and uninstall programs. Note that on
some types of hardware, the shell automatically runs your installation program
as soon as the user inserts the floppy disk or compact disc (CD).

For more information about installing your application to run with Windows 95,
see Article 10, "Installing Applications."

Integrating your application into the Windows 95 shell requires that you make full
and correct use of the system registry. Your installation program should add the
following items to the registry: .

• Register your application under the HKEY _LOCAL_MACHINE\
SOFTWARE key. Your installation program should include keys for your
company name, product name, and version number.

Store user-specific initialization data under the HKEY_CURRENT_USER\
SOFTWARE key. Your installation program should not store initialization data
in the WIN .INI file.

• Add application-specific paths to the registry so that Windows sets the PATH
environment appropriately when starting your application. Your installation
program should set the path in the HKEY _LOCAL_MACHINE root under
the \SOFTWARE\Microsoft\Windows\CurrentVersion\AppPaths key and
create a new key having the same name as your application's executable file.
Under this new key, your program should create the Path value name and assign
it a path using the same format as that expected by the PATH environment
variable.

42 Programmer's Guide to Microsoft Windows 95

• Register an icon for each type of data file created by your application. When the
system displays one of your data files in the shell, the registered icon for that
file's type appears along with the file's name. If your installation program does
not register icons for data files, the system will generate icons for them, but
they may not be as distinctive as you would like them to be.

• Register data-specific commands for your data files; these commands appear in .
the context menus for your data files. For example, if your application creates
sound files, your installation program might register a Play command that
enables the user to playa sound by choosing Play from the context menu.

• Register a "Print To command" for your data files. Including a printto canonical
verb in the registry enables the user to print your data files by performing a drag
and drop operation to a specific printer object. Note, however, that the printto
canonical verb does not add a command to the context menu of your data files.

For a description of additional items you should add as well as instructions about
how to add the items described in the preceding list, see Article 10, "Installing
Applications."

Windows 95 Logo Requirements
This section describes the technical requirements that software programs and
hardware devices must meet to qualify for the Windows 95 Logo. These
requirements are periodically updated. For infonnation about updates, contact
Microsoft.

General Requirements for Applications
The requirements for the Windows 95 Logo apply to the following four main types
of prograrils:

• File-based applications-that is, applications that provide Open, Save, and
Close File menu options.

• Applications that are not file-based and applications that run exclusively in
full screen mode. An application that runs exclusively in full screen mode is
one that cannot run in a window or be minimized.

• Utilities (for example, virus scanners and disk management programs).

• Development tools (for example, compilers and linkers).

To qualify for the Windows 95 Logo, an application must meet the appropriate
requirements in the following list. The fIrst five requirements apply to all types of
applications.

Article 2 Creating Great Applications 43

1. An application must use the Win32 application programming interface (API)
and must be compiled using a 32-bit compiler that generates an executable file
of the Portable Executable (PE) format. If your application is not represented
in the PE format (for example, it uses interpreted code), the "run-time engine"
must be a Win32 executable file in the PE format. For example, if you develop
an application in Microsoft® Access, your application is an .MDB file, not an
.EXE, but ACCESS.EXE would need to be a Win32 PE format executable file.

2. An application must support the Windows 95 shell and user interface. At a
minimum, an application must meet the following requirements:

• Register both 16- by 16-pixel and 32- by 32-pixel icons for each file type
and the application.

• Follow the user interface guidelines described in The Windows Inteiface
Guidelines for Software Design. An application should also use the system
defined dialog boxes and controls.

• Use the system metrics for setting the size of elements within the application.

• Use the system-defined colors.

• Use mouse button 2 for context.menus (and not for any other purpose).

• Follow the Windows 95 application installation guidelines to make the
application properly visible in the shell. At a minimum, this means that you
should use the registry, you should not add information to the WIN .INI or
SYSTEM.INI file, and you should provide complete uninstall capabilities
with your application. The installation process must also be automated.
For more information about installation guidelines, see Article 10,
"Installing Applications."

For detailed guidelines about supporting the shell and user interface, see The
Windows Inteiface Guidelines for Software Design.

3. An application must be tested on the latest version of Microsoft® Windows
NTTM. If the application uses features that are available only in Windows 95,
the features must degrade gracefully in Windows NT. Conversely, if it uses
features available only in Windows NT, the features must degrade gracefully
in Windows 95. The application must run successfully with both Windows 95
and Windows NT, unless architectural differences between the two operating
system prevent it.

4. An application must support long filenames and use them to display all
document and data filenames in the shell, in title bars, in dialog boxes and
controls, and with icons. An application should also hide the extensions of
filenames that are displayed within the application itself.

5. An application should process Plug and Play events. For example, it should be
aware of slow links and should react to system messages that occur when a
new device is attached or removed.

44 Programmer's Guide to Microsoft Windows 95

The next three requirements apply to file-based applications that do not run in full
screen mode. Some games and children's software run exclusively in full screen
mode and need not follow these three requirements:

6. An application must support Universal Naming Conventions (UNC) names
for paths.

7. An application must support OLE containers or objects, or both. It must also
support the OLE style of drag and drop. An application should also support OLE
automation and compound files (with document summary information included).

8. An application must support simple mail enabling using the Messaging
Application Programming Interface (MAPI) or the Common Messaging Call
(CMC) API; that is, it must include Send Mail functionality.

The following items are modified requirements for utilities, such as disk optimizers
and anti-virus software:

9. Same as number 1, except for components that must use exclusive volume
locking functions, soft interrupts, or components that must talk directly to
16-bit drivers. The user interface and other components of these applications
must be 32 bits and use the Windows 95 thunking mechanism to access the
16-bit components.

10. Same as number 2.

11. Same as number 3, except for products like disk utilities implementing platform
specific functionality that does not make sense in Windows NT version 3.5.

12. Same as number 4.

13. Numbers 5 through 8 are recommended, but not required. However, number 6
is required if your product accesses network resources.

The following items are modified requirements for compilers and other development
tools:

14. In addition to the requirements that follow, if Windows is one of the target
platforms of a compiler or development tool, the compiler or tool must be
capable of generating applications that can meet all of the Windows 95 Logo
requirements.

15. Same as number 1.

16. Same as number 2, except that when icons are registered for each file type and
the application, common source filename extensions, such as .C, .CPP, .H, and
.HPP, are excluded.

17. Same as number 3.

18. Same as number 4.

19. Same as number 5.

20. Same as number 6.

Article 2 Creating Great Applications 45

21. Compilers and development tools must support OLE in the following ways:

• Support the OLE style of drag and drop (recommended within the tool's
design environment).

• Support OLE automation (recommended, but not required).

• Provide an easy way to create applications with OLE container or object
support, or provide this functionality by default.

22. Same as number 8 (recommended, but not required).

Personal Computer Systems
For a personal computer (PC) system to qualify for the Windows 95 Logo, it
must meet a minimum set of requirements as outlined below and pass the System
Compatibility Test (SCT) for Windows 95. The SCT tests are included in the
Microsoft Windows 95 Device Driver Kit (DDK), along with instructions for
OEM participation. System testing is OEM-administered, and results are sent to
Microsoft Compatibility Labs (MCL).

A PC system must meet the following requirements:

1. 80386 or compatible processor. (However, 33-megahertz 80486 or better is
recommended.)

2. 4 megabytes (MB) random-access memory (RAM). (However, 8 MB is
recommended.)

3. Plug and Play basic input/output system (BIOS) version l.Oa or later that
reads back all resources. (A BIOS that soft-sets all resources is recommended.)

4. Molded-in or permanently printed icon labels on the computer case for built-in
ports. Ideally, icons on the cable connectors should match the icons on the
computer case.

5. Optional read-only memory (ROM) chips on expansion cards must use the Plug
and Play header format documented in the Plug and Play BIOS specification.

6. A Video Graphics Array (VGA) display adapter that uses a packed-pixel frame
buffer and provides a resolution of at least 640 by 480 pixels and 8 bits per
pixel (bpp) for desktop systems and a 64-shade gray scale for mobile systems.
(However, VGA 1024 by 768 pixels and 8 bpp is recommended for desktop
systems, and 64 colors is recommended for mobile systems.)

7. One parallel port that supports IEEE-P1284-I mode protocols for compatibility
mode and nibble mode. The system must be capable of receiving the parallel
device's identifier in nibble mode. (However, ECP P1284-I is recommended.)

8. One integrated or separate serial port, with 1-16550A required for mobile
systems. Also recommended are 1-16550A for desktop systems, an additional
PSI2® style port, pen devices with a barrel button, and serial infrared devices
meeting the Infrared Data Association (IrDA) specification.

46 Programmer's Guide to Microsoft Windows 95

9. Advanced Power Management (APM) version 1.1 is required for mobile
systems. (However, it is recommended also for desktop systems.)

If the system ships with expansion cards or peripheral devices integrated onto the
motherboard, it is recommended that the cards or devices meet the Windows 95
Logo specifications defined in this article and use 32-bitWindows 95-based device
drivers.

For more information about qualifying a PC for the Windows 95 Logo, see the
Hardware Design Guide for Windows 95.

Hardware Peripheral Devices
For a peripheral device to qualify for the Windows 95 Logo, it must meet the
requirements described in the Hardware Design Guide for Windows 95 and pass
the compatibility tests conducted by MCL. For information about prequalifying
test tools and MCL device and driver submission details, see the Windows 95
DDK. The Windows 95 DDK also contains detailed information about designing
Windows 95-based device drivers.

To carry the Windows 95 Logo, a device driver must support the following Plug
and Play capabilities in Windows 95:

1. Retrieves configuration information from Configuration Manager.

2. .Is dynamically loadable.

3. Is dynamically reconfigurable.

4. Reacts to system messages that occur when a device is attached or removed.

An ideal Windows 95-based Plug and Play driver requires minimal user inter
action to be properly selected. In addition, the settings for the device may need
to change based on which user is logged in, whether the machine is docked or not,
or both.

Display Adapters
Display adapters must meet the following requirements:

1. Support the VGA graphics standard.

2. Support at least a 640- by 480-pixel, 8 bpp display driver. Desktop systems
must be able to display at least 256 colors, and mobile systems must support
an 8 bpp driver and map colors into at least a 64 gray scale display so that
changes to higher-resolution external monitors can be made without restarting
Windows 95.

3. Use a packed-pixel frame buffer with at least 8 bpp.

Article 2 Creating Great Applications 47

4. Use a VGA BIOS that, if it exists separately, has its base address fixed at
COOOh. (However, an alternate address is recommended.)

5. Use a standard VGA with a page frame and 110 address resource that can be
static-that is, not relocatable.

6. Support the Video Electronics Standards Association (VESA) ergonomic
timings.

7. Be capable of being disabled if a conflicting VGA expansion card is added to
the system.

8. Provide at least one alternate configuration in case of conflict during initial
program load (IPL) boot (non-VGA display resources only). The VGA BIOS
must be able to use alternate configuration register addresses.

9. Have the display adapter circuitry come up active when power is turned on
or the system is reset. This requirement applies only to an Industry Standard
Architecture (lSA) Plug and Play display adapter expansion cards used as a
system boot device.

Audio Adapters
Audio adapters must meet the following requirements:

1. Be able to produce 22 kilohertz (kHz), 8-bit, monaural, output-only sound
(minimum performance).

2. Support either Sound Blaster™ or the Microsoft Windows Sound System to
use built-in drivers for Windows 95.

3. Use a one-eighth inch miniature phone jack wired for stereo as the output
connector.

4. Map the base input and output (110) address to configurations compatible with
either Sound Blaster or the Microsoft Sound System. '

5. Support at least all interrupt request (IRQ) signals used either by Sound Blaster
or the Microsoft Windows Sound System.

6. Support the selection of at least three available Direct Memory Access (DMA)
channels, either 8 bit or 16 bit, if DMA is supported.

7. Support disabling in case of resource conflicts with other devices.

Storage Devices
This section lists the requirements for storage devices, including floppy disk
controllers, ATA (IDE) adapters, ATA (IDE) peripherals, small computer system
interface (SCSI) host adapters, and SCSI devices.

48 Programmer's Guide to Microsoft Windows 95

Floppy Disk Controllers
Floppy disk controllers must meet the following requirements:

1. Use at least three static I/O addresses: 3F2h, 3F4h, and 3F5h.

2. Support IRQ6.

3. Support at least DMA 2, ifDMA is used. The controller should be capable of
selecting at least two other available DMA channels, either 8 bit or 16 bit.

4. Be capable of being independently disabled.

AlA (IDE) Adapters
ATA (IDE) adapters must meet the following requirements:

1. Use the fIrst device attached to the adapter as the boot device.

2. Use the standard I/O addresses: 1FOh through 1F7h and 3F6h.

3. Support at least IRQ14.

4. Be capable of being disabled if an ATA (IDE) expansion card is added to
the system. In addition, if a single adapter card contains a floppy disk drive
controller, the adapter must be able to independently disable the floppy
drive controller if a conflict occurs.

AlA (IDE) Peripherals
ATA (IDE) peripherals must meet the following requirements:

1. Support the ATA Packet Interface (ATAPI) protocol for CD-ROMs defIned
in SFF-8020 version 1.2.

2. Comply with the requirements specified in the AT A 2 specification.

3. Set the signature after an AT A Read or AT A Identify Command is received.

4. Implement the SEEK command and set the DSC bit when the ATAPI seek is
complete, but not change the drive select bit.

5. Return the CANNOT READ MEDIUM - INCOMPATIBLE FORMAT
additional sense code qualifier when a READ is received on an audio track.

6. Support CD-DA.

7. Support the READ_CD command sector types mode 2 form 1, mode 2 form 2,
mode 1 form 1, and mode 1 form 2.

8. Support the Test_Unit_Ready command.

SCSI Host Adapters
SCSI host adapters must meet the following requirements:

1. Meet the standards described in the current version of the Plug and Play SCSI
specification.

Article 2 Creating Great Applications 49

2. Support the SCSI Configured Auto-Magically (SCAM) Levell protocol for
automatic SCSI identifier assignment.

3. Use the 50-pin, high-density shielded device connector defined in the SCSI-2
standard (external SCSI peripheral subsystems only).

4. Select at least three available DMA channels, either 8 bit or 16 bit, if DMA is
supported.

5. Support disabling in case of resource conflicts with other devices.

6. Support automatic switchable termination for Plug and Play operation of
internal, external, or mixed SCSI configurations.

SCSI Devices
SCSI devices must meet the following requirements:

1. Meet the standards described in the current version of the Plug and Play SCSI
specification.

2. Support the SCSI Configured Auto-Magically (SCAM) Level 1 protocol for
automatic SCSI identifier assignment.

3. Use the 50-pin, high-density shielded device connector defined in the SCSI-2
standard (external SCSI peripheral subsystems only).

4. Use the drivers and receivers that meet the specifications defined in the single
ended alternative of the SPI.

5. Use cables that conform to the cable requirements defined in clause 6 of the
SPI specification.

6. Ensure that external SCSI peripherals contain two connectors for the SCSI
cable: a SCSI in connector and a SCSI out connector. The last peripheral in
the chain uses a terminator on the SCSI out connector.

7. Support the attachment of a permanent terminator to the end of the cable
for internal SCSI peripherals.

8. Ensure that internal SCSI peripherals do not terminate the SCSI bus.

9. Ensure that terminations conform to the terminator requirements in the SPI
specification over the terminator power (TERMPWR) voltage range of 4.0
to 5.25 VDC.

10. Power terminators from the TERMPWR line on the SCSI bus.

11. Provide overcurrent protection for the TERMPWR line or lines.

12. Ensure that only terminators draw power from TERMPWR.

13. Implement the SCSI Bus Parity signal defined in the SCSI-2 specifications.

50 Programmer's Guide to Microsoft Windows 95

Parallel Port Devices
Parallel port devices (printers) must meet the following requirements:

1. Meet the standards described in the current version of the Plug and Play Parallel
Port Device specification.

2. Comply with IEEE P1284-I.

3. Support the compatibility and nibble mode protocols to read the device identifier
from the peripheral.

External Communications Devices
An external communications device must be able to identify itself using the identifi
cation method described in the Plug and Play External COM Device Specification.

Modems
Modems must meet the following requirements:

1. Support at least 9600 bits per second (bps) V.32 with V42N42bis protocol for
data modems.

2. Support the TIA -602 (Hayes®-compatible) AT command set, with extensions
for flow control, V 42N 42bis.

3. Support fax capabilities of at least 9600 bps V.29 with class 1 (TIA-578A).

4. Support Plug and Play device identification, using the appropriate Plug and Play
specification (for example, ISA bus, COM port, PCMCIA slot, or LPT port).

5. Support the 16550A compatible universal asynchronous receiver-transmitter
(U ART) interface.

Network Adapters
Network adapters must meet the following requirements:

1. Support the network driver interface specification (NDIS) 3.1 network device
driver, which allows dynamic starting and stopping of the network card.

2. Provide a means of automatically enabling the adapter as a boot device or
enabling the adapter as a nonbootable device, if the network adapter is
designed with Remote Initial Program Load (RIPL) capability.

3. Do not hook Interrupt 18 and Interrupt 19 on ISA bus systems. This is a
requirement for an ISA Plug and Play card.

4. Support at least seven IRQ signals and enable/disable.

5. Select at least three available DMA channels, either 8 bit or 16 bit, if DMA is
supported.

6. Support disabling in case of resource conflicts with other devices.

ARTICLE 3

Win32 Limitations in Windows 95

About Windows 95 System Limitations
Microsoft® Windows® 95 implements some Microsoft® Win32® functions and
messages differently than Microsoft® Windows NTTM. If you intend to run 32-bit
applications on both platforms, you need to understand these differences to
minimize development and debugging time.

General Limitations
Some Win32 functions and messages, such as for security and event logging,

51

are not supported by Windows 95. Windows 95 provides stub routines for these
unsupported functions so that applications designed for other operating systems
that fully support the Win32 application programming interface (API) can run with
Windows 95 without errors.

By design, Win32 functions that take string parameters can handle either Unicode™
(wide character) or ANSI strings. However, Windows 95 does not implement the
Unicode (or wide character) version of most Win32 functions. With few excep
tions, these functions are implemented as stubs that simply return an error value.
However, Windows 95 does provide Unicode implementations of the following
functions.

ExtTextOut
GetCharWidth
GetTextExtentExPoint
GetTextExtentPoint

MessageBox
MessageBoxEx
TextOut

In addition, Windows 95 implements the MultiByteTo WideChar and
WideCharToMultiByte functions for converting strings to and from Unicode.

52 Programmer's Guide to Microsoft Windows 95

Although all Boolean functions in the documentation for the Microsoft Win32
Software Development Kit (SDK) are described as returning 1 for TRUE and
zero for FALSE, these return values are not necessarily true for Win32 functions
in Windows 95. Instead, these functions are guaranteed to return a nonzero value
for TRUE and zero for FALSE.

Window Management (User)
Windows 95 implements some window management features in 16 bits. The use
of 16 bits imposes some restrictions on parameters in functions and messages and
places limits on internal storage. For example, the standard edit control is limited to
somewhat less than 64 kilobytes (K) of text. In some cases, Windows 95 provides
new features that can be used to avoid these restrictions and limitations, such as the
rich edit control in which the amount of text is limited only by available memory.

The wParam parameter for the SendMessageCallback, SendMessageTimeout,
and SendNotifyMessage functions is limited to a 16-bit value.

In Windows 95, the wParam parameter in list box messages, such as
LB_INSERTSTRING or LB_SETITEMDATA, is limited to a 16-bit value.
One effect of this limit is that list boxes cannot contain more than 32,767 items.
Although the number of items is restricted, the total size, in bytes, of the items
in a list box is limited only by available memory. In contrast, a 64K data limit is
imposed by Windows version 3.1.

Windows 95 permits up to 16,364 window handles and 16,364 menu handles.
Although these limits are less than in Windows NT, they are significantly greater
than the limits imposed by Windows version 3.1.

In Windows 95, the ActivateKeyboardLayout, GetKeyboardLayoutName, and
UnloadKeyboardLayout functions do not support extended error code values;
that is, you cannot retrieve errors for these functions by using the GetLastError
function.

In Windows 95, only one desktop is available while the system runs. Although
the thread desktop functions, GetThreadDesktop and SetThreadDesktop, are
available under Windows 95, they do not do anything.

Any private application message must be defined above WM_USER + Oxl00.
A value above this will ensure that there is no collision between private messages
and dialog box control messages.

Article 3 Win32 Limitations in Windows 95 53

Windows 95 automatically applies the standard three-dimensional shading and
color scheme to dialog boxes created by applications marked as version 4.0 or later.
Applications that are marked for earlier versions can still get the three-dimensional
appearance by applying the DS_3DLOOK style to dialog boxes. If this style is
used, the system automatically applies the three-dimensional look without requiring
the application to check the operating system version. This is useful, for example,
in applications developed for Windows NT version 3.5. The DS_3DLOOK style is
ignored in Windows NT version 3.1.

The IDC_SIZE and IDC_ICON values used with the LoadCursor function are
obsolete and should not be used in a Windows 95-based application or in a
Win32-based application that is marked as version 4.0.

In Windows 95, the MB_ICONQUESTION style used with the MessageBox,
MessageBoxEx, and MessageBoxlndirect functions is obsolete. Win32-
based applications should use the MB_ICONEXCLAMATION style instead.
Similarly, applications should use the MB_ICONINFORMATION style instead
of the MB_ICONASTERISK style and the MB_ICONSTOP style instead of the
MB_ICONHAND style.

Graphics Device Interface (GDI)
Windows 95 uses a 16-bit world coordinate system and restricts x- and
y-coordinates for text and graphics to the range ±32K. Windows NT uses
a 32-bit world coordinate system and allows coordinates in the range ±2 giga
bytes (OB). If you pass full 32-bit coordinates to text and graphics functions in
Windows 95, the system truncates the upper 16 bits of the coordinates before
carrying out the requested operation.

Because Windows 95 uses a 16-bit coordinate system, the sum of the coordinates of
the bounding rectangle specified by the Arc, Chord, Pie, Ellipse, and RoundRect
functions cannot exceed 32K. In addition, the sum of the nLeftRect and nRightRect
parameters or the nTopRect and nBottomRect parameters cannot exceed 32K.

In Windows 95, regions are allocated from the 32-bit heap and can, therefore, be as
large as available memory. (In Windows version 3.1, regions were limited to 64K.)
All other logical objects, however, share the 64K local heap. In addition, the num
ber of region handles cannot exceed 16K.

To ensure that adequate space is always available for logical objects, applications
should always delete objects when no longer needed. The following functions create
objects that are placed in the local heap and have corresponding functions used to
delete the objects.

54 Programmer's Guide to Microsoft Windows 95

Object Create with Delete with

Bitmap CreateBitmap, DeleteObject
CreateBitmapIndirect,
CreateCompatibleBitmap,
CreateDIBitmap,
CreateDmSection,
CreateDiscardableBitmap

Brush CreateBrushlndirect, DeleteObject
CreateDIBPatternBrush,
CreateDmPatternBrushPt,
CreateHatchBrush,
CreatePatternBrush,
CreateSolidBrush

Color space CreateColorSpace DeleteColorSpace

Device context (DC) CreateDC, DeleteDC,
GetDC ReleaseDC

Enhanced metafile CloseEnhMetaFile, DeleteEnhMetaFile
CopyEnhMetaFile,
GetEnhMetaFile,
SetEnhMetaFileBits

Enhanced metafile DC CreateEnhMetaFiIe CloseEnhMetaFiIe

Extended pen ExtCreatePen DeleteObject

Font CreateFont, DeleteObject
CreateFontIndirect

Memory DC CreateCompatibleDC DeleteDC

Metafile CloseMetaFile, DeleteMetaFile
CopyMetaFile,
GetMetaFile,
SetMetaFileBitsEx

Metafile DC CreateMetafile CloseMetaFile

Palette CreatePaiette DeleteObject

Pen CreatePen, DeleteObject
CreatePenlndirect

Region CombineRgn, DeleteObject
CreateEllipticRgn,
CreateEllipticRgnIndirect,
CreatePolygonRgn,
CreatePolyPolygonRgn,
CreateRectRgn,
CreateRectRgnlndirect,
CreateRoundRectRgn,
ExtCreateRegion,
PathToRegion

Article 3 Win32 Limitations in Windows 95 55

Physical objects have always existed in global memory and are, therefore, not
limited.

Windows 95 does not support world transformations that involve either shearing
or rotations. The ExtCreateRegion function fails if the transformation matrix is
anything other than a scaling or translation of the region.

In Windows 95, pens and brushes have several limitations. The ExtCreatePen
function supports solid colors only (the PS_SOLID style), and the styles
PS_ALTERNATE and PS_USERSTYLE are not supported. Geometric pens
(the PS_GEOMETRIC style) are limited to the BS_SOLID brush style specified in
the LOGBRUSH structure passed to ExtCreatePen. In addition, the following pen
styles are supported in paths only.

PS_ENDCAP _FLAT
PS_ENDCAP _ROUND
PS_ENDCAP _SQUARE

PS_JOIN_BEVEL
PS_JOIN_MITER
PS_JOIN_ROUND

Windows 95 does not support the dashed or dotted pen styles, such as PS_DASH
or PS_DOT, in wide lines. The BS_DillPATTERN brush style is limited to an
8- by 8-pixel brush.

Windows 95 does not support brushes from bitmaps or device independent bitmaps
(DIBs) that are larger than 8 by 8 pixels. Although bitmaps larger than 8 by 8
pixels can be passed to the CreatePatternBrush or CreateDIBPatternBrush
function, only a portion of the bitmap is used to create the brush.

Windows 95 does not provide automatic tracking of the brush origin. An appli
cation is responsible for using the UnrealizeObject, SetBrushOrgEx, and
SelectObject functions each time it paints using a pattern brush.

Windows 95 does not support the CBM_CREATEDill value for the
CreateDffiitmap function. The CreateDIBSection function should be used
instead to create a Dill. CreateDIBSection is also available in Windows NT
version 3.5.

If the biCompression member of the BITMAPINFOHEADER structure is the
BI_BITFIELDS value, the bmiColors member of the BITMAPINFO structure
contains three doubleword color masks that specify the red, green, and blue
components, respectively, of each pixel. Windows 95 only supports these color
masks for 16 and 32 bits per pixel (bpp).

16bpp

16bpp

32bpp

The blue mask is OxOOlF, the green mask is Ox03EO, and the red
mask is Ox7COO.

The blue mask is OxOOlF, the green mask is Ox07EO, and the red
mask is OxF800.

The blue mask is OxOOOOOOFF, the green mask is OxOOOOFFOO, and
the red mask is OxOOFFOOOO.

56 Programmer's Guide to Microsoft Windows 95

If the lpvBits parameter is NULL, the GetDIBits function fills in the dimensions
and format of the bitmap in the BITMAPINFO structure pointed to by the lpbi
parameter. In this case, if the function is successful, the return value in Windows 95
is the total number of scan lines in the bitmap. In Windows NT versions 3.1 and
3.5, however, the return value is 1 (TRUE), indicating success.

Deletion of drawing objects is slightly different in Windows 95 than in Windows
NT. In Windows NT, if a drawing object (pen or brush) is deleted while it is still
selected into a DC, the DeleteObject function fails. In Windows 95, the function
succeeds, but the result is a nonfunctioning object. This nonfunctioning object is
automatically destroyed when the DC is deleted.

When a path is constructed in Windows 95, only the following functions are
recorded: ExtTextOut, LineTo, MoveToEx, PolyBezier, PolyBezierTo,
Polygon, Polyline, PolylineTo, PolyPolygon, PolyPolyline, and TextOut.

In Windows 95, the GetGraphicsMode and SetGraphicsMode functions
only support the GM_COMPATffiLE value. The GM_ADV ANCED value is not
supported.

In Windows 95, the DeviceCapabilities function returns -1 when called with
the DC_FILEDEPENDENCIES value because that capability is not supported.
In Windows 95, DeviceCapabilities supports the following additional capabilities.

DC_DATATYPE_PRODUCED Retrieves an array of strings containing the data
types that the printer driver supports. A return
value of -1 indicates that the printer driver only
understands device-specific commands (in other
words, "RAW" data) that are native to the printer.
A return value of 2 or more indicates the number of
strings in the array.

DC_EMF _COMPLIANT Returns a flag that indicates if the specified printer
driver is capable of accepting an enhanced metafile
(EMF) spooled by the system (that is, the printer
driver is EMF-compliant). The function returns 1
if the printer driver is EMF-compliant and -1 if the
printer driver is not.

Although Windows 95 imposes no restrictions on the PlayEnhMetaFile and
PlayEnhMetaFileRecord functions, the files and records that these functions
execute are. subject to the limitations described in this section. For example, the
functions ignore records that attempt to draw outside of the 16-bit coordinate
space or that apply shearing or rotation to world transformations.

Article 3 Win32 Limitations in Windows 95 57

In Windows 95, the maximum length of the description string for an enhanced
metafile is 16K. This limit applies to the GetEnhMetaFileDescription,
GetEnhMetaFileHeader, and GetEnhMetaFile functions.

In Windows 95, the dmDeviceName member of the DEVMODE structure
specifies the "friendly" name of the printer, which may be set to any user-defined
value. Windows 95, however, does not support the the following members; they
are included for compatibility with Windows NT.

dmBitsPerPel
dmDisplayFiags
dmDisplayFrequency

dmFormName
dmPelsHeight
dmPelsWidth

Windows 95 does not support print monitor dynamic-link libraries (DLLs) that
have been developed for Windows NT. To add a monitor using the AddMonitor
function, you must specify a monitor DLL that has been explicitly created for
Windows 95. The following printing and print spooling functions are not available
in Windows 95.

AddForm
AddPrinterConnection
ConnectToPrinterDlg
DeleteForm
DeletePrinterConnection
EnumForms
FindClosePrinterChangeNotification

FindFirstPrinterChangeNotification
FindNextPrinterChangeNotification
GetForm
ResetPrinter
SetForm
WaitForPrinterChange

In Windows 95, the SetPrinter function ignores the pShareName member
of the PRINTER_INFO _2 structure. Windows 95 does not support the
PRINTER_INFO _3 and PRINTER_INFO _ 4 structures used with the
SetPrinter, GetPrinter, and EnumPrinters functions. The PRINTER_INFO_5
structure, which is available in Windows 95, is not supported in Windows NT
versions 3.1 and 3.5.

The PRINTER_ENUM_CONNECTIONS value used with the EnumPrinters
function is not supported in Windows 95. The DOC_INFO_2 structure used
with the StartDocPrinter function and the PORT_INFO_2 structure used with
the EnumPorts function are not supported in Windows NT versions 3.1 and 3.5.

Windows 95 supports the DRA WP A TTERNRECT printer escape.

58 Programmer's Guide to Microsoft Windows 95

Win32-based applications that send output to PostScript™ printers should use the
GetDeviceCaps function to check for the PC_PATHS value to determine whether
to use path functions or printer escapes to draw paths. Applications should use paths
functions whenever possible. The following example shows how to check for this
capability .

II Determine whether to use path functions on the device.
II hOC is the output device.

OSVERSIONINFO osvi;

osvi .dwOSVersionlnfoSize = sizeof(osvi);
GetVersionEx(&osvi);

if «osvi .dwPlatformld == VER_PLATFORM_WIN32_NT) I I

else

«osvi .dwPlatformld == VER_PLATFORM_WIN32_WINDOWS) &&
(GetOeviceCaps(hOC, POLYCAPS) & PC_PATHS»)

bUsePaths = TRUE;

bUsePaths = FALSE;

In Windows 95, printer drivers typically set this capability to zero. This means
that Win32-based applications sending output to Postscript printers need to use the
ExtEscape function and the printer-specific escapes to draw paths at the printer.
(The Escape function cannot be used for this.)

In Windows NT, the string specified in the lpszDeviceName parameter of the
EnumDisplaySettings function must be of the form "\\ .\DisplayX", where X can
be 1, 2, or 3. In Windows 95, lpszDeviceName must be NULL.

System Services (Kernel)
The extended error codes returned by the GetLastError function are not

, guaranteed to be the same in Windows 95 and Windows NT. This difference
applies to extended error codes generated by calls to GDI, window management,
and system services functions.

Windows 95 does not support asynchronous file input and output (110), except
on serial devices. Therefore, the ReadFile and WriteFile functions will fail
if you pass in an overlapped region on anything other than a serial device.
The GetOverlappedResult function works only on serial devices or on files
opened by using the DeviceloControl function.

In Windows 95, the ReadFileEx and WriteFileEx functions will fail if you pass
in the handle of a serial device (for example, COM2). ReadFile and WriteFile,
however, accept the handle of a serial device.

Article 3 Win32 Limitations in Windows 95 59

In Windows NT, the FileTimeToDosDateTime and DosDateTimeToFileTime
functions allow dates up to 12/3112107. In Windows 95, these functions allow dates
up to 12/3112099.

The precision of the time for a file on a file allocation table (FAT) file system
volume is 2 seconds. If Windows 95 is connected through a network to a different
file system, the time precision is limited only by the remote device.

In Windows NT, the DeleteFile function fails if you attempt to delete a file that
is open for normal I/O or is opened as a memory mapped file. In Windows 95,
DeleteFile deletes such files. Because deleting open files may cause loss of data
and application failure, you must take every precaution to close files before
attempting to delete them by using DeleteFile.

In Windows 95, fixed memory blocks cannot be reallocated to be movable. The
GMEM_MODIFY and GMEM_MOVEABLE combination of values has no effect
when a memory block is reallocated by using the GlobalReAlloc function. Simi
larly, the LMEM_MODIFY and LMEM_MOVEABLE combination has no effect
when a memory block is reallocated by using the LocalReAlloc function.

In Windows 95, committing memory for a page that is already committed is an
expensive operation that has no ultimate effect (it is expensive because additional
storage is allocated and subsequently freed for each committed page). When
committing memory by using the VirtualAlloc function, an application should
specify only the pages that actually need to be committed.

Although applications can request that memory allocation be at a specific virtual
address, applications must not depend on any given address range always being
available on every operating system. Applications can query the address space
by using the GetSystemlnfo function.

In Windows 95, memory allocated by Win32-based applications falls in the
address range 4 megabytes (MB)-2GB for private memory and 2GB-3GB
for shared memory (shared mapped files). The PAGE_WRITECOPY and
PAGE_GUARD access protection values are not supported. Instead of using
the PAGE_GUARD value and handling the EXCEPTION_GUARD_PAGE
exception, applications can use the PAGE_NOACCESS value and handle the
EXCEPTION_ACCESS_ VIOLATION exception.

The SEC_IMAGE and SEC_NOCACHE values for the fdwProtect parameter of
the CreateFileMapping function are not supported in Windows 95. In addition,
the dwMaximumSizeHigh parameter of CreateFileMapping is ignored in
Windows 95, so applications should specify zero for the parameter.

60 Programmer's Guide to Microsoft Windows 95

In Windows 95, shared memory mapped files that are created by using the
Map ViewOfFileEx function appear in the same address space across all 32-bit
processes in the system. If you pass in a specific base offset in the lpvBase
parameter of Map ViewOfFileEx and the function succeeds, you are guaranteed
that the same memory region is available in every process. This is not true in
Windows NT because Map ViewOfFileEx fails for any process that already has
the given memory region in use.

Coherence guarantees that the data accessible in a file view is an identical copy of
the file's contents on disk. In Windows 95, file views derived from a single file
mapping object are coherent only if the file is accessed through one of the views.
A view of a file is not guaranteed to be coherent if the file is accessed by normal
file 110 functions, such as ReadFile or WriteFile, or by views created from a
different file-mapping object.

If you close a file handle that was used to create a file mapping object, both
Windows NT and Windows 95 hold the file open until you unmap the last view
of the file by using the UnmapViewOfFile function. However, Windows NT holds
the file open with no sharing restrictions, whereas Windows 95 holds it open using
the sharing restrictions of the original file handle. To ensure exclusive access to
a file in Windows NT, the file handle must remain open for the life of the file
mapping object. Because Windows 95 retains the sharing restrictions, both the
file handle and the handle to the file-mapping object may be closed after calling
Map ViewOfFile and exclusive access to the file is ensured.

In Windows 95, if the FILE_MAP _COpy value is specified for thefdwAccess
parameter of Map ViewOfFile (or Map ViewOfFileEx), the hMapObject param
eter must have been created with the P AGE_ WRITECOPY value. Also, the
dwOffsetHigh parameter of Map ViewOfFile (or Map ViewOfFileEx) is ignored,
so applications should specify zero for the parameter.

Windows 95 implements copy-on-write file mappings slightly differently
than Windows NT. In Windows 95, a call to MapViewOfFile with
FILE_MAP _COpy returns an error unless PAGE_ WRITECOPY was used
with the CreateFileMapping function. In both Windows NT and Windows 95,
creating the map with PAGE_ WRITECOPY and the view with FILE_MAP _COPY
produces a view to the file that makes the pages swappable and prevents modifi
cations from going to the original data file. In Windows 95, PAGE_ WRITECOPY
must be passed to CreateFileMapping, but this is optional in Windows NT.

If you share mapping between multiple processes by using the DuplicateHandle or
OpenFileMapping function and one process· writes to a view, the modifications
will not be propagated to the other process in Windows NT. However, the modifi
cations will be propagated in Windows 95. The original file, though, will not
change on either platform.

Article 3 Win32 Limitations in Windows 95 61

In Windows 95, the CreateFile function does not support the standard "\\ .\C:" and
"\\ .\PhysicaIDriveO" formats used to gain access to the logical or physical drives.
To gain access, applications must specify a virtual device (VxD) name instead and
use the DeviceloControl function to send requests through the VxD to the logical
and physical drives. For more information, see Article 20, "Device 110 Control."

In Windows 95, the DuplicateHandle function cannot duplicate handles of registry
keys as it can in Windows NT. The function returns an error if an application
attempts to duplicate the handle of a registry key. In addition, when a file handle is
duplicated, the duplicated handle will not be granted more access than the original.

The LoadLibrary function does not support loading 16-bit DLLs into a Win32
process.

Thread locales, which are retrieved and set by using the GetThreadLocale and
SetThreadLocale functions, are static and can only be changed at system boot
time.

In Windows 95, the FlushInstructionCache function always returns TRUE.
Windows 95 supports single processor machines only.

In Windows 95, a call to the FreeResource function must be included for every
call to the LoadResource function. The call to FreeResource allows the system to
discard a resource that an application no longer needs. Windows NT automatically
frees resources, so a call to FreeResource is not required.

The SYNCHRONIZE standard access rights flag is not supported in Windows 95.
The following functions are affected.

DuplicateHandle

MsgWaitForMultipleObjects

OpenEvent

OpenMutex

OpenProcess

OpenSemaphore

WaitForMultipleObjects

WaitForMultipleObjectsEx

WaitForSingleObject

WaitForSingleObjectEx

The Windows 95 registry does not allow key names containing control characters.
In addition, if the /pszSubKey parameter is an empty string, the RegDeleteKey
function deletes the key identified by the hKey parameter.

In Windows 95, the RegCreateKeyEx function creates a non-volatile key even if
the REG_OPTION_VOLATILE value is specified.

62 Programmer's Guide to Microsoft Windows 95

Multimedia
The sndAlias macro is not supported in Windows 95. In addition, the SND_ALIAS
and SND_ALIAS_ID values for the PlaySound function are not supported in
Windows 95.

The Windows 95 multimedia functions are not designed to be used by two or more
threads in the same process. Although most multimedia functions will work if they
are called by multiple threads, some are likely to fail. Functions that are particularly
likely to fail include PlaySound, any of the functions that prepare or unprepare
headers, and any of the open and close functions. PlaySound can never be used
simultaneously by multiple threads in the same process. The functions that prepare
or unprepare headers and the open and close functions can be used simultaneously
by multiple threads in the same process, but only if they do not pass the same
structure.

ARTICLE 4

Version Differences

About Version Differences
The Microsoft® Windows® 95 operating system supports Windows-based
applications that have a subsystem version number of either 3.x or 4.0.
An application's subsystem version number is set by the linker. This article
describes the differences in the way Windows 95 treats applications based on
their subsystem version numbers. It is intended to help you identify areas in
an application written for Windows version 3.x that you must revise to take
advantage of the new features provided by Windows 95.

General Window Management Differences
When a version 4.0 application uses the SetWindowLong function (with
GWL_STYLE) to change a window's style, Windows 95 sends the window
a WM_STYLECHANGING message before changing the style. The message's
IParam parameter is the address of a STYLESTRUCT structure. The styleOld
and styleNew members of the structure specify the old and new styles. By
processing WM_STYLECHANGING, an application can inspect the styles'
and perhaps change them.

63

Windows 95 sends the WM_STYLECHANGED message after changing the style.
Again, the IParam parameter is the address of a STYLESTRUCT structure that
specifies the new styles. The application can use WM_STYLECHANGED to
update any style-dependent information stored in the application's internal data
structures.

Windows 95, however, does not send the WM_STYLECHANGING and
WM_STYLECHANGED messages to a version 3.x application.

A version 4.0 application cannot use the SetWindowLong function to set the
WS_EX_TOPMOST style for a window or to remove the style from a window.
The application must use the SetWindowPos function to set or remove the
WS_EX_TOPMOST style.

64 Programmer's Guide to Microsoft Windows 95

Windows 95 automatically adds and removes the WS_EX_ WINDOWEDGE style
for windows in both version 3.x and 4.0 applications. In a version 3.x application,
Windows 95 adds the WS_EX_ WINDOWEDGE style to a window if the window
would have a dialog border or a sizable border in version 3.1. Windows 95 removes
the WS_EX_ WINDOWEDGE style if the window's style changes so that it would
no longer have a dialog border or sizable border in version 3.1. Windows 95 uses
similar criteria for adding and removing the WSY:X_ WINDOWEDGE style for
a Windows version 4.0 application, except that any window that has a title bar
receives the WS_EX_ WINDOWEDGE style, regardless of the window's other
border styles.

When the user drags the icon of a minimized window created by a version 3.x
application, Windows 95 sends the window a WM_QUERYDRAGICON
message to retrieve the cursor to use while dragging. Windows 95 also sends
WM_QUERYDRAGICON to retrieve the icon to display in the task-switch
window that appears when the user presses the AL T + TAB key combination.
Windows 95 does not send WM_QUERYDRAGICON to a window created by a
version 4.0 application. Instead, the application is expected either to use the
WM_SETICON and WM_GETICON messages or to set the big and small icons
when registering the window class.

When a window in a version 4.0 application loses the mouse capture as a
result of a call to the SetCapture function, the window receives the message
WM_CAPTURECHANGED, but Windows 95 sends the message asynchronously.
In other words, the window receives the message, but possibly not right away.
Some of the ways in which a window can lose the mouse capture include:

• The user activated a different application by clicking one of its windows.

• The DefWindowProc function changed the capture in response to a
WM_CANCELMODE message.

• Another window using the same message queue called the SetCapture function.
(All 16-bit applications share the same queue, but each 32-bit thread has its own
queue.)

If a child window in a version 3.x application has WS_EX_NOPARENTNOTIFY
as a window style, Windows 95 disregards the style when the user clicks the child
window. That is, Windows 95 sends the WM_PARENTNOTIFY message to all
windows in the parent chain regardless of whether the child window has the style.
If a child window in a version 4.0 application has the style, Windows 95 does not
send WM_P ARENTNOTIFY messages when the user clicks the child window.

Article 4 Version Differences 65

In a version 3.x application, it is possible for the horizontal coordinate on the left
side of a window's client area to be greater than that on the right side. This happens
because version 3.x sometimes incorrectly handles an empty client rectangle that
contains a vertical scroll bar. (Fixing the. problem would cause some applications
to generate general protection faults.) In a version 4.0 application, it is not possible
for the horizontal coordinate of the left side of a client area to be greater than that
of the right side.

Dialog Boxes

Buttons

A dialog box created by a version 4.0 application automatically receives the
DS_3DLOOK style. This style gives three-dimensional borders to child controls
in the dialog box and draws the entire dialog box using the three-dimensional color
scheme. The DS_3DLOOK style is available to a dialog box created by a version
3.x application, but you must explicitly add the style to the dialog box template.
The application that creates the dialog box determines the version number of the
dialog box.

Windows 95 performs a strict validation check on the DS_ styles specified in a
dialog box template. If the template contains any styles that Windows 95 does
not recognize and a version 4.0 application is creating the dialog box, the creation
fails. If a version 3.x application is creating the dialog box, the system debugger
generates a warning, but Windows 95 creates the dialog box anyway.

The parent window of a button (except push buttons) in a version 3.x application
receives a WM_CTLCOLORBTN message when the button is about to be drawn.
In a version 4.0 application, however, the parent window of a button receives
the WM_CTLCOLORSTATIC message, which retrieves a color appropriate
for drawing text on the background of the dialog box. Windows 95 sends
WM_ CTLCOLORSTATIC to retrieve the background and text colors for the
text area of check boxes, radio buttons, and group buttons. An application should
process WM_CTLCOLORSTATIC in order to correctly set the colors of any
dialog box item that contains text and appears directly on the dialog area.

Windows 95 perform default handling of the WM_CTLCOLORBTN message
differently depending on an application's version. For a version 3.x application,
the default handling for button colors is to use the COLOR_WINDOW value
for the background color and the COLOR_ WINDOWTEXT value for
the foreground color. For a version 4.0 application, Windows 95 uses the
COLOR_3DFACE value for the background and the COLOR_BTNTEXT
value for the foreground.

66 Programmer's Guide to Microsoft Windows 95

In a version 3.x application, a push button's outer top left comer is nonwhite
because the button is typically drawn on a white background. If the border
was white, the background would appear to bleed into the button. In a
version 4.0 application, a push button's outer top left comer is white in color
(COLOR_3DHILIGHT) because the button is typically drawn on a nonwhite
background (COLOR_3DFACE).

Edit Controls

List Boxes

In a version 3.x application, an edit control that is the descendant of an inactive
window takes the input focus when the user clicks the control; an edit control in a
version 4.0 application does not. Not taking the input focus prevents the situation
where the user can enter text into what appears to be an inactive window.

An edit control in a version 3.x application retrieves its text and background colors
by sending the WM_CTLCOLOREDIT message to its parent window. In a
version 4.0 application, an edit control sends the WM_CTLCOLOREDIT or
WM_ CTLCOLORSTATIC message. If the edit control is disabled or read-only,
it sends WM_CTLCOLORSTATIC; otherwise, it sends WM_CTLCOLOREDIT.
In addition, a disabled multiline edit control in a version 4.0 application uses the
COLOR_GRA YTEXT value as its text color.

A multiline edit control in a version 4.0 application has a proportional scroll box
(thumb), but a multiline edit control in a version 3.x application does not.

In a version 3.x application, the wParam parameter of the EM_REPLACESEL
message is not used. In a version 4.0 application, the wParam parameter is a
flag that specifies whether the replacement operation can be undone.

In a version 4.0 application, a list box that is part of a combo box uses the
WM_CAPTURECHANGED notification message to hide its drop-down list
if it is open. For more information, see "Combo Boxes" later in this article.

The DDL_EXCLUSIVE flag of the DlgDirList function does not have the
expected result in a version 3.x application. Specifically, the flag does not
exclude read-write files from the list. In a version 4.0 application, the
DDL_EXCLUSIVE flag excludes read-write files.

Article 4 Version Differences 67

If a list box in a version 3.x application has either the WS_HSCROLL or
WS_ VSCROLL style, the list box receives both horizontal and vertical scroll
bars. Although one of the scroll bars is typically hidden, Windows 95 displays the
hidden scroll bar if its scrolling range becomes greater than zero. In a version 4.0
application, a list box does not receive a horizontal scroll bar, unless it has the
WS_HSCROLL style. Likewise, it does not receive a vertical scroll bar unless it
has the WS_ VSCROLL style.

When creating a list box in a version 3.x application, Windows 95 always increases
the size of the list box by adding the border width to each side. This is done because
Windows 95 assumes that the dimensions specified by the application or the dialog
template are for the client area of the list box. Unfortunately, increasing the size in
this way makes aligning a list box rather difficult. Windows 95 does not increase
the size when creating a list box in a version 4.0 application; Windows 95 assumes
that the specified size includes the borders.

Combo Boxes
A combo box in a version 4.0 application passes the control color messages
(WM_CTLCOLOR*) from its child components (edit control and list box) to the
parent window of the combo box. In a version 3.x application, a combo box passes
those messages to the DefWindowProc function.

A combo box in a version 4.0 application uses the WM_CAPTURECHANGED
message to hide its drop-down list box if it is open. Windows 95 sends the message
when another window takes the mouse capture, which typically happens when the
user clicks another window. In a version 3.x application, a combo box does not use
WM_CAPTURECHANGED to hide the drop-down list.

A combo box in a version 3.x application uses the WM_CTLCOLORLISTBOX
message to retrieve the text and background colors. In a version 4.0 application,
a combo box uses the WM_CTLCOLOREDIT or WM_CTLCOLORSTATIC
message instead. The combo box uses WM_ CTLCOLORSTATIC if it is disabled
or contains a read-only selection field (in an edit control); otherwise, it uses
WM_CTLCOLOREDIT.

In a version 3.x application, the background of the static text area in read-only
combo boxes is filled with the system highlight color (COLOR_HILIGHT).
In a version 4.0 application, Windows 95 fills the background of the static text
area only for a combo box that is not owner drawn.

In a version 4.0 application, Windows 95 adds the ODS_COMBOBOXEDIT value
to the itemState member of the DRA WITEMSTRUCT structure when Windows
95 sends the WM_DRA WITEM message to the parent window of an owner-drawn
combo box to draw an item in the selection field. The ODS_COMBOBOXEDIT
value tells the parent window that the drawing takes place in the selection field of
the combo box rather than in the list box.

68 Programmer's Guide to Microsoft Windows 95

Menus
A 16-bit version 3.x application that creates or loads a menu is considered to be the
owner of the menu. However, when the application exits, the menu is "orphaned"
until no 16-bit version components for Windows version 3.x remain. For 16-bit
version 4.0 applications and all 32-bit applications, the application that creates
the menu is the owner, and the menu is destroyed as soon as the application exits.
Unlike graphics device interface (GDI) objects, there is no way to change the
ownership of a menu.

In a version 3.x application, the Close command cannot be deleted from the System
menu of an multiple document interface (MDI) child window. In a version 4.0
application, the Close command can be deleted.

Windows 95 increases the width of hierarchical, owner-drawn menu items in a
version 3.x application. Some applications rely on this increased width and use it to
include icons that simulate toolbars. In a version 4.0 application, Windows 95 does
not automatically increase the width of hierarchical, owner-drawn menu items.

The wParam parameter of the WM_MENUSELECT message is interpreted differ
ently depending on the subsystem version number of the application and whether
the application is written for 16 or 32 bits:

• In a 16-bit version 3.x application, the wParam parameter is the handle of the
pop-up menu if the selected item activates a pop-up menu.

• In a 16-bit version 4.0 application, wParam is the identifier of the menu item,
regardless of whether the item activates a pop-up menu.

• In a 32-bit application (both subsystem versions), the low-order word of
wParam is the identifier of the menu item or, if the item activates a pop-up
menu, the index of the pop-up menu. This high-order word contains the
menu flags.

System Bitmaps and Colors
In 16-bit version 3.x applications, purpose windows, such as dialog boxes,
message boxes, and system-defmed control windows, receive WM_CTLCOLOR
messages when they are about to be drawn. The high-order word of the lParam
parameter indicates the type of special purpose window about to be drawn
(CTLCOLOR_BTN, CTLCOLORPDIT, and so on). By default, a special purpose
window passes the WM_ CTLCOLOR message to the parent or owner window
(for both subsystem versions), allowing the parent or owner to set the foreground
and background colors of the special purpose window. The same is true for 32-bit
applications, except that the special purpose window receives one or more of the
following messages instead of WM_CTLCOLOR.

WM_CTLCOLORBTN
WM_CTLCOLORDLG
WM_CTLCOLOREDIT
WM_CTLCOLORLISTBOX

Article 4 Version Differences 69

WM_CTLCOLORMSGBOX
WM_CTLCOLORSCROLLBAR
WM_CTLCOLORSTATIC

In 32-bit applications, the message itself indicates the type of special purpose
window about to be drawn. The lParam parameter contains the window's 32-bit
handle.

Display drivers for Windows version 3.x provide the bitmaps, icons, and cursors
used by previous versions of Windows. Because Windows 95 renders and scales
the system bitmaps, icons, and cursors itself, its display drivers do not (and should
not) contain any OBM_, OIC_, or OCR_ resources.

For a version 3.x application, the default handling of the window messages
WM_CTLCOLORSTATIC and WM_CTLCOLORDLG is to use the
COLOR_WINDOW value for the background and the COLOR_ WINDOWTEXT
value for the foreground. For a version 4.0 application, Windows 95 uses the
COLOR_3DFACE value for the background and the COLOR_ WINDOWTEXT
value for the foreground.

When an application calls the GetClientRect function to retrieve the client rect
angle of a minimized window created by a version 3.x application, Windows 95
retrieves the old dimensions for a minimized window (0, 0, 36, 36). For a
minimized window in a version 3.1 or 4.0 application, Windows 95 retrieves
0, 0, GetSystemMetrics(SM_ CXMINIMIZED), GetSystemMetrics
(SM_CYMINIMIZED). These metrics change if the user changes the title bar
height or minimized window width by using Control Panel. In other words, the
GetClientRect function returns the dimensions of the entire minimized window,
preventing an application from causing a general protection (GP) fault because of
an unexpectedly empty client rectangle.

System Metrics
When a version 3.x application calls the GetSystemMetrics function to retrieve
the SM_CYVSCROLL or SM_CYHSCROLL metric value, the function returns a
value that is one pixel more than the actual height of the corresponding type of
standard scroll bar. Windows 95 adds a pixel because applications written for
previous versions of windows routinely subtract one pixel from the return value.
Subtracting one pixel accounts for the way a standard scroll bar in a version 3.x
application overlaps the border of the window in which it resides. A version 4.0
application receives the actual height of the scroll bar.

When a version 3.x application retrieves the SM_CXDLGFRAME and
SM_CYDLGFRAME system mettic values, GetSystemMetrics returns a
value that is one pixel less that the actual frame width or height. A version 4.0
application receives the actual width or height.

70 Programmer's Guide to Microsoft Windows 95

GetSystemMetrics returns one pixel more than the actual height of a title bar
when a version 3.x application requests the SM_CYCAPTION system metric
value. A version 4.0 application receives the actual height of the title bar.

GetSystemMetrics returns one pixel less than the actual height of a menu bar
when a version 3.x application requests the SM_CYMENU system metric value.
A version 4.0 application receives the actual height of the menu bar.

When a version 3.x application calls GetSystemMetrics to retrieve the
SM_CYFULLSCREEN value (height of a maximized window's client area),
the function returns a value that is one pixel less than the actual height. This is
because GetSystemMetrics returns one pixel more than the actual title bar
height when an application retrieves the SM_CYCAPTION value. (The sum of
the height of a maximized window's client area and the height of a title bar must
equal the height of the working area of the screen.) A version 4.0 application
receives the actual height of the maximized window's client area when it requests
the SM_CYFULLSCREEN value.

Parameter Validation
If a 32-bit version 3.x application specifies invalid class styles when calling the
RegisterClass function, Windows 95 strips out the invalid bits and generates
warnings in the system debugger, but allows RegisterClass to succeed anyway.
If a 32-bit version 4.0 application passes invalid class styles to RegisterClass,
the function fails.

In a version 3.x application, Windows 95 does not validate the length member of
the WINDOWPLACEMENT structure that is passed to the window placement
functions, GetWindowPlacement and SetWindowPlacement. The length
member, however, is validated for a version 4.0 application; Windows 95 fails
these functions if the value of length is incorrect.

Windows 95 does not validate the cbSize member of the STARTUPINFO
structure specified in the CreateProcess and GetStartuplnfo functions for
applications written for Windows version 3.x. The cbSize member is validated,
however, for version 4.0 applications.

In the debugging version of Windows 95, the system fills the specified buffer
with zeros up to the length specified by the cbSize parameter when a version 4.0
application calls the LoadString function. The buffer is not filled with zeros for a
version 3.x application.

71

PAR T 2

Developing Applications
for Windows 95

Article 5 Using Common Controls and Dialog Boxes 73

Article 6 Using the Registry . 101

Article 7 Dragging and Dropping . 113

Article 8 Creating Multimedia Applications. 125

Article 9 Displaying and Using Pen Data 133

Article 10 Installing Applications . 161

ARTICLE 5

Using Common Controls and
Dialog Boxes

About Using Common Controls and Dialog Boxes

73

The Microsoft® Windows® 95 shell looks quite a bit different from the shell used
currently by Windows version 3.1x and Microsoft® Windows NTTM. This new shell
includes Windows 95 Explorer, which integrates the functionality of File Manager
and Program Manager in Windows 3.1x. Windows 95 Explorer uses many of the
new Windows 95 common controls and follows the guidelines specified in The
Windows Inteiface Guidelines for Software Design.

Because Windows 95 Explorer follows the interface guidelines so closely and
uses many of the new Windows 95 controls, developers may want to use it as a
model for their new Windows 95-based applications. This article explains how a
developer can create an Explorer-like application that displays real-estate listings
for houses.

This article is based on the article "Creating a Windows 95 Explorer-like Applica
tion" and the CHICOAPP sample application, both by Nancy Cluts, available in the
Microsoft Developer Network Development Library.

Appearance of Windows 95 Explorer
Windows 95 Explorer includes some new interface objects, such as a toolbar, a
status bar, a tree view control, and a list view control. These controls work together
to provide a usable and intuitive interface for the objects contained in the system.
For more information about these new controls, see the documentation included in
the Microsoft® Win32® Software Development Kit (SDK) and the six part series of
articles entitled "Win32 Common Controls" in the Microsoft Developer Network
Development Library (under Technical Articles), written by Nancy Cluts.

74 Programmer's Guide to Microsoft Windows 95

The new controls are provided in a dynamic-link library (DLL), which is called
COMCTL32.DLL. The COMCTL32.DLL file is included in Windows 95 and will
also be supported in Microsoft® Win32s® (running with Windows version 3.1x)
and in Windows NT. The new controls are 32 bit only; they will not be supported
in 16-bit Windows environments.

The following illustration shows the Windows 95 Explorer.

Thursday, June 02, ...
Folder Friday, April 15, 199 ...
Folder Thursday, June 02, ...
Folder Saturday,January 0 ...
Folder Monday, 0 ecember ...
Folder Tuesday, June 14, ...
Folder Saturday, June 04, ...
Folder Monday, May 02, 1...
Folder Friday, June 03, 199 ...
Folder Wednesday, May 2 ...
Folder

Designing the Sample Application
The sample application displays a real estate listing with the following
functionality:

A toolbar at the top of the screen with tooltip controls for easy access
to commands.

A status window at the bottom of the screen displaying the currently
selected city and the number of houses listed for that city.

A tree view control displaying the cities that have houses for sale.

A list view control displaying the houses for sale.

A pop-up context menu that can be displayed by mouse clicking.

Property sheets for viewing and changing house properties.

Long filename support for saving and opening house listing files.

Article 5 Using Common Controls and Dialog Boxes 75

The following illustration shows the finished application. It displays the main
screen with an open listing for the city of Seattle.

Tree view control Status window List view control

The application-defined structures used to hold the data for the sample application
follow. For more information about how these structures are used, see the section
"Parsing and Storing the Data" later in this article.

typedef struct tagCITYINFO
{

char szCity[MAX_CITY];
int NumHouses;
HTREEITEM hltem;

} CITYINFO;

typedef struct tagHOUSEINFO
{

II city name
II number of houses listed in city
II handle of tree view item

char szAddress[MAX_ADDRESS];
char szCity[MAX_CITY];

II address
I I city

int iPrice;
int iBeds;
int iBaths;
int ilmage;
char szAgent[MAX_CITY];
char szNumber[MAX_CITY];

HOUSEINFO;

II price
II number of bedrooms
II number of bathrooms
II bitmap index for house
II listing agent
II listing agent's phone number

76 Programmer's Guide to Microsoft Windows 95

The following constants and global variables are used in the sample application.

II Global variables
#define NUM_BUTTONS 8
#define TEMP_lEN 10

II Structure containing information about the for sale listing.
llSTINFO g_listing;

II Arrays to hold house and city information.
HOUSEINFO rgHouses[MAX_HOUSES];
CITYINFO rgCities[MAX_CITIES];

II File input and output (1/0) global variables.
OPENFIlENAME OpenFileName;
TCHAR szOirName[MAX_PATH] = TEXT("");
TCHAR szFile[MAX_PATH] = TEXT("\0");
TCHAR szFileTitle[MAX_PATH];

II Filter specification for the OPENFIlENAME structure.
TCHAR szFilter[] = TEXT("Text Files (*.TXT)\0*.TXT\0All Files
(*.*)\0*.*\0");

char *lpBufPtr;

Creating the Common Control Windows
Because the windows used in the sample application are part of the Windows 95
common control library, you must call lnitCommonControls to ensure that
COMCTL32.DLL is loaded before calling any functions that use the new com
mon controls. The status window has two parts: the left part, which displays the
currently selected city, and the right part, which displays the number of houses
listed for that city. The following example demonstrates how the status bar is
implemented and calls helper functions to create the toolbar and the list view and
tree view windows.

BOOl CreateAppWindows(HWNO hwndParent)
{

RECT rcl;
int lpSBParts[2];
static TCHAR szBuf[MAX_PATH];

II Make sure that the common control library is loaded.
InitCommonControls();

II Get the size and position of the parent window.
GetClientRect(hwndParent, &rcl);

Article 5 Using Common Controls and Dialog Boxes 77

II First. create the status window.
g_Listing.hWndStatus = CreateStatusWindow(
WS_CHILO I WS_BOROER I WS_VISIBLE. II window styles
TEXT(""). II default window text
hwndParent.
IO_STATUS);

if (g_Listing.hWndStatus == NULL)

II parent window
II identifier

MessageBox (NULL. TEXT("Status Bar not created!"). NULL.
MB_OK);

II Make the multiple parts for the status window.
lpSBParts[0] = (rcl.right - rcl.left) I 2;
lpSBParts[l] = -1;
SendMessage(g_Listing.hWndStatus. SB_SETPARTS. (WPARAM)2.
(LPARAM)&lpSBParts);

II Set the text for the status window.
ChangeSBText(g_Listing.hlnst. g_Listing.hWndStatus. -1);

II Next. create the toolbar.
g_Listing.hWndToolBar = CreateTheToolbar(hwndParent);

if (g_Listing.hWndToolBar == NULL)
MessageBox (NULL. "Toolbar Bar not created!". NULL. MB_OK);

II Create the list view window.
g_Listing.hWndListView = LV_CreateListView(hwndParent.
g_Listing.hlnst. g_Listing.NumHouses. &rgHouses[0]);

if (g_Listing.hWndListView == NULL)
{

MessageBox (NULL. "Listview not created!". NULL. MB_OK);
return FALSE;

II Create the tree view window. and initialize its
II image list.
g_Listing.hWndTreeView = TV_CreateTreeView(hwndParent.
g_Listing.hlnst. g_Listing.NumCities. rgCities);

if (g_Listing.hWndTreeView == NULL)
{

MessageBox(NULL. TEXT("Tree View not created!"). NULL. MB_OK);
return FALSE;

return TRUE;

78 Programmer's Guide to Microsoft Windows 95

VOID ChangeSBText(HINSTANCE hlnst, HWND hwnd, int iNumSelected)
{

static TCHAR szBuf1[MAX_LEN];
static TCHAR szBuf2[MAX_LEN];
static TCHAR szSelected[MAX_LEN];
TCHAR szText[MAX_ITEMLEN];
int NumHouses;

if (szBuf1[0] == '\0')
LoadString (hlnst, IDS_SELECTED, szBuf1, sizeof(szBuf1»;

if (szBuf2[0] == '\0')
LoadString (hlnst, IDS_NUMHOUSES, szBuf2, sizeof(szBuf2»;

if (iNumSelected == -1)
{

}

else

lstrcpy(szSelected, TEXT("None"»;
NumHouses = 0;

lstrcpy(szSelected, rgCities[iNumSelected].szCity);
NumHouses = rgCities[iNumSelected].NumHouses;

wsprintf(szText, TEXT("%s Is"), szBuf1, szSelected);
SendMessage(hwnd, SB_SETTEXT, 0, (LPARAM)szText);

wspri ntf(szText, TEXT("Is %d"), szBuf2, NumHouses);
SendMessage(hwnd, SB_SETTEXT, 1, (LPARAM)szText);

To make a toolbar, create a bitmap for each button and then create a larger bitmap
by stringing together each of the small bitmaps into one long bitmap. The standard
toolbar bitmaps are built into COMCTL32.DLL. You can add these images to
your toolbar by using the TB_ADDBITMAP message. In the following example,
three of the standard file bitmaps (new, open, and save) and four of the view
bitmaps (large icon, small icon, list view, and details view) are included in the
toolbar. The TBBUTTON structure is filled in with the predefined bitmap indices
for the desired bitmaps.

II Toolbar buttons.
TBBUTTON tbButtons[] =

{ STD_FILENEW, IDM_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0L, 0},
{ STD_FILEOPEN, IDM_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,

0L, 0}'
STD_FILESAVE, IDM_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0L, 0},
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0L, 0},

} ;

Article 5 Using Common Controls and Dialog Boxes 79

VIEW_LARGEICONS, IDM_LARGEICON, TBSTATE_ENABLED, TBSTYLE_BUTTON,
0, 0L, 0}'

{ VIEW_SMALLICONS, IDM_SMALLICON, TBSTATE_ENABL~D, TBSTYLE_BUTTON,
0, 0L, 0}'
VIEW_LIST, IDM_LISTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0L,
0},
VIEW_DETAILS, IDM_REPORTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON,
0, 0L, 0}'

In the code that creates the toolbar, the application calls the CreateToolbarEx
function, specifying HINST_COMMCTRL as the handle of the instance,
IDB_STD_SMALL_COLOR as the bitmap identifier, and a pointer to the
TBBUTTON structure. Note that the number of buttons specified is 4
because the last 4 buttons (the view buttons) come from a different bitmap.

HWND CreateTheToolbar(HWND hWndParent)
{

HWND hWndToolbar;
TBADDBITMAP tb;
int index, stdidx;

hWndToolbar = CreateToolbarEx(hWndParent,
WS_CHILD I WS_BORDER I WS_VISIBLE I
TBSTYLE_TOOLTIPS, ID_TOOLBAR, 11, (HINSTANCE)HINST_COMMCTRL,
IDB_STD_SMALL_COLOR, (LPCTBBUTTON)&tbButtons,
4, 0, 0, 100, 30, sizeof(TBBUTTON»;

II Add the system-defined view bitmaps.
tb.hlnst = HINST_COMMCTRL;
tb.nID = IDB_VIEW_SMALL_COLOR;
stdidx = SendMessage(hWndToolbar, TB_ADDBITMAP, 12, (LPARAM)&tb);

II Update the indices to the bitmaps.
for (index = 4; index < NUM_BUTTONS; index++)

tbButtons[index].iBitmap += stdidx;

II Add the view buttons.
SendMessage(hWndToolbar, TB_ADDBUTTONS, 4, (LONG) &tbButtons[4]);

return (hWndToolbar);

The next step is to create the list view and tree view windows. In the following
example, the tree view control is one-fourth the width of the window's client
area, and its height takes into account the vertical size of the toolbar and status bar.
The example demonstrates how to create the tree view window. For this example,
the values that determine the size of the controls are hard-coded. Applications
should obtain these values by calling the GetSystemMetrics function.

80 Programmer's Guide to Microsoft Windows 95

HWND TV_CreateTreeView (HWND hWndParent. HINSTANCE hlnst.
int NumCities. CITYINFO *pCity)

HWND hwndTree;
RECT rcl;
HB ITMAP hBmp;
HIMAGELIST hlml;

II handle to tree view window
II rectangle for setting size of window
II handle to bitmap
II handle to image list

II Get the size and position of the parent window.
GetClientRect(hWndParent. &rcl);

II Create the tree view window. make it 1/4 the width of the
II parent window. and take the status bar and toolbar into
II account.
hwndTree = CreateWindow

WC_TREEVIEW. II window class
II no default text

WS_VISIBLE I WS_CHILD I WS_BORDER I TVS_HASLINES
TVS_HASBUTTONS I TVS_LINESATROOT.

0. 27. II X.y

(rcl.right - rcl.left)/4. II cx
rcl.bottom - rcl.top - 45. II cy
hWndParent. II parent
(HMENU) ID_TREEVIEW. II identifier
hlnst. I I instance
NULL);

if (hWndTree == NULL)
return NULL;

II First. create the image list that is needed.
hlml = ImageList_Create(BITMAP_WIDTH. BITMAP_HEIGHT.FALSE.
2. 10);

II Load the bitmaps. and add them to the image lists.
hBmp = LoadBitmap(hlnst. MAKEINTRESOURCE(FORSALE_BMP));
idxForSale = ImageList_Add(hlml. hBmp. NULL);
hBmp = LoadBitmap(hlnst. MAKEINTRESOURCE(CITY_BMP));
idxCity = ImageList_Add(hlml. hBmp. NULL);
hBmp = LoadBitmap(hlnst. MAKEINTRESOURCE(SELCITY_BMP));
idxSelect = ImageList_Add(hlml. hBmp. NULL);

II Make sure that all of the bitmaps are added.
if (ImageList_GetlmageCount(hlml) != 3)

return FALSE;

}

Article 5 Using Common Controls and Dialog Boxes 81

II Associate the image list with the tree view control.
TreeVi ew_SetImageL i st (hwndTree. h Iml. i dxForSa 1 e) ;

1/ Initialize the tree view by adding "Houses For Sale."
TV_InitTreeView(hInst. hwndTree);

return (hwndTree);

VOID TV_InitTreeView(HINSTANCE hInst. HWND hwndTree)
{

}

TCHAR szText[MAX_CITY];

II Add the root item "Houses for Sale."
LoadString(hInst. IDS_FORSALE. szText. MAX_LEN);
hTPrev = (HTREEITEM)TVI_ROOT;
iImage = idxForSale;
hParent = (HTREEITEM)NULL;
iSelect = idxForSale;
hTRoot = TV_AddOneItem(szText. hwndTree. -1);

II Reset the previous item and image.
hParent = hTRoot;
hTPrev = (HTREEITEM)TVI_FIRST;
ilmage = idxCity;
iSelect = idxSelect;

In the following example, you create the list view window, make it three-fourths
the width of the parent window's client area, place it on the right side, and account
vertically for the toolbar and status bar.

HWND LV_CreateListView (HWND hWndParent. HINSTANCE hlnst.
int NumHouses. HOUSEINFO *pHouse)

{

HWND hWndList;
RECT rcl;
HICON hIcon;
int index;
HIMAGELIST hSmall.
LV_COLUMN lvC;
char szText[64];
int iWidth;

II handle to list view window
II rectangle for setting size of window
II handle to icon
II index used in FOR loops
hLarge; II handles to image lists
II list view column structure
II place to store some text
II column width

II Get the size and position of the parent window.
GetClientRect(hWndParent. &rcl);

82 Programmer's Guide to Microsoft Windows 95

II Create the list view window, make it 3/4 the size of the
II parent window, and take the status bar and toolbar into
II account.
iWidth = (rcl.right - rcl.left) - «rcl.right - rcl.left)/4);
hWndList = CreateWindowEx(0L,

WC_LISTVIEW, II list view class
II no default text

WS~VISIBLE I WS_CHILD I WS_BORDER I LVS_REPORT, II styles
(rcl.right - rcl.left)/4, 27, II x, y
iWidth, rcl.bottom - rcl.top - 42, II cx, cy
hWndPa rent, I I pa rent
(HMENU) ID_LISTVIEW, II identifier
hInst,
NULL);

if (hWndList
return NULL;

II instance

NULL)

II First, initialize the image lists that are needed.
II Create an image list for the small and large icons.
II FALSE specifies large icons, and TRUE specifies small icons.
hSmall ImageList_Create(16, 16, TRUE, 1, 0);
hLarge = ImageList_Create(32, 32, FALSE, 1, 0);

II Load the icons, and add them to the image lists.
hIcon = LoadIcon (hInst, MAKEINTRESOURCE(HOUSE_ICON»;
if «ImageList_AddIcon(hSmall, hIcon) -1) I I

(ImageList_AddIcon(hLarge, hIcon) == -1»
return NULL;

II Associate the image list with the list view control.
ListView_SetImageList(hWndList, hSmall, LVSIL_SMALL);
ListView_SetImageList(hWndList, hLarge, LVSIL_NORMAL);

II Initialize the LV_COLUMN structure.
/I The mask specifies that the .fmt, .cx, width,
II and .isubitem members of the structure are valid.
lvC.mask = LVCF_FMT I LVCF_WIDTH I LVCF_TEXT I LVCF_SUBITEM;
lvC.fmt = LVCFMT_LEFT; II left-align the column
lvC.cx = iWidth I NUM_COLUMNS + 1; II width of column,

/I in pixels
lvC.pszText = szText;

}

Sizing Issues

Article 5 Using Common Controls and Dialog Boxes 83

II Add the columns.
for (index = 0; index < NUM_COLUMNS; index++)
{

lvC.iSubItem = index;
LoadString(hInst.
IDS_ADDRESS + index.
szText.
sizeof(szText));
if (ListView_InsertColumn(hWndList. index. &lvC) -1)

return NULL;

return (hWndList);

Mter creating the windows, you will need to resize the application's main window.
To resize all of the windows at the same time, use the DeferWindowPos function.
DeferWindowPos updates a structure that contains multiple window positions.
You use this function as you would use the window enumeration functions; that is,
you begin, defer, and end. The following example illustrates how to resize all of the
windows.

BOOL ResizeWindows(HWND hwnd)
{

RECT rcl;
HDWP hdwp;

II Get the client area of the parent window.
GetClientRect(hwnd. &rcl);

II Defer four windows.
hdwp = BeginDeferWindowPos(4);
if (hdwp == NULL)

return FALSE;

II First. reset the status bar size.
DeferWindowPos(hdwp. g_Listing.hWndStatus. NULL. 0. 0.

rcl.right - rcl.left. 20. SWP_NOZORDER I SWP_NOMOVE);

II Next. reset the toolbar size.
DeferWindowPos(hdwp. g_Listing.hWndToolBar. NULL. 0. 0.

rcl.right - rcl.left. 20. SWP_NOZORDER I SWP_NOMOVE);

84 . Programmer's Guide to Microsoft Windows 95

II Next, reset the tree view size.
DeferWindowPos(hdwp, g_Listing.hWndTreeView, NULL, 0, 0,

(rcl.right - rcl.left) I 4, rcl.bottom - rcl.top - 45,
SWP_NOZORDER I SWP_NOMOVE);

II Last, reset the list view size.
DeferWindowPos(hdwp, g_Listing.hWndListView, NULL,

(rcl.right - rcl.left) I 4, 25,
(rcl.right - rcl.left) - «rcl.right - rcl.left)/4),
rcl.bottom - rcl.top - 42,
SWP_NOZORDER);

return (EndDeferWindowPos(hdwp));

Parsing and Storing the Data
Once the windows are created and resized, you need a method for reading in and
storing the house listing data. The easiest way to store the house listing data is to
save it to an ASCn file. The file should contain the following infonnation:

Number of cities

City name (one name per line)

Number of houses

Infonnation about each house (one house per line with each item of infonnation
separated by commas)

The ASCn file has the following fonn.

3
Bellevue
Redmond
Seattle
9

100 Main Street,Redmond,175000,3,2,Joan Smith,555-1212
523 Pine Lake Road,Redmond,125000,4,2,Ed Jones,555-1111
1212 112th Place SE,Redmond,200000,4,3,Mary Wilson,555-2222
22 Lake Washington Blvd,Bellevue,2500000,4,4,Joan Smith,555-1212
33542 116th Ave. NE,Bellevue,180000,3,2,Ed Jones,555-1111
64134 Nicholas Lane,Bellevue,250000,4,3,Mary Wilson,555-2222
33 Queen Anne Hill ,Seattle,350000,3,2,Joan Smith,555-1212
555 SE Fifth St,Seattle,140000,3,2,Ed Jones,555-1111
446 Mariners Way,Seattle,225000,4,3,Mary Wilson,555-2222

Article 5 Using Common Controls and Dialog Boxes 85

To parse the file, use the sscanf function and then convert some of the strings
to integers, copy data to the structure, and update the file pointer. The structures
used contain information about the houses, the cities, and the current state of the
application. You should fill out a CITYINFO structure for each city listed and a
HOUSEINFO structure for each house listed. When saving the information to
a file, you reverse the procedure.

Using the Common Dialog Boxes
To support long filenames, use the new common dialog boxes to open and save
the house listing information. If you have existing code written for the Windows
version 3.1 common dialog boxes, you will be able to recompile some of it, and the
application will display the new dialog boxes. You will need to hide the filename
extension (.TXT, in this case) before setting the caption text for the main window.
As shown in the following illustration, the new File Open common dialog box has
no problem with long filenames, such as "Listing for the Puget Sound" or "Another
saved listing."

The following example demonstrates how to use the common dialog boxes to
open and save a file. It also shows how to read and parse the file to initialize the
structures.

BOOl OpenNewFile(HWND hWnd)
{

HANDLE hFile;
DWORD dwBytesRead;
DWORD dwFileSize;

lstrcpy(szFile, TEXT(""»;
lstrcpy(szFileTitle, TEXT(""»;

86 Programmer's Guide to Microsoft Windows 95

OpenFileName.1StructSize
OpenFileName.hwndOwner
OpenFileName.hInstance
OpenFileName.lpstrFilter
OpenFileName.lpstrCustomFilter
OpenFileName.nMaxCustFilter
OpenFileName.nFilterIndex
OpenFileName.lpstrFile
OpenFileName.nMaxFile
OpenFileName.lpstrFileTitle
OpenFileName.nMaxFileTitle
OpenFileName.lpstrInitialDir
OpenFileName.lpstrTitle
OpenFileName.nFileOffset
OpenFileName.nFileExtension
OpenFileName.lpstrDefExt
OpenFileName.1CustData
OpenFileName.Flags

sizeof(OPENFILENAME);
hWnd;
(HANDLE) g_Listing.hInst;
szFi lter;
(LPTSTR) NULL;
0.L;
1 L;
szFile;
sizeof(szFil e);
szFileTitle;
sizeof(szFileTitle);
NULL;

= TEXT("Open a File");
= 0;
= 0;
= TEXT("*.txt");
= 0;
= OFN_SHOWHELP I OFN_PATHMUSTEXIST

I OFN_FILEMUSTEXIST
I OFN_HIDEREADONLY;

if (GetOpenFileName(&OpenFileName»
{

if «hFile = CreateFile«LPCTSTR)OpenFileName.lpstrFile,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL» == (HANDLE)-l)

MessageBox(hWnd, TEXT("File open failed."), NULL, MB_OK);
return FALSE;

II Get the size of the file.
dwFileSize = GetFileSize(hFile, NULL);
if (dwFileSize == 0xFFFFFFFF)
{

}

MessageBox(NULL, TEXT("GetFileSize failed!"), NULL, MB_OK);
return FALSE;

}

Article 5 Using Common Controls and Dialog Boxes 87

II Allocate a buffer for the file to be read into.
lpBufPtr = (TCHAR *)GlobalAlloc(GMEM_FIXED. dwFileSize);
if (lpBufPtr == NULL)
{

MessageBox(NULL. TEXT("GlobalAlloc failed!"). NULL. MB_OK);
CloseHandle(hFile);
return FALSE;

II Read its contents into a buffer.
ReadFile(hFile.(LPVOID)lpBufPtr. dwFileSize. &dwBytesRead. NULL);

if (dwBytesRead == 0)
{

}

MessageBox(hWnd. TEXT("Zero bytes read."). NULL. MB_OK);
CloseHandle(hFile);
GlobalFree(lpBufPtr);
return FALSE;

II Close the file.
CloseHandle(hFile);

II Parse the file buffer.
return (ParseFile(»;

else
{

ProcessCDError(CommDlgExtendedError(). hWnd);
return FALSE;
}

BOOL ParseFile (VOID)
{

int count. result. index;
TCHAR szTemp[MAX_PATHJ. szBeds[TEMP_LENJ. szBaths[TEMP_LENJ;
TCHAR * lpSave;
HTREEITEM hPrev;

II Initialize the tree view and list view windows.
InitTreeAndList();

lpSave = lpBufPtr;

II Read in the first line to get the number of cities.
sscanf(lpBufPtr. TEXT("%s\n"). szTemp);
g_Listing.NumCities = atoi(szTemp);

88 Programmer's Guide to Microsoft Windows 95

II Move the buffer pointer.
while (*lpBufPtr 1= 0x0A)

lpBufPtr++;
lpBufPtr++;

if (g_Listing.NumCities == 0 I I g_Listing.NumCities > MAX_CITIES)
{

MessageBox(NULL. TEXT("Number of cities must be between 1 and
16"). NULL. MB_OK);

GlobalFree(lpBufPtr);
return FALSE;

}

II Read a city for each line.
for (count= 0; count < g_Listing.NumCities; count++)
{

sscanf(lpBufPtr. TEXT("%s\n"). rgCities[count].szCity);

II Move the buffer pointer.
while (*lpBufPtr 1= 0x0A)

lpBufPtr++;
lpBufPtr++;

II Add the city to the tree view control.
hPrev = TV_AddOneItem(rgCities[count].szCity.
g_Listing.hWndTreeView. count);

II Get the number of houses.
sscanf(lpBufPtr. TEXT("%s\n"). szTemp);
g_Listing.NumHouses = atoi(szTemp);

II Move the buffer pointer.
while (*lpBufPtr 1= 0x0A)
lpBufPtr++;
lpBufPtr++;

if (g_Listing.NumHouses == 0 I I g_Listing.NumHouses > MAX_HOUSES)
{

MessageBox(NULL. TEXT("Number of houses must be between 1 and 256").
NULL. MB_OK);

GlobalFree(lpBufPtr);
return FALSE;

Article 5 Using Common Controls and Dialog Boxes 89

II Read the house information for each line.
for (count= 0; count < g_Listing.NumHouses; count++)
{

result = sscanf(lpBufPtr,
TEXT ("% [1\ , , ,] , % [1\ , , ,] , % [1\ , , ,] , % [1\ , , ,] , % [1\' , ,] , % [1\ , , ,] , %s") ,
rgHouses[count].szAddress,rgHouses[count].szCity,
szTemp, szBeds, szBaths, rgHouses[count].szAgent,
rgHouses[count].szNumber);

rgHouses[count].iprice = atoi(szTemp);
rgHouses[count].iBeds = atoi(szBeds);
rgHouses[count].iBaths = atoi(szBaths);

II Move the buffer pointer.
while (*lpBufPtr != 0x0A)

lpBufPtr++;
lpBufPtr++;

II Increment the house count for the city.
for (index=0;index < g_Listing.NumCities; index++)
{

}

}

if (lstrcmp(rgHouses[count].szCity, rgCities[index].szCity)
0)

{

}

rgCities[index].NumHouses++;
break;

II Free up the buffer.
GlobalFree(lpBufPtr);

II Then add the cities and houses to the list view and
II tree view controls.

return TRUE;

VOID UpdateListView(HWND hwndLV, int iSelected)
{

int count, index;

LV_RemoveAllltems(hwndLV);

90 Programmer's Guide to Microsoft Windows 95

for (index = 0. count = 0; count < g_Listing.NumHouses; count++)
{

if (lstrcmp(rgHouses[count].szCity.

}

rgCities[iSelected].szCity) 0)

II Add the house to the list view control.
if (lLV_AddItem(hwndLV. index. &rgHouses[count]))

Me s sag e Box (NUL L. T EXT(" L V _A d d It emf aile d 1 "). NUL L,
MB_OK) ;

index++;

BOOL SaveToFile(HWND hWnd)
{

HANDLE hFile;
DWORD dWOpen;
DWORD dwBytesWritten;
TCHAR buf[MAX_PATH];
DWORD dwFileSize;

dwFileSize = GetDataBufferAndSize();
if (dwFileSize == 0)
{

}

MessageBox(NULL. TEXT("GetDataBufferAndSi ze fail ed 1"). NULL,
MB_OK) ;

return FALSE;

dwOpen = CREATE_ALWAYS;

II Open the file.
if «hFile = CreateFile«LPCTSTR)OpenFileName.lpstrFile.

{

GENERI C_WRITE.
FILE_SHARE_WRITE.
NULL,
dwOPen.
FILE_ATTRIBUTE_NORMAL.
(HANDLE)NULL)) == (HANDLE)-l)

sprintf(buff TEXT("Could not create file %s").
OpenFileName.lpstrFile);

MessageBox(hWnd. buff NULL. MB_OK);
return FALSE;

Article 5 Using Common Controls and Dialog Boxes 91

II Write its contents into a file.
if (WriteFile(hFile. (LPCVOID)lpBufPtr. dwFileSize.

&dwBytesWritten. NULL) == FALSE)

MessageBox(hWnd. TEXT("Error writing file."). NULL. MB_OK);
return FALSE;

}

II Close the file.
CloseHandle(hFile);

II Free up the file buffer.
GlobalFree(lpBufPtr);

return TRUE;

VOID InitTreeAndList(VOID)
{

g_Listing.NumCities = 0;
g_Listing.NumHouses 0;
g_Listing.iSelected = -1;
g_Listing.iSelHouse = -1;
TreeView_DeleteAllItems(g_Listing.hWndTreeView);
ListView_DeleteAllItems(g_Listing.hwndListView);
TV_InitTreeView(g_Listing.hInst. g_Listing.hWndTreeView);

Handling Notification Messages
Notification messages are used extensively to manipulate the behavior and
appearance of controls. Because status windows, toolbars, list view controls,
and tree view controls all expect notification messages, you must ensure that
each control gets the notifications it needs. In the main window procedure for
the application, trap the WM_NOTIFY message and either handle the notification
messages directly or pass them to handler functions.

case WM_NOTI FY:
lpToolTipText = (LPTOOLTIPTEXT)lParam;
if (lpToolTipText->hdr.code == TTN_NEEDTEXT)
{

}

LoadString(g_Listing.hInst.
lpToolTipText->hdr.idFrom. II string ID
szBuf.
s i zeof (szBuf)) ;

lpToolTipText->lpszText = szBuf;

cmd ID

92 Programmer's Guide to Microsoft Windows 95

if (TV_NotifyHandler(hWnd, message, wParam, lParam, &g_Listing))
{

II Update the list view control to show houses
II in the selected city.
UpdateListView(g_Listing.hWndListView, g_Listing.iSelected);

II Update the status text.
ChangeSBText(g_Listing.hInst, g_Listing.hWndStatus,

g_Listing.iSelected);

LV_NotifyHandler(hWnd, message, wParam, lParam, g_Listing.hInst);
break;

For the toolbar, the sample application only traps the TIN_NEEDTEXT
notification message, which is sent whenever the system needs to display a tooltip
control associated with a toolbar button. In response to this notification message,
the application must load the appropriate text string into the IpszText member of
the LPTOOLTIPTEXT structure.

The tree view window's notification handler, however, only handles the
TVN_SELCHANGED notification message, which is sent to the tree view window
whenever the selection changes.

LRESULT TV_NotifyHandler(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam, LISTINFO *pList)

{

static NM_TREEVIEW *pNm;

pNm = (NM_TREEVIEW *)lParam;
if (pNm->hdr.idFrom != ID_TREEVIEW)

return 0L;

switch(pNm->hdr.code)
{

case TVN_SELCHANGED:
pList->iSelected (int)(pNm->itemNew.1Param);
return 1;
break;

default:
break;

}

return 0L;

Article 5 Using Common Controls and Dialog Boxes 93

In response, the application needs to update the list view control and status bar to
reflect the house listings for the newly selected city.

VOID UpdateListView(HWND hwndLV, int iSelected)
{

}

int count, index;

II Remove the previous items.
LV_RemoveAllltems(hwndLV);

II Loop through the house listings.
for (index = 0, count = 0; count < g_Listing.NumHouses; count++)
{

}

II Check whether the house is listed for the new city.
if (strcmp(rgHouses[count].szCity,

rgCities[iSelected].szCity) == 0)
{

}

II If it is, add the house to the list view control.
if (!LV_Addltem(hwndLV, index, &rgHouses[count]»

MessageBox(NULL, "LV_Addltem failed!", NULL, MB_OK);
index++;

Handling notification messages for the list view window is a bit more complicated.
The application implements the list view control using a callback function that
receives the text for each item, so the notification handler needs to trap the
L VN_GETDISPINFO notification message and fill in the pszText member of
the LV_ITEM structure with the appropriate text, depending on the column.

The application also processes the L VN_ COLUMNCLICKnotification message
in the list view notification handler. This notification message is sent whenever the
user clicks a column heading in the list view control. In response, the application
must sort the items in the list view control based on the criteria presented in
the selected column. For example, if the user clicks the Bedrooms column, the
application sorts the list in ascending order by the number of bedrooms for the item
(that is, the house). The application uses a simple callback function that is called
by using the ListView _SortItems macro. The callback function sorts the data
using simple math (returning the greater of two values) for the columns that have
integer sort criteria and using the strcmp function for the columns that have string
sort criteria.

94 Programmer's Guide to Microsoft Windows 95

LRESULT LV_NotifyHandler(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam, HINSTANCE hlnst)

{

LV_DISPINFO *pLvdi = (LV_DISPINFO *)lParam;
NM_LISTVIEW *pNm = (NM_LISTVIEW *)lParam;
HOUSEINFO *pHouse = (HOUSEINFO *)(pLvdi->item.1Param);
static TCHAR szText[TEMP_LEN];

if (pNm->hdr.idFrom != ID_LISTVIEW)
return 0L;

switch(pLvdi->hdr.code)
{

case LVN_GETDISPINFO:
switch (pLvdi->item.iSubltem)
{

case 0: II address
pLvdi->item.pszText pHouse->szAddress;
break;

case 1: II city
pLvdi->item.pszText pHouse->szCity;
break;

case 2: II price
sprintf(szText, "$%u", pHouse->iPrice);
pLvdi->item.pszText = szText;
break;

case 3: II number of bedrooms
sprintf(szText, "%u", pHouse->iBeds);
pLvdi->item.pszText = szText;
break;

case 4: II number of bathrooms
sprintf(szText, "%u", pHouse->iBaths);
pLvdi->item.pszText = szText;
break;

default :
break;

}

break;

case LVN_COLUMNCLICK:
II The user clicked on one of the column headings,
II so sort by this column.
ListView_Sortltems(pNm->hdr.hwndFrom,ListViewCompareProc,

(LPARAM)(pNm->iSubltem»;
break;

Article 5 Using Common Controls and Dialog Boxes 95

default :
break;

return 0L;

int CALLBACK ListViewCompareProc(LPARAM lParam1. LPARAM lParam2.
LPARAM lParamSort)

HOUSEINFO *pHouse1
HOUSEINFO *pHouse2
int iResult;

(HOUSEINFO *)lParam1;
(HOUSEINFO *)lParam2;

if (pHouse1 && pHouse2)
{

switch(lParamSort)
{

}

case 0: II sort by address
iResult = lstrcmpi(pHouse1->szAddress.

pHouse2->szAddress);
brea k;

case 1: II sort by city
iResult = lstrcmpi(pHouse1->szCity. pHouse2->szCity);
break;

case 2: II sort by price
iResult = pHouse1->iPrice - pHouse2->;Price;
break;

case 3: II sort by number of bedrooms
iResult = pHouse1->iBeds - pHouse2->iBeds;
break;

case 4: II sort by number of bathrooms
iResult = pHouse1->iBaths - pHouse2->iBaths;
break;

default:
iResult 0;
break;

return(iResult);

96 Programmer's Guide to Microsoft Windows 95

Adding Pop-up Context Menus
At this point, the application is functional, but you still need to add the pop-up
menu that is displayed when the user clicks mouse button 2. There are two ways
to do this. The easiest method is to trap the WM_CONTEXTMENU message
and check the wParam parameter to see if the click occurred in the list view win
dow. WM_CONTEXTMENU is sent whenever the user clicks mouse button 2.
Another method is to handle the NM_RCLICK notification message and call the
ListView_HitTest macro to determine which item, if any, the user has clicked.
NM_RCLICK is sent whenever the user clicks mouse button 2 in the list view
window.

To display a context menu for an item, you load the menu and call the
TrackPopupMenu function. When the user chooses an item from the menu, the
appropriate command is generated and sent to the window procedure in the form
of a WM_COMMAND message.

case WM_CONTEXTMENU:
II Mouse button 2 has been clicked.
if «HWND)wParam == g_Listing.hWndListView)
{

II Get the menu for the pop-up menu from the resource file.
hMenu = LoadMenu(g_Listing.hInst, "HousePopupMenu");
if (!hMenu)

break;

II Get the first submenu in it for TrackPopupMenu.
hMenuTrackPopup = GetSubMenu(hMenu, 0);

II Draw the "floating" pop-up menu, and track it.
TrackPopupMenu(hMenuTrackPopup,

TPM_LEFTALIGN I TPM_RIGHTBUTTON,
LOWORD(lParam), HIWORD(lParam),
0, g_Listing.hWndListView, NULL);

II Destroy the menu.
DestroyMenu(hMenu);

break;

Article 5 Using Common Controls and Dialog Boxes 97

Incorporating Property Sheets
Property sheets (also known as tabbed dialog boxes) allow users to view and
change the properties of an item. In the sample application, the item is a house
listing. Each property sheet contains one or more overlapping windows (called
pages) that contain a logical grouping of properties. The user switches between
pages by clicking tabs that label each property page. The sample contains two
property sheets: one allowing the user to view and change the properties for a
particular house listing (for example, address and city) and the other displaying
information about the listing agent (for example, name and phone number). The
following illustration shows the House Listing property sheet page. (An illustration
of the Listing Agent property sheet page is found later in this section.)

Processing a property sheet page is similar to processing a dialog box with one
major difference. When you process a property sheet page, you handle notification
messages instead of the commands generated for the OK and Cancel buttons.
You should process the property sheet pages in the following manner:

• Save the original values for the item in response to the WM_INITDIALOG
message.

• Reset the values of the item in response to the PSN_KILLACTIVE and
PSN_APPL Y notification messages.

• Reset the values of the item in response to a PSN_RESET notification message.

• Set the edit fields in the page for the item in response to the PSN_SETACTIVE
notification message.

98 Programmer's Guide to Microsoft Windows 95

To initialize the property sheet pages, you need to determine which house is
currently selected and save that information for future reference. The ftrst
property sheet page displayed is the House Listing page. Responding to the
WM_INITDIALOG message gives you the fITst chance to determine the currently
selected house. The following example determines the index of the selected house
within the global array of houses.

static char szAddSave[MAX_ADDRESS];
BOOL bErr; I

int index, count;
LV_ITEM lvItem;

case WM_INITDIALOG:
II Fill in the list box with the cities.
for (index = 0; index ~ g_Listing.NumCities; index++)

SendDlgItemMessage(hDlg, IDE_CITY, CB_INSERTSTRING,
(WPARAM)(-I),
(LPARAM)(rgCities[index].szCity»;

II Get the index to the selected list view item.
index = ListView_GetNextItem(g_Listing.hWndListView,

-1, MAKELPARAM(LVNI_SELECTED, 0»;

II Get the house address.
lvItem.iItem = index;
lvItem.iSubItem = 0;
lvItem.mask = LVIF_TEXT;
lvItem.cchTextMax = sizeof(szAddSave);
lvItem.pszText = szAddSave;
ListView_GetItem(g_Listing.hWndListView,&lvItem);

II Find the house in the list.
for (count=0; count < g_Listing.NumHouses; count++)
{

if (strcmp(lvltem.pszText, rgHouses[count].szAddress) 0)
break;

}

g_Listing.iSelHouse = count;

Article 5 Using Common Controls and Dialog Boxes 99

The Listing Agent property sheet page allows the user to view and change the name
and phone number of the listing agent associated with the selected house. The code
used to handle this page is quite similar to that used for the House Listing page,
except that the szAgent and szNumber members of the array of HOUSEINFO
structures are modified instead of the other house-specific fields.

The following illustration shows the Listing Agent property sheet page.

101

ARTICLE 6

Using the Registry

About Using the Registry
The registry is a central storage location that contains current information about
the computer hardware configuration, installed software applications, settings and
preferences of the current user, and associations between types of files and the
applications that access and manipulate their contents. Much of the information
that was stored in initialization files in early versions of the Microsoft® Windows®
operating system is now stored in the registry in Windows 95.

Mentions of the registry occur in several places in the documentation for
Windows 95 and in the Microsoft® Win32® Software Development Kit (SDK).
The documentation included in the Win32 SDK provides a detailed description
of the functions and structures that provide an application with access to the
registry. The Windows Inteiface Guidelines for Software Design has a chapter
containing a general discussion of the registry. The Microsoft Windows 95
Resource Kit devotes a chapter to integrating an application into the Windows 95
operating system by storing information in the registry. If you are unfamiliar with
the registry or the arrangement of information within it, you should read about
the registry before beginning this article. This article assumes you are already
familiar with the registry and focuses on using the registry functions to navigate
and load the registry as part of installing an application.

102 Programmer's Guide to Microsoft Windows 95

After briefly introducing registry terminology, this article identifies procedures
involved in working with the registry when installing a software product. Other
issues, such as the general registry structure and Windows 95 style recommen
dations, are mentioned in support of the registry coding described here.

This article describes how to record the following types of information in the
registry:

• Application state information

• Application path information

• Filename extensions

• New data files

• Icons

• Icon commands

• Uninstall information

This article frequently refers to a fictitious company called Buzz Productions,
whose fictitious product is named BeeSounds. The product is comprised of
an executable file named BUZZER.EXE, a dynamic-link library (DLL) named
BUZZEXT.DLL, and a help file named BUZZER.HLP. Data files used by the
product are identified by the .BZZ filename extension.

Introducing the Registry
The registry is a hierarchical database. The database is made up of keys that are
linked together to form hierarchies or tree structures. The keys are the fundamental
entities in the database. The registry has six keys, also called root keys, that serve
as entrypoints to the database for any application. Links provide a mechanism to
traverse the database from a root key to other keys. The link between two keys also
serves to establish the relationship of a subkey. A subkey is further from the root of
the hierarchy than the other key in the link.

Each key has a name and a default value. A key can also have other named values
associated with it. A value can be named or unnamed and has its own storage area
for a data value. The data value can store binary, numerical, string, or other types
of data.

Article 6 Using the Registry 103

The registry contains information that is critical to the correct operation of the
computer. Before accessing and modifying the contents of the registry, you should
make a back up copy of the registry. You can do this using the RegEdit utility.

Note The registries for Windows 95 and Microsoft® Windows NTTM differ in how
they handle class information associated with a key. The Windows 95 registry
treats all classes alike. If you pass in a valid lpszClass buffer pointer to
RegQueryInfoKey but do not pass in a valid lpcchClass pointer (that is, if you
pass in NULL), Windows 95 lets the function callproceed.

The Window NT registry, however, distinguishes the different classes. In Windows
NT,. if you pass in a valid lpszClass buffer pointer to RegQueryInfoKey but do not
pass in a valid lpcchClass pointer (that is, if you pass in NULL), the system returns
the ERROR_INV ALID _PARAMETER error value.

Registering Application State Information
Application state information identifies information about a specific release of a
software product, such as the product name, version number, user preferences,
and component location. The registry provides two entry level hierarchies for
storing this information. Application state information for the current version of
a software product that is user-specific is stored in the registry'in the following
portion of the HKEY _CURRENT_USER hierarchy.

HKEY_CURRENT_USER
Software

BuzzProductions
BeeSounds

Version2.00

Application state information for the current version of a software product that
is specific to an installation (and relevant to all :.users) is stored in the following
portion of the HKEY _LOCAL_MACHINE hierarchy.

HKEY_LOCAL_MACHINE
SOFTWARE

BuzzProductions
BeeSounds

Version2.00

·104 Programmer's Guide to Microsoft Windows 95

You can add additional keys and values under your application's Version key in
each hierarchy. Key names are canonical; they cannot be changed, so you can use
them to group the information types being stored. Key values can easily be changed
and are ideal for storing information that changes, such as user preferences.

If the amount of installation-specific and user version information exceeds a few
thousand bytes, you might still want to create an initialization (.IN!) file.

Registering Application Path Information
Application path information identifies where the application file (.EXE file),
application extension files (.DLL files), and other support files for an application
are stored in the Windows 95 file system. By following the conventions recom
mended in The Windows Inteiface Guidelines for Software Design, the files for
the BeeSounds sample product would be installed in the following directories.

Filename

BUZZER.EXE

BUZZEXT.DLL

BUZZER.HLP

* .BZZ (data files)

Directory

\Program Files\BeeSounds

\Program Files\BeeSounds\System

\Program Files\BeeSounds\System

\Program Files\BeeSounds\System

The registry stores directory information that locates the installed application
files and their associated application extension files in one or more keys of the
HKEY _LOCAL_MACHINE hierarchy. For the BUZZER.EXE file, the key is
inserted in the following hierarchy.

HKEY_LOCAL_MACHINE
SOFTWARE

Microsoft
Windows

CurrentVersion
App Paths

BUZZER.EXE

Each installed application file should have a key under the App Paths key named
after the application file.

Article 6 Using the Registry 105

The BUZZER.EXE key has two values. The Default value specifies the path to
the application file. The optional Path value specifies the paths to other application
files.

Note If an application shares application extension files, the installation program
should create a SharedDLLs key under the CurrentVersion key. Under the
SharedDLLs key, the installation program should create a key and a data value
for each shared file. The key name for each shared file must specify the path and
filename of the shared file. The data value associated with the key for a shared file
tracks the number of applications that share the application extension file.

You can expand the capabilities of an application by adding keys under
the CurrentVersion key in both the HKEY_CURRENT_USER and the
HKEY _LOCAL_MACHINE hierarchies.

For example, you can automatically start your application whenever Windows 95
starts up by adding the Run key beneath the Current Version key and by
including a data value for the Run key that specifies the command line to start
the application.

You can automatically restart an application that was interrupted by a system
shutdown when Windows 95 starts up by adding the RunOnce key beneath the
CurrentVersion key and by including a data value for the RunOnce key that
specifies the command line to restart the application. The command line must
specify the path to the application file, appropriate data files, and any options
needed to restore the application.

Registering Filename Extensions
You can distinguish new file types by registering the filename extensions in the
registry. Every file type that you install in the registry requires at least two registry
keys. One of the mandatory keys specifies the filename extension. The other
mandatory key specifies the application identifier and defines a long (40 character)
description of the application identifier or class name that end users will see. Addi
tional keys can specify a class identifier and a short (15 character) description of
the application identifier or class name.

106 Programmer's Guide to Microsoft Windows 9~

The registry stores filename extensions in the HKEY _CLASSES_ROOT
hierarchy. The keys needed to register the filename extension used by the
BeeSounds data files follow. Note that the CLSID class identifier is not a literal
value; it is a unique identifier that can be obtained by running the UUIDGEN.EXE
utility included in the Win32 SDK.

HKEY_CLASSES_ROOT
.BZZ = BeeSounds
BeeSounds

CLSID
CLSID

{CLSID identifier}
AuxUserType

2

Registering Data Files for Creation
If you would like users to be able to create new data files for an application directly
from the desktop or folder without running the application, you should register the
filename extension for creation.

The registry stores info~ation that is used for data file creation in the
HKEY_CLASSES_ROOT hierarchy. The keys needed to register data files used
by the BeeSounds data files follow. The SheUNew key has a value associated with
it. The value used is the default value, and it contains the string "NullFile".

HKEY_CLASSES_ROOT
.BZZ

Shell New

Registering Icons
Windows 95 determines the icon to display for each file from information stored
in the registry. If you would like the user to distinguish data files used by your
application from other generic (unidentified) files stored on the file system, you
can install icons to associate with a specific file type and register the icon and file
association in the registry.

The registry stores icon information in the HKEY _ CLASSES...:.ROOT hierarchy.
The keys needed to register an icon for data files used by the BeeSounds data files
follow. The DefaultIcon key has a value associated with it. The value used is
the default value, and it contains a string identifying the path and file that contains
the icon, and either an positive index value or a negative resource identifier that
specifies the icon resource within the file. The value can be "%", indicating an
instance-specific icon (for more infomation about instance-specific icons, see
Article 12, "Shell Extensions").

Article 6 Using the Registry 107

The following example shows a sample Defaultlcon key and its associated value:

HKEY_CLASSES_ROOT
BeeSounds

Defaul tlcon = "C: \BEE\buzzer. exe. 1"

The file containing the icon can be an application file, an application extension file, *11:'

or a resource file containing one or more resources. If the first resource in a file is
the icon you want to associate with a file, you can omit the comma and index value
from the data of the default value.

Registering Icon Commands
Clicking with mouse button 2 on an icon displays a menu of commands that can
be executed with the icon. Support for many of these commands is provided by
the container (folder or desktop) containing the icon. However, containers do not
provide support for the primary commands (Open, Edit, Play, and Print) that can be
executed with an icon, nor do they provide support for custom commands. For each
primary command or custom command that you want to provide to the user, you
must register information for the command. For example, the BeeSounds product
supports the Play primary command and the custom command "Play in Reverse."

The registry stores information for icon command support in the hierarchy
ofHKEY_CLASSES_ROOT. The keys needed to register data files used by
the BeeSounds data files follow. The Shell key has a value associated with it.
The value's name is default, and it has contains the string "Play, Play_In_Reverse".

HKEY_CLASSES_ROOT
BeeSounds

Shell
Play

command = "C:\WINDOWS\buzzer.exe Iplay %1"
Play_In_Reverse

command = C:\WINDOWS\buzzer.exe Ireverse %1"

The Play key has a value associated with it. The value used is the default value,
and it contains the text that is displayed in the menu. This value must be localized
(for example, "&Play"). If key name matches the menu text, you do not need to
specify a value for the key. The command key under the Play key specifies as its
value the command line that implements the Play command.

The Play_In_Reverse key uses the default value that contains the "Play
In Reverse" text that appears in the menu. The command key found under the
Play_In_Reverse key specifies as its value the command line that implements
the "Play in Reverse" command.

108 Programmer's Guide to Microsoft Windows 95

When displaying the menu for an icon, the system lists the order of the commands
as they appear under the Shell key. You can override that sequence by specifying
a preferred sequence as a comma-delineated key list in the default value of the
Shell key. The fIrst command listed in the menu becomes the default command
for an icon.

Registering Uninstallinformation
Windows 95 includes a property sheet for Control Panel for installing and removing
applications. Users might need to remove an application to recover disk space or to
move the application to another location. To facilitate this, you should provide an
uninstall program with your software application that removes the files and their
settings and records information about the application in the registry.

The registry stores uninstall information in the HKEY _LOCAL_MACHINE
hierarchy. The keys needed to register uninstall information for the BUZZER.EXE
application follow.

HKEY_LOCAL_MACHINE
SOFTWARE

Microsoft
Windows

CurrentVersion
Uninstall

BUZZER.EXE

The BUZZER.EXE key has two named values that are required for each
application key in the Uninstall hierarchy. The DisplayName value specifIes
a text string that the AddlRemove Programs property sheet of Control Panel
displays to the user. The UninstallString value specifIes the command line that
runs the uninstall program, and it must specify the path, application fIle, and
needed command-line arguments. For the BeeSounds product, this value is
"c:\Program Files\BeeSounds\NOBUZZ.EXE /q."

Article 6 Using the Registry 109

The following example registers the uninstaIl information for the BeeSounds
product.

case IDM_REGUNINSTALL: Ilregister uninstall information

II 1. Navigate to the CurrentVersion key.
II 2. Create CurrentVersion\Uninstall\BUZZER.EXE keyes).
II 3. Create DisplayName and UninstallString values for BUZZER.EXE key.
II 4. Close the keys.

II Prepare to navigate to the CurrentVersion key ..
hKey = HKEY_LOCAL_MACHINE;
lstrcpy(lpszChildKey.

(LPCSTR)"SOFTWARE\\Microsoft\\Windows\\CurrentVersion");
dwReserved = 0;
hChildKey - NULL;
lpszKeyValue = szKeyValue;

if (ERROR_SUCCESS == RegOpenKeyEx(hKey. lpszChildKey. dwReserved.
KEY_READ I KEY_WRITE. &hChildKey»

MessageBox(hwnd. lpszChildKey. "Register Uninstall".MB_OK);

else {
MessageBox(hwnd."Key is not immediate child of other key".

"Register App Path".MB_OK);
break;

II Prepare to create Uninstall\BUZZER.EXE keyes).
hKey = hChildKey;
II Identify the filename extension.
lstrcpy(lpszChildKey.(LPCSTR)"Uninstall\\BUZZER.EXE");
lstrcpy(lpszClassType.""); II class identifier for new key

dwReserved = 0;
hChildKey = NULL;
fdwOptions = REG_OPTION_NON_VOLATILE;

dwDisposition = 0L; II clear returning parameter for create
lpdwDisposition = &dwDisposition;

dwDisposition2 = 0L; II clear return parameter for nested create
lpdwDisposition2 = &dwDisposition2;

110 Programmer's Guide to Microsoft Windows 95

if (ERROR_SUCCESS == RegCreateKeyEx(hKey. lpszChildKey. dwReserved.
lpszClassType. fdwOptions.

{
KEY_ALL_ACCESS. NULL. &hChildKey. lpdwDisposition»

switch (dwDisposition){

case REG_CREATED_NEW_KEY:
II Create the DisplayName and UninstallString values.
MessageBox(hwnd."Create BUZZER.EXE a Success".

"Creating key".MB_OK);

1 strcpy (l pszKeyVal ueName. (LPCSTR) "Di spl ayName");
lstrcpy (lpszKeyValue.

(LPCSTR)"BeeSounds Removal Application");
RegSetValueEx(hChildKey. lpszKeyValueName. dwReserved.

REG_SZ. lpszKeyValue. sizeof(*szKeyValue»;

lstrcpy (lpszKeyValueName. (LPCSTR)"UninstallString");
lstrcpy (lpszKeyValue.

(LPCSTR)"C:\\Program Files\\BeeSounds\\NOBUZZ.EXE Iq");
RegSetValueEx(hChildKey. lpszKeyValueName. dwReserved.

REG_SZ. lpszKeyValue. sizeof(*szKeyValue»;

RegCloseKey(hChildKey);
RegCloseKey(hKey);
break;

case REG_OPENED EXISTING_KEY:
II This case should not apply. assuming it is a new installation
II or the CurrentVersion hierarchy was copied and then deleted.
II Therefore. delete the existing key and create a new one.

MessageBox(hwnd."Create BUZZER.EXE failed".
"Creating key".MB_OK);

RegDeleteKey(hKey. hChildKey);
RegCreateKeyEx(hKey. lpszChildKey. dwReserved.

lpszClassType. fdwOptions.
KEY_ALL_ACCESS. NULL. &hChildKey. lpdwDisposition2);

Article 6 Using the Registry 111

if (dwDisposition2 == REG_CREATED_NEW_KEY)
{

II The second try worked. Now add values.
lstrcpy (lpszKeyValueName, (LPCSTR)"DisplayName");
lstrcpy (lpszKeyValue,

(LPCSTR)"BeeSounds Removal Application");
RegSetValueEx(hChildKey, lpszKeyValueName, dwReserved,

REG_SZ, lpszKeyValue, sizeof(*szKeyValue»;

lstrcpy (lpszKeyValueName, (LPCSTR)"UninstallString");
lstrcpy (lpszKeyValue,

(LPCSTR)"C:\\Program Files\\BeeSounds\\NOBUZZ.EXE Iq");
RegSetValueEx(hChildKey, lpszKeyValueName, dwReserved,

REG_SZ, lpszKeyValue, sizeof(*szKeyValue»;

RegCloseKey(hChildKey);
RegCloseKey(hKey);
}

break;

default : II other status returned?
MessageBox(hwnd,"Function successful,

but status unexpected", "Creating key",MB_OK);

else {
MessageBox(hwnd,"Error--Couldn't create key",

"Creating keY",MB_OK);

II The second attempt did not create a new key.
if (dwDisposition2 != REG_CREATED_NEW_KEY)
{ II Place the error correction code here.
}

break;

If an application is being removed, the usage count for each shared and system-wide
shared application extension file needs to be decremented. If the usage count for a
file reaches zero, the user should be given the option of deleting the file.

ARTICLE 7

Dragging and Dropping

About Dragging and Dropping
This article is based in part on "Drag and Drop Target Practice: Implementing
OLE 2.0 Support in Your Applications," (Microsoft Developers Network News,
January 1994), by Sara Williams.

113

A Microsoft® Windows® 95 - based application should fully support the source
and target drag and drop capabilities provided by OLE. One of the most attractive
features of drag and drop in OLE is that the code that handles the actual data
transfer-your implementation of the IDataObject interface-is reusable.
You will be able to use the same code to implement cut and paste. OLE separates
what the user does to cause the data transfer from how the applications actually
transfer the data. This allows you to use the same "back-end" IDataObject
interface for any number of ways that the user may want to transfer data.

This article explains the general concepts that you need to know to support
OLE drag and drop capabilities in your applications and lists the basic steps for
implementing drag and drop support.

General OLE Concepts
One of the most attractive aspects of OLE is that it is completely modular.
It is designed so that each component can exist, for the most part, on its own.
For example, you can add drag and drop support to your application without
bothering with in-place activation, automation, or compound storage.

Even if your application only uses a small part of OLE, the Component Object
Model (COM) enables other applications to know what your application's OLE
capabilities are. COM is the fundamental, underlying model that OLE is based
upon; all OLE objects are also component objects.

114 Programmer's Guide to Microsoft Windows 95

COM stipulates that any component object must control its own life span and
be able to tell other objects about its capabilities in a strictly defined manner.
To control its life span, a component object maintains a reference count.
Capabilities are grouped into logical sets called interfaces; each interface is a
set of member functions necessary to support a certain capability. The "strictly
defined manner" that component objects must use is itself an interface, which is
called IUnknown. Because all OLE interfaces are derived from IUnknown, they
are component objects. IUnknown has three member functions: Querylnterface,
AddRef, and Release.

An object uses Querylnterface to tell other objects about its capabilities. If the
object implements the requested interface, it returns a pointer to the interface.
If it does not implement it, it returns the E_NOTIMPL error value stating that
the object does not support the requested interface. AddRef and Release are
used to control the object's life span. An object's AddRef member function is
called when another object holds a pointer to the object, and the Release member
function is called when the pointer is no longer needed. If a call to Release causes
the object's reference count to go to zero, the object can safely unload itself.

COM provides a couple of immediate benefits:

• An object can determine in advance if another object supports a certain feature.
If the other object does not support the feature, the calling object can react
accordingly.

• Objects do not remain in memory longer (or shorter) than necessary, and they do
not rely on the user to launch or close them.

OLE's new data transfer mechanism is a crucial element of drag and drop support.
Data transfer in OLE allows objects to be very specific about the data that they
transfer. Instead of simply being able to transfer a plain old bitmap, an object can
now transfer a bitmap of the object's contents rendered for a printer device and
stored in a stream to be released by OLE.

To accomplish this, OLE uses the IDataObject interface and the FORMA TETC
and STGMEDIUM structures. Applications implement IDataObject to accom
plish all data transfer in OLE; it includes member functions that set and retrieve
an object's data, enumerate the available data formats, and receive data change
notifications. FORMA TETC and STGMEDIUM provide the specific details
about the data that is being transferred-that is, the target device, aspect, storage
medium, and release method.

Every drag and drop operation involves two objects: a source and a target.
The source object contains the data to be dragged, and the target object accepts
the dragged data.

Article 7 Dragging and Dropping 115

Adding Drop Source Capabilities
To enable your application to become the source of a drag and drop operation,
follow these steps:

1. Initialize the OLE libraries. Any application that uses the OLE libraries must
check the version of the libraries and call the Olelnitialize function during
its initialization.

You should use the GetBuildVersion function to make sure that the system's
OLE libraries are at least as recent as the ones for which the application was
written.

Before you call any other OLE functions, you must call Olelnitialize to
initialize the OLE libraries. Because each call to Olelnitialize must have
a matching call to the OleUninitialize function, you should maintain an
JOlelnitialized flag so that you will know whether to call OleUninitialize
when your application exits.

2. Implement the IDropSource interface. Not including the member
functions that it inherits from IUnknown, IDropSource has only two
member functions: QueryContinueDrag and GiveFeedback. OLE calls
QueryContinueDrag intermittently during the drag operation. Its parameters
include the state of the keyboard, which the drop source uses to control
the drag operation. The drop source returns the S_OK value to continue
dragging, the DRAGDROP _CANCEL value to cancel dragging, or the
DRAGDROP _DROP value to drop the object.

3. OLE calls GiveFeedback to tell the drop source to update the cursor and
ask the source window for visual feedback about what would happen if
the user dropped at the current point. It sounds like a lot of work to
update the cursor, but OLE will use its default cursors if the value
DRAGDROP _S_USEDEFAULTCURSORS is returned.

4. Implement the IDataObject interface, which is used by OLE applications
to tansfer data. In a drag and drop operation, the drop source gives OLE
a pointer to its IDataObject implementation. OLE saves the pointer and passes
it to the drop target when the cursor fIrst enters the target window and when
the drop occurs. Fortunately, you only need to implement the following
(non-IUnknown) IDataObject member functions for drag and drop support:
GetData, GetDataHere, QueryGetData, and EnumFormatEtc.

116 Programmer's Guide to Microsoft Windows 95

5. Call the DoDragDrop function to begin the drag operation. After you have
detected that the user wants to drag something, you should call DoDragDrop.
OLE uses the IDataObject and IDropSource pointers that are passed in,
along with its list of registered drop targets, to control the drag operation.
When the drag operation is complete, DoDragDrop returns either the
DRAGDROP _S_DROP or DRAGDROP _S_CANCEL value. In addition,
OLE returns a DWORD in the address pointed to by pdwEffect that tells
how the drop should affect the source data-that is, whether the operation
was a move, copy, link, or scroll. You should look at the pdwEffect value and
modify the source data as necessary.

6. Call OleUninitialize. Before an OLE application exits, it must call
OleUninitialize to release the OLE libraries. You should check your
jOlelnitialized flag before calling OleUninitialize and should only call
OleUninitialize if Olelnitialize returned successfully.

Adding Drop Target Capabilities
To enable your application to become a drop target, follow these steps:

1. Initialize the OLE libraries. You should check the build version and call the
Olelnitialize function exactly as you would for a drop source.

2. Call the RegisterDragDrop function. OLE keeps a list of the windows that are
drop targets. Every window that accepts dropped objects must register itself
and its IDropTarget interface pointer. Then when the user drags the object
over a drop target window, OLE has the IDropTarget interface pointer handy.

3. Implement the IDropTarget interface. OLE uses the IDropTarget interface
pointer that you registered with RegisterDragDrop to keep you informed of
the state of a drop operation.

When the cursor first enters a registered drop target window, OLE calls the
IDropTarget: :DragEnter member function. In this member function, you.
should ensure that your application can create the dragged object if it is
dropped. Your application may also display visual feedback showing where
the dropped object will appear, if appropriate.

When the cursor moves around inside a drop target window, OLE calls the
IDropTarget: :DragOver member function, just as Windows 95 sends
WM_MOUSEMOVE messages. Here you should update any visual feedback
that your application displays to reflect the current cursor position. When the
cursor leaves a drop target window, OLE calls the IDropTarget::DragLeave
member function. In your DragLeave member function, you should remove
any feedback you displayed during DragOver or DragEnter.

Article 7 Dragging and Dropping 117

OLE calls your IDropTarget: :Drop member function when the user drops
the object. To be precise, a drop occurs when the drop source returns the
DRAGDROP _DROP value from the IDropSource: : QueryContinueDrag
member function. In your Drop member function, you should create
an appropriate object from IDataObject that is passed as a parameter.
The following example shows how to implement IDropTarget: :Drop.
STDMETHODIMP CDropTarget::Drop (LPDATAOBJECT pDataObj,

}

DWORD grfKeyState, POINTL pointl, LPDWORD pdwEffect)

FORMATETC fmtetc;
SCODE sc = S_OK;

UndrawDragFeedback(); II removes any visual feedback

II QueryDrop returns TRUE if the application can accept
II a drop based on the current key state, requested action,
II and cursor position.
if (pDataObj && QueryDrop(grfKeyState,pointl ,FALSE,pdwEffect»

m_pDoc->m_lpSite = CSimpleSite::Create(m_pDoc);
m_pDoc->m_lpSite->m_dwDrawAspect = DVASPECT_CONTENT;

}

II Initialize the FORMATETC structure.
fmtetc.cfFormat = NULL;
fmtetc.ptd = NULL;
fmtetc.lindex = -1;
fmtetc.dwAspect = DVASPECT_CONTENT; II draws object's content
fmtetc.tymed = TYMED_NULL;
HRESULT hrErr = OleCreateFromData

(pDataObj,IID_IOleObject,OLERENDER_DRAW.
&fmtetc, &m_pDoc->m_lpSite->m_OleClientSite,
m_pDoc->m_lpSite->m_lpObjStorage.
(LPVOID FAR *)&m_pDoc->m_lpSite-)m_lpOleObject);

if (hrErr == NOERROR)
II The object was created successfully.

else
II The object creation failed.
sc = GetScode(hrErr);

return ResultFromScode(sc);

4. Call the RevokeDragDrop function. Before a drop target window is destroyed,
it must call RevokeDragDrop to allow OLE to remove the window from its list
of drop targets.

5. Uninitialize the OLE libraries. Like a drop source, your application needs to
uninitialize the OLE libraries before terminating.

118 Programmer's Guide to Microsoft Windows 95

Other Drag and Drop Considerations

Scrap Files

You can use OLE drag and drop to add drag and drop support within your own
application. There is nothing to stop your application from being both a drop
source and a drop target or from accepting dropped objects from itself.

This article does not discuss reference counting, although it is a crucial part of
implementing a stable OLE application.

Windows 95 allows the user to transfer objects within a data file to the desktop or
a folder. The result of the transfer operation is a file icon called a scrap. An OLE
application automatically supports the creation of scrap files if its IDataObject
interface supports enough data formats so that the drop target can create either
an embedding or a shortcut object. You do not need to add any other functionality
to your application to allow the user to create a scrap file. However, there are two
optional features you may wish to add to your application: round-trip support and
caching additional data formats in a scrap file. Round-trip support means that an
object can be dragged out of a document and into a new container and then dragged
from the new container back into the original document.

Round-Trip Support
When the user transfers a scrap into your application, it should integrate the scrap
as if it were being transferred from its original source. For example, if a selected
range of cells from a spreadsheet is transferred to the desktop, they become a scrap.
If the user transfers the resulting scrap into a word processing document, the cells
should be incorporated as if they were transferred directly from the spreadsheet.
Similarly, if the user transfers the scrap back into the spreadsheet, the cells should
be integrated as if they were originally transferred within that spreadsheet.

Your application must include code that integrates a scrap into a document;
otherwise, the embedding object of the scrap is copied into the document rather
than the data associated with the scrap. To retrieve the data for the scrap, your
application must examine the class identifier, CLSID, of the scrap object by
retrieving the CF _OBJECTEDESCRIPTOR file format data. If the application
recognizes the CLSID, the application should transfer the native data into the
document rather than calling the OleCreateFromData function.

Article 7 Dragging and Dropping 119

Caching Additional Data Formats
When an IDataObject is dropped onto a file system folder, such as the desktop,
the shell receives the CLSID of the object and looks for the list of clipboard formats
to be cached in the scrap file. The list is located in the following registry location.

HKEY_CLASSES_ROOT\CLSID\{clsid}\DataFormats\PriorityCacheFormats

The clipboard formats should be added to the registry as the names of named values
(the value should be empty). The additional formats give the user more choices
when copying the scrap file and opening the Paste Special dialog box from another
application. You should choose only useful formats to keep the scrap file from
becoming too large. For example, Windows 95 WordPad scrap-caches the RTF
format, and Windows 95 Paint scrap-caches the CF J3ITMAP format.

HKEY_CLASSES_ROOT\CLSID\{D3E34B21-9D75-101A-8C3D-
00AA001A1652}\DataFormats\PriorityCacheFormats,"/f8",,""

HKEY_CLASSES_ROOT\CLSID\{73FDDC80-AEA9-101A-98A7-
00AA00374959}\DataFormats\PriorityCacheFormats,"Rich Text Format",,""

Delayed Rendering
You can specify the list of clipboard formats to be delay-rendered
under the HKEY _ CLASSESROOT\CLSID\{ clsid} \DataFormats\
PriorityCacheFormats key. The IDataObject of a scrap object with this
CLSID will offer these formats in addition to the native data and cached data.
When the drop target requests one of these formats, the shell runs the application
and renders the format from the active object. However, you should avoid using
this mechanism because it does not work if the server is not available or if the
application is a non-OLE application.

Clipboard Formats for Shell Data Transfers
Windows 95 allows the user to transfer data objects between applications and the
shell. The user can transfer data objects, such as printers, files, shortcuts, and
folders, either by dragging and dropping them or by using the Cut, Copy, and Paste
menu commands. Both transfer methods involve the clipboard.

120 Programmer's Guide to Microsoft Windows 95

Windows 95 defines several clipboard formats that you must support to transfer
objects between your application and the shell. The Windows header files do
not include predefined clipboard format identifiers for these clipboard formats.
Instead, they provide a set of clipboard format names and corresponding values.
To obtain an identifier for a clipboard format, you simply pass the format's value
to the RegisterClipboardFormat function. The following table lists the values
and corresponding clipboard format names.

Value

CFSTR_SHELLIDLIST

CFSTR_SHELLIDLISTOFFSET

CFSTR_NETRESOURCES

CFSTR_FILEDESCRIPTOR

CFSTR_FILECONTENTS

CFSTRYILENAME

CFSTR_PRINTERGROUP

CFSTR_FILENAMEMAP

Format name

"Shell IDList Array"

"Shell Object Offsets"

"Net Resource"

"FileGroupDescriptor"

"FileContents"

"FileName"

"PrinterFriendlyName"

"FileNameMap"

The following sections describe the clipboard formats used to transfer data between
applications and the shell.

"FileName" Format
The global memory object contains a single null-terminated and fully qualified
filename. This format is supported for compatibility with applications written for
Windows version 3.1. New applications should support the CF _HDROP clipboard
format instead of the "FileName" format.

"FileNameMap" Format
The "FileNameMap" format is used with the CF _HDROP clipboard format to
rename a list of files that are copied to a new location during a copy and paste
operation or a drag and drop operation. Data in the "FileNameMap" format consist
of a double-null terminated list of filenames that correspond to the filenames in the
CF _HDROP data. When the files listed in the CF _HDROP data are copied to the
new location, the files receive the new names specified in the "FileNameMap" data.
For example, if the CF _HDROP data contains two files with the names c:\temp.OOO
and c:\temp.OOl, the "FileNameMap" data contains the following list of filenames.

"new.txt\0another.txt\0\0"

If the files are copied to c:\target, they receive the following names.

c:\target\new.txt(was c:\temp.000)
c:\target\another.txt(was c:\temp.001)

Article 7 Dragging and Dropping 121

The system stores files in the recycle bin using a coding system for the filenames
(dcxxxx.ext). When the user drags or copies files from the recycle bin, the system
uses the filenames specifi~d in the "FileNameMap" format to rename the files.

CF _HDROP Format
The global memory object contains a DROPFILES structure. If the object was
copied to the clipboard as part of a drag and drop operation, the pt member of
DROPFILES includes the coordinates of the point where the drop occurred.
The pFiles member is the offset to a double-null-terminated list of filenames.
An application can retrieve information from the data object by passing the object's
handle to the DragQuerylnfo, DragQueryFile, DragQueryDropFilelnfo, and
DragQueryPoint functions.

"PrinterFriendlyName" Format
This format is similar to the CF _HDROP format, except that the pFiles member
of the DROPFILES structure is the address of a double-null-terminated list of
printer "friendly" names.

"FileContents" Format
The data object contains the contents of one or more files in a format that can be
written to a file. When a group of files is being transferred, the target of the drag
and drop operation can use the lindex member of the FORMATETC structure to
indicate which file to retrieve. The names and attributes of each file are contained
in the "FileGroupDescriptor" data.

"FileGroupDescriptor" Format
The data object contains the filenames and attributes of a group of files being
transferred during an OLE style drag and drop operation. The data object
consists of a FILEGROUPDESCRIPTOR structure and any number of
FILEDESCRIPTOR structures (one for each file in the group).

"Shell Object Offsets" Format
The global memory object contains an array of POINT structures. The first
structure specifies the screen coordinates of a group of shell objects, and
the remaining structures specify the relative offsets of each item in the group.
All coordinates are in pixels.

122 Programmer's Guide to Microsoft Windows 95

"Net Resource" Format
The global memory object contains a list of network resources. The memory object
consists of a NRESARRA Y structure and any number of NETRESOURCE
structures (one for each network resource in the list). Note that the string param
eters (LPSTR types) in the NETRESOURCE structure contain offsets instead of
addresses.

"ShelllDList Array" Format
The global memory object contains an array of item identifier lists. The memory
object consists of a CIDA structure that contains offsets to any number of
item identifier lists (ITEMIDLIST structures). The first structure in the array
corresponds to a folder, and subsequent structures correspond to file objects
within the folder.

Additional Information

Reference

For more information about how to support drag and drop in your applications,
you can read the following documentation:

• OLE documentation included in the Microsoft® Win32® Software Development
Kit (SDK).

Information covered includes drag and drop operations as well as the
IDataObject function and the FORMATETC and STGMEDIUM structures.
The SimpDnD and Outline samples demonstrate drag and drop implementation.

• Inside OLE 2 by Craig Brockschmidt, published by Microsoft® Press.

This book provides a thorough description of data transfer and drag and drop
operations.

The following structures define the clipboard formats used to transfer data between
applications and the shell.

DROPFILES
typedef struct _DROPFIlES

DWORD pFiles; II offset of file list
POINT pt; II drop point (coordinates depend on fNC)
Baal fNC; II see below
Baal fWide; II TRUE if file contains wide characters,

II FALSE otherwise
} DROPFIlES, FAR * lPDROPFIlES;

Article 7 Dragging and Dropping 123

Defines the CF _HDROP and CF _PRINTERS clipboard fonnats. In the case of
CF _HDROP, the data that follows is a double-null-tenninated list of filenames.
For CF _PRINTERS, the data that follows are the printer friendly names.

iNC
Nonclient area flag. If this member is TRUE, pt specifies the screen coordinates
of a point in a window's nonclient area. If it is FALSE, pt specifies the client
coordinates of a point in the client area.

FD FLAGS
typedef enum {

FD_CLSID = 0x0001.
FD_SIZEPOINT = 0x0002.
FD_ATTRIBUTES = 0x0004.
FD_CREATETIME = 0x0008.
FD_ACCESSTIME = 0x0010.
FD_WRITESTIME = 0x0020.
FD_FILESIZE = 0x0040.
FD_LINKUI = 0x8000.

} FD_FLAGS;

Specifies an enumerate type that defines the flags used with the dwFlags member of
the FILEDESCRIPTOR structure.

FILEDESCRIPTOR
typedef struct _FILEDESCRIPTOR { II fod

DWORD dwFlags; II see below
CLSID clsid; II file class identifier
SIZEL sizel; II width and height of file icon
POINTL pointl; II screen coordinates of file object

DWORD dwFileAttributes; II file attribute flags (FILE_ATTRIBUTE_)
FILETIME ftCreationTime; II time of file creation
FILETIME ftLastAccessTime; II time of last access to file
FILETIME ftLastWriteTime; II time of last write operation
DWORD nFileSizeHigh; II high-order word of file size. in bytes
DWORD nFileSizeLow; II low-order word of file size. in bytes
CHAR cFileName[MAX_PATH]; II name of file (null-terminated)

} FI.LEDESCRIPTOR. *LPFILEDESCRIPTOR;

124 Programmer's Guide to Microsoft Windows 95

Describes the properties of a file that is being copied by means of the clipboard
during an OLE drag and drop operation.

dwFlags
Array of flags that indicate which of the other structure members contain valid
data. This member can be a combination of these values:

FD_ACCESSTIME

FD_ATTRIBUTES

FD_CLSID

FD_CREATETIME

FD _FILESIZE

FD_LINKUI

FD _SIZEPOINT

FD_ WRITESTIME

The ftLastAccessTime member is valid.

The dwFileAttributes member is valid.

The c1sid member is valid.

The ftCreationTime member is valid.

The nFileSizeffigh and nFileSizeLow members are valid.

Treat the operation as "Link."

The sizel and pointl members are valid.

The ftLastWriteTime member is valid.

FILEGROUPDESCRIPTOR
typedef struct _FILEGROUPDESCRIPTOR { II fgd

UINT cItems; II number of elements in fgd
FILEDESCRIPTOR fgd[l]; II array of file descriptor structures

FILEGROUPDESCRIPTOR, * LPFILEGROUPDESCRIPTOR;

Defines the CF _FILEGROUPDESCRIPTOR clipboard format.

NRESARRAY
typedef struct _NRESARRAY { II anr

UINT cItems; II number of elements in nr
NETRESOURCE nr[l]; II see below

} NRESARRAY, * LPNRESARRAY;

Defines the CF _NETRESOURCE clipboard format.

Dr
Array of NETRESOURCE structures that contain information about network
resources. The string members (LPSTR types) in the structure contain offsets
instead of addresses.

125

ARTICLE 8

Creating Multimedia Applications

About Multimedia Applications
Microsoft® Windows® version 3.0 was the fIrst Windows-based system support
for multimedia. This system shipped in the summer of 1991. The multimedia
support enabled the Windows operating system to speak, play music, synthesize
sounds, show high-quality color images, and access time-dependent data using
compact disc read-only memory (CD-ROM). Until that time, Windows had been
silent except for system beeps. Later in 1991, the introduction of the Media Control
Interface (MCI) allowed Windows to control video and audio recorders, laser disk
players, and virtually any other audio or video device.

To enable multimedia, personal computers (PCs) running Windows needed to be
equipped with high-performance hardware as well as new drivers for audio, video,
and storage. In response to that need, computer manufacturers began introducing
PCs specifically designed for Windows multimedia in consultation with Microsoft
and with guidance from the Multimedia PC Marketing Council, which was formed
to set performance specifications for video, audio, ~nd CD-ROM subsystems.
Companies also introduced multimedia upgrade kits for the large, installed base
of silent PCs.

As a result of these improvements, Windows has become the leading multimedia
PC platform, and hardware and developer support has skyrocketed. Every major
PC manufacturer makes multimedia-ready models, and there are more than a dozen
multimedia upgrade kits available for Windows.

Future Directions in Multimedia
Multimedia is experiencing a technological explosion. Advances in video and
audio compression algorithms provide new uses for PC multimedia. Traditional
publishing and entertainment industries are converging with multimedia as welL
To participate fully in this evolution, companies need to identify the significant
trends, new products, and business opportunities likely to influence the future
of multimedia.

126 Programmer's Guide to Microsoft Windows 95

Perhaps the most important trend is the rapid adoption of Microsoft Windows on
multimedia-ready computers for the home. Both market share and sales rates of
home computers are growing, driven largely by falling hardware prices. Continued
growth of Windows-based multimedia in the home depends on three factors: ease
of use, high-quality video performance, and the availability of great titles.

Microsoft's Plug and Play specification for multimedia components, from audio to
video capture adapters, provides the ease of use essential to the continued accep
tance of multimedia hardware in the home. For the user, this means hardware that
automatically configures itself upon installation, eliminating the need to adjust dip
switches or configure drivers.

Video playback has increased in Windows by up to 50 percent, and improved
standards for high-performance video rendering are being developed.

In addition to displaying enhanced video, Windows-based computers will be used
more frequently for high-quality video capture and editing. Several manufacturers
are already demonstrating MPEG-quality video running with Windows, and
Microsoft is working with hardware and software developers to specify a true
MPEG implementation for Windows. As a result of this work, inexpensive MPEG
decoding hardware is becoming available for Windows.

Future work will center on specifying requirements for video and bus performance;
implementing MPEG, MPEG 2,and motion JPEG hardware-assisted compression;
and using the capabilities of Windows 95 and Microsoft® Windows NTTM.

Introduction to Writing Multimedia Applications
The remainder of this article covers three main issues related to creating Windows
multimedia applications:

• Working with or without multimedia hardware.

• Coping with unavailable resources.

• Yielding resources to other applications.

This article is only an overview of some of the global issues. For discussions of
specific categories of multimedia applications and the Windows API that supports
each class, see the multimedia documentation included in the Microsoft® Win32®
Software Development Kit (SDK).

Classes of Applications
Multimedia applications fall into two general classes: applications that are
completely dependent on multimedia support in Windows and applications that
take advantage of the support if multimedia hardware is available. Applications
in the latter class are called "multimedia aware," because they recognize the
multimedia hardware but are not fully dependent on it.

Article 8 Creating Multimedia Applications 127

Multimedia-Dependent Applications
Some applications make sense only in a multimedia environment. For example,
a speak and spell tutor requires support for playing sounds. The application will
not run on a computer that has no multimedia support. Developers should strive
to create applications that either fail gracefully or have reduced functionality if a
feature they require is unavailable.

Multimedia-Aware Applications
An application that is multimedia aware uses multimedia hardware if it is available.
If a user, for example, starts a multimedia-aware application on a computer that
does not have a sound card, the application simply disables the audio portion of its
interface and continues to run.

Selected Multimedia Components
Applications can be sensitive to the presence of multimedia support or to individual
components. For example, an application that displays text and uses animations,
waveform, the Musical Instrument Digital Interface (MIDI), and compact disc (CD)
audio sounds in various places might at ftrst seem impossible without multimedia
support. However, if the application were an encyclopedia that displayed mostly
text, occasionally augmented by multimedia inserts, it could provide most of its
functionality on a computer with no· special multimedia hardware. It would only
need the standard Windows window management and graphics device interface
(GDI) libraries to display its text.

Video Performance Guidelines
"

This section discusses issues related to maximizing video performance in multi
media applications.

Window Size and Position
To achieve the best video playback rate (that is, the most frames per second), the
playback window must be horizontally aligned on a four-pixel boundary. Without
this alignment, playback may be slower by up to 50 percent.

The system typically aligns the playback window automatically. However, if an
application plays an audio-video interleaved (A VI) ftle into a window that is not
near the upper left comer of a pop-up window, the automatic alignment does
not occur. (In this case, the playback window could move off the screen or
could move back and forth repeatedly.) Because automatic alignment is not
guaranteed, every programmer must ensure that the upper left comer of a play
ing A VI ftle is either on a pixel whose number is evenly divisible by four in the
horizontal direction or in the upper left comer of a pop-up window that the system
can safely align for the application.

128 Programmer's Guide to Microsoft Windows 95

Stretching video playback can slow perfonnance significantly. Perfonnance suffers
whenever an A VI file is played back at any size other than its actual dimensions.
It is impaired even if the playback size is smaller than the A VI frame size.

Video Compression
To improve image and audio quality, you should avoid compressing an AVI file
more than once. You should combine uncompressed pieces of video in your editing
system before compressing the final product. Using this method not only promotes
image and audio quality, it is faster as well, because editing is always faster with
uncompressed video.

To achieve better video compression, you should follow these guidelines:

• Capture the video on high-end equipment.

Keep noise out of the signal to prevent even worse noise in the compressed
video.

• Use a low-pass filter to decrease noise.

You can use the A VISaveOptions or ICCompressorChoose function to display
a dialog box that lists compression options. One of these options is "quality."
A higher quality setting equates to a larger frame. If you set a target data rate,
the highest quality setting uses the entire data rate. However, a lower quality
setting results in an even smaller data rate than you requested. Typically, you
should set the target data rate in the dialog box and set the quality to maximum.

Interleave Options
Although interleave options are unimportant for editing, they are important for
video at run time. At run time, the interleave should be 1: 1.

Data and Frame Rates
The data rate your application uses depends on the speed of the CD-ROM player on
your target platfonns. For single-speed players, 150 kilobytes (K) per second is a
reasonable rate.

Most video cards will support 15 fps at sizes up to 320 by 240 pixels. In fact, most
video cards will support good full-screen playback at 15 fps if the A VI file is that
size or less. If the video is larger than 320 by 240 pixels, however, the perfonnance
of full-screen playback is very poor.

Most developers test their applications on a variety of hardware platfonns to gauge
the data and frame rates.

Article 8 Creating Multimedia Applications 129

Key Frames
Most applications use the default setting for key frames. Using fewer key frames
can produce a slightly better image qUality. However, if the target system cannot
keep up with the data rate during playback, an application will stall for a longer
time than it would otherwise and performance will suffer. A higher setting for key
frames will cause fewer frames to be skipped when playback cannot keep up with
the data rate.

Palette Flashing
It is important to avoid palette flashing when an application plays different A VI
files and shows different bitmaps. The P ALMAP sample application found in
the Samples subdirectory of the Win32 SDK shows how to generate an optimal
palette from a variety of pictures. Applications should create such a palette using
all the A VI files and images to be displayed and should realize this palette when
processing the WM_QDERYNEWPALETTE and WM_PALETTECHANGED
messages. To cause a video to play mapped to the chosen palette and to avoid
palette flashing, MCI applications can send the Mel_REALIZE command
with the MCI_DGV _REALIZE_BKGD value (or the realize command with the
"background" flag). Similarly, applications can use the DrawDibDraw function
with the DDF _BACKGROUNDP AL value when drawing bitmaps.

General Programming Guidelines
This section discusses issues related to developing multimedia applications.

Calling Functions From Within Callback Functions
Win32 applications can call virtually any API element from within a callback
function. For Windows 16-bit applications, however, the list of functions that
you can safely call is still very small. The list includes the following functions:

• midiOutLongMsg

• midiOutShortMsg

• OutputDebugStr

• PostMessage

• timeGetSystemTime

• timeGetTime

• timeKillEvent

• timeSetEvent

Applications that require cross-platform portability must take this restriction into
account.

130 Programmer's Guide to Microsoft Windows 95

Multiple-Thread Limitations
The Windows 95 multimedia functions are not designed to be used by two or more
threads in the same process. Although most multimedia functions will work if they
are called by multiple threads, some are likely to fail. Functions that are particularly
likely to fail include PlaySound, any of the functions that prepare or unprepare
headers, and any of the open and close functions. The PlaySound function can
never be used simultaneously by multiple threads in the same process. The functions
that prepare or unprepare headers and the open and close functions can be used
simultaneously by multiple threads in the same process, but only if they do not pass
the same structure.

Resource Availability
Ideally, an application uses a device or feature only when it is needed and closes it
when it is no longer required. If a resource is not available, the application should
either continue without it (for example, disable the button that plays sound) or ask
the user to release the device or feature from another application.

Unfortunately, loading on demand can result in significant timing delays, espe
cially if a dynamic-link library (DLL) has to be loaded and initialized. A good
compromise is to open the device before it is required and release it when another
application requires it or when the application terminates. An application will know
whether the device is available well before it needs to use it, so it can avoid the
delays associated with loading code. To load on demand well, an application must
process any WM_ACTN ATEAPP messages it receives. If an application receives
WM_ACTIVATEAPP with a wParam value of zero, it should close any devices
that it has open when it is no longer active. A subsequent WM_ACTN ATEAPP
message with a nonzero wParam value indicates that the application should attempt
to reopen any devices it needs because it is active once again.

An application can determine the availability of the multimedia features it uses and
selectively disable the parts that are not going to work. The application has the
option of notifying the user of the reduced functionality.

An application that tolerates limited functionality must check the error return code
after each attempt to open a device so that it can avoid failing when the system
configuration changes. You can inform the user either directly (through a dialog
box) or indirectly (by disabling a button) that a feature has been lost.

Article 8 Creating Multimedia Applications 131

Yielding Resources to Other Applications
Applications that hold devices open for long periods should process the
WM_ACTIV ATEAPP messages sent to them so that other applications can also
use multimedia capabilities. For example, during a game that allows the user to
speak a part by recording his or her own voice, the user might decide to bring
up Sound Recorder to alter a sound file recorded previously. If the game does not
yield control of the waveform-audio output device, Sound Recorder will not work
as expected.

As a rule, applications should not play animations or sounds while they are inactive.
An exception to this general rule is an application that plays audio CDs, because
the user may want to continue playing a CD while running another application. If an
application needs to use a CD drive that is unavailable because another application
has it open, the application must tell the user about the conflict.

An application should also give the user the option of turning off certain multimedia
features, particularly sounds. (This is often done using a menu.) The user may
want a background application to play MIDI files or may want to hear an audio CD
while using an application. Also, the user may get tired of hearing the same sounds
from an application repeatedly.

Hardware Compatibility
The existence of multimedia DLLs on a system does not guarantee that appro
priate device drivers are available. For example, the system may be installed
on a computer with no sound card, or it may have no multimedia features at all.
The existence of multimedia API elements does not mean that all of the multimedia
personal computer (MPC) standard features are available either.

In addition, the presence of a CD-ROM device does not mean that it meets MPC
specifications. Documentation for an application should inform the user that
application performance may suffer if the user does not have MPC- or MPC2-
compatible hardware. An application should either fail gracefully (with a message
at startup) or tolerate the unavailability of multimedia support at run time.

You should also consider the role of your installation program in this process.
If your installation program cannot find multimedia support and consequently
disables your application's features, you should provide some way to enable these
features if the user later adds multimedia support (for example, a sound card).
You could require the user to rerun the installation program, or, preferably, you
could put a detection mechanism into the startup code for the application (checking,
for example, the registry for the existence of the device). The application does
not need to know which sound driver to add; it must simply recognize that the
multimedia API elements are now supported. This is easy to detect at run time.

132 Programmer's Guide to Microsoft Windows 95

The ability to load and unload drivers on demand adds another layer of compli
cation to an application's use of multimedia. Because the number of available
device drivers during the run time of an application may vary, it is not sufficient
to simply enumerate them at application startup. To use every available driver while
running, an application should check for the WM_DEVICECHANGE message to
discover whether a device is changing.

133

ARTICLE 9

Displaying and Using Pen Data

About Displaying and Using Pen
A subset of the pen services for Microsoft® Windows® 95 is available on
every Windows 95 system through the pen display dynamic-link library (DLL)
called PKPD.DLL or PKPD32.DLL. Functions in this library allow any Windows
95 - based application to display and manipulate pen data (also called "ink") that
was originally collected on a pen-enabled system. A few practical applications for
these services might include:

• U sing Windows-based applications to display a signature for letters or faxes.

• Verifying signatures collected on a pen-based mobile computer.

• Animating the display of ink for presentations or games.

• Merging, compressing, and storing ink collected on pen-based systems,
which might later be recognized as text on a pen-based system.

• Displaying graphics, maps, or handwritten notes that have been drawn on a
pen-based system.

The Programmer's Guide to Pen Services for Microsoft Windows 95, which
is included in the Microsoft® Win32® Software Development Kit (SDK),
provides information about using the entire set of pen functions to collect,
recognize, manipulate, and display ink. The set of functions supported in the
Windows 95 pen display library is limited to manipulating and displaying ink.
Chapter 4, "The Inking Process," in that guide describes the functions available
for displaying pen data, most of which are also available in the pen display library.

134 Programmer's Guide to Microsoft Windows 95

This article concentrates on the functions most likely to be used in the pen data
display library on a standard Windows 95 system. It also presents a sample appli
cation that allows you to display pen data using various methods. The following
topics are presented in both overview and sample code descriptions:

• Retrieving pen data from a file and saving pen data to a file.

• Scaling pen data.

• Compressing, decompressing, and trimming pen data.

• Animating the display of pen data.

• Retrieving information about pen data.

The final section of this article provides guidelines for writing Windows 95 - based
applications so that they will run successfully on pen-enabled systems. Although
the pen services automatically supply user interface tools to the user so that your
application can be used without a keyboard, you should be aware of the issues
described in this article to ensure that your application works well in a pen-enabled
environment.

Overview of Pen Services
Pen services for Microsoft Windows 95 provide all of the software requirements
for operating a pen-based system. This includes data collection from a tablet-
or screen-based pen device, display of ink, routing of data to one or more DLLs
for character recognition, and the ability to persist data. It also includes Windows
conrols for pen input, which are used to recognize ink as text or create ink draw
ings, and tools, such as the on-screen keyboard. The first five chapters in the
Programmer's Guide to Pen Services for Microsoft Windows 95 provide a com
prehensive overview of these topics. You should read these chapters in addition to
this article if you need more information about pen services.

This section compares the pen display library functions in Windows 95 to the total
set of pen services.

Data Collection and Recognition
Pen data can be collected on a pen-enabled system by using either high-level or
low-level calls to pen functions. High-level programming provides defaults for
most steps and makes pen data collection and recognition straightforward.
Low-level programming adds a few more function calls to the process; however,
data collection and recognition are essentially the same using both programming
methods. The high-level method is described here because of its simplicity. For
more information about this method, see Chapter 2, "Starting Out with System
Defaults," in Programmer's Guide to Pen Services for Microsoft Windows 95.

Article 9 Displaying and Using Pen Data 135

At the highest level, a pen-aware application makes a call to the DoDefaultlnput
pen function, passing it a window handle. After this, the window and its child
windows start receiving messages generated by the pen services. The first message
allows the application to enable or disable itself or its child windows as pen targets.
By default, all child windows are set as targets, capable of accepting pen input.
Another set of messages sets up each target window's inking information, such as
pen color, width, clipping range, and so on. After more "overhead" messages of
this sort, the application is required to create an object in memory to collect the
data. This object can be a recognition context object (ORC) or a pen data.object
(HPENDATA). The latter is relevant to this article, because it is the type of data
that can be read and displayed using the pen display library functions.

As pen data arrives to each target window, the window is notified by a message,
and the collected pen data is placed into the created object (HRC or HPENDATA)
by default. Finally, when ink input ends, each target window receives a data
ending message. If an HPENDATA object was created, the_ application has the
opportunity to duplicate or save the data. If an HRC object was created, the default
behavior is to send the data to a recognizer. A recognizer is a DLL that is loaded to
translate pen strokes into characters. When the recognizer has finished, the window
receives a results message, and the default behavior of the pen services is to send
the recognizer's "best guess" to the target window as a string of WM_ CHAR
messages.

Display of Data
Pen services for Microsoft Windows 95 require the PENWIN.DLL or
PENWIN32.DLL library for all of the functionality of pen data collection.
The library is supplied by the pen tablet or computer manufacturer that bundles
the services with their product.

Pen-enabled systems, however, use the same pen display library that is available
on every Windows 95 system for pen data manipulation and display: PKPD.DLL
or PKPD32.DLL. The remainder of this article provides information about these
services. Because of the overlap of use by both pen-enabled and penless systems,
you will find a few functions in the pen display library that are included primarily
for pen-enabled systems. These are noted and usually discussed after the functions
that are more relevant to displaying ink on standard Windows 95 systems.

136 Programmer's Guide to Microsoft Windows 95

Functions in the Pen Display Library
Before turning to the sample application, it might be helpful to provide some
information about the pen display library functions used by the application and
to describe the categories of functions in the pen display library. It is also highly
recommended that you read Chapter 4, "The Inking Process," of the Programmer's
Guide to Pen Services for Microsoft Windows 95 for a more information about
these functions and consult the reference documentation in that guide for any
individual function descriptions.

The functions in the pen display library can be organized into groups according to
the following activities:

• Creating pen data objects.

• Scaling pen data.

• Displaying pen data.

• Examining pen data.

• Editing or copying pen data.

• Compressing pen data.

• Using inkset objects.

Each of these groups and the functions that comprise them are discussed in this
section. Functions in Pen Windows version 1.0 that have been superseded by the
Pen Windows version 2.0 are not generally discussed in this section.

Before the pen display library functions are presented, it is important to describe
exactly what constitutes pen data. Pen data is a collection of strokes composed of
coordinate points. When ink is drawn, all of the points collected while the pen is
down on the tablet comprise a "pen down stroke." (The time durations collected
while the pen is not on the tablet are called a "pen up stroke.") After pen data is
collected, it is stored in a pen data (or HPENDATA) object. This pen data object
is accessed through a window handle, similar to the way that handles are used to
access other Windows objects, such as device contexts.

Internally, a pen data object is composed of a main header followed by a sequence
of strokes. The main header provides information, such as the number of strokes
and points, the bounding rectangle, the ink color and width, and so on.

Each stroke contains a set of data points, which indicate the positions of the pen
during the stroke, and a stroke header, which indicates the number of points in the
stroke and when the stroke occurred.

Each point is initially stored in pen tablet coordinates with a resolution of 0.001
inch and an origin in the upper left comer of the tablet. The resolution can be scaled
later to a different display resolution if needed.

Article 9 Displaying and Using Pen Data 137

Additional information provided by the original equipment manufacturer (OEM) for
the pen tablet may also be contained in the stroke. If OEM data exists, it follows the
point data in the stroke.

The following illustration shows the format of a pen data (HPENDATA) object.

Main header

Key
~ Stroke header

V/bl Data points in stroke

~ Optional OEM data

Creating Pen Data Objects
Three functions are associated with the creation of pen data objects:

• CreatePenDataEx

• DuplicatePenData

• DestroyPenData

Although CreatePenDataEx has many parameters, most are only useful when
creating a pen data object used to accept pen input. Applications using the Windows
95 display libraries on systems without a pen should normally set the uScale
parameter to the PDTS_STANDARDSCALE value and pass zero or NULL to
the other parameters.

DuplicatePenData makes a copy in memory of the pen data object and returns a
handle to it.

Any memory allocated for pen data objects created by using CreatePenDataEx or
DuplicatePenData can and must eventually be freed by using DestroyPenData.

Scaling Pen Data
Three functions are associated with the scaling of pen data points:

• MetricScalePenData

• OffsetPenData

• ResizePenData

138 Programmer's Guide to Microsoft Windows 95

MetricScalePenData scales the pen data to display resolutions corresponding to
the Windows mapping modes. For example, passing the PDTS_HIENGLISH value
to MetricScalePenData is equivalent to MM_HIENGLISH resolution, passing
the PDTS_HIMETRIC value is equivalent to MM_HIMETRIC resolution, passing
the PDTS_LOMETRIC value is equivalent to MM_LOMETRIC resolution, and so
on. The original tablet coordinates are the same as the Windows mapping mode
called MM_HIENGLISH (0.001 inch).

OffsetPenData can be used to offset the bounding rectangle within the pen data
coordinates. For example, you can pass negative values to this function to move
the rectangle containing the points to the left or top edge.

ResizePenData is useful for arbitrarily scaling points to fall within a given
rectangle. You might want to use this function on pen data to scale it to a
predetermined window size.

Note that rescaling pen data to a lower resolution causes information to be lost.
If you need to maintain the highest resolution possible for your pen data, you may
want to use the DrawPenDataEx function to scale your data to a window because
that method leaves the original data alone and only scales the points as they are
displayed.

Displaying Pen Data
Four functions are associated with displaying pen data:

· DrawPenDataEx

• DrawPenData (not available in PKPD32.DLL)

· RedisplayPenData

• CreatePenDataRegion

Of these functions, DrawPenDataEx is the most useful for systems that are not
pen-enabled. DrawPenDataEx is very versatile and handles all of the details of
drawing pen data to the device context that it is passed. It has the ability to draw
all strokes, a selected range of strokes, or a selected range of points. It also has
the ability to animate the drawing of ink, playing back the strokes in their original
succession and duration, by reading the timing information stored with each stroke.
Part of the animation process involves automatic calls made by DrawPenDataEx
to a callback function that you specify. Along with the address of a callback
function, an ANIMA TEINFO structure is also passed to this function to provide
more information about the animation. The sample application and accompanying
text describes this process in greater detail.

Article. 9 Displaying and Using Pen Data 139

The other functions listed here are used less often on standard Windows 95
systems. DrawPenData is a 16-bit display function that has been superseded by
DrawPenDataEx. RedisplayPenData is primarily designed for displaying ink
immediately after a user has drawn it (such as in an ink control) so that pen data
objects can be merged.

CreatePenDataRegion is also primarily used on pen-enabled systems that use
"gestures" to communicate system-level commands to the operating system, such
as cutting or pasting operations. Gestures are pen movements (such as "circle-P")
that require immediate ink display anywhere on the screen.

Examining Pen Data
Nine functions are used to examine the contents of a pen data object:

· GetPenDataAttributes

• GetStrokeAttributes and SetStrokeAttributes

· GetStrokeTableAttributes and SetStrokeTableAttributes

• BeginEnumStrokes, GetPenDataStroke, and EndEnumStrokes

• HitTestPenData

GetPenDataAttributes is used to retrieve information from the pen data object's
main header, such as the bounding rectangle, the total number of points and strokes,
the time that the pen data was created, and the device sampling rate. This function
is used in the sample application to retrieve the bounding rectangle of ink before it
is scaled. It is also used to determine the scaling and compression of the pen data
object.

Most of the other functions in this group provide access to individual or group
stroke attributes either indirectly through a function call or by providing direct
access to the pen data object in memory.

GetStrokeAttributes and SetStrokeAttributes retrieve and modify, respectively,
the attributes of individual strokes, including the pen state (up or down), the ink
color and width, and the time that the stroke was recorded.

GetStrokeTableAttributes and SetStrokeTableAttributes retrieve and modify,
respectively, attributes that are shared by a group of strokes. For example, if all
strokes use a red pen color and a width of 1, that attribute can be modified for
all strokes by using only one call to SetStrokeTableAttributes.

140 Programmer's Guide to Microsoft Windows 95

BeginEnumStrokes returns a far pointer to the HPENDATA object within
the global heap, GetPenDataStroke retrieves pointers to point data within the
HPENDATA object, and EndEnumStrokes unlocks the pen data memory block
and invalidates any pointers retrieved.

HitTestPenData determines if a given point lies on or near a point in the pen data
object.

Editing or Copying Pen Data
Functions in this group can be organized into three subgroups. The fIrst subgroup
of functions adds strokes to or extracts strokes from a pen data object.

ExtractPenDataStrokes

InsertPenDataStroke

RemovePenDataStrokes

Copies and, optionally, deletes strokes from a pen data
object.

Inserts a stroke into an existing pen data object.

Deletes a contiguous set of strokes from a pen data
object in memory.

The second subgroup of functions adds points to or extracts points from an existing
stroke.

ExtractPenDataPoints

GetPointsFromPenData

InsertPenDataPoints

AddPointsPenData

Copies points from a specified stroke in a pen data
object to a buffer, optionally removing the points.

Copies points from a stroke in a pen data object to a
buffer (superseded by ExtractPenDataPoints).

Inserts points into an existing stroke in a pen data
object.

Appends a set of points to a stroke in a pen data
object (used mainly by pen-enabled systems).

The third subgroup performs operations on the entire pen data object.

InsertPenData

PenDataToBuffer

PenDataFromBuffer

Merges two separate pen data objects into a single
object.

Writes the data in an existing HPENDATA object to a
serial buffer. The function is used to transfer pen data
to a file or the clipboard.

Creates and loads an HPENDATA object with the data
from the serial buffer created by PenDataToBuffer.
The function is used to transfer pen data from a file' or
the clipboard.

Article 9 Displaying and Using Pen Data 141

Compressing Pen Data
Data compression plays an important role in pen-based computing. The high
sampling rates of a pen device, combined with large amounts of input, result
in large blocks of pen data. The pen display library offers two methods of
compression, each with advantages and disadvantages depending on the intended
use of the pen data. These two functions are associated with data compression:

• CompressPenData

• TrimPenData

CompressPenData is generally used to compress pen data before saving it to disk
or passing it to the clipboard. It is also used to decompress the data before it is used
again. Compressed data must be decompressed to be used by most functions in the
pen display library. Compression provides from 60 to 70 percent reduction in pen
data size with no loss of data when the data is decompressed (this is called lossless
compression). .

TrimPenData, in contrast, irreversibly removes data from the pen data object.
Much of the information stored in a pen data object can be removed if the data is
only to be used for display purposes. Some of the data that you might want to trim
from a pen data object includes colinear and duplicate points, empty strokes, timing
and "up stroke" information, OEM hardware information, and so on.

Using Inkset Objects
An inkset object consists of time intervals for either individual strokes or a
collection of strokes. In tum, the interval of each stroke consists of the times at
which the stroke begins and ends. In this way, a pen-based application can refer
to a stroke not only by the points it contains but also by the time interval in which
the stroke occurs.

Timing information principally serves recognizers. It provides them with an
additional characteristic of the raw data that may offer clues for interpretation.

Timing information, though, has other uses as well. For example, it enables an
application to accurately verify a signature by comparing not only the coordinates
but also the duration of each stroke against a copy of the original signature. This
type of verification is an effective safeguard against forgery because of the diffi
culty of simultaneously duplicating both the pattern and duration of the original
signature.

Because inkset objects are more complicated than can be easily described in
this article and because they are not used in the sample application, see the
Programmer's Guide to Pen Services/or Microsoft Windows 95, which is
included in the Win32 SDK, for more information about their use.

142 Programmer's Guide to Microsoft Windows 95

AN_PKPD Sample Application
The sample application discussed in this article is called AN_PKPD. It is based
on another animation sample called ANIMATE (provided for pen application
developers in the SAMPLES\WIN16\PEN directory of the Win32 SDK), which
collects, displays, saves, and loads pen data. The ANIMATE sample requires
a pen tablet and the installation of the pen services for Microsoft Windows 95.
The AN_PKPD sample, on the other hand, requires only Windows 95, the pen
data, and either PKPD.DLL or PKPD32.DLL, both of which are supplied with
Windows 95.

Sample pen data files, generated from the ANIMATE sample, are provided with the
source code for AN_PKPD so that the sample application has some data to work
with. These pen data files contain nothing more than pen data objects that are saved
directly to disk without compression or any other alteration. You can, however,
save these files in compressed format after displaying them. It is suggested that you
do not overwrite the original files if you decide to save them as compressed files.

Reading, Writing, and Compressing Pen Data
The application-defined LoadSave function loads and saves pen data information.
The original pen data supplied with the sample files was generated using the
ANIMATE sample and is not compressed or trimmed. In the AN_PKPD sample,
you have the option of saving any of the files that you load and display. If you do
save a file, it is saved in a compressed state. If it has been displayed as "clipped"
data (drawn to the original scale, not scaled to a window), it is also in reduced
resolution rather than tablet resolution and is trimmed of excess pen data. It is
suggested that you do not overwrite the original files if you save them as com
pressed files.

This section describes the LoadSave function, which calls two internal functions,
ReadPenData and WritePenData. The full source for all three functions is at the
end of this section.

After retrieving a filename by using the FGetFileN ame local function, the
CreatePenDataEx function is called to create an HPENDATA object that is
accessed by the vhpndt variable.

vhpndt = CreatePenDataEx«LPPENINFO)NULL, PDTS_STANDARDSCALE, 0, 0);

CreatePenDataEx specifies the data scaling as the PDTS_STANDARDSCALE
value, which is equivalent to PDTS_HIENGLISH (.001 inch per logical unit). This
keeps the scaling of the pen data at the highest possible resolution initially - that is,
at the same resolution as the pen tablet. All pen tablets are scaled at .001 inches per
logical unit.

Article 9 Displaying and Using Pen Data 143

After opening the file and getting a file handle (hfile), the [Open variable is checked
to determine whether the function was called for reading or writing pen data. If it
was called for reading a file, the DestroyPenData function is called on the pen
data object to remove any existing ink from a previously displayed file. Then the
pen data is read into the pen data object by calling the ReadPenData local function.
ReadPenData uses the Windows Iread function internally to read the data into the
buffer and the pen display library's PenDataFromBuffer function to place that
data in the pen data object created by CreatePenDataEx.

Next, the GetPenDataAttributes function is called to determine whether or not
the pen data was compressed when it was saved. If the data was compressed, the
CompressPenData function is called to decompress it. Pen display library
functions do not work on compressed data.

The following example shows this process in the LoadSave function.

if (fOpen)
{

if (vhpndt) DestroyPenData(vhpndt);
vhpndt = ReadPenData(hfile);
II Determine whether the pen data is compressed.
vnPDTS = GetPenDataAttributes(vhpndt. NULL. GPA_PDTS);
II If it is compressed. decompress it.
if «vnPDTS & POTS_COMPRESSED) == POTS_COMPRESSED)

CompressPenData(vhpndt. CMPD_DECOMPRESS. 0);

Redraw();
}

The final step of loading a file is to call the Redraw local macro, which basically
invalidates the window. Redraw can be expanded in the following manner.

PostMessage(vhwndOut. WM_USER. 0. 0);

In the window procedure for vhwndOut, the WM_USER message is handled as
follows.

case WM_USER: II for Redraw macro
InvalidateRect(hwnd. NULL. TRUE);
if (IsWindow(vhdlg»

EnableWindow(GetDlgItem(vhdlg. IDD_PBCLEAR). vhpndt != NULL);
SetFocus(vhwndOut); II catch Esc
break;

144 Programmer's Guide to Microsoft Windows 95

VOID NEAR PASCAL
loadSave(

BOOl fOpen)
{

When data is saved by using the LoadSave function, it is automatically compressed
by using the CompressPenData function. Then the internal WritePenData
function is called; it uses the pen display library PenDataToBufTer function and
the Windows j.write function to write the data to a buffer and then to the file.
Finally, the pen data in memory is decompressed to its original state so that it can
be displayed again.

Compression of pen data is not mandatory, but it is often very useful because it can
achieve as much as 70% reduction in size on the disk. To compare compressed and
noncompressed pen file sizes, try loading one of the sample pen data files and then
save it with a different name. The difference is quite apparent. Here is an example
showing WritePenData that compresses, saves, and decompresses the data.

if (fOpen)
{

II load the pen data here.

}

else{

}

II Compress the pen data before saving it.
CompressPenData(vhpndt. CMPD_COMPRESS. 0);
WritePenData(hfile. vhpndt);
II Decompress the pen data for further displaying.
CompressPenData(vhpndt. CMPD_DECOMPRESS. 0);

Following are the complete listings for the application-defined LoadSave,
ReadPenData, and WritePenData functions.

HCURSOR hCursor = SetCursor(loadCursor(NUll. IDC_WAIT»;
HFIlE hfile;
static char const szOpenTitle[] = "Open File";
static char const szSaveTitle[] = "Save File";

if (!*vszFile)
lstrcpy«LPSTR)vszFile, vszSaveFileDef);

if (FGetFileName(vhwndAN, fOpen, vszFile))
{

OFSTRUCT of;
if (!vhpndt)

Article 9 Displaying and Using Pen Data 145

II Create a pen data object to read pen data into.
vhpndt = CreatePenDataEx«LPPENINFO)NULL, POTS_STANDARDSCALE, 0, 0);

if «hfile = OpenFile«LPSTR)vszFile, &of,
fOpen? OF_READ: OF_CREATE)) != HFILE_ERROR)

{

if (fOpen)
{

if (vhpndt) DestroyPenData(vhpndt);
vhpndt = ReadPenData(hfile);
II Determine whether the pen data is compressed.
vnPDTS = GetPenDataAttributes(vhpndt, NULL, GPA_PDTS);
II If it is compressed, decompress it.
if «vnPDTS & POTS_COMPRESSED) == POTS_COMPRESSED)

CompressPenData(vhpndt, CMPD_DECOMPRESS, 0);

Redraw();

else{
II Compress the pen data before saving it.
CompressPenOata(vhpndt, CMPD_COMPRESS, 0);
WritePenData(hfile, vhpndt);
II Decompress the pen data for further displaying.
CompressPenOata(vhpndt, CMPD_OECOMPRESS, 0);

_lclose(hfile);
}

else ErrBox("error opening file", szOpenTitle);
}

else if (fOpen)
InfoBox("did not get file", szOpenTitle);

else
InfoBox("did not save file", szOpenTitle);

SetCursor(hCursor);

146 Programmer's Guide to Microsoft Windows 95

II ReadPenData - reads pen data from a file. The file format at this
II point is a UINT value representing the size of the pen data,
II followed by that many bytes of pen data.
II
II Before calling this function, the caller should have already
II opened the file specified by hfile and ensured that the
II file pointer is offset to the beginning of the pen data.
II When the function returns, the file pointer will be offset
II to the end of the pen data in the file.
HPENDATA NEAR PASCAL ReadPenData(II return handle to pen data

HFILE hfile) II handle of open file
{

HPENDATA hpndt = NULL;
LONG cb, cbRead, cbHpndt;
BYTE lpbBuf[cbBufMax]; II buffer
DWORD dwState = 0L; II required init
BaaL fError = FALSE;

if (lhfile
I I (cb = _lread(hfile, &cbHpndt, sizeof(LONG)))
I I cb 1= sizeof(LONG))

return NULL;

while (cbHpndt > 0)
{

if «cbRead = _lread(hfile, lpbBuf, (UINT)min(cbHpndt, cbBufMax)))
HFILE_ERROR

I I PenDataFromBuffer(&hpndt, 0, lpbBuf, cbBufMax, &dwState) < 0)
{

if (hpndt)
DestroyPenData(hpndt);

return NULL;
}

cbHpndt -= cbRead;
}

return hpndt;

Article 9 Displaying and Using Pen Data 147

II WritePenData - writes pen data into a file, preceded by a UINT
II consisting of the size of the pen data, in bytes.
II
II Before calling this function, the caller should have
II already opened the file specified by hfile and ensured that
II the file pointer is correctly placed. When the function
II returns, the file pOinter will be offset to the end of the
II pen data in the file. The function fails if the pen data is
II larger than 64K.
BaaL NEAR PASCAL WritePenData(II returns true if successful

HFILE hfile, II handle to open file
HPENDATA hpndt) II pen data to write
{

BYTE lpbBuf[cbBufMax];
DWORD dwState = 0L; II required initialization
LONG cb;
LONG cbSize;

if (!hfile I I !hpndt)
return FALSE;

if (GetPenDataAttributes(hpndt, (LPVOID)&cbSize, GPA_SIZE) < 0)
return FALSE;

if (_lwrite(hfile, (LPCSTR)&cbSize, sizeof(LONG»
return FALSE;

while «cb = PenDataToBuffer(hpndt, lpbBuf, cbBufMax, &dwState» > 0L)
if (_lwrite(hfile, lpbBuf, (UINT)cb) == HFILE_ERROR)

return FALSE;

return cb >= 0;
}

Scaling and Trimming Pen Data
It mayor may not be necessary to scale pen data for your application. If your
application only requires that the pen data be drawn to the scale of the client
window, pen services take care of the scaling of the drawing (not the pen data)
during the DrawPenDataEx function. All you need do is pass in the rectangle of
the client window as a parameter along with a handle to a device context for the
window.

If you want to keep the aspect ratios the same as when the ink was drawn on the
tablet, you will need to scale the pen data to fit your display. You can do this on a
point by point basis with each pen data point, or you can use the built-in scaling
capabilities of the pen services.

148 Programmer's Guide to Microsoft Windows 95

The example in this section, taken from the ANOutWndProc window procedure's
WM_P AINT case, demonstrates how you might go about setting the proper scale
for the pen data and trimming unneeded data from the pen data object. In the
AN_PKPD sample, the ANDLG dialog box structure contains an tRenderScale
member that determines whether to scale the output to the client window or "clip"
the drawing, based on the selection in the Drawing Options dialog box. Clipping
means that the pen data is displayed in its original aspect ratios and is not confined
to the client window area.

When the Scale option is chosen in the Rendering section of the Drawing Options
dialog box, vandlg.tRenderScale is set true and the Windows GetClientRect
function is called to retrieve the rectangle into which the drawing will be scaled.

if (vandlg.fRenderScale)
GetClientRect(hwnd, &r);

II scale to window

When Clip is chosen in the Rendering section of the Drawing Options dialog box,
vandlg.tRenderScale is set to FALSE and the pen data is to drawn to its original
scale. In this case, you will probably want to fit the entire pen data on the display,
although some of it may fall outside the client window, thereby being clipped.

In the sample application, this is done by calling the MetricScalePenData
function and scaling the pen data to its lowest possible resolution. The lowest
display resolution for pen data corresponds to the MM_ TEXT mapping mode in
Windows, which is set by using the Windows SetMapMode function. Following
this, unneeded data is trimmed from the pen data by calling the TrimPenData
function.

else
if (vfScaled == FALSE)

{

II Display in same aspect ratio as the original ink, and
II clip the pen data if it is outside the window.

II Scale the pen data to display the coordinates and trim the
II excess data.
if(MetricScalePenData(vhpndt, PDTS_DISPLAY))

TrimPenData(vhpndt, TPD_COLLINEAR I II duplicate strokes
TPD_EMPTYSTROKES II strokes wlo points
TPD_USER I II header info
TPD_PENINFO II OEM data
TPD_OEMDATA , II OEM data
0);

Article 9 Displaying and Using Pen Data 149

II Use the following function if there is no animation or
II up strokes.
IITrimPenData(vhpndt, TPD_EVERYTHING, 0);

II Set the mapping mode to the same as POTS DISPLAY.
SetMapMode(hdc, MM_TEXT);

Although the TrimPenData function can be called with the TPD_EVERYTHING
value only, doing this removes timing data necessary for correct animation as well
as up strokes, which you might want to examine using this sample application.

The GetPenDataAttributes function is called next to retrieve the new bounding
rectangle of the pen data. This rectangle is used to determine if the data fits on the
screen and also used to calculate an aspect ratio if the data does not fit or needs to
be further resized. The screen width and height are then retrieved to determine if
the new scaling will fit on the screen.

II Get the bounding rectangle of the pen data in POTS_DISPLAY
II mapping mode.
GetPenDataAttributes(vhpndt, &r, GPA_RECTBOUND);
nMapWidth = r.right - r.left;
nMapHeight = r.bottom - r.top;

II Get the screen resolution.
nDisplayWidth=GetDeviceCaps(hdc, HORZRES);
nDisplayHeight=GetDeviceCaps(hdc, VERTRES);

If the scaling mode is still too large, the data can be resized to fit the screen by
using the ResizePenData function. Note that the use of ResizePenData is only
recommended for one-time resizing. Resolution is lost when data is repeatedly
resized.

In the example used to resize the data, an aspect ratio is determined from the
bounding rectangle of the pen data and the rectangle is reduced for margins to
80% of the screen size. This new rectangle is then passed to ResizePenData,
which does the work of modifying the coordinates of each of the points in the
pen data object.

II If the pen data is still too big, resize it to fit on the screen.
if (r.right > nDisplayWidth I I r.bottom > nDisplayHeight)
{

II Resize the rectangle, maintaining the aspect ratio.
if(nMapWidth > nMapHeight)

AspectRatio = (float)nDisplayWidth/(float)nMapWidth;
else

AspectRatio = (float)nDisplayHeight/(float)nMapHeight;

150 Programmer's Guide to Microsoft Windows 95

LRESULT CALLBACK
ANOutWndProc(

HWND hwnd.
UINT message.
WPARAM wParam.
LPARAM lParam)
{

II Reduce slightly for margins on the screen.
AspectRatio *= (float) 0.8;

II Set the right and bottom of the rectangle to a new size.
r.right = (int) (AspectRatio * (float)r.right);
r.bottom = (int) (AspectRatio * (float)r.bottom);

II Resize the pen data to a new rectangle.
ResizePenData(vhpndt. &r);

Remember that when data is reduced in scale by using MetricScalePenData or
ResizePenData, data is lost. Rescaling it to a higher resolution will not regain the
lost data. If you save the data at this point, you should not overwrite the original
file.

There are, of course, other methods than those shown here to display ink in the
correct aspect ratio. For example, you could use GetPenDataAttributes to retrieve
the rectangle of ink and then size a window to the same aspect ratio and let the
DrawPenDataEx function scale the drawing into that window.

The following example demonstrates the effect of setting the Rendering option in
the Drawing Options dialog box to either Scale or Clip.

II return LRESULT
II drawing window procedure
II == vhwndOut

LRESULT lRet = lL;
static char const szBoxTitle[] = "DrawPenDataEx";
int nDisplayWidth. nDisplayHeight. nMapWidth. nMapHeight;

switch (message)
{

case WM_USER: II for Redraw macro

Article 9 Displaying and Using Pen Data 151

if (vandlg.fRenderScale)
GetClientRect(hwnd, &r);

else
if (vfScaled == FALSE)

{

II scale to window

II Display in the same aspect ratio as the original ink, and
II clip the pen data if it is outside the window.

II Scale the pen data to display the coordinates and trim the
II excess data.
if(MetricScalePenData(vhpndt, PDTS_DISPLAY»

TrimPenData(vhpndt, TPD_COLLINEAR I
TPD_EMPTYSTROKES
TPD_USER I
TPD_PENINFO
TPD_OEMDATA ,
0) ;

II
II
II
II
II

duplicate strokes
strokes wlo points
header info
OEM data
OEM data

II Use the following function if there is no animation or
II up strokes.
IITrimPenData(vhpndt, TPD_EVERYTHING, 0);

II Set the mapping mode to the same as PDTS_DISPLAY.
SetMapMode(hdc, MM_TEXT);

II Get the bounding rectangle of the pen data in the PDTS_DISPLAY
II mapping mode.
GetPenDataAttributes(vhpndt, &r, GPA_RECTBOUND);
nMapWidth = r.right - r.left;
nMapHeight = r.bottom - r.top;

II Get the screen resolution.
nDisplayWidth=GetDeviceCaps(hdc, HORZRES);
nDisplayHeight=GetDeviceCaps(hdc, VERTRES);

II If the pen data is still too big, resize it to fit on the screen.
if (r.right > nDisplayWidth I I r.bottom > nDisplayHeight)
{

II Resize the rectangle. maintaining the aspect ratio.
if(nMapWidth > nMapHeight)

AspectRatio (float)nDisplayWidth/(float)nMapWidth;
else

AspectRatio (float)nDisplayHeight/(float)nMapHeight;

152 Programmer's Guide to Microsoft Windows 95

}

II Reduce slightly for margins on the screen.
AspectRatio *= (float) 0.8;

II Set the right and bottom of the rectangle to a new size.
r.right = (int) (AspectRatio * (float)r.right);
r.bottom = (int) (AspectRatio * (float)r.bottom);

II Resize the pen data to the new rectangle.
ResizePenData(vhpndt, &r);

II Do scaling only once.
vfScaled = TRUE;

Displaying the Pen Data
The AN_PKPD.RC resource file sets a menu with two drawing procedure options:
AnimatePenData and DrawPenDataEx. The DrawPenDataEx function is used for
both procedures.

For nonanimated drawing (IDM_DRA WP ARTIAL selection), the local macro
DrawPenDataPartial is used.

#define DrawPenDataPartial(hdc, lprect, hpndt, s0, sl, p0, p1)\
DrawPenDataEx(hdc, lprect, hpndt, s0, sl, p0, pI, NULL, NULL, 0)

Starting and ending strokes and starting and ending points, which can be set in
the Drawing Options dialog box, are sent to the DrawPenDataEx function.
The following example shows the result of selecting DrawPenDataEx from
the DrawProc menu before loading pen data.·

case DPDPART: II partial drawing
default :

}

DrawPenDataPartial(hdc, II DC
&r,
vhpndt,
vandlg.uStrk0,
vandl g. uSt rkl,
vandlg.uPt0,
vandlg.uPtl);

break;

II rectangle for scaling and clipping
II pen data
II first stroke to draw
II last stroke to draw
II first point in first stroke to draw
II last point in last stroke to draw

The second way that DrawPenDataEx is used in the sample application is for
animation. Animation is a process by which DrawPenDataEx draws the pen data
using timing information stored when the ink was originally drawn by the user and
timing information passed to the function when it is called. Animation requires a
callback function and an ANIMA TEINFO structure.

Article 9 Displaying and Using Pen Data 153

To animate pen data, the lpai parameter of DrawPenDataEx must be the address
of an ANIMA TEINFO structure. The AN_PKPD sample application fills in this
structure with the following information.

ANIMATEINFO ai =
{

} ;

sizeof(ANIMATEINFO).
vandlg.uSpeedPct.
MakeMs(vandlg.uCBPeriodCode).
vandlg.fSkipUp? AI_SKIPUPSTROKES: 0.
0L.
0L

II
II
II
II
II
II

structure size
speed as a percent
callback period in ms.
options
1 Pa ram
reserved

The second member of this structure (set here to vandlg.uSpeedPct) sets an
animation speed relative to the original speed at which it was drawn. A setting
of 100% produces the original speed. The third member sets the callback period.
If this is set to None in the dialog box, the callback function is never called and
you lose access to the dialog box until animation has finished.

The fourth member of this structure allows you to set options--in this case, the
option of skipping "up strokes," which comprise the timing information recorded
when the pen is not on the tablet.

To enable animation, you must also supply the address of a callback function to
DrawPenDataEx. The AN_PKPD sample application uses a callback function
called AnimateProc, which is defined as follows.

AnimateProc(
HPENDATA hpndt.
UINT wStroke.
UINT cPnts.
UINT FAR *lpuSpeedPct.
LPARAM lParam)

II animation callback procedure
II pen data
II current stroke
II number of points yet to draw
II address of speed percent
II application value

The animation callback function is typically used to allow for user activity to
occur during animation. For example, the user may want to change the speed
of the animation. For this reason, a pointer to the uSpeedPct member of the
ANIMA TEINFO structure is passed to the animation callback function so that it
can be set by the function. The AnimateProc callback function in the application
also displays the number of callbacks calls made in the window title of the
application, if the user has selected Callback Display from the View menu.

The following example shows the code involved in the three methods of displaying
data in the AN_PKPD sample application. Note that some sections of code,
indicated by ellipses, have been removed in order to show only code sections
relevant to displaying data. For the complete listing, see the sample application.

154 Programmer's Guide to Microsoft Windows 95

POPUP "&DrawProc"
BEGIN

MENUITEM "&AnimatePenData",
MENUITEM "DrawPenDataE&x",

IDM_DRAWEX, CHECKED
10M_DRAW PARTIAL

END

II Defines

#define DPDEX
11defi ne DPDPART

II Type definitions
typedef struct tagANDlG

{

UINT uStrk0;
UINT uPt0;
UINT uStrk1;
UINT uPt1;

(IDM_DRAWEX - IDM_DRAWEX)
(IDM_DRAWPARTIAl - IDM_DRAWEX)

II dialog box initialization [default

II first stroke to render [0]
II point offset in first stroke [0]
II last stroke to render [-1]
II point offset in last stroke [-1]

values in brackets]

Baal fSkipUp; II FALSE to animate upstrokes, TRUE to skip them
Baal fAutoRepeat; II FALSE to end after one rendering, TRUE to repeat to tap
UINT uCBPeriodCode; II callback period code [CAllBACKNEVER]
UINT uSpeedPct; II speed of animation [100%]
Baal fRenderScale; II TRUE to scale pen data to output window, FALSE to clip
}

Article 9 Displaying and Using Pen Data 155

ANDLG. FAR *LPANDLG;

II Macros

II Draw only part of the pen data.
#define DrawPenDataPartial(hdc. lprect. hpndt. s0. sl. p0. p1)\

DrawPenDataEx(hdc. lprect. hpndt. s0. sl. p0. pl. NULL. NULL. 0)

11-- ---------------------------
LRESULT CALLBACK
ANOutWndProc(

HWND hwnd.
UINT message.
WPARAM wParam.
LPARAM lParam)
{

switch (message)
{

I I retu rns LRESU L T
II drawing window procedure
II == vhwndOut

case WM_USER: II for Redraw macro

156 Programmer's Guide to Microsoft Windows 95

if (vhpndt)
{

PAINTSTRUCT ps;
HOC hdc = BeginPaint(hwnd, &ps);

vfDrawing = TRUE;

if (hdc)
{

RECT r;
int iRet;
int nWidthDPD = 1;

II set semaphore

COLORREF crDPD RGB(0, 255, 255); II cyan default for DrawPenData pen
ANIMATEINFO ai =

{

sizeof(ANIMATEINFO),
vandlg.uSpeedPct,
MakeMs(vandlg.uCBPeriodCode),
vandlg.fSkipUp? AI_SKIPUPSTROKES: 0,
0L,

0L
} ;

II
II
II
II
II
II

structure size
speed as a percent
callback Period in
options
1 Pa ram
reserved

II Scaling done here. For more information, see "Scaling
II and Trimming Pen Data."

switch (nDrawProc)
{

case DPDEX: II animation
vcCB = 0; II animation callback counter
vfReqCxl = FALSE; II reset
ShowCancel(vandlg.uCBPeriodCode != CALLBACKNEVER);

ms.

iRet - DrawPenDataEx(
hdc.
&r.
vhpndt.
vandlg.uStrk0.
vandlg.uStrk1.
vandlg.uPt0.
vandl g. uPtl.
vlpfnAnimateProc.
&ai.
0) ;

if (iRet < 0 && iRet >= -10)
{

Article 9 Displaying and Using Pen Data 157

II handle to DC
II rectangle for scaling and clipping
II pen data
II first stroke
II last stroke
II first point in first stroke
II last point in last stroke
II AnimateProc callback function

II Error handling code goes here.

vfReqCxl = FALSE;
break;

case DPDPART: II partial drawing
default:

DrawPenDataPartial(hdc. II DC
&r.
vhpndt.
vandlg.uStrk0.
vandlg.uStrk1.
vandlg.uPt0.
vandl g. uPtl);

break;
}

II rectangle for scaling and clipping
II pen data
II first stroke to draw
II last stroke to draw
II first point in first stroke to draw
II last point in last stroke to draw

ClearAppOueue(); II handle message backlog. if any

if (vandlg.fAutoRepeat)
Redraw();

}

158 Programmer's Guide to Microsoft Windows 95

EndPaint(hwnd, &ps);
vfDrawing = FALSE;
}

11-- ----.,.----------------
BOOl CALLBACK II return LRESULT; NB _export to ensure correct ds
AnimateProc(II animation callback procedure

HPENDATA hpndt, II pen data
UINT wStroke, II current stroke
UINT cPnts, II number of points yet to draw
UINT FAR *lpuSpeedPct, II address of speed percent
lPARAM lParam) II application value
{

BOOl fRet - !vfReqCxl; II set in dialog box and File menu
hpndt, wStroke, cPnts, lParam; II unused

if (fRet)
{

char sz[cbSzTMax];

if (!vcCB)
ShowCancel(TRUE);

ClearAppQueue(); II handle message backlog in app. queue

*lpuSpeedPct = vandlg.uSpeedPct; II get latest speed setting

wsprintf«lPSTR)sz, (lPSTR)"CB=%u", ++vcCB);
if (vfCB)
SetWindowText(vhwndAN, (lPSTR)sz);

II vfReqCxl may have gotten set in ANOutWndProc's WM_PAINT if the
II user, for example, changed the window size during a callback.
fRet = !vfReqCxl;
}

return fRet;
}

Article 9 Displaying and Using Pen Data 159

Enabling Your Applications For Pen-Based Systems
Windows 95 implements pen services that all developers of Windows 95 - based
applications need to be aware of, regardless of whether their applications make
use of the functions found in the Pen Windows version 2.0. Windows 95 can
run on mobile platforms, and physical keyboards may not be available for these
devices. In addition, applications for Far-Eastern markets may need to function
without keyboard input. To ensure that your Windows 95-based applications work
appropriately on systems that do not use a keyboard, use the guidelines listed in
this section.

For personal computer systems that have a pen installed, Windows 95 provides the
pen user with a base level of functionality that includes handwriting edit controls
and lens buttons. For Windows 95 - based applications to work well when the pen
is the only input device, application developers need to implement the functionality
described below and to design the interface to work well with a pen.

Handwriting Edit Controls
When the version stamp on your application identifies it as a Windows 95-based
application, all edit controls will be replaced by handwriting edit (hedit) controls.
To ensure that your application uses hedit controls appropriately, follow the
guidelines in this section.

To support hedit controls, mark your application as a Windows 95 - based
application.

You should also keep these points in mind when designing your application to use
hedit controls:

• The behavior of the hedit control may not be exactly identical to that of a
standard edit control.

• A hedit control may not cause the display of a dialog box to change; it may
display the lens tool or confirmation dialog boxes.

• If the focus leaves the dialog box, it may not indicate that the user is finished
with the field. Pen-related derivative dialog boxes can be disabled on a
case-by-case basis at WM_CTLINIT message and HN_BEGINDIALOG
or HN_ENDDIALOG notification message time.

160 Programmer's Guide to Microsoft Windows 95

Lens Buttons
Single-line hedit controls can include a lens button that the user chooses to open
a writing window over the control if space permits and if the control is scrollable.
This pop-up window·acts like a dialog box for entering text. When the window is
dismissed, it sends the text to the hedit control. To ensure that your application
uses lens buttons appropriately, follow the guidelines in this section.

To support lens buttons, include these elements in your application:

• Give multiline edit controls access to the lens tool for multiline edit controls.

• Leave plenty of room in your hedit controls for the lens button. You should
create all single-line hedit controls with the WS_AUTOHSCROLL style even if
you think they are wide enough. (Lens buttons will not appear in hedit controls
that do not include this style.)

You should also keep these points in mind when designing your application to use
lens buttons:

• Editing may not only occur within the hedit control.

• A hedit control may never cause a dialog box to appear.

• The focus may not have gone away when the hedit control loses focus; the focus
may be in the lens control (which is a child of the hedit control).

ARTICLE 10

Installing Applications

About Installing Applications
This article describes a standard set of guidelines for installing applications to
run with the Microsoft® Windows® 95 operating system. The purpose of these
guidelines is to enable all application developers to support the same general
method of installation for applications. The prime benefit is for users, many of
whom have said they prefer a consistent installation method so that they do not
need to learn a different method with each new software purchase. These
guidelines also benefit the application developer by helping to standardize the
organization and management of application files, thereby making initial
installations, updates, and application removals easier.

Installation Program

161

The installation program plays the primary role in carrying out application
installation. The program retrieves information from the user and the computer
and installs the files and information needed to run the application successfully.
Every installation program carries out these basic steps:

1. Determines the user's hardware and software configuration and available
disk space.

2. Copies application executable and data files to the appropriate directories on
the hard disk.

3. Sets up the execution environment for the application by modifying existing
files and adding entries to the registry.

An installation program (or a companion program) should also be prepared to
update or remove an already installed application.

162 Programmer's Guide to Microsoft Windows 95

You are responsible for designing and implementing the installation program for
your application. Windows does not provide a default installation program, but it
does provide an AddlRemove Programs application in Control Panel that helps
guide the user through starting the installation, update, or removal process.
When the user chooses to install an application, AddlRemove Programs auto
matically checks the floppy and compact disc read-only memory (CD-ROM)
drives for installation programs, searching for filenames such as SETUP.EXE
and INSTALL.EXE. If a file is found and the user agrees to finish the installa
tion, AddlRemove Programs starts the program and exits. After that, the started
program is responsible for guiding the user through the rest of the installation
process.

Designing the Installation Program
Your installation program should be a "good" Windows-based application,
employing the standard Windows graphical user interface, presenting users with
options and status. It is recommended that you use the InstallShield SE Toolkit
included in the Microsoft® Win32® Software Development Kit (SDK) to develop
your installation programs. You should also read relevant sections of The
Windows Inteiface Guidelines for SoftWare Design for information about
designing an application that is consistent with the look and feel of the Windows
shell. It will also give you information about easy-to-implement features that will
add value to your application and make use of new usability functionality in the
shell.

Your installation program should always offer setup options. The following
options are recommended.

Typical setup

Compact setup

Custom setup

Silent setup

Installs the application with all of the most common settings
and copies the most commonly used files. This should be
the default setup option.

Copies the fewest number of files needed to operate your
application. This option is useful for laptops and computers
on which disk space is at a premium.

Allows the user to determine the details of the installation,
such as the directories to receive the files and the application
features to enable. This option, which is typically used by
the power user, should also include an option to set up
components left out during a typical or compact setup.

Runs setup without user interaction. This should just be a
command line option so that your installation program can
be run within a batch script.

Your installation program should always supply defaults. In particular, it should
supply a common response to every option so that all the user has to do is press
the ENTER key.

Article 10 Installing Applications 163

Your installation program should never ask the user to install a disk more than
once and should make the computer beep when it is time for the user to insert a
new disk.

Your installation program should always include a progress indicator to show
users how far along they are in the setup procedure.

Your installation program should always give the user a chance to cancel the
setup process before it is finished. Your program should keep a log of files that
have been copied and settings that have been made so that it can clean up a
canceled installation. If the installation is canceled, your program should remove
any registry entries it may have made, remove any shortcuts it may have added to
the desktop, and delete any files it may have copied onto the user's hard disk.

Determining the Configuration
Your installation program should determine the hardware and software config
uration of the user's computer before copying files and setting the environment.
It is important for the installation program to verify that everything needed to
successfully run the application is available. For example, if your application
depends on specific hardware or software, your installation program should make
sure the hardware or software is present. If it is not, the program should notify
the user immediately and recommend a course of action.

Your installation program should always tell the user how much disk space is
needed. For custom setup, the installation program should adjust the "space
needed" figure as the user selects and deselects options. Your installation
program should verify that enough disk space is present for the options that the
user selects. If there is not enough free space, the program should notify the user
but give the user the option to override the warning.

Your installation program should always determine whether any of the files to
be installed are already on the hard disk. This is especially important for shared
files, such as commonly used dynamic-link libraries (DLLs). If the files already
exist, your installation program should check the version number to ensure that
it is not replacing a file with an older version. In other words, the installation
program should always make sure the most recent version of a file is installed on
the user's disk.

Copying Files
Your installation program should copy all necessary executable and data files to
the appropriate directories. It should never copy files to the Windows or System
directories. Instead, it should create a directory in the Program Files directory and
copy its files there. If the Program Files directory does not exist on the root of the
hard disk, your installation program should create it.

164 Programmer's Guide to Microsoft Windows 95

It is recommended that your installation program use a long filename for the
directory, such as the application name or another descriptive and unique
name. Your program should copy the main executable file for your application
and any other executable or data files that the user may want to open directly
to the newly created directory. For example, if your application's name
is "My Wizzy Application.Exe", your installation program should create
the \Program Files\My Wizzy Application directory, and copy My Wizzy
Application.Exe to that directory.

If you have any other executable or data files, such as .DLL and .HLP files that
are specific to your application, your installation program should create a
subdirectory, named System, in your application's directory. It should copy
the remaining files (except shared files) to this new directory. For example,
if your application has a DLL named MW ASUP.DLL, your installation program
should create the \Program Files\My Wizzy Application\System directory and
copy the DLL there.

If any of your executable or data files are shared, your installation program
needs to copy the files to yet another directory, depending on how widely the
file is to be shared. A file is system-wide shared if many applications from differ
ent vendors use it. For example, the VBRUN300.DLL file is a system-wide
shared file, because it is used by any application built with Visual Basic. A file is
a shared file if it is shared by a set of applications from the same vendor. A com
mon example of this would be an office suite that might use the same drawing
program for its word processor as it does for its spreadsheet.

Your installation program should copy all system-wide shared files to the
Windows SYSTEM directory. If a given file already exists in this directory,
the program should overwrite it with your application file only if your file
is a more recent vetsion. The GetFileTime, GetFile Versionlnfo, and
GetFilelnformationByHandle functions can be used to determine which file
is more recent. After copying a DLL file, your installation program should
increment the usage counter for the DLL in the registry. For more information
about the usage counter, see "Adding Entries to the Registry" later in this article.

Your installation program should copy all shared files to a System directory in
the \Program Files\Common Files directory. If the directory does not exist, the
installation program should create it. Again, it is recommended that your
program use a descriptive and unique name. For example, if there is a shared
file named My Wizzy Speller.Exe, your program should create a directory named
\Program Files\Common Files\System and copy the file there. The location of
the Program Files and Common Files directories is registered (using the macro
REGSTR_PATH_SETUP) in the HKEY_LOCAL_MACHlNE root under the
SOFTWARE\Microsoft\Windows\CurrentVersion key. The value names are
ProgramFilesDir and CommonFilesDir.

Article 10 Installing Applications 165

When your installation program installs applications on computers running
Microsoft® Win32s® with Windows version 3.x, it needs to be aware that the
system does not support long filenames. Your installation program will need to
use the short 8.3 filename equivalent for Program Files and Common Files,
which is Progra-I and Common-I, respectively.

Using a WININIT.lNI File to Replace DLLs in Windows 95
Installation programs often need to replace old .DLL files with new versions.
However, Windows 95 does not allow a .DLL file to be replaced if the DLL is
currently loaded into memory. To solve this problem, your installation program
must copy the new .DLL files to the user's machine, giving each new .DLL file a
temporary name that is different from that of the corresponding old :DLL file.
Your installation program must also copy a file called WININIT.INI to the user's
machine. The WININIT .INI file is processed by the WININIT .EXE program
when the system is restarted, before any DLLs are loaded. The WININIT.INI
file specifies the destination path and filename for each new DLL.

The WININIT.INI file contains a [rename] section that specifies the source and
destination path and filenames for the new DLLs. The entries in the [rename]
section have the following syntax.

DestinationFileName=SourceFileName

The following syntax is used to delete a file.

NUL=SourceFileName

The following example shows a [rename] section from a WININIT.INI file.

[rename]
C:\WINDOWS\Fonts\arial .ttf=C:\WINDOWS\Fonts\arial .win
C:\WINDOWS\SYSTEM\advapi32.dll=C:\WINDOWS\SYSTEM\advapi32.tmp

When the system is restarted, it searches for a WININIT .INI file and, if it finds
one, runs WININIT .EXE on the file. After processing the file, WININIT .EXE
renames it to WININIT.BAK.

The DestinationFileName and SourceFileName must both be short (8.3) names
instead of long filenames because WININIT .EXE is a non-Windows application
and runs before the protected mode disk system is loaded. Because long
filenames are only visible when the protected mode disk system is loaded,
WININIT .EXE will not see them, and therefore, will not process them.

WININIT.INI is not supported in Microsoft® Windows NTM. To replace DLLs
already loaded in memory, use the MoveFileEx function.

166 Programmer's Guide to Microsoft Windows 95

Setting Up the Environment
Your installation program needs to set up the proper environment for your
application. The environment consists of application-specific entries in the
initialization files, the registry, and the Start button.

Setting Initialization Files
Windows does not require the AUTOEXEC.BAT and CONFIG.SYS files.
Because these files may not be present on the hard disk, you should make sure
that your application does not require entries in those files.

Windows does not require you to modify the PATH environment variable.
Instead, Windows looks for your .EXE and .DLL files in the application-specific
path specified in the registry. Your installation program is responsible for setting
the application-specific path when it installs the application.

Windows does not require an application to load device drivers at boot time. This
means that your application does not need to specify drivers in the CONFIG.SYS
file. Instead, your application can dynamically load the drivers when it starts by
using the virtual device loader functions of Windows or the CreateFile and
DevlceloControl functions of Win32.

Your installation program should not make entries in the WIN .INI file. It should
use the registry instead. If you have information that you do not want to put in the
registry, your installation-program should create a private initialization file and
place it in the same directory that contains your application's executable files.

Adding Entries to the Registry
Your installation program should add information about your application to the
registry. In particular, it should always add the following entries.

HKEY_LOCAL_MACHINE\SOFTW ARE\CompanyName\ProductName\Version
Stores information pertaining to this particular copy of the application.

HKEY _CURRENT_USER\sOFTWARE
Stores user-specific preferences. This is information that application vendors
used to store in the WIN .INI file. For example Microsoft Word might store
the fact that a user wants the automatic save feature turned off here.

Article 10 Installing Applications 167

Your installation program should always add application-specific paths
to the registry for your application. If your installation program registers
a path, Windows sets the PATH environment to be the registered path
when it starts your application. Your program sets the path in the
HKEY _LOCAL_MACHINE root under the application paths key
\sOFTW ARE\Microsoft\ Windows\CurrentVersion\AppPaths (using
the REGSTR_PATH_APPPATHS macro). Your installation program must
create a new key having the same name as your application's executable file.
Under this new key, it creates the Path value name and assigns it a path using
the same format as expected by the PATH environment variable.

The following example shows application-specific paths for both Windows®
Excel, Excel.Exe, and My Wizzy Application.Exe.

HKEY_LOCAL_MACHINE
SOFTWARE\Microsoft\Windows\CurrentVersion\AppPaths

Excel.Exe
Default=D:\Program Files\MS Office\Excel\Excel .Exe
Path= D:\Program Files\MS Office\Excel\Excel .Exe;D:\Program

Files\Common Files\MS Office;

My WillY App.Exe
Default=d:\Program Files\My WillY Application\My WillY

Application.Exe
Path= D:\Program Files\My WillY Application;D:\Program Files\My

WillY Application\Application Extensions;

In the preceding example, the Default value specifies the full path to the
corresponding executable file. This value is typically used by Windows in the
Start Run command. If the user types the name of your applicatibn but Windows
fails to find it in the current path, Windows uses this value to locate and start
your application.

Your installation program should keep track of shared DLLs. When installing an
application that uses shared DLLs, it should increment the usage counter for the
DLL in the registry. When removing an application, it should decrement the
usage counter. If the result is zero, the user should be given the option of deleting
the DLL. The user should be warned that other applications may actually need
the DLL and will not work if it is missing. The following example shows the
general format for usage counters in the registry.

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs
C:\Program Files\Common Files\System\vbrun300.DLL=3

168 Programmer's Guide to Microsoft Windows 95

Supporting Context Menu Operations
Your installation program can provide support for context menu operations, such
as Open, Print, and Print To, by setting appropriate registry entries. The context
menu appears when the user clicks mouse button 2 on a document associated
with your application.

Enabling Print in the registry gives the shell instructions about what to execute
when the user chooses Print from the context menu. Usually an application will
display a dialog box that says" Printing page n of Non LPTX."

Enabling Print To in the registry specifies the default action for "drag print." Print
To displays the same dialog box as Print when you drag it to a specific printer.
The Print To option is not displayed on the context menu, so it does not bring up
anything (that is, it cannot be chosen).

The following example shows how to set commands for the context menu for
files having the . WRI filename extension.

HKEY_CLASSES_ROOT\.wri = wrifile
HKEY_CLASSES_ROOT\wrifile = Write Document
HKEY_CLASSES_ROOT\wrifile\Defaultlcon =

C:\Progra~1\Access~1\WORDPAD.EXE.2

HKEY_CLASSES_ROOT\wrifile\shell\open\command = WORDPAD.EXE %1
HKEY_CLASSES_ROOT\wrifile\shell\print\command =

C:\Progra~1\Access~1\WORDPAD.EXE /p "%1"
HKEY_CLASSES_ROOT\wrifile\shell\printto\command =

C:\Progra~1\Access~1\WORDPAD.EXE /pt "%1" "%2" "%3" "%4"

In the preceding commands, the % 1 parameter is the filename, %2 is the printer
name, %3 is the driver name, and %4 is the port name. In Windows 95, you can
ignore the %3 and %4 parameters (the printer name is unique in Windows 95).

Adding the Application to the Start Button
Your installation program can still create a "Program Group" in the Programs
folder by using dynamic data exchange (DDE) as used in Windows version 3.1,
but this is no longer the preferred method. Instead, your installation program
should add an icon for your primary application to the Start menu. The program
can, optionally, prompt the user to choose which program icons to place in the
menu. However, icons should not be added for every application in your package,
and an extensive hierarchy of programs and folders should not be created on the
Start menu.

Article 10 Installing Applications 169

To add an icon to the Start menu, your installation program should create a link
to your application's executable file and place the link in the directory named
\WINDOWS\STARTMEN\PROGRAMS. (Note that the Windows directory
should actually be the path returned by the GetWindowsDirectory function.)
An installation program can create a link by using the IShellLink interface.

Using Filename Extensions
In Windows 95, filename extensions should always describe a file type.
Your installation program should not rename old or backup files by giving them
filename extensions like .001, .BAK, or .XXI. If the file type does not change,
the program should give the file a new name. For example, it can use long
filenames to change the old version of a filename, such as SAMPLE.DLL being
changed to Copyof SAMPLE.DLL.

The following table lists filename extensions currently used in Windows. You
should not use these filename extensions, unless your file fits the given type
description.

Extension

386

3GR

ACM

ADF

ANI

AVI

AWD

AWP

AWS

BAK

BAT

BFC

BIN

BMP

CAB

CAL

CDA

Type description

Windows virtual device driver

Screen grabber for Microsoft® MS-DOS®-based applications

Audio Compression Manager driver

Administration configuration files

Animated mouse cursor

Video clip

Fax viewer document

Fax key viewer

Fax signature viewer

Backed-up file

MS-DOS batch file

Briefcase

Binary data file

Picture (Windows bitmap)

Windows setup file

Windows Calendar file

CD audio track

170 Programmer's Guide to Microsoft Windows 95

Extension

CFG

CNT

COM

CPD

CPE

CPI

CPL

CRD

CSV

CUR

DAT

DCX

DLL

DOC

DOS

DRV

EXE
FND

FON

FOT

GR3

GRP

HLP
HT

ICM

ICO

IDF

INF

INI

KBD

LGO

Lm
LNK

LOG

Type description

Configuration file

Help contents

MS-DOS-based program

Fax cover page

Fax cover page

International code page

Control Panel application

Windows Cardfile document

Command-separated data file

Cursor (pointer)

System data file

Fax viewer document

Application extension (dynamic-link library)

WordPad document

MS-DOS-based file (also extension for NDIS2 net card and protocol
drivers)

Device driver

Application

Saved search results

Font file

Shortcut to font

Windows version 3.0 screen grabber

Program group file

Help file

HyperTerminal file

Image color matching (ICM) profile

Icon

MIDI instrument definition

Setup information

Configuration settings

Keyboard layout

Windows logo driver

Static-link library

Shortcut

Log file

Extension

MCI

MDB

MID

MIF

MMF

MMM

MPD

MSG

MSN

MSP

NLS

PAB

PCX

PDR

PF

PIF

PPD

PRT

PST

PWL

QIC

REC

REG

RLE

RMI

RTF

SCR

SET

SHB

SHS

SPD

SWP

SYS

Article 10 Installing Applications 171

Type description

MCI command set

File viewer extension

MIDI sequence

MIDI instrument file

Microsoft Mail message file

Animation

Mini-port driver

Microsoft Exchange mail document

The Microsoft Network home base

Windows Paintbrush picture

Natural language services driver

Microsoft Exchange personal address book

Picture (PCX format)

Port driver

ICM profile

Shortcut to MS-DOS-based application

PostScript® printer description file

Printer formatted file (result of Print to File option)

Microsoft Exchange personal information store

Password list

Backup set for Microsoft Backup

Windows Recorder file

Application registration file

Picture (RLE format)

MIDI sequence

Document (rich text format)

Screen saver

File set for Microsoft Backup

Shortcut into a document

Scrap

PostScript printer description file

Virtual memory storage

System file

172 Programmer's Guide to Microsoft Windows 95

Extension Type description

TIF Picture (TIFF format)

TMP Temporary file

TRN Translation file

TSP Windows telephony service provider

TTF TrueType font

TXT Text document

VBX Visual Basic control file

VER Version description file

VXD Virtual device driver

WAV Sound wave

WPC WordPad file converter

WRI Windows Write document

XAB Microsoft Mail address book

You should also investigate filename extensions commonly used by popular
applications so that you can avoid creating a new extension that might conflict
with them, unless you intend to replace or supersede the functionality of those
applications.

Register Document Types
Your installation program should register every file type used that is not provided
by Windows 95:

For the files of interest to the user, such as document types, the installation
program should register both an icon and a description. It should provide
good OLE/shell verbs and also add a "ShellNew" entry so your document
type shows up in the "New" menu. This menu is available when the user
clicks mouse button 2 on any container or chooses the File menu in a folder
window.

• For files that the user would have a good reason to double-click, the instal
lation program should provide the file with a good icon and description and
also a registered "open" action so that the user can double-click it.

• For files that are less interesting to the user, such as .INI or configuration
files, the installation program should provide the file with a good icon and
description. The best way to do this is to consistently use predefined filename
extensions, such as .INI, .SYS, and .TXT.

Article 10 Installing Applications 173

• For files of little interest to the user, the installation program should minimally
register a file type so that there is a decent description in "Details" view (and
possibly an icon). If the program does not register the type, the file is identi
fied by whatever the filename extension may be. Registering the type ensures
that the file is identified by the description and related icon.

Network Issues
Most corporate customers would like to run their applications from a network
server. To support running from a server, you need to provide your installation
application in both a server and client package. The server package consists of
executable files, DLLs, data files, and any files that must be shared across the
network. The client package consists of the portions of the application that are
user-specific, including registry settings, details about the user's configuration,
and information about how to locate the server package.

Generally, you should have two installation programs or modes for installing
the packages: an administrative installation program that an administrator runs
for preparing the server and a client installation program that runs on each client
machine and sets up the connection to the server. The client installation program
should also have a batch or silent installation option so that an administrator can
deploy your application with automatic software distribution tools. Ideally, the
client installation functions are built into the application so that it configures itself
when it starts (perhaps by reading options set by the administrative installation
program).

Corporate customers typically run Windows from a shared copy on a server.
The following directories are stored on the server; your application and client
installation program mayor may not have write access to these directories.

\Windows
\Command
\Inf
\Fonts
\Help
\Hyperterm
\Pif
\System

\Color
\Iosubsys
\Viewers
\VMM32

174 Programmer's Guide to Microsoft Windows 95

You should use the GetSystemDirectory function to find the System
subdirectory. To find the Windows directory, look in the following registry
location.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup
SharedDir=

Your application should store files that cannot be shared (machine-specific files)
in a "machine" directory with write access. The machine directory contains files
and settings that are specific to a particular machine. If one user changes settings,
anyone else who uses that computer gets those settings. If the machine has user
profiles turned on, Windows copies the user-specific settings into and out of the
machine directory when the user logs on and off. That way, if a user changes a
machine setting (that is, a hardware setting), every user is affected, but if the user
changes a user-specific setting, the change affects only that user.

The machine directory should not contain any executable files. You can find the
machine directory by calling the GetWindowsDirectory function. The following
files and directories are stored in the machine directory.

WIN.COM
WININIT.EXE
*.INI
*.GRP

\Spool
\Desktop
\Startmen
\Nethood

Your application and installation program should fully support Universal Naming
Convention (UNC) paths. If an application is being installed on a network path,
the installation program should store a UNC path in any shortcuts it makes for the
Start menu. Your installation program can use the Windows network functions
(WinNet*) to determine if a path is a network path.

You should consider what configuration settings an administrator might want to
set for a user and what restrictions an administrator might want to place on a user
(for example, not letting a user access a configuration menu). You should put
these settings and restrictions in a System Policy template (.ADM) file.

For more information about network issues relating to Windows 95, see the
Microsoft Windows 95 Resource Kit.

Article 10 Installing Applications 175

CD-ROM Considerations
Autorun is a feature that is supported on CD-ROM drives. When the user loads
a compact disc (CD) into the drive, Windows 95 automatically runs a file on
the CD. The file to run must be specified in an AUTORUN.lNF file located
in the CD's root directory. The following example shows a typical entry in an
AUTORUN.lNF file.

[AutoRun]
OPEN=myprog.exe

The autorun feature can be disabled by the device manager or by an entry in the
SYSTEM.lNI file. Your application must not rely on the autorun feature being
available. Also, the autorun feature should not be used to automatically install
your application on a user's hard disk without the user being asked first.

If you provide your application on a CD, your installation program should give
the user the choice of running the application from the CD or installing it on the
hard disk. You should keep the following points in mind when using the autorun
feature:

• Even if the user chooses to run your application from the CD, your program
will need to copy some files to the hard disk (for example, writable files and
files containing the user's preferences).

• If you include a shortcut on the desktop, your application should display a
message when the user selects the shortcut and the CD is not loaded.

Installing Fonts
By carrying out these steps, you can write a single font installation routine that
works for both Microsoft® Windows NTTM and Windows 95:

1. Determine whether the platform is Windows 95 or Windows NT. This
distinction is important because Windows 95 allows a shared network
installation where most system files, including fonts, are stored on a centrally
managed server. To determine the platform, look in the following registry
location for a "SharedDir" value.

HKeyLocalMachine\Software\Microsoft\Windows\CurrentVersion\Setup

The data value of "SharedDir" is the UNC name of the server and sharepoint
of the shared directory. In most cases, a shared directory is marked as read
only by the system administrator, so your installation program should also
check to see if it can write to this location. If it cannot, it should let the user
install the fonts in a different location, or stop the setup process.

176 Programmer's Guide to Microsoft Windows 95

2. Check whether the TrueType® font being installed is already present on the
system by using the EnumFontsEx function. If that font is present, the
program should check to see if its version is newer by matching the installed
font name with the filename on the disk. The font name is stored in the
following registry location for both Windows 95 and Windows NT.

HKeyLocalMachine\Software\Microsoft\Windows\CurrentVersion\Fonts

The subkeys in this registry location contain the full name of the font file as
the value key, followed by the filename of the . TTF file as the key data. If the
filename in the registry is just a filename with no path information, the font
is installed in the \WINDOWS\FONTS directory for Windows 95 or the
\ WINDOWS\SYSTEM directory for Windows NT. Because True Type font
files do not carry a version resource, your program will need to retrieve the
version string from the 'name' table in the .TIF file.

• Before copying the. TTF file to the appropriate directory, the installation
program should check to see if the filename already exists in that directory.
If it does, the program should rename your . TTF file to some other name,
perhaps by appending a number to the end of the basename.

• After copying the . TTF file to the user's disk, the installation program
should inform the system that it wants the font to be available.
The program should pass it the . TTF filename directly by using the
AddFontResource function. Windows 95 and Windows NT do not
require the creation of .FOT files.

• To make the font installation permanent, the installation program should
add the font name and filename to the registry by writing both of the
values to the following registry location.

HKeyLocalMachine\Software\Microsoft\Windows\CurrentVersion\Fonts

Removing an Application
Your installation program can direct the AddlRemove Programs application in
Control Panel to list your application as an application that can be "automatically
removed" by adding the following entries to the registry.

HKEY _LOCAL_MACHINE
\Software\Microsoft\Windows\CurrentVersion\Uninstall\appfication-name

DisplayName=product-name
UninstallString=jUll-path-to-program command-fine-parameters

Article 10 Installing Applications 177

AddlRemove Programs displays the product name specified by the DisplayName
value in its list of applications that can be removed. Windows uses the value
specified by the UninstallString value to start the uninstall program to carry
out the removal of the application. This string needs to completely specify
the command-line parameters needed to execute the uninstall program and
remove the application. A full path is required. If both the DisplayName and
UninstallString values are not complete, AddlRemove Programs will not list the
application.

Windows needs to know when the removal of the application is done, so it
requires the UninstallString value to specify the uninstall program that actually
carries out the removal. A batch file or other program that starts the removal
program should not be specified.

Your installation program should use casual names, including spaces, for the
application-name and DisplayName value. Casual names help keep the tree
comprehensible for users who browse the registry. The registry locations
are defined as constants for C programmers in the REGSTR.H header file.
Descriptions of the macros follow.

REGSTR_PATH_U}UNSTALL

REGSTR_ V AL_VNINSTALLER_DISPLA YNAME

REGSTR_VAL_VNINSTALLER_COMMANDLINE

Path to uninstall branch

DisplayName

UninstallString

The uninstall program must display a user interface that informs the user that
the removal process is taking place. It is recommended that you use the sample
uninstall program in the InstallShield SE Toolkit as the starting point for your
own uninstall program. The sample illustrates the appropriate user interface and
application removal tasks.

Your uninstall program should provide a silent option that allows the user to run
it remotely. The uninstall program should also display clear and helpful messages
for any errors it encounters during the removal of the application. Windows will
only detect and report a failure to start the uninstall program.

Because computers running Microsoft® Win32s® and Windows NT do not
provide AddlRemove Programs in Control Panel, your installation program needs
to include an Icon in the Applications program group so that the user can launch
the uninstall program.

178 Programmer's Guide to Microsoft Windows 95

To summarize, an uninstall program should complete the following steps:

• Remove all information used by the application from the registry. If
decrementing a DLL's usage count results in a usage count of zero, the
uninstall program should display a message offering to delete the DLL or
save it in case it may be needed later.

• Remove any shortcuts to the application from the desktop.

• Remove all program files related to the application. The uninstall program
should not remove files that the user created with the application unless the
user agrees to delete them. If the user's files are stored in the application's
directory tree, the uninstall program should ask the user if the files should be
moved to a new directory.

• Remove empty directories left by the application.

Quick Checklist for Planning an Installation Program
You should keep the following points in mind when you plan an installation
program for your application:

• Store private initialization (.INI) files in the application directory if
the application is running locally or in the directory returned by the
GetWindowsDirectory function if the application is shared.

• Do not copy files to the Windows or System directories. If you
include fonts with your application, you should put the fonts in the Fonts
folder.

• Tell the user how much space the installation will take and use a progress
indicator.

• Make sure to create all directories in the user selected path.

• Do not assume that floppies are on Drive A.

• Always supply defaults.

• Name your installation program SETUP.EXE.

179

PAR T 3

Extending the Windows 95
Shell

Article 11 Shell's Namespace 181

Article 12 Shell Extensions ... 219

Article 13 Application Desktop Toolbars 251

Article 14 Shell Links . 269

Article 15 Taskbar Notification Area 289

181

ARTICLE 11

Shell's Namespace

About the Shell's Namespace
A names pace is a collection of symbols, such as database keys or file and directory
names. The Microsoft® Windows® 95 shell uses a single hierarchical namespace to
organize all objects of interest to the user: files, storage devices, printers, network
resources, and anything else that can be viewed using Windows 95 Explorer. The
root of this unified namespace is the Windows 95 desktop.

In many ways, the shell's namespace is analogous to a file system's directory
structure. However, the namespace contains more types of objects than just files
and directories. Familiar file system concepts, such as filename and path, have
been replaced by more general and powerful associations. This article discusses
some of these associations, outlines the organization of the shell's namespace,
and describes the functions and interfaces associated with the namespace.

Folders and File Objects
Afolder is a collection of items in the shell's namespace. A folder is analogous to a
file system directory, and many folders are, in fact, directories. However, there are
also other types of folders, such as remote computers, storage devices, the desktop
folder, the Control Panel, the Printers folder, and the Fonts folder. A folder may
contain other folders as well as items called file objects. A file object may be
an actual file, or it can be a Control Panel application, a printer, or another type
of object. Each type of folder can only contain certain kinds of file objects; for
example, you cannot move a Control Panel application into a file system directory.

Because there are many kinds of folders and file objects, each folder is a OLE
component object model (COM) object that "knows" how to enumerate its
contents and carry out other actions. More precisely, each folder implements
the IShellFolder interface. Retrieving the IShellFolder object for a shell folder
is referred to as binding to the folder. An application that binds to a folder must
eventually free the IShellFolder interface object by calling its Release member
function.

182 Programmer's Guide to Microsoft Windows 95

You can bind to the desktop folder (retrieve the folder's IShellFolder interface) by
using the SHGetDesktopFolder member function. You can enumerate subfolders
by using the IShellFolder: :EnumObjects member function. You can bind to a
subfolder of any given folder by using the IShellFolder: :BindToObject member
function. Using these three functions, an application can navigate throughout the
shell's entire namespace.

Item Identifiers and Pointers to Item Identifier Lists
Objects in the shell's namespace are assigned item identifiers and item identifier
lists. An item identifier uniquely identifies an item within its parent folder. An item
identifier list uniquely identifies an item within the shell's namespace by tracing
a path to the item from the desktop. A pointer to an item identifier list, which is
sometimes called a PIDL (pronounced piddle), is used with many functions.

Item identifiers and PIDLs are much like the filenames and paths used in a file
system. However, they share this important difference: item identifiers and PIDLs
are binary data structures that never appear to the user. Item names called display
names that can be shown to the user are described later.

An item identifier is defined by the variable-length SHITEMID structure. The first
two bytes of this structure specify its size, and the format of the remaining bytes
depends on the parent folder, or more precisely on the software that implements the
parent folder's IShellFolder interface. Except for the first two bytes, item identi
fiers are not strictly defined, and applications should make no assumptions about
their format. To determine whether two item identifiers are equal, an application
can use the IShellFolder: :CompareIDs member function.

The ITEMIDLIST structure defines an element in an item identifier list (the only
member of this structure is an SHITEMID structure). An item identifier list
consists of one or more consecutive ITEMIDLIST structures packed on byte
boundaries, followed by a 16-bit zero value. An application can walk a list of
item identifiers by examining the size specified in each SHITEMID structure
and stopping when it finds a size of zero.

Item identifier lists are almost always allocated using the shell's allocator
(an IMalloc interface that you can retrieve by using the SHGetMaIloc function).
For example, some shell functions create an item identifier list and return a PIDL
to it. In such cases, it is usually the application's responsibility to free the PIDL
using the shell's allocator. Note that the SHGetMailoc function retrieves the task
allocator for OLE applications.

Article 11 Shell's Namespace 183

Folder Locations
Certain folders have special meanings for the shell. An application can use shell
functions to retrieve the locations of these special folders and to enable the user
to browse for specific folders.

Some special folders are virtual folders-so called because they are not actual
directories on any storage device, local or remote. Virtual folders like the desktop
folder, the My Computer folder, and the Network Neighborhood folder make a
unified namespace possible by serving as containers for any number of storage
devices and network resources. Other virtual folders contain file objects, such as
printers, that are not part of the file system.

File system directories that the shell uses for specific purposes are also considered
special folders. Examples include the Programs folder (which contains the user's
program groups) and the desktop directory (which is used to physically store files
that have been copied to the desktop folder). The locations of special file system
folders are stored in the registry under the HKEY_CURRENT_USERISoftwarel
Microsoft I Windows I CurrentVersion/Explorer ISbell Folders key.

You can use the SHGetSpecialFolderLocation function to retrieve the location of
a special folder, which can be virtual or part of the file system. The function returns
a PIDL, which the application must eventually free using the shell's allocator. If the
folder is part of the file system, you can convert the PIDL to a file system path by
using the SHGetPatbFromIDList function. For a list of special folders, see the
description of the SHGetSpecialFolderLocation function.

To display a dialog box that enables the user to browse for a folder, you can
use the SHBrowseForFolder function. An application might use this function to
prompt the user for a directory or remote computer. This function can also be used
to browse for network printers, even though printers are not considered folders.
An application can specify the root folder to browse from. For example, to prompt
the user for a program group, you might call SHBrowseForFolder specifying the
PIDL for the Programs folder as the root.

Item Enumeration
An application that uses the ISbellFolder interface for a folder can determine
the folder's contents by using the EnumObjects member function. This member
function creates an item enumeration object, which is a set of item identifiers that
can be retrieved by using the IEnumIDList interface.

184 Programmer's Guide to Microsoft Windows 95

One or more item identifiers can be retrieved from the enumeration object by
using the IEnumIDList::Next member function. Calling this function repeatedly
allows an application to retrieve all of the item identifiers one or more at a time.
Using other member functions, you can skip items in the sequence, return to the
beginning of the sequence, or "clone" the enumeration object to save its state.

When you are finished using the enumeration object, you must free it by calling
the IEnumIDList: : Release member function.

Display Names and Filenames
Because item identifiers are binary data structures, each item in a shell folder also
has a display name, which is a string that can be shown to the user. You can use
member functions in the IShellFolder interface to retrieve an item's display name,
to find an item with the specified display name, or to change an item's display
name.

The IShellFolder::GetDisplayNameOf member function can be used to retrieve
a display name. The actual string returned depends on the type of display name
specified. Values identifying the different types of display names are defined by
the SHGNO enumerated type and have the SHGDN prefix. The type of display
name that an application requests might depend on whether an item is shown by
itself or within its parent folder. (A shared directory might be labeled Public on
'bill' in the former case and simply Public in the latter case.)

A special type of display name is one that can be converted back to an item identi
fier by using the IShellFolder::ParseDisplayName member function. You might
use this type of display name as a parameter to the ShellExecute function or as
a command-line argument for an application. For items within the file system, the
display name for parsing is the same as the file system path. You can also convert a
PIDL to a file system path by using the SHGetPathFromIDList function.

The IShellFolder::SetNameOfmember function can be used to change the display
name of a file object or subfolder. Changing an item's display name also changes
its item identifier, so the function returns a PIDL containing the new item identifier.
For file objects or folders within the file system, changing the display name
renames the file or directory.

Object Attributes and Interfaces
Every file object and folder has attributes that determine, among other things, what
actions can be carried out on it. An application can determine the attributes of any
file object or folder and can retrieve interfaces for items in a shell folder.

Article 11 Shell's Namespace 185

To determine the attributes of a file object or folder, an application can use the
IShellFolder: : GetAttributesOf member function. Attributes include capabilities
(such as whether a file object can be deleted or can be a drop target), display
attributes (such as whether a folder is shared), contents flags (such as whether
a folder has subfolders), as well as other attributes (such as whether an object
is a folder, whether it is part of the file system, and so on). For a list of attributes,
see the description of the IShellFolder: : GetAttributesOf member function.

An application can retrieve interfaces that can be used to carry out actions on a file
object or folder by using the IShellFolder: : GetUIObjectOf member function.
For example, the application can display the property sheets for a file object by
retrieving the object's IContextMenu interface and activating the Properties
command.

Using the Shell's Namespace
This section contains examples that demonstrate the functions and interfaces
associated with the shell's namespace.

Using PIDLs and Display Names
This section presents an example illustrating how to retrieve the location of a
special folder, walk an item identifier list, and use the IShellFolder interface
to retrieve display names. The example is a Microsoft® Win32®-based console
application that prints the display names of the folders a user would have to open
to get to the Programs folder. To display them, the application would carry out
these steps:

1. Retrieve the PIDL (obtain a pointer to an item identifier list) for the Programs
folder by using the SHGetSpecialFolderLocation function.

2. Bind to the desktop folder (retrieve the folder's IShellFolder interface) by
using the SHGetDesktopFolder function.

3. Walk the item identifier list and process elements as follows: print the sub
folder's display name, bind to the subfolder, and release the parent folder's
IShellFolder interface.

Before carrying out any of the preceding steps, the application uses the
SHGetMalloc function to retrieve a pointer to the shell's IMalloc interface,
which it saves in the following global variable.

II Global pointer to the shell's IMalloc interface.
LPMALLOC 9_pMalloc;

186 Programmer's Guide to Microsoft Windows 95

The following example shows the application's main function. This function
carries out all of the steps described previously, although it calls the application
defmed GetNextItemID and CopyItemID functions to walk the item identifier
list and the application-defined PrintStrRet function to print the display names.
These application-defined functions are described later in this section.

II main - the application's entrypoint function
int __ cdecl main()
{

LPITEMIDLIST pidlPrograms;
LPSHELLFOLDER pFolder;

II Get the shell's allocator.
if (!SUCCEEDED(SHGetMalloc(&g_pMalloc)))

return 1;

II Get the PIDL for the Programs folder.
if (SUCCEEDED(SHGetSpecialFolderLocation(NULL,

CSIDL_PROGRAMS, &pidlPrograms))) {

II Start with the desktop folder.
if (SUCCEEDED(SHGetDesktopFolder(&pFolder)))

LPITEMIDLIST pidl;

II Process each item identifier in the list.
for (pidl = pidlPrograms; pidl != NULL;

pidl = GetNextItemID(pidl)) {
STRRET sName;
LPSHELLFOLDER pSubFolder;
LPITEMIDLIST pidlCopy;

II Copy the item identifier to a list by itself.
if «pidlCopy = CopyItemID(pidl)) == NULL)

break;

II Display the name of the subfolder.
if (SUCCEEDED(pFolder->lpVtbl->GetDisplayNameOf(

pFolder, pidlCopy; SHGDN_INFOLDER,
&sName)))

PrintStrRet(pidlCopy, &sName);

II Bind to the subfolder.
if (!SUCCEEDED(pFolder->lpVtbl->BindToObject(

pFolder, pidlCopy, NULL,
&IID_IShellFolder, &pSubFolder))) {

g_pMalloc->lpVtbl->Free(g_pMalloc, pidlCopy);
break;

}

Article 11 Shell's Namespace 187

II Free the copy of the item identifier.
g_pMalloc-)lpVtbl-)Free(g_pMalloc, pidlCopy);

II Release the parent folder and point to the
II subfolder.
pFolder-)lpVtbl-)Release(pFolder);
pFolder = pSubFolder;

II Release the last folder that was bound to.
if (pFolder 1= NULL)

pFolder-)lpVtbl-)Release(pFolder);

II Free the PIDL for the Programs folder.
g_pMalloc-)lpVtbl-)Free(g_pMalloc, pi~lPrograms);

II Release the shell's allocator.
g_pMalloc-)lpVtbl-)Release(g_pMalloc);
return 0;

Following is the GetNextItemID function. Given a pointer to an element in an
item identifier list, the function returns a pointer to the next element (or NULL if
there are no more elements). The main function calls this function to walk the item
identifier list for the Programs folder.

II GetNextItemID - points to the next element in an item identifier
II list.
II Returns a PIDL if successful or NULL if at the end of the list.
I I pdi 1 - previ ous el ement
LPITEMIDLIST GetNextltemID(LPITEMIDLIST pidl)
{

}

II Get the size of the specified item identifier.
int cb = pidl-)mkid.cb;

II If the size is zero, it is the end of the list.
if (cb == 0)

return NULL;

II Add cb to pidl (casting to increment by bytes).
pidl = (LPITEMIDLIST) (((LPBYTE) pidl) + cb);

II Return NULL if it is null-terminating or a pidl otherwise.
return (pidl-)mkid.cb == 0) ? NULL: pidl;

188 Programmer's Guide to Microsoft Windows 95

Following is the CopyltemJD function. Given a pointer to an element in an item
identifier list, the function allocates a new list containing only the specified element
followed by a terminating zero. The main function uses this function to create
single-element PIDLs, which it passes to IShellFolder member functions.

II CopyltemID - creates an item identifier list containing the
II first item identifier in the specified list.
II Returns a PIDL if successful or NULL if out of memory.
LPITEMIDLIST CopyltemID(LPITEMIDLIST pidl)
{

II Get the size of the specified item identifier.
int cb = pidl-)mkid.cb;

II Allocate a new item identifier list.
LPITEMIDLIST pidlNew = (LPITEMIDLIST)

g_pMalloc-)lpVtbl-)Alloc(g_pMalloc, cb + sizeof(USHORT»;
if (pidlNew == NULL)

return NULL;

II Copy the specified item identifier.
CopyMemory(pidlNew, pidl, cb);

II Append a terminating zero.
*«USHORT *) «(LPBYTE) pidlNew) + cb» = 0;

return pidlNew;

The IShellFolder: : GetDisplayNameOf member function returns a display name ,
in a STRRET structure. The display name may be returned in one of three ways,
which is specified by the uType member of the STRRET structure. The main
function calls the following PrintStrRet function to print the display name.

II PrintStrRet - prints the contents of a STRRET structure.
II pidl - PIDL containing the display name if STRRET_OFFSET
II lpStr - address of the STRRET structure
void PrintStrRet(LPITEMIDLIST pidl, LPSTRRET lpStr)
{

LPSTR lpsz;
int cch;

switch (lpStr-)uType) {

case STRRET_WSTR:
cch = WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,

lpStr-)pOleStr, -1, NULL, 0, NULL, NULl);
lpsz = (LPSTR) g_pMalloc-)lpVtbl-)Alloc(g_pMalloc, cch);

}

}

Article 11 Shell's Namespace 189

if (lpsz != NULl) {
WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,

lpStr-)pOleStr, -1, lpsz, ech, NULL, NULL);
printf("%s\n", lpsz);
g_pMalloc-)lpVtbl-)Free(g_pMalloc, lpsz);

}

break;

case STRRET_OFFSET:
printf("%s\n", «char *) pidl) + lpStr-)uOffset);
break;

case STRRET_CSTR:
printf("%s\n", lpStr-)cStr);
break;

Browsing for Folders
The following example uses the SHBrowseForFolder function to prompt the user
for a program group. The Programs directory is specified as the root.

II Main_OnBrowse - browses for a program folder.
II hwnd - handle of the application's main window
II
II Uses the global variable g_pMalloe, which is assumed to point
II to the shell's IMalloc interface.
void Main_OnBrowse(HWND hwnd)
{

BROWSEINFO bi;
LPSTR lpBuffer;
LPITEMIDLIST pidlPrograms;
LPITEMIDLIST pidlBrowse;

II PIDL for Programs folder
II PIDL selected by user

II Allocate a buffer to receive browse information.
if «lpBuffer = (LPSTR) g_pMalloc-)lpVtbl-)Alloc(

g_pMalloc, MAX_PATH» == NULL)
return;

II Get the PIDL for the Programs folder.
if (!SUCCEEDED(SHGetSpeeialFolderLocation(

}

hwnd, CSIDL_PROGRAMS, &pidlPrograms»)
g_pMalloc-)lpVtbl-)Free(g_pMalloc, lpBuffer);
return;

190 Programmer's Guide to Microsoft Windows 95

Reference

II Fill in the BROWSEINFO structure.
bi .hwndOwner = hwnd;
bi .pidlRoot = pidlPrograms;
bi.pszDisplayName = lpBuffer;
bi .1pszTitle = "Choose a Program Group";
bi . ul Fl ags = 0;
bi.lpfn = NULL;
bi . 1 Pa ram = 0;

II Browse for a folder and return its PIDL.
pidlBrowse = SHBrowseForFolder(&bi);
if (pidlBrowse 1= NULL) {

Ii Show the display name, title, and file system path.
MessageBox(hwnd, lpBuffer, "Display name", MB_OK);
if (SHGetPathFromIDList(pidlBrowse, lpBuffer))

SetWindowText(hwnd, lpBuffer);

II Free the PIDL returned by SHBrowseForFolder.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlBrowse);

II Cl ean up.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlPrograms);
g_pMalloc->lpVtbl->Free(g_pMalloc, lpBuffer);

The following interfaces, member functions, structures, macros, and types are
associated with the shell's namespace.

Interfaces and Member Functions
IShe11 Folder
Designates an interface implemented by the shell and used to determine the contents
of a folder. The IShellFolder interface has the following member functions.

BindToObject

BindToStorage

CompareIDs

Create ViewObject

EnumObjects

GetAttributesOf

GetDisplayNameOf

GetUIObjectOf

ParseDisplayName

SetNameOf

Article 11 Shell's Namespace 191

Retrieves the specified interface for the specified subfolder.

Reserved; this function is not currently implemented.

Compares two item identifier lists and returns the result.

Reserved for use by the shell; do not use.

Enumerates the objects in the folder.

Retrieves the attributes of the specified file object or
subfolder.

Retreives the display name of a file object or subfolder.

Creates an OLE interface that can be used to carry out
operations on a file object or subfolder.

Translates a display name into an item identifier list.

Sets the display name of the specified file object or
subfolder and changes its identifier accordingly.

Like all OLE interfaces, IShellFolder also includes the Querylnterface, AddRef,
and Release member functions.

IShe11 Folder: : ParseDisplayName
HRESULT IShellFolder::ParseDisplayName(

LPSHELLFOLDER plface, HWND hwndOwner, LPBC pbcReserved,
LPWSTR lpwszDisplayName, ULONG *pchEaten,
LPITEMIDLIST *ppidl, ULONG *pdwAttributes
) ;

Translates a file object or folder's display name into an item identifier.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pI/ace
Address of the IShellFolder interface. In C++, this parameter is implicit.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

pbcReserved
Reserved; this parameter is always NULL.

/pwszDisp/ayName
Address of a null-terminated Unicode string specifying the display name.
This parameter must be a display name for parsing - that is, a display name
retrieved using the SHGDN_FORP ARSING value.

192 Programmer's Guide to Microsoft Windows 95

pchEaten
Address of an unsigned long value that receives the number of characters of
the display name that were parsed.

ppidl
Address that receives a pointer to the new item identifier list for the object.
If an error occurs, a NULL pointer is returned in this address.

The returned item identifier list specifies the relative path (from the parent
folder) that corresponds to the specified display name. It contains only one
SHITEMID structure followed by a terminating zero.

pdwAttributes
Address that receives the attributes of the file object.

This member function is similar to the IParseDisplayName::IParseDisplayName
member function defined by OLE.

IShe11 Folder: : En u mObjects
HRESULT IShellFolder::EnumObjects(

LPSHELLFOLDER plface, HWND hwndOwner, DWORD grfFlags,
LPENUMIDLIST *ppenumIDList
) ;

Creates an item enumeration object (an IEnumIDList interface) that can be used to
enumerate the contents of a folder.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pI/ace
Address of the IShellFolder interface. In C++, this parameter is implicit.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

gifFlags
Flags determining which items to include in the enumeration. For a list of
possible values, see the description of the SHCONTF type.

ppenumIDList
Address that receives a pointer to the IEnumIDList interface created by this
member function. If an error occurs, a NULL pointer is returned in this address.

Article 11 Shell's Namespace 193

The calling application must free the returned IEnumIDList object by calling its
Release member function.

This member function is similar to the IOleContainer: :EnumObjects member
function defined by OLE.

ISheliFolder: :BindToObject
HRESULT IShellFolder::BindToObject(

LPSHELLFOLDER plface, LPCITEMIDLIST pidl, LPBC pbcReserved,
REFIID riid, LPVOID *ppvOut
) ;

Creates an IShellFolder object for a subfolder.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.

pidl
Address of an ITEMIDLIST structure that identifies the subfolder relative to
its parent folder.

pbcReserved
Reserved; applications should specify NULL for this parameter.

riid
Identifier of the interface to return. This parameter is almost always the
IID _IShellFolder interface identifier.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is
returned in this address.

ISheIiFolder::BindToStorage
•

This member function is reserved for future use and is not currently implemented.

194 Programmer's Guide to Microsoft Windows 95

ISheliFolder: :ComparelDs
HRESULT IShellFolder::CompareIDs(

LPSHELLFOLDER plface. LPARAM lParam.
LPCITEMIDLIST pidll. LPCITEMIDLIST pid12
) ;

Determines the relative ordering of two file objects or folders, given their item
identifier lists.

• Returns a handle to a result code. If this member function is successful,
the CODE field of the status code (SCODE) has the following meaning:

CODE field

Less than zero

Greater than zero

Zero

piface

Meaning

The first item should precede the second (pidll < pid12).

The first item should follow the second (pidll > pid12).

The two items are the same (pidll = pid12).

Address of the IShellFolder interface. In C++, this parameter is implicit.

lParam
Value specifying the type of comparison to perform. The calling application
should always specify zero, indicating.that the two items should be sorted by
name.

pidll and pidl2
Addresses of two ITEMIDLIST structures that uniquely identify the items to
be compared. Both item identifier lists are relative to the parent folder.

IShellFolder: :CreateViewObject
This member function is reserved for use by the shell and should not be called by
applications.

IShe11 Folder: :GetAttributesOf
HRESULT IShellFolder::GetAttributesOf(

LPSHELLFOLDER plface. UINT cidl. LPCITEMIDLIST *apidl.
ULONG *rgfInOut
) ;

Retrieves the attributes of one or more file objects or subfolders.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 11 Shell's Namespace 195

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.

cidl
Number of file objects to get the attributes of.

apidl
Address of an array of pointers to ITEMIDLIST structures, each of
which uniquely identifies a file object relative to the parent folder. Each
ITEMIDLIST structure must contain exactly one SHITEMID structure
followed by a terminating zero.

rgflnOut "
Address of an array of values that specify file object attributes. The calling
application should initialize each array element by specifying which file
object attributes to retrieve.

This member function returns the actual attributes of each file object in the
corresponding array element; it may return all attributes or just the requested
attributes.

The following attribute flags may be returned by this member function. File object
attributes include capability flags, display attributes, contents flags, and miscella
neous attributes.

A file object's capability flags may include zero or more of these values:

SFGAO_CANCOPY

SFGAO_CANRENAME

SFGAO_CAP ABILITYMASK

SFGAO_DROPTARGET

SFGAO_HASPROPSHEET

The specified file objects or folders can
be copied (same value as the
DROPEFFECT_COPY value).

The specified file objects or folders can
be deleted.

It is possible to create shortcuts for the
specified file objects or folders (same value
as the DROPEFFECT_LINK value).

The specified file objects or folders can
be moved (same value as the
DROPEFFECT_MOVE value).

The specified file objects or folders can
be renamed.

Mask for the capability flags.

The specified file objects or folders are
drop targets.

The specified file objects or folders have
property sheets. .

196 Programmer's Guide to Microsoft Windows 95

A file object's display attributes may include zero or more of these values:

SFGAO_DISPLA YATIRMASK

SFGAO_GHOSTED

SFGAO_LINK

SFGAO_READONL Y

Mask for the display attributes.

The specified file objects or folders should
be displayed using a ghosted icon.

The specified file objects are shortcuts.

The specified file objects or folders are read
only.

The specified folders are shared.

A file object's contents flags may include zero or more of these values:

SFGAO_CONTENTSMASK

SFGAO_HASSUBFOLDER

Mask for the contents attributes.

The specified folders have subfolders
(and are, therefore, expandable in the left
pane of Windows 95 Explorer).

A file object may have zero or more of the following miscellaneous attributes:

SFGAO~FILESYSANCESTOR

SFGAO_FILESYSTEM

SFGAO_FOLDER

SFGAO_REMOV ABLE

SFGAO_ VALIDATE

ISheliFolder: :GetUIObjectOf

The specified folders contain one or more
file system folders.

The specified folders or file objects are part
of the file system (that is, they are files,
directories, or root directories).

The specified items are folders.

The specified file objects or folders are on
removable media.

Validate cached information.

HRESULT IShellFolder::GetUIObjectOf(
LPSHELLFOLDER pIface, HWND hwndOwner, UINT cidl,
LPCITEMIDLIST *apidl, REFIID riid, UINT *prgfReserved,
LPVOID *ppvOut
) ;

Article 11 Shell's Namespace 197

Returns an interface that can be used to carry out actions on the specified file
objects or folders-typically, to create context menus or carry out drag and drop
operations.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pIface
Address of the IShellFolder interface. In C++, this parameter is implicit.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

cidZ
Number of file objects or subfolders specified by apidZ.

apidZ
Address of an array of pointers to ITEMIDLIST structures, each of which
uniquely identifies a file object or subfolder relative to the parent folder. Each
item identifier list must contain exactly one SHITEMID structure followed by
a terminating zero.

riid
Identifier of the interface to return. This parameter can be a pointer to the
lID _IExtractIcon, lID _IContextMenu, lID _IDataObject, or lID _IDropTarget
interface identifier.

prgfReserved
Reserved for future versions of Windows; must be NULL.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is
returned in this address.

IShellFolder: :GetDisplayNameOf
HRESULT IShellFolder::GetDisplayNameOf(

LPSHELLFOLDER pIface, LPCITEMIDLIST pidl, DWORD uFlags,
LPSTRRET lpName
) ;

198 Programmer's Guide to Microsoft Windows 95

Retrieves the display name for the specified file object or subfolder.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pI/ace
Address of the IShellFolder interface. In C++, this parameter is implicit.

pidl
Address of an ITEMIDLIST structure that uniquely identifies the file object or
subfolder relative to the parent folder.

uFlags
Flag indicating the type of display name to return. For a list of possible values,
see the description of the SHGNO enumerated type.

lpName
Address of a STRRET structure in which to return the display name. The string
returned in this structure depends on the type of display name requested.

IShellFolder: :SetNameOf
HRESULT IShellFolder::SetNameOf(

LPSHELLFOLDER pIface. HWND hwndOwner. LPCITEMIDLIST pidl.
LPCOLESTR lpszName. DWORD uFlags. LPITEMIDLIST *ppidlOut
) ;

Changes the name of a file object or subfolder, changing its item identifier in the
process.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pI/ace
Address of the IShellFolder interface. In C++, this parameter is implicit.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

pidl
Address of an ITEMIDLIST structure that uniquely identifies the file object or
subfolder relative to the parent folder.

lpszName
Address of a null-terminated string that specifies the new display name.

uFlags
Flag indicating the type of name specified by lpszName. For a list of possible
values, see the description of the SHCONTF enumerated type.

Article 11 Shell's Namespace 199

ppidlOut
Address in which the member function returns a pointer to the new
ITEMIDLIST structure. This parameter can be NULL, and the member
function does not return the new structure for the object in that case.

If this parameter is not NULL, this member function frees the specified
ITEMIDLIST structure and allocates a new one using the task allocator.
The calling application is responsible for freeing the new ITEMIDLIST
structure. If an error occurs, the member function returns NULL in this
address.

IEnumlDList
Designates an interface used to enumerate item identifiers. The
IShellFolder: : EnumObjects member function creates an IEnumIDList
interface. The IEnumIDList interface has the following member functions.

Clone

Next

Reset

Skip

Creates a new item enumeration object having the same contents
and state as the given one.

Retrieves one or more item identifiers and advances the current
position.

Returns to the beginning of the enumeration sequence.

Skips over one or more items in the enumeration sequence.

Like all OLE interfaces, IEnumIDList also includes the QueryInterface,
AddRef, and Release methods.

IEnumlDList: :Clone
HRESULT Clone(IEnumIDList FAR * pEnumIDList.

IEnumIDList **ppenum);

Creates a new item enumeration object with the same contents and state as the
current one.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

ppenum
Address that receives a pointer to the new enumeration object. The calling
application must eventually free the new object by calling its Release member
function.

200 Programmer's Guide to Microsoft Windows 95

This member function makes it possible to record a particular point in the enumer
ation sequence and then return to that point at a later time.

IEnumIDList::Next
HRESULT Next(IEnumIDList FAR * pEnumIDList.

ULONG celt. LPITEMIDLIST *rgelt. ULONG *pceltFetched);

Retrieves the specified number of item identifiers in the enumeration sequence and
advances the current position.

• Returns the NOERROR value if successful, the S_FALSE value if there are no
more items in the enumeration sequence, or an OLE-defined error value if an
error occurs.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

celt
Specifies the number of elements in the array pointed to by the rgelt parameter.

rgelt
Address of an array in which to return the item identifiers. The calling applica
tion must free the item identifiers by using the task allocator (retrieved by using
the SHGetMalloc function).

pceltFetched
Address of a value that receives a count of the item identifiers actually returned
in rgelt. The count can be smaller than the value specified in the celt parameter.
This parameter can be NULL if, and only if, celt is one.

If this member function returns any value other than NOERROR, no entries in the
rgelt array are valid on exit. They are all in an indeterminate state.

IEnumIDList::Reset
HRESULT Reset(IEnumIDList FAR * pEnumIDList.);

Returns to the beginning of the enumeration sequence.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

Functions

Article 11 Shell's Namespace 201

IEnumlDList: :Skip
HRESULT Skip(IEnumIDList FAR * pEnumIDList,

ULONG celt);

Skips over the specified number of elements in the enumeration sequence.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

celt
Number of item identifiers to skip.

The following functions are used with the shell's namespace.

BrowseCalibackProc
int BrowseCallbackProc(HWND hwnd, UINT uMsg, LPARAM lParam,

LPARAM lpData);

Specifies an application-defined callback function that is used with the
SHBrowseForFolder function. A browse dialog box calls this function to
notify it about events. The BFFCALLBACK type defines a pointer to this
callback function.

• Returns zero.

hwnd
Handle of the browse dialog box. The callback function can send the following
messages to the window:

BFFM_SETSELECTION

Enables the OK button if wParam is nonzero or
disables it if wParam is zero.

Selects the specified folder. lParam is the PIDL
of the folder to select if wParam is FALSE, or it
is the path of the folder otherwise.

Sets the status text to the null-terminated string
specified by lParam.

202 Programmer's Guide to Microsoft Windows 95

uMsg
Value identifying the event. This parameter can be one of these values:

BFFM_INITIALIZED The browse dialog box has finished initializing. lpData
is NULL.

The selection has changed. lpData is a pointer to the
item identifier list for the newly selected folder.

lParam
Message-specific value. For more information, see the description of uMsg.

lpData
Application-defined value that was specified in the IParam member of the
BROWSEINFO structure.

SHAddToRecentDocs
void SHAddToRecentDocs(UINT uFlags, LPCVOID pv);

Adds a document to the shell's list of recently used documents or clears all
documents from the list. The user accesses the list through the Start menu of
the Windows taskbar.

• No return value.

uFlags

pv

Flag that indicates the meaning of pv. This parameter can be one of these values:

SHARD_PATH pv is the address of a path string.

pv is the address of an item identifier list.

Address of a buffer that contains the path and filename of the document, or
the address of an ITEMIDLIST structure that contains an item identifier list
uniquely identifying the document. If this parameter is NULL, the function
clears all documents from the list.

SHBrowseForFolder
LPITEMIDLIST SHBrowseForFolder(LPBROWSEINFO lpbi);

Displays a browse dialog box that enables the user to select a shell folder.

• Returns a pointer to an item identifier list that specifies the location of the
selected folder relative to the root of the namespace. If the user chooses
the Cancel button in the dialog box, the return value is NULL.

Article 11 Shell's Namespace 203

lpbi
Address of a BROWSEINFO structure that contains information used to
display the dialog box.

The calling application is responsible for freeing the returned item identifier list
using the shell's task allocator.

SHChangeNotify
void SHChangeNotify(LONG wEventld, UINT uFlags,

LPCVOID dwlteml, LPCVOID dwltem2);

Notifies the system of an event that an application has performed. An application
should use this function if it performs an action that may affect the shell.

• No return value.

wEventld
Array of flags that specifies the events. This parameter can be a combination
of these values:

SHCNE_ASSOCCHANGED

SHCNE_ATTRfBUTES

SHCNE_CREATE

SHCNE_DELETE

SHCNE_DRIVEADD

SHCNE_DRIVEADDGUI

SHCNE_DRIVEREMOVED

SHCNE_INTERRUPT

SHCNE_MEDIAINSERTED

SHCNE_MEDIAREMOVED

SHCNE_MKDIR

SHCNE_NETSHARE

SHCNE_NETUNSHARE

SHCNE_RENAMEFOLDER

SHCNE_RENAMEITEM

SHCNE_RMDIR

Changed a file type association.

Changed a file's attributes.

Created a file.

Deleted a file.

Added a network drive.

Added a network drive by way of a graphic
user interface (GUI).

Removed a network drive.

Performed the event as a result of a system
interrupt.

Added removable media, such as a compact
disc read-only memory (CD-ROM) drive.

Removed a removable medium, such as a
CD-ROM drive.

Created a new directory.

Shared a resource on the network.

Stopped sharing a resource.

Renamed a folder.

Renamed an item in a folder.

Removed a directory.

204 Programmer's Guide to Microsoft Windows 95

SHCNE_SERVERDISCONNECT

SHCNE_UPDATEDIR

SHCNE_UPDATEIMAGE

Disconnected a network server.

Updated the contents of a directory.

Changed an image in the system global
image list.

SHCNE_UPDATEITEM Changed the properties of a printer or file.

. uFlags
Flag that indicates the meaning of dwlteml and dwltem2. This parameter can
be one of these values:

SHCNF _FLUSHNOW AIT

SHCNF_PATH

SHCNF _PRINTER

dwlteml
First event-dependent value.

dwltem2

The dwlteml and dwltem2 parameters are double
word values.

Flushes the system event buffer. The function does
not return until the system is finished processing the
given event.

Flushes the system event buffer. The function returns
immediately regardless of whether the system is
finished processing the given event.

dwlteml and dwltem2 are the addresses of item
identifier lists.

dwlteml and dwltem2 are paths.

dwlteml and dwltem2 are printer "friendly" names.

Second event-dependent value.

SH Fi leOperation
int SHFileOperation(LPSHFILEOPSTRUCT lpFileOp);

Performs a copy, move, rename, or delete operation on a file system object.

• Returns zero if successful or nonzero if an error occurs.

IpFileOp
Address of an SHFILEOPSTRUCT structure containing information that the
function needs to carry out the operation.

Article 11 Shell's Namespace 205

SHFreeNameMappings
void SHFreeNameMappings(HANDLE hNameMappings);

Frees a fIlename mapping object that was retrieved by the SHFileOperation
function.

• No return value.

hNameMappings
Handle of the fIlename mapping object to free.

SHGetDesktopFolder
HRESULT SHGetDesktopFolder(LPSHELLFOLDER *ppshf);

Retrieves the IShellFolder interface for the desktop folder, which is the root of the
shell's namespace.

• Returns the NOERROR value if successful or an OLE-defIned error result
otherwise.

ppshf
Address that receives an IShellFolder interface pointer for the desktop folder.
The calling application is responsible for eventually freeing the interface by
calling its Release member function.

SHGetFilelnfo
DWORD SHGetFilelnfo(LPCSTR pszPath,

DWORD dwFileAttributes, SHFILEINFO FAR *psfi, UINT cbFilelnfo,
UINT uFlags);

Retrieves information about an object in the fIle system, such as a fIle, a folder,
a directory, or a drive root.

• Returns a value whose meaning depends on the uFlags parameter. If uFlags
specifIes the SHGFI_EXETYPE value, the return value indicates the type of
the executable fIle. For more information, see the comments below.

If uFlags includes the SHGFI_ICON or SHGFI_SYSICONINDEX value, the
return value is the handle of the system image list that contains the large icon
images. If the SHGFI_SMALLICON value is also included, the return value
is the handle of the image list that contains the small icon images.

If uFlags does not include the SHGFI_EXETYPE, SHGFI_ICON,
SHGFI_SYSICONINDEX, or SHGFI_SMALLICON values, the return value
is nonzero if successful or zero otherwise.

206 Programmer's Guide to Microsoft Windows 95

pszPath
Address of a buffer that contains the path and filename. Both absolute and
relative paths are valid. If uFlags includes the SHGFI_PIDL value, pszPath
must be the address of an ITEMIDLIST structure that contains the list of
item identifiers uniquely identifying the file within the shell's namespace.

dw FileAttributes
Array of file attribute flags (FILE_ATIRIBUTE_ values). If uFlags does not
include the SHGFI_USEFILEATIRIBUTES value, this parameter is ignored.

psfi and cbFilelnfo
Address and size, in bytes, of the SHFILEINFO structure that receives the file
information.

uFlags
Flag that specifies the file information to retrieve. This parameter can be a
combination of these values:

SHGFCATIRIBUTES

SHGFCDISPLA YNAME

SHGFI_EXETYPE

SHGFI_ICON

SHGFI_ICONLOCATION

SHGFCLARGEICON

SHGFCLINKOVERLA Y

Retrieves the file attribute flags. The flags are
copied to the dw Attributes member of the
structure specified by psfi.

Retrieves the display name for the file. The
name is copied to the szDisplayName member
of the structure specified by psfi.

Returns the type of the executable file if
pszPath identifies an executable file. For more
information, see the comments below.

Retrieves the handle of the icon that repre-
sents the file and the index of the icon within the
system image list. The handle is copied to
the hleon member of the structure specified
by psfi, and the index is copied to the iIeon
member. The return value is the handle of the
system image list.

Retrieves the name of the file that contains the
icon representing the file. The name is copied to
the szDisplayName member of the structure
specified by psfi.

Modifies SHGFCICON, causing the function
to retrieve the file's large icon.

Modifies SHGFCICON, causing the function
to add the link overlay to the file's icon.

SHGFCOPENICON

SHGFCPIDL

SHGFCSELECTED

SHGFCSHELLICONSIZE

SHGFCSMALLICON

SHGFCSYSICONINDEX

SHGFCTYPENAME

SHGFCUSEFILEATIRIBUTES

Article 11 Shell's Namespace 207

Modifies SHGFCICON, causing the function
to retrieve the file's open icon. A container
object displays an open icon to indicate that
the container is open.

Indicates that pszPath is the address of an
ITEMIDLIST structure rather than a path
name.

Modifies SHGFCICON, causing the function to
blend the file's icon with the system highlight
color.

Modifies SHGFCICON, causing the function
to retrieve a shell-sized icon. If this value is not
specified, the function sizes the icon according
to the system metric values.

Modifies SHGFCICON, causing the function
to retrieve the file's small icon.

Retrieves the index of the icon within the system
image list. The index is copied to the iIcon
member of the structure specified by psfi. The
return value is the handle of the system image
list.

Retrieves the string that describes the file's type.
The string is copied to the szTypeName
member of the structure specified by psfi.

Indicates that the function should use
dwFileAttributes. This flag must be set when
retrieving an icon for a file that does not exist.

To retrieve the executable file type, uFlags must specify only SHGFI_EXETYPE.
The return value specifies the type of the executable file:

o
LOWORD = NE or PE
HIWORD = 3.0, 3.5, or 4.0

LOWORD=MZ
HIWORD=O

LOWORD=PE
HIWORD=O

Nonexecutable file or an error condition

Windows-based application

Microsoft® MS-DOS® .EXE, .COM, or .BAT
file

Win32-based console application

208 Programmer's Guide to Microsoft Windows 95

SHGetlns.tanceExplorer
HRESUlT SHGetInstanceExplorer(IUnknown **ppunk);

Retrieves the address of Windows 95 Explorer's IUnknown interface.

• Returns the NOERROR value if successful or the E_FAIL value otherwise.

ppunk
Address of a value that receives the address of Windows 95 Explorer's
IUnknown interface.

SHGetMalloc
HRESUlT SHGetMalloc(lPMAllOC * ppMalloc);

Retrieves a pointer to the shell's IMalloc interface. A shell extension must use this
interface to allocate memory that is later freed by the shell.

• Returns the NOERROR value if successful or E_FAIL otherwise.

ppMalloc
Address of a value that receives the address of the shell's IMalloc interface.

SHGetPathFromlDList
BOOl SHGetPathFromIDlist(lPCITEMIDlIST pidl.

LPSTR pszPath);

Converts an item identifier list to a file system path.

• Returns TRUE if successful or FALSE if an error occurs - for example, if the
location specified by pidl is not part of the file system.

pidl
Address of an item identifier list that specifies a file or directory location rela
tive to the root of the namespace (the desktop).

pszPath
Address of a buffer that receives the file system path. The size of this buffer is
assumed to be MAX_PATH bytes.

Article 11 Shell's Namespace 209

SHGetSpecialFolderLocation
HRESULT SHGetSpecialFolderLocation(HWND hwndOwner,

int nFolder, LPITEMIDLIST * ppidl);

Retrieves the location of a special folder.

Returns the NOERROR value if successful or an OLE-defined error result
otherwise.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

nFolder
Value specifying the folder to retrieve the location for. This parameter can be
one of these values:

CSIDL_DESKTOPDIRECTORY

CSIDL_FONTS

CSIDL_NETHOOD

Recycle bin-file system directory containing
file objects in the user's recycle bin. The loca
tion of this directory is not in the registry; it is
marked with the hidden and system attributes
to prevent the user from moving or deleting it.

Control Panel-virtual folder containing icons
for Control Panel applications.

Windows desktop-virtual folder at the root of
the namespace.

File system directory used to physically store
file objects on the desktop (not to be confused
with the desktop folder itself).

My Computer-virtual folder containing
everything on the local computer: storage
devices, printers, and Control Panel. The folder
may also contain mapped network drives.

Virtual folder containing fonts.

File system directory containing objects that
appear in Network Neighborhood.

Network Neighborhood-virtual folder
representing the top level of the network
hierarchy.

210 Programmer's Guide to Microsoft Windows 95

CSIDL_STARTMENU

CSIDL_TEMPLATES

ppidl

File system directory that serves as a common
repository for documents.

Printers folder-virtual folder containing
installed printers.

File system directory that contains the user's
program groups (which are also file system
directories) .

File system directory that contains the user's
most recently used documents.

File system directory that contains Send To
menu items.

File system directory containing Start menu
items.

File system directory that corresponds to the
user's Startup program group.

File system directory that serves as a common
repository for document templates.

Address that receives a pointer to an item identifier list specifying the folder's
location relative to the root of the namespace (the desktop).

SHLoadlnProc
HRESULT SHLoadlnProc(REFCLSID rclsid);

Creates an instance of the specified object class from within the context of the
shell's process.

Returns the NOERROR value if successful or an OLE-defined error result
otherwise.

rclsid
Class identifier (CLSID) of the object class to be created.

Article 11 Shell's Namespace 211

Structures, Macros, and Types
The following structures, macros, and types are used with the shell's namespace.

BROWSEINFO
typedef struct _ browseinfo

HWND hwndOwner; II see below
LPCITEMIOLIST pidlRoot; II see below
LPSTR pszOisplayName; II see below
LPCSTR lpszTitle; II see below
UINT ulFlags; II see below
BFFCALLBACK lpfn; II see below
LPARAM lParam; II see below
int ilmage; II see below

BROWSEINFO, *PBROWSEINFO, *LPBROWSEINFO;

Contains parameters for the the SHBrowseForFolder function and receives
information about the folder selected by the user.

hwndOwner
Handle of the owner window for the dialog box.

pidlRoot
Address of an item identifier list (an ITEMIDLIST structure) specifying the
location of the "root" folder to browse from. Only the specified folder and
its subfolders appear in the dialog box. This member can be NULL, and the
namespace root (the desktop folder) is used in that case.

pszDisplayName
Address of a buffer that receives the display name of the folder selected by
the user. The size of this buffer is assumed to be MAX_PATH bytes.

IpszTitle
Address of a null-terminated string that is displayed above the tree view control
in the dialog box. This string can be used to specify instructions to the user.

212 Programmer's Guide to Microsoft Windows 95

ulFlags
Value specifying the types of folders to be listed in the dialog box as well as
other options. This member can include zero or more of these values:

BIF _BROWSEFORCOMPUTER

BIF _BROWSEFORPRINTER

BIF _DONTGOBELOWDOMAIN

BIF _RETURNFSANCESTORS

BIF _RETURNONL YFSDIRS

Ipfn

Only returns computers. If the user selects
anything other than a computer, the OK
button is grayed.

Only returns printers. If the user selects
anything other than a printer, the OK button
is grayed.

Does not include network folders below the
domain level in the tree view control.

Only returns file system ancestors. If the
user selects anything other than a file system
ancestor, the OK button is grayed.

Only returns file system directories. If the
user selects folders that are not part of the
file system, the OK button is grayed.

Includes a status area in the dialog box.
The callback function can set the status text
by sending messages to the dialog box.

Address an application-defined function that the dialog box calls when events
occur. For more information, see the description of the BrowseCallbackProc
function. This member can be NULL.

lParam
Application-defined value that the dialog box passes to the callback function,
if one is specified.

iImage
Variable that receives the image associated with the selected folder. The image
is specified as an index to the system image list.

CIDA
typedef struct _IDA {

UINT cidl; II number of array elements
UINT aoffset[l]; II see below

eIDA, * LPIDA;

Corresponds to the CF _IDLIST clipboard format.

Article 11 Shell's Namespace 213

aoffset
Array of offsets relative to the beginning of the CIDA structure. The fIrst
element is the offset of the ITEMIDLIST structure for a folder (absolute from
the root). Subsequent elements are offsets of ITEMIDLIST structures for file
objects (relative from the parent folder).

SHCONTF
typedef enum tagSHCONTF

SHCONTF_FOLDERS = 32.
SHCONTF_NONFOLDERS = 64.
SHCONTF_INCLUDEHIDDEN = 128.

II for shell browser
II for default view
II for hidden or system objects

SHCONTF;

Specifies an enumerated type that defines flags used with the
IShellFolder: : EnumObjeets member function.

SHFILEINFO
typedef struct _SHFILEINFO { II shfi

HICON hlcon;
int iIcon;
DWORD dwAttributes;
char szDisplayName[MAX_PATH];
char szTypeName[80];

} SHFILEINFO;

Contains information about a file object.

hIeon

II
II
II
II
II

see
see
see
see
see

Handle of the icon that represents the file.

iIeon

below
below
below
below
below

Index of the icon image within the system image list.

dw Attributes
Array of flags that indicates the attributes of the file object. For information
about the flags, see the description of the ISheIlFolder::GetAttributesOf
member function.

szDisplayName
String that contains the name of the file as it appears in the Windows shell,
or the path and filename of the file that contains the icon representing the file .

• szTypeName
String that describes the type of the file.

This structure is used with the SHGetFileInfo function.

214 Programmer's Guide to Microsoft Windows 95

SHFILEOPSTRUCT
typedef struct _SHFILEOPSTRUCT { II shfos

HWNO hwnd; I I see below
UINT wFunc; II see below
LPCSTR pFrom; I I see below
lPCSTR pTo; I I see below
FILEOP FLAGS fFlags; II see below
BOOl fAnyOperationsAborted; II see below
lPVOIO hNameMappings; II see below
lPCSTR lpszProgressTitle; II see below

} SHFILEOPSTRUCT, FAR *lPSHFILEOPSTRUCT;

Contains information that the SHFileOperation function uses to perform file
operations.

hwnd
Handle of the dialog box used to display information about the status of
the operation. If !Flags includes the FOF _CREATEPROGRESSDLG value,
this parameter is the handle of the parent window for the progress dialog box
created by the system.

wFunc
Operation to perform. This member can be one of these values:

FO_COPY Copies the files specified by pFrom to the location
specified by pTo.

pFrom

Deletes the files specified by pFrom (pT~ is ignored).

Moves the files specified by pFrom to the location
specified by pTo.

Renames the files specified by pFrom.

Address of a string that contains the names of the source files.

pTo
Address of a string that specifies the destination for the moved, copied, or
renamed file.

Article 11 Shell's Namespace 215

fFlags
Flags that control the file operation. This member can be a combination of these
values:

FOF_ALLOWUNDO

FOF _CONFIRMMOUSE

FOF _FILESONL Y

FOF _MULTIDESTFILES

FOF _NOCONFIRMATION

FOF _NOCONFIRMMKDIR

FOF _RENAMEONCOLLISION

FOF_SILENT

FOF_SIMPLEPROGRESS

FOF _ W ANTMAPPINGHANDLE

fAnyOperationsAborted

Preserves undo information, if possible.

Not implemented.

Performs the operation only on files if a
wildcard filename (*. *) is specified.

Indicates that the pTo member specifies
multiple destination files (one for each
source file) rather than one directory where
all source files are to be deposited.

Responds with "yes to all" for any dialog
box that is displayed.

Does not confirm the creation of a new
directory if the operation requires one to
be created.

Gives the file being operated on a new name
(such as "Copy #1 of ... ") in a move, copy, or
rename operation if a file of the target name
already exists.

Does not display a progress dialog box.

Displays a progress dialog box, but does
not show the filenames.

Fills in the hNameMappings member.
The handle must be freed by using the
SHFreeNameMappings function.

Value that receives TRUE if the user aborted any file operations before they
were completed or FALSE otherwise.

hNameMappings
Handle of a filename mapping object that contains an array of
SHNAMEMAPPING structures. Each structure contains the old and new
paths for each file that was moved, copied, or renamed. This member is
used only if fFlags includes FOF _ W ANTMAPPINGHANDLE.

IpszProgressTitle
Address of a string to use as the title for a progress dialog box. This member
is used only iffFlags includes FOF _SIMPLEPROGRESS.

If pFrom or pTo are unqualified names, the current directories are taken
from the global current drive and directory settings as managed by the
GetCurrentDirectory and SetCurrentDirectory functions.

216 Programmer's Guide to Microsoft Windows 95

The SHGetNameMappingPtr macro retrieves a pointer to the filename
mapping object returned in the hNameMappings member of this structure.
The SHGetNameMappingCount macro retrieves the number of
SHNAMEMAPPING structures in the object.

SHNAMEMAPPING
typedef struct _SHNAMEMAPPING { II shnm

LPSTR pszOldPath; II address of old path
LPSTR pszNewPath; II address of new path
int cchOldPath; II number of characters in old path
int cchNewPath; II number of characters in new path

SHNAMEMAPPING, FAR *LPSHNAMEMAPPING;

Contains the old and new paths for each file that was moved, copied, or renamed by
the SHFileOperation function.

STRRET
typedef struct _STRRET { II str

UINT uType; II see below
union

LPWSTR pOleStr; II address of OLE string to free
UINT uOffset; II offset into item identifier list
char cStr[MAX_PATH]; II buffer to receive display name

DUMMYUNIONNAME;
STRRET, *LPSTRRET;

Contains strings returned from IShellFolder member functions, such as
GetDisplayNameOf.

uType
Value that specifies the desired format of the string. This member can be one
of these values:

STRRET_CSTR The string is returned in cStr.

STRRET_OFFSET The string is located at uOffset bytes from the beginning
of the item identifier list.

STRRET_ WSTR The string is at the address pointed to by pOleStr.

The system mayor may not provide the display name in the desired format.
When IShellFolder: : GetDisplayNameOf returns, uType indicates the format.

Article 11 Shell's Namespace 217

SHGetNameMappingCount
int SHGetNameMappingCount(HANDLE hNameMappings)

Retrieves the number of SHNAMEMAPPING structures in a filename mapping
object.

• Returns the number of SHNAMEMAPPING structures.

hNameMappings
Handle of a filename mapping object retrieved by the SHFileOperation
function.

The SHGetNameMappingCount macro is defined as follows.

#define SHGetNameMappingCount(_hnm) \
DSA_GetltemCount(_hnm)

SHGetNameMappingPtr
lpshnm = SHGetNameMappingPtr(HANDLE hNameMappings, int iltem)

Retrieves the address of a SHNAMEMAPPING structure contained in a file
mapping object.

• Returns the address of the SHNAMEMAPPING structure specified by iltem.

hNameMappings
Handle of a filename mapping object retrieved by the SHFileOperation
function.

iltem
Index of the SHNAMEMAPPING structure to be retrieved.

The SHGetNameMappingPtr macro is defined as follows.

#define SHGetNameMappingPtr(_hnm, _iltem) \
(LPSHNAMEMAPPING)DSA_GetltemPtr(_hnm, _iltem)

218 Programmer's Guide to Microsoft Windows 95

SHGNO
typedef enum tagSHGDN {

SHGDN_NORMAL = 0, II see below
SHGDN_INFOLDER = 1, II see below
SHGDN_FORPARSING = 0x8000, II see below

} SHGNO;

Specifies an enumerated type that defines flags used with the
ISheUFolder: : GetDisplayNameOf and ISheUFolder: :SetNameOf member
functions.

SHGDN_NORMAL
Default display name that is suitable for a file object displayed by itself, as
shown in the following examples.

File system path Corresponding display name

C:\WINDOWS\FILE.TXT File

\\COMPUTER\SHARE Share on computer

C:\ (where drive C has the My Drive (C)
volume name My Drive)

SHGDN_INFOLDER
Display name that is suitable for a file object displayed within its respective
folder, as shown in the following examples.

File system path

C:\WINDOWS\FILE.TXT

\\COMP\SHARE

C:\ (where drive Chas the
volume name My Drive)

SHGDN_FORP ARSING

Corresponding display name

File

User

My Drive (C)

Display name that can be passed to the ParseDisplayName member function
of the parent folder's ISheUFolder object.

File system path

C:\WINDOWS\FILE.TXT

\\COMP\SHARE

C:\ (where drive C has the
volume name My Drive)

Corresponding display name

C:\WINDOWS\FlLE.TXT

\\COMP\SHARE

C:\

219

ARTICLE 12

Shell Extensions

About Shell Extensions
In Microsoft® Windows® 95, applications can extend the shell in a number of
ways. A shell extension enhances the shell by providing additional means of
manipulating file objects, by simplifying the task of browsing through the file
system and networks, or by giving the user easier access to tools that manipulate
objects in the file system. For example, a shell extension can assign an icon to
each file or add commands to the context menu and File menu for a file.

Windows 95 supports two groups of shell extensions. The first group are
registered for each type of file:,

• Context menu handlers. They add items to the context menu for a particular
file object. (The context menu is displayed when the user clicks a file object
with mouse button 2.)

• Icon handlers. They typically add instance-specific icons for file objects.
They can also be used to add icons for all files belonging to the same class.

• Data handlers. They provide a type-specific IDataObject interface to be
passed to the OLE DoDragDrop function.

• Drop handlers. They provide type-specific drop behavior to files that can
accept drag and drop objects.

• Property sheet handlers~ They add pages to the property sheet dialog box that
the shell displays for a file object. The pages are specific to a class of files or
a particular file object.

220 Programmer's Guide to Microsoft Windows 95

The second group of shell extensions are associated with file operations such as
move, copy, rename, and so on:

• Copy hook handlers. They are called when a folder object is about to be
copied, moved, deleted, or renamed. They can either allow or prevent the
operation.

• Drag and drop handlers. They are context menu handlers that the system
calls when the user drops an object after dragging it to a new position.

The design of a shell extension is based on the OLE Component Object Model
(COM). The shell accesses an object through interfaces. An application imple
ments the interfaces in a shell extension dynamic-link library (DLL), which is
essentially an OLE in-process server DLL.

this article explains how to create shell extensions and describes how the shell
interacts with them.

Shell Extension Terms
You should be familiar with the following shell extension terms before
proceeding.

file object
A file object is an item within the shell. The most familiar file objects are
files and directories. However, a file object may not actually be a part of
the file system; it may only appear that way. For example, printers, Control
Panel applications, and network shares, servers, and workgroups are also
considered to be file objects.

file class
Each file object is a member of a file class. The file class refers to the code
that "owns" the manipulation of files belonging to the class. For example, text
files and Microsoft Word documents are examples of file classes. Each file
class has specific shell extensions associated with it. When the shell is about
to take an action involving a file object, it uses the file class to determine the
shell extensions to load.

handler
A handler is the code that implements a particular shell extension.

Article 12 Shell Extensions 221

Registry Entries for Extending the Shell
An application that creates and maintains files, such as a spreadsheet, word
processor, or graphics application, typically adds two keys to the system registry:
a file association key and an application identifier key. The file association key
maps a filename extension to an application identifier. For example, a word
processing application might register the following key under
HKEY _CLASSES_ROOT.

HKEY_CLASSES_ROOT
.doc=AWordProcessor

The value name (.doc) specifies the filename extension, and the value
(AWordProcessor) denotes the key name that contains the information about
the application handling the filename extension.

The application identifier key is the second registry entry made by an application
handling files.

HKEY_CLASSES_ROOT
AWordProcessor=A Word Processor

The value (A Word Processor) is a string describing the application that recog
nizes files having the given filename extension. (In this case, it is the .DOC
filename extension.)

Extending the shell requires that you add other entries below the file association
and application identifier keys. The system checks these entries to determine the
commands to add to various shell menus, when to load an extension DLL, where
to find the DLL, and so on.

There are several registry keys that allow you to extend the shell without having
to write any code at all. These keys let you set the default icon for a class of
files or add commands to the File menu and its New submenu in Windows 95
Explorer.

Setting Default Icons for File Classes
The system uses icons to represent file objects in the shell. Typically, all files
of the same class have the same icon. By adding the DefaultIcon key to the file
association key for a particular file class, you can specify the icon that the system
displays for all files of the class. The value of the Defaultlcon key specifies the
executable file (or DLL) that contains the icon and the index of the icon within
the file.

HKEY_CLASSES_Roor
.doc=AWordProcessor

Defaultlcon=C:\MYDIR\MYAPP.EXE,l

222 Programmer's Guide to Microsoft Windows 95

If the registry does not contain a DefaultIcon key for a particular file class,
the system uses the default icon for the class. One of the advantages of using a
class icon is that it requires no programming; the shell handles displaying the icon
for the class.

By writing an icon handler, you give each instance of a file a different icon.
For more information about icon handlers, see "Icon Handlers" later in this
article.

Modifying the Context Menu for a File Class
When the user clicks a file object using mouse button 2, the system displays a
context menu for the object. The context menu contains a set of menu items that
allow the user to perform various operations on the file object, such as opening
or printing it. A context menu contains two types of items: dynamic items and
static items. Dynamic items are added to a context menu by a context menu
handler (described later in this article).

Static menu items are listed in the system registry and are automatically added to
a context menu by the system. Because static items are listed in the system
registry based on their class, the context menus for all file objects belonging to a
particular class receive the same set of static items.

You specify static menu items for a file class by adding a shell key below the
application identifier key of the file class and then adding verb and command
value entries below the shell key. Following is the registry format for static items.

HKEY_CLASSES_ROOT
<applicationIO> = <"description">

shell
<verb> = <"menu-item text">

command = <"command string">

Each verb value entry specifies a menu-item text string for the system to add to
the context menu. The command value entry specifies the action that the system
takes when the user chooses the menu item. Typically, the command string value
specifies the path and filename of an application and includes command-line
options that direct the application to perform an action on the corresponding file
object. For example, the following registry keys add an Open command and a
Print command to the context menu for all files with the .WRI filename
extension.

HKEY_CLASSES_ROOT
wrifi1e = Write Document

she 11
open

Article 12 Shell Extensions 223

command = C:\Progra~1\Access~1\WORDPAD.EXE %1
print

command = C:\Progra~1\Access~1\WORDPAD.EXE /p "%1"
printto

command =
C:\Progra~1\Access~1\WORDPAD.EXE /pt "%1" "%2" "%3" "%4"

In the preceding commands, the % 1 parameter is the filename, %2 is the printer
name, %3 is the driver name, and %4 is the port name. In Windows 95, you can
ignore the %3 and %4 parameters (the printer name is unique in Windows 95).

The system defines a set of verbs called canonical verbs that introduce an
element of language-independence to context menus. When you include a
canonical verb in the registry, the system automatically generates a localized
menu item string for the verb before adding it to the context menu. The canonical
verbs include the open, print, explore, find, openas, and properties verbs. The
printto verb is also canonical, but it is a special case because it is never actually
displayed. Instead, it allows the user to print a file by dragging it to a printer
object. Canonical verbs are also used with context menu handlers.

If the open canonical verb is included in the registry entries for a file class, the
system adds an Open menu item to the corresponding context menu and makes it
the default item. If the open verb is not included, the menu item corresponding to
the verb listed in the registry is the default item. A context menu handler can
change the default item. For more information about context menu handlers, see
"Context Menu Handlers" later in this article.

Modifying the New Submenu
The File menu in a file system folder contains a New submenu that, by default,
includes the Shortcut and Folder commands. These commands allow the user to
create new shortcuts and folders within the current folder. The New submenu
can also include other nondefault commands that let the user create new files of
various types within the current folder, such as sound files, text files, and bitmap
files. For example, the New submenu might include a Sound command that
creates a .WA V file in the current folder.

If your application creates a type of file that the user may want to create from
within a file system folder, you should consider adding a command for it to the
New submenu. For example, suppose you have created a graphics application that
creates files with the .XYZ filename extension. You could add a command, such
as XYZ Picture, that creates a new .XYZ file or launches your application and
opens a new .XYZ file for editing.

224 Programmer's Guide to Microsoft Windows 95

You add a command to the New submenu by including a ShellNew key below
the file association key for your filetype. When the system needs to create the
New submenu, it searches through the file association entries for instances of the
ShellNew k~y. When it finds an instance of ShellNew, the system retrieves the
string associated with the application identifier key (xyzfile) and adds the string
to the New submenu as a new command. Note that an Open command must be
registered below the application identifier key; otherwise, the system does not
add the Open command to the New submenu.

The following example shows the registry entries needed to add the XYZ Picture
command to the New submenu.

HKEY_CLASSES_ROOT
.xyz="xyzfile"

ShellNew
NullFile=""

xyzfile="XYZ Picture"
shell

open
command="C:\XYZ\XYZAPP.EXE %1

The data names for the ShellNew key specify the method to use to create a new
file of the type designated by the filename extension. There are four possible data
names and values for the ShellNew key.

Data name Value

NullFile

Data binary-value

FileName path-name

Command path-name

Description

Creates an empty (null) file. If this data name is
specified, Data and FileName are ignored.

Creates a file that contains the data specified by
binary-value. This data name is ignored if either
NullFile or FileName is specified.

Creates a copy of the file specified by path-name.
This data name is ignored if NullFile is specified.

Executes the command specified by path-name
when the file is created. For example, the command
might start a wizard.

Article 12 Shell Extensions 225

Registering Shell Extensions
A shell extension must be registered in the Windows registry. The class identifier
of each 'handler must be registered under the HKEY _ CLASSES_ROO1\CLSID
key. The CLSID key contains a list of class identifier key values, such as
{00030000-0000-0000-COOO-000000000046 }. Each class identifier key is a
globally unique identifier (GUID) generated by the UUIDGEN tool. Within each
class identifier key, the handler adds an InProcServer32 key that gives the
location of the handler's DLL. It is best to give the complete path for the handler;
using the complete path keeps the handler independent of the current path and
speeds up the load time for the DLL.

The information that the shell uses to associate a shell extension handler with a
file type is stored under the shellex key. The shell also uses several other special
keys under HKEY_CLASSES_ROOT to look for shell extensions: *, Folder,
Drives, Printers, and keys for network providers. Descriptions of the keys
follow:

• You can use the * key to register handlers that the shell calls whenever it
creates a context menu or property sheet for a file object in the following
manner.

HKEY_CLASSES_ROOT
* = *

shellex
ContextMenuHandlers

{00000000-1111-2222-3333-00000000000001}
PropertySheetHandlers

{00000000-1111-2222-3333-00000000000002}

The shell uses instances of the ExtraMenu and Summary Info handlers to
add to the context menus and property sheets for every file object.

• You can use Folder key to register a shell extension for directories in the file
system. You can register context menu handlers, copy hook handlers, and
property sheet handlers in the same way you register these handlers for
the * key. An additional handler, the drag and drop handler, applies only to
the Folder and Printers keys. An example showing the Folder key follows.

Folder = Folder
shellex

DragDropHandlers
{00000000-1111-2222-3333-00000000000004}

CopyHookHandlers
{00000000-1111-2222-3333-00000000000005}

226 Programmer's Guide to Microsoft Windows 95

• You can use the Drives key for the same registrations as the Folder key, but
the Drives key is called only for root paths (for example, C: \).

• The Printers key allows the same registrations as the Folder key, but it uses
additional handlers for printer events, deletion or removal of printers (through
the copy hook handler), and printer properties (with property sheet handlers
and context menu handlers).

To avoid conflicts with other classes, you must use real GUIDs, not the sample
strings shown in the previous examples.

Debugging Tips
The shell automatically unloads a DLL when the DLL's usage count is zero, but
only after the DLL has not been used for a period of time. The inactive period
may be unacceptably long at times, especially when a shell extension DLL is
being debugged. You can shorten the inactive period by adding the following
information to the registry.

HKLM
Software

Microsoft
Windows

CurrentVersion
Explorer

AlwaysUnloadDll

AlwaysUnloadDll shortens the inactive period so that DLLs are unloaded
quickly.

While debugging your extension, you may want to shut down the Windows 95
shell without closing the currently running applications. To do so, follow these
steps:

1. From the Start menu on the Windows taskbar, choose Shut Down.

2. While holding down the CTRL+ALT+SHIFT key combination, click the No
button in the Shut Down Windows dialog box.

How the Shell Accesses Shell Extension Handlers
The shell uses two interfaces to initialize instances (objects created by
I ClassFactory:: Createlnstance) of shell extensions: IShellExtlnit and
IPersistFile. The shell uses the IShellExtlnit interface to initialize instances
of context menu handlers, drag and drop handlers, and property sheet handlers.
The shell uses IPersistFile to initialize instances of icon handlers, data handlers,
and drop handlers. This interface is defined by OLE.

Article 12 Shell Extensions 227

The IShellExtlnit interface adds an additional member function, Initialize, to
the standard IUnknown interface. A handler's Initialize function should keep
a copy of the parameters that the shell passes to the function for later use.
An example showing how to initialize instances follows.

STDMETHODIMP CShellExt: :Initialize(LPCITEMIDLIST pIDFolder,
LPDATAOBJECT pDataObj, HKEY hRegKey)

II Initialize can be called more than once.
if (m_pDatiWbj)

m_pDataObj->Release();

II Save the object pointer.
if (pDataObj) {

m_pDataObj = pDataObj;
pDataObj->AddRef();

II Duplicate the registry handle.
if (hRegKey)

RegOpenKeyEx(hRegKey, NULL, 0L, MAXIMUM_ALLOWED,
&thi s->hRegKey);

return NOERROR;

A shell extension handler must implement three functions: an entrypoint function
(often called DllMain or LibMain), DIlCanUnloadNow, and DIlGetClassObject.

DIlCanUnloadNow and DIlGetClassObject are essentially the same as they
would be for any OLE in-process server DLL. The use of DllCanUnloadNow is
shown in the following example.

STDAPI DllCanUnloadNow(void)
{

II g_cRefThisDll must be placed in the instance-specifc
II data section.
return ResultFromScode((g_cRefThisDll==0) ? S_OK : S_FALSE);

228 Programmer's Guide to Microsoft Windows 95

DIlGetClassObject needs to expose the class factory for the object in the
DLL. For more information about exposing the class factory, see the OLE
documentation included in the Microsoft® Win32® Software Development Kit
(SDK). The following example shows how to expose the class factory.

II DllGetClassObject - a DLL entrypoint function used by
II most in-process server DLLs.

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID *ppvOut)
{

}

*ppvOut = NULL; II assume failure

if (IsEqualIID(rclsid, CLSID_ShellExtension))
return CShellExtSample_Create(riid, ppvOut);

else {
return CLASS_E_CLASSNOTAVAILABLE;

Context Menu Handlers
A context menu handler is a shell extension that adds menu items to any of the
shell's context menus. There are two types of context menu handlers. Each type
has a different purpose, but the same implementation. Context menu extensions
are used when the user clicks a file object by using mouse button 2, and drag and
drop handlers are used when the user drags a file object using mouse button 2.
This section describes the types of context menu handlers, how they are used,
how they are added to the registry, and the interfaces that they must implement.

Context Menu Extensions
When the user clicks mouse button 2 on an item within the shell's namespace
(that is, file, directory, server, work group, and so on), it creates the default
context menu for the type of item and then loads context menu extensions that are
registered for the type (and its base type) so that they can add extra menu items.
The context menu extensions are registered at the following location.

HKCR\{ProgID}\shellex\ContextMenuHandlers

IContextMenu Interface
An application implements a context menu handler interface, IContextMenu,
to add menu items to the context menu for a file object. The shell displays the
object's context menu when the user clicks the object with mouse button 2.
The menu items can be either class-specific (that is, applicable to all files of a
particular type) or instance-specific (that is, applicable to an individual file).

Article 12 Shell Extensions 229

When the user clicks a file object by using mouse button 2, the system passes the
address of the object's context menu to the context menu handler, which should
use the handle only to add items to the menu. The handler should not delete or
modify existing menu items, because other handlers may add items either before
or after it does. In addition, the shell adds items to the menu after all context
menu handlers have been called.

Context menu handlers are entered in the registry under the shellex key within an
application's information area. The ContextMenuHandlers key lists the names
of subkeys that contain the CLSID of each context menu handler. An example
showing the ContextMenuHandlers key follows.

ContextMenuHandlers
{00000000-1111-2222-3333-00000000000001}

You can register multiple context menu handlers for a file type.

In addition to the standard IUnknown member functions, the context menu
handler interface uses the QueryContextMenu, InvokeCommand, and
GetCommandString member functions.

When the user selects one of the menu items added by a context menu handler,
the shell calls the handler's IContextMenu::lnvokeCommand member function
to let the handler process the command. If multiple context menu handlers are
registered for a file type, the value of the ContextMenuHandlers key determines
the order of the commands.

When the system is about to display a context menu (or the File menu on the
menu bar) for a file object, the system calls the context menu handler's
QueryContextMenu member function. The context menu handler inserts
menu items by position (MF _POSITION) directly into the context menu by
calling the InsertMenu function. The following example shows that menu items
must be string items (MF _STRING).

STDMETHODIMP CShellExt::QueryContextMenu(HMENU hMenu,
UINT indexMenu, UINT idCmdFirst, UINT idCmdlast, UINT uFlags)

UINT idCmd = idCmdFirst;
char szMenuText[64];
char szMenuText2[64];
char szMenuText3[64];
char szMenuText4[64];
BOOl bAppendltems=TRUE;

if «uFlags & 0x000F) == CMF_NORMAl)
lstrcpy(szMenuText, "&New .GAK menu
lstrcpy(szMenuText2, "&New .GAK menu
lstrcpy(szMenuText3, "&New .GAK menu
lstrcpy(szMenuText4, "&New .GAK menu

1, Normal Fi 1 e") ;
2, Normal File");
3, Normal Fi 1 e") ;
4, Normal File");

230 Programmer's Guide to Microsoft Windows 95

}

} else if (uFlags & CMF_VERBSONLY)
lstrcpy(szMenuText. "&New .GAK menu 1. Shortcut File");
lstrcpy(szMenuText2. "N&ew .GAK menu 2. Shortcut File");
lstrcpy(szMenuText3. "&New .GAK menu 3. Shortcut File");
lstrcpy(szMenuText4. "&New .GAK menu 4. Shortcut File");

} else if (uFlags & CMF_EXPLORE) {
lstrcpy(szMenuText. "&New .GAK menu 1.

Normal File right click in Explorer");
lstrcpy(szMenuText2. "N&ew .GAK menu 2.

Normal File right click in Explorer");
lstrcpy(szMenuText3. "&New .GAK menu 3.

Normal File right click in Explorer");
lstrcpy(szMenuText4. "&New .GAK menu 4.

Normal File right click in Explorer");
else if (uFlags & CMF_DEFAULTONLY) {

bAppendltems = FALSE;
} else {

}

char szTemp[32];
bAppendltems = FALSE;

if (bAppendltems) {

}

InsertMenu(hMenu. indexMenu++. MF_SEPARATOR I MF_BYPOSITION.
0. NULl);

InsertMenu(hMenu. indexMenu++. MF_STRING I MF_BYPOSITION.
idCmd++. szMenuText);

InsertMenu(hMenu. indexMenu++. MF_SEPARATOR I MF_BYPOSITION.
0. NULl);

InsertMenu(hMenu. indexMenu++. MF_STRING I MF_BYPOSITION.
idCmd++. szMenuText2);

InsertMenu(hMenu. indexMenu++. MF_SEPARATOR I MF_BYPOSITION.
0. NULl);

InsertMenu(hMenu. indexMenu++. MF_STRING MF_BYPOSITION.
idCmd++. szMenuText3);

InsertMenu(hMenu. indexMenu++. MF_STRING MF_BYPOSITION.
idCmd++. szMenuText4);

II Must return the number of menu items added.
return ResultFromShort(idCmd-idCmdFirst);

return NOERROR;

The system calls the InvokeCommand member function when the user selects
a menu item that the context menu handler added to the context menu. The
InvokeCommand function in the following example handles the commands
associated with the menu items added by the previous example.

Article 12 Shell Extensions 231

STDMETHODIMP CShellExt: :InvokeCommand(LPCMINVOKECOMMANDINFO lpcmi)
{

}

HRESULT hr = E_INVALIDARG;

II If the high-order word of lpcmi->lpVerb is not NULL, this
II function was called by an application and lpVerb is a command
II that should be activated. Otherwise, the shell has called this
II function, and the low-order word of lpcmi->lpVerb is the
II identifier of the menu item that the user selected.
if (!HIWORD(lpcmi->lpVerb» {

UINT idCmd = LOWORD(lpcmi->lpVerb);

switch (idCmd) {
case 0:

}

hr = DoGAKMenu1(lpcmi->hwnd, lpcmi->lpDirectory,
lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);

break;

case 1:
hr = DoGAKMenu2(lpcmi->hwnd, lpcmi->lpDirectory,

lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;

case 2:
hr = DoGAKMenu3(lpcmi->hwnd, lpcmi->lpDirectory,

lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;

case 3:
hr = DoGAKMenu4(lpcmi->hwnd, lpcmi->lpDirectory,

lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;

return hr;

Windows calls the GetCommandString member function to get a language
independent command string or the help text for a context menu item.

Drag and Drop Handlers
Drag and drop handlers implement the IContextMenu interface. In fact, a drag
and drop handler is simply a context menu handler affecting the menu that the
shell displays when a user drags and drops a file object with mouse button 2.
Because this menu is called the drag and drop menu, shell extensions that add
items to this menu are called drag and drop handlers. Drag and drop handlers
work the same way as context menu handlers.

232 Programmer's Guide to Microsoft Windows 95

Note that drag and drop handlers are registered under the key of folder types
(typically the Directory key). To change the behavior of the dragged object
(IDataObject), you need to implement a data handler.

Icon Handlers
An application can customize the icons that the shell displays for the appli
cation's file types. The icon interface also allows an application to specify icons
for folders and subfolders within the application's file structure.

An application can specify icons for its file types in two ways. The simplest way
is to specify a class icon to be used for all files of a particular file type by adding
a Defaultlcon key to the registry under the program information. For information
about specifying a class icon, see "Setting Default Icons for File Classes" earlier
in this article.

An application can use the % 1 value with the Defaultlcon key. This value
denotes that each file instance of this type can have a different icon. The appli
cation must supply an icon handler for the file type and add an IconHandler key
to the shellex key for the application. An application can have only one entry for
the IconHandler key, and the value of its key denotes the CLSID of the icon
handler.

shell ex
IconHandler

{00000000-1111-2222-3333-00000000000003}
Defaultlcon = %1

To have customized icons, an application must provide an icon handler that
implements the IExtractlcon interface. The system follows these steps when
it is about to display an icon for a file type that has instance-specific icons:

1. Retrieves the class identifier of the handler.

2. Creates a handler object by calling the CoCreateInstance function with
the CLSID.

3. Initializes the instance by calling the IPersistFile: :Load member function.

4. Uses the QueryInterface member function to get to the IExtractlcon
interface.

5. Calls the IExtractlcon::GetlconLocation and IExtractlcon::Extract
member functions.

The IExtractlcon interface has the Extract and GetlconLocation member
functions in addition to the usual IUnknown member functions.

Article 12 Shell Extensions 233

The system calls the GetlconLocation member function to get the location and
index of an icon to display. Typically, the icon location is an executable or DLL
filename, but it can be any file.

The system calls the Extract member function when it needs to display an icon
for a file that does not reside in an executable or DLL file. Applications usually
have the file icons in their executable or DLL files, so icon handlers can simply
implement this member function as a return-only function that returns the
E_FAIL error value. You need to implement the Extract member function only if
the icon image is stored in a file in an application-defined format. When the icon
for a file is in a separate .leo file (or any other type of file), the icon handler
must extract the icon for the shell and return it in this member function.

Property Sheet Handlers
Another way the shell can be extended is by custom property sheets. When the
user selects the properties for a file, the shell displays a standard property sheet.
If the registered file type has a property sheet handler, the shell allows the user to
access additional sheets that the handler provides. Property sheet handlers
implement the IShellPropSheetExt interface.

Property sheet handlers are entered in the registry under the shellex key within an
application's information area. The PropertySheetHandlers key lists the names
of subkeys that contain the class identifier of each context menu handler, as
shown in the following example.

PropertySheetHandlers
{00000000-1111-2222-3333-00000000000002}

You can register multiple property sheet handlers for a file type. In this case, the
order of the sub key names in the PropertySheetHandlers key determines the
order of the additional property sheets. You can use a maximum of 24 (the value
of MAXPROPPAGES) pages in a property sheet. .

Adding Property Sheet Pages
The property sheet handler uses the AddPages member function in addition to
the usual IUnknown member functions. The system calls the AddPages member
function when it is about to display a property sheet. The system calls each
property sheet handler registered to the file type to allow the handlers to add
pages to the property sheets. The following example shows how to implement the
AddPages member function.

234 Programmer's Guide to Microsoft Windows 95

STDMETHODIMP CSamplePageExt::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage,
LPARAM lParam)

}

PROPSHEETPAGE psp;
HPROPSHEETPAGE hpage;

psp.dwSize = sizeof(psp); II no extra data
psp.dwFlags = PSP_USEREFPARENT I PSP_USERELEASEFUNC;
psp.hInstance = (HINSTANCE)g_hmodThisDll;
psp.pszTemplate = MAKEINTRESOURCE(DLG_FSPAGE);
psp.pfnDlgProc = FSPage_DlgProc;
psp.pcRefParent = &g_cRefThisDll;
psp.pfnRelease FSPage_ReleasePage;
psp.1Param = (LPARAM)hdrop;

hpage = CreatePropertySheetPage(&psp);
if (hpage) {

}

if (!lpfnAddPage(hpage, lParam»
DestroyPropertySheetPage(hpage);

return NOERROR;

Replacing Control Panel Pages
The ReplacePage member function is called only by Control Panel applications.
It allows you to replace the property sheet of a standard Control Panel application
with a custom page. For example, if a mouse manufacturer adds extra buttons to
its mouse, the manufacturer can replace the standard Mouse Control Panel's
"Buttons" property sheet page. The ReplacePage member function is not called
by the shell because the shell does not have any property sheet pages that can be
replaced by a shell extension. Currently, only Control Panel applications call this
member function, but other property sheet suppliers CQuld use this member
function to allow their property sheet pages to be replaced.

Each property sheet handler that allows a property sheet page to be replaced
must specify the registry location where other handlers that replace pages register
themselves. For standard Control Panel applications, this location is defined by
the REGSTR_P ATH_ CONTROLSFOLDER macro in the REGSTR.H file.
The macro defines the key under the HKEY _LOCAL_MACHINE key in which
all Control Panel property sheet page replacement handlers must register. For
example, a property sheet handler that needs to replace a property sheet page for
the Mouse Control Panel would register a property sheet extension handler in the
following registry location.

HKEY_LOCAL_MACHINE
REGSTR_PATH_CONTROLSFOLDER

Mouse
shellex

Article 12 Shell Extensions 235

PropertySheetHandlers = NewMousePage
NewMousePage = {00000000-1111-2222-3333-00000000000002}

In addition, a property sheet handler that allows replaceable pages must define
identifiers for each page that can be replaced.

Standard Control Panel applications define this location in the REGSTR.H
and CPLEXT.H header files. In REGSTR.H, the controls folder macro
REGSTR_PATH_CONTROLSFOLDER defines the key under the
HKEY _LOCAL_MACHINE key in which all Control Panel property sheet
page replacement handlers must register. CPLEXT.H defines the subkey for
each Control Panel application that contains a replacable property sheet page:
\Mouse for a Mouse Control Panel application and \Keyboard for a Keyboard
Control Panel application.

Standard Control Panel applications define these identifiers in CPLEXT .H.
For example, CPLPAGE_MOUSE_BUTTONS defines the identifier for the
Mouse Control Panel's Buttons page, and CPLP AGE_KEYBOARD _SPEED
defines the identifier for the Keyboard Control Panel's Speed page.

Copy Hook Handlers
A copy hook handler is a shell extension that the shell calls before copying,
moving, deleting, or renaming a folder object. The copy hook handler does not
perform the task itself, but the handler provides approval for the task. When the
shell receives approval from the copy hook handler, it performs the actual file
system operation (that is, copies, moves, deletes, or renames). Copy hook
handlers are not informed about the success of the operation, so they cannot
monitor actions that occur to folder objects.

The shell initializes the copy hook handler interface directly - that is, without
using an IShellExtlnit or IPersistFile interface first. A folder object can have
multiple copy hook handlers. The copy hook handler interface has one member
function, CopyCallBack, in addition to the standard IUnknown member
functions.

The shell calls the CopyCallBack member function before it copies, moves,
deletes, or renames a folder object. The function returns an integer value that
indicates whether the shell should perform the operation. The shell will call each
copy hook handler registered for a folder object until either all the handlers have
been called or any handler returns the IDCANCEL value. The handler can also
return the IDYES value to specify that the operation should be carried out or the
IDNO value to specify that the operation should not be performed.

236 Programmer's Guide to Microsoft Windows 95

Data Handlers
When a file is dragged from the shell (or copied to the clipboard from the shell),
the shell creates a default IDataObject interface that supports standard clipboard
formats (CF _HDROP, "ShellIDList Array", and so on). An application can
add more clipboard formats by providing a data handler for the file type. A data
handler must support both the IPersistFile and IDataObject interfaces. The shell
initializes a data handler by calling the IPersistFile: :Load member function.
When a data handler is provided, the default IDataObject interface delegates
some member function calls to the data handler so that the additional clipboard
data, formats become available to the drop target.

You register a data handler by adding a DataHandler key and class identifier
for the handler under the shellex key for the file type as. shown in the following
example.

shellex
DataHandler = {00000000-1111-2222-3333-00000000000003}

Drop Handlers
By default, a file is not a drop target. By providing a drop handler for the file
types created by your application, you can make the files into drop targets. A
drop handler must support both the IPersistFile and IDropTarget interfaces.
The shell initializes a drop handler by calling the IPersistFile: : Load member
function. When the user drags an object over one of your application's files or
drops an object onto one of its files, the system calls the appropriate member

. functions of the IDropTarget interface.

You register a drop handler by adding a DropHandler key and class identifier
for the handler under the shellex key for the file type as shown in the followng
example.

shellex
DropHandler = {00000000-1111-2222-3333-00000000000003}

Reference

Article 12 Shell Extensions 237

The following interfaces, member functions, and structures are associated with
shell extensions.

Interfaces and Member Functions
IContextMenu
Designates an interface that enables the shell to retrieve extensions to context
menus. The IContextMenu interface has the following member functions.

GetCommandString

InvokeCommand

QueryContextMenu

Retrieves the language-independent name of a menu
command or the help text for a menu command.

Carries out a menu command, either in response to user
input or otherwise.

Adds commands to a context menu.

Like all OLE interfaces, IContextMenu also includes the Querylnterface,
AddRef, and Release member functions.

IContextMenu::GetCommandString
HRESULT IContextMenu::GetCommandString(

LPCONTEXTMENU plface. UINT idCmd. UINT uFlags.
UINT *pwReserved. LPSTR pszName. UINT cchMax);

Retrieves the language-independent command string or the help text for a context
menu item.

• Returns the NOERROR value if successful or an OLE-defined error code
otherwise.

plface
Address of the IContextMenu interface. In C++, this parameter is implicit.

idCmd
Menu item identifier offset.

238 Programmer's Guide to Microsoft Windows 95

uFlags
Flag specifying the information to retrieve. This parameter can be one of these
values:

GCS_HELPfEXT

GCS_ VALIDATE

GCS_VERB

pwReserved

Returns the help text for the menu item.

Validates that the menu item exists.

Returns the language-independent command name for the
menu item.

Reserved. Applications must specify NULL when calling this member
function, and handles must ignore this parameter when called.

pszName and cchMax
Address and size of the buffer that receives the null-terminated string.

The language-independent command name is a name that can be passed to the
IContextMenu::lnvokeCommand member function to activate a command by
an application. The help text is a description that Windows 95 Explorer displays
in its status bar; it should be reasonably short (under 40 characters).

IContextMen u: : I nvokeCommand
HRESULT IContextMenu::lnvokeCommandC

LPCONTEXTMENU plface, LPCMINVOKECOMMANDINFO lpici);

Carries out the command associated with a context menu item.

• Returns the NOERROR value if successful or an OLE-defined error code
otherwise.

pI/ace
Address of the IContextMenu interface. In C++, this parameter is implicit.

lpici
Address of a CMINVOKECOMMANDINFO structure containing
information about the command.

The shell calls this member function when the user chooses a command that the
handler added to a context menu. This member function may also be called by an
application without any corresponding user action.

Article 12 Shell Extensions 239

IContextMen u: :QueryContextMen u
HRESULT IContextMenu::QueryContextMenu(

LPCONTEXTMENU plface. HMENU hmenu. UINT indexMenu.
UINT idCmdFirst. UINT idCmdLast. UINT uFlags
) ;

Adds menu items to the specified menu. The menu items should be inserted at a
given position in the menu, and their menu item identifiers must be in a given
range.

Returns an HRESUL T structure in which, if successful, the code member
contains the menu identifier offset of the last menu item added.

pI/ace
Address of the IContextMenu interface. In C++, this parameter is implicit.

hmenu
Handle of the menu. The handler should specify this handle when calling the
InsertMenu or InsertMenultem function.

indexMenu
Zero-based position at which to insert the first menu item.

idCmdFirst and idCmdLast
Minimum and maximum values that the handler can specify for menu item
identifiers. The actual identifier of each menu item should be idCmdFirst plus
a menu identifier offset in the range zero through (idCmdLast-idCmdFirst).

uFZags
Flag specifying zero or more of these values:

CMF_DEFAULTONLY The user is activating the default action, typically
by double-clicking. A context menu extension or
drag and drop handler should not add any menu
items if this value is specified. A namespace
extension should add only the default item, if any.

Context menu handlers should ignore this value.
This value is specified if the context menu is for an
object in the left pane of Windows 95 Explorer.

Indicates normal operation. A context menu
extension, namespace extension, or drag and drop
handler can add any menu items.

Context menu handlers should ignore this value.
This value is specified if the context menu is for a
shortcut object.

The remaining bits of the low-order word are reserved by the system. The
high-order word may be used for context-specific communications.

240 Programmer's Guide to Microsoft Windows 95

An extension must not modify other menu items or insert menu items at a
location other than that specified by indexMenu. Such an extension will not
work in a future version of the Windows operating system.

ICopyHook
Designates an interface that allows a copy hook handler to prevent a folder or
printer object from being copied, moved, deleted, or renamed. The shell calls a
copy hook handler whenever file system directories are about to be copied,
moved, deleted, or renamed and whenever the· status of a printer is about to
change.

The shell creates the copy hook handler interface directly - that is, without using
the IShellExtlnit or IPersistFile interface first. A folder object can have multiple
copy hook handlers.

A copy hook handler interface has one member function, CopyCallBack, in
addition to the standard Querylnterface, AddRef, and Release member
functions.

ICopyHook: :CopyCaliback
UINT CopyCallback(ICopyHook FAR * pCopyHook,

HWND hwnd, UINT wFunc, UINT wFlags, LPCSTR pszSrcFile,
DWORD dwSrcAttribs, LPCSTR pszDestFile, DWORD dwDestAttribs);

Either allows the shell to carry out a copy, move, delete, or rename operation on a
folder object, or prevents the shell from carrying out the operation. The shell calls
each copy hook handler registered for a folder object until either all the handlers
have been called or any handler returns the IDCANCEL value.

• Returns an integer value that indicates whether the shell should perform the
operation. It can be one of the following values:

IDCANCEL Prevents the current operation and cancels any pending operations.

IDNO

IDYES

pCopyHook

Prevents the operation on this folder, but continues with any
other operations (for example, a batch copy operation).

Allows the operation.

Address of the ICop;yHook interface. In C++, this parameter is implicit.

hwnd
Handle of the window that the copy hook handler should use as the parent
window for any user interface elements the handler may need to display.
If the FOF _SILENT value is specified, the member function should ignore
this parameter.

Article 12 Shell Extensions 241

wFunc
Operation to perform. This parameter can be one of these values:

FO_RENAME

PO_DELETE

PO_PORTCHANGE

PO_RENAME

PO_REN_PORT

wFlags

Copies the file specified by pszSrcFile to the location
specified by pszDestFile.

Deletes the file specified by pszSrcFile.

Moves the file specified by pszSrcFile to the location
specified by pszDestFile.

Renames the file specified by pszSrcFile.

Deletes the printer specified by pszSrcFile.

Changes the printer port. pszSrcFile and pszDestFile
contain double-null terminated lists of strings. Each list
contains the printer name followed by the port name.
The port name in pszSrcFile is the current printer port,
and the port name in pszDestFile is the new printer port.

Renames the printer specified by pszSrcFile.

Combination of PO_RENAME and PO_PORTCHANGE.

Flags that control the operation. This parameter can be a combination of these
values:

FOF _ALLOWUNDO

FOF _CONFIRMMOUSE

FOF _FILESONL Y

FOF _MUL TIDESTFILES

FOF _NOCONFIRMATION

FOF _NOCONFIRMMKDIR

FOF _RENAMEONCOLLISION

FOF_SILENT

FOF_SIMPLEPROGRESS

Preserves undo information, if possible.

Not implemented.

Not implemented. The shell calls a copy hook
handler only for folder objects, not files.

Indicates that the SHFileOperation function
specifies multiple destination files (one for
each source file) rather than one directory
where all the source files are to be deposited.
A copy hook handler typically ignores this
value.

Responds with "yes to all" for any dialog box
that is displayed.

Does not confirm the creation of any needed
directories if the operation requires a new
directory to be created.

Gives the file being operated on a new name
(such as, "Copy #1 of ... ") in a copy, move,
or rename operation if a file of the target name
already exists.

Displays no progress dialog box.

Displays a progress dialog box, but the dialog
box does not show the names of the files.

242 Programmer's Guide to Microsoft Windows 95

pszSrcFile
Address of a string that contains the name of the source file.

dwSrcAttribs
Attributes of the source file. This parameter can be a combination of any of
the file attribute (FILE_ATTRIBUTE_) flags defined in the Windows header
files.

pszDestFile
Address of a string that contains the name of the destination file.

dwDestAttribs
Attributes of the source file. This parameter can be a combination of any of
the file attribute (FILE_ATTRIBUTE_) flags defined in the Windows header
files.

I Extractlcon
Designates an interface that enables the shell to retrieve icons for file objects.
The IExtractIcon interface has the following member functions.

GetIconLocation

Extract

Retrieves the icon location for a file object.

Extracts an icon from the specified location.

Like all OLE interfaces, IExtractIcon also includes the Querylnterface,
AddRef, and Release member functions.

I Extractlcon: :Getlcon Location
HRESULT IExtractIcon::GetIconLocation(

LPEXTRACTICON pIface, UINT uFlags, LPSTR szIconFile,
UINT cchMax, int *piIndex, UINT *pwFlags
) ;

Retrieves the location and index of an icon.

• Returns the NOERROR value if the function returned a valid location or the
S_FALSE value if the shell should use a default icon.

plface
Address of the IExtractIcon interface. In C++, this parameter is implicit.

uFZags
Flags. This parameter can be zero or these values:

GIL_FORSHELL

GIL_OPENICON

The icon is to be displayed in a shell folder.

The icon is for a folder that is open.

Article 12 Shell Extensions 243

szIconFile and cchMax
Address and size of the buffer that receives the icon location. The icon
location is a null-terminated string that typically specifies the name of an
icon file.

piIndex
Address of an integer that receives the icon index.

pwFZags
Address of an unsigned integer that receives zero or more of these values:

GIL_PERCLASS

GIL_PERINST~CE

GIL_SIMULA TEDOC

IExtractlcon::Extract

The shell should use the Extract member function
rather than look up the icon in its internal cache.

The location is not a filename. Instead, it is an
extension-specific string that identifies the icon.
The caller must use the Extract member function
to retrieve the icon image no matter what flags are
returned.

All file objects of this class have the same icon.

Each file object of this class has its own icon.

The shell should create a document icon using the
specified icon.

HRESULT IExtractlcon::Extract(
LPEXTRACTICON plface. LPCSTR pszFile. UINT nlconlndex.
HICON *phiconLarge. HICON *phiconSmall. UINT nlconSize
) ;

Extracts an icon image from the specified location.

• Returns the NOERROR value if the function extracted the icon or the
S_FALSE value if the calling application should extract the icon by calling
the Extractlcon function.

pIface
Address of the IExtractlcon interface. In C++, this parameter is implicit.

pszFile
Address of a null-terminated string specifying the icon location. This param
eter must be a string returned by the GetlconLocation member function.

nIconIndex
Icon index.

phiconLarge and phiconSmall
Addresses of variables that receive the handles of the large and small icons,
respectively.

244 Programmer's Guide to Microsoft Windows 95

nlconSize
Value specifying the size, in pixels, of the large icon required. The size
specified can be the width or height. The width of an icon always equals its
height.

The icon location and index are the same values as returned by the
IExtractIcon: : GetIconLocation member function. If this function returns
S_FALSE, these values must specify an icon filename and index. If this function
does not return S_FALSE, the calling application should make no assumptions
about the meanings of the pszFile and nlconlndex parameters.

IShellPropSheetExt
Designates an interface that allows a property sheet handler to add or replace
pages in the property sheet for a file object. The IShellPropSheetExt interface
has the following member functions.

AddPages

ReplacePage

Adds one or more pages to a property sheet for a file object.

Replaces a page in a property sheet for a Control Panel object.

Like all OLE interfaces, IShellPropSheetExt also includes the Querylnterface,
AddRef, and Release member functions.

IShe11 PropSheetExt: :Add Pages
HRESULT AddPages(IShellPropSheetExt FAR * pProp,

LPFNADDPROPSHEETPAGE lpfnAddPage, LPARAM lParam);

Adds one or more pages to a property sheet that the shell displays for a file
object. When it is about to display the property sheet, the shell calls the
AddPages member function of each property sheet handler registered to the
file type.

• Returns the NOERROR value if successful or an OLE-defined error'value
otherwise.

pProp
Address of the IShellPropSheetExt interface. In C++, this parameter is
implicit.

Article 12 Shell Extensions 245

lpfnAddPage
Address of a callback function that the property sheet handler calls to add a
page to·the property sheet. The function takes a property sheet handle returned
by the CreatePropertySheetPage function and the lParam parameter passed
to the AddPages member function. For more information about the callback
function, see the description of the AddPropSheetPageProc function in the
documentation included with the Win32 Software Development Kit (SDK).

lParam
Parameter to pass to the function pointed to by lpfnAddPage.

For each page it needs to add to a property sheet, a property sheet handler fills a
PROPSHEETPAGE structure, calls CreatePropertySheetPage, and then calls
the function pointed to by IpfnAddPage.

ISheIIPropSheetExt:: ReplacePage
HRESULT ReplacePage(IShellPropSheetExt FAR * pProp,

UINT uPageID, LPFNADDPROPSHEETPAGE lpfnReplacePage. LPARAM lParam);

Replaces a page in a property sheet for a Control Panel object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pProp
Address of the IShellPropSheetExt interface. In C++, this parameter is
implicit.

uPageID
Identifier of the page to replace. The values for this parameter for Control
Panels can be found in CPLEXT .R.

IpfnReplacePage
Address of a function that the property sheet handler calls to replace a page
to the property sheet. The function takes a property sheet handle returned by
the CreatePropertySheetPage function and the IParam parameter passed
to the ReplacePage member function.

lParam
Parameter to pass to the function pointed to by lpfnReplacePage.

To replace a page, a property sheet handler fills a PROPSHEETPAGE structure,
calls CreatePropertySheetPage, and then calls the function pointed to by
lpfnReplacePage.

246 Programmer's Guide to Microsoft Windows 95

IShell Extl n it
Designates an interface used to initialize a property sheet extension, context
menu extension, or drag and drop handler. The IShellExtlnit interface has the
following member functions.

Initialize Initializes the shell extension.

Like all OLE interfaces, IShellExtlnit also includes the Querylnterface,
AddRef, and Release member functions.

ISheIlExtlnit::lnitialize
HRESULT IShellExtInit: :Initialize(

LPSHELLEXTINIT pIface, LPCITEMIDLIST pidlFolder,
LPDATAOBJECT lpdobj, HKEY hkeyProgID
) ;

Initializes a property sheet extension, context menu extension, or drag and drop
handler.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellExtlnit interface. In C++, this parameter is implicit.

pidlFolder
Address of an ITEMIDLIST structure (item identifier list) that uniquely.
identifies a folder. This parameter is NULL for property sheet extensions
and context menu extensions. For nondefault drag and drop menu extensions,

this parameter must specify the target folder.

lpdobj
Address of an IDataObject interface object that can be used to retrieve the
objects being acted upon.

hkeyProgID
Registry key for the file object or folder type.

Structures

Article 12 Shell Extensions 247

This is the first member function that the shell calls (besides AddRef, Release,
and QueryInterface) after it creates an instance of a property sheet extension,
context menu extension, or drag and drop handler.

The meanings of some parameters depend on the extension type. For drag and
drop handlers, the item identifier list specifies the destination folder (the drop
target), the IDataObject interface identifies the items being dropped, and the
registry key specifies the file class of the destination folder (typically, it is
"Directory") .

For property sheet extensions and context menu extensions, the item identifier
list specifies the folder that contains the selected file objects, the IDataObject
interface identifies the selected file objects, and the registry key specifies the file
class of the file object that has the focus.

The following structures are used with shell extensions.

CMINVOKECOMMANDINFO
typedef struct _CMlnvokeCommandlnfo

DWORD cbSize; II sizeof(CMINVOKECOMMANDINFO)
DWORD fMask; II see below
HWND hwnd; II see below
LPCSTR lpVerb; II see below
LPCSTR lpParameters; II see below
LPCSTR lpDirectory; II see below
int nShow; II see below
DWORD dwHotKey; II see below
HANDLE hlcon; II see below

} CMINVOKECOMMANDINFO. *LPCMINVOKECOMMANDINFO;

Contains information about a context menu command.

248 Programmer's Guide to Microsoft Windows 95

fMask
Value specifying zero or more of these flags:

CMIC_MASK_HOTKEY Specifies that dwHotKey is valid.

CMIC_MASK_ICON

CMIC_MASK_FLAG_NO_UI

hwnd

Specifies that hIcon is valid.

Prevents the system from displaying user inter
face elements (for example, error messages) while
carrying out a command.

Handle of the window that owned the context menu, such as the desktop,
Windows 95 Explorer, or the tray. An extension might specify this handle as
the owner window of any message boxes or dialog boxes that it displays.

IpVerb
32-bit value containing zero in the high-order word and the menu-identifier
offset of the command to carry out in the low-order word. The shell specifies
this value (using the MAKEINTRESOURCE macro) when the user chooses
a menu command.

If the high-order word is not zero, this member is the address of a null
terminated string specifying the language-independent name of the command
to carry out. This member is typically a string when a command is being
activated by an application. The system provides predefined constant values
for the following command strings:

Value

CMDSTR_NEWFOLDER

CMDSTR_ VIEWDETAIL

CMDSTR_ VIEWLIST

IpParameters

String

"NewFolder"

"ViewDetails"

"ViewList"

Optional parameters. This member is always NULL for menu items inserted
by a shell extension.

IpDirectory
Optional working directory name. This member is always NULL for menu
items inserted by a shell extension.

Article 12 Shell Extensions 249

nShow
Flag to pass to the ShowWindow function if the command displays a window
or starts an application.

dwHotKey
Optional hot key to assign any application activated by the command. If
fMask does not specify CMIC_MASK_HOTKEY, this member is ignored.
A shell extension should ignore this member.

hlcon
Icon to use for any application activated by the command. If fMask does not
specify CMIC_MASK_ICON, this member is ignored. A shell extension
should ignore this member.

The address of this structure is passed to the IContextMenu::lnvokeCommand
member function.

ITEMIDLIST
typedef struct _ITEMIDLIST { II idl

SHITEMID mkid; II list of item identifers
} ITEMIDLIST, * LPITEMIDLIST;
typedef const ITEMIDLIST * LPCITEMIDLIST;

Contains a list of item identifiers. For more information, see Article 11, "Shell's
Namespace."

SHITEMID
typedef struct _SHITEMID II mkid

USHORT cb; II size of identifier, including cb itself
BYTE abID[l]; II variable-length item identifier

SHITEMID, * LPSHITEMID;
typedef const SHITEMID * LPCSHITEMID;

Defines an item identifier.

251

ARTICLE 13

Application Desktop Toolbars

About Application Desktop Toolbars
An application desktop toolbar (also called an appbar) is a window that is similar
to the Microsoft® Windows® 95 taskbar. It is anchored to an edge of the screen,
and it typically contains buttons that give the user quick access to other applications
and windows. The system prevents other applications from using the desktop area
occupied by an appbar. Any number of appbars can exist on the desktop at any
given time.

Windows provides an application programming interface (API) that lets you take
advantage of appbar services provided by the system. The services help ensure
that application-defined appbars operate smoothly with one another and with
the taskbar. The system maintains information about each appbar and sends the
appbars messages to notify them about events that can effect their size, position,
and appearance.

Sending Messages
An application uses a special set of messages, called appbar messages, to add
or remove an appbar, set an appbar's size and position, and retrieve information
about the size, position, and state of the taskbar. To send an appbar message,
an application must use the SHAppBarMessage function. The function's param
eters include a message identifier, such as ABM_NEW, and the address of an
APPBARDATA structure. The structure members contain information that the
system needs to process the given message.

For any appbarmessage, the system uses some members of the APPBARDATA
structure and ignores the others. However, because the system always uses the
cbSize and h Wnd members, an application must fill these members for every
appbar message. The cbSize member specifies the size of the structure, and the
h Wnd member is the handle of the appbar's window.

252 Programmer's Guide to Microsoft Windows 95

Reg istration

Some appbar messages request information from the system. When processing these
messages, the system copies the requested information into the APPBARDATA
structure.

The system keeps an internal list of appbars and maintains information about each
bar in the list. The system uses the information to manage appbars, perform services
for them, and send them notification messages.

An application must register an appbar (that is, add it to the internal list) before it
can receive appbar services from the system. To register an appbar, an application
sends the ABM_NEW message. The accompanying APPBARDATA structure
includes the handle of the appbar's window and an application-defined message
identifier. The system uses the message identifier to send notification messages to
the window procedure of the appbar window. For more information about appbar
notification messages, see "Notification Messages" later in this article.

An application unregisters an appbar by sending the ABM_REMOVE message.
Unregistering an appbar removes it from the system's internal list of appbars.
The system no longer sends notification messages to the appbar nor prevents other
applications from using the screen area occupied by the appbar. An application
should always send ABM_REMOVE before destroying an appbar.

Size and Position
An application should set an appbar's size and position so that it does not interfere
with any other appbars or the taskbar. Every appbar must be anchored to a
particular edge of the screen, and multiple appbars can be anchored to an edge.
However, if an appbar is anchored to the same edge as the taskbar, the system
ensures that the taskbar is always on the outermost edge.

To set the size and position of an appbar, an application first proposes a screen
edge and bounding rectangle for the appbar by sending the ABM_QVERYPOS
message. The system determines whether any part of the screen area within
the proposed rectangle is occupied by the taskbar or another appbar, adjusts the
rectangle (if necessary), and returns the adjusted rectangle to the application.

Next, the application sends the ABM_SETPOS message to set the new bounding
rectangle for the appbar. Again, the system may adjust the rectangle before
returning it to the application. For this reason, the application should use the
adjusted rectangle returned by ABM_SETPOS to set the final size and position.
The application can use the Move Window function to move the appbar into
position.

Article 13 Application Desktop Toolbars 253

By using a two-step process to set the size and position, the system allows the
application to provide intermediate feedback to the user during the move operation.
For example, if the user drags an appbar, the application might display a shaded
rectangle indicating the new position before the appbar actually moves.

An application should set the size and position of its appbar after registering it
and whenever the appbar receives the ABN_POSCHANGED notification message.
An appbar receives this notification message whenever a change occurs in the
taskbar's size, position, or visibility state and whenever another appbar on the
same side of the screen is resized, added, or removed.

An appbar should send the ABM_ACTIV ATE message whenever it receives
the WM_ACTIV ATE message. Similarly, whenever an appbar receives a
WM_ WINDOWPOSCHANGED message, it should send a corresponding
ABM_ WINDOWPOSCHANGED message. Sending these messages ensures
that the system properly sets the Z order of any autohide appbars on the same edge.

Autohide Application Desktop Toolbars
An autohlde appbar is one that is normally hidden, but becomes visible when the
user moves the mouse cursor to the screen edge that the appbar is associated with.
The appbar hides itself again when the user moves the mouse cursor out of the bar's
bounding rectangle.

Although the system allows a number of different appbars at any given time, it
allows only one autohide appbar at a time for each screen edge on a fIrst come,
fIrst served basis. The system automatically maintains the Z order of an autohide
appbar (within its Z order group only).

An application uses the ABM_SETAUTOHIDEBAR message to register or
unregister an autohide appbar. The message specifies the edge for the appbar
and a flag that specifies whether the appbar is to be registered or unregistered.
The message fails if an autohide appbar is being registered, but one is already
associated with the specified edge. An application can retrieve the handle
of the autohide appbar associated with an edge by sending the
ABM_GETAUTOHIDEBAR message.

An autohide appbar does not need to register as a normal appbar; that is, it does
not need to be registered by sending the ABM_NEW message. An appbar that is
not registered by ABM_NEW overlaps any appbars anchored on the same edge of
the screen.

254 Programmer's Guide to Microsoft Windows 95

Notification Messages
The system sends messages to notify an appbar about events that can effect its
position and appearance. The messages are sent in the context of an application
defined message. The application specifies the identifier of the message when it
sends the ABM_NEW message to register the appbar. The notification code is in
the wParam parameter of th~ application-define~ message.

An appbar receives the ABN_POSCHANGED notification message when the
taskbar's size, position, or visibility state changes, when another appbar is added
to the same edge of the screen, or when another appbar on the same edge of
the screen is resized or removed. An appbar should respond to this notification
message by sending ABM_QUERYPOS and ABM_SETPOS messages. If an
appbar's position has changed, it should call the Move Window function to move
itself to the new position.

The system sends the ABN_STATECHANGE notification message whenever the
taskbar's autohide or always-on-top state has changed-that is, when the user
checks or unchecks the "Always on top" or "Auto hide" check box on the taskbar's
property sheet. An appbar can use this notification message to set its state to
conform to that of the taskbar, if desired.

When a full-screen application is started or when the last full-screen application
is closed, an appbar receives the ABN_FULLSCREENAPP notification message.
The ZParam parameter indicates whether the full-screen application is opening
or closing. If it is opening, the appbar must drop to the bottom of the Z order.
The appbar should restore its Z order position when the last full-screen application
has closed.

An appbar receives the ABN_ WINDOW ARRANGE notification message when
the user selects the Cascade, Tile Horizontally, or Tile Vertically command from
the task bar's context menu. The system sends the message two times, before
rearranging the windows (ZParam is TRUE) and after arranging the windows
(ZParam is FALSE).

An appbar can use ABN_ WINDOW ARRANGE messages to exclude itself from
the cascade or tile operation. To exclude itself, the appbar should hide itself when
ZParam is TRUE and show itself when ZParam is FALSE. If an appbar hides itself
in response to this message, it does not need to send the ABM_QUERYPOS and
ABM_SETPOS messages in response to the cascade or tile operation.

Article 13 Application Desktop Toolbars 255

Using Application Desktop Toolbars
This section includes examples that demonstrate how to perform the following
tasks:

Register an application desktop toolbar (appbar).

Set its size and position.

• Process the notification messages that the system sends to a registered
appbar.

Registering an Application Desktop Toolbar
An application must register an appbar by sending the ABM_NEW message.
Registering an appbar adds it to the system's internal list and provides the system
with a message identifier to use to send notification messages to the appbar. Before
exiting, an application must unregister the appbar by sending the ABM_REMOVE
message. Unregistering removes the appbar from the system's internal list and
prevents the bar from receiving appbar notification messages.

The function in the following example either registers or unregisters an appbar,
depending on the value of a Boolean flag parameter.

II RegisterAccessBar - registers or unregisters an appbar.
II Returns TRUE if successful or FALSE otherwise.
II hwndAccessBar - handle of the appbar
II fRegister - register and unregister flag
II
II Global variables
II g_uSide - screen edge (defaults to ABE_TOP)
II g_fAppRegistered - flag indicating whether the bar is registered
BOOl RegisterAccessBar(HWND hwndAccessBar, BOOl fRegister)
{

APPBARDATA abd;

II Specify the structure size and handle of the appbar.
abd.cbSize = sizeof(APPBARDATA);
abd.hWnd = hwndAccessBar;

if (fRegister)

II Provide an identifier for notification messages.
abd.uCallbackMessage = APPBAR_CAllBACK;

256 Programmer's Guide to Microsoft Windows 95

}

II Register the appbar.
if (!SHAppBarMessage(ABM_NEW. &abd))

return FALSE;
g_uSide = ABE_TOP; II default edge
g_fAppRegistered = TRUE;

else {

II Unregister the appbar.
SHAppBarMessage(ABM_REMOVE. &abd);
g_fAppRegistered = FALSE;

return TRUE;

Setting the Size and Position
An application should set an appbar's size and position after registering the appbar,
after the user user moves or sizes the appbar, and whenever the appbar receives the
ABN_POSCHANGED notification message. Before setting the size and position of
the appbar, the applicatioRqueries the system for an approved bounding rectangle
by sending the ABM_QUERYPOS message. The system returns a bounding rect
angle that does not interfere with the taskbar or any other appbar. The system
adjusts the rectangle purely by rectangle subtraction; it makes no effort to preserve
the rectangle's initial size. For this reason, the appbar should readjust the rectangle,
as necessary, after sending ABM_QUERYPOS.

Next, the application passes the bounding rectangle back to the system by using
the ABM_SETPOS message. Then it calls the Move Window function to move the
appbar into position.

The following example shows how to set an appbar's size and position.

II AppBarQuerySetPos - sets the size and position of an appbar.
II uEdge - screen edge to which the appbar is to be anchored
II lprc - current bounding rectangle of the appbar
II pabd - address of APPBARDATA structure with the hWnd and
II cbSize members filled
void PASCAL AppBarQuerySetPos(UINT uEdge. LPRECT lprc. PAPPBARDATA pabd)
{

int iHeight = 0;
int iWidth = 0;

pabd->rc = *lprc;
pabd->uEdge = uEdge;

Article 13 Application Desktop Toolbars 257

II Copy the screen coordinates of the appbar's bounding
II rectangle into the APPBARDATA structure.
if «uEdge == ABE_LEFT) I I

(uEdge == ABE_RIGHT))
iWidth = pabd->rc.right - pabd->rc.left;
pabd->rc.top = 0;
pabd->rc.bottom = GetSystemMetrics(SM_CYSCREEN);

else {
iHeight = pabd->rc.bottom - pabd->rc.top;
pabd->rc.left = 0;
pabd->rc.right = GetSystemMetrics(SM_CXSCREEN);

II Query the system for an approved size and position.
SHAppBarMessage(ABM_QUERYPOS, pabd);

II Adjust the rectangle, depending on the edge to which the
II appbar is anchored.
switch (uEdge) {

}

case ABE_LEFT:
pabd->rc.right pabd->rc.left + iWidth;
break;

case ABE_RIGHT:
pabd->rc. left pabd->rc.right - iWidth;
break;

case ABE_TOP:
pabd-<rc.bottom = pabd->rc.top + iHeight;
break;

case ABE_BOTTOM:
pabd->rc.top pabd->rc.bottom - iHeight;
break;

II Pass the final bounding rectangle to the system.
SHAppBarMessage(ABM_SETPOS, pabd);

II Move and size the appbar so that it conforms to the
II bounding rectangle passed to the system.
MoveWindow(pabd->hWnd. pabd->rc.left, pabd->rc.top,

pabd->rc.right - pabd->rc.left,
pabd->rc.bottom - pabd->rc.top, TRUE);

258 Programmer's Guide to Microsoft Windows 95

Processing Notification Messages
An appbar receives a notification message when the state of the task bar changes,
when a full screen application starts (or the last one closes), or when an event
occurs that can affect the appbar's size and position. The following example shows
how to process the various notification messages.

II AppBarCallback - processes notification messages sent by the system.
II hwndAccessBar - handle of the appbar
II uNotifyMsg - identifier of the notification message
II lParam - message parameter
void AppBarCallback(HWND hwndAccessBar, UINT uNotifyMsg,

LPARAM lParam)

APPBARDATA abd;
UINT uState;

abd.cbSize = sizeof(abd);
abd.hWnd = hwndAccessBar;

switch (uNotifyMsg) {
case ABN_STATECHANGE:

II Check to see if the taskbar's always-on-top state has
II changed and. if it has. change the appbar's state
II accordingly.
uState = SHAppBarMessage(ABM_GETSTATE, &abd);
SetWindowPos(hwndAccessBar,

(ABS_ALWAYSONTOP & uState) ? HWND_TOPMOST : HWND_BOTTOM.
0. 0, 0. 0. SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE);

break;

case ABN_FULLSCREENAPP:

II A full screen application has started. or the last full
II screen application has closed. Set the appbar's
II Z order appropriately.
if (lParam) {

SetWindowPos(hwndAccessBar.
(ABS_ALWAYSONTOP & uState) ?

HWND_TOPMOST : HWND_BOTTOM,
0, 0. 0, 0.
SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE);

} else {
uState = SHAppBarMessage(ABM_GETSTATE, &abd);
if (uState & ABS_ALWAYSONTOP)

SetWindowPos(hwndAccessBar, HWND_TOPMOST,
0. 0, 0, 0.
SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE);

Article 13 Application Desktop Toolbars 259

case ABN_POSCHANGED:

II The taskbar or another appbar has changed its
II size or position.
AppBarPosChanged(&abd);
break;

The following function adjusts an appbar's bounding rectangle and then calls the
application-defined AppBarQuerySetPos function (included in the previous section)
to set the bar's size and position accordingly.

II AppBarPosChanged - adjusts the appbar's size and position.
II pabd - address of an APPBARDATA structure that contains information
II used to adjust the size and position
void PASCAL AppBarPosChanged(PAPPBARDATA pabd)
{

RECT rc;
RECT rcWindow;
int iHeight;
int iWidth;

rc.top = 0;
rc.left = 0;
rc.right = GetSystemMetrics(SM_CXSCREEN);
rc.bottom = GetSystemMetrics(SM_CYSCREEN);

GetWindowRect(pabd-)hWnd. &rcWindow);
iHeight = rcWindow.bottom - rcWindow.top;
iWidth = rcWindow.right - rcWindow.left;

switch (g_uSide) {
case ABE_TOP:

rc.bottom = rc.top + iHeight;
break;

case ABE_BOTTOM:
rc.top = rc.bottom - iHeight;
break;

case ABE_LEFT:
rc.right rc.left + iWidth;
break;

260 Programmer's Guide to Microsoft Windows 95

Reference

case ABE_RIGHT:
rc.left = rc.right - iWidth;
b rea k;

AppBarQuerySetPos(g_uSide. &rc. pabd);

The following function, structure, messages, and notification messages are
associated with appbars.

Function and Structure
The following function and structure are used with appbars.

SHAppBarMessage
WINSHELLAPI UINT APIENTRY SHAppBarMessage(DWORD dwMessage.

PAPPBARDATA pabd);

Sends an appbar message to the system.

• Returns a rriessage-dependent value. For more information, see the documen
tation for the individual appbar messages.

dwMessage
Identifier of the appbar message to send. This parameter can be one of these
values:

ABM_GETAUTOHIDEBAR

Notifies the system that an appbar has been
activated.

Retrieves the handle of the autohide appbar
associated with a particular edge of the screen.

Retrieves the autohide and always-on-top states
of the Windows taskbar.

Retrieves the bounding rectangle of the
Windows taskbar.

Registers a new appbar and specifies the mes
sage identifier that the system should use to
send notification messages to the appbar.

ABM_SETAUTOHIDEBAR

ABM_SETPOS

ABM_ WINDOWPOSCHANGED

Article 13 Application Desktop Toolbars 261

Requests a size and screen position for an
appbar.

Unregisters an appbar, removing the bar from
the system's intemallist.

Registers or unregisters an autohide appbar for
an edge of the screen.

Sets the size and screen position of an appbar.

Notifies the system when an appbar's position
has changed.

pabd
Address of an APPBARDATA structure. The content of the structure depends
on the value of dwMessage.

APPBARDATA
typedef struct _AppBarData II abd

DWORD cbSize; II sizeof(APPBARDATA)
HWND hWnd; II handle of appbar
UINT uCallbackMessage; II see below
UINT uEdge; II see below
RECT rc; II see below
LPARAM 1 Param; II see below

} APPBARDATA, *PAPPBARDATA;

Contains information that the system uses to process appbar messages.

uCallbackMessage
Application-defined message identifier. The application uses the specified
identifier for notification messages that it sends to the the appbar identified
by the hWnd member. This member is used when sending the ABM_NEW
message.

uEdge
Flag that specifies an edge of the screen. This member can be one of these
values:

ABEJ30TTOM

ABE_LEFT

ABE_RIGHT

ABE_TOP

Bottom edge

Left edge

Right edge

Top edge

This member is used when sending the ABM_GETAUTOHIDEBAR,
ABM_QUERYPOS, ABM_SETAUTOHIDEBAR, and ABM_SETPOS
messages.

262 Programmer's Guide to Microsoft Windows 95

Messages

rc
RECT structure that contains the bounding rectangle, in screen coordinates,
of an appbar or the Windows taskbar. This member is used when sending
the ABM_GETTASKBARPOS, ABM_QUERYPOS, and ABM_SETPOS
messages.

lParam
Message-dependent value. This member is used with the message
ABM_SETAUTOHIDEBAR.

This structure is used with the SHAppBarMessage function.

An application sends appbar messages to register an appbar with the system;
to set an appbar's size, position, and state; to retrieve information about the
Windows taskbar; and so on. To send an appbar message, an application uses
the SHAppBarMessage function. There are the following appbar messages.

ABM ACTIVATE
SHAppBarMessage(ABM_ACTIVATE. pabd);

Notifies the system that an appbar has been activated. An appbar should call this
message in response to the WM_ACTIV ATE message.

• Always returns TRUE.

pabd
Address of an APPBARDATA structure that identifies the appbar to activate.
You must specify the cbSize and h Wnd members when sending this message;
all other members are ignored.

This message is ignored if the h Wnd member of the structure pointed to by pabd
identifies an autohideappbar. The system automatically sets the Z order for an
autohide appbar.

Article 13 Application Desktop Toolbars 263

ABM GETAUTOHIDEBAR
hwndAutoHide = (HWND) SHAppBarMessage(ABM_GETAUTOHIDEBAR, pabd);

Retrieves the handle of the autohide appbar associated with an edge of the screen.

• Returns the handle of the autohide appbar. The return value is NULL if an
error occurs or if no autohide appbar is associated with the given edge.

pabd
Address of an APPBARDATA structure that specifies the screen edge.
You must specify the cbSize, h Wnd, and uEdge members when sending
this message; all other members are ignored.

ABM GETSTATE
fuState = (UINT) SHAppBarMessage(ABM_GETSTATE, pabd);

Retrieves the autohide and always-on-top states of the Windows taskbar.

• Returns zero if the taskbar is not in the autohide or always-on-top state.
Otherwise, the return value is one or both of these values:

ABS_AL W A YSONTOP

ABS_AUTOHIDE

pabd

The taskbar is in the always-on-top state.

The taskbar is in the autohide state.

Address of an APPBARDATA structure. You must specify the cbSize and
h Wnd members when sending this message; all other members are ignored.

ABM GETTASKBARPOS
fResult = (BOOl) SHAppBarMessage(ABM_GETTASKBARPOS, pabd);

Retrieves the boundil1:g rectangle of the Windows taskbar.

• Returns TRUE if successful or FALSE otherwise.

pabd
Address of an APPBARDATA structure whose rc member receives the
bounding rectangle, in screen coordinates, of the taskbar. You must specify
the cbSize and h Wnd members when sending this message; all other members
are ignored.

264 Programmer's Guide to Microsoft Windows 95

ABM NEW
fRegistered = (BOOl) SHAppBarMessage(ABM_NEW, pabd);

Registers a new appbar and specifies the message identifier that the system
should use to send notification messages to the appbar. An appbar should send
this message before sending any other appbar messages.

• Returns TRUE if successful or FALSE if an error occurs or the appbar is
already registered.

pabd
Address of an APPBARDATA structure that contains the new appbar's
window handle and message identifier. You must specify the cbSize, hWnd,
and uCaUbackMessage members when sending this message; all other
members are ignored.

SHAppBarMessage(ABM_OUERYPOS, pabd);

Requests a size and screen position for an appbar. The message proposes a
screen edge and a bounding rectangle for the appbar. The system adjusts the
bounding rectangle so that the appbar does not interfere with the Windows taskbar
or any other appbars. An appbar should send this message before sending the
ABM_SETPOS message.

• Always returns TRUE.

pabd
Address of an APPBARDATA structure. The uEdge member specifies a
screen edge, and the rc member contains the proposed bounding rectangle.
When the SHAppBarMessage function returns, rc contains the approved
bounding rectangle. You must specify the cbSize, h Wnd, uEdge, and rc
members when sending this message; all other members are ignored.

Article 13 Application Desktop Toolbars 265

ABM REMOVE
SHAppBarMessage(ABM_REMOVE, pabd);

Unregisters an appbar, removing it from the system's intemallist. The system no
longer sends notification messages to the appbar nor prevents other applications
from using the screen area occupied by the appbar.

• Always returns TRUE.

pabd
Address of an APPBARDATA structure that contains the handle of the appbar
to unregister. You must specify the cbSize and h Wnd members when sending
this message; all other members are ignored.

This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

ABM SETAUTOHIDEBAR
fSussess = (BOOl) SHAppBarMessage(ABM_SETAUTOHIDEBAR, pabd);

Registers or unregisters an autohide appbar for an edge of the screen. The system
allows only one autohide appbar for each edge on a first come, first served basis.

• Returns TRUE if successful or FALSE if an error occurs or an autohide appbar
is already registered for the given edge.

pabd
Address of an APPBARDATA structure. The uEdge member specifies the
screen edge. The IParam parameter is set to TRUE to register the appbar
or FALSE to unregister it. You must specify the cbSize, h Wnd, uEdge, and
IParam members when sending this message; all other members are ignored.

266 Programmer's Guide to Microsoft Windows 95

ABM SETPOS
SHAppBarMessage(ABM_SETPOS, pabd);

Sets the size and screen position for an appbar. The message specifies a screen
edge and a bounding rectangle for the appbar. The system may adjust the bounding
rectangle so that the appbar does not interfere with the Windows taskbar or any
other appbars.

• Always returns TRUE.

pabd
Address of an APPBARDATA structure. The uEdge member specifies a
screen edge, and the rc member contains the bounding rectangle. When the
SHAppBarMessage function returns, rc contains the approved bounding
rectangle. You must specify the cbSize, h Wnd, uEdge, and rc members
when sending this message; all other members are ignored.

This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

ABM WINDOWPOSCHANGED
SHAppBarMessage(ABM_WINDOWPOSCHANGED, pabd);

Notifies the system when an appbar's position has changed. An appbar should call
this message in response to the WM_ WINDOWPOSCHANGED message.

• Always returns TRUE.

pabd
Address of an APPBARDATA structure that identifies the appbar to activate.
You must specify the cbSize and h Wnd members when sending this message;
all other members are ignored.

This message is ignored if the h Wnd member of the structure pointed to by pabd
identifies an autohide appbar.

Notification Messages
The system sends notification messages to an appbar to notify it about events. The
message identifier for the notification messages is an application-defined value that
is set when the application sends the ABM_NEW message. The system sends the
following notification messages to an appbar.

ABN FULLSCREENAPP
ABN_FUllSCREENAPP
fOpen = (BOOl) lParam;

Article 13 Application Desktop Toolbars 267

Notifies an appbar when a full-screen application is opening or closing. When a
full-screen application is opening, an appbar must drop to the bottom of the Z order.
When it is closing, the appbar should restore its Z order position. This notification
message is sent in the form of an application-defined message that is set by the
ABM_NEW message.

• No return value.

fOpen
Flag specifying whether a full-screen application is opening or closing. This
parameter is TRUE if it is opening or FALSE if it is closing.

ABN POSCHANGED
Notifies an appbar when an event has occurred that may effect the appbar's size
and position. Events include changes in the taskbar's size, position, and visibility
state as well as the addition, removal, or resizing of another appbar on the same
side of the screen.

• No return value.

An appbar should respond to this notification message by sending the messages
ABM_QUERYPOS and ABM_SETPOS. If its position has changed, the appbar
should call the Move Window function to move itself to the new position.

ABN STATECHANGE
ABN_STATECHANGE

Notifies an appbar that the taskbar's autohide or always-on-top state has changed;
that is, the user has checked or unchecked the "Always on top" or "Auto hide"
check box on the taskbar's property sheet. An appbar can use this notification
message to set its state to conform to that of the taskbar, if desired.

• No return value.

268 Programmer's Guide to Microsoft Windows 95

ABN WINDOWARRANGE
ABN_WINDOWARRANGE
fBeginning = (BOOl) lParam;

Notifies an appbar that the user has selected the Cascade, Tile Horizontally, or Tile
Vertically command from the taskbar's context menu.

• No return value.

/Beginning
Flag specifying whether the cascade or tile operation is beginning.
This parameter is TRUE if the operation is beginning and the windows
have not yet been moved. It is FALSE if the operation has completed.

The system sends this notification message twice-fIrst with lParam set to
TRUE and then with lParam set to FALSE. The first notification is sent before
the windows are cascaded or tiled, and the second is sent after the cascade or
tile operation has occurred.

ARTICLE 14

Shell Links

About Shell Links
A shell link is a data object that contains information used to access another
object in the shell's namespace-that is, any object visible through Microsoft®
Windows® 95 Explorer. The objects that can be accessed through shell links
include files, folders, disk drives, and printers. A shell link allows the user or
an application to access an object from anywhere in the namespace; the user
or application does not need to know the current name and location of the object.

269

The user creates a shell link by choosing the Create Shortcut command from an
object's context menu. The system automatically creates an icon for the shell link
by combining the object's icon with a small arrow (known as the system-defined
link overlay icon) that appears in the lower left comer of the icon. A shell link that
has an icon is called a shortcut; however, the terms shell link and shortcut are often
used interchangeably. Typically, the user creates shortcuts to gain quick access to
objects stored in subfolders or in shared folders on other machines. For example,
a user can create a shortcut to a Microsoft Word document located in a subfolder
and place the shortcut icon on the desktop. Later the user can start Word and open
the document simply by double-clicking the shortcut icon. If the document is later
moved or renamed, the system takes steps to update the shortcut the next time the
user selects it.

Applications can also create and use shell links and shortcuts. For example,
a word processing application might create a shell link to implement a list of the
most recently used documents. An application creates a shell link by using
the IShellLink interface to create a shell link object and uses the IPersistFile
or IPersistStream interface to store the object in a file or stream. This article
describes the IShellLink interface and explains how to use the interface to
create and resolve shell links from within a Windows-based application.

270 Programmer's Guide to Microsoft Windows 95

Because the design of shell links is based on the OLE Component Object Model
(COM), you should be familiar with the basic concepts of COM and OLE
programming before reading this article. For more information, see the OLE
documentation included in the Microsoft Windows Software Development
Kit (SDK).

Link Resolution
If a user creates a shortcut to an object and the name or location of the object
is subsequently changed, the system automatically takes steps to update, or
resolve, the shortcut the next time the user selects it. However, if an application
creates a shell link and stores it in a stream, the system does not automatically
attempt to resolve the link. The application must resolve the link by calling the
ISheULink: : Resolve member function.

When a shell link is created, the system saves information about the link.
When resolving a link (either automatically or if ISheULink: : Resolve is called),
the system first retrieves the path associated with the shell link by using a pointer
to the shell link' s identifier list. (For more information about the identifier list, see
"Item Identifiers and Identifier Lists" later in this article.) The system searches for
the associated object in that path and, if it finds the object, resolves the link. If the
system cannot find the object, it looks in the same directory for an object that has
the same file creation time and attributes, but a different name. This type of search
resolves a link to an object that has been renamed.

If the system still 'cannot find the object, it searches the subdirectories of the
current directory, looking recursively though the directory tree for a match with
either the same name or creation time. If the system does not find a match after
that, it displays a dialog box prompting the user for a location. An application
can suppress the dialog box by specifying the SLR_NO_UI value in a call to
ISheULink: : Resolve.

Initialization of the Component Obj~ct Library
Before an application can create and resolve shortcuts, it must initialize the
component object library by calling the Colnitialize function. Each call to
Colnitialize requires a corresponding call to the CoUninitialize function, which
an application should call when it terminates. The call to CoUninitiaiize ensures
that the application does not terminate until it has received all of its pending
messages.

Link Files

Article 14 Shell Links 271

Location-Independent Names
The system provides location-independent names for shell links to objects stored
in shared folders. If the object is stored locally, the system provides the local path
and filename for the object. If the object is stored remotely, the system provides
the Universal Naming Convention (UNC) network resource name for the object.
Because the system provides location-independent names, a shell link can serve
as a universal name for a file that can be transferred to other machines.

When the user creates a shortcut to an object by choosing the Create Shortcut
command from the object's context menu, Windows stores the information it needs
to access the object in a link file-that is, a binary file that has the .LNK filename
extension. A link file contains the following information:

• The location (path) of the object referenced by the shortcut (called the
"corresponding object" in this article).

• The working directory of the corresponding object.

• The list of arguments-that the system passes to the corresponding object
when the IContextMenu::lnvokeCommand member function is activated
for the shortcut.

• The show (SW _) command used to set the initial show state of the corre-
sponding object.

• The location (path and index) of the shortcut's icon.

• The shortcut's description string.

• The hot key for the shortcut.

When a link file is deleted, the corresponding object is not affected.

If you create a shortcut to another shortcut, the system simply copies the link
file rather than creating a new link file. This is important to remember if you are
assuming that the shortcuts will remain independent of each other.

An application can register a filename extension as a "shortcut" file type. If a file
has a filename extension that has been registered as a shortcut file type, the system
automatically adds the system-defined link overlay icon (a small arrow) to the file's
icon. To register a filename extension as a shortcut file type, you must add the
"Is Shortcut" value to the registry description of the filename extension. Note that
the shell must be restarted for the overlay icon to take effect.

272 Programmer's Guide to Microsoft Windows 95

HKEY_CLASSES_ROOT
.xyz (Default) "XYZApp"

XYZApp IsShortcut;",""

Location in the Namespace
A shortcut can exist on the desktop or anywhere in the shell's namespace.
Similarly, the object that is associated with the shortcut can also exist anywhere
in the shell's namespace. An application can use the IShellLink::SetPath
member function to set the path and filename for the associated object, and the
IShellLink::GetPath member function to retrieve the current path and filename
for the object.

Working Directory
The working directory is the directory where the corresponding object of a shortcut
loads or stores files when the user does not identify a specific directory. A link
file contains the name of the working directory for the corresponding object.
An application can set the name of the working directory for the corresponding
object by using the IShellLink::SetWorkingDirectory member function and can
retrieve the name of the current working directory for the corresponding object by
using the IShellLink: : Get WorkingDirectory member function.

Command-Line Arguments
A link file contains command-line arguments that the shell passes to the corre
sponding object when the user selects the link. An application can set the command
line arguments for a shortcut by using the IShellLink::SetArguments member
function. It is useful to set command-line arguments when the corresponding
application, such as a linker or compiler, takes special flags as arguments. An
application can retrieve the command-line arguments from a shortcut by using
the IShellLink: : GetArguments member function.

Show Command
When the user double-clicks a shortcut, the system starts the application associated
with the corresponding object and sets the initial show state of the application
based on the show command specified by the shortcut. The show command can
be any of the SW _ values included in the description of the ShowWindow
function. An application can set the show command for a shortcut by using the
IShellLink: :SetShowCmd member function and can retrieve the current show
command by using the IShellLink: : GetShowCmd member function.

Article 14 Shell Links 273

Shortcut Icon and Description
Like other shell objects, a shortcut has an icon. The user accesses the object
associated with a shortcut by double-clicking the shortcut's icon. When the system
creates an icon for a shortcut, it uses the bitmap of the corresponding object and
adds the system-defined link overlay icon (a small arrow) to the lower left comer.
An application can set the location (path and index) of a shortcut's icon by using
the IShellLink::SetlconLocation member function. An application can retrieve
the current location (path and index) of a shortcut's icon by using the
IShellLink: : GetlconLocation member function.

A shortcut also has a description, which is a brief string that appears below the
shell link icon. By default, the description consists of the words "Shortcut to"
followed by the filename of the object. The user can edit the description string
by selecting it and entering a new string. An application can set the description
string by using the IShellLink::SetDescription member function and can
retrieve the current description string by using the IShellLink::GetDescription
member function.

Hot Key
A shortcut object can have a hot key associated with it. A hot key allows the user
to use the shortcut by pressing a particular combination of keys. An application
can set the hot key for a shortcut by using the IShellLink: :SetHotkey member
function and can retrieve the current hot key for a shortcut by using the
IShellLink: : GetHotkey member function.

Item Identifiers and Identifier Lists
The shell uses object identifiers within the shell namespace. All of the objects that
are visible in the shell (files, directories, servers, workgroups, and so on) have an
identifier that is unique among the objects within the parent folder. These identifiers
are called item identifiers, and they have the SHITEMID data type as defined in
the SHLOBIH header file. An item identifier is a variable-length byte stream that
contains information for identifying an object within a folder. Only the creator of
an item identifier knows the content and format of the identifier. The only part
of an item identifier that the shell uses is the first two bytes, which specify 'the
size of the identifier.

Each parent folder has its own item identifier that identifies it within its own parent
folder. Thus, any shell object can be uniquely identified by a list of item identifiers.
A parent folder keeps a list of identifiers for the items in the folder. The list has the
ITEMIDLIST data type. Item identifier lists are allocated by the shell and may be
passed across shell interfaces, such as IShellFolder. It is important to remember
that each identifier in an item identifier list is only meaningful within the context of
the parent folder.

274 Programmer's Guide to Microsoft Windows 95

An application can use the IShellLink: :SetIDList member function to set a
shortcut's item identifier list. This function is useful when setting a shortcut
to an object that is not a file, such as a printer or disk drive. An application can
retrieve a shortcut's item identifier list by using the ISheIlLink::GetIDList
member function.

Using Shell Links
This section contains examples that demonstrate how to create and resolve shortcuts
from within a Windows-based application.

Creating a Shortcut to a File
The CreateLink function in the following example creates a shortcut. The param
eters include a pointer to the name of the file to link to, a pointer to the name of
the shortcut that you are creating, and a pointer to the description of the link.
The description consists of the string, "Shortcut to filename," where filename is
the name of the file to link to.

Because CreateLink calls the CoCreateInstance function, it is assumed that the
CoInitialize function has already been called. CreateLink uses the IPersistFile
interface to save the shortcut and the IShellLink interface to store the filename and
description.

II CreateLink - uses the shell's IShellLink and IPersistFile interfaces
II to create and store a shortcut to the specified object.
II Returns the result of calling the member functions of the interfaces.
II lpszPathObj - address of a buffer containing the path of the object
II lpszPathLink - address of a buffer containing the path where the
II shell link is to be stored
II lpszDesc - address of a buffer containing the description of the
II shell link

HRESULT CreateLink(LPCSTR lpszPathObj.
LPSTR lpszPathLink. LPSTR lpszDesc)

HRESULT hres;
IShell Link* psl;

II Get a pointer to the IShellLink interface.
hres = CoCreatelnstance(&CLSID_ShellLink. NULL.

CLSCTX_INPROC_SERVER. &IID_IShellLink. &psl);
if (SUCCEEDED(hres» {

IPersistFile* ppf;

}

Article 14 Shell Links 275

II Set the path to the shortcut target, and add the
II description.
psl->lpVtbl->SetPath(psl, lpszPathObj);
psl->lpVtbl->SetDescription(psl, lpszDesc);

II Query IShellLink for the IPersistFile interface for saving the
II shortcut in persistent storage.
hres = psl->lpVtbl->QueryInterface(psl, &IID_IPersistFile,

&ppf) ;

if (SUCCEEDED(hres»
WORD wsz[MAX_PATH];

II Ensure that the string is ANSI.
MultiByteToWideChar(CP_ACP, 0, lpszPathLink, -1,

wsz, MAX_PATH);

II Save the link by calling IPersistFile::Save.
hres = ppf->lpVtbl->Save(ppf, wsz, TRUE);
ppf->lpVtbl->Release(ppf);

psl->l pVtbl->Rel ease(psl);

return hres;

Resolving A Shortcut
An application may need to access and manipulate a shortcut that was created
previously. This operation is referred to as "resolving" the shortcut.

The application-defined Resolvelt function in the following example resolves a
shortcut. Its parameters include a window handle, a pointer to the path of the
shortcut, and the address of a buffer that receives the new path to the object.
The window handle identifies the parent window for any message boxes that
the shell may need to display. For example, the shell can display a message box
if the link is on unshared media, if network problems occur, if the user needs to
insert a floppy disk, and so on.

The Resolvelt function calls the CoCreatelnstance function and assumes that
the Colnitialize function has already been called. Note that Resolvelt needs to
use the IPersistFile interface to store the link information. IPersistFile is imple
mented by the ISheULink object. The link information must be loaded before the
path information is retrieved, which happens later in the example. Failing to load
the link information causes the calls to the IShellLink::GetPath and
IShellLink: : GetDescription member functions to fail.

276 Programmer's Guide to Microsoft Windows 95

HRESULT Resolvelt(HWND hwnd. LPCSTR lpszLinkFile. LPSTR lpszPath)
{

HRESULT hres;
IShellLink* psl;
char szGotPath[MAX_PATH];
char szDescription[MAX_PATH];
WIN32_FIND_DATA wfd;

*lpszPath = 0; II assume failure

II Get a pointer to the IShellLink interface.
hres = CoCreatelnstance(&CLSID_ShellLink. NULL.

CLSCTX_INPROC_SERVER. &IID_IShellLink. &psl);
if "(SUCCEEDED(hres» {

IPersistFile* ppf;

II Get a pointer to the IPersistFile interface.
hres = psl->lpVtbl->Ouerylnterface(psl. &IID_IPersistFile.

&ppf);
if (SUCCEEDED(hres» {

WORD wsz[MAX_PATH];

II Ensure that the string is Unicode.
MultiByteToWideChar(CP_ACP. 0. lpszLinkFile. -1. wsz.

MAX_PATH);

II Load the shortcut.
hres ~ ppf->lpVtbl->Load(ppf. wsz. STGM_READ);
if (SUCCEEDED(hres» {

II Resolve the link.
hres = psl->lpVtbl->Resolve(psl. hwnd. SLR_ANY_MATCH);
if (SUCCEEDED(hres» {

II Get the path to the link target.
hres = psl->lpVtbl->GetPath(psl. szGotPath.

MAX_PATH. (WIN32_FIND_DATA *)&wfd.
SLGP_SHORTPATH);

if (!SUCCEEDED(hres)
HandleErr(hres); II application-defined function

Article 14 Shell Links 277

II Get the description of the target.
hres = psl->lpVtbl->GetDescription(psl,

szDescription, MAX_PATH);
if (!SUCCEEDED(hres»

HandleErr(hres);
lstrcpy(lpszPath, szGotPath);

II Release the pointer to the IPersistFile interface.
ppf->lpVtbl->Release(ppf);
}

II Release the pointer to the IShellLink interface.
psl->l pVtbl->Rel ease(psl);
}

return hres;

Creating a Link to a Nonfile Object
Creating a shortcut to a nonfile object, such as a printer, is similar to creating a
shortcut to a file. The main difference is that, rather than setting the path to the file,
you must set the identifier list to the printer. To set the identifier list, you must call
the ISheIlLink::SetIDList member function, specifying the address of an identifier
list.

Each object within the shell's namespace has an item identifier, a variable-length
byte stream containing information that identifies the object within its folder.
The shell often concatenates item identifiers into null-terminated lists consisting
of any number of item identifiers.

In general, if you need to set a shortcut to an item that does not have a filename,
such as a printer, you will already have a pointer.to the object's IShellFolder
interface. The IShellFolder interface is used to create namespace extensions.

Once you have the class identifier for the IShellFolder interface, you can call
the CoCreatelnstance function to get the address of the interface. Then you can
call the interface to enumerate the objects in the folder and retrieve the address of
the item identifier for the object that you are searching for. Finally, you can use the
address in a call to the IShellLink::SetIDList member function to create a shortcut
to the object.

278 Programmer's Guide to Microsoft Windows 95

Reference
The following interface is used with shell links.

Interfaces and Member Functions
IShellLink
Designates an interface that allows an application to create and resolve shell links.
The IShellLink interface has the following member functions.

GetArguments

GetDescription

GetHotkey

GetlconLocation

GetIDList

GetPath

GetShowCmd

GetWorkingDirectory

Resolve

SetArguments

SetDescription

SetHotkey

SetlconLocation

SetlDList

SetPath

SetRelativePath

SetShowCmd

SetWorkingDirectory

Retrieves the command-line arguments associated with a
shell link object.

Retrieves the description string for a shell link object.

Retrieves the hot key for a shell link object.

Retrieves the location (path and index) of the icon for a shell
link object.

Retrieves the list of item identifiers for a shell link object.

Retrieves the path and filename of a shell link object.

Retrieves the show (SW _) command for a shell link object.

Retrieves the name of the working directory for a shell link
object.

Resolves a shell link by searching for the shell link object
and updating the shell link path and its list of identifiers,
if necessary.

Sets the command-line arguments associated with a shell
link object.

Sets the description string for a shell link object.

Sets the hot key for a shell link object.

Sets the location (path and index) of the icon for a shell link
object.

Sets the list of item identifiers for a shell link object.

Sets the path and filename of a shell link object.

Sets the relative path for a shell link object.

Sets the show (SW _) command for a shell link object.

Sets the name of the working directory for a shell link object.

Like all OLE interfaces, IShellLink also includes the Querylnterface, AddRef,
and Release member functions.

Article 14 Shell Links 279

IShell Link: :GetArguments
HRESULT GetArguments(ISHELLLINK FAR * pShlLnk.

LPSTR pszArgs. int cchMaxPath);

Retrieves the command-line arguments associated with a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

pszArgs
Address of a buffer that receives the command-line arguments.

cchMaxPath
Maximum number of characters to copy to the buffer pointed to by pszArg s.

ISheIiLink::GetDescription
RESULT GetDescription(ISHELLLINK FAR * pShlLnk.

LPSTR pszName. int cchMaxName);

Retrieves the description string for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

psiName
Address of a buffer that receives the description string.

cchMaxName
Maximum number of characters to copy to the buffer pointed to by psiName.

ISheliLink: :GetHotkey
HRESULT GetHotkey(ISHELLLINK FAR * pShlLnk.

WORD *pwHotkey);

Retrieves the hot key for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

280 Programmer's Guide to Microsoft Windows 95

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pwHotkey
Address of the hot key. The virtual-key code is in the low-order byte, and
the modifier flags are in the high-order byte. The modifier flags can be a
combination of these values:

HOTKEYF _ALT

HOTKEYF_CONTROL

HOTKEYF _EXT

HOTKEYF _SHIFT

ALTkey

cTRLkey

Extended key

SHIFf key

ISheIiLink::GetlconLocation
HRESULT GetlconLocation(ISHELLLINK FAR * pShlLnk.

LPSTR pszlconPath. int cchlconPath. int *pilcon);

Retrieves the location (path and index) of the icon for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

psz/conPath
Address of a buffer that receives the path of the file containing the icon.

cchlconPath
Maximum number of characters to copy to the buffer pointed to by psz/conPath.

pi/con
Address of a value that receives the index of the icon.

ISheliLink: :GetlDList
HRESULT GetIDList(ISHELLLINK FAR * pShlLnk.

LPITEMIDLIST * ppidl);

Retrieves the list of item identifiers for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 14 Shell Links 281

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

ppidl
Address of a pointer to a list of item identifiers.

IShe11 Li nk: :GetPath
HRESULT GetPath(IShellLink FAR * pShlLnk,

LPSTR pszFile, int cchMaxPath, WIN32_FIND_DATA *pfd, DWORD fFlags);

Retrieves the path and filename of a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

pszFile
Address of a buffer that receives the path and filename of the shell link object.

cchMaxPath
Maximum number of bytes to copy to the buffer pointed to by pszFile.

pfd
Address of a WIN32_FIND _DATA structure that contains information about
the shell link object.

/Flags
Flags that specify the type of path information to retrieve. This parameter can be
a combination of these values:

SLGP _SHORTP ATH

SLGP _UNCPRIORITY

Retrieves the standard short (8.3) filename.

Retrieves the Universal Naming Convention (UNC)
path for the file.

ISheliLink: :GetShowCmd
HRESULT GetShowCmd(ISHELLLINK FAR * pShlLnk,

int *piShowCmd);

Retrieves the show command for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

282 Programmer's Guide to Microsoft Windows 95

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

piShowCmd
Address of the show command. For a list of show commands, see the description
of the ShowWindow function.

ISheliLink: :GetWorkingDirectory
HRESULT GetWorkingDirectory(ISHELLLINK FAR * pShlLnk.

LPSTR pszDir, int cchMaxPath);

Retrieves the name of the working directory for a shell link: object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszDir
Address of a buffer that receives the name of the working directory.

cchMaxPath
Maximum number of characters to copy to the buffer pointed to by pszDir.
The name of the working directory is truncated if it is longer than the maximum
specified by this parameter.

ISheIiLink::Resolve
HRESULT Resolve(ISHELLLINK FAR * pShlLnk. HWND hwnd.

DWORD fFl ags) ;

Resolves a shell link:. The system searches for the shell link: object and, if necessary,
updates the shell link: path and its list of identifiers.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

hwnd
Handle of a window that the shell uses as the parent window for a dialog box.
The shell displays the dialog box if it needs to prompt the user for more
information while resolving a shell link:.

Article 14 Shell Links 283

fFlags
Action flags. This parameter can be a combination of these values:

SLR_ANY _MATCH Resolves the link, displaying a dialog box if the system
needs infonnation from the user.

Prevents the shell from displaying a dialog box if it can-
not resolve the shell link. When this value is specified,
the high-order word of this parameter specifies a time-out
duration, in milliseconds. The function returns if the link
cannot be resolved within the time-out duration. If the high
order word is set to zero, the time-out duration defaults to
3000 milliseconds (3 seconds).

Directs the shell to update the path to the link and the list of
identifiers if the link object has been changed. If this value
is used, it is not necessary to call the IPersistFile: : IsDirty
member function to determine whether the link object has
changed.

When this member function is called, the system retrieves the path associated with
the current link object and searches for the object in that path. If the system finds
the object, it resolves the link. If the system cannot find the object, it looks in the
same directory for an object with the same file creation time and attributes, but
with a different name. This type of search resolves a link to an object that has been
renamed.

If the system still cannot find the link object, it searches the subdirectories of the
current directory. It does a recursive search of the directory tree looking for a match
with either the same name or creation time. If it does not find a match after that,
the shell displays a dialog box prompting the user for a location. An application can
suppress the dialog box by specifying the SLR_NO_VI value in a call to this
member function.

ISheliLink: :SetArguments
HRESULT SetArguments(ISHELLLINK FAR * pShlLnk.

LPCSTR pszArgs);

Sets the command-line arguments for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

284 Programmer's Guide to Microsoft Windows 95

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszArgs
Address of a buffer that contains the new command-line arguments.

This member function is useful when creating a link to an application that takes
special flags as arguments, such as a compiler.

IShell Link: :SetDescription
HRESULT SetDescription(ISHELLLINK FAR * pShlLnk,

LPCSTR pszName);

Sets the description for a shell link object. The description can be any application
defined string.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszName
Address of a buffer containing the new description string.

ISheliLink: :SetHotkey
HRESULT SetHotkey(ISHELLLINK FAR * pShlLnk,

WORD wHotkey);

Sets a hot key for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

wHotkey
Hot key. The virtual-key code is in the low-order byte, and the modifier flags
are in the high-order byte. The modifier flags can be a combination of the values
specified in the description of the IShellLink: : GetHotkey member function.

Setting a hot key allows the user to activate the object by pressing a particular
combination of keys.

Article 14 Shell Links 285

IShe11 Li n k: :Setlcon Location
HRESULT SetlconLocation(ISHELLLINK FAR * pShlLnk.

LPCSTR pszlconPath. int ilcon);

Sets the location (path and index) of the icon for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

psz]eonPath
Address of a buffer that contains the path of the file containing the icon.

iIeon
Index of the icon.

ISheliLink: :SetlDList
HRESULT SetIDList(ISHELLLINK FAR * pShlLnk.

LPCITEMIDLIST pidl);

Sets the list of item identifiers for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

pidl
Address of a list of item identifiers.

This member function is useful when an application needs to set a shell link to an
object that is not a file, such as a Control Panel application, a printer, or another
computer.

286 Programmer's Guide to Microsoft Windows 95

IShell Link: :SetPath
HRESULT SetPath(ISHELLLINK FAR * pShlLnk.

LPCSTR pszFile);

Sets the path and filename of a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszFile
Address of a buffer that contains the new path.

IShell Li n k: :SetRelativePath
HRESULT SetRelativePath(ISHELLLINK FAR * pShlLnk.

LPCSTR pszPathRel. DWORD dwReserved);

Sets the relative path to the shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszPathRel
Address of a buffer that contains the new relative path.

dwReserved
Reserved; must be zero.

This function sets the relative path for a shortcut that is saved in a stream using
the IPersistStream interface, or to override the default relative path tracking for
a shortcut. When a shortcut is saved in a file, the system keeps track of the relative
path between the file in which the shortcut is saved and the target of the shortcut
(if there is one). If the link is broken, the system uses SetRelativePath to
attempt to restore the link. For a shortcut is saved in a stream instead of a file,
SetRelativePath allows an application to set the link between the shortcut and its
target.

ISheliLink: :SetShowCmd
HRESULT SetShowCmd(ISHELLLINK FAR * pShlLnk,

int iShowCmd);

Article 14 Shell Links 287

Sets the show command for a shell link object. The show command sets the initial
show state of the window.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

iShowCmd
Show command. For a list of the show commands, see the description of the
ShowWindow function.

ISheliLink: :SetWorkingDirectory
HRESULT SetWorkingDirectory(ISHELLLINK FAR * pShlLnk,

LPCSTR pszDir);

Sets the name of the working directory for a shell link object.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk
Address of the ISheULink interface. In C++, this parameter is implicit.

pszDir
Address of a buffer that contains the name of the new working directory.

The working directory must be set only if the object requires it to be set. For
example, if an application creates a shell link to a Microsoft Word document that
uses a template residing in a different directory, the application would use this
method to set the working directory.

ARTICLE 15

Taskbar Notification Area

About the Taskbar Notification Area
The Microsoft® Windows® 95 taskbar includes a notification area where an
application can put an icon to indicate the status of an operation or to notify the
user about an event. For example, an application might put a printer icon in the
taskbar to show that a print job is under way. The notification area is at the right
end of the taskbar (if the taskbar has a horizontal orientation) or at the bottom
(if the taskbar has a vertical orientation).

289

An icon in the taskbar can have a tooltip control associated with it. In addition, the
system can send notification messages to the application whenever a mouse event
occurs in the bounding rectangle of the icon.

Sending Messages
An application sends messages to add, modify, or delete taskbar icons. To send
a message, an application must use the Sbell_Notifylcon function. The function
parameters include the identifier of the message to send, such as NIM_ADD, and
the address of an NOTIFYICONDATA structure. The structure members contain
information that the system needs to process the given message.

To add an icon to the taskbar's notification area, send the NIM_ADD message.
The NOTIFYICONDATA structure that accompanies the message specifies the
handle of the icon, the identifier of the icon, and, if desired, the tooltip text for the
icon. If the taskbar has the Show Clock option selected, the system places the new
icon to the immediate left of the clock. Otherwise, the icon appears on the right side
or at the bottom of the toolbar. Any existing icons are shifted to tl).e left to make
room for the new icon.

An application can delete an icon from the taskbar notification area by sending the
NIM_DELETE message. It can send the NIM_MODIFY message to modify the
information that the system maintains for a taskbar icon, including its icon handle,
tooltip text, and callback message identifier.

290 ' Programmer's Guide to Microsoft Windows 95

Receiving Callback Messages
Each taskbar icon can have an application-defined callback message associated
with it. If an icon has a callback message, the system will send the message to
the application whenever a mouse event occurs within the icon. In this way,
the system can notify an application whenever the user clicks or double-clicks
the icon, or moves the mouse cursor into the icon's bounding rectangle.

An application defines an icon's callback message when it adds the icon to
the taskbar. The uCaUbackMessage member of the NOTIFYICONDATA
structure included with the NIM_ADD message specifies the identifier of the
callback message. When a mouse event occurs, the system sends the callback
message to the window identified by the hWnd member. The message's lParam
parameter is the identifier of the mouse message that the system generated as a
result of the mouse event. For example, when the mouse cursor moves into a
taskbar icon, the lParam parameter of the resulting callback message contains
the WM_MOUSEMOVE identifier. The wParam parameter contains the identifier
of the· taskbar icon in which the mouse event occurred.

Using the Taskbar Notification Area
This section includes examples that demonstrate how to add icons to the taskbar
notification area and how to process callback messages for taskbar icons.

Adding and Deleting Icons
You add an icon to the taskbar notification area by filling a NOTIFYICONDATA
structure and then sending the structure by means of the NIM_ADD message.
The structure members must specify the handle of the window that is adding the
icon and the icon identifier and icon handle. You can also specify tooltip text for
the icon, and, if you need to receive mouse messages for the icon, the identifier
of the callback message that the system should use to send the message to your
window.

The function in the following example demonstrates how to add an icon to the
taskbar.

II MyTaskBarAddlcon - adds an icon to the taskbar notification area.
II Returns TRUE if successful or FALSE otherwise.
II hwnd - handle of the window to receive callback messages
II uID - identifier of the icon
II hicon - handle of the icon to add
II lpszTip - tooltip text

Article 15 Taskbar Notification Area 291

BOOl MyTaskBarAddlcon(HWND hwnd, UINT uID, HICON hicon, lPSTR lpszTip)
{

BOOl res;
NOTIFYICONDATA tnid;

tnid.cbSize = sizeofCNOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.uID = uID;
tnid.uFlags = NIF_MESSAGE I NIF_ICON I 'NIF_TIP;
tnid.uCallbackMessage = MYWM_NOTIFYICON;
tnid.hlcon = hicon;
if (lpszTip)

lstrcpynCtnid.szTip, lpszTip, sizeof(tnid.szTip»;
else

tnid.szTip[0] = '\0';

res = Shell_NotifylconCNIM_ADD, &tnid);

if (hicon)
DestroylconChicon);

return res;

To delete an icon from the taskbar notification area, you must fill a
NOTIFYICONDATA structure and send it to the system in the context of an
NIM_DELETE message. When deleting a taskbar icon, you need to specify only
the cbSize, h Wnd, and ulD members, as the following example shows.

II MyTaskBarDeletelcon - deletes an icon from the taskbar
II notification area.
II Returns TRUE if successful or FALSE otherwise.
II hwnd - handle of the window that added the icon
II uID - identifier of the icon to delete
BOOl MyTaskBarDeletelcon(HWND hwnd, UINT uID)
{

}

BOOl res;
NOTIFYICONDATA tnid;

tnid.cbSize = sizeof(NOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.uID = uID;

res = Shell_NotifylconCNIM_DElETE, &tnid);
return res;

292 Programmer's Guide to Microsoft Windows 95

Receiving Mouse Events
If you specify a callback message for a taskbar icon, the system sends the message
to your application whenever a mouse event occurs in the icon's bounding rect - .
angle. The wParam parameter specifies the identifier of the taskbar icon, and the
lParam parameter specifies the mouse message that the system generated as a
result of the mouse event.

The function in the following example is from an application that adds a battery
icon and a printer icon to the taskbar. The application calls the function when it
receives a callback message. The function determines if the user has clicked one
of the icons and, if a click has occurred, calls an application-defined function to
display status information.

II On_MYWM_NOTIFYICON - processes callback messages for taskbar icons.
II wParam - first message parameter of the callback message
II lParam - second message parameter of the callback message
void On_MYWM_NOTIFYICON(WPARAM wParam, LPARAM lParam)
{

UINT uID;
UINT uMouseMsg;

uID = (UINT) wParam;
uMouseMsg = (UINT) lParam;

if (uMouseMsg == WM_LBUTTONDOWN)
switch (uID) {

}

}

return;

case IDI_MYBATTERYICON:

II The user clicked the battery icon. Display the
II battery status.
ShowBatteryStatus();
break;

case IDI_MYPRINTERICON:

II The user clicked the printer icon. Display the
II status of the print job.
ShowJobStatus();
break;

default:
break;

Reference

Article 15 Taskbar Notification Area 293

The following function, structure, and messages are associated with the taskbar
notification area.

Function and Structure
The following function and structure are used with the taskbar notification area.

Shell_ Notifylcon
WINSHEllAPI BOOl WINAPI Shell_Notifylcon(DWORD dwMessage,

PNOTIFYICONDATA pnid);

Sends a message to the system to add, modify, or delete a taskbar icon.

• Returns TRUE if successful or FALSE otherwise.

dwMessage
Identifier of the message to send. This parameter can be one of these values:

NIM_ADD Adds an icon to the taskbar notification area.

NIM_DELETE

NIM_MODIFY

Deletes an icon from the taskbar notification area.

Modifies an icon in the taskbar notification area.

pnid
Address of an NOTIFYICONDATA structure. The content of the structure
depends on the value of dwMessage.

NOTIFYICONDAT A
typedef struct _NOTIFYICONDATA { II nid

DWORD cbSize; II sizeof(NOTIFYICONDATA)
HWND hWnd; II see below
UINT uID; II see below
UINT uFlags; II see below
UINT uCallbackMessage; II see below
HICON hlcon; II see below
char szTip[64]; II see below

NOTIFYICONDATA, *PNOTIFYICONDATA;

Contains information that the system needs to process taskbar notification area
messages.

294 Programmer's Guide to Microsoft Windows 95

Messages

hWnd
Handle of the window that receives notification messages associated with an
icon in the taskbar notification area.

olD
Application-defined identifier of the taskbar icon.

uFlags
Array of flags that indicate which of the other structure members contain valid
data. This member can be a combination of these values:

NIF_ICON

NIP_MESSAGE

NIP_TIP

uCailbackMessage

The hIcon member is valid.

The uCallbackMessage member is valid.

The szTip member is valid.

Application-defined message identifier. The system uses the specified identifier
for notification messages that it sends to the window identified by h Wnd when
ever a mouse event occurs in the bounding rectangle of the icon.

hIcon
Handle of the taskbar icon to add, modify, or delete.

szTip
Tooltip text to display for the taskbar icon.

An application sends messages to add, modify, or delete taskbar icons. To send
a message, an application uses the ShelCNotifylcon function. The following
messages are associated with taskbar icons.

NIM ADD
fAdded = Shell_Notifylcon<NIM_ADD. pnid);

Adds an icon to the taskbar notification area.

• Returns TRUE if successful or FALSE otherwise.

pnid
Address of an NOTIFYICONDATA structure that contains information about
the icon to add.

Article 15 Taskbar Notification Area 295

NIM DELETE
fDeleted = Shell_Notifylcon(NIM_DELETE, pnid);

Deletes an icon from the taskbar notification area.

• Returns TRUE if successful or FALSE otherwise.

pnid
Address of an NOTIFYICONDATA structure that contains information about
the taskbar icon to delete.

NIM MODIFY
fModified = Shell_Notifylcon(NIM_MODIFY, pnid);

Changes the icon, tooltip text, or notification message identifier for an icon in the
taskbar notification area.

• Returns TRUE if successful or FALSE otherwise.

pnid
Address of an NOTIFYICONDATA structure that contains the information
used to change the icon, tooltip text, or notification message identifier for the
taskbar icon.

297

PAR T 4

Using Windows 95
Features

Article 16 File Viewers .. 299

Article 17 File Parsers ... 327

Article 18 Briefcase Reconcilers. 399

Article 19 Passwords Control Panel . 411

Article 20 Device 110 Control 425

Article 21 System Policies .. 439

Article 22 Tool Help Functions ~ 459

299

ARTICLE 16

File Viewers

About File Viewers
The Microsoft® Windows® 95 shell allows the user to browse the information in
the file system and on the network. The Quick View feature of the shell allows the
user to quickly view the contents of a file without having to run the full application
that created it and without even the presence of the application. To view the file
contents, the user selects a file and chooses the Quick View command from the
context menu of the selection (or from the File menu). The following illustration
shows the context menu.

In response to the user choosing the Quick View command, the shell activates a
file-specific viewer for the selected file. The shell uses the extension of the file to
determine which viewer to activate. A file viewer associates itself with file classes
and filename extensions in the system registry.

300 Programmer's Guide to Microsoft Windows 95

A file viewer is an OLE component object (not a compound document object)
implemented inside a 32-bit in-process server dynamic-link library (DLL), which
is associated, in tum, with the file viewer's class identifier. A file viewer provides
the user interface for viewing a file. Menu items, a toolbar, and a status bar are
standard parts of the file viewer interface. A file viewer can optionally add other
functionality for further shell integration.

A file viewer object, which is separate from the class factory object in the
in-process server, uses the standard OLE IPersistFile interface as well as the
IFile Viewer interface described later in this article. The shell does not interact
directly with file viewer objects. Instead, the shell starts an instance of a small
program called Quick View (QUIKVIEW.EXE) for each file to be viewed. Each
instance of Quick View defines a process for a file viewer, giving the viewer its
own message queue. Although Quick View is a Windows executable file, it is
not a complete Windows-based application. It associates a path with a file viewer,
creates an instance of the file viewer object, and instructs the file viewer to load
and display the file.

Because a file viewer is an OLE component object, additional interfaces and
functionality can be added in future versions of Windows to support new features.
For example, a file viewer can act as an OLE container application and can per
form in-place activation of embedded objects inside the file being viewed. A file
viewer can let the user make a selection in a document and copy the selection
to the clipboard or use the selection in a drag and drop operation. However, such
functionality is entirely up to the developer of the file viewer. This article describes
the basic functionality that a file viewer must provide and discusses user interface
guidelines that all developers of file viewers should follow.

Adding or Replacing File Viewers
The File Viewer interfaces allow you to add file viewers to Windows 95. For
example, you may need to add a file viewer that supports a new file format
or provides additional functionality. To understand how to add a file viewer to
Windows 95, it is important fITst to understand how the default file viewers work.

The shell calls the Quick View program to display a file. Quick View manages
the file viewing process and presents error messages for error conditions returned
by the display engines-a collectionofDLLs that draws the viewer window
and displays the file. Windows 95 includes display engines for word processing
documents, spreadsheets, databases, vector graphics, and raster graphics. File
parser DLLs are associated with a particular display engine and are specific to a
type or class of files. For example, spreadsheet and database files are associated
with the spreadsheet or database display engine. These DLLs are typically between
25K and 75K in size and do all the low-level parsing of the files to be viewed.

Article 16 File Viewers 301

There are two methods to add file viewing functionality to Windows 95. First,
a particular file parser DLL may be added to the system. The advantage of this
method is that file parsers are relatively straightforward to write and debug. The
disadvantage is that the limitations built into the default display engines (such as
no printing and no cut, copy, and paste operations) remain even when a new file
parsing DLL is used. For more information about the interface between the file
parsers and the display engines, see Article 17, "File Parsers."

The second method of including file viewing functionality in Windows 95 is to
add one or more DLLs that work directly with Quick View. The interaction
between QUIKVIEW.EXE and the display engines is the subject of this article.
An example of one of these file viewing systems for ASCII files is found in the
Samples subdirectory of the Microsoft® Win32® Software Development Kit (SDK).
The·main advantage of this method is that the code you write can support whatever
file viewing functionality you wish to provide. This may be particularly important if
your file format does not display well with one of the four default display engines.
For example, an accounting package might have this problem. The main
disadvantage of this method is that writing for the Quick View interface requires
more development and testing effort.

The remainder of this article discusses the interaction between QUIKVIEW.EXE
and the display engines. The discussion is split into three sections. The frrst section
describes the entries in the registry necessary to support associations between a
pathname and a file viewer. The second section describes how the shell starts Quick
View and outlines the steps Quick View performs to locate an appropriate file
viewer and activate it. The last section describes the structure and implementation
of a file viewer OLE component, including the recommended user interface
features.

The file viewing technology used by the Quick View feature in Windows 95
was developed jointly by Microsoft Corporation and Systems Compatibility
Corporation.

File Viewer Registration
During installation, a file viewer should ensure that entries exist in the registry that
accurately associate a file with the class identifier of the file viewer's in-process
server DLL. The file viewer's installation program may merge the contents of a
registration (.REG) file into the registry. A file viewer can register itself for more
than one file type if it can handle multiple file formats. If a file type has more than
one registered file viewer, the shell activates the most recently registered viewer for
the file type when the user chooses the Quick View command.

302 Programmer's Guide to Microsoft Windows 95

Determining File Types
The Quick View program attempts a simple association using the filename exten
sion. If there is no filename extension or if there are no file viewers registered for
the filename extension, Quick View calls each registered file viewer to see if any
of them recognize the file. If more than one file viewer is registered for the same
filename extension, Quick View calls each file viewer starting with the last one in
the list. If Quick View cannot find a file viewer that can read the file, the Quick
View operation fails and Quick View displays the following message.

There are no viewers registered for this type of file. Would you like to
try the default viewer?

The default viewer displays a hexadecimal dump using the word processing engine.

For more information, see "Quick View Program" later in this article.

Structure of Registry Entries
The following registry structure is required for Quick View to associate a class
identifier or filename extension with the class identifier of a file viewer.

HKEY_CLASSES_ROOT
\QuickView

\<extension> = <human-readable document type>
\{<CLSID>} = <human-readable viewer name>
\{<CLSID>} = <human-readable viewer name>
\{<CLSID>} = <human-readable viewer name>

... [More extension entries for additional file types]

\CLSID
\{<CLSID>} = <human-readable viewer name>

\InprocServer32 = <full path to file vi.ewer DLL>
= ThreadingModel = "Apartment"

... [More class IDs for file viewers and other object servers]

Article 16 File Viewers 303

A description of the registry entries follows.

Entry

HKEY_CLASSES_ROOT

QuickView

CLSID

human-readable document type

human-readable viewer name

<extension>

Description

Root of the registry.

Top-level key under which associations are
stored.

16-byte OLE class identifier spelled out in
hexadecimal digits in the form of 12345678-
1234-1234-1234-1234567890AB with the
hyphens included. All class identifiers are
surrounded by curly braces when stored in
the registry.

String describing the file type associated with
the class identifier or filename extension that
can be displayed to the user. A file viewer
can change the type when it is installed so that
the name always reflects the preferred viewer.
For example, this string might be "Windows
Write Document."

String that describes the vendor of the file
viewer, as it might be displayed in an About
box, such as "Company ABC Write Document
Viewer."

Three-character filename extension with the
period, as is consistent with the standard 8.3
filename format-for example, .WRI.

CLSID and InprocServer32 are standard OLE (32-bit) subkey names. The
"ThreadingModel = Apartment" entry is required for file viewers. The apartment
threading model, which is new for OLE in Windows 95 and Microsoft® Windows
NTTM version 3.51, allows the Olelnitialize and Colnitialize functions to be called
from multiple threads.

The QuickView key can have any number of filename extension subkeys, each
representing a registered file type. Each filename extension subkey can have one or
more class identifier subkeys, each representing a registered file viewer object.
The most recently registered file viewer appears first in the list of class identifier
subkeys, and it is the first one found when Quick View enumerates the registered
file viewers.

Note The file viewer class identifier should always differ from the file type class
identifier because the application that created the file may already be using the
class identifier to identify the application as a compound document server.

304 Programmer's Guide to Microsoft Windows 95

Each class identifier stored under the filename extension subkeys must correspond
to an entry of the same class identifier stored under the top-level key called CLSID.
This is the standard location for storing information for OLE .object servers. For file
viewers, there must be an InprocServer32 subkey under the file viewer's class
identifier key. The value of the InprocServer32 subkey is the full path to the file
viewer DLL. You should store the full path and not depend on the DLL being in the
path of the Windows 95 environment. InprocServer32 is a standard OLE subkey
where the path to a component object server is stored. Using this subkey allows the
Quick View program to use standard OLE member functions to access and create
objects from file viewer servers.

Registering a File Viewer
This section shows how to register a hypothetical file viewer for "AcmeWord
Document" files with the .A WD filename extension. The file viewer is implemented
in an in-process server DLL called ACMEWRDV.DLL. The DLL has this class
identifier: 00021116-0000-0000-COOO-000000000046. The program that installs
the file viewer creates the following registry entries.

HKEY_CLASSES_ROOT
\QuickView

\.AWD = AcmeWord Document
\{00021117-0000-0000-C000-000000000046} = AcmeWord Document

Viewer
\CLSID

\{00021117-0000-0000-C000-000000000046} = AcmeWord Document
Viewer

\InprocServer32 = c:\acmeword\acmewrdv.dll
= ThreadingModel = "Apartment"

The .REG file, which is an ASCII text file, contains these entries. (Note that
wrapped lines are indented on the second line.)

HKEY_CLASSES_ROOT\QuickView\.AWD = AcmeWord Document
HKEY_CLASSES_ROOT\QuickView\.AWD \{00021117-0000-0000-C000-

000000000046} = AcmeWord Document Viewer
HKEY_CLASSES_ROOT\CLSID\{00021117-0000-0000-C000-000000000046}

AcmeWord Document Viewer
HKEY_CLASSES_ROOT\CLSID\{00021117-0000-0000-C000-000000000046}

\InprocServer32 = c:\acmeword\acmewrdv.dll
= ThreadingModel = "Apartment"

The Quick View program uses these registry entries to associate a path with the
class identifier of a file viewer's in-process server DLL.

Article 16 File Viewers 305

Quick View Program
The Quick View program (QUIKVIEW.EXE) acts on behalf of the shell to locate
and activate a file viewer for a given path. There is a one to one correspondence
between each running instance of Quick View and each file being displayed in a
file viewer. Each instance of Quick View defines a process for a file viewer, giving
the file viewer its own message queue. Quick View turns over execution of the
process to the file viewer until the file viewer shuts down.

Quick View Execution and Error Conditions
The lifetime of each instance of the Quick View program consists of the following
steps:

1. When the user chooses the Quick View or Print command, the shell starts
an instance of QUIKVIEW.EXE for each selected file (by using the Win32
CreateProcess or WinExec function). The shell may specify a show command,
and Quick View passes the command to the file viewer. The command-line
argument that the shell passes to Quick View has the following options.

Option

-f:pathname

-v

-d

-p

-&:pathname

Meaning

Path of the file to view or print. Universal Naming Convention
(UNC) filenames are allowed. If this option is not specified,
Quick View terminates without displaying any messages.

File to be opened for viewing in the file viewer. If this option
is specified, Quick View ignores all of the options described
below. This is the default option in the absence of both -v
and -po

Quick View and the file viewer to suppress all user interface
(UI) elements if -p is also specified. Quick View suppresses
any error messages, and the file viewer should not display
any dialog boxes for printing. Quick View ignores this option
in the absence of -po

File to be opened for printing. If -v is also present, Quick View
ignores this option.

Printer driver to use to print the file. Quick View ignores this
option in the absence of -po If -p is present but -& is not, Quick
View instructs the file viewer to use the default printer driver.

306 Programmer's Guide to Microsoft Windows 95

2. Quick View starts and checks for a path on the command line. If there is no
path, the user has attempted to start Quick View by itself and the program
immediately terminates without displaying any messages.

3. Quick View parses the filename extension from the path given in the -f option.
If no filename extension is given, Quick View proceeds to stage El (error
condition 1). Otherwise, Quick View uses the following procedure to find a
file viewer class identifier associated with the given filename extension.

a. Quick View attempts to open the HKEY_CLASS_ROOT\QuickView\
extension key, where extension is parsed from the path.

i. If the filename extension maps to a type such as the following one,
HKEY_CLASS_ROOT\extension = typename, and there is a registry
entry with the form HKEY_CLASS_ROOT\typename\QuickView = *,
Quick View looks for file viewer class identifiers under the key
HKEY_CLASS_ROOT\QuickView*. If a key with the
HKEY_CLASS_ROOT*\QuickView = * form exists, the system
attempts to use all the viewers listed under the "*,, section.

ii. Otherwise, Quick View begins enumerating the file viewer class identi
fiers under the HKEY_CLASS_ROOT\QuickView\extension key.
If the enumeration fails (that is, there is nothing in the registry to
enumerate), Quick View closes the key and proceeds to stage E2.
Otherwise, Quick View reads the first file viewer class identifier in
the enumeration and proceeds to step 4.

b. If an error occurs in step 4, the enumeration continues until all file viewer
class identifiers have been tried. If no file viewer is activated, Quick View
closes the key from (a) and proceeds to stage E2.

4. Given a class identifier of a file viewer DLL, Quick View attempts to create an
instance of a file viewer object of the given class by using the following
procedure.

a. Quick View calls a function to create an instance of a file viewer object,
specifying parameters that include the class identifier and lID _IPersistFile
interface identifier. This instructs OLE to load the DLL listed under the
class identifier's InprocServer32 subkey, obtain an instance of the object
from the DLL, and return an IPersistFile interface pointer to the object.
If the instance cannot be created because of lack of memory, Quick
View proceeds to stage E4. If it fails for some other reason, Quick View
proceeds to stage E3. (Note that, because DLL objects are involved,
a call to the Querylnterface member function will not fail with the
REGDB_IID_NOTREG error value, which typically signals a corrupted
registry. That error is generated only when LRPC proxies and stubs are
involved.)

Article 16 File Viewers 307

b. Given the IPersistFile interface pointer pIPersistFile, Quick View calls
the Load member function of the IPersistFile interface, specifying the
path of the file and the STGM_READ and STGM_SHARE_DENY _NONE
values, which instruct the object to open the file for read access. If Load
fails, Quick View calls the Release member function of pIPersistFile and
proceeds to stage E4 if the error is due to a lack of memory. Otherwise,
Quick View proceeds to stage E3.

c. Quick View obtains the file viewer object's IFile Viewer interface by
specifying the lID _IFile Viewer interface identifier in a call to the
Querylnterface member function of pIPersistFile. Quick View calls
the Release member function of pIPersistFile, regardless of the outcome.
If this call fails due to lack of memory, Quick View proceeds to stage E4.
Otherwise, Quick View proceeds to stage E3.

dl. If the -y option was present or both the -y and -p options were absent, Quick
View calls the Showlnitialize member function of pIFile Viewer, which
instructs the file viewer to load the file and perform any preshowing initial
ization that is prone to failure (including the creation of windows, the loading
of resources, and so on). This is the file viewer's one chance to fail. If it
fails, Quick View proceeds to stage E4 if the error is due to lack of memory
or to stage E3 otherwise. If Showlnitialize succeeds, Quick View calls the
Show member function of pI File Viewer, specifying the show command that
was passed to Quick View's WinMain function. Show does not return until
the user closes the file viewer, and it always returns NOERROR in that case.
If Show is called before ShowInitialize, it returns E_ UNEXPECTED.

d2. If the -p option was present (and the -y option was absent), Quick View
calls the PrintTo member function of pI File Viewer specifying the path of
the printer driver provided in the -& option (or NULL if -& was absent)
and a value indicating if the -d option was present on the command line
(UI suppression flag). PrintTo does not return until printing is complete or
an error occurs. If an error occurs, the file viewer is responsible for notifying
the user if the UI suppression flag is FALSE.

e. When Show or PrintTo returns (whichever was called in steps dl or d2),
Quick View calls the Release member function of pIFile Viewer, regard
less of the return value. If the file viewer successfully executed the
IFileViewer::ShowInitialize member function, the Release member
function will not fail. Release fails only if it is called before ShowInitialize.
If PrintTo fails but the -d option was not specified on the command line,
Quick View assumes that the file viewer displayed a message to indicate
printing failed, and Quick View fails without displaying a message in that
case. In any case, Quick View proceeds to step 5.

5. Quick View releases any interface pointers that it may have had and calls
OleUninitialize (which calls CoFreeUnusedLibraries internally). Quick View
then terminates normally.

308 Programmer's Guide to Microsoft Windows 95

Quick View may encounter these four error conditions (stages El through E4)
during the lifetime of an instance.

El. If Quick View fails to associate the path with a file viewer class identifier
(using a filename extension), it displays this message.

There are no viewers for this type of file. Would you like to
try the default viewers.

If the user clicks No, Quick View terminates. If the user clicks Yes, Quick
View displays the Searching dialog box, enumerates all registered file viewers
(regardless of file type or filename extension), and attempts to have each one
load and display the file. Quick View tries each file viewer of a given class
identifier once. If no file viewer successfully displays the file, Quick View
removes the Searching dialog box and displays this message.

Error opening or reading file.

When the user closes the dialog box, Quick View terminates.

. E2. If Quick View successfully determines the file type but fails to enumerate any
file viewers associated with the filename extension, it displays the Searching
dialog box and attempts to have each registered viewer display the file, trying
each file viewer class identifier once. If that fails, the Quick View removes the
Searching dialog box and displays this message.

There are no viewers capable of viewing <human-readable document
type> files.

When the user closes the dialog box, Quick View terminates.

E3. If Quick View successfully locates an initial file viewer but fails to view the
file for any reason other than an out of memory condition, Quick View displays
the Searching dialog box and continues enumerating viewers under the class
identifier or filename extension key currently in use (steps 3d or 4c). If Quick
View tries all viewers registered for the type unsuccessfully, processing con
tinues as in stage E2 by trying all registered viewers regardless of registered
type.

E4. If an out of memory condition occurs for one file viewer, it is likely that other
viewers will not succeed either. In that case, Quick View displays a dialog box
(using MB_ICONEXCLAMATION) with this message.

There is not enough memory to view or print <filename>. Quit one
or more files or programs, and then try again.

Article 16 File Viewers 309

A file viewer can return a number of error values to Quick View. When Quick
View receives an error value, it displays an error message. Quick View recognizes
the following error values.

FV _E_BADFILE «HRESULT)Ox8534E1 02L)
FV _E_EMPTYFILE «HRESULT)Ox8534EI08L)
FV _E_FILEOPENFAILED «HRESULT)Ox8534EI05L)
FV -.E_INV ALIDID «HRESULT)Ox8534E1 06L)
FV _E_MISSINGFILES «HRESULT)Ox8534EI04L)
FV _E_NOFILTER «HRESULT)Ox8534EIOOL)
FV _E_NONSUPPORTEDTYPE «HRESULT)Ox8534EIOIL)
FV _E_NOVIEWER «HRESULT)Ox8534E1 OAL)
FV _E_OUTOFMEMORY «HRESULT)Ox8534E1 07L)
FV _E_PROTECTEDFILE «HRESULT)Ox8534E1 09L)
FV _E_UNEXPECTED «HRESULT)Ox8534EI03L)

Pinned Windows
The shell can request Quick View to display a new file in the same window as that
used by the previous file viewer; that is, Quick View can "pin" a viewer window.
Quick View communicates the shell's request by sending a WM_DROPFILES
message to the file viewer. The message contains an internal drop files structure
whose members include the path of the new file to be displayed. A file viewer uses
the same code to handle both the "pinned" state and drag and drop operations in
which the file viewer displays a file that the user has dragged and dropped on the
file viewer's window.

Quick View implements the IFile ViewerSite interface, which allows a file
viewer to retrieve the handle of b'le current pinned window, if there is any, or
set a new pinned window. When Quick View calls a file viewer's
IFile Viewer: :Showlnitialize member function, the file viewer receives the address
of Quick View's IFile ViewerSite interface. If the file viewer saves the address
of the interface, it should call the IFile ViewerSite: :AddRef member function to
increment the reference count.

Only one pinned window can exist at a time. A file viewer uses the
IFile ViewerSite: :SetPinnedWindow member function to set a new pinned
window and the IFile ViewerSite: : GetPinnedWindow member function to
retrieve the handle of the current pinned window.

When Quick View calls the file viewer's IFileViewer::Show member function,
the file viewer receives the address of a FVSHOWINFO structure that includes
a optional RECT structure. A valid RECT structure is a hint from the shell that
the file viewer window should be pinned; the file viewer should set the size and
position of its window based on the information in the structure.

310 Programmer's Guide to Microsoft Windows 95

If the file viewer window receives a WM_DROPFILES message, it should fill in
the strNewFile member of the FVSHOWINFO structure with the path of the new
file to be displayed, fill the rect member with the size and position of the viewer
window, and set the appropriate values in the dwFlags member. The file viewer
should also fill the punkrel member with the address of an interface that the
new file viewer should call to release the previous file viewer. Doing this allows
the previous file viewer to perform cleanup operations. The new file viewer may
be the same as the current file viewer if the current one supports the new file.
If the old file viewer is the same as the new one, the release does not do anything
because the reference count is greater than zero.

If a file viewer returns a file but Quick View cannot find a viewer for the new file,
it calls the IFile Viewer: : Show member function for the old file viewer with the
FVSIF _NEWF AILED value. The file viewer can either terminate or continue
showing the previous file.

Searching Dialog Box
When Quick View must enumerate more than one file viewer from the registry, it
displays a dialog box containing a message that reads, as follows.

Searching for a viewer to display or print the <human-readable
document type> in <filename>. Press Cancel to stop the search.

If the document type is not known, the following message appears.

Searching for a viewer to display or print <filename>.
Press Cancel to stop the search.

Quick View animates the magnifying glass icon in the dialog box to indicate that
Quick View is searching the hard disk. Pressing the Cancel button stops any search
in progress and closes Quick View without performing any further actions or
providing any user interface.

File Viewer Structure and Implementation
. A file viewer is an OLE component object in an in-process server DLL where
the object implements the IPersistFile and IFile Viewer interfaces. The in-process
server exports the DIIGetClassObject and DIICanUnloadNow functions, imple
ments a class factory object with the IClassFactory interface, and implements the
file viewer object with the interfaces required. The following illustration shows
the structure of a file viewer.

IPersistFile
IFileViewer

IClassFactory

Article 16 File Viewers 311

There are a number of reasons why a file viewer is best implemented in a DLL
with the given interfaces. In general, a DLL is faster to load and usually comes in a
small package. In the future, these same DLLs will provide other nonuser interface
features, such as content indexing, and a component object DLL will be the most
efficient and fastest way to access those features. In some cases, a file viewer
object may need to display pop-up windows and process messages through its own
message loop as in Windows 95. The DLL structure still allows this when used in
conjunction with a stub process like Quick View, which gives the file viewer DLL
the right to execute a message loop.

The IPersistFile interface in the file viewer object is intended to be a general
mechanism through which the object is given a path for a file. From then on, the
component that loaded the object can ask it to do any number of things with the
file. Through Quick View, the Windows 95 shell asks the object to show the file
by using the IFileViewer::Showlnitialize and IFileViewer::Show member
functions or asks the object to print the file to a specific printer by using the
IFileViewer::PrintTo member function. In the future, the shell may ask the object
to perform content indexing, which would happen through an interface other than
IFile Viewer. For this reason, the file loading member functions of IPersistFile are
separate from the operations that perform on the file, which is why IFile Viewer
was not just extended with its own Load member function. This latter option is
a little more efficient (because it avoids IPersistFile entrypoint functions that are
not implemented), but the design given here is easier to extend.

312 Programmer's Guide to Microsoft Windows 95

IFileViewer Interface
The shell uses the IFile Viewer interface to tell a file viewer object when to show
its user interface for the file being viewed or to print the file. In addition to the usual
IUnknown members, the interface includes the ShowInitialize, Show, and PrintTo
member functions.

Before calling the Show member function, the shell calls ShowInitialize to instruct
the file viewer to perform any creations, allocations, or loading. ShowInitialize
may fail, whereas Show may not because Quick View needs to know, before
anything becomes visible and before transferring control to the file viewer, whether
the file viewer can show the file. If the file viewer can show the file, Quick View
hides its Searching dialog box before the file viewer window appears.

The Showlnitialize member function should return the same FV _ error codes
listed in "Structure of Registry Entries" earlier in this article. Although the sample
file viewer included in the Win32 SDK uses a more generic form of error codes,
new file viewer DLLs should use the FV _ form.

The Show member function is similar to the Windows ShowWindow function in
that it receives a Show command indicating how the file viewer should initially
display its window. The meaning of the Show command is exactly the same as
for ShowWindow. In general, Quick View passes the Show command from its
WinMain function directly to IFile Viewer: : Show , which passes the command to
ShowWindow. Since Quick View obtains this parameter from the shell, this design
enables the shell to open a file viewer in the minimized, normal, or maximized state
and even allows the shell to hide a file viewer (with the SW _HIDE value). There is
no extra overhead in providing this flexibility. Note that the Windows 95 shell
always starts Quick View with the SW _SHOWNORMAL value.

The only case when Show may fail is if Showlnitialize has not been called. In that
case, it returns the E_UNEXPECTED status code (SCODE). Otherwise, Show
must return the NOERROR error code.

The PrintTo member function is like Show in that it does not return until it finishes
printing or an error occurs. If an error occurs, the file viewer object is responsible
for informing the user of the problem. When calling PrintTo, the shell specifies the
name of the printer driver that the file viewer should use to print the file. The shell
also specifies a flag that indicates whether the file viewer should display any UI
elements, including error message, during the print operation. If the flag is FALSE,
the file viewer may show Print dialog boxes, Printer Setup dialog boxes, error
messages, and so on.

The interface identifier of IFile Viewer is defined in the Windows header files as
the lID _IFile Viewer interface identifier.

Article 16 File Viewers 313

File Viewer Creation
You can create a file viewer that interacts appropriately with Quick View by
following these steps:

1. Define the file viewer object to use the IPersistFile and IFile Viewer interfaces.
The object must also implement a separate IUnknown interface that does not
delegate calls in aggregation situations. In general, a file viewer object creates
or attaches to a window that displays a file's contents.

2. Implement the Load and GetCurFile member functions (as well as the
IUnknown member functions) of the IPersistFile interface. The IsDirty
member function can simply return ResultFromScode(S_FALSE) because
a file viewer does not modify the file, and the Save and SaveCompleted
member functions should simply return ResultFromScode(E_NOTIMPL).
Load stores the filename, but delays opening the file until the later call to
the IFileViewer::Showlnitialize member function. GetCurFile returns
ResultFromScode(E_ UNEXPECTED) if Load has not yet been called.
Otherwise, it copies the patbname and returns the NOERROR error code.

3. Implement the IFileViewer::Showlnitialize and IFileViewer::Show mem
ber functions (as well as the IUnknown member functions of IFile Viewer).
ShowInitialize must perform all operations that are prone to failure such that
if ShowInitialize succeeds, Show will never fail. The implementation of these
two member functions is like an implementation of an application's WinMain
function, where Showlnitialize registers window classes (using the instance
handle that the DLL receives in its DllEntryPoint function, not the instance of
Quick View), creates the necessary windows to meet the VI guidelines,
and loads the file as read-only with the path given in IPersistFile: :Load.
Then Show displays the contents of that file in the viewport window, shows
the top-level file viewer window, and enters a message loop. To enhance the
appearance of the VI, the file should be loaded and completely displayed in the
viewport window before the windows are made visible.

Show does not return until the user has closed the window; that is, Quick
View waits for Show to return before terminating. Quick View delegates
the responsibility of the message loop to the Show member function, so
Showlnitialize and Show look and behave exactly like a WinMain function
in any application (the code is just stored in a DLL).

Note that the path in the IPersistFile::Load member function may be a
uniform naming convention (UNC) path. Functions such as Win32 OpenFile
and OLE StgOpenStorage automatically handle UNC paths. If you open a file
any other way, you must be sure to handle UNC paths properly.

314 Programmer's Guide to Microsoft Windows 95

4. Define the class factory object with the IClassFactory interface and implement
the interface completely to create a file viewer object. The class factory must
support aggregation and server locking, as required by the IClassFactory
interface.

S. Implement the DIIGetClassObject function to create an instance of the class
factory mentioned in step 4 and return a pointer to one of its interfaces, as
required for any component object DLL.

6. Implement the DUCanUnloadNow function to return the appropriate code,
depending on the number of file viewer objects in service and the number of
lock counts implemented by using the IClassFactory::LockServer member
function, as required for any component object DLL.

7. Include the Print To feature by using the IFile Viewer: :PrintTo member
function. This step is optional. If this feature is not implemented, the
member function must return ResultFromScode(E_NOTIMPL).

8. Finish the DLL implementation by using the DllEntryPoint function, as
required for any Win32 DLL.

In general, only the implementations of IPersistFile: :Load and the IFile Viewer
member functions are specific to a file viewer. The other steps that deal with
creating an OLE component object are standard OLE mechanisms. For more
information about these mechanisms, including objects and interfaces, see the
OLE documentation included in the Win32 SDK as well as Chapters 3 and 4 of
Inside OLE 2 from Microsoft® Press.

File Viewer User Interface Guidelines
This section describes the minimal user interface recommended for a file viewer.
These guidelines are provided to promote a consistent user interface in all file
viewers. You should follow these guidelines as closely as possible and include
viewer-specific features within the context of these guidelines.

Window Appearance
A file viewer's main window should have Minimize, Maximize, and Close buttons
and these top-level menu items: File, View, and Help (the contents of these menus
is described later). A file viewer should also include atoolbar and a status window.
The appearance and contents of the viewport window, which occupies all space
not used by the toolbar and status window, is left to the developer. However, the
viewport window typically has proportional scroll bars if the file contents are not
entirely visible in the viewport.

Article 16 File Viewers 315

The following illustration shows the typical initial state of a file viewer window.
The initial state can be minimized or maximized if the file viewer is given a
different show command through the IFile Viewer: : Show member function.

"F ourscore and seven years ago our fathers brought
forth on this continent, a new nation, conceived in
Liberty, and dedicated to the proposition that all
men are created equal.

"Now we are engaged in a great .civil war, testing
whether that nation or any nation so conceived and
so dedicated, can long endure. We are met on a
great battle-field of that war. We have come to
dedicate a portion of that field as a final resting
place for those who here gave their lives that that
nation might live. It is altogether fitting and proper
that we should do this.

"But, in a larger sense, we cannot dedicate-we
cannot consecrate-we cannot hallow-this ground.
The brave men, living and dead, who struggled here,
have consecrated it, far above our poor power to add
or detract. The world will little note, nor long
remember what we say here, but it can never forget
what the did here. It is for us the livin rather, to

A file viewer can include other top-level menu items for file-specific features.
For example, a file viewer should include an Edit menu with a single &Copy item
to allow the user to make a selection in the viewport window and copy it to the
clipboard. However, such extensions are not part of the basic user interface for
a file viewer.

You should,also use the new window flags in Windows 95 to create a three
dimensional window appearance and use scroll bars with proportional scroll boxes.

316 Programmer's Guide to Microsoft Windows 95

File Menu Items
The standard file viewer File menu has the following four items (as well as
separators), two of which are optional. A file viewer can add other items to the
menu, but in most cases there is no need for other items.

Menu item string

"&Open File for Editing"

Separator

"Page Set&up" (optional)

"&Print\tCtrl+P" (optional)

Separator

"E&xit"

View Menu Items

Result of selecting the menu item

Locates and starts the application that can open and edit
the file. After successfully starting the application, the
file viewer should hide its window immediately, shut
down, and eventually return from IFileViewer::Show,
after which the Quick View process terminates. If the
file viewer fails to start the application, it should display
the following message.

There is no application available that can
open this file.

Not applicable.

Activates the standard Page Setup dialog box (or an
application-specific dialog box if desired), the results
of which affect the display of the file in the viewport
window. The effects of the Page Setup command last
only for the duration of the file viewer and do not affect
the contents of the disk file. This menu item should
appear if the file viewer supports printing and only if
the Print menu item appears as well.

Activates the standard Print/Printer Setup property
sheet. Any changes made to the printer setup that would
affect the display of the file in the viewport window last
only for the duration of the file viewer and do not affect
the contents of the disk file. This menu item should
appear only if the file viewer supports printing a file
without starting the full application.

Not applicable.

Hides the window, closes the file, destroys all the
windows, performs other necessary cleanup, and
returns with the NOERROR error code from
IFileViewer::Show. The window should be hidden
before cleanup happens to avoid marring its appearance,
when the system destroys the toolbar and other controls.

The View menu of a standard file viewer has the following items.

Menu item string

"&Toolbar"

"&Status Bar"

"&Page View"

"Replace &Window"

Separator

" &Landscape"

"&Rotate"

Separator

"&Font"

Help Menu Items

Article 16 File Viewers 317

Result of selecting the menu item

Toggles the visibility of the toolbar. This item is checked
when the toolbar is visible and unchecked when it is
hidden.

Toggles the visibility of the status window. This item is
checked when the status line is visible and unchecked
when it is hidden.

Toggles between a full-sized view and a single-page
view.

Toggles between reusing the current window to view
a file and creating a new window to view a file.

Not applicable.

Toggles between landscape and portrait view when in
page view.

Rotates a raster graphic image 90 degrees every time
the image is selected.

Not applicable.

Displays a dialog box that allows the user to select a font
and point size for viewing word processing documents
and spreadsheets.

The standard file viewer Help menu has the following items.

Menu item string

"&Help Topics"

"&Aboutfileviewer name"

Result of selecting the menu item

Activates WINHELP.EXE with the file viewer's help
file.

Displays an About dialog box for the file viewer. The
About dialog box identifies the vendor of the file viewer.

A file viewer can also add other help items and context-sensitive help.

Toolbar Buttons
A file viewer must include a toolbar with a single button tied to the Open File for
Editing menu item on the File menu described previously. The image in this button
is a 16- by 15-pixel bitmap derived from the icon of the application that would
be started if the user opened the file from the shell (using the shell's association
route). The image is obtained by calling the SHGetFilelnfo function with the path
of the file. If this function fails, a file viewer can include a button that contains its
own image and attempt to start the parent application, or the file viewer can
remove the button and disable the Open File for Editing menu item on the File
menu. This single button must be the leftmost item on the toolbar and must be
separated from any other buttons that are specific to the file viewer.

318 Programmer's Guide to Microsoft Windows 95

The following illustration show the Open File for Editing menu item.

Open File for Editing

Other buttons should correspond roughly to the functions present in the file viewer
menus. A file viewer that supports a Font menu item should have Increase Font Size
and Decrease Font Size buttons. Other file viewer classes may need to include
printing and rotation buttons on the toolbar.

A standard toolbar button is the Replace Window button. The default behavior
for file viewers is for a new file viewer instance to be created whenever the user
chooses the Quick View menu item. When the Replace Window button is toggled
to the on position, however, a new instance is not created; instead, the contents
of the relevant file viewer window are replaced by a view of the new file.

All buttons should have a corresponding tooltip control that displays some context
information when the mouse cursor is positioned on the button. The standard
Windows 95 toolbar control provides built-in support for tooltip controls such
that you only have to provide the text string. The following illustration shows
a tooltip control for a toolbar button.

The recommended tooltip strings for various toolbar buttons follow.

Toolbar button

Open File for Editing

Font Increase

Font Decrease

Small View

Landscape

Rotate [Again]

Replace Window

Tooltip string

"Open File for Editing"

"Increase Font Size"

"Decrease Font Size"

"Toggle view size"

"Toggle portrait/landscape"

"Rotate image 90 degrees"

"Replace Window"

Article 16 File Viewers 319

Status Window Messages
A file viewer should display status window messages for the system menu and all
top-level and pop-up menu items. The messages for the system menu and other
menu items used by the default Windows 95 file viewers follow.

[Menu] item

[System]

[System] Restore

[System] Move

[System] Size

[System] Minimize

[System] Maximize

[System] Close

[System] Switch To ...

[File]

[File] Open File for Editing

[File] Page Setup

[File] Print...

[File] Exit

[View]

[View] Toolbar

[View] Status Bar

[View] Page View

[View] Replace Window

[View] Landscape

[View] Rotate (Again)

[View] Font

[Help]

[Help] Help Topics

[Help] About

Message

"Commands for manipulating this and other
windows."

"Restores this window to normal size."
"Expands this window to full screen size."

"Move this window to another screen location. "

"Resizes this window."

"Collapses this window to an icon."

"Expands this window to full screen size."

"Closes this window."

"Switch to another task."

"Contains commands for opening the file and
quitting Quick View."

"Opens the file for editing."

"Changes the page setup for printing. "

"Prints the file contents."

"Quits Quick View."

"Contains commands for customizing this
window."

"Shows or hides the toolbar."

"Shows or hides the status bar."

"Switches between document and page views."

"Displays new files in current Quick View
window."

"Switches between portrait and landscape."

"Rotates the image by 90 degrees."

"Changes the display font. "

"Contains commands for displaying Help and
information about Quick View."

"Displays the Help Contents and Index."

"Displays program information, version number
and copyright. "

320 Programmer's Guide to Microsoft Windows 95

The following standard messages for other conditions not related to menu items
are implemented in the Windows 95 default file viewers:

In the inactive state, when the user is doing nothing else, the status line should
read as follows.

Display details may be inaccurate.

This line should be the first visible message when the file viewer appears.

When the mouse cursor is positioned over the viewport window, the status
window should read as follows.

To edit, click Open File for Editing on the File menu.

Note that the document type is specific for the file viewer in use, as shown in the
following illustration.

Fourscore and seven years ago our fathers
brought forth on this continent, a new nation,
conceived in Liberty, and dedicated to the
proposition that all men are created equal.

"Now we are engaged in a great civil war, tt
testing whether that nation or any nation so
conceived and so dedicated, can long endure.
We are met on a great battle-field of that war.
We have come to dedicate a portion of that field
as a final resting place for those who here gave
their lives that that nation might live. It is

The status window should reflect longer versions of tooltip messages when
tooltip controls are displayed. For example, a longer version of the "Increase
Font Size" tooltip is "Increase the font size of the display" shown at the same
time in the status window.

Viewport Window Contents and Context Menu
The viewport window is where you provide most file-specific UI elements. The
viewport occupies all space in the client area of the main window not used for the
toolbar and status bar. It displays the file contents in whatever mode is applicable,
and it is sensitive to the user-selected printer and page setup as well as other View
menu commands.

Article 16 File Viewers 321

If the contents of the file are too large to be completely displayed within the
viewport, the file viewer should provide scroll bars (with proportional scroll boxes)
to shift the image. If the contents of the file are smaller than the viewport window,
no scroll bars should appear. In addition, the file contents should not be initially
scaled to fill the viewport window unless the user selects scaling through the View
menu commands.

The only other requirement for the viewport window is that it should provide a
context menu for the file. The context menu should appear when the user clicks the
viewport with the mouse button 2. The context menu should include the following
items.

Menu item string

"&Open File for Editing"

Separator

"Page Se&tup" (optional)

"&Print" (optional)

Separator

Equivalent found on other menu

Open File for Editing command on the File menu

Not applicable

Page Setup command on the File menu

Print command on the File menu (note, no accelerator)

Not applicable

A file viewer may add more items as necessary. The Toolbar and Status bar menu
items commands on the View menu should not appear in the context menu.

Drag and Drop Functionality
The default file viewers in Windows 95 allow the user to drag a file from the
desktop or Explorer and drop the file on a file viewer's window. A file viewer
should show the small document icon that includes the "+" sign when the mouse
is over the file viewer's window before the drop takes place. The Replace Window
command in the View menu controls whether another file viewer window is
displayed or the same window is reused.

Sophisticated File Viewers
This article only describes the minimal file viewer UI. There are, of course, many
other possibilities besides just rudimentary printing and viewing capabilities. One
useful feature is the ability to copy data from a document either to the clipboard or
in a drag and drop operation. In such cases, the file viewer needs to provide the
ability to select data in the file, a Copy command (on an Edit menu as well as in a
context menu), and the ability to pick up the selection and drag it elsewhere. How
ever, the file viewer should not be a drop target and should not support the Cut and
Paste commands on the Edit menu (or other variants) because those operations
modify the fue.

322 Programmer's Guide to Microsoft Windows 95

Reference

If the parent application creating the files that are handled in a specific file viewer
is an OLE compound document container, the file viewer itself must be sensitive to
viewing a compound document. That means that the file viewer itself will support
some minimal container features and will, of course, use OLE to load and display
compound document objects in the file itself. If the file viewer also supports in
place activation, it can activate inside-out objects in-place to allow the user to select
and copy data from embeddings. While there are no standards for such functionality
in Windows 95, there will be in future versions of Windows.

A file viewer in-process server DLL must implement the IFile Viewer and
IPersistFile interfaces. This section describes the IFile Viewer interface and
its member functions. For information about the IPersistFile interface and its
member functions, see the OLE documentation included in the Win32 SDK.

Interfaces and Member Functions
I Fi Ie Viewer
Designates an interface that allows a registered file viewer to be notified when it
must show or, print a file. The Windows 95 shell calls this interface when the user
selects the Quick View command from a file's context menu and the file is a type
that the file viewer recognizes. The IFile Viewer interface has the following
member functions:

PrintTo Prints a file.

Show Displays a file.

Showlnitialize Prepares to display a file.

Like all OLE interfaces, IFileViewer also includes the Querylnterface, AddRef,
and Release member functions.

IFileViewer: :PrintTo
HRESUlT PrintTo(IFileViewer FAR * pFileViewer,

lPSTR pszDriver, BOOl fSuppressUI);

Prints a file.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 16 File Viewers 323

pFile Viewer
Address of the IFileViewer interface. In C++, this parameter is implicit.

pszDriver
Address of a buffer that contains the name of the printer device driver that
should print the file. If this parameter is NULL, the file viewer determines
which device driver to use.

fSuppressUI
User interface suppression flag. If this parameter TRUE, the file viewer should
not display any VI whatsoever, including error messages, during the print
operation. If this parameter FALSE, the file viewer can show dialog boxes,
as needed.

The shell specifies the name of the file to print by calling the file viewer's
IPersistFile: :Load member function.

IFileViewer: :Show
HRESULT Show(IFileViewer FAR * pFileViewer,

LPFVSHOWINFO pvsi);

Displays a file.

• Returns the NOERROR value if successful or the E_ UNEXPECTED value
if the IFileViewer::Showlnitialize member function was not called before
IFile Viewer: : Show .

pFile Viewer
Address of the IFileViewer interface. In C++, this parameter is implicit.

pvsi
Address of an FVSHOWINFO structure containing information that the file
viewer uses to display the file. A file viewer can return information to the shell
by modifying the members of the structure.

The shell specifies the name of the file to display by calling the file viewer's
IPersistFile::Load member function.

IFileViewer::Show can fail only ifIFileViewer::Showlnitialize was not called
first, and the return value must be E_ UNEXPECTED in that case. Otherwise,
IFileViewer::Show must return NOERROR.

I File Viewer: :Showln itialize
HRESULT Showlnitialize(IFileViewer FAR * pFileViewer,

LPFILEVIEWERSITE lpfsi);

324 Programmer's Guide to Microsoft Windows 95

Allows a file viewer to determine whether it can display a file and, if it can,
to perfonn initialization operations before showing the file.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pFile Viewer
Address of the IFile Viewer interface. In C++, this parameter is implicit.

lpfsi
Address of a IFile ViewerSite interface. A file viewer uses this interface to
retrieve the handle of the current pinned window or to specify a new pinned
window.

The shell calls this member function before the IFileViewer::Show member
function. The shell specifies the name of the file to display by calling the file
viewer's IPersistFile: :Load member function.

IFileViewer::ShowInitialize must perfonn all operations that are prone to failure
so that if it succeeds, IFile Viewer: :Show will not fail.

I Fi Ie ViewerSite
Designates an interface that allows a file viewer to retrieve the handle of the current
pinned window or to set a new pinned window. The pinned window is the window
in which the current file viewer is displaying a file. When the user selects a new
file to view, the shell directs the file viewer to display the new file in the pinned
window rather than to create a new window.

The IFile ViewerSite interface has the following member functions.

GetPinnedWindow

SetPinnedWindow

Retrieves the handle of the current pinned window.

Sets a new pinned window.

Like all OLE interfaces, IFile ViewerSite also includes the Query Interface,
AddRef, and Release member functions.

IFileViewerSite::GetPinnedWindow
HRESULT GetPinnedWindow(IFileViewerSite FAR * pFileVS,

HWND *phwnd);

Retrieves the handle of the current pinned window, if it exists.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Structure

Article 16 File Viewers 325

pFileVS
Address of the IFile Viewer interface. In C++, this parameter is implicit.

phwnd
Address of a window handle of the current pinned window or NULL if no
pinned window exists.

IFileViewerSite::SetPinnedWindow
HRESULT SetPinnedWindow(IFileViewerSite FAR * pFileVS,

HWND hwnd);

Sets a new pinned window.

• Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pFileVs
Address of the IFile Viewer interface. In C++, this parameter is implicit.

hwnd
Handle of the new pinned window or NULL if there is to be no pinned window.

When the user selects a new file to view, the shell directs the file viewer to display
the new file in the pinned window instead of creating a new window.

The following structure is used with file viewers.

FVSHOWINFO
typedef struct {

DWORD cbSize; II size of structure, in bytes
HWND hwndOwner; II see below
int iShow; II see below
DWORD dwFlags; II see below
RECT rect; 1/ see below
LPUNKNOWN punkrel; II see below
OLECHAR strNewFile[MAX_PATH]; II see below

} FVSHOWINFO, *LPFVSHOWINFO;

Contains information that the IFileViewer::Show member function uses to display
a file.

326 Programmer's Guide to Microsoft Windows 95

hwndOwner
Handle of the owner window. When a file viewer creates a window to.display
a file, it should specify this handle as the owner of the window.

iShow
Show command. For a list of show commands, see the description of the
ShowWindow function.

dwFlags
Show information flags. This member can be a combination of these values:

FVSIF _CANVIEWIT

FVSIF _NEWFAILED

rect

The file viewer can display the file.

The file viewer specified a new file to display, but no
viewer could display the file. The file viewer should
either tenninate or continue to display the previous file.

A drag and drop operation has dropped a file on the file
viewer window. The file viewer passes the name of the file
to the shell by copying the name to strNewFile. The shell
attempts to load a file viewer that can display the new file.

A pinned window exists. A file viewer should either use
the pinned window to display the file or set a new pinned
window and display the file in it.

rect contains valid data.

Address of a RECT structure that specifies the size and position of the
file viewer's window. This member is valid only if dwFlags includes the
FVSIF _RECT value.

punkrel
Address of an interface whose Release member function is called by a new
file viewer to release the previous file viewer. This member is used when a
drag and drop operation drops a file on the file viewer's window.

strNewFile
Address of a string that specifies the name of a new file to display. A file
viewer sets this member when a drag and drop operation drops a file on the
file viewer's window.

The shell uses this structure to pass information to a file viewer, and a file viewer
uses it to return information to the shell.

ARTICLE 17

File Parsers

About File Parsers
A file parser is a dynamic-link library (DLL) that provides the low.;level parsing
needed to generate a "quick view" for a file of a given type. File parsers work in
conjunction with the file viewing components of the Microsoft® Windows® 95
operating system. These components are the shell, the Quick View program
(QUIKVIEW.EXE), display engines, and file parsers. The shell responds to user
requests to generate a quick view for a file by 'calling the Quick View program.
The program manages the process, directing one of the display engines to draw

327

the Quick View window and fill it with a view of the file. The display engine uses a
file parser to determine the contents of the file and to draw those contents correctly.

You can extend the file viewing capabilities of Windows 95 by supplying additional
file parsers. Each file parser is responsible for a specific type or class of file and
is associated with one of the display engines; For example, you can allow a quick
view to be generated for a .DOC file by creating a file parser to support that file
type and associating the file parser with the word processor display engine.

This article describes the file parser interface and explains how to write file parsers
for word processing documents, spreadsheets, databases, bitmapped graphics, and
vector graphics. The functions, macros, and structures described here can be found
with the file parser sample code in the Samples subdirecory of the Microsoft®
Win32® Software Development Kit (SDK). For information about extending the
file viewing capabilities in other ways, see Article 16, "File Viewers."

The file viewing technology used in the Quick View feature of the Microsoft
Windows 95 operating system has been jointly developed by Microsoft Corporation
and Systems Compatibility Corporation.

328 Programmer's Guide to Microsoft Windows 95

Adding or Removing File Parsers
For performance reasons, the file viewer builds a cache of the file parsers in
the system the first time the Quick View feature is used. This cache is stored
in the registry. If a file parser is added or removed, this cache must be rebuilt.
To make the system rebuild the cache, set verify data not equal to zero under
the following key.

\\HKEY_LOCAL_MACHINE\SOFTWARE\SCC\Viewer Technology\MSl

File Parser Functions
Every file parser must implement the following functions.

VwStreamCloseFunc

VwStreamOpenFunc

VwStreamReadFunc

VwStreamReadRecordFunc

VwStreamSectionFunc

VwStreamSeekFunc

VwStreamTellFunc

The display engine calls these functions to display a file of the type supported by
the file parser.

The display engine starts the file viewing process by calling VwStreamOpenFunc,
sending the name of a file to the file parser. The first responsibility of any parser is
to verify that the given file has the proper format and can be processed. If the file
is viewable, the file parser returns a value to the display engine acknowledging the
request.

Once the parser completes verification of the file, the display engine calls
V wStreamSectionFunc, directing the file parser to identify the type and name
of the first section of the file to be processed. A section is a portion of the file in
which all the data is of one type; it forms a logical breaking point for the processing
of the file. The standard section types are word processing, spreadsheet, database,
bitmapped graphics, and vector graphics. A file can consist of a single section,
multiple sections of the same type, or a combination of sections of different types.
The actions that the display engine takes to display the file depend on the type of
section currently being processed. The file parser must call the SOPutSectionType
and SOPutSectionName functions to output the section type and to set the section
name.

Article 17 File Parsers 329

Before the file parser returns from VwStreamSectionFunc, it may need to provide
the display engine with additional information. If the portion to be processed is
a word processing section, the file parser must set entries for the font table by
using the SOPutFontTableEntry function. If it is a spreadsheet section, the file
parser must set the column width by calling the SOPutColumnInfo function.
If it is a database section, the file parser must set the field format by calling
the SOPutFieldlnfo function. The file parser can also set the date base used by
spreadsheets and databases to calculate dates by using the SOSetDateBase
function. In addition, the file parser can set header entries by calling the
SOPutHdrEntry function.

After the section type and general information is set, the display engine requests
data for the section by calling VwStreamReadFunc. The file parser fulfills this
request by calling the stream output functions. These functions pass the data to
the display engine in a form that is easiest for the engine to display, copy to the
clipboard, or write to disk.

The stream output functions used by the file parser depend on the section type.
For word processing sections, the file parser uses the SOPutParaSpacing,
SOPutCharAttr, and SOPutChar functions to set the spacing for paragraphs,
set the style attributes for characters, and output characters. For spreadsheet
sections, the parser uses the SOPutDataCell and SOPutTextCell functions
to output the content (data or text) of cells. For database sections, it uses the
SOPutFieid and SOPutVarField functions to output the data of fields. The
parser uses the SOPutBitmapHeader and SOPutScanLineData functions
for bitmapped graphics sections and the SOVectorAttr and SOVectorObject
functions for vector graphics sections.

To set a break for a paragraph, cell, or field, the file parser calls the SOPutBreak
function with an appropriate value, either SO_PARABREAK, SO_CELLBREAK,
or SO_RECORDBREAK. The return value from SOPutBreak tells the file parser
how to proceed. If it is the SO_STOP value, the file parser stops all processing
and returns from VwStreamReadFunc.

The file parser continues to output data until it reaches the end of the section. The
parser must end a section by calling SOPutBreak with the SO_SECTIONBREAK
value. If this is the last section in the file, the file parser indicates that the end of
the file has been reached by using the SO_EOFBREAK value instead.

If there are subsequent sections left in the file, the display engine calls the
V wStreamSectionFunc function again to request the type and name of the
next section, and processing continues just as it did for the first section.

330 Programmer's Guide to Microsoft Windows 95

After the last section, the display engine calls VmStreamCloseFunc to indicate
that processing is complete and that no further requests for data will be made.
The file parser must close the file and any related files it has opened and clean up
resources, such as freeing memory.

If an error occurs while a file is parsed, the file parser should call the SOBailOut
function to notify the display engine of the error condition. The parser must
immediately return from VwStreamReadFunc after calling the SOBailOut
function.

Restartable Parsing
You must design the file parser so that parsing can be efficiently restarted at
discrete locations within the file. The goal is to give the display engine the best
performance without it having to store a completely converted copy of a file.

To facilitate restartable parsing, the display engine incorporates a module, which
is called the chunker, that essentially caches data from the parser. The chunker
does not cache all the data, only the data that the display engine has most recently
requested. However, it does cache state data for restartable locations in the file.
This means that as long as the parser maintains its own internal data in a way
that can be efficiently restarted, the display engine and the parser can work
cooperatively to locate and restart processing at the cached locations.

The file parser is responsible for determining the best locations for restarting
parsing. It does this by calling the SOPutBreak function. The chunker assumes
that each break is a restartable location in the file. Before calling SOPutBreak,
however, the file parser must save up-to-date data about the location so that it can
quickly retrieve and begin processing the data at the location if requested to do so.

The display engine uses the VwStreamSeekFunc and VwStreamTellFunc
functions to direct the file parser to a restartable location.

Word Processing Sections
Word processing sections contain text organized as paragraphs, tables, and subdoc
uments. Of these, paragraphs and tables can have attributes, such as indentation,
tab stop~, and spacing. The text in word processing sections consists of characters
having attributes, such as typeface, height, and weight. Word processing sections
can also include embedded objects, allowing bitmapped art and other graphics to be
included with the text.

A file parser processes the text associated with a word processing section when
the display engine calls the VwStreamReadFunc function. The file parser must set
all attributes before calling the SOPutChar function or other text output functions.
The file parser must never automatically set an attribute as a default. If the state of
a current attribute is not known, the file parser must not set it.

Article 17 File Parsers 331

Paragraph Attributes
The file parser sets the attributes of a paragraph before outputting characters for the
paragraph. The attributes are the alignment, indent, spacing, tab stops, and margins.

The file parser sets the alignment to be left, right, centered, or justified by using the
SOPutParaAlign function and sets the left, right, and first line indents by using
the SOPutParalndents function. The file parser sets the spacing before and after
the paragraph and between lines of the paragraph by using the SOPutParaSpacing
function. The file parser sets tab stops by using the SOPutTabStop function,
calling the function once for each tab stop. To mark the start and end of a tab
stop definition, the file parser calls the SOStartTabStops and SOEndTabStops
functions. The file parser sets page margins for the paragraph by using the
SOPutParaMargins function.

Tables
The file parser can add tables to text output by using the SOBeginTable and
SOEndTable functions to mark the start and end of the table definition and can
format the rows and cells in tables by using the SOPutTableRowFormat and
SOPutTableCelllnfo functions. The file parser uses the character and paragraph
functions to output the text for each cell and set the attributes.

The file parser marks the end of each cell and each row by using the SOPutBreak
function with the SO_TABLECELLBREAK and SO_TABLEROWBREAK
values. A file parser must insert a cell break after each cell and a row break at
the end of each row. If a file parser inserts a row break before inserting as many
cells as were defined for the row, the remaining cells are assumed to be empty.
Empty cells may be inserted in the middle of a row by inserting consecutive cell
breaks.

Row· and cell formats must be defined before the last cell of a row. After defining
the row properties by using the SOPutTableRowFormat function, the parser
must call the SOPutTableCelllnfo function for each cell in the row. After a row
is defined, the row properties are assumed to apply to subsequent rows until new
row properties are specified. A filter may, thus, define an entire table by specifying
the row and cell properties once and then using the appropriate row and cell breaks.

You can add borders to cells by setting the pLeftBorder, pRightBorder,
pTopBorder, and pBottomBorder members of the SOTABLECELLINFO
structure to appropriate values when setting the cell format.

You can add tabs to cells by using the special character, the SO_CHCELLTAB
value. This character is defined for cells that are merged with their neighbors
and acts as a tab that moves the current text position to the location of the next
boundary that would have existed if the cells had not been merged.

332 Programmer's Guide to Microsoft Windows 95

Subdocuments
The file parser adds subdocuments-that is, headers, footers, footnotes, and
comments-to the document by using the SOPutBreak function. The file
parser must call SOPutBreak with the SO_SUBDOCBEGINBREAK value to
start a subdocument and with the SO_SUBDOCENDBREAK value to end it.

After ending a subdocument, the file parser must restore character and paragraph
attributes to their state before the subdocument was started. The file parser can
use the SUUserPushData and SUUserPopData functions to save and restore
nested subdocument information. A parser can nest sub documents without limit.
The following example shows when to save and restore this information.

This is a <Bold On> test

II At this point, the filter should save its internal
II information to reflect the fact that bold is on.
SOPutBreak(SO_SUBDOCBEGINBREAK);
SoPutSubdoclnfo(...);

<Subdoc Begin> This is a <Bold Off>subdocument<Subdoc End>

II At this point, the filter should restore its internal
II information to reflect the fact that bold is on.
SOPutBreak(SO_SUBDOCENDBREAK);

document <Bold Off>of mine.

File parsers are not expected to correctly exit a subdocument when run from a
regular paragraph break (with the SO _P ARABREAK value) inside the subdoc
ument. The display engine lets the file parser run to the subdocument's end break
(that is, the SO_SUBDOCENDBREAK value) and returns the SO_STOP value
to it.

Characters and Character Attributes
The file parser outputs characters by using the SOPutChar function. It can spec
ify extra properties for a character, such as grouped or hidden, when outputting
by using the SOPutCharX function. The file parser outputs special characters,
such as tabs, hard line breaks, hard page breaks, and hyphens by using the
SOPutSpecialCharX function.

Article 17 File Parsers 333

Before outputting characters, the file parser sets character attributes by using
the SOPutCharAttr, SOPutCharFontByld, SOPutCharFontByName, and
SOPutCharHeight functions. These functions set the style, font, height, and
width of the character. The SOPutChar Attr function lets the file parser set style
attributes, such as italic, underline, and strikeout. The SOPutCharFontByld and
SOPutCharFontByName functions can specify any font that the parser added
to the font table during processing of the VwStreamSectionFunc function. The
SOPutC~arHeight function sets the character height, in half points.

Embedded Objects
The file parser can embed graphics objects in the text of a paragraph section by
using the SOPutEmbeddedObject function. The function inserts the embedded
graphics object at the current location.

Spreadsheet Sections
The file parser outputs content (data or text) for cells in a spreadsheet by using
the SOPutDataCell and SOPutTextCell functions. Before outputting cell data,
the file parser must get the range of columns to be output by using the SOGetlnfo
function with the SOINFO_COLUMNRANGE value. When SOGetInfo returns,
the low-order word of its plnfo parameter identifies the first column of data to
generate output for, and the high-order word identifies the last column. The file
parser should only call SOPutDataCell or SOPutTextCell for cells within the
range indicated by a call to SOGet. When there is no more data within a range
of columns, the file parser must call the SOPutBreak function with either the
SO _EOFBREAK or SO _SECTIONBREAK value, whichever applies. This must
be done for each range of columns in the document.

For example, if the first column is 10 and the last column is 19, the filter reads the
file from its current position, but it only calls SOPutDataCell or SOPutTextCell
for cells that belong in columns 10 through column 19~ inclusively. (The column
numbers are zero based.) The parser skips over cells that belong in columns outside
of this range. The filter must produce cells for all columns in the range, filling in
with empty cells, if necessary. As before, the filter continues until SOPutBreak
returns the SO_STOP value.

334 Programmer's Guide to Microsoft Windows 95

In general, the fIle parser should carry out the following steps:

1. Determine the desired range of columns.

2. Determine the next cell available from the input fIle.

3. If the cell is not in the given range of columns, jump to step 2.

4. If the cell is not empty, call SOPutDataCell or SOPutTextCell with
the current data. Otherwise, call SOPutDataCell for a cell of the
SO_CELLEMPTY type.

S. Update local variables, such as row and column numbers.

6. Call SOPutBreak with the SO_CELLBREAK value.

7. If SOPutBreak returns the SO_STOP value, return from the
VwStreamReadFunc function.

8. If at the beginning of the next section, call SOPutBreak with the
SO_SECTIONBREAK value and return.

9. If at the end of the fIle, call SOPutBreak with the SO_EOFBREAK value
and return.

10. Repeat steps 2 through 10.

When the chunker saves local data for various seek positions in a document, it does
so within SOPutBreak, when the break is of the SO_CELLBREAK type. Thus,
when a file parser has its local data restored for a random seek position, the data
will reflect the state of the fIle parser during its call to SOPutBreak for the last cell
of the previous chunk in the current range of cells. Any tracking done by the parser,
such as the current row number, should be updated before SOPutBreak is called
for each cell.

Every horizontal range of columns, specifIed by dwExtraData in each call to
your VwStreamReadFunc function, must eventually be terminated by a call to
SOPutBreak with SO_EOFBREAK or SO_SECTIONBREAK value, whichever
is applicable. The type of break depends on the input fIle. A fIle parser must not
put a section break at the end of the fIle, and an end-of-file (EOF) break,. of course,
cannot occur anywhere but at the actual end of the fIle.

For example, if the input document contains a single spreadsheet that is 30 columns
wide, the display engine can call the parser with three different ranges of columns:
o to 11, 12 to 23, and 24 to 29. The file parser calls SOPutBreak with an EOF
break three times, once for each time it reaches the end of the fIle while processing
a given range.

When calling SOPutBreak with a section break, the fIle parser must be sure that
the seek position is at the beginning of the next section-that is, the fIle position
where the fIle parser needs to be when VwStreamSectionFunc is next called. Any
one of the calls to SOPutBreak for a section break may be the one that sets the
seek position for the top of the next section.

Article 17 File Parsers 335

Database Sections
The file parser outputs data and text for a database by using the SOPutField,
SOPutMore VarField, and SOPutVarField functions. The parser uses
the SOPutField function for fields of a fixed size. The other functions are
used for variable length fields. The parser sets field information by using the
SOPutFieldlnfo function while processing the VmStreamSectionFunc function.

Bitmapped Sections
The file parser starts a bitmapped section by calling the SOPutSectionType
function with the SO_BITMAP value when processing the VmStreamSectionFunc
function. The file parser must also set the bitmap header information for the
section by using the SOPutBitmapHeader function before returning from
VmStreamSectionFunc. The information in the bitmap header allows the chunker
to allocate storage for other bitmap information, such as the palette. This means that
the file parser must call SOPutBitmapHeader before any other bitmapped section
functions.

Palettes
The file parser must generate a palette for those sections that have the color
palette value, SO_COLORPALETTE, set in the wlmageFlags member of
the SOBITMAPHEADER structure. The parser uses the SOStartPalette,
SOPutPaletteEntry, and SOEndPalette functions to define the color palette
for a bitmapped section. Only one palette may be defined for a bitmapped section.

All SOCOLORREF members set during the stream read can use RGB (red,
green, blue) values, palette index values, or palette-relative RGB values. All
settings of these values must be done through the SOPALETTEINDEX, SORGB,
or SOPALETTERGB macro. For more information about these types of color
values, see the description of the COLORREF value.

Tiles and Scan Lines
A bitmap image in a bitmapped section consists of tiles and scan lines. A tile is a
rectangular portion of an image, containing at least one scan line. An image is
one or more tiles wide and one or more tiles long. A tile column is the horizontal
positioning of a tile; the tiles that have their x-coordinate equal to zero belong to
tile column zero, with tile column numbers incrementing in the direction of the
increasing x-coordinates.

336 Programmer's Guide to Microsoft Windows 95

The file parser specifies its tile length in terms of scan lines. Once the length is
specified, the display engine always requests bitmap data as whole tiles; that is,
it tells the parser to stop only on integral multiples of the tile length. For formats
that contain multiple tiles, file parsers should set the tile length to the minimum
number of scan lines required for a single tile. Formats that are not stored in tiles
should have the tile width set equal to the image width and the tile length set to
one scan line.

The following values are expected to be valid when tiles are created.

TILESACROSS - (ImageWidth+TileWidth-l)/TfleWidth
TILESDOWN - (ImageLength+TileLength-l)/TileLength
TILESPERIMAGE-TILESACROSS*TILESDOWN

To output bitmap data, the file parser outputs a scan line at a time, in sequential
order, by using the SOPutScanLineData function. All of the scan line must belong
to the same tile column. After each scan line, the file parser calls the SOPutBreak
function with the SO _SCANLINEBREAK value. As is normally the case, the
return value from SOPutBreak indicates whether the file parser should return
from the VwStreamReadFunc function.

Building Scan Lines
The file parser builds the scan line data as a continuous stream of bits that define
each pixel. Each pixel is packed into an array of bytes in such a way that if the
data were written out in hexadecimal or binary numbers, the pixels could be read in
order from left to right. That is, for a 4-bit-per-pixel format, the first pixel is stored
in the high-order bits of the first byte (bit 7, bit 6, bit 5, and bit 4), and the second
pixel is stored in low-order bits of that byte (bit 3, bit 2, bit 1, and bit 0). Thus, if
the first eight pixels of a 4-bit-per-pixel scan line have the hex values of 0, 2, C, 9,
A, 4, 3, and F, the first four bytes of scan line data would be 02, C9, A4, and 3F.

If the parser provides a palette for the image, the data for each pixel is interpreted
as an index into the palette. If no palette exists for the image, the bits for each pixel
specify either a true color (24-bit only) or a gray scale value. For 24-bit color, each
3 bytes of a scan line represent the intensities of red, green, and blue of a single
pixel. When the scan line has been completely specified, the parser must call the
SOPutBreak function with the SO_SCANLINEBREAK value, except for the last
line of the bitmap. The last line of the bitmap must end with a break of the
SO_SECTIONBREAK or SO_EOFBREAK type, whichever applies.

The following example illustrates the use of the bitmapped functions in the simplest
possible case: a parser with scan line data stored one tile wide and with the same
format that parsers are required to provide it, so the data requires no additional
processing after being read in. This example also does not check for EOF or read
errors.

WORD wBytesRead;
WORD wBufSize = Proc.ScanLineBufSize;

do
(

Article 17 File Parsers 337

xread(hFile, Proc.ScanLineBuf, wBufSize, &wBytesRead);

SOPutScanLineData(Proc.ScanLineBuf, hProc);

} while(SOPutBreak(SO_SCANLINEBREAK, 0, hProc) == SO_CONTINUE);

Vector Graphics Sections
The file parser starts a vector graphics section by calling the SOPutSectionType
function with the vector value, SO_VECTOR, while processing the
V mStreamSectionFunc function. The file parser must also set the vector
header by using the SOPutVectorHeader function before returning from
VmStreamSectionFunc. The information in the SOVECTORHEADER structure
defines the size and attributes of the rectangle in which vector graphics are drawn.

The vector graphics functions are similar to the primitive GDI functions, but they
include extensions that are based on the file formats being supported. All vector
graphics objects are described in two-dimensional space on a logical coordinate
system. The direction and resolution of the x- and y-axis is defined in the
SOVECTORHEADER structure.

The file parser uses two functions to transfer data. The SOVectorAttr function sets
attributes related to drawing vector graphics objects, and the SOVectorObject
function defines a vector graphics object to be drawn. The parser specifies an
identifier, a data size, and the address of data when it calls a function. The identifier
specifies the action to take and the size and data-defined details of the action. Each
action has a corresponding structure in which the data must be given. For example,
to define a logical font, the parser must set the members of the SOLOGFONT
structure and pass the structure to SOVectorAttr.

Although vector graphics functions are similar to the graphics device interface
(GDI) functions, they are not exactly the same. For example, this means the
members of the SOLOGFONT and LOGFONT structures are not necessarily
the same.

After drawing every object, the file parser should call the SOPutBreak function
with the SO_ VECTOROBJECTBREAK value.

338 Programmer's Guide to Microsoft Windows 95

Writing a File Parser
File parsers should be contained in a set of source and include files as follows,
where XXX represents a mnemonic for the data format. For specific examples,
see the sample ASCII filter files identified in the following table.

Generic filename Contents Sample ASCII filter file

VS_XXX.C Code VS_ASC.C

VSD_XXX.C Data VSD_ASC.C

VS_XXX.H Type defInitions VS_ASC.H

VSP_XXX.H Portability information VSP_ASC.H

The portability information file makes porting of filters between 16- and 32-bit
versions of Windows and multiple Microsoft® Windows NTTM platforms easier.
To allow fue parsers to be used for content indexing, a set of include files is
provided that will allow conditional compilations to yield executable DLLs for
all of these needs from the same set of source files.

Your VSP _XXX.H file should look something like the following. (For further
information, see the corresponding ASCII filter file.)

• The structure type and name of the static data.

#define VwStreamStaticType ???
#define VwStreamStaticName ???

The parser must not change the contents of the structure, because it is shared
among all instances of the parser.

• The structure type and name of the dynamic data.

#define VwStreamDynamicType ???
#define VwStreamDynamicName ???

VwStreamDynamicName is for consistency and has no real use, because all
dynamic data is accessed through the pseudonym Proc. Each instance of the
parser has a separate copy of dynamic data.

• The structure type and name of the save data.

#define VwStreamSaveType 111
#define VwStreamSaveName 1?1

Article 17 File Parsers 339

VwStreamSaveName should reference an element that is in the
VwStreamDynamicType structure. The data in this structure is saved
after every call to VwStreamSectionFunc and VwStreamReadFunc and
restored before every call to VwStreamReadFunc.

• The structure type and name of the section data.

#define VwStreamSectionTyp~ 111
#define VwStreamSectionName 111

If neither of these is defined, the file parser is assumed to be single section
only. VwStreamSectionName should reference an element that is in the
VwStreamDynamicType structure. The data in this structure is saved after
each call to VwStreamSectionFunc and is guaranteed to contain the current
section's data on entry to VwStreamReadFunc.

The example below shows the relationship of the various save areas to the
dynamic data structure.

typedef struct {

} VwStreamSaveType;
typedef struct {

} VwStreamSectionType;
typedef struct {

VwStreamSectionType VwStreamSectionName; II multisection only
VwStreamSaveType VwStreamSaveName;

} VwStreamDynamicType;

• The stream identifier name and count.

#define VwStreamldName 111
Hdefine VwStreamldCount 111

VwStreamldName is the name of the FILTER_DESC array in VSD _XXX.C,
and VwStreamldCount is the number of elements in this array. Like the static
data, this data should never be changed by a parser.

340 Programmer's Guide to Microsoft Windows 95

Reference

Functions

The name of the include file. All the structure types used by the parser should
be defined in this file.

Ildefi ne VwInclude "vs_xxx.h"
Ildefi ne VwStreamUserSaveType 111
Ildefi ne VwStreamGenSeekName 111
IIdefine VwStreamOpenFunc xxx_stream_open
Ildefi ne VwStreamSeekFunc xxx_stream_seek
IIdefi ne VwStreamTellFunc xxx_stream_tell
Ildefi ne VwSt~eamReadFunc xxx_stream_read
Ildefi ne VwStreamReadRecordFunc xxx_stream_readrecord
Ildefi ne VwStreamSectionFunc xxx_stream_section
Ildefi ne VwStreamCloseFunc xxx_stream_close
Ildefi ne VwGetInfoFunc xxx_getinfo
IIdefine VwGetRtnsFunc xxx_getrtns
Ildefi ne VwGetDataFunc xxx_getdata
Ildefi ne VwSetDataFunc xxx_setdata
IIdefi ne VwAllocProcFunc xxx_alloc_proc
Ildefi ne VwFreeProcFunc xxx_free_proc
IIdefine VwLocalUpFunc xxx_local _up
IIdefine VwLocalDownFunc xxx_local_down
Ildefi ne VwGetSectionDataFunc xxx_getsectiondata
Ildefi ne VwSetSectionDataFunc xxx_setsectiondata

The top of the VS_XXX.C file should look like this.

lIinclude "VSP_XXX.H"
lIinclude "VSCTOP.H"
lIinclude "VS_XXX.PRO"

The following functions, helper functions, and structures are associated with file
parsers.

The following functions are used with file parsers.

VwStreamCloseFunc
VOID VwStreamCloseFunc(SOFILE hFile. HPROC reserved);

Closes the file. The file parser must carry out any necessary cleanup, such as
closing any other open files related to the given file.

Article 17 File Parsers 341

• No return value.

hFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

VwStreamOpenFunc
INT VwStreamOpenFunc(SOFILE hFile, INT wFileld,

U_BYTE VWPTR * pFileName, SOFILTERINFO VWPTR * pFilterlnfo,
HPROC reserved);

Checks the validity of the specified file and returns information about the file
parser.

• Returns the VWERR_OK value if successful or one of the following error
values otherwise:

VWERR_BADFILE

VWERRY:MPTYFILE

VWERR_PROTECTEDFILE

VWERR_SUPFILEOPENFAILS

hFile

Corrupt or unreadable file

Empty file

Password-protected or encrypted file

Supplementary file failed to open

Handle of the file for execute input and output (XIO) routines.

wFileld
Identifier for the file.

pFileName
Address of the null-terminated string specifying the base name of the file. This
string does not include path information.

pFilterlnfo
Address of the SOFIL TERINFO structure that receives information about the
file parser.

reserved
Reserved; do not use.

342 Programmer's Guide to Microsoft Windows 95

VwStreamReadFunc
INT VwStreamReadFunc(SOFILE hFile. HPROC reserved);

Outputs characters, cells, or fields, depending on the current section type and file
contents.'

• Returns zero if successful or -1 if the end of the file is reached.

hFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

VwStreamReadRecordFunc
VOID VwStreamReadRecordFunc(SOFILE hFile. DWORD dwData. HPROC reserved);

Outputs a single record by calling various stream output functions.

• No return value.

hFile
Handle of the file for execute input and output (XIO) routines.

dwData
Data to be saved for the record.

reserved
Reserved; do not use.

This function should output a single record and then call the SOPutBreak function
with the SO_RECORDBREAK value before returning. The SO_EOFBREAK and
SO_SECTIONBREAK conditions do not need to be trapped by this function.

VwStreamSectionFunc
INT VwStreamSectionFunc(SOFILE hFile. HPROC reserved);

Sets the parameters for a section.

• Always returns zero.

hFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Article 17 File Parsers 343

At a minimum, this function should call the SOPutSectionType and
SOPutSectionName functions to set the section type and name. The function
should also set the cell width if the section is a spreadsheet or the field format
if the section is a database.

The display engine calls the function after calling the VwStreamOpenFunc
function but before calling the VwStreamReadFunc function. It is also called after
any VwStreamReadFunc that ends with a call to the SOPutBreak function with
the SO _SECTIONBREAK value.

VwStreamSeekFunc
INT VwStreamSeekFunc(SOFILE hFile. HPROC reserved);

Same definition as the line filters Seek function

• Returns zero if successful or -1 if the function fails.

hFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

VwStreamTeliFunc
INT VwStreamTellFunc(SOFILE hFile. HPROC reserved);

Same definition as the line filters Tell function.

• Returns zero if successful or -1 if the function fails.

hFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

344 Programmer's Guide to Microsoft Windows 95

Helper Functions

SOBailOut
VOID SOBailOut(WORD wError. HPROC reserved);

Allows the file parser to return an error condition.

• No return value.

wError
Error flag. This parameter can be one of these values:

SOERROR_BADFILE Invalid file format

SOERROR_EOF

SOERROR_GENERAL

reserved
Reserved; do not use.

Unexpected end of file (EOF)

Unspecified error

The parser should return from the VwReadStreamFunc function as soon as
possible after this function is called.

SOBeginTable
VOID SOBeginTable(HPROC reserved);

Starts a table definition, indicating that the text in subsequent output calls is part
of a table.

• No return value.

reserved
Reserved; do not use.

This function must be called between paragraphs and before row and cell formats
are specified.

Article 17 File Parsers 345

SOEndColumnlnfo
VOID SOEndColumnlnfo(HPROC reserved);

Ends the definition of column information.

• No return value.

reserved
Reserved; do not use.

The file parser must call this function immediately after setting the column infor
mation. This function can only be called from the VwStreamSection function.

SOEndFieldlnfo
VOID SOEndFieldlnfo(HPROC reserved);

Ends the definition of field information.

• No return value.

reserved
Reserved; do not use.

The file parser must have previously called the SOStartFieldInfo function.

The file parser calls this function immediately after setting the field information.
This function can only be called from the VwStreamSection function.

SOEndFontTable
VOID SOEndFontTable(HPROC reserved);

Ends the definition of a font table.

• No return value.

reserved
Reserved; do not use.

The file parser must call this function immediately after setting font entries.
This function can only be called from the VwStreamSection function.

346 Programmer's Guide to Microsoft Windows 95

SOEndPalette
VOID SOEndPalette(HPROC reserved);

Ends the definition of a color palette.

• No return value.

reserved
Reserved; do not use.

The file parser calls this function immediately after specifying the last palette
entry.

SOEndTable
VOID SOEndTable(HPROC reserved);

Ends a table definition, indicating that the text in subsequent output calls is no
longer part of a table.

• No return value.

reserved
Reserved; do not use.

The function must be called after a row break.

SOEndTabStops
VOID SOEndTabStops(HPROC reserved);

Ends the definition of tabs stops for a paragraph.

• No return value.

reserved
Reserved; do not use.

To set tab stops, use the SOPutTabStop function.

The file parser calls this function immediately after setting the last tab stop for the
paragraph.

Article 17 File Parsers 347

SOGetlnfo
VOID SOGetInfo(WORD wInfo, void VWPTR * pInfo, HPROC reserved);

Retrieves information about a spreadsheet.

• No return value.

wInfo
Information type. If this parameter is the SOINFO_COLUMNRANGE value,
the function retrieves the range of columns for a spreadsheet to read.

pInfo
Address of a 32-bit variable that receives the first column number in the low
order word and the second column number in the high-order word.

reserved
Reserved; do not use.

SOGetScanLineBuffer
WORD SOGetScanLineBuffer(VOID VWPTR * ppScanLineData, HPROC reserved);

Retrieves the address of the buffer for storing the current scan line.

• Returns the size, in bytes, of the scan line data buffer. The size is the max
imum number of bytes that may be accessed using the returned address and
is guaranteed to be sufficient to hold a scan line as wide as the entire tile.

ppScanLineData
Address of the variable that receives the address of the scan line data buffer.

reserved
Reserved; do not use.

This function is called from the VwStreamReadFunc function for each scan line
produced ..

This function sets the variable pointed to by ppScanLineData to the address where
the scan line data should be built.

348 Programmer's Guide to MicrosoffWindows 95

SOPutBitmapHeader
VOID SOPutBitmapHeader(PSOBITMAPHEADER pBitmapHeader, HPROC reserved);

Outputs information about a bitmap.

• No return value.

pBitmapHeader
Address of the SOBITMAPHEADER structure that contains the bitmap
header information.

reserved
Reserved; do not use.

SOPutBreak
WORD SOPutBreak(WORD wType, DWORD dwInfo, HPROC reserved);

Sets a paragraph, cell, record, page, section, or other type of break.

• Returns the SO_STOP value to direct the file parser to stop processing
and return or the SO_CONTINUE value to direct the file parser to continue
processing.

wType
Type of break. This parameter can one of these values:

SO_CELLBREAK

SO_EOFBREAK

SO_PARABREAK

SO_RECORDBREAK

SO_SECTIONBREAK

SO_SUBDOCBEGINBREAK

SO_SUBDOCENDBREAK

dwlnfo

Regular cell break

End of file (EOF) break, which implies a section
break

Regular paragraph break

Regular record break

Section break

Subdocument's begin break

Subdocument's end break

Data to save for each record. This data is for database section breaks. For all
other section types, this parameter should be zero.

reserved
Reserved; do not use.

Article 17 File Parsers 349

dwlnfo is saved after every SOPutBreak function and, like the regular save
infonnation, should represent the next record, not the one just read.

In spreadsheet sections, the last cell in a section must have an associated
SO_CELLBREAK break before either the SO_SECTIONBREAK or
SO_EOFBREAK break.

In database sections, the last record in a section must have an associated
SO_RECORDBREAK break before either the SO_SECTIONBREAK or
SO_EOFBREAK break.

In word processing sections, the last paragraph does not need an
SO_PARABREAK break before either the SO_SECTIONBREAK or
SO_EOFBREAK break.

SOPutChar
VOID SOPutChar(WORD wCh. HPROC reserved);

Outputs a character, applying the current font, height, and attributes.

• No return value.

wCh
Character value. This parameter must be within the range specified by the
current character set.

reserved
Reserved; do not use.

The character is assumed to belong to the character set selected by the open
function and is countable and visible.

SOPutChar Attr
VOID SOPutCharAttr(WORD wAttr. WORD wState. HPROC reserved);

Sets the style attributes for characters in text.

• No return value.

350 Programmer's Guide to Microsoft Windows 95

wAttr
Style attribute type. This parameter cari be one of these values:

SO_BOLD Bold

SO_CAPS All capital letters

SO_DOTUNDERLINE

SO_DUNDERLINE

SO_ITALIC

SO_OUTLINE

SO_SHADOW

SO_SMALLCAPS

SO_STRIKEOUT

SO_SUBSCRIPT

SO_SUPERSCRIPT

SO_UNDERLINE

SO_ WORDUNDERLINE

wState

Dotted underline

Double underline

Italic

Outlined rather than solid

Shadow slightly beneath and behind

Small capital letters

Strikeout

Subscript

Superscript

Single underline

Underline

Style attribute state. This parameter can be the SO_ON or SO_OFF value.

reserved
Reserved; do not use.

SOPutCharFontByld
VOID SOPutCharFontById(DWORD dwFontId, HPROC reserved);

Sets the font for characters in text.

• No return value.

dwFontId
Font identifier, relative to the previously given font table.

reserved
Reserved; do not use.

SOPutCharFontByName
VOID SOPutCharFontByName(WORD wFontType, char VWPTR * pFontName, HPROC
reserved) ;

Sets the font for characters in text.

• No return value.

Article 17 File Parsers 351

wFontType
Font family. This parameter can be one of these values:

SO_FAMIL YDECORATIVE Fancy display font

SO_FAMILYMODERN

SO_FAMILYROMAN

SO_FAMILYSCRIPT

SO_FAMIL YSWISS

SO_FAMIL YSYMBOL

SO_FAMIL YUNKNOWN

pFontName

Fixed width

Variable width with serifs

Handwriting

Variable width without serifs

Symbol font

Not known

Address of a null-terminated string specifying the name of the font.

reserved
Reserved; do not use.

SOPutCharHeight
VOID SOPutCharHeight(WORD wHeight, HPROC reserved);

Sets the height, in half points, of a character in text.

• No return value.

wHeight
Height, in half points, of the character.

reserved
Reserved; do not use.

SOPutCharX
VOID SOPutCharX(WORD wCh, WORD wType, HPROC reserved);

Outputs a character, applying the specified character type.

• No return value.

wCh
Character value. This parameter must be within the range specified by the
current character set.

352 Programmer's Guide to Microsoft Windows 95

wType
Type flag. This parameter can be one or more of these values:

SO_HIDDEN

SO_LIMITEDIT

reserved
Reserved; do not use.

The character is countable and may be deleted.
Characters without this value are for display purposes
and do not enter into character count calculations for
write back.

The character is not visible on the display.

Consecutive characters of this type will be deleted as
a group. No write back command will begin on one of
these c4aracters, but it may encompass a group of these
characters.

The character is assumed to belong to the character set selected by the open
function.

SOPutColumnlnfo
VOID SOPutColumnlnfo(PSOCOLUMN pColumn, HPROC reserved);

Sets column information.

No return value.

pColumn
Address of the SOCOLUMN structure containing the column information.

reserved
Reserved; do not use.

The file parser must call the SOStartColumnInfo function before calling this
function.

This function can only be called from the VwStreamSection function.

SOPutDataCel1
VOID SOPutDataCell(PSODATACELL pCell, HPROC reserved);

Outputs data for a cell.

• No return value.

Article 17 File Parsers 353

pCell
Address of a SODATACELL structure.

reserved
Reserved; do not use.

SOPutEmbeddedObject
VOID SOPutEmbeddedObject(PSOEMBEDDEDOBJECT pObject. HPROC reserved);

Sets an embedded graphics object.

• No return value.

pObject
Address of the SOEMBEDDEDOBJECT structure that contains information
about the object to be embedded.

reserved
Reserved; do not use.

The file parser must set the SOEMBEDDEDOBJECT structure with the
appropriate values.

SOPutField
VOID SOPutField(void VWPTR * pData. HPROC reserved);

Outputs data for a field.

• No return value.

pData
Address of the data for the field.

reserved
Reserved; do not use.

This function is used for all wStorage types except the SO _FIELDTEXTV AR
value.

SOPutFieldlnfo
VOID SOPutFieldInfo(PSOFIELD pField. HPROC reserved);

Sets field information.

• No return value.

354 Programmer's Guide to Microsoft Windows 95

pField
Address of the SOFIELD structure containing the field information.

reserved
Reserved; do not use.

The file parser must call the SOStartFieldlnfo function before calling this
function.

This function can only be called from the VwStreamSection function.

SOPutFontTableEntry
VOID SOPutFontTableEntry(DWORD dwFontld. WORD wFontType.

char VWPTR * pFontName. HPROC reserved);

Sets a font table entry.

• No return value.

dwFontld
Font identifier. This parameter can be any number, but it must be unique within
the font table.

wFontType
Font family. This parameter can be one of these values:

SO_FAMILYDECORATIVE Fancy display font

SO_FAMIL YMODERN

SO_FAMIL YROMAN

SO_FAMIL YSCRIPT

SO_FAMILYSWISS

SO_FAMILYSYMBOL

SO_FAMILYUNKNOWN

pFontName

Fixed width

Variable width with serifs

Handwriting

Variable width without serifs

Symbol font

Not known

Address of a null-terminated string specifying the name of the font.

reserved
Reserved; do not use.

The file parser must call the SOStartFontTable function before calling this
function. SOPutFontTableEntry must be called once for each font to be added
to the table. Font identifiers must be unique, but they can be given in any order.

This function can only be called from the VwStreamSection function.

Article 17 File Parsers 355

SOPutHdrEntry
VOID SOPutHdrEntry(char VWPTR *pLabel. char VWPTR * pData. WORD wId.

HPROC reserved):

Sets strings for the header infonnation.

• No return value.

pLabel
Label that the display engine should use when presenting this value.

pData
Value to display.

wId
Identifier for this item that the display engine and filter agree upon.

reserved
Reserved; do not use.

Thi~ function can only be called from the VwStreamSection function.

SOPutMoreText
VOID SOPutMoreText(WORD wCount. char VWPTR * pText. WORD bMore.

HPROC reserved):

. Outputs the text for a cell and indicates whether there is more text to be output
for the cell.

• No return value.

wCount
Number of characters pointed to by pText. The number must not exceed 128
bytes.

pText
Address of the string of text characters to output.

bMore
More data flag. This parameter can be the SO_YES value to indicate more text
to be output or the SO_NO value to indicate none.

reserved
Reserved; do not use.

356 Programmer's Guide to Microsoft Windows 95

This function is used to output a sequence of text initially started by using the
SOPutText function.

If there is more text to output, the file parser must use a subsequent call or calls
to the SOPutMoreText function to output the text. The 128 byte limit is for the
convenience of the function processing SOPutMoreText.

SOPutMore VarField
VOID SOPutMoreVarField(VOID VWPTR * pData. WORD wCount. WORD bMore.

HPROC reserved);

Outputs data for a variable field and indicates whether there is more data to be
output for the field.

• No return value.

pData
Address of the data for the field.

wCount
Number of bytes pointed to by pData. The number must not exceed 128 bytes.

bMore
More data flag. This parameter can be the SO_YES value to indicate more data
to be output or the SO _NO value to indicate none.

reserved
Reserved; do not use.

This function can be called any number of times.

If there is more data to output, the file parser must use a subsequent call or calls to
SOPutMoreVarField to output the data. The 128 byte limit is for the convenience
of the function processing SOPutMore VarField.

This function is used to output a sequence of data initially started by using the
SOPutVarField function.

SOPutPaletteEntry
VOID SOPutPaletteEntry(unsigned char Red. unsigned char Green.

unsigned char Blue. HPROC reserved);

Sets the colors for a palette entry.

• No return value.

Article 17 File Parsers 357

Red
Relative red intensity in the range 0 to 255.

Green
Relative green intensity in the range 0 to 255.

Blue
Relative blue intensity in the range 0 to 255.

reserved
Reserved; do not use.

The file parser must call the SOStartPalette function before calling this function.

The order of calls to this function determines the order of entries in the color table
for an image. The first palette entry is color 0, the color displayed for pixels with
a value of 0; the second palette entry is color 1; and so on.

SOPutParaAlign
VOID SOPutParaAlign(WORD wType.HPROC reserved);

Sets the alignment for a paragraph.

• No return value.

wType
Type of alignment. This parameter can be the SO_ALIGNLEFf,
SO_ALIGNRIGHT, SO_ALIGNCENTER, or SO_ALIGNJUSTIFY value.

reserved
Reserved; do not use.

SOPutParalndents
VOID SOPutParaIndents(LONG dwLeft. LONG dwRight. LONG dwFirst.

HPROC reserved);

Sets indents for a paragraph. Indents are relative to the corresponding left or right
margin.

• No return value.

dwLeft
Width, in twips, of the left indent. The indent is measured from the left page
margin.

358 Programmer's Guide to Microsoft Windows 95

dwRight
Width, in twips, of the right indent. The indent is measured from the right page
margin.

dwFirst
Width, in twips, of the left indent for the fIrst line in the paragraph. The indent is
measured from the left page margin.

reserved
Reserved; do not use.

SOPutParaMargins
VOID SOPutParaMargins(LONG dwLeft. LONG dwRight. HPROC reserved);

Sets paragraph margins. The margins are relative to the left or right edge of the
page.

• No return value.

dwLeft
Width, in twips, of the left margin.

dwRight
Width, in twips, of the right margin.

reserved
Reserved; do not use.

SOPutParaSpacing
VOID SOPutParaSpacing(WORD wLineHeightType. DWORD dwLineHeight.

DWORD dwSpaceBefore. DWORD dwSpaceAfter. HPROC reserved);

Sets the spacing for a paragraph.

• No return value.

wLineHeightType
Type of line height. This parameter can be one of these values:

SO_HEIGHTATLEAST Sets the line height to the height given by dwLineHeight
or sets it to fit the tallest character in the line, whichever
height is greater.

Sets the line height automatically to fit the tallest char
acter in the line.

Sets the line height to the height given by dwLineHeight.

Article 17 File Parsers 359

dwLineHeight
Baseline to baseline height, in twips.

dWSpaceBefore
Space before the paragraph, in twips.

dWSpaceAfter
Space after the paragraph, in twips.

reserved
Reserved; do not use.

SOPutScanLineData
VOID SOPutScanLineData(U_BYTE VWPTR * pScanLineData. HPROC reserved);

Sets the bit values in a single scan line of a bitmap.

• No return value.

pScanLineData
Address of the bitmap data for the current scan line.

reserved
Reserved; do not use.

The bitmap format must have been previously defined by using the
SOPutBitmapHeader function.

SOPutSectionName
VOID SOPutSectionName(char VWPTR * pName. HPROC reserved);

Sets the name of a section.

• No return value.

pName
Address of a null-terminated string specifying the name of the section.

reserved
Reserved; do not use.

SOPutSection Type
VOID SOPutSectionType(WORD wType. HPROC reserved);

Outputs a section type.

• No return value.

360 Programmer's Guide to Microsoft Windows 95

wType
Section type. This parameter can be one of these values:

reserved
Reserved; do not use.

SOPutSpecialCharX

Sets the section type to be a bitmap. When generating
output for the section, the file parser should use only
general and bitmap stream output functions.

Sets the section type to be a spreadsheet consisting of
cells. When generating output for the section, the file
parser should use only the general and spreadsheet
stream output functions.

Sets the section type to be a database consisting of
fields. When generating output for the section, the
file parser should use only the general and database
stream output functions.

Sets the section type to be a word processing document
consisting of paragraphs. When generating output for
the section, the file parser should use only general and
word processing stream output functions.

Sets the section type to be a vector graphics section
consisting of graphics objects. When generating output
for the section, the file parser should use only the
general and vector graphics stream output functions.

VOID SOPutSpecialCharX(WORD wCh. WORD wType. HPROC reserved);

Outputs a special character, applying the specified character type.

No return value.

wCh
Character value. This parameter can be one of these values:

SO_CHDATE

SO_CHHHYPHEN

SO_CHHLINE

SO_CHHPAGE

SO_CHHSPACE

Automatic current date

Nonbreaking hyphen

Hard line break

Hard page break

Nonbreaking space

SO_CHPAGENUMBER

SO_CHSHYPHEN

SO_CHTAB

SO_CHTIME

SO_CHUNKNOWN

wType

Article 17 File Parsers 361

Automatic page number

Hyphen

Tab

Automatic current time

Default character

Type flag. This parameter can be one or more of these values:

SO_HIDDEN

SO_LIMITEDIT

reserved
Reserved; do not use.

SOPutSubdoclnfo

The character is countable and may be deleted. Char
acters without this value are for display purposes and do
not enter into character count calculations for write
back.

The character is not visible on the display.

Consecutive characters of this type will be deleted as
a group. No write back command will begin on one of
these characters, but it may encompass a group of these
characters.

VOID SOPutSubdocInfo(WORD wType. WORD wSubType. HPROC reserved);

Outputs subdocument data.

• No return value.

wType
Type of data. This parameter can be one of these values:

SO_COMMENT The data is a comment.

SO_FOOTER The data applies to the document footer.

SO_FOOTNOTE

SO_HEADER

The data applies to a footnote.

The data applies to the document header.

362 Programmer's Guide to Microsoft Windows 95

wSubType
Subtype of data. This parameter can be one of these values:

SO_BOTH The data is for a header or footer on both left and
right pages. This value is used with SO_HEADER or
SO_FOOTER.

o through 65535

The data is for a header or footer on even pages only.
This value is used with SO_HEADER or SO_FOOTER.

The data is for a header or footer on odd pages only.
This value is used with SO_HEADER or SO_FOOTER.

The data is a footnote number. This value is used with
SO_FOOTNOTE only.

IfwType is SO_COMMENT, no subtype is needed.

reserved
Reserved; do not use.

SOPutTableCelllnfo
VOID SOPutTableCellInfo(PSOTABLECELLINFO pCellInfo, HPROC reserved);

Sets cell information.

• No return value.

pCelllnfo .
Address of a SOTABLECELLINFO structure containing information about
the cell.

reserved
Reserved; do not use.

SOPutTableRowFormat
VOID SOPutTableRowFormat(WORD wLeftEdge, WORD wRowHeight,

WORD wRowHeightType, WORD wCel1Margin, WORD wRowAlignment,
WORD wNumCells, HPROC reserved);

Sets the format of a row in a table.

• No return value.

wLeftEdge
Position, in twips, of the left edge of the table, relative to the left margin.

wRowHeight
Row height, in twips.

Article 17 File Parsers 363

wRowHeightType
Type of height for the row. This parameter can be one of these values:

SO_HEIGHTATLEAST Sets the row height at least as high as that given
by wRowHeight.

wCellMargin

Sets the row height automatically to fit text in
the row.

Sets the row height exactly as given by
wRowHeight,

White space on either side of text in a cell within the specified cell width. It is
equal to half the total white space between adjacent cells.

wRowAlignment
Alignment of row within margins. This parameter can be the SO _ALIGNLEFf,
SO_ALIGNRIGHT, or SO_ALIGNCENTER value.

wNumCells
Number of cells in the row.

reserved
Reserved; do not use'.

SOPutTabStop
VOID SOPutTabStop(PSOTAB pTabs, HPROC reserved);

Sets a tab stop for the paragraph.

• No return value.

pTabs
Address of the SOTAB structure containing the tab stop information.

reserved
Reserved; do not use.

The file parser must call the SOStartTabStops function before calling this function
and can set multiple tab stops for a paragraph by calling it multiple times. The file
parser must not call any other output function while setting tab stops and must call
the SOEndTabStops function after setting the last tab stop.

364 Programmer's Guide to Microsoft Windows 95

SOPutTextCel1
VOID SOPutTextCell(PSOTEXTCELL pCell. WORD wCount. char VWPTR * pText.

WORD bMore. HPROC reserved);

Outputs the text for a cell and indicates whether there is more text to be output for
the cell.

• No return value.

pCel!
Address of a SOTEXTCELL structure.

wCount
Number of characters pointed to by pText. The number must not exceed 128
bytes.

pText
Address of the string of text characters to be output.

bMore
More data flag. This parameter can be the SO _YES value to indicate more text
to be output or the SO_NO value to indicate none.

reserved
Reserved; do not use.

If there is more text to be output, the file parser must use a subsequent call or calls
to the SOPutMoreText function to output the text.

SOPutVarField
VOID SOPutVarField(void VWPTR * pData. WORD wCount. WORD bMore.

HPROC reserved);

Outputs data for a variable field and indicates whether there is more data to be
output for the field.

• No return value.

pData
Address of the data for the variable field.

wCount
Number of bytes pointed to by pData. The number must not exceed 128 bytes.

Article 17 File Parsers 365

bMore
More data flag. This parameter can be the SO_YES value to indicate more data
to be output or the SO_NO value to indicate none.

reserved
Reserved; do not use.

If there is more data to be output, the file parser must use a subsequent call or calls
to the SOPutMore VarField function to output the data.

SOPutVectorHeader
VOID SOPutVectorHeader(PSOVECTORHEADER pVectorHeader. HPROC reserved);

Outputs the vector header, specifying the display resolution, x- and y-axis
orientation, background color, and color value type (RGB or palette).

• No return value.

pVectorHeader
Address of a SOVECTORl{EADER structure.

reserved
Reserved; do not use.

SOSetDateBase
VOID SOSetDateBase(DWORD dwBase. WORD wFlags. HPROC reserved);

Sets the base date. All subsequent dates are calculated as the sum of the base date
and the given date value.

• No return value.

dwBase
Base number of Julian days to be automatically added to dates. All dates are
entered in Julian day fonnat in the following manner:

Jan. 1,4713 B.c. Julian Day 1

Jan. 1, 1 A.D. Julian Day 1721424

Jan. 1, 1900 Julian Day 2415021

Jan. 1, 1904 Julian Day 2416481

Fonnats supporting dates before 1582 are not supported.

366 Programmer's Guide to Microsoft Windows 95

wFlags
Action flag. This parameter can be the SO _LOTUS HELL value to correct for
the Lotus® 1-2-3® 1990 leap year bug.

reserved
Reserved; do not use.

This function can only be called from the VwStreamSection function.

SOStartColumnlnfo
VOID SOStartColumnInfo(HPROC reserved);

Starts the definition of column information.

• No return value.

reserved
Reserved; do not use.

The file parser must call this function immediately before setting the information.
This function can· only be called from the VwStreamSection function.

SOStartFieldlnfo
VOID SOStartFieldInfo(HPROC reserved);

Starts the definition of field information.

• No return value.

reserved
Reserved; do not use.

The file parser calls this function immediately before setting field information.
This function can only be called from the VwStreamSection function.

SOStartFontTable
VOID SOStartFontTable(HPROC reserved);

Starts the definition of a font table.

• No return value.

Article 17 File Parsers 367

reserved
Reserved; do not use.

The file parser must call this function immediately before setting font entries.
This function can only be called from the VwStreamSection function.

SOStartPalette
VOID SOStartPalette(HPROC reserved);

Starts the definition of a color palette.

• No return value.

reserved
Reserved; do not use.

The file parser calls this function immediately before defining palette entries.

SOStartTabStops
VOID SOStartTabStops(HPROC reserved);

Starts the definition of tab stops for a paragraph.

• No return value.

reserved
Reserved; 'do not use.

To set tab stops, use the SOPutTabStop function.

The file parser calls this function immediately before setting the first tab stop for
the paragraph.

SOVectorAttr
VOID SOVectorAttr(INT nItemId. DWORD wDataS;ze. VOID VWPTR *pData.

HPROC reserved);

Sets attributes related to drawing vector graphics objects.

• No return value.

368 Programmer's Guide to Microsoft Windows 95

nltemld
Action identifier. This parameter, which specifies the action to carry out and
determines the appropriate values for wDataSize andpData, can be one of the
vector attribute values in "Constants" later in this article.

wDataSize
Size, in bytes, of data pointed to by pData.

pData
Address of a buffer containing the information used to carry out the requested
action. The meaning and format of the buffer depends on the value of nltemld.

reserved
Reserved; do not use.

SOVectorObject
VOID SOVectorObject(INT nItemId, DWORD dwDataS;ze, VOID VWPTR *pData,

HPROC reserved);

Draws or defines the given vector graphics object.

• No return value.

nltemld
Action flag. This parameter, which specifies the action to carry out and
determines the appropriate values for wDataSize and pData, can be one of
the vector object values in "Constants" later in this article.

wDataSize
Size, in bytes, of the data pointed to by pData.

pData
Address of a buffer containing the information used to carry out the requested
action. The meaning and format of the buffer depends on the value of nltemld.

reserved
Reserved; do not use.

SUUserPopData
VOID SUUserPopData(VOID VWPTR * pData, HPROC reserved);

Pops user data. The data must have been pushed previously by using the
SUUserPushData function.

• No return value.

Article 17 File Parsers 369

pData
Address of the V wStreamUserSaveType structure receiving the data.

reserved
Reserved; do not use.

SUUserPushData
VOID SUUserPushData(VOID VWPTR * pData, HPROC reserved);

Pushes user data.

• No return value.

pData
Address of a VwStreamUserSaveType structure containing the data to be
saved.

reserved
Reserved; do not use.

The data can be retrieved by using the SUUserPopData function.

SU UserRetrieveData
VOID SUUserRetrieveData(WORD wIndex, VOID VWPTR * pData, HPROC
reserved) ;

Retrieves user data.

• No return value.

wlndex
Index value specifying the data to retrieve. This value must have been
previously returned by the SUUserSaveData function.

pData
Address of the VwStreamUserSaveType structure receiving the data.

reserved
Reserved; do not use.

The data must have been previously saved by using the SUUserSaveData function.

This function should not be used. The SUUserPopData function should be used
instead.

370 Programmer's Guide to Microsoft Windows 95

Macros

SUUserSaveData
WORD SUUserSaveData(VOID VWPTR * pData. HPROC reserved);

Saves user data.

• Returns the index used to retrieve the data. Indexes are guaranteed to be zero
based and sequential.

pData
Address of a VwStreamUserSaveType structure containing the data to be
saved.

reserved
Reserved; do not use.

This function should not be used. The SUUserPushData function should be used
instead.

The following macros are used with file parsers.

SOANGLETENTHS
SOANGLETENTHS(AnglelnTenthsOfADegree)

Sets the angle in tenths of a degree.

SOPALETTEINDEX
SOPALETTEINDEX(Index)

Creates a palette-index color value. Index must specify a valid palette entry index.
When this color value is used, the system uses the color from the given palette
entry.

SOPALETTERGB
SOPALETTERGB(Red. Green. Blue)

Creates a palette-relative RGB color value. Red, Green, and Blue specify the red,
green, and blue color intensities and must be in the range 0 to 255. When this color
value is specified, the system uses the palette entry that has the color that most
closely matches this value.

Structures

Article 17 File Parsers 371

SORGB
SORGB(Red, Green, Blue)

Creates an RGB color value. Red, Green, and Blue specify the red, green, and blue
color intensities and must be in the range 0 to 255.

SOSETRATIO
SOSETRATIO(Numerator, Denominator)

Sets the ratio. Numerator and Denominator specify the ratio factors and must be
values in the range 0 to 65,535.

The following structures are used with file parsers.

SOARCINFO
typedef struct SOARCINFOtag

SORECT Rect; II see below
SOANGLE StartAngle; II see below
SOANGLE EndAngle; II see below

SOARCINFO, VWPTR *PSOARCINFO;

Contains information defining the arc to be drawn.

Rect
Rectangle that bounds the ellipse containing the arc.

StartAngle
Angle specifying the starting point of the arc. The angle is defined in tenths of a
degree, counterclockwise from the positive x-axis. To set this member, use the
SOANGLETENTHS macro.

EndAngle
Angle specifying the ending point of the arc. The angle is defined in tenths of a
degree, counterclockwise from the positive x-axis. To set this member, use the
SOANGLETENTHS macro.

372 Programmer's Guide to Microsoft Windows 95

SOBITMAPHEADER
typedef struct SOBITMAPHEADERtag

WORD wStructSize; II see below
WORD wlmageFlags; II see below
WORD wlmageWidth; II see below
WORD wlmageLength; II see below
WORD wTileWidth; II see below
WORD wTileLength; II see below
WORD wBitsPerPixel; II see below
WORD wNPlanes; II see below
WORD wHDpi; II see below
WORD wVDpi; II see below

SOBITMAPHEADER, VWPTR *PSOBITMAPHEADER;

Contains information about the bitmap to be output.

wStructSize
Size, in bytes, of the structure.

wlmageFlags
Image flags. This member can be a combination of one (and only one) color
format value and other attribute values.

The color format can be one of these values:

SO_BLAC~~TE

SO_COLORPALETIE

SO_GRAYSCALE

SO_RGBCOLOR

Pixel values are RGB color values (24-bit only);
bytes are stored consecutively in the order B,G,R.

Pixels are black or white (1 bit per pixel only).

Pixel values are indexes into the color palette for
the bitmap.

Pixel values are gray scale values.

Pixel values are RGB color values (24-bit only);
bytes are stored consecutively in the order R,G,B.

Other attributes can be a combination of these values:

SO_BOTIOMTOTOP

wlmageWidth

The image is provided in scan lines from the
bottom up. The default is top to bottom.

For gray scale images and black and white images
only, a pixel with a value of zero is awhite pixel,
and increasing pixel values become darker. By
default, a value of zero is defined as a black pixel
with increasing values becoming lighter.

Horizontal width, in pixels, of the image.

wImageLengtb
Vertical length, in pixels, of the image.

Article 17 File Parsers 373

wTileWidth
Horizontal width, in pixels, of the tile.

wTileLength
V erticallength, in pixels, of the tile.

wBitsPerPixel
Number of consecutive bits that define the pixel color. The number is currently
limited to 1, 4, 8, or 24.

wNPlanes
Color planes. This member must be 1.

wHDpi
Horizontal resolution, in pixels per inch, of the display on which the image
originated. If the resolution is not known, this member can be zero.

wVDpi
Vertical resolution, in pixels per inch, of the display on which the image
originated. If the resolution is not known, this member can be zero.

SOBORDER
typedef struct SOBORDERtag {

WORD wWidth; II see below
SOCOLORREF rgbColor; II see below
WORD wFlags; II see below

SOBORDER,VWPTR * PSOBORDER;

Contains information about the border around a cell in table.

wWidth
Width, in twips, of the border.

rgbColor
Color of the border. This member can be a RGB color value. To set thi.s
member, use the SORGB macro.

wFiags
Type of border and the edges to which it applies. This member can
be a combination of the SO_BORDERNONE, SO_BORDERDOUBLE,
SO_BORDERHAIRLINE, SO_BORDERTHICK, SO_BORDERSHADOW,
and SO_BORDERDOTTED values.

374 Programmer's Guide to Microsoft Windows 95

SOCOLUMN
typedef struct SOCOLUMNtag

WORD wStructSize; II see below
LONG dwWidth; II see below
char szName[40]; II see below

} SOCOLUMN. VWPTR * PSOCOLUMN;

Contains information about the columns in a spreadsheet.

wStructSize
Size, in bytes, of the structure.

dwWidth
Width, in characters, of the column.

szName
Null-terminated string specifying the name of the column.

SOCPARCANGLE
typedef struct SOCPARCANGLEtag {

SOPOINT Center; II center point
SOANGLE SweepAngle; II sweep angle

} SOCPARCANGLE. VWPTR *PSOCPARCANGLE;

Contains information defIning an arc for use in vector graphics output.

SOCPPIEANGLE
typedef struct SOCPPIEANGLEtag

INT nRadius; II radius
SOANGLE StartAngle; II starting angle
SOANGLE SweepAngle; II sweep angle

} SOCPPIEANGLE. VWPTR *PSOCPPIEANGLE;

Contains information defIning a pie shape for use in vector graphics output.

SOCPTEXT ATPOINT
typedef struct SOCPTEXTATPOINTtag

WORD wFormat; II format of text
INT nTextLength; II text length

} SOCPTEXTATPOINT. VWPTR *PSOCPTEXTATPOINT;

Contains information defIning the format and length of text for use in vector
graphics output.

Article 17 File Parsers 375

SODATACELL
typedef struct SODATACELLtag

WORD wStructSize; //see below
WORD wStorage; //see below
WORD wDisplay; //see below
DWORD dwSubDisplay; //see below
WORD wPrecision; //see below
WORD wAlignment; //see below
WORD wAttribute; //see below
union {

S01NT32S 1nt32S; //see below
S01NT32U 1nt32U; //see below
BYTE 1EEE4[4]; //see below
BYTE 1EEE8[8]; //see below
BYTE 1EEE10[10] ; //see below
BYTE BCD8[8]; //see below

uStorage;
} SODATACELL, VWPTR * PSODATACELL;

Contains information about the data to be placed in a cell of a spreadsheet.

wStructSize
Size, in bytes, of the structure.

wStorage
Storage type. This member can be one of these values:

SO _CELLBCD8I Packed BCD excess-63.

SO_CELLEMPfY

SO_CELLERROR

SO _CELLIEEE4I

SO _CELLIEEE8I

SO _CELLIEEEIOI

SO_CELLINT32S

SO_CELLINT32U

The cell is empty.

The cell has an error condition.

IEEE 4-byte in Intel® (PC) ordering.

IEEE 8,.byte in Intel (PC) ordering.

IEEE IO-byte in Intel (PC) ordering.

32-bit signed integer.

32-bit unsigned integer.

376 Programmer's Guide to Microsoft Windows 95

wDisplay
Display type. This member can be one of these values:

SO_CELLBOOL Boolean (0 = FALSE and 1 = TRUE).

SO_CELLDECIMAL

SO_CELLDOLLARS

SO_CELLEXPONENT

SO_CELLNUMBER

SO_CELLPERCENT

SO~CELLTIME

dwSubDisplay

Julian Days since the base date. wStorage may be
either an IEEE or integer value.

Julian Days since the base date. wStorage may be
either an IEEE or integer value.

Decimal notation.

Dollar sign.

Exponential notation.

General number format.

Percent (not constrained to 0-100).

Decimal part of a day if wStorage is an IEEE value or
seconds since 00:00 if wStorage is an integer value.

Display subtype. The values depend on wDisplay value.

For SO_CELLNUMBER and SO_CELLDOLLARS, this member can be a
combination of one negative-number format, thousands separator, and cell
multiplier.

Negative Number Format

SO_CELLNEG_MlNUS

SO_CELLNEG_M~SRED

SO_CELLNEG_PAREN

SO_CELLNEG_PARENRED

Thousands Separator

SO_CELL 1 OOOSEP _COMMA

SO_CELLI000SEP _NONE

Cell Multiplier

SO_CELLMULT_l

SO_CELLMULT_Ol

SO_CELLMULT_05

SO_CELLMULT_OO5

SO_CELLMULT_OOO5

SO_CELLMULT..;.OOO05

SO_CELLMULT_500

SO_CELLMULT_5000

SO_CELLMULT_0625

SO_CELLMULT_OI5625

Negative numbers have a minus sign.

Negative numbers have a minus sign and are red.

Negative numbers have parentheses.

Negative numbers have parentheses and are red.

Commas as 1,000s separator.

No 1,000s separator.

Used for all file parsers.

Used only for Microsoft® Excel viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Used only for Lotus viewer.

Article 17 File Parsers 377

For SO_CELLDATETIME, SO_CELLDATE, and SO_CELLTIME, this member
can be a combination of one date separator, day format, month format, year format,
day of week format, and time format.

Date Separator

SO_CELLDATESEP ~INUS
SO_CELLDATESEP_NONE
SO_CELLDATESEP _PERIOD
SO_CELLDATESEP _SPACE
Day Format

SO_CELLDAY_NONE
SO_CELLDAY_~BER

Month Format

SO_CELLMONTH_ABBREV
SO_CELLMONTH_FULL
SO_CELLMONTH_NONE
SO_CELLMONTH_~BER

Year Format

SO_CELLYEAR_ABBREV
SO_CELLYEAR_FULL
SO_CELLYEAR_NONE
Day of Week Format

SO_CELLDAYOFWEEK_ABBREV
SO_CELLDAYOFWEEK_FULL
SO_CELLDAYOFWEEK_NONE
Time Format

SO_CELLT~E_HHMM24

SO_CELLT~E_H~AM

SO_CELL~_HHMMHMS

SO_CELL~E_HHMMSS24

SO_CELLT~_HHMMSSAM

SO_CELL~_HHMMSSHMS

SO_CELL~_NONE

For example, 14h45m

For example, 14h45m34s

378 Programmer's Guide to Microsoft Windows 95

wPrecision
Precision or positioning value, depending on the wDisplay value.

For SO_CELLNUMBER and SO_CELLDOLLARS, this member specifies
the number of places to the right of the decimal point.

For SO_CELLDATETIME, SO_CELLDATE, and SO_CELLTIME, this
member specifies the position in the date time string of each element. It must
be a combination of one value for each of the day of week position, month
position, day position, year position, and time position.

Day of Week Position

SO_CELLDAYOFWEEK_l

SO_CELLDA YOFWEEK_2

SO_CELLDAYOFWEEK_3

SO_CELLDAYOFWEEK_4

SO_CELLDAYOFWEEK_5

Month Position

SO_CELLMONTH_l

SO_CELLMONTH_2

SO_CELLMONTH_3

SO_CELLMONTH_4

SO_CELLMONTH_5

Day Position

SO_CELLDAY_l

SO_CELLDAY_2

SO_CELLDAY_3

SO_CELLDA Y _4

SO_CELLDA Y_5

Year Position

SO_CELL YEAR_l

SO_CELL YEAR_2

SO_CELL YEAR_3

SO_CELL YEAR_ 4

SO_CELL YEAR_5

Time Position

SO_CELLTIME_l

SO_CELLTIME_2

SO_CELLTIME_3

SO_CELLTIME_ 4

SO_CELLTIME_5

Article 17 File Parsers 379

wAlignment
Alignment of data in the cell. This member can be the SO _CELLLEFf,
SO_CELLRIGHT, or SO_CELLCENTER value.

wAttribute
Attribute of data in the cell. This member can be a combination of the
SO_CELLBOLD, SO_CELLITALIC, SO_CELLUNDERLINE, and
SO_CELLSTRIKEOUT values;

Int32S
Signed 32-bit integer.

Int32U
Unsigned 32-bit integer.

IEEE4
Four-byte array representing an IEEE 4-byte floating-point number.

IEEES
Eight-byte array representing an IEEE 8-byte floating-point number.

IEEE 10
Ten-byte array representing an IEEE lO-byte floating-point number.

BCDS
Eight-byte array representing an excess-63 floating-point packed BCD.

SOEMBEDDEDGRAPHIC
typedef struct SOEMBEDDEDGRAPHICtag {

SOPOINT Size; II see below
SORECT Crop; II see below
SOPOINT ScaledSize; Ii see below
WORD wBorder; II see below
DWORD dwFlags; II see below

SOEMBEDDEDGRAPHIC;

Contains information about the size and positioning of an embedded graphics
object.

Size
Initial size of the image before scaling and cropping.

Crop
Cropping amount on the top, bottom, left, and right edges. .

ScaledSize
Final size of the image after scaling and cropping.

wBorder
Border thickness, in twips. If this member is zero, there is no border.

380 Programmer's Guide to Microsoft Windows 95

dwFlags
Flags. This member can be a combination of these values:

SO_CENTERIMAGE The image is centered in its final rectangle.

The image aspect ratio is preserved.

SOEMBEDDEDOBJECT
typedef struct SOEMBEDDEDOBJECTtag {

WORD wStructSize; II see below
WORD wObjectType; II see below
char szFile[144]; II see below
WORD wFIType; /1 see below
DWORD dwFileOffset; II see below
SOEMBEDINFO-Info; II see below

SOEMBEDDEDOBJECT, VWPTR * PSOEMBEDDEDOBJECT;

Contains information about an embedded object.

wStructSize
Size, in bytes, of the structure.

wObjectType
Type of object type. This member can be the SOEMBED _GRAPHIC or
SO_UNKNOWN value.

szFile
Null-terminated string specifying the path and filename of the file that contains
the object. If the object is in the current file, this member is NULL.

wFIType
File identifier for object's file. If the object type is the SO_UNKNOWN value,
this member is zero.

dwFileOtTset
Offset, in bytes, to the embedded object from the start of the given file.

Info
Union containing object-specific information.

SOEMBEDINFO
typedef union SOEMBEDINFOtag {

SOEMBEDDEDGRAPHIC Graphic; II embedded graphics structure
} SOEMBEDINFO;

Contains information specific to embedded graphics objects.

SOFIELD
typedef struct SOFIELDtag

WORD wStructSize;
LONG dwWidth;
char szName[40];
WORD wStorage;
WORD wDisplay;
DWORD dwSubDisplay;
WORD wPrecision;
WORD wAlignment;

} SOFIELD, VWPTR * PSOFIELD;

Article 17 File Parsers 381

Contains information about a field in a database.

wStructSize
Size, in bytes, of the structure.

dwWidth
Width, in characters, of the column.

szName
Null.:.terminated string specifying the name of the field.

wStorage
Storage type. This member can be one of these values:

SO _CELLBCD81 Packed BCD excess-63.

SO_CELLEMPTY

SO_CELLERROR

SO _CELLIEEE41

SO _CELLIEEE81

SO _CELLIEEElOI

SO _CELLINT32S

SO_CELLINT32U

SO_FIELDTEXTFIX

SO_FIELDTEXTVAR

wDisplay

The cell is empty.

The cell has an error condition.

IEEE 4-byte in Intel (PC) ordering.

IEEE 8-byte in Intel (PC) ordering.

IEEE lO-byte in Intel (PC) ordering.

32-bit signed integer.

32-bit unsigned integer.

The field contains a string of fixed length.

The field contains a string of unknown length.

Display type. For more information, see the wDisplay member in the
SODATACELL structure.

ciwSubDisplay
Display subtype. For more information, see the dwSubDisplay member in
the SODATACELL structure.

382 Programmer's Guide to Microsoft Windows 95

wPrecision
Precision or positioning value. For more information, see the wPrecision
member in the SODATACELL structure.

If wStorage is the SO _FIELDTEXTFIX value, this member specifies the
number of characters in the string.

wAlignment
Alignment of data in the cell. This member can be the SO _ CELLLEFf,
SO_CELLRIGHT, or SO_CELLCENTER value. .

SOFIL TERINFO
typedef struct SOFILTERINFOtag

INT wFilterCharSet; II see below
U_BYTE szFilterName[32]; II see below

} SOFILTERINFO;

Contains information identifying the file parser.

wFilterCharSet
Character set used for text by the file parser. This member must be the
SO_WINDOWS value.

szFilterName
Null-terminated string specifying the name of the file parser. The name should
identify either the format of the files being parsed or the product that created
the files.

SOGROUPINFO
typedef struct SOGROUPINFOtag {

WORD wStructSize; II see below
SORECT BoundingRect; II see below
INT nTransforms: . I I see below

} SOGROUPINFO, VWPTR *PSOGROUPINFO;

Contains information about a group for use with vector graphics output.

wStructSize
Size, in bytes, of the structure.

BoundingRect
Rectangle that bounds all points displayed in the group. This rectangle does not
cause clipping to occur. If clipping is needed, a clipping path must be selected.

nTransforms
Number of transformation structures following this structure.

SOLOGBRUSH
typedef struct SOLOGBRUSHtag

WORD lbStyle: II see below
SOCOLORREF lbColor; II see below
INT lbHatch; II see below

} SOLOGBRUSH. VWPTR *PSOLOGBRUSH;

Article 17 File Parsers 383

Contains information defining a logical brush for use with vector graphics output.

IbStyle
Brush style. This member can be the SOBS_HATCHED, SOBS_HOLLOW, or
SOBS_SOLID value.

IbColor
Color of the brush. This member can be an RGB or palette-relative value. To set
this member, use the SORGB or SOPALETTE macro.

IbHatch
Hatch style. This member can be the SOHS_BDIAGONAL, SOHS_CROSS,
SOHS_DIAGCROSS, SOHS_FDIAGONAL, SOHS_HORIZONTAL, or
SOHS_ VERTICAL value. This member is used only if IbStyle is the
SO_HATCHED value.

For a complete definition of the members, see the LOGBRUSH structure.

SOLOGFONT
typedef struct SOLOGFONTtag {

INT lfHeight; II font height
INT lfWidth; II font width
INT lfEscapement; II angle of text line
INT lfOrientation; II angle of character baseline
INT 1 fWei ght; II font weight
BYTE lfltalic; II italics
BYTE lfUnderline; II underline
BYTE lfStrikeOut; II strikeout
BYTE lfCharSet; II character set
BYTE lfOutputPrecision; II output preCision
BYTE lfClipPrecision; II clipping precision
BYTE lfQuality; II output quality
BYTE lfPitchAndFamily; II pitch and family of font
BYTE lfFaceName[SOLF_FACESIZE]; II typeface name of font

} SOLOGFONT. VWPTR *PSOLOGFONT;

Contains information that defines a logical font for use with vector graphics output.
The Imeight and lfWidth members must be in the same logical units as all of the
other drawing commands. For a description of the members, see the LOGFONT
structure.

384 Programmer's Guide to Microsoft Windows 95

SOLOGPEN
typedef struct SOLOGPENtag

INT loPenStyle; II see below
SOPOINT loWidth; II see below
SOCOLORREF loColor; II see below

SOLOGPEN, VWPTR *PSOLOGPEN;

Contains information that defines a logical pen for use with vector graphics output.
For a complete definition of the members, see the LOGPEN structure.

loPenStyle
Pen Style. This member can be the SOPS_SOLID, SOPS_DASH,
SOPS_DOT, SOPS_DASHDOT, SOPS_DASHDOTDOT, SOPS_NULL,
or SOPS_INSIDEFRAME value.

loWidth
Width, in logical units, of the pen. The x member in the POINT structure is
used, and the y member is ignored.

loColor
Color of the brush. This member can be an RGB or palette-relative value. To set
this member, use the SORGB of SOPALETTE macro.

SOPARAINDENTS
typedef struct SOPARAINDENTStag {

INT FirstLinelndent; II see below
INT Leftlndent; II see below
INT Rightlndent; II see below

} SOPARAINDENTS, VWPTR *PSOPARAINDENTS;

Contains information about paragraph indents for use with vector graphics output.

FirstLineIndent
Distance, from the left edge of the frame, to indent the first line of each
paragraph.

LeftIndent
Distance, from the left edge of the frame, to indent all lines but the the first line
of each paragraph.

RightIndent
Distance, from the right edge of the frame, to indent all lines of each paragraph.

SOPATHINFO
typedef struct SOPATHINFOtag

WORD wStructSize; II see below
SORECT BoundingRect; II see below
INT nTransforms; II see below

SOPATHINFO, VWPTR *PSOPATHINFO;

Article 17 File Parsers 385

Contains information about a path for use with vector graphics output.

wStructSize
Size, in bytes, of the structure.

BoundingRect
Rectangle that bounds all points displayed in the path. This rectangle does not
cause clipping to occur. If clipping is needed, a clipping path must be selected.

nTransforms
Number of transformation structures following this structure.

SOPOINT
typedef struct SOPOINTtag {

INT x; II x-coordinate
INT y; II y-coordinate

SOPOINT, VWPTR *PSOPOINT;

Contains coordinates for a point.

SOPOLYINFO
typedef struct SOPOLYINFOtag

WORD wFormat; II see below
INT nPoints; II see below

SOPOLYINFO, VWPTR *PSOPOLYINFO;

Contains information about the type and number of vertices of a polyline, polygon,
spline, or Bezier curve.

386 Programmer's Guide to Microsoft Windows 95

wFormat
Format type. This member can be one of these values:

SOPT_BEZIERCLOSE SOPT_POLYGON

SOPT_BEZIEROPEN

SOPT_CPPOLYGON

SOPT_CPPOL YLINE

nPoints

SOPT_POL YLINE

SOPT_SPLINECLOSE

SOPT_SPLINEOPEN

Number of vertices in the object.

SORECT
typedef struct SORECTtag {

INT left; II x-coordinate of upper left corner
INT top; /I y-coordinate of
INT right; II x-coordinate of
INT bottom; II y-coordinate of

} SORECT, VWPTR *PSORECT;

Contains the dimensions of a rectangle.

SOTAB
typedef struct SOTABtag {

WORD wType; II see below
WORD wChar; II see below
WORD wLeader; II see below
LONG dwOffset; II see below

} SOTAB, VWPTR * PSOTAB;

Contains information about tab stops.

wType

upper left corner
lower right corner
lower right corner

Type of tab stop. This member can be the SO_TABLEFT, SO_TABRIGHT,
SO_TABCENTER, or SO_TABCHAR value.

wChar
Alignment character if wType is SO _ TABCHAR. Tabs are aligned on this
character.

wLeader
Repeating leader character for the tab. If this member is zero, there is no leader.

dwOfTset
Offset of the tab from the left page margin.

SOTABLECELLINFO
typedef struct SOTABLECELLINFOtag {

WORD wWidth; II see below
WORD wMerge; II see below
WORD wShading; II see below
PSOBORDER pLeftBorder; II see below
PSOBORDER pRightBorder; II see below
PSOBORDER pTopBorder; II see below
PSOBORDER pBottomBorder; II see below

SOTABLECELLINFO, VWPTR *PSOTABLECELLINFO;

Contains information about cells in a table.

wWidth
Width, in twips, of the cell.

wMerge

Article 17 File Parsers 387

Merge flag specifying whether the cell is merged with any neighboring cells.
This member can be a combination of these values: SO_MERGELEFT,
SO_MERGERIGHT, SO_MERGEABOVE, and SO_MERGEBELOW.

wShading
Intensity value for background shading in the range of 0 to 255. If this member
is zero, there is no background shading.

pLeftBorder
Left border.

pRightBorder
Right border.

pTopBorder
Top border.

pBottomBorder
Bottom border.

SOTEXTATARCANGLE
typedef struct SOTEXTATARCANGLEtag

SOARCINFO Arclnfo; II see below
WORD wFormat; II see below
INT nTextLength; II see below

} SOTEXTATARCANGLE, VWPTR *PSOTEXTATARCANGLE;

Contains information about text for use with vector graphics output.

Arclnfo
Arc information defining the arc relative to which the text is located. Only the
starting angle is used to locate the point; the ending angle is ignored.

388 Programmer's Guide to Microsoft Windows 95

wFormat
Alignment format, indicating the relationship between the given point and the
base line or bounding rectangle of the text. This member can be a combination
of these values:

SOTA_BASELINE

SOTA_BOTTOM

SOTA_CENTER

SOTA_LEFT

SOTA_RIGHT

SOTA_TOP

nTextLength

Aligns the point and base line of the font.

Aligns the point and bottom of the bounding rectangle.

Aligns the point and horizontal center of the bounding
rectangle.

Aligns the point and left side of the bounding rectangle.

Aligns the point and right side of the bounding rectangle.

Aligns the point and top of the bounding rectangle.

Length of text string that follows the structure.

SOTEXTATPOINT
typedef struct SOTEXTATPOINTtag {

SOPOINT Point; II see below
WORD wFormat; II see below
INT nTextLength; II see below

SOTEXTATPOINT. VWPTR *PSOTEXTATPOINT;

Contains information about text at a point.

Point
Point that locates the text.

wFormat
Alignment format, indicating the relationship between the point and the base line
or bounding rectangle of the text. This member can be a combination of these
values:

SOTA_BASELINE

SOTA_BOTTOM

SOTA_CENTER

SOT~_LEFT

SOTA_RIGHT

SOTA_TOP

nTextLength

Aligns the point and base line of the font.

Aligns the point and bottom of the bounding rectangle.

Aligns the point and horizontal center of the bounding
rectangle.

Aligns the point and left side of the bounding rectangle.

Aligns the point and right side of the bounding rectangle.

Aligns the point and top of the bounding rectangle.

Length of the text string that follows the structure.

SOTEXTCELL
typedef struct SOTEXTCELLtag {

WORD wStructSize; II see below
WORD wAlignment; II see below
WORD wAttribute; II see below

} SOTEXTCELL, VWPTR * PSOTEXTCELL;

Article 17 File Parsers 389

Contains information about the alignment and attributes of text in a spreadsheet
cell.

wStructSize
Size, in bytes, of the structure.

wAlignment
Alignment. This member can be the SO_CELLLEFf, SO_CELLRIGHT,
SO _CELLCENTER, or SO_CELLFILL value.

wAttribute
Attributes. This member can be a combination of the SO_CELLBOLD,
SO_CELLITALIC, SO_CELLUNDERLINE, and SO_CELLSTRIKEOUT
values.

SOTEXTINRECT
typedef struct SOTEXTINRECTtag

SORECT Rect; II see below
WORD wFormat; II see below
INT nTextLength; II see below

} SOTEXTINRECT, VWPTR *PSOTEXTINRECT;

. Contains information about text for use with vector graphics output.

Rect
Rectangle in which text is formatted.

wFormat
Format of the string. This member can be a combination of these values:

SODT_BOTTOM SODT_NOPREFIX

SODT_CALCRECT

SODT_CENTER

SODT_EXP ANDTABS

SODT_EXTERNALLEADING

SODT_LEFf

SODT-':'NOCLIP

SODT_RIGHT

SODT~SINGLELINE

SODT_TABSTOP

SODT_TOP

SODT_ VCENTER

SODT_ WORDBREAK

390 Programmer's Guide to Microsoft Windows 95

nTextLength
Length of the text string that follows the structure.

SOTRANSFORM
typedef struct SOTRANSFORMtag {

WORD wTransformFlags; II see below
SOPOINT Origin; II see below
INT xOffset; II see below
INT yOffset; 1/ see below
SORA TI 0 x Sea 1 e ; 1/ see below
SORA TI 0 y Sea 1 e ; II see below
SORATIO xSkew; II see below
SORATIO ySkew; II see below
SOANGLE RotationAngle; 1/ see below

} SOTRANSFORM, VWPTR *PSOTRANSFORM;

Contains information about a transformation for use with vector graphics output.

wTransformFlags
Type of transformation. This member can be a combination of these values:

SOTF _NOTRANSFORM SOTF _XSKEW

SOTF _ROTATE

SOTF _XOFFSET

SOTF _XSCALE

SOTF _ YOFFSET

SOTF _ YSCALE

SOTF_YSKEW

TSOTF _ROTATE may be combined only with SOTF _XOFFSET and
SOTP _ YOFFSET. In addition, no other values may be combined with
SOTP _NOTRANSFORM.

Origin
Point of origin for all transformations, except for SOTF _XOFFSET and
SOTF _ YOFPSET.

xOffset and yOffset
Offset values to use for the SOTF _XOFFSET and OTP _ YOFFSET
transformations. The x and y members of this value are added to the x- and
y-coordinates of all points in the transformed object.

xScale
Ratio to use for SOTF _XSCALE transformations. This ratio is used to scale
the image on the x-axis from the given origin. To set this member, use the
SOSETRATIO macro.

yScale
Ratio to use for SOTP _ YSCALE transformations. This ratio is used to scale
the image on the y-axis from the given origin. To set this member, use the
SOSETRATIO macro.

Article 17 File Parsers 391

xSkew
Ratio to use for SOTF _XSKEW transformations. This ratio used to skew
the image horizontally from the given origin. To set this member, use the
SOSETRATIO macro.

ySkew
Ratio to use for SOTP _ YSKEW transformations. This ratio used to skew
the image vertically from the given origin. To set this member, use the
SOSETRATIO macro.

RotationAngJe
Angle, in tenths of a degree, to use for SOTF _ROTATE transformations.
All points are rotated this many degrees about the given origin. This value
must be set by using the SOANGLETENTHS macro. A SOANGLE variable
should not be set directly. Additional macros will be made available as needed.

The transformation equation follows.

x' = Origin.x + (xScale * (x-Origin.x» + (xSkew*(y-Origin.y» + xOffset
y' = Origin.y + (yScale * (y-Origin.y» + (ySkew*(x-Origin.x» + yOffset

SOVECTORHEADER
typedef struct SOVECTORHEADERtag

WORD wStructSize; II see below
SORECT BoundingRect; II see below
WORD wHDPl; II see below
WORD wVDPl; II see below
WORD wlmageFlags; II see below
SOCOLOR BkgColor; II see below

} SOVECTORHEADER, VWPTR *PSOVECTORHEADER;

Contains information defining the size and attributes of the rectangle in which
vector graphics are drawn.

wStructSize
Size, in bytes, of the structure.

BoundingRect
Rectangle that bounds all drawing commands.

wHDpI
Dots per inch resolution along the x-axis.

wVDpI
Dots per inch resolution along the y-axis.

392 Programmer's Guide to Microsoft Windows 95

Constants

wlmageFlags
Image flags. This member can be a combination of these values:

SO_ VECTORCOLORPALETTE Uses a color palette. Color values must be
palette entry indexes or palette-relative RGB
values.

SO_VECTORRGBCOLOR

SO_XISLEFf

SO_YISUP

BkgColor

Uses RGB color values.

Has positive x-coordinates left of the y-axis.

Has positive y-coordinates up from the x-axis.

Color of the background in the bounding rectangle. This value must be set
by using one of the three color macros: SOP ALETTEINDEX, SORGB,
or SOP ALETTERGB. However, SORGB should not be used if a palette is
defined.

The following vector object values and vector attribute values are used with the
vector graphics functions.

Vector Object Values
SO_ARC

Draws an arc. dwDataSize must be 4 * sizeof(SOPOINT), and pData must be
the address of four SOPOINT structures.

SO_ARCCLOCKWISE
Draws an arc in the clockwise direction. dwDataSize must be 4 *
sizeof(SOPOINT), and pData must be the address of four SOPOINT
structures.

SO_ARCANGLE
Draws an arc by defining the angles of the two points on the ellipse that
locate the start and end of the arc. dwDataSize must be sizeof(SOARCINFO),
and pData must be the address of a SOARCINFO structure that defines
the arc.

SO_ARCANGLECLOCKWISE
Draws an arc in the clockwise direction by defining the angles of the two
points on the ellipse that locate the start and end of the arc. dwDataSize must

. be sizeof(SOARCINFO), and pData must be the address of a SOARCINFO
structure ..

SO_CHORD
Draws a chord. dwDataSize must be 4 * sizeof(SOPOINT), and pData must
be the address of four SOPOINT structures.

Article 17 File Parsers 393

SO_CHORDANOLE
Draws a chord by defining the angles of the two points on the ellipse that locate
the start and end of the chord. dwDataSize must be sizeof(SOARCINFO), and
pData must be the address of a SOARCINFO structure that defines the chord
in terms of the arc located on the chord.

SO _ TEXTINRECT
Draws text in a rectangle. dwDataSize must be sizeof(SOTEXTINRECT)
added to the length of the text string, and pData must be the address of a
SOTEXTINRECT structure followed by the text string.

SO_ELLIPSE
Draws an ellipse. dwDataSize must be 2 * sizeof(SOPOINT), and pData must
be the address of two SOPOINT structures.

SO_FLOODFILL
Fills the area with the given color. dwDataSize must be sizeof(SOPOINT)
added to sizeof(SOCOLORREF), and pData must be the address of a variable
containing the coordinates of the point to start at followed by the ROB color
value to use to fill the area.

SO_LINE
Draws a line from point 1 to point 2 using the current pen. dwDataSize must
be 2 * sizeof(SOPOINT), and pData must be the address of two SOPOINT
structures.

SO_PIE
Draws a pie shape. dwDataSize must be 4 * sizeof(SOPOINT), and pData
must be the address of four SOPOINT structures.

SO_PIEANOLE
Draws a pie by defining the angles of the two points on the ellipse that locate the
start and end of the pie. dwDataSize must be sizeof(SOARCINFO), and pData
must be the address of a SOARCINFO structure that defines the pie in terms of
the arc located on the pie.

SO_STARTPOLY
Starts drawing of a polygon. dwDataSize must be sizeof(SOPOLYINFO), and
pData must be the address of a SOPOL YINFO structure.

SO_POINTS
Specifies vertices of a polygon. dwDataSize must be N * sizeof(SOPOINT),
and pData must be the address of consecutively stored SOPOINT structures.
At most, SOMAXPOINTS can be passed in a single SO_POINTS object.
Multiple SO_POINTS objects can be generated to define all of the points
associated with a polygon object. The number of points defined in
SO_STARTPOLY must be defined using SO_POINTS before the object is
closed with SO_ENDPOLY.

SO_ENDPOLY
Ends drawing of a polygon. dwDataSize must be zero, and pData must be
NULL.

394 Programmer's Guide to Microsoft Windows 95

SO_RECTANGLE
Draws a rectangle. dwDataSize must be 2 * sizeof(SOPOINT), and pData
must be the address of two SOPOINT structures.

SO_ROUNDRECT
Draws a rectangle with rounded comers. dwDataSize must be 3 *
sizeof(SOPOINT), and pData must be address of the three SOPOINT
structures.

SO_SETPIXEL
Sets the color of a pixel. dwDataSize must be sizeof(SOPOINT) added
to sizeof(SOCOLORREF), and pData must be the address of a variable
containing the pixel point followed by the RGB color value to set.

SO_TEXTATPOINT
Draws text at the given point. dwDataSize must be
sizeof(SOTEXTATPOINT) added to the length of the text string, and
pData must be the address of a SOTEXTATPOINT structure followed
by the text string.

SO_TEXTATARCANGLE
Draws text at the given location. dwDataSize must be
sizeof(SOTEXTATARCANGLE) added to the length of the text string,
and pData must be the address of a SOTEXTATARCANGLE structure
followed by the text string.

SO_BEGINPATH
Starts the definition of a path. dwDataSize must be sizeof(SOPATHINFO)
added to Grouplnfo.nTransforms * sizeof(SOTRANSFORM), and pData
must be the address of a SOPATHINFO structure followed by the number
of SOTRANSFORM structures defined in the nTransforms member of the
SOP ATHINFO structure. The transformations will occur to all objects in the
path in the order supplied. For more information about these transformations,
see the SO_OBJECTTRANSFORM vector attribute value.

This item is used to begin the definition of a path. Paths are a collection of
points connected by lines that form opened or closed objects. Multiple subpaths
may be created using SO_CLOSESUBPATH while defining a path. Note that
the current object and group transformations will also apply during creation of
a path. This allows maximum flexibility with transforming paths. Any object
can be rendered to create the path. However, due to current limitations, text
objects will not be added to the path. Multiple levels of paths are also allowed.

SO_ENDPATH
Ends the definition of a path. dwDataSize must be zero, and pData must be
NULL.

SO_CLOSESUBPATH
Closes the current subpath. dwDataSize must be zero, and pData must be
NULL.

Article 17 File Parsers 395

SO_DRAWPATH
Strokes, fills, or both strokes and fills the current path with the current pen
and brush. Since the group, path, and object transformations were applied
when the path was created, they are not applied again. dwDataSize must be
sizeof(WORD), and pData must be the address of a variable containing the
SODP _STROKE or SODP _FILL value, or both.

SO_BEGINGROUP
Starts the definition of a group. dwDataSize must be sizeof(SOGROUPINFO)
added to Grouplnfo.nTransforms * sizeof(SOTRANSFORM), and pData
must be the address of a SOGROUPINFO structure followed by the number
of SO TRANSFORM structures defined in the nTransforms member of the
SOGROUPINFO structure. The transformations will occur to all objects in the
group in the order supplied. For more information about these transformations,
see the SO_OBJECTTRANSFORM vector attribute value.

SO-,-ENDGROUP
Ends the definition of a group. dwDataSize must be zero, and pData must be
NULL.

SO_CPSET
Moves the current pen position to this point. dwDataSize must be
sizeof(SOPOINT), and pData must be the address of the variable containing
the point.

SO_CPLINE
Draws a line from the current pen position. dwDataSize must be
sizeof(SOPOINT), and pData must be the address of a variable containing
the point to draw to.

SO_CPRECTANGLE
Draws a rectangle starting at the current pen position. dwDataSize must be
sizeof(SOPOINT), and pData must be the address of a variable containing
the point to be the opposite comer of the rectangle.

SO_CPELLIPSE
Draws an ellipse around the current point with an x- and y-radius described by
the SOPOINT data. dwDataSize must be sizeof(SOPOINT), and pData must
be the address of a variable containing the x- and y-radius values.

SO_CPARCTRIPLE
Draws a circle arc from the current point through the first point and ending at
the second point. dwDataSize ~ust be 2 * (sizeof(SOPOINT), and pData must
be the address of two SOPOINT structures.

SO_CPARCANGLE
Draws an arc from the current point pivoting around the center point of the
specified sweep angle. dwDataSize must be sizeof(SOCPARCANGLE), and
pData must be the address of a SOCP ARCANGLE structure that gives the
center point of the arc and the sweep angle.

396 Programmer's Guide to Microsoft Windows 95

SO_CPPIEANGLE
Draws a pie with the current position as the center and with the given start and
sweep angles. dwDataSize must be sizeof(SOCPPIECANGLE), and pData
must be the address of a SOCPPIEANGLE structure that gives the radius of
the circle.

SO_BEGINSYMBOL
Starts the definition of a symbol. A symbol is collection of vector commands
that together make up a single symbol. Symbols are considered in the wrapping
algorithm of frame text. dwDataSize must be sizeof(SORECT), and pData
must be the address of a SORECT structure that identifies the bounding
rectangle of all commands used within the symbol.

SO_ENDSYMBOL
Ends the definition of a symbol. dwDataSize must be zero, and pData must be
NULL.

SO_BEGINTEXT~E

Starts the definition of a text frame. A text frame is used in conjunction with
SO _ TEXTINP ARA to wrap text within a frame. Text is wrapped according
to the SO_PARAINDENTS vector attribute value. Symbols are included in the
wrapping algorithm. dwDataSize must be sizeof(SORECT), and pData must
be the address of a SORECT structure that identifies the bounding rectangle of
the text frame.

SO_ENDTEXTFRAME
Ends the definition of a text frame. dwDataSize must be zero, and pData must
be NULL.

SO _ TEXTINP ARA
Draws the text string in the current font and text attributes at the current wrap
location. The wrap location is moved by the text extent. Any words that would
extend beyond the right indent of the frame are wrapped. This object is only
valid within a text frame. dw DataSize must be sizeof(INT) added to the length
of the text string, and pData must be the address of a integer variable containing
the size of the text string that follows.

SO_PARAEND
Ends a paragraph. dwDataSize must be zero, and pData must be NULL.

Article 17 File Parsers 397

Vector Attribute Values
SO_SELECTFONT

Selects the given font. dwDataSize must be sizeof(SOLOGFONT), and pData
must be the address of a SOLOGFONT structure.

SO_SELECTPEN
Selects the given pen. dwDataSize must be sizeof(SOLOGPEN), and pData
must be the address of a SOLOGPEN structure.

SO_SELECTBRUSH
Selects the given brush. dwDataSize must be sizeof(SOLOGBRUSH), and
pData must be the address of a SOLOGBRUSH structure.

SO_POLYFILLMODE
Sets the polygon-filling mode. dwDataSize must be sizeof(INT), and pData
must be the address of a variable containing either the SOPF _AL TERNA TE or
SOPF _ WINDING value.

SO_TEXTCHAREXTRA
Sets the text character extra value. dwDataSize must be sizeof(INT), and pData
must be the address of a variable containing a value. This attribute affects text
objects.

SO_DRAWMODE
Sets the drawing mode used when drawing the pen and interiors. dwDataSize
must be sizeof(INT), and pData must be the address of a variable containing
one of these values:

SOR2_BLACK

SOR2_COPYPEN

SOR2_MASKNOTPEN

SOR2_MASKPEN

SOR2_MASKPENNOT

SOR2_MERGENOTPEN

SOR2_MERGEPEN

SOR2_NOP

SOR2_NOT

SOR2_NOTCOPYPEN

SOR2_NOTMASKPEN

SOR2_NOTMERGEPEN

SOR2_NOTXORPEN

SOR2_WHITE

SOR2_XORPEN

398 Programmer's Guide to Microsoft Windows 95

SO_TEXTCOLOR
Sets the foreground color. dwDataSize must be sizeof(SOCOLORREF), and
pData must be the address of a variable containing a RGB or palette-relative
color value. To set this value, use the SORGB or SOPALETTE macro.

SO_BKMODE
Sets the background mode. dwDataSize must be sizeof(INT), and pData
must be the address of a variable containing either the SOBK_OPAQUE or
SOBK_TRANSPARENT value.

SO_BKCOLOR
Sets the background color used for styled lines, hatched brushes, and text
when the background mode is SOBK_ OPAQUE. dwDataSize must be
sizeof(SOCOLORREF), and pData must be the address of a variable
containing an RGB or palette-relative color value. To set this value, use the
SORGB or SOPALETTE macro.

SO_OBJECTTRANSFORM
Sets object transformations. dwDataSize must be sizeof (INT) added to nCount
* sizeof(SOTRANSFORM), and pData must be one INT (nCount) followed
by that number of SOTRANSFORM structures. The transformations will
occur in the order supplied.

SO_CLIPMODE
Sets the clipping mode. dwDataSize must be sizeof(WORD), and pData
must be the address of a variable containing either the SO_DONOTCLIP or
SO_CLIPTOPATH value.

SO_POINTRELATION
Sets the coordinate orientation. dwDataSize must be sizeof(INT), and pData
must be the address of a variable containing the SOPR_ABSOLUTE or
SOPR_RELATIVE value.

SO_PARAINDENTS
Sets the paragraph indents within a text frame, defining the first, left, and
right indents of paragraph text being built into the frame. These values are only
valid when within a text frame. All values are in the current coordinate system.
dwDataSize must be sizeof(SOPARAINDENTS), and pData must be the
address of a SOPARAINDENTS structure.

SOYARAALIGN
Sets the alignment of paragraph text being built into a text frame. dwDataSize
must be sizeof(WORD), and pData must be the address of a 16-bit variable
containing the SO_ALIGNLEFT, SO_ALIGNCENTER, SO_ALIGNRIGHT,
or SO_ALIGNJUSTIFY value.

ARTICLE 18

Briefcase Reconcilers

About Briefcase Reconcilers
A briefcase reconciler gives the Windows 95 Briefcase the means to reconcile
different versions of a document. A briefcase reconciler combines different input
versions of a document to produce a single, new output version of the document.
You may need to create a briefcase reconciler to support your type of document.
This article describes briefcase reconcilers and explains how to create them.

Reconciliation
A document is a collection of information that can be copied and changed.
A document is said to have versions if the content of at least two copies of the
document are different. Reconciliation produces a single version of a document
from two or more initial versions. Typically, the [mal version is a combination
of information from the initial versions with the most recent or most useful
information preserved.

399

Reconciliation is initiated by the Briefcase when it determines that two or more
copies of the same document are different. The Briefcase, which is called the
initiator in this context, locates and starts the briefcase reconciler associated with
the given document type. The reconciler compares the documents and determines
which portions of the documents to retain. Some reconcilers may require user
interaction to complete reconciliation. Others may complete reconciliation without
user interaction. The reconciler can be contained within an application or be an
extension implemented as a dynamic-link library (DLL).

400 Programmer's Guide to Microsoft Windows 95

Some briefcase reconcilers may create residues. A residue is a document, usually
having the same file type as the initial document, that contains information not
saved in the merged version. Residues are typically used to give authors a quick
way to determine what information from their original document is not in the
final merged version. If a reconciler supports residues, it creates one residue for
each of the original versions of the document. Residues are not created unless
the initiator requests them. The Briefcase does not currently request residues, but
future initiators may.

Some briefcase reconcilers work in conjunction with the Briefcase to provide·
the user with a means to terminate reconciliation. This capability is useful for a
user who may decide that the reconciliation should not proceed. A reconciler
typically provides a termination object when the reconciliation requires user
interaction and may be lengthy. In some environments, a reconciler may allow
partial reconciliation, enabling a user to temporarily suspend a reconciliation and
resume it later. The Briefcase does not currently support partial reconciliation,
but future initiators may.

Creating a Briefcase Reconciler
You create a briefcase reconciler by implementing the reconciliation inter
faces. At a minimum, a reconciler implements the IReconcilableObject
interface and the IPersistStorage or IPersistFile interface. As the initi
ator, the Briefcase determines when reconciliation is needed and calls the
IReconcilableObject: : Reconcile member function to initiate reconciliation.

Although the Reconcile member function can provide a wide-ranging set
of reconciliation capabilities, a briefcase reconciler carries out only minimal
reconciliation in most cases. In particular, the Briefcase does not require the
reconciler to support residue generation or to support the termination object.
Also, the reconciler carries out a single top to bottom reconciliation and must not
return the. REC_E_NOTCOMPLETE value; that is, it should not attempt partial
reconciliation.

The Briefcase provides the IReconcilelnitiator interface. The briefcase recon
ciler can use the IReconcilelnitiator: :SetAbortCallback member function to
set the termination object. The Briefcase does not use version identifiers and can,
therefore, not provide previous versions of a document if a reconciler requests
them using the corresponding member functions in IReconcilelnitiator.

The Briefcase passes file monikers to Reconcile representing the versions of the
document to be reconciled. The briefcase reconciler gains access to the versions by
using either the IMoniker::BindToObject or IMoniker::BindToStorage member
function. The latter is generally faster and is recommended. The reconciler must
release any objects or storage to which it binds.

Article 18 Briefcase Reconcilers 401

When the briefcase reconciler uses BindToStorage, it binds to storage that is
either flat storage (a stream) or OLE-defined structured storage. If the reconciler
expects flat storage, it should use BindToStorage to request the IStream interface.
If the reconciler expects structured storage, it should request the IStorage interface.
In both cases, it should request read-only direct (nontransacted) access to the
storage; read-write access may not generally be available.

A minimal briefcase reconciler typically looks directly at the storage of the other
versions and deals with embedded objects in a very primitive manner, such as
merging two versions of the object by including both versions in the output version.

The initiator locates the appropriate briefcase reconciler by using a subset of the
logic implemented by the GetClassFile function to determine the class of a given
file and then looks in the registry for the reconciler class associated with the given
file class. The Briefcase, like other shell components, determines the class of a file
solely by the filename extension. A file's extension must have a registered class for
the Briefcase to invoke a reconciler for the file. You must set a registry entry of the
following form when installing your reconciler.

CLSID\clsid\Roles\Reconciler\reconciler-classid

The class must be quick loading, must be designated _MUL TIPLEUSE, and,
unless marshallers are provided for the reconciliation interface, must be an in
process server (contained in a DLL) rather than a local server (implemented in
an .EXE file).

User Interaction
A briefcase reconciler should attempt to carry out reconciliation without user inter-

. vention. The more automated the reconciliation, the better the user's perception of
the process.

In some cases, user intervention may be valuable. For example, a document system
may require a user to review changes before accepting the merged version of a
document or may require comments from the user explaining the changes that have
been made. In these cases, the initiator, not the briefcase reconciler, is responsible
for querying the user and carrying out the user's instructions.

In other cases, user intervention may be necessary. For example, when two
versions have been edited in incompatible ways. In such cases, either the initiator
or briefcase reconciler must query the user for instructions on how to resolve the
conflict. In general, no initiator can rely on completing a reconciliation without
expecting some user interaction. Reconcilers, on the other hand, have the option
of interacting with the user to resolve conflicts or requiring the initiator to do so.

402 Programmer's Guide to Microsoft Windows 95

Embedded Objects
When reconciling a document, the briefcase reconciler itself may become an init
ator if it discovers an embedded object of a type that it cannot reconcile. In this
case, the reconciler needs to recursively reconcile each of the embedded objects
and assume all the responsibilities of an initiator.

To carry out the recursion, the briefcase reconciler loads the object and queries
for the appropriate interface. The handler for the object must support the interface.
If any member function of the interface returns the OLE_E_N01RUNNING value,
the reconciler must run the object in order to carry out the operation. Because code
for embedded objects is not always available, a reconciler must provide a solution
for this condition. For example, the reconciler might include both old and new
versions of the embedded object in the reconciled version. The reconciler must not
attempt to reconcile across links.

The initiator stores the document versions being merged. In many cases, the
initiator has access to the storage of each version and saves the result of recon
ciliation using similar storage. Sometimes, however, the initiator may have an
in-memory object for which no persistent version is available. This situation can
occur when a document containing open embedded objects must be reconciled
before being saved. In such cases, the initiator saves the result of the reconciliation
in the version found in memory.

The initiator uses the IPersistStorage interface to bind (load) the merged ver:"
sion. The initiator uses the IPersistStorage: :Load member function if an initial
version has already been created and uses the IPersistStorage::InitNew member
function for the initial version. Once the merged version is loaded, the initiator uses
QueryInterface to retrieve the address of the IReconcilableObject interface.
This interface gives the initiator access to the storage of the existing residues and
gives it a way to create storage for any new residues. Then the initiator directs
the interface to carry out the reconciliation. The initiator actually queries for the
IPersistFile interface before IPersistStorage. If the reconciler supports
IPersistFile, the initiator manipulates the replica through the IPersistFile rather
than IPersistStorage member functions. This permits reconciliation of files that
are not stored as compound documents.

Once the reconciliation is complete, the initiator can save the merged version by
using the IPersistStorage or IPersistFile interface. During reconciliation, the
briefcase reconciler creates residues as needed and writes their persistent bits
to storage. If the merged version is a stream, the IStorage interface passed to
IPersistStorage: :Load contains a stream named "Contents" with its storage state
set to STATEBITS_FLAT. (You can set the state bits by using the IStorage::Stat
member function.) After the merge is complete, the initiator saves the merged
version by writing the data in an appropriate manner. It should ensure that
STATEBITS_FLAT is set as appropriate for the storage.

Residues

Reference

Article 18 Briefcase Reconcilers 403

The initiator indicates whether it wants residues by setting the pstgNewResidues
parameter to a valid address when calling the IReconciiableObject::Reconcile
member function. If the reconciler does not support the creation of residues,
it must return immediately the REC_E_NORESIDUES value, unless the dwFlags
parameter specifies the RECONCILEF _NORESIDUESOK value.

The briefcase reconciler returns residues to the initiator by creating new storage
elements and copying them to the array pointed to by pstgNewResidues. For
structured storage residues, the reconciler copies an IStorage interface, and
for flat storage residues, it copies either an IStream or IStorage interface with
the STATEBITS_FLAT flag set. The reconciler uses IStorage to create the
necessary storage, using IStorage::CreateStream to create flat storage for a
residue that is a stream and IStorage: :CreateStorage to create structured storage.

The initiator prepares pstgNewResidues such that it contains no elements in the
nonreserved part of the IStorage namespace. The briefcase reconciler places
each residue in an element whose name corresponds to the order of its initial
version. For example, the first residue is contained in "1," the second in "2," and
so on. If the reconciled object itself produces a residue, that is found in the element
named "0."

The briefcase reconciler commits each of the newly created elements individually,
ensuring that the initiator has access to the infonnation. The reconciler does not,
however, commit pstgNewResidues itself. The initiator is responsible for
committing this or otherwise disposing of it.

This section contains information about the reconciliation interfaces. When
handling errors, a member function can return only those error values that are
explicitly defined as possible return values. Furthermore, the member function
must set all variables whose addresses are passed as parameters to NULL before
returning from the error.

Interfaces and Member Functions
I Reconci lableObject
The IReconciiableObject interface carries out the reconciliation of a document.
This interface has the GetProgressFeedbackMaxEstimate and Reconcile
member functions. The briefcase reconciler is responsible for implementing
this interface.

404 Programmer's Guide to Microsoft Windows 95

IReconcilableObject: :GetProgressFeedbackMaxEstimate
HRESULT IReconcilableObject::GetProgressFeedbackMaxEstimate(

ULONG * pulProgressMax);

Retrieves an estimated measurement of the amount of work required to complete
a reconciliation. This value corresponds to a similar value that is passed with
the IReconcilelnitiator::SetProgressFeedback member function during
reconciliation. Reconcilers typically use this member function to estimate the
work needed to reconcile an embedded document.

• Returns the S_OK value if successful. Otherwise, the member function returns
one of the following error values:

OLE_E_NOTRUNNING The object is an OLE embedded document that must be
run before this operation can be carried out. The object
state is unchanged as a result of the call.

Unspecified error.

pulProgressMax
Address of the variable that receives the work estimate value.

The work estimate value, if available, is only approximate.

IReconci lableObject:: Reconci Ie
HRESULT IReconcilableObject::Reconcile(

IReconcileInitiator * pInitiator,
DWORD dwFlags,
HWND hwndOwner,
HWND hwndProgressFeedback,
ULONG ulcInput,
IMoniker ** rgpmkOtherInput,
LONG * plOutIndex,
IStorage * pstgNewResidues,
void * pvReserved);

Reconciles the state of an object with one or more other objects. The reconciliation
updates the internal state of the object by merging the states of all objects to form a
combined state.

Article 18 Briefcase Reconcilers 405

Returns one of the following success values if successful:

S_OK

Reconciliation was completed successfully, and the changes must be
propagated to the other objects.

No reconciliation actions were performed. The briefcase reconciler wishes
to fall back to the initiator's bit copy implementation. This value may only
be returned if RECONCILEF _ONLYYOUWERECHANGED is set in
dwFlags.

REC_S_IDIDTHEUPDA TES

Reconciliation was completed successfully, and all the objects involved
(the object implementing the Reconcile member function and all the other
objects described by the passed-in monikers) have been updated appro
priately. The initiator does not need, therefore, to do anything further to
propagate the changes. The variable pointed to by plOutIndex should
be set to -lL if Reconcile returns this value. The initiator will not save
the source object's storage if Reconcile returns this value. This value may
only be returned if RECONCILEF _ YOUMA YDOTHEUPDA TES was set
in dwFlags.

REC_S_NOTCOMPLETE

The briefcase reconciler completed some, but not all, of the reconciliation.
It may need user interaction. The changes will not be propagated to other
objects.

REC_S_NOTCOMPLETEBUTPROPAGATE

The briefcase reconciler completed some, but not all, of the reconciliation.
It may need user interaction. The changes will be propagated to the other
objects.

406 Programmer's Guide to Microsoft Windows 95

Otherwise, the member function returns one of the following error values:

REC_E_NORESIDUES

The briefcase reconciler does not support the generation of residues, so
the request for residues is denied. The state of the object is unchanged.

REC_E_ABORTED

The briefcase reconciler terminated reconciliation in response to
a termination request from the initiator (for more information, see
IReconcilelnitiator::SetAbortCallback). The state of the object is
unspecified.

REC_E_TOODIFFERENT

Reconciliation cannot be carried out because the provided document
versions are too dissimilar.

REC_E_INEEDTODOTHEUPDATES

The object's Reconcile implementation was called with
RECONCILEF _YOUMAYDOTHEUPDATES clear in dwFlags;
the object's Reconcile implementation requires that value to be
set in dwFlags.

OLE_E_NOTRUNNING

The object is an OLE embedded object that must be run before this
operation can be carried out. The state of the object is unchanged.

E_UNEXPECTED

Unspecified error.

plnitiator
Address of the IReconcilelnitiator interface for the initiator of the
reconciliation process. This parameter must not be NULL.

dwFlags
Control flags for the reconciliation. This parameter may be zero or a
combination of these values:

RECONCILEF _FEEDBACKWINDOWV ALID

hwndProgressFeedback is valid.

RECONCILEF _MA YBOTHERUSER

The briefcase reconciler can prompt for user interaction if it is needed.
Without this value, user interaction is not permitted. hwndOwner is valid.

RECONCILEF _NORESIDUESOK

The briefcase reconciler can ignore requests for residues and carry out
reconciliation. Reconcilers that do not support residues should check
for this value whenever an initiator requests residues. Without this value,
a reconciler that does not support residues must immediately return
REC_E_NORESIDUES.

Article 18 Briefcase Reconcilers 407

RECONCILEF _OMITSELFRESIDUE

The briefcase reconciler can discard any residue associated with this
object. Initiators typically use this value for reconciliations that loop
from generation to generation.

RECONCILEF_ONLYYOUWERECHANGED

The Reconcile member function is being called to propagate changes in
the changed object to other unchanged objects. This value will only be
set if the HKEY _ CLASSES_ROOT\CLSID\clsid_o!_reconciler\
SingieChangeHook key exists in the registry. If that key is not present
in the registry, the initiator carries out reconciliation by making the other
unchanged objects binary identical copies of the changed object. The
rgpmkOtherlnput monikers identify the other objects. This value will
only be set in dwFlags if RECONCILEF _ YOUMA YDOTHEUPDATES
is also set. If the briefcase reconciler completes the updates itself
successfully, REC_S_IDIDTHEUPDATES should be returned and the
variable pointed to by plOutIndex should be set to -1L. Note that
S_OK should not be returned on success if this value is set in dwFlags.
The initiator will not save the source object's storage if Reconcile returns
REC_S_IDIDTHEUPDATES. If the reconciler wishes to fall back to the
initiator's bit copy implementation, it may return S_FALSE.

RECONCILEF _RESUMEDRECONCILIATION

The briefcase reconciler should resume reconciliation, using the partial
residues provided. Without this value, the reconciler should ignore any
"considered but rejected" information in any of the input versions.

RECONCILEF _ YOUMA YDOTHEUPDA TES

hwndOwner

The briefcase reconciler may do the updates itself. Without this value,
the reconciler may not do the updates itself. If reconciliation is completed
successfully, the reconciler should return REC_S_IDIDTHEUPDATES
if it did the updates itself or S_OK if it did not do the updates itself.

Handle of the parent window to use for child windows that the brief
case reconciler creates. This parameter is valid only if the
RECONCILEF _MA YBOTHERUSER value is specified in dwFlags.

hwndProgressF eedback
Handle of the progress feedback window displayed by the initiator.
This parameter is valid only if RECONCILEF _FEEDBACKWINDOWV ALID
is specified in dwFlags. The briefcase reconciler may call the SetWindowText
function using this window handle to display additional reconciliation status
information to the user.

ulclnput
Number of versions or partial residues specified in dwFlags. This parameter
must not be zero.

408 Programmer's Guide to Microsoft Windows 95

rgpmkOtherlnput
Address of an array that contains the addresses of the monikers to use to access
the versions or partial residues to be reconciled.

plOutIndex
Address of the variable that receives an index value indicating whether the
result of the reconciliation is identical to one of the initial versions. The vari
able is set to -IL if the reconciliation result is a combination of two or more
versions. Otherwise, it is a zero-based index, with 0 indicating this object,
1 indicating the fIrst version, 2 indicating the second version, and so on.

pstgNewResidues
Address of the IStorage interface used to store newly created residues.
This parameter may be NULL to indicate that residues should not be saved.

pvReserved
Reserved; must be NULL.

I Reconci lei n itiator
The IReconcileInitiator interface provides the briefcase reconciler with the
means to notify the initiator of its progress, to set a termination object, and to
request a given version of a document. This interface has the SetArbortCallback
and SetProgressFeedback member functions. The initiator is responsible for
implementing this interface.

IReconcilelnitiator::SetAbortCaliback
HRESULT IReconcilelnitiator::SetAbortCallbackC

IUnknown * pUnkForAbort);

Sets the object through which the initiator can asynchronously terminate a
reconciliation. A briefcase reconciler typically sets this object for reconciliations
that are lengthy or involve user interaction.

• Returns the S_OK value if successful. Otherwise, the member function returns
one of the following error values:

pUnkForAbort

The initiator does not support termination of
reconciliation operations and does not hold the
specified object.

Unspecified error.

Address of the IUnknown interface for the object. The initiator signals a request
to terminate the reconciliation by using the IUnknown: :Release member
function to release the object. This parameter may be NULL to direct the
initiator to remove the previously specifIed object.

Article 18 Briefcase Reconcilers 409

The initiator can accept or reject the object. If the initiator accepts the object,
the briefcase reconciler must later remove the object by subsequently calling this
function with a NULL parameter when the reconciliation is complete. Because the
reconciler removes the object after completing reconciliation, there may be times
when the initiator releases the object after reconciliation is complete. In such cases,
the reconciler ignores the request to terminate.

If the reconciliation is terminated, the IReconciiableObject: : Reconcile member
function must return either the REC_E_ABORTED or REC_E_NOTCOMPLETE
value.

IReconcilelnitiator: :SetProgressFeedback
HRESULT IReconcilelnitiator::SetProgressFeedback(

ULONG ulProgress.
ULONG ulProgressMax);

Indicates the amount of progress the briefcase reconciler has made toward com
pleting the reconciliation. The amount is a fraction of 1 and is computed as
the quotient of the ulProgress and ulProgressMax. Reconcilers should call this
member function periodically during their reconciliation process.

• Returns the S_OK value if successful or the E_UNEXPECTED value if some
unspecified error occurred.

ulProgress
Numerator of the progress fraction.

ulProgressMax
Denominator of the progress fraction.

The initiator typically uses this measure of progress to update a thermometer gauge
or some other form of visual feedback for the user. The briefcase reconciler can
change the value of ulProgressMax from call to call. This means successive calls
to this member function do not necessarily indicate steady forward progress.
Backward progress is legal, although not desirable. It is the responsibility of the
initiator to determine whether backward progress should be revealed to the user.

INotifyReplica
The INotifyReplica interface provides the initiator with the means to notify an
object that it may be subject to subsequent reconciliation. This interface has the
Y onAreAReplica member function. The briefcase reconciler is responsible for
implementing this interface.

410 Programmer's Guide to Microsoft Windows 95

INotifyReplica: : YouAreARepl ica
HRESULT INotifyReplica::YouAreAReplica(

ULONG ulcOtherReplicas.
IMoniker ** rgpmkOtherReplicas);

Notifies on object that it may be subject to subsequent reconciliation through the
IReconiiableObject: : Reconcile member function.

Briefcase calls INotifyReplica when objects are added to it.

• Returns the S_OK value if successful. Otherwise, the member function returns
one of the following error values:

E_ UNEXPECTED Unspecified error.

ulcOtherReplicas
Number of other replicas of the object. This parameter must not be zero.

rgpmkOtherReplicas
Address of an array that contains the addresses of the monikers to use to access
the other replicas.

An object may be notified that it is a replica more than once. Briefcase reconcilers
are not required to implement this interface. Initiators are not required to call
this interface if it is implemented: However, an object's implementation of
IReconciiableObject: : Reconcile may reasonably fail if that object has not
previously been notified through INotifyReplica:: YouAreAReplica that it may
be subject to reconciliation.

ARTICLE 19

Passwords Control Panel

About the Passwords Control Panel
The Passwords Control Panel is a system-defined property sheet that allows the
user to set security options and manage passwords for all password-protected
services (also called password providers) in the system, including screen savers,
electronic mail (email), and network logon. In addition, the Passwords Control
Panel allows the user to set the Windows logon password and to keep passwords
for other password-protected services identical to the Windows logon password.
This means that the Windows logon password can work as a universal password
for all password-protected services in the system.

411

The Passwords Control Panel includes a programming interface that allows an
application to add property sheet pages. You should add a property sheet page to
the Passwords Control Panel if your application provides security-related services
that have properties the user can set.

If your application provides a password-protected service, the programming
interface of the Passwords Control Panel allows you to add the name of your
service to the control panel's list of password-protected services. If you add
your service to the list, the user can change the password by using the Passwords
Control Panel and keep the password identical to the Windows logon password.

412 Programmer's Guide to Microsoft Windows 95

This article describes the Passwords Control Panel and explains how to use its
programming interface. The following illustration shows the Passwords Control
Panel.

Adding a Property Sheet Page
You should add a property sheet page to the Passwords Control Panel if your
application provides security-related functionality that goes beyond simply
activating and changing passwords.

To add a property sheet page to the Passwords Control Panel, write a property
sheet extension and register the extension with the Microsoft® Windows® 95 shell.
A property sheet extension is a 32-bit dynamic-link library (DLL) that implements
the IShellPropSheetExt interface. The Windows 95 shell calls a property sheet
extension when the shell is about to display a property sheet. The extension
provides code that creates a page, which the shell adds to the property sheet.

You register a property sheet extension by placing information into the system
registry. The Windows 95 shell enumerates the property sheet extension
DLLs first under the \shellex\PropertySheetHandlers registry key of
the default class for system-wide property sheet pages and then under the
\shellex\PropertySheetHandlers registry key of the object's class for class
specific property sheet pages.

For more information about creating and registering property sheet extensions,
see Article 12, "Shell Extensions."

Article 19 Passwords Control Panel 413

Managing Passwords
If your application provides a password-protected service, you should add your
service to the Passwords Control Panel. When you add your service, the name of
the service appears in the Select Password dialog box that appears when the user
clicks the Change Other Passwords button. The user can change the password for
the service by selecting the name and clicking the Change button and then filling in
the resulting Change Password dialog box.

The name of your service also appears in the Change Windows Password dialog
box with a check box next to it. By checking the check box, the user can choose to
keep the password for the service identical to the Windows logon password. Like
wise, the user can disassociate the service from the Windows logon password by
unchecking the check box.

Including a Password User Interface
Any application that provides a password-protected service should make the
password for the service accessible through the Passwords Control Panel. How
ever, if the previous version of your application includes a user interface for setting
a password, you may choose to retain that interface as well as making the password
accessible through the Passwords Control Panel. If your application includes user
interface elements for accomplishing tasks besides setting a password, you should
make the change password functionality available both within the application's user
interface and within the Passwords Control Panel. If you do not include the change
password functionality in the user interface, you should make it available only
through the Passwords Control Panel.

Your application should take into account that the user may have multiple keyboard
-languages installed. Such a user may inadvertently type a password in the wrong
language and become confused when the password is rejected. Your application
should check for multiple keyboard languages and alert the user when mUltiple
languages are installed.

If your application includes a user interface for setting a password, you should use
the Windows built-in change password dialog boxes to get password information
from the user. For more information about the Windows change password dialog
boxes, see "Change Password Dialog Boxes" later in this article.

414 Programmer's Guide to Microsoft Windows 95

Adding a Service to the Passwords Control Panel
If you add a service to the Passwords Control Panel, your installation program
should add infonnation about your service to the following location in the registry.

HKEY_LOCAL_MACHINE
System

CurrentControlSet
Contro 1

PwdProvider
<Provider Name>

Provider Name is the name of your password-protected service. The name should
be similar to the name of your executable file. The. provider name is used when
calling all password functions.

You must specify the following values for Provider Name.

Value name

ChangePassword

Description

ProviderPath

GetPas swordS tatus

Network Provider

Description

Exported name of the PPChangePassword function.

String that appears in the Select Password dialog box.

Name of the executable module that provides the password
protected service.

Exported name of the PPGetPasswordStatus function.

Doubleword value that indicates whether the password
protected service provides network services. A network provider
should set this value to 1. This value is optional.

In addition to adding infonnation to the registry, you must provide a 32-bit DLL
that exports the PPChangePassword function. Windows calls the function when
the user wants to change the password associated with your password-protected
service.

PPChangePassword is a Windows network function that uses a two-stage process
to change a password. The function first determines whether it can change the
password, and then it actually changes it. This two stage process is particularly
important when the user is changing the Windows logon password because the
logon password can have many other services associated with it, including network
providers. For example, if a service that uses the Windows logon password is not
running when the user changes the logon password, Windows shows a dialog box
that explains the implications of changing the logon password. If the user goes
ahead and changes the Windows logon password, the services with passwords that
were not changed are displayed differently in the Change Windows Password and
Select Password dialog boxes.

Article 19 Passwords Control Panel 415

An application that is not a network provider can identify itself as load on demand.
In this case, the application is loaded only when the user wants to change a pass
word and is unloaded after the process is complete.

Adding a Service to the Windows Logon Password
When the user checks the check box associated with a password-protected
service listed in the Change Windows Password dialog box, Windows calls the
PPChangePassword function of the application that provides the service. The
function attempts to change the password to the current Windows logon pass
word, prompting the user for the old password fIrst, if necessary. If the function
fails, it should return an error value so that Windows can display the appropriate
error message.

Removing a Service from the Windows Logon Password
When the user unchecks the check box associated with a password-protected
service, Windows removes the service from the list of services associated with
the Windows logon password. When the user clicks the Change Other Passwords
button, Windows calls the application's PPChangePassword function. If the user
does not change the password, Windows displays a dialog box asking the user
whether to change the password for the service that was removed from the
Windows logon password.

Changing the Windows Logon Password
The user changes the Windows logon password by clicking the Change Windows
Password button, which causes Windows to display the Change Windows Pass
word dialog box. In the dialog box, the user must enter the old and new Windows
logon passwords, confIrm the new logon password, and then click the OK button.
Windows responds by calling the PPChangePassword function associated with
each password-protected service that the user has added to the Windows logon
password. Windows calls the function with the dwAction parameter set to the
Passwd_Change_Pending value. If any PPChangePassword function returns an
error value, Windows displays a dialog box that lists the services that cannot use
the new Windows logon password. If the user continues to change the Windows
logon password, Windows again calls the PPChangePassword function of each
application that can change the password for its service. Windows sets the
dwAction parameter to the Passwd_Change_Commit value this time.

Windows appends text to the name of each service whose password could not
be changed, explaining that the service is no longer associated with the Windows
logon password, even though it is checked. The user can then change the password.

416 Programmer's Guide to Microsoft Windows 95

Handling Error Conditions
If an application-defined error occurs while a password is being changed, the
application should use the MPRSetError function to return an application-defined
error value. If a standard error occurs, the application should return one of the
following standard error values.

Error value

ERROR_EXTENDED_ERROR

WN_ACCESS_DENIED

WNJ3AD _PASSWORD

WN_BAD_POINTER

WN_BAD_VALUE

WN_MORE_DATA

WN_NOT_SUPPORTED

WN_SUCCESS

WN_ WINDOWS_ERROR

Change Password Dialog Boxes

Meaning

The application has a text error message to report.

There was a security violation.

An incorrect password was specified.

An invalid pointer was specified.

An invalid numeric value was specified.

There is a warning that the buffer is too small.

The function is not supported.

No error occurred; the function succeeded.

A required Windows function failed.

Windows includes built-in dialog boxes that you can use to get password infor
mation from the user. To display a built-in dialog box from within your applica
tion, implement the password functionality described previously, and then call the
PwdChangePassword function. For example, when the user of an email applica
tion chooses the command to change the email password, the application can direct
Windows to display a built-in change passwords dialog box.

Because Windows keeps track of which password-protected services are associated
with the Windows logon password and which are not, Windows presents either the
Change Other Passwords or Change Windows Password dialog box, whichever is
appropriate.

For example, when the user of an email application chooses the command to change
the email password, the application can direct Windows to display one of its built
in change passwords dialog boxes. Windows displays the appropriate dialog box,
which depends on whether the user has associated the email password with the
Windows logon password.

Article 19 Passwords Control Panel 417

Using the Passwords Control Panel
The following example shows how to implement the PPChangePassword function.

#include <windows.h>
#include "mpr.h"

HANDLE hInstance;

BOOL _stdcall _CRT_INIT(HINSTANCE hInstDLL, DWORD fdwReason,
LPVOID lpReserved);

int FAR PASCAL LibMain(HINSTANCE hInst, WORD wDataSeg,
WORD wcbHeapSize, LPSTR lpstrCmdLine);

SPIENTRY PPChangePassword(LPLOGONINFO lpAuthentInfo,
LPLOGONINFO lpPreviousAuthentInfo, DWORD dwAction)

switch (dwAction) {
case PWDCHANGE_MASTERPWD NOTIFY:

II The Windows password has changed. A network provider can
II add a new password to its store at this point.

return WN_SUCCESS;

case PWDCHANGE_PROVIDERPWD PENDING:
MessageBox«HWND) NULL,"Got PWDCHANGE_PROVIDERPWD_PENDING",

"GenProv",MB_OK);

II Do first-phase password change actions: query the server
II to see if it is running, verify the old password, and so
lion. Do not change the password in response to this
II message. If there are no first-phase actions to do,
II return WN_SUCCESS. Report errors (and error text, if
II appropriate) by using NPSSetExtendedError
II if there is a provider-specific extended error or
II MPRSetError if the error can be expressed with a
II WN_ error code. Return either ERROR_EXTENDED_ERROR or
II the WN error code.

return WN_SUCCESS;

418 Programmer's Guide to Microsoft Windows 95

case PWDCHANGE_PROVIDERPWD_COMMIT:
M~ssageBOx(NULL,"Got PWDCHANGE_PROVIDERPWD_COMMIT",

"GenProv",MB_OK);

II Change the password. Report errors and display error
II text, if appropriate, through NPSSetExtendedError
II if there is a provider-specific extended error
II or MPRSetError if the error can be expressed with a
II WN error code. Return ERROR_EXTENDED_ERROR or the WN
II error code.

return WN_SUCCESS;

return WN_SUCCESS;

BOOL _stdca11 D11 EntryPoint(HINSTANCE hInstD11, DWORD fdwReason,
LPVOID lpReserved)

static BOOL fInit FALSE;

II Initialize the C run-time library before calling any of our code.
if(fdwReason == DLL_PROCESS_ATTACH I I

fdwReason == DLL_THREAD_ATTACH)
if(!_CRT_INIT(hInstDll, fdwReason, lpReserved))

return(FALSE);

fiendi f

if(fdwReason
hlnstance = hlnstDll;

}

Reference

Article 19 Passwords Control Panel 419

II Terminate the C run-time library after all of your code.
ifCfdwReason == DLL_PROCESS_DETACH I I

/tendi,f

fdwReason == DLL_THREAD_DETACH)
ifC!_CRT_INITChlnstDll, fdwReason, lpReserved))

returnCFALSE);

return TRUE;

The following functions are used with the Passwords Control Panel.

PPChangePassword
DWORD PPChangePasswordCLPLOGONINFO lpAuthentlnfo,

LPLOGONINFO lpPreviousAuthentlnfo, DWORD dwAction);

Infonns a password provider that the user has successfully changed the password
using the standard PPChangePassword dialog box. This notification message is
useful if the password provider uses the Window logon password as the default
password for network connections. Some password providers are not concerned
with any feature of system logon except the password cache; these providers do
not need to support this function.

• Returns the WN_SUCCESS value if successful or a WN_ error value
otherwise.

lpAuthentlnfo
Address of a LOGONINFO structure that contains the name of the user who is
currently logged on and the new password.

lpPreviousAuthentlnfo
Address of a LOGONINFO structure that contains the name of the user who is
currently logged on and the old password.

420 Programmer's Guide to Microsoft Windows 95

dwAction
Action flag. This parameter can be one of these values:

PWDCHANGE_MASTERPWD_NOTIFY

The logon password has changed. The password provider may need to
perform an action, such as giving the new password to its redirector.

PWDCHANGE_PROVIDERPWD_CANCEL

A password provider will receive this message if it has already received a
first-phase notification (PWDCHANGE_PROVIDERPWD _ PENDING)
and the password change action has been canceled (for example, in
response to another password provider being unable to change its
password).

PWDCHANGE_PROVIDERPWD_COMMIT

This message is a commit-phase notification. The password provider
should change the password in response to this message.

PWDCHANGE_PROVIDERPWD_PENDING

The user wants to change a password that is maintained by the password
provider. This message is a first-phase notification; the password provider
should not change the password at this time. The password provider should
do any precommit verification that is appropriate, such as checking that the
old password is valid, if possible.

PPGetPasswordStatus
DWORD PPGetPasswordStatus(DWORD nIndex);

Queries a password provider about the status of its password. A password provider
can report whether it is on or off (enabled or disabled) and whether it requires .
the user to type in the old password to change it. If a password provider does not
support this function but does support PPChangePassword, it is assumed that the
password is always enabled and that typing the old password is required.

• The return value depends on the nlndex parameter.

Article 19 Passwords Control Panel 421

nlndex
Type of information to retrieve. This parameter can be one of these values:

Requests the "old password" status of the password.
The return value is one of these values:

PS_HASOLDPWD_ON
PS_HASOLDPWD_OFF

Requests the on or off status of the password. The return
value is one of these values:

PS_ONOFF_ON
PS_ONOFF _OFF

Requests the storage type of the password. The return
value is one of these values:

PS_STORAGETYPE_LOCAL
PS_STORAGETYPE_NETWORK

PwdChangePassword
DWORD PwdChangePassword(LPCTSTR lpProvider, HWND hwndOwner,

DWORD dwFl ags) ;

Changes the user's system logon password or a password provider's pass-
word. Master provider router (MPR) displays a dialog box for changing the
password. If the user changes the logon password, MPR reencrypts the user's
password cache with the new password. Password providers are notified through

. the PPChangePassword function.

• Returns the WN_SUCCESS value if successful or the WN_CANCEL value
if the user cancels the operation.

lpProvider
Address of the name of the provider whose password is to be changed. If this
parameter is NULL, the logon password is to be changed. Changing the logon
password can also result in other password providers being notified to change
their passwords, if the user has selected to synchronize a password provider's
password with the Windows logon password.

hwndOwner
Handle of the owner window for the dialog box displayed by MPR.

422 Programmer's Guide to Microsoft Windows 95

dwFlags
Flag that causes MPR to display a dialog box that prompts only
for the previous password. This parameter can be either zero or the
CHANGEPWD _ OLDPWDONL Y value. The current logon password is
given to the password provider as the new password. This flag is ignored
if PPChangePassword is called to change the logon password - that is, if
lpProvider is NULL. CHANGEPWD_OLDPWDONL Y is intended for use
by the system; an application should not use it.

PwdGetPasswordStatus
DWORD PwdGetPasswordStatus(LPCTSTR lpProvider, DWORD dwIndex,

LPDWORD lpStatus);

Retrieves information about a password provider's password. The request is passed
to the password provider through the PPGetPasswordStatus function.

• Returns the WN_SUCCESS value if successful or a WN_ error value other
wise.

lpProvider
Address of the name of the network provider that owns the password.

dwlndex
Type of information to retri~ve. This parameter can be one of these values:

PS_HASOLDPWD Indicates whether it is necessary to supply the previous
password to change the current password. When the
function returns, IpStatus includes one of these values:

PS_ONOFF

PS_HASOLDPWD_ON
PS_HASOLDPWD_OFF

Indicates whether the password is active. When the
function returns, IpStatus includes one of these values:

PS_ONOFF _ON
PS_ONOFF _OFF

Indicates whether the password should be kept the
same as the Windows logon password. When the
function returns, IpStatus includes one of these values:

PS_SYNCMASTERPWD_ON
PS_SYNCMASTERPWD_OFF

Indicates whether the password is stored locally or
in a network location. When the function returns,
IpStatus includes one of these values:

PS_STORAGETYPE_LOCAL
PS_STORAGETYPE_NETWORK

Article 19 Passwords Control Panel 423

lpStatus
Address of a doubleword value that receives bit flag values. The meaning of the
values depends on the dwlndex parameter.

PwdSetPasswordStatus
DWORD PwdSetPasswordStatus(LPCTSTR lpProvider, DWORD dwlndex,

DWORD dwStatus):

Sets information about a password provider's password. Currently, this function
can only determine whether the password is kept the same as the Windows logon
password.

• Returns the WN_SUCCESS value if successful or a WN_ error value
otherwise.

lpProvider
Address of the name of the network provider that owns the password.

dwlndex
Type of information to retrieve. Currently, only the PS_SYNCMASTERPWD
value is supported.

dwStatus
Status flag. This parameter can be either the PS_SYNCMASTERPWD_ON
or PS_SYNCMASTERPWD _OFF value.

425

ARTICLE 20

Device 1/0 Control

About Device I/O Control
Microsoft® Windows® 95 includes a device input and output control (IOCTL)
interface that allows applications developed for the Microsoft® Win32® application
programming interface (API) to communicate directly with virtual device drivers.
Applications typically use this interface to carry out selected Microsoft® MS-DOS®
system functions, to obtain information about a device, or to carry out input and
output (110) operations that are not available through standard Win32 functions.

This article describes the device IOCTL interface, explains how to use the interface
in applications, and describes how to implement the interface in virtual devices
(VxDs). For information about the device IOCTL interface for other operating
systems that support the Win32 API, see the documentation included in the
Microsoft Win32 Software Development Kit (SDK).

Input and Output Control in Applications
You use the device IOCTL interface in an application to carry out "low-level"
operations that are not supported by the Win32 API and that require direct
communication with a VxD. Windows 95 implements the interface through
the DeviceloControl function, which sends commands and accompanying data
directly to the given VxD. To use the interface, you open the VxD by using the
CreateFile function, send commands to the V xD by using DeviceloControl,
and finally close the VxD by using the CloseHandle function.

426 Programmer's Guide to Microsoft Windows 95

Opening the VxD
You can open a static or dynamically loadable VxD by specifying the module
name, filename, or registry entry identifying the VxD in a call to the CreateFile
function. If the VxD exists and it supports the device IOCTL interface,
CreateFile returns a device handle that you can use in subsequent calls to the
DeviceloControl function. Otherwise, the function fails and sets the last error
value to ERROR_NOT_SUPPORTED or ERROR_FILE_NOT_FOUND. You can
use the GetLastError function to retrieve the error value.

When you open a VxD, you must specify a name having the following form.

\\.\VxdName

VxDName can be the module name of the VxD, the name of the VxD file, or the
name of a registry entry that specifies the filename.

CreateFile checks for a filename extension to determine whether VxDName
specifies a file. If a filename extension (such as . VXD) is present, the function
looks for the file in the standard search path. In the following example, CreateFile
looks for the SAMPLE.VXD file in the standard search path.

HANDLE hDevice;

hDevice = CreateFile("\\\\.\\SAMPLE.VXD", 0, 0, NULL, 0,
FILE_FLAG_DELETE_ON_CLOSE, NULL);

If VxDName has no filename extension, CreateFile checks the registry to see if
the name is also a value name under the Known VxDs key in HKLM\System\
CurrentControlSet\Control\SessionManager. If it is a value name, CreateFile
uses the current value associated with the name as the full path of the VxD file.
This method is useful for specifying VxDs that are not in the standard search path.
In the following example, CreateFile searches the registry for the MYVXDPATH
value.

hDevice = CreateF11e("\\\\.\\MYVXDPATH", 0, 0, NULL, 0,
FILE_FLAG_DELETE_ON_CLOSE, NULL);

If VxDName has no filename extension and is not in the registry, CreateFile
assumes that the name is a VxD module name and searches the internally
maintained device descriptor blocks for an already loaded VxD having the given
name. In the following example, CreateFile opens the standard VxD named
VWIN32.VXD.

hDevice = CreateFile("\\\\.\\VWIN32", 0, 0, NULL, 0,
0, NULl);

Article 20 Device I/O Control 427

In all cases, if CreateFile cannot find or load the VxD, it sets the last error value
to ERROR_FILE_NOT_FOUND. If the function loads the VxD but the VxD does
not support the device IOCTL interface, CreateFile sets the last error value to
ERROR_NOT_SUPPORTED.

You can open the same VxD any number of times. CreateFile provides a
unique handle each time you open a VxD, but it makes sure that no more than
one copy of the VxD is loaded into memory. To ensure that the system removes
the VxD from memory when you close the last instance of the VxD, use the
FILE_FLAG_DELETE_ON_CLOSE value when opening dynamically loadable
VxDs. Static VxDs cannot be removed from memory.

Although CreateFile has several parameters, only two parameters, lpName
andfdwAttrsAndFlags, are useful when opening an VxD. The latter one,
fdwAttrsAndFlags, can be zero, the FILE_FLAG_DELETE_ON_CLOSE value,
or the FILE_FLAG_ OVERLAPPED value. FILE_FLAG_OVERLAPPED is used
for asynchronous operation and is described later in this article.

Sending Commands
You use DeviceloControl to send commands to a VxD. You must specify
the previously opened device handle, control code, and input and output param
eters for the call. The device handle identifies the.VxD, and the control code
specifies an action for the V xD to perform. In the following example, the
DIOC_GETVERSION control code directs the given VxD to return version
information.

HANDLE hDevice
BYTE bOutput[4];
DWORD cb;

fResult = DeviceloControl(
hDevice. II device handle
DIOC_GETVERSION. II control code
NULL. 0. II input parameters
bOutput. 4. &cb. II output parameters
0) ;

The input and output parameters of DeviceloControl include the addresses and
sizes of any buffers needed to pass data into or out of the V xD. Whether you use
these parameters depends on how the VxD processes the control code. You supply
an input buffer if the VxD requires that you pass it data for processing, and you
supply an output buffer if the VxD returns the results of processing. In the previous
example, only the output parameters are supplied. These include the address of the
output buffer; the size, in bytes, of the buffer; and the address of the variable to
receive the count of bytes actually copied to the buffer by the VxD.

428 Programmer's Guide to Microsoft Windows 95

Although the Win32 header files define a set of standard control codes, Windows
95 does not support these standard codes. Instead, the meaning and value of control
codes in Windows 95 are specific to each VxD. Different VxDs may support
different control codes. '

Some VxDs support the DIOC_GETVERSION control code, which directs the
VxD to return version information in the output buffer. Although the version
information can have any format that helps the application determine the version
of the VxD, keeping the information to 4 bytes or less is recommended. The VxD
returns the version information only if you supply a buffer and specify a nonzero
size for the buffer.

If you opened the VxD using the FILE_FLAG_OVERLAPPED value, you must
also provide an OVERLAPPED structure when calling DeviceloControl. This
structure contains information that the V xD uses to process the control code
asynchronously.

Closing a VxD
When you have finished using a VxD, you can close the associated device handle
by using the CloseHandle function, or you can let the operating system close the
handle when the application terminates. The following example closes a VxD.

CloseHandle(hDevice);

Closing a VxD does not necessarily remove the VxD from memory. If you open
a dynamically loadable VxD using the FILE_FLAG_DELETE_ON_CLOSE value,
CloseHandle also removes the VxD if no other valid handles are present in the
system. The system maintains a reference count for dynamically loadable VxDs,
incrementing the count each time the V xD is opened and decrementing when the
VxD is closed. CloseHandle checks this count and removes the VxD from memory
when the count reaches zero. The system does not keep a reference count for static
VxDs; it does not remove these VxDs when their corresponding handles are closed.

In rare cases, you may need to use the DeleteFile function to remove a dynami
cally loadable VxD from memory. For example, you use DeleteFile if another
application has loaded the V xD and you just want to unload it. You also use
DeleteFile if you have successfully loaded a VxD by using CreateFile, but the
VxD does not support the device IOCTL interface. In such cases, CreateFile
loads the VxD but provides no handle to close and remove the VxD. The following
example removes the VxD named SAMPLE from memory.

DeleteFile("\\\\.\\SAMPLE");

In this example, SAMPLE is the module name of the VxD. (Do not specify the
filename.) Be aware that the module name of a VxD is not necessarily the same
as the VxD's filename without a filename extension. In general, avoid using
DeleteFile to remove a VxD from memory.

Article 20 Device 1/0 Control 429

Asynchronous Operations
You can direct a VxD to process a control code asynchronously. In an asynchro
nous operation, the DeviceloControl function returns immediately, regardless of
whether the V xD has finished processing the control code. Asynchronous operation
allows an application to continue while the VxD processes the control code in the
background. You request an asynchronous operation by specifying the address of an
OVERLAPPED structure in the DeviceloControl function. The hDevice member
of OVERLAPPED specifies the handle of an event that the system sets to the
signaled state when the V xD has completed the operation.

Asynchronous (overlapped) operations are useful for lengthy operations, such
as formatting a disk. To perform an asynchronous operation, you must specify
the FILE_FLAG_OVERLAPPED value when calling CreateFile to obtain a
device handle. When calling DeviceloControl, you must specify the address of
an OVERLAPPED structure in the lpOverlapped parameter and the handle of a
manual reset event in the hEvent member of the structure. The system ignores all
other members.

If DeviceloControl completes the operation before returning, it returns TRUE;
otherwise, it returns FALSE. When the operation is finished, the system signals the
manual reset event. You should call GetOverlappedResult when the thread that
called DeviceloControl needs to wait (that is, stop executing) until the operation
has finished.

Using VWIN32 to Carry Out MS-DOS Functions
Windows 95 provides a VxD called VWJN32.VXD that supports a set of control
codes that Win32 applications can use to carry out selected MS-DOS system
functions. These system-defmed control codes consist of the following values.

Control code (value)

VWIN32_DIOC_DOS_INT13 (4)

VWIN32_DIOC_DOS_INT25 (2)

Meaning

Performs Interrupt 13h commands.

Performs the Absolute Disk Read command
(Interrupt 25h).

Performs the Absolute Disk Write
command (Interrupt 25h).

Performs the specified MS-DOS device I/O
control function (Interrupt 21h Function
4400h through 4411h).

430 Programmer's Guide to Microsoft Windows 95

When a Windows 95 - based application calls DeviceloControl with the
dwloControlCode parameter set to one of the predefined control codes, the
lpvlnBuffer and lpvOutBuffer parameters must specify the addresses of
DIOC_REGISTERS structures. The DIOC_REGISTERS structure specified
"by lpvlnBuffer contains a set of register values that specify a command for
the VxD to execute and any data that the VxD needs to execute the command.
Mter completing the command, the VxD fills the DIOC_REGISTERS structure
specified by lpvOutBuffer with the register values that resulted from executing the
command. The meaning of the register values depends on the specified command.

Some interrupt functions require far pointers passed in segment offset pairs where
the segment is placed in a segment register. Because the 32-bit code does not
have segments, the DIOC_REGISTERS structure contains no segment registers.
To specify segment:offset pairs, place the full pointer into the structure member that
corresponds to the register used to hold the offset portion of the real-mode pointer.
For example, use re~EDX for pointers that go into the DS:DX registers.

Many of the MS-DOS and BIOS functions require segment registers, but segment
registers are not part of the DIOC_REGISTERS structure. To specify an address
that includes a segment selector, use the structure member that corresponds to the
offset of the real-mode segment offset register pair to hold the entire address. For
example, a pointer in the ES:DI registers would be put into the re~EDI member.

When a Windows 95 - based application uses the DeviceloControl function to
send commands to a VxD other than VWIN32.VXD, the meaning of the function's
parameters are defined by the VxD. The system does not validate any parameter.

The system VxD, VWIN32.VXD, supports the IOCTL functions originally
provided by MS-DOS Interrupt 21h. The following example shows how to call
Get Media ID (Interrupt 21h Function 440Dh Minor Code 66h) from a Win32-
based application.

#define VWIN32_DIOC_DOS_IOCTL 1

typedef struct _DIOC_REGISTERS {
DWORD reg_EBX;
DWORD reg_EDX;
DWORD reg_ECX;
DWORD reg_EAX;
DWORD reg_EDI;
DWORD reg_ESI;
DWORD reg_Flags;

DIOC_REGISTERS, *PDIOC_REGISTERS;

Article 20 Device 1/0 Control 431

II Important: All MS_DOS data structures must be packed on a
II one-byte boundary.
1fopragma pack(1)
typedef struct _MID {

WORD midInfoLevel;
DWORD midSerialNum;
BYTE midVolLabel[ll];
BYTE midFileSysType[8];

MID, *PMID;
1fopragma pack()

HANDLE hDevice;
DIOC_REGISTERS reg;
MID mid;
BOOL fResult;
DWORD cb;
int nDrive = 3; II Drive C:

hDevice = CreateFile("\\\\.\\vwin32",
0, 0, NULL, 0, FILE_FLAG_DELETE_ON_CLOSE, NULL);

reg. reg_ EAX = 0x440D; 1* IOCTL for block devices
reg. reg_ EBX = nDrive; 1* zero-based drive identifier
reg. reg_ ECX = 0x0866; 1* Get Media ID command
reg. reg_ EDX = (DWORD) ∣ 1* receives media identifier
reg.reg_Flags = 0x0001; 1* assume

fResult = DeviceIoControl(hDevice,
VWIN32_DIOC_DOS_IOCTL,
®, sizeof(reg),
®, sizeof(reg),
&cb, 0);

error

if (!fResult I I (reg.reg_Flags & 0x0001»
; II error if carry flag is set

CloseHandle(hDevice);

(carry flag

Supporting Input-Output Control in VxDs

info.
is set)

*1
*1
*1
*1
*1

A VxD can support the device IOCTL interface by processing the message
W32_DEVICEIOCONTROL in the VxD's control procedure. You can take
advantage of the device IOCTL interface by providing a VxD that performs
privileged (ring 0) operations for your application.

432 Programmer's Guide to Microsoft Windows 95

Loading and Opening the VxD
When your application calis the CreateFile function, the system sends the
W32_DEVICEIOCON:ROL message to the control procedure of the specified
VxD to determine if it supports the device IOCTL interface. The ESI register
contains the address of a DIOCParams structure whose dwIoControlCode
member specifies the DIOC_GETVERSION control code. A VxD that supports
the device IOCTL interface must respond to the DIOC_GETVERSION control
code by clearing the EAX register. (A VxD can also return version information in
the buffer pointed to by the IpvOutBuffer member so long as the cbOutBuffer
member is nonzero. If cbOutBuffer is zero, the calling application is not interested
in version information, but the VxD must still return zero to indicate success.) If the
VxD does not support the device IOCTL interface, it must place a nonzero value
inEAX.

For dynamically loadable VxDs, the system sends a SYS_DYNAMIC_INIT
control message to the VxD the first time that it is opened. If the VxD returns
success, the system sends the W32_DEVICEIOCONTROL message with the
DIOC_OPEN (identical in value to the DIOC_GETVERSION control code)
control code. The VxD must return zero to inform the calling application that
it supports W32_DEVICEIOCONTROL. The system sets the reference count
for the VxD to 1. On every subsequent call to CreateFile for the VxD, the VxD
receives the W32_DEVICEIOCONTROL message with the DIOC_OPEN control
code and the reference count for the VxD is incremented.

The VxD receives a W32_DEVICEIOCONTROL message with the control code
DIOC_CLOSEHANDLE if the application closes the device handle by calling
the ·CloseHandle function, or if the operating system closes the handle when
the application terminates (or DeleteFile if the VxD was not opened with the
FILE_FLAG_DELETE_ON_CLOSE value). The VxD can use this notification to
perform cleanup operations and release structures associated with the application.
The reference count for the VxD is decremented before the message is sent.
If the reference count has been decremented to zero, the VxD receives the
SYS_DYNAMIC_EXIT message and is subsequently unloaded.

Article 20 Device 1/0 Control 433

Processing Control Codes
When an application calls DeviceIoControl, the system calls the control procedure
of the VxD identified by the given device handle. The EAX register contains the
W32_DEVICEIOCONTROL message, and the ESI register contains the address
of a DIOCParams structure. The structure contains all of the parameters that
the application specified in the DeviceIoControl function as well as additional
information. The VxD should examine the dwIoControlCode member of the
DIOCParams structure to determine the action to perform. The IpvInBuffer
member contains supporting data that the VxD needs to complete the action.
After processing the control code, the VxD should copy any information that it
needs to return to the application to the buffer specified by the IpvOutBuffer
member.

If the VxD successfully processes the control code, it should clear the EAX
register before returning. Otherwise, the VxD should set EAX to a nonzero value.

Asynchronous Operations
A v xD can determine whether an application has requested an asynchronous
operation by checking the IpoOveriapped member of the DIOCParams structure.
If IpoOveriapped specifies the address of an OVERLAPPED structure, the
application has requested an asynchronous operation. In that case, the VxD
should return -1 in the EAX register and then process the specified control code.

The operating system does not take any steps to make the application's memory
available to the VxD at all times (in all contexts) for asynchronous operations.
When implementing asynchronous operations, the VxD must use the appropriate
virtual machine manager (VMM) services, such as LioPageLock with the
P AGEMAPGLOBAL value, to make the application's memory pages available
across contexts, including access to the OVERLAPPED structure.

When the VxD finishes processing the control code, it must notify the application
by calling the VWIN32_DIOCCompletionRoutine service provided by
VWIN32.VXD. The EBX register must contain the value of the Internal member
of the OVERLAPPED structure. This member is reserved for operating system
use only. In addition, if the VxD copies any data to the buffer specified by the
IpvOutBuffer member of the DIOCParams structure, the VxD must specify
the count of bytes copied to the buffer in the InternalHigh member of the
OVERLAPPED structure. The remaining members of OVERLAPPED, Offset
and OffsetHigh, can be used for developer-defined data.

Essentially, the VWIN32_DIOCCompletionRoutine service helps signal·the
event identified by the hEvent member of the OVERLAPPED structure. The
application monitors the event to determine when the asynchronous operation
is completed.

434 Programmer's Guide to Microsoft Windows 95

Reference

Structures

The following structures, system messages, and service are associated with the
device IOCTL interface.

These structures are used to carry out device IOCTL functions.

DIOC REGISTERS
typedef struct DIOCRegs {

DWORD reg_EBX; II EBX register
DWORD reg_EDX; II EDX register
DWORD reg_ECX; II ECX register
DWORD reg_EAX; II EAX register
DWORD reg_EDI; II EDI register
DWORD reg_ESI; II ESI register
DWORD reg_Flags; II Flags register

} DIOe_REGISTERS;

Contains the register values for calling Interrupt 21h commands through the
DeviceIoControl function. The meaning of the registers depends on the given
command.

Some interrupt functions require far pointers passed in segment offset pairs
where the segment is placed in a segment register. Since the 32-bit code does not
have segments, the DIOC_REGISTERS structure contains no segment registers.
You should place the full pointer into the structure member that corresponds to
the register used to hold the offset portion of the real-mode pointer. For example,
use reLEDX for pointers that go into the DS:DX registers.

Article 20 Device 1/0 Control 435

DIOCParams
include vwin32.inc

DIOCParams STRUC
Internal! DD ? reserved
VMHandle DD ? handle of virtual machine
Interna12 DD ? reserved
dwIoControlCode DD ? see below
lpvInBuffer DD ? see below
cbInBuffer DD ? see below
lpvOutBuffer DD ? see below
cbOutBuffer DD ? see below
lpcbBytesReturned DD ? see below
lpoOverlapped DO ? see below
hDevice DD ? handle of device
tagProcess DD ? see below

DIOCParams ENDS

Contains information that an application has passed to the virtual device driver
(VxD) by calling the DeviceIoControl function.

dwIoControlCode
Control code to process. This member can be a developer-defined value or one
of these system-defined values:

DIOC_CLOSEHANDLE Notifies a VxD that an application has closed its
device handle for the VxD. The VxD should
perfonn cleanup operations and release any
structures associated with the application.

DIOC_GETVERSION Queries the VxD to detennine if it supports
the device IOCTL interface. If the VxD supports
the interface, it must clear the EAX register.
Otherwise, it must place a nonzero value in EAX.
If cbOutButTer is nonzero and the VxD supports
the interface, the VxD should copy version
infonnation to the IpvOutButTer.

436 Programmer's Guide to Microsoft Windows 95

IpvInBuffer
Address of a buffer that contains data needed to process the control code.

cbInBuffer
Size, in bytes, of the buffer pointed to by IpvInBuffer.

IpvOutBufJer
Address of a buffer that receives the results of processing the control code.

cbOutBuffer
Size, in bytes, of the buffer pointed to by IpvOutBuffer.

IpcbBytesReturned
Number of bytes copied to the buffer pointed to by IpvOutBuffer.

IpoOveriapped
Address of an OVERLAPPED structure that contains infonnation used to
complete the command asynchronously. If the command is to be completed
synchronously, this member is NULL.

tagProcess
Infonnation that the VxD can use to tag the current request along with hDevice.
When the VxD receives a DIOC_CLOSEHANDLE control code for hDevice
and tagProcess, it should perfonn appropriate cleanup operations.

System Message
The following system message is used to implement the device IOCTL interface
ofa VxD.

W32_ DEVICEIOCONTROL
include VMM.INC

mov ebx. VMHandle see below
mov eax. W32_DEVICEIOCONTROL
mov esi. OFFSET32 dioparams see below
VMMCall System_Control

Passes a control code and related infonnation to a virtual device driver.

Service

Article 20 Device 1/0 Control 437

• Returns one of the following values in the EAX register:

o
. -1

Error code

VMHandle

The control code processed successfully.

An asynchronous operation is in progress. A VxD must return this
value only if the IpoOverlapped member of the DIOCParams
structure is not NULL.

An error occurred. For a list of Win32 error codes, see the docu
mentation included in the Win32 SDK.

Handle of the virtual machine.

dioparams
Address of a DIOCParams structure containing a control code and information
that the VxD needs to process the control code.

This message is sent to a VxD when an application specifies the name of a VxD in
the CreateFile function and when an application specifies the device handle of the
VxD in a call to the DeviceIoControl or CloseHandle function. This message uses
the ESI register.

The following service is used with device IOCTL.

VWIN32_DIOCCompletionRoutine
mov ebx, Internal ; see below
VxDCall VWIN32_DIOCCompletionRoutine

Notifies the system that an asynchronous operation in a virtual device driver is
complete. The VxD calls this service after the asynchronous input and output (110)
operation to signal the application.

• No return value.

Internal
Event identifier. This parameter must be the same value initially passed to
the VxD in the Internal member of the OVERLAPPED structure.

Before calling this service, the VxD must set the InternalHigh member of the
OVERLAPPED structure to the number of bytes of return data.

439

ARTICLE 21

System Policies

About System Policies
System administrators can use Microsoft® Windows® 95 system policies to
control user and computer configurations from a single location on a network.
System Policies propagate registry settings to a large number of computers
without requiring the administrator to have detailed knowledge of the registry.
There are many settings in the registry, and mUltiple registry settings must often
be manipulated to achieve a particular result. The System Policies feature provides
a layer of abstraction that makes it easier to control registry settings.

Instead of changing individual registry settings, a system administrator can specify
policies. Each policy has some text that describes its effect. Some examples of
policies follow:

• Disable file sharing.

• Display a custom logon banner.

• Remove the Run command from the Start menu.

• Use user-level security.

Registry Settings
Each policy is associated with one or more registry settings. When the
administrator chooses to enforce a policy, the System Policies tool identifies
registry changes that must be made and then makes the changes to the registries
of the users and computers for which the policy applies. The administrator can
specify policies for individual users, user groups, and individual computers.
Default values can also be specified.

440 Programmer's Guide to Microsoft Windows 95

Policies have been implemented for most of the registry settings that an adminis
trator might want to control and propagate. Although System Policies control only
a subset of the registry, they are extensible. Application developers are encouraged
to supply template files and implement policies for registry settings used by their
products so that customers can plug the template files into a policy editor and
control policies for the application.

Policy Editors and Downloaders
There are two admini$trative components involved in specifying policies: a policy
editor and a policy downloader. A policy editor is an application that lets adminis
trators specify registry settings for particular computers, users, and user groups,
and a policy downloader is a small program installed on every client computer that
merges the administrator's settings into the local registry.

The policy editor uses a template file, which is a text file describing registry
settings and specifying how the settings should appear in the policy editor's user
interface. The policy editor creates a policy file, which is a single file containing
policy settings for a number of computers, users,· and user groups. The policy
file is a registry hive that is created and manipulated using Microsoft® Win32®
functions. Windows 95 includes a policy editor, the System Policy Editor.
Developers may create their own policy editors, but the editors must be able to
read template files and be able to read and write policy files.

Windows 95 provides a policy downloader, which is built into Multiple Provider
Router (MPR). Developers may also create their own policy downloaders. Policy
downloaders may be installed so that MPR will call the installed component to do
the downloading rather than doing so itself. Because the policy file format allows
for extensions, developers may provide additional functionality.

Architecture
A computer's configuration is defined in terms of policies. The policies are
ultimately stored in the local computer's registry. Every component that provides
a policy is responsible for reading the registry at appropriate times and acting
accordingly. For example, the policy that removes the Run command from the
Start menu requires the shell code that displays the Start menu to check the
appropriate registry setting to determine whether or not the shell is supposed to
display the Run command. The policies are generic data items; the administrative
tools and components have no information about them besides their names, their
associated data, and where they reside in the registry. The only responsibilities of
the administrative components are to allow the administrator to make policy settings
and propagate those settings to the user's registry.

Article 21 System Policies 441

Policy Primitives
The following definitions are important for a complete understanding of policies:

• A policy is a permission or attribute for a particular item, action, or object.
It is either enabled or disabled.

• A part is a subcomponent of a policy. A policy may have zero or more parts.
Policy parts may have various data types, including Boolean values, numeric
values, and string values. The values of the parts apply only if the policy is
enabled.

• A category is a collection of similar policies.

Some policies do not need any parts. For instance, "Lock Desktop Links" could be
a policy. For such a policy, it would be sufficient to say that it was either enabled
or disabled. If it were enabled, the user could not modify his or her desktop links in
any way. "Desktop Links" could be another policy, and it could have the Boolean
parts "Create Links," "Delete Links," and "Modify Links." As another example,
"Password Expiration" could be a policy, and "Number of days" (a numeric value)
could be its part.

Policies and parts are analogous to a group of controls in a dialog box that are all
enabled by a single check box. The check box, which corresponds to whether or
not the policy is enabled, "turns on" the controls in the dialog box (the policy parts)
and allows data to be entered into the controls. A policy with no parts (that is, no
associated controls) is analogous to a single check box.

The following types of policies can be specified:

• A user-specific policy can be specified for each user or group. A default set of
policies can be specified for users or groups who do not have sets of policies
defined for them explicitly. Most policies are user-specific. User-specific
policies are always merged into the HKEY_CURRENT_USER key of the
registry.

• A machine-specific policy should not change according to user. A machine
specific policy applies to all users. It does not follow Users when they move
between different computers. Machine-specific policies are always merged into
the HKEY _LOCAL_~ACHINE key of the registry.

Policy Information
Any application or component can define a policy. The policy will appear in the
administrator user interface, and information that the administrator sets about the
policy will migrate to the local computer's registry. The application or component
that defines a policy must check the registry appropriately to enforce its own policy.

442 Programmer's Guide to Microsoft Windows 95

Policy information is typically added to a local registry in the following sequence:

1. Categories, policies, and parts are described in a template (.ADM) file.
The .ADM file format is described in "Template File Format" later in this
article. An ADMIN.ADM file with all the policies that the system supports is
shipped with Windows 95. Developers, however, may also provide their own
template files.

2. The administrator runs the policy editor, which reads one or more policies and
lists the available categories and policies. The administrator sets up the desired
policies, ~d the policy editor uses registry functions to save the work to a policy
(.POL) file. The format of policy files is described in "Policy File Format" later
in this article.

3. After the user logs on (and user profiles are reconciled if they are enabled),
the policy downloader is activated. It determines where to find the file on the
network, opens the policy file, and merges the appropriate computer, user, and
user group policies into the local registry.

Default User and Computer Names
There is a standard user name called DEFAULT USER and a standard computer
name called DEFAULT COMPUTER. When the policy downloader updates
machine- and user-specific policies, it first tries to find an entry in the policy file
for the local computer name or user name. If the downloader does not find an entry,
it looks for the DEFAULT USER or DEFAULT COMPUTER entry and uses those
entries for the update. If there are no entries for a particular user or computer and
default entries do not exist, no update takes place.

The DEFAULT USER and DEFAULT COMPUTER entries are powerful because
administrators can set policies for a large number of users and computers and then
manage the exceptions by creating specific user and computer entries in a .POL file.

Policy Downloading
Policy downloading can be set in one of the following three states:

• Off

• Automatic

• Manual

If policy downloading is off, no downloading takes place.

Article 21 System Policies 443

If policy downloading is set to automatic, MPR asks the primary network pro
vider to provide a place to look on the network for the policy file. Microsoft®
Windows NTTM and Novell® NetWare® providers both support this capability.
(For example, for a Windows NT network, MPR looks in the primary domain
controller's NETLOGON directory for a file named CONFIG.POL. For a
NetWare version 3.x network, MPR looks on the preferred server's SYS\PUBLIC
directory for a file named CONFIG.POL.) Any software vendor who provides
a 32-bit network provider can support this capability by implementing the
NPGetPolicyPath function. If policy downloading is set to automatic and the
primary network provider does not support NPGetPolicyPath, no downloading
takes place.

If policy downloading is set to manual, a specific path to the policy file must also
be supplied. It can be either a Universal Naming Convention (UNC) path or a
path beginning with a drive letter. (In the latter case, the drive letter must be
appropriately mapped before downloading takes place.)

The default setting for policy downloading is automatic. No error messages are
displayed if a policy file cannot be found in the location that the network provider
suggests. This means that a site can install a number of Windows 95 clients and
then deploy the policies at a later date. To deploy them, the administrator just needs
to place the policy file(s) in the appropriate location(s) on the network, and the
clients will immediately begin using them the next time they log on.

Policy Editor User Interface
This section describes the user interface of the System Policy Editor that ships with
Windows 95. Other software vendors may, however, choose to use a different user
interface.

The System Policy Editor requires an .ADM file describing the available policies to
use. By default, it will use a file named ADMIN. ADM , but different template files
may be specified using the Templates menu.

The main window of the System Policy Editor displays the users and computers
that have entries in the policy file that is currently open. To create a new policy
file, choose the New command on the File menu. A new policy fIle contains entries
for the default user and default computer. To add entries for particular users or
particular computers, use the Add User, Add Group, or Add Computer button. Note
that policies for all of the entries shown in the main window are saved to one policy
fIle. Typically, an administrator saves the policy fIle to the network location where
the policy downloader looks by default.

444 Programmer's Guide to Microsoft Windows 95

The following illustration shows the main window of the System Policy Editor.

Double-clicking an entry, such as Default Computer, brings up a properties
dialog box containing the policies for the entry. The Default Computer
Properties dialog box shown in the following illustration has an upper section
listing the policies and a lower section showing settings for a specific policy.

Logon
Logon Banner
Require Validation by Network for Windows Access

Microsoft Client for NetWare Networks
Microsoft Client for Windows Networks

Article 21 System Policies 445

A check box in the properties dialog box has three states. If it is checked, the policy
will be enforced; that is, the corresponding settings will be added to the registry
when the policy is downloaded. If the check box is empty, the settings will be
deleted from the registry when the policy is downloaded. If the check box is gray,
the registry settings will not be changed when the policy is downloaded; that is, the
user has the freedom to choose settings, assuming that the settings can be changed
from the user interface.

For example, there is a user policy for desktop Wallpaper. By checking that policy,
the administrator specifies the particular wallpaper that the user will have. Even if
the user uses the Display Control Panel application to change the Wallpaper, the
wallpaper specified by the administrator will appear the next time he or she logs on.
If the administrator unchecks this policy, the wallpaper setting is deleted so that
when the user logs on, there is no wallpaper. If the administrator makes the check
box gray, nothing is enforced, and the user can choose the wallpaper.

As a second example, there is a user policy "Remove Run from Start menu"
(under the Shell/Restrictions registry key). Checking this policy adds a registry
setting that tells the shell not to include the Run command on the Start menu. By
unchecking this policy, this registry key is deleted, and the shell displays the Run
command. If the policy is left gray, the setting will not be changed. If the policy
was already in force, it will stay that way, and the Run command will continue to
be denied to the user. If the policy had not been applied already, the user would
continue to see the Run command. Note that unlike the wallpaper example, the user
cannot change this setting by using Control Panel or another user interface element.

The System Policy Editor can also operate directly on the local registry rather than
on a policy file. This capability is useful for troubleshooting problems that may be
policy-related, because it shows what policies are currently in place for a user on a
particular computer. There is no policy file involved in this mode. To switch to the
local registry view, use the Open Registry command on the File menu. Note that the
check boxes will show only two states, checked and unchecked, because the registry
settings for the policy are either present (the policy is on) or not present (the policy
is off).

Template File Format
A template (.ADM) file describes a number of categories. Each category can
contain zero or more policies, and each policy can contain zero or more parts.
The following sections describe categories, policies, policy parts, and part types.

The ADMIN.ADM file that ships with Windows 95 identifies strings that are
important for an intemallocalization tool by using two exclamation points (! I).
Each of these strings is explicitly defined in the [strings] section of ADMIN.ADM.
You do not need to use this mechanism when you create a template file.

446 Programmer's Guide to Microsoft Windows 95

Categories

Policies

A category is specified as follows.

CATEGORY name TYPE category type
[KEYNAME key name]

[... policy definition statements ...]

END CATEGORY

name
Category name as it should appear in the System Policy Editor list box. It may
optionally be enclosed by double quotation marks. (Names with spaces must be
enclosed by double quotation marks.)

category type
Type, which must be USER or MACHINE. It specifies whether the category is
user-specific or machine-specific.

key name
Optional registry key name to use for the category. If a key name is specified,
it will be used by all child categories, policies, and parts, unless they specifically
provide a key name of their own.

A policy definition statement may not appear more than once in a single category.

A policy· is specified as follows.

POLICY name
[KEY key name]
[... part definition statements ...]

END POLICY

name
Policy name as it should appear in the System Policy Editor list box. It may
optionally be enclosed by double quotation marks. (Names with spaces must
be enclosed by double quotation marks.)

key name
Optional registry key name to use for the policy. If a key name is specified,
it will be used by all child parts of the policy, unless they specifically provide
a key name of their own.

Policy Parts

Part Types

Article 21 System Policies 447

A policy part is specified as follows.

PART name TYPE part type
type;..dependent data
[KEYNAME key name]
VALUENAME value name

END PART

name
Part name as it should appear in the System Policy Editor list box. It may
optionally be enclosed by double quotation marks. (Names with spaces must
be enclosed by double quotation marks.)

part type
Policy part type. Part types are discussed individually in the following section.

type-dependent data
Information about the part. Type-dependent data is discussed in the following
section.

key name
Optional key name to use. If no key name is specified, the previous key name
in hierarchy is used.

value name
Value name to use to set the data for this part.

The following policy part types are defined:

CHECKBOX

COMB OB OX

DROPDOWNLIST

EDITTEXT

LISTBOX

Displays a check box. The value is set in the registry with
the REG_DWORD type. The value will be nonzero if the
check box is checked by the user and zero if it is unchecked.

Displays a combo box.

Displays a combo box with a drop-down list style. The user
may only choose from one of the entries supplied. The main
advantage of a combo box with a drop-down list is that a
number of extra registry edits may be specified, based on
the user's selection.

Displays an edit field that accepts alphanumeric text. The text
is set inthe registry with the REG_SZ type.

Displays a list box with "add" and "remove" buttons. This is
the only part type that can be used to manage multiple values
under one key.

448 Programmer's Guide to Microsoft Windows 95

NUMERIC

TEXT

Displays an edit field with an optional spinner control (an up
down control) that accepts a numeric value. The value is set
in the registry with the REG_DWORD type.

Displays a line of static (label) text. There is no associated
registry value with this part type.

Descriptions of these policy part types follow.

CHECKBOX Part Type
The CHECKBOX part type accepts the following options:

ACTIONLISTOFF

ACTIONLISTON

DEFCHECKED

VALUEOFF

VALUEON

Specifies an optional action list to be used if the check box is
turned off. For more information, see "Action Lists" later in
this article.

Specifies an optional action list to be used if the check box is
turned on. For more information, see "Action Lists" later in
this article.

Causes the check box to be initially checked.

Overrides the default "off' behavior of the check box if
specified.

Overrides the default "on" behavior of the check box if
specified.

The default behavior of a check box is to write the value 1 to the registry if it is
checked and 0 if it is unchecked. V ALUEON and V ALUEOFF are used to override
this behavior. For example, the following option writes "Fred" to the registry when
the check box is checked.

VALUEON "Fred"

The following option writes the value 12 to the registry when the check box is
unchecked.

VALUEOFF NUMERIC 12

Article 21 System Policies 449

COMBOBOX Part Type
The COMBOBOX part type accepts all the options that EDITTEXT does as well
as the following option:

SUGGESTIONS Begins a list of suggestions to be placed in the drop-down list.
Suggestions are separated with spaces and can be enclosed by
double quotation marks. The list ends with END SUGGESTIONS.
Following is an example:

SUGGESTIONS
Alaska Alabama Mississippi "New York"
END SUGGESTIONS

DROPDOWNLIST Part Type
The DROPDOWNLIST part type accepts the following options:

ITEMLIST

REQUIRED

Begins a list of the items in the drop-down list. The list must end
with END ITEMLIST.

Specifies that the policy editor will not allow a policy containing this
part to be enabled unless a value has been entered for the part.

Each item in the lTEMLIST option must be specified as follows.

NAME name VALUE value
[ACTIONLIST action list]

name
Text to be displayed in the drop-down list for this item.

value
Value to be written as the part's value if this item is selected. Values are
assumed to be strings, unless they are preceded by NUMERIC. The following
example shows both string and numeric values.

VALUE "Some value"
VALUE NUMERIC 1

If V ALUE is followed by DELETE (for example, V ALUE DELETE), the
registry valuename and value pair will be deleted.

actionlist
Optional action list to be used if this value is selected. For more information
about action lists, see "Action Lists" later in this article.

450 Programmer's Guide to Microsoft Windows 95

EDITTEXT Part Type
The EDITTEXT part type accepts the following options:

DEFAULT value

MAXLEN value

REQUIRED

OEMCONVERT

Specifies the initial string to place in the edit field. If this
option is not specified, the field is initially empty.

Specifies the maximum length of a string. The string in the
edit field is limited to this length.

Specifies that the policy editor will not allow a policy
containing this part to be enabled, unless a value has been
entered for this part.

Sets the ES_OEMCONVERT style in the edit field so that
typed text is mapped from ANSI to OEM and back.

LISTBOX Part Type
The V ALUENAME option cannot be used with the LISTBOX part type, because
there is no single value name associated with this type. By default, only one column
appears in the list box, and for each entry a value is created whose name and value
are the same. For instance, a "fred" entry in the list box would create a value named
"fred" whose data was "fred".

The LISTBOX part type accepts the following options:

ADDITIVE

EXPLICITV ALUE

V ALUEPREFIX prefix

By default, the content of list boxes will "override" whatever
values are set in the target registry. (That is, a control value is
inserted in the policy file, which causes existing values to be
deleted before the values set in the policy file are merged.)
If this option is specified, existing values are not deleted, and
the values set in the list box will be in addition to whatever
values exist in the target registry.

This option makes the user specify not only the value data, but
the value name as well. The list box will show two columns
for each item, one for the name and one for the data. This
option cannot be used with the V ALUEPREFIX option.

The prefix specified is used in determining value names.
If a prefix is specified, the prefix and an incremented integer
will be used instead of the default value naming scheme
described previously. For example, a prefix of "SomeName"
will generate the value names "SomeN arne 1", "SomeN ame2",
and so on. The prefix can be empty (""), which will cause
the value names to be "I", "2", and so on.

Action Lists

Article 21 System Policies 451

NUMERIC Part Type
The NUMERIC part type accepts the following options:

DEFAULT value

MAX value

MIN value

REQUIRED

SPIN value

TXTCONVERT

TEXT Part Type

Specifies the initial numeric value for the edit field. If this
option is not specified, the field is initially empty.

Specifies the maximum value for the number. The default
value is 9999.

Specifies the minimum value for the number. The default
value is O.

Specifies that the policy editor will not allow a policy
containing this part to be enabled unless a value has been
entered for this part.

Specifies increments to use for the spinner control. SPIN 0
removes the spinner control. SPIN 1 is the default.

Writes values as REG_SZ strings ("1," "2," or "128") rather
than as binary values.

The TEXT part type accepts no type-specific data.

An action list is a set of arbitrary changes to the registry that are made in response
to a control being in a certain state. For instance, if a check box is turned on, an
application could install some virtual device drivers and record some other changes.

The syntax for an actionlist follows.

ACTIONLIST
[KEYNAME key name]
V ALUENAME value name
VALUE value
[KEYNAME key name]
V ALUENAME value name
VALUE value

END ACTIONLIST

452 Programmer's Guide to Microsoft Windows 95

Comments

The actionlist specifies a number of key name, value name, and value triplets.
A key name is not required for every action, but if it is not listed, the key name
from the previous action will be used. (This is useful for writing a number of
values to one key.) Values are treated as strings unless they are preceded by
NUMERIC, as in the following examples.

VALUE "Some value"
VALUE NUMERIC 1

If VALUE is followed by DELETE (for example, V ALUE DELETE), the registry
valuename and value pair will be deleted.

Comments can be added to a template (.ADM) file by preceding the line with two
forward slashes (/1) or a semicolon (;).

Conditional Expressions
Future policy editors may include new capabilities. If these new capabilities require
revisions to the template file format, older versions of the System Policy Editor will
not be able to read the new template files. You can use conditional expressions to
ensure that any future template files you create will be compatible with older policy
editors.

The System Policy Editor supports two conditional expressions. The first one
allows you to include different parts of the template file, based on the version num
ber. This expression has the following syntax.

#if VERSION operator version_number

[#else]

#endif

Article 21 System Policies 453

The operator can be one of the following symbols: >, >=, <, <=,==, or !=. The
version_number can be any integer; for Windows 95, the version number is 1.

The other conditional expression is #ifdef. This expression has the following
syntax.

[#ifdef I #ifndef] keyword

[#else]

#endif

Keywords are implicitly understood by the policy editor. For example, a fictitious
company named PolicyCorp might implement its own policy editor that could
recognize the POLICYCORP keyword. This company could use the #ifdef and
#endif conditional expressions to make sure its template files can be recognized by
the Windows 95 System Policy Editor. (Because the Windows 95 System Policy
Editor does not currently recognize any keywords, #ifdef always evaluates to
FALSE and #ifndef always evaluates to TRUE.)

Policy File Format
A policy (.POL) file is a registry hive, which is created by using the Win32
RegSaveKey function.

The following top-level keys are defined:

• Computers

• Groups

• GroupData

• Users

Mise

454 Programmer's Guide to Microsoft Windows 95

A policy downloader uses the following steps to download policies:

1. Locates the appropriate computer key, if any, under Computers. Beneath that
key is an image of the registry settings to be merged. The policy downloader
should walk through all the subkeys and values and merge those settings into
the HKEY _LOCAL_MACHINE key, paying attention to the control codes
that are defined in the following section.

2. Locates the appropriate groups keyes), if any, under Groups. Under the Groups
keys is an image of the registry settings to be merged. These settings must be
merged into the HKEY _CURRENT_USER key.

3. Locates the appropriate user key, if any, under Users. Under the Users key is an
image of the registry settings to be merged. These settings must be merged into
the HKEY _ CURRENT _USER key.

Control Codes
Control codes are used to signify that special processing of a value or key name
must take place. All control codes are prefixes to a value or key name and take
the form of the code name (that is, **code.) directly followed by value name or
key name.

The following control codes are defined for use with value names.

**del.

**delvals.

**soft.

Specifies that the value name following the control code should be
deleted.

Deletes all values under this key in the local registry before propa
gating values under this key from the policy file. When processing
a particular key, a downloader must look for and process this value
first. This control code is inserted by a list box control so that existing
values are removed before the new values are added.

Specifies that it is a soft value. The downloader only propagates the
value name following the control code if a value by that name does
not exist in the local registry; that is, the downloader does not overwrite
existing settings with soft values.

No control codes are currently defined for use with key names.

If a policy downloader encounters a control code that it does not understand,
it must not process the key or value. If the control code is part of a value name,
the policy downloader should skip that value in the hive file but continue to process
other values under that key and its subkeys. If the control code is part of a key
name, the downloader should ignore the key and not process any values under it
or its subkeys. This behavior is important because it allows developers to create
new control codes without breaking existing downloaders.

Article 21 System Policies 455

Developers may create new control codes in the same format as shown in the
preceding table (that is, **code.). Developers who do so should notify Microsoft
so that Microsoft can document the new codes.

Computers Key
Underneath the Computers key is a list of computers that have entries in the policy
file. The steps to use in locating a Computers key follow:

1. Determine whether there is a key that is the same as the computer name.
If there is such a key, merge the registry image beneath it into the
HKEY _LOCAL_MACHINE key.

2. If the key is not there, determine whether there is a key called ".default".
(This appears in the System Policy Editor user interface as Default Computer.)
If a default key exists, merge the registry image beneath it.

3. If neither of the two steps work, do nothing.

Groups and GroupData Keys
Underneath the Groups key is a list of user groups who have entries in the policy
file. Since a user may belong to many groups and those groups may have conflicting
settings, it is important to specify an order in which groups are processed. This
order is contained in the GroupData\Priority key, which has values in the form
"1"="group name", "2"="group name", and so on. "I" is highest priority, and the
priority diminishes as the number in the value name increases. The downloader
reads the group priority values and then processes groups from lowest priority to
highest; that is, the downloader begins with the highest numbered value and works
to the value "1".

For each group in the priority list, the downloader determines if the user is
a member of the group. If the user is in the group, the downloader should
try to find a key with the group name under the Groups key. If such a key
exists, the downloader merges the registry image under that key into the
HKEY _CURRENT_USER key. It is not an error if a group is specified in the
priority list but does not have an entry under the Groups key; it simply means
that nothing happens. This process is repeated for each group in the priority list.
(If a group has an entry under the Groups key but does not have an entry in the
priority list, it is never processed.)

456 Programmer's Guide to Microsoft Windows 95

Users Key

Mise Key

Underneath the Users key is a list of computers that have entries in the policy file.
The steps to use in locating a Users key follow:

1. Determine whether there is a key that is the same as the user name. If there
is one, merge the registry image beneath it into the HKEY _ CURRENT_USER
key.

2. If the key is not there, determine whether there is a key called ".default". This
appears in the System Policy Editor user interface as Default User. If a default
key exists, merge the registry image beneath it.

3. If neither of the two steps work, do nothing.

The Mise key can be used by developers to store vendor-specific data. The naming
convention for this key follows.

Mise\Vendor Name \Product Name\Version\data

A software vendor may store any needed information in data. A key or value
containing version information is highly recommended. As is recommended for
the registry, Version should be "CurrentVersion" for the most current version of
the product.

Installable Policy Downloaders
An installable policy downloader must be a Win32 dynamic-link library (DLL).
It should export a named function that has the following form.

VOID FAR PASCAL ProcessPolicies(HWND hwndOwner,
LPSTR IpszPolicyFilePath, LPSTR IpszUserName,
LPSTR IpszComputerName, DWORD dwFlags);

hwndOwner
Handle of the parent window.

IpszPolicyFilePath
Address of the full path qnd filename that MPR would have used to look for
the policy file. The downloader may use this parameter~ or ignore it and use a
different path.

Article 21 System Policies 457

IpszUserName
Address of the user name for the user who is logged on.

IpszComputerName
Address of the local computer name.

dwFlags
Flags. This parameter can be this value:

PP J)ISPLA YERRORS Displays error messages about errors encountered
during downloading (including the file is not found,
the network resource is not found, and so on).
Otherwise, the function should fail silently if there
is an error.

In addition to defining and exporting this function, an application must record
it in the registry. The following entry should be added to the registry under the
HKEY_LOCAL_MACHINE\Network\Logon key.

Policy Handler = "dll name,junction name"

In this example, dll name is the name of the DLL containing the function, and
junction name is the exported function name.

459

ARTICLE 22

Tool Help Functions

About Tool Help Functions
Tool help functions make it easier for developers to obtain information about
currently executing Microsoft® Win32®-based applications. These functions are
designed to streamline the creation of Win32-hosted tools, specifically Windows
based debugging applications.

The following topics are discussed in this article:

• Snapshots of the system

• Process walking

• Thread walking

• Module walking

• Heap lists and heap walking

Snapshots of the System
Snapshots are at the core of the tool help functions. A snapshot is a read-only
copy of the current state of one or more of the following lists that reside in
system memory: processes, threads, modules, and heaps.

Win32 processes that use tool help functions access these lists from snapshots
instead of directly from the operating system. The lists in system memory change
when processes are started and ended, threads are created and destroyed, executable
modules are loaded and unloaded from system memory, and heaps are created and
destroyed. The use of information from a snapshot prevents inconsistencies. Other
wise, changes to a list could possibly cause a thread to incorrectly traverse the list
or cause an access violation (a GP fault). For example, if an application traverses
the thread list while other threads are created or terminated, information that the
application is using to traverse the thread list might become outdated and could
cause an error for the application traversing the list.

460 Programmer's Guide to Microsoft Windows 95

You can take a snapshot of the system memory by using a function called
CreateToolhelp32Snapshot. You can control the content of a snapshot
by specifying one or more of the following values when calling this
function: TH32CS_SNAPHEAPLIST, TH32CS_SNAPMODULE,
TH32CS_SNAPPROCESS, and TH32CS_SNAPTHREAD.

The TH32CS_SNAPHEAPLIST and TH32CS_SNAPMODULE values are
process specific. When these values are specified, the heap and module lists
of the specified process are included in the snapshot. If no process identifier is
specified, the current process is assumed. The TH32CS_SNAPTHREAD value
always creates a system-wide snapshot even if a process identifier is passed to
CreateToolhelp32Snapshot.

You can enumerate the heap or module state for all Win32 processes by
specifying the TH32CS_SNAP ALL value and the current process. Then,
for each process in the snapshot' that is not the current process, you can call
CreateTooihelp32Snapshot again, specifying the process identifier and the
TH32CS_SNAPHEAPLIST or TH32CS_SNAPMODULE value.

You can retrieve an extended error status code for CreateTooihelp32Snapshot
by using the GetLastError function. For more information about GetLastError,
see the documentation included in the Microsoft Win32 Software Development
Kit (SDK).

When your process finishes using a snapshot, you should destroy it by using the
CloseHandle function. Not destroying a snapshot causes the process to leak
memory until the process exits, at which time the system reclaims the memory.
For more information about CloseHandle, see the documentation included in the
Win32 SDK.

Note The snapshot handle acts like a file handle and is subject to the same rules
regarding which processes and threads it is valid in.

Process Walking
A snapshot that includes the Win32 process list contains information about each
currently executing process. You can retrieve information for the fust process
in the list by using the Process32First function. After retrieving the fust process
in the list, you can traverse the process list for subsequent entries by using the
Process32Next function. Both of these functions fill a PROCESSENTRY32
structure with information about a process in the snapshot.

You can retrieve an extended error status code for Process32First and
Process32Next by using the GetLastError function. For more information
about GetLastError, see the documentation included in the Win32 SDK.

Article 22 Tool Help Functions 461

You can read the memory in a specific process into a buffer by using the
Toolhelp32ReadProcessMemory function (or the VirtualQueryEx function).

Note The contents of the th32ProcessID and th32ParentProcessID members of
PROCESSENTRY32 are Win32 process identifiers and can be used with other
Win32 application programming interface (API) elements.

Thread Walking
A snapshot that includes the Win32 thread list contains information about
each thread of each currently executing Win32 process. You can retrieve
information for the first thread in the list by using the Thread32First function.
Mter retrieving the first thread in the list, you can retrieve information for subse
quent threads by using the Thread32Next function. Both of these functions fill
a THREADENTRY32 structure with information about individual threads in the
snapshot.

You can enumerate the threads of a specific process by taking a snapshot that
includes the threads and then by traversing the thread list, keeping information
about the threads that have the same process identifier as the specified process.

You can retrieve an extended error status code for Thread32First and
Thread32Next by using the GetLastError function. For more information
about GetLastError, see the documentation included in the Win32 SDK.

Module Walking
A snapshot that includes the module list for a specified Win32 process contains
information about each module, executable file, or dynamic-link library (DLL),
used by the specified process. You can retrieve information for the first module
in the list by using the Module32First function. Then after retrieving the first
module in the list, you can retrieve information for subsequent modules in
the list by using the Module32Next function. Both of these functions fill a
MODULEENTRY32 structure with information about the module.

You can retrieve an extended error status code for Module32First and
Module32Next by using the GetLastError function. For more information
about GetLastError, see the documentation included in the Win32 SDK.

Note The module identifier, which is specified in the th32ModuieID member of
MODULEENTRY32, has meaning only to the tool help functions. It is not a
handle, nor is it usable by other Win32 API elements.

462 Programmer's Guide to Microsoft Windows 95

Heap Lists and Heap Walking
A snapshot that includes the heap list for a specified Win32 process contains
identification information for each heap associated with the specified process and
detailed information about each heap. You can retrieve an identifier for the first
heap of the heap list by using the Heap32ListFirst function. After retrieving the
first heap in the list, you can traverse the heap list for subsequent heaps associated
with the process by using the Heap32ListNext function. Both of these functions
fill a HEAPLIST32 structure with the process identifier, the heap identifier, and
flags describing the heap.

You can retrieve information about the first block of a heap by using the
Heap32First function. After retrieving the first block of a heap, you can retrieve
information about subsequent blocks of the same heap by using the Heap32Next
function. Heap32First and Heap32Next fill a HEAPENTRY32 structure with
information for the appropriate block of a heap.

You can retrieve an extended error status code for Heap32ListFirst,
Heap32ListNext, Heap32First, and Heap32Next by using the GetLastError
function. For more information about GetLastError, see the documentation
included in the Win32 SDK.

Note The heap identifier, which is specified in the th32HeapID member of the
HEAPENTRY32 structure, has meaning only to the tool help functions. It is
not a handle, nor is it usable by other Win32 API elements ..

Using the Tool Help Functions
This section contains examples demonstrating how to perform the following tasks:

• Access tool help functions.

• Take a snapshot and view the processes in the system address space.

• Traverse the threads listed in a snapshot.

• Traverse the modules listed for a specific process.

Article 22 Tool Help Functions 463

The following examples have been taken from the PVIEW95 application included
in the Win32 SDK.

Note Each of the HEAPENTRY32, HEAPLIST32, MODULEENTRY32,
PROCESSENTRY32, and THREADENTRY32 structures that are used with
the tool help functions has a dwSize member that must be initialized to the size
of the structure before the structure is included in a call to a tool help function.
The value of dwSize is used to indicate the version of the tool help functions used.
If your application does not initialize dwSize, the tool help function will fail.

Accessing the Tool Help Functions
The tool help functions reside in the operating system kernel. The following
example provides a platform-independent approach to accessing the tool help
functions.

#include <tlhelp32.h> II needed for tool help declarations

II Type definitions for pointers to call tool help functions.
typedef BOOl (WINAPI *MODUlEWAlK)(HANDlE hSnapshot,

lPMODUlEENTRY32 lpme);
typedef BOOl (WINAPI *THREADWAlK)(HANDlE hSnapshot,

lPTHREADENTRY32lpte);
typedef BOOl (WINAPI *PROCESSWAlK)(HANDlE hSnapshot,

lPPROCESSENTRY32 lppe);
typedef HANDLE (WINAPI *CREATESNAPSHOT)(DWORD dwFlags,

DWORD th32ProcessID);

II File scope globals. These pointers are declared because of the need
II to dynamically link to the functions. They are exported only by
II the Windows 95 kernel. Explicitly linking to them will make this
II application unloadable in Microsoft(R) Windows NT(TM) and will
II produce an ugly system dialog box.
static CREATESNAPSHOT pCreateToolhelp32Snapshot = NUll;
static MODUlEWAlK pModule32First = NUll;
static MODUlEWAlK pModule32Next = NUll;
static PROCESSWAlK pProcess32First = NUll;
static PROCESSWAlK pProcess32Next = NUll;
static THREADWAlK pThread32First = NUll;
static THREADWAlK pThread32Next = NUll;

II Function that initializes tool help functions.
BOOl InitToolhelp32 (void)
{

BOOl bRet = FALSE;
HANDLE hKernel = NUll;

464 Programmer's Guide to Microsoft Windows 95

II Obtain the module handle of the kernel to retrieve addresses of
II the tool helper functions.
hKernel = GetModuleHandle("KERNEL32.DLL");

if (hKernel){

}

else

pCreateToolhelp32Snapshot =
(CREATESNAPSHOT)GetProcAddress(hKernel,
"CreateToolhelp32Snapshot");

pModule32First = (MODULEWALK)GetProcAddress(hKernel,
"Module32First");

pModule32Next = (MODULEWALK)GetProcAddress(hKernel,
"Module32Next");

pProcess32First = (PROCESSWALK)GetProcAddress(hKernel,
"Process32First");

pProcess32Next = (PROCESSWALK)GetProcAddress(hKernel,
"Process32Next");

pThread32First = (THREADWALK)GetProcAddress(hKernel,
"Thread32First");

pThread32Next = (THREADWALK)GetProcAddress(hKernel,
"Thread32Next");

II All addresses must be non-NULL to be successful.
II If one of these addresses is NULL, one of
II the needed lists cannot be walked.
bRet = pModule32First && pModule32Next && pProcess32First &&

pProcess32Next && pThread32First && pThread32Next &&
pCreateToolhelp32Snapshot;

bRet = FALSE; II could not even get the module handle of ker~~l

return bRet;

Taking a Snapshot and Viewing Processes
The following function takes a snapshot of the currently executing processes in the
system and walks through the list recorded in the snapshot.

BOOL GetProcessList (VOID)
{

HANDLE hSnapshot = NULL;
BOOL bRet FALSE;
PROCESSENTRY32 pe32 {0};

}

Article 22 Tool Help Functions 465

II Take a snapshot of all processes currently in the system.
hSnapshot = pCreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
if (hProcessSnap == (HANDLE)-l)

return (FALSE);

II Fill in the size of the structure before using it.
pe32.dwSize = sizeof(PROCESSENTRY32);

II Walk the snapshot of the processes, and for each process, get
II information to display.
if (pProcess32First(hProcessSnap, &pe32»

}

else

BOOL bGotModule = FALSE;
MODULEENTRY32 me32 {0};

PINFO pi {0};

do
bGotModule = GetProcessModule(pe32.th32ProcessID,

pe32.th32ModuleID, &me32, sizeof(MODULEENTRY32»;
if (bGotModule) {

}

HANDLE hProcess;

II Get the actual priority class.
hProcess = OpenProcess (PROCESS_ALL_ACCESS,

FALSE, pe32.th32ProcessID);
pi .dwPriorityClass = GetPriorityClass (hProcess);
CloseHandle (hProcess);

II Get the process's base priority value.
pi.pcPriClassBase pe32.pcPriClassBase;
pi.pid = pe32.th32ProcessID;
pi.cntThreads = pe32.cntThreads;
lstrcpy(pi.szModName, me32.szModule);
lstrcpy(pi.szFullPath, me32.szExePath);

AddProcessltem(hListView, pi);

while (pProcess32Next(hProcessSnap, &pe32»;
bRet = TRUE;

bRet = FALSE; II could not walk the list of processes

II Do not forget to clean up the snapshot object.
CloseHandle (hProcessSnap);
return (bRet);

466 Programmer's Guide to Microsoft Windows 95

Traversing the Thread List
, The following function takes a snapshot of the threads currently executing in the
system and walks through the list recorded in the snapshot.

II Returns TRUE if the threads were successfully enumerated
II and listed or FALSE if the threads could not be enumerated
II or listed.
II hListView - handle of the listview that lists thread information
II dwOwnerPID - identifier of the process whose threads are to
II be listed
BOOL RefreshThreadList (HWND hListView. DWORD dwOwnerPID)
{

HANDLE hThreadSnap
BOOL bRet
THREADENTRY32 te32

NULL;
FALSE;
{0};

II Take a snapshot of all threads currently in the system.
hThreadSnap = pCreateToolhelp32Snapshot(TH32CS_SNAPTHREAD. 0);
if (hThreadSnap == (HANDLE)-l)

return (FALSE);

II Clear the current contents of the thread list view
II (which are now old).
ListView_DeleteAllltems(g_hwndThread);

II Fill in the size of the structure before using it.
te32.dwSize = sizeof(THREADENTRY32);

II Walk the thread snapshot to find all the threads of the process.
II If the thread belongs to the process. add its information
II to the display list.
if (pThread32First(hThreadSnap. &te32)) {

do {
if (te32.th320wnerProcessID == dwOwnerPID)

TINFO ti;

ti .tid
ti.pidOwner
ti.tpDeltaPri
ti.tpBasePri

te32.th32ThreadID;
te32.th320wnerProcessID;
te32.tpDeltaPri;
te32.tpBasePri;

AddThreadltem(hListView. ti);

while (pThread32Next(hThreadSnap. &te32));
bRet = TRUE;

Article 22 Tool Help Functions 467

else
bRet = FALSE; II could not walk the list of threads

II Do not forget to clean up the snapshot object.
CloseHandle (hThreadSnap);

return (bRet);

Traversing the Module List
The following function takes a snapshot of the modules in the address space of a
specified Win32 process and retrieves information for a specific module from the
list recorded in the snapshot.

II Returns TRUE if there is information about the specified module
II or FALSE if it could not enumerate the modules in the process
II or the module is not found in the process.
II dwPID - identifier of the process that owns the module to
II retrieve information about
II dwModuleID - tool help identifier of the module within the
II process
II lpMe32 - structure to return data about the module
II cbMe32 - size of the buffer pointed to by lpMe32 (to ensure
II the buffer is not overfilled)
BOOl GetProcessModule (DWORD dwPID, DWORD dwModuleID,

lPMODUlEENTRY32 lpMe32, DWORD cbMe32)

BOOl
BOOl

bRet
bFound

HANDLE hModuleSnap
MODUlEENTRY32 me32

FALSE;
FALSE;
NUll;
{0};

II Take a snapshot of all modules in the specified process.
hModuleSnap = pCreateToolhelp32Snapshot(TH32CS_SNAPMODUlE, dwPID);
if (hModuleSnap == (HANDlE)-l)

return (FALSE);

II Fill the size of the structure before using it.
me32.dwSize = sizeof(MODUlEENTRY32);

468 Programmer's Guide to Microsoft Windows 95

Reference

Functions

}

II Walk the module list of the process, and find the module of
II interest. Then copy the'information to the buffer pointed
II to by lpMe32 so that it can be returned to the caller.
if (pModule32First(hModuleSnap, &me32)) {

else

do {

}

if (me32.th32ModuleID == dwModuleID)
CopyMemory (lpMe32, &me32, cbMe32);
bFound = TRUE;

while (!bFound && pModule32Next(hModuleSnap, &me32));

bRet = bFound;

bRet = FALSE;

II if this sets bRet to FALSE, dwModuleID
II no longer exists in specified process

II could not walk module list

II Do not forget to clean up the snapshot object.
CloseHandle (hModuleSnap);

return (bRet);

The following functions and structures are associated with the tool help services.

The following functions are used with tool help services.

CreateToolhelp32Snapshot
HANDLE WINAPI CreateToolhelp32Snapshot(DWORD dwFlags,

DWORD th32ProcessID);

Takes a snapshot of the Win32 processes, heaps, modules, and threads used by the
Win32 processes.

Returns an open handle to the specified snapshot if successful or -1 otherwise.

Article 22 Tool Help Functions 469

dwFlags
Flags specifying portions of the system to include in the snapshot. These values
are defined:

TH32CS_SNAPHEAPLIST

TH32CS_SNAPMODULE

TH32CS_SNAPPROCESS

TH32CS_SNAPTHREAD

th32ProcessID

Indicates that the snapshot handle is to be
inheritable.

Equivalent to specifying the
TH32CS_SNAPHEAPLIST,
TH32CS_SNAPMODULE,
TH32CS_SNAPPROCESS, and
TH32CS_SNAPTHREAD values.

Includes the heap list of the specified Win32
process in the snapshot.

Includes the module list of the specified Win32
process in the snapshot.

Includes the Win32 process list in the snapshot.

Includes the Win32 thread list in the snapshot.

Win32 process identifier. This parameter can be zero to indicate the current
process. This parameter is used when the TH32CS_SNAPHEAPLISTor
TH32CS_SNAPMODULE value is specified. Otherwise, it is ignored.

The snapshot taken by this function is examined by the other tool help functions
to provide their results. Access to the snapshot is read only. The snapshot handle
acts like a Win32 object handle and is subject to the same rules regarding which
processes and threads it is valid in.

To retrieve an extended error status code generated by this function, use the
GetLastError function.

To destroy the snapshot, use the CloseHandle function.

Heap32First
BOOl WINAPI Heap32First(LPHEAPENTRY32 lphe, DWORD th32ProcessID,

DWORD th32HeapID);

Retrieves information about the first block of a heap that has been allocated by a
Win32 process.

• Returns TRUE if information for the first heap block has been copied to the
buffer or FALSE otherwise. The ERROR_NO _MORE_FILES error value is
returned by the GetLastError function if the heap is invalid or empty.

470 Programmer's Guide to Microsoft Windows 95

lphe
Address of a buffer containing a HEAPENTRY32 structure.

th32ProcessID
Identifier of the Win32 process context that owns the heap.

th32HeapID
Identifier of the heap to enumerate.

The calling application inust set the dwSize member of HEAPENTRY32 to the
size, in bytes, of the structure.

To access subsequent blocks of the same heap, use the Heap32N ext function.

Heap32ListFirst
BOOl WINAPI Heap32listFirst(HANDlE hSnapshot. lPHEAPlIST32 lphl);

Retrieves information about the first heap that has been allocated by a specified
Win32 process.

• Returns TRUE if the frrst entry of the heap list has been copied to the buffer or
FALSE otherwise. The ERROR-NO _MORE_FILES error value is returned by
the GetLastError function when no heap list exists or the snapshot does not
contain heap list information.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateTooihelp32Snapshot.

lphl
Address of a buffer containing a HEAPLIST32 structure.

The calling application must set the dwSize member of HEAPLIST32 to the size,
in bytes, of the structure.

To retrieve information about other heaps in the heap list, use the Heap32ListNext
function.

Heap32ListNext
BOOl WINAPI Heap32listNext(HANDlE hSnapshot. lPHEAPlIST32 lphl);

Retrieves information about the next heap that has been allocated by a Win32
process.

Article 22 Tool Help Functions 471

• Returns TRUE if the next entry of the heap list has been copied to the buffer or
FALSE otherwise. The ERROR_NO _MORE_FILES error value is returned by
the GetLastError function when no more entries in the heap list exist.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateTooihelp32Snapshot.

Iphl
Address of a buffer containing a HEAPLIST32 structure.

The calling application must set the dwSize member of HEAPLIST32 to the size,
in bytes, of the structure.

To retrieve information about the fIrst heap in a heap list, use the Heap32ListFirst
function.

Heap32Next
Baal WINAPI Heap32Next(lPHEAPENTRY32 lphe);

Retrieves information about the next block of a heap that has been allocated by a
Win32 process.

• Returns TRUE if information about the next block in the heap has been copied
to the buffer or FALSE otherwise. The ERROR_NO _MORE_FILES error
value is returned by the GetLastError function when no more objects in the
heap exist.

Iphe
Address of a buffer containing a HEAPENTRY32 structure.

The calling application must set the dwSize member of HEAPENTRY32 to the
size, in bytes, of the structure.

To retrieve information for the first block of a heap, use the Heap32First function.

Module32First
Baal WINAPI Module32First(HANDlE hSnapshot, lPMODUlEENTRY32 lpme);

Retrieves information about the fIrst module associated with a Win32 process.

• Returns TRUE if the fIrst entry of the module list has been copied to the buffer
or FALSE otherwise. The ERROR_NO_MORE_FILES error value is returned
by the GetLastError function if no modules exist or the snapshot does not
contain module information.

472 Programmer's Guide to Microsoft Windows 95

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

lpme
Address of a buffer containing a MODULEENTRY32 structure.

The calling application must set the dwSize member of MODULEENTRY32 to
the size, in bytes, of the structure.

To retrieve information about other modules associated with the specified process,
use the Module32Next function.

Module32Next
BOOl WINAPI Module32Next(HANDlE hSnapshot, lPMODUlEENTRY32 lpme);

Retrieves information about the next module associated with a Win32 process or
thread.

• Returns TRUE if the next entry of the module list has been copied to the buffer
or FALSE otherwise. The ERROR_NO_MORE_FILES error value is returned
by the GetLastError function if no more modules exist.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

lpme
Address of a buffer containing a MODULEENTRY32 structure.

The calling application must set the dwSize member of MODULEENTRY32 to
the size, in bytes, of the structure.

To retrieve information about first module associated with a Win32 process, use the
Module32First function.

Process32First
BOOl WINAPI Process32First(HANDlE hSnapshot, lPPROCESSENTRY32 lppe);

Retrieves information about the first Win32 process encountered in a system
snapshot.

Article 22 Tool Help Functions 473

• Returns TRUE if the first entry of the process list has been copied to the buffer
or FALSE otherwise. The ERROR_NO --,-MORE_FILES error value is returned
by the GetLastError function if no processes exist or the snapshot does not
contain process information.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

lppe
Address of a PROCESSENTRY32 structure.

The calling application must set the dwSize member of PROCESSENTRY32 to
the size, in bytes, of the structure.

To retrieve information about other processes recorded in the same snapshot, use
the Process32Next function.

Process32Next
BOOl WINAPI Process32Next(HANDlE hSnapshot. lPPROCESSENTRY32 lppe);

Retrieves information about the next Win32 process recorded in a system snapshot.

• Returns TRUE if the next entry of the process list has been copied to the buffer
or FALSE otherwise. The ERROR_NO _MORE_FILES error value is returned
by the GetLastError function if no processes exist or the snapshot does not
contain process information.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

lppe
Address of a PROCESSENTRY32 structure.

The calling application must set the dwSize member of PROCESSENTRY32 to
the size, in bytes, of the structure.

To retrieve information about the first process recorded in a snapshot, use the
Process32First function.

474 Programmer's Guide to Microsoft Windows 95

Thread32First
BOOl WINAPI Thread32First(HANDlE hSnapshot, lPTHREADENTRY32 lpte);

Retrieves information about the ftrst thread of any Win32 process encountered in a
system snapshot.

• Returns TRUE if the ftrst entry of the thread list has been copied to the buffer or
FALSE otherwise. The ERROR_NO _MORE_FILES error value is returned by
the GetLastError function if no threads exist or the snapshot does not contain
thread information.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

[pte
Address of a THREADENTRY32 structure.

The calling application must set the dwSize member of THREADENTRY32 to
the size, in bytes, of the structure.

To retrieve information about other threads recorded in the same snapshot, use the
Thread32Next function.

Thread32Next
BOOl WINAPI Thread32Next(HANDlE hSnapshot, lPTHREADENTRY32 lpte);

Retrieves information about the next thread of any Win32 process encountered in
the system memory snapshot.

• Returns TRUE if the next entry of the thread list has been copied to the buffer or
FALSE otherwise. The ERROR_NO _MORE_FILES error value is returned by
the GetLastError function if no threads exist or the snapshot does not contain
thread information.

hSnapshot
Handle of the snapshot returned from a previous call to the function
CreateToolhelp32Snapshot.

[pte
Address of a THREADENTRY32 structure.

Article 22 Tool Help Functions 475

The calling application must set the dwSize member of THREADENTRY32 to
the size, in bytes, of the structure.

To retrieve information about the fIrst thread recorded in a snapshot, use the
Thread32First function.

Toolhelp32ReadProcessMemory
BOOl WINAPI Toolhelp32ReadProcessMemory(DWORD th32ProcessID,

lPCVOID lpBaseAddress, lPVOID lpBuffer, DWORD cbRead,
lPDWORD lpNumberOfBytesRead);

Copies memory allocated to another process into an application-supplied buffer.

• Returns TRUE if successful.

th32ProcessID
Identifier of the Win32 process whose memory is being copied. This parameter
can be zero to copy the memory of the current process.

lpBaseAddress
Base address in the specified process to read. Before transferring any data,
the system verifies that all data in the base address and memory of the specified
size is accessible for read access. If this is the case, the function proceeds.
Otherwise, the function fails.

lpBuffer
Address of the buffer that receives the contents of the address space of the
specified process.

cbRead
Number of bytes to read from the specifIed process.

lpNumberOfBytesRead
Number of bytes copied to the specified buffer. If this parameter is NULL, it is
ignored.

476 Programmer's Guide to Microsoft Windows 95

Structures
The following structures are used with tool help services.

HEAPENTRY32
typedef struct tagHEAPENTRY32
{

DWORD dwSize;
HANDLE hHandle;
DWORD dwAddress;
DWORD dwBlockSize;
DWORD dwFlags;
DWORD dwLockCount;
DWORD dwResvd;
DWORD th32ProcessID;
DWORD th32HeapID;

HEAPENTRY32;

II size. in bytes. of structure
II handle of heap block
II linear address of start of block
II size. in bytes. of heap block
II see below
II see below
II reserved; do not use
II see below
II see below

typedef HEA~ENTRY32 * PHEAPENTRY32;
typedef HEAPENTRY32 * LPHEAPENTRY32;

Describes one entry (block) of a heap that is being examined.

dwFlags
Flags. These values are defined:

LF32_FIXED The memory block has a fixed (unmovable) location.

LF32_FREE

LF32_MOVEABLE

dwLockCount

The memory block is not used.

The memory block location can be moved.

Lock count on the memory block. The lock count is incremented each time that
the GlobalLock or LocalLock function is called on the block either by the
application or the DLL that the heap belongs to.

th32ProcessID
Identifier of theWin32 process to examine. The contents of this member can be
used by other Win32 functions and macros.

th32HeapID
Heap identifier in the owning process context. The contents of this member has
meaning only to the tool help functions. It is not a handle, nor is it usable by
other Win32 API elements.

Article 22 Tool Help Functions 477

HEAPLIST32
typedef struct tagHEAPLIST32

DWORD dwSize; II size, in bytes, of structure
DWORD th32ProcessID; II see below
DWORD th32HeapID; II see below
DWORD dwFlags; II see below

HEAPLIST32 ;
typedef HEAPLIST32 * PHEAPLIST32;
typedef HEAPLIST32 * LPHEAPLIST32;

Describes an entry from a list that enumerates the heaps used by a specified
process.

th32ProcessID
Identifier of the Win32 process to examine. The contents of this member can be
used by other Win32 functions and macros.

th32HeapID
Heap identifier in the owning process context. The contents of this member has
meaning only to the tool help functions. It is not a handle, nor is it usable by
other Win32 API elements.

dwFlags
Flags. These values are defined:

HF32_DEFAULT Process's default heap

HF32_SHARED Shared heap

MODULEENTRY32
typedef struct tagMODULEENTRY32

DWORD dwSize; II size, in bytes, of structure
DWORD th32ModuleID; II see below
DWORD th32ProcessID; II see below
DWORD GlblcntUsage; II see below
DWORD ProccntUsage; II see below
BYTE * modBaseAddr; II see below
DWORD modBaseSize; II see below
HMODULE hModule; II see below
char szModule[MAX_MODULE_NAME32 + 1] ;

char szExePath[MAX_PATH];
} MODULEENTRY32;
typedef MODULEENTRY32 * PMODULEENTRY32;
typedef MODULEENTRY32 * LPMODULEENTRY32;

Describes an entry from a list that enumerates the modules used by a specified
process.

478 Programmer's Guide to Microsoft Windows 95

th32ModuieID
Module identifier in the context of the owning process. The contents of this
member has meaning only to the tool help functions. It is not a handle, nor is
it usable by other Win32 API elements.

th32ProcessID
Identifier of the Win32 process being examined. The contents of this member
can be used by other Win32 functions and macros.

GlblcntUsage
Global usage count on the module.

ProcentUsage
Module usage count in the context of the owning process.

modBaseAddr
Base address of the module in the context of the owning process.

modBaseSize
Size, in bytes, of the module.

hModuie
Handle of the module in the context of the owning process.

szModule
String containing the module name.

szExePath
String containing the location (path) of the module.

Note modBaseAddr and hModuie are valid only in the context of the process
specified by th32ProcessID.

PROCESSENTRY32

typedef struct tagPROCESSENTRY32 {
DWORD dwSize; II size, in bytes, of structure
DWORD cntUsage; II see below
DWORD th32ProcessID; II specified process
DWORD th32DefaultHeapID; II see below
DWORD th32ModuleID; II see below
DWORD cntThreads; II see below
DWORD th32ParentProcessID; II see below
LONG pcPriClassBase; II see below
DWORD dwFlags; II reserved; do not use
char szExeFile[MAX_PATH]; II see below

PROCESSENTRY32;
typedef PROCESSENTRY32 * PPROCESSENTRY32;
typedef PROCESSENTRY32 * LPPROCESSENTRY32;

Article 22 Tool Help Functions 479

Describes an entry from a list that enumerates the processes residing in the system
address space when a snapshot was taken.

cntUsage
Number of references to the process. A process exists as long as its usage count
is nonzero. As soon as its usage count becomes zero, a process terminates.

th32ProcessID
Identifier of the Win32 process. The contents of this member can be used by
other Win32 functions and macros.

th32DefauItHeapID
Identifier of the default heap for the process. The contents of this member has
meaning only to the tool help functions. It is not a handle, nor is it usable by
other Win32 API elements.

th32ModuieID
Module identifier of the process. The contents of this member has meaning only
to the tool help functions. It is not a handle, nor is it usable by other Win32 API
elements.

cntThreads
Number of execution threads started by the process.

th32ParentProcessID
Identifier of the Win32 process that created the process being examined. The
contents of this member can be used by other Win32 functions and macros.

pcPriClassBase
Base priority of any threads created by this process.

szExeFile
Path and filename of the executable file for the process.

THREADENTRV32
typedef struct tagTHREADENTRY32{

DWORD dwSize; II size, in bytes, of structure
DWORD cntUsage; II see below
DWORD th32ThreadID; II see below
DWORD th320wnerProcessID; II see below
LONG tpBasePri ;
LONG tpDeltaPri;
DWORD dwFlags;

} THREADENTRY32;
typedef THREADENTRY32 *
typedef THREADENTRY32 *

II see below
II see below
II reserved; do not use

PTHREADENTRY32;
LPTHREADENTRY32;

Describes an entry from a list that ,enumerates the threads executing in the system
when a snapshot was taken.

480 Programmer's Guide to Microsoft Windows 95

cntUsage
Number of references to the thread. A thread exists as long as its usage count is
nonzero. As soon as its usage count becomes zero, a thread terminates.

th32ThreadID
Identifier of the thread. The contents of this member has meaning only to the
tool help functions. It is not usable by other Win32 API elements.

th320wnerProcessID
Identifier of the process that created the thread. The contents of this member can
be used by other Win32 functions and macros.

tpBasePri
Initial priority level assigned to a thread. These values are defined:

THREAD_PRIORITY_IDLE
Indicates a base priority level of 1 for IDLE_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS, or HIGH_PRIORITY_CLASS processes,
and a base priority level of 16 for REALTillE_PRIORITY_CLASS
processes.

THREAD_PRIORITY_LOWEST
Indicates 2 points below normal priority for the priority class.

THREAD_PRIORITY _BELOW_NORMAL
Indicates 1 point below normal priority for the priority class.

THREAD_PRIORITY_NORMAL
Indicates normal priority for the priority class.

THREAD_PRIORITY_ABOVE_NORMAL
Indicates 1 point above normal priority for the priority class.

THREAD_PRIORITY_HIGHEST
Indicates 2 points above normal priority for the priority class.

THREAD _PRIORITY _TillE_CRITICAL
Indicates a base priority level of 15 for IDLE_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS, or HIGH_PRIORITY_CLASS processes,
and a base priority level of 31 for REAL TillE_PRIORITY_CLASS
processes.

tpDeitaPri
Change in the priority level of a thread. This value is a signed delta from the
base priority level assigned to the thread.

For additional information about thread priority levels, see the documentation
included in the Win32 SDK.

481

PAR T 5

Using Microsoft MS-DOS
Extensions

Article 23 MS-DOS Extensions . 483

Article 24 Long Filenames. 501

Article 25 Exclusive Volume Locking 545

Article 26 Program Information File Management 567

Article 27 Virtual Machine Services 583

483

ARTICLE 23

MS·DOS Extensions

About MS·DOS Extensions
Microsoft® Windows 95® not only supports the complete set of Microsoft®
MS-DOS® system functions and interrupts but also provides extensions that
permit MS-DOS - based applications to take advantage of Windows 95 features,
such as long filenames, exclusive volume locking, virtual machine services,
message services, and program information file management. For more informa
tion about these topics, see the articles with those names in this guide. For more
information about MS-DOS functions and interrupts, see the Microsoft MS-DOS
Programmer's Reference. This article describes various MS-DOS extensions for
Windows 95 and provides general information about the file system.

Windows 95 Version of MS-DOS
When running with Windows 95, MS-DOS-based applications can check the
operating system version by using Get MS-DOS Version Number (Interrupt 21h,
Function 30h). For Windows 95, this function returns 7 as the major version
number and 0 as the minor version number.

If you need to know that the system is running MS-DOS version 7.0, you must use
Interrupt 2Fh Function 4A33h. This function returns zero in the AX register for
MS-DOS version 7.0 or higher and returns a nonzero value in AX for any other
versions of the disk operating system. In addition to the AX register, this function
uses the DS, SI, DX, and BX registers.

484 Programmer's Guide to Microsoft Windows 95

File System Support
Windows 95 supports the long filename file allocation table (FAT) when running
Windows. Any physical file on this extended FAT file system will logically be
associated with two names-namely, the primary filename (also referred to as
the long filename) and its alternate name or alias. Windows 95 automatically
generates the alias, and it is always in the standard 8.3 filename format. When a file
is saved to disk, the system creates a directory entry for both the long filename and
alias. Because the number of entries in the root directory is limited, it is best to
store files in a directory below it to avoid filling up the root. For more information
about the filename conventions and how the system generates the alias, see Article
24, "Long Filenames."

Filename Limitations Under Real Mode
If Windows 95 is started in single MS-DOS application mode (real mode), only the
standard FAT file system (and not the long filename FAT file system) is supported.
This means that long filenames that are created in a Windows environment will
not be visible when the user exits to single MS-DOS application mode, although
the names themselves are physically present on the media. Only the alias (the 8.3
filename) will be visible.

When down-level file systems (such as MS-DOS version 6.0, Windows version
3.1, Microsoft® Windows NTTM version 3.1, and OS/2® version 2.11) read a floppy
disk that contains long filenames created using Windows 95, the long filename will
not be visible; only the alias (the 8.3 filename) will be visible. However, Windows
NT version 3.5 supports long filenames. Windows 95 will see the long filenames of
files on a floppy disk that were created using Microsoft Windows NT version 3.5,
and Windows NT version 3.5 will see the long filenames of files on a floppy disk
that were created using Windows 95. Windows 95 will be able to see the long
filenames on New Technology file system (NTFS), OS/2's high performance file
system (HPFS), or Novell NetWare's file system if there are long filenames on the
server.

Because down-level systems are not aware of long filenames, they will not preserve
them. If you copy a file from a floppy disk to the hard disk on a down-level system,
the long filename associated with the file is not copied over. If you edit a file on the
floppy disk using the alias and then save a new copy back on the floppy disk using
the down-level system, the long filename associated with the file will most likely be
lost. If you take the floppy disk back to the Windows 95 system, only the alias will
be associated with the file.

Article 23 MS-DOS Extensions 485

Preserving Filenames
Certain operations, such as copy, backup, and restore, using older versions of
utilities that have not been updated to support long filenames will destroy the long
filename. Running a utility called LFNBK that comes with Windows 95 before
using older backup utilities will preserve the long filenames. Following are the
steps for using LFNB K to backup and restore a disk:

1. Preserve the long filename and alias (the 8.3 filename) association by running
LFNBK Ib drive-letter, where drive-letter is the drive that you plan to back up.

2. Back up the drive (specified as drive-letter in the previous step) using an old
backup program that is not be aware of long filenames.

3. Restore the backup files to a drive, when necessary at some later point, using
an old restore program that is not be aware of long filenames.

4. Restore the long filenames on the drive, by running LFNBK Ir drive-letter,
where drive-letter is the drive where the files were restored to.

Searching Filenames
Searches of filenames apply to both the filename and its alias. The system presents
a single unified names pace so that a single physical view of the file is preserved.
However, if the result of a search shows only the long filename, it could be con
fusing to the user. For example, a set of files in a directory might include the
following filenames and aliases.

Filename

LongFileName

File-l

Alias

LONGFI-l

FILE-l

A search of files in the directory using DIR *1 would display the following
information.

LONGFI~l

FI LE-1
123
352

05-11-95
05-11-95

15:26
16:01

LongFileName
Fil e-1

Note that the DIR command displays the alias first for compatibility with the older
DIR format. However, a search utility that is aware of long filenames but displays
only the filename, would also show both the LongFileName and File-1 files. This
could be confusing at first glance to the user because the LongFileName file does
not have the number 1 as specified in the search criteria. The file was matched to
the search pattern because its alias contains the number 1.

486 Programmer's Guide to Microsoft Windows 95

The wildcard searches have been expanded in Windows 95. Using the old search
criteria, the first * encountered caused all following characters to be ignored.
However, in the preceding example, *1 is a valid specification. More than one
wildcard can be used in Windows 95 when specifying search criteria. For example,
to search for all files that contain the word mid somewhere in the filename, *mid*
can be specified as the search criteria.

Exclusive Volume Locking
Previously reserved fields in the file system directory entry are used for storing the
last access date and the creation date and time. A file with a long filename, which
is longer than 5 characters, will also cause the system to use previously reserved
fields in the directory entry. In previous versions of MS-DOS and Windows,
these reserved entries were zero. Older disk repair and checking utilities that have
not been updated for Windows 95 might display errors about the disk because of
the usage of these reserved entries. It is possible that an older disk repair utility
could either destroy the long filename or the actual data in a file because it would
mistakenly interpret the file as corrupted. For this reason, Windows 95 is designed
to fail utilities that perform direct disk writes. This feature is called exclusive
volume locking. A newer version of the utility that understands the newer on-disk
file system structures will obtain an exclusive volume lock and proceed correctly.

Exclusive volume locking is also needed because the system is a multitasking
system and disk utilities need exclusive access so that they can modify the file
system without causing the file system to be inconsistent for the other executing
applications. For more information, see Article 25, "Exclusive Volume Locking."

Storing Filenames
When an application stores filenames, it should follow these guidelines:

• U sing an alias instead of a long filename can break the association with the
file because certain operations, such as editing the file, can potentially change
the alias. For example, if the server side of a network uses the alias instead
of the long filename of a client file to store information related to the file, such
as access permissions, it will be more susceptible to lose the association of
permissions with the file. If the user edits the file on the client side, the alias
may potentially change, and if it changes, the server side will lose the associated
information.

Article 23 MS-DOS Extensions 487

• When an application caches the absolute path to a filename, the path itself
can be a mixture of filenames and aliases. Because of this, applications that
need to store a path should store a canonical form of the absolute path.
Applications may use either Get Short Path Name (Interrupt 2Ih Function
7I60h) or the Microsoft® Win32® GetShortPathName function to retrieve
the canonical form of a path. Applications that need to determine if two files
are the same can use the nFilelndexHigh and nFileIndexLow members of
the BY_HANDLE_FILE_INFORMATION structure. Note, however, that
nFileIndexHigh and nFilelndexLow might not be supported on real-mode
file systems, such as Microsoft CD-ROM Extensions (MSCDEX), or real-mode
networks.

• An installation program that needs to enter information into configuration files,
such as CONFIG.SYS, should make sure it uses paths that only consist of 8.3
filename components, because the long filenames will not be visible at boot up
time when startup files, such as CONFIG.SYS and AUTOEXEC.BAT, are
processed. Again, the GetShortPathName function should be used for this
purpose.

Filename Functions
With the exception of the OpenFile function, all of the functions in Windows
version 3.x that require the application to pass in a filename (functions such as
LoadLibrary, WinExec, _lopen, and _lcreate) have been updated to support long
filenames. For compatibility reasons, functions that return filenames should return
only aliases (8.3 filenames) to I6-bit Windows-based applications marked less
than 4.0.

MS-DOS-based applications generally use the Interrupt 2Ih functions. Except
for Extended Open/Create (Interrupt 2Ih Function 6Ch), the older Interrupt 2Ih
functions have not changed in Windows 95. Extended Open/Create has been
enhanced in Windows 95 to make use of the last access date for a file. To support
long filenames, Windows 95 provides many new Interrupt 2Ih functions. Any
MS-DOS-based application that will use long filenames must be updated to sup
port the new functions. For information about the long filename Interrupt 2Ih
functions, see Article 24, "Long Filenames."

Windows 95 supports the new Interrupt 2Ih long filename functions on as many
file systems as possible. On file systems, such as MSCDEX, Flash, and real-mode
network redirectors, that do not support long filenames, the system automatically
translates the newer Interrupt 2Ih calls to the appropriate older Interrupt 2Ih calls,
as long as the filename passed as a parameter is a valid alias (8.3 filename).
Applications may use Get Volume Information (Interrupt 2Ih Function 7IAOh) to
retrieve information on the capabilities of the underlying file system.

488 Programmer's Guide to Microsoft Windows 95

Command Interpreter for Command
The for command in the command interpreter (COMMAND.COM) is modal. The
default is LFNFOR=OFF, which causes the for command to use the old Interrupt
21h function calls. In that case, only aliases (8.3 filenames) can be used in the for
command. IfLFNFOR=ON is set, the for command uses the new Interrupt 21h
functions, and long filenames can be used as part of the for command.

Long Command Lines
Although in previous versions of MS-DOS the limit for environment variables and
batch file lines is 128 characters, it is 1024 characters in Windows 95. The limit
for the keyboard buffer, however, is still 128 characters. Although 1024 and 128
are the standard limits, users may configure their systems to lower these limits.

In previous versions of MS-DOS, command-line arguments are located in the
command tail of the program segment prefix (PSP). The command tail in the PSP
is limited to 128 characters, including the leading byte that specifies the length of
the command line and the trailing carriage return character. In Windows 95, if the
command line is less than or equal to 126 characters, it is set in the command tail
of the PSP. For command lines that are greater than 126 characters, an application
should follow these steps:

1. Set the count byte in the command tail to 7Fh.

2. Fill in 7Eh bytes of the command tail followed by the carriage return char
acter (ODh).

3. Place the rest of the command line in the CMDLINE environment variable.

Reference

Functions

Article 23 MS-DOS Extensions 489

This section provides information about the following functions and structures.

Get Compressed File Size

LocklUnlock Removable Media

Eject Removable Media

Get Drive Map Info

Get First Cluster

Extended Open/Create

DRIVE_MAP _INFO

MID

PARAMBLOCK

Interrupt 2Ih Function 4302h

Interrupt 2Ih Function 440Dh Minor Code 48h

Interrupt 2Ih Function 440Dh Minor Code 49h

Interrupt 2Ih Function 440Dh Minor Code 6Fh

Interrupt 2Ih Function 440Dh Minor Code 7Ih

Interrupt 2Ih Function 6Ch

Get Drive Map Info returns information about the
specified drive in this structure.

This structure, which is used by Get Media ID
(Interrupt 2Ih Function 440Dh Minor Code 66h)
and Set Media ID (Interrupt 2Ih Function 440Dh
Minor Code 46h), has been updated to support
compact disc (CD) file systems. For information
about using these functions, see the Microsoft
MS-DOS Programmer's Reference.

This structure is needed by LocklUnlock
Removable Media.

The following functions are used with MS-DOS extensions.

Interrupt 21 h Function 4302h Get Compressed File Size
mov ax, 4302h
mov dx, seg PathName
mov ds, dx
mov dx., offset PathName
int 21h

jc error

Get Compressed File Size
see below

490 Programmer's Guide to Microsoft Windows 95

Obtains the compressed size, in bytes, of a given file or directory.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

PathName
Address of a null-terminated string that specifies the file or directory to retrieve
the file size for.

The function obtains the actual number of bytes of disk storage used to store the
file. If the file is located on a volume that supports compression and the file is
compressed, the value obtained is the compressed size of the specified file. If the
file is not located on a volume that supports compression or if the file is not com
pressed, the value obtained is the file size, in bytes, rounded up to the nearest
cluster boundary.

Interrupt 21 h Function 440Dh Minor Code 48h
Lock/Unlock Removable Media
mov ax, 440Dh generic IOCTL
mov bx, DriveNum see below
mov ch, 8 device category
mov cl , 48h Lock or Unlock Removable Media
mov dx, seg ParamBlock see below
mov ds, dx
mov dx, offset ParamBlock
int 21h

jc error

Locks or unlocks the volume in the given drive (preventing or permitting its
removal) or returns the locked status of the given drive.

• Clears the carry flag and copies the number of pending locks on the given drive
to the NumLocks member of the P ARAMBLOCK structure if successful.
Otherwise, the function sets the carry flag and sets the AX register to one of
the following error values:

Olh The function is not supported.

BOh The volume is not locked in the drive.

B2h The volume is not removable.

B4h The lock count has been exceeded.

Article 23 MS-DOS Extensions 491

DriveNum
Drive to lock or unlock. This parameter can be 0 for default drive, 1 for A,
2 for B, and so on.

ParamBlock
Address of a P ARAMBLOCK structure that specifies the operation to carry
out and receives a count of the number of locks on the drive.

Interrupt 21 h Function 440Dh Minor Code 49h Eject
Removable Media
mov ax, 440Dh generic IOCTL
mov bx, DriveNum see below
mov ch, 8 device category
mov cl , 49h Eject Removable Media
int 21h

jc error

Ejects the specified media.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to one of the following error values:

Olh The function is not supported.

B Ih The volume is locked in the drive.

B2h The volume is not removable.

B5h The valid eject request has failed.

DriveNum
Drive to eject. This parameter can be 0 for default drive, 1 for A, 2 for B, and
soon.

If a given physical drive has more than one logical volume, all volumes must be
unlocked by using LocklUnlock Removable Media (Interrupt 21h Function 440Dh
Minor Code 48h) before the drive will eject.

492 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 440Dh Minor Code 6Fh Get Drive
Map Info
mov ax, 440Dh generic IOCTL
mov bx, DriveNum see below
mov ch, 8 device category
mov cl , 6Fh Get Drive Map Info
mov dx, seg DriveMapInfo see below
mov ds, dx
mov dx, offset DriveMapInfo
int 21h

jc error

Retrieves information about the specified drive.

DriveNum
Drive to obtain information about. This parameter can be 0 for the default drive,
I for A, 2 for B, and so on.

DriveMaplnJo
Address of the DRIVE_MAP _INFO structure that receives information about
the specified drive.

Interrupt 21 h Function 440Dh Minor Code 71 h Get First·
Cluster
mov ax, 440Dh generic IOCTL
mov bx, CharSet see below
mov ch, 08h device category
mov cl , 71h Get First Cluster
mov dx, seg PathName see below
mov ds, dx
mov dx, offset PathName
int 21h

jc error

Retrieves the first cluster of the specified file or directory.

• Clears the carry flag and sets DX:AX to the first cluster number if suc
cessful. Otherwise, the function sets the carry flag and returns either the
ERROR_INVALID_FUNCTION or ERROR_ACCESS_DENIED value
in AX.

Article 23 MS·DOS Extensions 493

CharSet
Character set of PathName. This parameter must be one of these values:

BCS_ W ANSI (0)

BCS_OEM (1)

BCS_UNICODE (2)

PathName

Windows ANSI character set

Current OEM character set

Unicode character set

Address of a null-terminated string containing the path of the file or directory
to retrieve the first cluster for.

The first cluster of a file is the first cluster of the FAT cluster chain describing
he data associated with the file. The first cluster of a directory is the first cluster of
the FAT cluster chain associated with the directory. It is the cluster that contains the
"." and " .. " entries. The function finds any file or directory regardless of attribute
(system, hidden, or read-only). It does not find volume labels.

If your application is unable to accommodate a 32-bit cluster number, you must
check to see if the value returned in the DX register is greater than zero.

if(MAKELONG(regAX.regDX) > 0x0000FFF8)
b32BitNum = TRUE;

else
b32BitNum = FALSE;

It is the calling application's responsibility to check to see if the returned cluster
number is valid.

if«MAKELONG(regAX.regDX) < 2L) I I (MAKELONG(regAX.regDX) > maxClus»
blnvalidNum = TRUE;

else
blnvalidNum = FALSE;

In the preceding example, the maxClus variable is the maximum legal cluster
number, as a DWORD type, computed from the drive parameters.

494 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 6Ch Extended Open/Create
mov ah, 6Ch Extended Open/Create
mov bx, ModeAndFlags see below
mov cx, Attributes see below
mov dx, Action action to take
mov s i , seg Filename see below
mov ds, si
mov s i , offset Filename
int 21h

jc error
mov [Handle], ax file handle
mov [ActionTaken], cx action taken to open file

Opens or creates a file having the given name and attributes.

• Clears the carry flag, copies the file handle to the AX register, and sets CX
to one of the following values if successful:

ACTION_OPENED (OOOlh)

ACTION_CREATED_OPENED (0002h)

ACTION_REPLACED _OPENED (0003h)

Otherwise, this function sets the carry flag and sets the AX register to one of
the following error values:

ERROR_INV ALID _FUNCTION (OOOlh)

ERROR_FILE_NOT _FOUND (0002h)

ERROR_PATH_NOT_FOUND (0003h)

ERROR_TOO_MANY _OPEN_FILES (0004h)

ERROR_ACCESS_DENIED (0005h)

ModeAndFlags
Combination of access mode, sharing mode, and open flags. This parameter
can be one value each from the access and sharing modes and any combination
of open flags:

Access mode Meaning

OPEN_ACCESS_READONL Y (OOOOh)

Opens the file for reading only.

OPEN_ACCESS_ WRITEONL Y (OOOlh)

Opens the file for writing only.

Article 23 MS-DOS Extensions 495

Access mode Meaning

OPEN_ACCESS_READWRITE (0002h)

Opens the file for reading and writing.

0003h

Reserved; do not use.

OPEN_ACCESS_RO_NOMODLASTACCESS (0004h)

Sharing mode

Opens the file for reading only without modifying the file's last
access date.

Meaning

OPEN_SHARE_COMPATIBLE (OOOOh)

Opens the file with compatibility mode, allowing any process
on a given computer to open the file any number of times.

OPEN_SHARE_DENYREADWRITE (OOIOh)

Opens the file and denies both read and write access to other
processes.

OPEN_SHAREj)ENYWRITE (0020h)

Opens the file and denies write access to other processes.

OPEN_SHARE_DENYREAD (0030h)

Opens the file and denies read access to other processes.

OPEN_SHARE_DENYNONE (0040h)

Open flags

Opens the file without denying read or write access to other
processes, but no process may open the file with compatibility
mode.

Meaning

OPEN_FLAGS_NOINHERIT (0080h)

If this flag is set, a child process created with Load and Execute
Program (Interrupt 21h Function 4BOOh) does not inherit the file
handle. If the handle is needed by the child process, the parent
process must pass the handle value to the child process. If this
flag is not set, child processes inherit the file handle.

OPEN_FLAGS_NOCRITERR (2000h)

If a critical error occurs while MS-DOS is opening this file,
Critical-Error Handler (Interrupt 24h) is not called. Instead,
MS-DOS simply returns an error value to the program.

OPEN_FLAGS_COMMIT (4000h)

After each write operation, MS-DOS commits the file (flushes
the contents of the cache buffer to disk).

496 Programmer's Guide to Microsoft Windows 95

Attributes
Attributes for files that are created or truncated. This parameter may bea
combination of these values:

FILE_ATTRIBUTE_NORMAL (OOOOh)

The file can be read from or written to. This value is valid only if
used alone.

FILE_ATTRIBUTE_READONL Y (OOOlh)

The file can be read from, but not written to.

FILE_A TIRIBUTE_H;IDDEN (0002h)'

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TIRIBUTE_SYSTEM (OOO4h)

The file is part of the operating system or is used exclusively by it.

FILE_AITRIBUTE_ VOLUME (0008h)

The name specified by Filename is used as the volume label for
the current medium.

FILE_A TIRIBUTE_ARCHIVE (0020h)

The file is an archive file. Applications use this value to mark files
for backup or removal.

Action
Action to take it the file exists or does not exist. This parameter can be a
combination of these values:

FILE_CREATE (OOIOh)

FILE_OPEN (OOOlh)

FILE_TRUNCATE (OOO2h)

Creates a new file if it does not already exist or fails
if the file already exists.

Opens the file. The function fails if the file does not
exist.

Opens the file and truncates it to zero length
(replaces the existing file). The function fails if
the file does not exist.

The only valid combinations are FILE_CREATE combined with FILE_OPEN
or FILE_CREATE combined with FILE_TRUNCATE.

Structures

Article 23 MS-DOS Extensions 497

Filename
Address of a null-terminated string specifying the name of the file to be opened
or created. The name must be in the standard MS-DOS 8.3 filename format.
The string must be a valid path for the volume associated with the given drive.

This function does not support long filenames. If the specified name is too long, this
function truncates the name to the standard 8.3 format following the same naming
scheme that the system uses when creating an alias for a long filename.

A file on a remote directory-that is, a directory on the network-cannot be
opened, unless appropriate permissions for the directory exist.

The following structures are used with MS-DOS extensions.

DRIVE MAP INFO
DRIVE_MAP_INFO struc

dmiAllocationLength db ? see below
dmiInfoLength db ? see below
dmiFlags db ? see below
dmi I nt13Uni t db ? see below
dmiAssociatedDriveMap dd ? see below
dmiPartitionStartRBA dq ? see below

DRIVE_MAP_INFO ends

Contains information about the drive specified in the call to Get Drive Map Info
(Interrupt 2lh Function 440Dh Minor Code 6Fb).

dmiAllocationLength
Length of the buffer provided by the application calling Get Drive Map Info.
This value should be the size of the DRIVE_MAP _INFO structure.

dmilnfoLength
Number of bytes that Get Drive Map Info used in the buffer provided by the
calling application. Typically, this value is the size of the DRIVE_MAP _INFO
structure.

498 Programmer's Guide to Microsoft Windows 95

dmiFlags
Flags describing the given drive. This member, which is filled by Get Drive
Map Info, can be a combination of these values:

A protected-mode driver is in use for
this logical drive.

PROT_MODE_PHYSICAL_DRIVE
(02h)

A protected-mode driver is in use for
the physical drive corresponding to
this logical drive.

dmiInt13Unit

The drive is not available when running
with MS-DOS.

A protected-mode drive supports an
electronic eject operation.

The drive issues media arrival and
removal notifications. This value is
currently used for CD-ROM drives that
are controlled by the protected-mode
driver and that cause a broadcast
message when media is removed or
inserted without the application having
to make a request to the drive. It can
also be used by disk drivers.

Physical drive number of the given drive. This member, which is filled by Get
Drive Map Info, can be one of these values:

00 -7Fh

80 - FEh

FFh

Floppy disk drive (00 for the first floppy drive, 01 for the second,
and so on).

Hard disk drive (80 for the first hard disk drive, 81 for the second,
and so on).

The given drive does not map to a physical drive.

dmiAssociatedDriveMap
Logical drive numbers that are associated with the given physical drive. For
example, a host drive C with child drive letters A and B·would return with
bits 0 and 1 set.

dmiPartitionStartRBA
Relative block address offset from the start of the physical volume to the start
of the given partition.

Before an application makes a call to the Get Drive Map Info function, the
dmiAIIocationLength member must be set to the size of the DRIVE_MAP _INFO
structure. All other members of the structure are filled in by Get Drive Map Info.

Article 23 MS-DOS Extensions 499

MID
MID struc

midInfoLevel dw 0
midSerialNum dd?

see below
see below
see below
see below

midVolLabel db 11 dup (?)
midFileSysType db 8 dup (?)

MID ends

Contains infonnation that uniquely identifies a disk or other storage medium.

midlnfoLevel
Infonnation level. This member must be zero.

midSerialNum
Serial number for the medium.

midVolLabel
Volume label for the medium. If the label has fewer than 11 characters, space
characters (ASCn 20h) fill the remaining bytes in this member.

midFileSysType
Type of file system as an 8-byte ASCII string. This member can be one of these
values:

FAT12

FAT16

CDROM

CDOOI

CDAUDIO

12-bit file allocation table (FAT)

16-bit FAT

High Sierra file system

IS09660 file system

Audio disk

If the name has fewer than eight characters, space characters (ASCII 20h) fill
the remaining bytes in this member.

500 Programmer's Guide to Microsoft Windows 95

PARAMBLOCK
PARAMBLOCK struc

Operation db ?

NumLocks db?
PARAMBLOCK ends

see below
see below

Contains information about locked drives.

Operation
Operation to carry out provided by the calling application of LocklUnlock
Removable Media (Interrupt 21h Function 440Dh Minor Code 48h). This
member can be one of these values:

o
1

2

Locks the volume in the drive.

Unlocks the volume in the drive.

Returns the lock or unlock status.

All other values are reserved.

NumLocks
Number of locks pending on the given drive filled in by LocklUnlock
Removable Media.

ARTICLE 24

Long Filenames

About Long Filenames
Microsoft® Windows® 95 allows users and applications to create and use long
names for their files and directories. A long filename is a name for a file or
directory that exceeds the standard 8.3 filename format. In the past, long file
names typically appeared on network servers that used file systems other than

501

the Microsoft® MS-DOS® file allocation table (FAT) file system. In Windows 95,
however, long filenames are available for use with network servers and with local
disk drives supporting the protected-mode FAT file system.

This article describes the long filename functions and explains how to create
and use long filenames in applications written for MS-DOS and 16-bit Windows
version 3.x. Microsoft® Win32®-based applications automatically have access to
long filenames through the use of the corresponding Win32 file management
functions.

Long Filenames and the Protected· Mode FAT File System
The protected-mode FAT file system is the default file system used by Windows 95
for mass storage devices, such as hard disk and floppy disk drives. Protected-mode
FAT is compatible with the MS-DOS FAT file system, using file allocation tables
and directory entries to store information about the contents of a disk drive.
Protected-mode FAT also supports long filenames, storing these names as well
as the date and time that the file was created and the date that the file was last
accessed in the FAT file system structures.

502 Programmer's Guide to Microsoft Windows 95

The protected-mode FAT file system allows filenames of up to 256 characters,
including the terminating null character. In this regard, it is similar to the
Microsoft® Windows NTTM file system (NTFS), which aIlows filenames of up
to 256 characters. Protected-mode FAT allows directory paths (excluding the
filename) of up to 246 characters, including the drive letter, colon, and leading
backslash. This limit of 246 allows for the addition of a filename in the standard
8.3 format with the terminating null character. The maximum number of characters
in a full path, including the drive letter, colon, leading backslash, filename, and
terminating null character, is 260.

When an application creates a file or directory that has a long filename, the system
automatically generates a corresponding alias for that file or directory using the
standard 8.3 format. The characters used in the alias are the same characters that
are available for use in MS-DOS file and directory names. Valid characters for the
alias are any combination of letters, digits, or characters with ASCII codes greater
than 127, the space character (ASCII 20h), as well as any of the following special
characters.

$%'--@ -' !(){ l"#&

The space character has been available to applications for filenames and directory
names through the functions in current and earlier versions of MS-DOS. However,
many applications do not recognize the space character as a valid character, and
the system does not use the space character when it generates an alias for a long
filename. MS-DOS does not distinguish between uppercase and lowercase letters
in filenames and directory names, and this is also true for aliases.

The set of valid characters for long filenames includes all the characters that are
valid for an alias as well as the following additional characters.

+, ; = []

Windows 95 preserves the case of the letters used in long filenames. However,
the protected-mode FAT file system, which is not case sensitive, will not allow
more than one file to have the same name except for case in the. same directory.
For example, files named Long File Name and long file name are not allowed to
exist in the same directory. Although extended ASCII characters (characters with
ASCII codes greater than 127) are also permitted in filenames, programs should
avoid them, because the meanings of the extended characters may vary according to
code page. On disk, the characters in the alias are stored using the OEM character
set of the current code page, and the long filename is stored using Unicode format.

Article 24 Long Filenames 503

Although the protected-mode FAT file system is the default file system in Windows
95, it is not the only file system accessible to applications running with Windows
95. For example, applications that connect to network drives may encounter other
file systems, such as NTFS. Before using long filenames for files and directories
on a volume in a given drive, you must determine the maximum lengths of filenames
and paths by using Get Volume Information (Interrupt 2Ih Function 7IAOh).
The function returns values that you can use to make sure your filenames and
paths are within the limits of the file system.

In general, you should avoid using static buffers for filenames and paths. Instead,
you should use the values returned by Get Volume Information to allocate buffers
as you need them. If you must use static buffers, you should reserve 256 characters
for filenames and 260 characters for paths. These are the maximum sizes currently
recommended for Win32-based applications.

Filename Aliases
When an application creates a file or directory that has a long filename, the system
automatically generates a corresponding short filename (alias) for that file or
directory, using the standard 8.3 format. Aliases ensure that existing applications
that do not handle long filenames can, nevertheless, access those files and
directories.

If the long filename follows the standard 8.3 format, the alias has the same name
except that all lowercase letters are converted to uppercase. For example, if the
long filename is Examples. Txt, the corresponding alias will be EXAMPLES. TXT.

If the long filename does not follow the standard 8.3 format, the system automat
ically generates an alias, using the following scheme to ensure that the alias has a
unique name. The system tries to create a name by using the first 6 characters of
the long filename followed by a numeric tail. A numeric tail consists of the tilde (-)
character followed by a number. The system starts with the number I in the numeric
tail. If that filename already exists, it uses the number 2. It continues in this fashion
until a unique name is found. If the long filename has a filename extension, the
system will use the first three characters of the long filename's extension as the
extension for the alias.

As the number of digits in the numeric tail grows, fewer characters in the long
filename are used for the 8 characters in the alias. For example, the alias for
Long File Name.File would be LONGFI-IO.FIL if the names LONGFI-l.FIL
through LONGFI-9.FIL already existed in the directory. Applications can over
ride the default alias numbering scheme when creating a file by specifying the
OPEN_FLAGS_ALIAS_HINT value and supplying a number to use in the call
to Create or Open File (Interrupt 2Ih Function 716Ch).

504 Programmer's Guide to Microsoft Windows 95

A period is just another character in a long filename. Leading periods are allowed
in a long filename, but trailing periods are stripped. A file can have mUltiple periods
as part of its name. For example, MyFile.08l293.Document is a valid filename,
and its alias will be MYFILE-l.DOC. The first three characters after the last period
in the filename are used as the filename extension for the alias, as long as the last
period is not a leading period. A filename of . login is also valid, and its alias is
LOGIN-l.

In a given directory, the long filename and its alias must uniquely identify a file.
For example, if there is a file with the long filename Long File Name and the alias
LONGFI-l, the system will not allow either Long File Name or LONGFI-l to be
used as another file's long filename.

If a file with a long filename is copied or edited, the alias for the resulting file
may be different from the original alias. For example, if the destination directory
contains an alias that conflicts with the original alias, the system generates another
unique alias. If a long filename LongFileName is associated with the LONGFI-2
alias and is later copied to a different directory using the long filename, the alias
in the destination directory might be LONGFI-l (unless a file with that name
already existed in the destination directory). The system always generates new
aliases during these operations and always chooses aliases that do not conflict
with existing filenames. An application must never rely on an alias being the same
for all copies and versions of a given file.

Applications can open, read, and write from a file using the alias without affecting
the long filename. However, some operations on the alias, such as copy, move,
backup, and restore, may result in the original long filename being destroyed. For
example, older versions of utilities that do not support long filenames can destroy
the long filename while performing those operations.

The system attempts to preserve a long filename, even when the file associated
with it is edited by an application that is not aware of long filenames. Typically,
these applications operate on a temporary copy of the file, and when the user elects
to save the file, the application deletes the destination file or renames it to another
name. The application then renames the temporary file to the destination name or
creates a new file with new contents.

When an application makes a system call to delete or rename an alias, the system
first gathers and saves a packet of information about the file and then performs the
delete or rename operation. The information saved includes the long filename as
well as the creation date and time, the last modification date and time, and the last
access date of the original file. After the system performs the delete or rename
operation, the system watches for a short period of time (the default is 15 seconds)
to see if a call is made to create or rename a file with the same name. If the system
detects a create or rename operation of a recently deleted alias, it applies the packet
of information that it had saved to the new file, thus preserving the long filename.

Article 24 Long Filenames 505

Currently, Load and Execute Program (Interrupt 21h Function 4BOOh) does not
accept long filenames. If an application starts other applications, it must retrieve
the filename alias for the given executable file and pass that alias to Load and
Execute Program.

File and Directory Management
The standard MS-DOS file and directory management functions do not accept
long filenames. You must, therefore, use the long filename functions to create and
manage files and directories having long names. The long filename functions are
similar to existing MS-DOS system functions. You copy function parameters to
registers and issue an Interrupt 21h instruction to carry out the call. The function
sets or clears the carry flag to indicate whether the operation was successful and
may also return information in registers.

If a long filename function has a corresponding MS-DOS function, the number
that identifies the long filename function is four digits long, beginning with the
number 71 and ending in the same number as the corresponding MS-DOS function.
For example, the long filename function Make Directory (Interrupt 21h Function
7139h) corresponds to MS-DOS Create Directory (Interrupt 21h Function 39h).

You can create or open a file having a long filename by using Create or Open File
(Interrupt 21h Function 716Ch). This function takes the name and attributes of
the file to create or open and returns a handle that you use to identify the file in
subsequent calls to standard MS-DOS functions, such as Read File or Device
(Interrupt 21h Function 3Fh) and Write File or Device (Interrupt 21h Function
40h).

You can set or retrieve the time and attributes for a file having a long filename
by using Get or Set File Time (Interrupt 21h Function 57h) and Get or Set File
Attributes (Interrupt 21h Function 7143h). You can move a file having a long
filename by using Rename File (Interrupt 21h Function 7156h) or delete the file
by using Delete File (Interrupt 21h Function 7141h).

You can create a directory having a long filename by using Make Directory
(Interrupt 21h Function 7139h) or remove the directory by using Remove Directory
(Interrupt 21h Function 713Ah).

You can set and retrieve the current directory by using Change Directory (Interrupt
~lh Function 713Bh) and Get Current Directory (Interrupt 21h Function 7147h).

506 Programmer's Guide to Microsoft Windows 95

File Searches
You can search directories for selected files by using Find First File and Find Next
File (Interrupt 21h Functions 714Eh and 714Fh). These functions search for and
return information about files having long filenames and aliases (filenames in the
standard 8.3 format). The functions return information in a WIN32_FIND _DATA
structure, which contains both the filename and the corresponding alias, if any.

Unlike MS-DOS Find First File (Interrupt 21h Function 4Eh), the long filename
version of Find First File allocates internal storage for the search operations and
returns a handle that identifies the storage. This handle is used with Find Next File.
To make sure the internal storage is freed, you must use Find Close (Interrupt 21h
Function 71Alh) to end the search.

You pass the Delete File (Interrupt 21h Function 7141h) and Find First File
functions a filename, which may contain wildcard characters, such as an asterisk
(*) or question mark (?). Because Find First File, Find Next File, and Delete File
examine long filenames and aliases during the search, some wildcard searches
may yield unexpected results. For example, if the system has.generated the alias
LONGFI-l for the long filename LongFileName, a search for names that match
the *1 pattern would always return the LongFileName file, even though that name
does not end with a 1. Searches are not case-sensitive. For example, a search
for names that match the *mid * pattern will yield the same results as that for
the *MID* pattern. In general, you should check both names returned in the
WIN32_FIND_DATA structure to determine which of them matched the pattern.

Wildcard searches are more flexible in Windows 95 than in MS-DOS. In the
preceding examples, *1 finds the filenames that end in a 1 and *mid* finds file
names that contain the characters mid. In MS-DOS and in Windows 95 searching
on real-mode FAT directories, all characters after the first * are ignored.

Down-Level Systems
Long filenames, file last access date, and file creation date and time are not
supported while the file system is in single MS-DOS application mode. They
are not supported either in versions of MS-DOS that only use the real-mode FAT
file system. These file systems and others that do not support long filenames are
referred to as down-level systems. If you intend for an application to run with both
Windows 95 and down-level systems, you should always check the system to
determine whether it supports the long filename functions. The easiest way to check
is to call Get Volume Information (Interrupt 21h Function 71AOh). This function
returns an error if the system does not support the long filename functions.

Article 24 Long Filenames 507

Another way of handling down-level systems is to use a combination of calls
to long filename and standard MS-DOS functions to carry out file management.
In this case, you call the standard function only if the long filename function is not
supported. To indicate an unsupported function, the system sets the AL register
to zero but leaves the AH register and the carry flag unchanged. The following
example shows how to combine long filename and standard functions to carry
out a file or directory management operation.

stc

int 21h
jnc success
cmp ax, 7100h
jne failure

int 21h

set carry for error flag
set registers here for LFN function call
call long filename function
call succeeded, continue processing
i s call rea 11 y not supported?
supported, but error occurred
set registers here for MS-DOS function call
call standard MS-DOS function

Application developers have to decide what to do when users save a file with a long
filename to a down-level system. One approach is to imitate the behavior of the
command interpreter (COMMAND. COM) and save the file using the alias without
informing the user. A different approach is to have the application inform the user
that the file system does not support long filenames and allow the user to save the
file with a filename in the standard 8.3 format.

Last Access Date
The Windows 95 last access date is intended to reflect the last time a file was
accessed for the purpose for which it was created. This date is intended to provide
a means for applications, users, or both to determine which files have not been
used recently. When an application saves a file, the system automatically resets the
last access date. An application that cannot understand the contents of the files it is
accessing should save the last access date and restore it after closing the file.
For example, applications that back up a file, search files for strings, and scan for
viruses should save and restore the last access date.

Applications should allow the system to set the last access date in the following
cases:

• Running a program should set the last access date for the .EXE file.

• Loading a dynamic-link library (DLL) should set the last access date for
the .DLL file.

508 Programmer's Guide to Microsoft Windows 95

Reference

• Editing or printing a document should set the last access date for the docu
mentfile.

• In general, any use of a document by an application that creates or modifies
that type of document should set the last access date (unless the document is
being opened only to decide whether it is to be used in a find operation).

• Application use of peripheral files (.INI files and so on) should set the last
access date.

Win32-based applications can preserve the last access date by using the
GetFileTime and SetFileTime functions. Applications written for MS-DOS
or Windows version 3.x can use Get Last Access Date and Time (Interrupt 21h
Function 5704h) and Set Last Access Date and Time (Interrupt 21h Function
5705h), or they can open the file with Create or Open File (Interrupt 21h Function
716Ch) using the OPEN_ACCESS_RO_NOMODLASTACCESS (0004h) access
mode.

The long filename functions described previously match the following Win32 file
management functions.

Long filename function

Interrupt 21h Function 5704h
Get Last Access Date and Time

Interrupt 21h Function 5705h
Set Last Access Date and Time

Interrupt 21h Function 5706h
Get Creation Date and Time

Interrupt 21h Function 5707h
Set Creation Date and Time

Interrupt 21h Function 7139h
Make Directory

Interrupt 21h Function 713Ah
Remove Directory

Interrupt 21h Function 713Bh
Change Directory

Interrupt 21h Function 7141h
Delete File

Interrupt 21h Function 7143h
Get or Set File Attributes

Interrupt 21h Function 7147h
Get Current Directory

Win32 function

GetFileTime

SetFileTime

GetFileTime

SetFileTime

CreateDirectory

RemoveDirectory

SetCurrentDirectory

DeleteFile .

GetFileAttributes, SetFileAttributes

GetCurrentDirectory

Article 24 Long Filenames

Long filename function Win32 function

Interrupt 21h Function 714Eh FindFirstFile
Find First File

Interrupt 21h Function 714Fh FindNextFile
Find Next File

Interrupt 21h Function 7156h MoveFile
Rename File

Interrupt 21h Function 7160h GetFullPathName
Get Full Path Name

Interrupt 21h Function 7160h GetShortPathName
Get Short Path Name

Interrupt 21h Function 7160h No Win32 function equivalent.
Get Long Path Name

Interrupt 21h Function 716Ch CreateFile, OpenFile
Create or Open File

Interrupt 21h Function 71AOh GetVolumelnformation
Get Volume Information

Interrupt 21h Function 71Alh FindClose
Find Close

Interrupt 21h Function 71A6h GetFilelnformationByHandle
Get File Info By Handle

Interrupt 21h Function 71A 7h FileTimeToDOSDateTime
File Time To DOS Time

Interrupt 21h Function 71A 7h DOSDateTimeToFileTime
DOS Time To File Time

Interrupt 21h Function 71A8h No Win32 function equivalent
Generate Short Name

Interrupt 21h Function 71A9h No Win32 function equivalent
Server Create or Open File

Interrupt 21h Function 71AAh No Win32 function equivalent
Create Subst

Interrupt 21h Function 71AAh No Win32 function equivalent
Terminate Subst

Interrupt 21h Function 71AAh No Win32 function equivalent
Query Subst

Note that Interrupt 2Ih Functions 7IA2h through 7IA5h exist, but they are for
internal use by Windows 95 only.

509

510 Programmer's Guide to Microsoft Windows 95

Functions
The following functions are associated with long filenames.

Interrupt 21 h Function 5704h Get Last Access Date and
Time
mov ax. 5704h
mov bx. Handle
int 21h

jc error
mov [Date]. dx
mov [Time]. cx

Get Last Access Date and Time
see below

last access date
currently not supported. always 0

Retrieves the last access date for the given file.

• Clears the carry flag and sets the CX register to zero and the DX register to
these values if successful:

Bits

0-4

5-8

9-15

Contents

Day of the month (1-31)

Month (1 = January, 2 = February, and so on)

Year offset from 1980 (that is, add 1980 to get the actual year)

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

Handle
File handle.

Article 24 Long Filenames 511

Interrupt 21 h Function 5705h S~t Last Access Date and
Time
mov ax, 5705h Set Last Access Date and Time
mov bx, Handle see below
mov cx, 0 time currently not supported, always 0
mov dx, AccessDate see below
int 21h

jc error

Sets the last access date for the given file.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

Handle
File handle.

AccessDate
New access date. The date is a packed 16-bit value with this fonn:

Bits

0-4

5-8

9-15

Contents

Day of the month (1-31)

Month (1 = January, 2= February, and so on)

Year offset from 1980 (that is, add 1980 to get the actual year)

Interrupt 21 h Function 5706h Get Creation Date and Time
mov ax, 5706h
mov bx, Handle
int 21h

jc error
mov [Time], cx
mov [Date], dx
mov [MilliSeconds], si

Get Creation Date and Time
; see below

creation time
creation date
number of 10 ms intervals in 2 seconds

512 Programmer's Guide to Microsoft Windows 95

Retrieves the creation date and time for the given file.

• Clears the carry flag and sets the CX, DX, and SI registers to these values
if successful:

CX Creation time. The time is a packed 16-bit value with the following
form:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

DX Creation date. The date is a packed 16-bit value with the following
form:

SI

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, and so on)

9-15 Year offset from 1980 (that is, add 1980 to get the
actual year)

Number of 10 millisecond intervals in 2 seconds to add to the MS-DOS
time. The number can be a value in the range of 0 to 199.

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

!landle
File handle.

Interrupt 21 h Function 5707h Set Creation Date and Time
mov ax. 5707h Set Creation Date and Ti me
mov bx. Handle see below
mov ex. Time see below
mov dx. Date see below
mov s i • Mi 11 i Seconds see below
int 21h

je error

Sets the creation date and time for the given file.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

Article 24 Long Filenames 513

Handle
File handle.

Time
New creation time. The time is a packed 16-bit value with the following form:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

Date
New creation date. The date is a packed 16-bit value with the following form:

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, and so on)

9-15 Year offset from 1980 (that is, add 1980 to get the actual year)

MilliSeconds
Number of 10 millisecond intervals in 2 seconds to add to the MS-DOS time.
The number can be a value in the range 0 to 199.

Interrupt 21 h Function 7139h Make Directory
mov ax, 7139h Make Directory
mov dx, seg Name ; see below
mov ds, dx
mov dx, offset Name
int 21h

jc error

Creates a new directory having the given name.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

Name
Address of a null-terminated string specifying the name of the directory to
create. Long filenames are allowed.

514 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 713Ah Remove Directory
mov ax, 713Ah Remove Directory
mov dx, seg Name ; see below
mov ds, dx
mov dx, offset Name
int 21h

jc error

Removes the given directory. The directory must be empty.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

Name
Address of a null-terminated string specifying the name of the directory to
remove. Long filenames are allowed.

The root directory cannot be deleted.

Interrupt 21 h Function 713Bh Change Directory
mov ax, 713Bh Change Directory
mov dx, seg Path ; see below
mov ds, dx
mov dx, offset Path
int 21h

jc error

Changes the current directory to the directory specified by the given path.

• Clears the carry flag if successful. Otherwise, the function sets the carry
flag and sets the AX register to an error value.

Path
Address of a null-terminated string specifying the directory to change to.
The path, which can include the drive letter, must be a valid path for the
given volume. Long filenames are allowed.

The current or default directory is the directory that the system uses whenever
an application supplies a filename that does not explicitly specify a directory.
Similarly, the current or default drive is the drive the system uses whenever an
application supplies a path that does not explicitly specify a drive. If a drive other
than the default drive is specified as part of the new directory path, this function
changes the current directory on that drive but does not change the default drive.
Set Default Drive (Interrupt 2Ih Function DEh) can be used to change the default
drive.

Article 24 Long Filenames 515

Interrupt 21 h Function 7141 h Delete File
mov ax. 7141h Delete File
mov ch. MustMatchAttrs see below
mov cl • SearchAttrs see below
mov dx. seg Filename see below
mov ds. dx
mov dx. offset Filename
mov s i • WildcardAndAttrs see below
int 21h

jc error

Deletes the given file or files. If the specified filename contains a wildcard
character, this function can delete multiple files that match the wildcard.

Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

MustMatchAttrs
Additional filter on the attributes specified in Sea rchA ttrs . This parameter can
be a combination of these values:

FILE_A TIRIBUTE_NORMAL (OOOOh)

The file can be read from or written to. This value is valid only
if used alone.

FILE_ATIRIBUTE_READONL Y (OOOlh)

The file can be read from, but not written to.

FILE_ATIRIBUTE_HIDDEN (0002h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TIRIBUTE_SYSTEM (0004h)

The file is part of the operating system or is used exclusively by it.

FILE_ATIRIBUTE_ VOLUME (0008h)

The name specified by Filename is used as the volume label for
the current medium.

FIL~_A TIRIBUTE_DIRECTORY (0010h)

The name specified by Filename is used as a directory, not a file.

FILE_A TIRIBUTE_ARCHIVE (0020h)

The file is an archive file. Applications use this value to mark files
for backup or removal.

516 Programmer's Guide to Microsoft Windows 95

SearchAttrs
File attributes to search for. This parameter can be a combination of these
values:

FILE_A TTRIBUTE_NORMAL (OOOOh)

FILE_ATTRIBUTE_READONLY (OOOlh)

FILE_A TTRIBUTE_HIDDEN (0002h)

FILE_A TTRIBUTE_SYSTEM (0004h)

FILE_A TTRIBUTE_ VOLUME (0008h)

FILE_ATTRIBUTE_DIRECTORY (OOlOh)

FILE_A TTRIBUTE_ARCHIVE (0020h)

Filename
Address of a null-terminated string specifying the name of the file to delete.
If WildcardAndAttrs is 1, the "*,, and "1" wildcard characters are permitted
in the filename. Long filenames are allowed.

WildcardAndAttrs
Search criteria. This parameter must be one of these values:

o Wildcard characters are not allowed in Filename. Any specified attributes
are ignored.

Wildcard characters are allowed in Filename. Files with specified attributes
are matched.

Wildcard searches are more flexible in Windows 95 than in MS-DOS. Both
long filenames and aliases are considered in searches. For example, * 1 finds
Windows 95 filenames (both long filenames and aliases) that end in a 1 ,and
mid finds filenames that contain the characters mid. In MS-DOS and in
Windows 95 searching on real-mode FAT directories, all characters after the
first * are ignored.

For more information about how MustMatchAttrs and SearchAttrs are used, see
the comments for Find First File (Interrupt 21h Function 714Eh).

Article 24 Long Filenames 517

Interrupt 21 h Function 7143h Extended Get or Set File
Attributes
mov ax, 7143h Get or Set File Attributes
mov b 1 , Action see below
mov ex, Attributes see below
mov di , Date see below
mov ex, Time see below
mov s i . MilliSeconds see below
mov dx, seg Filename see below
mov ds, dx
mov dx, offset Filename
int 21h

jc error
; see below for return values

Retrieves or sets the file attributes, gets the compressed file size, or retrieves or sets
the date and time for the given file.

• Clears the carry flag if successful.

If Action is zero (retrieve attributes), the file attributes returned in the CX
register may be a combination of the following values :

Fll.,E_A TfRIBUTE_NORMAL (OOOOh)

Fll.,E_A TfRIBUTE_READONL Y (OOOlh)

Fll.,E_A TfRIBUTE_HIDDEN (0002h)

Fll.,E_A TfRIBUTE_SYSTEM (0004h)

Fll.,E_ATIRIBUTE_ VOLUME (OOO8h)

Fll.,E_ATIRIBUTE_DIRECTORY (OOlOh)

Fll.,E_A TfRIBUTE_ARCHIVE (0020h)

518 Programmer's Guide to Microsoft Windows 95

If Action is 2 (get physical size of a compressed file), the size, in bytes, of
the compressed file is returned in DX:AX. This value is the physical size of
the compressed file- that is, the actual number of bytes that the compressed
file occupies on disk.

If Action is 4 (get last write date/time) or 8 (get creation date/time), the ex
register contains the time as a packed 16-bit value with the following form:

Bits

0-4

5-10

11-15

Contents

Second divided by 2

Minute (0-59)

Hour (0-23 on a 24-hour clock)

If Action is 4 (get last write date/time), 6 (get last access date), or 8 (get
creation date/time), the DI register contains the date as a packed 16-bit value
with the following form:

Bits

0-4

5-8

9-15

Contents

Day of the month (1-31)

Month (1 == January, 2 == February, and so on)

Year offset from 1980 (that is, add 1980 to get the actual year)

If Action is 8 (get creation date/time), the SI register contains the number of 10
millisecond intervals in 2 seconds to add to the MS-DOS time. The number can
be a value in the range of 0 to 199.

If the Junction is not successful, it sets the carry flag and sets the AX register to
an error value.

Action
Action to take. This parameter can be one of the following values:

0 Retrieve attributes.

1 Set specified attributes.

2 Get physical size of a compressed file.

3 Set last write date/time.

4 Get last write date/time.

5 Set last access date.

6 Get last access date.

7 Set creation date/time.

8 Get creation date/time.

Article 24 Long·Filenames 519

Attributes
File attributes to set, which are used only if Action is 1. This parameter can be
a combination of these values:

FILE_A ITRIBUIE_NORMAL (OOOOh)

The file can be read from or written to. This value is valid only
if used alone.

FILE_ATIRIBUTE_READONL Y (OOOlh)

The file can be read from, butnot written to.

FILE_A ITRIBUTE_HIDDEN (OO02h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TTRIBUTE_SYSTEM (0004h)

The file is part of the operating system or is used exclusively by it.

FILE_A TIRIBUIE_ARCHIVE (0020h)

Time

The file is an archive file. Applications use this value to mark files
for backup or removal.

New time to set, which is used only if Action is3 (set last write date/time) or
7 (set creation date/time) The time is a packed 16-bit value with the following
form:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

Date
New date to set, which is used only if Action is 3 (set last write date/time),
5 (set last access date), or 7 (set creation date/time). The date is a packed
16-bit value with the following form:

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, and so on)

9-15 Year offset from 1980 (that is, add 1980 to get the actual year)

MilliSeconds
Number of 10 millisecond intervals in 2 seconds to add to the MS-DOS time.
The number can be a value in the range 0 to 199. This value is only used if
Action is 7 (set creation date/time).

520 Programmer's Guide to Microsoft Windows 95

Filename
Address of a null-terminated string specifying the name of the file to retrieve
or set attributes for. Long filenames are allowed.

Interrupt 21 h Function 7147h Get Current Directory
mov ax, 7147h Get Current Directory
mov dl , Drive see below
mov s i , seg Buffer see below
mov ds, si
mov s i , offset Buffer
int 21h

jc error

Copies the path of the current directory for the given drive to the buffer. The copied
path does not include the drive letter or the leading backslash.

• Clears the carry flag and copies the path if successful. Otherwise, the function
sets the carry flag and sets the AX register to an error value.

Drive
Drive number. This parameter can be 0 for current drive, 1 for A, 2 for B, and
soon.

Buffer
Address of the buffer that receives the path. The buffer must be at least as big
as the maximum allowed path for this volume that is returned by Get Volume
Information (Interrupt 21h Function 71AOh).

Interrupt 21 h Function 714Eh Find First File
mov ax, 714Eh
mov ch, MustMatchAttrs
mov cl , SearchAttrs
mov dx, seg Filename
mov ds, dx
mov dx, offset Filename
mov di , seg FindData
moves, di
mov di, offset FindData
mov si, DateTimeFormat
int 21h

jc error
mov [Handle], ax
mov [ConversionCode], cx

Find First File
see below
see below
see below

see below

see below

search handle
Unicode to OEM/ANSI conversion OK?

Article 24 Long Filenames 521

Searches a directory for the first file or directory whose name and attributes match
the specified name and attributes.

Clears the carry flag, copies information about the file to the specified buffer,
returns the search handle in the AX register, and sets the CX register to a
combination of the following values if successful:

OxOOOO All characters in the primary and alternate name members in the structure
specified by FindData were successfully converted from Unicode.

OxOOOl

Ox0002

The primary name returned in the structure specified by FindData contains
underscore characters in place of characters that could not be converted
from Unicode.

The alternate name returned in the structure specified by FindData contains
underscore characters in place of characters that could not be converted
from Unicode.

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

MustMatchAttrs
Additional filter on the attributes specified in SearchAttrs. This parameter can
be a combination of these values:

FILE_A TTRIBUTE_NORMAL (OOOOh)

The file can be read from or written to. This value is valid only
if used alone.

FILE_ATTRIBUTE_READONLY (OOOlh)

The file can be read from, but not written to.

FILE_A TIRIBUTE_HIDDEN (0002h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TIRIBUTE_SYSTEM (0004h)

The file is part of the operating system or is used exclusively by it.

FILE_ATTRIBUTE_ VOLUME (0008h)

The name specified by Filename is used as the volume label for
the current medium.

FILE_A TIRIBUTE_DlRECTORY (OOlOh)

The name specified by Filename is used as a directory, not a file.

FILE_A TIRIBUTE_ARCHIVE (0020h)

The file is an archive file. Applications use this value to mark files
for backup or removal.

522 Programmer's Guide to Microsoft Windows 95

Sea rchA ttrs
File attributes to search for. This parameter can be a combination of these
values:

FILE_A TTRlBUTE_NORMAL (OOOOh)

FILE_A TTRIBUTE_READONL Y (OOOlh)

FILE_A ITRIBUTE_HIDDEN (0002h)

FILE_A TTRlBUTE_SYSTEM (0004h)

FILE_A ITRIBUTE_ VOLUME (0008h)

FILE_ATTRIBUTE_DIRECTORY (OOlOh)

FILE_A ITRIBUTE_ARCHIVE (0020h)

Filename
Address of a null-terminated string specifying the name of the file or directory
to search for. The name, which must be a valid filename or directory name, can
include the "*,, and "?" wildcard characters. Long filenames are allowed.

FindData
Address of a WIN32_FIND _DATA structure that receives information about
the file.

Date TimeFormat
Date and time format to be returned. This parameter must be one of these
values:

o Returns the date and time in 64-bit file time fonnat.

Returns the MS-DOS date and time values. MS-DOS date and time values
are returned in the low doubleword of the FILE TIME structure. Within the
doubleword, the date is returned in the high-order word; the time is in the
low-order word ..

Find First File and subsequent calls to Find Next File (Interrupt 21h Function
714Fh) use the following algorithm to match the attributes of a file or directory
(referred to as Attributes in the algorithm) against MustMatchAttrs and
SearchAttrs.

if ««<MustMatchAttrs> & ~<Attributes» & 0x3F) == 0)
&& «(~<SearchAttrs> & <Attributes» & 0xlE) == 0»

{

else
{

}

return the file or directory name

continue searching for the next name

Article 24 Long Filenames 523

The following table lists the MustMatchAttrs and SearchAttrs values for some
common searches where the specified filename is "*. *". In the table, the word
normal means that the read only, hidden, or system attributes have not been set.
Parentheses are used to indicate that a file or directory has more than one attribute.
For example, (hidden and system) indicates that a file or directory has both the
hidden attribute and the system attribute.

MustMatchAttrs SearchAttrs Find results

10h 10h All nonna! directories

10h 12h All nonna! and hidden directories

10h 14h All nonna! and system directories

10h 16h All nonna!, hidden, system and (hidden and
system) directories

12h 12h All hidden directories

14h 14h All system directories

16h 16h All (hidden and system) directories

OOh OOh All nonnal files

OOh 01h All nonnal and read only files

OOh 02h All nonnal and hidden files

OOh 04h All nonna! and system files

OOh 06h All nonna!, hidden, system, and (hidden and
system) files

OOh 10h All nonna! files and directories

01h 01h All read only files

02h 02h All hidden files

02h 06h All hidden and (hidden and system) files

This function can be used to return the volume label by specifying only
FILE_A TTRIBUTE_ VOLUME (0008h) in both MustMatchAttrs and SearchAttrs.

An application may use the handle returned in the AX register in subsequent calls
to Find Next File (Interrupt 21h Function 714Fh). It is important to close the handle
when it is no longer needed by calling Find Close (Interrupt 2ih Function 71Alh).

Wildcard searches are more flexible in Windows 95 than in MS-DOS. For
example, * 1 finds the filenames (both long filenames and aliases) that end in a 1,
and *mid* finds filenames that contain the characters mid. In MS-DOS and in
Windows 95 searching on real-mode FAT directories, all characters after the first *
are ignored.

524 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 714Fh Find Next File
mov ax. 714Fh Find Next Fil e
mov bx. Handle see below
mov di • seg FindData see below
mov es. di
mov di. offset FindData
mov s i • DateTimeFormat see below
int 21h

jc error
mov [ConversionCodeJ. cx ; Unicode to OEM/ANSI conversion OK?

Searches for the next file in a directory, returning information about the file in the
given buffer.

• Clears the cany flag, copies information to the specified buffer, and sets the CX
register to a combination of these values if successful:

OxOOOO

OxOOOl

Ox0002

All characters in the primary and alternate name member in the structure
specified by FindData were successfully converted from Unicode.

The primary name returned in the structure specified by FindData contains
underscore characters in place of characters that could not be converted from
Unicode.

The alternate name returned in the structure specified by FindData contains
underscore characters in place of characters that could not be converted from
Unicode.

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

Handle
Search handle. It must have been previously returned from Find First File
(Interrupt 2Ih Function 7I4Eh).

FindData
Address of a WIN32_FIND_DATA structure that receives information about
the file.

DateTimeFormat
Date and time format to be returned. This parameter must be one of these
values:

o Returns the date and time in 64-bit file time format.

1 Returns the MS-DOS date and time values. MS-DOS date and time values
are returned in the low doubleword of the FILETIME structure. Within the
doubleword, the date is returned in the high-order word; the time is in the
low-order word.

Article 24 Long Filenames 525

It is important to close the handle when it is no longer needed by calling Find Close
(Interrupt 2lh Function 7IAlh).

Interrupt 21 h Function 7156h Rename File
mov ax, 7156h Rename File
mov dx, seg 0,1 dName ; see below
mov ds, dx
mov dx, offset OldName
mov di , seg NewName see below
mov es, di
mov di , offset NewName
int 21h

jc error

Changes the name of the given file or directory to the new name.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

OldName
Address of a null-terminated string specifying the original name of the file or the
directory to rename. Long filenames are allowed.

NewName
Address of a null-terminated string specifying the new name for the file or the
directory. The function will fail if this parameter specifies an existing file or
directory. The new name must not specify a drive different than the original
drive. Long filenames are allowed.

Interrupt 21 h Function 7160h Get Full Path Name
mov ax, 7160h'
mov cl , 0 Get Full Path Name
mov ch, SubstExpand see below
mov s i , seg SourcePath see below
mov ds, si
mov s i , offset Source Path
mov di , seg DestPath see below
mov es, di
mov di , offset DestPath
int 21h

jc error

Retrieves the full path for the specified file or path. '

526 Programmer's Guide to Microsoft Windows 95

• Clears the carry flag, modifies the AX register, and returns the full path in the
given buffer if successful. Otherwise, the function sets the carry flag and sets
the AX register to an error value.

SubstExpand
Flag that indicates whether the returned path should contain a SUBST drive
letter or the path associated with the SUBST drive. Zero is specified to indicate
that the returned path should contain the path associated with the SUBST drive,
and 80h is specified to indicate that the returned path should contain the SUBST
drive letter.

SourcePath
Address of a null-terminated string that names the file or path to retrieve the
full path for. Either the long filename or the standard 8.3 filename format is
acceptable.

DestPath
Address of the buffer that receives the full path. The buffer should be large
enough to contain the largest possible. Windows 95 path (260 characters,
including the drive letter, colon, leading backslash, and terminating null
character).

When just a filename is specified, this function merges the name of the current
drive and directory with the specified filename to determine the full path. Relative
paths containing the characters "." and " .. " in SourcePath are fully expanded. The
function does no validation, so the specified filename or path does not need to exist.

Interrupt 21 h Function 7160h Get Short Path Name
mov ax, 7160h
mov cl , 1 Get Short Path Name
mov ch, SubstExpand see below
mov s i , seg Source Path see below
mov ds, si
mov s i , offset Source Path
mov di , seg DestPath see below
mov es, di
mov di, offset DestPath
int 21h
jc error

Retrieves the complete path in its short form (the standard 8.3 format) for the
specified file or path. The function returns the 8.3 filename for all directories in
the path. '

• Clears the carry flag, modifies the AX register, and returns the complete short
path in the given buffer if successful. Otherwise, the function sets the carry
flag and sets the AX register to an error value.

Article 24 Long Filenames 527

SubstExpand
Flag that indicates if the returned path should contain a SUBST drive letter or
the path associated with the SUBST drive. Zero is specified to indicate that the
returned path should contain the path associated with the SUBST drive, and 80h
is specified to indicate that the returned path should contain the SUBST drive
letter. .

SourcePath
Address of a null-terminated string that names the file or path to retrieve the
complete short path for. Either the long or short form is acceptable as the source
string.

DestPath
Address of the buffer that receives the complete path. The buffer should be large
enough to contain the largest possible Windows 95 path in the short form (260
characters, including the drive letter, colon, leading backslash, and terminating
null character).

Relative paths that contain the characters "." and " .. " in SourcePath are fully
expanded. Since this function performs validation, SourcePath must contain either
a valid filename or path. '

Interrupt 21 h Function 7160h Get Long Path Name
mov ax, 7160h
mov cl , 2 Get Long Path Name
mov ch, SubstExpand see below
mov s i , seg SourcePath see below
mov ds, si
mov s i , offset ·SourcePath
mov di , seg DestPath see below
mov es, di
mov di , offset DestPath
int 21h
jc error

Retrieves the complete path in its long filename form for the specified file or path.
The function returns the long name for all directories in the path.

• Clears the carry flag, modifies the AX register, and returns the complete long
path in the given buffer if successful. Otherwise, the function sets the carry
flag and sets the AX register to an error value.

SubstExpand
Flag that indicates if the returned path should contain a SUBST drive letter or
the path associated with the SUBST drive. Zero is specified to indicate that the
returned path should contain the path associated with the SUBST drive, and 80h
is specified to indicate that the returned path should contain the SUBST drive
letter.

528 Programmer's Guide to Microsoft Windows 95

SourcePath .
Address of a null-terminated string that names the file or path to retrieve the
complete long path for. Either the long filename or the short form is acceptable
as the source string.

DestPath
Address of the buffer that receives the complete path. The buffer should be
large enough to contain the largest possible Windows 95 path (260 characters,
including the drive letter, colon, leading backslash, and terminating null
character).

Relative paths containing the characters "." and " .. " in SourcePath are fully
expanded. Since this function performs validation, SourcePath must contain
either a valid filename or path.

Interrupt 21 h Function 716Ch Create or Open File
mov ax,
mov bx,
mov cx,
mov dx,
mov s i ,
mov ds,
mov s i ,
mov di ,
int 21h

716Ch
ModeAndFlags
Attributes
Action
seg Filename
si
offset Filename
AliasHint

Create or Open File
see below
see below
see below
see below

see below

jc error
mov [Handle], ax file handle
mov [ActionTaken], cx action taken to open file

Creates or opens a file.

• Clears carry flag, copies the file handle to the AX register, and sets the CX
register to one of the following values if successful:

ACTION_OPENED (OOOlh)

ACTION_CREATED_OPENED (0002h)

ACTION_REPLACED_OPENED (0003h)

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

Article 24 Long Filenames 529

ModeAndFlags
Combination of access mode, sharing mode, and open flags. This parameter
can be one value each from the access and sharing modes and any combination
of open flags:

Access mode Meaning

OPEN_ACCESS_READONL Y (OOOOh)

Opens the file for reading only.

OPEN_ACCESS_ WRITEONL Y (OOOlh)

Opens the file for writing only.

OPEN_ACCESS_READWRITE (0002h)

Opens the file for reading and writing.

0003h

Reserved; do not use.

OPEN_ACCESS_RO_NOMODLASTACCESS (0004h)

Sharing mode

Opens the file for reading only without modifying the file's
last access date.

Meaning

OPEN_SHARE_COMPATIBLE (OOOOh)

Opens the file with compatibility mode, allowing any process
on a given computer to open the file any number of times.

OPEN_SHARE_DENYREADWRITE (OOlOh)

Opens the file and denies both read and write access to other
processes.

OPEN_SHARE_DENYWRITE (0020h)

Opens the file and denies write access to other processes.

OPEN_SHARE_DENYREAD (0030h)

Opens the file and denies read access to other processes.

OPEN_SHARE_DENYNONE (0040h)

Opens the file without denying read or write access to other
processes, but no process may open the file for compatibility
access.

530 Programmer's Guide to Microsoft Windows 95

Open flags Meaning

OPEN_FLAGS_NOINHERIT (OO80h)

If this flag is set, a child process created with Load and Execute
Program (Iilterrupt 2Ih Function 4BOOh) does not inherit the file
handle. If the handle is needed by the child process, the parent
process must pass the handle value to the child process. If this
flag is not set, child processes inherit the file handle.

OPEN_FLAGS_NO _BUFFERING (0 1 OOh)

The file is to be opened with no intermediate buffering or cach
ing done by the system. Read and write operations access the disk
directly. All reads and writes to the file must be done at file
positions that are multiples of the disk sector size, in bytes, and
the number of bytes read or written should also be a multiple of
the sector size. Applications can determine the sector size, in
bytes, with the Get Disk Free Space function (Interrupt 2Ih,
Function 36h).

OPEN_FLAGS_NO.:.-COMPRESS (0200h)

The file should not be compressed on a volume that performs
file compression. If the volume does not perform file compression,
this flag is ignored. This flag is valid only on file creation and is
ignored on file open.

OPEN_FLAGS_ALIAS_HINT (0400h)

The number in the DI register is to be used as the numeric tail for
the alias (short filename). For more information, see AliasHint
below.

OPEN_FLAGS_NOCRITERR (2000h)

If a critical error occurs while MS-DOS is opening this file,
Critical-Error Handler (Interrupt 24h) is not called. Instead,
MS-DOS simply returns an error value to the program.

OPEN_FLAGS_COMMIT (4000h)

Mter each write operation, MS-DOS commits the file (flushes
the contents of the cache buffer to disk).

Article 24 Long Filenames 531

Attributes
Attributes for files that are created or truncated. This parameter may be a
combination of these values:

FILE_A TIRIBUTE_NORMAL (OOOOh)

The file can be read from or writt~n to. This value is valid only
if used alone.

FILE_ATTRIBUTE_READONL Y (OOOlh)

The file can be read from, but not written to.

FILE_A TTRIBUTE_HIDDEN (OOO2h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TTRIBUTE_SYSTEM (0004h)

The file is part of the operating system or is used exclusively by it.

FILE_ATTRIBUTE_ VOLUME (0008h)

The name specified by Filename is used as the volume label for
the current medium and is restricted to the standard 8.3 format.
For information about an alternative way to set the volume label,
see Set Media ID (Interrupt 2Ih Function 440Dh Minor Code
46h) in the Microsoft MS-DOS Programmer's Reference.

FILE_A TIRIBUTE_ARCHIVE (0020h)

The file is an archive file. Applications use this value to mark files
for backup or removal.

Action
Action to take it the file exists or if it does not exist. This parameter can be a
combination of these values:

FILE_CREATE (OOIOh)

FILE_OPEN (OOOlh)

FILE_TRUNCATE (0002h)

Creates a new file if it does not already exist.
The function fails if the file already exists.

Opens the file. The function fails if the file does
not exist.

Opens the file and truncates it to zero length
(replaces the existing file). The function fails if
the file does not exist.

The only valid combinations are FILE_CREATE combined with FILE_OPEN
or FILE_CREATE combined with FILE_TRUNCATE.

Filename
Address of a null-terminated string specifying the name of the file to be opened
or created. The string must be a valid path for the volume associated with the
given drive. Long filenames are allowed.

532 Programmer's Guide to Microsoft Windows 95

AliasHint
Number that is used in the numeric tail for the alias (short filename).
A numeric tail, which consists of the tilde character (-) followed a number,
is appended to the end of a filename. The system constructs the alias
from the first few characters of the long filename followed by the numeric tail.
The system starts with the number 1 in the numeric tail. If that filename is
in use, it uses the number 2. It continues in this fashion until a unique name
is found. To override the default numbering scheme, you must specify the
OPEN_FLAGS_ALIAS_HINT value when you create the file in addition to
specifying this par.ameter. If a filename already exists with the specified
numeric tail, the system uses·the default numbering scheme. You should
specify a number for this parameter, not the tilde character.

A file on a remote directory - that is, a directory on the network -cannot be
opened, created, or modified, unless the appropriate permissions for the directory
exist.

Interrupt 21 h Function 71 AOh Get Volume Information
mov ax, 7lA0h Get Volume Information
mov di , seg Buffer ; see below
mov es, di
mov di , offset Buffer
mov ex, BufSize see below
mov dx, seg RootName see below
mov ds, dx
mov dx, offset RootName
int 21h

jc error
mov [Flags], bx fil e system flags
mov [MaxFilename], ex max. filename length, excluding null
mov [MaxPath], dx max. path 1 ength, including null

Returns information about the volume associated with the given root directory.

Article 24 Long Filenames 533

Clears the carry flag, copies the file system name to the buffer given by the
ES:DI register pair, and sets the BX, CX, andDX registers to the following
values if successful:

BX

CX

DX

File system flags, which can be a combination of these values:

FS_CASE_SENSITIVE (OOOlh)
Specifies that searches are case-sensitive.

FS_CASE_IS_PRESERVED (0002h)
Preserves case in directory entries.

FS_UNICODE_ON_DISK (0004h)
Uses Unicode characters in file and directory names.

FS_LFN_APIS (4000h)
Supports new long filename functions.

FS_ VOLUME_COMPRESSED (8000h)
Specifies that the volume is compressed.

Maximum allowed length, excluding the terminating null
character, of a filename for this volume. For example, on
the protected-mode FAT file system, this value is 255.

Maximum allowed length of a path for this volume, including
the drive letter, colon, leading slash, and terminating null
character. For example, on the protected-mode FAT file system,
this value is 260.

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

Buffer
Address of a buffer that receives a null-terminated string specifying the name of
the file system.

BujSize
Size, in bytes, of the buffer that receives the name. The buffer should include
space for the terminating null character.

RootName
Address of a null-terminated string specifying the name of the root directory of
the volume to check. This parameter must not be NULL, or the function will fail.
The format for this parameter is "C:\".

This function accesses the disk the first time it is called, but subsequent calls do not
access the disk.

534 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 71 A 1 h Find Close
mov ax, 71Alh Find Close
mov bx, Handle ; see below
int 21h

jc error

Closes the file search identified by the search handle.

• Clears the carry flag if successful. Otherwise, the function sets the carry
flag and sets the AX register to an error value.

Handle
Search handle. It must have been previously returned from Find First File
(Interrupt 2Ih Function 7I4Eh).

Unlike MS-DOS Find First File (Interrupt 2Ih Function 4Eh), the long file-
name version of Find First File (Interrupt 2Ih Function 7I4Eh) allocates internal
storage for the search operations and returns a handle that identifies the storage.
This handle is used with Find Next File. To make sure this internal storage is freed,
you must call Find Close to end the search.

Interrupt 21 h Function 71 A6h Get File Info By Handle
mov ax, 71a6h
mov bx, Handle
mov dx, seg lpFileInfo
mov ds, dx
mov dx, offset lpFileInfo
stc
i nt 21 h

jnc success
cmp ax, 7100h
je not_supported

Get File Info By Handle
see below
see below

must set carry flag

Retrieves information about the specified file.

• Clears the carry flag if successful. Otherwise, the function sets the carry
flag and sets the AX register to an error value.

Article 24 Long Filenames 535

Handle
File handle to retrieve information about.

. IpFilelnfo
Address of a BY_HANDLE_FILE_INFORMA TION structure that receives
the file information. The structure can be used in subsequent calls to Get File
Info By Handle to refer to the information about the file.

Note that it is important to explicitly set the carry flag before calling this function.

Interrupt 21 h Function 71A7h File Time To DOS Time
mov ax, 71A7h date and time format conversion
mov bl , 0 File Time To DOS Time
mov s i , seg 1 p·ft see below
mov ds, si
mov s i , offset lpft
int 21h

jc error
mav [DOSTime], cx
mov [DOSDate], dx
mov [MilliSeconds], bh ; number of 10ms intervals in 2 seconds

Converts a 64-bit file time to MS-DOS date and time values.

• Clears the carry flag, and sets the BH, CX, and DX registers to these values
if successful:

BH Number of 10 millisecond intervals in 2 seconds to add to the MS-DOS
time. It can be a value in the range 0 to 199.

ex MS-DOS time. The time is a packed 16-bit value with the following
form:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

DX MS-DOS date. The date is a packed 16-bit value with the following
form:

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, and so on)

9-15 Year offset from 1980 (that is, add 1980 to get the
actual year)

536 Programmer's Guide to Microsoft Windows 95

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

lpft
Address of a FILETIME structure containing the 64-bit file time to convert to
the MS-DOS date and time format.

The MS-DOS date format can represent only dates between 1/1/1980 and
12/31/2107; this conversion fails if the input file time is outside this· range.

The time in FILETIME must be Coordinated Universal Time (UTC).
The MS-DOS time is local time.

Interrupt 21 h Function 71A7h DOS Time To File Time
mov ax, 71A7h date and time format conversion
mov b 1 , 1 Dos Time To File Time
mov bh, MilliSeconds see below
mov ex, DOSTime see below
mov dx, DOSDate see below
mov d i , seg lpft see below
mov es, di
mov di , offsetlpft
int 21h

jc error

Converts MS-DOS date and time values to 64-bit file time.

• Clears the carry flag and returns the 64-bit file time in the specified structure
if successful. Otherwise, the function sets the carry flag and sets the AX register
to an error value.

MilliSeconds
Number of 10 millisecond intervals in 2 seconds to add to the MS-DOS time.
The number can be a value in the range 0 to 199.

DOSTime
MS-DOS time to convert. The time is a packed 16-bit value with the following
form:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

Article 24 Long Filenames 537

DOSDate
MS-DOS date to convert. The date is a packed 16-bit value with the following
form:

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, and so on)

9-15 Year offset from 1980 (that is, add 1980 to get the actual year)

[pft
Address of a FILETIME structure to receive the converted 64-bit file time.

The time in FILETIME must be Coordinated Universal Time (UTC).
The MS-DOS time is local time.

Interrupt 21 h Function 1'1 ASh Generate Short Name
-mov ax, ?la8h generate short name
mov s i , seg LongFilename ; see below
mov ds, si
mov s i , offset LongFilename
mov di , seg ShortFilename see below
mov es, di
mov di , offset ShortFilename
mov dh, ShortNameFormat see below
mov dl , CharSet see below
int 21h

Generates an alias (a filename in the 8.3 format) for the specified long filename.

• Returns the generated alias in the specified buffer if successful.

LongFilename
Address of null-terminated string that names the long filename to generate an
alias for. This string must contain only a filename, not a path.

ShortFilename
Address of null-terminated string that receives the generated alias.

ShortNameFormat
Format for the returned alias (0 is specified for an 11 character directory entry
format or 1 for an 8.3 format).

538 Programmer's Guide to Microsoft Windows 95

CharSet
Character set of both the long filename and alias. This parameter is a packed
8-bit value with the following form:

Bits Contents

0-3 Specifies the character set of the source long filename.

4-7 Specifies the character set of the destination alias.

One of the following values is specified to indicate the character set for the long
filename and alias:

BCS_ W ANSI (0)

BCS_OEM (1)

BCS_UNICODE (2)

'Windows ANSI character set

Current OEM character set

Unicode character set

This function generates the alias using the same algorithm that the system uses with
the exception that the returned alias will never have a numeric tail. A numeric tail
is appended to the end of an alias and consists of the tilde character (-) followed
a number. When the system generates an alias, it may attach a numeric tail if the
default alias already exists in the current directory. Because this function does not
check the current directory to see if the alias already exists, the returned alias will
never have a numeric tail. This service is useful for disk utilities that are trying to
establish whether the alias, which seems to be associated with a long filename, is
correctly associated.

Interrupt 21 h Function 71 A9h Server Create or Open File
Creates or opens a file; This function is for use by real-mode servers only. It takes
the same parameters as Create or Open File (Interrupt 21h Function 716Ch) and
returns a global file handle. For more information, see Create or Open File.

Interrupt 21 h Function 71 AAh Create Subst
mov ax, 71aah SUBST
mov bh, 0 Create Subst
mov bl , DriveNum see below
mov dx, seg PathName see below
mov ds, dx
mov dx, offset Path Name
int 21h

jc error

Associates a path with a drive letter.

Article 24 Long Filenames 539

Clears the carry flag if successful. Otherwise the function sets the carry flag and
returns an error value in the AX register

DriveNum
Drive to SUBST. This parameter can be 0 for the default drive, 1 for A, 2 for B,
and so on.

PathName
Address of path to associate the drive with.

Interrupt 21 h Function 71 AAh Terminate Subst
mov ax, 71aah
mov bh, 1
mov bl, DriveNum
int 21h

jc error

SUBST
Terminate Subst
see below

Terminate the association between a path and a drive letter.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and returns an error value in the AX register.

DriveNum
Drive to terminate SUBST. This parameter can 1 for A, 2 for B, and so on.
Note that DriveNum cannot be 0 to indicate the default drive.

Interrupt 21 h Function 71 AAh Query Subst
mov ax, 71aah SUBST
mov bh, 2 Query SUBST
mov bl , DriveNum see below
mov dx, seg PathName see below
mov ds, dx
mov dx, offset Path Name
int 21h

jc error

Determines if the specified drive is associated with a path and, if it is, retrieves the
associated path. .

540 Programmer's Guide to Microsoft Windows 95

Structures

• Clears the carry flag and retrieves the associated path in the specified buffer if
successfuL Otherwise, the function sets the carry flag and returns an error value
in the AX register.

DriveNum
Drive to SUBST. This parameter can 1 for A, 2 for B, and so on. Note that
DriveNum cannot be 0 to indicate the default drive.

PathName
Address of buffer that receives the null-terminated string of the path associated
with the specified drive. The buffer must be ofMAXPATHLEN size.

The following structures are used with long filenames.

BY HANDLE FILE INFORMATION - --
BY_HANDLE_FILE_INFORMATION struc

dwFileAttributes dd ? see below
ftCreationTime dd 2 dup(?) see below
ftLastAccessTime dd 2 dup(1) see below
ftLastWriteTime dd 2 dup(?) see below
dwVolumeSerialNumber dd see below
nFileSizeHigh dd ? see below
nFileSizeLow dd ? see below
nNumberOfLinks dd ? see below
nFileIndexHigh dd ? see below
nFileIndexLow dd see below

BY HANDLE_FILE_INFORMATION ends

Contains file information retrieved by Get File Info By Handle (Interrupt 21h
Function 71A6h).

Article 24 Long Filenames 541

dwFileAttributes
File attributes. This parameter can be one or more of these values:

FILE_A TIRIBUTE_NORMAL (OOOOOOOOh)

The file can be read from or written to. This value is valid only
if used alone.

FILE_A TIRIBUTE_READONL Y (OOOOOOOlh)

The file can be read from, but not written to.

FILE_A TIRIBUTE_HIDDEN (OOOOOOO2h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TIRIBUTE_SYSTEM (00000004h)

The file is part of the operating system or is used exclusively by it.

FILE_A TIRIBUTE_DIRECTORY (OOOOOOlOh)

The name specifies a directory, not a file.

FILE_A TIRIBUTE_ARCHIVE (OOOO0020h)

ftCreationTime

The file is an archive file. Applications use this value to mark files
for backup or removal.

Time that the file was created in 64-bit file time format. A value of 0,0 indicates
that the file system containing the file does not support this member.

ftLastAccessTime
Time that the file was last accessed in 64-bit file time format. A value of 0,0
indicates that the file system containing the file does not support this member.

ftLastWriteTime
Time that the file was last written to in 64-bit file time format. All file systems
support this member. If the underlying file system does not support the last
write time, this member is the time that the file was created.

542 Programmer's Guide to Microsoft Windows 95

dwVolumeSerialNumber
Serial number of the volume that contains the file.

nFileSizeHigb
High-order word of the file size.

nFileSizeLow
Low-order word of the file size.

nNumberOfLinks
Number of links to this file. For FAT and HPFS file systems, this member
is always 1. For the NTFS file system, this member may be more than 1.

nFilelndexHigb
. High-order word of a unique identifier associated with the file.

nFileIndexLow
Low-order word of a unique identifier associated with the file. This identifier
and the volume serial number uniquely identify a file. This number may change
when the system is restarted or when the file is opened. After a process opens
a file, the identifier is constant until the file is closed. An application can use this
identifier and the volume serial number to determine whether two handles refer
to the same file.

The value returned by nFileIndexHigb and nFilelndexLow may be invalid on
some file systems, such as real-mode network redirected file systems. In this case,
an invalid index value will be returned.

FILETIME
FILETIME struc

dwLowDateTime dd?
dwHighDateTime dd ?

FI LETIME ends

see below
see below

Contains a 64-bit value specifying the number of 100-nanosecond intervals that
have elapsed since 12:00 A.M'. January 1, 1901.

dwLowDateTime
Low-order 32 bits of the file time.

dwHigbDateTime
High-order 32 bits of the file time.

Article 24 Long Filenames 543

WIN32 FIND DATA - -
WIN32_FIND_DATA struc

dwFileAttributes dd ? see below
ftCreationTime dd 2 dupe?) see below
ftLastAccessTime dd 2 dupe?) see below
ftLastWriteTime dd 2 dupe?) see below
nFileSizeHigh dd ? high word of file size, in bytes
nFil eSi zeLow dd ? low word of file size, in bytes
dwReserved0 dd o reserved; do not use
dwReservedl dd o reserved; do not use
cFileName db MAX PATH dupe?) see below
cAlternateFileName db 14 dupe?) ; see below

WIN32_FIND_DATA ends

Describes a file found by Find First File (Interrupt 21h Function 714Eh) or Find
Next File (Interrupt 21h Function 714Fh).

dwFileAttributes
File attributes of the file found. This parameter can be one or more of these
values:

. FILE_A TTRIBUTE_NORMAL (OOOOOOOOh)

The file can be read from or written to. This value is valid only
if used alone.

FILE_A TTRIBUTE_READONL Y (OOOOOOOlh)

The file can be read from, but not written to.

FILE_A TTRIBUTE_HIDDEN (00000002h)

The file is hidden and does not appear in an ordinary directory
listing.

FILE_A TTRIBUTE_SYSTEM (00000004h)

The file is part of the operating system or is used exclusively by it.

FILE_ATTRIBUTE_DIRECTORY (OOOOOOlOh)

The name specifies a directory, not a file.

FILE_ATTRIBUTE_ARCHIVE (00000020h)

The file is an archive file. Applications use this value to mark files
for backup or removal.

544 Programmer's Guide to Microsoft Windows 95

ftCreationTime
Time that the file was created in either MS-DOS date and time format or in
64-bit file time format, depending on the date and time format specified in either
Find First File or Find Next File. A value of 0,0 indicates that the file system
containing the file. does not support this member.

ftLastAccessTime
Time that the file was last accessed in either MS-DOS date and time format
or in 64-bit file time format, depending on the date and time format specified
in either Find First File or Find Next File. A value of 0,0 indicates that the file
system containing the file does not support this member .

. ftLastWriteTime
Time that the file was last written to in either MS-DOS date and time format
or in 64-bit file time format, depending on the date and time format specified
in either Find First File or Find Next File. All file systems support this member.

cFileName
Null-terminated string that is the name of the file. Because long filenames are
allowed, the buffer size must be large enough for 256 characters, including
the terminating null character.

cAlternateFileName
Null-terminated string, in the standard 8.3 filename format, that is an alternate
name of the file. If the cFileName member contains an 8.3 format name or the
file system does not permit 8.3 format alternates, this member is set to zero.

ARTICLE 25

Exclusive Volume Locking

About Exclusive Volume Locking
Disk utilities and other applications that directly modify file system structures,
such as directory entries, must request exclusive volume locking (that is,
exclusive use of the volume) before making modifications to the structures.
Exclusive use prevents applications from inadvertently changing the file
system while a disk utility is trying modify it and ensures that the information
on a volume represents the current state of the volume.

This article describes exclusive volume locking and provides guidelines for
\ applications that carry out direct access on volumes while running with

Microsoft® Windows® 95. This article also describes the input and output
control (IOCTL) functions that applications need for managing exclusive
volume locking.

Direct Access

545

Applications typically use direct access to make changes to the directory entries,
paths, and allocation chains in the file allocation table (FAT) of a given volume.
The applications access this information by using the Interrupt 13h functions,
Absolute Disk Read and Write (Interrupts 25h and 26h), or the Interrupt 21h
read, write, and format track IOCTL functions. Some applications may also
access the volume using the disk controller input and output (110) ports.

546 Programmer's Guide to Microsoft Windows 95

As a multitasking operating system, Windows 95 permits any number of applica
tions to access a volume at a given time. Applications that change the file system
structures of a volume without regard to other applications risk corruption of that
information and subsequent data loss. To prevent data loss, the system manages
all requests for direct .access. With the exception of floppy disk drives, Windows
95 does not permit direct write operations, unless the volume has been locked by
the application. The system returns the ERROR_WRITE_PROTECT error value
to functions or interrupts that attempt direct write operations when the volume
has norbeen locked. An application can read directly from a volume, but the
system may satisfy the request by reading from internal caches rather than from
the medium itself. An application cannot access disk controller 110 ports; the
system traps all access.

An application can override the default behavior of the system by requesting
exclusive use of the volume using the lock and unlock volume IOCTL functions.
An application that has exclusive use of a volume can read and write directly
to the medium, and because the system flushes internal caches to the medium,
the information there reflects the actual state of the volume. Locking a volume
(including the floppy disk drives) ensures consistency of data, because other
processes cannot update information about the volume while it is locked.

Exclusive Use Lock
To request exclusive use of a volume, an application use either Lock Logical
Volume (Interrupt 2Ih Function 440Dh Minor Code 4Ah) or Lock Physical
Volume (Interrupt 2Ih Function 440Dh Minor Code 4Bh). Before issuing an
Interrupt I3h function, an application must acquire a physical volume lock.
An application that only modifies logical volumes should acquire a logical
volume lock. The calling interface for both locks is the same except for how
the volume to lock is specified; the physical lock requires an Interrupt I3h
device unit number, but the logical lock requires a logical drive number.
When an application obtains a lock on a physical drive, the system acquires a
logical volume lock for each logical volume on the physical drive. Obtaining a
lock on a logical volume that is the parent (or host) drive also locks the child
drives. For example, a compressed volume is locked when its host drive is
locked.

The application that owns the lock can carry out direct disk write operations.
Only one application at a time can lock the volume. If an application already
owns the volume lock, the system fails subsequent calls to lock the volume.

The volume-locking functions allow the lock owner to control the kind of access
that other processes have to the volume. There are three categories of access:
read operations, which include opening a file as well as reading from a file; write
operations~ which include deleting and renaming a file as well as writing to a file;
and new file mappings.

Article 25 Exclusive Volume Locking 547

When an application calls either of the lock volume functions, it specifies a
lock level and, depending on the level, passes in additional information known
as permissions. The lock level and permissions specify what kind of operations
the system allows processes other than the lock owner to do on the volume
while it is locked.

When another process attempts to access the volume, the file system will/ail
the operation and return the ERROR_ WRITE_PROTECT error value or it will

block the operation, depending on the lock level and permissions. The system
queues a blocked operation and puts the process requesting the operation to
sleep until the lock is released and the operation can be performed.

When an application has completed its work, it must unlock the volume.
Depending on whether it acquired a logical or physical lock, the' application
unlocks the volume by calling either Unlock Logical Volume (Interrupt 21h
Function 440Dh Minor Code 6Ah) or Unlock Physical Volume (Interrupt
21h Function 440Dh Minor Code 6Bh). Unlocking the volume lets the system
perform any blocked operations (in the order that they occurred) and resume
normal activity. If an application exits without releasing the lock, the system
automatically releases it.

If an application has a lock and the user attempts to close the virtual machine in
which the application is running, the system displays a message warning the user
that closing the virtual machine could result in damage to the volume. If the user
confirms the closing, the system releases the lock and closes the virtual machine.

An application can lock volumes on local drives, but not on network drives or
on drives that are not managed by the 110 supervisor, a virtual device driver.
Also, the lock and unlock volume IOCTL functions are not available in previous
versions of Microsoft® MS-DOS®. If the functions are used with a previous
version, they return an error value.

Windows 95 provides 4 levels of exclusive volume locks. The level 0 lock is
used alone, and lock levels 1, 2, and 3 form a hierarchy that increasingly restricts
access to the file system based on the permissions set when the application
obtains the level 1 lock. Although the level 0 lock is not part of the locking
hierarchy formed by lock levels 1,2, and 3, it has a more restrictive sublevel
for applications that format volumes. Applications should perform direct disk
write operations only in either a level 0 or 3 lock.

548 Programmer's Guide to Microsoft Windows 95

Level 0 Lock
The level 0 lock cannot be obtained on volumes that have any open files or
handles. This restriction includes handles returned by the Windows FindFirstFile
and FindFirstChangeNotification functions. Because the system always has
open files, an application cannot take a level 0 lock on the drive that contains the
Windows 95 system files. The locking hierarchy can be used on volumes with
open files and handles. If the system fails a level 0 lock request because of open
files, an application can obtain a list of all the open files on the volume by calling
Enumerate Open Files (Interrupt 21h Function 440Dh Minor Code 6Dh).

Before returning from the call to lock the volume, Windows 95 flushes to
disk all data from the file system cache. To ensure that the disk and file system
remain in a consistent state, the system puts the cache into write-through mode
so that it c~m immediately commit to disk all data from file write operations.
If an application has obtained a lock on a child volume, the system does not
automatically flush the file system cache after a write operation to the parent
volume. To ensure that the cache is flushed when opening files with Open or
Create File (Interrupt 21h Function 716Ch), an application should specify the
OPEN_FLAGS_NO_BUFFERING (OIOOh) value. If a file has not been opened
with OPEN_FLAGS_NO_BUFFERING or Absolute Disk Write (Interrupt 26h)
has been used to write to the parent volume, an application should call Reset
Drive (Interrupt 2lh Function 710Dh) to flush the cache.

After a process obtains a level 0 lock, the system only allows the lock owner to
have access to the volume. The system fails all read operations, write operations,
and new file mappings by other processes until the lock owner releases the lock.
An application should use a level 0 lock whenever possible, because it guarantees
that no other process can access the locked volume.

An application that formats volumes must obtain a more restrictive mode of
the level 0 lock. To format a volume, the application should follow these steps:

1. Call the lock volume function to obtain a level 0 lock.

2. Do any needed file system 110 that uses the Interrupt 2lh file handle 110
functions while in the level 0 lock.

3. Call the lock volume function a second time to obtain the more restrictive
level 0 lock for formatting. When calling the lock volume function the second
time, an application should specify 0 as the lock level and specify 4 in the
permissions. The application, however, must already own the level 0 lock
to obtain this lock.

Article 25 Exclusive Volume Locking 549

4. Format the disk using the Interrupt 2Ih IOCTL functions (such as Readl
Write/FormatlVerify Track on Logical Drive or Get/Set Device Parameters).
Interrupt I3h will work too, but it is not the preferred method for performance
reasons. The system allows direct disk 110, but it fails all other file system 110
that uses the Interrupt 2Ih file handle 110 functions while the restrictive level
o lock is in effect.

S. Release the level 0 lock for formatting. An application is still in a level 0
lock at this point. Before the application releases this lock, the disk must
be in a state that would be recognizable as normal FAT media. Otherwise,
the functions mentioned in step 6 will not work.

6. Resume normal file system 110 using the Interrupt 2Ih file handle 110.
functions.

7. Release the level 0 lock.

Locking Hierarchy
The locking hierarchy allows an application to obtain a lock in preparation for
modifying the file system and yet allows other processes access to the drive.
In this way, other processes are only denied access to the volume when
absolutely necessary.

An application should perform direct disk write operations only within a level 3
lock. To obtain a level 3 lock, an application must make three calls to the lock
volume function-first to obtain a level I lock, then a level 2 lock, and finally
a level 3 lock. After obtaining the level 3 lock, the application can safely access
the volume directly.

To release the lock on a volume, an application must call the appropriate unlock
volume function the same number of times that the corresponding lock volume
function was called. Each call to the unlock volume function decrements the
lock level. For example, a level 3 lock returns to a level 2 lock, and the system
processes any blocked read operations. A level 2 lock returns to a level I lock,
and the system processes any blocked write operations or new file mappings.
A call to the unlock volume function on a level I lock, however, releases the
lock on the volume and allows other processes to obtain the lock.

Exclusive volume locks are owned by a process, not a thread. If necessary,
a multithreaded application can obtain a level I lock in one thread, a level 2 lock
in another, and a level 3 lock in yet another.

Even though the system may block or fail new file mappings, other processes
are allowed to write to files through existing file mappings, because file mappings
cannot be resized. Writing to an existing file mapping only changes the contents
of the memory-mapped file, it does not cause changes to the file system.

550 Programmer's Guide to Microsoft Windows 95

Level 1
The level 1 lock acts as a sentinel to guarantee that only one application may
obtain the level 2 and 3 locks. An application specifies permissions only when
requesting the level 1 lock. The lock level and permissions determine the kind
of access that processes other than the lock owner have to the volume while
it is locked. Bit 0 of the Permissions parameter for the lock volume function
determines if the system allows or fails write operations by other processes.
Bit 1 of Permissions determines if the system allows or fails new file map
pings by other processes. Bit 2 of Permissions is only used when obtaining
the restrictive level 0 lock for formatting and is ignored for a level 1 lock.
The following table shows which operatio1)s are allowed at each lock level
based on the permissions set on the level 1 lock.

Permissions Levell Level 2 Level 3

Bit 0 = 0 Write operations are Write operations are Write operations are
failed. failed. failed.

Bit 1 = 0 New file mappings New file mappings New file mappings
are allowed. are allowed. are blocked.

Read operations are Read operations are Read operations are
allowed. allowed. blocked.

Bit 0 = 0 Write operations are Write operations are Write operations are
failed. failed. failed.

Bit 1 = 1 New file mappings New file mappings New file mappings
are failed. are failed. are failed.

Read operations are Read operations are Read operations are
allowed. allowed. blocked.

Bit 0 = 1 Write operations are Write operations Write operations are
allowed. are blocked. blocked.

Bit 1 = 0 New file mappings New file mappings New file mappings
are allowed. are allowed. are blocked.

Read operations are Read operations Read operations are
allowed. are allowed. blocked.

Bit 0 = 1 Write operations are Write operations are Write operations are
allowed. blocked. blocked.

Bit 1 = 1 New file mappings New file mappings New file mappings
are failed. are failed. are failed.

Read operations are Read operations are Read operations are
allowed. allowed. blocked.

Calling an unlock physical or logical volume function on a level 1 lock
completely releases the lock on the volume.

Article 25 Exclusive Volume Locking 551

Level 2
The level 2 lock prevents all processes except the lock owner from writing
to the disk, but the lock allows any application to read from it. Depending
on the permissions set when the application obtained the level 1 lock, the
system will either block or fail write operations and either allow or fail new file
mappings. Before obtaining a level 3 lock, an application should call Get Lock
Flag State (Interrupt 21h Function 440Dh Minor Code 6Ch) to determine if
anything on the disk has changed, such as the swap file growing or shrinking.
Calling Get Lock Flag State at this point is an optimization that is done to avoid
obtaining the level 3 lock unnecessarily.

Calling an unlock physical or logical volume function on a level 2 lock decre
ments the lock level to 1 and causes the system to perform previously blocked
operations that are allowed at the lower lock level.

Level 3
The level 3 lock prevents all processes except the lock owner from reading or
writing to the disk. Read operations are blocked, and write operations and new .
file mappings are either blocked or failed depending on the permissions set in
the level 1 lock. This is the most restrictive lock, not only because it prevents all
other processes from accessing the disk but also because the lock owner is limited
in what it can do.

Because read operations are blocked in the level 3 ~ock, an application must not
execute any user interface or screen update functions, spawn applications, load
dynamic-link libraries (DLLs), or yield to avoid deadlock. For example, if an
application yields to a process with a discardable segment that the system has
discarded, the system cannot reload the discarded segment because the process
cannot read from the disk. This situation results in deadlock. Whenever a process
obtains a level 3 lock, it should keep the lock for as short a period as possible to
avoid severely degrading system performance. The purpose of the level 3 lock is
to write changes to disk, so processes should only call disk I/O functions inside
the lock.

After a level 3 lock is obtained,the file system takes several steps to allow a
process to write directly to the disk. First, the system flushes all file system
buffers and caches. Next, it puts the cache into write-through mode so that
changes will be written to disk immediately. Finally, all open files are closed at
the file system driver (FSD) level, which is invisible to all processes. While an
application is in a level 3 lock, the system does not permit the swap file to grow
or shrink, but it can still be read from or written to.

552 Programmer's Guide to Microsoft Windows 95

If an application has obtained a lock on a child volume, the system does
not automatically flush the file system cache after a write operation to the
parent volume. To ensure that the cache is flushed when Open or Create File
(Interrupt 2Ih Function 7I6Ch) is used, the application should specify the
OPEN_FLAGS_NO_BUFFERING (OI00h) value. If the file has not been opened
with OPEN_FLAGS_NO_BUFFERING or Absolute Disk Write (Interrupt 26h)
has been used to. write to the parent volume, the application should call Reset
Drive (Interrupt 2Ih Function 7I0Dh) to flush the cache.

Before releasing the level 3 lock, the process is responsible for putting the file
system into a state consistent with what existed before the lock was obtained.
The process must be careful to correctly update all file system data, such as the
FAT or directory entries. If a file was opened, it must not be deleted, renamed,
or moved to a different volume. Otherwise, the system can become very unstable.
An application should use Enumerate Open Files (Interrupt 2Ih Function 440Dh
Minor Code 6Dh) to obtain a list of all open files on the volume.

When the level 3 lock is released, the system unblocks all read operations that
are pending, reopens closed files on demand, and puts the cache back into write
behind mode. The lock owner returns to a level 2 lock.

Using the Locking Hierarchy
An application should obtain a level 1 lock before beginning an operation, such
as a complete defragmentation or compression. The application should release
the level 1 lock only after the entire operation is finished. This approach prevents
other processes from obtaining a lock on the same disk, which would keep the
lock owner from finishing its work.

To minimize the time spent in the level 3 lock, a process should remain in the
level 2 lock to perform certain tasks, such as computing disk statistics and
preparing data packets to be written before actually writing them in the level 3
lock. As soon as a process enters the level 3 lock, the application must call Get
Lock Flag State (Interrupt 2Ih Function 440Dh Minor Code 6Ch) to determine
if anything on the disk has changed, such as the swap file growing or shrinking.
If a change has occurred, the process should release the level 3 lock, return to
the level 2 lock to recompute any needed information, and then obtain the level 3
lock again. If Get Lock Flag State shows that the disk has not changed, the
process should do its writing and then release the level 3 lock.

Swap File

Article 25 Exclusive Volume Locking 553

The system pager requires access to the swap file at all times, even when an
application has locked the volume containing the file. To ensure access, the
system always gives the system pager the opportunity to accept or reject a
lock request.

If the system grants a lock to a process, the requesting process must ensure
that data for the swap file remains unchanged and that the pager can safely
read from or write to the swap file at any time. In particular, the process must
not change the allocation chain of the swap file, and if it moves the swap file's
directory entry, it must ensure that the path to it is always consistent. Failure to
observe these guidelines can result in a system crash.

An application can determine the directory entry and allocation chain of the swap
file by retrieving the path of the file using Find Swap File (Interrupt 21h Function
440Dh Minor Code 6Eh).

The system permits the swap file to grow or shrink in the levelland 2 locks.
Because of this, an application should call Get Lock Flag State (Interrupt 21h
Function 440Dh Minor Code 6Ch) after obtaining a level 3 lock to determine
if anything on the disk has changed as the result of the swap file growing or
shrinking.

Virtual Devices
The system broadcasts a message to all virtual devices (VxDs) when an appli
cation makes a request for a lock. Any VxD that uses virtual block device and 110
supervisor services to carry out direct 110 on the given volume must check for
this message and either accept or reject the request when the message
is received.

If the VxD rejects the request, it must return the appropriate error value. In such
cases, the system does not grant the lock to the requesting application. If a VxD
accepts the request, it must avoid all operations that may affect the consistency
of the volume for the duration of the lock.

When the application releases the lock, the system again issues a broadcast
message. The VxD can resume normal operation at this point.

554 Programmer's Guide to Microsoft Windows 95

Volume-Locking Guidelines
Applications that lock and modify volumes should follow these guidelines to
avoid degrading system performance and to prevent data loss:

• If there are no open files on the volume, applications should perform
direct disk writes in a level 0 lock. Otherwise, they should use the locking
hierarchy and perform disk write operations in a level 3 lock.

• Applications should utilize the locking hierarchy to minimize the time
spent in a level 3 lock. They should only call disk I/O functions inside a
level 3 lock and drop down to (llevel 1 or 2 lock whenever possible.

Applications should neither terminate or relinquish control nor leave a
level 0 or 3 lock if the volume information is incomplete or invalid. When
applications leave one of these locks, the file system must be consistent
with what it was when they entered the lock because other applications
will regain access to the drive.

Because the Interrupt 21h file handle I/O functions rely on accurate infor
mation about the volume, applications should not use these functions when
the volume information is incomplete or invalid.

Applications should not move the swap file.

• Applications should not move memory-mapped files opened for write
access. Read-only memory-mapped files may be moved cluster by cluster. .

Applications may only move 32-bit Windows-based DLLs and executables
cluster by cluster.

• Applications may move directory entries for the swap file and open
memory-mapped files, but the path to them must always be consistent,
even in a level 3 lock.

Because read operations are blocked in the level 3 lock, all applications written
for 16-bit Windows, 32-bit Windows, or MS-DOS should follow these guidelines
to avoid deadlock while in a level 3 lock:

• Applications should only access the disk by using the low-level disk
functions (Interrupt 13h, Interrupt 25h, and Interrupt 26h) or the Interrupt
21h file handle read, write, seek, and 10CTL functions. Other MS-DOS
functions are not guaranteed to work. Windows or C run-time library file
1/0 functions should not be used, because these functions may contain
code or call code that is not safe to execute inside the level 3 lock.

• Applications should not yield control, update the screen, execute any user
interface code, or do anything else that could cause Windows 95 to load
a new or previously discarded segment, such as by spawning an application
or loading a DLL.

Article 25 Exclusive Volume Locking 555

• Windows-based applications must have all the code for a level 3 lock
contained within the processing for a single message. The application
should not process other messages or call any Windows functions.

Special Considerations for 32-bit Windows-Based Applications
32-bit Windows-based applications must call the exclusive volume-locking
IOCTL functions indirectly by opening VWIN32.VXD and using its
DeviceloControl interface.

In response, VWIN32.VXD issues the low-level disk 110 functions (Interrupt
13h, Interrupt 25h, and Interrupt 26h) as well as the MS-DOS Interrupt 21h
file handle read, write, seek, and IOCTL functions in the context of the calling
process.

32-bit Windows-based applications may safely call the Windows ReadFile,
WriteFile, SetFilePointer, and DeviceloControl functions within a level 3
lock. Other Windows or C run-time library functions should not be used while
in the level 3 lock, because these functions may call other functions that are not
safe inside a level 3 lock.

Special Considerations for 16-bit Windows-Based Applications
16-bit Windows-based applications may call the exclusive volume-locking
IOCTL functions directly using the Interrupt 21h interface, which is described
in the reference material. These applications must mark all of the code, data,
and resource segments that will be accessed while inside the level 2 and 3 locks
as PRELOAD NONDISCARDABLE in the module-definition (.DEF) file. This
marking prevents deadlock in case the system needs to load one of the applica
tion's segments from the executable file inside a level 3 lock.

Special 'Considerations for MS-OOS-Based Applications
MS-DOS-based applications may directly call the volume-locking IOCTL
functions by using Interrupt 21h, as described in the reference material.

When a windowed MS-DOS - based application obtains a level 3 lock, the
system forces it to full screen mode to avoid deadlock with the display driver.
When the application releases the level 3 lock, it remains in full screen mode.

Applications must not call the Advanced SCSI Programming Interface (ASPI)
functions inside a level 3 lock. These functions bypass the file system, leaving
it in an inconsistent state.

556 Programmer's Guide to Microsoft Windows 95

Functions

Reference

Functions

When MS-DOS-based applications run in single MS-DOS application mode
(real mode), they may issue the volume-locking IOGTL functions and the
functions will succeed. However, because there is no multitasking, there is only
one lock rather than a hierarchy as when Windows 95 is running. The volume
locking IOCTL functions will fail on down-level versions of MS-DO$.

The following functions can be used to manage exclusive volume locking.

Lock Logical Volume

Lock Physical Volume

Unlock Logical Volume

Unlock Physical Volume

Get Lock Flag State

Enumerate Open Files

Find Swap File

Get Current Lock State

Reset Drive

Interrupt 2Ih Function 440Dh Minor Code 4Ah

Interrupt 2Ih Function 440Dh Minor Code 4Bh

Interrupt 2Ih Function 440Dh Minor Code 6Ah

Interrupt 2Ih Function 440Dh Minor Code 6Bh

Interrupt 2Ih Function 440Dh Minor Code 6Ch

Interrupt 2Ih Function 440Dh Minor Code 6Dh

Interrupt 2Ih Function 440Dh Minor Code 6Eh

Interrupt 2Ih Function 440Dh Minor Code 70h

Interrupt 2Ih Function 7IODh

The exclusive-volume locking IOCTL functions are similar to other MS-DOS
functions. An application must copy function parameters to registers and issue
an Interrupt 21h instruction to carry out the call.

The following functions and structures are associated with exclusive-volume
locking IOCTL.

Interrupt 21 h Function 440Dh Minor Code 4Ah Lock
Logical Volume
mov ax, 440Dh generic IOCTL
mov bh, LockLeve 1 see below
mov bl , DriveNum see below
mov ch, 08h device category (must be 08h)
mov cl , 4Ah Lock Logical Volume
mov dx, Permissions see below
int 21h

jc error

Article 25 Exclusive Volume Locking 557

Locks the logical volume.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value .

. LockLeveZ-
Level of the lock. This parameter must be either 0, 1, 2, or 3.

DriveNum
Drive to lock. This parameter can be 0 for the default drive, 1 for A, 2 for B,
and so on.

Permissions
Operations that the system permits while the volume is locked. This param
eter is specified only when a level 1 lock is obtained or when a level 0 lock is
obtained for the second time for formatting the volume. For other lock levels,
this parameter is zero. When a level 1 lock is obtained, bits 0 and 1 of this
parameter specify whether the system permits write operations, new file
mappings, or both by other processes during a level 1 lock as well as during
level 2 and 3 locks. If this parameter specifies that write operations, new file
mappings, or both are failed, these operations are failed during levell, 2, and
3 locks. This parameter has the following form:

Bit Meaning

o 0 = Write operations are failed (specified when a level 1 lock is obtained).

o 1 = Write operations are allowed (specified when a level 1 lock is obtained).

1 0 = New file mapping are allowed (specified when a level 1 lock is
obtained).

1 1 = New file mapping are failed (specified when a level 1 lock is obtained).

2 1 = The volume is locked for formatting (specified when a level 0 lock is
obtained for the second time).

The volume must be locked before the application performs direct disk write
operations by using Interrupt 26h or the IOCTL control functions. Lock Physical
Volume (Interrupt 21h Function440Dh Minor Code 4Bh) is used instead of
this function before a call to an Interrupt 13h function. Unlock Logical Volume
(Interrupt 21h Function 440Dh Minor Code 6Ah) should be used to release the
lock.

558 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 440Dh Minor Code 4Bh Lock
Physical Volume
mov ax, 440Dh generic IOCTL
mov bh, LockLevel see below
mov b 1 , DriveNum see below
mov ch, 08h device category (must be 08h)
mov c 1 , 4Bh Lock Physical Volume
mov dx, Permissions see below
int 21h

jc error

Locks the physical volume.

Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

LockLevel
Level of the lock. This parameter must be either 0, 1, 2,· or 3.

DriveNum
Drive to lock. This parameter must be one of these values (same device unit
numbers as for Interrupt 13h):

00 -7Fh

80 - FFh

Permissions

Floppy disk drive (00 for the first floppy drive, 01 for the second,
and so on).

Hard disk drive (80 for the fIrst hard disk drive, 81 for the second,
and so on).

Operations that the system permits while the volume is locked. This param
eter is specified only when a level 1 lock is obtained or when a level ° lock is
obtained for the second time for formatting the volume. For other lock levels,
this parameter is zero. When a level 1 lock is obtained, bits ° and 1 of this
parameter specify whether the system permits write operations, new file
mappings, or both by other processes during a level 1 lock as well as during
level 2 and 3 locks. If this parameter specifies that write operations, new file
mappings, or both are failed, these operations are failed during levell, 2, and
3 locks. This parameter has the following form:

Bit Meaning

. 0 0 = Write operations are failed (specified when a level 1 lock is obtained).

o 1 = Write operations are allowed (specifIed when a level 1 lock is obtained).

Article 25 Exclusive Volume Locking 559

Bit Meaning

1 0 = New file mapping are allowed (specified when a level 1 lock is
obtained).

1 1 = New file mapping are failed (specified when a level 1 lock is obtained).

2 1 = The volume is locked for formatting (specified when a level 0 lock is
obtained for the second time).

The volume must be locked before the application performs direct disk write
operations by using Interrupt 13h,Interrupt 26h, or the Interrupt 2Ih IOCTL
functions. A single physical volume may be divided into more than one logical
volume, which is also called a partition. The system automatically takes a
logical volume lock on all logical volumes on the specified physical drive.
If the application performs disk writes only to a logical drive, Lock Logical

Volume (Interrupt 2Ih Function 440Dh Minor Code4Ah) is used instead of
this function. Unlock Physical Volume (Interrupt 2Ih Function 440Dh Minor
Code 6Bh) should be called to release the lock.

Interrupt 21 h Function 440Dh Minor Code 6AhUniock
Logical Volume
mov ax, 440Dh generic IOCTL
mov bl. DriveNum see below
mov ch, 08h device category (must be 08h)
mov cl , 6Ah Unlock Logical Volume
int 21h

jc error

Unlocks the logical volume or decrements the lock level.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

DriveNum
Drive to unlock. This parameter c,an be 0 for the default drive, I for A, 2 for
B, and so on.

This function is used to release the lock obtained by using Lock Logical Volume
(Interrupt 2Ih Function 440Dh Minor Code 4A1:;l). Only the lock owner can
release the lock on a volume.

To release the lock on the volume, an application must call Unlock Logical
Volume the same number of times that Lock Logical Volume was called.

560 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 440Dh Minor Code 6Bh Unlock
Physical Volume
mov ax.
mov bl .
mov ch.
mov cl •
int 21h

jc enter

440Dh
DriveNum
08h
6Bh

generic IOCTL
see below
device category (must be 08h)
Unlock Physical Volume

Unlocks the physical volume or decrements the lock level.

• Clears the carry flag if successful. Otherwise, the function sets the carry flag
and sets the AX register to an error value.

DriveNum
Drive to unlock. This parameter must be one of these values (same device unit
numbers as for Interrupt 13h):

00 -7Fh

80 - FFh

Floppy disk drive (00 for the first floppy drive, 01 for the second,
and so on).

Hard disk drive (80 for the first hard disk drive, 81 for the second,
and so on).

This function is used to release the lock obtained by using Lock Physical Volume
(Interrupt 21h Function 440Dh Minor Code 4Bh). Only the lock owner can
release the lock on a volume.

To release the lock on the volume, an application must call Unlock Physical
Volume the same number of times that Lock Physical Volume was called.

Interrupt 21 h Function 440Dh Minor Code 6Ch Get Lock
Flag State
mov ax, 440Dh generic IOCTL
mov bl. DriveNum see below
mov ch. 08h device category (must be 08h)
mov cl • 6Ch Get Lock Flag State
int 21h

jc error
mov [AccessFlag]. ax ; state of access flag

Polls the state of the access flag on a volume to determine if a write operation
(for example, deleting or renaming a file or writing to a file) or a new file
mapping has occurred since the last poll.

Article 25 Exclusive Volume Locking 561

Clears the carry flag and sets the AX register to one of the following values
if successful:

o No write operations or file mappings have occurred since the last poll.

1 A write operation has occurred since the last poll (clears the volume access flag).

2 A file mapping has occurred since the last poll, or a 32-bit Windows-based DLL
or executable has been opened (clears the volume access flag).

Otherwise, the function sets the carry flag and sets the AX register to an error
value.

DriveNum
Drive to poll. This parameter can be 0 for the default drive, 1 for A, 2 for B,
and so on.

Only the current lock owner may poll the access flag. The system fails
other processes with ERROR_ACCESS_DENIED error value. Write operations
performed by the lock owner do not cause a change in the state of the access flag.

When a lock is obtained that allows write operations or new file mappings, the
system sets a flag whenever one of these operations happens on the volume.
If a write operation or new file mapping has occurred since the last poll, Get
Lock Flag State returns 1 or 2 respectively in the AX register and clears the
volume access flag. If the swap file has grown or shrunk since the last poll~
Get Lock Flag State returns 1. Note that write operations to the swap file that do
not cause a change in size do not cause a change in the state of the access flag.
If a 32-bit Windows-based DLL or executable has been opened since the last
poll, Get Lock Flag State returns 2.

Interrupt 21h Function 4400h Minor Code 60h Enumerate
Open Files
mov ax, 440Dh
mov bx, DriveNum
mov ch, 08h
mov cl , 6Dh
mov dx, seg PathBuf
mov ds, dx
mov dx, offset PathBuf
mov s i , Filelndex
mov di , EnumType
int 21h

jc error
mov [OpenMode], ax
mov [Fil eType] , cx

generic IOCTL
see below
device category (must be 08h)
Enumerate Open Files
see below

see below
see below

mode file was opened in
normal file or memory-mapped file

562 Programmer's Guide to Microsoft Windows 95

Enumerates open files on the specified drive.

• Clears the carry flag, copies the path of an open file to the given buffer, and
sets the AX and CX registers to the following values if successful:

AX Mode that the file was opened in, which is a combination of access
mode, sharing mode, and open flags. It can be one value each from
the access and sharing modes and any combination of open flags.

Access modes

OPEN_ACCESS_READONL Y (OOOOh)

OPEN_ACCESS_ WRITEONL Y (OOOIh)

OPEN_ACCESS_READWRITE (0002h)

OPEN_ACCESS_RO_NOMODLASTACCESS (0004h)

Share modes

OPEN_SHARE_COMPATIBLE (OOOOh)

OPEN_SHARE_DENYREADWRITE (OOIOh)

OPEN_SHARE_DENYWRITE (0020h)

OPEN_SHARE_DENYREAD (0030h)

OPEN_SHARE_DENYNONE (0040h)

Open flags

OPEN_FLAGS_NOINHERIT (0080h)

OPEN_FLAGS_NO_BUFFERING (OIOOh)

OPEN_FLAGS_NO_COMPRESS (0200h)

OPEN_FLAGS_ALIAS_HINT (0400h)

OPEN_FLAGS_NOCRITERR (2000h)

OPEN_FLAGS_GOMMIT (4000h)

CX File type. It can be one of the following values:

o For normal files

I For memory-mapped files (memory-mapped files are
unmovable)

2 For any other unmovable files (32-bit Windows-based DLLs
and executables)

4 For the swap file

Article 25 Exclusive Volume Locking 563

Note that if a memory-mapped file is returned (CX = 1), the value returned
in the AX register is limited to the following values:

OPEN_ACCESS_READONL Y (OOOOh)

OPEN_ACCESS_READWRITE (0002h)

Otherwise, the function sets the carry flag and sets the AX register to the
following error value:

DriveNum

The value of Filelndex exceeds the number of
open files on the drive.

Drive on which to enumerate the files. This parameter can be 0 for the default
drive, 1 for A, 2 for B, and so on.

PathBuf
Address of a buffer that receives the path of the open file. The length of the
buffer varies depending on the volume. Get Volume Information (Interrupt
21h Function 71AOh) is used to determine the maximum allowed length of
a path for the volume.

Filelndex
Index of the file to retrieve the path for.

EnumType
Kind of file to enumerate. This parameter can be 0 to enumerate all open files
or 1 to enumerate only open unmovable files, including open memory-mapped
files and other open unmovable files (32-bit Windows-based DLLs and
executables).

This function returns information about one file at a time. To enumerate all open
files, the function must be called repeatedly with Filelndex set to a new value for
each call. Filelndex should be set to zero initially and then incremented by one
for each subsequent call. The function returns the ERROR_NO _MORE_FILES
error value when all open files on the volume have been enumerated.

This function may return inconsistent results when used to enumerate files on
an active volume-that is, on a volume where other processes may be opening
and closing files. Applications should use Lock Logical Volume (Interrupt 21h
Function 440Dh Minor Code 4Ah) to take a level 3 lock before enumerating open
files.

564 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 440Dh Minor Code 6Eh Find Swap
File
mov ax, 440Dh generic IOCTL
mov ch, 08h device category (must be 08h)
mov cl , 6Eh Find Swap File
mov dx, seg PathBuf see below
mov ds, dx
mov dx, offset PathBuf
int 21h

jc error
mov [PagerType], ax pager type
mov WORD PTR [FileSize], bx
mov WORD PTR [FileSize+2], cx

swap file size in 4K pages

Retrieves information about the swap file.

• Clears the carry flag, copies the swap file path to the given buffer, and sets the
following registers if successful:

AX

CX:BX

Pager type. It can be 1 for no pager, 2 for paging through MS-DOS,
and 3 for paging through the protected-mode input and output (110)
supervisor.

Current size of the swap file in 4K pages.

Otherwise, this function sets the carry flag and sets the AX register to an error
value. .

PathBuf
Address of the buffer that receives the path of the swap file. To determine
the maximum allowed length of a path for the volume, call Get Volume
Information (Interrupt 21h Function 71AOh).

Interrupt 21 h Function 440Dh Minor Code 70h Get Current
Lock State
mov ax, 440Dh generic IOCTL
mov b 1 , DriveNum see below
mov ch, 08h device category (must be 08h)
mov cl , 70h Get Current Lock State
int 2H1

jc error

Article 25 Exclusive Volume Locking 565

Retrieves the current lock level and permissions on the specified drive.

Clears the carry flag and sets the AX and CX registers to these values
if successful:

AX Current lock level. It may be either 0, 1,2 or 3. If the volume is not
locked, AX contains -1

CX Lock permissions. The bits have the following form:

Bit Meaning

o 0 = Write operations are failed.

o 1 = Write operations are allowed, unless they are blocked by
the lock level.

1 0 = New file mapping are allowed, unless they are blocked by
the lock level.

1 1 = New file mapping are failed.

2 1 = The volume is locked for formatting.

DriveNum
Drive to retrieve lock information about. This parameter can be 0 for the
default drive, 1 for A, 2 for B, and so on.

The lock level and the permissions determine the kind of access processes
other than the lock owner have to the volume while it is locked. The following
operations are allowed by processes other than lock owner at each lock level:

Level

o

2

3

Operations

Read operations, write operations, and new file mappings are failed.

Read operations are allowed. Write operations and new file mappings
are either allowed or failed based on permissions.

Read operations are allowed. Write operations and new file mappings
are either failed or blocked based on permissions.

Read operations are blocked. Write operations and new file mappings
are either failed or blocked based on permissions.

566 Programmer's Guide to Microsoft Windows 95

Interrupt 21 h Function 710Dh Reset Drive
mov ax, 710Dh Reset Drive
mov ex, Flag see below
mov dx, DriveNum see below
int 21h

je error

Flushes file system buffers and caches and optionally remounts the drivespace
volume. Any write operations that the system has buffered are performed, and
all waiting data is written to the appropriate drive.

• This function has no return value.

Flag
Flag specifying whether the system should flush and invalidate the data in
the cache as well as the file system buffers. This parameter must be one of
these values:

OOOOh
OOOlh

0002h

Resets the drive and flushes the file system buffers for the given drive.

Resets the drive, flushes the file system buffers, and flushes and
invalidates the cache for the specified drive.

Remounts the drivespace volume.

The Flag value of 0002h is only supported on drivespace volumes. You
should specify this value when the on-media format of the drivespace volume
has changed and you want the file system to reinitialize and read the new
format.

DriveNum
Drive to reset. This parameter can be 0 for the default drive, 1 for A, 2 for B,
and so on.

ARTICLE 26

Program Information File
Management

About Program Information File Management

567

Program information file management lets Microsoft® Windows®-based
applications create, examine, and modify program information files (.PIF files).
These files contain the detailed information needed by the operating system to
prepare virtual machines for running Microsoft® MS-DOS®-based applications.
Installation programs and other applications can open the files, retrieve and
set information in these files, and display the information to the user for
editing. This article describes program information file management and the
corresponding functions and structures provided by the dynamic-link library
(DLL) called PIFMGR.DLL.

Program Information Files
A .PIP file contains information about the properties of an MS-DOS-based
application. These properties define how the application uses resources, such
as memory, and specify the computer's devices, the virtual machine, and the
window that the application is displayed in.

A .PIF file typically has the same filename as the corresponding MS-DOS-based
application, but with the .PIF filename extension. Every .PIF file contains one or
more sections called information groups. Each group has a unique name or ordi
nal. Applications use the name or ordinal to identify the group to be examined or
modified.

568 Programmer's Guide to Microsoft Windows 95

Many groups are predefined and have associated structures that define the
content of the group. The following predefined groups are listed by their ordinal.

Group ordinal

GROUP_ENV

GROUP_FNT

GROUP_KBD

GROUP_MEM

GROUP_MSE

GROUP_PRG

GROUP_TSK

GROUP_VID

GROUP_WIN

Information

Environment. This group uses a PROPENV structure.

Fonts. This group uses a PROPFNT structure.

Keyboard. This group uses a PROPKBD structure.

Memory. This group uses a PROPMEM structure.

Mouse. This group uses a PROPMSE structure.·

Program~ This group uses a PROPPRG structure.

Task. This group uses a PROPTSK structure.

Video. This group uses a PROPVID structure.

Windows. This group uses a PROPWIN structure.

The following predefined groups are identified by name (null-terminated string).

Group name

AUTOEXECBAT 4.0

CONFIG SYS 4.0

MICROSOFT PIFEX

WINDOWS 286 3.0

WINDOWS 386 3.0

WINDOWS VMM 4.0

Information

AUTOEXEC.BAT file image used for an application
if the application is marked to run in MS-DOS mode.

CONFIG.SYS file image used for an application if the
application is marked to run in MS-DOS mode.

Windows versions l.x and 2.x information.

Windows version 3.x standard mode information.
This group uses a W286PIF30 structure.

Windows version 3.x enhanced mode information.
This group uses a W386PIF30 structure.

Windows 95 information. This group uses a
WENHPIF40 structure.

Applications can also create new groups called P[F extensions to store informa
tion that is specific to the given MS-DOS-based application. All new groups are
identified by name only, and the format of the information is entirely application
defined. If PIF extensions are used to store application-specific information,
applications do not need to store the information in .INI files.

Program information file management supports .PIF files in these formats:
Windows version l.x, Windows version 2.x, Windows version 3.x, and
Windows 95.

Properties

Article 26 Program Information File Management 569

To access the properties in a .PIF file, you first open the file by using the
OpenProperties function. You can open a .PIF file directly by supplying the
name of the file. Otherwise, you can supply the name of an MS-DOS-based
application (that is, a file having the .COM, .EXE, or .BAT filename extension),
and the function will open the corresponding .PIF file. If the function does not
find the .PIF file in the current directory, it searches the WINDOWS directory,
the Windows SYSTEM directory, the Windows PIP directory, and finally the
directories on the current path to locate the file.

After opening the .PIF file, OpenProperties loads the properties into memory
and returns a properties handle that you use in subsequent functions to identify
the information. If you try to open a .PIF file that does not exist, the function
creates a temporary file in memory and initializes it using internal data or data
from the _DEFAULT.PIF file. To locate the _DEFAULT.PIF file, the function
first searches the PIF directory and then searches for it in the directories
on the current path. Unlike Windows version 3.1, Windows 95 does not create
the _DEFAULT.PIF file. A system will have a _DEFAULT.PIF file only if it
inherited one from a Windows version 3.1 installation, or if one was created
manually.

You can retrieve individual properties by using the GetProperties function. You
specify the property to retrieve by group name or ordinal. The name can be any
predefined name, as given in the previous section, or the name of your own
group. If you do not know the size of the information group, you can determine
it by using the GetProperties function, specifying zero as the size. The function
copies no data, but it returns the size of the requested group. You use this size in
a subsequent call to retrieve the group.

You can change property information by using the SetProperties function. You
specify the property to change by group name or ordinal and provide a copy of
the new information. SetProperties typically saves changes to disk as you make
the changes. You can direct SetProperties to cache the changes in memory by
specifying the SETPROPS_CACHE value. Caching the changes lets you use the
FlushProperties function later to either discard the changes or save them to disk.

You can create your own information group by using the SetProperties function,
specifying the format for the information in the group. The operating system
returns the information in exactly the same format as you create it. You can also
use SetProperties to remove an information group.

Once you have finished using the properties information from a .PIF file, you
must close it by using the CloseProperties function. If you make changes to a
temporary file, CloseProperties will permanently save the property information
in a new file on disk.

570 Programmer's Guide to Microsoft Windows 95

You can enumerate all loaded .PIF files by using the EnumProperties function.
Each call to the function retrieves a properties handle, which you can use in the
next call to EnumProperties to retrieve the next handle. The function returns
zero when all open properties have been enumerated.

You can enumerate all named information groups associated with a properties
handle by using the GetProperties function. The function copies the name of
the group that corresponds to a zero-based group index to the specified 16-byte
buffer. You can continue to call GetProperties, incrementing the index before
each call, to retrieve all group names. The function returns zero when all groups
have been enumerated. To minimize disk usage, the PIF manager does not
store an information group if all settings have default values. This means that
GetProperties may return the name of a group for which no PIF extension
actually exists.

You can let the user edit property information by using the EditProperties
function. The function displays a property sheet for each group listed in the
previous section. When the user chooses a sheet, the function displays all
the properties within the group and allows the user to edit the properties.
EditProperties saves any changes, copying them back to the .PIF file. Some
changes may not affect currently running applications, but they will apply to
subsequently started applications.

The operating system may associate a given virtual machine or window handle
with a specific set of properties. You can determine which handles are associated
with a given set by using the AssociateProperties function. Generally, only
system components should change these associations.

To retrieve a complete copy of the .PIF file, specify the OPENPROPS_RA WIO
value when opening the file using the OpenProperties function. Reading or
writing the entire file requires a thorough understanding of the .PIF file format
and is not recommended.

Property Sheets
A property sheet is a set of controls that gives users access to the information
in an information group. Property sheets are used by the EditProperties
function to create a dialog box that displays the current values for settings in
the information group and lets users edit those values. EditProperties uses
default property sheets for each of the predefined information groups, but
the function requires custom property sheets for any information groups that
contain application-specific information.

Article 26 Program Information File Management 571

An application or DLL can add a property sheet to the system by using the
AddPropertySheet function. Before adding the property sheet, you must fill
a PROPSHEETPAGE structure with names or values identifying the dialog
box template, dialog box procedure, icon resource, and other resources to be
used to display and manage the property sheet. Property sheets can be simple or
advanced. Simple property sheets typically display a small set of values from the
information group, and advanced property sheets display all values. You specify
the property sheet type when you add the property sheet to the .PIF file.

You can retrieve· information about the property sheets associated with a
.PIF file by using the EnumPropertySheets function. For each property sheet,
the function copies information, such as the name of the dialog box template
and dialog box procedure, to a PROPSHEETPAGE structure. To use
EnumPropertySheets, you must first load the property sheets by using the
LoadPropertySheets function. After retrieving the property sheet information,
you should free the loaded sheets by using the FreePropertySheets function.

To remove a property sheet from the system,use the RemovePropertySheet
function.

Property Libraries
A property library is a DLL that provides dialog box templates and procedures
for displaying property sheets and editing properties. Property libraries let you
develop property sheets for information groups that are specific to your MS-DOS
- based applications. These libraries ensure that system applications, such as the
shell, can display the application-specific information and allow users to edit it.

You can register a property library by using the LoadPropertyLib function.
The function records the name of the library and returns a handle, but it does
not actually load the library. You use the handle when adding property sheets
to the .PIF file to identify the library containing the template and dialog box
procedure for the property sheet. The system eventually loads the library when
the user attempts to access the property sheet. You can enumerate the currently
registered property libraries by using the EnumPropertyLibs function. When
you no longer need a given property library, you should free it by using the
FreePropertyLib function.

Properties and Virtual Devices
Virtual devices (VxDs) also have access to information in .PIF files. This means
that any VxDs you create to support MS-DOS-based applications can use
information in the .PIF file. Typically, you add a specific PIF extension for
use by the VxD and create corresponding a property sheet to give the user the
opportunity to edit the information.

572 Programmer's Guide to Microsoft Windows 95

Reference

Functions

A VxD cannot retrieve property information directly. Instead, it installs a call
back procedure using the SHELL_Hook_Properties service provided by the
Shell virtual device (SHELL.VXD). The system notifies the VxD of changes to
the properties by calling the callback procedure. The VxD can install callback
procedures as either predefined or customized groups.

The following functions and structures are associated with program information
file management.

. The following functions are used with program information file management.

Add PropertySheet
int AddPropertySheet(LPPROPSHEETPAGE lppsi, int iType)

Adds a new property sheet.

• Returns a property sheet handle if successful or NULL otherwise.

lppsi
Address of the PROPSHEETPAGE structure containing the property sheet
information.

iType
Sheet type. This parameter can be either the SHEETTYPE_SIMPLE or
SHEETTYPE_ADV ANCED value.

AssociateProperties
long AssociateProperties(int hProps, int iAssociate, long lData)

Associates data with the given property information. This function can also return
the currently associated data without associating new data.

• Returns the data previously associated with the given index data. If no data
was previously associated or an error occurs, the function returns zero.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

iAssociate
Association index. This parameter can be the HVM_ASSOCIATION or
HWND_ASSOCIATION value.

Article 26 Program Information File Management 573

lData
Data to associate. This parameter can be any 32-bit value or address.

Association of data is reserved exclusively for system components. Applications
may use this function to retrieve the associated data, but they must not set the
associated data.

If iAssociate is negative, the currently associated value is returned, but it is not
modified. In other words, lData is ignored.

CloseProperties
int CloseProperties(int hProps, int flOpt)

Closes the property information for the application.

• Returns NULL if successful or the properties handle otherwise.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

flOpt
Operation flag. This parameter can be the CLOSEPROPS_DISCARD value to
discard the data or zero to save cached program information data by copying it
to the .PIF file on disk.

EditProperties
int EditProperties(int hProps, LPSTR lpszTitle, UINT uStartPage,

HWND hwnd, UINT uMsgPost)

Displays the editing dialog box, allowing the user to edit the given property sheet
information.

• Returns TRUE if successful or FALSE otherwise.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

lpszTitle
Address of null-terminated string specifying the title of the editing dialog box.
If no title is needed, this parameter can be NULL.

uStartPage
Number of the first property sheet to edit.

574 Programmer's Guide to Microsoft Windows 95

hwnd
Parent window handle. If no parent window needed, this parameter can be
NULL.

uMsgPost
Notification message value. If no notification message is needed, this param
eter can be zero. If it is not zero, the function posts a message having this
value to the parent window whenever properties change. The wParam
parameter in the posted message specifies the size of the changed data, and
the lParam parameter specifies the name or ordinal of the changed group.

EnumProperties
int EnumProperties(int hProps)

Enumerates all open properties handles.

• Returns a properties handle or zero if all properties have been enumerated.

hProps
Properties handle. It must have been previously returned by EnumProperties,
or it must be NULL to start enumeration.

EnumPropertyLibs
int EnumPropertyLibs(int iLib, LPHANDLE lphDLL, LPSTR lpszDLL,

i nt cbszDLL)

Enumerates property libraries, filling the variables with the module handle and
name of each library.

• Returns a library identifier if successful. If all libraries have been enumerated
or an error occurs, the function returns zero.

iLib
Library identifier. It must have been previously returned by the
EnumPropertyLibs function or must be zero to start enumeration.

lphDLL
Address of the variable that receives the module handle of the library. If the
handle is not needed, this parameter can be NULL.

lpszDLL
Address of the buffer that receives the zero-terminated name of the library.
If the name is not needed, this parameter can be NULL.

cbszDLL
Size, in bytes, of the buffer pointed to by lpszDLL.

Article 26 Program Information File Management 575

EnumPropertySheets
int EnumPropertySheets(int hProps. int iType. int iSheet.

LPPROPSHEETPAGE lppsi)

Enumerates property sheets.

• Returns a property sheet handle if successful. If all property sheets have been
enumerated or an error occurs, the function returns zero.

hProps
Properties handle. It must have been created previously by using the Open
Properties function.

iType
Sheet type. This parameter can be either the SHEETTYPE_SIMPLE or
SHEETTYPE_ADV ANCED value.

iSheet
Property sheet handle. It must have been previously returned by
EnumPropertySheets or must be zero to start enumeration.

lppsi
Address of the PROPSHEETP AGE structure that receives the property sheet
information.

FI ush Properties
int FlushProperties(int hProps. int flOpt)

Flushes or discards cached property information. The function flushes data by
copying the data to the corresponding .PIF file on disk.

• Returns TRUE if successful or FALSE otherwise.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

flOpt
Operations flag. This parameter can be the FLUSHPROPS_DISCARD value
to discard the cached program information data or zero to flush the data to
the corresponding .PIF file.

576 Programmer's Guide to Microsoft Windows 95

FreePropertyLib
BOOl FreePropertylib(int hlib)

Frees an installable property library.

• Returns TRUE if successful or FALSE otherwise.

hLib
Handle of the property library.

FreePropertySheets
int FreePropertySheets(int hProps, int flags)

Frees all property sheets for the .PIF file identified by the given properties
handle.

• No return value.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

flags
Reserved; must be zero.

GetProperties
int GetProperties(int hProps, lPSTR lpszGroup, lPVOID lpProps,

int cbProps, int flOpt)

Retrieves property information for the given group; retrieves the size, in bytes,
of the property information; or enumerates all named groups in the .PIP file.

• Returns the size, in bytes, of the information retrieved if successful. If the
group is not found, all groups have been enumerated, or an error occurred,
the function returns zero.

hProps
Properties handle.

Article 26 Program Information File Management 577

lpszGroup
Group ordinal, address of a null-terminated string specifying the name of the
property group, or NULL. If a name is given, it must be the name of a valid
PIF extension or one of these predefined group names:

MICROS Off PIFEX

WINDOWS 286 3.0

WINDOWS 386 3.0

WINDOWS VMM 4.0

If a group ordinal is given, it can be one of these predefined ordinals:

GROUP _ENV GROUP _PRG

GROUP_KBD

GROUP_MEM

GROUP_MSE

GROUP_TSK

GROUP_VID

GROUP_WIN

The ordinal must be in the low-order word, and zero must be in the high-order
word.

If NULL is specified, the function enumerates all named groups. In this case,
cbProps must be a zero-based group name index, and lpProps must be the
address of the 16-byte buffer that receives the name of the given group.

lpProps
Address of the buffer that receives the property information. The size of the
buffer depends on the type of information retrieved.

cbProps
Size, in bytes, of the buffer pointed to by lpProps. If cbProps is zero and
lpszGroup is not NULL, the function returns the size of the corresponding
property information without copying that information to the lpProps buffer.

flOpt
Operations flag. This parameter can be the GETPROPS_RA WIO value to
read the entire .PIF file as a single, unformatted block (that is, lpszGroup
is ignored) or zero to read the given group.

578 Programmer's Guide to Microsoft Windows 95

LoadPropertyLib
int LoadPropertyLib(LPSTR lpszDLL. int fLoad)

Loads a property library.

• Returns the handle of the property library if successful or FALSE otherwise.

lpszDLL
Address of a null-terminated string specifying the name of a property library.

fLoad
Load flags. This parameter can be zero or the LOADPROPLIB_.DEFER
value. Specifying LOADPROPLIB_.DEFER defers loading of the property
library until LoadPropertySheets is called and automatically unloads the
library when FreePropertySheets is called. LoadPropertySheets and
FreePropertySheets may be called directly by an application or indirectly
when an application calls the EditProperties function. When a deferred
library is loaded, its initialization handler must call AddPropertySheet for all
the sheets to be added. When the deferred library is unloaded, its Windows
exit procedure (WEP) handler must call RemovePropertySheet for all added
sheets if it has not already freed them.

Load PropertySheets
int LoadPropertySheets(int hProps. int flags)

Loads all property sheets for the .PIF file identified by the given properties
handle.

• Returns the number of sheets loaded if successful or zero otherwise.

hProps
Properties handle. It must have been created previously by using the
OpenProperties function.

flags
Reserved; must be zero.

Article 26 Program Information File Management 579

Open Properties
int OpenProperties(LPSTR lpszApp, LPSTR lpszPIF, int hInf, int flOpt)

Opens the .PIF file associated with the given application and returns a properties
handle that identifies the property information for the application.

• Returns a properties handle if successful. If the .PIF file cannot be opened or
there is insufficient memory to load the PIF data, the function returns FALSE.

IpszApp
Address of a null-terminated string specifying the filename of an MS-DOS
based application.

IpszPIF
Address of a null-terminated string specifying a new PIF filename to create.
If the file is created successfully, the returned properties handle operates on
that file. Any .PIF file for the specified MS-DOS-based application that exists
in the PIF directory or on the path is still opened and read to obtain the initial
set of properties to be stored in the new .PIF file.

hlnJ
Information handle. This parameter can be zero if no information handle is
needed or -1 to prevent information processing. If zero is specified, the
APPS .INF file is used by default.

flOpt
Operations flag. This parameter can be the OPENPROPS_RAWIO value to
open the .PIF file for raw file input and output (110) or zero to open the file
for standard access.

The function loads the content of the given .PIF file into memory and then closes
the file, preserving the contents in memory until the properties handle is closed.
If the given .PIF file does not exist, the function allocates memory and loads it
with default PIF data. This function fails if there is insufficient memory for the
PIF data or the given .PIF file exists but cannot be opened.

580 Programmer's Guide to Microsoft Windows 95

RemovePropertySheet
BOOl RemovePropertySheet(int hSheet)

Removes a property sheet.

• Returns TRUE if successful or FALSE otherwise.

hSheet
Property sheet handle. It must have been previously created by using the
AddPropertySheet function.

SetProperties
int SetProperties(int hProps, lPSTR lpszGroup, lPvoro lpProps,

int cbProps, int flOpt)

Sets property information for the given group, removes the given group from the
.PIF file, or writes raw data to the .PIF file.

• Returns the number of information bytes written to the .PIF file if successful.
If the group does not exist or an error occurs, the function returns zero.

hProps
Properties handle. It must have been previously opened by using the
OpenProperties function.

IpszGroup
Group ordinal or address of a null-terminated string specifying the name of
the property group. If a name is given, it must be the name of a valid PIF
extension or one of these predefined names:

MICROSOFf PIFEX

WINDOWS 286 3.0

WINDOWS 386 3.0

WINDOWS VMM 4.0

If a group ordinal is given, it can be one of these predefined ordinals:

GROUP _ENV GROUP _PRG

GROUP_KED

GROUP_MEM

GROUP_MSE

GROUP_TSK

GROUP_VID

GROUP_WIN

The ordinal must be in the low-order word, and zero must be in the high-order
word.

Structure

Article 26 Program Information File Management 581

lpProps
Address of the buffer that contains the property information to write to the
.PIP file.

cbProps
Size, in bytes, of the information pointed to by lpProps. If cbProps is zero
and lpszGroup is not NULL, the function removes the given group from the
.PIP file.

flOpt
Operations flag. This parameter can be one of these values:

o
SETPROPS_RA WIO

SETPROPS_CACHE

Writes information to the given group.

Writes data to the .PIF file as if it were a single,
unformatted block. (The lpszGroup parameter is
ignored).

Caches changes until properties are closed by
using the CloseProperties function.

The following structure is used with program information file management.

PROPSHEETPAGE
typedef struct _PROPSHEETPAGE

DWORD dwSize;
DWORD dwFlags;
HINSTANCE hInstance;
union {

LPCSTR pszTemplate;

Il'size of structure, in bytes
II see below
II instance handle for template

II resource name of template
const VOID FAR *pResource; II address of resource in memory

} ;

union {
hlcon; II icon handle HICON

LPCSTR pszIcon; II icon name or identifier
} ;

LPCSTR
DLGPROC

pszTitle; II string or string identifier
pfnDlgProc; II address of dialog box procedure

LPARAM lParam; II user data
LPFNRELEASEPROPSHEETPAGE pfnRelease; II see below
UINT FAR * pcRefParent; II address of ref count variable

} PROPSHEETPAGE, FAR *LPPROPSHEETPAGE;

Contains information about the property sheet.

582 Programmer's Guide to Microsoft Windows 95

dwFlags
Flags identifying which members contain valid values. This member can be a
combination of these values:

PSP _DLGINDIRECT

PSP _ USEICONID

PSP_USERELEASEFUNC

PSP_USERREFPARENT

pfnRelease

The pszTemplate member contains address of
resource template name. The pResource member
is not valid. The hlcon, pszlcon, pfnRelease,
and pcRefParent members are not used.

The pResource member contains address
of a dialog box template in memory.
The pszTemplate member is not valid.

The hlcon member contains a valid icon handle.
The pszIcon member is not valid.

The pszIcon member contains the address of
a valid resource name or resource identifier.
The hlcon member is not valid.

The pfnRelease member has the address of the
function to call before releasing the property
sheet.

The pcRefParent member contains the address
of the variable to the receive reference count.

Address of the release function. The operating system calls this function
before destroying the given property sheet.

583

ARTICLE 27

Virtual Machine Services

About Virtual Machine Services

Window Title

Virtual machine services allow Microsoft® MS-DOS®-based applications to take
advantage of features provided by Microsoft® Windows® 95 when the applications
run in a window. MS-DOS-based applications can retrieve and, optionally, set the
title of the window in which they run.

This article describes the virtual machine services and shows how to use them in
MS-DOS - based applications.

The window title for an MS-DOS-based application, which is displayed when the
application runs in a window, identifies the application and its operating state. The
operating system sets the title when an application first starts, but the application
can change portions of the title to better communicate its state to the user.

The window title consists of three strings: a virtual machine state, a virtual machine
title, and an application title. The system creates the window title by concatenating
the three strings, separating the strings with a system-defined separator, typically a
hyphen.

The virtual machine state, which can be set by the operating system only, identifies
whether the virtual machine is inactive or whether the user is carrying out tasks,
such as cut and paste operations. The state is frequently an empty string. The virtual
machine title and the application title, which can be set by an application, identify
the application and the current document or activity of the application, respectively.

By default, the operating system sets the virtual machine title to the title stored in
the corresponding .PIP file or to a title specified by the shell. You can determine
the current virtual machine title by using the Get Virtual Machine Title function.
You can change the title by using the Set Virtual Machine Title function.

584 Programmer's Guide to Microsoft Windows 95

The system typically sets the application title to the name of the application,
so the virtual machine title and application title are frequently the same when
the application fIrst starts. Many applications change this title to the name of the
current document or to an empty string if there is no current document. You can
determine the current application title by using the Get Application Title function.
You can change the title by using the Set Application Title function.

If you set the virtual machine title or application title, the length of the individual
titles must not exceed 30 and 80 characters, respectively.

You can call the window title functions at any time. Furthermore, you can call these
functions regardless of whether your application is running with the Windows 95 or
MS-DOS operating system. However, not all operating systems support these calls.
The functions are not supported if a call to a function leaves the AX register
unchanged.

Close-Aware Applications
A close-aware application is any MS-DOS-based application that periodically
checks the state of an internal close flag and terminates if the flag is set. Windows
95 sets this flag when the user chooses the Close command from the system
menu of the window in which the MS-DOS-based application runs. Close-aware
applications enable the Close command, which gives the user an alternate way to
exit the application and close the window.

An application enables or disables the Close command by using the Enable or
Disable Close Command function. The function takes a flag indicating whether to
enable or disable the command. Once the command is enabled, the application must
periodically check the close flag by using the Query Close function. The function
returns zero in the AX register if the user has chosen the command.

If the Query Close function returns zero in AX, the application should call the
Acknowledge Close function to acknowledge the close state of the internal close
flag. After the application acknowledges the close state, subsequent calls to the
Query Close function will return 1 in AX, indicating that the user has chosen the
Close command and the close state has been acknowledged. After acknowledging
the close state, an application should take all necessary steps to shut down and
eventually exit, or it should cancel the close operation by calling the Cancel Close
function.

An application should acknowledge the close state if it needs to perform additional
keyboard input before exiting. When the close state has been signaled but has not
yet been acknowledged by the application, all keyboard reads will return NULL
and buffered line input will return an empty string.

Article 27 Virtual Machine Services 585

After an application acknowledges the close state, the state changes back to
unacknowledged if the application either exits or cancels the close operation.
If the application acknowledges the close state and then exits, the parent process
will be in an unacknowledged close state. The application must then acknowledge
the close state to perform additional keyboard input before exiting or canceling the
close operation.

For example, if a text editor receives a positive response from the Query Close
function and has some buffers that have not been saved, it should call Acknowledge
Close and ask the user if the buffers should be saved with these possible responses:
"Yes," "No," or "Cancel."

If the user responds "Yes" or "No," the text editor should save (or not save if the
response was "No") the buffers and then exit. The close state remains active, and
the parent process (probably the command interpreter) will also receive a positive
response from Query Close and will also terminate.

If the response is "Cancel," the application should call the Cancel Close function
and not exit. Canceling the close operation informs the system that any attempted
shutdown should be abandoned.

This sequence of operations is analogous to the way that Windows-based
applications handle the WM_QUERYENDSESSION message.

Depending on the tasking option chosen for the application, there may be some
time between when the user chooses the Close command and the application checks
the internal close flag. During this time, the system changes the window title of the
application, appending the word "Closing" to it, and gives the user the opportunity
to cancel the command by changing the command name to Cancel Close. If the
user chooses the Cancel Close command, the close flag is reset, preventing the
application from closing. If a close-aware application fails to check the close flag
within a system-defined amount of time, the system automatically abandons the
operation and resets the close flag.

The system tracks the close-awareness and close state for each process. For the
virtual machine to close, all applications in the virtual machine must close. When
the user chooses the Close command, the operating system detects applications
that are not close-aware and displays a dialog box with a warning message, but
gives the user the option of forcing the application to exit anyway. If you make
an application close-aware, it can shut down cleanly.

586 Programmer's Guide to Microsoft Windows 95

Reference
The following functions and commands are associated with virtual machine
services.

Window Title Functions
The following window title functions are used with virtual machine services.

Get Application Title
mov ah, 16h Windows multiplex function
mov al, 8Eh VM Title
mov di , seg AppTitle see below
mov es, di
mov di , offset AppTitle
mov cx, Size see below
mov dx, 2 Get Application Titl e
int 2Fh
cmp ax, 1
je success

Copies the application title to the specified buffer.

• Returns 1 in the AX register if successful or zero otherwise.

AppTitle
Address of a buffer that receives the application title. This parameter must not
be zero.

Size
Size, in bytes, of the buffer pointed to by AppTitle.

Get Application Title copies as much of the title as possible, but never more than
the specified number of bytes. The function always appends a terminating null
character to the title in the buffer.

Article 27 Virtual Machine Services 587

Get Virtual Machine Title
mov ah, 16h Windows multiplex function
mov a 1 , 8Eh VM Title
mov di , seg VMTitl e see below
mov es, di
mov di , offset VMTitle
mov cx, Size see below
mov dx, 3 Get Virtual Machine Title
int 2Fh
cmp ax, 1
je success

Copies the virtual machine title to the specified buffer.

• Returns 1 in the AX register if successful or zero otherwise.

VMTitie
Address of a buffer that receives the virtual machine title. This parameter must
not be zero ..

Size
Size, in bytes, of the buffer pointed to by VMTitle.

Get Virtual Machine Title copies as much of the title as possible, but never more
than the specified number of bytes. The function always appends a terminating null
character to the title in the buffer.

Set Application Title
mov ah, 16h
mov a 1 , 8Eh
mov di , seg AppTit 1 e
mov es, di
mov di , offset AppTitl e
mov dx, 0
int 2Fh
cmp ax, 1
je success

Windows multiplex function
VM Titl e
see below

Set Application Title

Sets the application title to the given string.

• Returns 1 in the AX register if successful or zero otherwise.

588 Programmer's Guide to Microsoft Windows 95

AppTitle
Address. of a null-terminated string specifying the application title. The title
must not exceed 80 characters, including the terminating null character. If this
parameter is zero or points to an empty string, the function removes the current
application title.

Although not common, Set Application Title may return 1 in the AX register even
though the title was not changed. In general, applications must not rely on the
operating system to keep an accurate copy of the current title.

Set Virtual Machine Title
mov ah, 16h Windows multiplex function
mov a 1 • 8Eh VM Title
mov di • seg VMTitl e see below
mov es. di
mov d i , offset VMTitle
mov dx. 1 Set Virtual Machine Title
int 2Fh
cmp ax, 1
je success

Sets the virtual machine title to the given string. Applications should not change the
virtual machine title except under explicit instructions from the user.

• Returns 1 in the AX register if successful or zero otherwise.

VMTitie
Address of a null-terminated string specifying the virtual machine title. The title
must not exceed 30 characters, including the terminating null character. If this
parameter is zero or points to an empty string, the function removes the current
virtual machine title.

Although not common, Set Virtual Machine Title may return 1 in the AX register
even though the title was not changed. In general, applications must not rely on the
operating system to keep an accurate copy of the current title.

Article 27 Virtual Machine Services 589

Close-Aware Application Functions
The following close-aware application functions are used with virtual machine
services.

Acknowledge Close
mov ah. 16h Windows multiplex function
mov a 1 • 8Fh VM Close
mov dh. 2 Acknowledge Close
mov dl • 0 always 0
int 2Fh
or ax. ax
jz success

Acknowledges the close state of the internal close flag.

• Returns zero in the AX register if successful.

Acknowledging the close state is necessary if an application needs to perform
additional keyboard input before exiting. If the close state has been signaled but
not yet acknowledged by an application, all keyboard read operations will return
NULL and buffered line input will return an empty string.

Cancel Close
mov ah. 16h
mov a 1 • 8Fh
mov dh. 3
mov dl • 0
int 2Fh
or ax. ax
jz success

Windows multiplex function
VM Close
Cancel Close
always 0

Cancels the close operation.

• Returns zero in the AX register if successful.

Mter acknowledging the close state of the internal close flag, an application should
either exit or cancel the close operation by calling Cancel Close.

590 Programmer's Guide to Microsoft Windows 95

Enable or Disable Close Command
mov ah. 16h Windows multiplex function
mov a 1 • 8Fh VM Close
mov dh. 0 Enable or Disable Close Command
mov dl • Flags see below
int 2Fh
or ax. ax
jz success

Enables or disables the Close command in the system menu.

Returns zero in the AX register if successful.

Flags
Close flags. This parameter can be one of these values:

OOh Disables the Close command.

01h Enables the Close command.

Query Close
mov ah. 16h Windows multiplex function
mov a 1 • 8Fh VM Close
mov dh. 1 Query Close
mov dl • 0 always 0
int 2Fh

Indicates whether the user has attempted to close an MS-DOS-based application
from Windows by choosing the Close command from the system menu.

Returns one of the following values in the AX register:

o

1

168Fh

The close command was chosen, and the application has not
acknowledged the close state.

The close command was chosen, and the application has acknowledged
the close state.

The close command has not been chosen, and the application should
continue running.

Query Close returns a nonzero value if the application has not enabled the Close
command by using the Enable or Disable Close Command function.

591

PAR T 6

Applications for
International Markets

Article 28 International Guidelines. 593

Article 29 Using Double-Byte Characters . 599

Article 30 Using Input Method Editors. 603

Article 31 Writing Applications for Middle-Eastern Languages 615

593

ARTICLE 28

International Guidelines

About International Guidelines
This article is a reference guide to help developers write modules or applications
that can be localized and that take full advantage of the Microsoft® Windows® 95
international environment.

Windows 95 Platform Strategy
Windows 95 is available in many different languages. The languages and the rules
associated with them can be divided into these three groups:

• WesternlEastern European languages, such as German, Frencb, and Russian.
These languages. use an 8-bit character set and are written from left to right.
In this article, these languages are called "WE" languages.

• Middle-Eastern languages, such as Hebrew and Arabic. These languages use an
8-bit character set and are written from both left to right and right to left. In this
article, these languages are called "ME" languages.

• Far-Eastern languages, such as Japanese and Chinese. These languages use a
16-bit character set (also referred to as a double-byte character set or DBCS)
and are written from left to right or top to bottom. In this article, these languages
are called "FE" languages.

Windows 95 is a multiple character-set system, which means you can use more than
one character set at a time. To accommodate the text management rules associated
with WE, ME, and FE languages, Windows 95 uses a three-platform strategy that
can be summarized in the following manner.

594 Programmer's Guide to Microsoft Windows 95

WE Platform

ME Platform

FE Platform

FE platform ME platform

Additional functions Additional functions
for FE languages for ME languages

I I

I
US Windows 95

Base for WE languages and FE/ME platforms

The WE platform (U.S. Windows 95) is the code base of Windows 95. It supports
all WE languages and the rules associated with them, and it includes application
programming interface (API) elements and other mechanisms for manipulating
these languages. The WE platform is also the base on which the ME and FE plat
forms are built. Applications built for the WE platform can also run on the ME and
FE platforms, but they can not take advantage of functions written specifically for
those platforms.

The WE platform will be localized in the following languages: German, French,
Spanish,. Swedish, Dutch, Italian, Norwegian, Danish, Finnish, Portuguese (Brazil),
Portuguese (Portugal), Russian, Czech, Polish, Hungarian, Turkish, Greek, and
Catalan.

The ME platform is built on the WE platform. It includes the API elements and
other mechanisms found in the WE platform. It also includes additional API
elements specifically designed to support ME languages. To take full advantage
of the ME platform, an application must use the additional API elements and may
need to be recompiled.

The ME platform will be localized in the Arabic and Hebrew languages.

The FE platform is built on the WE platform. It includes the API elements and
other mechanisms found in the WE platform. It also includes additional API
elements specifically designed to support FE languages. To take full advantage
of the FE platform, an application must use the additional API elements and may
need to be recompiled.

Article 28 International Guidelines 595

The FE platform will be localized in the Japanese, Chinese (Traditional), Chinese
(Simplified), and Korean languages.

International Language Requirements

Local ization

This section is divided into three subsections: localization, national language
support functions, and multilingual content support. Each subsection describes
a set of rules that you should follow when writing Windows 95 modules or
applications for international audiences.

Certain rules should be followed so that Windows 95 modules or applications
can be translated into different languages. For example, you should use resources
for all elements to be localized, including strings, messages, icons, and so on.

General Programming Guidelines
You should follow these general programming guidelines when writing applications
for international audiences:

• Do not store handles or identifiers in resources.

• Do not shift resource identifiers when adding resources to a file. Instead,
just add an identifier (allowing no duplicate identifiers).

• Do not store user interface elements (strings, messages, menus, and so on)
in initialization (.INI) files.

• Use the FormatMessage function to dynamically allocate buffer sizes for
your Microsoft® Win32®-based applications. For more information, see
the description of FormatMessage.

• Do not hard code filenames into a binary file. Windows 95 modules or appli
cations may use long filenames, and these filenames appear on the desktop.
Because the filenames are visible to the user, they may need to be translated.
Windows 95-based modules or applications should be able to be renamed
without requiring any code change. '

Guidelines for Using Strings
You should follow these guidelines when using strings in applications for
international audiences:

• Do not concatenate strings in dialog box controls. Doing so can create a
string that crosses a character set boundary. For example, setting a control's
text to be the result of "Can not find %s" will create a string that does not
make sense if the user types in Greek in an application with English resources.
You should use two controls instead of one in this situation.

596 Programmer's Guide to Microsoft Windows 95

• Use %numbers instead of %letters when using a string with variables in case
translators and localizers need to invert the variables. The wrong and right
approaches follow.

WRONG "The fi 1 e type %5 on the dri ve %s shoul d fi rst be

RIGHT
copied to the drive %s."
"The file type %1 on the drive %2 should first be
copied to the drive %3."

• Do not allow English text strings to use more than 70 percent of the available
space in dialog boxes. Providing extra space ensures that a translated string
will not exceed the length limit. An English string of 240 characters will some
times result in a localized string of 300 characters. In a dialog box where the
string limit is 256 characters, incomplete and improper localization will appear.
In general, if a string that must be localized exceeds 70 percent of the limit,
it should be split into two parts.

National Language Support Functions
Windows 95 includes a set of functions that allows Windows 95 - based modules
or applications to find and use locale-dependent information. A locale is a collec
tion of user-preference information related to the user's language and sublanguage,
represented as a list of values. The system has one default locale, but an application
can also get locale information that is specific to an application or task. To take
advantage of this feature, an application must use the National Language Support
(NLS) functions described in the Microsoft Win32 Software Development Kit
(SDK).

Multilingual Content Support
Windows 95 includes multilingual content support for documents, which means
that Windows 95 applications can mix characters from different character sets in
the same document. For example, an application can mix Greek and German in the
same document, even though characters for these languages belong to two different
character sets. This feature makes Windows 95 a multiple character set (or multiple
code page) operating system.

The basic multilingual architecture is based on languages, especially keyboard
languages. A user can create a list of keyboard languages from the set of all key
board languages available. The system can be started with one language active,
and the additional selected languages loaded and available. When the user switches
from one language to another, a WM_INPUTLANGCHANGE message is sent
to the application with the focus to indicate that the language has changed. The
message includes the handle of the new keyboard layout (language) and character.
The application can then use the information to determine whether the locale has
changed and whether the character set has changed.

Article 28 International Guidelines 597

To take full advantage of multilingual content support, you should not assume that
the character set is U.S. ANSI. Many "ANSI" character sets are available today.
For example, Russian Windows 95 uses the "Cyrillic ANSI" character set, which
is different from the one used by U.S. Windows 95 (U.S. ANSI). In addition, you
should always use the Choose Font common dialog box. If that is not possible,
you should use the EnumFontFamiliesEx function. Finally, you should always
save the character set with the font names in documents and process multilingual
Windows messages, including WM_INPUTLANGCHANGEREQUEST and
WM_INPUTLANGCHANGE. They either request that the keyboard language
be changed or indicate that a the keyboard language has changed.

Note You should store the character set and keyboard layout of the next run of text
when your application receives the WM_INPUTLANGCHANGEREQUEST or
WM_INPUTLANGCHANGE message. You should also modify your Find or
Search dialog boxes or algorithms so that they support multilingual search and
replace operations. In addition, any headers, footers, and other peripheral
annotations should be able to handle different fonts and languages.

After the keyboard language has changed, you should use the following API
elements:

• Determine whether the character set has changed by using the wParam
parameter from the WM_INPUTLANGCHANGE message.

• Select a new font by using EnumFontFamiliesEx function if the character
set has changed.

• Use the "Ex" versions of keyboard functions-for example, ToAsciiEx
instead of ToAscii.

• Use the CR_ formats with the SetClipboardData function when placing
text on the clipboard and with the GetClipboardData function when getting
text from the clipboard:

• Use the GetCharacterPlacement and GetFontLanguageInfo functions
when drawing text, calculating caret positions, or performing any other action
related to a device. The functions provide intermediate information that make
caret placement easier and allow the application to take advantage of new
features in graphics device interface (GDI). They also ensure the application
is compatible across all three platforms. Even if you write your application for
non-ME and non-FE platforms, using GetFontLanguageInfo allows you to
detect when the user tries to use one of the ME or FE fonts and allows you
to prevent the user from producing strange text on the screen and printer.

For more information about multilingual content and support, see the reference
pages for the functions and messages mentioned in this section.

598 Programmer's Guide to Microsoft Windows 95

Using the Far-Eastern Platform
For your Windows 95 - based module or application to run on the FE platform, you
must enable your module or application to use double-byte characters by using the
CharNext, CharPrev, and IsDBCSLeadByte functions. For information about
double-byte characters enabling, see Article 29, "Using Double-Byte Characters."
You should also enable your module to use the IMM (Input Method Manager)
functions and modify your application to interact with an !ME (Input Method
Editor), so the user will be able to use Far-Eastern characters. For information
about FE enabling, see Article 30, "Using Input Method Editors."

Using the Middle-Eastern Platform
You should follow certain guidelines to enable your Windows 95 - based module
or application to run on the ME platform:

• Use the Windows 95 functions. There are no specific ME functions. All
of the functions for writing ME-based software are built into the basic
Windows 95 code, and all the items mentioned under "Multilingual Content
Support" earlier in this article are also relevant. However, for standard left
to right languages, these features are desirable, but not necessary.

• Call the GetCharacterPlacement function to provide line layout support
for getting the visual orientation, character widths, and character placement
required for laying out and displaying any single-byte character text.

• Call the GetFontLanguagelnfo function to determine which services are
required for a particular language. The main difference between ME and WE
languages is that the text may be oriented to the right of the page instead of
to the left. This means you need some form of user interface for switching
direction, and you need the ability to write text from right to left instead of
left to right. You can achieve this by using the SetTextAlign function.

• Use the ME-specific window styles and common control styles. If you
have enabled your application to run using ME resources (for example, right
to left menus), you must also modify calls to functions, such as MessageBox
and CreateWindow, to use the ME-specific flags (for example, to allow right
to left orientation of menus). If a particular window class has no specific
right to left style, like the button class, use extended window styles, such as
WS_EX_RTLREADING and WS_EX_RIGHT.

For more information about ME enabling, see Article 31, "Writing Applications for
Middle-Eastern Languages."

599

ARTICLE 29

Using Double-Byte Characters

About Using Double-Byte Characters

Code Pages

String operations in applications running with an operating system that uses a
double-byte character set (DBCS) are slightly different from those in applications
running with a system that uses a single-byte character set. A DBCS-enabled
application allows users to create, edit, print, and save documents in their
own languages, even if the user interface has not been localized. DBCS enabling
involves adding code to handle DBCS strings, which are made up of a mixture
of 1-byte and 2-byte characters. For example, a user could run an English version
of a DBCS-enabled application with a Japanese version of Microsoft® Windows®,
freely typing in and editing kanji strings without any problem. This article provides
guidelines to reduce the work necessary to port an application written for a single
byte character set system (SBCS) to a DBCS system.

DBCS enabling is only one step in internationalizing an application. For more
information about DBCS and other internationalization issues, see Developing
'International Software for Microsoft Windows by Nadine Kano, available through
Microsoft Press®.

Accented characters are an integral part of many languages. However, the 7 -bit
ASCII character set does not provide support for accented characters. To compen
sate, Microsoft® MS-DOS® uses 8-bit code pa!ges as a means of providing support
for character sets and keyboard layouts used in different countries. Each code page
table relates the binary character codes used by an application to keys on the key
board or to the appearance of characters on the display.

600 Programmer's Guide to Microsoft Windows 95

Over the years, support for code pages that include different accented characters
has been added to MS-DOS. In each code page, the characters numbered 32
through 127 are the same characters that form the 7-bit ASCII set. The characters
above 127, known as extended characters, vary from code page to code page.
The set of extended characters, which contains accented characters, determines
which languages the code page can support.

Microsoft Windows 95 uses the same type of code pages introduced in Windows
version 3.1. These code pages are different from the ones used in MS-DOS. For
example, the line-drawing characters that allow MS-DOS-based applications to
draw boxes have not been included in Windows code pages and have been replaced
with additional publishing characters.

Double-Byte Character Sets
The Chinese language defines more than 10,000 basic ideographic characters.
Each ideographic character represents a word or syllable, and many of these
characters were adapted long ago by other Far-Eastern languages. These char
acters are called kanji in Japanese, hantsu or hanzi in Chinese, and hanja in
Korean. Because there are so many ideographic characters, single-byte character
sets, which have room for only 256 characters, are too small to accommodate
those languages.

The solution used in Windows 95 (and in earlier versions of Windows) has been to
encode most characters (primarily ideographs) with 2-byte values, making many
more than 256 characters available. However, characters, such as the ASCII set,
the Japanese phonetic syllabary known as katakana, and some symbols still have
single-byte representations. The result is a code page that mixes I-byte and 2-byte
characters. Double-byte character sets typically contain a mixture of I-byte and
2-byte characters.

The mixing of byte lengths in Far-Eastern versions of Windows leads to more
complex string parsing code. Each 2-byte character is composed of a lead byte
and a trail byte, which must be stored together and manipulated as a unit. A lead
byte value always falls into one or more ranges above 127. Although I-byte
characters may be defined above 127, they cannot exist in the lead byte ranges.
NULL can never be a trail byte, but the range of possible trail bytes can overlap
to some degree with the ASCII character set. Lead byte values are frequently
indistinguishable from trail byte values; the only way to tell the difference is from
the context of the surrounding characters. For that reason, if a trail byte is taken
without its lead byte, it can be mistaken for a I-byte character.

Article 29 Using Double-Byte Characters 601

Because I-byte characters are displayed in half the width of 2-byte characters for
most fonts on Far-Eastern versions of Windows, they are sometimes referred to as
half-width characters. Most half-width characters also have a full-width (2-byte)
representation to make column layout on a display easier. Ideographic characters
exist only in full-width form; there is, for example, no such thing as a I-byte kanji
character. In Windows 95, ASCII characters can be drawn with proportional fonts,
but ideographic characters, including Japanese kanji, are always monospaced.

Using Double-Byte Characters in an Application
To handle 2-byte characters, you should have any code that searches, selects, edits,
moves, replaces, deletes, or inserts text check for double-byte pairs. An application
should not split 2-byte characters and should accommodate 2-byte characters in its
display operations. Rules of selection, cursor placement, and cursor movement are
the same as for alphabetic characters; the cursor should always end up between
characters, never in the middle of one.

Because 1- and 2-byte characters can be mixed, it is not safe to use unary oper
ators, such as ++ or - -, which increment or decrement string pointers one byte
at a time instead of a character at a time. These operators can be replaced with
the Microsoft® Win32® CharNext and CharPrev functions (or the AnsiNext
and AnsiPrev functions used in Windows version 3.x). These functions increment
string pointers properly whether the current character is a single byte or a double
byte.

In addition, it is not safe to access a string with 2-byte characters randomly in
the following manner.

Mychar = string[i]

Unless a string is searched from the beginning, there is no way of knowing if the
byte accessed is a single byte, lead byte, or trail byte.

For string processing, it is often important to determine if a byte is a lead byte.
The IsDBCSLeadByte function can be used to test whether a particular byte is
in the default code page's lead byte range, and the IsDBCSLeadByteEx function
can be used to check the lead byte range of a specified code page. The following
example shows how to search for a backslash ('\') character in a DBCS string by
using IsDBCSLeadByte.

602 Programmer's Guide to Microsoft Windows 95

II Returns a pointer to the first '\' in a given string.
char* GetBackSlash(char *pszString)
{

while(*pszString)
{

if (!IsDBCSLeadByte(*pszString))
{

}

if (*pszString == '\\')
brea k;

else II it is a lead byte
{

II Increment the pointer 1 byte to point to the trail byte.
pszString++;

}

II Increment the pointer 1 byte to pOint to the next character.
pszString++;

return(pszString);
}

Although IsDBCSLeadByte and IsDBCSLeadByteEx are convenient, calls to
these functions may impact perfonnance if you have a large number of bytes to
test. As an alternative, you can check the ranges yourself by calling the GetCPlnfo
function, which returns the lead byte ranges in the LeadByte member of the
CPINFO structure. LeadByte is an array of bytes. Each range, which consists of
two bytes, specifies a starting and ending value for the range. Ranges are inclusive,
and there can be a maximum of five ranges. Any unused bytes in LeadByte are set
to zero.

To further optimize your code, you should only call DBCS functions or special
string handling code when using a DBCS code page. There are several methods
of doing this. For example, an application can determine whether it is running
on a DBCS system at run time by using GetCPlnfo in its initialization code.
GetCPlnfo returns the maximum number of bytes for a character in the code
page in the MaxCharSize member of the CPINFO structure. The advantage of
this method is that it requires having only one executable file.

Another method is to use a DBCS command-line option at compile time and bracket
sections of string handling code with #ifdef directives. The number of #ifdef blocks
can be greatly reduced by defining the following macros.

fFifndef DBCS
fFdefine CharNext(pc) «*pc)? pc + 1 : pc)
fFdefine Char~rev(pcStart, pc) «pc> pcStart) ? \

pc - 1 : pcStart)

fFifndef WIN32
fFdefine IsDBCSLeadByte (bByte) (FALSE)
fFendif
1foendi f

ARTICLE 30

Using Input Method Editors

About Using Input Method Editors
In Asian versions of Microsoft® Windows® 95, an input method editor (1MB)
allows users to generate single- and double-byte characters by typing at the
keyboard. By default, Windows 95 carries out all actions required to enable the
user to generate characters for input to your application. However, you can also
customize this process by using input method manager (IMM) functions to carry
out actions on your own. This article shows some simple ways to customize the
operation of an 1MB for your application. For more information about the IMM
functions, see the documentation included in the Microsoft® Win32® Software
Development Kit (SDK).

Handling Character Input
You receive character input from an IME in the form of WM_CHAR or
WM_IME_ CHAR messages. Windows 95 provides a default 1MB that automat
ically displays a status window enabling users to choose the conversion
mode and other properties for generating single- and double-byte characters for
the current application. (Users can also purchase third-party IMEs that may have
additional capabilities.)

Depending on the conversion mode, an IME provides a composition window
into which the user types the initial characters and a candidates window from
which the user picks the final character(s). Selecting the final character causes

603

the IME to send either one or two WM_CHAR messages to the window procedure
for the application.

You can use the IsDBCSLeadByte function to determine whether the character in
a WM_CHAR message is the fIrst byte of a double-byte character. If it is, the next
WM_ CHAR message contains the second byte. Once you have both bytes, you can
display the character by using a function such as ExtTextOut.

604 Programmer's Guide to Microsoft Windows 95

In some cases, you may receive WM_IMB_CHAR messages from the 1MB.
The wParam parameter of this message contains one or two bytes, depending on
the user's final selection. To determine the size of the character, you need to use
the IsDBCSLeadByte function in the following manner.

WORD wChar;

case WM_IME_CHAR:
wChar = (WORD) wParam;
if (IsDBCSleadByte(HIBYTE(wChar) == TRUE)

II wChar is a double-byte character.
else

II wChar is a single-byte character.
break;

If you choose not to handle the WM_IME_ CHAR message, you can pass it to the
DefWindowProc function. This function converts the message into one or two
WM_ CHAR messages and sends them to your window procedure.

Managing the IME
You manage the !ME by enabling (opening) it for conversions, setting the
conversion modes, and positioning the composition window . By default, the
IME opens when the user chooses a conversion mode from the status window,
and the !ME displays the composition window when the user begins to type.
You can change this default behavior by using the ImmSetOpenStatus,
ImmSetConversionStatus, and ImmSetComposition Window functions.

You open the IME when you want to allow users to enter characters for conver
sion. You can determine whether the 1MB is currently open by by using the
ImmGetOpenStatus function. If it is not, you can open the 1MB by using the
ImmSetOpenStatus function as follows.

HIMC hIMC;
BOOl bOpen;

if (hIMC = ImmGetContext(hwnd»{
bOpen = ImmGetOpenStatus(~IMC);

if (! bOpen)
ImmSetOpenStatus(hIMC, TRUE);

ImmReleaseContext(hwnd,hIMC);

Article 30 Using Input Method Editors 605

Once you open the IME, the composition window opens as soon as the user
begins to type in the window associated with the input context. By default, the
composition is displayed as a pop-up window placed near the window having the
input focus. You can change this default position and appearance by using the
ImmSetComposition Window function. The following example shows how to
embed the composition window into the current line of text (similar to edit controls)
by using the CFS_POINT style.

HIMC hIMC;
COMPOSITIONFORM cf;

if (hIMC = ImmGetContext(hwnd)){
cf.dwStyle = CFS_POINT;
cf.ptCurrentPos.x = ptCurrent.x;
cf.ptCurrentPos.y = ptCurrent.y;
ImmSetCompositionWindow(hIMC, &cf);
ImmReleaseContext(hWnd,hIMC);

In this example, the ptCurrent member contains the coordinates of the caret in
the window identified by the hwnd parameter. The function places the composi
tion window at that position, and characters that the user types appear there.

Once the user starts typing, the 1MB converts and displays the characters
using the current conversion and sentence modes. The user typically sets the
modes through the status window, but you can set them as well by using the
ImmSetConversionStatus function. In most cases, it is best to retrieve and
change the current modes by using both the ImmGetConversionStatus and
ImmSetConversionStatus functions in the following manner.

HIMC hIMC;
DWORD dwConvMode, dwSentence;

if (hIMC = ImmGetContext(hWnd)){
II Get the current modes.

}

ImmGetConversionStatus(hIMC, &fdwConversion, &fdwSentence);
II Change to full shape input mode.
fdwConversion \= IME_CMODE_FULLSHAPE;
II Set the new modes.
ImmSetConversionStatus(hIMC, fdwConversion, fdwSentence);
ImmReleaseContext(hWnd,hIMC);

606 Programmer's Guide to Microsoft Windows 95

Managing the IME Window
Windows 95 creates an 1MB window for each thread in an application. The 1MB
window, belonging to the system-defined "IME" window class, creates and owns
the status, composition, and candidates windows that give users the means to
control the conversion of characters. The IME window carries out default pro
cessing for the status, composition, and candidates windows for the application, I

so changing the 1MB window.changes those windows too.

You can control the position and style of the status, composition, and candidates
windows directly by using functions such as ImmSetStatusWindow,
ImmSetComposition Window, and ImmSetCandidate Window. You can also
control the windows indirectly be sending WM_IMB_ CONTROL messages to
the IME window. You can retrieve the handle of the 1MB window by using the
ImmGetDefaultIMEWnd function.

The following example shows how to create an 1MB window by using the "IME"
window class in a call to the CreateWindowEx function.

hwndIME = CreateWindowEx(
0.
"IME",
NULL,
WS_DISABLED
0, 0, 0, 0,
hwnd,
NULL,
hinstance,
NULl);

I WS_POPUP,

II IME class
II no window titl e
II disabled window
II no need to set size
II owner window

If your application does not process character input from the keyboard,
you can close an 1MB window by retrieving the handle and passing it to' the
DestroyWindow function.

Monitoring the Composition
You can monitor the user's interaction with the status, composition, and candidates
windows by processing WM_IME_NOTIFY and WM_IME_COMPOSITION .
messages. The 1MB sends these messages to the window having the input focus
whenever the user carries out some action in one of the 1MB windows.

WM_lME_NOTIFY is useful for monitoring changes that the user makes
through the status window. For example, the 1MB sends this message with the
IMN_SETCONVERSIONMODE value when the user changes modes in the status
window. When you receive this message, you can determine the new conversion
and sentence modes by using the ImmGetConversionStatus function.

Article 30 Using Input Method Editors 607

WM_IME_NOTIFY is also useful for monitoring selections made by the
user in the candidates window. The IME sends this message with the
IMN_CHANGECANDIDATE value when the user changes the selection. When
you receive this message, you can use the ImmGetCandidateList function to
retrieve the list of candidates and the index of the current selection.

WM_IME_COMPOSITION is useful for monitoring input and conversions
made in the composition window. The IME sends this message whenever
the user types a character. When you receive this message, you can use the
ImmGetCompositionString function, as shown in the following example, to
retrieve the characters typed by the user or the converted characters proposed
bytheIME.

HIMC hIMC;
char szComp[256];
DWORD dwSize;

case WM_IME_COMPOSITION:
if «hIMC = ImmGetContext(hwnd» NULL)

break;

II Get the composition string.
dwSize = ImmGetCompositionString(hIMC, GCS_COMPSTR, szComp, 256);

ImmReleaseContext(hWnd,hIMC);
break;

The IME sets the lParam parameter in WM_IME_COMPOSITION to the
GCS_RESUL TSTR value when the user completes the composition. The follow
ing example shows how to retrieve the final result of the conversion by using
ImmGetCompositionString.

HIMC hIMC:
LPSTR lpstr;
DWORD dwSize;

case WM_IME_COMPOSITION:
if (!(lParam & GCS_RESULTSTR»

break;

II Get the context.
if «hIMC = ImmGetContext(hwnd» == NULL)

break;

II Get the result string size, and add 1 for the terminating
I I null character.
dwSile = ImmGetCompositionString(hIMC, GCS_RESULTSTR, NULL, 0);

608 Programmer's Guide to Microsoft Windows 95

II Allocate memory to receive the string.
if «lpstr = GlobalAlloc(GPTR. dwSize)) == NULL) {

MyError() ;
break;

II Get the result string.
ImmGetCompositionString(hIMC. GCS_RESULTSTR. lpstr. dwSize);

II Release the context when it is no longer needed.
ImmReleaseContext(hWnd.hIMC);

II Do something with the result string here.

II Free the memory now.
GlobalFree«HGLOBAL)lpstr);
break;

When you process WM_IME_COMPOSITION in this manner, you can safely
ignore any WM_IME_ CHAR messages sent for the result string.

Customizing the User Interface
You can customize the user interface for the IME by replacing the default IME
window with your own window. In this case, you defme your own 1MB window
class and window procedure and create the IME window for your application
after destroying the default 1MB window.

Your IME window must provide the same capabilities as the default 1MB window,
or your application windows must be prepared to provide the same functionality
as the status, composition, and candidates windows. The window also must handle
any WM_IME_CONTROL messages sent to it and send WM_IMB_NOTIFY and
other messages in response to any user input to it.

Article 30 Using Input Method Editors 609

To ensure that your !ME window receives all appropriate messages, you must call
the ImmIsUIMessage function from every window procedure in your application
that accepts character input from the keyboard. The following example shows how
to restructure your window procedure to process these messages.

HWND hwndIME; II handle of IME window

long CALLBACK WndProc(HWND hwnd. UINT msg. WPARAM wParam. LPARAM lParam)
{

}

if (ImmIsUIMessage(hwndIME. msg. wParam. lParam)==TRUE)
II Already processed and ready for post-processing.
switch(msg) {

}

II Post-process WM_IME_COMPOSITION and other messages.
}

return 0;
else {

II Not processed yet.
switch(msg) {
case WM_CREATE:

II Create your IME window here.
break;

case WM_DESTROY:

}

II Destroy your IME window here.
break;

610 Programmer's Guide to Microsoft Windows 95

If you choose not to create an 1MB window and provide instead the status, compo
sition, and candidates functionality from within the window procedures of your
application, your window procedures must handle the following 1MB messages
rather than pass them to the DefWindowProc function.

COMPOSITIONFORM cf;
POINT ptMyPoint;
LOG FONT If;

II The message was not handled by the IME window.
switch (uMsg) {

case WM_CREATE:
hIMC = ImmCreateContext();
hOldIMC = ImmAssociateContext(hWnd ,hIMC);
break;

case WM_IME STARTCOMPOSITION:
II Prepare to receive the WM_IME_COMPOSITION message.
break;

case WM_IME ENDCOMPOSITION:
II Finish handling the composition string.
break;

case WM_IME_COMPOSITION:
II Get the composition string, the result string,
II and also the information for displaying the strings.
break;

case WM_IME SETCONTEXT:
II Remove bits from lParam to indicate that
II this window can draw the composition string
II and index 0 candidate list.
lParam &= -(ISC_SHOWUICOMPOSITIONWINDOW &

ISC_SHOWUICANDIDATEWINDOW);
return DefWindowProc(hWnd, uMsg. wParam, lParam);

case WM_IME_NOTIFY:
II Handle each IMN_ submessage. and display the IME
II and candidate list status.
switch (wParam) {
case IMN_OPENCANDIDATE:
case IMN_CHANGECANDIDATE:

Article 30 Using Input Method Editors 611

case IMN_CLOSECANDIDATE:
II This application can draw only one candidate list
II whose index is 0.
if (lParam -- 0x01) II Bit 0 is On, it is index 0.

II Draw the candidate list.
else

return DefWindowProc(hWnd, uMsg, wParam, lParam);
break;

default:

}

break;

II Make a notification to the IME window.
return DefWindowProc(hWnd, uMsg, wParam, lParam);

case WM IME_COMPOSITIONFULL:
II Adjust the size of the windowlarea to draw the
II composition string.
break;

case WM_DESTROY:
ImmAssociateContext(hWnd. hOldIMC);
ImmDestroyContext(hIMC);
break;

To draw the composition string without the default IME window, you need
to handle the WM_IME_COMPOSITION, WM_IME_STARTCOMPOSITION,
and WM_IME_ENDCOMPOSITION messages. However, if you receive
WM_IME_COMPOSITION and the composition is not final, you nee<ko retrieve
the attribute information as well as the composition characters to determine how
to draw the characters.

HIMC hIMC:
lPSTR lpCompStr;
LPBYTE lpbAttr;
LPSTR lpResultStr;
DWORD dwStrSize;
DWORD dwAttrSize;

case WM_IME_COMPOSITION:
if «hIMC - ImmGetContext(hwnd» NULL)

break;

612 Programmer's Guide to Microsoft Windows 95

l/jIlO·

if (lParam & GCS_RESULTSTR) {
II Received the final result, so grab it.
dwSize - ImmGetCompositionString(hIMC, GCS_RESULTSTR,

NULL, 0):

II Allocate space for the string and attributes.

II Draw the result string here.

} else if (lParam & (GCS_COMPSTR I GCS_COMPATTR» {

}

II Get the size of the composition string and the attribute
/I information.
dwStrSize - ImmGetCompositionString(hIMC, GCS_COMPSTR, NULL, 0):
dwAttrS;ze - ImmGetComposit;onStr;ng(hIMC. GCS_COMPATTR,

NULL, 0):

II Allocate space for the string and attributes.

II Get the strings and attributes.
ImmGetCompositionString(hIMC. GCS_COMPSTR, lpCompStr, dwSize);
ImmGetCompositionString(hIMC, GCS_COMPATTR. lpAttrStr, dwSize):

II Draw text using attributes to distinguish converted
II characters from user input.

II Free the memory for the buffers here.

ImmReleaseContext(hWnd,hIMC):

case WM_IME_SETCONTEXT:
II Remove bits from lParam to indicate that
II this window can draw the composition string.
lParam &- -(ISC~SHOWUICOMPOSITIONWINDOW):

return DefWindowProc(hWnd, uMsg, wParam. lParam):

Article 30 Using Input Method Editors 613

Setting the IME Context
Applications that use the default IME window must pass the message
WM_IME_SETCONTEXT to the DefWindowProc or ImmIsUIMessage
function without modification. This message identifies the current IME context
and specifies which window or windows must be shown. If you choose to
customize the IME interface by drawing the composition string, candidate
lists, guideline string, and soft keyboard on your own, you must process
WM_IME_SETCONTEXT before passing the message to DefWindowProc
or ImmIsUIMessage by modifying the IParam parameter.

If you draw the composition string in addition to processing the
WM-'IME_STARTCOMPOSITION, WM_IME_ENDCOMPOSTION,
and WM_IME_ COMPOSITION messages, you must also clear the
ISC_SHOWUICOMPOSITIONWINDOW value in the IParam parameter of
WM_IME_SETCONTEXT before passing the message to DefWindowProc
or ImmIsUIMessage.

If you draw the candidate lists in addition to processing the
IMN_OPENCANDIDATEWINDOW, IMN_CLOSECANDIDATEWINDOW,
and IMN_CHANGECANDIDATEWINDOW notification messages
(passed with the WM_IME_NOTIFY message), you must clear the
ISC_SHOWUICANDIDATEWINDOW values in the IParam parameter of
WM_IME_SETCONTEXT that correspond to the candidate lists that you can
draw. For example, if you draw the second candidate list (index 2), you must
clear the corresponding ISC_SHOWUICANDIDATEWINDOW value as follows.

lParam &= ~ISC_SHOWUICANDIDATEWINDOW«2;

If you draw all candidate lists, you can clear all values by using the
ISC_SHOWUIALLCANDIDA TEWINDOW value in the following manner.

lParam &= ~ISC_SHOWUIALLCANDIDATEWINDOW;

If you draw the guideline string in addition to processing the IMN_GUIDELINE
notification message (passed with the WM_IME_NOTIFY message), you must
clear the ISC_SHOWUIGUIDEWINDOW value in the IParam parameter of
WM_IME_SETCONTEXT before passing the message to DefWindowProc
or ImmIsUIMessage.

If you hide the soft keyboard, you must clear the ISC_SHOWUISOFTKBD value
in the IParam parameter of WM_IME_SETCONTEXT before passing the message
to DefWindowProc or ImmIsUIMessage.

614 Programmer's Guide to Microsoft Windows 95

Compatibility
Windows 95 supports 1MB applications that were written for previous versions of
the operating system as long as the applications are compatible with the Windows
version 3.1 1MB. In addition, Windows 95 supports Windows version 3.1 IMBs
and can load and assign any Windows version 3.1 IME to a keyboard layout,
making the 1MB available to applications written for either Windows version 3.1
or Windows 95. Also, because Windows 95 manages the interface with Windows
version 3.1 IMBs, applications can use either the Windows 95 or Windows version
3.1 input method management functions to access Windows version 3.1 IMBs.
You can retrieve the operating system version number of an 1MB by using the
ImmGetProperty function and specifying the IGP _GETIMBVERSION value.
(Note, however, that Korean Windows version 3.1 IMBs are not supported by
Korean Windows 95.)

Although any application can use a Windows version 3.1 1MB, not all functions
and messages are available. In particular, the ImmGetCandidateListCount,
ImmGetCandidateList, ImmGetGuideLine, and ImmGetConversionList
functions return an error if called, and the IMC_OPENSTATUSWlNDOW,
IMC_CLOSESTATUSWINDOW, IMC_GETSTATUSWINDOWPOS, and
IMC_SETSTATUSWINDOWPOS messages are not available. Also, the clause
information of the result string and the reading information of the composition
string are not available.

Windows 95 does not support 1MB applications written for versions of 1MB that
are earlier than the Windows version 3.1 1MB.

ARTICLE 31

Writing Applications for Middle
Eastern Languages

About Writing Applications for Middle-Eastern
Languages

615

Writing applications for the Middle-Eastern languages is relatively simple. The
multilingual features of the Microsoft® Win32® application programming interface
(API) together with the unified architecture of international versions of Microsoft®
Windows® 95 makes it possible to develop these applications just by changing the
application resource files. This article describes the process. It is assumed that
the reader is familiar with techniques used to write international applications,
especially separating resources from code.

Middle-Eastern Language Elements
In Middle-Eastern languages, portions of written text are read right to left and other
portions are read left to right. Arabic and Hebrew are two such languages. These
languages have the following similarities:

• Both have a right to left orientation of characters within each word.

• Both have a right to left orientation for reading order of words, but both
find a left to right reading order acceptable in some cases.

• Both have a left to right order of numbers and characters in foreign (Latin
based) text.

• Both use a left to right reading order for foreign (Latin-based) text.

• Both have diacritics, as most Latin scripts do. A diacritic is an accent or
phonetic element that modifies another element (for example, ' + A = A).

• Both are single-byte character set languages. In some cases, two or more
of their characters may actually represent a single character called a ligature.
A ligature is two or more letters joined together (for example, A + E = JE).

616 Programmer's Guide to Microsoft Windows 95

Arabic and Hebrew language are different in these ways:

• Arabic has contextual shaping of characters, depending on whether the
character is positioned at the beginning, middle, or end of a word or whether
it stands alone. (Hebrew has a few characters that change at the end of a
sentence, but these are typed as a separate character.)

• Arabic uses kashidas. A kashida is a null element that is the extension of the
end of a character, either filling empty space or joining two characters.

In general, the languages and cultures of the Middle East have a general right
to left orientation just as Latin-based languages and cultures have a left to right
orientation. This means that lists, menus, sets of buttons, or anything else that can
have an alignment should be designed with a right to left orientation. Although this
general right to left orientation and contextual shaping of Arabic may be intimi
dating at first, Windows 95 provides the resources and functions needed to make
handling these language easier.

System Resources and Text Handling
In Windows 95, any string of text is saved in the order typed. This means that what
you see on the screen or on the printed page may be in a different order than what
you typed in. Obviously, this makes the modification of existing text a little tricky,
but the Windows 95 and Win32 functions help make this easier.

Whenever possible, applications should use system edit controls for text input,
subc1assing them as necessary. If an application edits and displays text, it should
use the GetCharacterPlacement function to determine the order in which the
individual characters in the string are displayed. If the application displays a caret
with the text, it should use GetCharacterPlacement to determine the caret
position for each character in the text. The function also returns information
about the order and number of glyphs for the string. This information is useful
for determining whether the displayed string contains ligatures or extra characters,
such as kashidas.

Article 31 Writing Applications for Middle-Eastern Languages 617

Everything in the resource file that pertains to country specific information should
be thought of as part of the localization process. For the Middle East, this includes
the orientation of menu items, buttons, dialog boxes, and so on. All these should be
set in the resource file. If an application has menus, dialog boxes, lists, list boxes,
and other visual elements that contain text, it must display the text in right to left
order. Because Windows 95 allows applications to use the same functions to
display text in right to left order as are used to display in left to right order, you
can adapt a carefully designed application for the Middle Eastern market simply
by changing the text strings, control positions, and text orientation styles in the
resource file. In such cases, the application does not need to be recompiled.

In some cases, it may still make sense to modify and recompile your application
source code-for example, if you need a highly optimized version of your
application to compete successfully in the Middle-Eastern market.

619

PAR T 7

Advanced Programming

Article 32 Thunk Compiler ... 621

621

ARTICLE 32

Thunk Compiler

About the Thunk Compiler
Writing applications for the Microsoft® Win32® application programming interface
(API) is recommended for these reasons:

• The flat address space-that is, no segments or offsets

• Better performance

• Greater robustness

However, as compelling as arguments are to move to the 32-bit programming
model, there may be pragmatic reasons for not making the move all at once.
Certain components of an application may lend themselves to the migration to 32
bits, while other components may be more tightly bound to the 16-bit environment.
For example, an application developer may want to move the application's user
interface code to 32 bits to take advantage of new system features, but may
have an existing dynamic-link library (DLL) specifically optimized for the 16-bit
architecture. Rather than delay the release of a new version of the application, the
developer can decide instead to take advantage of the Microsoft Thunk Compiler
to mix 16- and 32-bit components.

622 Programmer's Guide to Microsoft Windows 95

Thunking Mechanics
The Thunk Compiler needs to check for these elements in a mixed 16- and 32-bit
environment:

• Pointers consist of a selector and a . 16-bit offset in a 16-bit Microsoft®
Windows® environment. However, in a 32-bit Windows environment, pointers
essentially consist of a 32-bit offset; that is, the DS, ES, SS, and CS registers
all contain selectors with the same base address. All pointers in this environment
are considered to be near 0:32 pointers. Translating a 16:16 pointer to a 0:32
pointer involves determining the segment base for the selector portion of the
pointer and adding the offset to it. Translating a 0:32 pointer to a 16:16 pointer
involves allocating a selector and calculating the offset from the base of the
corresponding segment.

• Both 16- and 32-bit applications pass function parameters on the stack. How
ever, 16-bit applications address the stack using the SS:SP registers, but 32-bit
applications use the SS:ESP registers. When thunking from 16 bits to 32 bits
(or thunking back in the other direction), the processor's method of addressing
the stack must be switched.

• The word size is 32 bits in a 32-bit environment and 16 bits in a 16-bit environ
ment. When an application uses both 16- and 32-bit environments, some piece
of software must be able to translate 16-bit words to 32-bit words. The follow
ing 16-bit function can be used to illustrate the translation.

DWORD Sample(WORD i);

If a 32-bit component calls this 16-bit function, it pushes a 32-bit argument on
the stack, but the 16-bit function only pops 16 bits off the stack. Later, when the
function returns, it places the returned doubleword value in the DX:AX register
pair, but the 32-bit calling application expects the return value to be in the EAX
register. It is the thunking layer's responsibility to negotiate these translations.

• To correctly handle packing and conversion, the Thunk Compiler translates
structure members one at a time. The Thunk Compiler supports structure
packing on 1-, 2-, or 4-byte boundaries (corresponding to the /Zp 1, /Zp2, and
/Zp4 compiler options for Microsoft C language products). However, 8-byte
structure alignment is not supported. Structure packing boundaries must be
the same on both sides of a thunk.

• Unlike 32-bit code, 16-bit code is usually not reentrant; 16-bit code is typically
written with the assumption of a cooperative mulitasking model. The thunk
layer must serialize access to 16-bit code. In contrast, 32-bit code must
execute without serialization to prevent deadlocks. The thunk layer manages
serialization on transitions in both directions.

Article 32 Thunk Compiler 623

Thunking Benefits and Drawbacks
If you use thunking to avoid porting all of your code to 32 bits or to take advantage
of 16-bit components, you may save development time. In addition, your executable
files may have a smaller memory footprint than if they were full 32-bit applications.
However, there are some issues related to thunking that may make you choose to
avoid it in your application. These issues are described in the following sections.

Thunking Models
Microsoft® Win32s®, Microsoft® Windows NTTM, and Windows 95 use different
thunking models. Win32s supports "universal thunks," which are not supported
by either Windows NT or Windows 95. Window NT supports "generic thunks,"
which only allow thunking from 16 bits to 32 bits. Although Windows 95 supports
generic thunks, it does not support the underlying process model used by Windows
NT. Use of the Windows 95 model can lead to serious incompatibilities with the
Windows NT generic thunking model. (For more information about generic thunks
in Windows 95, see "Generic Thunking Mechanism" later in this article. Windows
95 implements a new thunking model, "flat thunks." Flat thunks allow thunking
from 32 bits to 16 bits or vice versa. The flat thunking model requires use of the
Thunk Compiler described in this topic.

If you use flat thunks, your application cannot be ported to Windows NT.

Compatibility with Existing 16·Bit DLLs
The Thunk Compiler accepts the following compatibility statement.

win31compat = true;

You must use this statement if a 16-bit DLL replaces a DLL that is currently used
in a Windows version 3.1 environment or if the DLL runs as part of a graphics
device interface (GDI) device driver. You should probably use this statement
even if your 16-bit DLL does not fit into one of these categories, because it pro
vides extra protection against poorly behaved DLLs that might be used by your
thunkDLL.

The compatibility statement causes the unloading of a 32-bit DLL to be deferred
until the containing process terminates. Use of this statement ensures that inter
process loading and freeing procedures, which may have worked with a pure 16-bit
DLL, will not cause the thunked version of the 32-bit DLL to be freed prematurely.
It also allows the 16-bit library to be freed without execution of the 32-bit DLL's
notification routine-an occurrence that could cause reentry into 16-bit code.

624 Programmer's Guide to Microsoft Windows 95

16· to 32·Bit Thunks and Preemption
Because 16-bit processes multitask cooperatively with respect to each other,
16-bit code is often written with the assumption that it will not be interrupted by
another process until it explicitly yields the 16-bit scheduler (typically by calling
the GetMessage function). In contrast, 32-bit code is written with the expectation
that it can wait on Win32 synchronization objects without impeding the progress of
other processes. If you mix code written under these different assumptions, you
should take care to avoid deadlocks or errors due to unexpected reentrancy.

While a process is executing 32-bit code, it is possible for other processes to enter
16-bit code, possibly reentering the 16-bit code that was thunked from. That is,
entering a 16- to 32-bit thunk releases the 16-bit subsystem for use by other
processes (under certain conditions noted in the following paragraph). Thus, 16- to
32-bit thunks should not be used if your code cannot be reentered at that time.
In addition, you should avoid using 16- to 32-bit thunks inside callback functions
passed to a third-party DLL, unless it is documented that the code calling the call
back function is reentrant. (For example, if the callback function is allowed to yield,
it is probably reentrant.)

If the process executing the thunk is 32 bits, any other process can reenter 16-bit
code inside a 16- to 32-bit thunk. On the other hand, if the process executing the
thunk is 16 bits, only 32-bit processes can reenter 16-bit code, because 16-bit
processes are cooperatively multitasked with respect to each other. Thus, if your
16-bit code is used only by 16-bit processes, the reentrancy requirement can be
relaxed, because other 16-bit processes can get control only if your 16-bit process
yields. (A DLL cannot control what applications call it, of course, so guaranteeing
that your 16-bit code will be used only by 16-bit processes is difficult.) There are
other restrictions on what can be done in 16-bit processes, as described in the
following section, "Behavior ofWin32 Functions Inside 16-Bit Processes" later in
this article.

Behavior of Win32 Functions Inside 16·Bit Processes
In Windows 95, 16- to 32-bit thunks are primarily useful for implementing callback
thunks on 32-bit processes. They can also be used to execute 32-bit code in 16-bit
processes. Although the latter can improve performance and multitasking, there are
important restrictions on what can be done in a 16-bit process.

Article 32 Thunk Compiler 625

The "bitness" of a process is detennined by the format of the executable file
that launched it, and it is a permanent attribute of the process. A 16-bit process
executing 32-bitcode is not the same as a 32-bit process executing the same code.
The following important differences apply:

• The 32-bit code will still execute on the stack reserved by the 16-bit application,
which is much smaller than the 1MB stack used by true 32-bit applications.

16-bit processes cannot create new threads. Certain Win32 API elements, such
as the functions supporting the new common dialog boxes or those supporting
console applications, create threads on behalf of the calling application. These
functions cannot be used in a 16-bit process.

• Thunking into 32-bit code releases the 16-bit subsystem to other 32-bit pro
cesses, but other 16-bit processes will still be blocked, unless your process
explicitly yields (typically by calling the GetMessage function). In other
words, 16-bit applications still multitask cooperatively even when executing
32-bit code. This means that no 16-bit application will get processing time if
a 16-bit application blocks for a long time without yielding. A common problem
is using the CreateProcess function to launch a 16-bit application and then
waiting on a synchronization object to do something. If the application does not
yield, the new application will never run and signal the object, so deadlock will
occur.

One way to avoid this problem is to use the MsgWaitForMultipleObjects
function to wait for either messages or synchronization objects. Although this
solution is effective when required, it still results in a less efficient blocking
operation than that of a 32-bit application.

In general, 32-bit code within 16-bit processes should be limited to code that uses
the 32-bit heap functions, memory-mapped file functions, file functions, and
functions involving the current process and thread. 32-bit code using GDI, dialog
box, message box, and message functions will also work within 16-bit processes.
You should avoid using third party libraries, unless you are sure they work safely in
a 16 bit-environment.

Globally Fixing Handles
Translating a 16:16 pointer to a 0:32 pointer involves detennining the segment base
for the selector portion of the pointer and adding the offset to it. The global memory
compacter in Windows 95 may move a block of memory at any time, however,
making the linear address invalid. When the Thunk Compiler converts pointers from
16 bits to 32 bits, it fixes the segment portion before computing the linear address.
If you translate pointers without using the Thunk Compiler, however, you must be
aware of the requirement to fix the segment portion. For more information about
the functions you can use to translate pointers, see "Translating Pointers Outside
Thunks" later in this article.

626 Programmer's Guide to Microsoft Windows 95

16· to 32·Bit Thunks in GDI Device Drivers
The following compatibility statement is required for any 16- to 32-bit thunk script
that runs as part of a GDI device driver.

win31compat - true:

You may only thunk using the following control display driver interface (DDI)
functions in a GDI device driver.

Control(ABORTDOC)

Control(ENDDOC)

Control(NEWFRAME)

Control(NEXTBAND)

Control(ST ARTDOC)

If you use thunking, your driver must be reentrant.

You may call the OpenJob, StartSpoolPage, EndSpoolPage, CloseJob, and
DeleteJob functions during the five listed control DDI calls. These calls will
go through drivers written for Windows version 3.x for the sake of backward
compatibility, but they will fail for Windows 95-based drivers.

Generic Thunking Mechanism
Windows 95 supports the Windows NT generic thunk functions and the
Windows NT version 3.5 extensions. The Win32s universal thunk mechanism
is not supported.

The same limitations apply to generic thunks as to the flat thunks introduced in
Windows 95. For more information, see ''Thunking Models" earlier in this article.

The following thunking functions are implemented in the Windows 95 KRNL386
and can be called by 16-bit Windows applications.

Ca1lProc32W

CallProcEx32W

FreeLibrary32W

GetProcAddress32W

GetVDMPointer32W

LoadLibraryEx32W

Article 32 Thunk Compiler 627

The following WOW32 thunking functions are implemented in Windows 95.
Win32 applications can call these functions. (You should avoid using these
functions inside shared DLLs.)

WOWCallback16

WOWCallback16Ex

WOWGetVDMPointer

WOWGetVDMPointerFix

WOWGetVDMPointerUnflx

WOWGIobalAlIoc16

WOWGIobaiAlIocLock16

WOWGIobaiFree16

WOWGIobaiLock16

WOWGIobaiLockSize16

WOWGIobaiUnlock16

WOWGIobaiUniockFree16

WOWHandle16

WOWHandle32

Because of architectural differences between Windows NT and Windows 95,
programs using generic thunks may not be portable between the two platforms.
In particular, a Win32 function that works with Windows NT in a 16-bit process
is not guaranteed to do so with Windows 95 and vice versa. Also, Windows 95
may activate the global memory compacter at times where Windows NT would
not and vice versa. Finally, generic thunks work differently in 32-bit processes in
Windows 95, and they do not work at all on 32-bit processes in Windows NT.

Because generic thunks are wrappers around flat thunks, they are subject to
the same synchronization issues as flat thunks. For more information about
synchronization issues, see "Compatibility with Existing 16-Bit DLLs" earlier in
this article and "Behavior ofWin32 Functions Inside 16-Bit Processes" earlier
in this article.

Using the Thunk Compiler
The Microsoft Win32 Software Development Kit (SDK) includes a sample
application that illustrates the use of the Thunk Compiler. This application,
APP32.EXE, simply thunks some basic types from 32 bits to 16 bits. This
sample is an important supplement to the information in this topic.

The thunk compiler's input is a "thunk script," which i~ a list of C style
function prototypes and type definitions. The compiler produces an .ASM file,
which is really two .ASM files in one. You can assemble this .ASM file with
the -DIS_16 option to get the 16-bit .OBJ file to link to the 16-bit component
and then assemble it with the -DIS_32 option to get the 32-bit .OBJ file to link to
the 32-bit component.

628 Programmer's Guide to Microsoft Windows 95

The 16-bit component of the .ASM file contains a jump table containing the 16:16
address of each function named in the thunk scripts. (The linker must be able to
resolve these references; the functions must use the Pascal calling convention and
either be implemented in the 16-bit DLL or be imported by the DLL.) The 32-bit
half of the .ASM file contains a Stdcall function for each thunk, which converts
its parameters to 16 bits and then employs some internal processing to call the
16-bit target referenced in the jump table. When a 32-bit application uses a thunked
function, it calls these compiler-generated Stdcall functions directly.

For example, a thunk script's declaration for the LineTo function might look like
this.

typedef int INT;
typedef unsigned int UINT;
typedef UINT HANDLE;
typedef HANDLE HDC;

BOOl lineTo(HDC. INT. INT)
}

For more information about thunk script files, see "Script Files" later in this article.

An application would never include the LineTo function in a thunk script, of
course, because this function already exists in 16- and 32-bit versions. This exam
ple (and the assembly language example that follows) are intended to illustrate the
process; the assembly language code, in particular, could differ from the actual code
that is generated by the current version of the Thunk Compiler.

When the preceding example from a thunk script is processed by the Thunk
Compiler, the following assembly language code is generated. On the 16-bit half,
there is the following jump table.

externDef lineTo:far16

FT_gdiTargetTable label word
dw offset lineTo
dw seg lineTo

Script Files

Article 32 Thunk Compiler 629

The 32-bit half contains the following code.

public lineTo@12
lineTo@12:

mov cl,0
lineTo(16) = LineTo(32) {}

dword ptr [ebp+8]:
dword ptr [ebp+12]:
dword ptr [ebp+16]:

paraml
param2
param3

public IIlineTo@12
I I Li neTo@12:

call OT_Entry
push
push
push
call
movsx
jmp

word ptr [ebp+8]
word ptr [ebp+12]
word ptr [ebp+16]
OT_Target_gdi

ebx, ax
OT_Exit12

;paraml: dword->word
;param2: dword->word
;param3: dword->word

When a Win32-based application calls the LineTo function, it transfers directly to
this routine, which builds a 16-bit call frame and calls a local routine asking it to
look up the appropriate address in the jump table and sign-extend the return value.
(Each component receives its own set of QT _ routines, which automatically use
the correct jump table. The QT _ and Ff _ routines are exported by the kernel.)

Script files contain descriptions of the functions that are thunked. These files
usually have a .THK filename extension. The script files are easily created using
function prototypes. For example, a function might be prototyped in the following
manner.

BOOl WINAPI Sample(int n);

The corresponding definition would look like this in the script file.

typedef bool BOOl;
typedef int INT;

BOOl Sample(INT n)
{

}

630 Programmer's Guide to Microsoft Windows 95

Many functions take pointers in their parameter lists. Some pointers are for input
only, some are output only, and some are for both input and output. For example,
a "ThunkIt" function might take a pointer to an input string, update a second string,
and produce a third string as output in the following manner.

BOOl WINAPI Thunklt(lPSTR lpstrlnput, lPSTR lpstrlnOut, lPSTR Output);

The corresponding thunk script declaration for the function follows.

typedef char *lPSTR;

BOOl Thunklt(lPSTR lpstrlnput, lPSTR lpstrlnOut, lPSTR Output)
{

pstrlnput = input; II optional, because pointers are input
II by default

lpstrlnOut = inout; . I I pointer taken in and updated
lpstrOutput = output; II pointer returned

When a pointer is passed from 32-bit to 16-bit code, a single selector with a limit
of 64 K is allocated in the thunk. If the Win 16 code needs to access more than the
fIrst 64K of the block, it must change the base address of the selector or allocate
additional selectors to access the block.

The thunk compiler supports the following constructions:

• Structures passed by value or reference.

• Structures within structures.

• Pointers within structures, provided that the object pointed to does not require
repacking. The object can be another structure.

• Arrays of scalar values embedded in structures.

• The "input", "output," and "inout" qualifiers for pointers, as shown in the
preceding example. The default qualifIer is "input."

• Returning pointers for 32- to 16-bit thunks, provided that the object pointed
to requires no repacking. The object can be a structure. The segment is not
globally fIxed by the thunk compiler. As a general rule, the Thunk Compiler
deallocates the selectors that it allocates.

• The bool type. This type is preferred over int in situations where an application
may use nonzero values other than 1 to represent TRUE.

The Thunk Compiler does not support arrays of pointers, arrays of structures, or
floating-point types (such as float or double).

Article 32 Thunk Compiler 631

Procedure for Adding Flat Thunks
You should follow these steps to add flat thunks:

1. Write a thunk script containing thunk declarations and type definitions for
the functions that need to be thunked. You should place the following line
at the beginning of the script to create 32- to 16-bit thunks.

enablemapdirect3216 = true; II creates 32 to 16 thunks

Alternatively, you can use this line to create 16- to 32-bit thunks.

enablemapdirect1632 = true; II creates 16 to 32 thunks

2. Compile your thunk script,.

thunk.exe <inputfile> [-0 <outputfile>J

The thunk compiler has the following command line.

thunk [{ -I/} options] infile[.ext]

?

h

o name

pn

Pn
tname

Nxname

Displays the help screen.

Displays the help screen.

Overrides the default output filename.

Changes the 16-bit structure alignment (default = 2).

Changes the 32-bit structure alignment (default = 4).

Overrides the default base name.

Specifies the name segment or class where x is either C32
(for 32-bit code segment name) or C16 (for 16-bit code segment
name).

3. Assemble the resulting .ASM file to create the 16-bit side of the thunk, and
make sure to define the DIS_16 option. For example, using Microsoft MASM
version 6.11, you might use the following command line.

ml IDIS_16/c IW3 Inologo IFo thk16.obj 32to16.asm

4. Make sure to mark your 16-bit DLL as being compatible with subsystem
version 4.0 by running the Microsoft Resource Compiler (RC.EXE), which
is included in the Win32 SDK, on the DLL.

\mstools\bin16\rc -40 <.DLL output file>

Important If the 16-bit DLL is not marked for subsystem version 4.0, the
32-bit DLL will not load. For more information, see "Troubleshooting" later
in this article.

632 Programmer's Guide to Microsoft Windows 95

5. Assemble the resulting .ASM file to create the 32-bit side of the thunk, and
make sure to define the DIS_32 option. For example, using Microsoft MASM
version 6.11, you might use the following command line.

ml ID1S_32 Ie IW3 Inologo IFo thk32.obj 32to16.asm

6. Add the entrypoint functions to the DLLs and the export and import statements
to their module-definition (.DEF) files.

7. Compile and link the 16- and 32-bit components.

8. The code generated by the Thunk Compiler links to several Windows 95
entrypoint functions in KRNL386.EXE and KERNEL32.DLL. These entry
point functions are specific to the Thunk Compiler and are not supported in
Windows NT.

The entrypoint functions for KERNEL32.DLL are defined in THUNK32.LIB.
You must link your 32-bit DLL with this library file.

In addition, the following two import statements should be added to the .DEF
file for the 16-bit DLL.

C16ThkSl01 = KERNEl.631
ThunkConneet16 = KERNEl.651

Once again, these entrypoint functions exist only in Windows 95 and not
in Windows NT. Attempts to load DLLs that use these functions will fail in
Windows NT.

Implementing a Thunking Layer
The thunking model allows either the 16- or 32-bit thunk component to start first
and clean up everything afterward. Follow these steps to implement the thunking
layer:

1. Add a procedure named "DllEntryPoint" to your 16-bit DLL. This procedure
should look like the following example. (The names of the DLLs are for
illustration only.)

BOOl FAR PASCAL __ export SAMP_ThunkConneet16(lPSTR pszDll16,
lPSTR pszDl132, WORD hlnst, DWORD dwReason);

BOOl FAR PASCAL __ export DllEntryPoint(DWORD dwReason, WORD hlnst,
WORD wDS, WORD wHeapS;ze, DWORD dwReservedl,
WORD wReserved2) {

Article 32 Thunk Compiler 633

if (!(SAMP_ThunkConnectI6("DLLI6.DLL". II name of I6-bit DLL
"DLL32.DLL". II name of 32-bit DLL
hInst. dwReason»)

return FALSE;

return TRUE;

In this example, "SAMP" is the base name-that is, the name of the thunk
script file, not including the path and filename extension. If you used the /t
option with the Thunk Compiler to specify a different base name, you would
use the new base name in your procedure. You could, for example, use follow
ing command line.

THUNK It MYNAME SAMP.THK

The thunk compiler generates the MYNAME_ThunkConnectl6 routine, which
should then be called in the DllEntryPoint procedure.

2. Add the following import and export statements to your 16-bit DLL's module
definition (.DEF) file, picking ordinals that are appropriate for your DLL.

EXPORTS
DllEntryPoint @I RESIDENTNAME
SAMP_ThunkDatal6 @2
IMPORTS
CI6ThkSL0I KERNEL.63I
ThunkConnectI6 = KERNEL.65I

3. Add the following function to your 32-bit DLL's entrypoint procedure (named
DllMain by default). Again, the names of the DLLs are for illustration only.

BOOL WINAPI SAMP_ThunkConnect32(LPSTR pszDlll6. LPSTR pszDl132.
DWORD hIinst. DWORD dwReason);

BOOL _stdcall DllMain(DWORD hInst. DWORD dwReason.
DWORD dwReserved) {

if (!(SAMP_ThunkConnect32("DLLI6.DLL". II name of I6-bit DLL
"DLL32.DLL". II name of 32-bit DLL
hlnst. dwReason») {

return FALSE;
}

II Process dwReason.
}

4. Add the following export statement to your 32-bit DLL's .DEF file.

EXPORT
SAMP_ThunkData32

634 Programmer's Guide to Microsoft Windows 95

The following implementation rules are very important:

• The 16-bit DllEntryPoint function is called each time the module's usage count
is incremented or decremented. The dwReason parameter is 1 when the usage
count is incremented and zero when it is decremented.

• Because the system calls the DllEntryPoint function while loading is underway,
the value returned by the GetModuleUsage function is not reliable if you call it
inside your DllEntryPoint function.

• Do not call thunks inside the DllEntryPoint routines. Do not perform oper
ations that reenter the 16-bit loader, yield the 16-bit scheduler, or release the
16-bit subsystem. These actions could cause unpredictable results and are not
guaranteed to work in future versions of the Thunk Compiler.

• You can have multiple ThunkConnectXX calls, so long as they connect to
the same DLL. In fact, this is the only way to get both 32- to 16-bit and 16-
to 32-bit thunks in one thunk-paired DLL set. The procedure is to have a thunk
script for each direction and link both into each DLL. Then each entrypoint
function will have two ThunkConnect calls.

Translating Pointers Outside Thunks
You may occasionally need to translate 16:16 pointers to 0:32 pointers out
side of thunks. The GetVDMPointer32W, WOWGetVDMPointer, and
WOWGetVDMPointerFix functions accomplish this. These functions are
only required outside of thunks, because when pointers are thunked from 16 to 32
bits by the Thunk Compiler, no special handling is required to fix the segments.
Because the Thunk Compiler fixes these segments automatically, 16:16 pointers
can be passed to these thunks with no special treatment.

GetVDMPointer32W is a 16-bit function and is portable across Windows NT
versions 3.1 and 3.5.

WOWGetVDMPointer is a 32-bit function and is portable across Windows NT
version 3.5, but not Windows NT version 3.1.

WOWGetVDMPointerFix is a new 32-bit function. It is similar to
WOWGetVDMPointer, but ensures that the memory pointed to will not be
moved by the global memory compacter until WOWGetVDMPointerUnnx has
been called. Using WOWGetVDMPointerFix and WOWGetVDMPointerUnnx
is faster and easier than using WOWGetVDMPointer or GetVDMPointer32W.

If you use GetVDMPointer32W or WOWGetVDMPointer and the affected
segment points to a movable global memory manager block, it is important to call
the GlobalFix or GlobalWire function on the segment portion before computing
its linear address. In Windows 95, the global memory compacter can break in at
any time when your process is in 32-bit code. If this happens, the block may move
and the linear address will become invalid. The debugging version of Windows 95
generates warnings about calls to GetVDMPointer32W on unfixed segments.

Late Loading

Article 32 Thunk Compiler 635

WOWGetVDMPointerFix converts a 16:16 pointer to a linear address like
WOWGetVDMPointer. However, it also performs an implicit GlobalFix
operation on the selector, if necessary. If the selector is allocated as a fixed
block or if it is not from the global memory manager, no special action is taken.
You should use this function instead of calling GlobalFix separately, because it
is easier to implement and performance is better.

WOWGetVDMPointerUnflxtakes a 16:16 address and undoes the effect of
WOWGetVDMPointerFix on the segment (the offset portion is ignored).
This function should be called once the linear address. is no longer needed to
avoid bottlenecks in the global memory manager. It is faster than the GlobalUnflx
function and correctly handles (that is, ignores) selectors that are not from the
global memory manager.

Note that the CallProc32W and CallProc32ExW functions do not call these
functions for you. Pointers passed to these functions must be fixed manually.

Windows 95 improves system performance by supporting late loading for thunk
DLLs. Loading the 16-bit DLL does not cause the corresponding 32-bit DLL to
load immediately. Instead, the thunk subsystem loads the 32-bit DLL when the
first 16- to 32-bit thunk is started.

Late loading has the following implications:

• The performance and working set are improved for 16-bit applications that
use only the 16-bit portions ofthunked DLLs. The 32-bit DLL will not load
into those processes.

• The 16-bit DLL must not depend on any action taken by the 32-bit DLL's
initialization code until at least one 16- to 32-bit thunk has been called.

• Missing 32-bit DLLs or failed 32-bit loads will not be detected until the
first call is made to a 16- to 32-bit thunk. If the 32-bit DLL cannot load
or fails to initialize, the 16- to 32-bit thunk call will return a value of zero.
This error code may be changed on a thunk by thunk basis by including a
faulterrorcode = dword; line between the curly braces of a function call.
For example, the following function instructs the thunk subsytem to return
a-I from the thunk call if it is the first thunk call and the 32-bit DLL cannot
finish loading.

int Sample(void) {
faulterrorcode = -1;

}

636 Programmer's Guide to Microsoft Windows 95

Although late loading is a valuable optimization for a 16-bit DLL that can execute
autonomously from its 32-bit partner, it does complicate error recovery. Late load
ing can be disabled by including the following line in the thunk script.

preload32 = true;

If you use this option, the 16-bit subsystem will be released during the loading
of your 16-bit DLL, possibly causing other 16-bit code to be reentered. For this
reason, the preload32 statement is not available if your thunk script requires the
win31compat statement. For more information about the win31compat statement,
see "Compatibility with Existing 16-Bit DLLs" earlier in this article.

Although the thunk compiler supports a "preload16" keyword for future expansion,
late loading of 16-bit DLLs is neither supported nor planned.

Troubleshooting
This section outlines two common problems when thunking is implemented and
describes their likely causes.

• The 32-bit DLL will not load.

The Windows 95 loader requires that the 16-bit DLL be marked as subsystem
version 4.0 or greater for the DllEntryPoint function to run. In addition,
DIIEntryPoint must be exported using the name "DllEntryPoint" and must
be marked RESIDENTNAME.

To check the version number, run the Microsoft EXE File Header Utility
(EXEHDR), using the following command line.

exehdr -v <your-16-bit-DLL>

The output should contain the following line.

Operating system: Microsoft Windows - version 4.0

If the subsystem version number is less than 4.0, you should use RC.EXE from
the Win32 SDK to set the version of your 16-bit DLL correctly.

• Loading the 16-bit DLL does not load the 32-bit DLL.

This is by design. A 32-bit DLL does not load into a process context until that
process calls its fust 16- to 32-bit thunk. For more information, see "Late
Loading" earlier in this article.

If this feature is incompatible with your DLL design, you may disable it by
including the following line in your thunk script.

preload32 = true;

Article 32 Thunk Compiler 637

Reference
The following functions are associated with the Thunk Compiler.

16·bit WOW Functions
The functions in this section are 16-bit WOW API elements exported by kernel for
use in generic thunks.

CaliProc32W
DWORD FAR PASCAL CallProc32W(DWORD paraml, DWORD param2,

LPVOID lpProcAddress32, DWORD fAddressConvert, DWORD nParams);

Used by a 16-bit thunk dynamic-link library (DLL) to call an entrypoint function in
a 32-bit DLL.

• Returns a 32-bit value if successful. This value is the return value from the
32-bit entrypoint function represented by IpProcAddress32. The return value
can also be zero if lpProcAddress32 is zero or if nParams is greater than 32.

paraml through param32
Parameters for the 32-bit procedure represented by lpProcAddress32.

lpProcAddress32
32-bit value corresponding to the procedure to be called, which is returned by
the GetProcAddress32 function.

JAddressConvert
Bit mask representing which parameters will be treated as 16:16 pointers and
translated into flat linear pointers before being passed to the 32-bit procedure.

nParams
Number of DWORD parameters passed (not countingJAddressConvert and
nParams). For functions that take no parameters, this parameter will be zero.

CallProc32W takes at least three parameters: lpProcAddress32,JAddressConvert,
and nParams. In addition, it can take a maximum of 32 optional parameters. These
parameters must be DWORD types and must match the type that the 32-bit thunk
DLL is expecting. If the appropriate bit is set in the JAddressConvert mask, the
parameter will be translated from a 16:16 pointer to a 32-bit flat linear pointer.·
Note that the lowest bit in the mask represents paraml, the second lowest bit
represents param2, and so on.

This function causes Windows 95 to release the 16-bit subsystem. If this function
is used exclusively in 16-bit processes (as in Windows NT), there are no new
reentrancy issues. Otherwise, the use of this function can cause 16-bit code to be
reentered. For more information about reentrancy issues, see "Behavior of Win32
Functions Inside 16-Bit Processes" earlier in this article.

638 Programmer's Guide to Microsoft Windows 95

Unlike the flat thunks, CallProc32W and CaUProc32WEx do not automatically
fix global memory handles that are translated to 0:32 pointers. Therefore, you must
call the GlobalFix or GlobalWire function on the handle fIrSt. In Windows 95,
global compaction can move memory blocks at any time while the current thread
is executing 32-bit code. Because of this, certain pointer translation practices that
worked in Windows NT may cause small, but undesirable, race conditions in
Windows 95.

Note You should be careful when using this function, because there is no compiler
check made on the number and type of parameters, no conversion of types (all
parameters are passed as DWORDs and are passed directly to the function called
without conversion). No checks of the 16:16 address are made (limit checks,
NULL checks, correct ring level, and so on).

CaliProcEx32W
DWORD FAR CallProcEx32W(DWORD nParams. DWORD fAddressConvert.

DWORD lpProcAddress. DWORD paraml •...);

Used by a 16-bit thunk dynamic-link library (DLL) to call an entrypoint function in
a 32-bit DLL.

• Returns a 32-bit value if successful. This value is the return value from the
32-bit entrypo~nt function represented by lpProcAddress. The return value can
also be zero if lpProcAddress is zero or if nParams is greater than 32.

nParams
Number of DWORD parameters passed (not countingfAddressConvert and
nParams). For functions that take no parameters, this parameter will be zero.

fAddressConvert
Bit mask representing which parameters will be treated as 16:16 pointers and
translated into flat linear pointers before being passed to the 32-bit procedure.

lpProcAddress
32-bit value corresponding to the procedure to be called, which is returned by
the GetProcAddress32 function.

paraml through param32
Parameters for the 32-bit procedure represented by lpProcAddress

Article 32 Thunk Compiler 639

CallProcEx32W is similar to CallProc32W, but it uses the C calling convention '
to allow easier and more flexible prototyping.

This function causes Windows 95 to release the 16-bit subsystem. If this function
is used exclusively in 16-bit processes (as in Windows NT), there are no new
reentrancy issues. Otherwise, the use of this function can cause 16-bit code to be
reentered. For more information about reentrancy issues, see "Behavior of Win32
Functions Inside 16-Bit Processes" earlier in this article.

Unlike the flat thunks, CalIProc32W and CalIProc32WEx do not automatically
fix global memory handles that are translated to 0:32 pointers. Therefore, you must
call the GlobalFix or GlobalWire function on the handle first. In Windows 95,
global compaction can move memory blocks at any time while the current thread
is executing 32-bit code. Because of this, certain pointer translation practices that
worked in Windows NT may cause small, but undesirable, race conditions in
Windows 95.

FreeLibrary32W
BOOl FAR PASCAL Freelibrary32W(DWORD hlnst);

Allows a 16-bit thunk dynamic-link library (DLL) to free a 32-bit thunk DLL that
it had previously loaded by using the LoadLibraryEx32W function.

• Returns TRUE if successful or FALSE otherwise;

hlnst
This function thunks to the Win32 FreeLibrary function. For a complete
description of this parameter, see the documentation included in the
Win32 SDK.

Note that WOW does not do any cleanup of 32-bit thunk DLLs when the WOW
task exits. It is up to the 16-bit thunk DLLs to free the 32-bit thunk DLLs, as
necessary.

This function causes Windows 95 to release the 16-bit subsystem. Therefore,
your code may be reentered during the call to this function. However, if this
function is only used in 16-bit processes (as in Windows NT) and none of the
DLL's notification routines yield, this reentrancy will not occur.

640 Programmer's Guide to Microsoft Windows 95

GetProcAddress32W
DWORD FAR PASCAL GetProcAddress32W(DWORD hModule. LPCSTR lpszProc);

Allows a 16-bit thunk dynamic-link library (DLL) to retrieve a value that
corresponds to a 32-bit thunkroutine.

• Returns a 32-bit value if successful. This value must be passed as a parameter to
the CallProc32W or CallProcEx32W function rather than being used directly.

hModule through lpszProc
This function thunks to the Win32 GetProcAddress function. For a com
plete description of these parameters, see the documentation included in the
Win32 SDK.

This function causes Windows 95 to release the 16-bit subsystem. Therefore,
your code may be reentered during the call to this function. However, if this
function is only used in 16-bit processes (as in Windows NT) and none of the
DLL's notification routines yield, this reentrancy will not occur.

GetVDMPointer32W
DWORD FAR PASCAL GetVDMPointer32W(LPVOID lpAdd~ess. UINT fMode);

Allows a 16-bit thunk dynamic-link library (DLL) to translate a 16-bit far pointer
into a 32-bit flat pointer for use by a 32-bit thunk DLL.

• Returns a 32-bit linear address if successful or NULL otherwise.

lpAddress
Valid 16:16 address, either in protected or real mode.

fMode
One of the following flags:

1 The address is interpreted as a protected-mode address.

o The address is interpreted as a real-mode address.

The WOW kernel memory manager moves segments in memory and keeps
the selectors the same. However, if you get the linear address, it may not be
valid if the memory manager has moved memory. You should assume that global
compaction can occur any time that a 16- to 32-bit flat thunk or generic thunk is
entered, a function is called, or the current task yields.

Article 32 Thunk Compiler 641

LoadLibraryEx32W
~WORD FAR PASCAL LoadLibraryEx32W(LPCSTR lpszLibFile. DWORD hFile.

DWORD dwFlags);

Allows a 16-bit thunk dynamic-link library (DLL) to load a 32-bit thunk DLL.

• Returns a 32-bit handle to a DLL instance if successful or NULL otherwise.

IpszLibFile through dwFlags
This function thunks to the Win32 LoadLibraryEx function. For a com
plete description of these parameters, see the documentation included in the
Win32 SDK.

After calling this function, the 16-bit thunk DLL can call the
GetProcAddress32W function to get the address of the 32-bit entrypoint
function(s) and then call the thunk(s) by using the CallProc32W function.

This function causes Windows 95 to release the 16-bit subsystem. Therefore,
your code may be reentered during the call to this function. However, if this
function is only used in 16-bit processes (as in Windows NT) and none of the
DLL's notification routines yield, this reentrancy will not occur.

32·bitWOW Functions
The functions in this section are 32-bit WOW API elements exported by
WOW32.DLL.

WOWCaliback16
DWORD WINAPI WOWCallback16(DWORD vpfn16. DWORD dwParam);

Used in 32-bit code called from 16-bit code (through generic thunks) to call back to
the 16-bit side (generic callback).

• The return value comes from the callback routine. If the callback routine returns
a WORD type instead of a DWORD type, the upper 16 bits of the return value
are undefined. If the callback routine has no return value, the entire return
value of this function is undefined.

vpfn16
Pointer to 16-bit callback routine, which is passed from the 16-bit side.

dwParam
Parameter for the 16-bit callback routine.

642 Programmer's Guide to Microsoft Windows 95

This function will not'work when called in a 32-bit process.

The 16-bit function to be called must be declared with one of the following types . ..
lONG FAR PASCAL CallbackRoutine(DWORD dwParam);

lONG FAR PASCAL CallbackRoutine(VOID FAR *vp);

The type used is determined by whether the parameter is a pointer.

If you are passing a pointer, you will need to get the pointer by using either the
WOWGIobaIAlloc16 or WOWGIobaIAllocLock16 function.

WOWCaliback16Ex
BOOl WINAPI WOWCallback16Ex(DWORD vpfn16. DWORD dwFlags. DWORD cbArgs.

PVOID pArgs. PDWORD pdwRetCode);

Used in 32-bit code called from 16-bit code (through generic thunks) to call back to
the 16-bit side (generic callback).

• If cbArgs is larger than the WCB16_MAX_ARGS bytes that the system
supports, the return value is FALSE and the GetLastError function returns
the ERROR_INVALID_PARAMETER value. Otherwise, the return value is
TRUE and the DWORD pointed to by pdwRetCode contains the return code
from the callback routine. If the callback routine returns a WORD type, the
upper 16 bits of the return code are undefined and should be ignored by using
LOWORD(dwRetCode).

vpfn16
Pointer to 16-bit callback routine, which is passed from the 16-bit side.

dwFlags
One of the following flags:

WCB16_CDECL Calls a _cdecI callback routine.

Calls a _pascal callback routine (default).

cbArgs
Count of bytes in arguments (used to properly clean the 16-bit stack).

pArgs
Arguments for the callback routine.

pdwRetCode
Return code from the callback routine.

Article 32 Thunk Compiler 643

This function will not work when called in a 32-bit process.

WOWCallback16Ex allows any combination of arguments up to
WCB16_MAX_CBARGS bytes total to be passed to the 16-bit callback
routine. Regardless of the value of cbArgs, WCB16_MAX_CBARGS bytes
will always be copied from pArgs to the 16-bit stack. If pArgs is less than
WCB16_MAX_CBARGS bytes from the end of a page and the next page is
inaccessible, WOWCallback16Ex will incur an access violation.

The arguments pointed to by pArgs must be in the correct order for the call
back routine's calling convention. For example, to call the Pascal routine
SetWindowText, pArgs would point to an array of words.

lONG FAR PASCAL SetWindowText(HWND hwnd, lPCSTR lpsz);

WORD SetWindowTextArgs[] = {OFFSETOF(lpsz), SElECTOROF(lpsz), hwnd};

In other words, the arguments are placed in the array in reverse order, with the
least significant word first for DWORD types and offset first for FAR pointers.

To call the _cdecl routine wsprintf, pArgs would also point to an array of words.

lPSTR lpszFormat = "%d Is";
int _cdecl wsprintf(lpsz, lpszFormat, nValue. lpszString);

WORD wsprintfArgs[] = {OFFSETOF(lpsz), SElECTOROF(lpsz),
OFFSETOF(lpszFormat), SElECTOROF(lpszFormat), nValue,
OFFSETOF(lpszString), SElECTOROF(lpszString}};

In other words, the arguments are placed in the array in the order listed in the
function prototype with the least significant word first for DWORD types and
offset first for FAR pointers.

WOWGetVDMPointer
lPVOID WINAPI WOWGetVDMPointer(DWORD vp, DWORD dwBytes,

BOOl fProtectedMode);

Converts a 16:16 address to the equivalent flat address.

• Returns a 32-bit address if successful. If the selector is invalid, the return value
is NULL.

644 Programmer's Guide to Microsoft Windows 95

vp
Valid 16:16 address.

dwBytes
Size of the block pointed to by vp.

jProtectedMode
One of the following flags:

1 The upper 16 bits are treated as a selector in the local descriptor table.

o· The upper 16 bits are treated as a real-mode segment value.

Limit checking is performed only in the checked (debugging) build of the
WOW32.DLL file, which will cause NULL to be returned when the limit is
exceeded by the supplied offset.

This function should never be used on a 16-bit global memory handle selector that
has not been previously fixed in memory by using the GlobaIFix or GlobalWire
function. You should assume that global compaction can occur at any time the
16-bit subsystem is not locked by the current thread.

WOWGetVDMPointerFix
lPVOID WINAPI WOWGetVDMPointerFix(DWORD vp, DWORD dwBytes,

BOOl fProtectedMode);

Converts a 16:16 address to the equivalent flat address. Unlike the function
WOWGetVDMPointer, this function calls the GlobalFix function before return
ing the flat address so that the 16-bit memory will not move around in linear space.

• Returns a 32-bit address if successful. If the selector is invalid, the return value
is NULL.

vp
Valid 16:16 address.

dwBytes
Size of the block pointed to by vp.

jProtectedMode
One of the following flags:

1 The upper 16 bits are treated as a selector in the local descriptor table.

o The upper 16 bits are treated as a real-mode segment value.

Article 32 Thunk Compiler 645

WOWGetVDMPointerUnfix
VOID WINAPI WOWGetVDMPointerUnfix(DWORD vp);

Uses the GlobalUnflX function to unfix a pointer retrieved by the function
WOWGetVDMPointerFix.

• No return value.

vp
Address retrieved by the WOWGetVDMPointerFix function.

WOWGIobaiAlloc16
WORD WINAPI WOWGlobalAlloc16(WORD wFlags. DWORD cb);

Thunks to the 16-bit version of the function with the same name. For more
information, see the documentation for the 16-bit versions.

WOWGIobaiAliocLock16
DWORD WINAPI WOWGlobalAllocLock16(WORD wFlags. DWORD cb, WORD *phMem);

Combines the functionality of the WOWGlobalAIloc16 and WOWGlobalLock16
functions, thunking to the 16-bit versions of the functions with those names.
For more information, see the documentation for the 16-bit versions.

WOWGIobaiFree16
WORD WINAPI WOWGlobalFree16(WORD hMem);

Thunks to the 16-bit version of the function with the same name. For more
information, see the documentation for the 16-bit versions.

646 Programmer's Guide to Microsoft Windows 95

WOWGIobaiLock16
DWORD WINAPI WOWGloballock16(WORD hMem);

Thunks to the 16-bit version of the function with the same name. For more
information, see the documentation for the 16-bit versions.

WOWGIobaiLockSize16
DWORD WINAPI WOWGloballockSize16(WORD hMem, PDWORD pcb);

Combines the functionality of the WOWGlobalLock16 and GlobalSize functions,
thunking to the 16-bit versions of the functions with those names. For more
information, see the documentation for the 16-bit versions.

WOWGIobaiUnlock16
BOOl WINAPI WOWGlobalUnlock16(WORD hMem);

Thunks to the 16-bit version of the function with the same name. For more
information, see the documentation for the 16-bit versions.

WOWGIobaiUniockFree16
WORD WINAPI WOWGlobalUnlockFree16(DWORD vpMem);

Combines the functionality of the WOWGlobalUnlock16 and
WOWGlobalFree16 functions, thunking to the 16-bit versions of the functions
with those milnes. For more information, see·the documentation for the 16-bit
versions.

Article 32 Thunk Compiler 647

WOWHandle16
WORDWINAPI WOWHandle16(HANDLE, WOW_HANDLE_TYPE);

This function (and the associated macro) is used to map a 32-bit handle to a 16-bit
handle. Because the relationship between a Win16 handle and a Win32 handle may
change in the future, this function should be used instead of any private knowledge
of the relationship between them.

This function uses the WOW_HANDLE_TYPE parameter to indicate the type of
handle being translated. Types supported include HWND, HMENU, HDWP,
HDROP, HDC, HFONT, HMETAFILE, HRGN, HBITMAP, HBRUSH,
HPALETTE, HPEN, HACCEL, HTASK, and FULLHWND.

The WOW_HANDLE_TYPE name corresponding to each of these types is of the
form WOW _TYPE_handle (for example, WOW _TYPE_HWND).

You can use macros to map handles between Win16 and Win32. For example, to
map a Win16 HWND to a Win32 HWND, you would use the HWND_32 macro.

hWnd32 = HWND_32(hWnd16)

A "full" hWnd is a hWnd that a Win32-based application would see (and therefore
can be used in comparisons with 32-bit hWnds received from Win32 functions.)
The other hWnd type has a different value, but is recognized by the system. Do
not make assumptions about the relationship between the 16-bit hWnd, the 32-bit
Hwnd, and the 32-bit full hWnd. This relationship has changed in the past (for
performance reasons), and it may change again in the future.

648 Programmer's Guide to Microsoft Windows 95

WOWHandle32
HANDLE WINAPI WOWHandle32(WORD. WOW_HANDLE_TYPE);

This function (and the associated macro) is used to map a 16-bit handle to a 32-bit
handle. Because the relationship between a Win16 handle and a Win32 handle may
change in the future, this function should be used instead of any private knowledge
of the relationship between them.

This function uses the WOW _HANDLE_TYPE parameter to indicate the type of
handle being translated. Types supported include HWND, HMENU, HDWP,
HDROP, HDC, HFONT, HMETAFILE, HRGN, HBITMAP, HBRUSH,
HPALETTE, HPEN, HACCEL, HTASK, and FULLHWND.

The WOW _HANDLE_TYPE name corresponding to each of these types is of the
form WOW _TYPE_handle (for example, WOW _TYPE_HWND).

You can use macros to map handles between Win16 and Win32. For example, to
map a Win16 HWND to a Win32 HWND, you would use the HWND_32 macro.

hWnd32 = HWND_32(hWnd16)

A "full" hWnd is a hWnd that a Win32-based application would see (and therefore
can be used in comparisons with 32-bit hWnds received from Win32 functions.)
The other h W nd type has a different value, but is recognized by the system. Do
not make assumptions about the relationship between the 16-bit hWnd, the 32-bit
Hwnd, and the 32-bit full h Wnd. This relationship has changed in the past (for
performance reasons), and it may change again in the future.

Index

_1create function 487
_lopen function 487

A
ABM_ACTIVATE message 253,262
ABM_GETAUTOHIDEBAR message 253, 263
ABM_ GETSTA TE message 263
ABM_GETTASKBARPOS message 263
ABM_NEW message 252-254, 264
ABM_QVERYPOS message 252, 254, 264
ABM_REMOVE message 252, 265
ABM_SETAUTOHIDEBAR message 253, 265
ABM_SETPOS message 252,254,266
ABM_ WINDOWPOSCHANGED message 253, 266
ABN_FULLSCREENAPP notification message 254, 267
ABN_POSCHANGED notification message 253-254, 267
ABN_STATECHANGE notification message 254, 267
ABN_ WINDOW ARRANGE notification message 254, 268
Acknowledge Close function 589
ACM (Audio Compression Manager) 18
ActivateKeyboardLayout function 52
Adaptable links, OLE 23
AddlRemove Programs, Control Panel 108, 162, 176-177
AddFontResource function 176
AddForm function 57
AddMonitor function 57
AddPointsPenData function 140
AddPrinterConnection function 57
AddPropertySheet function 572
.ADM filename extension See System policies
ADMIN.ADM, default system policy file 174,442-443,445
Allocating memory, Windows 95 system limitations 59-60
AN_PKPD sample application, pen

code examples
displaying pen data 152-158
resizing pen data 149-150
scaling and trimming pen data 147-149
setting Rendering option to Scale or Clip 150-152

loading and saving pen data 142-147
overview 142
reading~ writing, and compressing pen data 142-147

ANIMATE sample application, pen 142
ANIMATEINFO structure 138,152-153
Animating pen data (ink) 138, 152-153
AnsiNext function 601
AnsiPrev function 601
Apartment threading model 303
APP32.EXE, sample application, Thunk Compiler 627

Appbar See Application desktop toolbars
APPBARDATA structure 251-252,261
Application desktop toolbars

auto hide 253
code examples

notification messages, processing 258-260
registering information 255-256
setting size and position 256-257

functions and structures 260-262
messages 251-252,262-266
notification messages 254,258-260,266-268
overview 251
registering appbars 252,255-256
size and position, setting 252-253,256-257

Application directory, creating 164
Applications

See also Sample applications
adding to the Start menu 168-169
automatically starting and restarting 105
close-aware 584-585, 589-590
common dialog boxes, using 85
consistent interfaces, ensuring by using common

controls 34-38
context menus for applications, supporting 32-33
data transfer operations, supporting 34
enabling for pen-based systems 159-160

649

Far-Eastern See Double-byte character set; Input method
editor (IME); International guidelines

guidelines for creating 29-42
Help files for, providing 38-39
icons for OLE objects, supporting interactions with 33
installation guidelines 40-41
installing See Installing applications
integrating with the system 41-42
international See International guidelines
long filenames, supporting 31-32
Middle-Eastern 594-595,615-617
MS-DOS-based 6-7, 583-590
multimedia 125-132
mUltiple instances of 39-40
pen input, supporting 40
property sheets for file information, providing 29-31
registering information for See Registering information
removing 161, 176-177
shortcuts, supporting 33-34
status bars, implementing 76
version differences See Windows version differences
Windows 95 Logo requirements See Windows 95 Logo

requirements

650 Index

Arc function 53
AssociateProperties function 572-573
Asynchronous file input and output support 58
Asynchronous operations, VxDs 429,433
AT A (IDE) adapters, Windows 95 Logo requirements 48
AT A (IDE) peripherals, Windows 95 Logo requirements 48
ATA Packet Interface (ATAPI) 48
Attributes, file objects or folders 184-185, 195-196
Audio adapters, Windows 95 Logo requirements 47
Audio Compression Manager (ACM) 18
Audio-video interleaved (A VI) file format 18
Auto-run feature for CD-ROM 175
AUTOEXEC.BAT 166
Autohide application desktop toolbars 253
AUTORUN.INF·175
AVI (audio-video interleaved) file format 18
A VISaveOptions function 128

B
Batch setup option 162, 173
BeginEnumStrokes function 139-140
Binding to folders 181
BITMAPINFO structure 55-56
BITMAPINFOHEADER structure 55
Bitmapped sections, processed by file parsers

building scan lines 336
palettes 335
tiles and scan lines 335-336

Bitmaps and colors, Windows version differences 68-69
Boolean functions, Windows 95 system limitations 52
Boxes See specific box type
Briefcase reconcilers

creating 400-401
definitions 399-400
embedded objects 402
interfaces and member functions 403-410
overview 399
reconciliation process 399-400
residues 403
user interaction 401

BrowseCallbackProc function 201-202
BROWSEINFO structure 211-212
Browsing for folders 183, 189-190
Brushes, limitations 55
Buttons

code example, turning buttons into a toolbar 78
Decrease Font Size button, file viewer 318
Increase Font Size button, file viewer 318
lens buttons, pen data 160
Replace Window, toolbar button 318
toolbar, fJle viewer guidelines 317-318
Windows version differences 65-66

BUZZER.EXE, sample application, registry 102
BY _HANDLE_FILE_INFORMA nON structure 540-542
Byte characters, handling different types of 600-602

c
Callback messages 290, 292
CaliProc32W function 637-638
CaliProcEx32W function 638-639
Cancel Close function 589
Canceling installation programs 163
Canonical form of absolute filename paths 486
Canonical verbs 223
CD-ROM

auto-run feature 175
players 131

CF _HDROP clipboard format 121
Change Directory (Interrupt 21h) function 514
Characters

I-byte 600-602
2-byte 600-602
character attributes, word processing file parsers 332-333
code example, determining character size 604
converting S04,606-608
diacritic 615
full-width 601
half-width 601
ideographic 600
input from IMEs 603-604
lead bytes 600-602
ligature 615
trail bytes 600-602

CharNext function 598,601
CharPrev function 598, 601
Check box states, System Policy Editor properties dialog

box 445
CHICOAPP, Explorer-like sample application

common dialog boxes, using with data 85-91
list view windows, creating 81-83
notification messages, handling 91-96
opening and saving files 85-91
overview 74-76
parsing and storing data 84-85
pop-up context menus, adding 96
property sheets, incorporating 97-99
resizing windows 83-84
status bars, implementing 76
toolbars, creating 78-79
tree view windows, creating 79-81

Children's software, Windows 95 Logo requirements 44
Chord function 53
Chunker, defined 330
CIDA structure 212-213

Client rectangles, Windows version differences 69
Client setup program 173
Clipboard data transfer operations 34
Clipboard formats

CF_HDROP 121
"FileContents" 121
"FileGroupDescriptor" 121
"FileName" 120
"FileN ameMap" 120-121
"Net Resource" 122
"PrinterFriendlyName" 121
"Shell IDListArray" 122
"Shell Object Offsets" 121
structures for 122-124

Close-aware applications, virtual machine services 584-585
CloseHandle function 425-437, 460, 469
CloseJob function 626
ClosePropertiesfunction 573
CMINVOKECOMMANDINFO structure 247-249
CoCreatelnstance function 274-275
Code examples See Examples of code
Code pages, DBCS enabling 599-600
Code, optimizing, DBCS enabling 602
Colnitializefunction 270,274-275,303
Color dialog box 37
Colors, Windows version differences 68-69
COM (OLE Component Object Model) 113-114, 270
Combo boxes, Windows version differences 67
COMCTL32.DLL common control library

See also Common controls
described 20, 74

COMDLG32.DLL common dialog box library
See also Dialog boxes
described 20

Command interpreter, for command 488
Command-line arguments

link files (.LNK) 272
Thunk Compiler 631

Command lines, length limits 488
Commands for context-menus, enabling 168
Commands for icon pop-up menus, registering 107-108
Common controls

described 34-35
handling notification messages for 91-96
header control 35
list view control 37
list view windows, creating 81-83
overview to using 73
progress bar control 36
property sheet control 35
status window control 36
toolbar controls 36, 78-79
tooltips 318
trackbar control 37

Common controls (continued)
tree view control 36
tree view windows, creating 79-81
up-down control 36
wizard control 35

Index 651

Common dialog boxes See Dialog boxes
Communication devices, external, Windows 95 Logo

requirements 50
Compact setup option 162
Compatibility

hardware, multimedia support 131-132
Input method editor (1MB), previous versions 614
system policies template file format, different

versions 452-453
Thunk Compiler, existing 16-bit DLLs 623

Component object library, initializing 270
Component Object Model (COM), OLE 113-114, 270
Compression

data compression library 21
lossless, pen data 141
pen files 142-147
video 128

CompressPenData function 141
Computer systems, Windows 95 Logo requirements 45-46
CONFIG.syS 166
Configuration, hardware and software, determining for

setup 163
ConnectToPrinterDlg function 57
Context menus

adding menu items to 228-231
adding registry entries for 168
adding to applications 96
enabling commands for 168
extensions 228
file classes, modifying for 222-223
file information 29-31
handlers for 228-231
overview 32 -33
property sheets 29-31
setting registry entries for 168
viewport window for file viewers 321

Control Panel
AddlRemove Programs application 108, 162, 176-177
adding applications 108, 162, 176-177
applications, described 9
removing applications 108, 162, 176-177
replacing property sheet pages 234-235

Controls See Common controls
Copy hook handlers 235
Copying

files, installation programs 163-165
pen data 140

CoUninitialize function 270
CPINFO structure 602

652 Index

Create or Open File (Interrupt 21h) function 528-532
Create Shortcut command, context menu 269,271
Create Subst (Interrupt 21h) function 538
CreateDillitmap function 55
CreateDillPattemBrush function 55
CreateDillSection function 55
CreateFile function 61, 166,425-437
CreateFileMapping function 59-60
CreatePattemBrush function 55
CreatePenDataEx function 137
CreatePenDataRegion function 138-139
CreateProcess function 70, 305, 625
CreateToolbarEx function 79
CreateToolhelp32Snapshot function 468-469
CreateWindow function 598
CreateWindowEx function 606
Creating

briefcase reconcilers 400-401
links to nonfile objects 277
new policy files 443
program groups 168
shortcuts to files 274-275
Windows 95 applications, overview 29
windows, code example 76-83

Cursors, default, OLE 115
Custom setup option 162

o
Data

parsing and storing, example 84-85
pen data

See also Pen data (ink)
code example, displaying 152-158
compressing 141-147
copying or editing 140
displaying, overview 135, 138-139
recognizer DLL 135, 141

Data and frame rates, video 128
Data compression library 21
Data files, registering for creation 106
Data handlers 236
Data objects, transferring to the shell 119-122
Data transfer operations, clipboard 34
Data transfers, OLE 119-122
Database sections, processed by file parsers 335
Datacentric design, user interface 29
DBCS See Double-byte character set
DDI See Display Driver Interface (DDI)
Debugging See Tool help functions
Debugging tips, shell extensions 226
Decrease Font Size button, file viewer 318
DEFAULT COMPUTER, system policies 442

Default cursors, OLE 115
Default file viewers 300
Default icons, setting for file classes 221-222
DEFAULT USER, system policies 442
DeferWindowPos function 83
DefWindowProc function

Input method manager (1MB) 604, 610
Windows version differences 64, 67

Delete File (Interrupt 21h) function 515-516
DeleteFile function 59,428
DeleteForm function 57
Deletelob function 626
DeleteObject function 56
DeletePrinterConnection function 57
Deleting

applications 161, 176-177
drawing objects 56
file parsers 328
filename aliases, or renaming 504
icons 289-291
open files 59
services, Passwords Control Panel 415

Desktop availability, Windows 95 system limitations 52
DestroyPenData function 137
DestroyWindow function 606
Determine path capability, Windows 95limitations 58
Development tools, Windows 95 Logo requirements 44-45
Device drivers, purpose of 5
Device independent bitmaps (Dills) 55
Device input and output control (IOCTL)

code example, calling Get Media ID from Win32-based
applications 430-431

overview 425
service 437
structures 434-436
system messages 436-437
use in applications, described 425
virtual device drivers See VxDs
VWIN32.VXD, system VxD 429-430

Device IOCTL See Device input and output control (IOCTL)
DeviceCapabilities function 56
DeviceIoControl function

device input and output control (IOCTL) 425-437
dynamically loading VxDs 166
Windows 95 system limitations 58,61

DEVMODE structure 57
Diacritic, defined 615
Dialog boxes

appearance 53
Change Password 416
code examples See CHICOAPP, Explorer-like sample

application
Color 37
common dialog boxes, using 73,85

Dialog boxes (continued)
consistency of appearance 34
described 16
Find 37
Open 37-38
overview of common dialog boxes 37-38
Page Setup 37
Print 37
Print Setup 37
Replace 37
Save As 37-38
tabbed See Property sheets
Windows version differences 65

DIOC_REGISTERS structure 430, 434
DIOCParams structure 435-436
Directories

creating for application files 163
management of long filenames 505
using long filenames for application's directory 164
working, used for shortcut objects 272

Disk space needed, installation programs 163
Display adapters, Windows 95 Logo requirements 46-47
Display Driver Interface (DDI), thunking 626
Display names, shell's namespace 184-188
Displaying pen data

code example 152-158
overview 135, 138-139

DlgDirList function 66
.DLL filename extension See Dynamic-link libraries;

Registering information
DllCanUnloadNow function 227
DllEntryPoint function 634, 636
DllGetClassObject function 227-228
DLLs See Dynamic-link libraries (DLLs)
Document conventions xviii
Document Summary Information Property Set, OLE 30-31
Document types, registering during installation program 172
Documents

briefcase reconciling, defined 399
synchronizing files with Briefcase See Briefcase

reconcilers
DoDefaultlnput function 135
DOS Time To File Time (Interrupt 21h) function 536-537
DosDateTimeToFileTime function 59
Double-byte character set

code example, searching for a backslash (\) 601
code pages 599-600
double-byte character sets 600-601
example of using in applications 601-602
optimizing code 602
overview 599

Down-level systems, handling long filenames 484, 506-507
Downloading system policies 442-443

Index 653

Drag and drop
adding drop capabilities 115-117
clipboard formats for shell data transfers 119-122
file viewer guidelines 321
handlers for 231-232
OLE concepts 23, 113-114
overview 113
resource information, additional 122
scrap files 118-119
structures 122-124

DrawDibDraw function 129
Drawing objects, deleting 56
DRA WITEMSTRUCT structure 67
DrawPenData function 138-139
DrawPenDataEx function 138-139
DRIVE_MAP _INFO structure 497-498
Drop handlers 236
DROPFILES structure 122-123
DuplicateHandle function 60-61
DuplicatePenDatafunction 137
Dynamic-link libraries (DLLs)

COMCTL32.DLL common control library 74
compatibility with existing 16-bit DLLs 623
copying during installation 164
file parser 301
installation programs 163
pen display 133
PENWIN.DLL pen display library 27, 135
PENWIN32.DLL pen display library 27, 135
PlFMGR.DLL See Program information file management
PKPD.DLL pen display library 27, 133, 135
PKPD32.DLL pen display library 27, 133, 135
purpose of 5-6
Quick View; used with 301
recognizer DLL, pen data 135, 141
replacing during installation 165
shared 167
Windows NT print monitor support 57

Dynamic menu items See Context menus
Dynamically loadable VxDs

E

opening 426, 432
removing from memory 428
setting initialization files 166

Edit controls
handwriting (hedit) 159
Windows 95 system limitations 52
Windows version differences 66

Editing pen data 140
Editing, OLE visual editing 22
EditPropertiesfunction 573

654 Index

Eject Removable Media (Interrupt 21h) function 491
Ellipse function 53
EM_REPLACESEL message 66
Embedded objects See OLE
EMF (Enhanced metafile format), Windows 95 system

limitations 56-57
Enable or Disable Close Command function 590
EndEnumStrokes function 139-140
EndSpoolPage function 626
Enhanced metafile format (EMF), Windows 95 system

limitations 56-57
EnumDisplaySettings function 58
Enumerate Open Files (Interrupt 21h) function 561-563
EnumFontFamiliesEx function 597
EnumFontsEx function 176
EnumForms function 57
EnumObjects function 183
EnumPorts function 57
EnumPrinters function 57
EnumProperties function 574
EnumPropertyLibs function 574
EnumPropertySheets function 575
Environment, setting up for installation process 166-172
Error conditions, Quick View 308-309
Error support, extended, Windows 95 system

limitations 52,58
Escape function 58
Event logging, Windows 95 system limitations 51
Examples of code

application desktop toolbars
notification messages, processing 258-260
registering with system 255-256
setting size and position 256-257

buttons, turning into a toolbar 78
common controls and dialog boxes See CHICOAPP,

Explorer-like sample application
device I/O, calling Get Media ID from Win32-based

applications 430-431
double-byte character set (DBCS)

searching for a backslash (\) 601
using in applications 601-602

file viewer, registering 304
input method editor (IME)

character size, determining 604
composition windows, changing 605
drawing composition strings 611-612
final conversion results, retrieving 607 -608
IME window, creating 606
messages, handling 610-611
messages, receiving and processing 609
monitoring the composition 607 '
opening IMEs 604

Passwords Control Panel, using 417-419

Examples of code (continued)
pen data

AN_PKPD See AN_PKPD sample application, Pen
setting Rendering option to Scale or Clip 150-152

registry, storing uninstall information 109-111
shell extensions

adding property sheet pages 233-234
context menu handler interface,

implementing 229-231
shell links

shortcuts to files, creating 274-275
shortcuts to files, resolving 276

shell's namespace
browsing for folders 189-190
display names and PIDLs, using 185-188
display names, retrieving 185-188
item identifier lists, walking 185-188
location of special folders, retrieving 185-188

taskbar notification area
icons, adding and deleting 290-291
mouse events, receiving 292

tool help functions
module lists, traversing 467-468
processes, -viewing 464-468
snapshots, taking 464-465
thread lists, traversing 466-467
tool help functions, accessing 463-464

Exclusive volume locking
described 486
direct access 545-546
exclusive use locking 546-547
functions 556-566
levels and permissions

described 547
level 0 locking 548
level 1 locking and permissions 550
level 2 locking 551
level 3 locking 551-552

locking hierarchy, using 549-552
logical volumes, locking 546
MS-DOS-based applications, using with 555-556
overview 545
physical volumes, locking 546
swap file 553
,system broadcast message 553
types of access 546 ,
volume locking guidelines 554
VxDs 553
Winl6-based applications, using with 555
Win32-based applications, using with 555

.EXE filename extension See Registering information
EXEHDR.EXE, Microsoft EXE file header utility 636
Explorer 73-74
Explorer-like sample application See CHICOAPP

ExtCreatePen function 55
ExtCreateRegion function 55
Extended Get or Set File Attributes (Interrupt 21h)

function 517-520
Extended Open/Create (Interrupt 21h) function 494-497
Extension libraries 20-21
Extensions, filename, used in Windows 95 169-172
Extensions, shell See Shell extensions
External communication devices, Windows 95 Logo

requirements 50
ExtEscape function 58
ExtractPenDataStrokes function 140
ExtTextOut function 51, 56, 603

F
Far-Eastern languages See Double-byte character set; Input

method editor (IME); International guidelines
FAT See File allocation table
FD_FLAGS enumerate type 123
FE platform (Far-Eastern languages) See Double-byte

character set; Input method editor (1MB); International
guidelines

File allocation table (FAT), using long filenames 501-503
File and directory management, using long filenames 505
File-based applications, Windows 95 Logo requirements 44
File classes, shell extensions

context menu, modifying 222-223
described 220

File folders See Folders
File handles, opening and closing, Windows 95 system

limitations 60
File input and output support, asynchronous 58
File installation library 21
File mapping, Windows 95 system limitations 60
File menu for file viewers 316
File modes and flags, MS-DOS 494-497
File objects

attributes 184-185, 195-196
described 181-182, 220

File parsers
adding 328
bitmapped sections 335-336
chunker, defined 330
constants 392-398
database sections 335
deleting 328
functions

overview 328-330
reference 340-343

helper functions 344-370
macros 370-371
overview 327
purpose of 9

File parsers (continued)
removing 328
restartable file parsing 330
section, defined 328
spreadsheet sections 333-334
structures 371-392
vector graphics sections 337
word processing sections 330-333
writing parsers 338-340

File searches, long filenames 506
File system, overview 12-13

Index 655

File time precision, Windows 95 system limitations 59
File Time to DOS Time (Interrupt 21h) function 535-536
File types

filename extensions used in Windows 95 169-172
registering during installation program 172

File viewers
See also File parsers
adding or replacing 300-301
apartment threading model 303
coherence 60
creating 313-314
default 300
file types, determining 302
file viewing functionality, adding 301
interfaces and member functions 322-325
overview 299-300
purpose of 9
registering 301-304
structure and implementation ofDLL 310-314
structure 325-326
user interface guidelines

drag and drop support 321
File menu items 316
Help menu items 317
sophisticated file viewers 321-322
status window messages 319-320
toolbar buttons 317-318
tooltip controls 318
userinterface 314-321
View menu items 316
viewport window 320-321
window appearance 314-315

"FileContents" clipboard format 121
FILEDESCRIPTOR structure 123-124
"FileGroupDescriptor" clipboard format 121
FILEGROUPDESCRIPTOR structure 124
"FileName" clipboard format 120
"FileNameMap" clipboard format 120-121
Filenames

aliases 503-505
extensions used in Windows 95 169
functions 487
limitations under real mode 484

656 Index

Filenames (continued)
long See Long filenames
paths, canonical forms 486
primary See Long filenames
registering extensions 105-106
searching for 485-486
storing, guidelines for 486-487
using extensions 169

Files
code examples

initializing structures 85-91
opening and saving 85-91'

copying, installation programs 163-165
deleting open files 59
execution (.EXE) See Registering information
initialization (.INI) See Initialization files
policy See System policies
registering for data creation 106
shared 164
shortcuts to 274-275
synchronizing documents with Briefcase See Briefcase

reconcilers
system-wide shared 164

FILETIME structure 542
FileTimeToDosDateTime function 59
Find Close (Interrupt 21h) function 534
Find dialog box 37
Find First File (Interrupt 21h) function 520-523
Find Next File (Interrupt 21h) function 524-525
Find Swap File (Interrupt 21h) function 564
FindClosePrinterChangeNotification function 57
FindFirstChangeNotification function 548
FindFirstFile function 548
FindFirstPrinterChangeN otification function 57
FindNextPrinterChangeNotificationfunction 57
Flat thunking model 623
Flat thunks, adding 631-632
Floppy disk controllers, Windows 95 Logo requirements 48
FlushInstructionCache function 61
FlushProperties functi()n 575
Folders

attributes 184-185, 195-196
binding to 181
browsing for 183, 189-190
described 181-182
locations 183
special 183
virtual 183

Fonts
described 10-11
installing 175-176

for command, command interpreter 488
Foreign languages See Languages

FormatMessage function 595
Formatting volumes 548
Frame and data rates, video 128
FreeLibrary32W function 639
FreePropertyLib function 576
FreePropertySheets function 576
FreeResource function 61
Full-screen mode applications, Windows 95 Logo

requirements 42,44
Functions, Boolean, Windows 95 system limitations 52
FVSHOWINFO structure 309-310, 325-326

G
Games, Windows 95 Logo requirements 44
GDI See Graphics device interface (GDI)
Generate Short Name (Interrupt 21h) function 537-538
Generic thunking model 623
Genericthunks 626-627
Gestures, pen movements 139
Get Application Title function 586
Get Compressed File Size (Interrupt 21h) function 489-490
Get Creation Date and Time (Interrupt 21h) function 511
Get Current Directory (Interrupt 21h) function 520
Get Current Lock State (Interrupt 21h) function 564-565
Get Drive Map Info (Interrupt 21h) function 492
Get File Info By Handle (Interrupt 21h) function 534-535
Get First Cluster (Interrupt 21h) function 492-493
Get Full Path Name (Interrupt 21h) function 525-526
Get Last Access Date and Time (Interrupt 21h) function 510
Get Lock Flag State (Interrupt 21h) function 560-561
Get Long Path Name (Interrupt 21h) function 527-528
Get Media ID (Interrupt 21h) function 430-431,489
Get Short Path Name (Interrupt 21h) function 526-527
Get Virtual Machine Title function 587
Get Volume Information (Interrupt 21h) function 532-533
GetCharacterPlacement function 597-598,616
GetCharWidth function 51
GetClientRect function 69
GetClipboardData function 597
GetCPInfo function 602
GetDeviceCaps function 58
GetDIBits function 56
GetEnhMetaFile function 57
GetEnhMetaFileDescription function 57
GetEnhMetaFileHeader function 57
GetFileInformationByHandle function 164
GetFileTime function 164,508
GetFile VersionInfo function ·164
GetFontLanguageInfo function 597-598
GetForm function 57
GetGraphicsMode function 56
GetKeyboardLayoutName function 52

GetLastError function
opening VxDs 426
snapshots, tool help functions 460
Windows 95 system limitations 52, 58

GetMessage function 624-625
GetModuleUsage function 634
GetOverlappedResult function 58
GetPenDataAttributes function 139-140
GetPenDataStroke function 139-140
GetPointsFromPenData function 140
GetPrinter function 57
GetProcAddress32W function 640
GetProperties function 576
GetShortPathN arne function 487
GetStartupInfo function 70
GetStrokeAttributes function 139-140
GetStrokeTableAttributes function 139-140
GetSystemInfo function 59
GetSystemMetrics function 69-70, 79
GetTextExtentExPoint function 51
GetTextExtentPoint function 51
GetThreadDesktop function 52
GetThreadLocale function 61
GetVDMPointer32W function 634,640
GetWindowPlacement function 70
GetWindowsDirectory function 169
Globally unique identifiers (GUIDs) 225
GlobalReAlloc function 59
Graphics device interface (GDI)

16- to 32-bit thunks in device drivers 626
limitations See Windows 95 system limitations
overview 15

Guidelines See International guidelines; Programming
guidelines; Video performance guidelines

GUIDs (Globally unique identifiers) 225

H
Handlers

context menu 228-231
copy hook 235
data 236
drag and drop 231-232
drop 236
icon 232-233
property sheet 233-235
shell extension 220,226-228

Handles
globally fixing 625
limitations 52

Handwriting edit controls (hedit) 159

Index 657

Hardware
compatibility, multimedia support 131-13 2
configuration, determining for setup ·163
peripheral devices, Windows 95 Logo

requirements 46-47
Header controls 35
Heap32First function 469-470
Heap32ListFirst function 470
Heap32ListNext function 470-471
Heap32Next function 471
HEAPENTRY32 structure 476
HEAPLIST32 structure 477
Heaps

heap lists and heap walking, tool help functions 462
local, Windows 95 system limitations 53':"'55

Hedit controls 159
Help application 38-39
Help files (.HLP), copying during installation 164
Help menu for file viewers 317
HitTestPenData function 139-140
HKEY _CLASSES_ROOT registry key 106-107
HKEY _CURRENT_USER registry key

installing applications 166
overview 41, 103-105
system policies 441

HKEY _LOCAL_MACHINE registry key
installing applications 166
overview 41, 103-105
storing uninstall information 108-111
system policies 441

.HLP filename extension See Help files
Hot keys, associated with shortcut objects 273
HPENDATA pen data object 135-137
HRC recognition context object 135

110 control See Device input and output control (lOCTL)
ICCompressorChoose function 128
IClassFactory::CreateInstance member function 226
ICM (Installable Compression Manager) 18
.ICO filename extension See Icons
Icons

adding 289-291
application-defined callback messages 290, 292
custom commands 107
customizing 232-233
deleting 289-291
dragging, Windows version differences 64
file information 29-31
handlers for 232-233
modifying 289-291
mouse events 290

658 Index

Icons (continued)
overview 33
pop-up menu, displaying 108
primary commands 107
registering commands for 107-108
registering 106-107
shortcuts 33-34, 271, 273
system-defined link overlays (arrow) 271

IContextMenu
interface 185,228-231,237-238
member functions

AddRef 237
GetCommandString 237-238
InvokeCommand 229-230,238,271
QueryContextMenu 229,239-240
QueryInterface 237
Release 237

ICopyHook
interface 240-242
member functions

AddRef 240
CopyCallback 235, 240-242
QueryInterface 240
Release 240

IDataObject interface 113
IDFlATA See ATA (IDE)
Ideographic characters 600
IEnumIDList

interface 183, 199-201
member functions

AddRef 199
Clone 199-200
Next 184,200
QueryInterface 199
Release 184, 199
Reset 200
Skip 201

IExtractIcon
interface 242-244
member functions

AddRef 242
GetIconLocation 233,242-243
IExtractIcon 233, 243-244
QueryInterface 242
Release 242

IFile Viewer
interface 307,312,322-324
member functions

AddRef 322
PrintTo 307,322-323
QueryInterface 322
Release 322
Show 307,309-310,323
ShowInitialize 307,309,323-324

IFile ViewerSite
interface 324-325
member functions

AddRef 309,324
GetPinnedWindow 309, 324-325
QueryInterface 324
Release 324
SetPinnedWindow 309,325

IMalloc interface 182, 185
IMC_CLOSESTATUSWINDOW message 614
IMC_GETSTATUSWINDOWPOS message 614
IMC_OPENSTATUSWINDOW message 614
IMC_SETSTATUSWINDOWPOS message 614
IME See Input method editor (IME)
IMM (input method manager) 603
ImmGetCandidateList function 607, 614
ImmGetCandidateListCount function 614
ImmGetCompositionString function 607
ImmGetConversionList function 614
ImmGetConversionStatus function 605
ImmGetDefaultIMEWnd function 606
ImmGetGuideLine function 614
ImmGetOpenStatus function 604
ImmGetProperty function 614
ImmIsUIMessage function 609
ImmSetCandidate Window function 606
ImmSetComposition Window function 605-606
ImmSetConversionStatus function 605
ImmSetOpenStatus function 604
ImmSetStatusWindow function 606
IMN_CHANGECANDIDATEWINDOW notification

message 613
IMN_CLOSECANDIDATEWINDOW notification

message 613
IMN_GUIDELINE notification message 613
IMN_OPENCANDIDA TEWINDOW notification

message 613
Increase Font Size button, file viewer 318
.IN! filename extension See Initialization files
Initialization files

early versions of Microsoft Windows 101
possible need for in Windows 95 104
setting during installation 166

Initializing shell extension instances 226
Initializing the component object library 270
Initiator, briefcase reconciling, defined 399
Ink See Pen data
Inkset objects, using 141
IN otifyReplica

interface 409
Y ouAreAReplica member function 410

Input and output control See Device input and output control
(IOCTL)

Input method editor (IME)
character input, handling 603-604
code examples

changing composition window 605
characters size, determining 604
creating an IME window 606
drawing composition strings 611-612
final conversion results, retrieving 607-608
managing the IME 604
messages, handling 610-611
messages, receiving and processing 609
monitoring the composition 607

compatibility with previous versions 614
1MB windows, managing 606
IMEs, managing 604-605
monitoring the composition 606-608
operation of IMBs, customizing 603
overview 603
setting the IME context 613
user interface, customizing 608-611

Input method manager (IMM) 603
InsertMenu macro 229
InsertPenData function 140
InsertPenDataStroke function 140
INST ALL.EXE installation program 162
Installable Compression Manager (ICM) 18
Installation programs See Installing applications
Installing applications

canceling the setup program 163
CD-ROM considerations 175
checklist 178
configuration, determining 163
context menu operations, supporting 168
copying DLLs and help files 164
designing the installation program 161-163
directory, creating for application files 163
disk space needed 163
environment, setting up 166-172
filename extensions used in Windows 95 169
files, copying 163-165
guidelines for 40-41
initialization files, setting 166
installing fonts 17 5 -17 6
multimedia support, finding 131
network issues 173-174
overview 161-162
progress indicator 163
registering document types 172
registry entries, adding 166-167
removing applications 176-177
replacing DLLs 165
server and client setup programs 173-174
setup options (typical, compact, custom, and silent) 162
Start menu, adding applications 168-169

Index 659

Installing applications (continued)
supplying defaults 162
uninstalling applications 176-177

InstallShield SE Toolkit, developing installation
programs 162, 177

Interleave options, video 128
International guidelines

Far-Eastern (FE) languages platform
See also Double-byte character set; Input method

editor (1MB)
overview 159,594-595,598

international applications, overview 27
Middle-Eastern (ME) languages

platform 594, 598, 615-617
multilingual content support 596-597
national language support functions 596
overview 593
WesternlEastern European (WE) languages platform 594
Windows 95 platform strategy 593

International language requirements, localization 595-596
International versions of Windows 95, changing resource

files 615
Interrupt 21h functions

Change Directory 514
Create or Open File 528-532
Create Subst 538
DeleteFile 515-516
DOS Time To File Time 536-537
Eject Removable Media 491
Enumerate Open Files 561-563
Extended Get or Set File Attributes 517-520
Extended Open/Create 494-497
File Time to DOS Time 535-536
Find Close 534
Find First File 520-523
Find Next File 524-525
Find Swap File 564
Generate Short Name 537-538
Get Compressed File Size 489-490
Get Creation Date and Time 511
Get Current Directory 520
Get Current Lock State 564-565
Get Drive Map Info 492
Get File Info By Handle 534-535
Get First Cluster 492-493
Get Full Path Name 525-526
Get Last Access Date and Time 510
Get Lock Flag State 560-561
Get Long Path Name 527-528
Get Media ID 430-431,489
Get Short Path Name 526-527
Get Volume Information 532-533
Lock Logical Volume 556-557
Lock Physical Volume 558-559

660 Index

Interrupt 21h functions (continued)
LocklUnlockRemovable Media 490
Make Directory 513
Query Subst 539-540
Remove Directory 514
Rename File 525
Reset Drive 566
Server Create or Open File 538
Set Creation Date and Time 512
Set Last Access Date and Time 511
Set Media ID 489
Terminate Subst 539
Unlock Logical Volume 559
Unlock Physical Volume 560
Windows 95 numbering system, described 505

IOCTL See Device input and output control (IOCTL)
IPersistFile

interface 269,274-275,402
member functions

Load 306
Release 307

IPersistStorage interface 402
IPersistStream interface 269
IReconcilableObject

interface 403
member functions

GetProgressFeedbackMaxEstimate 404
Reconcile 404-408

IReconcileInitiator
interface 408
member functions

SetAbortCallback 408-409
SetProgressFeedback 409

IsDBCSLeadByte function 598, 601, 603-604
IsDBCSLeadByteEx function 601
IShellExtInit

interface 246-247
member functions

AddRef 246
Initialize 246-247
Query Interface 246
Release 246

IShellFolder
interface 181-182, 190-199
member functions

AddRef 191
BindToObject 182, 193
BindToStorage 193
CompareIDs 182, 194
Create ViewObject 194
EnumObjects 192-193, 199
GetAttributesOf 185, 194-196
GetDisplayNameOf 184, 188, 197-198

IShellFolder (continued)
member functions (continued)

GetUIObjectOf 185, 196
ParseDisplayName 184,191-192
Query Interface 191
Release 191
SetNameOf 184, 198-199

IShellLink
interface 274-275, 278-287
member functions

AddRef 278
GetArguments 272, 279
GetDescription 273, 279
GetlfotKey 273,279-280
GetlconLocation 273,280
GetIDList 274,280-281
GetPath 272, 281
GetShowCmd 272,281-282
GetWorkingDirectory 272,282
QueryInterface 278
Release 278
Resolve 270, 282-283
SetArguments 272,283-284
SetDescription 273, 284
SetlfotKey 273,284
SetlconLocation 273,285
SetlDList 274,277,285
SetPath 272,286
SetRelativePath 286
SetShowCmd 272, 287
SetWorkingDirectory 272,287

IShellPropSheetExt
interface 233,244-245
member functions

AddPages 233,244-245
AddRef 244
Query Interface 244
Release 244
ReplacePage 234, 245

IShellPropSheetExt interface 412
IStorage interface 402-403
Item enumeration 183-184
Item identifier

described 182
lists

applications 274
parent folders 273
pointer to (PIDL) 182-183
walking 185-188

overview 273-274
ITEMIDLIST structure 182,249
IUnknown interface 114

K
Kashida, defined 616
Key frames, video 129
Keyboard layouts 596-597

L
Languages

Far-Eastern See Double-byte character set; Input method
editor (IME); International guidelines

Middle-Eastern See International guidelines
multiple keyboard languages, password input 413
WesternlEastern European See International guidelines

Last access date 507-508
Late loading, thunking 635-636
LB_INSERTSTRING message 52
LB_SETITEMDATA message 52
Lens buttons, pen-based systems 160
Level 0 locking 548
Level 1 locking and permissions 550
Level 2 locking 551
Level 3 locking 551-552
LFNBK utility, preserving long filenames 485
Ligature, defined 615
Limitations See Windows 95 system limitations
LineTo function 56, 628-629
Link files (.LNK)

command-line arguments 272
hot keys, associated with shortcut objects 273
overview 271
shortcut icon and description 273
show command 272
working directory 272

Link overlay icons (arrow) 271
Link resolution 270
Links

See also OLE
adaptable links 23
nonfile objects, creating links to 277
storage-independent links 23

List boxes
limitations 52
Windows version differences 66-67

List view controls 37
List view windows, creating 81-83
ListView _HitTest macro 96
ListView _Sortltems macro 93
.LNK filename extension See Link files
Load-on-demand applications, changing passwords 415
LoadCursor function 53
Loading, late, thunking 635-636
LoadLibrary function 61, 487

LoadLibraryEx32W function 641
LoadPropertyLib function 578
LoadPropertySheets function 578
LoadResource function 61
LoadString function 70

Index 661

Localization, international language requirements 595-596
Localizing resource files 617
LocalReAlloc function 59
Location-independent names 271
Lock Logical Volume (Interrupt 21h) function 556-557
Lock Physical Volume (Interrupt 21h) function 558-559
LocklUnlock Removable Media (Interrupt 21h) function 490
Locking volumes See Exclusive volume locking
LOGBRUSH structure 55
Logical volume locking 546
Logo requirements, Windows 95 See Windows 95 Logo

requirements
Logon passwords 411,415-416
Long filenames

case sensitivity 502
down-level systems, handling of 506-507
file and directory management 505
file searches 506
filename aliases 503-505
Interrupt 21h functions

numbering system described 505
reference 510-540

last access date 507-508
limits of length 502
long filename functions vs. Win32 functions 508-509
numeric tails 503-504
overview 31-32,501
periods, using in filenames 504
preserving 485
protected-mode FAT file system 501-503
spaces, using in filenames 502
static buffers, using 503
structures 540-544
supporting 85
using for application's directory 164

LPTOOLTIPTEXT structure 92
LV_ITEM structure 93
LVN_COLUMNCLICK notification message 93
LVN_GETDISPINFO notification message 93

M
Make Directory (Interrupt 21h) function 513
MAPI (Messaging API) 25-26
Map ViewOtFile function 60
Map ViewOtFileEx function 60
MCI (Media Control Interface) 19
MCCREALIZE command 129

662 Index

ME platform (Middle-Eastern languages) See International
guidelines

Media Control Interface (MCI) 19
Memory allocation, Windows 95 system limitations 59-60
Menus

context menus See Context menus
drag and drop 231-232
dynamic items 228-231
file viewer menus

File menu items 316
Help menu items 317
View menu items 316

for icons, registering commands for 107-108
handles, Windows 95 system limitations 52
modifying the New submenu 223-224
pop-up, displaying 108
static items 222-223
status window messages, file viewers 319-320
Windows version differences 68

MessageBox function 51, 53, 598
MessageBoxEx function 51, 53
MessageBoxlndirect function 53
Messages

See also specific message names
application-defined callback 290, 292
application desktop toolbars

reference 262-266
sending 251-252

notification
See also specific notification message names
application desktop toolbars 254,258-260,266-268
handling for controls 91-96

private messages, Windows 95 system limitations 52
system broadcast, exclusive volume locking 553
taskbar, sending 289

Messaging API (MAPI) 25-26
Metafile

See also Enhanced metafile format (EMF)
described 15

Metrics, system, Windows version differences 69-70
MetricScalePenData function 137-138
MID structure 499
Middle-Eastern languages

See also International guidelines
overview 615-617

midiOutLongMsg function 129
midiOutShortMsg function 129
Modems, Windows 95 Logo requirements 50
Module lists, traversing 467-468
Module32First function 471-472
Module32Next function 472
MODULEENTRY32 structure 477
Modules, taking snapshots of, tool help functions 461

Mouse
capture, windows losing, Windows version differences 64
mouse events in taskbar notification area 290, 292

MoveFileEx function 165
MoveToEx function 56
MoveWindow function 252,254
MPR See Multiple Provider Router
MS-DOS-based applications

See also MS-DOS extensions
single MS-DOS application mode 6
virtual machine services for 6-7, 583-590
volume locking considerations 555-556

MS-DOS extensions
file modes and flags 494-497
filename functions 487, 489-497
overview 483
structures 497-500
Windows 95 version of MS-DOS 483

MS-DOS system functions, using in Windows 95 429-430
MS-DOS version, Windows 95 483
MsgWaitForMultipleObjects function 61,625
MultiByteToWideChar function 51
Multilingual content support 596-597
Multimedia

Audio Compression Manager (ACM) 18
future directions 125-126
Installable Compression Manager (ICM) 18
Media Control Interface (MCI) 19
multimedia-aware applications 127
multimedia-dependent applications 127
overview 18-19, 125
Plug and Play 126
programming guidelines 129-132
video performance guidelines 127-129
Windows 95 system limitations 62
writing applications for, introduction 126

Multiple Provider Router (MPR) 440
Multitasking and thunking 624

N
Namespace See Shell's namespace
Nested objects, OLE 22
"Net Resource" clipboard format 122
Network adapters, Windows 95 Logo requirements 50
Networks,installation of applications 173-174
New submenu, modifying 223-224
NIM_ADD message 289-290, 294
NIM_DELETE message 289, 291, 295
NIM_MODIFY message 289, 295
NM_RCLICK notification message 96
Nonfile-based applications, Windows 95 Logo

requirements 42-44

Nonfile objects, creating links to 277
Notification area See Taskbar notification area
Notification messages

See also specific notification message names
application desktop toolbars 254,258-260,266-268
handling for controls 91-96

NOTIFYICONDATA structure 289-291,293-294
NPGetPolicyPath function 443
NRESARRA Y structure 124
Numeric tails, long filenames 503-504

o
Object attributes and. interfaces, shell's namespace 184-185
Object conversion, OLE 23
Object linking and embedding See OLE
Objects

creating and deleting functions list 54
creating pen data objects 137
ensuring adequate space for 53
inkset objects, using 141
nonfile, creating 277
pen data (HPENDATA) 135-137
recognition context (HRC) 135

OffsetPenData function 137-138
OLE

adaptable links 23
adding drag and drop capabilities 115 -117
apartment threading model 303
briefcase reconcilers 402
Component Object Model (COM) 113-114, 270
default cursors 115
described 22-23
Document Summary Information Property Set 30-31
drag and drop, described 23
embedded objects, word processing file parsers 333
file viewers See File viewers
general concepts 113-114
globally unique identifiers (GUIDs) 225
nested objects 22
object conversion 23
OLE automation 23
reference counting 118
resource information, additional 122
scrap files 118-119
shell data transfers 119-122
shell links See Shell links
storage-independent links 23
version management 23
visual editing 22

OLE Component Object Model (COM) 113-114, 270

OleInitialize function 303
Open dialog box 37-38
OpenEvent function 61
OpenFile function 487
OpenFileMapping function 60
Opening files 85-91
Opening VxDs 426-427
OpenJob function 626
OpenMutex function 61
OpenProcess function 61
OpenProperties function 579
OpenSemaphore function 61
Optimizing code for DBCS 602
OutputDebugStr function 129
Overlapped operations, Vx.Ds 429,433

p
Page Setup dialog box 37
Pages

adding to property sheets 30-31,233
replacing in Control Panel 234-235

Palettes

Index 663

avoiding palette flashing in video playback 129
file parsing of bitmapped sections 335
halftone 38

PALMAP sample application, multimedia 129
Paragraph attributes, word processing sections, file

parsers 331
Parallel port devices, Windows 95 Logo requirements 50
P ARAMBLOCK structure 500
Parameter validation, Windows version differences 70
Parsers See File parsers
Parsing

bitmapped graphics. 335-336
code example, initializing structures 85-91
databases 335
described 328
parsing and storing data, example 84-85
restartable file parsing 330
spreadsheets 333-334
vector graphics 337
word processing 330-333

Password-protected services See Passwords Control Panel
Password providers See Passwords Control Panel
Passwords

changing on demand 415
error conditions, handling of 416
managing 413-416
multiple keyboard languages 413
Windows logon 415-416

664 Index

Passwords Control Panel
change password dialog boxes 416
code example, using Passwords Control Panel 417-419
functions 419-423
overview 411-412
password user interface, including 413
property sheet pages, adding 412
services, adding 414-415
Winclows logon password

adding services to 415
changing logon passwords 415-416
error conditions, handling of 416
removing services from 415

Pen data (ink)
animating 138, 152-153
availability in Windows 95 133
code examples

displaying 152-158
loading and saving 142-147
reading, writing, and compressing 142-147
resizing pen data 149-150
scaling and trimming 147-149
setting Rendering option to Scale or Clip 150-152

collection of 134-135
compressing 141-147
copying 140
creating pen data objects 135-137
described 136-137
display of 138-139, 152-158
editing 140
enabling applications for pen-based systems 159-160
examining 139-140
gestures 139
handwriting edit controls (hedit) 159
inkset objects, using 141
lens buttons 160
overview 133-134
pen display library, functions 136-141
pen services

described 26-27
overview 134-135

practical uses for 133
recognition of 134-135
recognizer DLL 135, 141
scaling pen data 137-138
supporting pen input 40

Pen display library functions 136-141
Pen limitations 55
Pen services See Pen data (ink)
Pen Windows version 1.0 vs. 2.0 136
PenDataFromBuffer function 140
PenDataToBuffer function 140
PENWIN.DLL pen display library 27, 135
PENWIN32.DLL pen display library 27, 135

Personal computer (PC) systems, Windows 95 Logo
requirements 45-46

Physical volume locking 546
PIDL (Pointer to an item identifier list) 182-183
Pie function 53
.PIP filename extension See Program information file

management
PIFMGR.DLL See Program information file management
Pinned windows, Quick View 309-310
PKPD.DLL pen display library 27, 133, 135
PKPD32.DLL pen display library 27, 133, 135
PlayEnhMetaFile function 56
PlayEnhMetaFileRecord function 56
PlaySound function 62, 130
Plug and Play

multimedia, described 126
overview 13-14
Windows 95 Logo requirements 45-46

Pointer to an item identifier list (PIDL) 182-183
Pointers, translating, thunking 622,625,634-635
.POL filename extension See System policies
Policy downloaders 440, 456-457
Policy editors 440
Policy file format See System policies
PolyBezier function 56
PolyBezierTo function 56
Polygon function 56
Polyline function 56
PolylineTo function 56
PolyPolygon function 56
PolyPolyline function 56
Pop-up context menus, adding 96
Pop-up menus for icons, registering commands for 107-108
PostMessage function 129
Postscript printing, Windows 95 system limitations 58
PPChangePassword function 419-420
PPGetPasswordStatus function 420-421
preload32 statement 636
Primary filename See Long filenames
Print and Print To commands, enabling in registry 168
Print dialog box 37
Print Setup dialog box 37
Printer information structures 57
"PrinterFriendlyName" clipboard format 121
Printers, creating shortcuts to 277 .
Printers, Windows 95 Logo requirements 50
Printing

limitations
overview 57
Postscript 58
print spooling functions 57-58

overview 11-12
Private messages, Windows 95 system limitations 52
Process32First function 472-473

Process32Next function 473
PROCESSENTRY32 structure 478-479
Processes, taking snapshots of, tool help functions 460-461
Program groups, creating 168
Program information file management

functions 572-580
overview 567
program information files (.PIF files)

_DEFAULT.PIF file 569
information groups 567-568
overview 567-568
PIF extensions 568
properties handle 569
properties in .PIF file 569-570
property libraries 571
property sheets 570-571
supported formats 568
VxDs and properties 571-572

structure 581
Programming guidelines

installing applications See Installing applications
multimedia

calling functions from within callback functions 129
hardware compatibility 131-13 2
multiple-thread limitations 130
resource availability 130
yielding resources to other applications 131

pen-based systems 159-160
user interface, file viewers 314-321
volume locking 554

Programs See Applications
Progress bar controls 36
Progress indicators, installation programs 163
PROPENV structure 568
Properties, program information files 569-570
Property libraries, program information files 571
Property sheets

adding pages 30-31,233,412
common controls for 35
custom 233
file information 29-31
for the Passwords Control Panel 412
handlers for 233-235
incorporating in applications 97-99
processing of pages 97
program information files (.PIF files) 570-571

PROPFNT structure 568
PROPKBD structure 568
PROPMEM structure 568
PROPMSE structure 568
PROPPRG structure 568
PROPSHEETPAGE structure 581
PROPTSK structure 568
PROPVID structure 568

Index 665

PROPWIN structure 568
Protected-mode FAT file system

long filenames 501-503
overview 12-13

PSN_APPL Y notification message 97
PSN_KILLACTIVE notification message 97
PSN_RESET notification message 97
PSN_SETACTIVE notification message 97
PVIEW95 sample application, tool help functions 463
PwdChangePassword 421-422
PwdGetPasswordStatus function 422-423
PwdSetPasswordStatus function 423

Q
Query Close function 590
Query Subst (Interrupt 21h) function 539-540
Quick View

R

See also File parsers
error conditions 308-309
execution 305-307
functionality, adding 301
overview 299-300
pinned windows 309-310
program 305-310
purpose of 9
QVIKVIEW.EXE 300-301,327
registry entries structure 302-304
searching dialog box 310

ReadFile function 58,60
ReadFileEx function 58
Recognition context object (HRC) 135
Recognizer DLL, pen data 135, 141
Reconcilers, briefcase See Briefcase reconcilers
Rectangles

bounding coordinates, Windows 95 system limitations 53
client rectangle of minimized window, Windows version

differences 69
RedisplayPenData function 138-139
Reference pages

application desktop toolbars
functions and structures 260-262
messages 262-266
notification messages 266-268

briefcase reconcilers, interfaces and member
functions 403-410

device input and output control (IOCTL)
services 437
structures 434-436
system messages 436-437

drag and drop, structures 122-124

666 Index

Reference pages (continued)
exclusive volume locking, functions 556-566
file parsers

constants 392-398
functions 340-343
helper functions 344-370
macros 370-371
structures 371-392

file viewers
interfaces and member functions 322-325
structure 326

long filenames
Interrupt 21h functions 510-540
long filename functions vs. Win32 functions 508-509
structures 540-544

MS-DOS extensions
functions 489-497
structures 497-500

Passwords Control Panel, functions 419-423
pen data, functions 136-141
program information file management

functions 572-580
structure 581

shell extensions
interfaces and member functions 237-247
structures 247-249

shell links, interfaces and member functions 278-287
shell's natnespace

functions 201-210
interfaces and member functions 190-201
macros, structures, and types 211-218

taskbar notification area
function and structure 293
messages 294-295

Thunk Compiler
16-bit WOW functions 637-641
32-bit WOW functions 641-648

tool help functions
functions 468-475
structures 476-480

virtual machine services
close-aware application functions 589-590
window title functions 586-588

.REG filename extension See Registering information
RegCreateKeyEx function 61
RegDeleteKey function 61
RegEdit utility, backing up registry 103
RegisterClass function 70
Registering information

application desktop toolbars 252, 255-256
application path and state information 103-105
code examples

registering file viewers 304
storing uninstall information 109-111

Registering information (continued)
commands for icon pop-up menus 107-108
data files for creation 106
file types during installation program 172
file viewers (.REG file) 301-304
filename extensions 105-106
icons 106-107
shell extensions 225-226
uninstall information 108-111, 176-177

Registry
adding entries during application installation 166-167
automatically starting and restarting applications 105
backing up, RegEdit utility 103
canonical key names 104
described 10 1-102
duplicating registry key handles 61
enabling commands for context menus 168
entries, Quick View structure 302-304
HKEY_CLASSES_ROOT key 106-107
HKEY _CURRENT_USER key

installing applications 166
overview 41, 103-10'5
system policies 441

HKEY_LOCAL_MACHINE key
installing applications 166
overview 41, 103-105,
storing uninstall information 108-111
system policies 441

keys containing control characters 61
overview of integrating applications with the

system 41-42
policies See System policies
purpose of 10
recording information in

See also Registering information
described 102

root, described 102
settings, system policies 439-440
static menu items 222-223
subkeys, described 102
terminology overview 102-103

RegSaveKey function 453
REGSTR_PATH_UNlNSTALL macro 177
REGSTR_VAL_UNlNSTALLER_COMMANDLINE

macro 177
REGSTR_ V AL--,UNlNSTALLER_DISPLA YNAME

macro 177
Remote procedure calls (RPC) 19
Remove Directory (Interrupt 21h) function 514
RemovePenDataStrokes function 140
RemovePropertySheet function 580
Removing applications 108,162,176-177
Rename File (Interrupt 21h) function 525
Replace dialog box 37

Replace Window, toolbar button 318
Reset Drive (Interrupt 21h) function 566
ResetPrinter function 57
Residues, briefcase reconciling

defined 400
using 403

ResizePenData function 13 7 -138
Resizing windows 83-84
Resolving shortcuts to files 270-275
Resource files, localizing 617
Resources

automatically freeing 61
availability, multimedia programming guidelines 130
yielding to other applications, multimedia programming

guidelines 131
Restartable parsing 330
Root keys, described 102
RoundRect function 53
RPC (Remote procedure calls) 19

s
Sample applications

See also CHICOAPP, Explorer-like application
AN_PKPD, pen 142
ANIMATE, pen 142
APP32.EXE, Thunk Compiler 627
BUZZER.EXE, registry 102
PALMAP, multimedia 129
PVIEW95, tool help functions 463

Save As dialog box 37-38
Saving files 85-91
Scaling pen data 137-138, 147-149
Scan line data, file parsing bitmapped sections 336
Scrap files 118-119
Screen savers 10
Script files (.THK), Thunk Compiler 629-630
SCSI devices, Windows 95 Logo requirements 49
SCSI host adapters, Windows 95 Logo requirements 48-49
Searching dialog box, Quick View 310
Security and event logging, Windows 95 system limitations 51
SelectObject function 55
SendMessageCallback function 52
SendMessageTimeout function 52
SendNotifyMessage function 52
Server Create or Open File (Interrupt 21h) function 538
Server setup program 173
Set Application Title function 587-588
Set Creation Date and Time (Interrupt 21h) function 512
Set Last Access Date and Time (Interrupt 21h) function 511
Set Media ID (Interrupt 21h) function 489
Set Virtual Machine Title function 588
SetBrushOrgEx function 55
SetCapture function 64

SetClipboardData function 597
SetFileTime functions 508
SetForm function 57
SetGraphicsMode function 56
SetMessageQueue function 306
SetPrinter function 57
SetProperties function 580
SetStrokeAttributes function 139-140
SetStrokeTableAttributes function 139-140
SetTexWign function 598
SetThreadDesktop function 52
SetThreadLocale function 61

Index 667

Setting up applications See Installing applications
Setup program

See also Installing applications
canceling 163
client setup 173
designing 161-163
recommended options for 162
server setup 173

SETUP.EXE, installation program 162
SetWindowLong function 63
SetWindowPlacement function 70
SetWindowPos function 63
SHAddToRecentDocs function 202
SHAppBarMessage function 251, 260-261
, Shared files 164
SHBrowseForFolder function 183, 189,202
SHChangeNotify function 203-204
SHCONTF type 213
Shell extensions

code examples
adding property sheet pages 233-234
context menu handler interface,

implementing 229-231
context menu

extensions 228
modifying for file classes 222-223

debugging tips 226
,described 8-9
file classes

described 220
setting default icons for 221-222

file objects 220
handlers

context menu 228-231
copy hook 235
data 236
described 220
drag and drop 231-232
drop 236
how the shell accesses 226-228
icon 232-233
property sheet 233-235

668 Index

Shell extensions (continued)
initializing instances 226
interfaces and member functions 237-247
new submenu, modifying 223-224
overview 219-220
registering entries for 221-226
structures 247-249

"Shell IDList Array" clipboard format 122
Shell links

code example, shortcuts to files, resolving 275-277
command-line arguments 272
creating shortcuts to files 274-275
hot keys, associated with shortcut objects 273
interfaces and member functions 278-287
link files

See also Link files
described 271-273

link overlay icons (arrow) 271
location in the namespace 272
location-independent names 271
nonfile objects, creating links to 277
overview 269-270
resolving shortcuts 270-271,275
shortcut icon and description 273
shortcuts, described 8,33-34
show command 272
updating 270-271
working directory 272

"Shell Object Offsets" clipboard format 121
Shell's namespace

code examples 188
browsing for folders 189-190
display names and PIDLs, using 185-188
display names, retrieving 185-188
item identifier lists, walking 185-188
location of special folders, retrieving 185-188

display names and filenames 184
file objects 181-182
folder locations 183
folders 181-182
functions 201-210
interfaces and member functions 190-201
item enumeration 183-184
item identifiers See Item identifier
macros, structures, and types 211-218
object attributes and interfaces 184-185
overview 181

Shell_NotifyIcon function 289, 293
ShellExecute function 184
SHFILEINFO structure 213
SHFileOperation function 204
SHFILEOPSTRUCT structure 214-216
SHFreeNameMappings function 205
SHGetDesktopFolder function 182, 185,205

SHGetFileInfo function 32,205-207
SHGetInstanceExplorer function 208
SHGetMalloc function 182, 185,208
SHGetNameMappingCount macro 217
SHGetNameMappingPtr macro 217
SHGetPathFromIDList function 183-184,208
SHGetSpecialFolderLocation function 183, 185,209-210
SHGNO enumerated type 184, 218
SHlTEMID structure 182,249
SHLoadInProc function 210
SHNAMEMAPPING structure 216
Shortcut icons 33-34, 271, 273
Shortcuts See Shell links
Show command, link files (.LNK) 272
ShowWindow function 273,312
Signatures

displaying for letter or faxes 133
verifying 133, 141

Silent setup option 162, 173, 177
Single MS-DOS application mode 6
Snapshots

heap lists and heaps 462
modules 461
processes 460-461
system memory lists 459-460
taking snapshots 464-465
threads 461
tool help functions 459-460
viewing processes 464-465

sndAlias macro 62
SOANGLETENTHS macro 370
SOARCINFO structure 371
SOBailOut helper function 344
SOBeginTable helper function 344
SOBITMAPHEADER structure 372-373
SOBORDER structure 373
SOCOLUMN structure 374
SOCPARCANGLE structure 374
SOCPPIEANGLE structure 374
SOCPTEXTATPOINT structure 374
SODATACELL structure 375-379
SOEMBEDDEDGRAPHIC structure 379-380
SOEMBEDDEDOBJECT structure 380
SOEMBEDINFO structure 380
SOEndColumnlnfo helper function 345
SOEndFieldInfo helper function 345
SOEndFontTable helper function 345
SOEndPalette helper function 346
SOEndTable helper function 346
SOEndTabStops helper function 346
SOFIELD structure 381-382
SOFILTERINFO structure 382
Software configuration, determining for setup 163
SOGetInfo helper function 347

SOGetScanLineBuffer helper function 347
SOGROUPINFO structure 382
SOLOGBRUSH structure 383
SOLOGFONT structure 383
SOLOGPEN structure 384
SOP ALETTEINDEX macro 370
SOP ALETTERGB macro 370
SOPARAINDENTS structure 384
SOPATHINFO structure 385
SOPOINT structure 385
SOPOL YINFO structure 385-386
SOPutBitmapHeader helper function 348
SOPutBreak helper function 348-349
SOPutChar helper function 349
SOPutCharAttr helper function 349-350
SOPutCharFontByld helper function 350
SOPutCharFontByName helper function 350-351
SOPutCharHeight helper function 351
SOPutCharX helper function 351-352
SOPutColumnlnfo helper function 352
SOPutDataCell helper function 352-353
SOPutEmbeddedObject helper function 353
SOPutFieid helper function 353
SOPutFieldlnfo helper function 353-354
SOPutFontTableEntry helper function 354
SOPutHdrEntry helper function 355
SOPutMoreText helper function 355-356
SOPutMoreVarField helper function 356
SOPutPaletteEntry helper function 356-357
SOPutParaAlign helper function 357
SOPutParalndents helper function 357-358
SOPutParaMargins helper function 358
SOPutParaSpacing helper function 358-359
SOPutScanLineData helper function 359
SOPutSectionName helper function 359
SOPutSectionType helper function 359-360
SOPutSpecialCharX helper function 360-361
SOPutSubdocInfo helper function 361-362
SOPutTableCellInfo helper function 362
SOPutTableRowFormat helper function 362-363
SOPutTabStop helper function 363
SOPutTextCell helper function 364
SOPutVarField helper function 364-365
SOPutVectorHeader helper function 365
SORBCT structure 386
SORGB macro 371
SOSetDateBase helper function 365-366
SOSETRATIO macro 371
SOStartColumnlnfo helper function 366
SOStartFieldInfo helper function 366
SOStartFontTable helper function 366-367
SOStartPalette helper function 367
SOStartTabStops helper function 367
SOTAB structure 386

Index 669

SOTABLECELLINFO structure 387
SOTEXTATARCANGLE structure 387...,.388
SOTEXTATPOINT structure 388
SOTEXTCELL structure 389
SOTEXTINRECT structure 389-390
SOTRANSFORM structure 390-391
SOVectorAttr helper function 367-368
SOVECTORHEADER structure 391-392
SOVectorObject helper function 368
Special folders 183
Spreadsheet sections, processed by file parsers 333-334
sscanf function 85
Start menu, adding applications during installation 168-169
StartDocPrinter function 57
StartSpoolPage function 626
ST ARTUPINFO structure 70
Static menu items 222-223
Static VxDs 426, 428
Status bars, implementing 76
Status window controls 36
Storage devices, Windows 95 Logo requirements 47-49
Storage-independent links, OLE 23
strcmp function 93
STRRET structure 188, 216
STYLESTRUCT structure 63
Sub documents, word processing section, file parsers 332
Subkeys, registry, described 102
Submenu, modifying the New 223-224
SUUserPopData helper function 368-369
SUUserPushData helper function 369
SUUserRetrieveData helper function 369
SUUserSaveData helper function 370
Swap files, exclusive volume locking 553
SYNCHRONIZE standard access rights flag support 61
SYS_DYNAMIC_EXIT message 432
SYS_DYNAMIC_INIT message 432
System bitmaps and colors, Windows version

differences 68-69
System broadcast message, exclusive volume locking 553
System directory 163
System limitations See Windows 95 system limitations
System metrics, Windows version differences 69-70
System pager, swap files 553
System policies

architecture 440
default user and computer names 442
definitions 441
deploying later on 443
downloaders 440, 456-457
editors 440
local registries, adding information to 441-442
machine-specific policies 441
overview 439
policy downloading 442-443

670 Index

System policies (continued)
policy file format (.POL)

Computers key 455
control codes 454-455
described 453-454
Groups and Groupdata keys 455
Misc key 456
special processing 454
Users key 456

policy files, creating new 443
policy primitives 441
registry settings 439-440
template file format (.ADM)

action lists 451-452
ADMIN.ADM 174,442-445
categories 446
comments 452
compatibility, forward and backward 452-453
conditional expressions 452-453
part types 447-451
policies 446
policy parts 447

template files 440
user interface See SystemPolicy Editor
user-specific policies 441

System Policy Editor
overview 440
properties dialog box, check box states 445
troubleshooting 445
user interface 443-445

System registry See Registry
System services

described 17-18
limitations See Windows 95 system limitations

System-wide shared files 164

T
Tables, word processing sections, file parsers 331
TAPI (Telephony API) 23-25
Taskbar notification area

adding, modifying, and deleting icons 289
callback messages, receiving 290, 292
code examples

icons, adding, modifying, and deleting 290-291
mouse events, receiving 292

function and structure 293
messages 294-295
overview 289
mouse events 292
sending messages 289

TBBUTTON structure 78-79

Telephony API (TAPI) 23-25
Template files for system policies 442-443, 445-453
Terminate Subst (Interrupt 21h) function 539
Termination object, briefcase reconciling, defined 400
TextOut function 51,56
.THK filename extension See Thunk Compiler
Thread32First function 474
Thread32Next function 474-475
THREADENTRY32 structure 479-480
Threads

locales, Windows 95 system limitations 61
multiple-thread limitations, multimedia 130
taking snapshots of, tool help functions 461
traversing lists 466-467

Thunk Compiler
16- to 32-bit thunks and preemption 624
16- to 32-bit thunks in GDI device drivers 626
APP32.EXE sample application, Thunk Compiler 627
command line 631
compatibility with existing 16-bit DLLs 623
described 621
elements checked by 622
flat thunks, adding 631-632
generic thunking mechanism 626-627
globally fixing handles 625
late loading 635-636
mechanics 622
multitasking 624
overview 621
script files (.THK) 629-630
supported constructions 630
thunking layer, implementing 632-634
thunking models, benefits and drawbacks 623
translating pointers

outside thunks 634-635
using thunks 622, 625

troubleshooting 636
using 627-629
Win16 and Win32-based applications 622
Win32 functions, behavior inside 16-bit

processes 624-625
Thunking models

flatthunks 623,631-632
genericthunks 623,626-627
universal thunks 623, 626

Tiles and scan lines, file parsing bitmapped sections 335-336
timeGetSystemTime function 129
timeGetTime function 129
timeKiIIEvent function 129
timeSetEvent function 129
ToAscii function 597
ToAsciiEx function 597

Tool help functions
code examples

functions, accessing 463-464
module lists, traversing 467-468
processes, viewing 464-465
snapshots, taking 464-465
thread lists, traversing 466-467

functions 468-475
heap lists and heap walking 462
modules, taking snapshots of 461
overview 459
processes, taking snapshots of 460-461
snapshots 459-460
structures 476-480
threads, taking snapshots of 461

Toolbar buttons
code example, turning buttons into a toolbar 78
file viewer guidelines 317-318

Toolbar controls
See also Application desktop toolbars
creating 78-79
described 36

Toolhelp32ReadProcessMemory function 461,475
Tools, development, Windows 95 Logo requirements 44-45
Tooltip controls 318
Trackbar controls 37
TrackPopupMenu function 96
Translating pointers, thunking 622,625,634-635
Tree view controls 36
Tree view windows, creating 79-81
Trimming pen data, example 147-149
TrimPenData function 141
Troubleshooting

policy-related problems 445
thunking implementations 636

TrueType fonts (.TIF), installing 176
.TTF filename extension See TrueType fonts (.TIF), installing
TIN_NEEDTEXT notification message 92
TVN_SELCHANGED notification message 92
Typical setup option 162

u
UNC See Universal Naming Convention (UNC)
Unicode (wide characters), implementing 51
Uninstall information

code example 109-111
registering 108:-111, 176-177

Universal naming convention (UNC) 32, 174, 271
Universal thunking model 623, 626
UnloadKeyboardLayout function 52
Unlock Logical Volume (Interrupt 21h) function 559

Index 671

Unlock Physical Volume (Interrupt 21h) function 560
UnmapViewOtFile function 60
UnrealizeObject function 55
Up-down controls 36
User interface

customizing input method editor (1MB) 608-611
guidelines, file viewers 314-3 21
password user interface, including 413
System Policy Editor 443-445

Utilities
EXEHDR, Microsoft EXE file header utility 636
LFNBK, preserving long filenames 485
RegEdit, backing up registry 103
UUIDGEN.EXE, producing GUIDs 106,225
Windows 95 Logo requirements 44
WININIT.EXE, processing WININIT.INI files 165

UUIDGEN.EXE utility, producing GUIDs 106,225

v
Validation of parameters, Windows version differences 70
Vector attribute values 397-398
Vector graphics sections, processed by file parsers 337
Vector object values 392-396
Verbs, canonical 223
Verifying signatures 133, 141
Version management, OLE 23
Video compression 128
Video performance guidelines

data and frame rates 128
interleave options 128
key frames 129
palette flashing 129
video compression 128
window size and position 127-128

View menu for file viewers 316
Viewers See File viewers
Viewport window, file viewers 320-321
Virtual device (VxD) See VxDs
Virtual folders 183
Virtual machine manager (VMM)

See also Virtual machine services
described 3-4

Virtual machine services
close-aware applications

described 584-585
functions 589-590

MS-DOS-based applications 6-7, 583-590
overview 583
window title

described 583-584
functions 586-588

672 Index

VirtualAlloc function 59
VirtualQueryEx function 461
Visual editing, OLE 22
VMM See Virtual machine manager
Volume file allocation tables (FAT), changing 545
Volume locking

exclusive See Exclusive volume locking
logical 546
physical 546

VWIN32_DIOCCompletionRoutiIie service 437
VWIN32 MS-DOS control codes 429
VWIN32.VXD, system VxD 429--A30
VwStreamCloseFunc function 328, 340-341
VwStreamOpenFunc function 328,341
VwStreamReadFunc function 328, 342
VwStreamReadRecordFunc function 328, 342
VwStreamSectionFunc function 328,342-343
VwStreamSeekFunc function 328,343
VwStreamTellFunc function 328, 343
.VXD filename extension See VxDs
VxDs

w

asynchronous operations 429,433
closing 428
control codes, processing 433
drives, logical and physical, gaining access to 61
dynamically loadable

opening 426, 432
removing from memory 428
setting initialization files 166

exclusive volume locking 553
input-output control, supporting 431-433
loading 432
opening 426-427
overlapped operations 429,433
properties, program information files (.PIF files) 571-572
purpose of 4-5
sending commands to 427-428
static 426, 428
VWIN32.VXD, system VxD 429-430
Windows 95 Logo requirements 46

W286PIF30 structure 568
W32_DEVICEIOCONTROL system message 436-437
W386PIF30 structure 568
WaitForMultipleObjects function 61
WaitForMultipleObjectsEx function 61
WaitForPrinterChange function 57
WaitForSingleObject function 61
WaitForSingleObjectEx function 61
WE platform (WesternlEastern European languages)

See International guidelines
WENHPIF40 structure 568

WesternlEastern European languages See International
guidelines

WideCharToMultiByte function 51
Wildcard searching, changes to 486, 506, 523
WIN.INI, avoiding use of 166
Win16-based applications

. support of 7
thunking mechanics 622
volume locking considerations 555

win31compat statement 623,636
Win32 application programming interface (API) overview 14
Win32-based applications

programming interface overview 14
support of 7
thunking mechanics 622
volume locking considerations 555

WIN32_FIND_DATA structure 543-544
Win32 functions, behavior inside 16-bit processes 624-625
Win32 limitations in Windows 95 See Windows 95 system

limitations
Window

See also Common controls; Dialog boxes
appearance, file viewer guidelines 314-315
changing a window's style 63-64
composition, changing 605
creating common control windows 76-83
handles, Windows 95 system limitations 52
icons, dragging 64
management

described 15-16
limitations See Windows 95 system limitations
Windows version differences 63-65

mouse capture, losing, Windows version differences 64
size and position for video playback· 127-128
sizing and resizing, code example 83-84
titles, virtual machine services 583-584

WINDOWPLACEMENT structure 70
Windows 95 architecture, overview of software components 3
Windows 95 Explorer 73-74
Windows 95 Help 38-39
Windows 95 international versions, changing resource

files 615
Windows 95 Logo requirements

ATA (IDE) adapters 48
ATA (IDE) peripherals 48
audio adapters 47
development tools 44-45 .
device drivers 46
display adapters 4~-4 7
external communications devices 50
file-based applications 44
floppy disk controllers 48
full screen mode applications 42, 44
games and children's software 44

Windows 95 Logo requirements (continued)
hardware peripheral devices 46
modems 50
network adapters 50
nonfile-based applications 42-44
overview 42
parallel port devices 50
personal computer (PC) system 45-46
Plug and Play, supporting 45-46
printers 50
SCSI devices 49
SCSI host adapters 48-49
storage devices 47-49
utilities 44

Windows 95 platform strategy, international guidelines 593
Windows 95 system limitations

general limitations
Boolean functions 52
stub routines provided for unsupported functions 51
Unicode implementations of functions 51

graphics device interface (GDI)
bounding rectangle coordinates 53
color mask support 55
DeviceCapabilities function support 56
DEVMODE structure support 57
drawing objects, deleting 56
enhanced metafile format (EMF) 56-57
ensuring adequate space for objects 53
EnumDisplaySettings function support 58
GetDIBits function return value 56
GetGraphicsMode function support 56
paths, constructing 56
pens and brushes 55
Postscript printing 58
printer information structure support 57
printing and print spooling functions 57-58
regions and local heaps 53-55
SetGraphicsMode function support 56
Windows NT print monitor DLL support 57
world transformations 55
x- and y-coordinates 53

multimedia 62
overview 51
system services (kernel)

asynchronous file input and output support 58
deleting open files 59
DosDateTimeToFileTime function 59
drives, physical and logical, gaining access to 61
extended error support 58
file handles, opening and closing 60
file mapping 60
file time precision 59
file view coherence 60
FileTimeToDosDateTime function 59

Index 673

Windows 95 system limitations (continued)
system services (kernel) (continued)

FlushInstructionCache function support 61
GetLastError function 58
LoadLibrary function support 61
memory allocation 59-60
reallocating fixed memory blocks 59
registry key handles, duplicating 61
registry key names 61
resources, automatically freeing 61
SYNCHRONIZE standard access rights flag 61
thread locales 61

window management (user)
dialog box appearance 53
edit controls 52
extended error support 52
GetLastError function 52
GetThreadDesktop function 52
handles, window and menu 52
list boxes 52
LoadCursor function 53
MessageBox function 53
MessageBoxEx function 53
MessageBoxindirect function 53
private application messages 52
SetThreadDesktop function 52

Windows 95 user interface, datacentric design 29
Windows 95 version of MS-DOS 483
Windows directory 163
Windows logon passwords

adding services to 415
changing logon passwords 415-416
error conditions, handling of 416
removing services from 415

Windows NT
difference in handling registry 103
print monitor DLL support 57

Windows version differences
buttons 65-66
changing a window's style 63-64
client rectangle of minimized window 69
combo boxes 67
dialog boxes 65
edit controls 66
icons, dragging 64
list boxes 66-67
menus 68
mouse capture, losing 64
overview 63
parameter validation 70
system bitmaps and colors 68-69
system metrics 69-70
window management, general 63-65

WinExec function 305,487

674 Index

WININIT.EXE, processing WININIT.INI files 165
WININIT.INI, replacing DLLs during program

installation 165
WinMain function 307
Wizard controls 36
WM_ACTIV ATE message 253
WM_ACTIV ATEAPP message ·130-131
WM_CANCELMODE message 64
WM_CAPTURECHANGED message 64, 66-67
WM_CONTEXTMENVmessage 96
WM_CTLCOLOR message 68
WM_CTLCOLORBTN message 65, 68
WM_CTLCOLORDLG message 68
WM_CTLCOLOREDITmessage 66-68
WM_CTLCOLORLISTBOX message 67-68
WM_CTLCOLORMSGBOX message 68
WM_CTLCOLORSCROLLBAR message 68
WM_CTLCOLORSTATIC message 65-68
WMJ)EVICECHANGE message 13, 132
WM_DISPLA YCHANGE message 13
WM_DRA WITEM message 67
WM_DROPFILES message 309-310
WM_GETICON message 64
WM_IME_COMPOSmON message 606-608, 611
WM_IME_CONTROL message 608
WM_IME_ENDCOMPOSITION message 611
WM_IME_NOTIFY message 606-608
WM.:...IME_SETCONTEXT message 613
WM_IME_STARTCOMPOSITION message 611
WM_INITDIALOG message 97
WM_INPUTLANGCHANGE message 596-597
WM_INPUTLANGCHANGEREQUEST message 597
WM_MENUSELECT message 68
WM_NOTIFY message 91
WM_PALETTECHANGED message 129
WM_P ARENTNOTIFY message 64
WM_POWERBROADCAST message 13
WM_QUERYDRAGICON message 64
WM_QUERYENDSESSION message 585
WM_QUERYNEWPALETTE message 129
WM_SETICON message 64

WM_STYLECHANGED message 63
WM_STYLECHANGING message 63
WM_USER message 143
WM_ WINDOWPOSCHANGED message 253
Word processing sections, processed by file parsers

characters and character attributes 332-333
embedded objects 333
paragraph attributes 331
subdocuments 332
tables 331

Word size 622
Working directory, used for shortcut objects 272
WOWCallback16 function 641-642
WOWCallback16Ex function 642-643
WOWGetVDMPointer function 634, 643-644
WOWGetVDMPointerFix function. 634, 644
WOWGetVDMPointerUnfix function 634, 645
WOWGlobalAlloc16 function 645
WOWGlobalAllocLock16 function 645
WOWGlobalFree16 function 645
WOWGlobalLock16 function 646
WOWGlobalLockSize16 function 646
WOWGlobalUnlock16 function 646
WOWGlobalUnlockFree16 function 646
WOWHandle16 function 647
WOWHandle32 function 648
WriteFile function 58,60
WriteFileEx function 58

WELCOME TO THE WORLD OF

WI N DOW S ® 9 5 ~---------------------

The MICROSOFT®

WINDOWS®95

RESOURCE KIT

provides you with all of

the information necessary

to plan for and implement

Windows 9S in your

organization.

ISBN 1-55615-678-2

1376 pages, $49.95 ($67.95 Canada)
Three 3.5" disks

Details on how to
install, configure, and
support Windows 95
will save you hours of
time and help ensure
that you get the most
from your computing
investment.This
exclusive Microsoft

publication, written in cooperation with the Windows 95 development team, is the perfect technical
companion for network administrators, support professionals, systems integrators, and computer
professionals.

The MICROSOFTWINDOWS95 RESOURCE KIT contains important information that will help you
get the most out of Windows 95.Whether you support Windows 95 in your company or just
want to know more about it, the MICROSOFT WINDOWS 95 RESOURCE KIT is a valuable addition
to your reference library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

he Win32® API
liberates developers

from the oppression of 16-bit
programming, cooperative multitasking, and

memory limitations. And it offers the promise of tapping
into a rapidly expanding customer base of Windows NTTM 3.5 and
Windows® 95 users. But there's more to making the 16-bit to 32-bit
transition than just rowing across a river. Whether you're building a
32-bit application from scratch or porting an existing 16-bit
application, ADVANCED WINDOWS qffers the core information and
sage advice you need to maximize performance and minimize the
development cycle.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
CalI1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

INSID(LE is a unified and extensible environment of object-
based services with the overall purpose of enabling rich
integration between components. As Microsoft's object
technology, it represents major innovations in object-based
programming, making it possible to create applications
and software components with unprecedented capabilities.
But with this power comes additional complexity and new
programming paradigms.

INSIDE OLE provides both a clear tutorial and a strong set
of example programs, giving you the tools to incorporate
OLE into your own development projects. Written by a
member of the Microsoft® OLE team, this book truly gives

ISBN 1-55615-843-2, 1232 pages, $49.95 ($67.95) you the insider's perspective on the power of OLE for
creating the next generation of innovative software.

INSIDE OLE provides detailed coverage and refetence material on:

• obiect Objects and interfaces,
connectable objects, custom components and the Component
Object Model, and Local/Remote Transparency

• Structured storage
and compound files, persistent objects, and naming and binding

• viewing, Uniform Data
Transfer, viewable objects, data caching, OLE Clipboard, and
OLE Drag and Drop

• : Automation controllers;
property pages, changes, and persistence

• OLE Documents and embedding containers;
OLE Documents and local embedding servers; in-process object
handlers and servers; linking containers; and in-place activation
(visual editing) for containers and objects

• OLE Controls, future
enhancements, and component software

If you're interested in fully exploring and understanding OLE and component software, there's
no better source than INSIDE OLE.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax + 1-206-936-7329.

The Microsoft® Visual
C++™ development
system offers an

exciting new way to
create Windows™-based applications.

Now you can combine the power of object-
oriented programming with the efficiency of the C

language. The application framework approach in Visual C++ version 1.5-
centering on the Microsoft Foundation Class Library version 2.S-enables
programmers to simplify and streamline the process of creating robust,
professional applications for Windows.

INSIDE VISUAL C++ takes you one step at a time through the process of creating
real-world applications for Windows-the Visual C++ way. Using ample
source code examples, this book explores MFC 2.5, App Studio, and the
product's nifty "wizards"-AppWizard and ClassWizard-in action. The book
also provides a good explanation of application framework theory, along with
tips for exploiting hidden features of the MFC library.

Whether you are relatively new to programming for Windows or you are an
old dog ready for new tricks, Kruglinski's insider expertise makes INSIDE
VISUAL C++ the fastest route to mastering this powerful development system.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +1-206-936-7329.

PROGRAMMER'S GUIDE TO MICROSOFT® WINDOWS® 95

Take advantage of the Windows 95 team's experience and engage
the powerful programming features of Windows 95 in your
applications! PROGRAMMER'S GUIDE TO MICROSOFT WINDOWS 95
is the collected wisdom of key members of the Windows 95 technical

.' _____ '@teamandaninsightfulassemblageofarticles that explain how
best to use the robust features in Windows 95 in Win32®-based
applications, 16-bit Windows-based applications, and MS-DOS®-based
applications.

PROGRAMMER'S GUIDE TO MICROSOFT WINDOWS 95 includes articles about:

• Understanding Windows 95 - About Windows 95 Architecture, Creating Great
Applications, Win32 Limitations in Windows 95

• Developing Applications forWindows 95 - Using Common Controls and
Dialog Boxes, Using the Registry, Dragging and Dropping, Creating Mu~imedia
Applications, Programming for Pen, Installing Applications

• Extending the Windows 95 Shell-Shell's Namespace, Shell Extensions,
Application Desktop Toolbars, Shell Links, Taskbar Notification Area

• Using Windows 95 Features - File Viewers, File Parsers, Briefcase Reconcilers,
Passwords Control Panel, Device I/O Control, System Policies, ToolHelp Functions

• Using Microsoft MS-DOS Extensions - Microsoft MS-DOS Extensions, Long
Filenames, Exclusive Volume Locking, Program Information File Management,
Virtual Machine Services

• Applications for International Markets -International Guidelines, Using Double-
Byte Characters, Using Input Method Editors, Writing Middle Eastern Applications

The articles are written by different members of the team and represent an interesting
combination of styles, approaches, and points of view on programming for Windows
95. One goal, however, binds the articles together: helping you create great applications
for Windows 95! Start creating Windows 95-based applications or porting existing
applications to Windows 95 now! PROGRAMMER'S GUIDE TO MICROSOFT
WINDOWS 95 is an essential addition to any serious programmer's library.

Operating Systems/ Windows/ Programming

ISBN 1-55615-834-3

90000
U.S.A. $27.95

U.K. £25.99
Canada $37.95
[Recommended]

