
T e Insider's

Guide to

Coding the

N wUI

NnNCY WINNICK ~lUH

DISC INCLUDED

Microsoft®

Source
code and
executable
files on
CD-ROM

Developer
Network

RD6RHMMIN6 TH[
INDDW~®

~[R NT[RfHC[

NRNCY WINNICK ClUB
.

C'!

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Nancy Winnick Cluts

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Cluts, Nancy Winnick, 1962-

Programming the Windows 95 user interface / Nancy Winnick Cluts.
p. cm.

Includes index.
ISBN 1-55615-884-X
1. Microsoft Windows 95. 2. Operating systems (Computers)

3. User interfaces (Computer systems) I. Title.
QA76.76.063C57 1995
005.265--dc20 95-30591

CIP

Printed and bound in the United States of America.

123456789 MLML 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Adobe is a trademark of Adobe Systems, Inc. Macintosh and TrueType are registered trademarks of
Apple Computer, Inc. POSIX is a registered trademark of Institute of Electrical and Electronics Engi
neers, Inc. OS/2 is a registered trademark of International Business Machines Corporation. Microsoft,
MS-DOS, Win32, Win32s, Windows, and the Windows logo are registered trademarks and Visual C++
and Windows NT are trademarks of Microsoft Corporation. Twister is a registered trademark of Milton
Bradley Company. Arial and Times New Roman are registered trademarks of The Monotype Corpora
tion (PLC). Novell and NetWare are registered trademarks of Novell, Inc. Unicode is a trademark of
Unicode, Incorporated. Bugs Bunny is a registered trademark of Warner Bros., Inc. UNIX is a registered
trademark in the U.S.A. and other countries, licensed exclusively through X/Open Company, Ltd.

Acquisitions Editor: Eric Stroo
Project Editor: Mary Renaud
Technical Editor: Linda Rose Ebenstein

To my husband, Jonathan, and my son, Nicholas

CONTENTS

Acknowledgments ... xiii

Introduction .. xv

PART I: NEW COMMON CONTROLS
AND COMMON DIALOG BOXES

CHAPTER ONE

Status Bars and Toolbars:
Organizational Common Controls 3
Common Control Basics .. 3

Common Control Window Styles .. 6
Common Control Notifications ... 7

Status Bars .. ' " 8
Creating a Multiple-Part Status Bar .. 10
Using Owner Drawing in a Status Bar.. 14
Creating a Simple-Mode Status Bar ... 16
Status Bar Messages and Member Functions 17

Toolbars ... 19
Creating a Toolbar ... 21
Creating a Toolbar Bitmap .. 24
Supporting ToolTips .. 26
Customizing a Toolbar ... 29
Toolbar Messages and Member Functions : 31

CHAPTER TWO

Trackbars, Progress Bars, Up-Down
Controls, and Animation Controls:
General-Purpose Common Controls 35
Trackbars ... 35

Creating a Trackbar .. 38
Working with a Trackbar .. 42
Trackbar Messages and Member Functions 46

v

PROGRAMMING THE WINDOWS 95 USER INTERFACE

Progress Bars ' ... 48
Creating a Progress Bar .. 49

Progress Bar Messages and Member Functions 5,2
Up-Down Controls ... : 53

Creating an Up-Down Control ... 55
Up-Down Control Messages and Member Functions 58

Animation Controls .. 59
Creating an Animation Control ... 60
Animation Control Macros and Member Functions 65

CHAPTER THREE

Image Lists, List View Controls,
Column Headers, and Tree View Controls:
List Management Common Controls 67
Image Lists .. 67

Creating an Image List ... 70
Image List Functions and Member Functions 71

List View Controls and Column Headers ... 74
Creating a List View Control ... 78

Changing Views .. 85
Handling Notifications ... 86

Sorting Items in Response to a Column Header Click , 88
Editing Labels ... 90
List View Control Messages and Member Functions 91

Tree View Controls .. 94

Creating a Tree View Control .. ; ... 96
Adding Items to a Tree View Control .. 98
Implementing Drag and Drop for a Tree View Item """""""'" 101

Tree View Control Macros and Member Functions 105

CHAPTER FOUR

Tabs, Property Sheets, and Wizards:
Whiz-Bang Common Controls 109
Tabs .. 110

Creating a Tab Control ... 111

Property Sheets .. 113

Creating a Prop~rty Sheet ... 114

vi

Contents

A Word About Property Sheet Notifications 118
Hey, My Screen Is Flashing! .. 120
Property Sheet Messages ... 120

Wizards .. 123
Creating a Wizard ... 124
Processing Wizard Notifications .. 127

CHAPTER FIVE

Rich Edit Controls 133
The RICH ED Sample 133

Creating the Sample's Toolbar and Combo Boxes 135
Creating a Rich Edit Control ... 138
Building a Font List .. 138
Initializing Drag and Drop ; 139

Character Formatting ... ~........................... 139
Paragraph Formatting ... 146
Word and Line Breaks .. 148
Serialization Using Streams .. 148
Drag-and-Drop Operations ~... 151
Printing .. 152
Monitoring Events .. 154
Rich Edit Control Messages .. i 56

CHAPTER SIX

The New Common Dialog Boxes 159
Opening and Saving Files with Common Dialog Boxes 160

Using the Open and Save As Common Dialog Boxes 162
Monitoring Input ~ 163
Using the OFN_EXPLORER Flag : , 167
Learning New IDs 170

The Font Common Dialog Box .. 172
The Color Common Dialog Box ; 175
The Find and Replace Common Dialog Boxes 178
The Printing Common Dialog Boxes ... 181

Using the Page Setup Common Dialog Box............................ 185
Error Detection.. 190
Supporting Help .. 191

vii

PROGRAMMING THE WINDOWS 95 USER INTERFACE

viii

CHAPTER SEVEN

Putting It All Together 193
Designing CHICOAPP ... 193
Creating the Windows .. 195

Using MFC to Create the Same Controls 199
Resizing the Windows .. 203
Parsing and Storing the Data .. 205
Using the Common Dialog Boxes ... 208
Handling Notifications .. 211
Adding Context Menus ... 213
Incorporating a Property Sheet ... 214

Creating a Property Sheet in MFC .. 217

PART II: USING THE NEW USER
INTERFACE FEATURES

CHAPTER EIGHT

Support for Long Filenames 221
STK4Q94.XLS? .. 221
Is Your System FAT? ... 221

The FAT File System .. 222
The Protected-Mode FAT File System (VFAT) 223
The High-Performance File System (HPFS) 224
The Windows NT File System (NTFS) 225

Determining Which File System Is in Use .. 227
General Guidelines for Supporting Long Filenames 228 .
Outdated Assumptions .. 229
User Interface Considerations ... 231

Hiding File Extensions ... 232
Adjusting the Width of Edit Fields .. 233

CHAPTER NINE

Shortcuts 235
How Shortcuts Are Implemented .. 237

The Component Object Model .. 237
SHORTCUT: A Sample That Manipulates Shortcuts 238
Creating a Shortcut to an Object Other Than a File 244

Contents

ISheliLink Details .. 244
ISheIiLink::Querylnterface .. 245
ISheIiLink::AddRef ... 245
ISheIiLink::Release .. 245
ISheIiLink::GetPath .. 246
ISheIiLink::SetPath ~ 246
ISheIiLink::GetiDList .. 247
ISheIiLink::SetiDList .. ; 247
ISheIiLink::GetDescription .. 248
ISheIiLink::SetDescription .. 248
ISheIiLink::GetWorkingDirectory .. 248
ISheIiLink::SetWorkingDirectory .. 249
ISheliLink: :GetArguments ... 249
ISheIiLink::SetArguments ... 250
ISheIiLink::GetHotkey .. 250
ISheIiLink::SetHotkey .. 251
ISheIiLink::GetShowCmd .. 251
ISheliLink: :SetShowCmd ... 251
ISheIiLink::GetlconLocation ... 252
ISheliLink: :SetlconLocation .. 253
ISheIiLink::Resolve .. 253

Preserving Shortcuts ... 254

CHAPTER TEN

The Registry 255
What Is the Registry? ... 255

The Structure of the Registry .. 256
Predefined Keys ... 258

HKEY_CLASSES_ROOT .. 259

HKEY_CURRENT_USER '" ... 259
HKEY_LOCAL_MACHINE .. 260
HKEY_USERS .. 260

HKEY_CURRENT_CONFIG 260
HKEY_DYN_DATA ... 260

Updating the Registry 261

Using Built-In Tools .. 261

USing the Win32 API .. 262
Using Registration Files .. 262

ix

PROGRAMMING THE WINDOWS 95 USER INTERFACE

x

Differences Between the Windows 95
and Windows NT Registries .. 263

Registry Functions in Windows 95 ... 263

CHAPTER ELEVEN

The User I nterface Library 265
Drag and Drop .. 265
Retrieving File Information .. 269

Shh! Be Very, Very Quiet; We're Hunting New Functions 270
Taskbar Notifications .. ~ 272
Access Bars ... 275

Creating an Access Bar ... 276
Using the Access Bar Callback Message 280
Changing an Access Bar's Size or Position 281
Getting Information About the Taskbar 284

CHAPTER TWELVE

File Viewers 287
How File Viewers Work ... 289

How File Viewers Are Instantiated .. 289
Registering File Viewers with the System .. 290

The Structure of Registry Entries ... 290
An Example of Registering a File Viewer : 292

Basic Steps in Creating a File Viewer ... 293

PART III: EXTENDING THE USER INTERFACE
CHAPTER THIRTEEN

User Interfac"e Extensions 313
Reg~stering User Interface Extensions ... 314
Implementing IShellExtlnit ... 315
Initializing with IPersistFile .. 317
Context Menu Handlers .. 318

Registering Context Menu Handlers .. 320
Context Menu Handler Interfaces ... 320

Contents

Drag-and-Drop Handlers .. 323
Icon Handlers .. 323

Icon Handler Interfaces ... 325
Property Sheet Handlers ; 326

Property Sheet Handler Interfaces ... 328
Copy Hook Handlers .. 329
Drop Target Handlers ... 330
Data Object Handlers ... 332
Debugging User Interface Extensions .. 333
User Interface Extensions and Windows NT 334

CHAPTER FOURTEEN

The Shell Name Space 339
Definitions ... 340
Enumerating Items in the Shell ... 342
Getting Friendly Names and Icons .. 346
Getting Object Attributes ... 348
Filling the List View Control ... ~ 349
Displaying an Item's Context Menu .. 353
Supporting Drag and Drop ... 355

Index ... 357

xi

ACKNOWLEDGMENTS

Many, many people contributed greatly to this book and gave generously of
their time and patience. They answered my questions, explained the unex
plainable, read the drafts of my chapters (and left quite a bit of red ink, too),
and generally allowed me to make a complete pest of myself.

I've tried to list here everyone who has been instrumental in the creation
of this book. (If I have omitted anyone, I offer my apologies.) My sincere thanks
to the following people:

My friends and colleagues (present and past) at the Microsoft Developer
Network, especially Nigel Thompson and Dale Rogerson. They reviewed my
chapters, commented on my sample code, offered assistance on thorny pro
gramming problems, didn't knock on my office door when my "Do Not Dis
turb" sign was up, and gave me ample opportunity to blow off steam when
writer's block hit with a vengeance.

Chris Guzak, Kurt Eckhardt, George Pitt, Teri Schiele, George Moore,
joe Belfiore, and Mike Sheldon, for helping me to understand the underpin
nings of the Windows 95 user interface.

My editors at MSDN: judy Nessen, for editing all the chapters of the
book and never complaining about the last-minute changes I had to make;
Handan Selamoglu and Diane Stielstra, for all their work on my original ar
ticles; and Andy Himes, for his steadfast support of the book.

Dean McCrory, for answering my many, many MFC questions.
Greg Keyser andjeffrey Saathoff, for offering their own sample code for·

my use.
The people at MS Press, including Eric Stroo, Mary Renaud, Linda Rose

Ebenstein, Mary Dejong, Dail Magee,jr.,jim Fuchs, Bill Teel, Barb Runyan,
. jody Ivy, jean Trenary, Barbara Remmele,john Sugg, Nancy jacobs, Michael
Victor, Kim Eggleston, Sally Anderson, Shawn Peck, judith Bloch, Stephanie
Marr, Lisa Theobald, Heidi Saastamoinen, and Koren Buckner.

TeamX, who, when all else fails, always comes to the rescue!
Finally, my son, Nicholas, who thinks it's "cool" that Mommy works with

"'puters," and to my husband, jonathan, who encourages me, inspires me,
and never once complained about all the hours I spent working on the book.

xiii

INTRODUCTION

In December 1993, I got my hands on a beta copy of the Microsoft Windows
95 operating system (then called "Chicago"). The first thing that popped out
at me was the new look and feel of the system. I'm always curious about how to
program user interfaces and how to write applications that exploit their fea
tures, so Ijumped right in. I began by exploring the new common controls. I
soon decided to do some writing about what I was discovering, and before I
knew it, what I had envisioned as an article or two turned into a long series of
articles on the Microsoft Developer Network Development Library CD.

But it didn't stop there. My list of interesting topics to research kept
growingi-and all of the most interesting topics involved the user interface.
Then one day, as I was reading one of the programming newsgroups out on
that oft-touted "information superhighway" (there, now I've said it), some
one asked the group to recommend a book that covered programming for
the Windows 95 user interface. The unanimous response was that no such
book existed yet but that when one surfaced, it would be snapped right up.

My fate was sealed. I decided that I wanted to fill that void, to provide a
source of information for all those developers who want to know how to pro
gram the new Windows 95 VI. The place to start, of course, is with a brief in
troduction to the interface itself.

An Overview of the Windows 95 User Interface
Microsoft Windows 95 sports an exciting new user interface, redesigned to
make it easier and faster for both beginners and power users to get their work
done. But there's even better news for developers: you can incorporate the
new functionality that has been implemented for this interface in your own
applications.

No longer will a developer have to reverse-engineer a control used in the
interface-the software development kit now contains the controls. No longer
will a developer need to find a third party to add support for long file
nam~s-the operating system itself now permits long filenames. No longer
will a developer have to figure out some way to hack into the interface code
extensibility is now built in.

xv

PROGRAMMING THE WINDOWS 95 USER INTERFACE

This book examines the Windows 95 user interface and the program
ming techniques you'll need to get the most out of its new elements. Specifi
cally, I'll focus on these elements:

New common controls

New common dialog boxes

Support for long filenames

Shortcuts

File viewers

User in terface extensions

The chapters that follow describe these features in detail, in addition to
discussing important related topics: using the Windows 95 Registry, working
with the user interface dynamic-link library (SHELL32.DLL), and browsing
the shell name space. For now, however, I'd like to offer you a glimpse at what's
ahead by briefly introducing the features listed above.

New Common Controls

xvi

The new common controls in Windows 95 include the following:

Status bars and toolbars

Trackbars, progress bars, animation controls, and up-down
controls

Image lists, list view controls, column headers, and tree view
controls

Property sheets, tabs, and wizards

Rich edit controls

The best place to preview many of these new elements is Windows Ex
plorer, the integrated replacement for File Manager and Program Manager.
Figure I-I points out a few of the new common controls. Microsoft designed
and implemented these controls for Windows Explorer, but they have been
exported for use by all Windows-based applications.

Tree view control

An Folders

gG:J IC:]
; : .. {:J Backup
! L .. CJ Books94

i . r.g ~~~:dia
~CJ Cluts

, W·CJ Cserve
j i·CJ Dos

i CJ Exchange
m·CJ Faxworks
l'CJ Host

rB"CJ Msinput
! iE CJ M soffice

Figure 1-1.

File Folder
File Folder
File Folder
File Folder
File Folder

2KB 000 File
2KB Configuration 5 ettings

30KB Write Document
53KB Write Document

List view control

Common controls in Windows Explorer.

Status Bars and Toolbars

Introduction

Toolbar

Modified Column header
4/211952:28 PM
4121/952:39 PM
4/21/95 2: 28 PM
4121195 2: 28 PM
4/21/952:28 PM
4/21/952:28 PM
4/21195 2: 36 PM
41271957:31 PM

Status bar

Status bars and toolbars are organizational common controls-that is, they
are used to organize or group other controls. Status bars and toolbars have
appeared in applications for several years now; until Windows 95, however,
the operating system did not support them.

A status bar usually resides at the bottom of the application's main win
dow. It displays textual or graphical status information such as the name of
the current document, the size of the document, the date, and the time. Status
bars are a convenient way to give the user information about an object in your
application.

A toolbar holds other controls such as buttons and combo boxes (usually
grouped in a logical or convenient order),which help the user to quickly carry

xvii

PROGRAMMING THE WINDOWS 95 USER INTERFACE

xviii

out common tasks-copying a file, printing a document, applying format
ting, and so on. In many applications, for example, clicking a toolbar button
lets the user immediately execute a save command, without having to choose
the command from a menu or remember a key combination. You'll see tool
bars most often at the top of an application's main window, although some
programs allow the user to customize and move toolbars. You can see both a
toolbar and a status bar in Figure I-Ion the preceding page.

Trackbars, Progress Bars,
Animation Controls, and Up-Down Controls
Several new common controls are designed for general uses such as setting
intensity levels, changing values, and simply helping the user understand
what's going on in the system. With a trackbar, for instance, the user can move
a slider through a range of tick marks that indicate degrees of brightness,
volume, color mix, or other measures of intensity. You might use the vertical
trackbar shown in Figure 1-2 to control the volume of a pair of speakers .

.... : ·f:· .. ··· .. ·-.· - .. -

~.T .. ·.· .•.. ::.··· ~.: -1-

Figure 1-2.
A trackbar.

When your application needs to carry out a time-consuming operation,
a progress bar can tell the user how far along things are. A highlight color

: gradually fills the progress bar from left to right as the operation moves to
ward completion. You'll find progress bars most frequently in setup programs
or when you copy a large amount of data from one location to another. For
example, when you copy a large file in Windows 95, you'll see the dialog box
shown in Figure 1-3. In addition to the progress bar, this dialog box contains
an animation control, which allows you to play an audio-video interleaved (AVI)
clip for the user.

Animation control
(paper flying

bet'weEm folders)

From 'HELP' to 'Desktop'

IISllFhlllll1ll1llJlSlllIlUISllIlllI11I

(~J

Progress bar

Figure 1-3.
A progress bar and an animation control at work.

Introduction

Another general-purpose control is the up-down control, which allows the
user to scroll through and change items in an associated control. You'll usu
ally want to pair an up-down control with an edit box to produce a spin box,
in which the user can spin through numbers, days of the week, month names,
and so on. Figure I-4 shows an example.

Figure 1-4.
An up-down control paired with an edit box to create a spin box.

Image Lists, List View Controls,
Column Headers, and Tree View Controls
Creating a user interface for managing lists can be a complicated task. But
the new list management common controls in Windows 95 make life a lot
simpler. An image list, which is designed to be used with list view controls and
tree view controls, helps you manage lists of icons and bitmaps. With a list view

xix

PROGRAMMING THE WINDOWS 95 USER INTERFACE

xx

control, you can display lists of data in varying arrangements and in varying
degrees of detail. A column header in a list view control can specify what each
column of information is about (and can also give the user a way to sort the
information, by clicking a header item). A tree view control provides a list of
data that is structured in a "tree" hierarchy. These controls, three of which
are seen in Figure I-Ion page xvii, are the basis of the Windows Explorer user
interface.

Property Sheets, Tabs, and Wizards
A property sheet displays the properties of an item, usually on several different
property sheet pages. For example, a user can check out or change the proper
ties of the current Windows 95 disptay with the Display Properties property
sheet, shown in Figure 1-5. Clicking one of the labeled tab controls switches to
the corresponding property sheet page-that is, if the user clicks the Screen
Saver tab, the Screen Saver page appears, where the user can find the name of
the current screen saver or select a new one.

Tabs

Figure I-S.
A property sheet with tabs.

Introduction

A wizard is a type of property sheet that takes the user step by step
through a series of dialog boxes to complete a process. Wizards are especially
useful in a setup or installation application. For instance, when you install a
new hardware device under Windows 95, the Add New Hardware wizard,
shown in Figure 1-6, walks you through that setup.

First page of the
Add New Hardware

To begin installing your new hardware, click Next.

Figure 1-6.

Click this button
to move to the
previous page

The Add New Hardware wizard.

Rich Edit Controls

C~ncel·.···1

Click this button
to move to the
next page

A rich edit control is essentially a text editing box-but there's much more. It
provides functionality comparable to that of a multiline edit control, while
also allowing the user to apply both character and paragraph formatting to
the text, to perform drag-and-drop operations, and even to embed OLE ob
jects in the text. To experiment with a rich edit control, try out the text edit-
ing area in the Windows 95 WordPad application, which you can see in Figure
1-7 on the next page.

xxi

PROGRAMMING THE WINDOWS 95 USER INTERFACE

• I ••• I ••• I • •• • .•• I •••

This is a test to show you a rich edit control in acti on.

Figure 1-7.
WordPad, which contains a rich edit control.

New Common Dialog Boxes

xxii

Microsoft has updated common dialog boxes in Windows 95. The biggest
change is in the look of the dialog boxes, but you'll also find some new func
tionality. The new Open common dialog box in Figure 1-8 shows the updated
style. We'll discuss common dialog boxes for opening and saving files, setting
fonts, changing or creating colors, finding and replacing text, and pr~nting.

Figure 1-8.
The new Open common dialog box.

Introduction

Support for Long Filenames
As you can see in the Open common dialog box in Figure 1-8, the days of
those awkward, indecipherable, eight-character filenames are over. You can
now assign sensible and easy-to-remember names to your files-Summer In
ventory Checklist and Order Sheet rather than SINVCKOS.DOC, for instance.
Long filenames come to you courtesy of the Windows 95 file system, called
VFAT (protected-mode, or virtual, FAT). The VFAT system is compatible with the
older file allocation table (FAT) system, using extended FAT structures to
store long filenames and file information.

I'll offer some guidelines that will help you support long filenames in
your applications and your interface design, and we'll examine some outdated
assumptions that might still be lurking in your code.

Shortcuts
You can customize the desktop by adding shortcuts for your favorite pro
grams, documents, and printers, changing the look to fit your work style and
personality. Shortcuts provide an easy way to access the items you use often.
After you've set up a shortcut for a document, for example, you can simply
double-click the shortcut to open the document-you don't need to remem
ber the document's full name or its precise location on your system. If you
have a shortcut to your printer on your desktop, you can print a file simply by
dragging the file's icon onto the printer icon. Users can easily create their own
shortcuts in Windows 95, and you can also include them in your applications.

Figure 1-9 shows a shortcut that I keep on my desktop. It gives me quick
access to the Registry Editor, one of the applications I run most often.

Figure 1-9.
A shortcut to the Registry Editor.

File Viewers
With afile viewer, a user can look at the contents of a file without opening the
application in which the file was created. The file viewer itself supplies the
interface, which can include elements such as menus, a toolbar, a status bar,
and standard window controls.

xxiii

PROGRAMMING THE WINDOWS 95 USER INTERFACE

To produce a file viewer, the user selects a file and then chooses Quick
View from Windows Explorer's File menu. Another method is to select the
file and then right-click it to display the file's context menu, from which the
user can choose the Quick View option.

You can create and include your own file viewers in your applications.
We'll discuss this process and look at how file viewers are registered in the
Windows 95 Registry.

User Interface Extensions
Interface extensions enhance the basic functionality of the user interface by
offering you additional ways to manipulate file objects or by supplying addi
tional information. Extending the interface also allows an application to sim
plify the task of browsing through the Windows 95 file system and networks.
Seven extensions to the user interface are built into Windows 95:

Context menu handlers

Drag-and-drop handlers

Icon handlers

Property sheet handlers

Copy hook handlers

Drop target handlers

Data object handlers

An Overview of This Book

xxiv

This book contains three parts. Chapters 1 through 7 cover the new common
controls and common dialog boxes. Chapters 8 through 12 discuss additional
functionality such as support for long filenames, shortcuts, and file viewers.
The final part, Chapters 13 and 14, examines the advanced topics of imple
menting user interface extensions and browsing the shell name space. In each
chapter, we'll discuss the programming issues you need to consider to take
advantage of the visual richness of the Windows 95 environment, and you'll
see some practical examples and coding techniques that you can adapt for
your own applications.

Introduction

Who Should Read This Book
This book is written for Windows programmers who already know C or who
use C++ with the Microsoft Foundation Class Library (MFC). I'm a C pro
grammer at heart, but I know that many more adventurous programmers out
there have embraced C++ and MFC. Accordingly, where possible, I provide
samples both in C and in C++ using the classes built into MFC. Toward the
end of the book, you'll find some topics that require a minimal understanding
of OLE: shortcuts, file viewers, and user interface extensions. In those chap
ters, I recommend some additional reading that will help get you up to speed
on OLE issues.

The Companion CD-ROM
The sample code demonstrated in this book and included on the CD-ROM
packaged as a companion disc with the book runs on Microsoft's 32-bit Win
dows operating systems: Windows 95, Windows NT 3.51 (using the new shell),
and Win32s 1.3 running on Windows 3.1. To run the samples, you must be
running one of these systems. To build the samples, you need the Microsoft
Win32 Software Development Kit. If you plan to build the MFC samples,
you need to run Microsoft Visual C++ version 2.1 or later with MFC version
3.1 or later.

The companion disc contains the source code for all the sample pro
grams shown in the book. Each sample has a make file that you can use to
build the project under Visual C++ version 2.1. The samples have been built
and tested using Visual C++ 2.1 and MFC 3.1 on Windows 95.

I wrote most of the samples either specifically for this book or for the
series of Microsoft Developer Network technical articles that preceded the
book. In a few cases, samples I had written earlier eventually became incor
porated into the Win32 Software Development Kit; they are included here
with permission, as are two samples written by Greg Keyser.

xxv

PAR T I

NEWCOMMON
CONTROLS
AND COMMON
DIALOG BOXES

C HAP T E R ONE

Status Bars and Toolbars:
Organizational
Common Controls

Our look at the new elements of the Microsoft Windows 95 user interface
and the programming techniques you'll need to work with them begins with
the new common controls. To get you started, this chapter does double duty.
First it provides some basic information about the common controls as a
group, including common control window classes, window styles, and notifi
cations.Then the chapter moves on to introduce you to the two most popular
common controls: status bars and toolbars.

Common Control Basics
The new common controls were designed specifically to enhance the look
and feel of new interface elements such as those seen in Windows Explorer. If
you as a developer want to do everything you can to make your applications
look and feel as if they are part of the new interface, you need to understand
how these controls work and how to integrate them into your applications.

When I started running Microsoft Windows 95, I was delighted to learn
about the new controls that were available to me through the common control
library. Some of these, such as property sheets, wizards, and tree view controls,
provided just the type of functionality I was looking for in order to add some
polish to my applications without too much effort. Now I could finally add
wizards to my programs without having to write my own code to manage the
windows! I discovered other controls, too: progress bars, trackbars, up-down
controls, and animation controls, to name just a few.

3

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

4

In Part I of this book, we'll examine each new common control in turn,
and I'll provide sample code in C and in C++ using the Microsoft Foundation
Class Library (MFC) to help you understand how to create and manipulate
the controls. I have also included lists of messages and member functions to
show you the breadth of functionality each control supports. (These lists are
based in large part on the documentation for the Win32 Software Develop
ment Kit [SDK] and the documentation forMFGversion 3.1, but the lists are
not comprehensive. If you would like even more detailed information about
the common controls, you can also refer to the Win32 SDK itself, consult the
MFC documentation, or check out the Microsoft Developer Network [MSDN]
Development Library.) But first let's take a look at what all the "common"
controls have in common.

Most of the new 32-bit common controls designed for the Windows 95
operating system are supported by the COMCTL32.DLL dynamic-link library
(DLL), which is supported by the 32-bit Microsoft Windows operating sys
tems: Windows 95, Win32s version 1.3 or later (running on Windows version
3.1) ,and Windows NT version 3.51 or later. It is important to remember that
these new controls are 32-bit only-they are not supported in 16-bit Windows
environments. If I've confused you with that last statement, let me clarify:
these controls will work in Windows 3.1, but only if the system is running
Win32s, which provides a mechanism called a thunking layer (don't you love
that name?) to translate between 32-bit system calls and 16-bit system calls.

Essentially, a common control is a child window that sends a notification to
its parent window when an event (such as a mouse click or a focus change)
occurs in the control. Because these controls are windows, you can use the
standard window management functions to manipulate them-that is,you
can send messages or post messages to them. Some common controls send
notifications as WM_COMMAND messages; others use a new message,
WM_NOTIFY, to notify the control's parent of an action or a change. Each
common- control supports a set of messages that an application can use to
manipulate the control.

Instead of using the SendMessage or PostMessage function to send mes
sages to some of the common con troIs, an application can use a set of macros
included in the COMMCTRL.H header file. I'm more comfortable using
these macros than using the standard functions o,r the standard messages
because the preface of the macro name specifies the. type of con trol you are

ONE: Status Bars and Toolbars

manipulating. For example, the ListView_DeleteColumn macro deletes a col
umn in a list view control. When I ported my samples from C to MFC, I was
able to easily strip off the preface of the macro and use the remainder in my
calls to the member functions. In the example I just mentioned, an MFC
application that has a list view control (CListCtrl class) defined as m_List
would contain a member function called m_List.DeleteColumn.

The COMCTL32.DLL file contains the window procedures, resources,
and functions that support common controls. Applications using the new
common controls must link with the COMCTL32.LIB file. Before you make
any calls into this library, you should call the Windows InitCommonControls
function to ensure that this DLL has been loaded. InitCommonControls is a
stub function that does nothing; it takes no parameters and returns no values.
Calling this function simply confirms that the common control library has
been loaded.

Each common control belongs to a window class defined by the com
mon control library. An application creates a common control of a particular
type by specifying the appropriate window class name in the Create Window
or CreateWindowEx function, by using the Create member function for the
MFC class designed to support the window class, or by using a dialog tem
plate. Table 1-1 lists the window classes provided by the common controlli
brary. You can find these definitions in the COMMCTRL.H file for C projects;
for MFC projects, the AFXCMN.H file should be included in STDAFX.H.

Class Name

ANIMATE_CLASS

HOTKEY_CLASS.

Table 1-1.
Common control window classes.

Description

Provides a method for displaying animated controls
within a window.

Allows the developer to define hot keys, which are
key combinations that the user can press to perform
an action quickly. For example, a user can press the
hot key Ctrl-Z to activate a given window and bring
it to the top of the z-order. The hot-key control dis
plays the user's choices and ensures that the user
selects a valid key combination.

(continued)

5

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 1-1. continued

Class Name

PROGRESS_CLASS

STATUSCLASSNAME

TOOLBARCLASSNAME

TOOLTIPS_CLASS

TRACKBAR_ CLASS

WC_LISTVIEW

WC_TREEVIEW

Description

Provides a method for indicating the progress of a
lengthy operation by gradually filling a rectangle
from left to right with the system highlight color as
the operation progresses.

Provides a method for displaying status information.

Provides buttons that carry out menu commands.

Creates a ToolTip control, which displays a small
pop-up window containing text that explains the
purpose of a tool in an application. ToolTips are
generally used with toolbars.

Allows the user to select from a range of values
by moving a slider.

Provides a pair of arrows to increment or decre
ment the value in an adjacent (buddy) control.

Provides a method for displaying a header above a
column of information and allows the user to sort
the information by clicking the header.

Provides a method for displaying and arranging a
collection of items. Each item consists of an icon
and a label.

Provides a method for defining multiple pages for
the same area of a window or a dialog box. Each
page contains specific information or a group of
controls that the application displays when the user
clicks the corresponding tab.

Provides a method for displaying a hierarchical list
of items. Each item consists of a label and, option
ally, a bitmap.

Common ,Control Window Styles

6

The Win32 application programming interface (API) offers several window
styles that you can use when creating common con troIs. Table 1-2 lists and de
scribes these styles. In general, you can combine styles when you create a new
control, although Table 1-2 notes certain cases in which you cannot use a
combination.

Style

CCS_ADJUSTABLE

CCS_BOTTOM

CCS_NOPARENTALIGN

Table 1-2 .
. Common control styles.

ONE: Status Bars and Toolbars

Description

Allows a toolbar to be configured by the user.

Positions the control at the bottom of its parent
window's client area and sets the control width to
the parent window width. Status bars have this style
by default.

Prevents a 2-pixel highlight from being drawn
at the top of the control.

Prevents a I-pixel highlight from being drawn at
the top of the control. .

Resizes the control and moves it horizontally, but
not vertically, in response to a WM_SIZE message.
This style is ignored if the CCS_NORESIZE style
is set.

Prevents the control from automatically moving
to the top or bottom of the parent window. A con
trol with this style maintains its position within the
parent window even if the size of the parent win
dow changes. If you specify the CCS_TOP or CCS
_BOTTOM style with CCS_NOPARENTALIGN, .
the height of the control adjusts to the default, and
the position and width of the control remain un
changed.

Prevents the control from using the default width
and height when setting its initial size or a new size.
A control with this style uses the width and height
specified in the creation or sizing request.

Positions the. control at the top of the parent win
dow's client area and sets the control width to the
parent window width. Toolbars have this style by
default.

Common Control Notifications
A common control notifies its parent window of an input event by sending
a notification. Some common controls send notifications in the form of
WM_NOTIFY messages. The LParam parameter of a WM_NOTIFY message is

7

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

either the address of an NMHDR structure or the address of a larger struc
ture that includes the NMHDR structure (for tab controls, list view controls,
and tree view controls). Each common control has its own specific set of not i
fication values.

The common control library also provides notification values that can
be sent by more than one type of common control. All of the common con
trols can send the following notifications:

NM_CLICK

NM_KILLFOCUS

NM_RCLICK

The user clicked the left mouse button within the
control.

The user double-clicked the left mouse button
within the control.

The control lost the input focus.

The user clicked the right mouse button within the
control.

The user double-clicked the right mouse button
within the control.

The control has the input focus, and the user
pressed the Enter key.

The control gained the input focus.

N ow that you have some background, the remainder of this chapter will
explore two of the new common controls: status bars and toolbars. They are
referred to as organizational controls because you can use them to organize
other controls. Before Windows 95, you could find support for these controls
from within Microsoft Visual C++ through the Microsoft Foundation Class
Library; all you needed to do was click a check box. But these were MFC
classes. C programmers were still out of luck if they wanted easy access to
these controls. Now that the Win32 API supports the organizational con
trols, everyone can use the same status bars and toolbars that appear in the
Windows 95 user interface.

Status Bars

8

A status bar is a horizontal window positioned, by default, at the bottom of a
parent window. It displays status information that is defined by the applica
tion. This control can appear in one of two modes: as a simple-mode status bar
(containing only one section) or as a multiple-part status bar (divided into vari
ous sections and able to display more than one type of status information). A
multiple-part status bar can contain as many as 255 sections.

ONE: Status Bars and Toolbars

You can create a status bar in any of these three ways:

Use the CreateWindow or CreateWindowEx function, specifying
the STATUSCLASSNAME window class.

Use the MFC CStatusBar class and its member functions.

Use the MFC CStatusBarCtrl class and its member functions.

Notice that I've listed two MFC classes: CStatusBar and CStatusBarCtrl.
MFC has supported the CStatusBar class in both 16-bit and 32-bit Windows. I
will refer to this as the "old-style" control. MFC now uses the CStatusBarCtrl
class to support the new Win32-only status bar control. These two classes are
entirely different. If you want the same functionality that the Win32 control
offers, you should use CStatusBarCtrl, even though you will need to create
the status bar yourself. App Wizard provides a check box for status bars when
you create your project, but using this check box produces an old-style status
bar, not the Win32 control. (Also note that CStatusBarCtrl does not have built
in support for the old-style Caps Lock and Num Lock indicators.) I chose to
write a sample in C and port it to MFC using the CStatusBarCtrl class.

With all this in mind, let's see what you can do with status bars. I wrote
the STATUS sample in C to demonstrate what the text styles look like, how to
write text in a status bar, how to use the status bar modes, and how to draw a
bitmap in a status bar. Figure 1-1 shows the multiple-part status barproduced
by the STATUS sample.

Normal text

Figure 1-1.

Text that
"pops out"

Text without Owner-drawn Sizing
borders area grip

The status bar created by the STATUS sample.

Status bar

In the lower right corner of the status bar, you will notice a sizing grip,
which is similar to a sizing border. The user can drag this triangular area to
resize the parent window. You can get this functionality by including the

9

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

SBS_SIZEGRIP window style when you create your status bar. If you decide to
include a sizing grip, you should avoid combining the CCS_TOP common
control style and the SBS_SIZEGRIP style because this combination renders
the sizing grip nonfunctional. The system will not even draw the sizing grip.

Creating a Multiple-Part Status Bar

10

I first wrote the STATUS sample in C using the messages provided by the Win32
API. I decided to create a multiple-part status bar to show these elements:

Normal text

Text that "pops out"

Text without a border

An owner-drawn section with a bitmap displayed

The following code, found in the STATUS.C file on the companion disc,
creates the status bar and breaks it into parts. The array of integers passed in
the SB_SETPARTS message (or the MFCSetParts member function) is an ar
ray of endpoints for each part of the status bar. Because I take care of sizing
my status bar when I handle the WM_SIZE message, I fill in the actual end
points at that time. As is the case for most of the common controls, you need
to include the COMMCTRL.H header file in order to use status bars in your
application, and you must include the COMCTL32.LIB file in your list of
libraries.

static HWND hWndStatus;
static int aWidths [4];

switch (message)
{

case WM_CREATE:
hWndStatus = CreateWindowEx

0L.
STATUSCLASSNAME,

WS_CHILD !WS_BORDER !
WS_VISIBLE ! SBS_SIZEGRIP,

0, 0, 0, 0,
hWnd,
(HMENU)ID_STATUSBAR,
hInst,
NULl) ;

II extended style
II create status bar
/I wi ndow titl e

II window styles
II x, y, width, height
II parent window
/I ID
II instance
II window data

ONE: Status Bars and Toolbars

if (hWndStatus == NULL)
MessageBox (NULL. "Status Bar not created!". NULL. MB_OK);

II Break the status bar into four parts.
SendMessage (hWndStatus. SB_SETPARTS. 4. (LPARAM)aWidths);

Now that you've created the status bar, you should give it some text to
display. What good is a status bar that doesn't say anything? Setting text is as
easy as sending a message (or calling an MFC member function). The trick to
displaying the different kinds of text shown in Figure I-Ion page 9 is to set
the drawing style when setting the text. The wParam parameter for the SB
_SETTEXT message is a combination of the (zero-based) part of the status
bar that receives the text and the text drawing style.

II Set the text in the first part to normal.
SendMessage (hWndStatus. SB_SETTEXT. 0.

(LPARAM) "Mouse pos it ion:") ;

II Set the text in the second part to pop out.
SendMessage (hWndStatus. SB_SETTEXT. 1 I SBT_POPOUT.

(LPARAM)"This text pops out.");

II Set the text in the third part to have no borders.
SendMessage (hWndStatus. SB_SETTEXT. 2 I SBT_NOBORDERS.

(LPARAM)"This text has no borders.");

II Load the bitmap for the owner-drawn part of the status bar.
hBmp = LoadBitmap (hlnst. MAKEINTRESOURCE (ID_BITMAP));

II Set the fourth part to be owner-drawn and pass the bitmap.
SendMessage (hWndStatus. SB_SETTEXT. 3 I SBT_OWNERDRAW.

(LPARAM)hBmp) ;

The MFC version of the code (the MFCSTATUS sample) creates the sta
tus bar in the view class of the OnCreate handler in the MFCSTVW.CPP file.
The status bar is created and the text and parts initially set using the member
functions provided by the CStatusBarCtrl class. As you can see, the code is
very similar. One difference is in the SetText member function. Whereas the
SB_SETTEXT message packed both the part and the drawing style into
wParam, the SetText member function receives these two values separately:
first the part and then the drawing style. Another difference between the C
version and the MFC version is that you must include the AFXCMN.H file,
which defines the new common control classes, in your STDAFX.H file.

11

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

12

II The view class is defined as follows in MFCSTVW.H.

class CMfcstatusView : public CView
{

} ;

protected: II create from serialization only
CMfcstatusView ();
DECLARE_DYNCREATE (CMfcstatusView);
CStatus m_Status;

II Attributes
public:

CMfcstatusDoc *GetDocument (};

II Operations
public:

I I Overri des
I I Cl assW'i za rd generated vi rtua 1 function overri des.
II {{AFX_VIRTUAL (CMfcstatusView)
public:

virtual void OnDraw (CD0*pDC);

protected:
II }}AFX_VIRTUAL

II Implementation
public:

virtual -CMfcstatusView ();
#ifdef _DEBUG

virtual void AssertValid () const;

II overridden to draw
II thi s vi ew

virtual void Dump (CDumpContext& dc) const;
#endif

protected:

II Generated message map functions
protected:

II {{AFX_MSG (CMfcstatusView)
afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
afx_msg void OnSimple ();
afx_msg void OnMultiple ();
afx_msg void OnSize (UINT nType. int cx. int cy);
afx_msg void OnMouseMove (UINT nFlags. CPoint pOint);
II }}AFX_MSG
DECLARE_MESSAGE_MAP ()

ONE: Status Bars and Toolbars

II The status bar is created in MFCSTVW.CPP.

int CMfcstatusView::OnCreate (LPCREATESTRUCT lpCreateStruct)
{

if.(CView::OnCreate (lpCreateStruct) == -1)
return -1;

II Create the status bar.
m_Status.Create (WS_CHILD I WS_BORDER I WS_VISIBLE I SBARS_SIZEGRIP,

Crect (0, 0, 0, 0),
this,
ID_STATUSBAR);

int aWidths [4] = {0, 0, 0, 0};
II Set the status bar to have four parts.
m_Status.SetParts (4, aWidths);
II Set the text in the first part to normal.
m_Status.SetText «LPCTSTR)"Mouse position:", 0, 0);
II Set the text ~n the second part to pop out.
ITLStatus. SetText « LPCTSTR) "Thi s text pops out.", 1. SBT _POPGUn;
II Set the text in the third part to have no borders.
m_Status.SetText «LPCTSTR)"This text has no borders.", 2,

SBT_NOBORDERS);
II Set the fourth part to be owner-drawn.
m_Status.SetText «LPCTSTR)"", 3, SBT_GWNERDRAW);
return 0;
}

Sizing the status bar window and its parts isn't difficult. It's simply a mat
ter of handling the WM_SIZE message, moving the status bar window, and
setting the endpoints for the parts in the status bar. Following is the C code I
used; I leave the MFC code as an exercise for you.

case WM_SIZE:
il Resize the status bar to fit along the bottom of the client area.
MoveWindow (hWndStatus, 0, HIWORD(lParam) - 10, LOWORD(lParam),

HIWORD(lParam), TRUE);
II Set the rectangles for the multiple parts of the status bar.
II Make each part 1/4 of the width of the client area.
aWidths [0] LOWORD(lParam) I 4;
aWidths [1] LOWORD(lParam) I 2;
aWidths [2] LOWORD(lParam) - aWidths [0];
aWidths [3] -1;
SendMessage (hWndStatus, SB_SETPARTS, 4, (LPARAM)aWidths);
break:

13

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Using Owner Drawing in a Status Bar

14

Status bars are great for displaying text, but what if you want to put a bitmap
in your status bar, as Microsoft Mail does? Using the Win32 API, you can add
a bitmap by taking advantage of the control's support for owner drawing.
Owner drawing lets you display a bitmap instead of text (or use a different
font) in a section of a status bar. In the code you just saw, you send the
SB_SETTEXT message with the SBT_OWNERDRAW drawing style specified
to tell the system that a part of your status bar should be owner-drawn. The
IParam parameter is a 32-bit, application-defined value that the application
can use when drawing that part of the status bar (that is, you can pass a
bitmap handle in this parameter if you like). At this point, you treat the con
trol like any other owner-drawn control: you handle the WM_DRAWITEM
message and then use the information in the DRAWITEMSTRUCT structure
that is passed along. The following code demonstrates how I did this in the
STATUS sample:

case WM_DRAWITEM:
if «int)wParam == ID_STATUSBAR)
{

LPDRAWITEMSTRUCT lpDis:
HOC hdcMem:
HBITMAP hbmOl d:
BITMAP bm:

II Save the drawing information. This information is specific
II to the part of the status bar to be drawn.
lpDis = (LPDRAWITEMSTRUCT)lParam:
II Create a compatible device context (DC) for the bit block
II transfer (bitblt).
hdcMem = CreateCompatibleDC (lpDis-)hDC):
II Select the bitmap into the DC.
hbmOld = SelectObject (hdcMem, hBmp);
II Get the information about the bitmap's size.
GetObject (hBmp, sizeof (bm), &bm);
II Use BitBlt to transfer the bitmap to the part.
BitBlt (lpDis-)hDC, lpDis-)rcltem.left, lpDis-)rcltem.top,

bm.bmWidth, bm.bmHeight, hdcMem, 0, 0, SRCCOPY):
II Reselect the original object into the DC.
SelectObject (hdcMem, hbmOld);
II Delete the compatible DC.
DeleteDC (hdcMem);

}

break;

ONE: Status Bars and Toolbars

Some clever readers will notice that I call the BitBlt function to transfer a
bitmap but that this bitmap is not drawn transparently. I cheated a bit by draw
ing the background as the standard gray used in most status bars. If someone
were to change the color of the status bar, this little cheat would show.

The code in my MFC version of this sample looks strikingly familiar;
however, I ran into a big "gotcha" when I ported this portion of the code. In
short, the MFC class that is provided demands that you override the DrawItem
method of the CStatusBarCtrl class in order to use the owner-drawn capabili
ties of the status bar. Initially, Ijust handled the WM_DRAWITEM message in
the view, and the bitmap and the status bar drew correctly. But I kept getting
these pesky ASSERT messages. When I tracked down the problem, I was an
noyed, to say the least. To remedy the situation, I used ClassWizard to create
a class based on CStatusBarCtrl and handled the DrawItem method myself.
The MFC sample uses the following code to draw its bitmap on the status bar:

II CStatus message handlers

void CStatus::Drawltem (LPDRAWITEMSTRUCT lpDrawltemStruct)
{

static HBITMAP ffi-Bmp;

if (m_Bmp == NULL)
II Load the bitmap for the owner-drawn part of the status bar.
m_Bmp = ::LoadBitmap (AfxGetResourceHandle ().

MAKEINTRESOURCE (ID_BITMAP»;
II Create a compatible DC for the bit block transfer.
HOC hdcMem = ::CreateCompatibleDC (lpDrawltemStruct->hDC);
II Select the bitmap into the DC.
HBITMAP hbmOld = (HBITMAP) ::SelectObject (hdcMem. (HBITMAP)m_Bmp);

BITMAP bm;
II Get the information about the bitmap's size.
::GetObject «HBITMAP)m_Bmp. sizeof (bm). &bm);
II Use BitBlt to transfer the bitmap.
::BitBlt (lpDrawltemStruct->hDC,

lpDrawltemStruct->rcltem.left.
lpDrawltemStruct->rcltem.top.
bm.bmWidth.
bm.bmHeight.
hdcMem. 0. 0.
SRCCOPY) ;

II Reselect the original bitmap.
::SelectObject (hdcMem. hbmOld);
II Delete the compatible DC.
::DeleteDC (hdcMem);
}

15

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Creating a Simple-Mode Status Bar

16

A simple-mode status bar, such as the one shown in Figure 1-2, is useful for
displaying a one-line description of a menu item as the user highlights the
item or for displaying diagnostic information. To create a simple-mode status
bar from a multiple-part status bar, you must send an SB_SIMPLE message to
the status bar· (or use the MFC SetSimple member function). But bear in
mind that simple-mode status bars do not support owner drawing-so no
cute bitmaps in this case.

Figure 1-2.
A status bar in simple mode.

The string that a status bar displays in simple mode is maintained sepa
rately from the strings it displays when it is in multiple-part mode. Thus, as
you can see in the STATUS sample, you can put the window in simple mode, set
its text, and switch back to multiple-part mode without having to reset the text.
The following code demonstrates how to set the status bar mode in response to
a command sent through the Options menu. When you set the text in the sta
tus bar, you should set wParam to 255, which signals that this is a simple-mode
status bar and that the string should be maintained separately from the
strings originally used in the multiple-part status bar.

case WM_COMMANO:
switch (LOWORO(wParam»
{

case 10M_SIMPLE:
II Set the status bar to simple mode.
SendMessage (hWndStatus, SB_SIMPLE, (WPARAM)TRUE, 0L):
II Set the text of the status bar.
SendMessage (hWndStatus, SB_SETTEXT, 255,

(LPARAM)"We are now in simple mode."):
II Check the Simple menu option.
CheckMenuItem (GetMenu (hWnd), 10M_SIMPLE,

MF_CHECKEO I MF_BYCOMMANO):
II Uncheck the Multiple menu option.
CheckMenuItem (GetMenu (hWnd), 10M_MULTIPLE,

MF_UNCHECKEO I MF_BYCOMMANO):
break:

ONE: Status Bars and Toolbars

case 10M_MULTIPLE:
II Reset the status bar to multiple-part mode.
SendMessage (hWndStatus, SB_SIMPLE, (WPARAM)FALSE, 0L);
II Uncheck the Simple menu option.
CheckMenuItem (GetMenu (hWnd), 10M_SIMPLE,

MF_UNCHECKEO I MF_BYCOMMANO);
II Check the Multiple menu option.
CheckMenuItem (GetMenu (hWnd), 10M_MULTIPLE,

MF_CHECKEO I MF_BYCOMMANO);
break;

These operations are very similar in the MFC version of the sample. In
that version, however, the SetSimple member function assumes TRUE by de
fault, so I did not pass any parameters when I set my status bar to simple
mode. When I reset the status bar to be multiple-part, I simply passed FALSE
as the parameter.

Status Bar Messages and Member Functions
Table 1-3 lists the messages that can be sent to status bars and the member
functions supported by the MFC-supplied class CStatusBarCtrl. Because the
table's purpose is to describe what you can do with a status bar, it does not
include return values or parameter information. You can find details about
parameters and return values in the Win32 SDK documentation and in the
MFC 3.1 documentation.

Message

Table 1-3.

Member
Function

GetBorders*

GetParts

GetRect

Status bar messages and member functions.

Description

Retrieves the current widths of the hori
zontal and vertical borders of a status
bar. These measurements determine
the spacing between the outer edge of
the window and the rectangles in the
window that contain text as well as the
spacing between rectangles.

Retrieves the number of parts in a status
bar and, for each part, the coordinate
of the right edge;

Retrieves the bounding rectangle of the
given part of a status bar.

(continued)

17

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 1-3. continued

Message

SB_ GETTEXT*

SB_GETTEXTLENGTH*

SB_SETMINHEIGHT*

18

Member
Function

GetText*

GetTextLength *

SetBorders*

SetMinHeigh t*

SetParts

Description

Retrieves the text from the given part of
a status bar. SB_GETTEXT returns a 32-
bit value consisting of two 16-bit values.
The low-order word specifies the length,
in characters, of the text. The high-order
word specifies the type of operation
used to draw the text. If the text has a
type ofSBT_OWNERDRAW, the message
returns the 32-bit value associated with
the text instead of the length and type.
Retrieves the length, in characters, of
the text from the given part of a status
bar. SB_GETTEXTLENGTH returns a
32-bit value consisting of two 16-bit val
ues. The low-order word specifies the
length, in characters, of the text. The
high-order word specifies the type of
operation used to draw the text.
Sets the widths of the horizontal and
vertical borders of a status bar. These
borders determine the spacing between
the outer edge of the window and the
rectangles within the window that con
tain text as well as the spacing between
rectangles.
Sets the minimum height for a status
bar. The sum of this minimum height
(wParam) and the height of the vertical
border of the window equals the mini
mum height of the entire window.
Sets the number of parts in a status bar
(no more than 255) and sets the coordi
nate' of the right edge of each part.
LParam is the address of an integer array
that has the same number of elements .
as the number of parts specified by
wParam. Each element in the array
specifies the position, in client coordi
nates, of the right edge of the corre
sponding part. If an element is -1, the
position of the right edge for that part
extends to the right edge of the window.

(continued)

Table 1-3. continued

Message

SB_SIMPLE

Member
Function

SetText*

SetSimple

ONE: Status Bars and Toolbars

Description

Sets the text in the given part of a
status bar. This message invalidates the
portion of the window that has changed,
causing the window to display the new
text. wParam is the zero-based index
of the part to set and the type of
drawing operation. If this value is 255,
the status bar is assumed to be in simple
mode. LParam is the address of a null
terminated string that specifies the text
to set. If wParam is SBT_OWNERDRAW,
lParam represents 32 bits of data. The
parent window must interpret and draw
the data when it receives the WM
_DRAWITEM message.
Specifies whether a status bar displays
simple text or displays all window parts
set by a previous SB_SETPARTS message.

* This message or member function can also be used with header controls (column headers), discussed in
Chapter 3.

/'

Toolbars
Toolbars are probably the second most pervasive of the new common con
trols. Like status bars, the toolbars found in so many applications on the
market today were created without the luxury of system support-that is, de
velopers had to go about reinventing the wheel whenever they wanted to in
clude toolbars in an application. With the additions to the Win32 API for
Windows 95, developers can now implement toolbars as easily as any other
type of system-supported control.

For those who have lived in a cave for the past few years, a toolbar is a
window containing buttons or other controls, usually located at the top of die
parent window; Toolbar buttons provide fast access to commonly used com
mands such as Open, Save, and Print. Figure 1-3 on the next page shows the
toolbar created by the TOOLBARsample (for C lovers) and MFCTOOL (the
version for MFC maniacs). You can see the various parts of the toolbar, in
cluding buttons, a combo-box control, a separator (used to logically separate
groups of buttons or controls), and a ToolTip (that neat little box that pops
up when your mouse pointer lingers over a toolbar button-in this example,
the Save button).

. 19

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

20

Combo box on a
toolbar

Figure 1-3.

Toolbar button

The toolbar created by the TOOLBAR sample.

Toolbar

The design goals of the TOOLBAR sample, which I first wrote in C and
then ported to MFC, included the following:

To demonstrate what a fairly standard toolbar looks like.

To support ToolTips.

To include a nonbutton control on the toolbar. (I decided to use a
drop-down combo box because it is the control I see most often on
other toolbars in shipping applications.)

To use the new Windows 95 version of the toolbar rather than the
old-style control.

Toolbars, like status bars, have ancestors that were supported in MFC
before the release of Windows 95. If you build your project with MFC and
choose to include a toolbar, you will get the window class that MFC sup
ported, CToolBar. If you check AppWizard's Dockable Toolbar check box,
MFC provides a "standard" toolbar bitmap filled with tools such as New,
Open, Save, and so on. MFC also creates the toolbar and manages the
ToolTips for you. Another nice option of the original toolbar class is the abil
ity to make your toolbar dockable. This feature lets users pick up the toolbar
with the mouse, drag the toolbar around the window, and drop it wherever
they want. If the user drops the toolbar at a window perimeter, the toolbarwill
"dock" itself on that side of the window.

ONE: Status Bars and Toolbars

Creating a Toolbar
Creating a toolbar is simple: you fill out a button structure, create a large
bitmap containing the buttons, and then call the CreateToolbarEx function.
This function takes care of adding the bitmaps and buttons to the toolbar.
Then, unless you want to do something special, you can just let the system
handle the toolbar processing. The window procedure for the toolbar auto
matically positions and sets the size of the toolbar win~ow. By default, the
toolbar appears at the top of its parent window's client area; however, you
can place the toolbar at the bottom of the client area by specifying CCS
_BOTTOM. The TBSTYLE_TOOLTIPS window style allows the toolbar to
display ToolTips. Windows sends a WM_NOTIFY message to the toolbar
whenever Windows needs to display text in a pop-up.

The following code snippet from the TOOLBAR sample creates a
toolbarwith 24 "buttons," 8 of which are actual buttons. The bitmap provided
for each button is 16-by-16 pixels. The total number of buttons (24) includes
all separators. Because you will add a combo box, you must place separators
as placeholders where the combo box will reside. Once you create the
toolbar, you can create the combo box in the standard way and parent it to
the toolbar window, which adds this nonbutton control to your toolbar.

TBBUTTON tbButtons [] =
{

{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0}'
{0. 0. TBSTATE_ENABLED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0}'
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0},
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0}'
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. el. e},
{e. 0. TBSTATE_ENABlED. TBSTYlE_SEP. el. e},
{e. 0. TBSTATE_ENABlED. TBSTYlE_SEP. el. e},
{e. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. e}.
{e. 1DM_NEW. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}.
{l. 1DM_OPEN. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}'
{2. 1DM_SAVE. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}'
{e. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. e}.

(continued)

21

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

22

} ;

{3, 10M_CUT, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{4, 10M_COPY, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{5, 10M_PASTE, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{0, 0, TBSTATE_ENABLEO, TBSTYLE_SEP, 0L, 0},
{6, 10M_PRINT, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{0, 0, TBSTATE_ENABLEO, TBSTYLE_SEP, 0L, 0},
{7, 10M_ABOUT, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0}

TOOLINFO tbToolInfo;

char *szStrings[] = {"Nancy", "Dale", "Dennis", "Herman", "Ken", "Kyle",
"Nigel", "Renan", "Ruediger"};

static HWNO hWndToolbar;

II Create the
hWndToolbar =

hWnd,

toolbar control.
CreateToolbarEx (

II parent
WS_CHILO I WS_BOROER

CCS_AOJUSTABLE,
IO_TOOLBAR,
8,
hInst,

WS_VISIBLE I TBSTYLE_TOOLTIPS
. II window style

II toolbar 10
II number of bitmaps
II mod instance

IOB_TOOLBAR,
(LPCTBBUTTON)&tbButtons,
24,

II resource 10 for bitmap
II address of buttons
II number of buttons

16, 16,
16, 16,
sizeof (TBBUTTON»;

II width & height of buttons
II width & height of bitmaps
II structure size

if (hWndToolbar == NULL)
{

II

MessageBox (NULL, "Toolbar not created!", NULL, MB_OK);
break;

Create the combo box and add it to the toolbar.
hWndCombo = CreateWindowEx (0L, II no extended styles

"COMBOBOX", II class name
II default text

WS_CHILO I WS_BOROER I WS_VISIBLE
CBS_HASSTRINGS I CBS_OROPOOWN, II styles and defaults

0, 0, 100, 250, II size and position
hWndToolbar, II parent window
(HMENU)IOM_COMBO, II 10
hInst, II current instance
NULl); II no class data

ONE: Status Bars and Toolbars

if (hWndCombo)
{

II Add strings to the combo box.
for (idx = 0: idx < 9: idx++)

SendMessage (hWndCombo. CB_INSERTSTRING. (WPARAM)(-l).
(LPARAM)szStrings[idx]):

Using the MFC-supplied class CToolBarCtrl, I had to do a bit more
work. The Create member function provided by MFC merely creates the
toolbar; it doesn't load the bitmap or add the buttons. This is no big deal,
however, because you simply need to call the AddBitmap and AddButtons
member functions to add these items' to your toolbar.

int CMfctoolView::OnCreate (LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate (lpCreateStruct) == -1)
return -1:

II Create the toolbar.
m_ToolBar.Create (

WS_CHILD I WS_BORDER
CCS_ADJUSTABLE.

C rect (0. 0. 0. 0).
this.
ID_TOOLBAR) :

I WS_VISIBLE I TBSTYLE_TOOLTIPS I
II style

II Add the bitmaps.
m_ToolBar.AddBitmap (8. IDB_BITMAP1):

1/ Add the buttons.
m_ToolBar.AddButtons (24. (LPTBBUTTON)&tbButtons):

II Create the combo box.
m_Combo.Create (

WS_CHILD I WS_BORDER I WS_VISIBLE I CBS_HASSTRINGS I CBS_DROPDOWN.
Crect (0. 0. 100. 250).
(CWnd *)&m_ToolBar.
ID_COMBO) :

int idx:
for (idx = 0: idx < 8: idx++)

m_Combo.InsertString (-1. (LPCTSTR)szStrings[idx]):

return 0:
}

23

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

The preceding code does not specify a size for the toolbar. Instead,
you can size the toolbar when the parent window (the client window for you
C people, or the View window for MFC fans) handles the WM_SIZE message.
In response to this message, you can use the TB_AUTOSIZE message (or the
MFC AutoSize member function) to tell the toolbar to size itself.

Creating a Toolbar Bitmap

24

If you have never produced a toolbar before, one of the "mysteries"you need
to solve is how to create the bitmaps for the buttons. If you are like me, you
might expect to create a bitmap for each button, include the bitmaps in your
application, and pass the identifiers to these bitmaps to set each button. Well,
that's not the way it's done. You do create a bitmap for each button, but you
then build a larger bitmap by stringing together all of the small ones.

But what if you want to get your grubby little hands on the bitmaps that
Windows Explorer uses for its Open, Save, and other buttons? One way to do
this is to run App Wizard and write a stub program that includes a toolbar. By
default, AppWizard gives you the standard bitmaps in a file ever-so-creatively
called TOOLBAR.BMP (located in the RES subfolder of your project folder) .
You can edit this "file with the resource editor built into Visual C++ or with
Microsoft Paint. (Be sure to create a 16-color bitmap rather than a 256-color
bitmap.) Figure 1-4 (zoomed up to a readable size) shows the standard set of
bitmaps that AppWizard supplies. The last bitmap provides an easy way for
the user to get help on an item shown in the application's window. When you
click this bitmap, the cursor changes from an arrow pointer to a combination
of an arrow and a question mark. Pointing with the new cursor and clicking
a control or a window displays a Help topic for that item. (The TOOLBAR
sample doesn't support this feature.)

Figure 1-4.
An example of a toolbar bitmap.

Even if you don't use AppWizard, you aren't out of luck: the standard
toolbar bitmaps are now built into COMCTL32.DLL. You can add these im
ages to your toolbar by using the TB_ADDBITMAP message. The following
code sample shows you how to include three of the standard file bitmaps
(new, open, and save) and four of the view bitmaps (large icon view, small
icon view, list view, and details view). The code fills out the TBBUTTON struc
ture with the predefined indexes to the bitmaps you want:

ONE: Status Bars and Toolbars

II Toolbar buttons
TBBUTTON tbButtons [] =
{

} :

{STO_FILENEW. 10M_NEW. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}.
{STD_FIlEOPEN. 10M_OPEN. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}.
{STD_FILESAVE. 10M_SAVE. TBSTATE_ENABlED. TBSTYlE_BUTTON. 0l. 0}.
{0. 0. TBSTATE_ENABlED. TBSTYlE_SEP. 0l. 0}.
{VIEW_lARGEICONS. IDM_lARGEICON. TBSTATE_ENABlED. TBSTYlE_BUTTON.

0l. 0}.
{VIEW_SMALlICONS. IDM_SMALLICON. TBSTATE_ENABLED. TBSTYLE_BUTTON.

0L. 0}.
{VIEW_lIST. IDM_LISTVIEW. TBSTATE_ENABlED. TBSTYlE_BUTTON.

0l. 0}.
{VIEW_DETAILS. IDM_REPORTVIEW. TBSTATE_ENABlED. TBSTYLE_BUTTON.

0L. 0}.

Next, in the code that will create the toolbar, the application calls
the CreateToolbarEx function, specifying HINST_COMMCTRL as the HIN
STANCE, IDB_STD_SMALL_COLOR as the bitmap identifier, and a pointer
to the TBBUTTON structure. Notice that 11 bitmaps are specified because
the IDB_STD_SMALL_COLOR bitmap contains 11 bitmaps. Notice also that
four buttons are specified; this refers to the last four view buttons, which
come from a different bitmap. When the toolbar is created, the view bitmaps
are added through the TB_ADDBITMAP message. This message returns an
index that is used to provide the correct index to the view bitmaps.

HWND CreateTheToolbar (HWND hWndParent)
{

HWND hWndToolbar:
TBADDB ITMAP tb:
int index. stdidx:

hWndToolbar = CreateToolbarEx (hWndParent.
WS_CHILO I WS_BORDER I WS_VISIBLE I WS_CHIlD I TBSTYlE_TOOlTIPS.
ID_TOOlBAR. 11. (HINSTANCE)HINST_COMMCTRl. IDB_STD_SMALl_COLOR.
(lPCTBBUTTON)&tbButtons. 4. 0. 0. 100. 30. sizeof (TBBUTTON»:

II Add the system-defined view bitmaps.
II The hInst == HINST_COMMCTRL
II The nID == IDB_VIEW_SMAlL_COlOR
tb.hInst = HINST_COMMCTRl:
tb.nID = IDB_VIEW_SMAll_COlOR:
stdidx = SendMessage (hWndToolbar. TB_ADDBITMAP. 12. (lPARAM)&tb):

II Update the indexes to the bitmaps.
for (index = 4: index < NUM_BUTTONS: index++)

tbButtons[index].iBitmap += stdidx:
(continued)

25

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

II Add the view buttons.
SendMessage (hWndToolbar, TB_ADDBUTTONS, 4, (LONG) &tbButtons[4]);

return hWndToolbar;
}

TIP: When you create toolbar bitmaps, you'll often have trouble
knowing exactly where you are in the image and getting the images
to line up properly. With Windows 95, the images are actually taken
out of the bitmap in such a manner that the originating bitmap
doesn't have to exactly match the height and width based on the
calls that load the bitmap-that is, you tell the CreateToolbarEx
function how wide and how tall you want the individual bitmaps to
be. This allows you to create a bitmap that will look something like
the one shown here. In this bitmap, you can easily see the exact lo
cations of the button boundaries as well as the identifiers for the
different images:

Supporting ToolTips

-26

You can add ToolTips support to your toolbar by specifying the TBSTYLE
_TOOLTIPS style and creating a string table in your RC file that contains the
text to display. You then process the WM_NOTIFY message that is sent to the
parent window procedure of the toolbar, as shown in the following code:

case WM_NOTI FY:
switch «(LPNMHDR)lParam)-)code)
{

case TTN_NEEDTEXT:
II Display the ToolTip text.
lpToolTipText = (LPTOOLT1PTEXT)lParam;
LoadString (h1nst,

lpToolTipText-)hdr.idFrom, II string 1D == cmd 1D
szBuf,
s i zeof (szBuf»;

lpToolTipText-)lpszText = szBuf;
break;

ONE: Status Bars and Toolbars

This step is a bit different for those developing in MFC. The standard
lists currently provided with MFC do not include the WM_NOTIFY message.
As a result, you need to put a function directly into the view class:

LRESULT CMfctoolView::WindowProc (U1NT message, WPARAM wParam,
LPARAM lParam)

static CHAR szBuf [128]:
LPTOOLT1PTEXT lpToolTipText:

if (message == WM_NOT1FY)
{

switch «(LPNMHDR)lParam)->code)
{

case TTN_NEEDTEXT:
II Display the ToolTip text.
lpToolTipText = (LPTOOLT1PTEXT)lParam:
::LoadString (AfxGetResourceHandle (),

lpToolTipText->hdr.idFrom, II string 1D == cmd 1D
szBuf,
sizeof (szBuf»:

lpToolTipText->lpszText = szBuf:
break:

Adding a ToolTip to a Nonbutton Control
If your toolbar contains a nonbutton control, you have to do a bit more
work to support ToolTips. In my sample, I created a combo box and then
parented it to the toolbar. To add a ToolTip to this control, the application
must send the TTM_ADDTOOL message to the ToolTip control (or use the
MFC AddTool member function). It also needs to trap the WM_MOUSE
MOVE, WM_LBUTTONDOWN, and WM_LBUTTONUP messages in the
window procedure for the combo box and pass these on to the ToolTip con
trol so that it will know to pop up the ToolTip for the combo box. The follow-
ing C code demonstrates these steps: .

II This code is in the main window procedure after the combo box
II has been created.
II Set the window procedure for the combo box.
lpfnDefCombo = (WNDPROC) GetWindowLong (hWndCombo, GWL_WNDPROC):
SetWi ndowLong (hWndCombo " GWL_WNDPROC, (LONG) ComboWndProc) :

II Get the handle to the ToolTip window.
hWndTT = (HWND) SendMessage (hWndToolbar, TB_GETTOOLT1PS, 0, 0);

(continued)

27

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

28

if (hWndTT)
{

II Fill out the TOOLINFO structure.
lpToolInfo.cbSize = sizeof (lpToolInfo):
II The uID is the handle of the tool (the combo box).
lpToolInfo.uFlags = TTF_IDISHWND I TTF_CENTERTIP:
II The string ID in the resource
lpToolInfo.lpszText = (LPSTR)IDM_COMBO:
II The window that gets the ToolTip messages
lpToolInfo.hwnd = hWnd:
II The tool
lpToolInfo.uId = (UINT)hWndCombo;
II The instance that owns the string resource
lpToolInfo.hinst = hInst:

II Set up the ToolTip for the combo box.
SendMessage (hWndTT, TTM_ADDTOOL, 0,

(LPARAM)(LPTOOLINFO)&lpToolInfo);

II This function relays the mouse messages from the combo box
II to get the ToolTip to work.
LRESULT CALLBACK ComboWndProc (HWND hWnd, UINT uMessage, WPARAM wParam,

LPARAM lParam)

switch (uMessage)
{

}

case WM_MOUSEMOVE:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP:
{

MSG msg:
HWND hWndTT:
msg.1Param = lParam:
msg.wParam = wParam:
msg.message = uMessage:
msg.hwnd = hWnd:
hWndTT = (HWND) SendMessage (hWndToolbar, TB_GETTOOLTIPS, 0, 0):
SendMessage (hWndTT, TTM_RELAYEVENT, 0, (LPARAM)(LPMSG)&msg):
break;

return CallWindowProc (lpfnDefCombo, hWnd, uMessage, wParam, lParam):
}

ONE: Status Bars and Toolbars

The corresponding MFC procedure is similar. One change I made was to
create a class for my combo-box control derived from CComboBox and use
ClassWizard to create a message map to WindowProc. Within this function, I
did the same type of processing-except that it was less tedious to fill out the
message structure. Instead, I was able to call CWnd::GetCurrentMessage.

Customizing a Toolbar
You can. support toolbar customization if you create your toolbar with the
CCS_ADJUSTABLE style. The customization features allow the user to drag.
a button to a new position or to remove a button by dragging it off the
toolbar. In addition, the user can double-click the toolbar to display the
Customize Toolbar dialog box, which makes it easy to add, delete, and re
arrange toolbar buttons. An application can display the dialog box by us
ing the TB_CUSTOMIZE message (or MFC's Customize member function)
in response to a double-click on the toolbar.

Handling toolbar customization in your application involves handling
various notifications that are sent through the WM_NOTIFY message. In my
sample application, I decided to support the following:

Allowing the user to delete buttons. This is easily done by simply re
sponding TRUE to the TBN_QUERYDELETE notification.

Allowing the user to add buttons. Here again, I respond TRUE to
the TBN_QUERYINSERT notification.

Displaying customized Help. In response to the TBN_CUSTHELP
notification, a message box appears, saying that the user is now see
ing custom Help. You, of course, would add displays of more sub
stance to your application.

Resizing the toolbar by autosizing it in response to the
TBN_TOOLBARCHANGE notification.

The following code from the MFCTOOL sample demonstrates how you
can support minimal customization:

LRESULT CMfctoolView::WindowProc (UINT message, WPARAM wParam,
LPARAM lParam)

{

static CHAR szBuf [128]:
LPTOOlTIPTEXT lpToolTipText:

(continued)

29

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

30

if (message == WM_NOTIFY)
{

switch «(LPNMHDR}lParam}-)code)
{

case TTN_NEEDTEXT:
II Display the ToolTip text.
lpToolTipText = (LPTOOLTIPTEXT}lParam;
::LoadString (AfxGetResourceHandle (),

lpToolTipText-)hdr.idFrom,
szBuf,
sizeof (szBuf»;

lpToolTjpText-)lpszText szBuf;
break;

case TBN_QUERYDELETE:

II string 10 cmd 10

II Toolbar customization--can we delete this button?
return TRUE;

}

}

break;

case TBN_GETBUTTONINFO:
II The toolbar needs information about a button.
return FALSE;
break;

case TBN_QUERYINSERT:
II Can this button be inserted? Just say yo.
return TRUE;
break;

case TBN_CUSTHELP:
II Need to display custom Help.
AfxMessageBox ("This Help is custom.");
break;

case TBN_TOOLBARCHANGE:
II The user finished dragging a bitmap to the tool bar.
m_ToolBar.AutoSize ();
break;

default:
return TRUE;
break;

return CView::WindowProc (message, wParam, lParam);
}

ONE: Status Bars and Toolbars

If you want to have more control over customization, your application
can handle many other notifications that I did not include in my sample.
For instance, if you want to do your own button dragging, you can trap the
TBN_BEGINDRAG and TBN_ENDDRAG notifications. You might also want
to save the state of the toolbar and allow the user to reset its configuration.
You can do this by using the TB_SAVERESTORE message- to save the current
state of the toolbar and waiting for a TBN_RESET notification to signal that
the toolbar needs to be reset to its previous state.

Toolbar Messages and Member Functions
Table 1-4 lists the messages sent to toolbars and the member functions MFC
provides for the CToolBarCtrl class. For details about each message, its param
eters, and possible return values, refer to the Win32 SDK documentation.

Message

TB_ADDBUTTONS

TB_BUTTONCOUNT

TB_BUTTONSTRUCTSIZE

Table 1-4.

Member
Function

AddBitmap

AddButtons

AddString

AutoSize

ButtonCount

SetButtonStructSize

Toolbar messages and member junctions.

Description

Adds a new bitmap to the list of
bitmaps available for a toolbar.

Adds one or more buttons to a
toolbar.
Adds a new string to the list of
strings available for a tool bar.
Forces a toolbar to be resized. An
application sends this message
when it changes a toolbar's size
(for example, by setting the but
ton size or adding strings).
Retrieves a count of the buttons
currently on a toolbar.
Specifies the TBBUTTON struc
ture's size, which Windows uses
to determine which version of
COMMCTRL.DLL is in use. If an
application uses Create Window to
create the toolbar, it must send
this message before adding any
buttons. The CreateToolbarEx
function automatically sends this
message, and the size of the
TBBUTTON structure is a param
eter to CreateToolbarEx.

(continued)

31

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 1-4. continued

Message

TB_CHANGEBITMAP

TB_CHECKBUTTON

TB_ COMMANDTOINDEX

TB_DELETEBUTTON

TB_ENABLEBUTTON

TB_GETBUTTONTEXT

TB_GETITEMRECT

TB_GETROWS

TB_GETSTATE

TB_GETTOOLTIPS

TB_HIDEBUTTON

TB_INDETERMINATE

TB_INSERTBUTTON

32

Member
Function

CheckButton

CommandToIndex

Customize

DeleteButton

EnableButton

GetBitmapFlags

GetButton

GetItemRect

GetRows

GetState

GetToolTips

HideButton

Indeterminate

InsertButton

Description

Changes the bitmap for a button.

Checks or unchecks a given but
ton, (When a button is checked, it
appears "pressed. ")

Retrieves the zero-based index for
the bl;ltton associated with the
specified command identifier.

Displays the Customize Toolbar
dialog box.

Deletes a button from a tool bar.

Enables or disables the specified
button. When a button has been
enabled, it can be checked
("pressed") .

Retrieves the index of the bitmap
associated with a toolbar button.

Returns TBBF _LARGE if the dis
play can support large toolbar
bitmaps.

Retrieves information about the
given button.

Retrieves the text of a button.

Retrieves the bounding rectangle
of a button on a toolbar (unless
the button's state is ~et to
TBSTATE_HIDDEN) .

Retrieves the number of rows of
toolbar buttons.

Retrieves information about the
state of a button, such as whether
it is enabled or checked.

Retrieves the handle to a ToolTip
control associated with a'toolbar.

Hides or shows a specified button.

Sets or clears the indeterminate
state of the specified button.

Inserts a button in the specified
location on a toolbar.

(continued)

Table 1-4. continued

Message

TB_ISBUTTONCHECKED

TB_ISBUTTONENABLED

TB_ISBUTTONHIDDEN

TB_ISBUTTON-
INDETERMINATE
TB_ISBUTTONPRESSED

TB_PRESSBUTTON

TB_SAVERESTORE

TB_SETBITMAPSIZE

TB_SETBUTTONSIZE

TB_SETROWS

TB_SETSTATE

TB_SETTOOLTIPS

Member
Function

IsButtonChecked

IsButtonEnabled

IsButtonHidden

IsButton-
Indeterminate
IsButtonPressed

PressButton

SaveState or
RestoreState
SetBi tmapSize

SetButtonSize

SetCmdID
SetOwner

SetRows

SetState

SetToolTips

ONE: Status Bars and Toolbars

Description

Determines whether the given
button is checked.

Determines whether the given
button is enabled.
Determines whether the given
button is hidden.
Determines whether the given
button is indeterminate.
Determines whether the given
button is "pressed."
"Presses" or "releases" the given
button.
Saves or restores the state of a
toolbar.

Sets the size of the bitmapped im
ages to be added to a tool bar. The
size can be set only before you add
any bitmaps to the toolbar. If an
application does not explicitly set
the bitmap size, the size defaults .
to 16-by-16 pixels.
Sets the size of the buttons to be
added to a tool bar. You can set the
button size only before you add
any buttons to the toolbar. If an
application does not explicitly set
the button size, the size defaults to
24-by-22 pixels.
Sets the command ID of a button.
Sets the owner window of a
toolbar.

Sets the parent window of a
toolbar.
Sets the number of rows of but
tons in a toolbar.

Sets the state for the given button.
Sets the handle to a ToolTip con
trol associated with a toolbar.

33

C HAP T E R TWO

Trackbars, Progress
Bars, Up-Down Controls,
and Animation Controls:
General-Purpose
Common Controls

This chapter examines a group of new common controls that you can use
for a broad range of purposes, from measuring intensity levels to scrolling
through a list to changing a value. Let's say that you want to control the inten
sity of the light emitted by a computer-controlled light bulb. (You can stop by
my house if you think this is far-fetched.) You could use a trackbar to set or
vary the intensity of the light. Or let's say that your application needs to pro
cess a number of database files, and you want to let the user know how far it's
gotten. You could use a progress bar to show this; In addition to trackbars and
progress bars, Microsoft Windows 95 also supports two other general-purpose
common controls: up-down and animation controls.

Trackbars
A trackbar is a window containing a slider and tick marks. You use a trackbar
as a scrolling control: when you drag the slider (sometimes referred to as the
thumb), the control sends a message to indicate the change in the slider's posi
tion. A horizontal trackbar (the default style) sends a WM_HSCROLL mes
sage, and a vertical trackbar uses a WM_ VSCROLL message. The tick.marks
indicate how many points you can move left and right or up and down.

35

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

36

In Figure 2-1, you can see'a simple horizontal trackbar with a range of
1 through 10.

Slider
, .. l w •..•..••

I} .• · •..•••. · •. I ".,: t .. ' ::- ,'" j;,' .,; I ... :~

__ I _....,I~--'I

Tick marks

Figure 2-1.
The anatomy of a trackbar.

Trackbars are based on scroll bar controls, and many of the styles and
notifications for trackbars are similar to those for scroll bars. By default, the
tick marks appear-on the right side of a vertical trackbar and on the bottom of
a horizontal trackbar. When a user drags the slider or clicks on either side of
it, the slider moves in the appropriate direction, tick by tick. In other words,
scrolling is not continuous; instead, you scroll in increments indicated by the
tick marks. For example, a trackbar with 10 ticks and a range of 1 through 100
allows you to scroll only in increments of 10. You can change the frequency of
ticks programmatically.

You can set a portion of a trackbar as a selection range. A blue line in the
channel of the trackbar indicates this selection range, and two arrows (replac
ing the tick marks) indicate its beginning and end. The selection range is a vi
sual representation only; it does not prevent the user from moving the slider
outside the selected area. This would be useful, for example, in a scheduling
application; the user could see the range of ticks corresponding to the hours
for which meetings have been scheduled. In Figure 2-2, the line in the track
bar's channel shows the selection range. To change this range, the application
sends a message, TBM_SETSEL, or uses MFC's SetSelection member function.

:, :"li··i.i.~· .;"lY.V .. ', .:1~ •.•.•.. ;~ .• ,. I

L

Figure 2-2.
A trackbar with a selection range.

Table 2-1 lists the styles you can choose when creating a trackbar. You
can combine styles for different looks, depending on the effect you want.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

Style

TBS_BOTH

TBS_BOTTOM

TBS_ENABLESEL
RANGE

TBS_FIXEDLENGTH

TBS_HORZ

TBS_LEFT

TBS_NOTHUMB

TBS_NOTICKS

TBS_RIGHT

TBS_TOP

TBS_VERT

Table 2-1.
Trackbar styles.

Description

Adds tick marks when you set the range on the
trackbar by using the TBM_SETRANGE message
(or the MFC SetRange member function).

Places ticks on both sides of the trackbar.

Places ticks on the bottom of a horizontal trackbar.

Allows you to set a selection range on the trackbar.

Specifies that the length of the slider remains the
same even if the selection range changes.

Specifies a horizontal trackbar. This is the default.

Places ticks on the left side of a vertical trackbar.

Specifies that the trackbar has no slider.

Specifies that no ticks are placed on the trackbar.

Places ticks on the right side of a vertical trackbar.

Places ticks on the top of a horizontal trackbar.

Specifies a vertical trackbar.

I wrote a small sample called SLIDER (trackbars themselves are some
times referred to as sliders) to demonstrate the trackbar styles and how they
work. The design goals for SLIDER included the following:

To create a trackbar with default styles.

To create a horizontal trackbar with tick marks on the top and a se
lection range set.

To create a vertical trackbar with tick marks on the left side.

To set a range for a trackbar.

To set the line size for a trackbar. (Line size specifies how many ticks
the slider moves when the user presses the Up or Down arrow key.)

37

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

To set the page size for a trackbar. (Page size specifies how many ticks
the slider moves when the userpressesthe PgUp or PgDn key.)

To demonstrate the notifications that are sent when you manipulate
a trackbar. (In the SLIDER sample, the status bar at the bottom of
the screen indicates the notification being sent to the trackbar that
has the keyboard focus.)

I also wrote an MFC-equivalent sample called MFCTRACK that demon
strates how to create and manipulate trackbars using the MFC CSliderCtrl
class. You can see the MFCTRACK sample in Figure 2-3.

Trackbar with default styles

Horizontal trackbar with tick
~: * _ ~ ~:,;.t~··\ ~/:~~.·7~i '~~:.r;::'; 7;: y:r :~~ ~

i/:r---"O.-.... ""'i iiiiiiiiiiiiiiiiiiiii. I -............. ::; . .:. ----------4--marks on the top and
a selection range set

Vertical trackbar with
+-------------------+--tick marks on the left side

Figure 2-3.

Status bar showing the
current trackbar notification

The MFCTRACK sample.

Creating a Trackbar

38

You can create a trackbar by using the CreateWindow or CreateWindowEx
function and specifying the TRACKBAR_ CLASS class name or by using the
MFC Create member function on your CSliderCtrl object. You can then use

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

trackbar messages or member functions to set the minimum and maximum
positions for the slider, draw tick marks, and set a selection range. To use
trackbars in your application, you must include the COMMCTRL.H header
file, and you also need to have the COMCTL32.LIB file in your list oflibraries.
This C code creates the status bar and three trackbars in the SLIDER sample:

case WM_CREATE:

hWndStatus = CreateWindow
STATUSCLASSNAME.

· WS_CHILD I WS_BORDER I WS_VISIBLE.
-100. -100. 10. 10.
hWnd.
(HMENU)100.
hlnst.
NULL);

hWndS1ider1 = CreateWindow (
TRACKBAR_CLASS.

· WS_CHILD I WS_VISIBLE I TBS_AUTOTICKS.
10. 50. 200. 20.
hWnd.
(HMENU)10.
hlnst.
NULL) ;

if (hWndS1ider1 == NULL)
MessageBox (NULL, "Sl i der1 not created!". NULL. MB_OK);

hWndS1ider2 = CreateWindow
TRACKBAILCLASS.

· WS_CHILD I WS_VISIBLE I TBS_AUTOTICKS I TBS_TOP I
TBS_ENABLESELRANGE.

10. 100. 200. 20.
hWnd.
(HMENU) 11.
hlnst.
NULL) ;

if (hWndS1ider2 == NULL)
MessageBox (NULL. "Slider2 not created!". NULL. MB_OK);

hWndS1ider3 = CreateWindow
TRACKBAR_CLASS.

· WS_CHILD I WS_VISIBLE TBS_VERT I TBS_LEFT I TBS_AUTOTICKS.
10. 150. 20. 100.

(continued)

39

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

40

hWnd,
(HMENU)12,
hInst,
NULL);

if (hWndSlider3 == NULL)
MessageBox (NULL, "Slider3 not created!", NULL, MB_OK);

II Set the default range.
SendMessage (hWndSliderl, TBM_SETRANGE, TRUE, MAKELONG (1,10»;
SendMessage (hWndSlider2, TBM_SETRANGE, TRUE, MAKELONG (1,10»;
SendMessage (hWndSlider3; TBM_SETRANGE, TRUE, MAKE LONG (1,10»;

II Set the selection range.
SendMessage (hWndSlider2, TBM_SETSEL, TRUE, MAKE LONG (3,5»:
break:

In the MFC version, MFCTRACK, I created the trackbar in the view
class. I also needed to include the AFXCMN.H.file in my STDAFX.H file.

II The view class is defined as follows in MFCTRVW.H.
class ~MfctrackView : public CView
{

protected: II create from serialization only
CMfctrackView ();
DECLARE_DYNCREATE (CMfctrackView);
CSliderCtrl m_Sliderl;
CSliderCtrl m_Slider2;
CSliderCtrl m_Slider3;

II Attributes
public:

CMfctrackDoc *GetDocument ();

II Operations
public:

CSliderCtrl *GetSlider (int iSlider);

II Overrides
II ClassWizard generated virtual function overrides.
II {{AFX_VIRTUAL (CMfctrackView)
public:

virtual void OnDraw (CDC *pDC);
II }}AFX_VIRTUAL

II overridden. to
II draw this view

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

} :

II Implementation
public:

virtual ~CMfctrackView ():
flifdef _DEBUG

virtual void AssertValid () const:
virtual void Dump (CDumpContext& dc) const:

fiend if

protected:
VOID TrackScrolling (UINT nSBCode):

II Generated message map functions
protected:

II {{AFX_MSG (CMfctrackView)
afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct):
afx_msg void 'OnDestroy ():
afx_msg void OnHScroll (UINT nSBCode. UINT nPos.

CScrollBar *pScrollBar):
afx_msg void OnRange ():
afx_msg void OnFrequency ():
afx_msg void OnLinesize ():
afx_msg void OnPagesize ():
afx_msg void OnVScroll(UINT nSBCode. UINT nPos.

CScrollBar *pScrollBar):
II }}AFX_MSG
DECLARE_MESSAGE_MAP ()

II The trackbars are created in MFCTRVW.CPP.
int CMfctrackView::OnCreate (LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate (lpCreateStruct) == -1)
return -1: .'

II Create the trackbars.
m_Slider1.Create (WS_CHILD I WS_VISIBLE I TBS_AUTOTICKS.

CRect (10. 50. 200. 70).
this.
I D_SLI DERl) :

m_Slider2.Create (WS_CHILD I WS_VISIBLE I TBS_AUTOTICKS I TBS~TOP I
TBS_ENABLESELRANGE.
CRect (10. 100. 200. 130).
this.
I D_SLI DER2) :

(continued)

41

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

m_Slider3.Create (WS_CHILD I WS_VISIBLE I TBS_VERT I TBS_LEFT I
TBS_AUTOTI CKS,
CRect (10, 150, 30, 350),
this,
I D_SLI DER3) ;

II Set the default range.
m_Slider1.SetRange (1, 10, TRUE);
m_Slider2.SetRange (1, 25, TRUE);
m_Slider3.SetRange (1, 30, TRUE);

II Set the selection range.
m_Slider2.SetSelection (10, 20);

return 0;
}

Working with a Trackbar

42

My trackbar sample programs allow a user to change or view a trackbar's
range, tick frequency, page size, and line size through dialog boxes activated
from the Options menu. You create these dialog boxes in the view class. For
each dialog box, I wrote a class derived from CDialog and created a member
variable for each value I needed from the controls.

For example, the Set Trackbar Range dialog box uses edit controls to let
the user enter minimum and maximum values for the range and specify the
trackbar to be set, as shown in Figure 2-4. For the trackbar, ClassWizard let me
set up a member variable that is an integer between 0 and 2. (How nice that
MFC provides this range checkingl)

Figure 2-4.
The Set Trackbar Range dialog box.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

I did not place restrictions on the actual minimum and maximum range
values because you can in fact set the range's minimum value to be greater
t.han the maximum (for instance, a minimum ofIO and a maximum of-I). If
you do this, however, your trackbar will track backward (that is, the slider in a
vertical trackbar will start at the bottom and move upward). When I run the
Set Trackbar Range dialog box, the program simply sets the range on the
specified trackbar by using the SetRange member function, as shown here:

CRange::CRange (CWnd *pParent I*=NULL*/)
: CDialog (CRange::IDD. pParent)

{

II {{AFX_DATA_INIT (CRange)
ID_Min = 0;
ID_Max = 0;
IlLSlider = 1;
II }}AFX_DATA_INIT
}

void CRange::DoDataExchange (CDataExchange *pDX)
{

CDialog::DoDataExchange (pOX);
II {{AFX_DATA_MAP (CRange)
DDX_Text (pOX, IDE_MIN. ID_Min);
DDX_Text (pOX. IDE_MAX. ID_Max);
DDX_Text (pOX. IDE_SLIDER. ID_Slider);
DDV_MinMaxlnt (pOX. ID_Slider. 1. 2);
II }}AFX_DATA-MAP
}

BEGIN_MESSAGE_MAP (CRange. CDialog)
II {{AFX_MSG_MAP (CRange)
II }}AFX_MSG_MAP

END_MESSAGE_MAP ()

void CMfctrackView::OnRange ()
{

CRange rangeDlg;

if (rangeDlg.DoModal () == lOOK)
{

switch (rangeDlg.ID_Slider)
{

case 1:
ID_Sliderl.SetRan~e (rangeDlg.ID_Min. rangeDlg.ID_Max. TRUE);
break;

(continued)

43

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

44

}

case 2:
m_Slider2.SetRange (rangeDlg.m_Min. rangeDlg.m_Max. TRUE);
break;

case 3:
m_Slider3.SetRange (rangeDlg.m_Min. rangeDlg.m_Max. TRUE);
break;

default:
break;

Finally, you can update the status bar to show which trackbar notifica
tion is being sent to each trackbar. In C, all of this code is in SLIDER.C, and
the handles to the trackbars and the status bar are all within the scope of the
window procedure. When using MFC, you need to find a different method
because the pointer to the status bar object is not in scope when you need to
set its text. You can create a message map entry for the WM_HSCROLL and
WM_ VSCROLL messages and copy the notification to a character buffer.
Then you get a pointer to the status bar and set the text accordingly:

void CMfctrackView::OnHScroll (UINT nSBCode. UINT nPos.
CScrollBar *pScrollBar)

{
TrackScrolling (nSBCode);

CView::OnHScroll (nSBCode. ~Pos. pScrollBar);
}

void CMfctrackView::OnVScroll (UINT nSBCode. UINT nPos.
CScrollBar *pScrollBar)

{
TrackScrolling (nSBCode);

CView::OnVScroll (nSBCode. nPos.pScrollBar);
}

VOID CMfctrackView::TrackScrolling (UINT nSBCode)
{

BOOl bMsg = TRUE;
char *pMsg= NUll;

switch (nSBCode)
{

case TB_BOTTOM:
pMsg = "TB_BOTTOM";
break;

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

}

case TB_ENDTRACK:
pMsg = "TB_ENDTRACK";
brea k;

case TB_LINEDOWN:
pMsg = "TB_LI NEDOWN";
break;

case TB_LI NEUP:
pMsg = "TB_LI NEUP";
break;

case TB_PAGEDOWN:
pMsg = "TB_PAGEDOWN";
break;

case TB_PAGEUP:
pMsg = "TB_PAGEUP";
break;

case TB_THUMBPOSITION:
pMsg = "TB_THUMBPOSITION";
break;

case TB_THUMBTRACK:
pMsg = "TB_THUMBTRACK";
break;

default:
bMsg = FALSE;
break;

if (bMsg == TRUE)
{

}

}

CStatusBar* pStatus = (CStatusBar*) GetParentFrame()->
GetDescendantWindow (ID_VIEW_STATUS_BAR);

char szBuf [256];
sprintf (szBuf, "Trackbar message: %s", pMsg);
pStatus->SetPaneText (0, szBuf);
pStatus->UpdateWindow ();

45

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Trackbar Messages and Member Functions
Table 2-2 lists the messages that can be sent to trackbars and the correspond
ing member functions supported by the MFC-supplied class CSliderCtrl. You
can find detailed information about the parameters and return values in the
Win32 SDK and the MFC 3.1 documentation.

Message

TBM_ CLEARSEL

TBM_CLEARTICS

TBM_GETCHANNELRECT

TBM_GETLINESIZE

TBM_GETNUMTICS

TBM_ GETPAGESIZE

TBM_GETPOS

TBM_ GETRANGEMIN
and TBM_GETRANGEMAX

Table 2-2.

Member
Function

ClearSel

ClearTics

GetChannelRect

GetLineSize

GetNumTics

GetPageSize

GetPos

GetTicArray

GetRange

Trackbar messages and member functions.

46

Description

Clears the current selection
range in a trackbar.

Removes the tick marks from a
trackbar.

Retrieves the rectangle bounding
the channel in which the slider
slides.

Retrieves the amount the slider
will move when the user presses
the Up or Down arrow key (or
the Left or Right arrow key for a
horizontal trackbar). The default
increment is one tick.

Retrieves the number of tick
marks in a trackbar.

Retrieves the amount the slider
will move when the user presses
the PgUp or PgDn key. The de
fault is calculated as the dif
ference between the maximum
and the minimum of the range
divided by 5.

Retrieves the current position of
the slider.

Retrieves the address of the array
containing the positions of the
tick marks in a trackbar.

Retrieves the current range (the
minimum and maximum posi
tions) for the slider.

(continued)

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

Table 2-2. continued

Message

TBM_GETRANGEMAX

TBM_GETRANGEMIN

TBM_GETSELSTART
and TBM_ GETSELEND

TBM_ GETSELEND

TBM_ GETSELSTART

TBM_GETTHUMBLENGTH

TBM_ GETTHUMBRECT

TBM_GETTIC

TBM_ GETTICPOS

TBM_SETLINESIZE

TBM_SETPAGESIZE

Member
Function

GetRangeMax

GetRangeMin

GetSelection

GetSelEnd

GetSelStart

GetThumbRect

GetTie

GetTicPos

SetLineSize

SetPageSize

SetPos

SetRange

Description

Retrieves the maximum position
for the slider.

Retrieves the minimum position
for the slider.

Retrieves the current selection
range in a trackbar.

Retrieves the ending position of
the current selection range in a
trackbar.

Retrieves the starting position of
the current selection range in a
trackbar.

Retrieves the length of the slider.

Retrieves the rectangle bounding
the slider.

Retrieves the position of a tick
mark.

Retrieves the position, in client
coordinates, of a tick mark.

Sets the amount the slider will
move when the user presses the
Up or Down arrow key (or the
Left or Right arrow key for a hori
zontal trackbar). The default in
crement is one tick.

Sets the amount the slider will
move when the user presses the
PgUp or PgDn key. The default is
calculated as the difference be
tween the maximum and the mini
mum of the range divided by 5.

Sets the current position of the
slider.

Sets the minimum and maximum
positions for the slider.

(continued)

47

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 2-2. continued

Message
Member
Function Description

SetRangeMax Sets the maximum position for
the slider.

TBM_SETRANGEMIN SetRangeMin Sets the minimum position for
the slider.

SetSelection Sets the starting and ending posi
tions of the selection range in a
trackbar.

Sets the position of the end of the
selection range in a trackbar.

Sets the starting position of the
current selection range in a
trackbar.

TBM_SETTHUMBLENGTH

TBM_SETTIC

TBM_SETTICFREQ

SetTic

SetTicFreq

VerifyPos

Sets the length of the slider.

Sets the position of a tick mark.

Sets the tick frequency.

Verifies that the current position
of the slider is within the trackbar
range.

NOT E: Table 2-2 describes many messages that support trackbar
ranges and positions. Although trackbars are based on scroll bars,
it is important to note that a trackbar updates its position automati
cally. In the case of a scroll bar, it is up to the application to update
the scroll bar position when the WM_HSCROLL message or the
WM_ VSCROLL message is received.

Progress Bars.

48

A progress bar is a window that an application can use to visuallt track the
progress of a lengthy operation such as an installation or a file copying task.
A progress bar has a range, which represents the entire duration of the opera
tion, and a current position, which ·represents the progress the application
has made toward completing the operation. The application sets both the
range and the current position (as it does for a scroll bar) and has the ability
to advance the current position.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

The window procedure uses. the range and the current position to de
termine how much of the bar should be filled with the highlight color. By de
fault, the minimum range of a progress bar is 0, and the maximum range is 100.
The increment value is set to 10.

The PROGRESS sample, which I wrote to demonstrate how to create
and manipulate progress bars, simply creates one of these controls, sets its
range, and allows the user to start and stop the process of filling the bar with
the highlight color. I used a timer to simulate a lengthy operation. Figure 2-5
shows the PROG¥ESS sample.

Choose Start from the Options menu to start the progress bar.

llllllllllill

Figure 2-5.
The PROGRESS sample.

Creating a Progress Bar
To create a progress bar, you can use the CreateWindow or CreateWindowEx
function and specify the PROGRESS_CLASS window class, or you can create
a CProgressCtrl object and use the MFC Create member function. Be sure
that you include the COMMCTRL.H header file in your application and the
COMCTL32.LIB file in your list oflibraries. The following C code (which dif
fers from the PROGRESS sample on the companion disc) produces a simple
progress bar in the parent window's procedure. A timer sends messages to ad
vance the bar's current position.

II Function that creates a progress bar
II Parameters:
II HWND hWndParent - Parent window of the progress bar
II RECT rclPos - Size and position of the progress bar
II WORD wID - ID of the progress bar

(continued)

49

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

50

II HINSTANCE hInst - Current instance
II LONG lRange - Sets the range
II LONG lStep - Sets the stepping
HWND MyCreateProgressBar (HWND hWndParent. RECT rclPos. WORD wID.

HINSTANCE hInst. LONG lRange. LONG lStep)

HWND hWndProgress;

hWndProgress = CreateWindowEx
OL.
PROGRESS_CLASS.

WS_CHILD I WS_VISIBLE.
rclPos.x. rclPos.y. rclPos.cx. rclPos.cy.
hWndParent.
(HMENU)wID.
hInst.
NULl);

II Set the range for the progress bar.
SendMessage (hWndProgress. PBM_SETRANGE. 0L. lRange);

II Set the step.
SendMessage (hWndProgress. PBM_SETSTEP. lStep. 0L);

return (hWndProgress);

RECT rcl; II holds the size of the progress bar

switch (message)
{

case WM_CREATE:
rcl.x = 10; rcl.y = 100; rcl.cx = 500; rcl .cy = 20;
hWndProgress = MyCreateProgressBar (hWnd. rcl. ID_PROGRESS.

hInst. MAKE LONG (0. 20). 1);
break;

case WM_TIMER:
if (uCurrent < uMax)
{

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

}

II Increment (step) the progress bar.
SendMessage (hWndProgress. PBM_STEPIT. 0L. 0L):
uCurrent++:

else
{

II We are at the end of the range - kill the timer.
KillTimer (hWnd. ID_TIMER):
uCurrent = 0:

break;

case WM_COMMAND:
switch (LOWORD (wParam»
{

case IDM_STOP:
II Stop the progress bar.
SendMessage (hWndProgress. PBM_SETPOS. 0L. 0L):
KillTimer (hWnd. ID_TIMER):
break:

case IDM_START:
uCurrent = uMin;
SetTimer (hWnd. ID_TIMER. 500. NULL):
break;

Pretty simple stuff, you say? Think how simple it must have been to port
to MFC! Well, take a look at the same work done in the MFCPROG sample.
Don't forget to include AFXCMN.H in your STDAFX.H file before you try
this. I created a member variable, m_ Current, to keep track of the current po
sition of the progress bar and added this variable to my view class. As you can
see, it's pretty easy here, too:

II CMfcprogView message handlers

void CMfcprogView::OnTimer (UINT nIDEvent)
{

if (m_Current < m_Max)
{

}

m_Progress.StepIt ():
m_Current++:

(continued)

51

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

else
{

KillTimer (1131313);
m_Current = 13;

CView::OnTimer (nIDEvent);
}

void CMfcprogView::OnStart ()

m_Current = m_Min;
SetTimer (ID_TIMER. 51313. NULL);
}

void CMfcprogView::OnStop ()

m_Progress.SetPos (13);
KillTimer (ID_TIMER);
}

int CMfcprogView::OnCreate (LPCREATESTRUCT lpCreateStruct)

if (CView::OnCreate (lpCreateStruct) == -1)
return -1;

m_Progress.Create (WS_CHILD I WS_VISIBLE.
CRect (113. 11313. 51313. 1213).
this.
ID_PROGRESS);

m_Min = 13;
m_Max = 213;
m_Progress.SetRange (m_Min. m_Max);
m_Progress.SetStep (I);

return 13;
}

Progress Bar Messages and Member Functions

52

Table 2-3 lists the messages and member functions supported by the progress
bar control. Refer to the Win32 SDK and the MFC 3.1 documentation for de
tails about parameters and return values.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

Member
Message Function

PBM_DELTAPOS OffsetPos

PBM_SETPOS SetPos

PBM_SETRANGE SetRange

PBM_SETSTEP SetStep

StepIt

Table 2-3.

Description

Advances the position of a progress bar by
the specified increment and redraws the
control. .

Sets the position of a progress bar and
redraws the control to reflect the new
position.

Sets the range (minimum and maximum
values) for a progress bar and redraws the
control.

Specifies the step increment for a pro
gress bar, the amount by which the bar in
creases its position whenever it receives a
PBM_STEPIT message (or when the MFC
StepIt member function is called). The
default is 10.

Advances the position of a progress bar by
the step increment and redraws the con
trol. An application sets the step increment
by sending the PBM_SETSTEP message
(or by calling the MFC StepIt member
function). When the position exceeds the
maximum value of the range, this message
resets the position so that the progress bar
starts over from the beginning.

Progress bar messages and member functions.

Up-Down Controls
An up-down control is a small window containing up and down arrows that
the user can click to increment or decrement a value. An up-down control is
similar to a scroll bar, but it consists only of arrows. (It also has a sillier name.)
You can use an up-down control alone as a simplified scroll bar or with an
other control (called a buddy control-yet another silly name). In Figure 2-6
on the next page, the up-down control is paired with an edit control to create
a spin box; when the user clicks an arrow or presses an arrow key, the up
down control increments or decrements the value in the edit control. You
can use any type of control as the designated buddy control, however.

53

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

54

Buddy control

'.~'~II'''''IYUlJ'''~.'.<I.I ... '., .. ;.;;:~':.J~''''''''''''''''''''''''''-+-- Up-down control

Figure 2-6.
A dialog box that uses an up-down control and a buddy control.

The range of an up-down control specifies the upper and lower bounds
for the position (the integer the user adjusts with the up and down arrows).
Unlike a scroll bar's position, the position of an up-down control is updated
automatically. When the positional value is updated, the buddy control is also
automatically updated if the up-down control has the UDS_AUTOBUDDY
style. If the upper bound is less than the lower bound, clicking the up arrow
decrements the position, and clicking the down arrow increments it.

You can specify various window styles to determine the characteristics of
an up-down control or its buddy control. For example, you can change the
way the up-down control positions itself relative to its buddy control (the
UDS_ALIGNLEFT style), determine whether it sets the text of its buddy con
trol (the UDS_SETBUDDYINT style), or determine whether it processes the
Up and Down arrow keys on the keyboard (the UDS_ARROWKEYS style).

By default, the position of an up~down control does not change if the
user attempts to increment or decrement it beyond the upper or lower
bound. You can change this behavior by using the UDS~ WRAP style, which
wraps the position to the opposite extreme. (For example, if your range is 1
through 10, incrementing the position past 10 wraps it back to 1.)

The range of an up-down control cannot exceed 32,767 positions. You
can invert the range-that is, the lower bound of the range can be greater
than the upper bound. Note, however, that the up arrow always moves the
current position toward the upper bound, and the down arrow always moves
the current position toward the lower bound. If the range is ° (the lower
bound is equal to the upper bound) or the control is disabled, the control
draws dimmed arrows. .

The buddy control must have the same parent as the up-down control.
If you use the UDS_ALIGNLEFT or UDS_ALIGNRIGHT style and the buddy
control resizes, you must send the UDM_SETBUDDY message (or call the
MFC SetBuddy member function) to re-anchor the up-down control on the

TWO:· Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

appropriate border of the buddy control. The UDS_AUTOBUDDY style
calls the GetWindow function with GW_HWNDPREV to choose the buddy
control. In the case of a dialog resource, the UDS_AUTOBUDDY style
chooses the previous control listed in the resource script. If the z-order of the
windows changes, sending a UDM_SETBUDDY message with a NULL handle
causes a new buddy to be selected; otherwise, the original auto buddy choice is
maintained.

The UPDOWN sample, which I wrote to demonstrate up-down con
trols, allows the user to change the number of times the word Welcome! is writ
ten to the client area of the screen. Figure 2-7 shows the UPDOWN sample.

Welcome!
Welcome!
Welcome!
Welcome!
Welcome!
Welcome!
Welcome!
Welcome!
Welcome!
Welcome!

Figure 2-7.
The UPDOWN sample.

Howmany lines?

Creating an Up-Down Control
The code on the next page demonstrates how easy it is to create a spin box on
the fly as part of a dialog box. You might want to do this if you are using one
dialog box for several applications-one instance could show the current
value as static information, while another might allow the user to change this
data. When the user chooses OK in the dialog box, the program retrieves and
saves the selection in the spin box and closes the dialog box. (To use an up
down control in your application, remember to include the COMMCTRL.H
header file and to include the COMCTL32.LIB file in your list of libraries.)

55

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

56

BOOl APIENTRY Spin
HWND hDlg,
UINT message,
UINT wParam,
lONG lParam)

static HWND hWndUpDown, hWndBuddy;
BOOl bErr;

switch (message)
{

case WM_INITDIAlOG:
II Get a handle to the edit (buddy) control.
hWndBuddy = GetDlgItem (hDlg, IDE_BUDDY);

II Create the up-down control.
hWndUpDown = CreateWindowEx (

el,
UPDOWN_ClASS,

WS_CHIlD I WS_BORDER I WS_VISIBlE IUDS_WRAP UDS_ARROWKEYS
UDS_AlIGNRIGHT I UDS_SETBUDDYINT,

e, e, 8, 8,
hDlg,
(HMENU)ID_UPDOWN,
hInst,
NULl) ;

II Set the buddy window.
SendMessage (hWndUpDown, UDM_SETBUDDY, (lONG)hWndBuddy, el);

II Set the range.
SendMessage (hWndUpDown, UDM_SETRANGE, el,

MAKElONG (MAX_SPIN, MIN_SPIN»;

II Set the default value in the edit control.
SetDlgItemInt (hDlg, IDE_BUDDY, I, FALSE);

return TRUE;

case WM_COMMAND:
switch (lOWORD (wParam»
{

case IDOK:
iNumlines = (int) GetDlgItemInt (hDlg, IDE_BUDDY,

&bErr, FALSE);
InvalidateRect (hWndMain, NUll, TRUE);

case IDCANCEl:
EndDialog (hDlg, TRUE);

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

}

break;

break;

return FALSE;
}

If you don't need to create your spin box dynamically, and if you are us
ing Microsoft Visual C++ version 2.1 or later, you can take advantage of the
resource editor. The resource editor supports up-down controls, and you can
place one of these controls in your dialog box as you would any other con
trol. When I ported the UPDOWN sample to MFC (MFCSPIN), I used the
resource editor. I created the CSpin class, derived from CDialog, and set up
the m_Lines member variable to hold the number of lines. Here is the terribly
complex code required to use the spin box:

II CSpin message handlers

BOOl CSpin::OnlnitDialog ()
{

CDialog::OnlnitDialog ();

II Set the buddy control.
m_Spin.SetBuddy (GetDlgltem (IDC_lINES»;

II Set the range.
m_Spin.SetRange (1. 20);

return TRUE;

}

II return TRUE unless you set the focus to a control
II EXCEPTION: OCX property pages should return FALSE

void CFcspinView::OnSpin ()
{

CSpin spinDlg;

if (spinDlg.DoModal() == IDOK)
{

}

}

m_Numlines = spinDlg.m_lines;
GetDocument()-)UpdateAllViews (NUll);

Of course, this wasn't difficult at all. As you can see, it's easy to use the
new controls-and even easier to have the resource editor help you out.

57

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Up-Down Control Messages and Member Functions

58

There aren't a lot of messages and member functions for up-down controls.
Table 2-4 lists the messages that can be sent to up-down controls and the
member functions that are supported by the MFC-supplied class CSpinBut
tonCtrl. The Win32 SDK and the MFC 3.1 documentation contain detailed
information about parameters and return values.

Message

UDM_GETACCEL

UDM_GETBASE

UDM_GETBUDDY

UDM_GETPOS

UDM_GETRANGE

UDM_SETACCEL

UDM_SETBASE

Table 2-4.

Member
Function

GetAccel

GetBase

GetBuddy

GetPos

GetRange

SetAccel

SetBase

SetBuddy

Description

Retrieves information about the
accelerators for an up-down control.
(You can set accelerator keys for this
control.)

Retrieves the current base value for an
up-down control (10 for decimal or 16
for hexadecimal).

Retrieves the window handle of the
current buddy control.

Retrieves the current position of an up
down control.

Retrieves the upper and lower bounds
for an up-down control.

Sets the accelerators for an up-down
control.

Sets the base value for an up-down
control (10 for decimal or 16 for hexa
decimal). The base value determines
whether the buddy control displays
numbers in decimal digits or in hexa
decimal digits. Hexadecimal numbers
are unsigned; decimal numbers are
signed. If the buddy control is a list box,
the up-down control sets its current se-·
lection instead of its text.

Sets the buddy control for an up-down
control.

(continued)

Up-down control messages and member functions.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

Table 2-4. continued

Message
Member
Function

SetPos

SetRange

Animation Controls

Description

Sets the current position for an up-down
control.

Sets the upper and lower bounds for an
up-down control.

When some of you saw the words animation control, you probably got all ex
cited and wondered what this control could be. An animation control is simply
a window that displays an audio-video interleaved (AVI) clip. AVI is the stan
dard Windows audio-video format. An AVI clip is a series of bitmap frames,
something like a movie. Although AVI clips can have sound, animation con
trols ignore sound information when they play these clips.

Because the thread continues to execute while an AVI clip is being dis
played, you'll often see animation controls used to indicate system activity
during a lengthy operation. For example, the Find dialog box (see Figure 2-8)
shows a magnifying glass moving over a piece of paper.

In Fofder
C:\Cfuts\Chap02\C .. .
c: \Cluts\Chap02\C .. .
c: \Cluts\Chap02\C .. .
r ... I. rio ,1~\rL:- ~nn')\ r'

8KB C File
1KB CLW File
71'

Searching C:\Cluts\Chap03\CO DE\LlSTVIEW\WinDebug\"."

Figure 2-8.
A dialog box containing an animation control.

::·::.::~:I--+--Animation control

59

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

The AVI clip can originate either from an uncompressed AVI file or
from an AVI file that was compressed using run-length encoding (RLE). You
can add the clip to your application as an AVI resource, or the clip can ac
company your application as a separate AVI file. You can create the AVI file
using one of the many tools on the market, such as those available with the
Microsoft Video for Windows SDK or with Adobe Premier.

Because you are limited by the type of compression (RLE or none) , you
won't be able to play some of the really neat animations-Bugs Bunny, for
instance-in the control. If you need a control to provide multimedia play
back and recording capabilities for your application, you should use the
MCIWnd controlinstead of an animation control.

Creating an Animation Control

60

An animation control belongs to the ANIMATE_CLASS window class. You
create this control by using the CreateWindow or CreateWindowEx function,
by using the Animate_Create macro, or, in MFC, by using the Create member
function on your CAnimateCtrl object. The Animate_Create macro positions
the animation control in the upper left corner of the parent window and, if
you don't specify the ACS_CENTER style, sets the width and height of the
control based on the dimensions of a frame in the AVI clip.

More likely, though, you will be creating your animation control to run
in a dialog box. You can use the dialog box editor to place an animation con
trol right in your dialog box and then set the styles of the control through the
control properties. Uyou create an animation control within a dIalog box or
from a dialog box resource, the control is automatically destroyed when the
user closes the dialog box. If you create an animation control within a win
dow, you. must explicitly destroy the control. Otherwise, you'll be guilty of
being a resource hog ..

You can use these window styles with animation controls:

ACS_AUTOPLAY starts playing the animation when the animation
clip is opened.

ACS_CENTER centers the animation in the animation control's
window.

ACS_TRANSPARENT draws the animation using a transparent
background rather than the background color specified in the ani
mation clip.

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

I wrote my sample to demonstrate the animation control first in MFC
(MFCANIM), and then I ported it back to C (ANlMAT). My design goals in
cluded the following:

To create an animation control in a dialog box

To allow the user to start and stop the animation by using buttons

To allow the user to single-step through the animation frames

You can see this sample in Figure 2-9.

Figure 2-9.

Animation control with
·the ACS_CENTER and

ACS_ TRANSPARENT styles set

The AN/MAT sample.

Writing this sample was very easy. In fact, the most difficult part was find-
. ing an animation that would work. Beginning on the following page is the
code I used in the MFC sample to play the animation, stop the playback, and
single-step through the frames. I chose to allow the user to single-step from
the beginning through the last frame. Notice that because I put my anima
tion controlin a dialog box, I did not have to call the Create member func
tion. ·(Don't forget to include AFXCMN.H in your STDAFX.H file to define
the class.)

61

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

62

II CMfcanimView message handlers

void CMfcanimView::OnDemo ()
{

CDemo demoDlg;

II Run the Animation Demo dialog box.
demoDl g. DoModa 1 ();
}

II CDemo dialog
CDemo::CDemo (CWnd *pParent I*=NULL*/)

: CDialog (CDemo::IDD. pParent)
{

II {{AFX_DATA_INIT (CDemo)
/1 NOTE: ClassWizard will add member initialization here.
/1 }}AFX_DATA_INIT
m_bStart = FALSE; II BOOL--whether or not animation has started

II used for single-stepping through the frames

void CDemo::OnSeek ()
{

II If the animation is running ...
if (m_bSta rt)
{

}
}

II Seek to the specified frame.
m_AnimateCtrl.Seek (m_iSeek);
if (m_iSeek < NUM_FRAMES)

m_iSeek++;

void CDemo::OnStart ()
{

II If the animation hasn't started yet ...
if (! m_bStart)
{

}
}

m_bStart = TRUE;
II Open the animation file.
m_AnimateCtrl.Open (IDR-AVICLIP);
II Play it from beginning to end with infinite replay.
m_AnimateCtrl.Play (0. WINT)(-I). (UINT)(-I»;

void CDemo::OnStop ()
{

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

II If the animation has started ...
i f (m_b S tar t)
{

}

}

m_bStart = FALSE:
II Stop it.
m_AnimateCtrl.Stop ();

In the preceding code, I passed an identifier to the AVI resource rather
than passing in the name of the AVI file. This means that the clip will be built .
into the sample. When I first wrote the code, I passed in the name of the clip.
But this wasn't the best option because I had to pass in the full path. (If you
don't pass in the full path, the call to open the AVI file will fail and the clip will
not run.) To add the clip to my resource, I inserted the following line in my
MFCANIM.RC2 file:

II Add manually edited resources here ...
IDR-AVICLIP AVI res\win95.avi

I then added the symbol for the AVI file to the resource by choosing
Symbols from the Resource menu. When you click the New button in the
Symbol Browser, a second dialog box prompts you to add the new symbol, as
shown in Figure 2-10.

~<llue;

Figure 2-10.

In Use

~ ·············HeJp· ·1

~Hew ... I

Adding a symbol to your resource.

63

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

64

Rebuild after you've added the new symbol. Don't forget to scan all of
your dependencies before doing this. I forgot at first; the project did not .
build all that it should have, and the sample didn't run.

The code in the C sample, ANIMAT, is quite similar. The dialog proce
dure handles all the manipulation of the animation control. You must in
clude the COMMCTRL.H header file, and the COMCTL32.LIB file must be
in your list of libraries.

Baal APIENTRY Demo
HWND hDlg,
UINT message,
UINT wParam,
lONG lParam)

static BOOl bStart;
static int iSeek;

switch (message)
{

case WM_INITDIAlOG:
bStart = FALSE;
iSeek = 1;
return TRUE;

case WM_COMMAND:
if (lOWORD(wParam) == lOOK)
{

}

EndDialog (hDlg, TRUE);
return TRUE;

else if (HIWORD(wParam) == BN_ClICKED)
{

switch (lOWORD(wParam»
{

case IDC_PlAY:
if (! bStart)
{

bStart = TRUE;
Animate_Open (GetDlgltem (hDlg, IDC_ANIMATE),

"WIN95.AVI");

TWO: Trackbars, Progress Bars, Up-Down Controls, and Animation Controls

}

}

break;

default:

Animate_Play (GetDlgltem (hDlg, IDC_ANIMATE),
0, -1, -1);

break;

case IDC_STOP:
if (bStart)
{

}

bStart = FALSE;
Animate_Stop(GetDlgltem(hDlg, IDC_ANIMATE»;

break;

case IDC_SEEK:
if (bStart)
{

Animate_Seek(GetDlgltem(hDlg, IDC_ANIMATE), iSeek);
if (iSeek < NUM_FRAMES)

iSeek++;

break;

return FALSE;

That's about all there is to it. If you build and run the sample, you will
see a really cool animation (thanks toJonathan Cluts).

Animation Control Macros and Member Functions
As you can see by looking at Table 2-5 on the following page, the functionality
of the animation control is simple. Rather than listing messages, this table
shows you the macros that the system supplies to manipulate animation con
trols. Some of the messages correspond to more than one member function,
depending on the parameters you send to them. For me, it is far easier to un
derstand the code if I use the macros, because they tell me exactly what I am
trying to do.

65

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Member
Macro Function Description

Animate_Close Close Closes an AVI clip that was previously
opened.

Animate_Create Create Creates an animation control.

Animate_Open Open Opens an AVI clip from 'a file or a re~
source and displays the first frame.

Animate_Play Play Plays an AVI clip without sound.

Animate_Seek Seek Displays a selected single frame of an
AVI clip.

Animate_Stop Stop Stops playing an AVI clip.

Table 2-5.
Animation control macros and member functions.

66

C HAP T E R T H R E E

Image Lists, List View
Controls, Column Headers,
and Tree View Controls: List
Management Common Controls

Several of the new common controls in Microsoft Windows 95 are designed
to provide a user interface for list management. These controls range from
straightforward lists that can display various amounts of data (list view con
trols) to hierarchically structured lists of items (tree view controls) to lists of
visual representations such as bitmaps and icons (image lists). In addition,
you can use a column header (also called a header control), like those used
with list view controls, to better organize and display your lists.

This chapter shows you how to use these new list management common
controls in your applications. ~ecause both list view and tree view controls
use image lists, we 'lliook at image lists first.

Image Lists
An image list helps you manage a collection of images that are the same size,
such as bitmaps or icons. Image lists, which are designed for use with list view
and tree view controls, manage images but donot display them directly.

You can create the images in an image list in a single, wide bitmap or as
individual bitmaps. If you have produced bitmaps for a toolbar, you're famil
iar with the type of bitmap I am referring to. One difference between creat
ing a toolbar and creating an image list, however, is that you can set up an
empty image list and add the bitmaps (or icons) to it later, one by one, rather
than providing one long bitmap initially.

67

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

68

In the samples I wrote to demonstrate list view and tree view controls, I
created an empty image list and then added each bitmap or icon one at a
time. Figure 3-1 shows one of the icons I used. (That odd-looking structure
poking up in the air is my approximation of Seattle's Space Needle.)

Figure 3-1.
An icon for an image list.

To reference a specific image in the bitmap, you use the index of the
image within the image list. You can also include monochrome bitmaps in an
image list to act as masks, which allow you to draw icons transparently. Or
you might want to blend the icon with the background or with the system
highlight color.

You might also want to add overlay masks to your image list. An overlay
mask (which is different from a simple mask) is an image that is drawn trans
parently over another image. For instance, Windows 95 uses an overlay mask
when it displays the image for a shared directory (the image of a hand hold
ing a folder, shown in Figure 3-2.)

Figure 3-2.
An image with an overlay mask.

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

You can create either a nonmasked or a masked image list:

A nonmasked image list includes a color bitmap that contains one
or more images. This is a wide bitmap containing small bitmaps,
similar to the one you saw in the TOOLBAR sample in Chapter 1.
When a nonmasked image is drawn, it is simply copied into the tar
get device con text (DC); no special processing occurs.

A masked image list includes two wide bitmaps of equal size. The
first is a color bitmap that contains the images; the second is a
monochrome bitmap that contains a series of masks (one for each
image in the first bitmap). When a masked image is drawn, the mask
specified for that image is combined with the image itself. This com
bination produces transparent areas in the bitmap in which the
background color of the target DC shows through.

Table 3-1 describes the drawing styles you can use to produce different
effects with your image lists. For instance, if you want the images in your list to
be drawn transparently, you can specify the ILD_TRANSPARENT drawing
style in your call to ImageLisCDraw or to the MFC Draw member function of
the ClmageList class.

Style

ILD _BLEND25

ILD_BLEND50

ILD_FOCUS

ILD_IMAGE

ILD_MASK

Table 3·1.
Image list drawing styles.

Description

Draws the image, blending 25 percent with the system
highlight color. This value has no effect unless the im
age list contains a mask.

Draws the image, blending 50 percent with the system
highlight color. This value has no effect unless the im
age list contains a mask.

Draws the image striped with the highlight color to indi
cate that the image has the focus. This flag has no effect
unless ILD _SELECTED is also specified or unless the
image list contains a mask.

Draws the image.

Draws the mask.

(continued)

69

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 3-1. continued

Style

ILD_OVERLAYMASK

ILD_SELECTED

ILD_TRANSPARENT

Description

Draws the image using the image list's background
color. If the background color is CLR_NONE, the im
age is drawn transparently using the mask. .

Draws the image transparently as an overlay mask.

Draws the image dithered with the highlight color to
indicate that the image is selected. This flag has no ef
fect unless the image list contains a mask.

Draws the image transparently using the mask, regard
less of the background color. This flag has no effect
unless the image list contains a mask. To draw the
masked image, the function first performs a logical
AND operation between the bits of the image and the
bits of the mask. Next it performs a logical XOR opera
tion between the results of the first operation and the
background bits of the destination DC. This creates
transparent areas in the resulting image (that is, each
white bit in the mask causes the corresponding bit in
the resulting image to be transparent).

Creating an Image List

70

Creating an image list is easy: just call the ImageList_Create function or, if you
are developing your application with MFC, use the Create member function
on the CImageList object. For a nonmasked image list, ImageLisc Create pro
duces a single bitmap large enough tohold the specified number of images
with the given dimensions. It then creates a screen-compatible DC and selects
the bitmap into it. For a masked image list, ImageList_Create creates two
bitmaps and two screen-compatible DCs. It selects the image bitmap into one
DC and selects the mask bitmap into the other. The initial size of the image
list is determined by the size values that you specify in your call to Image
List_Create. If you subsequently add more images, the size of the image list
automatically increases to accommodate them, based on the number of im
ages you specified as a growth limit.

The following code from the TREEVIEWsample demonstrates how to
create an image list, add images to it, and then ensure that all the images have
been added:

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II First create the image list you will
hIml = ImageList_Create (BITMAP_WIDTH.

BITMAP_HEIGHT.
0.
NUM_B ITMAPS •
0) :

need.
/! wi dth
/! hei ght
II creation flags
II number of images
II amount this list can grow

II Load the bitmaps and add them to the image list.
hBmp = LoadBitmap (hInst. MAKEINTRESOURCE (FORSALE»:
idxForSale = ImageList_Add (hIml. II handle to image list

hBmp. II handle of bitmap to add
NULL): II handle of bitmap mask

hBmp = LoadBitmap (hInst. MAKEINTRESOURCE (REDMOND»:
idxRedmond = ImageList_Add (hIml. hBmp. NULL):

hBmp = LoadBitmap (hInst. MAKEINTRESOURCE (BELLEVUE»:
idxBellevue = ImageList_Add (hIml. hBmp. NULL):

hBmp = LoadBitmap (hInst. MAKEINTRESOURCE (SEATTLE»:
idxSeattle = ImageList_Add (hIml. hBmp. NULL):

II Be sure that all the bitmaps were added.
if (ImageList_GetImageCount (hIml) < NUM_BITMAPS)

return FALSE:

Image List Functions and Member Functions
Because image lists are part of the dynamic-link library for common con
trols (COMCTL32.DLL), you must include the common control header file
in your source code files and also link with the common control export li
brary to use the image list functions, structures, and macros. If you are devel-.
oping in MFC, you need to include the AFXCMN.H file in your STDAFX.H
file to get the definition of the ClmageList class. This class provides the func
tionality of the image . list common control and indudes a data member,
m_hlmageList, that is a handle containing the image list attached to the object.
The GetSafeHwnd member function will retrieve m_hlmageList if you need to
get a handle to it in your application.

Table 3-2 on the following page describes all the functions and member
functions supported by image list controls. If you would like more details
about the functions or their parameters and return values, refer to the Win32
SDK or the MFC 3.1 documentation.

71

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Function

ImageList_Add

ImageList_AddIcon

ImageLisCAddMasked

ImageLisCBeginDrag

ImageLisc Create

ImageList_Destroy

ImageLisCDragEnter

ImageLisCDragLeave

ImageLisCDragMove

ImageList_DragShow
NoLock

ImageList_Draw

Table 3-2.

Member
Function

Add

Add

Add

BeginDrag

Create

DeleteObject

DragEnter

DragLeave

DragMove

DragShow
NoLock

Draw

Image list functions and member functions.

72

Description

Adds one or more images to an image
list. You can add bitmapped images,
icons, or cursors.

Adds an icon to an image list. Because
the system does not save the hlcon that is
passed in, you can destroy hlcon after the
function returns.

Adds one or more images to an image
list, generating a mask from the given
bitmap.

Begins dragging an image and creates a
temporary image list used for dragging.
The drag image combines the specified
image and its mask with the current
cursor. The drag image can be moved
using the ImageList_DragMove function.

Creates a new image list.

Destroys an image list.

Locks the specified area of the screen,
preventing it from receiving other up
dates. This function is called during a
drag operation.

Removes any locks on the locked area of
the screen through a call to ImageList
_DragEnter.

Moves the image. This function is
typically called in response to a WM
_MOUSEMOVE message during a
drag operation.

Shows or hides the image being
dragged.

Draws an image list item in the specified
DC. The drawing styles listed in Table 3-1
(page 69) have no effect on the appear
ance of a nonmasked image, which is
copied to the destination DC using the
SRCCOPY raster operation. The colors in
the image appear the same regardless of
the background color of the DC.

(continued)

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

Table 3-2. continued

Function

ImageLisCDrawEx

ImageLisCEndDrag

ImageList_ExtractIcon

ImageLisc GetBkColor

ImageLisc GetDragImage

ImageLisc GetIcon

ImageLisc GetIconSize

ImageLisc GetImage
Count

ImageLisc GetImage
Info

ImageLisCLoadBitmap·

ImageList_LoadImage

ImageLisCMerge

Member
Function

Draw

EndDrag

ExtractIcon

GetBkColor

GetDtagImage

GetImage
Count

GetImage
Info

GetSafeHandle

Create

LoadImage

Attach

Description

Draws an image based on the flags and
colors passed into the function.

Ends a drag operation. Although this
function returns the handle of the
temporary image list that is used for
dragging, the temporary image list is
destroyed, so the handle returned by
this function is invalid.

Creates an icon based on an image and
a mask in an image list. .

Retrieves the current background color
for an image list.

Retrieves the temporary image list used
for the drag image and the current drag
position as well as the offset of the drag
image relative to the drag position.

Retrieves the specified icon in the
image list.

Retrieves the dimensions of each image
in an image list.

Retrieves the number of images in an
image list.

Retrieves information about an image
and fills out an IMAGEINFO structure
with information about a single image.
You can use this information to directly
manipulate the bitmaps for the image.

Retrieves the handle to the image list.

Creates an image list from the given
bitmap resource.

Creates an image list from the specified
bitmap; cursor, or icon.

Merges two existing images, creating a
new image list to store the image. The sec
ond image is drawn transparently over the
first, and the mask for the new image is
the result of performing a logical OR op
eration between the masks for the two im
ages. You can also detach two image lists
by using the Detach member function.

(continued)

73

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 3-2. continued

Function
Member
Function Description

ImageLiscRead

ImageList_Remove

ImageList_Replace

ImageLisCReplaceIcon

Read

Remove

Replace

Replace

Reads an image list from a stream.

Removes an image from an image list.

Replaces an image in an image list.

Replaces an image in an image list,
using an icon.

ImageLisCSetBkColor SetBkColor Sets the background color for an
image list.

ImageList_SetDrag
CursorImage

SetDrag
Cursor Image

Sets the image of the dragged item.

ImageList_SetIconSize SetIconSize Sets the dimensions of the images in an
image list and removes all images from
the list.

ImageList_SetOverlay
Image

SetOverlay
Image

Adds to the image list the index of an
image that will be used as an overlay
mask.

ImageLisc Write Write Writes an image list to a stream.

List View Controls and Column Headers

74

A list view control displays a collection of items, such as files or folders, that
can be manipulated in a variety of ways. For example, a user can drag an item
to a new location or sort the collection by clicking a column header. If you've
run Windows Explorer, you've seen a list view control-the large window on
the right, pointed out in Figure 3-3.

A list view control can display its items in one of four ways (called views):
in large icon view (also known as standard icon view), using the items' large
icons; in small icon view, using a smaller 'icon size; in list view; or in details
view. (also known as reportview). In large icon view, shown in Figure 3-4, each
item is represented by a full~size icon and a text label below the icon. The user
can drag items to any location in the list view window. This illustration comes
from the LISTVIEW sample (its MFC counterpart is called MFCLIST), which
demonstrates a list view control that contains real estate listings, with each
item representing a house for sale. (The addresses are fictional, of course.)

In small icon view, shown in Figure 3-5 on page 76, each item appears
with a small icon and a text label to the right of the icon, thus saving screen
real estate. As in large icon view, the user can drag the items to any location in
the window.

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

.----Button for large icon view

~
Button for small icon view

~
Button for list view

!l!Ji,,:i,!];t~;')::!W1': ,:", "': '" .', :, ".',. ,., ~ ;Ullon for details view

.. f.~.".~~i~", ~~~,.,,~??I~, .. ,.ij~I? .. ~ ' , ... ,.... , " , , "'" .. ~ ...• ~~ ... 1:
Ie Msdn 3··§il·~h,:d·~.~·~ 22:"!·j:::::/rml
IAuFolder~ fConter~sof'Msdr" ----

i i"'CJ Ezscsi

11: .. ~~e
r:tJ .. CJ Msvc20
rnCJ Myst
~CJ Old Program F~es
8J·CJ Program Files
r:b CJ Sdk
~·CJ slm
!CJ Temp
~ .. CJ Windows

i iBCJ Winword
r:b~ 10:)
$.c:J ~ost for c IE:) J~

j1Oobiectls)(plusl hidd<?n} , l1.74MB."

Figure3-3.

~ ~
Msdn Msdncd MSONC010Jlt MSONC010,,,.

~ ttkt ... ~",.t

W .~
MSONC010 Msdntool Msin32 Pptview

Relnotes Whatsnew

A list view control in Windows Explorer.

.Qptions .!:i elp

--
p.m,~::

100 Berry
Lane

33 Nicholas
Lane

--
~iJ

523 Apple
Road

555 Tracy
Road

Figure 3-4.
Large icon view.

--
,~~j

1212 Peach
Street

446 Jean
Street

~
L;";;:»;,,J

22 Daffodil
Lane

~
I

L",;v",;;;:,«.i..s

33542 0 rchid
Road

64134 Lily
Street

List view control

75

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

76

Figure 3-5.
Small icon view.

~ 523 Apple Road
lij]555 Tracy Road

;:: 1212 Peach Street ~ 22 0 affodil Lane
l8J 446 Jean Street

List view, like small icon view, displays each item with a small icon and a
text label to the right. In list view, however, the items are arranged in a col
umn, as shown in Figure 3-6, and the user cannot drag the items.

Figure 3-6.
List view.

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls·

In details view, items are displayed with their small icons and text labels,
with each item on its own line and additional information about the item dis
played in subsequent columns across the screen. The leftmost column con
tains the icon and the text label. A column header shows the title of each
column, as you can see in Figure 3-7.

Figure 3-7.
Details view.

Redmond
Seattle
Redmond
Bellevue
Redmond
Seattle
Bellevue
Seattle
Bellevue

Price
$125000
$140000
$175000
$180000
$200000
$225000
$250000
$350000
$2500000

3 2
3 2
4 3
4 3
4 3
3 2
4 4

A column header is a horizontal window usually positioned above col
umns of text or numbers and containing a title for each column. A column
header can be a stand-alone control (although I cannot for the life of me
think of a good reason to use one this way), or it can be part of a list view con
trol. When you use a column header in a list view control, it is "free "-that is,
you don't have to create the header control yourself.

A header control can be divided into parts, called header items, whose
width can be set by the user. A header item can behave like a command but
ton, performing some action (such as sorting data according to a specified
criterion) when the user clicks it. For example, clicking the Price header item
shown in Figure 3-7 sorts the list by the price of the house. Header items appear
as text on a gray background.

NOT E: Column headers do not support a keyboard interface and,
as a result, do not accept the input focus.

77

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

A header item can have a string, a bitmapped image, and an application
defined 32-bit value associated with it. The string and the image appear
within the boundaries of the item. If an item displays both a string and an
image, the image is located above the string. If the string and the image over
lap, the string overwrites part of the image.

For information about some of the messages and MFC member func
tions that header controls support, refer to Table 1-3 in Chapter 1 (page 17).
You can find details about the remaining messages, such as HDM_LAYOUT,
and MFC member functions, such as Layout, in the Win32 SDK documenta
tion or the MFC 3.1 documentation.

Creating a List View Control

78

At first glance, creating a list view control might appear to be a daunting task.
Getting all the necessary information placed in the correct structures in
volves several steps:

l. Create the window by using the CreateWindow or CreateWindowEx
function, specifYing WC_LISTVIEW as the class name. Alternatively,
if you are writing in MFC, use the MFC CListCtrl class and its Create
member function. .

2. Create image lists for the large icon and small icon views by calling
ImageList_Create. Load the bitmaps for the images by calling Load
Bitmap or Loadlcon, and add them to the image lists by calling
ImageList_Add or ImageList_Addlcon. Alternatively, use the MFC
ClmageList class.

3. Initialize the column header you will use by loading the strings and
calling ListView_InsertColumn. MFC developers should use the
CListCtrl class.

4. Insert each item into the list view control, and initialize anyassoci
ated text.

The following code demonstrates these steps. In the LISTVIEW and
MFCLIST samples, I defined a structure containing information about the
houses listed, including address, city, price, number of bedrooms, and num
ber of bathrooms. I also created an icon for each city represented (a total of
three icons).

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II House structure used for listing
typedef ~truct tagHOUSEINFO
{

char szAddress [MAX_ADDRESS];
char szCity [MAX_CITY];
int iPrice;
int iBeds;
int iBaths;

} HOUSEINFO;

HWND CreateListView (HWND hWndParent)
{

HWND hWndList; II handle to list view window
RECT rcl;
HICON hlcon;
int index;
HIMAGELIST hSmall, hLarge;

LV_COLUMN lvC;
char szText [MAX_PATH]:
LV_ITEM 1 vI:
int iSubItem;

II
II
II
II
II
II
II
II
II

rectangle for setting size of window
handle to an icon
index used in for loops
handles to image lists for small and
1 arge icons
list view column structure
place to store some text
list' view item structure
index into column header string table

II Ensure that the common control DLL is loaded.
InitCommonControls ();

II Get the size and position of the parent window.
GetClientRect (hWndParent, &rcl);

II Create the list view window
II and supports label editing.
hWndList = CreateWindowEx (

that starts out in details view

eL,
WC_LISTVI EW, II list view class

II no default text
WS_VISIBLE I WS_CHILD I WS_BORDER I LVS_REPORT I

LVS_EDITLABELS I WS_EX_CLIENTEDGE, II styles
13, 13,
rcl.right - rcl.left, rcl.bottom - rcl.top,
hWndParent,
(HMENU)ID_LISTVIEW,
hInst,
NULL);

if (hWndList
return NULL;

NULL)

(continued)

79

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

.80

II Initialize the list view window.
1/ First initialize the image lists you will need:
II create image lists for the small and the large icons.

hSmall = ImageList_Create (BITMAP_WIDTH, BITMAP_HEIGHT,
FALSE, 3, 0);

hLarge = ImageList_Create (LG_BITMAP_WIDTH, LG_BITMAP_HEIGHT,
FALSE, 3, 0);

II Load the icons and add them to the image lists.
for (index = REDMOND; index <= SEATTLE; index++)
{

hIcon = LoadIcon (hInst, MAKEINTRESOURCE (index»;
II You have 3 of each type of icon here, so add 3 at a time.
for (iSubItem = 0; iSubItem < 3; iSubItem++)
{

}

if «ImageList_AddIcon (hSmall, hIcon) ~= -1) I I
(ImageList_AddIcon (hLarge, hIcon) == -1»
return NULL;

II Be sure that all the small icons were added.
if (ImageList_GetImageCount (hSmall) < 3)

return FALSE;

II Be sure that all the large icons were added.
if (ImageList_GetImageCount (hLarge) < 3)

return FALSE;

II Associate the image lists with the list view control.
ListView_SetImageList (hWndList, hSmall, LVSIL_SMALL);

ListView_SetImageList (hWndList, hLarge, LVSIL_NORMAL);

Next, after creating the list view control and then creating and initializ
ing the image lists, it is time to add the column information. In order to do
this, you must fill out an LV_COLUMN structure for each one of the columns
and insert the columns hyusing the ListView_InsertColumn macro, as shown
in the following code:

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II Now initialize the columns you will need.
II Initialize the LV_COLUMN structure.
II The mask specifies that the fmt. width. pszText. and subitem members
II of the structure are valid.
lvC.mask = LVCF_FMT I LVCF_WIDTH I LVCF_TEXT I LVCF_SUBITEM;
lvC.fmt = LVCFMT_LEFT; II left-align column
lvC.cx = 75; II width of column in pixels
lvC.pszText = szText;

II Add the columns.
for (index = 0; index <= NUM_COLUMNS; index++)
{

}

lvC.iSubltem = index;
LoadString (hlnst. IDS_ADDRESS + index. szText. sizeof (szText));
if (ListView_InsertColumn (hWndList. index. &lvC) == -1)

return NULL;

After setting up the columns, add the items one by one. For each item,
you must fill out an LV_ITEM structure. My samples include a callback func
tion to provide the text for the items. Whenever the list view control needs
the text for an item, my callback function is called.

II Finally. add the actual items to the control.
II Fill out the LV_ITEM structure for each item to add to the list.
II The mask specifies that the pszText. ilmage. lParam. and state
II members of the LV_ITEM structure are valid.
lvI.mask = LVIF_TEXT I LVIF_IMAGE I LVIF_PARAM I LVIF_STATE;
lvI.state = 0;
lvI.stateMask = 0;

for (index = 0; index < NUM_ITEMS; index++)
{

lvI.iltem = index;
lvI.iSubltem = 0;
II The parent window is responsible for storing the text.
II The list view control will send an LVN_GETDISPINFO
II when it needs the text to display.
lvI.pszText = LPSTR-TEXTCALLBACK;
lvI.cchTextMax = MAX_ITEMLEN;
lvI.ilmage = index;
lvI.1Param = (LPARAM) &rgHouselnfo[index];

(continued)

81

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

82

if (ListView_Insertltem (hWndList, &lvI) -1)
return NULL;

for (iSubltem = 1; iSubltem < NUM_COLUMNS; iSubltem++)
{

ListView_SetltemText (hWndList, index, iSubltem,
LPSTR-TEXTCALLBACK);

}

return (hWndList);
}

Now that you've seen the code in C, you might wonder whether you
need to do anything different or special in order to create and use a list view
control in an MFC application. Under MFC, the list view control is supported
through the CListCtrl class. In my MFCLIST sample, I created the control in
the view class. In the definition of this class, I included a member variable for
my CListCtrl object and my two ClmageList objects:

class CMfclistView : public CView
{

protected: II create from serialization only
CMfclistView 0:
DECLARE_DYNCREATE (CMfclistView);
CListCtrl m_ListCtl:
ClmageList m_ImageLarge;
ClmageList m_ImageSmall;

~i

Then I created a message map entry for the WM_CREATE message and
used the Create member function to create the list view control. This code
looks nearly identical to the C code, as you can see here:

int CMfclistView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

int index;
int iS~bltem;
HICON hlcon;
LV_COLUMN lvC;
static char szText [256]:
LV_ITEM lvI;

II list view column structure
II place to store some text
II list view item structure

if (CView::OnCreate (lpCreateStruct) == -1)
return -1:

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II Create the CListCtrl window.
m_ListCtl.Create (

WS_VISIBLE \ WS_CHILO \ WS_BOROER.\ LVS_REPORT \ LVS_EOITLABELS.
CRect (0. 0. 0. 0). II bounding rectangle
this. II parent
I O_LISTVI EW) ; II 10

II Create the large icon image list.
m_ImageLarge.Create (

LARGE_BITMAP_WIDTH.
LARGE_BITMAP_HEIGHT.
FALSE. II list does not include masks
NUM_BITMAPS.
0); II list won't grow

II Create the small icon image list.
m_ImageSmall.Create (

SMALL_BITMAP_WIDTH.
SMALL_BITMAP_HEIGHT.
FALSE. II list does not include masks
NUM_BITMAPS.

,0); II list won't grow

II Load the icons and add them to the image lists.
for (index = IOI_BELLEVUE; index <= IOI_SEATTLE ; index++)
{

}

hIcon = ::LoadIcon (AfxGetResourceHandle ().
MAKEINTRESOURCE (index»;

II You have 3 of each type of icon here. so add 3 at a time.
for (iSubItem = 0; iSubItem < 3; iSubItem++)
{

if «m_ImageSmall.Add (hIcon) == -1) \ \
(m_ImageLarge.Add (hIcon) == -1»
return NULL;

II Be sure that all the small icons were added.
if (m_ImageSmall.GetImageCount () < 3)

return NULL;

II Be sure that all the large icons were added.
if (m_ImageLarge.GetImageCount' () < 3)

return NULL;
(continued)

83

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

84

II Associate the image lists with the list view control.
m_ListCtl.SetImageList (&m_ImageSmall. LVSIL_SMALL);
m_ListCtl.SetImageList (&m_ImageLarge. LVSIL_NORMAL);

II Now initialize the columns you will need.
II Initialize the LV_COLUMN structure.
II The mask specifies that the fmt. width. pszText. and subitem members
II of the structure are valid.
lvC.mask = LVCF_FMT I LVCF_WIDTH I LVCF_TEXT I LVCF_SUBITEM;
lvC.fmt = LVCFMT_LEFT; II left-align column
lvC.cx = 75; II width of column in pixels

II Add the columns.
for (index = 0; index <= NUM_COLUMNS; index++)
{

}

lvC.iSubItem = index;
lvC.pszText = szColumns [index];

if (m_ListCtl.InsertColumn (index. &lvC) -1)

return NULL;

II Finally. add the actual items to the control.
II Fill out the LV_ITEM structure for each item to add to the list.
II The mask specifies that the pszText. iImage. lParam. and state
II members of the LV_ITEM structure are valid.
lvI.mask = LVIF_TEXT I LVIF_IMAGE I LVIF_PARAM I LVIF_STATE;
lvI.state = 0;
lvI.stateMask = 0;

for (index = 0; index < NUM_ITEMS; index++)
{

lvI.iItem = index;
lvI.iSubItem = 0;
II The parent window is responsible for storing the text.
II The list view control will send an LVN_GETDISPINFO
II when it needs the text to display.
lvI.pszText = LPSTR-TEXTCALLBACK;
lvI.cchTextMax = MAX_ITEMLEN;
lvI.iImage = index;
lvI.1Param = (LPARAM) &rgHouseInfo[index];

if (m_ListCtl.InsertItem (&lvI) == -1)
return NULL;

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

for (iSubltem = 1; iSubltem < NUM_COLUMNS; iSubltem++)
{

}

m_ListCtl.SetltemText (index,
iSubltem,
LPSTR-TEXTCALLBACK);

return 0:
}

Changing Views
The preceding code produces a list view control that initially appears in details
view. As yet, you have no way of changing views. In the LISTVIEW sample, you
can do this by choosing a view from the Options menu, shown in Figure 3-8.

Price
$175000

Redmond $125000 2
Q.etails View Redmond $200000 4 3

Bellevue $2500000 4 4
Bellevue $180000 3 2
Bellevue $250000 4 3
Seattle $350000 3 2
Seattle $140000 3 2
Seattle $225000· 4 3

Figure 3-8.
The Options menu in the LISTVIEW sample.

Clicking an item on this menu generates a WM_COMMAND message.
In an MF,C application, you can handle this by adding a message map entry for
the command (IDM_LARGEICON for large icon view), and you can change
the view by setting the window style. To check the current view of the control,
use the LVS_TYPKMASKconstant. The current view can be LVS_ICON, LVS
_SMALLICON, LVS_LIST, or LVS_REPORT.

85

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

void CMfclistView::OnLargeicon ()
{

DWORD dwStyle;

dwStyle = GetWindowLong (m_ListCtl.m_hWnd, GWL_STYLE);

if ((dwStyle & LVS_TYPEMASK)!= LVS_ICON)
SetWindowLong (m_ListCtl.m_hWnd, GWL_STYLE,

(dwStyle & -LVS_TYPEMASK) I LVS_ICON);

Handling Notifications

86

OK You have your list view control, you have your image lists, you're able to
switch between views-but you still aren't ready to compile, link, and run. Be
fore you do that, you must set up a way to handle the WM_NOTIFY messages
that will be sent to the parent window. List view controls receive notifications
when text is needed for display, when items are being dragged and dropped,
when labels are being edited, and when columns are being sorted (to name
just a few cases). The C code you'll see next is an implementation of a handler
that I set up for the WM_NOTIFY message. When the parent window receives
the WM_NOTIFY message, it calls this function to determine the following:

Whether it needs text for a list view item (LVN_GETDISPINFO)

Whether the items must be sorted (LVN_COLUMNCLICK)

Whether it needs to handle label editing (LVN_BEGINLABELEDIT
and LVN_ENDLABELEDIT)

When the WM_NOTIFY message is sent, the LParam parameter serves as
a pointer to an NM_LISTVIEW or LV _DISPINFO structure. Which structure
LParam points to is determined by the notification sent. Each item in my list

. view control has an associated item containing information about the house it
describes. I saved the pointer to this information in the LParam member of the·
LV_ITEM structure when I added the item to the control. The following code
shows what the sample does in response to a request for text and in response

. to a column click. (We'll discuss label editing later in this chapter.)

LRESULT NotifyHandler (HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

LV_DISPINFO *pLvdi = (LV_DISPINFO *)lParam;
NM_LISTVIEW *pNm = (NM_LISTVIEW *)lParam;

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

HOUSEINFO *pHouse = (HOUSEINFO *)(pLvdi-)item.1Param);
static char szText [10];

if (wParam != ID_LISTVIEW)
return 0L;

switch (pLvdi-)hdr.code)
{

case LVN_GETDISPINFO:

switch (pLvdi-)item.iSubltem)
{

case 0: II address
pLvdi-)item.pszText pHouse-)szAddress;
break;

case 1: II city
pLvdi-)item.pszText pHouse-)szCity;
break;

case 2: II price
sprintf (szText. "$%u". pHouse-)iPrice);
pLvdi-)item.pszText = szText;
break;

case 3: II number of bedrooms
sprintf (szText. "%u". pHouse-)iBeds);
pLvdi-)item.pszText = szText;
break;

case 4: II number of bathrooms
sprintf (szText. "%u". pHouse-)iBaths);
pLvdi-)item.pszText = szText;
break;

default:
break;

}

break;

case LVN_COLUMNCLICK:
II The user clicked a column header; sort by this criterion.
ListView_Sortltems (pNm-)hdr.hwndFrom.

ListViewCompareProc.
(LPARAM)(pNm-)iSubltem»;

break;
(continued)

87

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

default:
break;

return 0L;
}

When I ported this sample to MFC, I had to find a way to get to the WM
_NOTIFY message because ClassWizard does not offer WM_NOTIFY as an
option for a message map. I decided to overload the WindowProc function in
the Cwnd class and call my notification handler from there:

LRESULT CMfclistView::WindowProc (UINT message, WPARAM wParam,
LPARAM lParam)

if (message == WM_NOTIFY)
NotifyHandler (message, wParam, lParam);

return CView::WindowProc (message, wParam, lParam);
}

Sorting Items in Response to a Column Header Click

88

In the preceding C code, I handled a click on a column header by calling the
ListView_SortItems macro and providing a pointer to a callback function. It
is up to the application to provide the code to sort list view items when the
user clicks a column header; the list view control does not sort the items for
you. (Drat!) This makes some sense (albeit in a twisted kind ofway)-how
would the system know which criterion to use for the sort (for example, color
or size)? Nevertheless, I wish that Windows 95 provided some built-in sorting
callbacks for "standard" sorting needs such as string comparisons and nu
meric sorts. Because the list view control lacks this capability, you must pro
vide a callback function to do the sorting. The saving grace" is that this isn't
hard to do.

The following code demonstrates" one method of sorting. It uses the
lstrcmpi function to compare strings and uses simple arithmetic to. sort num
bers. The callback function is given pointers to the two items to compare; it
returns a negative value if the first item should precede the second, a positive
value if the first item should follow the second, or 0 if the two items are
equivalent. The lParamSort parameter is an application-defined value (which
I did not use in my function). It would be useful in the sort to include any
special information about the sort criterion. For instance, if you want to let
the user specify whether to sort forward or backward, you can pass an indica
tion of this in the lParamSort parameter.

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

int CALLBACK ListViewCompareProc (LPARAM lParam1. LPARAM lParam2.
LPARAM lParamSort)

,HOUSEINFO *pHousel = (HOUSEINFO *)lParam1;
HOUSEINFO *pHouse2 = (HOUSEINFO *)lParam2;
LPSTR lpStr1. lpStr2;
int iResult;

if (pHouse1 && pHouse2)
{

switch (lParamSort)
{

case 0: II sort by address
lpStr1 = pHouse1-)szAddress;
lpStr2 = pHouse2-)szAddress;
iResult = lstrcmpi (lpStrl. lpStr2);
break;

case 1: II sort by city
lpStr1 = pHouse1-)szCity;
lpStr2 = pHouse2-)szCity;
i Resul t = 1 strcmpi (1 pStrl. 1 pStr2) ;
break;

case 2:
iResult
break;

case 3:
i Resul t
break;

case 4:
iResult
break;

II sort by price
pHouse1-)iPrice - pHouse2-)iPrice:

II sort by number of bedrooms
pHouse1-)iBeds - pHouse2-)iBeds;

II sort by number of bathrooms
pHouse1-)i Baths - pHouse"2 -)i Baths;

89

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Editing Labels

90

When you create a list view control, you can enable label editing by specifying
the LVS_EDITLABELS style, which lets a user edit an item's text label in
place. The user begins by clicking the label of an item that has the focus. The
list view control notifies the parent window with an LVN_BEGINLABELEDIT
notification. If you do not want to allow label editing on certain items, you
can return a nonzero value to disallow it. To limit the amount of text the user
can enter, the application gets the handle to the edit window through the
LVM_GETEDITCONTROL message (or the MFC GetEditControl member
function) and sends the EM_SETLIMITTEXT message to the edit control (or
uses the MFC LimitText member function of the CEdit class), specifying the
maximum number of characters that can be entered.

Once editing is completed, the list view control sends its parent window
an LVN_ENDLABELEDIT notification. The lParam parameter is the address
of an LV _DISPINFO structure identifying the item and specifying the edited
text. The parent window is responsible for updating the item's label. If edit
ing is canceled, the iltem member is -1. Be alert to the possibility of getting a
valid index to an item but getting a NULL pointer back for the text. This hap
pens if the user chooses an item and immediately presses the Enter key.

The following code from the MFCLIST sample shows how to support
label editing in a list view control:

case LVN_BEGINLABELEDIT:
{

}

CEdit *pEdit;
II Get the handle to the edit control.
pEdit = m_Li stCtl . GetEditControl ();
II Limit the amount of text that the user can enter.
pEdit->LimitText (20);

break;

case LVN_ENDLABELEDIT:
II If label editing wasn't canceled and the
II text buffer is non-NULL ...
if «pLvdi->item.iItem 1= -1) && (pLvdi->item.pszText 1= NULL))
II Save the new label information.
lstrcpy (pHouse->szAddress. pLvdi->item.pszText);
break;

That's all there is to it. The LISTVIEW and MFCLIST samples should
be enough to get you started if you plan to include list view controls in your
application.

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

List View Control Messages and Member Functions
Table 3-3 describes the messages and member functions supported by list
view controls. The MFC class that supports these controls is the CListCtrl
class. To use a list view control in your application, you must link with the
COMCTL32.LIB library. If you write your application in C, you must include
the COMMCTRL.H header file; if you write the application in MFC, you
need to include the AFXCMN.H file in your STDAFX.H file (if you are using
STDAFX.H).

Message

LVM_ CREATE
DRAGlMAGE

LVM_DELETEALLITEMS

LVM_DELETECOLUMN

LVM_DELETEITEM

LVM_ENSUREVISIBLE

LVM_FINDITEM

LVM_GETBKCOLOR

Table 3-3.

Member
Function

Arrange

Create
Draglmage

DeleteAllI terns

DeleteColumn

DeleteItem

EditLabel

Ensure Visible

FindItem

GetBkColor

List view control messages and member functions.

Description

Arranges the items in large icon view
based on the flags set.

Creates a drag image for the specified
item.

Removes all items from a list view
window.

Removes a column from a list view
window.

Removes a single item from a list view
window.

Begins in-place editing of an item's text
label. This message selects and sets the
focus to the item. When the user com
pletes or cancels the editing, the edit win
dow is destroyed and the handle becomes
invalid. You can safely subclass the edit
window, but do not destroy it. To cancel
editing, send a WM_CANCELMODE
message to the list view control.

Ensures that an item is entirely or par
tially visible by scrolling the list view win
dow if necessary.

Searches for an item in a list view control.

Retrieves the background color of
the list view window.

(continued)

91

PAR T h NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 3-3. continued

Member
Message Function Description

LVM_GETCALLBACKMASK GetCallbackMask Retrieves the callback mask for a list
view window.

LVM_GETCOLUMN GetColumn Retrieves the attributes of a column in a
list view control. The mask member of
the LV_COLUMN structure passed in
specifies which attributes to get. If the
LVCF_TEXT flag is.specified, the pszText
member must contain the address of
the buffer that receives the item's text,
and the cchTextMax member must
specify the size of the buffer.

LVM_GETCOLUMNWIDTH . GetColumnWidth Retrieves the width ofa column in list
view or details view.

LVM_GETCOUNTPERPAGE GetCountPerPage Calculates the number of items that can
fit vertically in the visible area in list
view or details view.

LVM_GETEDITCONTROL

LVM_GETIMAGELIST

LVM_GETITEM

LVM_GETITEMCOUNT

LVM_ GETITEMPOSITION

LVM_GETITEMRECT

92

GetEditCon trol

GetImageList

GetItem

GetI tern Coun t

Retrieves the handle of the edit window
used to edit an item's text label in place.
The item being edited currently has the
focus. When the user completes or
cancels the editing, the edit window is
destroyed and the handle becomes in
valid. You can safely subclass the edit
window, but do not destroy it. To cancel
editing, send a WM_CANCELMODE
message to the list view control.

Retrieves the handle of an image list
used for drawing items.

Retrieves the attributes of an item.

Retrieves the number of items in a list
view control.

GetItemPosition Retrieves the position of an item in
large icon view or small icon view.

GetItemRect Retrieves the bounding rectangle for an
item in the current view.

(continued)

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

Table 3-3. continued

Message

LVM_GETITEMSTATE
LVM_GETITEMTEXT

LVM_GETNEXTITEM

LVM_GETORIGIN

LVM_GETSTRINGWIDTH

LVM_GETTEXTBKCOLOR

LVM_GETTEXTCOLOR

LVM_GETTOPINDEX

LVM_GETV1EWRECT

LVM_HITTEST

LVM_INSERTCOLUMN

LVM_INSERTITEM
LVM_REDRAWITEMS

Member
Function

GetItemState
GetitemText

GetNextitem

GetOrigin

GetStringWidth

GetTextBkColor

GetTextColor

GetTopIndex

GetViewRect

HitTest

InsertColumn

Insertitem
RedrawItems

Scroll

Description

Retrieves the state of an item.
Retrieves the text of an item or a
subitem.
Searches for the next item, starting
from a specified item.

Retrieves the list view origin point,
which is needed for setting the item
position.
Retrieves the minimum column width
necessary to display the given string.
The returned width takes the current
font and column margins of the list view
control (but not the width of a small
icon) into account.
Retrieves the background text color in a
list view window.
Retrieves the color of the text in a list
view window.
Retrieves the index of the first visible
item in a list view window.
Retrieves the.bounding rectangle of all
items in large icon view.
Determines which item is at a specified
position in a list view window.
Inserts a new column in a list view
window.
Inserts a new item in a list view window.
Forces a redraw of a range of items in a
list view control. The specified items are
not repainted until the control receives
a WM_PAINT message. To repaint im
mediately, call the UpdateWindow func
tion after using this message.
Scrolls the contents of a list view win
dow. In details view, the dx parameter
must be 0, and the dy parameter is the
number of lines to scroll.

(continued)

93

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 3-3. continued

Member
Message Function

LVM_SETBKCOLOR SetBkColor

LVM_SETCALLBACKMASK SetCallbackMask

LVM_SETCOLUMN SetColumn

LVM_SETCOLUMNWIDTH SetColumn Width

LVM_SETIMAGELIST SetImageList

LVM_SETITEM SetItem

LVM_SETITEMCOUNT SetItemCount

LVM_SETITEMPOSITION SetI temPosi tion

LVM_SETITEMSTATE SetItemState

LVM_SETITEMTEXT SetItemText

LVM_SETTEXTBKCOLOR SetTextBkColor

LVM_SETTEXTCOLOR SetTextColor

LVM_SORTITEMS SortItems

LVM_UPDATE Update

Tree View Controls

Description

Sets the background color of a list view
window.

Sets the callback mask for a list view
window.

Sets the attributes of a column in a list
view control.

Sets the width of a column in details
view or list view.

Sets the image list used for drawing
items in a list view control.

Sets an item's attributes.

Sets the item count of a list view control.

Sets the position of an item in large
icon view or small icon view relative to
the list view rectangle.

Sets the state of an item.

Sets the text of an item or a subitem.

Sets the background text color in a list
view window.

Sets the text color in a list view window.

Sorts items in a list view control, using
an application-defined comparison
function.

Updates an item. If the list view control
has the LVS_AUTOARRANGE style, the
list view items will be automatically ar
ranged in the window.

A tree view control displays a hierarchical list of labeled items. Optionally,
each item can have a bitmap (or a pair of bitmaps) associated with it. You've
seen this type of hierarchy in File Manager (displaying directory information)
and in Microsoft Mail (displaying mail folders). The top item in the hierarchy,

94

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

which has no parent, is referred to as the root item. An item below the root
item in the hierarchy is called a child item of the root. An item that has child
items is called a parent item. Child items, when displayed, are indented below
their parent item. (In fact, the entire hierarchy of items is expandable and
collapsible.) If you specify the TVS_HASLINES style, you can connect the
items with lines. Figure 3-9 shows a tree view window that lists houses for sale
in various cities in the beautiful Pacific Northwest.

Root item
S··'W,'u Redmond
! ! ~ 100 B err}' Lane
[l .. ··~ 523 Apple Road
! L. .. ~ 1212 Peach Street

Parent item -.----0=.:. .. r:;;:] Bellevue
! l r:;;:] 22 Daffodil Lane
I j 1=;;:\ 33542 0 rchid Road

Child item -+--~~----;-t:.n: 64134 Lily Street

Figure 3-9.

g .. {[]J Seattle

l····tTIllil 33 Nicholas Lane'
l····l£Ij 555 Tracy Road
1.",6 446Jean Street

Anatomy of a tree view control.

The first time I saw a tree hierarchy like this, I wanted to implement one
in my application. Like most of you, I figured out how to do it on my own, but
it was complex, and it was a pain. I really wished that a tree hierarchy had
been built into the system. With Windows 95, it's finally happened.

In a tree view control, you can add a pair of bitmaps to the left of an
item's label, displaying one bitmap when the item is selected and the other
when the item is not selected. For example, when you select a folder in Win
dows Explorer, the image changes from a closed folder to an open one, as
shown in Figure 3-10 on the following page.

95

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Selected item -++--!-~~
Unselected item ----++---'--L-I

Figure 3-10.
Selected and unselected items in a tree view control.

Creating a Tree View Control

96

To create a tree view con trol in C, use the Create Window or Create WindowEx
function and specify the WC_TREEVIEW style for the window class. !fyou are
using MFC, create a CTreeCtrl object by using the Create member function.
The following code produces a tree view control and uses the image list func
tions to create an image list associated with it:

HWND CreateTreeView (HWND hWndParent)
{

HWND hwndTree;
RECT rcl;
HBITMAP hBmp;
HIMAGELIST hIml;

II handle to tree view window
II rectangle for setting size of window
II handle to a bitmap
II handle to image list

II Ensure that the common control .Dll is loaded.
InitCommonControls ();

II Get the size and position of the parent window.
GetClientRect (hWndParent. &rcl);

II Create the tree view window.
hwndTree = CreateWindowEx (

elf
WC_TREEVIEW. II tree view class

II no. default text

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

WS_VISIBLE I WS_CHILD I WS_BORDER I TVS_HASLINES I TVS_HASBUTTONS I
TVS_LINESATROOT,

0, 0,
rcl.right - rcl.left, rcl.bottom - rcl.top - 15,
hWndPa rent, .
(HMENU)ID_TREEVIEW,
hInst,
NULL);

if (hwndTree NULL)
return NULL;

II Initialize the tree view window.
II First create the image list you will need.
hIml = ImageList_Create (

BITMAP_WIDTH, II width
BITMAP_HEIGHT, II height
0,
NUM_BITMAPS,
0) ;

II creation flags
II number of images
II amount this list can grow

II Load the bitmaps and add them to the image list.
hBmp = LoadBitmap (hInst, MAKEINTRESOURCE (FORSALE»:
idxForSale = ImageList_Add (

hIml, II handle to. image list
hBmp) II handle of bitmap to add
NULL); II handle of bitmap mask

hBmp = LoadBitmap (hInst, MAKEINTRESOURCE (REDMOND»;
idxRedmond = ImageList_Add (hIml, hBmp, NULL);

hBmp = LoadBitmap (hInst, MAKEINTRESOURCE (BELLEVUE»;
i dxBell evue = ImageL i st_Add (hIml, hBmp, NULL);

hBmp = LoadBitmap (hInst, MAKEINTRESOURCE (SEATTLE»;
idxSeattle = ImageList_Add (hIml, hBmp, NULL);

II Be sure that all the bitmaps were added.
if (lmageList_GetImageCount (hIml) < NUM_BITMAPS)

return FALSE;

II Associate the image list with the tree view control.
TreeView_SetImageList (hwndTree, hIml, idxForSale);

return hwndTree;

97

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Adding Items to a Tree View Control

98

You can add items to a tree view control by sending the TVM_INSERTITEM
message or by calling the associated TreeView_InsertItem macro. In MFC,
use the InsertItem member function. For each item, you must fill out the
TV_ITEM and TV _INSERTSTRUCT structures. When adding an item, you'
must speCify the handle of the new item's parent item. If you specify NULL
or TVI_ROOT instead of an item handle, the item is added as a root item.

The following example demonstrates how to add items to a tree view
control. This sample handles the real estate listing you saw earlier, with three
houses listed for each of three cities. A global structure keeps track of the
handle to the parent item and its image.

typedef struct tagHOUSEINFO
{

char szAddress [MAX_ADDRESS];
int ilmage;
HTREEITEM hParent;

} HOUSEINFO;

BOOL AddTreeViewltems (HWND hwndTree)
{

static HTREEITEM hPrev;
char szText [MAX_LEN];
int index;

II First add the root item "Houses for Sale."
LoadString (hlnst, IDS_FORSALE, szText, MAX_LEN);
hTRoot = AddOneltem «HTREEITEM)NULL, szText, (HTREEITEM)TVI_ROOT,

idxForSale, hwndTree);

II Now add the cities.
LoadString (hlnst, IDS_REDMOND, szText, MAX_LEN);
hTRed = AddOneltem (hTRoot, szText, (HTREEITEM)TVI_FIRST, idxRedmond,

hwndTree);

LoadString (hlnst, IDS_BELLEVUE, szText, MAX_LEN);
hTBel = AddOneltem (hTRoot, szText, hTRed, idxBellevue, hwndTree);

LoadString (hlnst, IDS_SEATTLE, szText, MAX_LEN);
hTSea = AddOneltem (hTRoot, szText, 'hTBel, idxSeattle, hwndTree);

II Fill out the structure for each house.
FilllnStruct (hTRed, idxRedmond, 0, 3);
FilllnStruct (hTBel, idxBellevue, 3, 6);
FilllnStruct (hTSea, idxSeattle, 6, 9);

II Add the hOuses for each city.
hPrev = hTSea;

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

for (index = 0; index < NUM_HOUSES; index++)
{

}

hPrev = AddOneItem (rgHouseInfo[index].hParent,
rgHouseInfo[index].szAddress,
hPrev,
rgHouseInfo[index].iImage,
hwndTree) ;

rgHouseInfo[index].hItem = hPrev;

return TRUE:
}

II This function saves the current image and the handle to the
II parent of the tree view item.
VOID FillInStruct (HTREEITEM hParent, int iImage, int index, int iMax)
{

for (: index < iMax: index++)
{

}
}

rgHouseInfo[index].iImage = iImage:
rgHouseInfo[index].hParent = hParent;

II This function fills out the TV_ITEM and TV_INSERTSTRUCT structures
II and adds the item to the tree view control.
HTREEITEM AddOneltem (HTREEITEM hParent, LPSTR szText,

HTREEITEM hInsAfter, int iImage, HWND hwndTree)
{

HTREEITEM hItem;
TV_ITEM tvI:
TV_INSERTSTRUCT tvIns;

II The pszText, iImage, and iSelectedImage members are filled out.
tvI.mask = TVIF_TEXT I TVIF_IMAGE I TVIF_SELECTEDIMAGE I TVIF_PARAM;
tvI.pszText = szText;
tvI.cchTextMax = lstrlen (szText);
tvI.iImage = ilmage;
tvI.iSelectedImage = iImage;

tvIns.item = tvI;
tvIns.hInsertAfter = hInsAfter;
tvlns.hParent = hParent;

II Insert the item into the tree.
hItem = (HTREEITEM) SendMessage (hwndTree, TVM_INSERTITEM, 0,

(LPARAM)(LPTV_INSERTSTRUCT)&tvIns);

return (hItem):
}

99

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

100

In MFCTREE, the MFC version of the TREEVIEW sample, the control is
created in the view class. The preceding C code is nearly identical to the MFC
code. You should note where I keep track of some of the data in MFCTREE,
however. In the header file for the view class, MFCTRVW.H, the view class is
defined. Within this class, I save the CTreeCtrl object, the image list, the in
dexes to the images associated with the tree view items, and information
about the item being dragged.

class CMfctreeView : public CView
(

protected: II create from serialization only
CMfctreeView():
DECLARE_DYNCREATE(CMfctreeView);
CTreeCtrl m_TreeCtl: II tree view control
CImageList m_ImageList: II image list associated with tree
BOOL m_fDragging: II whether you are dragging an item
HTREEITEM m_hDragItem: II current item bei ng dragged
int m_idxForSale: II index to For Sale icon
int m_idxRedmond; II index to Redmond icon
int m_idxBellevue: II index to Bellevue icon
int m_idxSeattle: II index to Seattle icon

II Attributes
public:

CMfctreeDoc *GetDocument ():

II Operations
public:

BOOL AddTreeViewItems ():
HTREEITEM AddOneItem (HTREEITEM. LPSTR. HTREEITEM. int);
VOID FillInStruct (HTREEITEM. into into int):
VOID BeginDrag (NM_TREEVIEW *);
VOID DropItem (HTREEITEM):

I I Overri des
II ClassWizard generated virtual function overrides.
II {{AFX_VIRTUAL (CMfctreeView)
public:

virtual void OnDraw (CDC *pDC):

protected:

II overridden to draw. this
II vi ew

virtual LRESULT WindowProc (UINT message. WPARAM wParam.
LPARAM 1 Pa ram) :

II }}AFX~VIRTUAL

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II Implementation
public:

virtual -CMfctreeView ();

protected:

II Generated message map functions
protected:

} ;

II {{AFX_MSG (CMfctreeView)
afx_msg int OnCreate (LP~REATESTRUCT lpCreateStruct);
afx_msg void OnSize (UINT nType, int cx, int cy);
afx_msg void OnDestroy ();
afx_msg void OnMouseMove (UINT nFlags, CPoint point);
afx_msg void OnLButtonUp (UINT nFlags, CPoint point);
II }}AFX_MSG
DECLARE_MESSAGE_MAP ()

Implementing Drag and Drop for a Tree View Item
Now that you have a tree view control that can be expanded and collapsed, it
would be neat if the user could pick up one of the items and drag it to a new
location. The tree view control has some built-in functions that facilitate this
operation. When processing a drag operation for a tree view item, an applica
tion typically does the following:

1. Processes the start of the drag

2. Processes the dragging

3. Processes the drop

An application processes the start of the drag (picking up the item) in
the window procedure of the parent window by using the TVN_BEGINDRAG
notification (if the user is dragging with the left mouse button) or the TVN
_BEGINRDRAG notification (if the user is dragging with the right mouse
button). These notifications are sent through a WM_NOTIFY message. The
following sample code creates a drag image, captures the mouse, and sets a
Boolean flag to signal that dragging is occurring:

case WM_NOTI FY:
switc~«(LPNMHDR)lParam}->code)
{

case TVN_BEGINDRAG:
(continued)

101

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

102

}

II The user wants to drag an item. Call the drag handler.
BeginDrag (hWndTreeView, (NM_TR£EVIEW *)lParam);
II Save the dragged item information.
tvI = «NM_TREEVIEW *)lParam)-)itemNew;
II Get a handle to the drag object.
hDragItem = tvI.hItem;
break;

default:
break;

break;

VOID B~ginDrag (HWND hwndTree, NM_TREEVIEW *lItem)
{

HIMAGELIST hIml;
RECT rcl;

II Create an image to use for dragging.
hIml = TreeView_CreateDragImage (hwndTree, lItem-)itemNew.hItem);

II Get the bounding rectangle of the item being dragged.
TreeView_GetItemRect (hwndTree, lItem-)itemNew.hItem, &rcl, TRUE);

II Start dragging the image.
ImageList_BeginDrag (hIml, 0, lItem-)ptDrag.x, lItem-)ptDrag.y);

II Hide the cursor.
ShowCursor (FALSE);

II Capture the mouse.
SetCapture (GetParent (hwndTree»;

II Set a global flag that tells whether dragging is occurring.
g_fDragging = TRUE;
}

The MFCTREE sample handles the drag-and-drop operation through a
virtual function mapped to the WindowProc function:

II Handle the WM_NOTIFY::TVN_BEGINDRAG notification.
LRESULT CMfctreeView::WindowProc (UINT message, WPARAM wParam,

LPARAM lParam)
{

TV_ITEM tv I;
if (message == WM_NOTIFY)
{

if «(LPNMHDR)lParam)-)code == TVN_BEGINDRAG)
{

BeginDrag «NM_TREEVIEW *)lParam);
tvI = «NM_TREEVIEW *)lParam)-)itemNew;

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

}

II Get a handle to the drag object.
m_hDragItem= tvI.hItem:

return CView::WindowProc (message, wParam, lParam):
}

VOID CMfctreeView::BeginDrag (NM_TREEVIEW *lItem)
{

CImageList *CImage:

II Create an image to use for dragging.
CImage = m_TreeCtl.CreateDragImage (lItem-)itemNew.hItem):

II Start dragging the image.
CImage->BeginDrag (0, lItem->ptDrag):

II Hide the cursor.
ShowCursor (FALSE):

SetCapture ():
m_fDragging = TRUE:
}

The application processes the dragging operation by capturing the
mouse and monitoring the WM_MOUSEMOVE messages. In a typical drag
and-drop scenario, the image appears to be dragged because the cursor is
changed to the image of the item being dragged.

VOID CMfctreeView::OnMouseMove (UINT nFlags; CPoint pOint)
{

HTREEITEM hTarget:
UINT flags:

if (m_fDragging)
{

II Drag the item to the current mouse position.
m_ImageList.DragMove (point):

flags = TVHT_ONITEM:
II If the cursor is on an item, highlight it as the drop target.
if «hTarget = m_TreeCtl.HitTest (point, &flags» != NULL)
m_TreeCtl.SelectDropTarget (hTarget):

CView::OnMouseMove (nFlags, pOint):
}

103

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

104

When the user finishes dragging the item, the application can look for
the WM_LBUTTONUP message. At this point, the currently selected item is
recorded, the mouse is released, and the cursor is restored to the previous
state. This is also the point at which you want to reset the parentage of the
item and reset any internal structures that are keeping track of your tr<;!e
items. Also, remember to reset the drop highlight item. During the drag op
eration, the drop highlight item changes dynamically as the user moves the
mouse. When the item is dropped, you need to set the drop highlight back to
NULL, or you will end up with two items that both appear selected, because
selected items and drop highlight items are painted the same way. This is
remedied by another call to TreeView_Selectitem, passing NULL for the hltem
parameter.

case WM_LBUTTONUP:
II If dragging. stop it.
if (g_fDragging)
{

II Process the item drop.
DropItem (hDragItem. hWndTreeView);

II Inform the image list that dragging has stopped.
ImageList_EndDrag ();

II Release the mouse capture.
ReleaseCapture ();

II Show the cursor.
ShowCursor (TRUE);

II Reset the global Boolean flag to a nondragging state.
g_fDragging = FALSE;

}

break;

II Function that processes the item drop
VOID DropItem (HTREEITEM hDragItem. HWND hwnd)
{

HTREEITEM hParent. hNewItem. hTarget;
TV_ITEM tvTarget;
int index;

II Get the handle to the drop target.
hTarget = TreeView_GetDropHilight (hwnd);

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

II Get the· parent of the drop target.
hParent = TreeView_GetParent (hwnd. hTarget);

II Get the image information.
tvTarget.hltem = hTarget;
tvTarget.mask = TVIF_IMAGE;
TreeView_Getltem (hwnd. &tvTarget);

II Get the index into the structure containing the text for the items.
for (index = 0; index < NUM_HOUSES; index++)
{

if (rgHouselnfo[index].hltem == hDragltem)
break;

if (index == NUM_HOUSES)
index--;

II Reinsert the new item.
hNewltem = AddOneltem (hParent. rgHouselnfo[index].szAddress.

hTarget. tvTarget.ilmage. hwnd);

II Delete the dragged item.
TreeView_Deleteltem(hwnd, hDragltem);

II Reset the drop target to NULL.
TreeView_SelectDropTarget (hwnd. (HTREEITEM)NULL);
}

As you can see, processing a drag-and-drop operation for a tree view'
control is not at all difficult, so you really won't have any excuse for not sup
porting it.

Tree View Control Macros and Member Functions
Table 3-4 on the following page describes the macros and member functions
supported by tree view controls. CTreeCtrl is the MFC class that supports
these controls. To use tree view controls in your application, you must link
with the COMCTL32.LIB library. If you are working in C, you must include
the COMMCTRL.H header file; if you write your application in MFC, you
must include the AFXCMN.H file in your STDAFX.H file (if you are using
STDAFX.H).

For each message supported by tree view controls, the system provides a
macro that an application can call. I used the macros rather than the mes
sages in my samples because I find the macros more readable and because

105

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

they make it easier to move between C and MFC. As you can see in Table 3-4,
the name of the member function is nearly always the same as the end of the
macro name (that is, the Deleteltem member function corresponds to the
TreeView_DeleteItem macro).

Member
Macro Function

TreeView_Create Create

Tree View _ CreateDragI~age CreateDragImage

Tree View _ DeleteAllI terns DeleteAllI terns

TreeView_DeleteItem Deleteltem

Tree View _EditLabel EditLabel

Table 3-4.
Tree view control macros and member functions.

106

Description

Creates a tree view control.

Creates a drag image for the specified
item.

Deletes all items in a tree view window.

Deletes a specified item from a tree
view window. This message has two
macros, TreeView_DeleteItem and Tree
View_DeleteAllItems, which you can use
to delete one item or all items from the
control. If the item label is being edited
when this message is sent, the edit
operation is canceled, and the parent
window receives a TVN_ENDLABEL
EDIT notification. Then a TVN_
DELETEITEM notification is sent to
the parent window. If hltem is TVI
_ROOT, all items are deleted from the
control.

Begins in-place editing of an item's text
label. The text is replaced by a single
line edit window containing the original
text in a selected and focused state. A
TVN_BEGINLABELEDIT notification is
sent to the parent window of the tree
view control. You can safely subclass
the edit control, but do not destroy it.
When the user completes or cancels the
editing, the handle to the edit window
becomes invalid.

(continued)

T H R E E: Image Lists, List View Controls, Column Headers, and Tree View Controls

Table 3-4. continued

Macro

Tree View _Ensure Visible

Tree View_Expand

Tree View _ GetChild

TreeView_GetCount

Tree View _ GetDrop~
Hilight

TreeView_GetEditControl

TreeView_GetFirstVisible

TreeView_GetImageList

TreeView_GetIndent

TreeView_GetItem

TreeView_GetItemRect

. Member
Function

Ensure Visible

Expand

GetChildItem

GetCount

GetDrop
HilightItem

GetEditControl

Description

Ensures that an item is visible, and ex
pands the parent item or scrolls the tree
view window if necessary. If the message
expands the parent item, TVN_ITEM
EXPANDING and TVN_ITEMEX
PANDED notifications are sent to the
paren t window ..

Expands or collapses the list of child
items associated with a parent item.
This message sends TVN_ITEMEX
PANDING and TVN_ITEMEXPANDED
notifications to the parent window.

Retrieves the child of a specified tree
view item.

Returns the number of items in a tree
view window.

Retrieves the target of a drag-and-drop
operation.

Retrieves the handle of the edit control
being used for in-place editing of an
item's text label.

GetFirstVisibleItem Retrieves the first visible item of a tree

GetImageList

GetIndent

GetItem

GetItemRect

view control.

Retrieves the handle of the image list
associated with a tree view window.

Retrieves the amount, in pixels, that
child items are indented relative to
their parent item.

Retrieves information about an item
depending on the mask member in the
TV_ITEM structure passed in.

Retrieves the bounding rectangle and
visibility state of an item.

(continued)

107

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 3-4. continued

Macro

TreeView_Ge tNextI tern

TreeView_GetNextSibling

Tree View_ GetNextVisible

TreeView_GetParent

Tree View_ GetPrevSibling

TreeView_ GetPrevVisible

TreeView_GetRoot

Tree View_ GetSelection

TreeView_GetVisibleCount

TreeView_HitTest

Tree View _InsertI tern

Tree View _SelectDrop Target

TreeView_SelectItem

Tree View_SetImageList

Tree View_SetInden t

TreeView_SetItem

Tree View_SortChildren

Tree View_SortChildrenCB

108

Member
Function

GetNextItem

GetNext
SiblingItem

GetNext
VisibleItem

GetParen tI tern

GetPrev
SiblingItem

GetPrev
VisibleItem

GetRootItem

GetSelectedItem

GetVisibleCount

HitTest

InsertItem

Select

SelectDropTarget

SelectItem

SetImageList

SetIndent

SetItem

SortChildren

SortChildrenCB

Description

Retrieves the next item that matches a
specified relationship.

Retrieves the next sibling of an item.

Retrieves the next visible item following
the specified tree view item.

Retrieves the parent of an item.

Retrieves the previous sibling of an
item.

Retrieves the first visible item preceding
the specified tree view item.

Retrieves the root of an item.

Retrieves the currently selected item.

Retrieves the count of items that will fit
into the tree view window.

Retrieves the tree view item that occu
pies the specified point. This message
is generally used for drag-and-drop
operations.

Inserts a new item in a tree view window.
If the item is being edited, the edit
operation is canceled, and the parent
window receives a TVN_ENDLABEL
EDIT notification.

Selects, scrolls into view, or redraws an
item.

Selects an item as the drop target.

Selects an item.

Sets the image list for a tree view win
dow and redraws it.

Sets the amount of indention for a child
item.

Sets the attributes of an item.

Sorts the child items of a given parent
item.

Sorts items using an application-defined
comparison function.

C HAP T E R F 0 U R

Tabs, Property Sheets,
and Wizards: Whiz-Bang
Common Controls

Tabs, property sheets, and wizards are what I refer to as the "whiz-bang"
common controls. These controls are extremely popular right now; it seems
as if every new application (or every new version of an existing application) is
using property sheets and wizards liberally. This is a nice development for
new users because a feature like a wizard can walk them gently through a new
or complicated task.

For those of us who have been programming for longer than we care to
mention, property sheets replace those awful, cascading, modal dialog boxes
that we've come to know and despise. You've all had the experience of suc
cessfully navigating down through all those layers to actually set a value, such
as a network address, only to discover that you've forgotten some key piece of
information, forcing you to cancel out of each and every dialog box and then
to navigate down again. This is when you pick up your foam baseball bat and
whack your computer monitor. (A tip for the uninitiated: Don't use the wood
or aluminum bat! Although the immediate rush is terrific, you'll have a devil
of a time explaining it to your boss.) Now, however, by using a property sheet
instead of the modal dialog boxes, you can move easily among all the differ
ent properties that need to be set rather than backtracking through layers of
dialog boxes.

This chapter covers the whiz-bang common controls that Microsoft
Windows 95 supports, and it offers some details about how you can create and
use them in your C application. At the time this book was written, MFC did
not support Windows 95-style property sheets and wizards.

109

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Tabs

110

A tab control is similar to a set of notebook dividers: it separates topics or sec
tions of information and helps you locate a particular topic or section easily.
In Windows 95, a tab control on a property sheet lets a user move from page
to page, viewing information and setting options. An application typically
defines a group of dialog boxes as property sheet pages, each of which ap
pears when the user clicks the corresponding tab.

The Windows 95 user interface employs tabs extensively in Control
Panel. The Display Properties dialog box, which is shown in Figure 4-1, is a
Control Panel property sheet whose tabs let you access pages on which you
can view or change options for the background, the screen saver, the screen
appearance, and various other display settings.

Property sheet page

Figure 4-1.
The Display Properties dialog box.

You can also use a tab to carry out a specific command, much as you can
choose a menu item to immediately perform an action. Figure 4-2 is a screen
shot showing tabs in this button-style format.

Tab controls have styles. Actually, each control can have more than one
style. If you create a tab control using the default style TCS_TABS, your tabs

F 0 U R: Tabs, Property Sheets, and Wizards

will look like notebook dividers, as shown in Figure 4-1, with all of the tabs
displayed in a single row of leftjustified text (TCS_SINGLELINE). For mul
tiple rows of tabs, you can use the TCS_MULTILINE style. Using the TCS
_BUTTONS style creates the buttonlike tabs shown in Figure 4-2.

Button-style tabs

File tlBme: Qirectorie;J:

Driyes:

[~J

Figure 4-2.
A dialog box with button-style tabs.

Creating a Tab Control
You create a tab control by calling the CreateWindow or CreateWindowEx
function and specifying the WC_TABCONTROL window class. This window.
class is registered when the dynamic-link library for Win32 common controls
(COMCTL32.DLL) is loaded. You also need to link with the COMCTL32.LIB
library.

To include tabs in a window, the application must also fill out the TC
_ITEM or TC_ITEMHEADER structure. These two structures specify the at
tributes of the tabs. TC_ITEM and TC_ITEMHEADER are nearly identical,
except that TC_ITEMHEADER lets you specify extra application-specific data.
To do this, the application should define its own structure, consisting of the
TC_ITEMHEADER structure followed by application-defined data, and then
set the total number of bytes per tab using the TCM_SETITEMEXTRA mes
sage. For example, if my application stored information about a baseball
player for each tab, I would define a structure that looks something like the
code on the following page.

111

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

112

typedef struct _PLAYEILTAB
{

TC_ITEMHEADER tci;
LPSTR lpstrName;
LPSTR lpstrTeam;
LONG 1 ERA;
LONG lSalary;
BaaL bCap;

PLAYEILTAB;

II tab item information
II player's name
II player's team
II player's ERA
II player's salary
II salary cap?

Mter adding the tabs to the tab control, the application sends the TCM
_SETITEMEXTRA message to set the amount of data to sizeD! (PLAYER_TAB).
If the application needs to store a pointer to the structure without including
TC_ITEMHEADER in the structure, it can instead use TC_ITEM and store
the poin ter to the structure in the IParam field.

Let's look at some simple code that fills out the TC_ITEM structure and
creates a tab within a tab control by calling the TabCtrCInsertltem macro.
The following code snippet creates a tab control that contains text and has
no image list associated with it:

tie.mask = TCIF_TEXT TCIF_IMAGE;
tie.iImage == -1;
tie.pszText == "Tab 1";

if (TabCtrl_InsertItem (hwndTab, i, &tie) === -1)
{

II The insert failed; display an error box.
MessageBox (NULL, "TabCtrl_InsertItem failed!", NULL, MB_OK);
return NULL;

So far, you've created a tab control and inserted tab items, but the tab
control still doesn't have much functionality. The application must now man
age the window associated with the tabs. You can do this the easy way or the
not-so-easy way. The easy way is to use a property sheet in conjunction with
tabs, as described later in this chapter ..

. The not-so-easy way is to handle the TCN_SELCHANGE notification
that is sent through a WM_COMMAND message. This notification is sent
when the user .clicks a tab and the application needs to switch pages. The ap
plication processes the notification and makes the appropriate changes to
the focus window. With this method, you could, for example, allow the appli
cation to use one edit control for all the tabs. The application would assign
the memoryhandle·(send an EM_SETHANDLE message to the edit control)
for the incoming page. Although this method certainly works, a better way to

F 0 U R: Tabs, Property Sheets, and Wizards

handle paging between tabs is to let the system do the grunt work for you and
to use a property sheet instead.

Property Sheets
A property sheet is a window that lets the user switch among pages of inform a
tion to view and edit the properties of an item or an object. Property sheets
are also referred to as tabbed dialog boxes (because you use tabs to navigate
among mode less dialog boxes); each page in a property sheet is analogous to
a dialog box. In a spreadsheet application, for instance, one property sheet
might allow the user to set both the font properties and the border properties
of a cell, with font properties listed on one page and border properties on an
other. The Windows 95 user interface includes numerous property sheets, so
developers who are aiming for a consistent look and feel should seriously
consider using this common control.

The PROPS sample, which I wrote in C, displays a property sheet that
lets the user view and change the properties of a trackbar. Each group of
properties is marked by a tab and appears on a separate page. As you can see
in Figure 4-3, this property sheet has two tabs: Trackbar Range and Trackbar
Page And Line Size. When the user selects a tab, the associated page moves to
the foreground of the property sheet. For example, to change the trackbar
page size, the user clicks the Trackbar Page And Line Size tab to bring that
page to the foreground and then changes the values as desired.

--__ ++-- Trackbar Range page

Figure 4-3.
An example of a property sheet.

113

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Essentially, a property sheet is a system-defined modeless dialog box,
and each page is an application-defined modeless dialog box. The property
sheet is a container fdr the pages and is responsible for managing them. It
includes a frame, a title bar, and four buttons: OK, Cancel, Apply, and (option
ally) Help. A property sheet must have at least 1 page and can have as many as
24 pages.

Much like a typical dialog box, each page manages its own control win
dows (such as edit con troIs and list box con troIs). The application provides a
dialog template and a dialog procedure for the page. Each page has a label
(the text displayed on the tab) and can also have an icon. When the property
sheet creates the tab for the page, it displays the label and the icon in the tab;
If the property sheet has only one page, the tab for the page is not displayed.

Creating a Property Sheet

114

My PROPS sample demonstrates how to create and manipulate property
sheets. It produces a simple property sheet that supports two pages. I had al
ready written the TRACKBAR sample (discussed in Chapter 2), so I put a
trackbar on the client area of the screen and used a property sheet to set val
ues for this control.

Converting Dialog Boxes to Property Sheets
First! took an existing sample and used its dialog boxes for the pages in my
property sheet. I made two major changes to the dialog templates:

I removed the OK, Cancel, and Help buttons from the dialog tem
plates because these buttons are already included in the property
sheet control.

I adde.d the DS_3DLOOK dialog box style to the dialog templates.
This style gives the pages the same three-dimensional look as the
rest of the built-in dialog boxes.

In the Microsoft Visual C++ 2.1 resource editor, the DS_3DLOOKstyle is
not supported with the other dialog box styles. To use this style, you need to
edit your dialog boxes manually.

I also took this opportunity to review my dialog boxes and concluded
that I could rearrange the contents of the original four dialog boxes into two

F 0 U R: Tabs, Property Sheets, and Wizards

pages. This added a little extra work to the conversion, but it improved the
organization of the pages and gave my sample a more polished look. If you
aren't converting dialog boxes to property sheet pages, you can simply use
the resource editor to create a new dialog box, follow the two steps described
in the bulleted list on page 114, and add your controls.

Mter I converted the dialog boxes, I produced the property sheet by
defining an array of PROP SHEET PAGE structures for the pages, filling out a
PROPSHEETHEADER structure, and then calling the PropertySheet func
tion. This function creates handles for the pages before adding the pages to
the property sheet. The order of the array determines the order of the pages
in the property sheet, so be sure to decide the sequence of the tabs before you
define the pages in the array.

Once a property sheet exists, an application can add and remove pages
dynamically by sending the PSM_ADDPAGE and PSM_REMOVEPAGE mes
sages or executing their corresponding macros. By default, when a property
sheet is destroyed, its pages are destroyed in first-in-Iast-out (FILO) order
that is, the last page specified in the array of pages is the first page destroyed.

I wrote the CreatePropertySheet function to create the property sheet
and its pages. This function fills out a PROPSHEETPAGE structure for the
two pages, fills out the PROPSHEETHEADER structure, and then calls the
PropertySheet function. I replaced the DialogBox function calls in my code
with a call to the CreatePropertySheet function.

int CreatePropertySheet (HWNO hwndOwner)
{

PROPSHEETPAGE psp [2];'
PROPSHEETHEAOER psh;

psp[0].dwSize = sizeof (PROPSHEETPAGE);
psp[0].dwFlags = PSP_USETITLE;
psp[0].hlnstance = hlnst:
psp[0].pszTemplate = MAKEINTRESOURCE (IOO_RANGE):
psp[0].pszlcon = NULL;
psp[0].pfnOlgProc = Range;
psp[0].pszTitle = "Trackbar Range";
psp[0].lParam = 0:

psp[l].dwSize = sizeof (PROPSHEETPAGE);
psp[l].dwFlags = PSP_USETITLE;

(continued)

115

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

116

psp[l].hlnstance = hlnst:
psp[l].pszTemplate = MAKEINTRESOURCE (IDD_PROPS):
psp[l].pszlcon = NULL:'
psp[l].pfnDlgProc = PageSize:
psp[1]. pszTitl e = "Trackbar Page and Li ne Si ze":
ps~[l].lParam = 0:

psh.dwSize = sizeof (PROPSHEETHEADER):
psh.dwFlags = PSH_PROPSHEETPAGE:
psh.hwndParent = hwndOwner:
psh.hlnstance = hlnst:
psh.pszlcon = NULL;
psh.pszCaption = (LPSTR)"Trackbar Properties":
psh.nPages = sizeof (psp) / sizeof (PROPSHEETPAGE):
psh.ppsp = (LPCPROPSHEETPAGE) &psp;

return PropertySheet (&psh):
}

Changing the Dialog Procedure
Next I had to convert my dialog procedure from managing a dialog box to
managing a property sheet page. The major changes involved the handling
of the OK and Cancel buttons. Typically, a WM_ COMMAND message notifies
a dialog procedure that the OK or Cancel button has been clicked. When the
procedure gets this message, it generally verifies the information entered in
the dialog box controls and calls the EndDialog function to destroy the dia
log box. The following code demonstrates how a typical dialog procedure man
ages the OK button:

case WM_COMMAND:
if (LOWORD (wParam) == IDOK)
{

uMin = GetDlgltemlnt (hDlg. IDE_MIN. &bErr. TRUE):
uMax = GetDlgltemlnt (hDlg. IDE_MAX. &bErr. TRUE):
SendMessage (hWndCurrent. TBM_SEJRANGE. TRUE.

MAKELONG (uMax. uMin»;
EndDialog (hDlg. TRUE);
return TRUE;

}

break:

In a property sheet, the OK and Cancel notifications are no longer sent
to the dialog procedure. Instead, the procedure must handle a group of page
notifications. My application needed to handle the following notifications:

PSN_RESET

PSN_SETACTIVE

F 0 U R: Tabs, Property Sheets, and Wizards

Sent when the user clicks the OK button or the Apply
button. This is also the time to validate any changes
the user has made.

Sent when the user clicks a tab on the property sheet
and switches pages.

Sent when the user clicks the Cancel button.

Sent when a page is coming into focus. The applica
tion should take this opportunity to initialize the
controls for that page.

Initially, I found it difficult to differentiate between the OK and Apply
buttons. They both require the page to validate and apply the changes the
user has made. The only difference is that clicking OK destroys the property
sheet after the changes are applied, whereas clicking Apply does not. As a re
sult, if the user applies a change and later cancels out of the property sheet,
the application should reset the property to its initial value rather than saving
the applied value. In other words, changes are permanent when the user
chooses the OK button; the Apply button allows the user to "try out" an action.

Another change I had to make was removing the EndDialog call. I
couldn't call the EndDialog function for a property sheet page because it de
stroys the entire property sheet instead of destroying only the page. The fol
lowing dialog procedure handles the Trackbar Range page:

Baal API ENTRY Range
HWND hDlg.

{

UINT message,
UINT wParam.
lONG lParam)

static PROPSHEETPAGE *ps;
Baal bErr;
static UINT uMin. uMax. uMinSave. uMaxSave;

switch (message)
{

case WM_INITDIAlOG:
II Save the PROPSHEETPAGE information.
ps = (PROPSHEETPAGE *)lParam;
return TRUE;

case WM_NOTI FY:
switch «(NMHDR FAR *)lParam)-)code)

(continued)

117

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

{

}

case PSN_SETACTIVE:
II Initialize the controls.
uMinSave = SendMessage (hWndSlider. TBM_GETRANGEMIN.

0L. 0U:
uMaxSave = SendMessage (hWndSlider. TBM_GETRANGEMAX.

0L. 0U:
SetDlgItemInt (hDlg. IDE_MIN. uMinSave. TRUE);
SetDlgItemInt (hDlg. IDE_MAX. uMaxSave. TRUE);
break:

case PSN-,-APPLY:
uMin = GetDlgItemInt (hDlg. IDE_MIN. &bErr. TRUE);
uMax = GetDlgItemInt (hDlg. IDE_MAX. &bErr. TRUE);
SendMessage (hWndSlider. TBM_SETRANGE. TRUE.

MAKELONG (uMin. uMax»;
SetWindowLong (hDlg. DWL_MSGRESULT. TRUE);
break;

case PSN_KILLACTIVE:
SetWindowLong (hDlg. DWL_MSGRESULT. FALSE);
return I;
break:

case PSN_RESET:
II Reset to the original values.
SendMessage (hWndSlider.TBM_SETRANGE. TRUE.

MAKE LONG .(uMinSave. uMaxSave).);
SetWindowLong (hDlg. DWL~MSGRESULT. FALSE):
brea k.:

return FALSE;
}

When a page is created, the dialog procedure for the page receives a
WM_INITDIALOG message (as it does when a dialog box is created); how
ever, the LParam parameter points to the PROPSHEETPAGE structure that is
used to produce the page. The dialog procedure can save the pointer to this
structure and use it later to modify the page.

A Word About Property Sheet Notifications

118

A property sheet sends a notification to the dialog procedure for a page when
the page gains or loses the focus or when the user chooses the OK, Cancel,
Apply, or Help button. The notifications are sent as WM_NOTIFY messages.
The lParam member is a pointer to an NMHDR structure describing the noti
fication. The hwndFrom member contains the window handle of the property
sheet, and the hwndTo member contains the window handle of the page.

F 0 U R: Tabs, Property Sheets, and Wizards

Some notifications require the dialog procedure to return either TRUE
or FALSE in response to the WM_NOTIFY message. For example, if your
procedure cannot handle the Apply button, the code that handles the PSN
_APPLY notification should respond with a value of TRUE. The return value
from the dialog procedure must be set by using the SetWindowLong func
tion rather than by returning TRUE or FALSE. This return value is set in the
DWL_MSGRESULT window attribute as follows:

SetWindowLong(hDlg, DWL_MSGRESULT. value):

This is a very important point. I've talked to a great many people who
have had problems with their property sheet code, only to find that they are
not setting the return value correctly.

Can I Use One Piece of Code for Both
a Property Sheet Page and a Dialog Box?
Let's say that you already have a dialog box and a dialog procedure
and that you have some odd attachment to' the procedure that pre
vents you from throwing away the code. In fact, you like this code so
much that you're wondering whether you can use it for a property
sheet page in some cases and for a dialog box in other cases. You can
indeed write a single pieceof code that works for both a property
sheet page and a dialog box, but this is not as easy as having dedicated
code. for each purpose. If you are using shared code, follow these
guidelines:

• Be sure that the dialog procedure does not call the End-
Dialog function when it is handling a property sheet. .

• Write handlers for the OK, Cancel,and Help notifications
. and use them for the PSN_APPL Y, PSN_RESE~, and.
PSN_HELP notifications .

• If you decide to usea single template for both a property
sheet page and a dialog box, place the OK and Cancel but-
tons outside the dimensions of the dialog box and disable
these buttons when handling a page. When the dialog
procedure is handling a dialog box, resize the dialog box to
include these buttons when the WM_INITDIALOG message
is received.

119

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Hey, My Screen Is Flashing!
You don't have to use a different template for each page of your property
sheet. If you like, you can instead use a single template for all the pages and
enable/ disable or show/hide the controls that are specific to each page on
the fly. If you do this, however, the user could encounter annoying screen
flashes when switching pages. Your application can minimize or eliminate
these flashes by responding to the WM_SHO"WWINDOW message. This code
snippet demonstrates one method of eliminating the screen flash:

case WM_SHOWWINDOW:
II Check to see whether the window is shown via ShowWindow.
if (wParam && ! LOWORD (lParam»

II It is, so post a message to yourself.
PostMessage (hDlg, WM_APP, 0, 0L):

break:

case WM_APP:
II Remove the rectangle for the page from the invalid list.
ValidateRect (hDlg, NULL):
II Invalidate any and all controls within the page.
InvalidateRect (GetDlgItem (hDlg, ID_CONTROLl), NULL, FALSE):
InvalidateRect (GetDlgItem (hDlg, ID_CONTROL2), NULL, FALSE):

InvalidateRect (GetDlgItem (hDlg, ID_CONTROLn), NULL, FALSE):
break:

An application that uses this method repaints only the controls that
need repainting inside the page, instead of repainting the whole window
when the WM_SHO"WWINDOW message is sent. A page will also need to call
InvalidateRect with the bErase parameter set to TRUE for controls that do not
completely paint their client area during a WM_PAINT message (for example,
for a list box that is not full).

Property Sheet Messages

120

Table 4-1 lists and describes the messages that support property sheets in
Windows 95. If you need to find more detailed information about the param
etersand return values for these messages, you can refer to the Win32 SDK
documentation.

Message

PSM_CANCELTOCLOSE

PSM_CHANGED

PSM_GETTABCONTROL

PSM_PRESSBUTTON

Table 4-1.
Property sheet messages.

F 0 U R: Tabs, Property Sheets, and Wizards

Description

Adds a page to the end of an existing property sheet. An
added page should be no larger than the maximum size
already in use, because the property sheet will not resize
dynamically added pages and because the size of the
property sheet itself cannot change.

Simulates clicking the Apply button. This message re
turns TRUE if and only if every page successfully saved its
information.

Sent when a change is made that cannot be canceled in
the property sheet. It disables the Cancel button and
changes the OK button to Close.

Sent to a property sheet when information in a page has
changed. The property sheet changes the page name to
italic text in the list of pages, and the Apply button is en
abled. (This button is initially disabled when a page be
comes active and there are no property changes to apply
yet.) When the page receives user input through one of
its controls, indicating that the user has edited a prop
erty, the page sends the PSM_CHANGED message to the
property sheet. If the user then clicks the Apply button or
the Cancel button, the page reinitializes its controls and
sends the PSM_UNCHANGED message to redisable the
Apply button. Sometimes the Apply button causes a page
to change a property sheet, and the change cannot be
undone. In that case, the page sends the PSM_CANCEL
TOCLOSE message to the property sheet, which changes
the Cancel button to Close, indicating to the user that
the applied changes cannot be canceled.

Retrieves a handle to a tab control.

Causes the specified button to appear "pressed" (to be
selected). wParam, the ID of the button, can be one of
the following values:

PSBTN_BACK
PSBTN_NEXT
PSBTN_FINISH
PSBTN_OK
PSBTN_APPLYNOW
PSBTN_CANCEL
PSBTN_HELP

Select the Back button
Select the Next button
Select the Finish button
Select the OK button
Select the Apply button
Select the Cancel button
Select the Help button

(continued)

121

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 4-1. continued

Message

PSM_QUERYSIBLINGS

PSM_REBOOTSYSTEM

PSM_RESTARTWINDOWS

PSM_SETCURSELID

122

Description

Forwarded to each property sheet page until a page re
turns a nonzero value, which becomes the return value of
this message. This message is convenient for passing
information between pages that don't know about one
another. For example, the printer property page exten
sions use.this message to communicate with the property
sheet pages provided by the system.

Sent when the user must reboot to have the changes
specified in the property sheet take effect. The page
sends this notificatiori only in response to a PSN_APPLY
or PSN_KILLACTIVE notification. The PSM_REBOOT
SYSTEM message supersedes all PSM_RESTARTWIN
DOWS notifications that precede or follow. It causes the
property sheet return value to be ID_PSREBOOTSYS
TEM if the user chooses OK to close the property sheet.

Removes a page from an existing property sheet. If hPage
is NULL or does not exist, the property sheet removes
the page at the location specified by the index parameter.
When a page is defined, an application can specify the
address of a ReleasePropSheetPageProc callback func
tion that the property sheet calls when it is removing the
page. Using a ReleasePropSheetPageProc function gives
an application the opportunity to perform cleanup
operations for individual pages.

Sent when the user must restart Windows to have
changes specified in the property sheet take effect. The
page sends this notification only in response to a PSN
_APPLY or PSN_KILLACTIVE notification. This causes
the property sheet to return ID _PSRESTARTWINDOWS
if the user chooses OK to close the property sheet.

Sent to the property sheet to change focus to a different
page. If hPage is NULL or does not exist, the property
sheet sets the active page at the location specified by the
index parameter.

Sets the active page by the ID of the tab or the hPage as
specified in lParam.

(continued)

Table 4-1. continued

Message

PSM_SETFINISHTEXT

PSM_SETTITLE

PSM_SETWIZBUTTONS

Wizards

F 0 U R: Tabs, Property Sheets, and Wizards

Description

Enables the Finish button, hides the Back button, and
sets the text on the Finish button to the text specified in
[Paramo

Changes the caption for the property sheet.

Specifies which buttons should be enabled in a wizard
style property sheet. LParam can be a combination of the
following values:

PSWIZB_BACK Enable the Back button
PSWIZB_NEXT Enable the Next button
PSWIZB_FINISHEnable the Finish button

Sent to a property sheet when the ~nformation in a page
has reverted to its previously saved state. The property
sheet cancels any changes caused by PSM_CHANGED.
The Apply button is disabled if no pages with registered
changes remain.

What is a wizard? Although you might envision a person who wears a funny,
pointed hat with stars on it and makes magic happen, in the context of an
application the term wizard refers to a piece of code that can walk the user
through a series of steps (in the form of dialog boxes) in order to accomplish
a complex task. For instance, many applications take advantage of a wizard
for their setup operation or for installing various devices. Figure 4-4 on the
following page shows an example, the Add Printer wizard.

A wizard is basically a property sheet with extra buttons and no tabs. In a
standard property sheet, the user can navigate among its pages by clicking
tabs. There is no need to conform to a special navigation order, and the user
doesn't even have to look at every page. In contrast, a wizard moves the user
through a series of dialog boxes in a specific sequence. The user can go back
ward or forward, but the application determines the order in which the steps
must be taken or the information supplied. If the application requires input
for a particular page, it can disable the Next button to prevent the user from
paging forward. .

123

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Figure 4-4.
The Add Printer wizard.

Property sheets and wizards also present different buttons to the user.
A property sheet has OK, Cancel, and Apply buttons and an optional Help
button, which are used for all the pages in the property sheet. The' buttons
that reside at the bottom of a page in a wizard-typically, the Back, Next, and
Cancel buttons-apply only to the currently active page.

Creating a Wizard

124

I created the WIZARD sample in C to demonstrate how to manipulate wizard
controls. (A version of this program also appea~s in the Win32 SDK.) The de
sign goals for this sample were simple: first, to create a wizard in which you
can step back and forth; and second, to make it fun. The second goal was the
hardest. Mter a lot of thought, an inspiration finally came to me. So if you'll
indulge me in a little "company" humor, let's get started.

Twice a year, each Microsoft employee participates in a performance re
view, evaluating our sterling accomplishments of the past six months, explain
ing how important we are to the success of the company, and listing all the
reasons why we deserve a raise. Every time reyiews roll around, we complain
about having to do the paperwork, and every time I wonder why someone
hasn't created a cool tool that would generate a performance review, given
some basic data. So I decided to write a wizard to help with this sometimes pain
ful exercise. In reality, of course, it ended up being used for nothing more
than chuckles around here, but at least it made the sample a bit more fun.

F 0 U R: Tabs, Property Sheets, and Wizards

The first step in. creating any wizard is to create a dialog box for each
page of information you want to collect. You can do this with the same re
source editor you use for standard dialog boxes. For a wizard page, however,
you should remove the OK and Cancel buttons that are included in the de
fault dialog template.

After you've created the dialog boxes, you must write code that will first
fill out a PROP8HEETPAGE structure for each page (dialog box) you plan to
display and will then fill out a PROPSHEETHEADER structure for the over
all property sheet. The dwFlags field of the PROPSHEETHEADER structure
must include the PSH_ WIZARD flag to specify that this particular property
sheet is a wizard. Finally, the application must call the PropertySheet func
tion. The following code demonstrates how to fill out these structures to cre
ate a wizard:

II FUNCTION: FilllnPropertyPage (PROPSHEETPAGE *. into LPSTR. LPFN)
II
II
II
II
II
II

PURPOSE: Fills out the given PROPSHEETPAGE structure

COMMENTS:
This function fills out a PROPSHEETPAGE structure with the
information the system needs to create the page.

void FilllnPropertyPage (PROPSHEETPAGE *psp. int idD19. LPSTR pszProc.
DLGPROC pfnDlgProc)

{

II Set the size of this structure.
psp-)dwSize = sizeof (PROPSHEETPAGE);
II No special flags
psp-)dwFlags = 0;
II The instance associated with this application
psp-)hlnstance = rvlnfo.hlnst:
II The dialog template to use
psp-)pszTemplate = MAKEINTRESOURCE (idDlg);
II Don't use a special icon in the caption.
psp-)pszlcon = NULL;
II The dialog procedure that handles this page
psp-)pfnDlgProc = pfnDlgProc;
II The title for this page
psp-)pszTitle = pszProc;
II No special application-specific data
psp-)lParam = 0;
}

(continued)

125

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

126

II FUNCTION: CreateWizard (HWNO)
II
II PURPOSE: Creates the wizard control
II
/1 COMMENTS:·
II This function creates the wizard property sheet.

int CreateWizard (HWNO hwndOwner, HINSTANCE hInst)
{

PROPSHEETPAGE psp [NUM_PAGES];
PROPSHEETHEAOER psh;

II For each page, fill out a PROPSHEETPAGE structure.
FillInPropertyPage (&psp[0], IOO_INFO,

"Your Information", YourInfo);
FillInPropertyPage (&psp[l], IOO_WORKHABITS,

"Work Hab.i ts", WorkHabits);
FillInPropertyPage (&psp[2], IOO_TEAMWORK,

"Team Work", TeamWork);
FillInPropertyPage (&psp[3], IOO_RELIABILITY,

"Reliability", Reliability);
FillInPropertyPage (&psp[4], IOO_GOALS,

"Attainment of Goals", Goals);
FillInPropertyPage (&psp[5], IOO_AOAPTATION,

"Adaptabil ity to Change", Adaptati on);

II Fill in the size of the PROPSHEETHEAOER structure.
psh.dwSize = sizeof (PROPSHEETHEAOER);
II Specify a wizard property sheet with no Apply button.
psh.dwFlags = PSH_PROPSHEETPAGE I PSH_WIZARO I PSH_NOAPPLYNOW;
II Specify the parent window.
psh.hwndParent = hwndOwner;
II The caption for the wizard
psh.pszCaption = (LPSTR)"Review Wizard";
II The number of pages in this wizard
psh.nPages = sizeof (psp) I sizeof (PROPSHEETPAGE);
II Point to the array of property sheet pages.
psh.ppsp = (LPCPROPSHEETPAGE) &psp;
II Create and run the wizard.
return PropertySheet (&psh):
}

Alth9ugh the wizard control simplifies the task of creating a wizard, it
doesn't perform magic: you still have to do a lot yourself. The preceding code
simply fills out the structures and calls the function to create and run the wiz
ard. If you want those dialog boxes to gather the data and use the information
the user enters, you need to do some work in your dialog procedures.

F 0 U R: ~abs, Property Sheets, and Wizards

Each dialog function, as specified by the pfnDlgProc me~ber of the
PROPSHEETPAGE structure, must process the messages and notifications
it receives. Property sheets rely heavily on notifications, packaged as WM
...,.NOTIFY messages. The code used to trap the wizard notifications is similar
to the code used for standard property sheets. Three special notifications are
associated with wizards, however:

PSN_ WIZBACK Sent to the property sheet page when the user clicks the
Back button

PSN_ WIZNEXT Sent to the property sheet page when the user clicks the
Next button

PSN_ WIZFINISH Sent to the property sheet page when the user clicks the
Finish button

When these notifications are sent, the default action is to advance to the
next page or to move. back to the previous page. The application's notifi
cation handler can disallow either action by setting the notification result to
-1. But that's not all.

Let's say you want your wizard to branch to a specific page depending on
certain user input. For example, your wizard installs a piece of software, and
your application must prompt for extra information depending on whether
the user prefers a standard setup or a custom setup. The default behavior is to
display the next page in the array of property sheet pages. But you can over
ride that behavior and branch to a specific page by setting the notification
result to the ID of the page you need-think of it as a visual GOTO. Your ap
plication could by default display the pages for custom setup in order, but it
could branch past those pages if the user wants a standard setup.

Processing Wizard Notifications
The information the WIZARD sample gathers to generate the review is kept
in a global structure named REVIEWINFO, which resides in the WIZARD.H
file. The MAX_PATH constant in the following code is defined to be 256
characters.

typedef struct tagREVIEWINFO
{

HINSTANCE hlnst;
i nt i WorkHabits;
int iTeamWork;
int iReliability;
int iGoals;
int iAdaptation;

II current instance

(continued)

127

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

128

char pszName [MAX_PATH]:
char pszTitle [MAX_PATH]:
char pszProject [MAX_PATH]:
char pszDepartment [MAX_PATH]:

REVIEWINFO:

The following code from the WIZARD sample demonstrates how an ap
plication can trap the notifications that are sent to a wizard. In this code, the
dialog procedure initializes the text buffers with NULL strings upon the first
entrance into the wizard and whenever the dialog box receives a PSN_RESET
notification. When this dialog box receives the PSN_ WIZNEXT notification,
it saves the information that the user entered in the text fields. If this dialog
box is called again and receives a PSN_SETACTIVE notification, the text
buffers are reinitialized with the information that was previously entered in
the text fields. This dialog box also sets the Next button as the only enabled
function when it receives the PSN_SETACTIVE notification. Since this is the
fi~st dialog box entered in the wizard, the Back button should not be enabled.

II FUNCTION: YourInfo (HWND,UINT, UINT, LONG)
II
II PURPOSE: Processes messages for "Your Information" page
II
II MESSAGES:
II
II
II

WM_INITDIALOG initializes the page.
WM_NOTIFY processes the notifications sent to the page.

BOOL APIENTRY YourInfo (HWND hDlg, UINT message, UINT wParam,
LONG lParam)

{

swi tch. (message)
{

case WM_INITDIALOG:
II Initialize the text buffers with NULL.
strcpy (rvInfo.pszName, ""):
strcpy (rvInfo.pszTitle, 'It'):
strcpy (rvInfo.pszProject, ""):
strcpy (rvInfo.pszDepartment. ""):
break:

case WM_NOTI FY:
switch «(NMHDR FAR *) lParam)-)code)
{

case PSN_KILLACTIVE:
SetWindowLong (hDlg, DWL_MSGRESULT, FALSE):
return 1:
break:

}

F 0 U R: Tabs, Property Sheets, and Wizards

case PSN_RESET:
II Reset to the original values.
strcpy (rvInfo.pszName. "");
strcpy (rvInfo.pszTitle. "");
strcpy (rvInfo.pszProject. '''');
s trcpy (rv Info. pszDepa rtment. '''');
SetWindowLong (hDlg, DWL_MSGRESULT. FALSE):
break;

case PSN_SETACTIVE:
PropSheet_SetWizButtons (GetParent (hDlg). PSWIZB_NEXT):
SendMessage (GetDlgItem (hDlg. IDE_NAME). WM_SETTEXT.

0. (LPARAM)rvInfo.pszName):
SendMessage (GetDlgItem (hDlg. IDE_TITLE). WM_SETTEXT.

0. (LPARAM)rvInfo.pszTitle);
SendMessage (GetDlgItem (hDlg. IDE_PROJECT). WM_SETTEXT.

0. (LPARAM)rvInfo.pszProject);
SendMessage (GetDlgItem (hDlg. IDE_DEPARTMENT). WM_SETTEXT.

0. (LPARAM)rvInfo.pszDepartment);
break;

case PSN_WIZNEXT:
II The Next button was clicked; get the text info entered.
SendDlgItemMessage (hDlg. IDE_NAME. WM_GETTEXT.

(WPARAM)MAX_PATH. (LPARAM)rvInfo.pszName);
SendDlgItemMessage (hDlg. IDE_TITLE. WM_GETTEXT.

(WPARAM)MAX_PATH. (LPARAM)rvInfo.pszTitle):
SendDlgItemMessage (hDlg. IDE_PROJECT. WM_GETTEXT.

(WPARAM)MAX_PATH. (LPARAM)rvInfo.pszProject):
SendDlgItemMessage (hDlg. IDE_DEPARTMENT. WM_GETTEXT.

(WPARAM)MAX_PATH. (LPARAM)rvInfo.pszDepartment);
break;

default:
return FALSE;

break:

default:
return FALSE:

return TRUE;
}

129

PAR TI: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

130

When you build and run this sample, you'll see the first page of the wiz
ard, shown in Figure 4-5.

Figure 4-5.
The first page of the performance review wizard.

In the WIZARD sample, information is gathered to produce text for a
performance review. While the wizard is running, the results the user enters
are kept in the REVIEWINFO structure, as shown previously, and used to cre
ate the review. The review is generated through indexes into a string table,
and the resulting buffer is displayed in a multiline edit box in the client area
of the main window. The WIZARD sample uses the following code to gener
ate the final text buffer:

II FUNCTION: GenerateReview (HWND)
II
II
II
II
II
II
II

PURPOSE: Generates the review

COMMENTS:
This function generates the review based on the answers
given to the wizard. The function translates lame reality into
impressive-sounding managerspeak via a string table.

void GenerateReview (HWND hDlg)
{

F 0 U R: Tabs, Property Sheets, and Wizards

char 1 pBufl [MAX_LINE] ; II buffers for lines in review
char lpBuf2 [MAX_LINE] ;
char lpBuf3 [MAX_LINE] ;
char 1 pBuf4 [MAX_LINE] ;
char lpBuf5 [MAX_LI NE] ;

wspri ntf (1 pRevi ew, "Name: %s%C%C%C%CTitl e: %s%C%C%C%CDepartment: "
"%s%C%C%C%CMain Project: %s%C%C%C%C",
rvInfo.pszName, 0x0d, 0x0a, 0x0d, 0x0a,
rvInfo.pszTitle, 0x0d, 0x0a, 0x0d, 0x0a,
nvInfo.pszDepartment, 0x0d, 0x0~, 0x0d, 0x0a,
rvInfo.pszProject, 0x0d, 0x0a, 0x0d, 0x0a);

II Add a line describing work habits.
if (LoadString (rvInfo.hInst, rvInfo.iWorkHabits, lpBufl,

sizeof (lpBufl» == 0)
MessageBox (hDlg, "Error loading string!", NULL, MB_OK);

else
strcat (lpReview, lpBufl);

II Add a line describing teamwork.
if (LoadString (rvInfo.hInst, rvInfo.iTeamWork, lpBuf2,

sizeof (lpBuf2» == 0)
MessageBox (hDlg, "Error loading string!", NULL, MB_OK);

else
strcat (lpReview, lpBuf2);

II Add a line describing reliability.
if (LoadString (rvIhfo.hlnst, rvInfo.iReliability, lpBuf3,

sizeof (lpBuf3» == 0)
MessageBox (hDlg, "Error loading string!", NULL, MB_OK);

else
strcat. (lpReview, lpBuf3);

II Add a line describing goals.
if (LoadString (rvInfo.hInst, rvInfo.iGoals, lpBuf4,

sizeof (lpBuf4» == 0)
MessageBox (hDlg, "Error loading string!", NULL, MB_OK);

else
strcat (lpReview, lpBuf4);

II Add a line describing adaptability.
if (LoadString (rvlnfo.hInst, rvInfo.iAdaptation, lpBuf5,

sizeof (lpBuf5» == 0)
MessageBox(hDlg, "Error loading string!", NULL, MB_OK);

else
strcat (lpReview, lpBuf5);

}

131

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

132

If you build and run the sample now, you can fill in the appropriate in
formation, check the boxes that most accurately reflect your skills and work
habits, and have a review generated for you. Just for grins, I used the wizard
'and picked the last option in the list for each question asked. You can see the
result in Figure 4-6.

,'llptio~sl:!e(p ..•.................
!;Name: Nancy winnick'Cf~t~'
:l
'fTitle: Developer Technology Engineer
;

i]
iDepartment: MSDN
:1
:iMain Project: Programming the Windows 95 User Interface
~

:!My experiment with telecommuting has been a great success as
:levidenced by the ease with which my absence has been handled.
;excel at sustaining my concentration and avoid confrontation with
:/others. I am able to delegate responsibility with ease. I accept new job
,Iassignments willingly and enthusiastically. I take responsibility for
Jidentifying management problems.
:i

Figure 4-6.
The review generated by the performance review wizard.

C HAP T E R F V E

Rich Edit Controls

Single-line edit controls are nice. Multiline edit controls are nicer. But rich
edit controls are the ·nicest of all.

At its simplest, a rich edit control is a window in which a user can both
enter and edit text. But that's not all. Just as a multiline edit control provides
a programming interface for entering and editing multiple lines of text, a
rich edit control provides a programming interface for formatting text. With
this new Microsoft Windows 95 common control, a user can assign both char
acter and paragraph formatting (making words boldface or italic, adding
underlining, or realigning paragraphs, for instance) and can include em
bedded OLE objects in the text.

To make these formatting operations available to the user, an applica
tion must implement the necessary user interface components. For example,
if you want to let the user format selected characters as boldface in a rich edit
control, your application must provide a mechanism to do this, such as a tool
bar button or a menu item.

Rich edit controls are based on multiline edit controls, and they support
almost all the messages and notifications used with multiline edit controls. (A
list near the end of this chapter specifies messages that are not supported.) If
your application already includes single-line or multiline edit controls, you
can easily change it to use rich edit controls, and thus incorporate their unique
functionality.

The RICH ED Sample
You create a rich edit control by using the CreateWindow or CreateWin
dowEx function, specifying the RichEdit window class. Because the common
control library registers this window class, you must call the InitCommon
Controls function to ensure that the library is loaded before creating the con
trol. To use rich edit controls in your application, you must link with the

133

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

134

COMCTL32.LIB library. If you are writing your application in C, you must
include the COMMCTRL.H header file. Applications must also include the
RICHEDIT.H header file, in which rich edit controls are defined. Note that
four of the window styles you can use with multiline edit controls cannot be
used with rich edit controls: ES_LOWERCASE, ES..,..PASSWORD, ES_OEM
CONVERT, and ES_UPPERCASE.

To explore the rich edit control, I wrote a sample called RICHED. (Do I
lose points for uncreative sample names?) The design goals for RICHED
were a bit more challenging than those of my previous samples:

To provide a rich edit control with a toolbar that mimics the Win
dows 95 WordPad accessory

To allow the user to forinat characters as boldface, italic, or under
lined (or as any combination of these three attributes)

m To allow the user to change the typeface and the point size of
the font

To allow the user to left-align, right-align, or center paragraphs or
selected text

To support word-break and line-break procedures

To provide serialization

To support drag-and-drop operations

[:1 To support printing

The initialization code in the RICHED sample needed to perform the
following tasks:

Create the toolbar and the combo boxes on the toolbar

Create the rich edit control

Enumerate the available fonts, and fill the typeface and point size
combo boxes with the font information

Initialize drag and drop

Figure 5-1 offers a sneak peek at the main screen that appears when you
start theRICHED sample.

F I V E: Rich Edit Controls

'~i4llm~I~'~~n!:i.,~~tn~:~:\4';.'"." "M.. " d, ,

file .Qptions J:!.elp ,

This is a test..
·

.'

Let's see if thi s works.
·

:

•

This is a text file.
,

i ,

•

•

·

i

:

Figure 5-1.
The RIeHED sample.

Creating the Sample's Toolbar and Combo Boxes
I created a toolbar for the RICHED sample by calling the CreateToolbarEx
function. (For a detailed discussion of toolbars, refer to Chapter 1.) I speci
fied a TBBUTTON structure containing information about the toolbar's but
tons. Buttons on a toolbar are "free "-that is, you don't need to do anything
special to include them other than filling out the structure and giving the
CreateToolbarEx function a pointer to that structure.

Other controls on a toolbar, such as the combo boxes I used, require a bit
more work. To reserve space on the toolbar for the controls, the application
must place separators in the TBBUTTON structure where these extra con
trols will reside. If you are creating a static structure to hold the buttons, you
can determine heuristically how many separators to use (try it out to see what
looks good). If you are creating your toolbar dynamically, you can send the
TB _ GETITEMRECT message to determine the width of a separator and then
use the values returned (reet. right, reet.left) to calculate how many separators
you need to add. The application then creates the control and parents it to
the toolbar. To include ToolTips for the various controls and buttons, the
application uses the TTM_ADDTOOL message to add ToolTip support.

135

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

136

HWNO 1nitToolbar (HWNO hWndParent)
{

TOOL1NFO lpToo11nfo;
HWNO hWndToolbar. hWndTT;
HFONT hFont;

II Create the tool bar control.
hWndToolbar = CreateToolbarEx (

hWndParent. I I pa·rent
WS_CH1LO I WS_BOROER WS_V1S1BLE I iBSTYLE_TOOLT1PS.
·1 OB_ TOO LBAR. II toolbar 10
6. II number of bitmaps
h1nst. II mod instance
10B_TOOLBAR. II resource 10 for bitmap
(LPCTBBUTTON)&tbButtons. II address of buttons
34. II number of buttons
16. 16. II width & height of buttons
16. 16. II width & height of bitmaps
sizeof (TBBUTTON»; II structure size

if (hWndToolbar == NULL)
{

MessageBox (NULL. "Toolbar not created!". NULL. MB_OK);
return NULL;

}

II Create the combo box for the typeface.
hWndComboFont = CreateWindowEx (0L. II

"COMBOBOX" • I I
II

WS_CH1LO I WS_BOROER I WS_V1S1BLE I
CBS_HASSTR1NGS I CBS_OROPOOWN. II

0. 3. 150. 250. II
hWndToolbar.
(HMENU)10M_COMBOFONT.
h1nst.
NULl) ;

II
II
II
II

no extended styles
class name
default text

window styles
size and position
parent window
10
current instance
no class data

II Set the window procedure for the combo box.

II style

lpfnOefComboFont = (WNOPROC) GetWindowLong (hWndComboFont. GWL_WNOPROC);
SetWindowLong (hWndComboFont. GWL_WNOPROC. (LONG)ComboWndProcFont);

II Create the combo box for the point size.
hWndComboSize = CreateWindowEx (0L. II no extended styles

"COMBOBOX". II class name
II default text

F I V E: Rich Edit Controls

WS_CHILD I WS_BORDER I WS_VISIBLE
CBS_HASSTRINGS I CBS_DROPDOWN,

160,3,50,250,
hWndToolbar,
(HMENU)IDM_COMBOSIZE,
hlnst,
NULL):

II window styles
II size and position
II parent window
I I 10
II current instance
II no class data

II Set the window procedure for the combo box.
lpfnDefComboSize = (WNDPROC) GetWindowLong (hWndComboSize, GWL_WNDPROC):
SetWindowLong (hWndComboSize, GWL_WNDPROC, (LONG)ComboWndProcSize):

II Get the handle to the ToolTip window.
hWndTT = (HWND) SendMessage (hWndToolbar, TB_GETTOOLTIPS, 0, 0»):

if (hWndTT)
. {

II Fill out the TOOLINFO structure.
lpToollnfo.cbSize = sizeof (lpToollnfo):
lpToollnfo.uFlags = TTF_IDISHWND I TTF_CENTERTIP:
lpToollnfo.lpszText = (LPSTR)IDM_COMBOFONT:
lpToollnfo.hwnd = hWndParent:
lpToollnfo.uld = (UINT)hWndComboFont:
lpToollnfo.hinst = hlnst:
II Set up ToolTips for the typeface combo box.
SendMessage(hWndTT, TTM_ADDTOOL, 0,

(LPARAM)(LPTOOLINFO)&lpToollnfo);

lpToollnfo.lpszText = (LPSTR)IDM_COMBOSIZE;
lpToollnfo.uld = (UINT)hWndComboSize;
II Set up ToolTips for the point size combo box.
SendMessage (hWndTT, TTM_ADDTOOL, 0,

(LPARAM)(LPTOOLINFO)&lpToollnfo);

else
MessageBox (NULL, "Could not get ToolTip window handle.", NULL,

MB_OK) ;

II Set the fonts for the combo boxes on the toolbar.
hFont = {HFONT) SendMessage (hWndToolbar, WM_GETFONT, 0, 0);
SendMessage (hWndComboFont, WM_SETFONT, (WPARAM)hFont, 0);
~endMessage (hWndComboSize, WM_SETFONT, (WPARAM)hFont, 0):

return hWndToolbar;
}

137

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Creating a Rich Edit Control
I created the rich edit control used in this sample in response to the WM
_CREATE message in the main window procedure. The ES_SAVESEL style
specifies that the text selection is saved when the control loses the focus and
redisplayed when it regains the focus. (By default, the entire contents of a
rich edit control are selected when it is reactivated.)

II Create the rich edit control.
hWndRichEdit = CreateWindowEx (

WS_EX_CLIENTEOGE. II make rich edit control appear "sunken"
"R1CHEOIT". II class name of rich edit control

II text of rich edit control
WS_CH1LO I WS_V1S1BLE I ES_MULT1L1NE I ES_SUNKEN I ES_SAVESEL

WS_HSCROLL I WS_VSCROLL. II window style~
0. 0. II initially create 0 size.
0. 0. II main window's WM_S1ZE handler will resize
hWnd. II use main parent
(HMENU)10_R1CHEO. II 10
h1nst. II this app instance owns this window
NULl);

Building a Font List

138

The two combo boxes on the toolbar specify the fonts supported by the cur
rent device. One box lists typefaces (such as Arial and Times New Roman),
and the other lists point sizes (units of measure that specify the size of the
type-l0-point, 12-point, 14-point, and so on). When you build the font list,
the combo boxes are filled, and the buttons on the toolbar and the associ
ated menu items are updated to reflect the current character formatting.
For instance, if the current formatting is boldface, the Bold button appears
"pressed," and the Bold menu item is checked.

II Enumerate the fonts for the rich edit control.
hOC = GetOC (hWndRichEdit);
parFontsGlobal = BuildFontList (hOC. &nFaces);

II Fill in the typeface and point size combo boxes.
Fi 11 Combos ();

II Set the current font.
ChangeFaceName (hWndRichEdit. parFontsGlobal[0].lf-)lfFaceName);
ChangePointSize (hWndRichEdit. 12);

II Select the current typeface and point size.
iSelect = SelectFont (parFontsGlobal[0].lf-)lfFaceName. 12);

F I V E: Rich Edit Controls

II Show the effects of the current font.
b1talic = bUnderLine = FALSE;
bBold = ToggleButton (hWnd, 1DM_BOLD, FALSE);

II Release the DC.
ReleaseDC (hWndRichEdit, hDC);

Initializing Drag and ~rop
To support drag-and-drop operations, the application must call the Drag
AcceptFiles function and must notify the rich edit control that it should pass
along any ENM_DROPFILES notifications. By default, the notification is not
sent to the parent of the rich edit control.

II Register to allow drag and drop.
DragAcceptFiles (hWndRichEdit, TRUE);

II Tell the rich edit control that you want to allow drag and drop.
SendMessage (hWndRichEdit, EM_SETEVENTMASK, 0, (LPARAM)ENM_DROPF1LES);

Character Formatting
You can apply character formatting to text in a rich edit control by using the
EM_SETCHARFORMAT message. To determine the current formatting of se
lected characters, use the EM_ GETCHARFORMAT message. With either mes
sage, the application uses a pointer to the CHARFORMAT structure to specify
character attributes. The following attributes are supported for characters:

Effects such as boldface, italics, and underlining

Typeface (also known as jacename)

Point size

Color

Setting the effects is simply a matter of filling out the CHARFORMAT
structure with the size of the structure (for versioning), specifying which at
tribute to alter, and sending the EM_SETCHARFORMAT messag~. In the
RlCHED sample, these effects are toggled, so the handler checks the current
effect and toggles it. The code on the following page is the handler for the
Bold command. The only differences between this handler and the handlers
for italics and underlining are the dwMask field (CFM_ITALIC for italics and
CFM_UNDERLINE for underlining) and the dwEffects field (CFE_ITALIC
for italics and CFE_ UNDERLINE for underlining).

139

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

140

void BoldCmd (HWND hWndRichEdit)
{

CHARFORMAT cf:

II Fill out the CHARFORMAT structure to set character effects.
cf.cbSize = sizeof (cf);
cf.dwMask = CFM_BOLD:

II Get the bold status.
SendMessage (hWndRichEdit. EM_GETCHARFORMAT. TRUE. (LPARAM)&cf):

'II Toggle the bold effect.
cf.dwEffects A= CFE_BOLD:

II Set the new bold status.
SendMessage (hWndRichEdit. EM_SETCHARFORMAT. SCF_SELECTION.

(LPARAM)&cf) :
}

The default character formatting is applied to newly inserted text only
if the current selection is empty. Otherwise, the new text assumes the charac
ter formatting of the text it replaces. If the selection changes, the default
character formatting changes to match the first character in the new selection.

In the ruCHED sample, the user can also pick a new typeface by using
one of the drop-down combo boxes on the toolbar, shown in Figure 5-2.

imes New Roman

Figure 5-2.
The combo box displaying typeface choices.

F I V E: Rich Edit Controls

When the user chooses a typeface from the list, the application's
ChangeFaceName function sends an EM_SETCHARFORMAT message to
change the typeface. This function preserves the previous character effects
(boldface, italics, and underlining).

VOID ChangeFaceName (HWND hWndRichEdit, LPTSTR lpFaceName)
{

CHARFORMAT cf;

II Fill out the CHARFORMAT structure to get the character effects.
cf.cbSize = sizeof (cf);
cf.dwMask = CFM_ITALIC 1 CFM_BOLD 1 CFM_UNDERLINE;
SendMessage (hWndRichEdit, EM_GETCHARFORMAT, TRUE, (LPARAM)&cf);

II Include the mask to ask the rich edit control for the current
II typeface.
cf.dwMask 1= CFM_FACE;

II Set the new typeface, preserving the previous effects.
strcpy (cf.szFaceName, lpFaceName);
SendMessage (hWndRichEdit, EM_SETCHARFORMAT, SCF_SELECTION,

(LPARAM)&cf) ;
}

You might be wondering how I filled in the font choices. Well, like any
smart developer, I looked for some sample code I could use. In the Win32
SDK, I found a sample called TTFONTS, which enumerates all the available
fonts and allows the user to play around with the fields in the TEXTMETRIC
and LOGFONT structures: I was able to use the font-enumerating code from
TIFONTS and to use the structure that was defined to hold font information:

II Structure holding font information
typedef struct tagArFonts
{

int nFonts;
int cySpace;
HOC hdc;
LOG FONT *If;
TEXTMETRIC *tm;
int *Type;

} ~RFONTS, *PARFONTS;

The code that begins on the following page uses the EnumFonts func
tion to get the number of fonts, allocates space for the font information, and
fills out a structure for each font found. The only change I made was to add a
filter for TrueType fonts (because my sample supports only these fonts). Fil
tering for TrueType fonts allowed me to make some assumptions about the
font that the user will choose.

141

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

142

PARFO~TS BuildFontList (HDC hdcIn, LPINT retnFaces)
{

nFaces = 0;
hdcGlobal = hdcIn;

II initialize global face count to 0
II save HDC for callbacks

II Count the number of typefaces.
EnumFonts (hdcGlobal, NULL, (FONTENUMPROC)MyEnumCount,

(LPARAM)&nFaces);

II Allocate the pointer to the array of ARFONTS structures.
parFontsGlobal = (PARFONTS) LocalAlloc (

LPTR, sizeof(ARFONTS) * (nFaces+l»;

II Step through all fonts again. For each one, fill out a LOG FONT
II structure and a TEXTMETRIC structure.
iFace = 0;
EnumFonts (hdcGlobal, NULL, (FONTENUMPROC)MyEnumFaces, (LPARAM)NULL);

*retnFaces = nFaces;
return parFontsGlobal;
}

int APIENTRY MyEnumFaces (
LPLOGFONT lpLogFont,
LPTEXTMETRIC lpTEXTMETRICs,
DWORD fFontType,
LPVOID lpData)

{

int nFonts;

UNREFERENCED_PARAMETER (lpTEXTMETRICs);
UNREFERENCED_PARAMETER (fFontType);
UNREFERENCED_PARAMETER (lpData);

if (fFontType & TRUETYPE_FONTTYPE)
{

nFonts = 0;
EnumFonts (hdcGlobal, lpLogFont->lfFaceName,

(FONTENUMPROC)MyEnumCount, (LPARAM)&nFonts);

parFontsGlobal[iFace].lf = (LPLOGFONT) LocalAlloc (LPTR,
sizeof(LOGFONT) * nFonts);

parFontsGlobal[iFace].tm = (LPTEXTMETRIC) LocalAlloc (LPTR,
sizeof(TEXTMETRIC) * nFonts);

parFontsGlobal[iFace].Type = (LPINT) LocalAlloc (LPTR,
sizeof(int) * nFonts);

if «parFontsGlobal[i"Face].lf == NULL) I I
(parFontsGlobal[iFace].tm == NULL) I I

F I V E: Rich Edit Controls

(parFontsGlobal[iFace].Type == NULL»

MessageBox (NULL. "alloc failed". NULL. MB_OK);
return FALSE;

parFontsGlobal[iFace].nFonts nFonts;

jFont = 0;
EnumFonts (hdcGlobal. lpLogFont-)lfFaceName.

(FONTENUMPROC)MyEnumCopy. (LPARAM)NULL);
i Face++;

return TRUE;
}

int API ENTRY MyEnumCount (
LPLOGFONT lpLogFont.
LPTEXTMETRIC lpTEXTMETRICs.
DWORD fFontType.
LPINT lpData)

{

UNREFERENCED_PARAMETER (lpLogFont);
UNREFERENCED_PARAMETER (lpTEXTMETRICs);
UNREFERENCED_PARAMETER (fFontType);

if (fFontType & TRUETYPE_FONTTYPE)
(*lpData)++;

return TRUE;
}

int APIENTRY,MyEnumCopy (
LPLOGFONT lpLogFont.
LPTEXTMETRIC lpTEXTMETRICs.
DWORD fFontType.
LPVOID lpData)

LOGFONT *lplf;
TEXTMETRIC *lptm;
int *pType;

UNREFERENCED_PARAMETER (lpData);

if (fFontType & TRUETYPE_FONTTYPE)
{

lplf = parFontsGlobal[iFace].lf;
(continued)

143

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

144

lptm = parFontsGlobal[iFace].tm;
pType = parFontsGlobal[iFace].Type;

lplf[jFont] = *lpLogFont;
lptm[jFont] = *lpTEXTMETRICs;
pType[jFont] = fFontType;

jFont++;

return TRUE;
}

When the structures are filled out, the names of the typefaces are in
serted in the typeface combo box. The point size combo box is filled with an
array of standard point sizes, as shown in Figure 5-3. The same point sizes are
listed for each typeface. That's why Ipicked only TrueType fonts. Other kinds
offonts, such as raster fonts, are device-dependent, and you cannot make as
sumptions about their availability or about the point sizes they support. For
a "real" word processor, the point size combo box can be filled dynamically
when the user picks a typeface.

To change the point size, you simply use the same EM_SETCHARFOR
MAT message and specify the CFM_SIZE mask. Bear in mind that the point
size is represented internally as twips, so you need to multiply the number the
user chooses by 20. If you don't d~ this, you'll end up getting really tiny letters.

This is a test.

Lees see if this works.

This is a text file.

FigureS-3 .
. The combo box displaying the point size options.

F I V E: Rich Edit Controls

VOID ChangePointSize (HWND hWndRichEdit. int Poi~tSize)
{

CHARFORMAT cf;

II Fill out the CHARFORMAT structure to set the point size.
cf.cbSize = sizeof (cf);
cf.dwMask = CFM_SIZE;

II Multiply by·20 to convert to twips.
cf.yHeight = PointSize * 20;

II Set the point size.
SendMessage (hWndRichEdit. EM_SETCHARFORMAT. SCF_SElECTION.

(lPARAM)&cf) ;

II Reset the dirty bit.
SendMessage (hWndRichEdit. EM_SETMODIFY. (WPARAM)TRUE. Ol);
}

Notice in the RICHED sample that the appropriate toolbar buttons ap
pear "pressed" and the corresponding menu items are checked when the
user has chosen specific character effects, as shown in Figure 5-4. The sample
accomplishes this task with a function called ToggleButton, which simply
takes the command'identifier of the button and a Boolean to toggle the button
on and off. (The identifiers for the menu item and the button are the same.)

;EiIErlmmll!:ielp
J~ri~l.i •• , •.. · ••• · •••••. ftol?··········"
"'~' •• ".m' ""Italic
Thi~.'.'···';:·.·.·!.!t)derline

Let':
Align.!.eft
Align .center
Align Bight

Figure 5-4.

ks.

Checked menu items and "pressed" toolbar buttons indicating
character effects.

145

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

BOOl ToggleButton (HWNO hWnd, int nIO, BOOl bToggle)
{

if (bToggle)
(II Uncheck the menu item and unpress the to~lbar button.

CheckMenuItem (GetMenu(hWnd), nIO, MF_BYCOMMANO'I MF_UNCHECKED);
SendMessage (hWndToolbar, TB_CHECKBUTTON, nIO, MAKE lONG (FALSE, 0));
return FALSE;

else
{ II Check the menu item and press the toolbar button.

CheckMenuItem (GetMenu (hWnd), nIO, MF_BYCOMMANO I MF_CHECKEO);
SendMessage (hWndToolbar, TB_CHECKBUTTON, nIO, MAKElONG (TRUE, 0));
return TRUE;

I did not implement the protected attribute or the color attribute in the
RICHED sample. The protected character attribute allows the application
to specify some text as read-only (without changing the appearance of the
text by graying it out). If the user tries to modify protected text, the rich edit
control sends its parent window an EN_PROTECTED notification, allowing
the parent window to permit or prevent the change. This is useful for an ap
plication that lets the user change only specific items In a rich edit control,
based on a password. To receive this notification, the application enables it by
using the EM_SETEVENTMASK message, specifying ENM_PROTECTED.

The foreground color of a rich edit control is also a character attribute,
but the background color is a property of the control. To set the background
color, an application sends the EM_SETBKGNDCOLOR message. To set the
foreground color, the application fills out the CHARFORMAT structure, speci
fying the CFM_COLOR attribute.

Paragraph Formatting

146

In a rich edit control, the user can also set the attributes of entire paragraphs,
including alignment (left justified, centered, or right justified) , tab stops, in
dention, and numbering.

You can apply paragraph formatting to text in a rich edit control by
using the EM_SETPARAFORMAT message. As with all good Windows APls,
you use the EM_GETPARAFORMAT message to find out the current para
graph formatting. Both messages use the PARAFORMAT structure to specify
paragraph attributes.

The RICHED sample supports all three paragraph alignment options,
as the following code demonstrates. It's interesting to note that it takes more

F I V E: Rich Edit Controls

code to ensure that the buttons are "pressed" and the menu items are checked
than it does to actually set the paragraph format.

VOID AlignCmd (HWND hWnd, HWND hWndRichEdit, int iAlign)
{

PARAFORMAT pf:

II Fill out the PARAFORMAT structure with the mask and size.
pf.cbSize = sizeof (pf):
pf.dwMask = PFM_ALIGNMENT:

switch (iAlign)
{

}

case IDM_ALIGNLEFT:
pf.wAlignment = PFA_LEFT:

II Set the new paragraph alignment.
SendMessage (hWndRichEdit, EM_SETPARAFORMAT, 0, (LPARAM)&pf):
II Reset the dirty bit.
SendMessage (hWndRichEdit, EM_SETMODIFY, (WPARAM)TRUE, OL):
}

Figure 5-5 shows you the look that is produced by centering text in the
ruCHED sample.

This is a test.

Let's see if this works.

This is a text file.

Figure 5-5.
Centered paragraphs in the RICHED sample.

147

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Word and Line Breaks
An application can use a word-break procedure to determine how to break
words and lines. This information is used in word-wrap operations or when
the user moves to the previous word or the next word by pressing the Ctrl-Left
arrow or the Ctrl-Right arrow key combination. An application can send a
message t9 a rich edit control to replace the default word-break procedure
(EM_SETWORDBREAKPROC) , to retrieve word-break information (EM
_FINDWORDBREAK), or to determine on what line a given character falls
(EM_EXLINEFROMCHAR) .

A word-break procedure for a rich edit control groups characters into
classes, identifying each class by a value in the range OxOO through Ox OF.
Word breaks can occur after delimiters or between characters of different
classes. A character's class can be combined with zero or more word-break
flags to form an 8-bit value. When performing word-wrap operations, a rich
edit control uses word-break flags to determine where it can break lines. The
following flags are supported: .

Lines can break after the character. This value
allows wrapping after a character that does not
mark the end ofa word, such as a hyphen.

The character is a delimiter, which marks the end
of a word. Lines can break after delimiters.

The character is a white-space character. Trailing
white-space characters are not included in the
length of a line when wrapping.

Serialization Using Streams

148

Data is transferred into or out of a rich edit control through streams. A
stream is defined by an EDITSTREAM structure, which specifies a buffer and
an application-defined callback function. In the ruCHED sample, the user
can open either a text (TXT) file or a rich text format (RTF) file. The data is
read into the rich edit control through the EM_STREAMIN message. Mter
receiving this message, the control repeatedly calls the application-defined
callback function, EditStreamCallback, which transfers a portion of the data
into the buffer each time. The dwCookie member of the EDITSTREAM struc
ture is an application-defined value. The ruCHED sample uses this member
for storing the handle to the file opened by the OpenFile function. The EM-

F I V E: Rich Edit Controls

_STREAMIN message allows either textual or RTF data to be read in by speci
fying SF_TEXT or SF_RTF in the wParam parameter.

BOOL OpenTheFile (HWND hWndRichEdit. int iAttrib. char *lpszFileName)
{

HFILE hFile;
OFSTRUCT of;
EDITSTREAM eStream;

if (hFile = OpenFile (lpszFileName. &of. OF_READ»
{

}

II dwCookie is an app-defined value that holds
II the handle to the file.
eStream.dwCookie = hFile;
eStream.pfnCallback = EditStreamCallback;
eStream.dwError = 0;
SendMessage (hWndRichEdit. EM_STREAMIN. (WPARAM)iAttrib.

(LPARAM)&eStream);

II Reset the dirty bit~
SendMessage (hWndRichEdit. EM_SETMODIFY. (WPARAM)TRUE. OL);

'CloseHandle «HANDLE)hFile);
return TRUE;

return FALSE;
}

DWORD CALLBACK EditStreamCallback (DWORD dwC6okie.
LPBYTE pbBuff. LONG cb. LONG FAR *pcb)

{

ReadFile «HANDLE)dwCookie. pbBuff. cb. pcb. NULL);
if (*pcb < cb)

return 0; II file has been fully read in
else

return (DWORD) *pcb; II more to read'
}

As you can see from the code on the following page, the RICHED
sample offers two options for saving the contents of the rich edit control: save
as a TXT file or save as an RTF file. The application sends the EM_STREAM
OUT message to save the contents of the control. The control repeatedly
writes to the buffer and then calls the application's callback function. For
each call, this function saves the contents of the buffer.

149

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

150

BOOL SaveTheFile (HWND hWndRichEdit, int nID)
{

HFILE hFile;
OFSTRUCT of;
EDITSTREAM eStream;
char *lpszFileName;
int iAttrib;

if (nID == IDM_SAVETXT)
{

1 pszFil eName = "TEXTDOC. TXT";
iAttrib = SF_TEXT;

else
{

lpszFileName = "RTFDOC.RTF";
iAttrib = SF_RTF;

if (hFile = OpenFile (lpszFileName, &of, OF_CREATE»
{

}

eStream.dwCookie = hFile;
eStream.dwError = 0;
eStream.pfnCallback = SaveCallback;
SendMessage (hWndRichEdit, EM_STREAMOUT, (WPARAM)iAttrib,

(LPARAM)&eStream);

CloseHandle ((HANDLE)hFile);
return TRUE;

return FALSE;
}

DWORD CALLBACK SaveCallback (DWORD dwCookie,
LPBYTE pbBuff, LONG cb, LONG FAR *pcb)

{

WriteFile ((HANDLE)dwCookie, pbBuff, cb~ pcb, NULL);
return 0;
}

As Figure 5-6 shows,· the options in the RICHED sample for reading in
or saving data are limited to specifying the type of data (TXT or RTF). The
sample furnishes the names of the sample files. To allow the user a choice of
files to read in, you should use the common dialog boxes de~igned for open
ing and saving files. (You'll find detailed information about the common dia
log boxes in Chapter 6.)

F I V E: Rich Edit Contr.ols

This is a test.

Let's see if this works.

This is a text file.

Figure 5-6.
The File menu in the RlCHED sample.

Drag-and-Drop Operations
To support a drag-and-drop operation in a rich edit control, an application
must first set an event mask by using the EM_SETEVENTMASK inessage to
allow the EN_DROPFILES notification to be sent to the control's parent win
dow. In the RICHED sample, when the parent window receives this notifica
tion, the DragQueryFile function is called to determine how many files have
been dropped in the rich edit control. This sample allows the user to drop
only one file at a time, so ifmore than one file has been dropped, the action
is disallowed. If the user has dropped only one file, the application queries
for the filename, opens the file, and reads it into the rich edit control. As you
can see in the following cod~, the sample allows the user to drop only a TXT
or an RTF file:

case WM_NOTI FY:

II Is the notification a drop notification?
else if «(LPNMHDR)lParam)-)code == EN_DROPFILES)
{

WORD cFiles;
char lpszFile [80];
HANDLE hDrop;

(continued)

151

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

}

II Get the handle to the drop object.
hDrop = ((ENDROPFILES *)lParam)->hDrop;
II Determine how many objects have been dropped.
cFiles = DragQueryFile (hDrop. 0xFFFF. (LPSTR)NULL. 0);
II If more than one object has been dropped. don't bother.
if (cFiles > 1)

return 0;
II Get the name of the file dropped.
DragQueryFile (hDrop. 0. lpszFile. sizeof (lpszFile»;

II Open the file (TXT or RTF).
if (strstr (lpszFile. "TXT"»

OpenTheFile (hWndRichEdit. SF_TEXT. lpszFile);
else if (strstr (lpszFile. "RTF"»

OpenTheFile (hWndRichEdit. SF_RTF. lpszFile);
DragFinish (hDrop);
return 1;

return 0L;
break;

This code demonstrates one way that an application can handle a drop
operation. Rich edit controls also support OLE drag and drop through the
IRichEditOle and IRichEditOleCallback interfaces, which allow objects to
be embedded in the control. The subject of embedding objects is beyond the
scope of this book, however, so I will not cover it here.

Printing

152

A rich edit control can format its data to be suitable for use with devices such
as displays and printers. Applications use the EM_FORMATRANGE message
to tell the control how to format its contents. The FORMATRANGE structure
used with this message specifies the range of text to format as welL as the de
vice context for the target device.

The ruCHED sample supports printing through its Print command on
the File menu. The sample uses the PrintDlg function to get the DC for the
printer. It then fills out the FORMATRANGE structure with the DC, the rect
angle to print, and the amount of data within the rectangle to print. The
usual DOCINFO structure is filled out, and the rest is standard prin ting code.

void PrintTheContents (HWND hWndRichEdit)
{

FORMATRANGE fr;
DOCINFO docInfo;

F I V E: Rich Edit Controls

LONG 1TextOut, 1TextAmt;
PRINTDLG pd;

II Initialize the PRINTDLG structure.
pd.1StructSize = sizeof (PRINTDLG);
pd.hwndOwner = hWndRichEdit;
pd.hDevMode = (HANDLE)NULL;
pd.hDevNames = (HANDLE)NULL;
pd.nFromPage = 0;
pd.nToPage = 0;
pd.nMinPage = 0;
pd.nMaxPage = 0;
pd.nCopies = 0;
pd.hInstance = (HANDLE)hInst;
pd.F1ags = PD_RETURNDC I PD_NOPAGENUMS I PD_NOSELECTION I PD_PRINTSETUP;
pd.1 pfnSetupHook = (LPSETUPHOOKPROC') (FARPROC) NULL;
pd~lpSetupTemp1ateName = (LPTSTR)NULL;
pd.1pfnPrintHook = (LPPRINTHOOKPROC)(FARPROC)NULL;
pd.1pPrintTemp1ateName = (LPTSTR)NULL;

II Get the printer DC.
if (PrintD1g (&pd) == TRUE)
{

II Fill out the FORMATRANGE structure for the RTF output.
fr.hdc = fr.hdcTarget = pd.hDC; II HDC
fr.chrg.cpMin = 0; II print
fr.chrg.cpMax = -1; II entire contents
fr.rc.top = fr.rcPage.top fr.rc.1eft = fr.rcPage.1eft = 0;
fr.rc.right = fr.rcPage.right = GetDeviceCaps (pd.hDC, HORZRES);
fr.rc.bottom = fr.rcPage.bottom = GetDeviceCaps (pd.hDC, VERTRES);

II Fill out the DOCINFO structure.
doclnfo.cbSize = sizeof (DOCINFO);
docInfo.1pszDocName = "(RTF Test)";
doclnfo.1pszOutput = NULL;

II Be sure that the printer DC is in text mode.
SetMapMode (pd.hDC, MM_TEXT);

StartDoc (pd.hDC, &docInfo);
StartPage (pd.hDC);

1TextOut = 0;
1TextAmt = SendMessage (hWndRichEdit, WM_GETTEXTLENGTH, 0, 0);

(continued)

153

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

}
}

while (lTextOut < lTextAmt)
{

}

. lTextOut= SendMessage (hWndRichEdit. EM_FORMATRANGE. TRUE.
(LPARAM)&fr):

if (lTextOut (lTextAmt)
{

}

EndPage (pd. hOC):
StartPaga (pd.hDC):
fr.chrg.cpMin = lTextOut:
fr.chrg.cpMax = -1:

II Reset the formatting of the rich edit control.
SendMessage (hWndRi chEdit. EM_FORMATRANGE. TRUE. (LPARAM) NU Ll) :

II Finish the document.
EndPage (pd.hDC):
End Doc (pd. hOC) :

II Delete the printer DC.
DeleteDC (pd.hDC):

An application can implement banding (that is, dividing the output into
smaller parts in order to overcome printer buffer-size limitations) by using
the EM.:..DISPLAYBAND message in concert with the EM_FORMATRANGE
message. With th~ EM_SETTARGETDEVICE message, the application can
also specify the target device for which the control will format its text. You'll
find this message useful for WYSIWYG (What You See Is What You Get) for
matting, in which an application positions text using the default printer's
font metrics instead of the screen's font metrics.

Monitoring Events

154

Certain events within a rich edit control, such as mouse and keyboard events
and drag-and-drop operations, can be monitored by the control's parent
window. An application uses an event-notification mask (by sending the
EM_SETEVENTMASK message) to specify which events it wants to monitor.
The control will then send the appropriate notification each time one of the
specified events occurs. All the notifications that are listed in Table 5-1 are sent
through the WM_NOTIFY message.

Event-Notification Mask

ENM_MOUSEEVENTS

ENM_REQUESTRESIZE

Table 5-1.

F I V E: Rich Edit Controls

Description

Sends an EN_CHANGE notification when the user
changes the text in a rich edit control.

Sends EN_DROPFILES notifications. The application
can allow the user to drop files in a rich edit control by
processing the EN_DROPFILES notification. The speci
fied ENDROPFILES structure contains information·
about the files being dropped.

Sends EN_MSGFILTER notifications for keyboard events.
The parent window can prevent the keyboard message
from being processed or can change the message by
modifying the specified MSGFILTER structure.

Sends EN_MSGFILTER notifications for mouse events.
The parent window can prevent the mouse message from
being processed or can change the message by modifying
the specified MSGFILTER structure.

Sends EN_PROTECTED notifications, which are used to
detect when the user attempts to modify protected text.

Sends EN_REQUESTRESIZE notifications. This lets an
application resize a rich edit control as needed so that
the control is always the same size as its contents. A rich
edit control supports this "bottomless" functionality by
sending its parent window an EN_REQUESTRESIZE no
tification whenever the size of its contents changes. In
response, the application uses the SetWindowPos func
tion to resize the control to the dimensions in the speci
fied REQRESIZE structure.

Sends an EN_HSCROLL notification when the user
clicks the horizontal scroll bar of a rich edit control.

Sends EN_SELCHANGE notifications. This informs the
parent window that the current selection has changed.

Sends an EN_UPDATE notification when a rich edit con
trol is about to display altered text.

No notifications are sent to the parent window (the
default).

Rich edit control event-notification masks.

155

· PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Rich Edit Control Messages
Rich edit controls support most, but not all, of the functionality of multiline
edit controls. Table 5-2 lists the messages that are supported by rich edit con
trols. But you should also take special note of the following messages, which
are processed by multiline edit controls but not by rich editcontrols:

EM_FMTLINES

EM_GETHANDLE (Rich edit controls do not store text as a simple
array of characters.)

EM_ GETMARGINS

EM_ GETPASSWORDCHAR· (Rich edit controls do not support the
ES_PASSWORD style.)

EM_SETHANDLE (Rich edit controls do not store text as a simple
array of characters.)

EM_SETMARGINS

EM_SETPASSWORDCHAR (Rich edit controls do not support the
ES_PASSWORD style.)

EM_SETRECTNP

EM_SETTABSTOPS (Rich edit controls use the EM_SETPARA
FORMAT message instead.)

WM_CTLCOLOR (Rich edit controls use the EM_SETBKGND
COLOR message instead.)

WM_GETFONT (Rich edit controls use the EM_GETCHARFORMAT
message instead.)

Message Description

EM_CANPASTE

EM_CHARFROMPOS

Table 5-2.
Rich edit control messages.

156

Determines whether a rich edi~ control can paste a
given clipboard format.

Retrieves the zero-based character index and the zero
based line index of the character nearest the specified
point in a rich edit control.

(continued)

Table 5-2. continued

Message

EM_DISPLAYBAND

EM_EXLIMITTEXT

EM_EXLINEFROMCHAR

EM_EXSETSEL

EM_FINDTEXT

EM_FINDTEXTEX

EM_FORMATRANGE

EM_GETCHARFORMAT

EM_GETEVENTMASK

EM_GETLIMITTEXT

EM_GETOLEINTERFACE

EM_GETOPTIONS

EM_GETPARAFORMAT

EM_GETSELTEXT

EM_GETTEXTRANGE

EM_HIDESELECTION

EM_PASTESPECIAL

F I V E: Rich Edit Controls

Description

Displays part of a rich edit control's contents as pre
viously formatted for a device (by using the EM
_FORMATRANGE message).

Retrieves the positions of the starting and ending
characters in a selection.

Sets an upper limit (in characters) on the amount of text
that can be contained in a rich edit control.

Determines ~hich line contains a specified character.

Selects a range of characters.

Finds text within a rich edit control.

Finds text within a rich edit control by using the
FINDTEXTEX structure.

Finds the next word break before or after the specified
character position, or retrieves information about the
character at that position.

Formats a range of text for a specific device.

Determines the current character formatting.

Retrieves the event mask for a rich edit control. The
event mask specifies which notifications the control
sends to its parent window.

Retrieves the current upper limit (in characters) on the
amount of text that can be contained in a rich edit
control.

Retrieves an IRichEditOle object that a client can use to
access a rich edit control's OLE functionality.

Retrieves the current options (styles) of a rich edit con
trol (read-only, vertical scroll bar, and so on).

Retrieves the paragraph formatting of the current
selection. .

Retrieves the currently selected text.

Retrieves a specified range of characters.

Hides or shows the current selection.

Pastes a specific clipboard format in the control.

(continued)

157

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Table 5-2. continued

Message

EM_REQUESTRESIZE

EM_SCROLLCARET

EM_SELECTIONTYPE

EM_SETBKGNDCOLOR

EM_SETCHARFORMAT

EM_SETEVENTMASK

EM_SETOLECALLBACK

EM_SETOPTIONS

EM_SETPARAFORMAT

EM_SETTARGETDEVICE

158

, Description

Retrieves the coordinates of the specified character
in a rich edit control.

Forces the control to send an EN_REQUESTRESIZE
. notification to its parent window.

Scrolls the caret into view in a rich edit control.

Determines the selection type. (See the Win32
SDK documentation for the selection types that
can be returned.)

Sets the background color.

Sets character formatting.

Sets the event mask, which specifies the notifications
the control sends to its parent window.

Gives a rich edit control an IRichEditOleCallback ob
ject that the control uses to get OLE-related resources
and information from the client.

Sets the options (styles) for a rich edit control (read
only, vertical scroll bar, and so on).

Sets the paragraph formatting for the current selection.

Sets the target device and line width used for
WYSIWYG formatting.

Replaces the contents of the control with the specified
data stream.

Writes the contents of the control to the specified data
stream.

C HAP T E R s x

The New Common"
Dialog Boxes

The Win32 API supports common dialog boxes, which Microsoft Windows
95 provides to help the user perform functions that are common to most ap- "
plications: opening and saving files, changing fonts, changing colors, search
ing for and replacing text, and printing. Not only do you save time by having
the operating system carry out these mundane tasks, but you also automati
cally conform to the look and feel of the system when you include the com
mon dialog boxes in your application.

These dialog boxes are easy to use. In the simplest case, when you want
the dialog box's default appearance and behavior, you need only fill out a
structure and call a single function. A dynamic-link library, COMDLG32.DLL,
supplies the default dialog procedure and the default template for each com
mon dialog box. If you want to extend the functionality of a dialog box, the
system provides hooks and allows you to include your own template coritain
ing any additional controls that you need.

This chapter describes the various common dialog boxes and includes
code examples that can help you incorporate these dialog boxes in your
Win32-based applications. The examples come from CMNDLG32, a sample I
wrote in C, which demonstrates how a developer can manipulate the com
mon dialog boxes using their standard form or using hooks and custom tem
plates. Figure 6-1, which appears on the following page, offers an advance
look at the CMNDLG32 sample.

159

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Choose Font...

:v~tandard

.!:hingaHook
Custom I emplate

Figure 6-1.
The CMNDLG32 sample.

The new set of common dialog boxes found in Windows 95 has not only
a fresh look but also some added functionality and a few other changes, as
you'll see. But if you are an old hand at programming the common dialog
boxes supported in Microsoft Windows version 3.1 and Microsoft Windows
NT, you'll find that using the new dialog boxes requires little or no additional
work; For example, the common dialog box sample I wrote for Windows NT
many moons ago worked without a hitch under Windo~s 95, with no changes
and no recompilation. If you are including templates and want to take advan
tage of the new look, a simple recompile is all you have to do. (If, however,
you are including templates and don't want to change your dialog boxes, you
don't have to do anything: just run the application, and your original dialog
boxes will appear.)

Opening and Saving Files
with Common Dialog Boxes

160

The most frequently used common dialog boxes are those that open files
and save files. As you can see in'the example shown in Figure 6-2, these dia
log boxes support long 'filenames and contain a list view control, which

S I X: The New Common Dialog Boxes

Click this button to
create a new folder

Click this button to Click this button to

~ur:~ntf0llder move up one le~l. ~sw:~o list view

~"=-" '_'" '_" '-I' __ " '_' "_' ______ ...:.\ " ~~~ Click this button
/BPaint Files 3 ~ f1J ;::: m to switch to

details view

List view control
displaying the current
folder's contents

IGre~kV~s~-, ------,

Files of .type: All Files (","J

File filter

Figure 6-2.

Currently
selected file

An Open common dialog box in list view.

Cancel

Help

graphically represents the contents of the current folder. The Open common
dialog box and the Save As common dialog box use the same dialog template,
and you use the same structure, o PENFILENAME , to initialize them. The
only real difference is how you display the dialog boxes: for opening a file,
you use the GetOpenFileNarp.e function; for saving a file, you use the Get
SaveFileName" function.

The list view control in the Open or Save As common dialog box pre
sents the current folder's contents in either list view or details view. Clicking
the rightmost toolbar button changes the display to details view, which pro
vides details about each object (file). For example, in the Save As dialog box
shown in Figure 6-3 on the following page, you can see not only the object's
name but also its size, its type, and when it was last modified. Clicking the
next-to-Iast toolbar button on the right switches the display back to list view.

161.

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Figure 6-3.
A Save As common dialog box in details view.

Using the Open and Save As Common Dialog Boxes

'162

To use one of the common dialog boxes that open and save files,an applica
tion must first fill out the OPENFILENAME structure, which includes the
items needed to initialize the dialog box. The ~ollowing example is the code I
used for the Open common dialog box:

OpenFileName.1StructSize
OpenFileName.hwndOwner
OpenFileName.hInstance
OpenFileName.lpstrFilter
OpenFileName.lpstrCustomFilter
OpenFileName.nMaxCustFilter
OpenFileName.nFilterIndex
OpenFileName.lpstrFile
OpenFileName.nMaxFile
OpenFileName.lpstrFileTitle
OpenFileName.nMaxFileTitle
OpenFileName.lpstrInitialDir
OpenFileName.lpstrTitle
OpenFileName.nFileOffset
OpenFileName.nFileExtension
OpenFileName.lpstrDefExt
OpenFileName.1CustData

sizeof (OPENFILENAME);
hWnd;
(HANDLE)hInst;
szFilter;
(LPTSTR)NULL;
0L;
lL;
szFile;
sizeof (szFile);
szFil eTi tl e;
sizeof (szFileTitle);
NULL;
"Open";
0;
0;
"*.txt";
0;

When the structure is filled out, a call to GetOpenFileName with a
pointer to the structure will display the dialog box. If the function returns a

S I X: The New Common Dialog Boxes

value of TRUE, no errors occurred, and the file can be opened. The filename
is copied into the lpstrFile member of the OPENFILENAME structure. If the
GetOpenFileName function returns FALSE, an error handler is called with
the extended error (returned from the CommDlgExtendedError function):

if (GetOpenFileName (&OpenFileName»
{

II Open the file.
if «hFile = CreateFile «LPCTSTR)OpenFileName.lpstrFile,

GENERIC_READ,

{

}

FILE_SHARE_READ,
NULL,
OPEN_EX I STI NG,
FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL» == (HANDLE)(-l»

MessageBox (hWnd, "File open failed.", NULL, MB_OK):
return FALSE:

II Read its contents into a buffer.

}

else
{

}

II Send the error to your error handler.
ProcessCDError (CommDlgExtendedError (), hWnd):
return FALSE:

A wide variety of flags can be used in the Flags member of the OPEN
FILENAME structure. These flags allow a developer to provide functionality
(such as multiple selection), to decide whether to use the Windows 3.1 or the
Windows 95 look in the dialog box, and to specify that the file must exist in
order to be opened. For an exhaustive list of all flags supported by the
OPENFILENAME structure, refer to the Win32 SDK documentation.

Monitoring Input
Now let's look' at what you need in order to monitor the input to the controls
in a common dialog box. Notifications about these controls can be moni
tored through hooks. The dialog procedure provided in COMDLG32.DLL
calls the application's hook function if the application specifies the appropri
ate flag (OFN_ENABLEHOOK) and a pointer to the hook function in the
lpfnHook member of the OPENFILENAMEstructure.

163

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

164

OpenFileName.Flags = OFN_SHOWHELP I OFN_PATHMUSTEXIST I OFN_EXPLORER
OFN~FILEMUSTEXIST I OFN_HIDEREADONLY I OFN_ENABLEHOOK;

OpenFileName.lpfnHook = (LPOFNHOOKPROC)FileOpenHookProc;

The hook function used in the CMNDLG32·sample simply passes the
WM_NOTIFY message to the notification handler:

BOOL APIENTRY FileOpenHookProc (HWND hDlg, UINT message, UINT wParam,
LONG lParam)

if (message == WM_NOTIFY)
return FileOpenNotify (hDlg, (LPOFNOTIFY)lParam);

return ,FALSE;
}

Under Windows 95, the WM_NOTIFY message is sent to the hook pro
cedure fdr the Open and Save As common dialog boxes whenever an action
such as selection occurs. The hook procedure receives the WM_NOTIFY
message with the OFNOTIFY structure packaged in its lParam parameter.
The OFNOTIFY structure contains information about the notification and the
object, including pointers to an NMHDR structure, to the OPENFILENAME
structure, and to the current filename.

When the hook procedure receives the WM~NOTIFY message, it can
use the code member of the NMHDR structure to determine the current ac
tion. The following code traps the notification code and writes it to the status
bar. When the user clicks the OK button, the application prompts the user to
confirm that the operation should continue.

BOOL NEAR PASCAL FileOpenNotify (HWND hDlg, LPOFNOTIFY pofn)
{

static char lpszNotification [FILE_LEN):
HANDLE hFile:
char szTempText [MAX_PATH):
char szString [MAX_PATH]:
DWORD dwBytesWritten:

switch (pofn-)hdr.code)
{

II The current selection has changed.
case CDN_SELCHANGE:
{

char szFile [MAX_PATH]:

II Get the file specification from the common dialog box.
CommDlg_OpenSave_GetSpec (GetParent (hDlg),

szFile, sizeof (szFile»;

S I X: The New Common Dialog Boxes

}

wsprintf (lpszNotification,
"File Open Notification: %5. File: %5",
"CDN_SELCHANGE", szFi 1 e);

break;

II The current folder has changed.
case CDN_FOLDERCHANGE:
{

}

char szFile [MAX_PATH];

if (CommDlg_OpenSave_GetFolderPath (GetParent (hDlg),
szFile, sizeof (szFile» <= sizeof (szFile»

{

}

wsprintf (lpszNotification,
"File Open Notification: %5. File: %5",
"CDN_FOLDERCHANGE", szFile);

break;

II The Help button has been clicked.
case CDN_HELP:

wsprintf (lpszNotification, "File Open Notification: %5.",
"CDN_HELP");

break;

II The OK button has been clicked.
II To prevent the common dialog box from closing, the result should
II be nonzero via a call to SetWindowLong (hDlg, DWL_MSGRESULT,
111Result).
case CDN_FI LEOK:

SetWindowLong (hDlg, DWL_MSGRESULT, 1L);
wsprintf (lpszNotification,

"File Open Notification: %5. File: %5",
"CDN_FILEOK", pofn->lpOFN->lpstrFile);

GetDlgltemText (hDlg, edt1, szTempText, sizeof (szTempText) -1);
wsprintf (szString, "Are you sure you want to open %s?",

szTempText);
if (MessageBox (hDlg, szString, "Information", MB_YESNO) IDNO)
{

}

SetWindowLong (hDlg, DWL_MSGRESULT, -1);
break;

II Check to see whether the Create File box is checked.
if «BOOL) (SendMessage (GetDlgltem (hDlg, chx2),

BM_GETCHECK, 0, 0L» == TRUE)
{

(continued)

165

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

166

}

II If so. create the file.
if «hFile = CreateFile (szTempText.

{

}

GENERIC_READ I GENERIC_WRITE.
FILE_SHARE_READ I FILE_SHARE_WRITE.
NULL.
CREATE_ALWAYS.
FILE_ATTRIBUTE_NORMAL.
(HANDLE)NULL» == (HANDLE)(-l»

MessageBox (hDlg. "Directory could not be created.".
NULL. MB_OK):

SetWindowLong (hDlg. DWL_MSGRESULT. -1):
break:

if (WriteFile (hFile. (LPTSTR)FileBuf. dwFileSize.
&dwBytesWritten. NULL) == FALSE)
MessageBox (hDl g. "Error writi ng fil e.". NULL. MB_OK):

if (hFile)
CloseHandle (hFile): II close the file

break:

II Received a sharing violation
case CDN_SHAREVIOLATION:

wsprintf (lpszNotification. "File Open Notification: %s.".
"CDN_SHAREVIOLATION") :

break:

II Received when initialization has finished via the WM_INITDIALOG
II message: all cont~ols moved at this point
case CDN_INITDONE:

wsprintf (lpszNotification. "File Open Notification: %s.".
"CDN_INITDONE") :

b rea k;

II Received when the file type changes in the Files Of Type box
case CDN_TYPECHANGE:

wsprintf (lpszNotification. "File Open Notification: %s.".
"CDN_TYPECHANGE");

break;

II Write the notification to the status window.
SendMessage (hWndStatus. SB_SETTEXT. e. (LPARAM)lpszNotification):

return TRUE;
}

S I X: The New Common Dialog Boxes

Using the OFN_EXPLORER Flag
In Windows 3.1 and Windows NT 3.1 and 3.5, if you want to change a com
mon dialog box in some way, you need to have a copy of the DLG file and
then use the #include statement to incorporate it in your resource file. In
Windows 95, however, you no longer need to do this in order to include your
own custom template that works with the new Open (and Save As) template.
Now, you can simply include the OFN_EXPLORER flag and create a dialog
template that contains only the items that you want to add to the dialog box.
If the OFN_EXPLORER flag is set in the Flags field of the OPENFILENAME
structure, the hlnstance, lpfnHook, and lpTemplateName fields are interpreted
as follows:

If the OFN_ENABLETEMPLATE flag is set in the Flags field, the
lpTemplateName field is the name of the dialog template, and the
hlnstance field is the module instance. The dialog template must
have the WS_CHILD style set, or GetOpenFileName will fail. The
common dialog handler creates a child dialog box (a subdialog
box) and the standard dialog box. This child dialog box, which is
placed in the upper left corner of the standard dialog box, is resized
to contain not only its own, new controls but also all the controls in
the standard dialog box. Thus the hDlg parameter passed to the
application's hook function is the child of the dialog box containing
the standard controls. If your application must communicate with a
standard control from the hook procedure, it should call GetParent
on the hDlg passed to the hook procedure. For example, to get the
text from the Types combo box, you use the following code:

GetDlgItemText (GetParent (hDlg). cmbl. buff MAX_PATH);

If the OFN_ENABLETEMPLATEHANDLE flag is set in the Flags
field, the hlnstance field should contain the memory handle for the
dialog template.

If the OFN_ENABLEHOOKflag is set in the Flags field, the lpfnHook
field is a DLGPROC (not an LPOFNHOOKPROC) that is associated
with the child dialog box.

If neither the OFN_ENABLETEMPLATE flag nor the
OFN_ENABLETEMPLATEHANDLE flag is set in the Flags
field, the common dialog handler creates an empty template.

167

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

168

For example, in the Win32 SDK COMDLG32 sample, the following dia
log template adds some fields to the Open dialog box:

IDD_COMDLG32 DIALOG DISCARDABLE 0. 0. 300. 74
STYLE WS_CHILD I WS_VISIBLE I WS_CLIPSIBLINGS I DS_3DLOOK IDS_CONTROL
FONT 8. "MS Sans Serif"
BEGIN

END

LTEXT
LTEXT
LTEXT
EDITTEXT
LTEXT
LTEXT
EDITTEXT

"Path:".-1.28.4.36.8
"This is to the left".-1,4.16.20.40
"Selected:".-1.32.49.40.8
IDE_SELECTED,74.47.20e.12.ES_AUTOHSCROLL
"This is to the right.".-1,232.20.65.8
"".stc32.28.16.204.31
IDE_PATH.65.2.200.12.ES_AUTOHSCROLL

Once I created this template, I used the notification code to trap the
notifications and to update the new fields that I added. Also, when I filled out
the OPENFILENAME structure, I included the OFN_ENABLETEMPLATE
flag to enable the template. Figure 6-4 shows the resulting customized Open
dialog box.

In the preceding code, notice the next-to-Iast resource, which is a con
trol'with the ID stc32. In the common dialog handler, this ID has a special
purpose: to let the handler know where to place all the standard controls.
Without an stc32 control, the common dialog handler places all the new con
trols added by the application-defined template below the standard controls.
If you include the stc32 control, the handler assesses the size of this control. If

Figure 6-4.
A customized Open common dialog box created with a template.

S I X: The New Common Dialog Boxes

it is too small to hold all the standard controls, the handler moves them to the
right of the stc32 control or below it to make room for the new controls. Fig
ure 6-5 shows the child dialog box that is provided to customize the Open dia
log box from the Win32 SDK COMDLG32 sample.

This is
to the

; left

Path:

Selected:

Figure 6-5.

This is to the right.

A child dialog box used to customize an Open common dialog box.

If you want to maintain the old-style look of a common dialog box or if
you need to insert new con troIs that are in terspersed among the existing con
trols (as opposed to being positioned around them), your application should
use a hook or a template and must not include the OFN_EXPLORER flag.
The hook can be as simple as a function that returns NULL. If you don't use a
hook or a template, your dialog box will display the Explorer look by default.
To be compatible with previous versions of the common controls, your appli
cation must use a template to position controls among the standard controls.

You can also set the tab order of the controls in a customized common
dialog box. Let's say you want the user to be able to tab from the OK button to
an added button and then to the Cancel button. To do this, the child dialog
box containing the added button must have the DS_ CONTROL style. With this
style set, you can use a call to SetWindowPos to change the z-order. The dialog
box manager determines which control will receive the focus next by walking
in z-order through windows that have the WS_TABSTOP style.

NOT E: To allow the user to select more than one file to open in
the Open common dialog box, specify the OFN_ALLOWMULTI
SELECT flag. The IpstrFile member of the OPENFILENAME struc
ture points to a buffer into which the path to the current folder and
the selected filenames are copied. Normally, a space separates the
first filename from the path, and each subsequent filename is sepa
rated from the preceding filename by a space. If you include the
OFN_EXPLORER flag, a NULL (\0) character rather than a space
will separate the filenames. The entire buffer is terminated by two
NULL characters (\0\0).

169

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

Learning New IDs

170

In previous versions of Windows, identifiers for the various controls in com
mon dialog boxes resided in a header file that you included directly in your
application. In Windows 95, those identifiers are defined in COMCTL32.LIB.
Figure 6-6 illustrates which identifiers belong to which controls. Notice that
some identifiers are defined in lowercase letters.

stc4 cmb2

§ A really really really really really long filename

§ A sample text file
r-----o E] Dealing with hooks and templates

~ I nformation about common dialogs in Windows 95

stc3

Ist1

Figure 6-6.

chx1

edt1

cmb1

Read-only

.,-...---IDCANCEL

Identifiers for controls in the Open and Save As common dial6g boxes.

If you are the type who prefers code to pictures, here's the template
used for the new Open and Save As common dialog boxes:

NEWFILEOPENORD DIALOG DISCARDABLE e, e, 28e, 164
STYLE DS_MODALFRAME I 4L I WS_POPUP I WS_VISIBLE I WS_CAPTION
WS_SYSMENU I DS_CONTEXTHELP I WS_CLIPCHILDREN
CAPTION "Open"
FONT 8, "MS Sans Serif"

S I X: The New Common Dialog Boxes

BEGIN

END

LTEXT
COMBO BOX

"Look &in:".stc4.7.6.41,8.SS_NOTIFY
cmb2.50.3.138.100.CBS_DROPDOWNLIST I
CBS_OWNERDRAWFIXED I CBS_HASSTRINGS I
WS_VSCROLL IWS_TABSTOP

LTEXT
LISTBOX

LTEXT
EDITTEXT
LTEXT
COMBOBOX

'''',stcl,188.2.82.17.NOT WS_GROUP I NOT WS_VISIBLE
lstl.4.20.272.85.LBS_SORT I LBS_NOINTEGRALHEIGHT I
LBS_MULTICOLUMN I WS_HSCROLL I NOT WS_VISIBLE
"File &name:".stc3.5.112.36,8.SS_NOTIFY
edtl.54.110.155.12.ES_AUTOHSCROLL
"Files of &type:".stc2.5.128.46.8.SS_NOTIFY
cmbl.54.126.155.53.CBS_DROPDOWNLIST I
WS_VSCROLL I WS_TABSTOP

CONTROL "Open as &read-only".chxl."Button".BS_AUTOCHECKBOX
WS_TABSTOP.54.145.74.10

DEFPUSHBUTTON
PUSHBUTTON
PUSHBUTTON

"&Open".IDOK.222.110.50.14
"Cancel".IDCANCEL.222.128.50.14
"&Help".pshHelp.222.145.50.14

Customization Guidelines
You can customize any of the common dialog boxes. You might, for
instance, want to hide some of the original controls, add a few new
controls, or enlarge a dialog box. If your application subclasses con
trols in any of the common dialog boxes, the subclass must be done
during the processing of the WM_INITDIALOG message in the
application's hook function. This allows the application to receive
the control-specific messages first.

In general, it's not a good idea to customize the common dialog
boxes too severely. Mter all, one of their chief benefits is a look and
feel consistent with the rest of the Windows 95 user interface. I'd sug
gest that you customize these dialog boxes only if necessary, leaving
the original look intact as much as possible. Users won't be confused
by small modifications, however, such as a change in the size of the
dialog box or the addition of a new control or two.

171

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

The Font Common Dialog Box

172

The Font common dialog box displays lists of typefaces, styles, and point sizes
that correspond to the available fonts. Mter the user selects the current font
for an application, the dialog box displays sample text rendered with that
font, as shown in Figure 6-7.

Typeface

,__..+-___ ---t_·Sample text displayed
in the selected font

Using the
L:-:-:--:---:---:---:--~-_J 1\'Vt::~'t::I!'I"":,.:::,::.,:":,,,,,:: .,., .. ,:,::,:,~~------____ -r--CF _NOSCRI PTSEL flag

will grayout this box

Figure 6-7.
The Font common dialog box.

To use the Font common dialog box, you fill out the CHOOSEFONT
structure and call the ChooseFont function. The CHOOSEFONT structure
contains information such as the attributes of the initial font, the point size,
and the types offonts (screen fonts or printer fonts), as well as hook and tem
plate information.

The following code demonstrates how the CMNDLG32 sample fills out
the CHOOSEFONT structure. In the sample, how some of the fields are filled
depends on whether a hook or a template should be included. The flags in
dicate that the strikeout, underline, and color effects should be enabled
(CF _EFFECTS) and that the fonts listed should include only the screen fonts

S I X: The New Common Dialog Boxes

supported by the system (CF_SCREENFONTS). Note that, although it is not
used in this sample, the CF _NOSCRIPTSEL flag is available if you want to
grayout the script box.

CHOOSEFONT chf;
LOGFONT If;

HOC hOC;

hOC = GetOC (hWnd);
chf.hOC = CreateCompatibleOC (hOC);
ReleaseOC (hWnd. hOC);
chf.1StructSize = sizeof (CHOOSEFONT);
chf.hwndOwner = hWnd;
chf.lpLogFont = &If;
chf.Flags = CF_SCREENFONTS 1 CF_EFFECTS;
chf.rgbColors = RGB (0. 255. 255);
chf.1CustOata = 0;
chf.hlnstance (HANOLE)hlnst;
chf.lpszStyle = (LPTSTR)NULL;
chf.nFontType = SCREEN_FONTTYPE;
chf.nSizeMin = 0;
chf.nSizeMax = 0;

switch (wMode)
{

}

case 10M_STANDARD:
chf.lpfnHook = (LPCFHOOKPROC)(FARPROC)NULL;
chf.lpTemplateName = (LPTSTR)NULL;
break;

case 10M_HOOK:
chf.Flags 1= CF_ENABLEHOOK;
chf.lpfnHook = (LPCFHOOKPROC)ChooseFontHookProc;
chf.lpTemplateName = (LPTSTR)NULL;
break;

case 10M_CUSTOM:
chf.Flags 1= CF_ENABLEHOOK 1 CF_ENABLETEMPLATE;
chf.lpfnHook = (LPCFHOOKPROC)ChooseFontHookProc;
chf.lpTemplateName = (LPTSTR) MAKEINTRESOURCE (FORMATOLGOR031);
break;

173

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

174

Mter you fill out the structure, you simply call the ChooseFont function
and delete the DC. The common dialog procedure sets the font for you. If
you need to customize the· dialog box, your application should provide a
hook function and, if you want to add controls, a dialog template. Instead of
specifying additional controls in a child dialog box, as you do for the Open
and Save As common dialog boxes, you must include the full template for
the Font common dialog box in order to customize it. For example, the
CMNDLG32.RC file includes the following template for the Font dialog box:

1543 DIALOG DISCARDABLE 13, 54, 264, 147
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU
CAPTION "Font"
FONT 8, "Helv"
BEGIN

END

LTEXT
COMBOBOX

LTEXT
COMBO BOX

LTEXT
COMBO BOX

DEFPUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
GROUPBOX
CONTROL

CONTROL

LTEXT
COMBOBOX

GROUPBOX
CTEXT
CTEXT

"&Font:",1088,6,3,40,9
1136,6,13,94,54,CBS_SIMPLE I CBS_OWNERDRAWFIXED
CBS_AUTOHSCROLL I CBS_SORT I CBS_HASSTRINGS I
CBS_DISABLENOSCROLL I WS_VSCROLL I WS_TABSTOP
"Font St&yle:",1089,108,3,44,9
1137,108,13,64,54,CBS_SIMPLE I CBS_DISABLENOSCROLL
WS_VSCROLL I WS_TABSTOP
"&Size:",1090,179,3,30,9
1138,179,13,32,54,CBS_SIMPLE I CBS_OWNERDRAWFIXED
CBS_SORT I CBS_HASSTRINGS I CBS_DISABLENOSCROLL
WS_VSCROLL I WS_TABSTOP
"OK",IDOK,218,6,40,14,WS_GROUP
"Cancel",IDCANCEL,218,23,40,14,WS_GROUP
"&ApplY",1026,218,40,40,14,WS_GROUP
"&Help",1038,218,57,40,14,WS_GROUP
"Effects",1072,6,72,84,34,WS_GROUP
"Stri&keout",1040,"Button",
BS_AUTOCHECKBOX I WS_TABSTOP,10,82,49,10
"&Underline",1041,"Button",
BS_AUTOCHECKBOX,10,94,51,10
"&Color:",1091,6,110,30,9
1139,6,120,84,100,
CBS_DROPDOWNLIST I CBS_OWNERDRAWFIXED I
CBS_AUTOHSCROLL I CBS_HASSTRINGS I WS_BORDER
WS_VSCROLL I WS_TABSTOP
"Sample",1073,98,72,160,49,WS_GROUP
"",1093,98,124,160,20,SS_NOPREFIX I NOT WS_GROUP
"AaBbYyZz",1092,104,81,149,37,SS_NOPREFIX I NOT
WS_VISIBLE

S I X: The New Common Dialog Boxes

The Color Common Dialog Box
In the Color common dialog box, users can change the current color or
create their own colors. The basic dialog box, shown in Figure 6-8, contains
a control that displays as many as 48 colors. The user's display driver deter
mines the actual number of colors; for example, a VGA driver displays 48
colors, whereas a monochrome driver displays only 16.

[.custom colors:

Uec[Jecc.c
cerceree

.Q.efine Custom Colors»

,I' OK Cancel

Figure 6-8.
The basic Color common dialog box.

When the user clicks the Define CUstom Colors button, the width of the
dialog box expands to display the custom colors control, as shown in Figure
6-9 on the following page. With this control, the user can create a new color
by specifying red, green, and blue (RGB) values; by using the color spectrum
to set hue, saturation, and luminosity (HSL); or by specifying HSL values in
the edit controls. Mter the user has created a custom color, clicking the Add
To Custom Colors button displays the new color in a Custom Colors section
of the dialog box. The ColorlSolid control displays both the dithered color (a
mixture of solids) and the solid color that correspond to the user's selection.

175

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

176

Basic colors control

:: tllstol))colors:

Custom colors Click this button
created by the to open the

user custom colors
control

Figure 6-9.

Custom colors control

-+-"--1-- Color spectrum

HSL values·

Click this button to add
a created color to the
Custom Colors section

Shows the color in its
"---- dithered and solid forms

Luminosity control

RGB values

The expanded Color common dialog box.

The Color common dialog box uses two color models: RGB and HSL.
Screen displays and other devices that emit light use the RGB model. Valid
values for red, green, and blue are in the range 0 through 255, with 0 the
minimum intensity and 255 the maximum intensity. The application should
specify COLORREF values using the RGB macro for RGB colors.

The HSL color model uses different ranges of values. As you can see in
Figure 6-10, the saturation and luminosity values must be in the range 0
through 240, and the hue value must be in the range 0 through 239. The
Color common dialog procedure that is provided in COMDLG32.DLL con
verts HSL values to the corresponding RGB values, so your application does
not have to do this.

S I X: The New Common Dialog Boxes

Saturation Luminosity

Hue

Figure 6-10.
The color spectrum and HSL value ranges.

Before displaying a Color common dialog box, an application must ini
tialize a CHOOSECOLOR structure, which contains information such as the
parent of the dialog box, the custom colors that should appear initially, and
the use of hooks and templates to customize the dialog box. The following
code demonstrates how the CMNDLG32 sample fills out the CHOOSECOLOR
structure and makes the subsequent call to ChooseColor, the function that
displays and handles the dialog box. Notice again that certain fields are filled
differently if a hook or a template is included. The custom colors array is ini
tiallyfilled entirely with white, whose RGB value is (0, 0,0); the color initially
selected is black, with an RGB value of (255, 255, 255).

BOOl ChooseNewColor (HWND hWnd)
{

DWORD dwColor:
DWORD dwCustClrs [16]:
BOOl fSetColor FALSE:
int i:

for (i = 0: i < 15: i++)
dwCustClrs [i] RGB (255, 255, 255):

dwColor = RGB (0,.0, 0):

chsclr.1StructSize = sizeof (CHOOSECOlOR):
chsclr.hwndOwner hWnd:
chsclr.hlnstance = (HANDlE)hlnst:
chsclr.rgbResult = dwColor:
chsclr.lpCustColors = (lPDWORD)dwCustClrs:
chsclr.1CustData = 0l:

(continued)

177

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

switch (wMode)
{

case 10M_HOOK:
chsclr.Flags = CC_ENABLEHOOK;
chsclr.lpfnHook = (LPCCHOOKPROC)ChooseColorHookProc;
chsclr.lpTemplateName = (LPTSTR)NULL;
b rea k;

case IDM.:...CUSTOM:
chsclr.Flags = CC_PREVENTFULLOPEN I CC_ENABLEHOOK I

CC_ENABLETEMPLATE;
chsclr.lpfnHook = (LPCCHOOKPROC)ChooseColorHookProc;
chsclr.lpTemplateName = "CHOOSECOLOR";
break;

case 10M_STANDARD:
chsclr.Flags = CC_PREVENTFULLOPEN;
chsclr.lpfnHook = (LPCCHOOKPROC)(FARPROC)NULL;
chsclr.lpTemplateName = (LPTSTR)NULL;
break;

if (fSetColor = ChooseColor (&chsclr))
{

crColor = chsclr.rgbResult;
return TRUE;

else
{

}

}

ProcessCDError (CommDlgExtendedError (). hWnd);
return FALSE;

The Find and Replace Common Dialog Boxes

178

The Find common dialog box, shown in Figure 6-11, prompts the user to en
ter a string of text and then searches for that string. The Replace dialog box,
which is quite similar, not only searches for a specified string but also replaces
it with a specified replace string. Unlike the other common dialog boxes,
these two dialog boxes are modeless, which means that the user can switch
between the dialog box and the window that created it.

The Find and Replace common dialog boxes use the FIND REPLACE
structure. When this structure is initialized, the application calls the FindText
function to display the Find dialog box or the ReplaceText function to display
the Replace dialog box. Within the FIND REPLACE structure, the application
can specify items such as the owner of the dialog box, an initial string to

S I X: The New Common Dialog Boxes

Figure 6-11.
The Find common dialog box.

search for, whether to match the case of the string, whether to match the en
tire string, and hook and template information.

For an application to process messages from a Find or a Replace dialog
box, the application must use the RegisterWindowMessage function to regis
ter the dialog box's unique message, FINDMSGSTRING. The following code
from CMNDLG32 handles the FindReplaceMsg message:

LONG API ENTRY MainWndProc (
HWND hWnd. II window handle
UINT message. II type of message
UINT wParam. II additional information
LONG lParam) II additional information

switch (message)
{

case WM_CREATE:

default:
II Handle the special find-replace message (FindReplaceMsg) that
II was registered at initialization time.

}

}

if (message == FindReplaceMsg)
{

if (lpFR = (LPFINDREPLACE)lParam)
{

if (lpFR-)Flags & FR-DIALOGTERM) II terminating dialog
return 0:

SearchFile (lpFR):
InvalidateRect (hWnd. NULL. TRUE):

.}

return (0):
}

179

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

180

The following example initializes the FIND REPLACE structure and
then calls FindText. The flags specified for the dialog box stipulate that the
Match Case, Up and Down, and Match Whole Word Only options should be
disabled. The hook and template are enabled if the user has specified them.

void CallFindText (HWND hWnd)
{

frText.1StructSize = sizeof (frText):
frText.hwndOwner = hWnd:
frText.hlnstance = (HANDLE)hlnst:
frText.lpstrFindWhat = szFindString:
frText.lpstrReplaceWith = (LPTSTR)NULL:
frText.wFindWhatLen = sizeof (szFindString):
frText.wReplaceWithLen = 0:
frText.1CustData = 0:
lpBufPtr = FileBuf:

swi tch (wMode)
{

case IDM_STANDARD:
frText.Flags = FR_NOMATCHCASE I FR-NOUPDOWN I FR-NOWHOLEWORD:
frText.lpfnHook = (LPFRHOOKPROC)(FARPROC)NULL:
frText.lpTemplateName = (LPTSTR)NULL:
break:

case IDM_HOOK:
frText.Flags = FR-NOMATCHCASE I FR-NOUPDOWN I FR-NOWHOLEWORD

FR-ENABLEHOOK:
frText.lpfnHook = (LPFRHOOKPROC)FindTextHookProc:
frText.lpTemplateName = (LPTSTR)NULL:
break:

case IDM_CUSTOM:
frText.Flags = FR-NOMATCHCASE I FR-NOUPDOWN I FR_NOWHOLEWORD

FR-ENABLEHOOK I FR-ENABLETEMPLATE:
frText.lpfnHook = (LPFRHOOKPROC)FindTextHookProc:
frText.lpTemplateName = (LPTSTR) MAKEINTRESOURCE (FINDDLGORD):
break:

if «hDlgFR = FindText (&frText» == NULL)
ProcessCDError (CommDlgExtendedError (). hWnd):

The Replace common dialog box, shown in Figure 6-12, resembles the
Find dialog box. It lacks Direction options, however, and it contains three
additional controls that let the user specify a replacement string and choose
whether to replace one or all occurrences of the string.

S I X: The New Common Dialog Boxes

mfi~mg;~tfE:~I"',',~"':',',:',":r"',",';,", ,,~~,~,:w~,",",' ,",,',',,''',, ,',"', ,",,', ,',,', ,',,' ""'w","',, ,,: :"'::,:':T,~:;;!.,:':C!J]j

Find what: I H~llo
R eQlace with: I Go~d.b?~

r
r

Figure 6-12.
The Replace common dialog box.

find Next I
'Bepiace', I
R~pface8U I

Cancel

The code to initialize the FIND REPLACE structure for the Replace
common dialog box is nearly identical to the code that initializes this struc
ture for the Find common dialog box. The only difference is that you must
include a pointer to a string in the lpstrReplaceWith member and specify the
size of that string buffer in the wReplaceWithLen member. After you initialize
the FIND REPLACE structure, the application calls the ReplaceText function
to display the dialog box.

The Printing Common Dialog Boxes
The common dialog library provides three common dialog boxes that you
can use for printing: Print; which lets the user configure the printer for a par
ticular print job; Print Setup, in which the user can configure the printer for
all jobs; and Page Setup, which allows the user to set properties such as mar
gins, paper orientation, and paper source for the current document. The
Print Setup common dialog box is supported for backward compatibility with
previous versions of Windows; new applications should use the new print dia
log boxes-Print and Page Setup. A user can access the printer configuration
dialog box through the Page Setup dialog box.

The Print dialog box, shown in Figure 6-13 on the following page, dif
fers from other common dialog boxes in that part of its dialog procedure re
sides in COMDLG32.DLL and part of it resides in the printer driver. When
the user clicks the Properties button in the Print dialog box, the printer
driver uses an exported function called ExtDeviceMode to display the Printer
Properties property sheet.

Win32-based applications fill out the PRINTDLG structure and call
a single function, PrintDlg, to show the Print dialog box or the Print Setup

181

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

182

dialog box. The Print dialog box appears by default; to display the Print
Setup dialog box, which is shown in Figure 6-14, the application specifies
the PD_PRINTSETUP flag.

Figure 6-13.
The Print common dialog box.

Figure 6-14.
The Print Setup common dialog box.

S I X: The New Common Dialog Boxes

The PRINTDLG structure contains data such as the printer device con
text, initial values for the dialog box controls (such as number of copies and
page range), and hook and template information. The following code shows
how the CMNDLG32 sample fills out the structure and prints the contents of
its edit buffer. Notice that I included the PD_USEDEVMODECOPIES and
PD_COLLATE styles. If the application does not specify these styles, it takes
responsibility for simulating the printing of multiple copies or collating.

void PrintFile (HWND hWnd)
{

DOCINFO di:
int nError:

II Initialize the PR1NTDLG structure.
pd.1StructSize = sizeof (PR1NTDLG):
pd.hwndOwner = hWnd:
pd.hDevMode = (HANDLE)NULL:
pd.hDevNames = (HANDLE)NULL:
pd.nFromPage = 0:
pd.nToPage = 0:
pd.nMinPage = 0:
pd.nMaxPage = 0:
pd.nCopies = 0:
pd.hInstance = (HANDLE)h1nst:
pd.Flags = PD_RETURNDC 1 PD_USEDEVMODECOPIES PD_COLLATE 1

PD_NOSELECTION 1 PD_PRINTSETUP:

switch (wMode)
{

case 1DM_STANDARD:
pd.lpfnSetupHook = (LPSETUPHOOKPROC)(FARPROC)NULL:
pd.lpSetupTemplateName = (LPTSTR)NULL:
pd.lpfnPrintHook = (LPPRINTHOOKPROC)(FARPROC)NULL:
pd.lpPrintTemplateName = (LPTSTR)NULL:
break:

case IDM_HOOK:
pd. Flags 1= PD_ENABLEPRINTHOOK 1 PD_ENABLESETUPHOOK:
pd.lpfnSetupHook = (LPSETUPHOOKPROC)PrintSetupHookProc:
pd.lpSetupTemplateName = (LPTSTR)NULL:
pd.lpfnPrintHook = (LPPR1NTHOOKPROC)PrintDlgHookProc:
pd.lpPrintTemplateName = (LPTSTR)NULL:
break:

(continued)

183

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

184

}

case 1DM_CUSTOM:
pd.Flags 1= PD_ENABLEPR1NTHOOK 1 PD_ENABLEPR1NTTEMPLATE

PD_ENABLESETUPHOOK 1 PD_ENABLESETUPTEMPLATE;
pd.lpfnSetupHook = (LPSETUPHOOKPROC)PrintSetupHookProc;
pd.lpfnPrintHook = (LPPR1NTHOOKPROC)PrintDlgHookProc;
pd.lpPrintTemplateName = (LPTSTR) MAKE1NTRESOURCE (PR1NTDLGORD);
pd.lpSetupTemplateName =

(LPTSTR) MAKE1NTRESOURCE (PRNSETUPDLGORD);
break;

II Print a test page if successful.
if (PrintDlg (&pd) == TRUE)
{

II Fill out the DOC1NFO structure.
di .cbSize = sizeof (DOC1NFO);
di .1pszDocName = "Printing Test";
di .1pszOutput = (LPTSTR)NULL;
di .fwType = 0;

II Start the document.
StartDoc (pd.hDC. &di);

nError = StartPage (pd.hDC);
if (nError <= 0)

MessageBox (hWnd. "Error in StartPage.". NULL. MB_OK);
else
{

}

II Print the text.
TextOut (pd.hDC. 5. 5. FileBuf. lstrlen (FileBuf»;

II Exit if the user has clicked the Cancel button in the
II AbortPrintJob dialog box; if the button has been clicked.
II call the AbortDoc function. Otherwise. inform the spooler
II that the page is complete.
nError = EndPage (pd.hDC);
if (nError <= 0)
{

}

MessageBox (h\·Jnd. "Error in EndPage.". NULL. MB_OK);
AbortDoc (pd.hDC);

else
{

II The document has ended.
nError = End Doc (pd.hDC);
if (nError <= 0)

MessageBox (hWnd. "Error in EndDoc.". NULL. MB_OK);

S I X: The New Common Dialog Boxes

}

DeleteDC (pd.hDC);
if (pd.hDevMode)

GlobalFree (pd.hDevMode);
if (pd.hDevNames)

GlobalFree (pd.hDevNames);

else
ProcessCDError (CommDlgExtendedError (), hWnd);

Using the PD_RETURNDC flag, as I did in this code, causes PrintDlg to
return a handle to a printer device context in the hDC member of the
PRINTDLG structure. This handle is used in subsequent calls to do the actual
printing. In this case, the hDC is sent to the Escape functions, which are used
to send instructions to the print manager and spooler.

Using the Page Setup Common Dialog Box
Page Setup is a new common dialog box for Windows 95. (In earlier versions
of Windows, the dialog template for the Print common dialog box included
the code for page setup.) The Page Setup common dialog box, which is
shown in Figure 6-15,.allows the user to set the paper size, paper source, docu
ment orientation, and margins for printing. The sample representation of
the page at the top of the dialog box gives the user an idea of what the prin ted
output will look like.

Figure 6-15.
The Page Setup common dialog box.

185

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

186

You can customize the Page Setup dialog box to use a hook function to
paint the sample page. To use the hook function, the application must specify
the PSD_ENABLEPAGEPAINTHOOKflag in the Flags member of the PAGE
SETUPDLG structure and the name of the hook function in the IpfnPage
PaintHook member. This hook function will receive messages for all the steps
in the drawing process. Table 6-1 lists the messages that are sent to the page
setup hook in the order that the hook receives them.

Message

WM_PSD_MINMARGINRECT
WM_PSD_MARGINRECT
WM_PSD_GREEKTEXTRECT
WM_PSD_ENVSTAMPRECT

Table 6-1.
Page setup messages.

Description

Notifies the hook function to carry out initiali
zation tasks.

Specifies the bounding rectangle of the
sample page.

Specifies the minimum margin rectangle.

Specifies the margin rectangle.

Specifies the Greek-text rectangle.

Specifies the envelope-stamp rectangle (for
envelopes only).

From a programming standpoint, using the Page Setup common dialog
box is very much like programming the other common dialog boxes: you fill
out a structure and make a function call. The new structure provided for the
Page Setup dialog box is PAGESETUPDLG. When you have filled out this
structure, a call to PageSetupDlg with a pointer to the structure displays the
dialog box. This code demonstrates how the CMNDLG32 sample fills out the
structure and produces the Page Setup common dialog box:

void PageSetup (HWND hWnd)
{

II Initialize the PAGESETUPDLG structure.
psDlg.1StructSize = sizeof (PAGESETUPDLG);
psDlg.hwndOwner = hWnd;
psDlg.hDevMode = (HANDLE)NULL:
psDlg.hDevNamei = (HANDLE)NULL;
psDlg.hInstance = (HANDLE)hInst;
psDlg.1CustData = (LPARAM)NULL;
psDlg.hPageSetupTemplate = (HGLOBAL)NULL;
psDlg.Flags = PSD_DEFAULTMINMARGINS I PSD_INHUNDREDTHSOFMILLIMETERS;

S I X: The New Common Dialog Boxes

swi tch (wMode)
{

case 10M_STANDARD:
psDlg.lpfnPageSetupHook = (LPPAGESETUPHOOK)(FARPROC)NULL;
psDlg.lpPageSetupTemplateName = (LPTSTR)NULL;
psDlg.lpfnPagePaintHook = (LPPAGEPAINTHOOK)(FARPROC)NULL;
break;

case 10M_HOOK:
psDlg.Flags 1= PSD_ENABLEPAGESETUPHOOK;
psDlg.lpfnPageSetupHook = (LPPAGESETUPHOOK)(FARPROC)PageSetupHook;
psDlg.lpPageSetupTemplateName = (LPTSTR)NULL;
psDlg.lpfnPagePaintHook = (LPPAGEPAINTHOOK)(FARPROC)NULL;
break;

case 10M_CUSTOM:
psDlg.Flags 1= PSD_ENABLEPAGESETUPHOOK 1

PSD_ENABLEPAGESETUPTEMPLATE;
psDlg.lpfnPageSetupHook = (LPPAGESETUPHOOK)(FARPROC)PageSetupHook;
psDlg.lpPageSetupTemplateName = (LPTSTR)PRNSETUPDLGORD95;
psDlg.lpfnPagePaintHook = (LPPAGEPAINTHOOK)(FARPROC)NULL;
break;

II Call the Page Setup common dialog procedure.
if (PageSetupDlg (&psDlg) == FALSE)

ProcessCDError (CommDlgExtendedError (), hWnd);

Like the Open and Save As common dialog boxes, the three printing
common dialog boxes have new templates. Here's what they look like:

II Print dialog box
PRINTDLGORD DIALOG DISCARDABLE 32, 32, 288, 186
STYLE DS_MODALFRAME 1 WS_POPUP 1 WS_VISIBLE 1 WS_CAPTION 1 WS_SYSMENU 1

DS_CONTEXTHELP 1 DS_3DLOOK
CAPTION "Pri nt"
FONT 8, "MS Sans Serif"
BEGIN

GROUPBOX
LTEXT
COMBO BOX

PUSHBUTTON
LTEXT
LTEXT

"Printer",grp4,8,4,272,84,WS_GROUP
"&Name:",stc6,16,20,36,8
cmb4,52,18,152,152,CBS_DROPDOWNLIST 1 CBS_SORT
WS_VSCROLL 1 WS_GROUP 1 WS_TABSTOP
"&Properties",psh2,212,17,60,14,WS_GROU~

"Status:",stc8,16,36,36,10,SS_NOPREFIX
"",stc12;52,36,224,10,SS_NOPREFIX 1

SS_LEFTNOWORDWRAP
(continued)

187

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

188

LTEXT
LTEXT

LTEXT
LTEXT

LTEXT
LTEXT

CONTROL

GROUPBOX
CONTROL

CONTROL

CONTROL

RTEXT
EDITTEXT
RTEXT
EDITTEXT
GROUPBOX
LTEXT
EDITTEXT
ICON
CONTROL

DEFPUSHBUTTON
PUSHBUTTON

END

"Type:",stc7,16,48,36,10,SS_NOPREFIX
"",stcll,52,48,224,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Where:",stcI0,16,60,36,10,SS_NOPREFIX
"",stcI4,52,60,224,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Comment:",stc9,16,72,36,10,SS_NOPREFIX
"",stcI3,52,72,152,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Print to fi&le";chxl,"Button",BS_AUTOCHECKBOX
WS_GROUP I WS_TABSTOP,212,70,64,12
"Print range",grpl,8,92,144,64,WS_GROUP
"&All",radl,"Button",BS_AUTORADIOBUTTON I WS_GROUP
WS_TABSTOP,16,106,64,12
"Pa&ges",rad3,"Button",BS_AUTORADIOBUTTON,
16,122,36,12
"&Selection",rad2,"Button",BS_AUTORADIOBUTTON,
16,138,64,12
"&from:",stc2,52,124,20,8
edtl,74,122,26,12,WS_GROUP I ES_NUMBER
"&to:",stc3,100,124,16,8
edt2,118,122,26,12,WS_GROUP I ES_NUMBER
"Copies",grp2,160,92,120,64,WS_GROUP
"Number of &copies:",stc5,168,108,68,8
edt3,240,106,32,12,WS_GROUP I ES_NUMBER
"",ico3,162,124,76,24,WS_GROUP I SS_CENTERIMAGE
"C&ollate",chx2,"Button",BS_AUTOCHECKBOX I
WS_GROUP I WS_TABSTOP,240,130,36,12
"OK",IDOK,180,164,48,14,WS_GROUP
"Cancel",IDCANCEL,232,164,48,14

II Print Setup dialog box
PRNSETUPDLGORD DIALOG DISCARDABLE 32, 32, 288, 178
STYLE DS_MODALFRAME I WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CONTEXTHELP I DS_3DLOOK
CAPTION "Pri nt Setup"
FONT 8, "MS Sans Serif"
BEGIN

GROUPBOX
LTEXT
COMBO BOX

PUSHBUTTON
LTEXT
LTEXT

"Printer",grp4,8,4,272,84,WS_GROUP
"&Name:",stc6,16,20,36,8
cmbl,52,18,152,152,CBS_DROPDOWNLIST I CBS_SORT
WS_VSCROLL I WS_GROUP I WS_TABSTOP
"&Properties",psh2,212,17,60,14,WS_GROUP
"Status:",stc8,16,36,36,10,SS_NOPREFIX
"",stcI2,52,36,224,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP

LTEXT
LTEXT

LTEXT
LTEXT

LTEXT
LTEXT

GROUPBOX
LTEXT
COMBO BOX

LTEXT
COMBO BOX

GROUPBOX
ICON
CONTROL

CONTROL

DEFPUSHBUTTON
PUSHBUTTON

END

S I X: The New Common Dialog Boxes

"Type:", stc7 ,16,48,36, HI, SS_NOPREFIX
"",stc11,52,48,224,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Where:",stc10,16,60,36,10,SS_NOPREFIX
"",stc14,52,60,224,10,SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Comment:",stc9,16,72,36,10,SS_NOPREFIX
'"', stc13, 52,72.224,10, SS_NOPREFIX I
SS_LEFTNOWORDWRAP
"Paper",grp2,8,92.164,56,WS_GROUP
"Si&ze:".stc2,16,108,36,8
cmb2.52,106,l12,l12,CBS_DROPDOWNLIST I CBS_SORT I
WS_VSCROLL I WS_GROUP I WS_TABSTOP
"&Source:",stc3,16.128,36,8
cmb3,52,126,l12,l12,CBS_DROPDOWNLIST I CBS_SORT
WS_VSCROLL I WS_GROUP I WS_TABSTOP
"Orientation",grp1,180,92,100,56.WS_GROUP
'"', i co1,195 ,112 ,18.20, WS_GROUP
"P&ortrait",rad1,"Button",BS_AUTORADIOBUTTON
WS_GROUP I WS_TABSTOP,224,106,52,12
"L&andscape",rad2."Button",BS_AUTORADIOBUTTON,
224.126.52,12
"OK",IDOK,180,156,48,14.WS_GROUP
"Cancel",IDCANCEL,232,156,48.14

II Page Setup dialog box
PAGESETUPDLGORD DIALOG DISCARDABLE 32, 32, 240, 240
STYLE DS_MODALFRAME I WS_POPUP I WS_VISIBLE I WS_CAPTION

WS_SYSMENU I 0x4 I DS_CONTEXTHELP
CAPTION "Page Setup"
FONT 8, "MS Sans Serif"
BEGIN

CONTROL
CONTROL
CONTROL
GROUPBOX
LTEXT
COMBO BOX

LTEXT
COMBOBOX

GROUPBOX
CONTROL

CONTROL

"".rct1,"Static",SS_WHITERECT I WS_GROUP,80,8,80,80
'"', rct2, "Stati c", SS_GRAYRECT I WS_GROUP ,160 ,12,4,80
'"',rct3,"Static",SS_GRAYRECT I WS_GROUP,84,88,80,4
"Paper",grp2.8,96,224,56,WS_GROUP
"Si&ze:",stc2,16,l12,36,8
cmb2,64,l10.160,160,CBS_DROPDOWNLIST CBS_SORT
WS_VSCROLL I WS_GROUP I WS_TABSTOP
"&Source:",stc3,16,132,36,8
cmb3,64,130,160,160,CBS_DROPDOWNLIST I CBS_SORT
WS_VSCROLL I WS_GROUP I WS_TABSTOP
"Orientation",grp1,8,156,64,56.WS_GROUP
"P&ortrait",rad1,"Button".BS_AUTORADIOBUTTON
WS_GROUP I WS_TABSTOP,16,170,52,12
"L&andscape",rad2,"Button",BS_AUTORADIOBUTTON,
16,190.52,12

(continued)

189

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

GROUPBOX
LTEXT
EDITTEXT
LTEXT
EDITTEXT
LTEXT
EDITTEXT
LTEXT
EDITTEXT
DEFPUSHBUTTON
PUSHBUTTON
PUSHBUTTON

END

"Margins".grp4.80.156.152.56.WS_GROUP
"&Left:".stc15.88.172.32.8
edt4.120.170.28.12.WS_GROUP
"&Right:".stc16.164.172.32.8
edt6.196.170.28.12.WS_GROUP
"&Top:".stc17.88.192.32.8
edt5.120.190.28.12.WS_GROUP
"&Bottom:".stc18.164.192.32.8
edt7.196.190.28.12.WS_GROUP
"OK".IDOK.80.220.48.14.WS_GROUP
"Cancel".IDCANCEL.132.220.48.14
"&Printer ... ".psh3.184.220.48.14

Error Detection

190

Throughout the examples in this chapter, you might have noticed that when
ever an error occurs, the ProcessCDError function is called. This isn't a sys
tem function; rather, it's a function I wrote that gets the extended error from
the common dialog library and then displays a message box that describes
the problem. When a common dialog function fails, an application can call
the CommDlgExtendedError function, which returns an error value that
identifies the cause of the most recent error. I created a string ID table con
taining descriptions of each error. In a switch statement, I use the error code
to determine which string to load and then display in the message box.

void ProcessCDError(DWORD dwErrorCode. HWND hWnd)
{

WORD wStringID;
char buf [MAX_PATH];

switch (dwErrorCode)
{

case CDERR-STRUCTSIZE: wStringID = IDS_STRUCTSIZE; break;
case CDERR_INITIALIZATION: wStringID = IDS_INITIALIZATION; break;
case CDERR-NOTEMPLATE: wStringID = IDS_NOTEMPLATE; break;
case CDERR-NOHINSTANCE: wStringID = IDS_NOHINSTANCE; break;
case CDERR_LOADSTRFAILURE: wStringID = IDS_LOADSTRFAILURE; break;
case CDERR_FINDRESFAILURE: wStringID = IDS_FINDRESFAILURE; break;
case CDERR-LOADRESFAILURE: wStringID = IDS_LOADRESFAILURE; break;
case CDERR-LOCKRESFAILURE: wStringID = IDS_LOCKRESFAILURE; break;
case CDERR-MEMALLOCFAILURE: wStringID = IDS_MEMALLOCFAILURE; break;
case CDERR_MEMLOCKFAILURE: wStringID = IDS_MEMLOCKFAILURE; break;

S I X: The New Common Dialog Boxes

case CDERR-NOHOOK: wStringID = IDS_NOHOOK: break:
case PDERR-PARSEFAILURE: wStringID = IDS_PARSEFAl LURE: break:
case PDERR-RETDEFFAILURE: wStringID = IDS_RETDEFFAILURE: break:
case PDERR-LOADDRVFAILURE: wStringID = IDS_LOADDRVFAILURE: break:
case PDERR_GETDEVMODEFAIL: wStringID = IDS_GETDEVMODEFAIL: break:
case PDERR-INITFAILURE: wStringID = IDS_INITFAILURE: break:
case PDERR_NODEVICES: wStringID = IDS_NODEVICES: break:
case PDERR-NODEFAULTPRN: wStringID = IDS_NODEFAULTPRN: break:
case PDERR-DNDMMISMATCH: wStringID = IDS_DNDMMISMATCH: break:
case PDERR-CREATEICFAILURE: wStringID = IDS_CREATEICFAILURE: break:
case PDERR-PRINTERNOTFOUND: wStringID = IDS_PRINTERNOTFOUND: break:
case CFERR-NOFONTS: wStringID = IDS_NOFONTS: break:
case FNERR-SUBCLASSFAILURE: wStringID = IDS_SUBCLASSFAILURE: break:
case FNERR_INVALIDFILENAME: wStringID = IDS_INVALIDFILENAME: break:
case FNERR_BUFFERTOOSMALL: wStringID = IDS_BUFFERTOOSMALL: break:
case 0: II user might have clicked Cancel.

return: liar this is a *very* random error
default:

wStringID = IDS_UNKNOWNERROR:

LoadString (NULL. wStringID. buff sizeof (buf)):
MessageBox (hWnd. buff NULL. MB_OK):
return:
}

Supporting Help
An application can display a Help button in any common dialog box by speci
fying the appropriate flag in the Flags member of the structure for that com
mon dialog box. When the Help button is displayed, the application must
process the request for help from the user. This can be done in one of the
application's window procedures or in a hook function.

To have a window procedure process the request for help, the applica
tion must register the HELPMSGSTRING message identifier by calling the
RegisterWindowMessage function. (This is the same as the action that the
Find common dialog box needs to take to process the FINDMSGSTRING
message.) The application uses the hwndOwner member of the common dia
log structure in order to specify the owner for the Help window in its call to
WinHelp.

191

C HAP T E R S EVE N

Putting It All Together

As you've seen in· preceding chapters, the Win32 API for Microsoft Win
dows 95 supplies a lot of new common controls. In Windows 95, the showcase
for many of these new controls and for several of the new common dialog
boxes is Windows Explorer. Because Windows Explorer closely follows the
Windows 95 user interface design guidelines and because it includes a variety
of new common controls, many developers are likely to use it as a model for
creating applications based on the new operating system.

This chapter builds on the previous chapters by pulling together the
new common controls into an Explorer-like application that displays real es
tate listings for houses. We'll look at two samples: CHICOAPP, the original
C version of the application; and MFCEXP, the MFC-based version. (Please
note that CHICOAPP and MFCEXP are not user interface extensions. Chapter
13 will cover Windows 95 user interface extensions.)

Designing CHICOAPP
I began my work by using samples I had written for previous chapters demon
strating toolbars, status bars, tree view controls, and list view controls. I didn't
know how much time it would take to simply integrate my samples, so, to get a
head start, I brought my computer home one weekend and started to work
on the application in earnest. I was amazed at how much I was able to accom
plish in two days. By the end of the weekend, I could display and resize the
major user interface components, all of which were working in an orderly
fashion. It did, however, take more time to add all the features you see in the
final version of CHICOAPP.

193

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

194

My goals for this real estate application were to include the following
functional elements:

A toolbar (with ToolTips) for easy access to commands

A status bar displaying the currently selected city and the number
of houses listed for that city .

A tree view control displaying the cities that have houses for sale

A list view control displaying the houses for sale

Context menus

A property sheet for viewing and changing properties of the
various houses

Support for long filenames in opening and saving files

Figure 7-1 shows you the main screen of CHICOAPP, with a selected list
ing for the city of Bellevue, Washington. (Remember that the listings you see
in these text files and screen shots are purely fictional. If you are shopping for
a house, don't rely on this information!)

Tree view
control

Figure 7-1.

iCurrently selected: BeDevue

Ci 22 D affodif Lane
Ci 33542 Orchid Road

!lii'i"i4im·

The main screen of CHICOAPP.

Header items

Bellevue

List view
control

Status bar

S EVE N: Putting It All Together

Creating the Windows
To set up the basic windows for my application, I wrote a function to call the
worker functions that actually create the windows. Because these windows are
part of the new Windows 95 common control library, I first had to call Init
CommonControls to ensure that COMCTL32.DLL was loaded.

My first control was a multiple-part status bar. The left section of the
status bar displays the currently selected city, and the right section displays
the number of houses listed for that city. The following code demonstrates
how the status bar is implemented:

g_Listing.hWndStatus = CreateStatusWindow (
WS_CHILO I WS_BOROER I WS_VISIBLE, II window styles

II default window text
hwndPa rent, I I pa rent wi ndow
IO_STATUS); II 10

if (g_Listing.hWndStatus == NULL)
MessageBox (NULL, "Status Bar not created!", NULL, MB_OK);

II Set the status bar to have two parts.
lpSBParts [0] = (rcl.right - rcl.left) I 2;
lpSBParts [1] = -1;
SendMessage (g_Listing.hWndStatus, SB_SETPARTS, (WPARAM)2,

(LPARAM)&lpSBParts);

Next I created the toolbar, using the TB_ADDBITMAP message to add
built-in bitmaps for the standard file and view operations. This code fills out
the TBBUTTON structure with the predefined bitmap indexes:

II Toolbar buttons
TBBUTTON tbButtons [] =
{

} ;

{STO_FILENEW, 10M_NEW, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{STO_FILEOPEN, 10M_OPEN, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{STO_FILESAVE, 10M_SAVE, TBSTATE_ENABLEO, TBSTYLE_BUTTON~ 0L, 0},
{0, 0, TBSTATE_ENABLEO, TBSTYLE_SEP, 0L, 0},
{VIEW_LARGEICONS, IOM_LARGEICON, TBSTATE_ENABLEO, TBSTYLE_BUTTON,

0L, 0}'
{VIEW_SMALLICONS, IOM_SMALLICON, TBSTATE_ENABLEO, TBSTYLE_BUTTON,

0L, 0},
{VIEW_LIST, IOM_LISTVIEW, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0L, 0},
{VIEW_DETAILS, IOM_REPORTVIEW, TBSTATE_ENABLEO, TBSTYLE_BUTTON,

0L, 0}'

195

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

196

This piece of code creates the toolbar, as you saw earlier, in Chapter 1:

HWND CreateTheToolbar (HWND hWndParent)
{

HWND hWndToolbar;
TBADDB ITMAP tb;
int index. stdidx;

hWndToolbar = CreateToolbarEx (hWndParent.
WS_CHILD I WS_BORDER I WS_VISIBLE I WS_CHILD I TBSTYLE_TOOLTIPS.
ID_TOOLBAR. 11. (HINSTANCE)HINST_COMMCTRL. IDB_STD_SMALL_COLOR.
(LPCTBBUTTON)&tbButtons. 4. 0. 0. 10e. 30. sizeof (TBBUTTON»;

II Add the system-defined view bitmaps.
II The hlnst == HINST_COMMCTRL
II The nID == IDB_VIEW_SMALL_COLOR
tb.hInst = HINST_COMMCTRL;
tb.nID = IDB_VIEW_SMALL_COLOR;
stdidx = SendMessage (hWndToolbar. TB_ADDBITMAP. 12. (LPARAM)&tb);

II Update the indexes to the bitmaps.
for (index = 4; index < NUM_BUTTONS; index++)

tbButtons[index].iBitmap += stdidx;

II Add the view buttons.
SendMessage (hWndToolbar. TB_ADDBUTTONS. 4. (LONG) &tbButtons[4]);

return hWndToolbar;
}

As my third step, I created the list view and tree view windows, using
helper functions. I made the tree view control one-fourth the width of the
window's client area and accounted vertically for both the toolbar and the sta
tus bar, as you can see in the following code. (Note that for this sample I hard
coded the values that determine the size of the controls. If I were writing an
application for general consumption, I would instead obtain these values by
calling GetSystemMetrics.)

HWND TV_CreateTreeView (HWND hWndParent. HINSTANCE hInst. int NumCities.
CITYINFO *pCity)

HWND hwndTree;
RECT rcl;
HBITMAP hBmp;
HIMAGELIST hIml;

II handle to tree view window
II rectangle for setting size of window
II handle to a bitmap
II handle to image list

S EVE N: Putting It All Together

II Get the size and position of the parent window.
GetClientRect (hWndParent. &rcl):

II Create the tree view window. make it 1/4 the width of the parent
II window. and account for the status bar and the toolbar.
hwndTree = CreateWindowEx (0L.

WC_TREEVIEW. II window class
II no default text

WS_VISIBLE I WS_CHILD I WS_BORDER I TVS_HASLINES I
TVS_HASBUTTONS I TVS_LINESATROOT. I WS_EX_CLIENTEDGE.

0. 27. I I x. y
(rcl.right - rcl.left) I 4. II c~
rcl.bottom - rcl.top - 45. II cy
hWndParent. II parent
(HMENU)ID_TREEVIEW. II 10
hInst. II instance
NULL):

if (hwndTree == NULL)
{

MessageBox (NULL, "CreateWindow of TreeView failed!". NULL. MB_OK):
return NULL:

}

II First create the image list you will need.
hIml = ImageList_Create (BITMAP_WIDTH. BITMAP_HEIGHT. FALSE. 2. 10):

if (hIml == NULL)
MessageBox (NULL. "ImageL i st_Create fa il ed!". NULL. MB_OK):

II Load the bitmaps and add them to the image list.
hBmp = LoadBitmap (hlnst. MAKEINTRESOURCE (FORSALE_BMP»:
idxForSale = ImageList_Add (hIml. hBmp. NULL):
hBmp = LoadBitmap (hlnst. MAKEINTRESOURCE (CITY_BMP»:
idxCity = ImageList_Add (hIml. hBmp. NULL):
hBmp = LoadBitmap (hlnst. MAKEINTRESOURCE (SELCITY_BMP»:
idxSelect = ImageList_Add (hIml. hBmp. NULL):

II Be sure that all the bitmaps were added.
if (ImageList_GetImageCount (hIml) != 3)
{

MessageBox (NULL. "TreeView image list not loaded!". NULL. MB_OK):
return FALSE:

II Associate the image list with the tree view control.
TreeView_SetlmageList (hwndTree. hIml. idxForSale):

(continued)

197

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

198

II Initialize the tree view control by adding "Houses For Sale."
TV_InitTreeView (hInst. hwndTree);

return hwndTree;
}

I created the list view window, made it three-fourths the width of the
parent window's client area, placed it on the right side of the area, and ac
counted vertically for the toolbar and the status bar, using this code:

HWND LV_CreateListView (HWND hWndParent. HINSTANCE hInst. int NumHouses.
HOUSEINFO *pHouse)

{

HWND hWndLi st;
RECT rcl;
HICON hIcon;
int index;
HIMAGELIST hSmall. hLarge;
LV_COLUMN lvC;
char szText [MAX_ITEMLENJ;
int iWidth;

II handle to list view window
II, rectangle for setting size'of window
II handle to an icon
II index used in for loops
II handles to image lists
II list view column structure
II place to store some text
II column width

II Get the size and position of the parent window.
GetClientRect (hWndParent. &rcl);

iWidth = (rcl.right - rcl.left) - «rcl.right - rcl.left) I 4);

II Create the list view window. make it 3/4 the width of the
II parent window. and account for the status bar and the tool bar.
hWndList = CreateWindowEx (0L.

WC_LISTVIEW.

WS_VISIBLE I WS_CHILD I WS_BORDER I
(rcl.right - rcl.left) I 4. 27.
iWidth. rcl.bottom - rcl.top - 42.
hWndParent.
(HMENU)ID_LISTVIEW.
hInst.
NULL) ;

if (hWndList
return NULL;

NULL)

II list view class
II no default text

LVS_REPORT I WS_EX_CLIENTEDGE.
II x. y
I I cx. cy
II parent
I I I D
II instance

II First initialize the image lists you 'will need.
II Create image lists for the small and the large icons.
II TRUE specifies small icons;' FALSE specifies large.

S EVE N: Putting It All Together

hSmall = ImageList_Create (BITMAP_WIDTH. BITMAP_HEIGHT. TRUE. 1. 0);
hLarge = ImageList_Create (LG_BITMAP_WIDTH. LG_BITMAP_HEIGHT. FALSE.

1. 0);

II Load the icons and add them to the image lists.
hlcon = Loadlcon (hln~t. MAKEINTRESOURCE (HOUSE_ICON»;
if «ImageList_Addlcon (hSmall. hlcon) == -1) II

}

(ImageList_Addlcon (hLarge. hlcon) == -1»

MessageBox (NULL. "ImageLi st_Add Icon fa il ed!". NULL, MB_OK);
return NULL;

II Associate the image lists with the list view control.
ListView_SetlmageList (hWndList. hSmall. LVSIL_SMALL);
ListView_SetlmageList (hWndList. hLarge. LVSIL_NORMAL);

II Initialize'the LV_COLUMN structure.
II The mask specifies that the fmt. ex. pszText. and iSubitem
II members of the structure are valid.
lvC.mask = LVCF_FMT I LVCF_WIDTH I LVCF_TEXT I LVCF_SUBITEM;
lvC.fmt = LVCFMT_LEFT; II l~ft-align column
lvC.cx = iWidth I NUM_COLUMNS + 1; II width of column in pixels
lvC.pszText = szText:

II Add the columns.
for (index = 0; index < NUM_COLUMNS; index++)
{

lvC.iSubltem = index;
LoadString (hlnst.

IDS_ADDRESS + index.
szText.
sizeof (szText»;

if (ListView_InsertColumn (hWndList. index. &lvC) -1)
return NULL;

return hWndList;
}

Using MFC to Create the Same Controls
After writing the C version of the sample application, I decided (with just a bit
of prodding-my electronic mailbox was filling up with requests for an MFC
version) to port CHICOAPP to MFC. The MFC version contains a few small
changes: I added separate icons for the cities, and I used the same image list

199

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

200

both for the tree view control and for the list view control in small icon view.
I created all the application windows in one function, CreateAppWindows,
and left sizing the windows to the WM_SIZE handler.

BOOL CMfcexpView::CreateAppWindows ()
{

static char szBuf
H1CON h1con;
int index;
LV_COLUMN lvC;

[MAX_PATHJ;
II
II
II

char szText [MAX_ITEMLENJ; II

handle to an icon
index used in for loops
list view column structure
place to store some text

II Ensure that the common control DLL is loaded.
1nitCommonControls ();

II Create the status bar.
m_StatusBar.Create (WS_CH1LD I WS_BORDER I WS_V1S1BLE I SBS_S1ZEGR1P,

CRect (e, e, 0, O),
this,
1D_STATUSBAR);

II Set the status bar to have two parts.
int aWidths [2J = {a, a};

m_StatusBar.SetParts (2, aWidths);
II Set the text for the status bar.
ChangeSBText (-1);

II Create the toolbar.
m_Toolbar.Create (

WS_CH1LD I WS_BORDER I WS_V1S1BLE I TBSTYLE_TOOLT1PS,
CRect (0, 0, 0, 0),
this,
1D_TOOLBAR);

II Add the bitmaps.
m_Toolbar.AddBitmap (NUM_B1TMAPS, 1DB_TOOLBAR);

II Add the buttons.
m_Toolbar.AddButtons (NUM_BUTTONS, (LPTBBUTTON)&tbButtons);

II Create the CListCtrl window.
m_ListCtl.Create (

II styles

WS_V1S1BLE I WS_CH1LD I WS_BORDER I LVS_REPORT I LVS_ED1TLABELS,
CRect (0, 0, 0, O), II bounding rectangle
this, II parent
1D_LISTV1EW); I I 1D

S EVE N: Putting It All Together

II Create the large icon image list.
m_ImageLarge.Create (LARGE_BITMAP_WIDTH.

LARGE_BITMAP_HEIGHT.
FALSE. II list does not 1nclude masks
NUM_BITMAPS.
10): II list won't grow

II Create the small icon image list.
m_ImageSmall.Create (SMALL_BITMAP_WIDTH.

SMALL_BITMAP_HEIGHT.
FALSE. II list does not include masks
NUM_B ITMAPS.
10): II list won't grow

II Load the house icon.
hIcon = ::LoadIcon (AfxGetResourceHandle ().

MAKEINTRESOURCE (IDI_SEATTLE»:
m_idxSeattle = m_ImageSmall.Add (hIcon):
m_ImageLarge.Add (hIcon);
hIcon = ::LoadIcon (AfxGetResourceHandle ().

MAKEINTRESOURCE (IDI_BELLEVUE»:
m_idxBellevue = m_ImageSmall .Add (hlcon):
m_ImageLarge.Add (hIcon):
hIcon = ::LoadIcon (AfxGetResourceHandle ().

MAKEINTRESOURCE (IDI_REDMOND»:
m_idxRedmond = m_ImageSmall .Add (hlcon):
m_ImageLarge.Add (hIcon):

II Associate the image lists with the list view control.
m_ListCtl.SetImageList (&m_ImageSmall. LVSIL_SMALL):
m_ListCtl.SetImageList (&m_ImageLarge. LVSIL_NORMAL):

II Now initialize the columns you will need.
II Initialize the LV_COLUMN structure.
II The mask specifies that the fmt. cx. pszText. and iSubitem

. II members of the structure are valid.
lvC.mask = LVCF_FMT I LVCF_WIDTH I LVCF_TEXT I LVCF_SUBITEM:
lvC.fmt = LVCFMT_LEFT: II left-align column
lvC.cx = 75;
lvC.pszText = szText:

II width of column in pixels

(continued)

201

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

202

II Add the columns.
for (index = 0: index < NUM_COLUMNS: index++)
{

}

lvC.iSubltem = index:
::LoadString (AfxGetResourceHandle (),

IDS_ADDRESS + index,
szText,
sizeof (szText»:

if (m_ListCtl.lnsertColumn (index, &lvC) -1)

return NULL:

II Create the tree view control.
m_TreeCtl.Create (
WS_VISIBLE I WS_CHILD I WS_BORDER I TVS_HASLINES I TVS_HASBUTTONS I

TVS_LINESATROOT, II styles
CRect (0, 0, 0, 0), II bounding rectangle
this, II parent
ID_TREEVIEW): II ID

II Load the bitmaps and add them to the image list.
hlcon = ::Loadlcon (AfxGetResourceHandle (),

MAKEINTRESOURCE (IDI_FORSALE»:
m_idxForSale = m_ImageSmall.Add (hlcon):
hlcon = ::Loadlcon (AfxGetResourceHandle (),

MAKEINTRESOURCE (IDI_SELECTED»:
m_idxSeaSel = m_ImageSmall.Add (hlcon):
hlcon = ::Loadlcon (AfxGetResourceHandle (),

MAK~INTRESOURCE (IDI_SELBELL»:
m_idxBellSel = m_ImageSmall .Add (hlcon):
hlcon = ::Loadlcon (AfxGetResourceHandle (),

MAKEINTRESOURCE (IDI_REDSEL»;
m_idxRedSel = m_ImageSmall.Add (hlcon):

II Associate the image list with the tree view control.
m_TreeCtl.SetlmageList (TVSIL_NORMAL, &m_ImageSmall);

TV_InitTreeView ():
return TRUE;
}

As you can see in Figure 7-2, the main screen ofMFCEXP is quite similar
to that of CHICOAPP. One exception is the toolbar. Instead of using the
built-in toolbar bitmaps, I created my own and included buttons for adding a
house, removing a house, and adding a city to the listing.

S EVE N: Putting It All Together

lDl 555 Tracy Road Seattle
lDl 446 Jean Street Seattle

.... rNumb~loil;ou$es:I

Figure 7-2.
The main screen of MFCEXP.

Resizing the Windows
When I finished creating the windows, I had to' find an easy way to resize the
application's main window. In the C version, I used the handy DeferWindow
Pos function to resize all the windows at the same time. For those who are new
to Win32, DeferWindowPos updates a structure that contains multiple win
dow positions. You use this function as you would use the window enumera
tion functions-that is, you begin, defer, and end. This code illustrates how I
resized all the windows:

BOOl ResizeWindows (HWND hwnd)
{

RECT rcl;
HDWP hdwp;

II Get the client area of the parent window.
GetClientRect (hwnd, &rcl);

II You will defer all the application's windows.
hdwp = BeginDeferWindowPos (NUM_WINDOWS);

II First. reset the size of the status bar.
DeferWindowPos (hdwp. g_listing.hWndStatus. NUll. 0. 0.

rcl.right - rcl.left. 20. SWP_NOZORDER I SWP_NOMOVE);

II Next. reset the size of the toolbar.
DeferWindowPos (hdwp. g_listing.hWndToolbar. NUll. 0. 0.

rcl.right - rcl.left. 20. SWP_NOZORDER I SWP_NOMOVE);
(continued)

203

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

204

II Next~ reset the size of the tree view control.
DeferWindowPos (hdwp.g_Listing.hWndTreeView. NULL. 0. 0.

(rcl.right - rcl.left) I 4. rcl.bottom - rcl.top - 46.
SWP_NOZORDER I SWP_NOMOVE);

II Last. reset the size of the list view control.
DeferWindowPos (hdwp. g_Listing.hWndListView. NULL.

(rcl.right - rcl.left) I 4. 27.
(rcl.right - rcl.left) - «rcl.right - rcl.left) 14).
rcl.bottom - rcl.top - 46.
SWP_NOZORDER);

return EndDeferWindowPos (hdwp);
}

In MFCEXP, I added a handler for the WM_SIZE message, OnSize, to
set the window positions for all the windows. The CToolBarCtrl class includes
AutoSize, a special member function that resizes the toolbar to fit within the
parent window.

void CMfcexpView::OnSize (UINT nType. int cx. int cy)
{

CView::OnSize (nType. cx. cy);

II Resize the tool bar.
m_Toolbar.AutoSize ();

II Resize the status bar.
II Make it fit along the bottom of the client area.
m_StatusBar.MoveWindow (0. cx - 10. cy. cy - 10);

II Set the rectangle for each part of the status bar.
II Make each 1/2 the width of the client area.
int aWidths [2];

aWidths [0] = cx I 2;
aWidths [1] = -1;
m_StatusBar.SetParts (2. aWidths);

m_TreeCtl.MoveWindow (0. 25. cx I 4. cy - 45);

m_ListCtl.MoveWindow (cx I 4. 25. cx. cy - 45);
}

5 EVE N: Putting It All Together

Parsing and·Storing the Data
After creating and resizing my windows, I needed a method for reading in
and storing the data for the various house listings. In my original samples, I
used static arrays filled with dummy information. This technique is great if
you never intend to change the information you are displaying. But in a work
ing application, it makes sense to provide for dynamic data changes.

The easiest way to store the data is to save it in a file. I decided to use an
ASCII file because it is easy to test and easy to alter. The file contains the follow
ing information:

Number of cities

Name of city (one name per line)

[J Number of houses

61 Information about each house (one house per line, with each item
of information separated by a comma)

Here's what the ASCII file looks like:

3
Bellevue
Redmond
Seattle
9
100 Berry Lane.Redmond.175000.3.2.Joan Smith.555-1212
523 Apple Road.Redmond.125000.4.2.Ed Jones.555-1111
1212 Peach Street.Redmond.200000.4.3.Mary Wilson.555-2222
22 Daffodil Lane.Bellevue.2500000.4.4.Joan Smith.555~1212
33542 Orchid Road.Bellevue.180000.3.2.Ed Jones.555-1111
64134 Lily Street.Bellevue.250000.4.3.Mary Wilson.555-2222
33 Nicholas Lane.Seattle.350000.3.2.Joan Smith.555-1212
555 Tracy Road.Seattle.140000.3.2.Ed Jones.555-1111
446 Jean Street.Seattle.2250~0.4.3.Mary Wilson.555-2222

Parsing the file was simply a matter of using sscanf, converting some of
the strings to integers, copying the data to my data structure, and updating
my file pointer. The data structures I used contained information about the
houses, the cities, and the current state of the application. I filled out a
CITYINFO structure for each city listed and a HOUSEINFO structure for
each house listed. When saving the information to a file, I reversed the proce
dure. The code on the next page shows what the structures look like.

205

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

206

typedef struct tagCITYINFO
{

char szCity [MAX_CITY];
int NumHouses;
HTREEITEM hItem;

II city name
II number of houses listed in this city
II handle to tree view item

} CITYINFO;

typedef struct tagHOUSEINFO
{

char szAddress [MAX_ADDRESS];
char szCity [MAX_CITY];
int iPrice;
int iBeds;
int iBaths;
int iImage;
char szAgent [MAX_CITY];
char szNumber [MAX_CITY];

} HOUSEINFO;

II address
I I city
II price
II number of bedrooms
II number of bathrooms
II bitmap index for this house
II listing agent
II listing agent's phone number

When I ported CHICOAPP to MFC, I stored data in the view class in
member variables rather than using the LISTINFO structure:

typedef struct tagCITYINFO
{

CString szCity;
int NumHouses;
HTREEITEM hItem;

} CITYINFO;

I I city name
II number of houses listed in this city
II handle to tree view item

typedef struct tagHOUSEINFO
{

CString szAddress;
CString szCity:
int iPrice;
int iBeds:
int iBaths:
int iImage:
CString szAgent;
CString szNumber;

} HOUSEINFO;

class CMfcexpView : public CView
{

protected: II create from serialization only
CMfcexpView ();
DECLARE_DYNCREATE (CMfcexpView);

}

II Common controls
CToolBarCtrl m_Toolbar:
CStatusBarCtrl m_StatusBar:
CListCtrl m_ListCtl:
CImageList m_ImageLarge:
CImageList m_ImageSmall:
CTreeCtrl m_TreeCtl:

S EVE N: Putting It All Together

II tool bar
II status bar
II list view control
II large (32-by-32) image list
II small (16-by-16) image list
II tree view control

II Indexes to icons in the tree view image list
int m_idxForSale:
int m_idxSeattle:
int m_idxSeaSel:
int m_idxRedmond:
int m_idxRedSel:
int m_ i dxBell evue:
int m_idxBellSel:

II Handles to the root. parent. and previous tree view items
HTREEITEM m_hTPrev;
HTREEITEM m_hParent;
HTREEITEM m_hTRoot;

II House listing information
int m_NumCities: II number of cities
int m_NumHouses: II number of houses
int m_iSelected; II index to selected city
int m_iSelHouse: II index to selected house
HOUSEINFO m_rgHouses [MAX_HOUSES]:
CITYINFO m_rgCities [MAX_CITIES];

II Pointer to buffer for listing data
char *m_lpBufPtr:

II Current file opened
LPTSTR m_lpstrFile;

In the MFC version of the sample, I replaced the character arrays that
hold textual information with CString instances. This made it very easy to com
pare strings and get information to and from the dialog boxes. (You'll see this
code later in the chapter.) It wasn't so easy, however, to use the C run-time
sscanf to get information from the data file. With character arrays (for ex
ample, char szAddress [lVIAX_ADDRESSl), sscanfworks perfectly; but when you
use CStrings, this function does not work. To get around this, I used a char
acter buffer and copied the string from the character buffer into CStrings.

207

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

II Read the house information for each line.
for (count = 0; count < g_Listing.NumHouses; count++)
{

}

result = sscanf (lpBufPtr,
"%["', '],%["', '],%["', '],%["', '],%["', '],%["', '],%s",

rgHouses[count].szAddress,
rgHouses[count].szCity,
szTemp, szBeds, szBaths,
rgHouses[count].szAgent,
rgHouses[count].szNumber);

rgHouses[count].iPrice = atoi (szTemp);
rgHouses[count].iBeds = atoi (szBeds);
rgHouses[count].iBaths = atoi (szBaths);

Using the Common Dialog Boxes

208

To support long filenames (and to save some time), I used two of the Windows
95 common dialog boxes to open and save the house-listing information. I
was actually able to use some code I had written for the Windows 3.1 common
dialog boxes; when I recompiled, the application displayed the new dialog
boxes. I had to strip off the filename extension (TXT, in this case) before I set
the caption text for the main window. As you can see in Figure 7-3 on the next
page, the Open common dialog box has no problem with long filenames,
such as Listingfor Puget Sound or Another Saved Listing.

You'll see some differences between the code used to handle common
dialog boxes in CHICOAPP and that used in MFCEXP. MFC has built-in sup
port for the File Open and File New functions. The AppWizard tool adds
entries to the message map for the application in the main module's CPP
file-in this case, MFCEXP.CPP:

BEGIN_MESSAGE_MAP (CMfcexpApp, CWinApp)
II {{AFX_MSG_MAP (CMfcexpApp)
ON_COMMAND (ID_APP_ABOUT, OnAppAbout)
II NOTE: ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!
II }}AFX_MSG_MAP
II Standard file-based document commands
liON_COMMAND (10M_NEW, CWinApp::OnFileNew)
liON_COMMAND (10M_OPEN, CWinApp::OnFileOpen)

END_MESSAGE_MAP ()

S EVE N: Putting It All Together

§! Another Saved Listing

ID Houses

!llmEdMRBI
ID Test

I~isti~g forPugetS~und

Files of !ype: I T ext Files [",TXT)

Figure 7-3.
The Open common dialog box used in CHICOAPP.

.Q.pen

Cancel

Help

In my MFCEXP sample, the file input/ output commands are handled
in the view class. In response to a command to open or save a file, the appli
cation calls the common dialog box directly through the CFileDialog class.
When creating the class, the application passes initialization information that .
is used to fill out the OPENFILENAME structure. This structure can be ac
cessed directly through the m_ofn member variable:

void CMfcexpView::OnOpen ()
{

CFileDia10g D1g (TRUE, "*.txt", m_1pstrFile,
OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT,
szFi1ter);

if (D1g.DoModa1 () lOOK)
{

HANDLE hFile;
DWORD dwBytesRead;
DWORD dwFi1eSize;

if «hFi1e = CreateFi1e «LPCTSTR) D1g.m_ofn.1pstrFi1e,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL» == (HANDLE)(-l»

(continued)

209

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

210

}

}

}

AfxMessageBox ("File open failed."):
return:

II Get the size of the file.
dwFileSize = GetFileSize (hFile, NULL):
if (dwFileSize == 0xFFFFFFFF)
{

}

AfxMessageBox ("GetFileSize failed!"):
return:

II Allocate a buffer to read the file into.
m_lpBufPtr = (char *) malloc (dwFileSize):
if (m_lpBufPtr == NULL)
{

}

AfxMessageBox ("malloc failed!"):
CloseHandle (hFile):
return:

II Read the file contents into the buffer.
ReadFile (hFile, (LPVOID)m_lpBufPtr, dwFileSize, &dwBytesRead, NULL):

if (dwBytesRead == 0)
{

}

AfxMessageBox ("Zero bytes read."):
return:

II Close the file.
CloseHandle (hFile):

II Parse the file buffer.
if (ParseFile (»:
{

}

lstrcpy (m_lpstrFile, Dlg.m_ofn.lpstrFileTitle):
II Reset the title in the title bar.
GetParentFrame() -> SetWindowText(m_lpstrFile):
II Redraw the title bar.
GetParentFrame() -> Invalidate(TRUE):

S EVE N: Putting It All Together

Handling Notifications
The application uses nQtifications extensively to manipulate the behavior and
the appearance of the controls. Because toolbars, status bars, tree view con
trols, and list view controls all expect notifications, I had to ensure that each
control could get the notifications it needed. In the main window procedure
for my C application, I simply trapped the WM_NOTIFY message and either
handled the toolbar notifications directly or passed the notifications to the
handlers I wrote.

For the toolbar, I was interested only in the TTN_NEEDTEXT notifica
tion, which is sent whenever the system needs to display a ToolTip associated
with a toolbar button. In response to this notification, the application must
load the appropriate text string into the lpszText member of the LPTOOLTIP
TEXT structure:

case WM_NOTI FY:
lpToolTipText = (LPTOOLTIPTEXT)lParam;
if (lpToolTipText->hdr.code == TTN_NEEDTEXT)
{

}

LoadString (g_Listing.hInst,
lpToolTipText->hdr.idFrom,
szBuf,
sizeof (szBuf»;

lpToolTipText->lpszText = szBuf;

II string 10 == cmd 10

My tree view control has a very simple notification handler that handles
only the TVN_SELCHANGED notification (which is sent to the tree view con
trol whenever the selection changes). In response to this notification, I needed
to update the list view con trol and the status bar to reflect the house listings
for the newly selected city, as shown here:

VOID UpdateListView (HWND hwndLV, int iSelected)
{

int count, index;

II Remove the previous items.
LV_RemoveAllItems (hwndLV);

II Loop through the house listings.
for (index = 0, count = 0; count < g_Listing.NumHouses; count++)
{

II If the house is listed for the new city ...
if (strcmp (rgHouses[count].szCity, rgCities[iSelected].szCity) == 0)

(continued)

211

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

212

}

}

{

}

II Add the house to the list view control.
if (! LV_Addltem (hwndLV, index, &rgHouses[count]»

MessageBox (NULL, "LV_AddItem failed!", NULL, MB_OK);
index++;

Handling notifications for the list view control is a bit more compli
cated. I implemented this control using a callback that receives the text for
each item, so the notification handler needs to trap the LVN_GETDISPINFO
notification and fill in the pszText member of the LV_ITEM structure with the
appropriate text, depending on the column. This notification handler must
also process the LVN_COLUMNCLICK notification, which is sent when the
user clicks a column header. In response, the application must sort the items
in the list view control based on the criterion specified by the header. For ex
ample, if the user clicks the Bedrooms column header, the application sorts
the list in ascending order by the number of bedrooms in each house.

I provided a simple callback procedure that is called through the List
View_Sortitems function. This procedure then sorts the data using simple
math (returning the greater of two values) for columns with integer values
and using the strcmpfunction for columns with string values.

LRESULT LV_NotifyHandler (HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam, HINSTANCE hlnst)

LV_DISPINFO *pLvdi = (LV_DISPINFO *)lParam;
NM_LISTVIEW *pNm = (NM_LISTVIEW *)lParam;
HOUSEINFO *pHouse = (HOUSEINFO *) (pLvdi->item.1Param);
static char szText [TEMP_LEN];

if (wParam != ID_LISTVIEW)
return 0L;

sWitch(pLvdi->hdr.code)
{

case LVN_GETDISPINFO:
switch (pLvdi->item.iSubltem)
{

case 0: II address
pLvdi->item.pszText = pHouse->szAddress;
break;

S EVE N: Putting It All Together

case 1: II city
pLvdi-)item.pszText pHouse-)szCity;
break;

case 2: II price
sprintf (szText. "$%u". pHouse-)iPrice);
pLvdi-)item.pszText = szText;
break;

case 3: II number of bedrooms
sprintf (szText. "%u". pHouse-)iBeds);
pLvdi-)item.pszText = szText;
break;

case 4: II number of bathrooms
sprintf (szText. "%u". pHouse-)iBaths);
pLvdi-)item.pszText = szText;
break;

default:
break;

case LVN_COLUMNCLICK:
II The user clicked a column header; sort by this criterion.
ListView_Sortltems (pNm-)hdr.hwndFrom.

ListViewCompareProc.
(LPARAM) (pNm-)iSubltem));

break;

default:
break;

return 0L;
}

Adding Context Menus
Next I wanted to add a context menu. This requires handling the WM_CON
TEXTMENU message, which is sent when the user clicks the right mouse but
ton in the client window. For instance, when the user right-clicks a list view

213

PAR T· I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

item (the wParam parameter is filled in with the handle of the window that
received the right click), a context menu for that item appears.

This task is straightforward. Basically, you load the menu and call Track
PopupMenu, as you would in a 16-bit Windows-based application. When the
user chooses an item from the context menu, the appropriate command is
generated and sent to the window procedure as a WM_COMMAND message.
The following code, from the main window procedure, demonstrates how to
handle the WM_CONTEXTMENU message:

case WM_CONTEXTMENU:
II The right mouse button has been clicked.
if «HWND)wParam == g_Listing.hWndListView)
{

II Get the context menu from the resource file.
hMenu = LoadMenu (g_Listing.hlnst. "HousePopupMenu");
if (1 hMenu)

break;;

II Get the first item in the menu for TrackPopupMenu().
hMenuTrackPopup = GetSubMenu (hMenu. e);

II Draw and track the "floating" menu.
TrackPopupMenu (hMenuTrackPopup.

TPM_LEFTALIGN I TPM_RIGHTBUTTON.
LOWORD(lParam). HIWORD(lParam).
e. g_Listing.hWndListView. NULL);

II Destroy the menu.
DestroyMenu (hMenu);

}

break;

Incorporating a Property Sheet

214

In this application, I implemented a property sheet with two property sheet
pages. One allows the user to view and change the properties for a particular
house listing (for example, the address and the city); the other displays infor
mation about the listing agent (for example, the agent's name and phone
number), which the user can also change. Figure 7-4 shows the House Listing
property sheet page.

S EVE N: Putting It All Together

IRedmond

1'?500q

r Bathrooms: ~

I' OK Cancel 8Pply

Figure 7-4.
The House Listing property sheet page.

Processing a property sheet page is similar to processing a dialog box,
with one major difference: when you process a property sheet page, you
handle notifications instead of the commands generated for the OKand Can
cel buttons. I could process my property sheet pages as follows:

Save the original values for the house or agent in response to the
WM_INITDIALOG message.

Reset the values for the house or agent in response to the
PSN_APPLYand PSN_KILLACTIVE notifications.

Reset the values for the house or agent in response to a PSN_RESET
notification.

In response to the PSN_SETACTIVE notification, set the edit fields
in the page for the item.

To initialize the property sheet pages, I had to determine which house
was currently selected and save that information for future reference. The
House Listing page is displayed first. Responding to the WM_INITDIALOG
message offers the first chance to determine the currently selected house. I
used the code on the following page to determine the index of the selected
house within my global array of houses.

215

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

216

char szTemp [MAX_ADDRESS];
static char szAddSave [MAX_ADDRESS];
static char szCitySave [MAX_CITY];
static int iPrice, iBeds, iBaths;
BOOL bErr;
int index, count;
LV_ITEM lvItem;

case WM_INITDIALOG:
II Fill in the list box with the cities.
for (index = 0; index < g_Listing.NumCities; index++)

SendDlgItemMessage (hDlg, IDE_CITY, CB_INSERTSTRING,
(WPARAM)(-1), (LPARAM)(rgCities[index].szCity»;

II Get the index to the selected list view item.
index = ListView_GetNextItem (g_Listing.hWndListView,

-1, MAKELPARAM (LVNI_SELECTED, 0»;

II Get the house address.
lvItem.iItem = index;
lvItem.iSubItem = 0;
lvItem.mask = LVIF_TEXT;
lvItem.cchTextMax = sizeof (szAddSave);
lvItem.pszText = szAddSave;
ListView_GetItem (g_Listing.hWndListView,&lvItem);

II Find the house in the list.
for (count = 0; count < g_Listing.NumHouses; count++)
{

if (strcmp (lvItem.pszText, rgHouses[count].szAddress) 0)
break;

}

g_Listing.iSelHouse = count;

My other property sheet page, Listing Agent, allows the user to view and
change the name and phone number of the listing agent associated with the
selected house. I used similar code to handle this page, except that I modi
fied the szAgent and szNumber members of the HOUSEINFO structure in
stead of altering the other house-specific fields. Figure 7-5 shows the Listing
Agent property sheet page.

S EVE N: Putting It All Together

Agent Name: INicbol~s Cillts

Phone number: 1555:1111

OK Cancel I· cS0piy

Figure 7-5.
The Listing Agent property sheet page.

Creating a Property Sheet in MFC
For the MFC-based sample, I decided to use the built-in classes CProperty
Sheet and CPropertyPage, which require considerably less code than I had to
implement in the C version of the sample. The property sheet is displayed in
response to the House Properties command.

void CMfcexpView::OnProperties ()
{

if (m_iSelected == -1)
return;

II Create a property sheet object.
CPropertySheet dlgPropertySheet ("House Properties", this);
CHouse dlgHouse;
CAgent dlgAgent;
int index, count;
LV_ITEM lvltem;
char szAddSave [MAX_ADDRESS];

dlgPropertySheet.AddPage (&dlgHouse);
dlgPropertySheet.AddPage (&dlgAgent);

(continued)

217

PAR T I: NEW COMMON CONTROLS AND COMMON DIALOG BOXES

218

II Fill in the list box with the cities.
for (index = 0; index. < m_NumCities; index++)

SendDlgItemMessage (IDC_CITY. CB_ADDSTRING. 0.
(LPARAM) (LPCTSTR) m_rgCities[index].szCity);

II Get the index to the selected list view item.
index = m_ListCtl.GetNextItem (-1. LVNI_SELECTED);

II Get the house address.
lvItem.iltem = index;
lvltem.iSubItem = 0;
lvItem.mask = LVIF_TEXT;
lvItem.cchTextMax = sizeof (szAddSave);
lvItem.pszText = szAddSave;
m_ListCtl.GetItem (&lvltem);

II Find the house in the l.ist.
for (count = 0; count < m_NumHouses; count++)
{

if (strcmp (lvltem.pszText. m_rgHouses[count].szAddress) 0)
break;

}

m_iSelHouse = count;

dlgHouse.m_Address = m_rgHouses[m_iSelHouse].szAddress;
dlgHouse.m_City = m_rgHouses[m_iSelHouse].szCity;
dlgHouse.m_Price =m_rgHouses[m_iSelHouse].iPrice;
dlgHouse.m_Bedrooms = m_rgHouses[m_iSelHouse].iBeds
dlgHouse.m_Bathrooms m_rgHouses[m_iSelHouse].iBaths;

dlgAgent.m-AgentName m_rgHouses[m_iSelHouse].szAgent;
dlgAgent.m_PhoneNumber = m_rgHouses[m_iSelHouse].szNumber;

if (dlgPropertySheet.DoModal () == IDOK)
{

}

}

·m_rgHouses[m_iSelHouse].szAddress = dlgHouse.m-Address;
m_rgHouses[m_iSelHouse].szCity = dlgHouse.m_City;
m_rgHouses[m_iSelHouse].iPrice = dlgHouse.m_Price;
m_rgHouses[m_iSelHouse].iBeds = dlgHouse.m_Bedrooms;
m_rgHouses[m_iSelHouse].iBaths = dlgHouse.m_Bathrooms;

. m_rgHouses[m_iSelHouse].szAgent = dlgAgent.m_AgentName;
m_rgHouses[m_iSelHouse].szNumber = dlgAgent.m_PhoneNumber;

GetDocument() -) SetModifiedFlag();
GetDocument() -) UpdateAllViews(NULL);

PAR T II

USING THE NEW
USER INTERFACE
FEATURES

C HAP T E R E I G H T.

Support for Long Filenames

Until recently, if you wanted to create and name a file in a Windows-based
application, you were limited to a filename of only eight characters, plus a
three-character extension. As a result, your directories were filled with cryp
tically named files such as STKREPT.XLS and STAT794.DOC. Microsoft
Windows NT version 3.1 was the first system to remove this limitation; now
Microsoft Windows 95 brings the power oflong filenames to the masses. This
chapter covers the file systems that Win32 supports and explains how you, as
a developer, can support long filenames in your applications.

STK4Q94.XLS?
The limitations on the length and content of filenames in previous versions
of Windows have understandably been a source of much grumbling among
application developers and end users alike. How many times have you had to
save a file with a name such as STK4Q94.XLS or STJUL94.DOC when you
wanted to use a more informative description such as Stock Report Analysis 4Q
1994 or Monthly Status Report for July 1994? The good news is that the most re
cent Microsoft operating systems (Windows NT and Windows 95) will let you
use those descriptive filenames. If you are using the Win32 API to develop ap
plications for these systems, you will be able to support long filenames for
your end users.

Is Your System FAT?
Applications rely on file systems to store and retrieve information from mass
storage devices. File systems organize data on hard disks and (sometimes) on
floppy disks. Your file system gives you the ability to create and access files and
directories on the individual volumes (disks) associated with the devices in an

221

PAR T II: USING THE NEW USER INTERFACE FEATURES

application. Depending on the configuration of a computer, a Win32-based
application might have access to volumes managed by any of the following
file systems:

File allocation table (FAT) file system

Protected-mode FAT file system (VFAT, short for virtual FAT)

High-performance file system (HPFS)

Windows NT file system (NTFS)

The FAT File System

222

The FAT file system organizes data on both hard disks and floppy disks. If
you have a FAT file system running on your computer, you have no doubt
slammed up against its filename convention, lovingly referred to as 8.3 (pro
nounced "eight-dot-three"). This convention requires that a filename consist
of no more than eight characters, followed by a separating period (.) and a
filename extension of no more than three characters.

The main advantage of FAT volumes is that they can be accessed by MS
DOS, Microsoft Windows, and OS/2 systems. The FAT file system is currently
supported on floppy disks and other removable media. The major disadvan
tages of FAT volumes are the limitations on the length and content of file
names and the lack of Unicode support. (Unicode is a character-encoding
standard used worldwide, which helps to simplify the localization process.)

Valid FAT filenames have the following form:

[drive:] [directory\]filename[. extension]

drive, which must be followed by a colon (:), specifies the name of an
existing drive. It can be any letter from A through Z.

directory specifies which directory contains the file. It is separated from
the filename by a backslash (\), and it must be either the full path, including
the root directory, or the relative path from the current directory. A directory
name contains no more than eight characters (and can have an optional
three-character extension, preceded by a peri'od) using any combination of
letters, digits, and the following special characters:

$%'--@{}-'!#()

filename consists of no more than eight letters, digits, and special charac
ters. It can include embedded spaces if each space is preceded and followed by
one or more legal characters. For example, the string disk 1 is a legal filename.
Bear in mind, however, that although a space is a valid character in the FAT

E I G H T: Support for Long Filenames

file system, many applications do not support spaces in filenames, so it's not
a good idea to include them. Furthermore, FAT volumes do not distinguish
between uppercase and lowercase letters; the filenames ALPHABET.DOC and
alphabet.doc refer to the same file.

extension consists of no more than a total of three letters, digits, and spe
cial characters. It is preceded by a period.

The Protected-Mode FAT File System (VFAT)
Like the FAT file system, the VFAT file system used in Windows 95 organizes
data on both hard disks and floppy disks. Because it is compatible with the
FAT file system, using file allocation tables and directory entries to store in
formation about the contents ofa disk, you do not need to reformat your disk
structure when you install Windows 95. VFAT supports long filenames by stor
ing the names and other information, such as the date and time each file was
last accessed, in extended FAT structures.

In the VFAT system, a filename can contain as many as 255 characters,
including a terminating null character. VFAT allows pathnames of as many as
260 characters, including the terminating null. Remember that the pathname
contains the full filename; if your filename is 255 characters, only 4 charac
ters are left for the path. (The last character is the terminating null.)

The VFAT file system supports dual name spaces-that is, it keeps track
of both short (8.3) and long filenames-so that it can work with older appli
cations that allow only short names as well as newer applications that permit
long names. When you run an older application with a VFAT file system, you
will see the 8.3 filename.

When an application creates a file, the API that is used (Win32 or
Win16) determines whether long filenames are supported. Using the Win32
CreateFile function sets up a file with both a long filename and an associated
8.3 "alias." An 8.3 alias is generated for every long filename, and the file can
be accessed by either name. Your application can use the GetShortName
function to get the alias. The alias is based on the long filename and on the
directory in which the file resides. If you change a long filename or copy the
file to a different directory, the alias might change. The alias is created using
the following basic algorithm:

1. Select the first eight characters (not including any embedded
spaces) of the long filename.

2. If there is an extension, select its first three characters (not includ
ing any embedded spaces) and its preceding dot.

223

PAR T II: USING THE NEW USER INTERFACE FEATURES

3. Convert letters to uppercase.

4. Convert to underscores (_) any characters that are illegal under the
FAT file system.

5. If the resulting name already exists in the same directory, replace
the last two characters with a tilde (....) and a unique integer
NEWREP 2, for instance. (Even if the resulting name is unique,
replace the last two characters if the long filename has embedded
spaces or illegal characters.)

An interesting side effect of filename aliasing occurs when you use the
FindFirstFile and FindNextFile functions. Windows 95 checks for both the
long filename and the alias, for compatibility reasons. If, for instance, you
search for a file using the pattern *1, you might find a file named Whatcha
macallit, whose alias is WHATCH l. To determine the name that actually
caused the match, you can check both the cFileName and cAlternateFileName
members of the WIN32_FIND _DATA structure.

The High-Performance File System (HPFS)

224

HPFS organizes data on hard disks but not on floppy disks (that is, you can
not format a floppy disk to use HPFS). In many cases, accessing files under
HPFS is faster than accessi:p.g similar files under the FAT file system.

HPFS allows filenames containing as many as 254 characters, including
a terminating null. The names can include characters that are not valid for
the FAT file system, such as periods. You can use spaces anywhere in an HPFS
filename or directory name, but the system ignores spaces and periods at the
end of filenames-that is, the filenames Test 1 and Test 1. are treated as if they
were the same filename. You can use the following special characters in HPFS
filenames:

,+=[];-

HPFS filenames do not require extensions, although many applications
still create and use them. An HPFS filename can be all uppercase, all lower
case, or mixed-case. The case is preserved for directory listings but ignored in
file searches and all other system operations. Therefore, a given directory
cannot contain more than one file with the same name when the only differ
ence is case.

E I G H T: Support for Long Filenames

The Windows NT File System (NTFS)
Like HPFS, NTFS organizes data on hard disks but not on floppy disks. NTFS
supports object-oriented applications by treating files as objects with user
defined and system-defined attributes. It provides all the capabilities of the
FAT and HPFS file systems without many' of their limitations.

NTFS is also a fully recoverable file system, designed to restore consis
tency to a disk after a CPU failure, a system crash, or an I/O error. If you crash
your NTFS volume, chances are that you will be able to recover your data.
NTFS allows the operating system to recover without requiring you to use the
autochk or chkdsk command, which saves a lot of time when you must reboot
after a system failure. Have you ever crashed an HPFS volume and then had
to sit and wait while chkdsk ran on your I-gigabyte drive? I hope you brought a
book to pass the time. (NTFS does provide chkdsk and autochk in case the re
covery fails or corruption occurs outside the control of the file system.)

NTFS includes features not available in FAT or HPFS, such as security,
Unicode filenames, automatic creation of MS-DOS aliases, multiple data
streams, and unique functionality specific to the POSIX subsystem (a collec
tion of international standards for UNIX-style operating system interfaces).
NTFS follows the HPFS filename conventions described in the preceding sec
tion, but it also supports Unicode filenames, implemented internally in Win
dows NT. NTFS cannot manipulate a file's extended attributes if the file was
created in HPFS.

NTFS supports filenames with as many as 256 characters, including a
terminating null. In most cases, it also generates an MS-DOS-compatible
fileriame in 8.3 format that allows an application based on MS-DOS or I6-bit
Windows to access the same file. (When the NTFS directory name or file
name contains spaces and fewer than eight characters, NTFS does not create
an 8.3 filename.) To translate a long filename into an 8.3 filename, NTFS
uses the following guidelines:

Deletes any illegal characters and any spaces from the long
filename. The following are illegal characters:

. " / \ [] : ; = ,

Removes additional periods from the filename if valid, nonspace
characters follow the final period. For example,

This is a really longfilename.123.456. 789. TXT

becomes

THISIS-l. TXT

225

PAR T II: USING THE NEW USER INTERFACE FEATURES

226

Ignores a final period and retains the second-to-Iast period. For
example,

This is a really longfilename.123.456. 789.

becomes

THISIS-l.789

Truncates the filename, if necessary, to six characters and appends
a tilde and a numeral. Each unique filename created ends with,.., 1,
while duplicate filenames end with -2, -3, and so on.

Truncates the filename extension to three or fewer characters.

Converts all letters in the filename and extension to uppercase.

NOT E: If you're working with an application based on MS-DOS
or Windows 3.x, you might occasionally need to save a file from that
application on an NTFS volume. If the application saves to a tempo
rary file, deletes the original file, and renames the temporary file to
the original filename, the long filename will be lost. You will also
lose any unique permissions set on that file, although you can reset
the permissions from the parent directory.

Long Filenames and Novell NetWare
Versions of Novell NetWare earlier than 3.12 can support long file
names, but the servers require that you enable Macintosh or OS/2
(HPFS) name spaces to do so. This is costly in terms of RAM on the
server, and you must use NetWare-specific name space APIs to access
the long filenames.

The good news is that if you write a Win32 application using the
Win32 file system calls, you can check to see whether a given volume
supports long filenames and can use the long names without worry
ing about the server system. The Microsoft-developed Windows 95
client for NetWare will use the OS/2 name space, when available, to
store filenames containing as many as 254 characters (including the
terminating null) and will make the Win32 API available. If you are
running the real-mode Novell client, or if the server has not been
enabled for long filenames, you can use only 8.3 filenames.

E I G H T: Support for Long Filenames

Determining Which File System Is in Use
To determine under which file system your application is currently running,
the application calls the GetVolumeInformation function. This function re
turns information about the current volume, such as the maximum length of
filenames. Once you call this function, you can use the value returned in the
lpMaximumComponentLength parameter as the maximum file length in your
application and dynamically allocate a buffer for your filenames and paths.
This is preferable to using static buffers for filenames and paths. If you must
use static buffers, however, reserve at least 256 characters for filenames and
260 characters for paths.

Here is the syntax for the GetVolumeInformation function:

BOOL GetVolumelnformation (
LPCTSTR lpRootPathName,
LPTSTR lp VolumeNameBuffer,
DWORD n VolumeNameSize,
LPDWORD lp VolumeSerialNumber,
LPDWORD lpMaximumComponentLength,
LPDWORD lpFileSystemFlags,
LPTSTR lpFileSystemNameBuffer,
DWORD nFileSystemNameSize)

lpRootPathName points to a string containing the root directory of the
volume to be queried. If this parameter is NULL, the root of the current direc
tory is used.

lp VolumeNameBuffer points to a buffer that is filled in with the name of
the volume. This parameter can be NULL if the volume name is not needed.

n VolumeNameSize is the length, in characters, of the volume name buffer.
This parameter is ignored if the volume name buffer is not supplied.

lpVolumeSerialNumberpoints to a variable that is filled in with the volume
serial number. This parameter can be NULL if the volume serial number is
riot needed.

lpMaximumComponentLength points to a variable that is filled in with the
maximum length, in characters, of a filename component (the part of the file
name between the backslashes) supported by the specified file system.

lpFileSysternFlags points to a variable that is filled in with flags associated
with the specified file system. This variable can contain any combination of
flags, such as FS_CASE_SENSITIVE, which specifies that the file system sup
ports case-sensitive filename lookup. For a description of all the flags, see the
Win32 SDK documentation.

227

PAR T II: USING THE NEW USER INTERFACE FEATURES

lpFileSystemNameBuffer points to a buffer that is filled in with the name of
the file system (such as FAT, HPFS, or NTFS). This parameter can be NULL if
the system name is not needed.

nFileSystemNameSize is the length, in characters, of the file system name
buffer. This parameter is ignored if the name buffer is not supplied.

General Guidelines for
Supporting Long Filenames

228

The following general guidelines for working with long filenames apply to all
file systems supported by the various Windows systems. An application that
follows these guidelines can create valid names for files and directories re
gardless of the file system in use.

You can include any character from the current code page in a
name, but do not use a path separator, a character in the ASCII
range 0 through 31, or any character disallowed by the specific file
system. A name can contain characters from the extended character
set (ASCII 128 through 255).

Use the backslash (\), the forward slash (/), or both to separate
components in a path.

Use a period (.) to represent the current directory in a path.

Use two consecutive periods (..) to represent the parent of the cur
rent directory in a path.

Separate components in a directory name or in a filename with a
period (.).

The following characters are reserved for Windows and should not
be used in directory names or filenames:

< > : " / \ I

Do not use reserved words, such as aux, con, and prn, as filenames or
directory names.

The application should process a path as a null-terminated string.
The maximum length for a path is given by MAX_PATH. The
Unicode versions of the CreateDirectory, FindFirstFile, GetFile
Attributes, and SetFileAttributes functions allow paths to exceed the

E I G H T: Support for Long Filenames

MAX_PATH length if the path has the \\?\ or \\?\UNC\ prefix. These
prefixes turn off path parsing. Use the \\?\ prefix with paths for local
storage devices and the \\?\UNC\ prefix with paths having the Uni
versal Naming Convention (UNC) format. An example of a UNC
path is \\machine\sharename.

Do not assume case sensitivity, because not all file systems distin
guish case. For example, under NTFS, the filenames FILENAME
and Filename are considered to be the names of two different files;
under HPFS, however, these two filenames are considered to be the
same, although the file system preserves the case as entered and al
lows the user to see mixed-case filenames.

Outdated Assumptions
Since Windows has resided on FAT-only volumes for so long, developers have
grown used to making some understandable assumptions based on the 8.3
convention. But times have changed. If you are planning to support long
filenames in your applications, you would be wise to examine your code for
these common assumptions.

Assumption: The filename extension
contains no more than 3 characters.
I make this assumption most often when I am trying to filter files based on the
file extension (the file type) or when I am stripping off the file extension. The
assumption is true in the FAT file system, but if you are running under VFAT,
HPFS, or NTFS, you can best determine the maximum length by a call to Get
Volumelnformation.

Assumption: The filename contains no more than 12 characters.
If your operating system supports long filenames, 12-character buffers might
not have enough space for all the characters in the filename. Consider the fol
lowing code snippet, in which the buffer is assumed to be 12 characters long:

cha r szFil e [12] = "\0":

II Fill out the OPENFILENAME structure to support a template and a hook.
OpenFileName.1StructSize = sizeof (OPENFILENAME):
OpenFileName.hwndOwner = hWnd:
OpenFileName.hlnstance = 9_hlnst:

(continued)

229

PAR T· II: USING THE NEW USER INTERFACE FEATURES

230

OpenFileName.lpstrFilter
OpenFileName.lpstrCustomFilter
OpenFileName.nMaxCustFilter
OpenFileName.nFilterlndex
OpenFileName~lpstrFile

OpenFileName.nMaxFile
OpenFileName.lpstrFileTitle
OpenFileName.nMaxFileTitle
OpenFileName.lpstrlnitialDir
OpenFileName.lpstrTitle
OpenFileName.nFileOffset
OpenFileName.nFileExtension
OpenFileName.lpstrDefExt
OpenFileName.1CustData
OpenFileName.lpfnHook
OpenFileName.lpTemplateName
OpenFileName.Flags

NULL;
NULL;
0;
0;
szFil e:
sizeof (szFile);
NULL;
0;
NULL;
"Open a File";
0;
0;
NULL;
NULL;
ComDlg32DlgProc;
MAKEINTRESOURCE (IDD_COMDLG32);
OFN_SHOWHELP I OFN_EXPLORER I
OFN_ENABLEHOOK I OFN_ENABLETEMPLATE;

II Call the common dialog function.
if (GetOpenFileName (&OpenFileName»
{

}

else
{

}

ProcessCDError (CommDlgExtendedError (), hWnd);
return FALSE;

If the user enters a filename that contains more than 12 characters, the
Open common dialog procedure returns an error ofFNERR_BUFFERTOO
SMALL, saving you from a nasty trap. But the buffer size is not the only prob
lem. If you are doing your own file parsing, and if you accept only the first 12
characters in a filename, you could open the wrong file. For instance, imag
ine that a user enters the filename Marketing Report and that the curr~nt di
rectory con tains files named Marketing Report and Marketing Salaries. If your
application accepts only the first 8 characters of a filename and assumes an
extension, which file will the application open?

Assumption: A filename contains only one period.
The FAT file system allows only one period in a filename, as a delimiter. In
that case, you know that the three characters following the period are the file

E I G H T: Support for Long Filenames

extension. Under file systems that support long filenames, however, this is
not true. What happens if your application scans a filename looking for a pe
riod in order to find the file extension? Here's a bit of code from one of my
samples that (unfortunately) relies on this assumption:

II Strip off the extension, if any.
if (pOot = strstr (szLink, "."»

*pOot = (char)NULL;

II Add in the LNK extension.
lstrcat (szLink, ".LNK");

\

Had there been more than one period in the filename, my code would
have failed to create a file of the correct type. A better way to get the name of
the file, without the file extension, is to use a string function that returns the
pointer to the extension by checking the string from the reverse:

if (pOot strrchr (szLink, '. '»
*pOot = (char)NULL;

lstrcat (szLink, ".LNK");·

Assumption: Filenames do not contain spaces.
In the FAT file system, a filename can include spaces, as long as each space is
preceded and followed by a nonspace character. This is not the case in the
VFAT file system. You can now have a filename such as This One Has Lots Of
Spaces , which includes several spaces between characters and a trailing space
character.

Assumption: The plus sign (+) character is invalid in a filename.
Under the systems that support long filenames, you can include a plus sign
(+) in a filename. So if I wanted to be romantic, and if I had a file containing
information about me and my husband, I could name it Nancy + jonathan.

User Interface Considerations
You now have the basics for supporting long filenames internally in your ap
plications. But what about the application's user interface? The following sec
tions discuss some further considerations to bear in mind as you design the
interface.

231

PAR T II: USING THE NEW USER INTERFACE FEATURES

Hiding File Extensions

232

Windows 95 interface components such as Windows Explorer strip off the
file extension by default when displaying the name of a file. (You can set an
option to display the MS-DOS file extensions.) If you run Windows Explorer
in details view, you will see a file "type," but this is not necessarily the file ex
tension. For example, in the Type column for a Microsoft Word file, you'll see
the more explanatory phrase Microsoft Word Document rather than the DOC
extension.

An application can get the filename to display (that is, the filename with
the extension stripped off) through various methods, such as the SHGetFile
Info function. This function provides an easy way to get the attributes of a file,
given the full path. SHGetFileInfo uses a structure called SHFILEINFO that
contains the handle to the icon, the index to the icon, the file attributes, the
display name (or the path for a folder), and the file type. Table 8-1 lists the
flags that you can specify when calling SHGetFileInfo.

Flag

SHGFCICON

SHGFI_DISPLAYNAME

SHGFI_TYPENAME

SHGFCATTRIBUTES

SHGFCICONLOCATION

SHGFCEXETYPE

SHGFI_SYSICONINDEX

SHGFI_LINKOVERLAY

SHGFCSELECTED

SHGFCLARGEICON

SHGFCSMALLICON

SHGFCOPENICON

SHGFI_SHELLICONSIZE

SHGFCPIDL

SHGFC USEFILEATTRIBUTES

Table 8-1.
File information flags.

Description

Retrieves the icon associated with the file.

Retrieves the file's display name.

Retrieves the file's type name.

Retrieves the attributes of the file.

Retrieves the icon location.

Retrieves the executable type of the file.

Retrieves the system icon index.

Places a link overlay on the icon.

Displays the icon in selected state.

Retrieves the large icon.

Retrieves the small icon.

Retrieves the open icon.

Retrieves the icon size used by the shell.

The path specified in the pszPath parameter
is a pointer to an ITEMID list.

The file attributes passed in the dwFile
Attributes parameter should be used.

E I G H T: Support for Long Filenames

Although generally you should not display file extensions, they are never
theless useful to the application programmer. An application designer can
use unique file extensions to differentiate his or her files from other files in
the system. So feel free to employ them-but don't show them to the user
unless you must.

Adjusting the Width of Edit Fields
You need to ensure that you allocate enough space to accommodate long
filenames in your edit fields, list boxes, and static text strings. In the old-style
Open and Save As common dialog boxes (in 16-bit Windows), for instance,
the field for entering a filename isn't really all that large, as you can see in Fig
ure 8-1. If a filename is fairly long, the user has to scroll horizontally to see the
entire name-a task that is even more frustrating without a horizontal scroll

. bar. Not viewing the complete name can also cause the user to confuse similar
filenames.

A real~' really really reall
A sample text lile.t~:t
DealinC1INith hook:;; and
Information about comrr
new stuff. TXT
readonly.txt

Figure 8-1.

8c:\
OJ Samples
B Windows 95
~ cmndlg32
CJ WinDebug
CJ WinRel

The old-style (16-bit Windows) Save As common dialog box.

The design of the new common dialog boxes for opening and saving
files (in 32-bit Windows) improves the situation. Notice in Figure 8-2 on the
following page that the edit box in which 'current filename and path informa
tion is entered or displayed has been expanded to let the user see more of the
filename without scrolling.

233

PAR T II: USING THE NEW USER INTERFACE FEATURES

234

9!) Chfont

~Chklist.ms
~ Cmndlg32.aps
l@Cmndlg32
ClCmndlg32
[I] Cmndlg32

j,o,really r~~I1~ reaHyreaIlY~,e~lIylo,ngfilena~e

2f

S ave as hlpe: 1~II~il~s [',:~l 2J,
2ave I
Cancel "

r, Open as lead-only

Figure 8-2.
The new (32-bit Windows) Save As common dialog box.

In short, take a look at the dialog boxes in your applications and be sure
to update the width of edit boxes to allow for longer filenames. Of course, if
you :use only the common dialog boxes, you don't have to worry about this
because the common dialog library takes care of it.

An alternative to providing new dialog boxes to support longer file
names is to use only nonbold fonts (which require less space) in your edit
boxes. You'll find that allowing enough room for 30 to 40 characters in a non
bold font is adequate for most purposes.'

C HAP T E R N N E

Shortcuts

Shortcuts are one of the handiest features of the Microsoft Windows 95
user interface. Keeping shortcuts on your desktop makes it quick and easy to
access the items that you use most of ten-a specific document, a favorite ap
plication, or a printer, for instance.

A shortcut is a convenient way to reference an object in the shell name
space (the hierarchical structure of objects in the user interface) without hav
ing to keep track of the object's actual name and location. Figure 9-1, for
example;"shows the icon that appears on the desktop when you create a short
cut to the Paint program in Windows 95. (Notice the small arrow in the lower
left corner of the icon, which designates a shortcut.) Double-clicking this
icon activates Paint.

rm
Paint

Figure 9-1.
A shortcut to Paint.

A user can create a shortcut to an object by using the object's context
menu or by using the File menu in Windows Explorer. You can also provide
shortcuts programmatically, as part of your applications. You can set up short
cuts to many different kinds of objects, including files, folders, Control Panel,
printers, and various applications.

Once a shortcut exists, the user no longer needs to know the object's
name and location. Double-clicking the shortcut to a file, for instance, simply
activates the file (the default action for that file). That is, if the user has a
shortcut to a Microsoft Word document on the desktop, double-clicking the
shortcut opens Word with the file specified as the current working document.,

235

PAR T II: USING THE NEW USER INTERFACE FEATURES

236

If you set upa shortcut to a printer and then change the printer's network
location, the shortcut continues to work. End users will still be able to print
to that printer using the shortcut and will never know that the server has
changed, because the location is transparent to them.

Shortcuts are also useful in installation or setup programs. For example,
the setup could place a shortcut to your release notes or to a README file on
the desktop. This makes it easy for the user to browse through the informa
tion, and it's also more likely that the user will actually read the file instead of
simply ignoring it. You could also provide a shortcut in a multiple document
interface (MDI) application to help the user keep track of the last document
opened. The user could subsequently click that shortcut at any time to run
your application again in the context of that document. .

Users can create shortcuts of their own and place them on the desktop.
After finding the object that is the target of the shortcut, ~ user can set up a
shortcut in any of these three ways:

Use the right mouse button to drag the object to the desktop and
drop it there. A context menu will pop up. Click Create Shortcut on
the context menu, and the shortcut icon will appear on the desktop.

Right-click the object to display the context menu (shown in Figure
9-2), and then click Cre~te Shortcut. When the shortcut icon ap
pears, drag it to the desktop and drop itthere.

Select the object, and then click Create Shortcut on the File menu
in Windows Explorer (shown in Figure 9-3). When the shortcut icon
appears, drag it to the desktop and drop it there.

Examples Library Setup XLStart
, •••••••••••• d ••• ••••••••••• <

: Cre~t~s :~i~8ric~ts toth~;~le~t~d it~~~,

Figure 9-2.
The Create Shortcut item on a context menu.

ell!
i; ~tipy

.' Create ~hortcut
Q.elete

'<Rename

Properties

N I N E: Shortcuts

Send To

Ne!:,! __ iimii_inrand
j·",mar;M g

lLelete ~in

Rename rs
Properties... top

.close

:····CJ Help
i···CJ Inf

II...·CJ Lmouse
,.···CJ Media
~}CJ Msapps
..Lf""'- •• ",

Figure 9-3.

15KB Bitmap Image
12KB Animated Cursor
10KB Application

3KB Text Document
2A02KB XA.B File

59KB Application
59KB Application
21KB Help File
91KB Application
25KB Help File

The Create Shortcut item on the File menu.

4/27/9:
912919·
7110/9:
10/4/9·
1/10/9~

3/9193
3/9/93
11/1/9:

11/11f1
1/1nJO

M

NOT E: If you create a shortcut to another shortcut, 'the system
simpfy copies the shortcut-it does not create a new shortcut. Do
not assume that shortcuts remain independent of one another.

How Shortcuts Are Implemented
Shortcuts are implemented through an OLE interface called IShellLink. If
you plan to create or manipulate shortcuts programmatically, it will be help
ful to be familiar with some of the basic concepts of OLE, although you don't
need to be an OLE guru. To understand and use shortcuts, the most impor
tant topic to read up on is the Component Object Model. Reading the first
two chapters of Inside OLE, 2d edition, by Kraig Brockschmidt (Microsoft
Press, 1995), should give you sufficient background. For now, however, here
is a very brief overview of the Component Object Model.

The Component Object Model
The Component Object Model is a specification that describes the process
of communicating through interfaces, acquiring access to various interfaces
through the Querylnterface member function, determining pointer lifetime
through reference counting, and reusing objects by extending them. An ob
ject, in this context, is an item in the system that exposes interfaces (groups of
related functions) to' manipulate the data or properties of the object. It is

237

PAR T II: USING THE NEW USER INTERFACE FEATURES

created directly or indirectly by calling the CoCreateInstance function, which
creates a new instance of the object and returns a pointer to an interface for
the object.

When two objects within the system want to communicate with each
other, one object calls member functions in the other object's interface by
using a pointer to the interface. The call to CoCreateInstance returns this in
terface pointer. For instance, two objects might want to communicate with
each other during a drag-and-drop operation. If one object is to be dropped
on another object, the first one calls into the other's interface to request ac
ceptance of the drop.

All interfaces used in the Component Object Model-including IShell
Link, the one used to manipulate shortcuts-are derived from the base inter
face, IUnknown. All interfaces support three base member functions:

QueryInterface, which determines whether a specific interface is
supported for the object, increments the reference count, and re
turns a pointer to the interface.

AddRef, which increments the reference count on an interface.

Release, which decrements the reference count on an interface.
Once an interface's reference count goes to 0, the object deletes
itself, and the pointers to its interfaces are no longer valid. (If the
reference count on all an object's interfaces is 0, the object can be
freed because there are no longer any pointers to the object.)

An application that manipulates shortcuts must initialize the compo
nent object library with a call to CoInitialize or OleInitialize. When I created
the SHORTCUT sample, I put this call in my InitInstance handler before call
ing any other functions. Each call to CoInitialize must be balanced with a call
to CoUninitialize. CoUninitialize should be called when an application shuts
down, because it ensures that the application won't quit until it has received
all its pending messages. I normally put the call to CoUninitialize in the Exit
Instance handler.

SHORTCUT: A Sample
That Manipulates Shortcuts

238

SHORTCUT is a simple MFC-based application in which the user can create a
shortcut for a file selected from the current directory. When the user chooses
the Create Shortcut menu item, the dialog box shown in Figure 9-4 displays a

N I N E: Shortcuts

list of the files in the current directory. I filled the list box with file options by
using a call to DlgDirList in my handler for the WM_INITDIALOG message,
OnlnitDialog. To create a shortcut to a text file named README, for ex
ample, the user would choose README.TXT from the list.

Choose a file to create a shortcut to:

mainfrm.cpp
mainfrm.h
mainfrm.lnk
reatesho. cpp
reatesho.h
" •••• 1 •• 1 •• 1.

r Place shortcut on desktop

1C:::::::::::9.K::::::::::J1

Figure 9-4.

Cancel

The Create A Shortcut dialog box in the SHORTCUT sample.

The user indicates whether the shortcut should appear on the desktop
by checking the Place Shortcut On Desktop option in the dialog box. Mter
the user selects a file from the list and clicks the OK button, the application
checks to determine whether the shortcut should be located on the desk
top or in the current directory. If it should be placed on the desktop, the
shortcut's default location is in a subdirectory (called DESKTOP) of the di
rectory that contains Windows 95. For example, if your installation of Win
dows 95 is in the C:\WINDOWS directory, the shortcut file is placed in
C:\WINDOWS\DESKTOP. This subdirectory is hidden; you can find it by
opening an MS-DOS command prompt and typing attrib desktop or by going
into your Windows installation directory and typing dir desktop.

If your system is configured to use a different profile per user, the loca
tion of the shortcut is different. You can set up a different profile per user by
using the Passwords application in Control Panel. Open Passwords, click the
User Profiles tab, and then check the Include Desktop Icons And Network
Neighborhood Contents In User Settings option. This stores the desktop icons
(and your desktop shortcut) in the Registry's Desktop subdirectory under
HKEY_ CURRENT _ USER\Software\Microsoft\ Windows\Curren tVersion \
Explorer\Shell Folders. The Desktop key will contain the fully qualified path
to the icons. (Refer to Chapter 10 for a discussion of the Registry and its

239

PAR T II: USING THE NEW USER INTERFACE FEATURES

240

keys.) For example, if I set up my computer to support per-user profiles, the
Desktop key will be located under C:\WINDOWS\PROFILES\NANCYCL\
DESKTOP. (The SHORTCUT sample does not support per-user profiles, so
in this case all shortcuts targeted to the desktop are placed in the DESKTOP
subfolder of the Windows 95 installation directory.)

The shortcut name is completed by retrieving the selected file through
a call to DlgDirSelect, stripping off the filename extension, and replacing it
with the LNK extension. All shortcuts have the LNK extension.

Then it's time to get down to the real work of creating the shortcut. The
CreateShortCut::CreateIt function actually performs the task. It takes three
parameters:

pszShortcutFileis the file that the shortcut will point to.

pszLink is the shortcut you are creating with a LNK extension.

pszDesc is the description of the file. This is the string "Shortcut to
filename", where filename is the name of the shortcut target.

Because this function makes a call to CoCreateInstance, it is assumed
that CoInitialize has already been called. As you can see in the following
code, this function uses both the IPersistFile interface, for actually saving the
shortcut in the system, and the IShellLink interface, for storing the path and
the description of the shortcut target:

HRESULT CreateShortCut::Createlt (LPCSTR pszShortcutFile. LPSTR pszLink,
LPSTR pszDesc)

HRESULT hres;
IShell Link *psl;

II Create an IShellLink object and get a pointer to the IShellLink
II interface (returned from CoCreatelnstance).
hres = CoCreatelnstance (CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER.

IID_IShellLink, (void **)&psl);
if (SUCCEEDED (hres»
{

IPersistFile *ppf;

II Query IShellLink for the IPersistFile interf~c~ for
II saving the shortcut in persistent storage.
hres = psl-)Querylnterface (IID_IPersistFile, (void **)&ppf);
if (SUCCEEDED (hres»
{

WORD wsz [MAX_PATH]; II buffer for Unicode string

II Set the path to the shortcut target.
hres = psl-)SetPath (pszShortcutFile):

if (! SUCCEEDED (hres»
AfxMessageBox ("SetPath fa il ed!") :

II Set the description of the shortcut.
hres = psl-)SetDescription (pszDesc):

if (! SUCCEEDED (hres»
AfxMessageBox ("SetDescription failed!"):

N I N E: Shortcuts

II Ensure that the string consists of ANSI characters.
MultiByteToWideChar (CP_ACP, 0, pszLink, -1, wsz, MAX_PATH):

II Save the shortcut via the IPersistFile::Save member function.
hres = ppf-)Save (wsz, TRUE):

}

. }

if (! SUCCEEDED (hres»
AfxMessageBox ("Save failed!"):

II Release the pointer to IPersistFile.
ppf-)Release ():

II Release the pointer to IShellLink.
psl-)Release ():

return hres:
}

Once you have created the shortcut, you might need to access and ma
nipulate it programmatically. This is referred to as resolving the shortcut. I
added a function to my sample that demonstrates how you can resolve a
shortcut. I used the same type of dialog box that I used for creatit:lg the short
cut-and used almost exactly the same code to fill the dialog box with· the
names of the files in the current directory and prompt the user to choose a
shortcut to resolve. The only difference was a simple check to ensure that the
user actually picked a LNK file:

void ResolveShortCut::OnOK ()
{

char szFile [MAX_PATH]:

II Get the selected item in the list box.
DlgDirSelect (szFile, IDC_LIST1);

(continued)

241

PAR T II: USING THE NEW USER INTERFACE FEATURES

242

II Find out whether it is a LNK file.
if (strstr (szFile, ".lnk") 1= NULl)

II Make the call to ResolveShortcut::Resolvelt here.
Resolvelt (m_hWnd, szFile);

CDialog::OnOK ();
}

The ResolveShortCut::ResolveIt function resolves the shortcut. This func
tion takes two parameters:

hwnd is the handle to the window that currently has the focus. This
is used in case the user must be prompted to take an action. For in
stance, a message box is displayed if the user needs to insert a floppy
disk, if the shortcut is on unshared media, or if network problems
arise during the resolution of the shortcut.

pszShortcutFile is the fully qualified path to the shortcut.

Like the function that created the shortcut, this function calls CoCreate
Instance and assumes that CoInitialize has already been called. Notice that
the following code needs to call into the IPersistFile interface. The IShellLink
object implements this interface to store shortcut information. To get the
path information requested later in the code, the shortcut information must
be loaded first. Failing to load the shortcut information causes the calls to
GetPath and GetDescription to fail.

HRESULT ResolveShortCut::Resolvelt (HWND hwnd, LPCSTR pszShortcutFile)
{

HRESULT hres;
IShell Link *psl;
char szGotPath [MAX_PATH];
char szDescription [MAX_PATH];
WIN32_FIND_DATA wfd;

II Get a pointer to the IShellLink interface.
hres = CoCreatelnstance (CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER,

IID_IShellLink, (void **)&psl);
if (SUCCEEDED (hres»
{

IPersistFile *ppf;

N I N E: Shortcuts

}

II Get a pointer to the IPersistFile interface.
hres = psl->QueryInterface (IID_IPersistFile, (void **)&ppf);

if (SUCCEEDED (hres»
{

}

WORD wsz [MAX_PATH]; II buffer for Unicode string

II Ensure that the string consists of Unicode characters.
MultiByteToWideChar (CP_ACP, 0, pszShortcutFile, -1, wsz,

MAX_PATH) ;

II Load the shortcut.
hres = ppf->Load (wsz, STGM_READ);

if (SUCCEEDED (hres»
{

}

II Resolve the shortcut.
hres = psl->Resolve (hwnd, SLR-ANY_MATCH);
if (SUCCEEDED (hres»
{

}

strcpy (szGotPath, pszShortcutFile);
II Get the path to the shortcut target.
hres = psl->GetPath (szGotPath, MAX_PATH,

(WIN32_FIND_DATA *)&wfd, SLGP_SHORTPATH);
if (! SUCCEEDED (hres»

AfxMes sageBox ("GetPath fa il ed! ") ;
else

AfxMessageBox (szGotPath);
II Get the description of the target.
hres = psl->GetDescription (szDescription, MAX_PATH);
if (! SUCCEEDED (hres»

AfxMes sageBox ("GetDescri pt i on fa il ed! ") ;
else

AfxMessageBox (szDescription);

II Release the pointer to IPersistFile.
ppf->Release ();

II Release the pointer to IShellLink.
psl->Release ();

return hres;
}

243

PAR T II: USING THE NEW USER INTERFACE FEATURES

Creating a Shortcut to an Object Other Than a File
The sample code demonstrates how to programmatically create a shortcut to
a file, but it does not cover the steps you must take to create a shortcut to an
object that does not have a filename, such as Control Panel or a printer. The
major difference is that rather than setting the path to the shortcut, you will
instead be setting the identification list (ID list) to the object. You do this by
calling IShellLink::SetIDList and providing a pointer to an ID list.

You might well be thinking, ''What the heck is an ID list?" Within the
shell name space, each object that Windows Explorer can browse (such as
files, folders, servers, and workgroups) has an identifier that is unique among
the objects in its parent folder. These identifiers, referred to as item IDs, are
stored as SHITEMID structures (defined in the SHLOB].H file). Each parent
folder also has its own item ID. Therefore, any object can be uniquely iden
tified by a list of item IDs, corresponding to the way a file can be uniquely
identified by its path. Such a list of items, called an ID list, is defined as the
ITEMIDLIST structure in SHLOBJ.H. It is important to remember that each
item ID in an ID list is meaningful only in the context of the parent folder.
(You'll find ~ore information about ID lists in Chapter 14.)

NOT E: If you plan to use the CreateItfunction from the SHORT
CUT sample in your MFC-based application, you might run into
problems with the conversion from multibyte to wide characters. If
you do, take a look at "Technical Note 49: MFC/OLE MBCS to
Unicode Translation Layer (MFCANS32) ," available in the MSDN
Development Library under Technical Articles, Visual C++ 2.0 (32-
bit) Articles, MFC 3.1 Technical Notes~ The MFCANS32 DLL pro-

. vides ANSI interfaces to 32-bit OLE, which is primarily Unicode.
This technical note will show you what you need to do if you experi
ence this problem. You can also find helpful information on this
topic in the Microsoft Visual C++ documentation.

ISheliLink Details

244

The IShellLink interface provides a group of Ipember functions that an ap
plication can access to provide shortcuts within the application. This section
describes each function in detail, including syntax, parameters, and a de
scription of the return value and any special uses for the function.

N I N E: Shortcuts

ISheIiLink::Querylnterface

Syntax:

Querylnterface (REFIID riid, LPVOID FAR *ppvObj);

Parameters:

riid is the identifier of the interface requested. To access the
IShellLink interface, this parameter should be IID_IShellLink.

ppvObj is the pointer to the variable that receives the interface. This
parameter is filled in with a pointer to the IShellLink interface. The
returned pointer can then be used to access the other member
functions provided by IShellLink.

Description: Returns a pointer to the requested interface (IShellLink, in
this case) if the interface is supported. Otherwise, it returns an error. Once
this pointer is retrieved, the application can use it to gain access to the other
member functions provided for the interface.

ISheIiLink::AddRef

Syntax:

ULONG AddRef (void);

Parameters: None.

Description: Increments a reference count for each new copy of an
IShellLink interface pointer. The return value is the value of the reference
count. Many applications use this value for testing or diagnostic purposes. The
reference count is decremented when the Release member function is called.

ISheIiLink::Release

Syntax:

ULONG Release 0;

245

PAR T II: USING THE NEW USER INTERFACE FEATURES

Parameters: None ..

Description: Decrements the reference count on the IShellLink interface .
. When the reference count reaches 0, the shortcut object is deleted and the
pointer to the object becomes invalid. This member function returns the cur
rent reference count on the IShellLink object.

ISheIiLink::GetPath

Syntax:

GetPath (LPSTR pszFile, int cchMaxPath, WIN32_FIND _DATA *pfd,
DWORD fFlags);

Parameters:

pszFile is a pointer to a text buffer that receives the path.

cchMaxPath is the maximum number of characters for the path.

pfd is a pointer to a structure containing iriformation about the
shortcut object.

fFlags consists of the flags specifying the type of path information
to retrieve. .

Description: Gets the current fully qualified path for the shortcut object.
The string containing the path is copied into the pszFile parameter~ The pfd
parameter is a pointer to a WIN32_FIND_DATA structure. This is the same
information that is returned when making a call to FindFirstFile and Find
NextFile, and it includes the file's attributes, creation time, and so on; The
fFlags parameter can be set to SLGP_UNCPRIORITYto obtain the Universal
Naming Convention (UNC) path to the file.

ISheliLink: :SetPath

Syntax:

SetPath (LPCSTR pszFile) ;

246

N IN E: Shortcuts

Parameter:

pszFile is a pointer to a text buffer containing the new path for the
shortcut object.

Description: Sets the current path of the shortcut object to the path specified
by the pszFile parameter. For example, when an application creates a shortcut
to a text file, STUFF. TXT, that resides in the C:\STUFF directory, the string
passed to SetPath is C:\STUFF\STUFRTXT.

ISheIiLink::GetIDList

Syntax:

GetIDList (LPCITEMIDLIST *ppidl);

Parameter:

ppidl is a pointer to an ID list.

Description: Gets the current ID list for the shortcut object.

ISheIiLink::SetiDList

Syntax:

SetIDList (LPCITEMIDLIST Pidl);

Parameter:

pidl is a pointer to an ID list.

Description: Sets the ID list for the shortcut object. This is useful when an
application needs to set a shortcut to an object that isn't a file, such as Con
trol Panel, another computer, or a printer.

247

PAR T II: USING THE NEW USER INTERFACE FEATURES

ISheIiLink::GetDescription

Syntax:

GetDescription (LPSTR pszName, int cchMaxName);

Parameters:

pszName is a pointer to a text buffer that receives the description.

cchMaxName is the maximum number of characters that can be used
in the description.

Description: Gets the description of the shortcut object. The description
string is copied into the buffer to which the pszName parameter points.

ISheIILink::SetDescription

Syntax:

SetDescription (LPCSTR pszName);

Parameter:

pszNam~ is a pointer to a text buffer containing the new description.

Description: Sets the description for the shortcut object to the text provided
in the pszName parameter. The description can be anything the application
chooses to provide. The description used by the SHORTCUT sample is simply
"Shortcut to filename".

ISheIiLink::GetWorkingDirectory

Syntax:

GetWorkingDirectory (LPSTR pszDir, int cchMaxPath);

248

N I N E: Shortcuts

Parameters:

pszDir is a text buffer that receives the working directory.

cchMaxPath is the maximum number of characters for the working
directory.

Description: Gets the current working directory for the shortcut object.
The working directory is copied into the string to which the pszDir parameter
points. If the working directory is larger than the buffer provided, the string
is truncated.

ISheIiLink::SetWorkingDirectory

Syntax:

SetWorkingDirectory (LPCSTR pszDir);

Parameter:

pszDiris a pointer to a text buffer that contains the new working
directory.

Description: Sets the current working directory for the shortcut object to
the path pointed to by the pszDir parameter. The working directory of the
object needs to be set only if the shortcut object requires it. For example, if
your application created a shortcut to a Microsoft Word document that used
a template or another object that resided in a special directory, your applica
tion could use this member function to set the working directory.

ISheIiLink::GetArguments

Syntax:

GetArguments (LPSTR pszArgs, int cchMaxPath);

249

PAR T II: USING THE NEW USER INTERFACE FEATURES

Parameters: .

pszArgs is a pointer to a text buffer that receives the arguments.

cchMaxPath is the maximum number of characters that can be used
for the arguments.

Description: Gets the current arguments that are associated with the short
cut object.

ISheIiLink::SetArguments

Syntax:

SetArguments (LPCSTR pszArgs);

Parameter:

pszArgsis a pointer to a text buffer containing the new arguments.

Description: Sets the arguments for the shortcut object. This is useful when
you need to create a shortcut to an application that takes special flags as argu
ments, such as a compiler.

ISheIiLink::GetHotkey

Syntax:

GetHotkey (WORD *pwH.otkey);

Parameter:

pwHotkey is a pointer to a WORD to receive the hot key.

Description: Gets the hotkey for the shortcut object.

250

N I N E: Shortcuts

ISheIILink::SetHotkey

Syntax:

SetHotkey (WORD wHotkey);

Parameter:

wHotkey is a pointer to the hot key.

Description: Sets the hot key for the shortcut object. This allows you to spec
ify that your shortcut is activated whenever the corresponding hot key is
pressed. For example, you could set up a shortcut to a utility that backs up a
specific directory when the user presses a key combination such as Alt-B.

ISheIiLink::GetShowCmd

Syntax:

GetShowCmd (int *piShowCmd);

Parameter:

piShowCmd is a pointer to an integer to receive the Show command.

Description: Gets the Show command for the shortcut object.

ISheIiLink::SetShowCmd

Syntax:

SetShowCmd (int iShowCmd);

Parameter:

iShowCmd is the Show command to set.

251

PAR T II: USING THE NEW USER INTERFACE FEATURES

Description: Sets the Show command for the shortcut object. The Show
command is the show state of the window and can be one of the following:

SW_HIDE

SW _MINIMIZE

SW_RESTORE

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW_SHOWNA

SW_SH OWN 0 RMAL

Hides the window.

Minimizes the window.

Activates and displays the window, restoring it
to its original size and position if it has been
previously maximized or minimized.

Activates the window in its current size and
position.

Activates and maximizes the window.

Activates and minimizes the window.

Shows the window in its current state but does
not activate it.

Shows the window in its most recent size and
position but does not activate it.

Activates and displays the window. This style
also includes the SW _RESTORE option and
will restore the window to its original size and
position.

ISheliLink: :GetlconLocation

252

Syntax:

GetIconLocation (LPSTR pszIconPath, int cchlconPath, int *piIcon);

Parameters:

psz/conPath is a pointer to a text buffer that receives the icon
location.

cchlconPath is the maximum number of characters in the icon
location.

pilcon is a pointer to the icon.

Description: Gets the icon location for the shortcut object.

N I N E: Shortcuts

ISheIILink::SetlconLocation

Syntax:

SetlconLocation (LPCSTR pszIeonPath, int iIeon);

Parameters:

psz/conPath is a pointer to a text buffer containing the new icon
location.

ilcon is an index to the icon.

Description: Sets the location for the shortcut icon. Use this member func
tion if you want to change the icon for the shortcut object.

ISheIiLink:: Resolve

Syntax:

Resolve (HWND hwnd, UINT fFlags);

Parameters:

hwnd is the handle to a window.

fFlags consists of the flags that direct the system in resolving the
shortcut.

Description: Resolves a shortcut. The system searches for the shortcut ob
ject and updates the shortcut path and its ID list, if necessary. If the system
. needs to display a dialog box asking the user for more information, it uses the
handle to the window passed in the hwnd parameter as the parent window of
the dialog box. The supported flags for this member function are listed on
the following.page.

253

PAR T II: USING THE NEW USER INTERFACE FEATURES

SLR_UPDATE

Directs the system not to display a dialog box if it cannot
resolve the shortcut.

When the Resolve member function is called, the system
marks a shortcut as "dirty" if the object the shortcut
points to has been changed (perhaps its location or size
has changed, for instance). This flag directs the system to
save the shortcut if the shortcut object has changed. The
developer is thus saved the step of calling IPersistFile::ls
Dirty to determine whether the shortcut has changed.

Preserving Shortcuts

254

The Windows 95 user interface automatically attempts to resolve shortcuts
whose targets have been renamed or moved. When you create a shortcut, the
system saves information about the shortcut. Most of this information is the
same as that found in the WIN32_FIND _DATA structure (file attributes, cre
ation time, last access time, last write time, and file size). When the IShell
Link::Resolve member function is called, the system gets the path associated
with the current shortcut by using a pointer to its ID list. The system then
searches for the shortcut object in that path and resolves the shortcut if it
finds the object.

Ifit does not find the shortcut object, the system then looks in the same
directory for an object that has the same file creation time and file attributes
but a different name. This will resolve a shortcut to an object that has been
renamed.

If it still does not find the shortcut object, the system next searches the
subdirectories of the current directory, recursively searching the directory
tree for a match with either the filename or the creation time. If it does not
find a match, it displays a dialog box that prompts the user for a location (a
browse button). An application can suppress the dialog box by specifying the
SLR_NO _ VI flag when it calls the IShellLink::Resolve member function.

C HAP T E R TEN

The Registry

Creating file viewers, using interface extensions, and working with the
Microsoft Windows 95 user interface in other advanced ways all involve (at
least to some degree) storing and accessing information in the centralized
registration database called the Registry. Clearly, you as a developer will need
to both use and understand the Registry. This chapter focuses on the Regis
try, with specific emphasis on how it applies to Windows 95 and how you can
use it to integrate your applications with the new user interface.

What Is the Registry?
The Registry is a centralized, system-defined database in which applications
and Windows system components store configuration data. In the past, ap
plications based on Microsoft Windows 3.1 stored such information in the
WIN.INI file or some other application-defined INI file, while the system
stored its configuration data in SYSTEM.INI. Because this information was
stored in ASCII files, a user could edit and view it in any simple text editor,
such as Notepad. In the new Registry, the data is stored in binary files. Instead
of using text editors to update the information contained in the Registry, ap
plications can either use the Registry functions supplied by the system or
create registration (REG) files that contain information to be stored in the
Registry. These REG files are ASCII files that can be created with any text edi
tor. The Registry Editor (REGEDIT) can read these files and store the infor
mation in the appropriate places in the Registry.

Why the change from easy-to-use ASCII files to more complex binary
files? In the past, Windows-based applications used the GetProfileInt, Get
ProfileSection, GetProfileString, WriteProfileSection, and WriteProfileString

255

PAR T II: USING THE NEW USER INTERFACE FEATURES

functions to store information in the WIN.lNI file. As more and more appli
cations were written for Windows, however, problems with this method became
apparent.

One big problem was the scope of the WIN.lNI file. Each application
was storing information in this file, and no rules governed what could be
added or where it could be located. Data was placed in WIN.lNI in no partic
ular order. When the file was opened, it was hard to find or change an item.
It was also difficult to determine exactly what ne~ded to be changed and
whether all the necessary changes had been made. In addition, INI files in
Windows were limited in size to 64 KB, so if the file became too large, you
were just out of luck.

One recommended solution was to have applications store their infor
mation in private INI files rather than in WIN .INI by using the GetPrivate
ProfileInt, GetPrivateProfileString, and WritePrivateProfileString functions.
This got around the size issue and the potential confusion over which appli
cation uses what, but it didn't prove to be such a great plan. Because applica
tions used different files, they were unable to share configuration information
and other data easily. This caused problems for applications that were using
dynamic data exchange (DDE) or OLE, because these applications need to
share server names.

As a result, the registration database was created for version 3.1 of Win
dows. This database is the basis of the Registry now. implemented in both
Microsoft Windows NT and Windows 95.

The Structure of the Registry

256

The Registry stores data in a tree with a hierarchical structure. The tool that
allows you to view, edit, and manage the Registry is called the Registry Editor,
shown in Figure 10-1. The main screen of the Registry Editor displays the
structured tree in-what else?-a tree view control. The data elements shown
in Figure 10-1 are known as keys (HKEY_CLASSES_ROOT, HKEY_CURRENT
_USER, and so on). Each key can contain children, which are known as
subkeys. (In Figure 10-1, Display is a sub key of HKEY_CURRENT_CONFIG,
while Fonts and Settings are subkeys of the Display key.) Data entries are
called values (BitsPerPixel, DPILogicalX, and so on). Each value consists of a
value name and its associated data (if any).

Predefined key

Registry .Edit ~ie'N Help

El"~ My Computer
~··o HKEY _CLASSES_ROOT
~.{] HKEY_CURRENT_USER
~··o HKEY_LOCAL_MACHINE
~··o HKEY_USERS
S··O HKEY _CURRENT _CONFIG

8·· Display
Key -+-~--+:-' :····0 Fonts

Subkey : ' _
rfj .. O Enum

. ~]-·O System
rfj .. O HKEY_DYN_DATA

Value name

. J My Compuler\HKEY_CUR8ENT _CO NFl G\Displa)/\$ etting~

Figure 10-1.
The Registry Editor.

TEN: The Registry

"96"
"96"
"96"
"vgafix.fon"
"vgasys.fon"
"vgaoem.fon"
"640,480"

Keys don't necessarily have values associated with them. Sometimes, an
application simply needs to know that a key exists; at other times, the applica
tion might need to associate many values with a specific key (as shown in Fig
ure 10-1). A key can have any number of values associated with it, and the
values can be in any form.

Just like dogs, keys have names. A key name consists of one or more
printable ANSI characters (values in the range 32 through 127) and cannot
include spaces, backslashes, or wildcard characters (* and ?). Key names be
ginning with a period (.) are reserved. This means that you can name both
your dog and your key Spot if you so desire. These names are not localized
into other languages, although values associated with the keys can be local
ized. Sub keys also have names. The name of a sub key must be unique with
respect to the key immediately above it in the hierarchy.

The Registry supports several different data types for values, described
in Table 10-1 on the following page. Your application can use any of these
data types, depending on what you want to store.

257

PAR T II: USING THE NEW USER INTERFACE FEATURES

Data Type

REG_BINARY

REG_DWORD

REG_DWORD_BIG_ENDIAN

REG_LINK

REG_MULTCSZ

REG_NONE

REG_RESOURCE_LIST

REG_SZ

Table 10-1.
Data types for Registry values.

Description

Binary data in any form. .

A 32-bit number.

A 32-bit number in big-endian format (in
which the most significant byte of a word is
the low-order byte).

A 32-bit number in little-endian format
(same as REG_DWORD). Little-endian
format (in which the most significant byte
of a word is the high-order byte) is the
most common format for computers run
ning Windows NT.

A null-terminated string containing
unexpanded references to environment
variables (for example, %PATH%). This
value is a Unicode string or an ANSI string,
depending on whether you use the Uni
code functions or the ANSI functions. The
Registry always stores strings internally as
Unicode strings.

A Unicode symbolic link.

An array of null-terminated strings, termi
nated by two null characters.

No defined value type.

A device-driver resource list.

A null-terminated string. This value is a
Unicode string or an ANSI string, depend
ing on whether you use the Unicode func
tions or the ANSI functions.

Predefined Keys

258

Predefined keys, which are defined by the system, help an application navi
gate in the Registry. You can also use them to develop tools that allow a system
administrator to change whole categories of data. The following keys are de
fined at the root of the Registry:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

HKEY_DYN_DATA

TEN: The Registry

These predefined keys are entry points to the Registry, and they are
always open. This means that a developer does not have to call RegOpenKey
first in order to work with the predefined keys. These keys are valid Registry
handles for all Win32 implementations of the Registry, although use of the
handles can vary from platform to platform.

HKEY_CLASSES_ROOT
In this key, the Registry entries define types (or classes) of documents and the
properties associated with those types. Both conventional applications and
OLE applications use data that is stored under this key. This key also provides
backward compatibility with the Windows 3.1 registration database by stor
ing information for DDE and OLE support. File viewers and user interface
extensions store their OLE class identifiers in HKEY_ CLASSES_ROOT, and
in-process servers are registered in this key. (You'll find more information
about in-process servers and how they work with file viewers and user inter
face extensions in Chapters 12 and 13.)

Current user preferences are stored in this key, including the settings of envi
ronment variables and data about program groups, colors, printers, network
connections, and application preferences. This key makes it easier to estab
lish the current user's settings; the key maps to the current user's branch in
HKEY_ USERS. In HKEY_ CURRENT_USER, software vendors store the cur
rent user-specific preferences to be used within their applications. Microsoft,
for example, creates the HKEY_CURRENT_USER\Software\Microsoft key
for its applications to use, with each application creating its own subkey un
der the Microsoft key.

259

PAR Til: USING THE NEW USER INTERFACE FEATURES

Entries in this key describe the physical state of the computer, including data
about the bus type, system memory, and installed hardware and software.
HKEY_LOCAL_MACHINE contains sub keys that hold current configuration
data, including Plug and Play information (the Enum branch, which includes
a complete list of all hardware that has ever been on the system), network
logon preferences, network security information, software-related informa
tion (such as server names and the location of the server), and other system
information.

This key stores information about the default user configuration and con
tains a branch for each user of the computer. The default configuration is
supplieq for new users on the local computer and for the default current user
if the user hasn't changed preferences. Because Windows 95 also supports
HKEY_ CURRENT_USER, applications can access the user-specific informa
tion the same way they do under Windows NT. Each user's information is
stored in a separate file, which can be stored locally or on a network server.
Windows 95 can copy this file to the user's current system so that settings can
move from one computer to another with the user.

HKEV_CURRENT_CONFIG
The HKEY_CURRENT_CONFIG key, which is mapped to a sub key within
HKEY_LOCAL_MACHINE, stores non-user-specific configuration informa
tion that pertains to hardware. For example, an application can store a differ
ent server name for its data depending on whether the system is attached to
a network.

HKEV _DVN_DATA

260

This key is used to store dynamic Registry data. The Windows 95 Registry sup
ports both static data (which is stored on disk in the Registry) and dynamic
data (which changes frequently, such as performance statistics). This dy
namic data area is the mechanism that allows VxDs to provide real-time data
to Win32 applications that can run remotely as well as locally. It also allows
the system monitor to provide performance statistics on remote Windows 95

TEN: The Registry

systems. VxDs are not limited to performance data. They can provide any
data they want to pass from Ring 0 to Ring 3 efficiently without hogging the
CPU. The Registry supports dynamic data by storing a pointer to a function
that returns a value (or many values). When a Registry call queries values
associated with a dynamic key, that function is called to return the desired
value (s).

NOT E: Dynamic keys have been introduced in Microsoft Win
dows 95 to handle dynamic Registry data. They are supported only
in Windows 95.

Updating the Registry
It's not enough to know what is in the Registry; you'll also want to know how
to store and retrieve information. You can access data in the Registry in any of
these three ways:

Use the built-in tools (the Registry Editor and Control Panel)

Use the Win32 API

Use registration files

Using Built-In Tools
The Registry Editor is a tool that lets you change settings in the Registry. If
you are like me, you will like the Registry Editor so much that you will keep a
shortcut to it on your desktop. (No, I'm not kidding.) If you are like other,
not-so-masochistic people, you will take a look at it and shut it down fast.

In most cases, users can change system settings through Control Panel,
without going into the Registry Editor. Actually, end users should never edit
the Registry unless it is absolutely necessary. If you were to introduce an error
into your Registry, the computer could become nonfunctional. It is true that
the Registry can be restored, but let's face it-if you were to hose your whole
system by playing with the Registry, would you want to go back in?

But ifyou\ are writing your own application and need to add settings to
the Registry or make other Registry adjustments, Control Panel won't do the
dirty work for you. Once you open the Registry Editor, you can use the menus
to add keys and values. You can also import or export Registry data.

261

PAR T II: USING THE NEW USER INTERFACE FEATURES

Using the Win32 API
The Win32 API provides a set of functions to access data stored in the Regis
try. Before it can add data to the Registry, an application must create or open
a key. An application always refers to the key as a sub key of a currently open
key, using the RegOpenKey or RegOpenKeyEx function to open a key and
the RegCreateKey or RegCreateKeyEx function to create a key.

The RegCloseKey function closes a key and writes the data it contains
into the Registry. The data cannot be written to the Registry before the func
tion returns because it might take several seconds for the cache to be flushed
to the hard disk. If the data must be written to the hard disk immediately, the
application can use the RegFlushKey function. (Because this function uses
many system resources, you should call it only when absolutely necessary.)

Using Registration Files

262

You can also use a registration file to import data into the system Registry.
REG files are ASCII files that contain information about what values and keys
should be added to the Registry and where to add the data. The following
code shows the contents of a REG file that establishes the display settings
shown in Figure 10-1 on page 257. I created this REG file by selecting the
HKEY_CURRENT_CONFIG\Display\Settings key and choosing the Export
Registry File item from the Registry menu:

REGEDIT4

[HKEY_CURRENT_CONFIG\Display\Settings]
"fonts.fon" = "vgasys.fon"
"fixedfon.fon" = "vgafix.fon"
"oemfonts.fon" = "vgaoem.fon"
"DPILogicalX" = "96"
"DPILogicalY" = "96"
"DPIPhysicalX" "96"
"DPIPhysicalY" = "96"
"BitsPerPixel" = "4"
"Resolution" = "640;480"

If you have worked with REG files under Windows 3.1 or Windows NT,
you will notice that the syntax here differ~ slightly. The first entry in the REG
file is the word REGEDIT4, which specifies that the syntax of the file should
follow the Windows 95 convention. This file will add the values specified

TEN: The Registry

(fonts.fon, fixedfon.fon, and so on) under the HKEY_CURRENT_CONFIG\
Display\Settings key. More details describing exactly how to create registra
tion files can be found in the Win32 SDK documentation.

Differences Between the
Windows 95 and Windows NT Registries

Because of certain system variances and differing design goals in Microsoft
Windows 95 and Microsoft Windows NT, some features of the Windows NT
Registry are not supported by Windows 95. The Windows 95 Registry is com
patible with the Window NT Registry, but it has a completely different imple
mentation.

The Windows 95 Registry differs from the Windows NT Registry in the
following ways: .

The Windows 95 Registry has no security attributes and is therefore
not secure.

The Windows 95 Registry does not replace CONFIG.SYS, AUTO
EXEC.BAT, WIN .INI, or SYSTEM.INI files or Program Manager
groups, although it does replace some information from these files
through Plug and Play support. Older programs can still use the
old-style configuration and initialization files.

The Windows 95 Registry does not support the mapping of INI file
functions (or the INI files themselves) into the Registry.

The Windows 95 Registry layout is different from the Windows NT
Registry layout.

Registry Functions in Windows 95
Windows 95 supports all the Win16 and Win32 Registry functions. Some

. Win32 functions return errors when called from Windows 95, however,just
as some Win32 functions return errors when called from Win32s, as a result
of system differences. Table 10-2 on the following page lists the Registry func
tions that Windows 95 supports, including numerous Win16 functions that
are provided for compatibility with Windows 3.1.

263

PAR T II: USING THE NEW USER INTERFACE FEATURES

264

Function

RegCloseKey (Win16)

RegCreateKey (Win 16)

RegDeleteKey (Win16)

RegEnumKey (Win16)

RegOpenKey (Win16)

RegQueryValue (Win16)

RegSetValue (Win16)

RegCreateKeyEx (Win32)

RegDeleteValue (Win32)

RegEnumKeyEx (Win32)

RegEnumValue (Win32)

RegFlushKey (Win32)

RegOpenKeyEx (Win32)

RegQuerylnfoKey (Win32)

RegQueryValueEx (Win32)

RegSetValueEx (Win32)

Table 10-2.

Description

Closes the specified key.

Creates the specified key. (Win32-based applica
tions should use the RegCreateKeyEx function.)

Deletes the specified key.

Enumerates the subkeys of the specified open key.
(Win32-based applications should use the Reg
EnumKeyEx function.)

Opens the specified key. (Win32-based applica
tions should use the RegOpenKeyEx function.)

Returns the value associated with the specified
open key. (Win32-based applications should use
the RegQueryValueEx function.)

Sets the value for the specified key. (Win32-based
applications should use the RegSetValueEx
function.)

Creates a key.

Deletes a value associated with the specified key.

Enumerates the sub keys of the specified open key.

Enumerates the values of the specified open key.

Writes all the attributes of the specified open key
to the Registry.

Opens the specified key.

Returns information about the specified key.

Returns the value associated with the specified
open key.

Sets the value for the specified key.

Registry functions supported in Windows 95.

C HAP T E R E LEV E N

The User Interface Library

Using the features of SHELL 32.DLL, the user interface dynamic-link library,
is an easy way to extend the functionality of the Microsoft Windows 95 user
interface. SHELL32.DLL provides functions that allow your application to . '

implement drag-and-drop operations, to gather information from the system
about other applications and files, and to use some of the interface's special
widgets such as taskbar notifications and access bars. (The user interface and
its features are sometimes referred to collectively as the shell.)

This chapter discusses the programming techniques necessary to use
the functions included in SHELL32.DLL. To illustrate some of what you can
do with these functions, I created a small sample named SHELLFUN, which
demonstrates the following functionality:

Drag and drop

The SHGetFileInfo function

The ability to add, remove, and modify items in the taskbar
notification area

The ability to add, remove, and reposition an access bar

When you access SHELL32.DLL, you must use the SHELLAPI.H header
file. You need to include this file at the beginning of your application in order
to use this library's functions and messages.

Drag and Drop
The drag-and-drop functions in SHELL32.DLL allow an application to regis
ter itself with the system for drag-and-drop notifications, to query informa
tion about the file or files dropped, and to permit or prevent a drop. Before

265

PAR T II:, USING THE NEW USER INTERFACE FEATURES

266

an application can process a drop, it must register itself with the system by
using the DragAcceptFiles function. In SHELLFUN, this happens in the pro
cessing of the WM_ CREATE message for the main window:

case WM_CREATE:
II Indicate that drag and drop is OK.
DragAcceptFiles (hWnd. TRUE);

After making this call, the application receives notification of a drop in
the form of the WM_DROPFILES message. In the wParam parameter of the
message, the system packages ahandle to a structure containing information
about the drop object. Using this handle, the application can query informa
tion such as the number of files dropped, the filename (s), and the location of
the drop. To query the number of files being dropped, you can pass a special
value (-1) to the DragQueryFile function in the second parameter. The ap
plication can get the name of the file being dropped by subsequent calls to
DragQueryFile, with the second parameter specifying the index to the file.
The drop operation is completed with a call to DragFinish.

In the SHELLFUN sample, I allow only one file to be dropped at a time.
The dropped file is opened and read into a data buffer, to be displayed in a
multiline edit control.

case WM_DROPFILES:
{

II A file is being dropped.
i nt i Fil es;
char lpszFile [MAX_PATH];
HDROP hDropInfo = (HANDLE)wParam;

II Get the number of files.
iFiles = DragQueryFile (hDropInfo. (DWORD)(-1). (LPSTR)NULL. 0);

if (i Fi 1 es ! = 1)
MessageBox (hWnd. "One file at a time. please.". NULL. MB_OK);

else
{

HANDLE hFile;
DWORD dwFileSize. dwBytesRead;
char *lpBufPtr;

DragQueryFile (hDropInfo. 0. lpszFile. sizeof (lpszFile));
II Open the file.
if «hFile = 'CreateFile (lpszFile.

GENERIC_READ.
FILE_SHARE_READ.
NULL.

E LEV E N: The User Interface Library

{

}

OPEN_EXISTING.
FILE_ATTRIBUTE_NORMAL.
(HANDLE)NULL» == (HANDLE)(-l»

MessageBox (hWnd. "File open failed.". NULL. MB_OK):
break:

II Get the size of the file.
dwFileSize = GetFileSize (hFile. NULL):
if (dwFileSize == 0xFFFFFFFF)
{

}

MessageBox (NULL. "GetFileSize failed!". NULL. MB_OK):
break:

II Allocate a buffer to read the file into.
lpBufPtr = (char *) malloc (dwFileSize):
if (lpBufPtr == NULL)
{

}

MessageBox (NULL, "malloc failed!". NULL. MB_OK):
CloseHandle (hFile):
break:

II Read the file contents into the buffer.
ReadFile (hFile. (LPVOID)lpBufPtr. dwFileSize. &dwBytesRead.

NULL):

if (dwBytesRead == 0)
{

}

MessageBox (hWnd. "Zero bytes read.". NULL. MB_OK):
break:

II Update the multiline edit control with the file contents.
SendMessage (hwndEdit. WM_SETTEXT. 0. (LPARAM)lpBufPtr):

II Close the file.
CloseHandle (hFile):

free (lpBufPtr):

II Signal that the.drag-and-drop operation is over.
DragFinish (hDropInfo);

break:

267

PAR T II: USING THE NEW USER INTERFACE FEATURES

268

Figure 11-1 shows the result of dragging a file named A Sample Text File
and dropping it in the SHELLFUN window. Because the SHELLFUN sample
simply reads the file into a buffer and does no processing, it's easiest to do
this with a text file. (You can drop a binary file, but it'll look funny.)

Figure 11-1. .
The result of a drag-and-drop operation in the SHELLFUN sample.

When the application no longer needs to support drag and drop, it must
unregister itself by using the DragAcceptFiles function as follows:

OragAcceptFiles (hWnd. FALSE):

To determine where a file is being dropped, the -application can use an
other drag-and-drop function, DragQueryPoint. The DragQueryPoint func
tion returns the drop point, and the application can then draw the item at that
point, as you can see here:

II A file is being dropped.
POINT pt:
int idx:
char lpszFile [MAX_PATH]:
HOC hOC:

E LEV E N: The User Interface Library

II Find out where the drop is.
DragQueryPoint (hOropInfo, &pt):

1/ Get a DC.
hOC = GetDC (hWnd):

II For each file dropped, write its name out to the client.
for (idx = 0:

OragQueryFile (hDropInfo, idx, lpszFile, sizeof (lpszFile)):
pt.y += 20, idx++)
TextOut (hWnd, pt.x, pt.y, lpszFile, sizeof (lpszFile)):

II Signal that the drag-and-drop operation is over.
DragFinish (hOropInfo):

II Release the DC.
ReleaseDC (hOC, hWnd):

NOT E: What you've just seen is a message-based (Windows 3.1)
method of using the drag-and-drop functions in the user interface
library. A new, alternative method uses OLE to perform drag-and
drop operations. The message-based method is fine for simple
drag-and-drop tasks, whereas the OLE method is far richer and al
lows more complex operations. This book does not cover the OLE
based method in detail, although Chapter 14 contains a sample that
shows how to implement the IDropSource interface for drag and
drop. (See "Supporting Drag and Drop," page 355.) For more in
formation about drag and drop using OLE, you can refer to the
Win32 SDK, the Microsoft Visual C++ 2 documentation, and Inside
OLE, 2d edition, by Kraig Brockschmidt (Microsoft Press, 1995).

Retrieving File Information
Assuming that you want to learn a little bit about the files being dropped in
your application, you'll appreciate the SHELL32.DLL functions that execute
a file, get the name and the handle of an executable file, parse command-line
arguments, extract icons, and get file information. Many of these functions
existed in previous versions of Windows, but some are new.

The FindExecutable and ShellExecute functions, which are not new,
take advantage of file associations to find and start applications or to open
and print files. By specifying a filename, you can use FindExecutable to get

269

PAR T II: USING THE NEW USER INTERFACE FEATURES

the name and the handle of the executable file that is started when an open
ass~ciation is run. (This function is supported only for compatibility with pre
vious versions of Windows; it is not recommended for Win32-based applica
tions.) ShellExecute either opens or prints a specified file. Your application
designates which operation is performed by specifying open or print in the
lpszOp parameter of the function. Pretty simple.

To get the icon associated with an executable, you can use the Extract
Icon function. This function returns the handle of an icon from a file that
you specify-an executable file, a dynamic-link library, or an icon file. Once
you have this handle, you can use it to draw the icon.

Shh! Be Very, Very Quiet; We're Hunting New Functions

270

Windows 95 offers some new functions and structures that you can use to re
trieve information about files. These functions all have an SH prefix, so, as
Elmer Fudd would say, "Be vewy, vewy quiet "

The SHGetNameMappingCount function gets the number offile
mappings for the specified file.

The SHFreeNameMappings function frees the file mappings for the
specified file.

The SHFileOperation function allows the application to specify a
file or printer operation (moving, copying, deleting, renaming, or
changing a printer port) and how to perform the operation. The
application can control operations such as allowing multiple desti
nation files, specifying a silent operation (no papers flying between
folders) , or determining whether to complete the operation without
user confirmation. .

The SHGetFilelnfo function gets information about the specified
file, including its display name, its icon, its type, its attributes, the
icon location, and the large and small icons for the file.

In the SHELLFUN sample, the SHGetFilelnfo function retrieves infor
mation about a file specified by the user. Not one to give advice that I don't
take myself ("Don't do anything that the system will do for you"), I use the
Open common dialog box to get the name of the file to query. When the user
chooses the file, its display name and type name are displayed in the multiline
edit control in SHELLFUN's main window:

E LEV E N: The User Interface Library

void OnFileInfo (HWND hWnd. HWND hwndEdit)
{

OPENFILENAME OpenFileName;
char szDirName [MAX_PATH] = "".
char szFil e [MAX_PATH] = "\0";
char szFileTitle [MAX_PATH] = "\0";

II The filter specification for the OPENFILENAME structure
char szFilter [] = {"All Files\0*.*\0"};

OpenFileName.1StructSize
OpenFileName.hwndOwner
OpenFileName.hInstance
OpenFileName.lpstrFilter
OpenFileName.lpstrCustomFilter
OpenFileName.nMaxCustFilter
OpenFileName.nFilterIndex
OpenFileName.lpstrFile
OpenFileName.nMaxFile
OpenFileName.lpstrFileTitle
OpenFileName.nMaxFileTitle
OpenFileName.lpstrInitialDir
OpenFileName.lpstrTitle
OpenFileName.nFileOffset
OpenFileName.nFileExtension
OpenFileName.lpstrDefExt

sizeof (OPENFILENAME);
hWnd;
(HANDLE)g_hInst;
szFilter;
(LPTSTR)NULL;
0L;
lL;
szFil e;
sizeof (szFile);
szFil eTitl e;
sizeof (szFileTitle);
NULL;
"Pick a file for information.";
0;
0;
"*.*";

OpenFileName.1CustData 0;
OpenFileName.Flags OFN_PATHMUSTEXIST

OFN_FILEMUSTEXIST I OFN_HIDEREADONLY;

if (GetOpenFileName (&OpenFileName»
{

SHFILEINFO sfi;
char buff [2056];

II The user chose to get the file information: display name.
II type name. file attributes. icon location. and executable type.
if (SHGetFileInfo (OpenFileName.lpstrFile. 0. &sfi.

}

sizeof (SHFILEINFO). SHGFI_DISPLAYNAME I SHGFI_TYPENAME»

memset (buff. '\0'. sizeof (buff»;

II Display the information.
wsprintf (buff. "Display name: %s Type Name: %s".

sfi.szDisplayName. sfi.szTypeName);

II Update the multiline edit control with the file description.
SendMessage (hwndEdit. WM_SETTEXT. 0. (LPARAM)buff);

271

PAR T II: USING THE NEW USER INTERFACE FEATURES

. The end result, shown in Figure 11-2, isn't the fanciest example of user
interface design, but it does illustrate that the display name can be a long
filename. The type name is the name registered for that type of file in the
Registry.

1~Jile<8p~8ar,'!:f~I~/\d",r: .••••.• ·.'.,.:". "
i'iDisplay name: A Sample Text File Type Name: Text Document

' ... ~

J

Figure 11-2.
Retrievingfile information in SHELLFUN.

Taskbar Notifications

272

The Windows taskbar includes an area in which applications can display status
information. In Figure 11-3, for instance, this taskbar notification area (some
times called the tray notification area) includes an electrical plug icon to sig
nal that my laptop is plugged in, another icon to indicate that my PCMCIA
card is active, and a time display telling me that it's getting close to teatime.

Figure 11-3.
The taskbar notification area.

An icon in the taskbar notification area can have a ToolTip associated
with it, which is helpful for displaying additional status information. For ex
ample, when my laptop is running off its battery, a battery icon replaces the
electrical plug icon. If I allow my mouse to linger over the battery icon, a
ToolTip pops up, indicating how much battery life is left. A printer icon and
an associated ToolTip can also be useful. When you print a document, the
printer icon appears in the notification area, and its ToolTip can tell you the
status of the print job (whetber it's spooling, printing, and so on).

E LEV E N: The User Interface Library

In the SHELLFUN sample, the user can add an icon to the taskbar noti
fication area. You need to provide an icon and, optionally, a'ToolTip stririg.
SHELLFUN uses the built-in Windows logo icon, IDI_ WINLOGO. The user
can add or remove the icon or modify its state in the taskbar notification area
by choosing menu commands:

case IDM_ADDICON:
TrayMessage (hWnd. NIM_ADD);
break;

case IDM_STATECHANGE:
TrayMessage (hWnd. NIM_MODIFY);
break;

case IDM_REMOVEICON:
TrayMessage (hWnd. NIM_DELEtE);
break;

TrayMessage is an application-defined function that fills out a NOTIFY
ICONDATA structure and sends the message passed in the second parameter
through the ShelCNotifyIcon function. Notice that a member of the structure
is filled in with flags. This member can be a combination of the following flags:

NIF _MESSAGE

NIF_ICON

NIF_TIP

Specifies that the uCallbackMessage member is valid

Specifies that the hlcon member is valid

Specifies that the szTip member is valid

The following code demonstrates how SHELLFUN fills out this struc
ture and uses the Shell_NotifyIcon function:

void TrayMessage (HWND hWnd. UINT message)
{

NOTIFYICONDATA tnd;

II Change the state of the small icon in the taskbar.
if (g_Statel)
{ .

lstrcpyn (tnd.szTip. g_szState2. sizeof (tnd.szTip));
g_Statel = FALSE;

else
{

lstrcpyn (tnd.szTip. g_szStatel. sizeof (tnd.szTip));
g_Statel = TRUE;

(continued)

273

PAR T II: USING THE NEW USER INTERFACE FEATURES

274

switch (message}
{

}

case NIM_ADD:
tnd.uFlags NIF_MESSAGE I NIF_ICON I NIF_TIP:
break:

case NIM_MODIFY:
tnd.uFlags = NIF_TIP:
break:

case NIM_DELETE:
tnd.uFlags = 0:
g_Statel = FALSE:
break:

tnd.uID (UINT)IDI_WINLOGO:
tnd.cbSize sizeof (NOTIFYICONDATA):
tnd.hWnd hWnd:
tnd.uCallbackMessage = TRAY_CALLBACK:
tnd.hlcon = g_hlconState:

Shell_Notifylcon (message. &tnd):
}

Your application can send three messages using ShelCNotifylcon:

NIM_ADD

NIM_MODIFY

NIM_DELETE

Adds an icon to the taskbar notification area

Modifies an icon in the taskbar notification area

Deletes an icon from the taskbar notification area

SHELLFUN permits the user to modify (change the state of) the icon in
the taskbar notification area by choosing the Change State command on the
AppBar menu. When the user does this, the ToolTip text changes from State 1

to State 2, as illustrated in Figure 11-4.

Figure 11-4.
Changing the state of an icon in the task bar notification area.

The application can provide a special callback message that handles
mouse messages intended for a taskbar icon. This is useful if you want a con
text menu to pop up when the user clicks the icon with the right mouse button.

E LEV E N: The User Interface Library

The SHELLFUN sample displays a message box when the user clicks the icon
with the left mouse button, as shown in Figure 11-5. Here is the callback func
tion that SHELLFUN uses:

void TrayCallback (WPARAM wParam, LPARAM lParam)
{

UINT uID;
UINT uMouseMsg;

uID = (UINT)wParam;
uMouseMsg = (UINT)lParam;

if (uMouseMsg == WM_LBUTTONDOWN)
{

}

}

if (uID == (UINT)IDI_WINLOGO)
MessageBox (NULL, "Click!", "This sure is fun!", MB_OK);

Click!

IC::::::::gK:::::::::JI

Figure 11-5.
SHELLFUN responds to the user clicking the task bar icon.

NOT E: A taskbar notification can be especially useful if you are
writing an installer or a Control Panel application for a hardware
item such as a sound card. It's nice to let users know when the hard
ware is up and running, allowing them to check status without hav
ing to open an application.

Access Bars
An access bar is a window that is much like the taskbar. Anchored to one edge
of the screen, it usually contains buttons that give a user quick access to com
mands, applications, or windows. Although this might sound a lot like a tool
bar, one key difference is that the system reserves the area occupied by an
access bar (just as it does for the taskbar) and will prevent other applications
from using that area. A user can have one or several access bars on the desk
top at any time. Try to use accessbarsjudiciously; it can get crowded.

275

PAR T II: USING THE NEW USER INTERFACE FEATURES

The SHELLFUN sample allows the user to create or remove an access
bar (also known as an AppBar) by choosing menu commands. SHELLFUN's
AppBar menu is shown in Figure 11-6.

,~ile," Help
_ 8dd AppBar '

R§move AppB ar

Addlaskbcu Icon
Remove Icon
~hange State

Show Taskbar Info

Figure 11-6.
SHELLFUN's AppBar menu.

Creating an Access Bar

276

You first need to decide what you want your access bar to do and what it
should look like. I decided that mine should look a bit like the taskbar and
that it should contain buttons that let the user change the bar's position
(right, left, top, or bottom). To create the access bar itself, I used Create
WindowEx and the extended style WS_EX_TOOLWINDOW:

II Create the access bar.
g_hWndAppBar = CreateWindowEx (WS_EX_TOOLWINDOW,

"AppBarClass", "AppBar",
WS_POPUP I WS_THICKFRAME I WS_CLIPCHILDREN,
0, 0, DEF_APPBAR-WIDTH, DEF_APPBAR-HEIGHT,
NULL, NULL, hlnstance, NULL);

II Now create the button children.
g_hwndBtnl = CreateWindow (

"BUTTON" , I I create a button
II window title "&Right",

BS_PUSHBUTTON BS_CENTER I WS_VISIBLE WS_CHILD,
0, 0, 0, 0,
g_hWndAppBar,
(HMENU)IDM_RIGHT,
hlnstance,
NULL);

II parent window
I I I D
I I instance

E LEV E N: The User Interface Library

9_hwndBtn2 = CreateWindow (
"BUTTON", II create a button
"&Left", II window title
BS_PUSHBUTTON" BS_CENTER I WS_VISIBLE WS_CHILD,
0, 0, 0, 0,
9_hWndAppBar,
(HMENU)lDM_LEFT ,
hlnstance,
NULl);

II parent window
I I I D
II instance

9_hwndBtn3 CreateWindow (
II create a button
II window title

"BUTTON",
"&Top",
BS_PUSHBUTTON
0, 0, 0. 0,
9_hWndAppBar,
(HMENU)I DM_ TOP,
hlnstance,
NULl);

BS_CENTER I WS_VISIBLE WS_CHILD,

II parent window
II ID
II instance

9_hwndBtn4 = CreateWindow (
"BUTTON", II create a button
"&Bottom", II window title
BS_PUSHBUTTON BS_CENTER I WS_VISIBLE WS_CHILD,
0, 0, 0, 0,
9_hWndAppBar,
(HMENU)IDM_BOTTOM,
hlnstance,
NULl);

II parent window
I I ID
II instance

Of course, it's not enough to just create the windows and wish upon a
star for an access bar-you need to register it with the system. SHELLFUN
does this when the user chooses to add the access bar. As I did for the taskbar
notification, I filled out a structure, APPBARDATA, and used a special func
tion, SHAppBarMessage, to register the access bar:

case IDM_ADD:
if (! 9_fRe9istered)
{

II Fill out the structure needed to re9ister the new access bar.
9_appBar.hWnd = 9_hWndAppBar;
9_appBar.cbSize = sizeof (APPBARDATA);

II Identifier for notifications
9_appBar.uCallbackMessage = APPBAR-CALLBACK;

(continued)

277

PA R T II: USING THE NEW USER INTERFACE FEATURES

278

II Register the access bar.
if (1 SHAppBarMessage (ABM_NEW. &g_appBar»

break:

II Set the default size and position of the access bar.
AppBarPosChanged (ABE_TOP. &g_appBar):

ShowWindow (g_hWndAppBar. SW_SHOW):

II Set the registered flag to TRUE.
g_fRegistered = TRUE:

break:

The access bar initially appears anchored to the top of the desktop, as
shown in Figure 11-7. Clicking one of the buttons on the bar will change its
position.

Figure 11-7.
The access bar in SHELLFUN.

To remove the access bar, you use the same SHAppBarMessage func
tion, specifying the ABM_REMOVE message as the first parameter. In SHELL-

E LEV E N: The User Interface Library

FUN, I don't actually destroy the window; I hide it in case the user chooses
to add it again later. When the application closes, however, I do destroy the
window in my cleanup code:

case 1DM_REMOVE:
if (g_fRegistered)
{

II Unregister the access bar.
SHAppBarMessage (ABM_REMOVE. &g_appBar);
ShowWindow (g_hWndAppBar. SW_H1DE);
g_fRegistered = FALSE;

break;

Because an access bar is a window in its own right, it has its own window
procedure, in which events such as activation, creation, and destruction (and
lots of other words ending in -tion) happen. This is also where the callback
message specified in the ABM_NEW message is sent. Here is the window pro
cedure for SHELLFUN's access bar:

LRESULT CALLBACK AppBarWndProc (HWND hwnd. U1NT msg. WPARAM wparam.
LPARAM lparam)

{

static HWND hwndBtnl. hwndBtn2. hwndBtn3. hwndBtn4;

switch (msg)
{

case WM_CREATE:
g_fRegistered FALSE;
break;

case WM_DESTROY:
DestroyWindow (hwndBtnl);
DestroyWindow (hwndBtn2);
DestroyWindow (hwndBtn3);
DestroyWindow (hwndBtn4);
break;

case WM_W1NDOWPOSCHANGED:
case WM_ACT1VATE:

APPBARDATA abd;
abd.cbSize = sizeof (APPBARDATA);

(continued)

279

PAR T II: USING THE NEW USER INTERFACE FEATURES

} ,
}

}

abd.hWnd = hwnd;
abd.1Param = (LONG)NULL;
SHAppBarMessage (ABM_ACTIVATE, &abd);
break;

case WM~COMMAND:
if (HIWORD (wparam) == BN_CLICKED)

AppBarClicked (LOWORD (wparam), (APPBARDATA *)&g_appBar);
break;

case APPBAR_CALLBACK:
AppBarCallback (hwnd, msg, wparam, lparam);
return 0;

default:
return DefWindowProc (hwnd, msg, wparam, lparam);

Using the Access Bar Callback Message

280

As mentioned earlier, an application can specifylhat a callback message must
be sent to it. SHELLFUN defines this message as APPBAR_CALLBACK (al
though an application can specify any message). This callback message is
used for processing notifications that are sen t to the access bar when the state
of the bar changes (for example, from ABS_ALWAYSONTOP), when a full
screen application starts or closes, and when an event occurs that might affect
the bar's size or position. SHELLFUN uses the following code to process the
access bar's callback message. (It's very similar to code used as an example in
the Win32 SDK.)

void AppBarCallback (HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

UINT uState;

switch (wParam)
{

case ABN_STATECHANGE:
II Check to see whether the access bar is still ABS_ALWAYSONTOP.
uState = SHAppBarMessage (ABM_GETSTATE, &g_appBar);

E LEV E N: The User Interface Library

}

}

SetWindowPos (hWnd.
(ABS_ALWAYSONTOP & uState) ? HWND_TOPMOST : HWND_BOTTOM.
0. 0. 0. 0. SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE):

break:

case ABN_FULLSCREENAPP:
II A full-screen application has started. or the last
II full-screen application has closed. Reset the access bar's
II z-order appropriately.
uState = SHAppBarMessage (ABM_GETSTATE. &g_appBar):

if (l Pa ram)
{

SetWindowPos (hWnd.

else
{

(ABS_ALWAYSONTOP & uState) ? HWND_TOPMOST : HWND_BOTTOM.
0. 0. 0. 0. SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE):

if (uState & ABS_ALWAYSONTOP)
SetWindowPos (hWnd. HWND_TOPMOST. 0. 0. 0, 0.

SWP_NOMOVE I SWP_NOSIZE I SWP_NOACTIVATE):

case ABN_POSCHANGED:
II The taskbar or another access bar
II has changed its size or position.
AppBarPosChanged (g_appBar.uEdge. &g_appBar):
brea k:

Changing an Access Bar's Size or Position
The size or position of an access bar can change, usually as a result of the user
resizing or moving it. In SHELLFUN, the user can change the position of the
bar by clicking the Right, Left, Top, or Bottom button to align the access bar
with the specified edge of the screen. The application must then determine
whether that position is available. If anqther access bar is already anchored
to the specified edge, you must recalculate the position of the new access bar
s.o that it will appear next to the bar already o"ccupying that edge.

281

PAR T II: USING THE NEW USER INTERFACE FEATURES

282

In SHELLFUN, I had to consider the vertical or horizontal orientation
of the access bar and then remember to reset the positions of the child but
tons accordingly. (The buttons are placed crosswise on a horizontal bar, or up
and down on a vertical bar.) When the user clicks a button on the SHELLFUN
access bar, the message is sent to a function that filters out information about
which button was clicked:

void AppBarClicked (UINT msg. APPBAROATA *pabd)
{

switch (msg)
{

}

}

case 10M_LEFT:
AppBarPosChanged (ABE_LEFT. pabd):
break;

case 10M_RIGHT:
AppBarPosChanged (ABE_RIGHT. pabd);
break;

case 10M_TOP:
AppBarPosChanged (ABE_TOP. pabd):
break:

case 10M_BOTTOM:
AppBarPosChanged (ABE_BOTTOM. pabd):
break:

Once you have determined the new specified edge, you can do the real
positioning:

void PASCAL AppBarPosChanged (UINT uEdge. APPBAROATA *abd)
{

RECT rcl:

II Get the screen coordinates.
rcl .left = rcl.top = 0:
rcl .right = GetSystemMetrics (SM_CXSCREEN):
rcl .bottom = GetSystemMetrics (SM_CYSCREEN);

switch (uEdge)
{

case ABE_TOP:
abd->rc.left abd->rc.top 0;

E LEV E N: The User Interface Library

}

abd->rc.right = rcl.right;
abd->rc.bottom = DEF_APPBAR-HEIGHT;
break;

case ABE_BOTTOM:
abd->rc.left = 0:
abd->rc.top = rcl.bottom - DEF_APPBAR-HEIGHT:
abd->rc.right = rcl.right:
abd->rc.bottom = rcl.bottom:
break:

case ABE_LEFT:
abd->rc.left = abd->rc.top = 0:
abd->rc.right = DEF_APPBAR-WIDTH:
abd->rc.bottom = rcl.bottom;
break;

case ABE_RIGHT:
abd->rc.top = 0;
abd->rc.left = rcl.right - DEF_APPBAR-WIDTH:
abd->rc.right = rcl.right:
abd->rc.bottom = rcl.bottom;
break:

II Check to see whether this position is OK.
SHAppBarMessage (ABM_OUERYPOS, abd):

switch (uEdge)
{

}

case ABE_LEFT:
abd->rc.right abd->rc.left + DEF_APPBAR_WIDTH;
break;

case ABE_RIGHT:
abd->rc.left abd->rc.right - DEF_APPBAR-WIDTH;
break:

case ABE_TOP:
abd->rc.bottom = abd->rc.top + DEF_APPBAR-HEIGHT;
break;

case ABE_BOTTOM:
abd->rc.top abd->rc.bottom - DEF_APPBAR-HEIGHT:
break;

(continued)

283

PAR T II: USING THE NEW USER INTERFACE FEATURES

II Set the access bar position.
SHAppBarMessage (ABM_SETPOS, abd);

II Move and size the access bar so that it conforms to the
II bounding rectangle passed to the system.
MoveWindow (abd->hWnd, abd->rc.left, abd->rc.top,

abd-)rc.right, abd-)rc.bottom, TRUE);

if «uEdge == ABE_TOP) I I (uEdge == ABE_BOTTOM»
{

MoveWindow (g_hwndBtnl, 5, 0, BUTTON_WIDTH, BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn2, BUTTON_WIDTH * 2, 0, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn3, BUTTON_WIDTH * 4, 0, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn4, BUTTON_WIDTH * 6, 0, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);
}

else
{

}

}

MoveWindow (g_hwndBtnl, 2, 5, BUTTON_WIDTH, BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn2, 2, BUTTON_HEIGHT * 2, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn3, 2, BUTTON_HEIGHT * 4, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);
MoveWindow (g_hwndBtn4, 2, BUTTON_HEIGHT * 6, BUTTON_WIDTH,

BUTTON_HEIGHT, TRUE);

Getting Information About the Taskbar

284

You can also use SHAppBarMessage to get information about the system's
taskbar-specifically, information about the taskbar's position. In SHELL
FUN, the user can do this by choosing a menu option.

case IDM_TASKBAR:
{

APPBARDATA abd;
char buff [MAX_PATH];

memset (buff, '\0', sizeof (buff»;

E LEV E N: The User Interface Library

abd.cbSize = sizeof (APPBARDATA);
. SHAppBarMessage (ABM_GETTASKBARPOS, &abd);

wsprintf (buff, "Left: %d, Right: %d, Top: %d, Bottom: %d",
abd.rc.left, abd.rc.riQht, abd.rc.top, abd.rc.bottom);

II Update the multiline edit control.
SendMessage (hwndEdit, WM_SETTEXT, 0, (LPARAM)buff);
brea k;

The information returned from the call to SHAppBarMessage is dis
played in the multiline edit control in the client area of the main SHELLFUN
window, as shown in Figure 11-8.

8PpBar.t!elp

-2. Right: 642. Top: 452. Bottom: 482 ..!l

Figure 11-8.
Taskbar information retrieved by the SHELLFUN sample.

285

C HAP T E R TWELVE

File Viewers

Let's say that you have created some Microsoft Word documents named
STUFFl.DOC, STUFF2.DOC, and STUFF3.DOC. Now let's say that you want
to give those files to a reviewer who doesn't use Word. (Heresy, I know, but
there's always one in the crowd.) You can of course resave the documents as
text files that can be read with any text editor. Or, if the reviewer happens to
be running the Microsoft Windows 95 operating system, he or she can use a
file viewer to check out the files.

A file viewer, one of the new features of Windows 95, allows a user to
quickly see the contents of a file without having to run the full application
that created the file-in fact, without even requiring the presence of that
application. The file viewer not only displays a file's contents but also pro
vides a user interface that can include items such as a menu, a toolbar, and a
status bar .

. To use a file viewer, you first right-click a file to display its context menu,
which will look something like the menu shown in Figure 12-1 on the next
page. Then simply choose the Quick View option from the context menu to
display the file contents in a file viewer. (Alternatively, you can select the file
and choose Quick View from the File menu in Windows Explorer.)

Before you go off and try this on your computer, however, be aware that
the Quick View option will not appear on a file's context menu unless a file
viewer is registered for that particular type of file (DOC, TXT, AVI, and so
on). The option is displayed only if you have a file viewer installed and if that
file viewer has registered itself properly in the Registry. When you right-click
a file, the system checks the Registry to find a viewer for that file based on the
file's extension and class. If no file viewer is registered for that file type, the
Quick View option doesn't appear on the context menu.

287

PAR T II: USING THE NEW USER INTERFACE FEATURES

288

ell!
.copy

Create .s.hortcut

Qelete
Rename

Ploperties ...

Figure 12-1.
A context menu containing the Quick View option.

If you install the sample I wrote for this chapter, MFCVIEW, you will
have a rudimentary file viewer for text files, shown in Figure 12-2. You need
to copy the dynamic-link library to your \WINDOWS\SYSTEM\VIEWERS
folder and then run the MFCVIEW.REG file. The DLL is registered to reside
in this path; if you want to place the DLL somewhere else, change the REG
file to reflect the new location. (If you rebuild the project, the DLL file will
automatically be placed in \WINDOWS\SYSTEM\VIEWERS. You can change
this location by going to the Project menu, choosing Settings, clicking the
Link tab, and changing the Output File Menu item. Then click the Debug tab
and edit the Executable Fqr Debug Session and the Working Directory items.
You must alter these three items for both Win32 Debug and Win32 Release.
Note that you must still change and run the REG file.)

hen some of you saw the words animation control.
ou probably got all excited and wondered what this

control could be. An animation control is simply a
indow that displays an audio-video interleaved (AVI)

clip. AVI is the standard Windows audio-video format.
n AVI clip is a series of bitmap frames. something

like a movie. Although AVI clips can have sound.
animation controls ignore sound information when
hey play these clips.

Figure 12-2.
Nancys Viewer (a rudimentary file viewer).

T W E L V E: File Viewers

How File Viewers Work
In the preceding explanation, I mentioned file classes. Technically speaking,
file viewers are component objects implemented inside an in-process server
DLL. In simpler, more human-understandable terms, file viewers live in a DLL
that exports certain functions so that the system can make calls to the DLL to
display file contents. The DLL is referred to as an INPROC server, which sim
ply means that it runs only as an add-on to an existing application (in this
case, as an add-on to the system-supplied application called QUIKVIEW), not
as a stand-alone application.

When a user clicks the Quick View option for an OLE compound file,
the system can use the file's class identifier (an OLE CLSID value) to figure
out which viewer to use. If the file isn't a compound file, the system uses the·
file extension to determine which viewer to use.

Because a file viewer is a component object, you can add interfaces and
augment functionality to support new features. For example, a file viewer can
act as an OLE container application and can activate embedded objects in
place inside the file being viewed. Or you could beef up another file viewer to
let the user make a selection in a document and copy the selection to the
Clipboard or drag it to another location.

How File Viewers Are Instantiated
The system doesn't directly call a file viewer; instead, it starts an instance of
QUIKVIEW.EXE for each file to be viewed. QUIKVIEW is a program that starts
the file viewing process and creates a message queue for file viewers. The pro
gram then associates a path with a file viewer, instantiates the file viewer object,
and tells the file viewer to load and display the file. At this point, QUIKVIEW
turns over execution of the process it created to the file viewer until the file
viewer shuts down. When determining which file viewer to instantiate, QUIK-
VIEW uses one of these three methods: .

If the file is an OLE compound file, it contains a class identifier
(CLSID) that identifies its type. QUIKVIEWuses this CLSID to
determine the file type and which viewer to use.

If the file is not an OLE compound file but begins with a consistent
and unique byte pattern, the application that created it can register
the byte pattern in the Registry and associate the pattern with a
CLSID, which will determine the file type.

If the file is not an OLE compound file (or if it is but lacks a CLSID),
QUIKVIEW uses the filename extension to identify the file type.

289

PAR T II: USING THE NEW USER INTERFACE FEATURES

Ifa file type is registered but the system can't find its file viewer, or if the
Quick View operation fails, QUIKVIEW displays the message There is no viewer
capable of viewing <type of file> files.

Registering File Viewers with the System
A file viewer can register itself for more than one file type if it can handle
multiple file formats. But if a given file type has more than one registered file
viewer, the system calls the file viewer that was registered most recently when
the user chooses Quick View.

The Structure of Registry Entries

290 '

The following Registry structure is required if QUIKVIEW is to associate a
file's class identifier or extension with the class identifier of a file viewer. If you
deviate from this structure, QUIKVIEW won't find your file viewer, and you'll
be one frustrated developer.

HKEY_CLASSES_ROOT
\QuickView

\<extension> = <human-readable document type>
\{<CLSID>} <human-readable viewer name>
\{<CLSID>} <human-readable viewer name>
\{<CLSID>} <human-readable viewer name>

[More extension entries for additional file types]

\CLSID
\{<CLSID>} = <human-readable viewer name>

\InprocServer32 = <full path to file viewer DLL>
\ThreadingModel = <Model>

[More class IDs for file viewers and other object servers]

How about some explanation?

HKEY_CLASSES_ROOT is the root of the Registry.

The QuickView key is the top-level key, where the file viewer associa
tions are stored. It can have any number of extension subkeys (TXT,
CPP, and so on), each representing a registered file type. Each ex
tension sub key can have one or more class identifier subkeys, each
representing a registered file viewer object. The most recently regis-

T W E L V E: File Viewers

tered file viewer appears first in the list of class identifier subkeys,
and it is the first one found when QUIKVIEW enumerates the regis
tered file viewers.

The <extension> key is a three-character file extension preceded by a
period (for example, .WRI).

The <human-readable document type> key is a string that can be dis
played to the user, describing the file type associated with the class
identifier or extension. A file viewer can change this string when it is
installed so that the name always reflects the preferred viewer. For
example, this string might be Windows Write Document.

The CLSID key is a 16-byte OLE class identifier spelled out in hexa
decimal digits in the form 12345678-1234-1234-1234-1234567890AB,
including hyphens. All class identifiers are surrounded by curly
braces ({ }) when stored in the Registry. The file viewer class iden ti
fier should always differ from the file type class identifier because
the application that created the file might already be using the file
type class identifier to identify itself as a compound document server.

The <human-readable viewer name> key is a string that describes the
vendor of the file viewer, as such a description might be displayed in
an About box-Company ABC Write Document Viewer, for instance.

The <Model> subkey specifies the threading model as it relates to
OLE objects. Under Windows 95, OLE is apartment-threaded. The
term apartment describes a thread with a message queue that sup
ports OLE/COM (Component Object Model) objects. Operations
that yield to the message queue can cause further messages to be
sent to any objects within the apartment. Apartment model thread
ing simply allows multiple apartments where previously only one
existed (the main application thread). By default, a single-threaded
application consists of a single apartment (its single thread). When
a process calls CoInitialize or OleInitialize from a thread, a new
OLE apartment is created. Thereafter, each time CoInitialize or
OleInitialize is called in a thread, a new OLE apartment is created.
You can create in-process objects that are apartment-model-aware in
any apartment. You mark the DLL as apartment-model-aware
through the ThreadingModel=Apartment value of the InprocServer-
32 key. In-process objects that are not apartment-model-aware are
created in the main apartment of the application, the main apart
ment being the first thread that calls CoInitialize or OleInitialize.

291

PAR T II: USING THE NEW USER INTERFACE FEATURES

Each CLSID stored under the file extension subkeys corresponds to an
entry of that same CLSID stored under the top-level key, called (what else?)
CLSID, the standard location for storing information abou~ OLE objects. For
file viewers, an InprocServer32 sub key is needed under the file viewer's class
identifier key. The value of this sub key is the full path to the file viewer DLL.
In my sample, the file viewer is stored in the \WINDOWS\SYSTEM\VIEWERS
folder. InprocServer32 is a standard OLE sub key storing the path to an ob- .
ject. Using this sub key allows the QUIKVIEW program to use standard OLE
APls to access and create objects from file viewer servers.

An apartment-model-aware process must have thread-safe entry points
because multiple apartments can call CoCreatelnstance or CoGetClassOb
ject simultaneously. In practice, this means that your application should do
the following:

DllGetClassObject must support supplying references to multiple
class objects. If you implement your class objects dynamically, this
shouldn't be an issue because any class object you supply will be
called only from a single apartment. If you implement your class
object as a static object, you must ensure that your AddRef and
Release member functions use Interlockedlncrement and Inter-
10ckedDecrement rather than the ++ / - - operators.

With both static and dynamic class objects, global lock-count, as
implemented for IClassFactory::LockServer, must use Interlocked
Increment and InterlockedDecrement. If you're not using a global
counter for this value now, you should start doing so.

Carefully implement DllCanUnloadNow by using the global counter
from Interlockedlncrement along with a global counter that keeps
track of the total number of instances that have been created.

When you create a file viewer usingMFC, you can let MFC initialize for
you, as I did in the MFCVIEW sample.

An Example of Registering a File Viewer

292

Let's look at an example of registering a file viewer for text (TXT) files. The
viewer is implemented in an in-process server DLL called MFCVIEW.DLL,
whose class identifier is e83b63cO-6ff5-llce-993c-OOaa004adb6c. The actual
Registry entries appear in the REG file shown here:

T WE L V E: File Viewers

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{e83b63c0-6ff5-11ce-993c-00aa004adb6c}]
@="Nancy's Viewer"
[HKEY_CLASSES_ROOT\CLSID\{e83b63c0-6ff5-11ce-993c-00aa004adb6c}

\InprocServer32]
@="c:\\windows\\system\\viewers\\mfcview.dll"
"ThreadingModel"="Apartment"

[HKEY_CLASSES_ROOT\QuickView\.TXT]
@="txtfile"
[HKEY_CLASSES_ROOT\QuickView\.TXT\{e83b63c0-6ff5-11ce-993c-

00aa004adb6c}]
@="Nancy's Viewer"

[HKEY_CLASSES_ROOT\txtfile\CLSID]
@="{e83b63c0-6ff5-11ce-993c-00aa004adb6c}"

The first line, REGEDIT4, specifies that the registration file follows a new
(Windows 95) syntax. Notice the syntax of the entries, with square brackets
([]) surrounding each key and each value enclosed in quotation marks.
This syntax allows you to specify the InprocServer32 and ThreadingModelsub
keys. The threading model in this code is set to Apartment, which specifies that
multiple threads in the executable can create OLE objects. (Although long
lines in the REG file above are broken to fit on the printed page, you must
enter each one as a single unbroken line. There is no continuation character.)

Basic Steps in Creating a File Viewer
You have two options when you decide to write your own file viewer: you can
take the really hard way and use C, or you can use MFC version 3.1 or later
and let MFC do a lot of the grunt work for you. Since one of the rules I live by
is "Don't do anything that you can get someone else to do for you," I chose
the MFC method. If you want to do all the work yourself, you aren't out of
luck: the FILEVIEW sample in the Win32 SDK demonstrates exactly what you
have to do to reinvent that wheel.

When I wrote the MFCVIEW sample, I followed the steps outlined in a
technical article by Nigel Thompson, "MFC/COM Objects 1: Creating a
Simple Object" (available on the Microsoft Developer Network Development
Library CD), and the information in "Technical Note 38: MFC/OLE IUn
known Implementation" (one of the MFC technical notes found in the Visual
C++ documentation). So if you think the steps look familiar and you've read
Nigel's article recently, you'll know why.

293

/

PAR T II: USING THE NEW USER INTERFACE FEATURES

294

Here is what I did to create Nancy's Viewer:

1. Create the project.

2. Generate GUIDs.

3. Create the object class.

4. Implement the basic object.

5. Implement the IUnkn.own interface.

6. Implement the IFileViewer interface.

7. Implement the IPersistFile interface.

S. Let MFC initialize the class factories for you.

9. Create the class to show the file contents.

10. Build, register, and run the file viewer.

Step One: Create the Project
I used Visual C++ version 2.1 (MFC 3.1) to create the project. In AppWizard, I
selected MFCAppWizard (dZZ) as the type of project. I also selected the option
called Use MFC In A Static Library, to specify how to link to the MFC library.
With the default option (using MFC in a shared DLL), the MFC classes won't
work correctly if your COM object is used by some non-MFC application. So
you must use the static library instead.

I decided to include OLE Automation as an option in my sample file
viewer. It's easier to add it when you create the project than to go back later
and add it yourself.,

At this point, I built the project to be sure that everything was OK.

Step Two: Generate GUIDs
There's no getting around it-to create a file viewer, you must create a globally
unique identifier (GUID) for it. You can run UUIDGEN (from the Win32
SDK) to create a GUID, or you can let MFC do it for you and use a defined
macro to get one each time you need one~ Guess which option I chose?

I created both the GUIDS.CPP file, which includes the standard header
files I needed, and the INITGUID.H file, an OLE header file which ensures
that the GUIDs are unique and are built only once. Here is the entire source
for the GUIDS.CPP file; the GUID for the object class is stored in the last file,
VIEWERID.H.

T W E L V E: File Viewers

f/include "stdafx.h"
f/include <initguid.h)

II Include the definition for the file viewer object.
f/include "ViewerID.h"

Step Three: Create the Object Class
Next I created the object I needed, CFileView, by using ClassWizard. The
CFileView object is derived from the CCmdTarget class. This class implements
the IUnknown interface for you, which means one less thing to do. When I
created the class, I selected the OLE Automation and OLE Createable check
boxes and gave the class the external name Nancy's Viewer. ClassWizard cre
ated the FILEVIEW.CPP and FILEVIEW.H files.

ClassWizard puts a curious line in the CPP file:

IMPLEMENT_OLECREATE(CFileView. "NancyViewer". 0xe83b63c0. 0x6ff5.
. 0xllce. 0x99. 0x3c. 0x0. 0xaa. 0x0. 0x4a. 0xdb. 0x6c)

This is a macro that implements class factory support. The class factory
allows other applications to create your objects. The numbers listed after the
string Nancy ~ Viewer are combined to create a GUID for the class:

e83b63c0-6ff5-11ce-993c-00aa004adb6c

This line is also included in the VIEWERID.H file, albeit in a somewhat
different form:

II ViewerID.H

f/ifndef _CLSID_NancyViewer_
f/define _CLSID_NancyViewer_

DEFINE_GUID (CLSID_NancyViewer. 0xe83b63c0. 0x6ff5. 0xllce.
0x99. 0x3c. 0x0. 0xaa. 0x0. 0x4a. 0xdb. 0x6c);

#endif II _CLSID_NancyViewer_

Step Four: Implement the Basic Object
This is the big step. To implement the object, you must first add the interface
definitions and member variables to the header file FILEVIEW.H. Another
very helpful macro, DECLARE_INTERFACE_MAP, supplies the basic COM
interface definition. Interface maps are similar to message maps. They pro
vide the standard implementation of the IUnknown interface of the CCmd
Target class, maintaining a reference count and aggregation support.

295

PAR T II: USING THE NEW USER INTERFACE FEATURES

296

Mter declaring the interface map, you need to define the interfaces
your object will support-in this case, both IFileViewer and IPersistFile. The
BEGIN_INTERFACE_PART macro marks the beginning of the definition,
and the END_INTERFACE..;,.PART macro marks the end:

class CFileView : public CCmdTarget
{

}

II Declare the interface map for this object.
DEClARE_INTERFACE_MAP ()

II IFileViewer interface
BEGIN_INTERFACE_PART (FileViewer, IFileViewer)

II IFileViewer stuff
STDMETHOD(Showlnitialize) (lPFIlEVIEWERSITE lpfsi);
STDMETHOD(Show) (lPFVSHOWINFO pvsi);
STDMETHOD(PrintTo) (lPSTR pszDriver, BOOl fSuppressUI);

END_INTERFACE_PART (FileViewer)

BEGIN_INTERFACE_PART (PersistFile, IPersistFile)
II IPersistFile
STDMETHODIMP IsDirty ();
STDMETHODIMP load (lPCOlESTR pszFileName, DWORD dwMode);
STDMETHODIMP Save (lPCOlESTR pszFileName, BOOl fRemember);
STDMETHODIMP SaveCompleted (lPCOlESTR pszFileName);
STDMETHODIMP GetCurFile (lPOlESTR __ RPC_FAR *ppszFileName);
STDMETHODIMP GetClassID (lPClSID pClsID);

END_INTERFACE_PART (PersistFile)

public:
II Member variables
lPFIlEVIEWERSITE m_lpfsi;
ClSID m_clsID:

char

DWORD
BOOl
BOOl
CMyFrame
lPFVSHOWINFO

m_grfMode:
m_floadCa 11 ed:
m_fShowlnit:
*m_Wnd:
m_pvsi:

II file viewer site
II ClSID of this
II file viewer
II path from
II IPersistFile::load
II open mode for file
II load already called?
II Showlnitialize called?
II viewer frame window

T W E L V E: File Viewers

When creating your own file viewer, you need to be concerned about
both the IPersistFile interface, which is used to get the path for the file, and
the IFileViewer interface, which is notified when a file viewer should show or
print a file. For your file viewer to work, it must implement functions for each
interface. These interfaces also include the IUnknown member functions
AddRef, Release, and Querylnterface.

NOT E: It is extremely important to specify the definitions of the
interfaces exactly as they are defined in the header file (in this case,
SHLOBJ.H). If you don't do this correctly, your object won't work.

In the FILEVIEW.CPP file, you must also use a few macros to implement
a data table that CCmdTarget uses to implement IUnknown, including en
tries for both IFileViewer and IPersistFile. The first parameter is the name of
the class containing the interface object; the second parameter is the lID that
is mapped to the embedded class; and the third parameter is the name of the
local class:

BEGIN_INTERFACE_MAP (CFileView. CCmdTarget)
INTERFACE_PART (CFileView. IID_IFileViewer. FileViewer)
INTERFACE_PART (CFileView. IID_IPersistFile. PersistFile)

END_INTERFACE_MAP ()

Step Five: Implement the IUnknown Interface
Both the IFileViewer and the IPersistFile interfaces implement the standard
IUnknown interface. This is a snap once'you know what to do. By using the
macros in the preceding code, you create an embedded class through the lo
cal name (FileViewer and PersistFile), with an uppercase X prepended to the
name (XFileViewer andXPersistFile). This means that the embedded class
for File Viewer is XFile Viewer.

Another macro that I use liberally is METHOD_PROLOGUE, which
lets you access the parent-the CCmdTarget derived class, CFileViewer
through a special pointer, pThis. The AddRef, Release, and Querylnterface
functions can delegate to the CCmdTarget implementation through a call to
ExternalAddRef, ExternalRelease, and ExternalQuerylnterface, respectively.

II IUnknown for IFileViewer
STDMETHODIMP CFileView::XFileViewer::Querylnterface (

REFIID riid. void **ppv)
{

METHOD_PROLOGUE (CFileView. FileViewer);
TRACE ("CFil eVi ew: : I Fil eVi ewer: : QueryInterface \n") ;
return pThis->ExternalQueryInterface (&riid. ppv);
}

(continued)

297

PAR T II: USING THE NEW USER INTERFACE FEATURES

298

STDMETHODIMP_(ULONG) CFileView::XFileViewer::AddRef (void)
{

METHOD_PROLOGUE (CFileView, FileViewer);
return pThis->ExternalAddRef ();
}

STDMETHODIMP_(ULONG) CFileView::XFileViewer::Release (void)
{

METHOD_PROLOGUE (CFileView, FileViewer);
return pThis->ExternalRelease ();
}

Step Six: Implement the IFileViewer Interface
To implement the IFileViewer interface, the file viewer must implement the
three member functions FileShowInitialize, FileShow, and PrintTo.

FileShowlnitialize This is a pre-show function. It allows a file viewer to de
termine whether it can display a file and, if it can, to perform the necessary
initialization operations. The system calls FileShowInitialize before calling
IFileViewer::Show. FileShowInitialize must perform all operations that are
prone to failure; if it succeeds, IFileViewer::Show will not fail. The system
specifies the name of the file that will be displayed by calling the file viewer's
IPersistFile::Load member function. This function returns NOERROR if it
is successful; otherwise, it returns an OLE-defined error value. In my file
viewer, this function calls AddRef, creates the windows it needs, loads the file,
stores the filename, and returns the error status.

STDMETHODIMP CFileView::XFileViewer::ShowInitialize
LPFILEVIEWERSITE lpfsi)

METHOD_PROLOGUE (CFileView. FileViewer);
T RA C E (" C File View: : X F i 1 e Viewer: : Show I n it i a 1 i z e \ n ") ;

HRESULT hr;

II Be sure that you have the file viewer.
if (pThis->m_lpfsi != lpfsi)
{

pThis->m_lpfsi = lpfsi;
pThis->m_lpfsi->AddRef ();

II Default error code
hr = E_OUTOFMEMORY;

T W E L V E: File Viewers

II Create the windows.
pThis->m_Wnd = new CMyFrame;
pThis->m_Wnd->Create ();

II Load a file.
HGLOBAL hMem=NULL;
char szwFile [512];

if (pThis->m_pszPath NULL)
return E_UNEXPECTED;

II This file viewer is registered for a TXT extension that
II is either in a compound file (a single stream called "Text")
II or in a flat text file. This sample shows
II how to open and work with both types of files.

II Make a Unicode copy of the filename.
mbstowcs «USHORT *)szwFile. pThis->m_pszPath. sizeof (szwFile»;

II CAREFUL: StgIsStorageFile returns S_FALSE if the file doesn't
II contain an IStorage object. Don't use SUCCEEDED to test the
II return value!
if (StgIsStorageFile (szwFile) == NOERROR)
{

LPSTORAGE pIStorage = NULL;
LPSTREAM pIStream = NULL;
STATSTG stat;

II It is a compound file; open it and the text stream.
hr = StgOpenStorage (szwFile. NULL. pThis->m_grfMode. NULL. 0.

&pIStorage);

if (FAILED (hr»
return hr;

mbstowcs «USHORT *)szwFile. "Text". sizeof (szwFile»;

hr = pIStorage->OpenStream (szwFile. 0.
STGM_DIRECT I STGM_READ I STGM_SHARE_EXCLUSIVE. 0. &pIStream);

if (SUCCEEDED (hr»
{

II Determine the amount of text and allocate memory.
hr = pIStream->Stat (&stat. STATFLAG_NONAME);

(continued)

299

PAR T II: USING THE NEW USER INTERFACE FEATURES

300

}

}

if (SUCCEEDED (hr))
{

hMem = (HGLOBAL) malloc (stat.cbSize.LowPart + I);

if (hMem 1= NULL)
II Now load the text into the controls.
hr = pIStream-)Read ((LPVOID)hMem, stat.cbSize.LowPart,

NULL) ;
else

hr = E_OUTOFMEMORY;

pIStream-)Release ();

pIStorage-)Release ();

else

HANDLE hFile;
DWORD dwFileSize, dwBytesRead;
char *lpBufPtr;

II Open the text file.
if ((hFile = CreateFile (pThis-)m_pszPath,

GENERIC_READ,

{

}

FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE-ATTRIBUTE_NORMAL,
(HANDLE)NULL)) == (HANDLE)(-l))

AfxMessageBox ("Failed to open file");
return STG_E_FILENOTFOUND;

II Get the size of the file.
dwFileSize = GetFileSize (hFile, NULL);
if (dwFileSize == 0xFFFFFFFF)

return STG_E_READFAULT;

T W E L V E: File Viewers

II Allocate a buffer into which the file will be read.
lpBufPtr = (char *) malloc (dwFileSize);
if (lpBufPtr == NULL)
{

}

CloseHandle (hFile);
return STG_E_READFAULT;

II Read the file contents into a buffer.
ReadFile (hFile. (LPVOID)lpBufPtr. dwFileSize. &dwBytesRead. NULL);

II Update the multiline edit control with the file contents.
pThis->m_Wnd->UpdateEdit (lpBufPtr);

II Close the file.
CloseHandle (hFile);

1/ Tell IFileViewer::Show it's OK to call it.
pThis~>m_fShowInit = TRUE;

return NOERROR;
}

FileShow This function is used to display a file. The system specifies the
name of the file to display by calling the file viewer's IPersistFile::Load mem
ber function. This function returns NOERROR if it is successful or E_UN
EXPECTED if IFileView::Showlnitialize wasn't called before IFileView::Show.
This member function is similar to the Windows ShowWindow function in
that it receives a Show command indicating how the file viewer should ini
tially display its window.

STDMETHODIMP CFileView::XFileViewer::Show (LPFVSHOWINFO pvsi)
{

METHOD_PROLOGUE (CFileView. FileViewer);
TRACE ("CFil eVi ew: : XFil eVi ewer: : Show\n") ;

if (! pThis->m_fShowInit)
return E_UNEXPECTED;

pThis->m_pvsi = pvsi;

II If you could not view the file. go back to the message loop.
if «pThis->m_pvsi->dwFlags & FVSIF_NEWFAILED) == 0)

(continued)

301

PAR T II: USING THE NEW USER INTERFACE FEATURES

302

if (pThis-)m_pvsi-)dwFlags & FVSIF_RECT)
pThis-)m_Wnd.MoveWindow (pThis-)m_pvsi-)rect.left,

pThis-)m_pvsi-)rect.top, pThis-)m_pvsi-)rect.right,
pThis-)m_pvsi-)rect.bottom);

pThis-)m_Wnd.ShowWindow (pThis-)m_pvsi-)iShow):

if (pThis-)m_pvsi-)iShow != SW_HIDE)
{

}

pThis-)~Wnd.SetForegroundWindow ():
pThis-)m_Wnd.UpdateWindow ();

II If an old window exists, destroy it now.
if (pThis-)m_pvsi-)dwFlags & FVSIF_PINNED)
{

}

pThis-)m_lpfsi-)SetPinnedWindow (NUll):
pThis-)m_lpfsi-)SetPinnedWindow (pThis-)m_Wnd.m_hWnd):

if (pThis-)m_pvsi-)punkRel != NUll)
{

}

pThis-)m_pvsi-)punkRel-)Release ():
pThis-)m_pvsi-)punkRel = NUll;

return NOERROR:
}

PrintTo This function prints a file. The system specifies the name of the file
to print by calling the file viewer's IPersistFile::Load member function. This
function returns NOERROR if it is successful; otherwise, it returns an OLE
defined error value. This member function resembles Show in that it does
not return until it finishes printing or an error occurs. If a problem arises, the
file viewer object is responsible for informing the user of the problem. This is
not implemented in my file viewer-it's just a stub.

STDMETHODIMP CFileView::XFileViewer::PrintTo
lPSTR pszDriver, BOOl fSuppressUI)

{

II This is a stub. Printing isn't implemented.
TRACE ("CFileView::XFileViewer::PrintTo\n");

return E_NOTIMPl;
}

T W E L V E: File Viewers

Step Seven: Implement the IPersistFile Interface
To implement the IPersistFile interface, the file viewer must implement the
following member functions: GetClassID, Load, GetCurFile, IsDirty, Save,
and SaveCompleted.

GetClasslD This function returns the document's CLSID.

STDMETHODIMP CFileView::XPersistFile::GetClassID (LPCLSID pClsID)
{

METHOD_PROLOGUE (CFileView, PersistFile);

*pClsID = pThis->m_clsID;
return NOERROR;
}

Load This function loads the document contained in the given filename.
Load only stores the filename; Showlnitialize actually opens the file.

STDMETHODIMP CFileView::XPersistFile::Load
LPCOLESTR pszFileName, DWORD dwMode)

METHOD_PROLOGUE (CFileView, PersistFile);

II No modifications are necessary to this code; it simply
II copies the parameters into the CFileView::m_pszPath and
II m_grfMode members for use in IFileViewer::ShowInitialize
II and IFileViewer::Show later on.

II You should never be called twice.
if (pThis->m_pszPath)

pThis->m_fLoadCalled = FALSE; II handle error case

if (pszFileName == NULL)
return E_INVALIDARG;

II Copy the ANSI filename and the mode to use in opening it.
lstrcpy (pThis->m_pszPath, pszFileName);

II Remember that this function has been called.
pThis->m_fLoadCalled = TRUE;
return NOERROR;
}

303

PAR T II: USING THE NEW USER INTERFACE FEATURES

304

GetCurFile This function returns either the absolute path of the docu
ment's currently associated file or the default filename prompt if there is no
currently associated file. GetCurFile returns E_UNEXPECTED if the Load
function has not yet been called; otherwise, it copies the path and returns
NOERROR.

STDMETHODIMP CFileView::XPersistFile::GetCurFile
LPOLESTR .--RPC_FAR *ppszFileName)

LPOLESTR psz;
ULONG cb;

METHOD_PROLOGUE (CFileView. PersistFile);

II No modifications are necessary to this code; it simply
II copies the CFileView::m_pszPath string into a piece
II of memory and stores the pointer at *ppszFile.

II Load must be called. of course.
if (pThis-)m_fLoadCalled)

return E_UNEXPECTED;

if (ppszFileName == NULL)
return E_INVALIDARG;

cb = (lstrlen (pThis-)m_pszPath) + 1) * sizeof (OLECHAR);
psz = (LPOLESTR) malloc (cb);

if (NULL == psz)
return E_OUTOFMEMORY;

return NOERROR;
}

IsDirty This function checks a document object for changes that might
have been made since the object was last saved. IsDirty can simply return
S_FALSE because a file viewer does not modify the file.

STDMETHODIMP CFileView::XPersistFile::!sDirty (void)
{

return S_FALSE;

T W E L V E: File Viewers

Save The Save function saves a copy of the object to the specified filename.
Both the Save and the SaveCompleted member functions should return
E_NOTIMPL.

STDMETHODIMP CFileView::XPersistFile::Save
LPCOLESTR pszFileName. BOOL fRemember)

return E_NOTIMPL:
}

SaveCompleted This function signals that the caller has saved the file with
a call to IPersistFile::Save and has finished working with it.

STDMETHODIMP CFileView::XPersistFile::SaveCompleted
LPCOLESTR pszFileName)

{

return E_NOTIMPL;
}

Step Eight: Let MFC Initialize the Class Factories for You
In earlier days, the hapless developer was forced to register all class factories
manually. Now this work is done for you when you create the project in App
Wizard in the Initlnstance function.

BOOL CMfcviewApp::lnitlnstance ()
{

II Register all OLE servers (factories) as running. This enables the
II OLE libraries to create objects from other applications.
COl eObj ectFactory: : Regi sterA 11 ():

return TRUE:
}

Just to show you what you save, here is a peek at what the FILEVIEW
sample must do in order to define the class factory object with the IClass
Factory interface and implement that interface completely to create a file
viewer object:

STDMETHODIMP CFVClassFactory::Createlnstance (
LPUNKNOWN pUnkOuter. REFIID riid. PPVOID ppvObj)

PCFileViewer pObj;
HRESULT hr:

(continued)

305

PAR T. II: USING THE NEW USER INTERFACE FEATURES

306

*ppvObj = NULL;
hr = E_OUTOFMEMORY;

II Verify that a controlling unknown asks for IUnknown.
if (NULL != pUnkOuter && ! IsEqualIID (riid, IID_IUnknown»

return E_NOINTERFACE;

II MODIFY: If you use an object other than CFileViewer,
II be sure to change the name and parameters here. I do
II recommend that you continue to follow this model, however,
II and just modify CFileViewer as necessary.
pObj = new CFileViewer (pUnkOuter, g_hInst, ObjectDestroyed);

if (NULL == pObj)
return hr;

II MODIFY: Add other parameters to Init as necessary.
hr = pObj->Init ();

if (SUCCEEDED (hr»
{

}

I I Return the requested. interface.
hr = pObj->QueryInterface (riid, ppvObj);

if (SUCCEEDED (hr»
{

}

II Everything worked; count the object.
g_cObj++;
return NOERROR;

II Kill the object if anything failed after creation.
delete pObj;

return hr;
}

:MFC 3.1 defines special entry points for in-process servers: DllGet
ClassObject and DllCanUnloadNow. AppWizard also 'provides them when
you create your project.

T W E L V E: File Viewers

STDAPI DllGetClassObject (REFCLSID rclsid. REFIID riid. LPVOID *ppv)
{

return AfxDllGetClassObject (rclsid. riid. ppv);
}

STDAPI DllCanUnloadNow (void)
{

return AfxDllCanUnloadNow ();

Step Nine: Create the Class to Show the File Contents
So far, you've seen the steps you need to implement to create a file viewer that
is a COM object in an INPROC server. To actually show the contents of the
file, however, you need to create some windows. In the MFCVIEW sample, I
created a simple class named CMyFrame, derived from CFrameWnd. This
class includes the frame window and a child multiline edit window:

class CMyFrame : public CFrameWnd
{

DECLARE_DYNCREATE (CMyFrame)
public:

CMyFrame ();
virtual ~CMyFrame ();
void Create (void);
void UpdateEdit (char *);

II Attributes
public:

CEdit m_Edit;

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides.
II {{AFX_VIRTUAL (CMyFrame)
II }}AFX_VIRTUAL

II Implementation
(continued)

307

PAR T II: USING THE NEW USER INTERFACE FEATURES

308

protected:
II Generated message map functions
II {{AFX_MSG (CMyFrame)
afx_msg void OnSize (U1NT nType, int cx, int cy):
afx_msg void OnFileExit ():
II }}AFX_MSG
DECLARE_MESSAGE_MAP ()

When the Showlnitialize member function is called, it makes a call to a
function in the CMyFrame class in order to create the frame window and the
multiline edit window:

void CMyFrame::Create (void)
{

II Create the frame window.
CFrameWnd::Create ("AfxFrameOrView", "Nancy's Viewer",

WS_OVERLAPPEDW1NDOW I WS_CL1PCH1LDREN,
CRect (CW_USEDEFAULT, CW_USEDEFAULT, 250, 250),
NULL, MAKE1NTRESOURCE (1DR-V1EWERMENU), WS_EX_TOPMOST):

II Create the edit window inside.
II Get the size of the parent window.
CRect wndRect:
GetClientRect (&wndRect):

II Create a child edit control to display the text.
m_Edit.Create (ES_MULT1L1NE I ES_AUTOVSCROLL I WS_CH1LD I

WS_V1S1BLE I ES_AUTOVSCROLL, wndRect, this, 1D_ED1T):

The multiline edit control is updated to reflect the contents of the cur
rent file through a call to a member function named UpdateEdit:

void CMyFrame::UpdateEdit (char *lpBufPtr)
{

::SendMessage (m_Edit.m_hWnd, WM_SETTEXT, 0, (LPARAM)lpBufPtr):
}

The sample file viewer I created simply displays the file contents and is
resizable. In your own file viewer, you can add toolbars, status bars, font sup
port, or anything else you like. You could use one of the new rich edit controls
instead of a standard multiline edit control. The user interface is up to you.

T W E L V E: File Viewers

Step Ten: Build, Register, and Run the File Viewer
You are now ready to compile (after fixing all those missing semicolons and
misspelled names), link, register your file viewer, and try it out. If you have
registered it correctly, your file viewer will pop up with the specified file
loaded. If you need to do some debugging, you can change your project set
ting to specify QUIKVIEW.EXE as the executable and the directory where
your file viewer resides as the working directory. Figure 12-3 shows how I set
up my debugging sessions for the MFCVIEW sample.

~ettings For:

El·CJ • •
EJ··CJ Win32 Release

1C:\WINDOWS\SY5TEM\vIEWERS\QUIKVIEW.EXE

Remote Executable Path And File Harne:

Figure 12-3.
Project settings for the MFCVIEW sample.

NOT E: To remove the file viewer registered by the MFCVIEW
sample in this chapter, please refer to the \README.TXT file on
the companion disc.

309

PAR Till

EXTENDING THE
USER INTERFACE

C HAP T E R T H R TEE N

User I nterface Extensions

The Microsoft Windows 95 user interface is extensible, giving you, as an
application developer, access to tools that manipulate objects in the shell
name space (which is discussed in detail in Chapter 14). You also have the
ability to browse through the file system and networks. If you like, for ex
ample, you can create a user interface extension that adds items to the con
text menu of a specific file type or an extension that lets you assign an icon to
a certain file type. This chapter explains the user interface extensions (often
called shell extensions) and how to implement them. This discussion assumes
that you have read Chapter 12, covering file viewers, and that you have at least
a minimal understanding of the Component Object Model (COM).

The Windows 95 user interface supports seven types of user interface
extensions (referred to as handlers):

Context menu handlers add items to the context menu ofa particular
file object.

Drag-and-drop handlers are context menu handlers that are accessed
when a user drops a dragged object in a new location.

Icon handlers add an instance-specific icon for a file object or an icon
for a specific file class.

Property sheet handlers add pages to the property sheet displayed for a
file object.

Copy hook handlers permit or prevent the copying, moving, deleting,
or renaming of a folder or a printer object.

Drop target handlers control the action that occurs when a dragged
object is dropped on another object.

Data object handlers supply the interface when files are being
dragged and dropped or copied and pasted.

313

PAR T III: EXTENDING THE USER INTERFACE

Like file viewers, all user interface extensions are implemented as COM
objects. Once you understand the basics of how to implement COM objects,
you'll need relatively little additional information to implement a user inter
face extension.

1 wrote two user interface extension samples in MFC: PROPEXT (a prop
erty sheet handler) and CTXTMENU (a context menu handler). If you don't
use MFC, you'll want to look at SHELLEXT (written by Greg Keyser), a
sample from the Win32 SDK that demonstrates how to create various user in
terface extensions. (I included this sample on the companion disc.)

Registering User Interface Extensions

314

Like all COM objects, user interface extensions mustbe registered in the Reg-'
istry, or they won't work. An extension must register its class ID (CLSID) un
der the Registry key HKEY_CLASSES_ROOT\CLSID. Within this key, the
extension adds an InProcServer32 key that gives the location 6f the exten
sion's DLL. The first statement in the following sample code registers the
CLSID of my property sheet extension, NancyPropSheet. The second state
ment in the code specifies the location of the DLL containing the extension
and the threading model:

[HKEY_CLASSES_ROOT\CLSID\{771a9da0-731a-llce-993c-00aa004adb6c}]
@="NancyPropSheet"

[HKEY_CLASSES_ROOT\CLSID\{771a9da0-731a-llce-993c-00aa004adb6c}\
InprocServer32]
@="c:\\windows\\system\\propext.dll"
"ThreadingModel"="Apartment"

The shellex key contains the information used to associate a user inter
face extension with a file type. You must also register your extension under
this key. You can map the user interface extension to a particular class of file
(based on the filename extension), or you can specifY that it is valid for files of
all types. To register the property sheet for files of a specific type-NWCFile,
for example-specifY the file type as shown here:

[HKEY_CLASSES_ROOT\.NWC]
@="NWCFile"

[HKEY_CLASSES_ROOT\NWCFile]
@="Shell Extension file"

[HKEY_CLASSES_ROOT\NWCFile\shellex\PropertySheetHandlers]
@="NWCPage"

[HKEY_CLASSES_ROOT\NWCFile\shellex\PropertySheetHandlers\NWCPage]
@="{771a9da0-731a -llce- 993c -00aa004adb6c}"

T H I R TEE N: User Interface Extensions

If you want all files to reap the benefits of your special property sheet
page, specify an asterisk (*) after HKEY_ClASSES_ROOT, as I did in my prop
erty sheet handler, PROPEXT:

[HKEY_CLASSES_ROOT*\she11ex\PropertySheetHand1ers]
@="NWCPage"

[HKEY_CLASSES_ROOT*\she11ex\PropertySheetHand1ers\NWCPage]
@="{771a9da0-731a-llce-993c-00aa004adb6c}"

NOT E: To remove any of the user interface extensions that are
registered by the samples discussed in this chapter, please refer to
the \README.TXT file on the companion disc.

Implementing IShellExtlnit
To initialize an instance of a user interface extension; the system uses one of
two interfaces: IShellExtInit or IPersistFile. You must use the IShellExtInit
interface to initialize context menu handlers, drag-and-drop handlers, and.
property sheet ha~dlers.

Like all COM interfaces, IShellExtInit supports the three standard IUn
known memberfunctions-QueryInterface, AddRef, and Release-as shown
in the PROPEXT sample. (If the syntax looks a little odd, remember that this
sample was written in MFC and uses the built-in macros that support COM
objects and nested objects.)

II IUnknown for IShe11Extlnit
STDMETHODIMP CPropExt::XShe11lnit::Querylnterface

REFIID riid. void **ppv)

METHOD_PROLOGUE (CPropExt. She11lnit);
TRAC E ("CP ropExt: : XShe 11 I nit: : Query Interface \n") ;
return pThis->Externa1Querylnterface (&riid. ppv);
}

STDMETHODIMP_(ULONG) CPropExt::XShe11lnit::AddRef (void)
{

METHOD_PROLOGUE (CPropExt. She11lnit);
return pThis-)Externa1AddRef ();
}

STDMETHODIMP_(ULONG) CPropExt::XShe11lnit::Re1ease (void)
{

METHOD_PROLOGUE (CPropExt. She11lnit);
return pThis->Externa1Re1ease ();
}

315

PAR T III: EXTENDING THE USER INTERFACE

316

When you use the IShelIExtInit interface, you must also implement the
Initialize member function.

Initialize This member function is passed a pointer to the IDataObject that
represents the file object(s) being manipulated. My initialization code gets the
name of the selected file. Because the system stores that filename in the same
way that the filename is stored during a drag procedure, I can get the file by
using the DragQueryFile function. The filename is saved in a member vari
able for the extension object.

STDMETHODIMP CPropExt::XShellInit::Initialize (
LPCITEMIDLIST pidlFolder, IDataObject *pdobj, HKEY hkeyProgID)

METHOD_PROLOGUE (CPropExt, ShellInit):
TRACE ("CPropExt: :XShell Init:: Intial ize\n"):

HRESULT hres = E_FAIL:
FORMAT ETC fmte =
{

} :

CF;...HDROP,
NULL,
DVASPECT_CONTENT,
-I,
TYMED_HGLOBAL

STGMEDIUM medium;

II No data object
if (pdobj == NULL)
{

II use CF_HDROP format
II no specific device required
II embedded object
II must be -1 for DVASPECT_CONTENT
II how to transfer data

TRACE ("CPropExt::XShellInit::InitializeO no data object");
return E_FAIL:

}

II Use the given IDataObject to get a list of filenames (CF_HDROP).
hres = pdobj-)GetData (&fmte, &medium):

if (fAILED (hres»
{

}

TRACE ("CPropExt::XShellInit::InitializeO can't get data"):
return E_FAIL:

T H I R TEE N: User Interface Extensions

II HDROP can contain more than one file. If the user selects
II multiple files and brings up a context menu. your handler
II will be called. Not all files will be your type! Only the
II first one will be that type.
if (DragQueryFile «HDROP)medium.hGlobal. (UINT)(-1). NULL. 0) 1)
{

DragQueryFile «HDROP)medium.hGlobal. 0. pThis-)m_szFileName;
sizeof (pThis-)m_szFileName));

hres = S_OK;

else
hres = E_FAIL;

II Release the data.
ReleaseStgMedium (&medium);

return hres;
}

Initializing with IPersistFile
Icon handlers, drop target handlers, and data object handlers are initialized
with the IPersistFile interface, which is used to load and save documents that
are stored in disk files (as opposed to objects stored in IStorage instances).
Once the document is loaded, the application opens it as needed. IPersistFile
itself won't open the file for you; it has no way of knowing what type of data
your file contains.

In addition to the standard IUnknown functions, the IPersistFile inter
face supports six other member functions. Five of these functions-IsDirty,
Save, SaveCompleted, GetCurFile, and GetClassID~are part of the IPersist
File interface but are not required for user interface extensions. For each of
these functions, you can simply return E_NOTIMPL: First, however, let's look
at the Load member function, which does need to be implemented.

Load This member function loads the document object that is specified in
the pszFileName parameter. A user interface extension saves the filename for
further processing. For example, an icon handler saves the filename to deter
mine which type of icon to supply for the file.

317

PAR T III: EXTENDING THE USER INTERFACE

Unlike the other functions listed here, the Load function is required for
user interface extensions. The implementation, as you can see, is trivial:

STDMETHODIMP ClconExt::XPerFile::Load (LPCOLESTR pszFileName.
DWORD dwMode)

METHOD_PROLOGUE (ClconExt, PerFile);

WideCharToMultiByte
CP_ACP,
0,
(LPCWSTR)pszFileName,
-1,
pThi 5 -)m_szFil e,
sizeof (pThis-)m_szFile),
NULL,
NULl) ;

return NOERROR;
}

II codePage
II dwFlags
II lpWideCharStr
II cchWideChar
II lpMultiByteStr
II cchMultiByte,
II lpDefaultChar,
II lpUsedDefaultChar

The following member functions, as mentioned earlier, are supported
by IPersistFile but are not required by user interface extensions.

IsDirty The IsDirty function checks a document object for any changes that
might have been made since the document was loaded.

Save This function saves a copy of the object to the given filename.

SaveCompleted The SaveCompleted function simply signals that the object
has been saved.

GetCurFile This member function returns either the absolute path of the
document's currently associated file or the default filename prompt (if no
curren tly associated file exists).

GetClasslD The GetClassID function returns a document's class ID.

Context Menu Handlers

318

The first user interface extensions we'll look at are context menu handlers,
which you can use to add items to a context menu. Figure 13-1 shows the re
sult of installing the context menu handler in the CTXTMENU sample. I
added the Test Context Menu item to the menu.

T HI R TEE N: User Interface Extensions

!!pen
,Erint
.Quick View
lest Context Menu ...

Send To

Cu!
~opy

Create ~hortcut
Q.elete
Rename

Properties

Figure 13-1.
The context menu after the CTXTMENU handler has been installed.

By adding items to an object's context menu, you are also adding verbs.
for that file type. Verbs are the set of operations supported by a particular
object-open, save, or play, for instance. You can designate a menu item as
either class-specific or instance-specific. Instance-specific context menus ap
ply only to individual files. Generally, unless the menu items are dynamic
(that is, they depend on the state of the object), it's much easier to simply add
static verbs in the Registry than to add a context menu handler. The data ex
ported from the Registry for the audio CD player on my system is shown here.
The Play command is a static verb.

REGEDIT4

[HKEY_CLASSES_ROOT\AudioCD]
@="AudioCD"
"EditFlags"=hex:a2.aa.aa.0a

[HKEY_CLASSES_ROOT\AudioCD\DefaultIcon]
@="C:\\WINDOWS\\SYSTEM\\shel132.dll .413"

[HKEY_CLASSES_ROOT\AudioCD\shell]
@="play"

[HKEY_CLASSES_ROOT\AudioCD\shell\play]
@="&Play"

[HKEY_CLASSES_ROOT\AudioCD\shell\play\command]
@="C:\\WINDOWS\\cdplayer.exe /play %1"

319

PAR T III: EXTENDING THE USER INTERFACE

Although you can use a context menu handler to alter items on a con
text menu or remove items from a context menu, it is not recommended.
Think about it. Would you want other applications messing around with your
menu items? Some context menu handlers might rely on others being added
first, when in fact the last thing the system does is add an item to the context
menu. As a result, a handler might be loaded, but the item might not appear
on the context menu.

Registering Context Menu Handlers
Context menu handlers are registered with the system as described earlier
("Registering User Interface Extensions," page 314). You must use the Con
textMenuHandlers key under shellex. The following code is from the REG
file created for the CTXTMENU sample:

[HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers]
@="NWCMenu"

[HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\NWCMenu]
@="{5fbcd2e0-73dd-llce-993c-00aa004adb6c}"

Context Menu Handler Interfaces

320

To create a context menu handler, you must implement both the IShellEx~
Init and the IContextMenu interfaces. In addition to the usual IUnknown
functions, the context menu handler interface uses the QueryContextMenu,
InvokeCommand, and GetCommandString member functions.

QueryContextMenu The QueryContextMenu member function is called
just before the system displays an object's context menu. A context menu
handler inserts a menu item by position (MF _BYPOSITION) directly into
the context menu by calling InsertMenu. In the call to InsertMenu, Query
ContextMenu passes the handle to the context menu in the hMenu param
eter. The second parameter, indexMenu, specifies where to insert the menu
item; and the third parameter, idCmdFirst, provides the first menu item iden
tifier you should lise for that context menu. Because menu items must be
string items (MF _STRING), the uFlags parameter of InsertMen u must be MF
_BYPOSITION I MF_STRING for each menu item the context menu handler
inserts. The following example demonstrates how to add three new menu
items (Sample Menu Item 1, Sample Menu Item 2, and Sample Menu Item 3)
to a context menu:

T HI R TEE N: User Interface Extensions

STDMETHODIMP Sample::QueryContextMenu (HMENU hmenu.
UINT indexMenu. UINT idCmdFirst. UINT idCmdLast. UINT uFl~gs)

{

int cVerbs THREE_ITEMS;

for (int i 0; i < cVerbs; i++)
{

char szMenu [80];
wsprintf (szMenu. "Sample Menu Item #%d". i + 1);
InsertMenu (hmenu. indexMenu + i. MF_BYPOSITION I MF_STRING.

{dCmdFirst + i. szMenu);

return (HRESULT)cVerps;
}

InvokeCommand InvokeCommand is called when the user selects an item
from the context menu for which you have registered a handler. This func
tion is passed a pointer to the LPCMINVOKECOMMANDINFO structure,
which contains information including the size of the structure (cbSize), the
owner window for any message box or dialog box (hwnd), the validity of the
dwHotkey and hlcon parameters (JMask), the command to be executed (lP Verb),
the flag to be passed to ShowWindow (nShow), the hot key to be assigned to
the application after it is opened (dwHotkey) , and the handle to an icon
(hlcon). Hot keys and icons are optional. The LOWORD of the lpVerbmember

contains the menu item identifier offset (the menu item ID minus idCmd
First), which is used to determine what command the user has chosen. In the
following code from the CTXTMENU sample, this value is the new com
mand, ID_NEWCMD, and a message box is displayed:

STDMETHODIMP CTxtMenu::XMenuExt::lnvokeCommand
LPCMINVOKECOMMANDINFO lpici)

{

METHOD_PROLOGUE (CTxtMenu. MenuExt);
char szTest [MAX_PATH * 2];

if (HIWORD (lpici-)lpVerb))
{

}

AfxMessageBox ("E_FAIL");
return E_FAIL;

(continued)

321

PAR T III: EXTENDING THE USER INTERFACE

322

if (LOWORO (lpici-)lpVerb)) IO_NEWCMO)
{

}

AfxMessageBox ("Invalid Arg");
return E_INVALIOARG;

if (LOWORO (lpici-)lpVerb) == IO_NEWCMO)
{

wsprintf (szTest, "Context menu for file: %s", pThis-)m_szFileName);
: : MessageBox (l pi ci -)hwnd, szTest, "Context Menu Handl er", MB_OK);

}

else
::MessageBox (lpici-)hwnd, "10 != IO_NEWCMO", "Context Menu Handler",

MB_OK) ;

return NOERROR;
}

Mter you install the context menu handler, click the item labeled Test
Context Menu to see the dialog box shown in Figure 13-2.

Figure 13-2.
The Context Menu Handler dialog box.

GetCommandString A context menu handler must also implement Get
CommandString. This function is called to provide Help text for a context
menu item. GetCommandString simply copies into the pszName string the text
that will be displayed:

STOMETHOOIMP CTxtMenu::XMenuExt::GetCommandString (
UINT idCmd, UINT uType, UINT *pwReserved, LPSTR pszName, UINT cchMax)

if (idCmd) IO_NEWCMO)
return ResultFromScode (E_INVALIOARG);

if (idCmd == IO_NEWCMO)
lstrcpy (pszName, "Context Menu Test");

return NOERROR;
}

T HI R TEE N: User Interface Extensions

Drag-and-Drop Handlers
If you know how to implement a context menu handler, implementing a
drag-and-drop handler is a piece of cake. Drag-and-drop handlers are context
menu handlers that are accessed when a user drops an object after dragging
it to a new location. The two kinds of handlers differ only in how you register
them. You must use the DragDropHandlers key to register a drag-and-drop
handler, as you can see in this sample REG file:

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{<CLSID value>}]
@="Sample Context Menu"

[HKEY_CLASSES_ROOT\CLSID\{<CLSID value>}\InprocServer32]
@="c:\\windows\\system\\ctxtmenu.dll"

"ThreadingModel"="Apartment"·

[HKEY_CLASSES_ROOT\.NWC]
@="NWCFile"

[HKEY_CLASSES_ROOT\NWCFile]
@="Shell Extension file"

[HKEY_CLASSES_ROOT\NWCFile\shellex\DragDropHandlers]
@="NWCDD"

[HKEY_CLASSES_ROOT\NWCFile\shellex\DragDropHandlers\NWCOD]
@="{<CLSID value>}"

Icon Handlers
An icon handler-allows you to customize the icon that is displayed for a par
ticular type of file. If you create a file whose extension is not registered for a
specific icon, the standard Windows icon is associated with the file by default.
Figure 13-3 on the next page shows three test files with the default icons.

To install the icon handler created by the SHELLEXT sample, copy
SHELLEXT.DLL to the \WINDOWS\SYSTEM folder and run SHELLEXT.
REG. Then go to Windows Explorer, right-click one of the test files, choose
Properties from the context menu, and select a GAK color. Finally, refresh
Windows Explorer (by pressing the F5 key) to see the icons for the test files
change to the ones that are specified in the handler, as shown in Figure 13-4
on the next page.

323

PAR T III: EXTENDING THE USER INTERFACE

324

~ ~ ~ A ~
Propshet.cpp Readme.t><t Resource.h Shelle>t.cpp

~ ~ ~ j:H>~ ~
5 helle>t.def 5 helle>t.dll Shellext.h 5 helle>t.mak

~ ~ ~
r-----.----r------..,..-tt-- Test files with default

Figure 13-3.
Test files with default Windows icons.

EJD Cluts
. ~D ChapOl

r±lD Chap02
rED Chap03
!B·D Chap04
';'D Chap05

Chap06
. ChapO?
~D Chap09
rED Chapll
rED Chap12

. aD Chap13
! ! aD Code
[: rED Ctxtmenu

Readme.t>t

5 hellext.dll

Windows icons

I (tlCi~~~r;¥1
/1&'1
~ Test files with icons

r-----r---r----~I+_ specified by the

[tD~e;::o icon handler

'...t·~~.~:."M~ S!est.ga~Testl:gak Test?gak

12r(iliI~~r-==:·-:-;lli5t::8·(Dis~f;eetP~t7:S,-::""":7:=J77~A

Figure 13-4.
New icons for the test files.

If you want to provide an icon for all files of a certain type, you don't
need to write an icon handler. Instead, you can simply add the DefaultIcon
key for your application to the Registry and set its value to the path of the ex
ecutable or the DLL containing the icon and the index to the icon:

T H I R TEE N: User Interface Extensions

Defaultlcon = c:\Mydir\Myapp.exe.l

Under Windows 95, you can specify that each file instance of a certain
type should have a different icon. To do this, specify %1 as the value for the
DefaultIcon key,and then register the icon handler under the shellex\Icon
Handler key. An application can have only one IconHandler entry.

[HKEY_CLASSES_ROOT\NWCFile\shellex\IconHandler]
@="{<CLSID value>}"

Icon Handler Interfaces
To create an icon handler, you must implement the IPersistFile interface (de
scribed earlier in this chapter) and the IExtractIcon interface. IExtractlcon
supports the GetIconLocation and ExtractIcon member functions, in addi
tion to the standard IUnknown functions.

GetlconLocation This member function retrieves the location of the icon.
Normally, this location is an executable or DLL filename, but it can be any
file. The function fills in the szIconFile parameter with the fully qualified path
of the file that contains the icon, the pilndex parameter with the index to the
iconin the file, and the pwFlags parameter with the type oficon. In the follow
ing example, the flag is specified as GIL_PERINSTANCE, which means that
different files of this type have different icons:

STDMETHODIMP ClconExt::XlconExt::GetlconLocation (U1NT uFlags.
LPSTR szIconFile. UINT cchMax. int *pilndex. UINT *pwFlags)

{

METHOD_PROLOGUE (ClconExt. IconExt):
::GetModuleFileName (AfxGetlnstanceHandle (). szIconFile. cchMax):
*pilndex = a:
*pwFlags t= GIL_PERINSTANCE:
return S_OK:
}

Other supported flags include GIL_SIMULATEDOC, which specifies
that the icon is the one registered for this file type's document type; and
GIL_PERCLASS, which stipulates that icons are the same for all files of this
class. (As mentioned 'earlier,. however, don't create an icon handler for all
files of a certain class-just update the Registry entry instead.)

Extractlcon This member function is called when the interface needs to
dIsplay an icon that does not reside in an executable or a DLL. When the icon
for a file is in a separate ICO file (or any other type offile), the icon handler

325

p' ART III: EXTENDING THE USER INTERFACE

must extract the icon and return it. Since applications usually have file icons
in executables or DLLs, icon handlers can simply implement Extracticon as a
return-only function that returns S_FALSE:

STDMETHODIMP ClconExt::XlconExt::Extractlcon (
LPCSTR pszFile. UINT nlconlndex. HICON *phiconLarge.
HICON *phiconSmall. UINT nlconSize)

return S_FALSE:
}

Property Sheet Handlers

326

When a user chooses Properties from the context menu of a file object, Win
dows 95 displays a property sheet for that file type. At a minimum, you'll see
a General property sheet page with information about the file, including its
type, location, size, and so on, as shown in Figure 13-5.

Figure 13-5.
The standard property sheet for a file object.

If you want to offer more information about files of a certain type
(whether the file has been checked by an individual, for instance, or when
the file was most recently backed up), you can customize the property sheet

T H I R TEE N: User Interface Extensions

for that file type by implementing and registering a property sheet handler. I
used a property sheet handler to add an extra page to the property sheet that
is shown in Figure 13-6. This page simply serves to show that the property
sheet extension has been installed and registered for NWC files.

T his is a test.

OK Cancel I' Apply

Figure 13-6.
A pmperty sheet page added by a user interface extension.

Like the other user interface extensions you've seen, property sheet
handlers must be registered in the Registry. These handlers use the Property
SheetHandlers key to store their CLSIDs. Here is the part of the REG file that
registers the property sheet handler for NWCFile:

[HKEY_CLASSES_ROOT\NWCFile\shellex\PropertySheetHandlers]
@="NWCPage"

[HKEY_CLASSES_ROOT\NWCFile\shellex\PropertySheetHandlers\NWCPage]
@="{771a9da0-731a-l1ce-993c-00aa004adb6c}"

To register the property sheet handler for all file types, as I did in the
PROPEXT sample, substitute an asterisk (*) for the two instances ofNWCFile
in the preceding code. .

You can also register multiple property sheet handlers for a file type. In
this case, the order of the sub key names in the PropertySheetHandlers key
determines the order of the additional property sheet pages. You can use a
maximum of 24 (MAXPROPPAGES) property sheet pages.

327

PAR T III: EXTENDING THE USER INTERFACE

Property Sheet Handler Interfaces

328

Property sheet handlers are initialized through the IShellExtInit interface
and use the IShellPropSheetExt interface. In addition to the IUnknown func
tions, the IShellPropSheetExt interface includes the AddPages and Replace
Page member functions ..

AddPages This member function adds pages' to a property sheet. It is
passed a pointer to a function that will add the property page and the lParam
parameter that will be passed to the function. lParam is useful for passing
application-specific data to the handler. The property sheet handler creates
each added page by using the CreatePropSheetPage function and uses the
handle that function returns in a call to IpfnAddPage. The following code adds
a single property sheet page and provides a dialog procedure for the page:

STDMETHODIMP CPropExt::XPropExt::AddPages (
lPFNADDPROPSHEETPAGE lpfnAddPage, lPARAM lParam)

METHOD_PROLOGUE (CPropExt, PropExt);
TRACE ("CPropExt: :XPropExt: :AddPages\n");

PROPSHEETPAGE psp;

psp.dwSize = sizeof (psp); II no extra data
psp.dwFlags = PSP_USEREFPARENT;
psp.hlnstance = AfxGetResourceHandle ();
psp.pszTemplate = MAKEINTRESOURCE (IDD_TESTPAGE);
psp.pfnDlgProc (DlGPROC) pThis->PropExtDlgProc;
psp.pcRefParent = (UINT *)& (pThis->m_cRefThisDll);

pThis->m_hPage = ::CreatePropertySheetPage (&psp);
if (pThis->m_hPage)
{

}

if (! lpfnAddPage (pThis->m_hPage, lParam»
::DeitroyPropertySheetPage (pThis->m_hPage);

return NOERROR;
, }

BOOl APIENTRY CPropExt::PropExtDlgProc (
HWND hDlg, UINT message, UINT wParam, lONG lParam)

{

switch (message)
{

T H I R TEE N: User Interface Extensions

}

case WM_NOTI FY:
switch «(NMHDR FAR *)lParam)->code)
{

}

case PSN_APPLY:
SetWindowLong (hDlg. DWL_MSGRESULT. TRUE);
break;

case PSN_KILLACTIVE:
SetWindowLong (hDlg. DWL_MSGRESULT. FALSE):
return 1;
break; .

case PSN_RESET:
SetWindowLong (hDlg. DWL_MSGRESULT. FALSE):
break;

return FALSE;

ReplacePage ReplacePage is called for Control Panel applications, allow
ing them to replace an existing property sheet page with their own page.
Standard property sheet extensions do not need to implement this function
and can simply return E_NOTIMPL.

Copy Hook Handlers
Windows 95 calls a copy hook handler before a folder object is moved, cop
ied, deleted, or renamed. You can create a copy hook handler to provide ap
proval or disapproval of a given action. The handler itself does not actually
perform the task; the system does that after it receives approval from the copy
hook handler. You cannot use a copy hook handler to monitor an action, such
as a copying operation, because the handler is not informed of the success or
failure of the action.

Like other user interface extensions, copy hook handlers are registered
in the Registry. A folder object can have multiple copy hook handlers. A copy
hook handler is registered under the directory\shellex\CopyHookHandlers
key. Here is a copy hook handler registered in the SHELLEXT sample:

[HKEY_CLASSES_ROOT\directory\shellex\CopyHookHandlers\GAKsCopyHook]
@="{87b9bd00-c65c-llcd-a259-00dd010e8c28}"

[HKEY_CLASSES_ROOT*\shellex\CopyHookHandlers\GAKsCopyHook]
@="{87b9bd00-c65c-11cd-a259-00dd010e8c28}"

329

PAR T III: EXTENDING THE USER INTERFACE

Copy hook handlers differ from other user interface extensions in that
the copy hook handler interface is initialized directly-that is, without using
an IShellExtInit or IPersistFile interface first. Because of this, you don't need
to implement these interfaces. (Hooray! Less work!) You must, however, im
plement the ICopyHook interface. But this is easily done; you need to imple
ment only the standard IUnknown member functions and ICopyHook's one
function, CopyCallBack.

CopyCaliBack The system calls the CopyCallBack member function before
it copies, moves, renames, or deletes a folder object. The operation is desig
nated by the wFunc parameter as one of the following:

Fa_COPY

FO_MOVE

Fa_RENAME
Fa_DELETE

. Copies files in pszSrcFile to pszDestFile

Moves files in pSiSrcFile to pszDestFile

Renames files in pszSrcFile

Deletes files in pszSrcFile

This function returns an integer value (IDYES or IDNO) that indicates
whether the system should perform the operation. The system calls each copy
hook handler registered for a folder object until all the handlers have been
called or until a handler returns IDCANCEL.

Drop Target Handlers

330

A drop target handler controls the action that occurs when one object is
dropped on another object. For example, if you drag a Microsoft Word docu
ment and drop it on the Word icon or on a shortcut to the Word icon, Word
will start and open that document. A drop target handler makes this happen.

Unlike the other us~r interface extensions we have discussed so far, only
one drop target handler at a time is supported. In those other cases, you could
register many extensions. (Note that the Registry entries refer to them as, for
example, PropertySheetHandlers.)

You register a drop target handler in the Registry under the Drop
Handler key, withthe value being the CLSID of the dro~ target extension:

[HKEY_CLASSES_ROOT\SampleType\shellex\DropHandler]
@="{<CLSID value>}"

A drop target handler is implemented through the IDropTarget inter
face and initialized with the IPersistFile interface. IDropTarget implements

T H I R TEE N: User Interface Extensions

the DragEnter, DragOver, DragLeave, and Drop member functions as well as
the standard IU nknown functions.

DragEnter DragEnter signals the beginning of a drop. It determines both
whether the target window can accept the dragged object and what effect the
dragged object will have on the target window. The function is passed the
state of the keyboard (whether one of the keyboard modifier keys is being
pressed: MK_CONTROL,MK_SHIFf, MK_ALT, MK_LBUTTON, MK_M
BUTTON, or MK~RBUTTON), the cursor point, and a pointer to which drop
effect should be used. The drop effect can be DROPEFFECT_NONE, DROP
EFFECT_COPY, DROPEFFECT_MOVE, DROPEFFECT_LINK, or DROP
EFFECT_SCROLL.

DragOver This member function provides feedback to the user about the
state of the drag operation within a drop target application.

DragLeave DragLeave causes the drop target to remove its feedback if the
mouse leaves the drop area or if the drop is canceled.

Drop This member function, the most interesting of the four, is responsible
for effecting the drop of the object onto the target. In the following code, the
data for the object is retrieved, the name of the file being dropped is queried, .
and the function returns S_OK for success. If the data for the object cannot
be retrieved, the function returns E_FAIL.

STDMETHODIMP SampleType::Drop (IDataObject *pDataObj,
DWORD grfKeyState, POINTL pt, DWORD *pdwEffect)

HRESULT hres = E_FAIL;
FORMATETC fmte = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
STGMEDIUM medium;

if (pDataObj && SUCCEEDED (pDataObj->GetData (&fmte, &medium)))
{

char szFileDropped [MAX_PATH];

DragQueryFile «HDROP)medium.hGlobal, 0, szFileDropped,
sizeof (szFileDropped));

TRACE ("SampleType::Drop(%s,%s)", this->szFileName, szFileDropped);
hres = S_OK;

(continued)

331

PAR T III: EXTENDING THE USER INTERFACE

if (med;um.pUnkForRelease)
med;um.pUnkForRelease->Release ();

else
GlobalFree (med;um.hGlobal);

return hres;

Data Object Handlers

332

A data object handler allows your application to supply the IData01;>ject inter
face for a file type when files are being dragged and dropped or copied and
pasted. IDataObject is an important OLE interface that is responsible for
transferring and caching data and presentations. IDataObject defines func
tions that retrieve, store, and enumerate data and that handle data-change
notifications. A default IDataObject is available for all file types, so you don't
have to implement this interface if you like the default implementation.

Like the drop target handler, only one data object handler is supported
at a time. To register a data object handler, you use the DataHandler key in the
Registry and give the CLSID value of your extension:

[HKEY_CLASSES_ROOT\SampleType\shellex\DataHandler]
@="{<CLSID value>}"

A data object handler is initialized with the IPersistFile interface and
implements the IDataObject interface. Aside from the standard IUnknown
member functions, this handler must implement the following functions.

GetData The GetData member·function retrieves the data associated with
the given object, in the format that is specified from a designated storage me
dium. Both the data format (FORMATETC) and the storage medium (STG
MEDIUM) are defined in detail in the OLE 2 Help documentation.

GetDataHere This member function, like GetData, retrieves the data asso
ciated with the given object, in the format that is specified from a designated
storage medium. In the GetData function, however, the callee provides the stor
age medium, whereas the caller supplies the storage medium in the GetData
Here function.

QueryGetData QueryGetData looks at the format of the data and deter
mines whether a call to GetData will succeed.

T H I R TEE N: User Interface Extensions

GetCanonicalFormatEtc GetCanonicalFormatEtc retrieves a list of the for
mats supported for the object.

SetData This member function sets the data in the specified format.

EnumFormatEtc The EnumFormatEtc member function enumerates the
formats that you can use to store data obtained by the GetData function or
sent with the SetData function.

DAdvise DAdvise creates a connection between the data transfer object and
an advisory sink. The advisory sink is then informed when the object's data
changes.

DUnadvise The DUnadvise member function deletes the advisory sink con
nection that the DAdvise function establishes.

EnumDAdvise The EnumDAdvise member function enumerates the advi
sory sink connections currently established for an object.

Like the IDropTarget interface, the IDataObject interface is fully ex
plained and referenced in the OLE 2 documentation. If you aren't familiar
with drop targets or data objects, however, it's probably not a good idea to
think about creating an extension to implement these interfaces.

Debugging User Interface Extensions
Once you have written and registered your user interface extension, what do
you do ifit doesn't work? In most applications, you can simply run Microsoft
Visual C++ in debug mode, set some breakpoints, and start debugging. But
user interface extensions are loaded at startup for Windows Explorer, so you
must find a way to start Windows Explorer without loading all its DLLs.
Here's how:

1. Open your Project menu and choose the Settings item. Click the
Debug tab, and type the path to EXPLORER.EXE in the Executable
For Debug Session edit box.

2. Close all applications, and turn off your computer.

3. Restart Windows 95 and Visual C++, loading your user interface
extension.

333

PAR T III: EXTENDING THE USER INTERFACE

4. Click the Start button, and then choose Shutdown.

5. Hold down the Ctrl-Alt-Shift keys and simultaneously click No.
(Sounds a bit like playing Twister, doesn't it?)

6. The desktop may go blank, and your heart may start palpitating,
but don't worry. If you press Alt-Tab, you can get to your instance of
Visual C++. At this point, you are ready to debug. Set your break
points and go.

If you don't want to exit Windows to debug your extension, you can
force the system to unload DLLs very quickly by changing a setting in the
Registry. Under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
\CurrentVersion\explorer, add the AlwaysUnloadDll key and set its value to 1.
(I always set itO to 1, but any value will do.) Adding this key sets the time-out
value for DLLs to a very small value.

User Interface Extensions and Windows NT

334

You can use Windows 95 user interface extensions under Microsoft Windows
NT version 3.51 running with its new shell. (The shell is still due "to be re
leased as of this writing.) You will, however, need to place the extension DLL
in \WINDOWS\SYSTEM32 rather than in \WINDOWS\SYSTEM. You'll also
need to add one step in your application's setup process and registration.

To hav.e Windows NT recognize and run your user interface extension,
the handler's CLSID must be listed under a new Registry key that contains a
list of approved handlers. By default, only a person with administrator privi
leges is allowed to modify the list in this key. Here is the location where the
CLSID must be registered in Windows NT:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
Shell Extensions\Approved

To register the extension, you must add a named value to the Approved
key. The name of the value must be the string form of the CLSID, which you
can obtain by using the StringFromCLSID function.

If you haven't yet written applications for Windows NT, you might find it
odd that your setup application would be unable to write to the Approved

T H I R TEE N: User Interface Extensions

key. The ability to write to this key depends on the access privileges of the
person installing the application. The setup application should attempt to
open the key, requesting the KEY_SET_ VALUE permission. If it succeeds,
you can add the new CLSID to fully register the corresponding extension. If
the request fails, with a security violation, the person installing the applica
tion does not have permission to register new extensions. In this case, the
setup application might warn the user that some application features will not
be available unless an administrator turns them on (by installing the applica
tion or by writing the Registry keys directly). Or, if the extension is crucial to
the application's functioning, the setup application might cause the instal
lation to fail completely, notifying the user that an administrator must in
stall the program.

The following sample code demonstrates how an application can regis
ter its user-interface extension under Windows NT:

II First, attempt to open
II the Registry key where
II approved extensions are listed.
long err;
HKEY hkApproved;

err = RegOpenKeyEx (
HKEY_LOCAL_MACHINE,
"Software\\Microsoft\\Windows\\CurrentVersion\\"

"Shell Extensions\\Approved",
0,
KEY_SET_VALUE,
&hkApproved);

if (err == ERROR-ACCESS_DENIED)
{

II The user does not have permission to add a new value
II to this key. In this cas~, you might warn the user that some
II application features will not be available unless an administrator
II installs the application.> If the extension is central to the
II application's functioning, tell the user that only an
II administrator can perform the install, and stop the install.

}

(continued)

335

PAR T III: EXTENDING THE USER INTERFACE

336

else if (err == ERROR-FILE_NOT_FOUND)
{

}

II The key does not exist. This happens only if setup is running
lion Windows 95 instead of Windows NT or if you are installing on an
II older version of either operating system that lacks the Win95 UI.

else if (err != ERROR-SUCCESS)
{

II Some other problem ...
}

else
{

II Assume that lpstrProgID contains your ProgID string.
LPSTR lpstrProgID = "My Bogus Class";

II Assume that clsidExtension contains the CLSID structure.
II The following code creates a string from this CLSID.
II If a string version of the CLSID is already handy,
II skip this code.
CLSID clsidExtension {0x11111111, 0x1111, 0x1111,

0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11};
HRESULT hr;
LPOLESTR lpolestrCLSID;
char rgchCLSID [40];

CoInitialize (NULL);

hr = StringFromCLSID (clsidExtension, &lpolestrCLSID);

II StringFromCLSID returns a Unicode string, so convert to ANSI fo~
II calling the Registry. Note that on Windows NT you can call the
II Unicode version of the Registry API instead.
WideCharToMultiByte (CP_ACP, 0, lpolestrCLSID, -1, rgchCLSID, 40,

NULL, NULL);

CoTaskMemFree (lpolestrCLSID);
CoUninitialize ();

T H I R TEE N: User Interface Extensions

}

II Now add the new value to the Registry.
err = RegSetValueEx (

hkApproved.
rgchCLSID.
(3.

REG_SZ.
(const BYTE *)lpstrProgID.
strlen (lpstrProgID»:

II Finally. close the key.
err = RegCloseKey (hkApproved):

If you are registering your extension for Windows NT version 3.51 (with
the new shell) by using a REG file, add the following line:

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
Shell Extensions\Approved\{CLSID_VALUE}]
@="My Shell Extens ion"

For CLSID_ VALUE, insert the actual CLSID for your extension. For My
Shell Extension, substitute the name of the exported user interface extension.

337

C HAP T E R F 0 U R TEE N

The Shell Name Space

In this final chapter, we'll discuss the shell name space and how developers
can take advantage of some of the built-in browsing functions in Microsoft
Windows 95. The ability to browse the shell name space lets you scan, locate,
or display information about the directory structure of the system or about
particular folders.

The shell name space is a collection of symbols, such as filenames, direc
tory (folder) names, or database keys. The system stores all these objects and
others in a hierarchical structure and uses Windows Explorer to display the
information. At the root of this structure is the desktop.

A developer not as savvy as you are might say, "So what? This is just a
glorified directory structure." Bzzt! Thanks for playing. Next contestant, if
you please.

The shell name space does include file system information, but it con
tains much more than files and folders. It also includes network resources,
printers, Control Panel applications, the Recycle Bin, and so on. This arrange
ment makes it easy for the user to find an object without having to under
stand the underlying directory structure of the file system. Figure 14-1 on
the next page, for instance, from the ENUMDESK sample (written by Greg
Keyser), displays the contents ofa Control Panel folder.

This chapter presents two samples that demonstrate how to use built-in
functions to browse the shell name space. The first sample, Greg. Keyser's
ENUMDESK, is written in C using the Win32 API. The second sample is
MFCENUM, the version I ported to MFC. In Figure 14-2, also on the next
page, you can see the ENUMDESK main window. Looks like Windows Ex
plorer, doesn't it?

339

PAR T III: EXTENDING THE USER INTERFACE

s···~ My Computer

~ ern i rn .. Gi) 3~ Floppy (A:)
i ~ .. e Nancycl2 (C:) Add New Add/Remove Date/Time
$"~ Release on 'Products1' (0:) Hardware Programs
!±J .. e Nancycl2 (E:)

~ ~ ~ .. ~ C$ on 'Nancycl1' (H:)
~.~ D$ on Nancycl1' (N:)

I::::~I!~!.I Display Fonts Internet

i L .. (i3 Dial-Up Networking

~ ~ ~ $.. .!§ Network N.eighborhood ..• ~

i · </ Recycle Bin
rn .. Cl My Briefcase Mail and Fax Microsoft Mail Modems

Postoffice

~ ~ i\
Multimedia Network Passwords

Ae.t ~ ~

Figure 14-1.
The contents of a Control Panel folder.

file

s .. ·EJ My Computer
!±J .. Gi) 3~ Floppy (A:)

~·e~
$"~ Release on 'Products1' (0:)
!±J .. e ~Jancycl2 (E:)
~ .. ~ C$on'Nancycl1'(H:)

, ~ .. ~ D$ on 'Nancycl1' (N:)
! ! @J Control Panel
i i @J Printers
i L .. (i3 Dial-Up Networking
~"1iI ~J etwork Neighborhood
J ~ Recycle Bin

rn .. Cl My Briefcase

Figure 14-2.
The ENUMDESK main window.

ClWinword
~ Autoexec. 000
~ Autoexec.001
~ Autoexec.002
~ Autoexec.bak
~Autoexec
~ Autoexec.dos
~ Autoexec.syd
CJCommand
~ Command.dos
~Config001
~ Config.bak
~ Config. dos
~ Config. syd

~Inis
~ Netiog
!:!Jrfl

Desktop
Themes

Ell
Keyboard

~
Mouse

~
PC Card

(PCMCIA)

r,;;;r!\~ ::J

Definitions

340

Before you begin looking at the samples, it will be useful to define some
terms. You've seen many of the terms before, but these definitions emphasize
how the terms are used in the context of this chapter.

F 0 U R TEE N: The Shell Name Space

Let's start with folders. A folder is simply a collection of objects in the
shell name space. Although it is much like a file system directory, a folder
can also be a container for remote computers, storage devices, the desktop,
Control Panel, and so on. A folder can contain other folders as well as file
objects, but each type of folder contains only certain types of file objects
for example, you cannot drag a Control Panel application into a file system
directory folder. A file object is an object in a folder, such as an actual file, a
printer, or some other type of object.

An item identifier (item ID) is a binary data structure that uniquely identi
fies an object in the object's parent folder. When you need to trace a path to
an item from the desktop, you use an item ID list. The user never :sees item
IDs; display names are shown instead. A PIDL (pronounced "piddle"-stop
giggling) is a pointer to an ID list, used with many of the functions that let you
browse the shell name space.

Each folder is an OLE object that knows how to enumerate its contents
and carry out other actions. To do this, folders implement the IShellFolder
interface. When an application gets a pointer to the IShellFolder interface
for a folder, this is referred to as binding to the folder. Your application can
bind to the desktop folder by using the SHGetDesktopFolder function. Your
application can also bind to a subfolder of any given folder by using the
IShellFolder::BindToObject member function. With these two functions, an
application can browse through the shell's entire name space, as you'll see
later in the chapter.

Some folders are known as virtual folders. Virtual folders aren't actual
file directories or storage devices. Rather, they are containers for a number of
storage devices and network resources. Examples of virtual folders are the
desktop folder, the My Computer folder, and the Network Neighborhood
folder. Other virtual folders contain file objects, such as printers, that are not
part of the file system.

File system directories also use some special folders. For example, the
Programs folder contains the user's program groups, and the desktop di
rectory physically stores files that have been copied to the desktop folder.
You can find these special folders in the Registry under HKEY_ CURRENT
_ USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\Shell Folders.

An application uses the SHGetSpecialFolderLocation function to re
trieve the location of a special folder, whether it is a virtual folder or part of
the file system. The function returns a PIDL, which. the application must

341

PAR T III: EXTENDING THE USER INTERFACE

eventually free by using the task allocator. If the folder is part of the file sys
tem, you can convert the PIDL to a file system path by using the SHGetPath
FromIDList function.

Enumerating Items in the Shell

342

When an application has the IShellFolder interface for a folder, it can deter
mine the folder's contents by using the EnumObjects member function.
EnumObjects creates an item enumeration object, which is a set of item identifi
ers that can be retrieved by using the IEnumIDList interface.

Mter you get an item enumeration object, your application can retrieve
all the item IDs one or more at a time from the enumeration object by repeat
edly calling the IEnumIDList::Next member function. Using other member
functions, you can skip items in the sequence, return to the beginning of the
sequence, or "clone" the enumeration object to save its state. When your ap
plication has finished using the enumeration object, you must free the object
by calling its Release member function.

The MFCENUM and ENUMDESK samples use a tree view control and a
list view control to display items in the shell name space. These two controls
are created when the application starts. The desktop folder is retrieved, and
the tree view controfis filled with the contents of the desktop.

voi d CMfcenumVi ew: : OnFi 11 ()
{

LPSHELLFOLDER lpsf = NULL:
LPITEMIDLIST lpi = NULL:
HRESULT hr:
TV:"'SORTCB tvscb:

II Get a pointer to the desktop folder.
hr =SHGetDesktopFolder (&lpsf):

if (SUCCEEDED (hr»
{

}

II Initialize the tree view control to be empty.
m_TreeCtl.DeleteAllItems ():

II Fill in the tree view control from the root.
FillTreeView (lpsf. NULL. TVI_ROOT):

II Release the folder pointer.
lpsf->Release ():

F 0 U R TEE N: The Shell Name Space

tvscb.hParent = TVI_ROOT;
tvscb.1Param = 0;
tvscb.lpfnCompare = TreeViewCompareProc;

II Sort the items in the tree view control.
m_TreeCtl.SortChildrenCB (&tvscb, FALSE);
}

The application-defined FillTreeView function enumerates the items in
the folder identified by the first parameter (a pointer to a shell folder). The
second parameter is the fully qualified item ID list to the item (the PIDL of
the item identified by the first parameter). The third parameter is the tree view
parent item. This function will add only items that are folders or that have
subfolders.

The FillTreeView function first calls SHGetMalloc. All user interface ex
tensions must use the task allocator to allocate or free memory objects (such
as item ID lists) returned across shell interfaces. SHGetMalloc does this.

void CMfcenumView::FillTreeView (
LPSHELLFOLDER lpsf, LPITEMIDLIST lpifq, HTREEITEM hParent)

{

TV_ITEM tvi; 1/
TV_INSERTSTRUCT tvins; 1/
HTREEITEM hPrev = NULL; 1/
LPSHELLFOLDER lpsf2 = NULL;
LPENUMIDLIST lpe = NULL;
LPITEMIDLIST 1 pi = NULL, 1 pi Temp
LPTVITEMDATA lptvid = NULL;
LPMALLOC lpMalloc = NULL;
ULONG ulFetched;
UINT uCount = 0;
HRESULT hr;
char szBuff [256];
HWND hwnd = : :GetParent

II Allocate a shell memory object.
hr = ::SHGetMalloc (&lpMalloc);
if (FAILED (hr»

return;

if (SUCCEEDED (hr»
{

tree view item
tree view insert structure
previous item added

NULL, lpifqThisItem;

(m_TreeCtl.m_hWnd);

II Get the IEnumIDList object for the given folder.
hr = lpsf-)EnumObjects (hwnd, SHCONTF_FOLDERS I SHCONTF_NONFOLDERS,

& 1 pe) ;
(continued)

PAR T III: EXTENDING THE USER INTERFACE

344

if (SUCCEEDED (hr»
{

II Enumerate through the list of folder and nonfolder objects.
while (S_OK == lpe-)Next (1. &lpi. &ulFetched»
{

II Create a fully qualified path to the current item.
II The SH* functions take a fully qualified path PIDL.
II while the interface member functions take a
II relative path PIDL.
ULONG ulAttrs = SFGAO_HASSUBFOLDER 1 SFGAO_FOLDER;

II Determine what type of object you have.
lpsf-)GetAttributesOf (

1. (const struct _ITEMIDLIST **)&lpi. &ulAttrs);

if (ulAttrs & (SFGAO_HASSUBFOLDER 1 SFGAO_FOLDER»
{

II You need this next if statement to
II avoid adding objects that are not real
II folders to the tree. Some objects can
II have subfolders but aren't real folders.
if (ulAttrs & SFGAO_FOLDER)
{

tvi.mask = TVIF_TEXT 1 TVIF_IMAGE 1 TVIF_SELECTEDIMAGE 1

TVIF_PARAM;

if (ulAttrs & SFGAO_HASSUBFOLDER)
{

}

II This item has subfolders. so put a plus sign in the
II tree view control. The first time the user clicks
II the item. you should populate the subfolders.
tvi.cChildren = 1;
tvi.mask 1= TVIF_CHILDREN;

II Get some memory for the ITEMDATA structure.
lptvid = (LPTVITEMDATA) lpMalloc-)Alloc (

sizeof (TVITEMDATA»;
if (! lptvid)

goto Done; II Error - could not allocate memory

II Now get the friendly name to
II put in the tree view control.
if (!' GetName (lpsf. lpi. SHGDN_NORMAL. szBuff»

goto Done; II Error - could not get friendly name

tvi.pszText = szBuff;
tvi.cchTextMax = MAX_PATH;

}

}

}

}

}

F 0 U R TEE N: The Shell Name Space

lpifqThisItem = ConcatPidls (lpifq.lpi);

II Now make a copy of the ITEMIDLIST.
lptvid->lpi CopyITEMID (lpMalloc. lpi);

GetNormalAndSelectedIcons (lpifqThisItem. &tvi);

lptvid->lpsfParent lpsf;
lpsf->AddRef ();

II pointer to parent folder

lptvid->lpifq = ConcatPidls (lpifq. lpi);
tvi.1Param = (LPARAM)lptvid;

II Populate the tree view insert structure.
II The item is the one filled above.
II Insert it after the last item inserted at this level.
II and indicate that this is a root entry.
tvins.item = tvi;
tvins.hInsertAfter = hPrev;
tvins.hParent = hParent;

II Add the item to the tree.
hPrev = m_TreeCtl .InsertItem (&tvins);

II Free the task allocator for this item.
lpMalloc->Free (lpifqThisItem);
lpifqThisItem = a;

lpMalloc->Free (lpi);
lpi = 0;

II.free the PIDL the shell gave you

else
return;

Done:
if (lpe)

lpe->Release ();

II The following two if statements will be TRUE only if you got here
lion an error condition from the goto statement. Otherwise. free
II this memory at the end of the while loop above.

(continued)

345

PAR T III: EXTENDING THE USER INTERFACE

if (lpi && lpMalloc)
lpMalloc->Free (lpi);

if (lpifqThisltem && lpMalloc)
lpMalloc->Free (lpifqThisltem);

if (l pMa 11 oc)
lpMalloc->Release ();

FillTreeView used the folder's IShellFolder interface to get the folder's
contents and then used the IShellFolder::EnumObjects member function to
create an item enumeration object. This function then called the IEnumID
List::Next member function to iterate through all the item IDs for all the
folders in the name space.

Getting Friendly Names and Icons

346

As binary data structures, item IDs aren't much fun to look at or easy to re
member. You need to get a friendlier name for an object when you display it
to the user. Fortunately, each item in a folder has a display name and two
icons associated with it. (One icon is displayed when the item is selected, and
the other is displayed when the item is not selected.)

The code youjust saw retrieved each item's display name and its icons
by calling application-defined functions. The GetName function gets the ob
ject's friendly name by using the IShellFolder::GetDisplayNameOf member
function. Ifnecessary, GetName converts the display name to Unicode charac
ters, filling a buffer that is either allocated by the task allocator or specified by
the application. It then returns a pointer to this buffer. Otherwise, GetName
simply returns the offset to the display name in the identifier.

BOOl CMfcenumView::GetName (lPSHEllFOlDER lpsf, lPITEMIDlIST lpi,
DWORD dwFlags, lPSTR lpFriendlyName)

BOOl bSuccess = TRUE;
STRRET str;

if (NOERROR == lpsf->GetDisplayNameOf (lpi, dwFlags, &str))
{

switch (str.uType)
{

case STRRET_WSTR:
WideCharToMultiByte (CP-ACP, II code page

o II dwFlags
str.pOleStr, II lpWideCharStr
-1, II cchWideChar

F 0 U R TEE N: The Shell Name Space

}

}

else

lpFriendlyName.
sizeof (lpFriendlyName).
NULL.
NULl);

break;

case STRRET_OFFSET:

II lpMultiByteStr
II cchMultiByte
II lpDefaultChar
II lpUsedDefaultChar

lstrcpy (lpFriendlyName. (LPSTR)lpi + str.uOffset);
break;

case STRRET_CSTR:
lstrcpy (lpFriendlyName. (LPSTR) str.cStr);
break; .

default:
bSuccess FALSE;
break;

bSuccess = FALSE;

return bSuccess;
}

You can use the IShellFolder::SetNameOfmember function to change
the display name of a file object or folder. One side effect of changing the dis
play name is that the item ID also changes.

Another application-defined function gets the selected and unselected
icons for the item. You need these icons when adding the item to the tree view
control so that the control can display the item's status correctly. This function
fills in the ilmage and .iSelectedlmage members of the tree view item passed in
(in the second parameter) with the unselected icon image and the selected
icon image, respectively. The GetIcon function, shown in this code, simply calls
the SHGetFilelnfo function to retrieve the correct icon:

void CMfcenumView::GetNormalAndSelectedIcons
LPITEMIDLIST lpifq. LPTV_ITEM lptvitem)

{

II Don't check the return value here.
II If GetIcon() fails. you're in big trouble.
lptvitem->iImage = GetIcon (lpifq.

SHGFI_PIDL I SHGFI_SYSICONINDEX SHGFI_SMALLICON);

lptvitem->iSelectedImage = GetIcon (lpifq.
SHGFI_PIDL I SHGFI_SYSICONINDEX I SHGFI~SMALLICON SHGFI_OPENICON);

(continued)

347

PAR T III: EXTENDING THE USER INTERFACE

return;
}

int CMfcenumView::Getlcon (LPITEMIDLIST lpi. UINT uFlags)
{

SHFILEINFO sfi;

SHGetFilelnfo «LPCSTR)lpi. 0. &sfi. sizeof (SHFILEINFO). uFlags);

return sfi.ilcon;
}

Getting Object Attributes

348

The attributes of each file object and folder determine, among other things,
what actions can be carried out on the item. For instance, in the code that
filled the tree view control, you needed to get object attributes to determine
whether the item had subfolders or was a folder itself. To determine the at
tributes of a file object or a folder, an application uses the IShellFolder
::GetAttributesOf member function. Table 14-1 lists some of the possible
attributes of an object. (These attributes are defined in SHLOBJ.H.)

Attribute Flag

SFGAO _ CANCOPY

SFGAO_CANMOVE

SFGAO _ CANLINK

SFGAO _ CANRENAME

SFGAO _ CANDELETE

SFGAO_HASPROPSHEET

SFGAO _DROPTARGET

SFGAO_LINK

SFGAO_SHARE

SFGAO _READ ONLY

SFGAO_GHOSTED

SFGAO _FILESYSANCESTOR

SFGAO _FOLDER

Table 14-1.
Examples of object attributes.

Description

The object can be copied.

The object can be moved.

The object can be linked.

The object can be renamed.

The object can be deleted.

The object has a property sheet.

The object is a drop target.

The object is a shortcut.

The object is shared.

The object is read-only.

The object is displayed with a ghosted icon.

The object contains a fi~e system folder.

The object is a folder.

(continued)

F 0 U R TEE N: The Shell Name Space

Table 14-1. continued

Attribute Flag

SFGAO _FILESYSTEM

SFGAO _HASSUBFOLDER

SFGAO_REMOVABLE

Description

The object is a file system object
(file/folder/root).

The object has a subfolder.

Determines whether the object is
removable media.

Filling the List View Control
Now let's look at how to fill the list view control in our samples with the con
tents of the folder selected in the tree view control. In Figure 14-3, the con
tents of my root C drive are displayed in a list view control in large icon view.
(In Figure 14-2 on page 340, the same contents are displayed in list view.)

t;I ... ~ My Computer
i ~··GJ 3Hloppy (A:)

I ~··GJ~
~ .. §! Release on 'Productsl' (0:)
m··GJ Nancycl2 (E:)
I!l .. §! C$ on N ancl'c11' (H:)
~ .. §! D$onNancl'c11'(N:)
j @) Control Panel
i····@l Printers

I 1...·113 Dial-Up Networking
m .. f!i Network Neighborhood
I····: Recycle Bin

m··CJ My Briefcase

Figure 14-3.

Myst

D
Sdk

CJ
Windows

~

CJ
New Folder

D
slm

CJ
Winword

~

CJ
Old Program Program Files

Files

Autoexec.002 Autoexec.bak Autoexec Autoexec.dos

The contents of the Nancycl2 [C:j folder in large icon view.

NOT E: You might have noticed that ENUMDESK, the C sample,
contains a feature that is missing from the MFC version: a splitter
bar. When I first ported the code to MFC, I ignored the splitter bar,
thinking that I would add it later. But of course I ran out of time. So
I leave the implementation of splitter bars in MFC to you, as an in
teresting exercise.

349

PAR T III: EXTENDING THE USER INTERFACE

350

In the MFCENUM sample, I populate the list view control whenever a
new folder is selected in the tree view control. The list view control first de
letes all its current items. When the control is empty, the application uses the
SHGetFileInfo function to retrieve the image lists (large and small) associ
ated with the shell.

BOOl CMfcenumView::lnitlistViewlmagelists ()
{

HIMAGElIST himlSmall;
HIMAGElIST himllarge;
SHFIlEINFO sfi;
BOOl bSuccess = TRUE;

himlSmall = (HIMAGELISn SHGetFilelnfo «lPCSTR) "C:\\",
0, &sfi, sizeof (SHFIlEINFO), SHGFI_SYSICONINDEX I SHGFI_SMAllICON);

himllarge = (HIMAGELISn SHGetFilelnfo «lPCSTR) "C:\\~',

0, &sfi, sizeof (SHFIlEINFO), SHGFI_SYSICONINDEX I SHGFI_lARGEICON);

if (himlSmall && himllarge)
{

::SendMessage (m_listCtl.m_hWnd, lVM_SETIMAGElIST,
(WPARAM)lVSIl_SMAll, (lPARAM)himlSmall);

::SendMessage (m~listCtl .m_hWnd, lVM_SETIMAGElIST,
(WPARAM)lVSIl_NORMAl, (lPARAM)himllarge);

else
bSuccess = FALSE;

return bSuccess;
}

Mter you've associated the image lists, it is time to fill the list view con
trol. This procedure is nearly identical to the procedure used to fill the tree
view control: get a task allocator for the folder, enumerate the objects, and
add those that can be displayed to the list view control.

BOOl CMfcenumView::lnitlistViewltems (
lPTVITEMDATA lptvid, lPSHEllFOlDER lpsf)

lV_ITEM 1 vi ;
int iCtr;
HRESUlT hr;
lPMAllOC lpMalloc;
lPITEMIDlIST lpifqThisltem;
lPITEMIDlIST lpi = NUll;
lPENUMIDlIST lpe = NUll;

F 0 U R TEE N: The Shell Name Space

LPLVITEMDATA lplvid;
ULONG ulFetched. ulAttrs;
HWND hwnd = ::GetParent (m_ListCtl.m_hWnd);
UINT uFlags;

hr = SHGetMalloc (&lpMalloc);
if (FAILED (hr))

return FALSE;

if (SUCCEEDED (hr))
{

hr = lpsf->EnumObjects (hwnd. SHCONTF_FOLDERS I SHCONTF_NONFOLDERS.
& 1 pe) ;

if (SUCCEEDED (hr))
{

iCtr = 0;

while (S_OK == lpe->Next (1. &lpi. &ulFetched))
{

II Get some memory for the ITEMDATA structure.
lplvid = (LPLVITEMDATA) lpMalloc->Alloc (sizeof (LVITEMDATA));
if (! lplvid)

goto Done;

II Since you are interested in the display attributes
II as well as other attributes. you need to set ulAttrs to
II SFGAO_DISPLAYATTRMASK before calling GetAttributesOf().
ulAttrs = SFGAO_DISPLAYATTRMASK;
lpsf->GetAttributesOf (1. (const struct _ITEMIDLIST **)&lpi.

&ulAttrs); ,
lplvid->ulAttribs = ulAttrs;

lpifqThisItem = ConcatPidls (lptvid->lpifq. lpi);

lvi.iItem = iCtr++;
lvi.iSubItem = 0;
lvi.pszText = LPSTR-TEXTCALLBACK;
lvi .cchTextMax = MAX_PATH;
uFlags = SHGFI_PIDL I SHGFI_SYSICONINDEX I SHGFI_SMALLICON;
lvi.iImage = I_IMAGECALLBACK;

lplvid->lpsfParent = lpsf;
lpsf->AddRef ();

(continued)

351

PAR T III: EXTENDING THE USER INTERFACE

352

}

Done:

II Now make a copy of the ITEMIDLIST.
lplvid->lpi = CopyITEMID (lpMalloc, lpi);

lvi.1Param = (LPARAM)lplvid;

II Add the item to the list view control.
if (m_ListCtl.lnsertltem (&lvi) == -1)

return FALSE;

lpMalloc->Free (lpifqThisltem);
lpifqThisltem = 0;
lpMalloc->Free (lpi); II free the PIDL the shell gave you
1 pi = 0;

if (l pe)
lpe->Release ();

II The following two if statements will be TRUE only if you got here
lion an error condition from the goto statement. Otherwise, free
II .this memory at the end of the while loop above.
if (lpi && lpMalloc)

lpMalloc->Free (lpi);
if (lpifqThisltem && lpMalloc)

lpMalloc->Free (lpifqThisltem);

if (lpMalloc)
lpMalloc->Release ();

return TRUE;

The final step is to sort the list view control by using the LVM_SORT
ITEMS message or the CListCtrl::SortItems member function. Items can be
sorted through a callback procedure that uses the IShellFolder::CompareIDs
member function. This function compares two item ID lists and returns the
result. Windows Explorer always passes 0 as the lParam parameter to indicate
that the items should be sorted by name. The compare function returns 0 if
the objects are the same, a negative value if pidll should be placed before pidl2,
and a positive value if pidl2 should be placed before pidll.

F 0 U R TEE N: The Shell Name Space

int CALLBACK CMfcenumView::ListViewCompareProc (
LPARAM lparaml. LPARAM lparam2. LPARAM lparamSort)

LPLVITEMDATA lplvidl
LPLVITEMDATA lplvid2
HRESULT hr:

(LPLVITEMDATA)lparaml:
(LPLVITEMDATA)lparam2:

hr = lplvidl-)lpsfParent-)CompareIDs (0. lplvidl-)lpi. lplvid2-)lpi):

if (FAILED (hr»
return 0:

return hr:
}

Displaying an Item's Context Menu
The ENUMDESK sample supports context menus for items in the tree view
and list view controls. Figure 14-4 shows the context menu displayed when I
right-click the Nancycl2 [C:] folder.

e···~ My Computer
i m··9 3li Floppy (A:)

im"9~
$"~ Release on ,l;.xplole
$"9 Nancycl2 (E .Qpen

-msstfqf.t
bin

si

~ .. ~ C$ on 'Nan find" es
~ .. ~ 0$ on 'Nan---..:.,.----II
! @1 Control Par FormaL. ;~O

i I::::~ 6~~~~~ Ne,·-..,...Cr_e_at_e .2_110_' rtc_ul_1
~ .. ~ Network Neighl,.;..· .--;F1;..;op_er_tie_s""mm1 Folder
i·····~ Recycle Bin

m··CJ My Briefcase

Figure 14-4.

ClWinword
~ Autoexec.OOO
~ Autoexec.OO1
~ Autoexec.002
~ Autoexec. bak
CEJ Autoexec
~ Autoexec.dos
~ Autoexec.syd
l:)Command
~ Command.dos
~ Config.OOl
~ Config.bak
~Config.dos
~ Config. syd
~Inis
@ Netlog
G:Jrfl

The context menu for the Nancycl2 [C:] folder in the ENUMDESK sample.

When an application determines that the user has right-clicked a spe
cific tree view or list view item, the application calls a helper function to dis
play the item's context menu. The helper function is passed the handle to the
parent window, a pointer to the folder, a pointer to the item ID list, and the
location where the context menu s?ould be displayed.

353

PAR T III: EXTENDING THE USER INTERFACE

354

BOOL CMfcenumView::DoTheMenuThing (
HWND hwnd. LPSHELLFOLDER lpsfParent. LPITEMIDLIST lpi. LPPOINT lppt)

LPCONTEXTMENU lpcm:
HRESULT hr:
char szTemp [64]:
CMINVOKECOMMANDINFO cmi:
DWORD dwAttribs = 0:
int idCmd:
HMENU hMenu:
BOOL bSuccess = TRUE:

hr lpsfParent->GetUIObjectOf
hwnd.
1. II get attributes for this many objects
(const struct _ITEMIDLIST **)&lpi.
IID_IContextMenu.
Q.
(LPVOID *)&lpcm):

if (SUCCEEDED (hr))
{

hMenu = CreatePopupMenu ():

if (hMenu)
{

II Get the context menu for the item.
hr = lpcm->OueryContextMenu (hMenu. 0. 1. 0x7fff. CMF_EXPLORE):
if (SUCCEEDED (hr))
{

idCmd = TrackPopupMenu
hMenu. TPM_LEFTALIGN I TPM_RETURNCMD I TPM_RIGHTBUTTON.
lppt->x. lppt->y. 0. hwnd. NULl);

if (idCmd)
{

II Execute the command that was selected.
cmi.cbSize sizeof (CMINVOKECOMMANDINFO):
cmi.fMask = 0:
cmi.hwnd
cmi .1 pVerb
cmi.lpParameters
cmi.lpDirectory
cmi .nShow
cmi .dwHotKey
cmi .hlcon

= hwnd:
= MAKEINTRESOURCE (idCmd - 1):

NULL:
NULL:
SW_SHOWNORMAL:
0:

= NULL:

F 0 U R TEE N: The Shell Name Space

hr = lpcm-)InvokeCommand (&cmi);
if (! SUCCEEDED (hr))
{

wsprintf (szTemp, "InvokeCommand failed. hr = %lx", hr);
AfxMessageBox (szTemp);

}

else
bSuccess = FALSE;

DestroyMenu (hMenu);

else
bSuccess FALSE;

lpcm-)Release ();
}

else
{

wsprintf (szTemp, "GetUIObjectOf failed! hr = %lx", hr);
AfxMessageBox (szTemp);
bSuccess = FALSE;

return bSuccess;
}

With this code in place, the user can right-click an item, view the item's
context menu, and choose a command from the context menu.

Supporting Drag and Drop
Although this book can't really cover OLE drag-and-drop operations in any
detail, let's take a brief look at the basic steps used by ENUMDESK (and
MFCENUM) to support the IDropSource interface. All applications contain
ing data that can be dropped into another application must implement this
interface. Our samples support IDropSource so that the user can pick up an
object in a window and drop it on Windows Explorer or on the desktop.

355

PAR T III: EXTENDING THE USER INTERFACE

356

In addition to the standard IUnknown OLE interface member func
tions, you must implement two IDropSource functions: QueryContinue

. Drag, which determines whether a drag operation should continue; and
GiveFeedback, which enables a source application to provide feedback dur
ing a drag-and-drop operation.

In ENUMDESK and MFCENUM, the QueryContinueDrag function de
termines whether the user has pressed the Esc key or released the mouse but
ton (signaling a drop). If Esc has been pressed, the drop procedure is canceled;
if the mouse button has been released, the drop is finished.

STDMETHODIMP CDropSource::QueryContinueDrag
BOOl fEscapePressed. DWORD grfKeyState)

if (fEscapePressed)
return DRAGDROP_S_CANCEl;

else if (!(grfKeyState & MK-lBUTTON) && (grfKeyState & MK-RBUTTON»
return DRAGDROP_S_DROP;

else
return NOERROR;

The GiveFeedback implementation in the samples simply directs the
system to use the default cursor for the drop operation:

STDMETHODIMP CDropSource::GiveFeedback (DWORD dwEffect)
{

return DRAGDROP_S_USEDEFAUlTCURSORS;
}

INDEX
Italic page-number references indicate a figure or a table.

Special Characters
\ (backslash) in filenames, 222, 225, 228-29
: (colon) in filenames, 222, 225, 228
, (comma) in filenames, 224-25
= (equal sign) in filenames, 224-25
. (period) in filenames, 222-26, 228, 230-31
+ (plus sign) in filenames, 224, 231
; (semicolon) in filenames, 224-25
[] (square brackets) in filenames, 224-25
_ (underscore) in filenames, 222, 224

A
ABM_NEW message, 279
ABM_REMOVE message, 278-79
ABS_ALWAYSONTOP style, 280
access bars

callback message for, 280-81
creating, 276-80, 278
introduced, 275-76, 276
position of, 281-84
size of, 281-84

ACS_AUTOPLAY style, 60
ACS_CENTER style, 60
ACS_TRANSPARENT style, 60
AddBitmap member function, 23, 31
AddButtons member function, 23, 31
adding items to tree view controls, 98-101
adding ToolTips to nonbutton controls, 27-29
Add member function, 72
AddPages member function, 328-29
Add Prin ter wizard, 123, 124
AddRef member function, 238, 297, 298, 315.

See also IUnknown interface
AddString member function, 31
AFXCMN.H header file, 5, 11,40,51,61,71,

91, 105
alias, 8.3 (filename); 223-24
AlwaysUnloadDll key, 334
ANIMATE_CLASS, 5, 60
Animate_Close macro, 66

Animate_Create macro, 60, 66
Animate_Open macro, 66
Animate_Play macro, 66
Animate_Seek macro, 66
Animate_Stop macro, 66
animation controls

creating, 60-65, 61, 63
introduced, xviii, xix, 59, 59-60
macros and member functions, 65, 66

ANlMAT sample, 61,61,64-65. See also·
animation controls; MFCANIM sample

apartment threading in OLE, 291, 293
APPBAR_CALLBACK messag(!, 280
APPBARDATA structure, 277
AppBars. See access bars
Approved key, 334-35
Arrange member function, 91
ASSERT message, 15
Attach member function, 73
audio-video interleaved (AVI) clips, 59-60.

See also animation controls
AutoSize member function, 24,31,204
AVI (audio-video interleaved) clips, 59-60.

See also animation controls

B
backslash (\) in filenames, 222, 225, 228-29
BeginDrag member function, 72
BEGIN_INTERFACE_PART macro, 296
binding to folder, 341. See also IShellFolder

interface
BitBlt function, 15
bitmaps

image lists and, 67-69, 68
toolbar, 24, 24-26, 26

breaks, line, 148
breaks, word, 148
buddy controls, 53-55, 54
ButtonCount member function, 31

357

PROGRAMMING THE WINDOWS 95 USER INTERFACE

c
callback message for access bars, 280-81
CAnimateCtrl object, 60
CCmdTarget class, 295, 297
CComboBox class, 29
CCS_ADJUSTABLE style, 7,29
CCS_BOTTOM style, 7, 21
CCS_NODIVIDER style, 7
CCS_NOHILITE style, 7
CCS_NOMOVEY style, 7
CCS_NOPARENTALIGN style, 7
CCS_NORESIZE style, 7
CCS_TOP style, 7, 13
CDialog class, 57
CD-ROM (companion disc for this book),

overview, xxv
CEdit class, 90
CF _EFFECTS flag, 172
CFileDialog class, 209
CFileViewer class, 297
CFileView object, 295, 297
CF_NOSCRIPTSELflag, 172,173
CFrame Wnd class, 307
CF _SCREENFONTS flag, 173
ChangeFaceName function, 141
changing dialog procedures, 116-18
changing views (list view controls), 85, 85-86
character formatting, 139-46, 140, 144, 145
CHARFORMAT structure, 139, 146
CheckButton member function, 32
CHICOAPP sample. See also MFCEXP sample

adding a context menu, 213-14
creating windows, 195-99
designing, 193-94
handling notifications, 211-13
incorporating a property sheet, 214-16, 215,

217
introduced, 193-94, 194
main screen, 194
parsing and storing data, 205-6
resizing windows, 203-4
using common dialog boxes, 208, 209

child dialog boxes, 167-69, 169
child items, in tree view controls, 95, 95
Choose Color function, 177
CHOOSECOLOR structure, 177
ChooseFont function, 172, 174
CHOOSEFONT structure, 172

358

CImageList class, 69, 71, 78
CImageList object, 70, 82
CITYINFO structure, 205-6
classes. See specific class names
classes, file, 287, 289, 291-92. See also CLSID

(class identifier)
class factories, 305-7
class identifier. See CLSID (class identifier)
ClearSel member function, 46
ClearTics member function, 46
client window, 24
clips, audio-video interleaved (AVI), 59-60
CListCtrl class, 5, 78, 82, 91
CListCtrl object, 82
CListCtrl::Sortltems member function, 352
Close member function, 66
CLSID (class identifier)

and file viewers, 259, 289, 291-92
and user interface extensions, 259, 314, 327,

330,332,334-37
CMNDLG32 sample. See also common dialog

boxes
Color common dialog box, 177-78
error detection, 190-91
Find common dialog box, 178-81, 179
Font common dialog box, 172, 172-74
introduced, 159-60, 160
monitoring input, 163-66
opening files, 160-71
Page Setup common dialog box, 181, 185,

185-90
Print common dialog box, 181-85, 182
Print Setup common dialog box, 181-85, 182
Replace common dialog box, 178-81, 181
saving files, 160-71
using the OFN_EXPLORER flag, 167-69

CMyFrame class, 307-8
CoCreateInstance function, 238, 240, 242, 292
CoGetClassObject function, 292
CoInitialize function, 238, 240, 242, 291
colon (:) in filenames, 222, 225, 228
Color common dialog box, 175, 175-78, 176, 177
column headers

introduced, xvii, xx, 77
header items, 77
list view controls and, 74-78, 75, 76, 77
sorting items in response to a column header

click, 88-89

combo boxes, 135-37
COM (Component Object Model), shortcuts and,

237-38
COMCTL32.DLL dynamic-link library, 4, 24, 71,

111,195 .

COMCTL32.LIB library file, 5, 10, 39, 49, 55, 64,
91,105,111,133-34,170

COMDLG32.DLL dynamic-link library, 159, 163,
176,181

comma (,) in filenames, 224-25
CommandTolndex member function, 32
COMMCTRL.H header file, 4-5, 10, 39, 49, 55,

64, 91, 105, 134
CommDlgExtendedError function, 163, 190
common controls. See also names of specific common

controls and corresponding samples

introduced, xvi-xvii, xvii, 3-5
notifications, 7-8, 8
window classes, 5, 5-6
window styles, 6, 7

common dialog boxes
Color, 175, 175-78, 176, 177
customizing, 167-69, 171
error detection, 190-91
Find, 178-81, 179
Font, 172, 172-74
help support for, 191
i~entifiers for controls in, 170, 170-71
introduced, xxii, xxii, 159-60, 160

monitoring input to, 163-66
OFN_EXPLORER flag, 167-69, 168, 169
Open, 160-71, 161, 168, 169, 170,233

Page Setup, 181, 185, 185-90
Print, 181-85, 182
Print Setup, 181-85, 182
Replace, 178':"'81, 181
Save As, 160-71, 162, 170,233,233-34,234

companion CD-ROM (packaged with this book),
overview, xxv

Component Object Model (COM), shortcuts and,
237-38

context menu handlers, 313, 318-22, 319
context menus

adding, 213-14
displaying, 353, 353-55
Quick View option on, 287-90
used to create shortcuts, 235-36, 236

controls
buddy, 53-55, 54
common (see common controls)

converting dialog boxes to property sheets,
114-16

CopyCallBack member function, 330
copy hook handlers, 313, 329-30
CopyHookHandlers key, 329
CoUninitialize function, 238
CProgressCtrl object, 49
CPropertyPage class, 217

Index

CPropertySheet class, 217
CreateAppWindows function, 200
CreateDirectory function, 229
CreateDraglmage member function, 91, 106

CreateFile function, 223
Create member function

used with general-purpose common controls,
49,60,61,66

used with list management common controls,
70, 72, 73, 78,82,96, 106

used with organizational common controls,
5,23

CreatePropertySheet function, 115
CreatePropSheetPage function, 328
CreateShortCut::Createlt function, 240, 244
CreateToolbarEx function, 21, 25, 26, 135
CreateWindowEx function, 5, 38, 49, 60, 78, 96,

111,133,276
CreateWindow function, 5, 9, 38, 49, 60, 96, 111,

133
CSliderCtrl class, 38, 46
CSpinButtonCtrl class, 58
CSpin class, 57
CStatusBar class, 9
CStatusBarCtrl class, 9, 11, 15, 17
CToolBar class, 20
CToolBarCtrl class, 23, 204
CTreeCtrl class, 105
CTreeCtrl object, 96, 100
CTXTMENU sample, 314, 318-22, 319, 322.

See also context menu handlers
Customize member function, 32
customizing

common dialog boxes, 167-69, 171
toolbars, 29-31

Cwnd class, 88

359

PROGRAMMING THE WINDOWS 95 USER INTERFACE

D
DAdvise member function, 333
DataHandler key,332
data object handlers, 313, 332-33
data types. See specific data type names
data types for Registry values, 257, 258
debugging user interface extensions,333-34
DECLARE_INTERFACE_MAP macro, 295
DefaultIcon key, 324-25
DeferWindowPos function, 203
DeleteAllItems member function, 91, 106
DeleteButton member function, 32
DeleteColumn member function, 91
Deleteltem member function, 91, 106
DeleteObject member function, 72
details view (list view control), 77, 77
dialog boxes

changing dialog procedures, 116-18
child, 167-69, 169
common (see common dialog boxes)
converting to property sheets, 114-16
property sheet code for, 119
tabbed (see property sheets)

directory names, 222, 224-25, 228
DlgDirList function, 239
DlgDirSelect function, 240
DllCanUnloadNow, 292
DllGetClassObject, 292
DLLs. See dynamic-link libraries (DLLs)
DOCINFO structure, 152
DragAcceptFiles function, 139,266,268
drag-and-drop handlers, 313, 323
drag-and-drop operations

OLE, 269, 355-56
for rich edit control, 139, 151-52
for tree view control, 101-5
and user interface library, 265-69, 268

DragDropHandlers key, 323
DragEnter member function, 72, 331
DragFinish function, 266
DragLeave member function, 72,331
DragMove member function, 72
DragOver member function, 331
DragQueryFile function, 266,316
DragQueryPoint function, 268
DragShowNoLock member function, 72
DRAWITEMSTRUCT structure, 14

360

Draw member function, 69, 72, 73
drive names, 222
DropHandler key, 330
Drop member function, 331-32
drop target handlers, 313, 330-32
DS_3DLOOK style, 114
DS CONTROL style, 169
DU-nadvise member function, 333
dynamic-link libraries (DLLs)

E

COMCTL32.DLL, 4, 24, 71,111,195
COMDLG32.DLL, 159, 163, 176, 181
MFCVIEW.DLL, 292
SHELL32.DLL, 265, 269
SHELLEXT.DLL, 323
starting Windows Explorer without, 333-34

edit controls. See rich edit controls
edit fields, width of, 233, 233-34, 234
editing labels in list view controls, 90
EditLabel member function, 91, 106
EditStreamCallback function, 148
EDITSTREAM structure, 148
EM CANPASTE message, 156
EM ~ CHARFROMPOS message, 156
EM - DISPLAYBAND message, 154, 157
EM - EXGETSEL message, 157
EM -EXLIMITTEXT message, 157
EM -EXLINEFROMCHAR message, 148, 157
EM -EXSETSEL message, 157
EM - FINDTEXTEX message, 157
EM - FINDTEXT message, 157
EM=FINDWORDBREAK message, 148, 157
EM FMTLINES message, 156
EM - FORMATRANGE message, 152, 154, 157
EM - GETCHARFORMAT message, 139, 156, 157
EM - GETEVENTMASK message, 157
EM - GETHANDLE message, 156
EM - GETLIMITTEXT message, 157
EM - GETMARGINS message, 156
EM - GETOLEINTERFACE message, 157
EM - GETOPTIONS message, 157
EM - GETPARAFORMAT message, 146,157
EM - GETPASSWORDCHAR message, 156
EM - GETSELTEXT message, 157
EM - GETTEXTRANGE message, 157
EM=HIDESELECTION message, 157

EM_PASTESPECIAL message, 157
EM_POSFROMCHAR message, 158
EM_REQUESTRESIZE message, 158
EM_SCROLLCARET message, 158
EM_SELECTIONTYPE message, 158
EM_SETBKGNDCOLOR message, 146, 156,158
EM_SETCHARFORMAT message, 139, 141,

144, 158
EM_SETEVENTMASKmessage, 146, 151,

154, 158
EM_SETHANDLE message, 112, 156
EM_SETLIMITTEXT message, 90
EM_SETMARGINS message, 156
EM_SETOLECALLBACK message, 158
EM_SETOPTIONS message, 158
EM_SETPARAFORMAT message; 146, 156, 158
EM_SErpASSWORDCHAR message, 156
EM_SETRECTNP message, 156
EM_SETTABSTOPS message, 156
EM_SETTARGETDEVICE message, 154,158
EM_SETWORDBREAKPROC message, 148
EM_STREAM IN message, 148-49, 158
EM_STREAMOUT message, 149, 158
EnableButton member function, 32
EndDialog function, 117, 119
EndDrag member function, 73
END _INTERFACE_PART macro, 296
EN_DROPFILES notification, 151
ENM_CHANGE event-notification mask, 155
ENM_DROPFILES event-notification mask, 139,

155
ENM_KEYEVENTS event-notification mask, 155
ENM_MOUSEEVENTS event-notification mask,

155
ENM_NONE event-notification mask, 155
ENM_PROTECTED event-notification mask, 155
ENM_REQUESTRESIZE event-notification mask,

155
ENM_SCROLL event-notification mask, 155
ENM_SELCHANGE event-notification mask, 155
ENM_UPDATE event-notification mask, 155
EN_PROTECTED notification, 146
EnsureVisible member function, 91, 107
EnumDAdvise member function, 333
ENUMDESK sample, 339. See also MFCENUM

sample; shell name space
displaying context menus, 353, 353-55
enumerating items, 342-46

Index

ENUMDESK sample, continued
filling list view controls, 349
getting friendly names and icons, 346-48
main window, 340
supporting drag-and-drop operations, 355-56

enumerating items in the shell, 342-46
EnumFonts function, 141
EnumFormatEtc member function, 333
EnumObjects member function, 342
equal sign (=) in filenames, 224-25
error detection, for common dialog boxes,

190-91
ES_LOWERCASE style, 134
ES_OEMCONVERT style, 134
ES_PASSWORD style, 134, 156
ES_SAVESEL style, 138
ES_UPPERCASE style, 134
event-notification masks, 154, 155
ExitInstance handler, 238
Expand member function, 107
Explorer. See Windows Explorer
ExtDeviceMode function, 181
extensions, filename, 222-24, 226, 229
ExternalAddRef member function, 297
ExternalQuerylnterface member function; 297
ExternalRelease member function, 297
ExtractIcon member function, 73, 325-26

F
file allocation table (FAT) file system, 222-23
filename extensions, 223-24, 226, 229, 232,

232-33
filenames

8.3 form, 222-23, 225, 229-31
aliasing, 223-24
assumptions about, 229-31
backslash (\) in, 222, 225, 228-29
colon (:) in, 222, 225, 228
comma (,) in, 224-25
directory in, 222, 224-25, 228
drive in, 222
equal sign (=) in, 224-25
extensions, 223-24, 226, 229, 232,232-33
FAT, 222-23
file systems and (see file systems)
HPFS, 224
length of, 229-30

361

PROGRAMMING THE WINDOWS 95 USER INTERFACE

filenames, continued
long (see long filenames)
NTFS, 225-26
period (.) in,222-2~22~230-31
plus sign (+) in, 224, 231
semicolon (;) in, 224-25
spaces in, 231
square brackets ([]) in, 224-25
underscore C) in, 222, 224
VFAT, xxiii; 222, 223-24

FileNew function, 208
file objects, 341
FileOpen function, 208
files. See also filenames; file systems

opening, with common dialog boxes, 160-71,
161, 168, 170

REG, 255, 262-63, 288, 292-93
retrieving information about, 269-72, 272
saving, with common dialog boxes, 160-71,

162, 170
FileShowInitialize member function, 298-301
FileShow member function, 301-2
file systems. See also long filenames

determining which one is in use, 227-28
FAT,222-23
HPFS, 224
introduced,221-22
NTFS, 225-26
VFAT, xxiii, 222, 223-24

file viewers
creating,293-309,309
and GUIDs, 294-95
IFileViewer interface, 298-302
IPersistFile interface, 303-5
IUnknown interface, 297-98
instantiating, 289-90
introduced, xxiii-xxiv, 287-90, 288
Quick View option, 287-90, 288
registering, 287, 289, 290-93

FILEVIEW.H header file, 295
FILEVIEW sample, 293, 305-6. See also file

viewers; MFCVIEW sample
FillTreeView function, 343, 346
Find common dialog box, 178-81, 179
FindExecutable function, 269-70
FindFirstFile function, 224, 229
FindItem member function, 91
FINDMSGSTRING message, 179, 191

362

FindNextFile function, 224
FindReplaceMsg message, 179
FIND REPLACE structure, 178-79, 180, 181
FindText function, 178, 180
flags. See specific flag names
FNERR_BUFFERTOOSMALL error, 230
folders, defined, 341
Font common dialog box, 172, 172-74
font lists for rich edit controls, 138-39
fonts, TrueType, 141, 144
FORMATRANGE structure, 152
formatting

characters, 139-146, 140, 144, 145
paragraphs, 146-47, 147

FS_CASE_SENSITIVE flag, 228
functions. See names of specific functions and

member functions

G
general-purpose common controls. See animation

controls; progress bars; trackbars; up
down controls

GetAccel member function, 58
GetBase member function, 58
GetBitmapFlags member function, 32
GetBkColor member function, 73, 91
GetBorders member function, 17
GetBuddy member function, 58
GetButton member function, 32
GetCallbackMask member function, 92
GetCanonicalFormatEtc member function, 333
GetChannelRect member function, 46
GetChildItem member function, 107
GetClassID member function, 303, 318
GetColumn member function, 92
GetColumn Width member function, 92
GetCommandString member function, 322
GetCount member function, 107
GetCountPerPage member function, 92
GetCurFile member function, 304, 318
GetDataHere member function, 332
GetData member function, 332, 333
GetDescription function, 242
GetDragImage member function, 73
GetDropHilightitem member function, 107
GetEditControl member function, 90, 92,107
GetFileAttributes function, 229

GetFirstVisibleItem member function, 107
GetIcon function, 347
GetIconLocation member function, 325
GetlmageCount member function, 73
GetImageInfo member function, 73
GetImageList member function, 92, 107
GetIndent member function, 107
GetItemCount member function, 92
GetItem member function, 92, 107
GetltemPosition member function, 92
GetItemRect member function, 32, 92, 107
GetItemState member function, 93
GetItemText member function, 93
GetLineSize member function, 46
GetName function, 346
GetNextItem member function, 93, 108
GetNextSiblingItem member function, 108
GetNextVisibleItem member function, 108
GetNumTics member function, 46
GetOpenFileName function, 161, 162-63, 167
GetOrigin member function, 93
GetPageSize member function, 46
GetParent function, 167
GetParentItem member function, 108
GetParts member function, 17
GetPath function, 242
GetPos member function, 46, 58
GetPrevSiblingItem member function, 108
GetPrevVisibleItem member function, 108
GetPrivateProfilelnt function, 256
GetPrivateProfileString function, 256
GetProfileInt function, 255-56
GetProfileSection function, 255-56
GetProfileString function, 255-56
GetRangeMax member function, 47
GetRange member function, 46, 58
GetRangeMin member function, 47
GetRect member function, 17
GetRootItem member function, 108
GetRows member function, 32
GetSafeHandle member function, 73
GetSafeHwnd member function, 71
GetSaveFileName function, 161
GetSelectedItem member function, 108
GetSelection member function, 47
GetSelEnd member function, 47
GetSelStart member function, 47
GetShortName function, 223

GetState member function, 32
GetStringWidth member function, 93
GetSystemMetrics function, 196
GetTexlColor member function, 93
GetTextLength member function, 18
GetText member function, 18
GetThumbRect member function, 47
GetTicArray member function, 46
GetTic member function, 47
GetTicPos member function, 47

Index

GetToolTips member function, 32
GetTopIndex member function, 93
GetViewRect member function, 93
GetVisibleCount member function, 108
GetVolumeInformation function, 226-28, 229
GetWindow function, 55
GIL_PERClASS flag, 323
GIL_PERINSTANCE flag, 323
GIL_SIMUlATEDOC flag, 323
GiveFeedback member function, 356
globally unique identifiers (GUIDs), 294-95

H
handlers. See also user interface extensions

context menu, 313, 318-22, 319, 322
copy hook, 313, 329-30
data object, 313, 332-33
drag-and-drop, 313,323
drop target, 313, 330-32
icon,313,323-26,324
property sheet, 313,315,326,326-29,327

HDM_lAYOUT message, 78
header files

AFXCMN.H, 5, 11,40,51,61, 71, 91, 105
COMMCTRL.H, 4-5,10,39,49,55,64,91,

105, 134
FILEVIEW.H, 295
INITGUID.H, 294
MFCTRVW.H, 100
RICHEDIT.H, 134
SHELLAPI.H, 265
SHLOBj.H, 244, 297, 348
STDAFX.H, 5, 11,40,51,61, 71, 91, 105
VIEWERID.H, 294, 295
WIZARD.H, 127

header items, 77. See also column headers
HELPMSGSTRING message, 191

363

PROGRAMMING THE WINDOWS 95 USER INTERFACE

help support for common dialog boxes, 191
HideButton member function, 32
hiding filename extensions, 232, 232-33
high-performance file system (HPFS), 224
HitTest member function, 93, 108
HKEY_CLASSES_ROOT key, 259, 290, 314, 315
HKEY_CURRENT_CONFIG key, 260, 262-63
HKEY_CURRENT_USER key, 239, 259, 260, 341
HKEY_DYN_DATA key, 260-61
HKEY_LOCAL_MACHINE key, 260, 334
HKEY_USERS key, 259, 260
HOTKEY_CLASS, 5
HOUSEINFO structure, 205-6, 216
HPFS (high-performance file system), 224
hue, saturation, and luminosity (HSL) values,

175-76,176,177

I
IClassFactory interface, 305
icon handler interfaces, 325-26
IconHandler key, 325
icon handlers; 313, 323-26, 324
icons

getting friendly names and, 346-48
in image lists, 67-70, 72-74
in list view controls, 74-77, 75, 76

IContextMenu interface, 320
ICopyHook interface, 330
IDataObject, 316·
IDataObject interface, 332-33
identification lists. See ID (identification) lists
identifiers for controls in common dialog boxes,

170,170-71
IDC WINLOGO icon, 273
ID (identification) lists, 244, 247. See also item

IDs; pointer to ID list (PIDL)
IDM_LARGEICON message, 85
IDropSource interface, 355-56
IDropTarget interface, 330-32, 333
IEnumIDList interface, 342
IEnumIDList::Next member function, 342, 346
IExtractIcon interface, 325-26
IFileViewer interface, 296, 297, 298-302
ILD_BLEND25 style, 69
ILD_BLEND50 style, 69
ILD_FOCUS style, 69
ILD_MASKstyle, 69

364

ILD_NORMAL style, 70
ILD_OVERLAYMASKstyle, 70
ILD _SELECTED style, 70
ILD_TRANSPARENT style, 69, 70
ILS_IMAGE style, 69
ImageList_Add function, 72, 78
ImageList_AddIcon function, 72, 78
ImageList_AddMasked function, 72
ImageList_BeginDrag function, 72
ImageList_Create function, 70, 72, 78
ImageList_Destroy function, 72
ImageList_DragEnter function, 72
ImageList_DragLeave function, 72
ImageList_DragMove function, 72
ImageLiscDragShowNoLock function, 72
ImageLiscDrawEx function, 73
ImageLisCDraw function, 69, 72
ImageList_EndDrag function, 73
ImageLisCExtractIcon function, 73
ImageList_GetBkColor function, 73
ImageList_GetDragImage function, 73
ImageList_GetIcon function, 73
ImageList_GetIconSize function, 73
ImageLisCGetImageCount function, 73
ImageList_GetImageInfo function, 73
ImageList_LoadBitmap function, 73
ImageLisCLoadImage function, 73
ImageList_Merge function, 73
ImageLisCRead function, 74
ImageList_Remove function, 74
ImageList_Replace function, 74
ImageList_ReplaceIcon function, 74
image lists

bitmaps and, 67-69, 68
creating, 70-71, 96-97
functions and member functions, 71, 72-74
introduced, xix, 67-69, 68
masked,69
nonmasked, 69
overlay masks foi, 68

styles, 69-70
ImageLisCSetBkColor function, 74
ImageLisCSetDragCursorImage function, 74
ImageLisCSetIcon Size function, 74
ImageLisCSetOverlayImage function, 74
ImageLisc Write function, 74
Indeterminate member function, 32
InitCommonControls function, 195

INITGUID.H header file, 294
Initialize member function, 316-17
InitInstance handler, 238, 305
INPROC server, 289
InProcServer32subkey,291,292,293,314
InsertButton member function, 32
InsertColumn member function, 93
InsertItem member function, 93,98, 108
InsertMenu function, 320
interfaces. See specific interface names
InterlockedDecrement, 292
InterlockedIncrement, 292
InvalidateRect function, 120
InvokeCommand member function, 321-22
IPersistFile interface

used with file viewers, 296, 297, 303-5
used with shortcuts, 240
used with user interface extensions, 315,

317-18,325,330,332
IRichEditOleCallback interface, 152
IRichEditOle interface, 152
IsButtonChecked member function, 33
IsButtonEnabled member function, 33
IsButtonHidden member function, 33
IsButtonIndeterminate member function, 33
IsButtonPressed member function, 33
IsDirty member function, 304, 318
IShellExtInit interface, 315-17, 320, 328, 330
IShellFolder::BindToObject member

function, 341
IShellFolder::CompareIDs member function, 352
IShellFolder::EnumObjects member

function, 346
IShellF older:: GetAttribu tesOf member

function, 348
IShellFolder: :GetDisplayN ameOf member

function, 346
IShellFolder interface, 341, 342, 346
IShellFolder::SetNameOf member function, 347
IShellLink: :AddRef member function, 245
IShellLink::GetArguments member function,

249-50
IShellLink::GetDescription member

function, 248
IShellLink::GetHotkey member function, 250
IShellLink::GetIconLocation member

function, 252
IShellLink::GetIDList member function, 247
IShellLink::GetPath member function, 246

Index

IShellLink::GetShowCmd member function, 251
IShellLink:: Get Wor kingDirectory member

function, 248-49
IShellLink interface, 237-38, 244-54
IShellLink::QueryInterface member function,

245
IShellLink::Release member function, 245-46
IShellLink::Resolve member function, 253-54
IShellLink::SetArguments member function, 250
IShellLink::SetDescription member function, 248
IShellLink::SetHotkey member function, 251
IShellLink::SetIconLocation member

function, 253
IShellLink::SetIDList member function, 244, 247
IShellLink::SetPath member function, 246-47
IShellLink::SetShowCmd member function,

251-52
IShellLink::SetWorkingDirectory member

function, 249
IShellPropSheetExt interface, 328-29
IStorage instance, 317
item enumeration objects, 342
ITEMIDLIST structure, 244
item IDs (identifiers), 244, 341, 342-46
IUnknown interface, 238, 295, 297-98

standard member functions, 315, 317, 320,
325,328,330,331,332,356

K
keys. See names of specific Registry keys
keys, predefined, in Registry, 257, 258~61
Keyser, Greg, 314, 339
KEY_SET_ VALUE permission, 335

L
large icon view (list view control), 74, 75
library file COMCTL32.LIB, 5, 10, 39, 49, 55, 64,

91,105,111,133-34,170
LimitText member function, 90
line breaks, 148
LISTINFO structure, 206
list management common controls. See column

headers; image lists; list view controls; tree
view controls

list view controls
changing views in, 85, 85-86
column headers and, 74-78, 75, 76, 77

365

PROGRAMMING THE WINDOWS 95 USER INTERFACE

list view controls, continued
creating, 78-85, 198-99, 199-202
editing labels in, 90
filling, 349, 349-53
handling notifications, 86-88, 212-13
introduced, xvii, xix-xx
messages and member functions, 91,91-94
sorting items in response to a column header

click, 88-89
ListView_InsertColumn macro, 78, 80
list view (list view control), 74, 75, 76, 76
LISTVIEW sample. See also list view controls;

MFCLIST sample
changing views, 85, 85
creating a list view control, 78-85
editing labels, 90
handling notifications, 86-88
introduced, 74-78, 75, 76, 77
sorting items in response to a column header

click, 88-89
ListView_SortItems function, 212
ListView_SortItems macro, 88
LNK extension for shortcuts, 240
'LoadBitmap function, 78
LoadIcon function, 78
LoadImage member function, 73
Load member function, 303, 317-18
LOGFONT structure, 141
long filenames. See also file systems

adjusting the width of edit fields, 233, 233-34,
234

assumptions about, 229-31
general guidelines for supporting, 228-29
hiding filename extensions, 232, 232-33
introduced, xxii, xxiii, 221
Novell NetWare and, 226
user interface considerations, 231-34, 232,

233,234
LPCMINVOKECOMMANDINFO structure, 321
IpfnAddPage function, 328
LPTOOLTIPTEXT structure, 211
LV_COLUMN structure, 80
LV_DISPINFO structure, 86, 90
LV_ITEM structure, 81, 86,212
LVM_ARRANGE message, 91
LVM_CREATEDRAGIMAGE message, 91
LVM_DELETEALLITEMS message, 91
LVM_DELETECOLUMN message, 91

366

LVM_DELETEITEM message, 91
LVM_EDITLABEL message, 91
LVM_ENSUREVISIBLE message, 91
LVM_FINDITEM message, 91
LVM_GETBKCOLOR message, 91
LVM_GETCALLBACKMASK message, 92
LVM_GETCOLUMN message, 92
LVM_GETCOLUMNWIDTH message, 92
LVM_GETCOUNTPERPAGE message, 92
LVM_GETEDITCONTROL message, 90, 92
LVM_GETIMAGELIST message, 92
LVM_GETITEMCOUNT message, 92
LVM_GETITEM message, 92
LVM_GETITEMPOSITION message, 92
LVM_GETITEMRECT message, 92
LVM_GETITEMSTATE message, 93
LVM_GETITEMTEXT message, 93
LVM_GETNEXTITEM message, 93
LVM_GETORIGIN message, 93
LVM_GETSTRINGWIDTH message, 93
LVM_GETTEXTBKCOLOR message, 93
LVM_GETTEXTCOLOR message, 93
LVM_GETTOPINDEX message, 93
L VM_GETVIEWRECT message, 93
LVM_HITTEST message, 93
LVM_INSERTCOLUMN message, 93
LVM_INSERTITEM message, 93
LVM_REDRAWITEMS message, 93
LVM_SCROLL message, 93
LVM_SETBKCOLOR message, 94
LVM_SETCALLBACKMASK message, 94
LVM_SETCOLUMN message, 94
LVM_SETCOLUMNWIDTH message, 94
LVM_SETIMAGELIST message, 94
LVM_SETITEMCOUNT message, 94
LVM_SETITEM message, 94
LVM_SETITEMPOSITION message, 94
LVM_SETITEMSTATE message, 94
LVM_SETITEMTEXT message, 94
LVM_SETTEXTBKCOLOR message, 94
L VM_SETTEXTCOLOR message, 94
LVM_SORTITEMS message, 94,352
LVM_UPDATE message, 94
LVN_BEGINLABELEDIT notification, 86, 90
LVN_COLUMNCLICK notification, 86,212
LVN_ENDLABELEDIT notification, 86, 90
LVN_GETDISPINFO notification, 86, 212
LVS_EDITLABELS style, 90

LVS_ICON style, 85
LVS_LIST style, 85
LVS_REPORT style, 85
LVS_SMALLICON style, 85
LVS_TYPEMASK style, 85

M
macros. See also specific macro names

animation control, 65, 66
tree view control, 105-6, 106-8

masked image lists, 69
MCIWnd control, 60
member functions. See also specific member function

names \
animation control, 65, 66
image list, 71, 72-74
list view control, 91, 91-94
progress bar, 52, 53
status bar, 17, 17-19
toolbar, 31, 31-33
trackbar, 46, 46-48, 48
tree view control, 105-6, 106-8
up-down control, 58, 58-59

messages. See also specific message names
list view control, 91, 91-94
page setup hook, 186
progress bar, 52, 53
property sheet, 120, 121-23
rich edit control, 156, 156-58
status bar, 17, 17-19
toolbar, 31,31-33
trackbar, 46, 46-48,48
up-down control, 58, 58-59

METHOD_PROLOGUE macro, 297
MFCANIM sample, 61-64. See also animation

controls; ANlMAT sample
MFCENUM sample, 339. See also ENUMDESK

sample; shell name space
enumerating items, 342-46
filling list view controls, 349-53
getting friendly names and icons, 346-48
supporting drag-and-drop operations, 355-56

MFCEXP sample, 199-202. See also CHICOAPP
sample

incorporating a property sheet, 217-18 .
main screen, 203
parsing and storing data, 206-8

Index

MFCEXP sample, continued
resizing windows, 204
using common dialog boxes, 208-10

MFCLIST sample, 74. See also list view controls;
LISTVIEW sample

changing views, 85-86
creating a list view control, 78, 82-85
editing labels, 90
handling notifications, 88

MFCPROG sample, 51-52. See also progress bars;
PROGRESS sample

MFCSPIN sample, 57. See also up-down controls;
UPDOWN sample

MFCSTATUS sample. See also status bars;
STATUS sample

creating a multiple-part status bar, 11-13
creating a simple-mode status bar, 17
using owner drawing in a status bar, 15

MFCTOOL sample, 19-20. See also toolbars;
. TOOLBAR sample

creating a toolbar, 20, 23-24
creating toolbar bitmaps, 24
customizing a toolbar, 29-31
supporting ToolTips, 27, 29

MFCTRACK sample, 38, 38. See also SLIDER
sample; trackbars

creating a trackbar, 38-39, 40-42
working with a trackbar, 42, 42-45

MFCTREE sample, 96, 98, 100-101. See also tree
view controls; TREEVIEW sample

MFCTRVW.H header file, 100
MFCVIEW.DLL dynamic-link library, 292
MFCVIEW.REG file, 288
MFCVIEW sample, 288, 288. See also file viewers;

FILEVIEW sample
creating a file viewer, 293-309, 309
and GUIDS, 294-95
IFileViewer interface, 298-302
initializing class factories, 305-7
IPersistFile interface, 303-5
IUnknown interface, 297-98
registering a file viewer, 292-93

Microsoft Windows 95
overview of user interface,.xv-xxiv
Registry, differs from Windows NT Registry,

263
Registry functions in, 263, 264

367

PROGRAMMING THE WINDOWS 95 USER INTERFACE

Microsoft Windows NT
NTFS (Windows NT file system), 225-26
Registry, differs from Windows 95 Registry, 263
support for long filenames, 221, 225-26
user interface extensions and, 334-37

monitoring events in rich edit controls, 154, 155
monitoring input to common dialog boxes,

163-66
multiple-part status bars, 8, 10-13. See also

status bars

N
names, getting friendly, 346-48
naming files. See filenames
NIF _ICON flag, 273
NIF_MESSAGE flag, 273
NIF _TIP flag, 273
NIM_ADD message, 274
NIM_DELETE message, 274
NIM_MODIFY message, 274
NM_CLICK notification, 8
NM_DBLCLK notification, 8
NMHDR structure, 7-8, 118, 164
NM_KILLFOCUS notification, 8
NM_LISTVIEW structure, 86
NM_RCLICK notification, 8
NM_RDBLCLK notification, 8
NM_RETURN notification, 8
NM_SETFOCUS notification, 8
nonbutton controls, adding ToolTips to, 27-29
nonmasked image lists, 69
notifications. See also specific notification names

common control, 7-8, 8
list view control, 86-88
property sheet, 118-19

NOTIFYICONDATA structure, 273
Novell NetWare, long filenames and, 226
NT. See Microsoft Windows NT
NTFS (Windows NT file system), 225-26
NWCFile type, 314, 327

o
object attributes, 348, 348-49
object linking and embedding. See OLE
objects. See specific object names
OffsetPos member function, 53

368

OFN_ALLOWMULTISELECT flag, 169
OFN_ENABLEHOOK flag, 167
OFN_ENABLETEMPLATE flag, 167, 168
OFN_ENABLETEMPLATEHANDLE flag, 167
OFN_EXPLORERflag, 167-69, 168, 169
OFNOTIFY structure, 164
OLE

apartment threading, 291, 293
drag-and-drop operations, 269, 355-56
IDataObject interface, 332-33
rich edit control support, 133, 152
shortcut support, 237, 244 (see also IShellLink

entries)
Olelnitialize function, 238, 291
OnlnitDialog handler, 239
Open common dialog box, 160-71, 161, 168,

169, 170,233
OpenFile function, 148
OPENFILENAME structure, 161-64, 167-69,209
Open member function, 66
organizational common controls. See status bars;

toolbars
overlay masks for image lists, 68
owner drawing in status bars, 14-15

p
Page Setup common dialog box, 181, 185,

185-90
PageSetupDlg function, 186
PAGESETUPDLG structure, 186
PARAFORMAT structure, 146
paragraph formatting, 146-47, 147
parent items, in tree view controls, 95, 95
PBM_DELTAPOS message, 53
PBM_SETPOS message, 53
PBM_SETRANGE message, 53
PBM_SETSTEP message, 53
PBM_STEPIT message, 53
PD_COLLATE style, 183
PD_PRINTSETUP flag, 182
PD_RETURNDC flag, 185
PD_USEDEVMODECOPIES style, 183
period (.) in filenames, 222-26, 228, 230-31
PIDL (pointer to ID list), 341-42, 343
Play member function, 66
plus sign (+) in filenames, 224, 231
pointer to ID list (PIDL), 341-42, 343

PostMessage function, 4
predefined keys, in Registry, 257, 258-61
preserving shortcuts, 254
PressButton member function, 33
Print common dialog box, 181-85, 182
PrintDlg function, 152, 181, 185
PRINTDLG structure, 181, 183, 185
printing, rich edit controls and, 152-54
Print Setup common dialog box, 181-85, 182
PrintTo member function, 302
ProcessCDError function, 190
progress bars

creating, 49-52
introduced, xviii, xix, 48-49, 49
messages and member functions, 52, 53

PRO GRESS_ CLASS, 6, 49
progress indicators. See progress bars
PROGRESS sample, 49,49-51. See also

MFCPROG sample; progress bars
ProperrySheetfunction, 115, 125
properry sheet handlers, 313, 315,326,326-29,

327
ProperrySheetHandlers key, 327
properry sheets. See also properry sheet handlers;

tabs; wizards
converting dialog boxes to, 114-16
creating, 114-18,214-18
dialog box code for, 119
introduced, xx, xx, 109, 113, 113-14
messages, 120, 120-23
notifications, 118-19
screen flashes and, 120

PROPEXT sample, 314, 315, 327, 327-29. See also
properry sheet handlers

PROPSHEETHEADER structure, 115, 125
PROPSHEETPAGE structure, 115, 118, 125, 127
PROPS sample, 113, 113-14. See also properry

sheet handlers; pro perry sheets
changing dialog procedure, 116-18
creating a properry sheet, 114-16
screen flashes, 120

protected-mode FAT (VFAT) file system, xxiii,
222,223-24

PSD_ENABLEPAGEPAINTHOOKflag, 186
PSH_ WIZARD flag, 125
PSM_ADDPAGE message, 115, 121
PSM_APPLYmessage, 121

Index

PSM_CANCELTOCLOSE message, 121
PSM_CHANGED message, 121
PSM_GETTABCONTROL message, 121
PSM_PRESSBUTTON message, 121
PSM_QUERYSIBLINGS message, 122
PSM_REBOOTSYSTEM message, 122
PSM_REMOVEPAGE message, 115,122
PSM_RESTARTWINDOWS message, 122
PSM_SETCURSELID message, 122
PSM_SETCURSEL message, 122
PSM_SETFINISHTEXT message, 123
PSM_SETTITLE message, 123
PSM_SETWIZBUTTONS message, 123
PSM_UNCHANGED message, 123
PSN_APPLYnotification, 117, 119,215
PSN_HELP notifi~ation, 119
PSN_KILLACTIVE notification, 117, 215
PSN_RESET notification, 117, 119, 128,215
PSN_SETACTIVE notification, 117, 128,215
PSN_ WIZBACK notification, 127
PSN_WIZFINISH notification, 127
PSN_WIZNEXT notification, 127, 128
PSWIZB_BACK message, 123

Q
QueryContextMenu member function, 320-21
QueryContinueDrag member function, 356
QueryGetData member function, 332
QueryInterface member function, 237, 238, 297,

315. See also IUnknown interface
Quick View option, 287-90, 288. See also file

viewers
QUIKVIEW program (file viewers), 289-90, 291,

292,309. See also file viewers

R
Read member function, 74
red, green, and blue (RGB) values, 175-77, 176
RedrawItems member function, 93
REG_BINARY data rype, 258
RegCloseKey function (Win16), 262, 264
RegCreateKeyEx function (Win32), 262, 264
RegCreateKey function (Win16), 264
RegDeleteKey function (Win16), 264
RegDeleteValue function (Win32), 264
REG_DWORD_BIG_ENDIAN data rype, 258

369

PROGRAMMING THE WINDOWS 95 USER INTERFACE

REG_DWORD data type, 258
REG_DWORD_LITTLE_ENDIAN data type, 258
REGEDIT. See Registry, Editor (REGEDIT)
RegEnumKeyEx function (Win32), 264
RegEnumKey function (Win16), 264
RegEnumValue function (Win32), 264
REG_EXPAND_SZ data type, 258
REG (registration) files, 255, 262-63, 288,

292-93. See also Registry
syntax of, 293

RegFlushKey function (Win32), 262, 264
registering file viewers, 287, 289, 290-93
registering user interface extensions, 314-15. See

also names of specific handlers
RegisterWindowMessage function, 179, 191
registration files. See REG (registration) files
Registry. See also REG (registration) files

data types for Registry values, 257, 258
differs from Windows NT Registry, 263
Editor (REGEDIT), 255-56, 257, 261
functions in Windows 95, 263, 264
in troduced, 255-56
predefined keys, 257, 258-61
registering file viewers, 287, 289, 290-93
registering user interface extensions, 314-15

(see also names of specific handlers)
structure of, 256-58, 257, 258
structure of entries; for file viewers, 290-93
updating, 256, 257, 261-63

REG_LINK data type, 258
REG_MULTCSZ data type, 258
REG_NONE data type, 258
RegOpenKeyEx function (Win32), 262,264
RegOpenKey function (Win16), 262,264
RegQuerylnfoKey function (Win32), 264
RegQueryValueEx function (Win32), 264
RegQueryValue function (Win16), 264
REG_RESOURCE_LIST data type, 258
RegSetValueEx function (Win32), 264
RegSetValue function (Win16), 264
REG_SZ data type, 258
Release member function, 238, 297, 315. See also

IUnknown interface
Remove member function, 74
removing registered file viewers, 309
removing registered user interface

extensions, 315

370

Replace common dialog box, 178-81,181
Replace member function, 74 .
ReplacePage member function, 329
ReplaceText function, 178, 181
report view. See details view
ResolveShortCut::ResolveIt function, 241-43
resolving shortcuts, 241-43, 253-54
RestoreState member function, 33
retrieving file information from user interface

library, 269-72, 272
REVIEWINFO structure, 127-28, 130
RGB (red, green, and blue) values, 175-77, 176
RichEdit class, 133
rich edit controls

building font lists for, 138-39
character formatting, 139-46, 140, 144, 145
creating, 138
creating toolbars and combo boxes for, 135-37
drag-and-drop operations, 139, 151-52
event-notification masks, 154, 155
introduced, xxi, xxii, 133-35, 135
line breaks, 148
messages, 156-58, 156
monitoring events in, 154, 155
OLE support, 133, 152
paragraph formatting, 146-47, 147
printing and, 152-54
serialization using streams, 148-50, 151
word breaks, 148

RICHEDIT.H header file, 134
RICHED sample, 133-35, 135. See also rich edit

controls
building a font list, 138-39
character formatting, 139-46, 140, 144, 145
creating a rich edit control; 138
creating toolbars and combo boxes, 135-37
drag-and-dropoperations, 139, 151-52
initialization code, 134
paragraph formatting, 146-47, 147
printing, 152-54
serialization using streams,148-50, 151

rich text format (RTF) files, 148-51
RLE (run-length encoding), 60
root items, in tree view controls, 94-95, 95
RTF (rich text format) files, 148-51
run-length encoding (RLE), 60

S
Save As common dialog box, 160-:-71, 162, 170,

233, 233-34, 234
SaveCompleted member function, 305, 318
Save member function, 305, 318
SaveState member function, 33
SB_GETBORDERS message, 17
SB_GETPARTS message, 17
SB_GETRECT message, 17
SB_GETTEXTLENGTH message, 18
SB_GETTEXT message, 18
SB_SETBORDERS message, 18
SB_SETMINHEIGHT message, 18
SB_SETPARTS message, 10, 18
SB_SETTEXT message, 11, 14, 19
SB_SIMPLE message, 16, 19
SBS_SIZEGRIP style, 12-13
SBT_OWNERDRAW style, 14
screen flashes, property sheets and, 120
Scroll member function, 93
Seek member function, 66
SelectDropTarget member function, 108
SelectItem member function, 108
Select member function, 108
semicolon (;) in filenames, 224-25
SendMessage function, 4:
serialization using streams, 148-50, 151
SetAccel member function, 58
SetBase member function, 58
SetBitmapSize member function, 33
SetBkColor member function, 74, 94
SetBorders member function, 18
SetBuddy member function, 54, 58
SetButtonSize member function, 33
SetButtonStructSize member function, 31
SetCallbackMask member function, 94
SetCmdID member function, 33
. SetColumn member function, 94
SetColumn Width member function, 94
SetData member function, 333
SetDragCursorImage member function, 74
SetFileAttributes function, 229
SetIconSize member function, 74
SetImageList member function, 94, 108
SetIndent member function, 108
SetItemCount member function, 94
SetItem member function, 94, 108

SetItemPosition member function, 94
SetItemState member function, 94
SetItemText member function, 94
SetLineSize member function, 47
SetMinHeight member function, 18
SetOverlayImage member function, 74
SetOwner member function, 33
SetPageSize member function, 47
SetParts member function, 18
SetPos member function, 47, 53, 59
SetRangeMax member function, 48

Index

SetRange member function, 43-44,47,53,59
SetRangeMin member function, 48
SetRows member function, 33
SetSelection member function, 36, 48
SetSimple member function, 16, 19
SetState member function, 33
SetStep member function, 53
SetTextBkColor member function, 94
SetTextColor member function, 94
SetText member function, 11, 19
SetTicFreq member function, 48
SetTic member function, 48
SetToolTips member function, 33
SetWindowLong function, 119
SetWindowPos function, 169
SFGAO_CANCOPYflag, 348
SFGAO_CANDELETE flag, 348
SFGAO _CANLINK flag, 348
SFGAO_CANMOVE flag, 348
SFGAO _ CAN RENAME flag, 348
SFGAO_DROPTARGET flag, 348
SFGAO_FILESYSANCESTOR flag, 348
SFGAO_FILESYSTEM flag, 349
SFGAO_FOLDER flag, 348
SFGAO_GHOSTED flag, 348
SFGAO_HASPROPSHEET flag, 348
SFGAO_HASSUBFOLDERflag, 349
SFGAO_LINKflag, 348
SF GAO_READ ONLY flag, 348
SFGAO_REMOVABLE flag, 349
SFGAO_SHARE flag, 348
SHAppBarMessage function, 277, 278-79, 284-85
shell, 265. See also shell name space; user

interface extensions; user interface library
SHELL32.DLL dynamic-link library, 265, 269. See

also user interface library

371

PROGRAMMING THE WINDOWS 95 USER INTERFACE

SHELLAPI.H header file, 265
ShellExecute function, 269-70
SHELLEXT.DLL dynamic-link library, 323
shell extensions. See user interface extensions
SHELLEXT.REG file, 323
SHELLEXT sample, 314, 323, 324, 329. See also

user interface extensions
SHELLFUN sample, 265. See also user interface

library
access bars, 275-84, 276, 278
drag and drop, 265-69, 268
retrieving file information, 269-72, 272
taskbar notifications, 272, 272-75, 274, 275,

284-85,285
shell name space

definitions, 340-42
displaying context menus, 353, 353-55
enumerating items, 342-46
filling list view controls, 349, 349-53
getting friendly names and icons, 346-48
getting object attributes, 348, 348-49
introduced, 339, 340
supporting drag and drop, 355-56

Shell_Notifylcon functio~, 273-74
SHFILEINFO structure, 232
SHFileOperation function, 270
SHFreeNameMappings function, 270
SHGetDesktopFolder function, 341
SHGetFilelnfo function, 232, 232, 265, 270,

347,350
SHGetMalloc function, 343
SHGetNameMappingCount function, 270
SHGetPathFromIDList function, 342
SHGetSpecialFolderLocation function, 341-42
SHGFCATTRIBUTES flag, 232
SHGFCDISPLAYNAME flag, 232
SHGFCEXETYPE flag, 232
SHGFCICON flag, 232
SHGFCICONLOCATION flag, 232
SHGFCLARGEICON flag, 232
SHGFCLINKOVERLAY flag, 232
SHGFCOPENICON flag, 232
SHGFCPIDL flag, 232
SHGFCSELECTED flag, 232
SHGFCSHELLICONSIZE flag, 232
SHGFCSMALLICON flag, 232
SHGFCSYSICONINDEX flag, 232

372

SHGFCTYPENAME flag, 232
SHGFCUSEFILEATTRIBUTES flag, 232
SHITEMID structure, 244
SHLOBJ.H header file, 244, 297, 348
shortcuts

Component Object Model and, 237-38
creating, to objects other than files, 244
implementing, 237-38
introduced, xxiii, xxiii, 235, 235-37, 236, 237
IShellLink interface, 237-38, 244-54
LNK extension for, 240
OLE support, 237, 244
preserving, 254
resolving, 241-43,253-54 .

SHORTCUT sample, 238-43, 239. See also
shortcuts

Show command, 251-52
Showlnitialize function, 303
show states, 252
ShowWindow function, 301
simple-mode status bars, 8, 16, 16-17. See also

status bars
sizing grip, 9, 9
SLIDER sample, 37-38. See also MFCTRACK

sample; trackbars
creating a trackbar, 38-40
working with a trackbar, 42, 44

slider (thumb), 35, 37. See also trackbars
SLR_NO_UI flag, 254
SLR_UPDATE flag, 254
small icon view (list view control), 74, 76
SortChildrenCB member function, 108
SortChiidren member function, 108
sorting items in response to a column header

click, 88-89
SortItems member function, 94
spaces in filenames, 231
square brackets ([]) in filenames, 224-25
standard icon view. See large icon view
status bars

creating, 10-13, 16, 16-17
introduced, xvii, xvii, 8-10, 9
messages and member functions, 17, 17-19
multiple-part, 8, 10-13, 195
owner drawing in, 14-15
simple-mode, 8, 16, 16-17

STATUSCLASSNAME, 6, 9

STATUS sample, 9,9-10. See also MFCSTATUS
sample; status bars

creating a multiple-part status bar, 10-11
creating a simple-mode status bar, 16, 16-17
using owner drawing in status bars, 14-15

STDAFX.H header file, 5, 11,40,51,61,71,91,
105

StepIt member function, 53
Stop member function, 66
StringFromCLSID function, 334
structures. See specific structure names
styles. See also specific style names

image list, 69-70
trackbar, 36-38, 37, 38
window, for common controls, 6, 7

subkeys, in Registry, 256, 257. See also specific
subkey names

SW _HIDE show state, 252
SW _MINIMIZE show state, 252
SW_RESTORE show state, 252
SW _SHOWMAXIMIZED show state, 252
SW _SHOWMINIMIZED show state, 252
SW _SHOWNA show state, 252
SW _SHOWNOACTIVE show state, 252
SW _SHOWNORMAL show state, 252
SW _SHOW show state, 252
SYSTEM.INI file, 255

T
tabbed dialog boxes. See property sheets
TabCtrl_InsertItem macro, 112
tabs, xx, xx, 110, 110-13, 111. See also property

sheets
taskbar,272,284-85,285
taskbar notification area, 272,272-75, 274
TB_ADDBITMAP message, 24, 25, 31, 195
TB_ADDBUTTONS message, 31
TB_ADDSTRING message, 31
TB_AUTOSIZE message, 24, 31
TB_BUTTONCOUNT message, 31
TB_BUTTONSTRUCTSIZE message, 31
TBBUTTON structure, 24-25, 135, 195
TB_CHANGEBITMAP message, 32
TB_CHECKBUTTON message, 32
TB_COMMANDTOINDEX message, 32
TB_CUSTOMIZE message, 29, 32
TB_DELETEBUTTON message, 32

TB_ENABLEBUTTON message, 32
TB_GETBITMAP message, 32
TB_GETBUTTON message, 32
TB_GETBUTTONTEXT message, 32
TB_GETITEMRECT message, 32, 135
TB_GETROWS message, 32

Index

TB_GETSTATE message, 32
TB_GETTOOLTIPS message, 32
TB_HIDEBUTTON message, 32
TB_INDETERMINATE message, 32
TB_INSERTBUTTON message, 32
TB_ISBUTTONCHECKED message, 33
TB_ISBUTTONENABLED message, 33
TB_ISBUTTONHIDDEN message, 33
TB_ISBUTTONINDETERMINATE message, 33
TB_ISBUTTONPRESSED message, 33
TBM_CLEARSEL message, 46
TBM_CLEARTICS message, 46
TBM_GETCHANNELRECT message, 46
TBM_GETLINESIZE message, 46
TBM_GETNUMTICS message, 46
TBM_GETPAGESIZE message, 46
TBM_GETPOS message, 46
TBM_GETPTICS message, 46
TBM_GETRANGEMAX message, 46, 47
TBM_GETRANGEMIN message, 46, 47
TBM_GETSELEND message, 47
TBM_GETSELSTART message, 47
TBM_GETTHUMBLENGTH message, 47
TBM_GETTHUMBRECT message, 47
TBM_GETTIC message, 47
TBM_GETTICPOS message, 47
TBM_SETLINESIZE message, 47
TBM_SETPAGESIZE message, 47
TBM_SETPOS message, 47
TBM_SETRANGEMAX message, 48
TBM_SETRANGE message, 47
TBM_SETRANGEMIN message, 48
TBM_SETSELEND message, 48
TBM_SETSEL message, 36, 48
TBM_SETSELSTART message, 48
TBM_SETTHUMBLENGTH message, 48
TBM_SETTICFREQ message, 48
TBM_SETTIC message, 48
TBN_BEGINDRAG notification, 31
TBN_CUSTHELP notification, 29
TBN_ENDDRAG notification, 31
TBN_QUERYDELETE notification, 29

373

PROGRAMMING THE WINDOWS 95 USER INTERFACE

TBN_QUERYINSERT notification, 29
TBN_RESET notification, 31
TBN_TOOLBARCHANGE notification, 29
TB_PRESSBUTTON message, 33
TBS_AUTOTICKS style, 37
TB_SAVERESTORE message, 31, 33
TBS_BOTH style, 37
TBS_BOTTON style, 37
TBS_ENABLESELRANGE style, 37
TB_SETBITMAPSIZE message, 33
TB_SETBUTTONSIZE message, 33
TB_SETCMDID message, 33
TB_SETPARENT message, 33
TB_SETROWS message, 33
TB_SETSTATE message, 33
TB_SETTOOLTIPS message, 33
TBS_FIXEDLENGTH style, 37
TBS_HORZ style, 37
TBS_LEFT style, 37
TBS_NOTHUMB style, 37
TBS_NOTICKS style, 37
TBS_RIGHT style, 37
TBS_TOP style, 37
TBSTYLE_TOOLTIPS style, 21, 26
TBS_ VERT style, 37
TC_ITEMHEADER structure, 111, 112
TC_ITEM structure, 111, 112
TCM_SETITEMEXTRAmessage, 111, 112
TCN_SELCHANGE notification, 112
TCS_BUTTONS style, III
TCS_MULTILINE style, 111
TCS_SINGLELINE style, 111
TCS_TABS style, 110-11
TEXTMETRIC structure, 141
Thompson, Nigel, 293
threading, apartment, 291, 293
ThreadingModel sub key, 293
thumb (slider), 35, 37. See also trackbars
thunking layer, 4
toolbar bitmaps, 24, 24-26, 26
TO OLBARCLASSNAME , 6
toolbars

bitmaps for, 24,24-26,26, 195-96
creating, 21-24, 195-96
customizing, 29-31
dockable, 20
introduced, xvii, xvii-xviii, 19-20, 20

messages and member functions, 31, 31-33

374

toolbars, continued

notifications, 211
and rich edit controls, 135-37
supporting ToolTips, 26-29

TOOLBAR sample, 19-20, 20. See also MFCTOOL
sample; toolbars

creating a toolbar, 21-23
creating toolbar bitmap~, 24, 24-26, 26
customizing a toolbar, 29
supporting ToolTips, 26-28

ToolTips, 26-29,211,272-73,274
TOOLTIPS_CLASS, 6
TRACKBAR_CLASS,~38

trackbars
creating, 38-42
introduced, xviii, xviii, 35-36, 36
messages and member functions, 46-48, 46, 48
styles, 36-38, 37, 38
working with, 42, 42-45

TrackPopupMenu function, 214
TrayMessage function, 273
tray notification area. See taskbar notification

area
tree view controls

adding items to, 98-101
creating, 96-97, 196-98, 199-202
drag and drop for, 101-5
introduced, xvii, xx, 94-95, 95, 96
macros and member functions, 105-6, 106-8
notifications, 211-12

TreeView_CreateDragImage macro, 106
TreeView_Create macro, 106
TreeView_DeleteAllItems macro, 106
TreeView_DeleteItem macro, 106
TreeView_EditLabel macro, 106
TreeView_EnsureVisible macro, 107
TreeView~Expand macro, 107
TreeView_GetChild macro, 107
TreeView_GetCount macro, 107
TreeView_GetDropHilight macro, 107
TreeView_GetFirstVisible macro, 107
TreeView_GetimageList macro, 107
TreeView_Getindent macro, 107
TreeView_Getitem macro, 107
TreeView_GetItemRect macro, 107
TreeView_GetNextItem macro, 108
TreeView_GetNextSibling macro, 108
TreeView_GetNextVisible macro, 108

TreeView_GetParent macro, 108
Tree View _ GetPrevSibling macro, 108
TreeView_GetPrevVisible macro, 108
TreeView_GetRoot macro, 108
TreeView_GetSelection macro, 108
TreeView_GetVisibleCount macro, 108
TreeView_HitTest macro, 108
TreeView_InsertItem macro, 98, 108
TREEVIEW sample. See also MFCTREE sample;

tree view controls
adding items to a tree view control, 98-99
creating an image list, 70-71
creating a tree view control, 96-97
implementing drag and drop for tree view

items, 101-5
TreeView_SelectDropTarget macro, 108
TreeView_SelectItem macro, 104, 108
TreeView_Select macro, 108
TreeView_SetImageList macro, 108
TreeView_SetIndent macro, 108
TreeView_SetItem macro, 108
TreeView_SortChildrenCB macro, 108
TreeView_SortChildren macro, 108
TrueType fonts, 141, 144
TTFONTS sample, 141
TTM_ADDTOOL message, 27, 135
TTN_NEEDTEXT notification, 211
TV _INSERTSTRUCT structure, 98
TV_ITEM structure, 98
TVM_INSERTITEM message, 98
TVN_BEGINDRAG notification, 101
TVN_SELCHANGED notification, 211
TVS_HASLINES style, 95

U
UDM_GETACCEL message, 58
UDM_GETBASE message, 58
UDM_GETBUDDY message, 58
UDM_GETPOS message, 58
UDM_GETRANGE message, 58
UDM_SETACCEL message, 58
UDM_SETBASE message, 58
UDM_SETBUDDY message, 54-55, 58
UDM_SETPOS message, 59
UDM_SETRANGE message, 59
UDS_ALIGNLEFT stYle, 54-55
UDS_ALIGNRIGHT style, 54

Index

UDS_ARROWKEYS style, 54
UDS_AUTOBUDDY style, 54, 55
UDS_SETBUDDYlNT style, 54
UDS_ WRAP style, 54
UNC (Universal Naming Convention) format,

229,246
underscore C) in filenames, 222, 224
Unicode, 222, 225, 229
Universal Naming Convention (UNC) format,

229,246
unregistering file viewers, 309
unregistering user interface extensions, 315
UpdateEdit member function, 308
Update member function, 94
UPDOWN_CLASS,6
up-down controls

creating, 55, 55-57
introduced, xix, xix, 53-55, 54
messages and member functions, 58, 58-59

UPDOWN sample, 55, 55-57. See also MFCSPIN
sample; up-down controls

user interface extensions
context menu handlers, 313, 318-22, 319
copy hook handlers, 313, 329-30
data object handlers, 313, 332-33
debugging, 333-34
drag-and-drop handlers, 313, 323
drop target handlers, 313,330-32
icon handlers, 313, 323-26, 324
implementing IShellExtInit, 315-17
initializing with IPersistFile, 317-18
introduced, xxiv, 313-14
property sheet handlers, 313, 315, 326, 326-29,

327
registering, 314-15
Windows NT and, 334-37

user interface library
drag-and~drop functions, 265-69, 268
retrieving file information, 269-72, 272
taskbar, 272,272-75,274, 275, 284-85, 285
working with access bars, 275-84, 276, 278

user interface overview, xv-xxiv
UUIDGEN program, 294

v
values, in Registry entries, 256-58, 257, 258
verbs, 319

375

PROGRAMMING THE WINDOWS 95 USER INTERFACE

VerifyPos member function, 48
VFAT (protected-mode FAT) file system, xxiii,

222,223-24
VIEWERID.H header file, 294, 295
views (list view controls), 74, 75, 76, 76-77, 77,

85,85-86
View window, 24
virtual FAT (VFAT) file system, xxiii, 222, 223-24
virtual folders, 341

W
WBF _BREAKAFTER flag, 148
WBF_BREAKLINE flag, 148
WBF _ISWHITE flag, 148
WC_HEADER class, 6
WC_LISTVIEW class, 6, 78
WC_TABCONTROL class, 6, III
WC_ TREEVIEW class, 6
WC_TREEVIEW style, 96
width of edit fields, 233, 233-34, 234
WIN32_FIND_DATA structure, 246, 254
window, client, 24
window classes, common control, 5-6, 5
WindowProc function, 88, 102
Windows. See Microsoft Windows entries
Windows Explorer. See also Microsoft Windows 95

Explorer-like application (see CHICOAPP
sample)

introduced, xvi, xvii
starting, without loading DLLs, 333-34

Windows NT. See Microsoft Windows NT
Windows NT file system (NTFS), 225-26
window styles, common control, 6, 7
WinHelp function, 191
WIN.INI file, 255-56
WIZARD.H header file, 127
wizards. See also property sheets

creating, 124-27
introduced, xxi, xxi, 123-24, 124
notifications, 127-32, 130, 132

WIZARD sample. See also wizards
creating a wizard, 124-27
processing wizard notifications, 127-32, 130,

132
WM_BUTTONDOWN message, 27
WM_BUTTONUP message, 27
WM_COMMAND message, 4, 85,112,116,214

376

WM_CONTEXTMENU message, 213-14
WM_CREATE message, 82, 138, 266
WM_CTLCOLOR message, 156
WM_DRA WITEM message, 14, 15
WM_DROPFILES message, 266
WM_GETFONT message, 156
WM_HSCROLL message, 35, 44, 48
WM_INITDIALOG message, 118, 119, 171,

215,239
WM_LBUTT"ONUP message, 104
WM_MOUSEMOVE message, 27, 103
WM_NOTIFY message

used in CHICOAPP sample, 211
used with common dialog boxes, 164
used with list management common controls,

86,88,101
used with organizational common controls, 4,

7-8,21,26-27,29 "
used with property sheets, 118, 119
used with rich edit controls, 154
used with wizards, 127

WM_PAINT message, 120
"WM_PSD_ENVSTAMPRECT message, 186
WM_PSD _FULLPAGERECT message, 186
WM_PSD _GREEKTEXTRECT message, 186
WM_PSD_MARGINRECT message, 186
WM_PSD _MINMARGINRECT message, 186
WM_PSD _PAGESETUPDLG message, 186
WM_SHOWWINDOW message, 120
WM_SIZE message, 10, 13,24,200,204
WM_ VSCROLL message, 35, 44, 48
word breaks, 148
Write member function, 74
WritePrivateProfileString function, 256
WriteProfileSection function, 255-56
WriteProfileString function, 255-56
WS_CHILD style, 167
WS_EX_TOOLWINDOW style, 276
WS_TABSTOP style, 169

Nancy Winnick Cluts is the fourth of the seven children of
Bronislaw and Anne Winnick, and the only one who really likes
messing around with computers. She holds a degree in computer
science from Indiana University.

Mter college, she was employed at Tandy Corporation, pro
gramming in 6809 assembler for the Color Computer on a software
product called DeskMate, where she got her first taste of working all
night to meet schedules and squeezing every last byte out of code to
make it fit in a very tiny space.

Nancy joined Microsoft in 1990. When the opportunity arose
to work with Microsoft Windows NT, she jumped at the chance to
learn all she could about the new Win32 API and to help developers
write applications using Win32. In 1993, she joined the Microsoft
Developer Network, writing technical articles about programming
for Microsoft's newest operating systems.

Nancy resides in Redmond, Washington, with her husband,
Jonathan, and her son, Nicholas.

T he manuscript for this book was prepared

and submitted to Microsoft Press in electronic

form. Text files were prepared using Microsoft Word

6.0 for Windows. Pages were composed by Microsoft

Press using Aldus PageMaker 5.0 for Windows, with

text in New Baskerville and display type in Helvetica

Bold. Composed pages were delivered to the printer

as electronic prepress files.

Cover Graphic Designer

Rebecca Geisler

Interior Graphic Designer

Kim Eggleston

Interior Graphic Artist

Michael Victor

Principal Compositor

Barb Runyan

Principal Proofreader/Copy Editor

Sally Anderson

Indexer

Foxon-Maddocks Associates

If you are developing
or are considering

developing
applications for

Microsoff Windows:
this book is a key

resource.

,/" C;;"",";;:;:;fo'

--------. ~fiE
WINDOWS® INTERFACE

GUIDELINES FOR
SOFTWARE DESIGN

Here are the Microsoft® guidelines for creating
well-designed, visually and functionally consistent
user interfaces for applications that run on the
Microsoft Windows operating system. Completely
rewritten for Windows 95 and Windows NT'M,
this new edition of THE WINDOWS INTERFACE
GUIDELINES FOR SOFTWARE DESIGN is an
essential handbook for all programmers and
designers working in a Windows-based
environment, regardless of experience level or
development tools used.

Topics include:

• General input techniques-navigation,
selection, viewing, editing, and creation,
including both command and direct
manipulation methods such as drag and drop.

• Windows-primary and secondary types and
their components, including property sheets,
dialog boxes, message boxes, palette windows,
,and pop-up windows.

• Menus, controls, and toolbars-types and their
components and when to use them.

• Microsoft OLE-how to support design
interfaces for OLE embedded and linked
objects, visual editing, and other forms of
activation.

• User assistance-how to use contextual forms
of help, including tooltips and wizards.

• Integration with the system-<iesigning your
software so that its interface functions and
operates consistently with Windows.

• Visual design--effective use of color, layout,
fonts, and graphics.

Microsoft Prcss® books are available wherever quality books are
sold and through CompuServe's Electronic Mall-GO MSP.

Call1-800-MSPRESS for more information or to place a credit card order. *
Please refer to BBK when placing your order. Prices subject to change.

" *In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164
Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the u.S. and Canada, write to International Coordinator, Microsoft Press,

One Microsoft Way, Redmond, WA 98052-6399, or fax + 1-206-936-7329.

O[VfLOPIN6
INTfRtmllDtJHL

This comprehensive
guide and reference
will help you write
global code and
localize applications
for Windows® 95 and

Windows NTTM more easily, more quickly, and less
expensively. You'll get important information about ways
to save time and money in the translation process, the
culture-specific issues you need to consider, international
information pitfalls, and the way in which locale-specific
laws may affect the feature set and product distribution.

DEVELOPING INTERNATIONAL SOFTWARE FOR WINDOWS 95 AND
WINDOWS NT presents Microsoft's own guidelines for
creating international software-guidelines that document
years of collective international experience. Geared to
programmers and interface designers who have some
knowledge of Windows-based coding techniques and the
C++ programming language, this book focuses on smart
development strategies. Topics include:

l:l Designing a global program
l:l Working with character set encodings
I'J Localizing the user interface
rJ Supporting local cultural conventions
D Handling multilingual input/output
c Processing Far Eastern writing systems

Microsoft Press® books are available wherever quality books are sold and through CompuServe's
Electronic Mall-GO MSP. Call1-800-MSPRESS for more information or to place a credit card

order." please refer to BBK when placing your order. Prices subject to change.
"In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd.,

Agincourt, Ontario, Canada M 1 S 3C7, or call 1-800-667-1115. Outside the u.s. and Canada,
write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA

98052-6399, or fax + 1-206-936-7329.

More than half the book provides
critical reference material on
international standards and built':in
Windows support forinternational
applications. These include:

Common Latin diacritics and
ligatures
Sort orders for selected
languages
Code-page support on
Windows and locale-specific
code-page information
DBCS/Unicode™ mapping tables
Code-page charts and tables
Win32® country-specific and
language-specific information
Platform support forthe
Win32 NLSAPI
Locale support on Windows
Multilingual API functions and
structures . .

Font signature bit-field
assignments
Input Method Manager Ap'l
functions, messages;'and
parameters.
Keyboard layo!Jts
I nternational currency,. date,
time, and address forma.ts
Localized editions of
Microsoft®Windows

AND CONQUER.
The opportunities in programming for
Windows® are booming. There are target
platforms such as Windows 95, Windows NT"',
Windows for Workgroups and Microsoft
BackOffice- plus new tools and
technologies.

With all that,you need a new way
to stay informed, sharpen your
skills, and get technical help - the Microsoft

D~clo;er Developer Network (MSDN). An annual subscrip
Network tion program, MSDN is a quick, easy, and affordable

way to access Microsoft development information and tech-
nology. And for learning and implementing Microsoft tech
nologies, such as Win32®, OLE, MAPI, ODBC, and MFC, it's is
absolutely essential.

Sign up for a Levell MSDN subscription, and every quarter
you'll get the Development Library - a CD packed with the
most up-to-date development information for all Microsoft
technologies and Windows platforms. Each new edition
brings you more than 150, 000 pages of technical articles,

The Library is
the quickest.
easiest way to

implement
Microsoft

technology.

MICROSOFT®
WINDOWS NTrM

white papers, product documentation,
sample code, and more. It's an incredible
value. And thanks to the Library's
advanced, full-text search engine,you'll
get the information you need fast!
Additionally, every other month, you also
receive the Developer Network News,
with the latest on Microsoft's systems

strategy and development products. All for just $195 a
year - less than the cost of a compiler:

The Development Library is
"one of the 100 best CD·ROMs."a must have."

PC Magazine, 6/6/95

Sign up for Level 2 MSDN subscription, and every quarter
you get all the Level 1 benefits - plus the latest Microsoft
SDKs and DDKs and the Windows and Windows NT
Workstation operating systems. All for only $495 a year. And
if you're developing client/server applications for Microsoft
BackOffice, step up to a Level 3 subscription for $1495
a year.

To sign up, call (800) 759-5474,6:30 A.M. to 5:30 P.M. (Pacific
time), Monday through Friday and ask for Offer # M5SB-MSP.
With our money-back guarantee,you risk nothing. *
(For more information, you can call, dial our fax-back service
at (206) 635-2222 for Document 600, or e-mail us at
msdn@microsoft.com.)

Try it and you'll agree. A Microsoft Developer Network sub
scription is the quickest, easiest and most economical way to
conquer any Windows programming challenge.

WHERE DO YOU WANT TO GO TODAY?~ I

© 1995 Microsoft Corporation. All rights reserved. Contents of the Microsoft Developer Network are subject to change without notice. Microsoft.Windows.Win32 are registered trademarks
and Windows NT is a trademark of Microsoft Corporation.

*11 vou're not totallv satisfied with your subscription. simply return the CDs to us within 30 days for a complete refund of your annual fee.

END-USER LICENSE AGREEMENT FOR MICROSOFT SOFTWARE

IMPORTANT-READ CAREFULLY: This Microsoft End -User License Agreement ("EULA") is a legal agreement between you (either an
individual or a single entity) and Microsoft Corporation for the Microsoft software product identified above, which includes computer software
and associated media and printed materials, and may include "online" or electronic documentation ("SOFTWARE"). By installing, copying or
otherwise using the SOFTWARE, you agree to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, you are
not authorized to use the SOFTWARE.

The SOFTWARE i.s protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties.
The SOFTWARE is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following limited, non-exclusive rights:

Use. Microsoft grants to you the right to make and use copies of the Microsoft software program included with this book (the "SOFTWARE")
for your internal use solely to develop and test software products designed to operate with the Microsoft Windows operating system. The
SOFTWARE is in "use" on a computer when it is loaded into temporary memory (i.e. RAM) or installed into permanent memory (e.g., hard
disk, CD-ROM, or other storage device) of that computer.

Distribution. You have a royalty-free right to reproduce and distribute the Sample Images and Code (collectively "Sample Code") included with
the SOFTWARE provided that you: (i) distribute the Sample Code only in conjunction with and as a part of your software product which is
designed to operate with the Microsoft Windows operating system; (ii) do not use Microsoft's name, logos, or trademarks to market your software
product; (iii) include a valid copyright notice for your software product; and (iv) agree to indemnify, hold harmless, and defend Microsoft and
its authors from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution of your software
product. .

Microsoft reserves all rights not expressly granted to you.

2. COPYRIGHT. All right, title and copyrights in and to the SOFTWARE (including but not limited to any images, photographs, animations,
video, audio, music, text and "applets," incorporated into the SOFTWARE), and any copies of the SOFTWARE, are owned by Microsoft or its
suppliers. The SOFTWARE is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like
any other copyrighted material except that you may either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or
(b) install the SOFTWARE on a single computer provided you keep the original solely for backup or archival purposes. You may not copy the
printed materials accompanying the SOFTWARE.

3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written
materials on a permanent basis provided you retain no copies and the recipient agrees to the terms of this EULA. You may not reverse engineer"
decompile, or disassemble the SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer must include the most recent
update and all prior versions. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with the terms
and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

4. INTELLECTUAL PROPERTY RIGHTS. Microsoft may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in the SOFTWARE. You ru:e not granted any license to these patents, trademarks, copyrights,
or other intellectual property rights except as expressly provided in this EULA.·

DISCLAIMER OF WARRANTY

The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT FURTHER
DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR OF FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE
OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU.

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR
DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, EVEN IF MICROSOFT HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/COUNTRIES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY
NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) of the Commercial Computer Software-Restricted Rights
48 CFR 52.227-19, as applicable. Manufacturer is Microsoft Corporation/One Microsoft WaylRedmond, WA 98052~6399.

If you acquired this product in the United States, this EULA is governed by the laws of the State of Washington. Should you have any questions
concerning this EULA, or if you desire to contact Microsoft Press for any reason, please write: Microsoft Press/One Microsoft WaylRedmond,
WA 98052-6399.

Are you eager to equip
your applications with the
new look and feel of
Windows 95? The new
user interface provides a
powerful combination of
features that enhance
your programs' flexibility
and ease of use. But

coding those features can get complicated without clear
explanations and sample code-which is exactly what you 'll find
in PROGRAMMING THE WINDOWS 95 USER INTERFACE.

Author Nancy Winnick Cluts, a writer for the Microsoft Developer
Network, explains how to master the programming techniques
necessary to get the most out of the new environment. After an
overview of the Windows 95 user interface, you 'll jump right into
topics such as:

• Adding new common controls, from status bars, toolbars, and
property sheets to rich edit controls and controls that organize
and manage lists

• Incorporating new common dialog boxes, which perform
common tasks such as opening and saving files , printing , and
page setl:Jp

• Supporting long filenames in the Windows 95 VFAT file system

• Providing shortcuts, a Windows 95 feature that gives users
quick and easy access to the items they use most often

• Creating file viewers, which can display the contents of a file
without opening the application that originally created the file

• Working with user interface extensions

• Porting your code from C to MFC and vice versa

If you want to take advantage of the visual richness of the
Windows 95 environment, PROGRAMMING THE WINDOWS 95 USER
INTERFACE is the best source of information. This is an essential
reference for any serious programmer's library.

U.S.A. $34.95
U.K. £27.99 [V.A.T. included]

Canada $46.95
[Recommended]

Microsoft Press

CD IncluUes Valuable
Source Code

The sample code on CD
shows you how to:

• Implement the new
Windows 95 common
controls

• Create a complete
Explorer-like application

• Support (lrag and drop,
shortcuts, and long
filenames

• Take ad ntage of user
interface extensions

Programming/Microsoft Windows 95

ISBN 1-55615-884-X

90000

9 78 841

