
@.
Microsoft"
Windows"CE

MICROSOFT PROFESSIONAL EDmONS

The ultimate reference and toolkit for Windows CE

fte

I CE
Communications

Guide

Microsoft®

Windows®CE
Communications

Guide

Aficrosott"'Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows CE Developer's Kit I Microsoft Corporation.

p. cm.
ISBN 0-7356-0619-6
1. Microsoft Windows (Computer file) 2. Operating systems

(Computers) I. Microsoft Corporation.
QA76.76.063M74515 1999
005.4'469--dc21 99-24745

CIP

Printed and bound in the United States of America.

1 2 345 6 7 8 9 MLML 432 1 0 9

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. ActiveSync, ActiveX, IntelliMouse, Microsoft, MS-DOS, MSN, PowerPoint, Visual Basic,
Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States andlor other countries: Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Alice Turner

Part No. 097-0002196

Contents

iii

Preface .. xi
About the Code Samples Included in this Guide xiv
Document Conventions ... xvi

Chapter 1 Windows CE Communications Overview 1
Open Systems Interconnection Model. .. 2

Physical Layer .. 3
Data-Link Layer. .. 3
Network and Transport Layers 4
Session, Presentation, and Application Layers .. 4

Providing Secure Communications .. 5

Chapter 2 Serial Communications. .. 7
Serial Protocols and the OSI Model. .. 7
Serial Communications Functions. .. 9
Serial Cables and Connectors. .. 10

Mini -Connectors 10
9-Pin Connectors .. 11
25-Pin Connectors .. 11

Programming Serial Connections. .. 11
Opening a Port. .. 11
Configuring a Serial Port. .. 12
Configuring Time-Outs .. 15
Writing to a Serial Port .. 16
Reading from a Serial Port ... 17
Using Communications Events 18
Closing a Serial Port .. 20

U sing Infrared Communications .. 20
RawIR ... 20
IrCOMM .. 21

Serial Communications Sample Application .. 22

Chapter 3 Telephony API. .. 27
TAPI and the OSI Model .. 27

Telephony Service Provider Interface. .. 29
T API Functions .. 30

Callback Function .. 31

iv Contents

Modem Support. .. 31
Creating a Plug and Play Device Identifier. .. 32
Modem Registry Keys. .. 32

GenericModem Key. .. 33
Init Key .. 34
Settings Key .. 34
Example of Registry Key Settings .. 35

Creating a TAPI Application . 36
Using a Modem .. 36

Telephony System . 37
Line Devices .. 37
Media Stream -..................................... 38

Initializing TAP!. ... 38
Getting and Opening a Line . 41
Opening a Line and Making a Phone Call. 44

Opening One or More Lines . 49
U sing the Callback Function. 49
Address Translation . 51

Ending a Call and Shutting Down T API _ 53

Chapter 4 Remote Access Service . 55
Overview ... 55

RAS and the OSI Model . 55
Remote Access Service Functions and Structures. 56

Functions. 57
Structures ... 58

Synchronous Operations ... 58
Asynchronous Operations. 59
Phone-Book Files and Connection Data 59
User Authentication Data .. 59
Handling Errors .. 60
Informational Notifications ... 60
Completion Notifications ... 60
Disconnecting a RAS Connection . 60
Phone-Book Entries ... 61
Accessing the Internet Using a Modem. 61

Sample Application. 62
Starting a RAS Connection. 62
Connection Operation . 62

Establishing a Connection. 62

Contents v

Connection Data. .. 65
Connection Sequence ... 66
Connection States. .. 67
Tenninating a Connection. .. 67

Phone-Book Operation .. 69
Creating or Changing a Phone-Book Entry 70
Changing an Existing Phone-Book Entry 72
Enumerating Phone-Book Entries 73
Copying a Phone-Book Entry 74
Deleting a Phone-Book Entry 77

Chapter 5 Windows Sockets. .. 79
Winsock and the OSI Model .. 79
TCPIIP .. 81

TCPIIP Transport Layer Protocols. .. 81
TCP ... 81
User Datagram Protocol. .. 81

TCPIIP Network Layer Protocols 82
Internet Protocol. .. 82
Internet Control Message Protocol. .. 82
Internet Group Membership Protocol. .. 83
Address Resolution Protocol. .. 84

IP Addressing. .. 84
Internet Protocol Address Classes .. 85

Host Name Resolution' 86
Configuring Dynamic Host Configuration Protocol. 87
Configuring TCPIIP for Wireless Networks. .. 87
Resolving Device Suspension Issues. .. 88

Developing a Winsock Application. .. 88
Winsock Functions .. 89
Winsock Structures .. 90
Using Winsock Functions with IrDA ; 91

IrSock Name Service. .. 91
IrSock Addressing .. 91
IrSock Enhanced Socket Options. 91

Using WSAStartup to Initialize Winsock .. 92
Creating a TCP Stream Socket Application .. 92
Creating an Infrared Winsock Application. .. 99
Creating a UDP Datagram Socket Application. .. 100
Creating an IP Multicast Application 101

vi Contents

Mapping an IP Multicast Address. .. 102
Sending an IP Multicast Datagram. .. 103
Joining and Leaving a Multicast Group 104
Receiving an IP Multicast Datagram .. 106
Reading Socket Options. .. 107

U sing Secure Sockets .. 108
Certificate Authentication. .. 108
Implementing a Secure Socket .. 111
Using a Deferred Handshake 111

Winsock Sample Applications .. 112
TCP Stream Socket Server .. 112
TCP Stream Socket Client. .. 116
Infrared Sockets Server .. 119
Infrared Sockets Client ... 121
Receiving an IP Multicast Datagram Sample .. 124
Sending an IP Multicast Datagram Sample. .. 127

Chapter 6 Windows Networking .. 131
Windows Networking and the OSI Model 132
Accessing Remote File Systems. .. 134

Naming a Device .. 134
Setting a User Name and Password 135
Modifying Registry Keys Used by the Redirector 135
Network Folder .. 136
WNet Functions ... 136
WNet Structures ... 137

Managing Network Connections with WNet 138
Determining Available Network Resources 138
Connecting to a Network .. 141

Establishing a Network Connection 141
Terminating a Network Connection 143

Retrieving Network Data .. 144
Retrieving a Connection Name. .. 144
Retrieving a User Name .. 145
Retrieving Network Errors 145

Locating a Printer on a Network 146
Printing on a Network .. 146

Chapter 7 Internet Connections 149
WinInet and the OSI Model .. 149

Contents vii

Winlnet Functions. .. 151
HTTP and FrP Functions ... 153
Persistent Caching Functions 154

HINTERNET Handles .. 155
Handling Uniform Resource Locators 156

Creating and Cracking URLs 157
Accessing URLs Directly ... 158

Handling Authentication. .. 161
HTTP Authentication .. 161
Registering Authentication Keys .. 162
Server Authentication .. 163
Proxy Authentication. .. 163
Handling HTTP Authentication .. 164

Managing Cookies. .. 164
HTTP Cookies. .. 165

Cookie-Related Headers .. 165
Set-Cookie Header .. 165
Cookie Header .. 167

Generating Cookies. .. 167
Generating a Cookie Using the DHTML Object Model. 167
Generating a Cookie Using the Windows CE Internet Functions. 167
Generating a Cookie Using a CGI Script 167

Caching ... 168
U sing Flags to Control Caching. .. 168
Using Persistent Caching Functions 169

Enumerating the Cache .. 170
Retrieving Cache Entry Data. .. 170
Creating a Cache Entry .. 171
Deleting a Cache Entry .. 171
Retrieving Cache Entry Files .. 171

Cache Groups. .. 172
Handling Structures with Variable Size Data. .. 172

Accessing the HTTP Protocol .. 173
Accessing the FrP Protocol. .. 180
Accessing Security Protocols. .. 183

Chapter 8 Security Support Provider Interface. 185
SSPI Functions and Structures. .. 187
Initializing the SSP!. .. 189
Authenticating a Connection .. 191

viii Contents

Context Semantics .. 194
Context Requirements .. 197

Memory Use and Buffers .. 198
Securing the Message Exchange .. 199

Deleting a Security Context. 201
Calling the Windows NT LAN Manager Security Support Provider 201

Client Initialization ... 201
Windows NT LMSSP Server Authentication . 204
Using a Security Context .. 205

SSPI Sample Application . 207

Chapter 9 Cryptography ... 215
Encryption and Decryption ... 215
Microsoft Cryptographic System 217

Key Databases .. 219
Key BLOBs .. 220

Microsoft RSA Base Provider 221
Common Encryption Algorithms 221
Key Length Comparison . 221

U sing CAP!. 222
Connecting to a CSP . 223
Generating Cryptographic Keys . 223
Exchanging Cryptographic Keys . 224

Storing Session Keys . 225
Using a Backup Authority 226
Exchanging Public Keys . 226
Exchanging Session Keys . 227

Encrypting and Decrypting Data. 228
Encrypting and Decrypting Simultaneously . 242
Creating Digital Signatures. 244

Signing and Verifying Messages 245
Hashing and Digital Signature Algorithms . 246

Administrating CAPI. 247
Overview of the CAPI Registry 247

Contents ix

Writing a CSP .. 248
Writing a CSP Setup Application. .. 249

Registering the CSP .. 249
Setting the Machine Default CSP .. 250
Setting the User Default CSP 250
Testing the CSP .. 251

Getting CSPs Signed. .. 251

Chapter 10 Wireless Services. .. 253
Processing Messages. .. 254
Message Handlers. .. 255

MSDefault Message Handler .. 255
Internationalization and Unicode Support 256
Writing a Parser Routine '. .. 257
Registering a Parser. .. 260
Replacing PageNotify ... 261
Limiting the Number of Messages. .. 262

Writing a Message Handler. 262
Installing a Message Handler .. 268
Programming Considerations for Message Handlers. 270

Stock Quotation Sample Application. .. 270
Testing a Wireless Application .. 271

Creating Radio Address Data. .. 271
Sending Test Messages with Radiotest 274
Testing Hardware Feedback with Hwinfotest. 275

Index 277

Preface

The Microsoft® Windows® CE Developer's Kit provides all the information you
need to write applications for devices based on the Microsoft® Windows® CE
operating system. The kit includes the following four books:

• Microsoft® Windows® CE Programmer's Guide

Introduces the architecture of the Windows CE operating system.

Explains the low-level details of creating a Windows CE-based application,
including handling processes and threads, managing memory and power,
accessing the object store, and modifying the registry.

xi

Provides information on connecting a Windows CE-based device to a desktop
computer, synchronizing data between a device and desktop, and transferring
files.

Provides information on using Unicode and localizing Windows CE-based
applications.

• Microsoft® Windows® CE User Inteiface Services Guide

Describes all tasks associated with creating a user interface (UI) for a
Windows CE-based device, including how to create windows and dialog
boxes, how to handle messages, and how to add menus, controls, and other
resources to a UI.

Discusses how to handle various user input methods (IMs) such as keyboards
and touch screens.

• Microsoft® Windows® CE Communications Guide

Provides basic instructions for implementing communications support on a
Windows CE-based device, including how to handle infrared connections,
develop telephony applications, implement Remote Access Service (RAS)
features into an application, handle networking and security issues, work with
Windows Sockets, and establish an Internet connection.

xii Windows CE Communications Guide

• Microsoft® Windows® CE Device Driver Kit

Provides procedures for writing device drivers for Windows CE-based
devices.

Explains how to create native and stream interface drivers as well as how to
implement Universal Serial Bus (USB) and Network Driver Interface
Specification (NDIS) drivers.

The CD that accompanies the books includes online versions of the books plus the
following content.

Content

Windows CE API

Device Driver Kit API

Microsoft Foundation Class
(MFC) Library for Windows
CE

Active Template Library
(ATL) for Windows CE

Mobile Channels

Writing applications for a
Palm-size PC

Writing applications for a
Handheld PC

Writing applications for an
Auto PC

Description

Shows the interfaces, functions, structures, messages,
and other application programming interface (API)
elements for Windows CEo

Shows the interfaces, functions, structures, messages,
and other API elements needed to create device drivers
for Windows CEo

Shows the classes, global functions, global variables,
and macros needed to create full-featured Windows CE
based applications.

Shows the classes, macros, and global functions needed
to develop small, fast Microsoft® ActiveX® controls for
platforms that run Windows CEo

Demonstrates how to use Active Server Pages (ASP)
and Channel Definition Format technology to enable
offline Web site browsing on a Windows CE-based
device.

Demonstrates how to work with the Palm-size PC shell,
handle memory and power, programmatically access
Palm-size PC navigation controls, and design the VI for
applications running on a Palm-size PC.

Demonstrates how to work with the Handheld PC
(H/PC) shell, handle memory and power, and
synchronize data between an H/PC and a desktop
computer.

Demonstrates how to implement speech, control the
audio system, interact with a vehicle computer,
communicate with a Global Positioning System (GPS)
device, and design an effective ill for an Auto PC
application.

Preface xiii

This book, the Microsoft Windows CE Communications Guide, contains the
following chapters:

Windows CE Communications Overview

This chapter provides an overview of Windows CE communications technologies
and how they fit into the International Organization for Standardization Open
Systems Interconnection (ISO/OSI) model for network communications.

Serial Communications

This chapter discusses serial communications functions, serial cables and
connectors, as well as creating and implementing a serial communication
application.

Telephony API

This chapter provides information about the Windows CE implementation of the
Microsoft Telephony API (TAPI). Features discussed include outbound dialing,
address translation services, installable service providers, the TAPI programming
model, and use of TAPI in Windows CE-based applications.

Remote Access Service

This chapter explains accessing a network from a remote location, Remote Access
Service (RAS) features and related functions.

Windows Sockets

This chapter provides an overview of Transmission Control ProtocollInternet
Protocol (TCPIIP), upon which Windows Sockets (Winsock) is built, as well as
creating applications with Winsock.

Windows Networking

This chapter explains the Windows Networking API (WNet) which includes
functions used to manage network connections and retrieve current configuration
information about the Microsoft Network.

Internet Connections

This chapter discusses the Windows Internet API (WinInet), its functions, and
implementing WinInet as a browser or FTP application.

Security Support Provider Interface

This chapter describes the Security Support Provider Interface (SSPI), that
enables applications to access DLLs, known as Security Support Providers
(SSPs), containing common authentication and cryptography scripts. SSPs enable
applications to use multiple security solutions for package management,
credential management, context management, and message support.

xiv Windows CE Communications Guide

Cryptography

This chapter discusses the Windows CE implementation of the Microsoft
cryptographic system, the Microsoft Cryptographic API (CAPI), and
implementing CAPI to enable application encryption and decryption.

Wireless Services

This chapter provides an overview of Wireless Services for Windows CEo It
describes support for receiving e-mail messages, pager messages, testing custom
DLLs, and other radio services on a Windows CE-based device.

About the Code Samples Included in this Guide
Most code samples included with the Windows CE Communications Guide were
developed with Microsoft Visual C++® version 5.0 and the Microsoft Windows
CE Toolkit for Visual C++ version 5.0. The Sspi and Crypt samples were
developed with Microsoft Visual C++ version 6.0 and the Microsoft Windows CE
Toolkit for Visual C++ 6.0. The code in sample applications is ported for a
Handheld PC, but the programming concepts that are presented apply to all
Windows CE-based platforms. Because of their large size, some code samples
shown are incomplete. The CD that accompanies this book contains the entire
code for all the samples.

Sample

Tty

CeDialer

RasConn

Winsock

Description

Shows how to open, configure, and close a serial communications port
and perform read/write operations for a TTY terminal emulation
application. The code is partially listed in the Serial Communications
chapter.

Shows how to initialize an application's use of TAPI, open a line device,
negotiate an API version to use, translate an address into another format,
place a call on an opened line device, close an opened line device, shut
down an application's usage of the line abstraction of the API. The code
is partially listed in the Telephony API chapter.

Demonstrates how to start a RAS connection, dial entries from the
default phone book, and close an active connection. The code is
partially listed in the Remote Access Service chapter.

A Winsock server and a Winsock client sample. The server sample
shows how to implement a Winsock TCP stream socket server. The
client sample shows how to implement a Winsock TCP stream socket
client. Both code samples are listed in their entirety in the Windows
Sockets chapter.

Sample

IRSock

Multicast

CeHttp

Sspi

Crypto

Preface xv

Description

An Infrared Sockets server and an Infrared Sockets client sample. The
server sample shows how to implement an Infrared Sockets server. The
client sample shows how to implement an Infrared Sockets client. Both
code samples are listed in their entirety in the Windows Sockets chapter.

A multicast receiver and a multicast sender sample. The Receive sample
shows how to receive an IP multicast datagram. The Send sample shows
how to send an IP multicast datagram. Both code samples are listed in
their entirety in the Windows Sockets chapter.

Demonstrates how to create and submit a HTTP request. The sample
requests a default HTML document from a server and displays it along
with the HTTP transaction headers. The code is partially listed in the
Internet Connections chapter.

Shows how to use the Security Support Provider Interface to access
common authentication and cryptographic data schemes. The code is
listed in it's entirety in the Security Support Provider Interface chapter.

A cryptography encryption and a decryption sample. The Encrypt
sample shows how to encrypt data read from a text file. The Decrypt
sample shows how to decrypt the file created by the Encrypt sample.
Both code samples are listed in their entirety in the Cryptography
chapter.

xvi Windows CE Communications Guide

Document Conventions
The following table shows the typographical conventions used throughout this
book.

Convention

monospace

Bold

Italic

UPPERCASE

()

Description

Indicates source code, structure syntax, examples, user input, and
application output. For example,

ptbl-)SortTable(pSort. TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Microsoft Windows operating system, C,
or C++. For example, CommandBar_Height is a function. Within
discussions of syntax, bold type indicates that text must be entered
exactly as shown.

Indicates placeholders, most often method or function parameters; these
placeholders stand for information that must be supplied by the
implementation or the user. For example, IpButtons is a function
parameter. Also indicates new terms defined in the glossary.

Indicates flags, return values, messages, and properties. For example,
WSAEFAULT is a Windows Sockets error value, MF _CHECKED is a
flag, and TB_ADDBUTTONS is a message. In addition, uppercase
letters indicate segment names, registers, and terms used at the
operating-system command level.

Indicate one or more parameters that you pass to a function, in syntax.

CHAPTER 1

Windows CE Communications
Overview

Windows CE supports multiple options for data communications. For example, a
Windows CE-based device can use communications for the following operations:

• Downloading files from a desktop computer or network server

• Exchanging data with another Windows CE-based device

• Sending and receiving electronic mail

• Sending data to a network server

• Browsing the Internet and the Web

• Scanning bar codes

To support different types of communication, Windows CE-based devices can .
include a variety of hardware configurations. For example, most Windows CE
based devices include a serial cable connector, and some devices include an
infrared (lR) transceiver. If a hardware expansion slot is available, users can
extend the capabilities of a Windows CE-based device with third-party
communications hardware, such as a modem or bar code scanner.

Computer communications models are divided into layers. Software applications
comprise the top layer of the communications model. Communications hardware
comprises the bottom layer of this model. Windows CE includes API methods for
moving data between the application layer and the physical hardware layer.

2 Windows CE Communications Guide

Open Systems Interconnection Model
The International Organization for Standardization (ISO) developed the Open
Systems Interconnection (OSI) model. This seven-layer model is an industry
standard reference for describing data 110. The following illustration shows
Windows CE communications in reference to the ISOIOSI model.

Transport
layer

Chapter 1 Windows CE Communications Overview 3

Physical Layer
The physical layer of the ISO/OSI model is the hardware. Hardware in the
physical layer converts electrical signals into binary code, which is passed to the
data-link layer. A Windows CE-based device can include the following hardware:

• A Serial port

• An IR transceiver

• A Wireless transceiver

• A Network interface card

For more information on communicating using serial ports, see Serial
Communications. For more information on infrared communications, see Serial
Communications and Windows Sockets.

Wireless Services for Windows CE supports multiple service inputs to a Windows
CE-based device using wireless hardware-typically a PC Card radio device. The
wireless hardware device may be limited to receiving signals or transmitting a
simple acknowledgment, or it may be a fully bidirectional device. For more
information, see Wireless Services. .

Data-Link Layer
Windows CE provides data-link layer support for serial I/O and local area
networks (LANs). Low-level software, called device drivers, operate at the data
link layer, managing communications with physical layer hardware. For example,
the serial driver manages the serial port, and the Microsoft network driver
interface specification (NDIS) drivers manage network interface connections.

The Windows CE NDIS is a subset of Microsoft NDIS version 4.0, which is used
in Windows-based desktop operating systems. Windows CE supports NDIS
Ethernet (802.3) miniport drivers. Windows CE also supports Serial Infrared
(SIR) and Fast Infrared (FIR) IrDA miniport drivers. For more information on
NDIS architecture and network connectivity issues, see the Microsoft Windows
CE Device Driver Kit.

Operating at the data-link layer, or between the data-link layer and the network
layer, are the Microsoft Telephony API (TAPI), Unimodem and the point-to-point
protocol (PPP) and Serial Line Internet Protocol (SLIP) for direct serial and dial
up connections. For more information on TAPI and Unimodem, see Telephony
API. For more information on PPP and SLIP, see Serial Communications and
Remote Access Service.

4 Windows CE Communications Guide

Network and Transport Layers
Software that operates at the network layer fragments, routes, and reassembles
data. The transport layer works with the network layer to package and transfer
data that it receives from the session layer.

TCPIIP operates at the network and transport layers. TCPIIP is an industry
standard communications protocol that defines methods for packaging data for
transmission over a network. For more information on TCPIIP, see Windows
Sockets.

For infrared communications Windows CE supports the Infrared Data Association
(IrDA) standards using the IrDA protocols at the network and transport layers. For
more information on using the IrDA protocols, see Windows Sockets.

Session, Presentation, and Application Layers
The session, presentation, and application layers comprise the upper layers of the
ISO/OSI model. The upper layers depend on the lower layers: transport, network,
data~link, and physical to handle low-level communications. The session layer
manages high-level connections, called sessions. The presentation layer formats
data received from the application layer before passing it to the layers.
Applications that include a user interface operate at the application layer.

Windows Sockets (Winsock) operates at the session layer interface to the transport
layer. Winsock, an interface between applications and the transport protocol,
works as a conduit for data 110. For more information on Winsock, see Windows
Sockets.

The Microsoft Windows CE Internet API (WinInet), is an API used for Internet
client application development. WinInet uses Winsock internally. The WinInet.dll
module exports WinInet functions used to develop Internet applications, such as
Web browsers and File Transfer Protocol (FTP) applications. For more
information on WinInet, see Internet Connections.

Remote Access Service (RAS) operates in the upper layers of the ISO/OSI model.
RAS is an application used to access network resources from a remote location.
For more information on RAS, see Remote Access Service.

A Windows CE-based application can use Windows Networking functions to
establish and terminate network connections and to retrieve current configuration
data for the Microsoft Network. Access to this data is made possible by way of the
Windows CE Networking API (WNet). WNet communicates through the
Common Internet File System (CIFS) redirector to the remote host. A CIFS
redirector is a module through which one computer accesses another. For more
information on WNet, see Windows Networking.

Chapter 1 Windows CE Communications Overview 5

Providing Secure Communications
Windows CE supports secure socket connections through Winsock and WinInet.
For more information on secure sockets, see Windows Sockets and Internet
Connections.

Windows CE also supports the Microsoft Cryptographic API (CAPI) and Security
Support Provider Interface (SSPI) for secure communications. The following
illustration shows the relationship between these elements and your application.

Winlnet
HTTP/HTTPS

Application

SSPI
(Secur32.dll)

Schannel

Windows NT LMSSP

Other SSP

RSABASE CSP

RSAENH CSP

OtherCSP

The cryptographic functions supported in Windows CE exist as an integral part of
CAP!. Services provided by these functions enable you to add encryption to your
Windows CE-based application without requiring extensive knowledge of
cryptography.

The algorithms and standards used by CAPI are implemented through
cryptographic service providers (CSPs). CAPI functions are available through the
Coredll.dll module.

6 Windows CE Communications Guide

SSPI provides a common interface between transport-level applications and
security providers. It provides a mechanism by which a transport application can
call one of several security providers and obtain an authentic connection without
knowing the details of the security protocol. Security providers included with
Windows CE: Windows NT® LAN Manager (NTLM), secure socket layer (SSL)
version 2.0, SSL version 3.0, and Private Communication Technology (PCT)
version 1.0 are provided through the Schannel Cryptographic Provider. The
Schannel Cryptographic Provider is accessed through Winsock. Security Support
Provider Interface (SSPI) functions are available through the Secur32.dll module.

For more information about CAPI and SSPI features available for Windows CE,
see Security Support Provider Interface and Cryptography.

CHAPTER 2

Serial Communications

Some Windows CE-based devices can communicate with other computers,
printers, modems, or Global Positioning System (GPS) satellites by way of a
serial connection.

7

Serial I/O is the simplest form of communication supported by Windows CEo It is
used when a direct, one-to-one connection exists between two devices. Serial I/O
can occur by way of various hardware connections; however, most Windows CE
based devices use serial cables or a PC Card device such as a modem or infrared
(IR) transceiver. Exchanging data by way of a serial cable is similar to reading
from or writing to a file.

Windows CE supports standard Windows-based desktop functions for serial
communication. These functions can be used to open, close, and manipulate serial .
ports, transmit and receive data, and manage the connection. Windows CE-based
devices use point-to-point protocol (PPP) and Serial Line Internet Protocol
(SLIP) for direct serial and dial-up connections.

Serial Protocols and the OSI Model
In the International Organization for Standardization Open Systems
Interconnection (ISO/OSI) model for network communications, serial
communications operates between the physical layer and the application layer.
The RS-232-C standard describes the physical layer. Serial device drivers are
stored in the next layer, the data-link layer. The Windows CE serial
communications functions enable applications to exchange data by way of serial
hardware.

8 Windows CE Communications Guide

The following illustration shows serial communications within the context of the
ISO/OSI model.

Network
layer

Chapter 2 Serial Communications 9

Serial Communications Functions
Functions and structures used for serial communications are defined in the
Winbase.h header file. Reading to and writing from a serial communications port
on a Windows CE-based device is done by calling file input and output functions.
The following table describes functions and structures defined in the Winbase.h
header file.

Function

CreateFile

GetCommState

Description

Opens a serial port.

Fills in a device-control block-DCB structure-with the
current control settings for a specified communications device.

SetCommState Configures a communications device according to the
specifications in a DCB structure. The function reinitializes all
hardware and control settings, but does not empty I/O queues.

GetCommTimeouts Retrieves the time-out parameters for all read/write operations
on a specified communications device.

SetCommTimeouts Sets the time-out parameters for all read/write operations on a
specified communications device.

WriteFile Writes data to a serial port, which transfers data to the device
at the other end of a serial connection.

ReadFile Reads data from a serial port, which receives data from a
device at the other end of a serial connection.

SetCommMask Specifies a set of events to monitor for a communications
device.

GetCommMask Retrieves the value of the event mask for a specified
communications device.

WaitCommEvent Waits for an event to occur for a specified communications
device. The set of events monitored by WaitCommEvent is
contained in the event mask associated with the device handle.

EscapeCommFunction Directs a specified communications device to perform an
extended function. Often used to set a serial port to IR mode.

ClearCommBreak Restores character transmission for a specified communications
device and places the transmission line in a non-break state.

ClearCommError Retrieves communications error data and reports the current
status of a specified communications device.

10 Windows CE Communications Guide

Serial Cables and Connectors
Windows CE-based devices use the RS-232-C standard to exchange data with
serial devices and other computers by way of a serial connection.

When a serial connection is established between two devices, an application
designates one device as the Data Communications Equipment (DCE) and the
other device as the Data Terminal Equipment (DTE). The following table shows
pin locations and describes common pin functions used on 9-pin and 25-pin
connectors.

9-pin 25-pin Purpose Description

3 2 TD Sends data to another device
Transmit data

2 3 RD Receives data from another device
Receive data

7 4 RTS Indicates the device is ready to send data
Request to send

8 5 CTS Indicates the device is ready to accept data
Clear to send

6 6 DSR Indicates the receiving device is connected
Data set ready and ready to accept data

5 7 GND Verifies both devices are using the same
Signal ground voltage for transmitting data

4 20 DTR Indicates that the DTE device is ready
Data terminal ready

Windows CE-based devices use cables with a mini-connector, 9-pin connector, or
25-pin connector. Each connector is discussed in the following sections.

Mini-Connectors
Mini-connectors provide Windows CE-based devices with a compact serial port
for 9-pin connectors. This port is a different shape than the 9-pin connector found
on desktop computers; however, the pins have the same features as a standard 9-
pin connector. The pin arrangement and shape can vary by manufacturer. The
following illustration shows a mini-connector.

Chapter 2 Serial Communications 11

g-Pin Connectors
The standard 9-pin connector is commonly found on desktop computers for
connecting devices such as keyboards. The following illustration shows a 9-pin
connector. The top row, left-to-right pin arrangement is from 1 through 5. The
bottom row, left-to-right pin arrangement is from 6 through 9.

----1>-5

o
6-->9

25-Pin Connectors
Devices that require all pins defined by the RS-232-C standard, such as modems,
require a 25-pin connector. The following illustration shows a 25-pin connector.
The top row, left-to-right pin arrangement is from 1 through 13. The bottom row,
left-to-right pin arrangement is from 14 through 25.

-----------t"" 13

••••••••••••• ••••••••••••
14 ----------i~ 25

Programming Serial Connections
The following sections discuss steps carried out by an application to transfer data
between devices, using a serial connection. The sections are discussed in the order
of the programming task: opening a port, configuring the port, writing and reading
data, and closing the port.

Opening a Port
Call the CreateFile function to open a serial port. Because hardware vendors and
device driver developers can give any name to a port, an application should list
the available ports and enable users to specify the port to open. If a port does not
exist, CreateFile returns ERROR_FILE_NOT_FOUND, and users should be
notified the port is not available.

12 Windows CE Communications Guide

~ To open a serial port

1. Insert a colon after the communications port pointed to with the first
parameter; IpzPortName. For example, specify "COM1:" as the
communications port.

2. Specify zero in the dwShareMode parameter. Communications ports cannot be
shared in the same manner that files are shared.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag
is required.

4. Specify zero in the dwFlagsAndAttributes parameter. Windows CE supports
only nonoverlapped 110.

The following code example shows how to open a serial communications port.

II Open the serial port.
hPort = CreateFile (lpszPortName, II Pointer to the name of the port

GENERIC_READ I GENERIC_WRITE,
II Access (read-write) mode

0, II Share mode
NULL, II Pointer to the security attribute
OPEN_EXISTING,II How to open the serial port
0, II Port attributes
NULL); II Handle to port with attribute

II to copy

Before writing to or reading from a port, configure the port. When an application
opens a port, it uses the default configuration settings, which may not be suitable
for the device at the other end of the connection. The next section discusses serial
port configuration settings.

Configuring a Serial Port
The most critical phase in serial communications programming is configuring the
port settings with the DCB structure. Erroneously initializing the DCB structure is
a common problem. When a serial communications function does not produce the
expected results, the DCB structure may be in err.

A call to the CreateFile function opens a serial port with default port settings.
Usually, the application needs to change the defaults. Use the GetCommState
function to retrieve the default settings and use the SetCommState function to set
new port settings.

Also, port configuration involves using the COMMTIMEOUTS structure to set
the time-out values for read/write operations. When a time-out occurs, the
ReadFile or WriteFile function returns the specific number of characters
successfully transferred.

Chapter 2 Serial Communications 13

~ To configure a serial port

1. Initialize the DCBlength member of the DCB structure to the size of the
structure. This initialization is required before passing this member as a
variable to any function.

2. Call the GetCommState function to retrieve the default settings for the port
opened with the CreateFile function. To identify the port, specify in the hPort
parameter the handle that CreateFile returns. .

3. Modify DCB members as required. The following table shows the DCB
structure members most frequently modified.

Member

DCBlength

BaudRate

ByteSize

Parity

StopBits

jOutX and fJnX

jRtsControl

jOutxCtsFlow

jOutxDsrFlow

fDtrControl

Use

Before calling the GetCommState function, set this member to
the length of the DCB structure. Neglecting to do this can cause a
failure or return erroneous data.

Specifies the device communication rate. Assigns an actual baud
rate or an index by specifying a CBR_ constant.

Specifies the bits per byte transmitted and received.

Specifies the parity scheme. Do not confuse this member with the
/parity member, which turns parity on or off. Because parity is
rarely used, this member can usually be NOPARITY.

Specifies the number of stop bits. ONESTOPBIT is the most
common setting.

Turns software flow control on and off.

Turns the RTS flow control on and off.
RTS_CONTROL_ENABLE turns on the RTS line during the
connection. RTS_CONTROL_HANDSHAKE turns on RTS
handshaking. RTS_CONTROL_DISABLE turns off the RTS line.

Tum the CTS flow control on and off. To use RTS/CTS flow
control, specify TRUE for this member and
RTS_CONTROL_HANDSHAKE for thejRtsControl member.

Turns the DSR flow control on and off. DSR flow control is rarely
used. A typical port configuration is to set this member to FALSE,
while enabling the DTR line.

Specifies the DTR flow control. DTR_CONTROL_ENABLE
turns on the DTR line during the connection.
DTR_CONTROL_HANDSHAKE turns on DTR handshaking.
DTR_CONTROL_DISABLE turns off the DTR line.

4. Call the SetCommState function to set the new port settings.

14 Windows CE Communications Guide

The following code example shows how to use the GetCommState and
SetCommState functions to configure a serial port.

DCB PortDCB;

II Initialize the DCBlength member.
PortDCB.DCBlength = sizeof (DCB);

II Get the default port setting information.
GetCommState (hPort, &PortDCB);

II Change the DCB structure settings.
PortDCB.BaudRate = 9600; II Current baud
PortDCB.fBinary = TRUE; II Binary mode;
PortDCB.fParity = TRUE; II Enable pa rity
PortDCB.fOutxCtsFlow = FALSE; II No CTS output
PortDCB.fOutxDsrFlow = FALSE; II No DSR output
PortDCB.fDtrControl = DTR_CONTROL_ENABLE;

no EOF check
checking
flow control
flow control

II DTR flow control type
PortDCB.fDsrSensitivity = FALSE; II DSR sensitivity
PortDCB.fTXContinueOnXoff = TRUE; II XOFF continues Tx
PortDCB.fOutX = FALSE; II No XON/XOFF out flow control
PortDCB.fInX = FALSE; II No XON/XOFF in flow control
PortDCB.fErrorChar = FALSE; II Disable error replacement
PortDCB.fNull = FALSE; II Disable null stripping
PortDCB.fRtsControl = RTS_CONTROL_ENABLE;

PortDCB.fAbortOnError = FALSE;

PortDCB.ByteSize = 8;
PortDCB.Parity = NOPARITY;
PortDCB.StopBits = ONESTOPBIT;

II RTS flow control
II Do not abort readslwrites on
II error
II Number of bitslbytes, 4-8
II 0-4=no,odd,even,mark,space
II 0,1,2 = 1, 1.5, 2

II Configure the port according to the specifications of the DCB
II structure.
if (!SetCommState (hPort, &PortDCB»
{

II Could not create the read thread.
MessageBox (hMainWnd, TEXT("Unable to configure the serial port"),

TEXT("Error"), MB_OK);
dwError = GetLastError ();
retu rn FALSE;

Chapter 2 Serial Communications 15

Configuring Time-Outs
An application must always set communications time-outs using the
COMMTIMEOUTS structure each time it opens a communications port. If this
structure is not configured, the port uses default time-outs supplied by the driver,
or time-outs from a previous communications application. By assuming specific
time-out settings when the settings are actually different, an application can have
read/write operations that never complete or complete too often.

When read/write operations time out, the operations complete with no error values
returned to the ReadFile and WriteFile functions. To determine if an operation
has timed out, verify that the number of bytes actually transferred is fewer than
the number of bytes requested. ,For example, if the ReadFile function returns
TRUE, but fewer bytes were read than requested, the operation has timed out.

~ To configure time-outs for a serial port

1. Initialize the COMMITEMEOUTS structure either by calling the
GetCommTimeouts function or by setting the members manually.

2. Specify the maximum number of milliseconds that can elapse between two
characters without a time-out occurring with the ReadlntervalTimeout
member.

3. Specify the read time-out multiplier with the ReadTotalTimeoutMultiplier
member. For each read operation, this number is multiplied by the number of
bytes that the read operation expects to receive.

4. Specify the read time-out constant with the ReadTotalTimeoutConstant
member. This member is the number of milliseconds added to the result of
mUltiplying the total number of bytes to read by ReadTotalTimeoutMultiplier.
The result is the number of milliseconds that must elapse before a time-out for
the read operation occurs.

5. Specify the write time-out multiplier with the WriteTotalTimeoutMultiplier
member. For each write operation, this number is multiplied by the number of
bytes that the write operation expects to receive.

6. Specify the write time-out constant with the WriteTotalTimeoutConstant
member. This member is the number of milliseconds added to the result of
multiplying the total number of bytes to write by WriteTotalTimeoutMultiplier.
The result is the number of milliseconds that must elapse before a time-out for
the write operation occurs.

7. Call the SetCommTimeouts function to activate port time-out settings.

To assist with multitasking, it is common to configure COMMTIMEOUT so that
ReadFile immediately returns with the characters to be read. To do this, set
ReadlntervalTimeout to MAXWORD and set both ReadTotalTimeoutMultiplier
and ReadTotalTimeoutMultiplier to zero.

16 Windows CE Communications Guide

The following code example shows how to configure time-outs for a serial port.

II Retrieve the time-out parameters for all read and write operations
lion the port.
COMMTIMEOUTS CommTimeouts;
GetCommTimeouts (hPort, &CommTimeouts);

II Change the COMMTIMEOUTS structure settings.
CommTimeouts.ReadlntervalTimeout = MAXDWORD;
CommTimeouts.ReadTotalTimeoutMultiplier = 0;
CommTimeouts.ReadTotalTimeoutConstant = 0;
CommTimeouts.WriteTotalTimeoutMultiplier = 10;
CommTimeouts.WriteTotalTimeoutConstant = 1000;

II Set the time-out parameters for all read and write operations
lion the port.
if (!SetCommTimeouts (hPort, &CommTimeouts»
{

}

II Could not create the read thread.
MessageBox (hMainWnd, TEXT("Unable to set the time-out parameters"),

TEXT("Error"), MB_OK);
dwError = GetLastError ();
return FALSE;

Writing to a Serial Port
The WriteFile function transfers data through the serial connection to another
device. Before calling this function, an application must open and configure a
serial port.

Because Windows CE does not support overlapped I/O-also called
asynchronous I/O-the primary thread or any thread that creates a window should
not try to write a large amount of data to a serial port. Such threads are blocked
and cannot manage message queues. An application can simulate overlapped I/O
by creating multiple threads to handle read/write operations. To coordinate
threads, an application calls the WaitCommEvent function to block threads until
specific communications events occur. For more information about
communications events, see Using Communications Events.

~ To write to a serial port

1. Pass the port handle to the WriteFile function in the hFile parameter. The
CreateFile function returns this handle when an application opens a port.

2. Specify a pointer to the data to be written in lpBuffer. Often this data is binary
data or a character array.

Chapter 2 Serial Communications 17

3. Specify the number of characters to write in nNumberOfBytesToWrite. For
Windows CE-based devices, usually one character is written because an
application must convert Unicode characters to ASCII characters to enable text
transfer to a device at the opposite end of a serial connection.

4. Specify in IpNumberOfBytesWritten a pointer to the number of bytes actually
written. WriteFile fills this variable so that an application can determine if the
data transferred.

5. Be sure that IpOverlapped is NULL.

The following code example shows how to transfer data using the WriteFile
function.

DWORD dwError.
dwNumBytesWritten;

WriteFile (hPort.

) ;

&Byte.
1,

&dwNumBytesWritten.

NULL

Reading from a Serial Port

II Port handle
II Pointer to the data to write
II Number of bytes to write
II Pointer to the number of bytes
II written
II Must be NULL for Windows CE

An application calls the ReadFile function to receive data from a device at the
other end of a serial connection. ReadFile takes the same parameters as the
WriteFile function.

Typically, a read operation is a separate thread that is always ready to process data
arriving at a serial port. A communications event signals the read thread that there
is data to read at a serial port. The thread usually reads one byte at a time-one
ReadFile call for each byte-until all of the data is read. Then the read thread
waits for another communications event.

For more information about communications events, see Using Communications
Events.

~ To read from a serial port

1. Pass the port handle to ReadFile in the hFile parameter. The CreateFile
function returns this handle when an application opens a port.

2. Specify a pointer to receive the data that is read in IpBuffer.

3. Specify the number of characters to read in nNumberOfBytesToRead.

18 Windows CE Communications Guide

4. Specify a pointer to the number of bytes actually read in
IpNumberOfBytesRead.

5. Be sure that IpOverlapped is NULL. Windows CE does not support
overlapped I/O.

The following code example shows how to receive data using the ReadFile
function.

BYTE Byte;
DWORD dwBytesTransferred;

ReadFile (hPort.

) ;

&Byte.
1.
&dwBytesTransferred.

NULL

Using Communications Events

II Port handle
II Pointer to data to read
II Number of bytes to read
II Pointer to number of bytes
II read
II Must be NULL for Windows CE

A communications event is a notification sent by Windows CE to an application
when a significant incident occurs. Using the WaitCommEvent function, an
application can block a thread until a specific event occurs. A call to the
SetCommMask function specifies which event or events must occur before
processing can continue. When more than one event is specified, any single
specified event that occurs causes WaitCommEvent to return.

For example, this mechanism enables an application to find out when data arrives
at the serial port. By waiting for a communications event that indicates data is
present, an application avoids forestalling the serial port with a call to the
ReadFile function that waits for data to arrive. ReadFile is called only when
there is data to read.

Chapter 2 Serial Communications 19

The following table lists the communications events that an application can use
with the WaitCommEvent function.

Event

EV_BREAK

EV_CTS

EV_DSR

EV_ERR

EV_RING

EV_RLSD

EV_RXCHAR

EV_RXFLAG

EV_TXEMPTY

Description

A break occurred on input.

The CTS signal changed state.

The DSR signal changed state.

A line-status error occurred. Line-status errors are CE_FRAME,
CE_OVERRUN, and CE_RXPARITY.

A ring indicator was detected.

The receive-line-signal-detect signal changed state.

A character was received and placed in the input buffer.

The event character was received and placed in the input buffer.

The last character in the output buffer was sent.

~ To use communications events

1. Specify events to look for with a call to the SetCommMask function.

2. Call the WaitCommEvent function and specify which events cause this
function to return. When an application specifies more than one event, the
lpEvtMask parameter points to a variable that identifies the event that caused
WaitCommEvent to return.

3. After WaitCommEvent returns, use a loop that calls ReadFile until all
received data has been read.

4. Call SetCommMask again to specify which events to look for.

SetCommMask is the first call in a loop that applications generally use to
monitor a serial port and read data. The following code example shows how to use
communications events for this purpose.

BYTE Byte:
DWORD dwBytesTransferred:

II Specify a set of events to be monitored for the port.
SetCommMask (hPort. EV_RXCHAR I EV_CTS EV_DSR I EV_RLSD lEV_RING):

while (hPort 1= INVALID_HANDLE_VALUE)
{

II Wait for an event to occur for the port.
WaitCommEvent (hPort. &dwCommModemStatus. 0):

20 Windows CE Communications Guide

II Respecify the set of events to be monitored for the port.
SetCommMask (hPort, EV_RXCHAR. I EV_CTS I EV_DSR lEV_RING);

if (dwCommModemStatus & EV_RXCHAR)
{

II Loop while waiting for data.
do
{

II Read the data from the serial port.
ReadFile (hPort, &Byte, 1, &dwBytesTransferred, 0);

II Display the data read.
if (dwBytesTransferred 1)

ProcessChar (Byte);

while (dwBytesTransferred 1);

Closing a Serial Port
Call the CloseHandle function to close a serial port when an application is done
using it. CloseHandle has one parameter, which is the handle returned by the
CreateFile function call that opened the port.

Using Infrared Communications

Raw IR

Many Windows CE-based devices have an infrared port compliant with the
Infrared Data Association (IrDA). The IrDA specifies standards for hardware
specifications and software protocols.

Windows CE-based devices have three options for implementing IR
communications: raw infrared (raw IR), IrCOMM, and Infrared Sockets (IrSock).

For more information about IrSock, see Windows Sockets.

U sing raw IR involves accessing the IR port and handling the connection as a
serial port with IR hardware attached. An application has the most control of IR
communications using this non-IrDA-compliant method. Without this standard, it
is possible for signal collisions to occur between devices during a data exchange.
Also, it is possible to lose data when the infrared beam is broken, such as when
someone walks between the two devices. The application must detect these error
conditions and correct them.

IrCOMM

Chapter 2 Serial Communications 21

Before using the IR port, an application must identify the COM port attached to
the IR transceiver. The HKEY _LOCAL_MACHINE\Comm\IrDA key specifies
the port. Use the RegOpenKeyEx function to open this key. Then use the
RegQueryValueEx function to get the value of the Port subkey, which is the port
number.

If a Windows CE-based device shares serial hardware with the IR port and the
serial port, an application must instruct the COM driver to route data through the
IR port. To do this, use the EscapeCommFunction function with the dwFunc
parameter set to CLRIR. Now use the standard serial communications functions to
transmit and receive data.

An easy way to use the standard communications functions for transferring data
over the IR port is to use the IrCOMM mode.

An IrCOMM port is a simulated port and not a real device, which causes some
differences with a raw IR port. For instance, an application cannot configure an
IrCOMM port. Windows CE transparently uses IrSock to configure an IrCOMM
port to meet the IrDA standard. When the GetCommState function is called to
retrieve the communications settings for an IrCOMM port, the DCB structure
returned contains zeros. But, with the IR link managed by IrSock, it tackles
important issues such as signal collision, signal interruption, and remote device
detection. Relieving an application of these tasks greatly simplifies programming
IR communications.

IrCOMM only supports two devices connected simultaneously.

To determine the IrCOMM port, open the
HKEY_LOCAL_MACHINE\Drivers\Builtin\IrCOMM key and query the
Index subkey.

22 Windows CE Communications Guide

Serial Communications Sample Application
The following code example opens, configures, and closes the serial
communications port and performs read/write operations for a TTY terminal
emulation application. The complete TTY application is contained on the compact
disc that accompanies this book.

1***
Module Name:

port. c

***1

#include <windows.h>
#include "tty.h"

1***

Portlnitialize (LPTSTR lpszPortName)

***/
BOOL Portlnitialize (LPTSTR lpszPortName)
{

DWORD dwError.
dwThreadID:

DCB PortDCB:
COMMTIMEOUTS CommTimeouts:

II Open the serial port.
hPort = CreateFile (lpszPortName. II Pointer to the name of the port

GENERIC_READ I GENERIC_WRITE.
II Access (read/write) mode

0. II Share mode
NULL. II Pointer to the security attribute
OPEN_EXISTING.II How to open the serial port
0. II Port attributes
NULL): II Handle to port with attribute

II to copy

II If it fails to open the port. return FALSE.
if (hPort == INVALID_HANDLE_VALUE

Chapter 2 Serial Communications 23

II Could not open the port.
MessageBox (hMainWnd, TEXT("Unable to open the port"),

TEXT("Error"), MB_OK);
dwError = GetLastError ();
return FALSE;

PortDCB.DCBlength = sizeof (DCB);

II Get the default port setting information.
GetCommState (hPort, &PortDCB);

II Change the DCB structure settings.
PortDCB.BaudRate = 9600; II
PortDCB.fBinary = TRUE; II
PortDCB.fParity = TRUE; II
PortDCB.fOutxCtsFlow = FALSE; II
PortDCB.fOutxDsrFlow = FALSE; II
PortDCB.fDtrControl = DTR_CONTROL_ENABLE;

Current baud
Binary mode;
Enable parity
No CTS output
No DSR output

no EOF check
checking.
flow control
flow control

II DTR flow control type
PortDCB.fDsrSensitivity = FALSE; II DSR sensitivity
PortDCB.fTXContinueOnXoff = TRUE; II XOFF continues Tx
PortDCB.fOutX = FALSE; II No XON/XOFF out flow control
PortDCB.flnX = FALSE; II No XON/XOFF in flow control
PortDCB.fErrorChar = FALSE; II Disable error replacement.
PortDCB.fNull = FALSE; II Disable null stripping.
PortDCB.fRtsControl = RTS_CONTROL_ENABLE;

PortDCB.fAbortOnError = FALSE;

PortDCB.ByteSize = 8;
PortDCB.Parity = NOPARITY;
PortDCB.StopBits = ONESTOPBIT;

II RTS flow control
II Do not abort readslwrites on
II error.
II Number of bitslbyte, 4-8
II 0-4=no,odd,even,mark,space
II 0,1,2 = 1, 1.5, 2

II Configure the port according to the specifications of the DCB
II structure.
if (!SetCommState (hPort, &PortDCB»
{

}

II Could not create the read thread.
MessageBox (hMainWnd, TEXT("Unable to configure the serial port"),

TEXT("Error"), MB_OK);
dwError = GetLastError ();
return FALSE;

II Retrieve the time-out parameters for all read and write operations
lion the port.
GetCommTimeouts (hPort, &CommTimeouts);

24 Windows CE Communications Guide

II Change the COMMTIMEOUTS structure settings.
CommTimeouts.ReadlntervalTimeout = MAXOWORO;
CommTimeouts.ReadTotalTimeoutMultiplier = 0;
CommTimeouts.ReadTotalTimeoutConstant = 0;
CommTimeouts.WriteTotalTimeoutMultiplier = 10;
CommTimeouts.WriteTotalTimeoutConstant = 1000;

II Set the time-out parameters for all read and write operations
lion the port.
if (!SetCommTimeouts (hPort. &CommTimeouts»
{

II Could not create the read thread.
MessageBox (hMainWnd. TEXT("Unable to set the time-out parameters").

TEXT("Error"). MB_OK);
dwError = GetLastError ();
return FALSE;

II Direct the port to perform extended functions SETDTR and SETRTS
II SETOTR: Sends the OTR (data-terminal-ready) signal.
II SETRTS: Sends the RTS (request-to-send) signal.
EscapeCommFunction (hPort. SETOTR);
EscapeCommFunction (hPort. SETRTS);

II Create a read thread for reading data from the communication port.
if (hReadThread = CreateThread (NULL. 0. PortReadThread. 0. 0.

&dwThreadIO»
{

CloseHandle (hReadThread);

else
{

II Could not create the read thread.
MessageBox (hMainWnd. TEXT("Unable to create the read thread").

TEXT("Error"). MB_OK);
dwError = GetLastError ();
return FALSE;

return TRUE;

1***

PortWrite (BYTE Byte)

***1

Chapter 2 Serial Communications 25

void PortWrite (BYTE Byte)
{

DWORD dwError.
dwNumBytesWritten:

if (!WriteFile (hPort.
&Byte.
1.
&dwNumBytesWritten.

NU Ll))

II WriteFile failed. Report error.
dwError = GetLastError ():

II Port handle
II Pointer to the data to write
II Number of bytes to write
II Pointer to the number of bytes
II written
II Must be NULL for Windows CE

1***

PortReadThread (LPVOID lpvoid)

***1
DWORD PortReadThread (LPVOID lpvoid)
{

BYTE Byte:
DWORD dwCommModemStatus.

dwBytesTransferred:

II Specify a set of events to be monitored for the port.
SetCommMask (hPort. EV_RXCHAR I EV_CTS I EV_DSR I EV_RLSD lEV_RING):

while (hPort != INVALID_HANDLE_VALUE)
{

II Wait for an event to occur for the port.
WaitCommEvent (hPort. &dwCommModemStatus. 0):

II Respecify the set of events to be monitored for the port.
SetCommMask (hPort. EV_RXCHAR I EV_CTS I EV_DSR lEV_RING):

if (dwCommModemStatus & EV_RXCHAR)
{

II Loop while waiting for data.
do
{

II Read the data from the serial port.
ReadFile (hPort. &Byte. 1. &dwBytesTransferred. 0):

26 Windows CE Communications Guide

II Display the data read.
if (dwBytesTransferred 1)

ProcessChar (Byte);

while (dwBytesTransferred 1);

II Retrieve modem control-register values.
GetCommModemStatus (hPort, &dwCommModemStatus);

II Set the indicator lights.
SetLightIndicators (dwCommModemStatus);

return 0;

1***

PortClose (HANDLE hCommPort)

***1
BOOL PortClose (HANDLE hCommPort)
{

DWORD dwError;

if (hCommPort != INVALID_HANDLE_VALUE)
{

II Close the communication port.
if (!CloseHandle (hCommPort»
{

dwError = GetLastError ();
return FALSE;

else
{

hCommPort = INVALID_HANDLE_VALUE;
return TRUE;

return FALSE;

CHAPTER 3

Telephony API

To simplify the process of using a modem, Windows CE provides an
implementation of the Microsoft Telephony API (T API).

27

Using TAPI functions included with Windows CE, you can create an application
that enables a user to make a phone call by choosing a phone number or choosing
an image. A user can set up a conference call, or connect using a modem, to a
remote host computer to download data at predetermined times.

TAPI supports outbound calls and address translation services. Windows CE does
not support inbound calls. T API also supports installable service providers.

The following sections discuss T API for Windows CE, the telephony
programming model, and TAPI code examples. Also discussed is use of the TAPI
in Windows CE-based applications used with a modem.

TAPI and the OSI Model
In the International Organization for Standardization Open Systems
Interconnection (lSOIOSI) model for network communications, T API operates at
the data-link layer. TAPI functions provide basic support fOF outbound dialing and
controlling a modem.

28 Windows CE Communications Guide

The following illustration shows T API within the context of the ISO/OSI model.

Application
layer

Presentation
layer

Session
layer

Network
layer

Data-link
layer

Physical
layer

Application

Other TSPs Unimodem

T API is an open industry standard and is independent of switches, so applications
can run on a variety of computers, telephony hardware, and support network
services. TAPI is part of the Windows Open System Architecture that creates a
hardware-independent work environment. Telephony Service Provider Interface
(TSPI) enables developers to create telephony service applications that handle
function calls from remote applications to carry out and control communications
over the telephone network. In Windows CE, T API links to and calls TSPI
functions using standard dynamic-link library (DLL) functions.

Chapter 3 Telephony API 29

Telephony Service Provider Interface
Windows CE supports TSPI, a DLL that provides communication services over a
telephone network through a set of exported functions called by T API. The Tspi.h
header file should only be used in conjunction with the Tapi.h header file. Most
parameters are passed through from corresponding procedures in Tapi.h.

The TSPI is responsible for managing the data from TAPI to control line and
phone devices.

T API supports the lineAddProvider function, which installs a new TSPI into the
telephony system. When an application calls this function, T API verifies that it
can access the service provider. If the function fails, or the DLL or the service
provider cannot be found, the provider is not added to the telephony system. If the
function succeeds, and the system is active, TAPI starts the new service provider
DLL.

When a Windows CE-based application calls a TAPI function, the T API DLL
validates and arranges function parameters and forwards them to the appropriate
service provider. A service provider can provide different levels of the service
provider interface: basic, supplementary, or extended. For example, a simple
service provider might provide basic telephony service, such as support for
outbound calls, through a Hayes-compatible modem. A custom service provider,
written by a third-party vendor, might provide a full range of outbound call
management.

A user can install any number of service providers on a computer as long as the
service providers do not attempt to access the same hardware device at the same
time. A user associates the hardware and the service provider when they install.
Some service providers may be capable of accessing multiple devices. In some
cases, a user might need to install a device driver along with the service provider.

Applications use the TAPI functions to determine which services are available on
the device. TAPI identifies available service providers and the services supported,
and provides this data to applications. In this way, any number of applications can
request services from the same service provider; T API manages all access to the
service provider.

For more information about TSPI and service providers, see the Microsoft TSPI
Programmer's Reference available on the Microsoft Developer Network (MSDN).

30 Windows CE Communications Guide

TAPI Functions
The Tapi.dll module exports the T API functions used to develop T API client
applications, such as outbound dialing telephony applications. TAPI functions and
structures are defined in the Tapi.h header file.

T API functions are identified as asynchronous if they can return before making a
call to the application callback function; otherwise, they are considered
synchronous.

The following table shows the T API functions supported by Windows CEo

Function

lineAddProvider

lineClose

lineConfigDialogEdit

lineDeallocateCall

lineDrop

lineGetDevCaps

lineGetDevConfig

lineGetID

lineGetTranslateCaps

linelnitialize

lineMakeCall

lineNegotiateAPIVersion

lineOpen

lineSetCurrentLocation

lineSetDevConfig

Description

Installs a new service provider

Closes a specified line device

Displays a dialog box for a user to change configuration
data for a line device

Frees system-allocated memory related to the call after the
call has been dropped

Drops or disconnects a call

Returns the capabilities of a specified line device

Returns the default configuration of a specified line device

Retrieves a device identifier associated with the specified
open line, address, or call

Returns the address of translation capabilities

Initializes the TAPI line for use by invoking applications

Initiates outbound dialing, makes a call, and returns a
handle

Negotiates the API version

Opens a specified line device for providing subsequent
monitoring and control of the line

Sets the location used as the context for address
translation

Sets the configuration of the specified medial stream
device

Function

lineSetStatusMessages

lineShutdown

lineTranslateAddress

lineTranslateDialog

Chapter 3 Telephony API 31

Description

Specifies the status change on the line device or its
addresses for which the application is notified

Shuts down T API

Translates a specified address into a string fonnat capable
of being dialed

Displays a dialog box enabling a user to change the
current location of a phone number to be dialed

Note All T API functions return zero to signal success.

Callback Function
To receive status notices, the application must implement a T API
IineCallbackFunc function to establish a way to communicate with TAPI. The
callback function is used for notifying applications of changes in the status of
calls, lines, and phone devices. T API uses the callback function to send messages
to an application.

For example, the LINE_REPLY message, sent to the Windows CE-based
application, carries the request identifier and an error indicator. Only the
application that issued the request receives the reply message, but when the
request causes changes in the device state or call, other related applications might
also receive event-related messages through the callback function.

Modem Support
Windows CE includes a telephony service provider (TSP) for an AT command
based modem. A Unimodem driver is included with Windows CEo Other TSPs
can be written by an independent software vendor.

It is important to remember that a driver is a separate DLL and not part of T API.
The modem driver translates TAPI function calls into AT commands to configure
and dial modems. TAPI manages the application's use of devices, ports, and call
traffic.

If you decide to write an application that enables a user to select and dial a phone
number through a dialog box, a modem must be attached or built into the device.
A user also needs a telephone set connected to the modem. If the Windows CE
based application dials for a user, a user needs to use the phone and talk through
the microphone.

The Unimodem file included with Windows CE is called Unimodem.dll. This file
is included in the device ROM.

32 Windows CE Communications Guide

Creating a Plug and Play Device Identifier
A modem needs to have a Plug and Play identifier to enable the OS to recognize
the device so that it can load the appropriate software. Each device manufacturer
is responsible for assigning the Plug and Play identifier for each product and
storing it in the hardware. Refer to the relevant Plug and Play specification to
determine how to include the identifier in the hardware.

For modem manufacturers, it is important to follow the Plug and Play
specifications and implement a unique device identifier to ensure that it works
with Windows CEo A Plug and Play identifer usually consists of:

• A three-character vendor identifier.

• A four-digit product identifier; for example, XYZ1234.

For a modem, the Plug and Play identifier syntax is CompanyName-ModeIName
Checksum.

Modem Registry Keys
The following section describes data stored in specific modem registry keys that
help advanced users correct problems with the commands Windows CE uses to
control a modem.

Modem registry keys are stored under the following key.

HKEY _LOCAL_MACHINE\Drivers\PCMCIA \CompanyX-GenericModem-
1234\

Each installed modem uses one registry key; additional subkeys, which contain
A T commands that Windows CE uses to initialize and dial the modem, plus other
entries that communications and modem drivers use.

Some of the more important entries you can use to correct or optimize modem
operation are described in the following sections. The full set of modem registry
keys are documented in the Windows CE Device Driver Development Kit.

Chapter 3 Telephony API 33

GenericModem Key
The following table shows the registry settings for
HKEY _LOCAL_MACHINE\Drivers\PCMCIA \CompanyX-GenericModem-
1234\.

Registry key

Tsp

DeviceArray Index

Prefix

DII

FriendlyName

DeviceType

ResetDelay

DevConfig

Description

Provides the TSP name that
services this port

Driver-specific

Device prefix

Serial.dll

Name displayed to a user by
the TAP! applications

Device type

Optional value

Unimodem-specific data

Example

Usually Unimodem.dll.

Always 1 for version 1 PC Card
devices.

Normally "COM" for PC Card
devices.

n1a

n1a

Always 3 for version 1 PC Card
devices.

Specifies a number of
milliseconds of delay used
during the PC Card reset
sequence. Most modems do not
require this value; some
modems need more than the
PC-Card specified reset delay.
For such modems, specify an
appropriate value here.

This is a binary structure
indicating the serial device
capabilities: baud, parity, and so
on. Not published. Use the
default case.

34 Windows CE Communications Guide

Init Key
The \lnit sequence in HKEY _LOCAL_MACHINE\Drivers\PCMCIA \
CompanyX-GenericModem-1234\Init is an enumerated sequence of strings used
to initialize the modem. There can be any number of Init strings. Unimodem steps
through them in sequence, sending the Init string to the modem and waiting for an
"OK" response before continuing to the next command in the sequence. The name
of each entry is its sequence number, starting with the number 1, and its data is
the command that is sent to the modem. Usually, the Init key entry 1 is AT<cr>,
which is sent to the modem to start it. Init key entry 2 usually contains &F or a
similar command to restore the modem to its default settings. Subsequent Init key
entries contain miscellaneous commands to configure the modem to maintain
compatibility with Windows CEo

Settings Key
The Settings key contains commands for configuring various modem settings.
The following table shows the registry settings for
HKEY _LOCAL_MACHINE\Drivers\PCMCIA \CompanyX-GenericModem-
1234\settings.

Registry key

MaxCmd

Prefix

Terminator

DialPrefix

DialSuffix

Description Example

Maximum command length. 40

Modem command prefix. AT

Configuration command suffix; <CD

added to the end of any command
sequences sent to the modem by
Unimodem.

Prefix for any dial commands. D

Extend a dialing string across <;>
multiple commands. Unimodem
breaks long dial commands into
approximately 40 char strings
because many modems cannot
handle longer commands. This
suffix char is used to indicate to .
the modem that the dial sequence
is continued in the next command.

Chapter 3 Telephony API

Registry key Description Example

Pulse Dial prefix used for pulse dialing, P
such as ATDP.

Tone Dial prefix used for tone dialing, T
such as ATDT.

Blind_Off Detect dial tone before dialing. X4

Blind_On Detect dial tone before dialing. X3, See Blind_Off.

Call Setup Fail Timeout Call time-out register. S7=<#>

Reset Reset modem. ATZ<Cf>

FlowHard Enable hardware flow control. AT\Q3<cf>

FlowSoft Enable software flow control. AT\Q1 <Cf>

FlowOff Disable all flow control. AT\Q<cf>

Example of Registry Key Settings
The following is an example that uses a fictitious modem with the CompanyX
GenericModem-1234 identifier. For an actual modem, this string would have to
be replaced with the Plug and Play identifier syntax: CompanyName
ModeIName-Checksuffi.

For efficiency, Unimodem supports a default for many of these values. If no
specified modem value exists, Unimodem attempts to read that value from a
default set of registry values.

The following code example is an example of registry key settings.

[HKEY_LOCAL_MACHINE\Drivers\PCMCIA\CompanyX-GenericModem-1234]
"Tsp"="Unimodem.dll"
"DeviceArraylndex"=dword:1

. "Prefix"="COM"
"Dll"~"Serial.dll"

"FriendlyName"="Motorola Montana 28.8"
"DeviceType"=dword:3
"ResetDelay"=dword:800

35

"DevConfig"=hex: 10.00. 00.00. 78.00.00.00. 10.01.00.00. 00.4B.00.00.
00.00. 08. 00. 00. 00.00.00.00

[HKEY_LOCAL_MACHINE\Drivers\PCMCIA\CompanyX-GenericModem-1234\Init]
"1"="AT<cr>"
"2"="ATE0V1&C1&D2<cr>"
"3"="ATS7=60M1<cr>"

36 Windows CE Communications Guide

[HKEY_LOCAL_MACHINE\Drivers\PCMCIA\CompanyX-GenericModem-1234\Settings]
"MaxCmd"=dword:28

"Prefix"="AT"
"Terminator"="<cr>"
"DialPrefix"="D"
"DialSuffix"=";"
"Pulse"="P"
"Tone"="T"
"Blind_Off"="X4"
"Blind_On"="X3"
"CallSetupFailTimeout"="S7=<II>"
"Reset"="ATZ<cr>"
"FlowHard"="AT\03<cr>"
"FlowSoft"="AT\Ol<cr>"
"FlowOff"="AT\O<cr>"

Creating a TAPI Application
T API consists of functions that provide access to the telephone network. The
application can consist of dialog boxes and have an interactive interface so that a
user can easily dial a phone number.

Using a Modem
A Windows CE-based application that uses a modem must be able to handle tasks
such as dialing a phone number, initializing the modem, opening the line, and
disconnecting when the session is complete.

~ To make a modem connection using TAPI

1. Call1ineInitialize to initialize T API.

2. Call1ineOpen to open the line.

3. Call1ineMakeCall.

4. Call1ineDeallocateCall.

5. Call1ineClose to close the line connection.

6. Call1ineShutdown to end the session.

The lineInitialize function returns the number of line devices available. The
pointer to the application callback function must be provided so that T API can
return data.

Chapter 3 Telephony API 37

When the call is set up, T API returns a LINE_REPLY message through the
callback function. This message indicates only that the call has been established at
the local end, which is perhaps indicated by a dial tone. The parameters for the
IineMakeCall function are the phone number to dial, the handle to a line device,
and other parameters. LINE_CALLSTATE messages are sent to indicate the
status of the call, such as the following states: dialing, proceeding, ring-back, and
connected.

As the connection process proceeds, TAPI returns a series of LINE_CALLS TATE
messages through the callback function to indicate the progress of the connection;
for example, dial tone and ringing. When the connection is completed, T API
returns a LINECALLSTATE_CONNECTED message.

During data transfer, TAPI continues to manage the connection, but the
application handles data transmission and reception. When the transmission is
complete, TAPI returns a LINE_CALLS TATE message, such as one indicating
that a remote disconnect has occurred.

Telephony System
Telephony system capabilities help people get the most from telecommunications
systems, enabling them to efficiently manage voice calls and control data-transfer
operations. You can use T API to bring this efficiency to any Windows CE-based
application, such as a database manager, spreadsheet, word processor, or personal
information manager-in fact, any application that can benefit by sending and
receiving data through the telephone network.

T API provides a set of tools for incorporating these features into your application:

• Connect directly to the telephone network rather than rely on a separate
communications application

• Dial phone numbers automatically

• Transmit documents as files or electronic mail

• Access data from news retrieval and other information services

Li ne Devices
A line device is a physical device such as a modem, or an ISDN card connected to
a telephone line. Line devices support telephone functions by supporting
applications to send or receive data to or from a telephone network. A line device
may consist of a set of one or more similar lines used to establish telephone
network connections. In T API applications, a line device is the logical
representation of a physical line device.

38 Windows CE Communications Guide

TAPI requires that every TAPI-capable line device support Basic Telephony. If an
application needs to use capabilities beyond those of Basic Telephony-namely
Supplementary Telephony or Extended Telephony-it must first determine the
line device capabilities, which can vary according to network configuration (client
versus client/server), hardware, service-provider software, and the telephone
network. The lineNegotiateAPIVersion function enables the application to
identify the line device capabilities. The lineGetDevCaps function returns the
telephone device capabilities implemented through the use of the TAPI functions
of a specific line device in a data structure of the type LINEDEVCAPS.

Media Stream
The media stream consists of the data exchanged during a call. T API only
provides control for line and telephone devices and does not give access to media
stream content. To manage the media stream, a Windows CE-based application
can use other APls, Wave Audio, or Media Control Interface (MCI).

In the same manner, the media stream in a speech call-where speech refers
exclusively to human speech-is produced and controlled not by TAPI, but by
one hum·an talking to another. However, the line on which that call is established
and monitored, and the call itself, remain in control of the T API application.
Speech is considered to be any signal that can travel by way of a 3.1 kilohertz
(kHz) channel.

Initializing TAPI
When initializing TAPI', the application must establish a way to communicate
between a Windows CE-based application and TAP!. An application tells T API
the address of the callback function in the call to the lineInitialize function.

The lineInitialize function initializes the application's use of Tapi.dll for
subsequent use. It registers the application-specific notification mechanism and
returns the number of line devices available to the application.

The following code example shows how to initialize Tapi.dll.

DWORD InitializeTAPI ()
{

DWORD dwLineID.
dwReturn.
dwTimeCount = GetTickCount ();

TCHAR szWarning[] = TEXT("Cannot initialize the application's use\n")
TEXT("of tapi .dll. Quit all other telephony\n")
TEXT("programs. and then try aga in.");

Chapter 3 Telephony API 39

II Initialize Tapi .dll. Keep trying until the user cancels or
II the application stops returning LINEERR_REINIT.
while ((dwReturn = linelnitialize (&g_hLineApp.

}

g_hlnst.
(LINECALLBACK) lineCallbackFunc.
g_szAppName.
&g_dwNumDevs» == LINEERR_REINIT)

II Display the message box if five seconds have passed.
if (GetTickCount () > 5000 + dwTimeCount)
{

if (MessageBox (g_hwndMain. szWarning. TEXT("Warning").
MB_OKCANCEL) == lOOK)

break;

II Reset the time counter.
dwTimeCount = GetTickCount ();

II If the linelnitialize function fails. then return.
if (dwReturn)

return dwReturn;

II If there is no device. then return.
if (g_dwNumDevs == 0)
{

ErrorBox (TEXT("There are no line devices available."»;
return LINEERR_NODEVICE;

II Allocate a buffer for storing LINEINFO for all the available lines.
if (! (g_lpLinelnfo = (LPLINEINFO) LocalAlloc (

LPTR.
sizeof (LINEINFO) * g_dwNumDevs»)

return LINEERR_NOMEM;

II Get the line data such as line name. permanent identifier.
II and number of available addresses on the line by calling
II the GetLinelnfo function.
for (dwLineID = 0; dwLineID < g_dwNumDevs; ++dwLineID)
{

GetLinelnfo (dwLineID. &g_lpLineInfo [dwLineID]);

return ERR_NONE;

40 Windows CE Communications Guide

The following are the variables used in the previous function, and in code
examples that follow.

HINSTANCE g_hInst = NULL;
HWND g_hwndMain NULL;
HWND g_hwndDial = NULL;

II hInstance of the application
II Handle to the main window
II Handle to the dialing window

TCHAR g_szTitle[] = TEXT("CeDialer");
II CeDialer application window name

TCHAR g_szAppName[] = TEXT("CeDialer Application");
II Main window class name

HLINEAPP g_hLineApp NULL; II Applications use handle for TAPI
II (lineInitialize)

HCALL g_hCall = NULL; II Handle to the open line device on
II which the call is originated
II (lineMakeCall)

LONG g_MakeCallRequestID = 0; II Request identifier returned by
IllineMakeCall.

LONG g_DropCallRequestID = 0; II Request identifier returned by
II lineDrop.

BOOL g_bCurrentLineAvail = TRUE;II Indicates line availability

TCHAR g_szCurrentNum[TAPIMAXDESTADDRESSSIZE + 1];
II Current phone number

TCHAR g_szLastNum[TAPIMAXDESTADDRESSSIZE + 1];
II Last called phone number

DWORD g_dwNumDevs = 0; II Number of line devices available
DWORD g_dwCurrentLineID = -I; II Current line device identifier
DWORD g_dwCurrentLineAddr = -I; II Current line address

LINEINFO g_CurrentLineInfo;
LINEINFO *g_lpLineInfo = NULL;

II Contains the current line data
II Array that contains data for all
II lines

/ldefine InfoBox(_s) MessageBox (g_hwndMain, _s, TEXT("Info"), MB_OK)
/ldefine ErrorBox(_s) MessageBox (g_hwndMain, _s, TEXT("Error"), MB_OK)

/ldefine ERR_NONE 0
/ldefine TAP I_V ERS ION 1 0 0x00010003
/ldefine TAPI_VERSION_1_4 0x00010004
/ldefine TAPI_VERSION_2_0 0x00020000
/ldefine TAPI_CURRENT_VERSION TAPI_VERSION 2 0

typedef struct tagLINEINFO
{

HLINE hLine;
BOOL bVoiceLine;
DWORD dwAPIVersion;
DWORD dwNumOfAddress;
DWORD dwPermanentLineID;
TCHAR szLineName[256];
LINEINFO. *LPLINEINFO;

Getting and Opening a Line

Chapter 3 Telephony API 41

II Line handle returned by lineOpen
II Indicates if the line is a voice line
II API version that the line supports
II Number of available addresses on the line
II Permanent line identifier
II Name of the line

When a Windows CE-based application is initialized using the lineInitialize
function, a user needs to call a phone number and get an available line using the
lineOpen function. The application can provide a dialog box for a user to enter
the phone number of their choice.

Each call from a Windows CE device is identified by a call handle. A call handle
provides a pointer to a value to identify a specific call. TAPI assigns call handles
as required. One call handle exists for every call owned by an application. Certain
TAPI functions create new calls. As they do so, they return new call handles to
the application.

A line may have different capabilities; and to determine these capabilities, the
application should call the lineGetDevCaps function. The function fills in the
LINEDEVCAPS structure, which the telephone service provider defines. The
size of the structure might be different for different service providers; therefore,
the application must check to see if the buffer size is adequate. To check if the
amount of space supplied for the structure is sufficient for the size of the structure
of the provider, compare the dwNeededSize and dwTotalSize fields. If the total
size is too small, the application needs to pass a larger buffer to the function.

The lineNegotiateAPIVersion function indicates which version of TAPI the
application supports, and negotiates which API version number TAPI should use.
The reason for negotiating the T API version is to be sure that the correct protocol
is used. New versions might define new features, new fields to data structures, and
so on. Version numbers therefore indicate how to interpret various data,
structures, and messages. If version ranges do not match, the application and API
or service provider versions are incompatible and an error is returned.

When the function succeeds, the line data such as permanent identifier, number of
addresses, and line name, can be obtained from the LINEDEVCAPS structure.

42 Windows CE Communications Guide

The following code example shows how to open a line.

DWORD GetLineInfo (DWORD dwLineID, LPLINEINFO lpLineInfo)
{

DWORD dwSize,
dwReturn;

LPTSTR lpszLineName = NULL;
LPLINEDEVCAPS lpLineDevCaps = NULL;

II Negotiate the API version number. If it fails, return to dwReturn.
if (dwReturn = lineNegotiateAPIVersion (

{

}

g_hLineApp, II TAPI registration handle
dwLineID, II Line device to be queried
TAPI_VERSION_l_0, II Least recent API version
TAPI_CURRENT_VERSION, II Most recent API version
&(lpLineInfo-)dwAPIVersion), II Negotiated API version
NULL» II Must be NULL; the provider

II specific extension is not
II supported by Windows CEo

goto exit;

dwSize = sizeof (LINEDEVCAPS):

II Allocate memory for lpLineDevCaps.
do
{

if (!(lpLineDevCaps = (LPLINEDEVCAPS) LocalAlloc (LPTR, dwSize»)
{

}

dwReturn = LINEERR_NOMEM:
goto exit:

lpLineDevCaps-)dwTotalSize = dwSize:

if (dwReturn = lineGetDevCaps(g_hLineApp,

{

goto exit:
}

dwLineID,
lpLineInfo-)dwAPIVersion,
0,
1 pLi neDevCaps»

Chapter 3 Telephony API 43

II Stop if the allocated memory is equal to or greater than the
II needed memory.
if (lpLineDevCaps-)dwNeededSize <= lpLineDevCaps-)dwTotalSize)

break;

dwSize = lpLineDevCaps-)dwNeededSize;
LocalFree (lpLineDevCaps);
lpLineDevCaps = NULL;

while (TRUE);

II Store the line data in *lpLinelnfo.
lpLinelnfo-)dwPermanentLineID = lpLineDevCaps-)dwPermanentLineID;
lpLinelnfo-)dwNumOfAddress = lpLineDevCaps-)dwNumAddresses;
lpLinelnfo-)bVoiceLine =

(lpLineDevCaps-)dwMediaModes & LINEMEDIAMODE_INTERACTIVEVOICE);

II Allocate memory for lpszLineName.
if (!(lpszLineName = (LPTSTR) LocalAlloc (LPTR, 512)))
{

dwReturn = LINEERR_NOMEM;
goto exit;

II Store the line name in *lpszLineName.
if (lpLineDevCaps-)dwLineNameSize)= 512)
{

}

wcsncpy (
lpszLineName,
(LPTSTR)«LPSTR)lpLineDevCaps + lpLineDevCaps-)dwLineNameOffset),
512) ;

else if (lpLineDevCaps-)dwLineNameSize) 0)
{

wcsncpy (
lpszLineName,

}

else

(LPTSTR)«LPSTR)lpLineDevCaps + lpLineDevCaps-)dwLineNameOffset),
lpLineDevCaps-)dwLineNameSize);

wsprintf (lpszLineName, TEXT("Line %d"), dwLineID);

II Copy lpszLineName to lpLinelnfo-)lpszLineName.
lstrcpy (lpLinelnfo-)szLineName, lpszLineName);

dwReturn = ERR_NONE;

44 Windows CE Communications Guide

exit:

if (lpLineDevCaps)
LocalFree (lpLineDevCaps);

if (lpszLineName)
LocalFree (lpszLineName);

return dwReturn;
}

Opening a Line and Making a Phone Call
When an application has initiated and negotiated the API, the application needs to
verify if the line is usable and ready for dialing out. The application can do this by
checking the values filled into the LINEDEVCAPS structure by calling the
IineGetDevCaps function.

To open a line device for any purpose, the application calls the IineOpen
function. The IineOpen function opens the specified line device and returns a line
handle to the opened line device. This line handle is used in subsequent
operations on the line device. Later, when the application is finished using the line
device, it can close it with the IineClose function.

Before it makes a telephone call, the application needs to open the line. The
IineOpen function opens and the IineClose function closes a specific T API
device.

The IineOpen function specifies:

• A handle to the application registration with TAP!.

• A value that identifies the line device to be opened. Windows CE does not
support the LINEMAPPER value for the dwDeviceID parameter.

• A pointer to a line handle loaded with the handle representing the opened
line device.

• The API version number under which the application and T API operate
compatibly. This number is obtained by calling the IineNegotiateAPIVersion
function.

• The extension version number under which the application and the service
provider operate compatibly. Windows CE does not support provider-specific
extensions. The dwExtVersion parameter should be set to zero prior to calling
IineOpen.

Chapter 3 Telephony API 45

• User-instance data passed back to the application with each message
associated with this line or with addresses or calls on this line. This parameter
is not interpreted by the Telephony API.

• The privilege the application wants for the calls it is notified for. This
parameter can be a combination of the LINECALLPRIVILEGE constants.

To place a call, the application must call the lineMakeCall function using the
LINECALLPARAMS structure. T API sends LINE_ CALLS TATE messages to
indicate the progress of the call. For example, LINE_ CALLST ATE indicates
states of connection, dialing, proceeding, and so on. The messages vary
depending on the type of call and the service provided. The application should not
be designed to one type or one special sequence of call states.

The lineMakeCall function has the following parameters:

• A handle to the open line device on which a call is originated

• A 'pointer to the handle to the call. Use this call handle to identify the call
when invoking other telephony operations on the call.

• A pointer to the destination address. This follows the standard area code and
telephone number format.

• The country code of the called party

• A pointer to a LINECALLP ARAMS structure. This structure enables the
application to specify how to set up the call. If NULL is specified, a default
3.1 kHz channel voice call is established and an arbitrary origination address
on the line is selected. This structure enables the application to select elements
such as the call bearer mode, data rate, expected media, and dialing
parameters.

After the lineMakeCall function successfully sets up the call, the application
receives a LINE_REPLY message. The callback function receives the message.
The LINE_REPLY message also informs the application that the call handle
returned by lineMakeCall is valid.

When the application has opened the line successfully, it receives a handle to the
line. The application can then use that line to make outbound calls.

46 Windows CE Communications Guide

The following code example shows how to open a line and make an outbound
call.

VOID MakePhoneCall (LPCTSTR lpszPhoneNum)
{

DWORD dwReturn,
dwSizeOfTransOut = sizeof (LINETRANSLATEOUTPUT),
dwSizeOfCallParams = sizeof (LINECALLPARAMS);

LPLINECALLPARAMS lpCallParams = NULL;
LPLINETRANSLATEOUTPUT lpTransOutput = NULL;

TCHAR szDialablePhoneNum[TAPIMAXDESTADDRESSSIZE + 1]

II Initialize g_MakeCallRequestID.
g_MakeCallRequestID = 0;

II Open the current line.
if (dwReturn = lineOpen (

{' \0'};

g_hLineApp. II Usage handle for TAPI
g_dwCurrentLineID, II Cannot use the LINEMAPPER value
&g_CurrentLineInfo.hLine, II Line handle
g_CurrentLineInfo.dwAPIVersion,

0,
0,
LINECALLPRIVILEGE_NONE,
0.
NULL>)

goto exit;

II
II
II
/I
/I
II

API version number
Set to zero for Windows CE
No data passed back
Can only make an outgoing call
Media mode
Set to NULL for Windows CE

II Call translate address before dialing.
do
{

II Allocate memory for lpTransOutput.
if (!(lpTransOutput = (LPLINETRANSLATEOUTPUT) LocalAlloc (

{

goto exit;
}

lpTransOutput->dwTotalSize = dwSizeOfTransOut;

LPTR,
dwSizeOfTransOut»)

Chapter 3 Telephony API 47

if (dwReturn = lineTranslateAddress (
g_hLineApp, II Usage handle for TAPI
g_dwCurrentLineID, II Line device identifier
g_CurrentLineInfo.dwAPIVersion,

lpszPhoneNum,
0,
0,
lpTransOutput»

goto exit;

II TAPI version supported
II Address to be translated
II Must be 0 for Windows CE
II No associated operations
II Result of the address translation

if (lpTransOutput-)dwNeededSize <= lpTransOutput->dwTotalSize)
break;

else
{

dwSizeOfTransOut = lpTransOutput-)dwNeededSize;
LocalFree (lpTransOutput);
lpTransOutput = NULL;

while (TRUE);

dwSizeOfCallParams += lpTransOutput-)dwDisplayableStringSize;

if (!(lpCallParams = (LPLINECALLPARAMS) LocalAlloc (

goto exit;

II Set the call parameters.

LPTR,
dwSizeOfCallParams»)

lpCallParams-)dwTotalSize = dwSizeOfCallParams;
lpCallParams-)dwBearerMode = LINEBEARERMODE_VOICE;
lpCallParams-)dwMediaMode = LINEMEDIAMODE_DATAMODEM;
lpCallParams-)dwCallParamFlags = LINECALLPARAMFLAGS_IDLE;
lpCallParams-)dwAddressMode = LINEADDRESSMODE_ADDRESSID;
lpCallParams-)dwAddressID = g_dwCurrentLineAddr;
lpCallParams-)dwDisplayableAddressSize =

lpTransOutput-)dwDisplayableStringSize;
lpCallParams-)dwDisplayableAddressOffset = sizeof (LINECALLPARAMS);

II Save the translated phone number for dialing.
lstrcpy (szDialablePhoneNum, (LPTSTR)«LPSTR)lpTransOutput + \

lpTransOutput-)dwDisplayableStringOffset»;

48 Windows CE Communications Guide

II Set the cursor as the wait cursor.
SetCursor (LoadCursor (NULL. IDC_WAIT»;

II Make the phone call. lpCallParams should be NULL if the default
II call setup parameters are requested.
g_MakeCallRequestID = lineMakeCall (g_CurrentLinelnfo.hLine.

&g_hCa 11 •
szDialablePhoneNum.

II Set the cursor back to an arrow.
SetCursor (0);

if (g_MakeCallRequestID > 0)
{

g_bCurrentLineAvail = FALSE;

DialogBoxParam (g_hlnst.

0.
1 pCa 11 Pa rams) ;

MAKEINTRESOURCE(IDD_DIALING).

else
{

g_hwndMain.
(DLGPROC) DialingProc. 0);

ErrorBox (TEXT(" Fa i 1 ed in rna ki ng the phone ca 11. function")
TEXT("\nlineMakeCa11 failed."»;

CurrentLineClose ();

exit

if (lpCallParams)
LocalFree (lpCallParams);

if (lpTransOutput)
LocalFree (lpTransOutput);

II If the make call did not succeed. but the line was opened.
II then close it.
if «g_MakeCallRequestID <= 0) && (g_CurrentLinelnfo.hLine»

CurrentLineClose ();

return;

Chapter 3 Telephony API 49

Opening One or More Lines
If several lines are available, a Windows CE-based application can open one or
more telephone lines for outbound calls. The lineGetDevCaps function queries a
specified line device to determine its capabilities. The data returned is valid for all
line device addresses. This function determines if the line supports functions that
are required in order for calls to be made.

An application can open several instances of a line; in other words, an application
can obtain more than one handle to the same line. After a line is selected, the
application uses the lineOpen, function to open the specified line.

Using the Callback Function
The callback function processes messages or notifications that T API sends to the
application. Various information is available from the LINE_CALLS TATE
message, such as that the call is receiving a dial tone from the switch or the call is
receiving a busy signal, as well as other data sent by the network. A phone call
passes through different stages during a session, and the application can display
the result from the LINE_CALLS TATE message in a dialog box.

The following code example shows how to process LINE_CALLS TATE
messages in the lineCallbackFunc function.

II This code sample shows only part of the callback function.

LPTSTR lpszStatus;

case LINE_CALLSTATE:

II If the CALLSTATE does not apply to the call in progress, return.
if (g_hCall != (HCALl) hDevice)

return;

II dwParaml is the specific CALLSTATE change occurring
switch (dwParaml)
{

case LINECALLSTATE DIALTONE:
lpszStatus = TEXT("Dial tone");
break;

case LINECALLSTATE DIALING:
lpszStatus = TEXT("Dialing");
break;

50 Windows CE Communications Guide

case LINECALLSTATE PROCEEDING:
1 pszStatus = TEXT("Di ali ng has completed and the ca 11 ")

TEXT("is in proceeding");
break;

case LINECALLSTATE RINGBACK:
1 pszStatus = TEXT("Ri ng back");
break;

case LINECALLSTATE CONNECTED:
lpszStatus = TEXT("Connected");
break;

case LINECALLSTATE_DISCONNECTED:

LPTSTR lpszDisconnected;

switch (dwParam2)
{

}

case LINEDISCONNECTMODE_NORMAL:
lpszDisconnected = TEXT("Remote party disconnected");
break;

case LINEDISCONNECTMODE_UNKNOWN:
lpszDisconnected = TEXT("Disconnected: Unknown reason");
break;

case LINEDISCONNECTMODE REJECT:
1 ps zDi s connected = TEXT(" Remote Pa rty rej ected ca 11 ") ;
break;

default:
1 pszDi sconnected TEXT("Di sconnected: Unknown reason");
break;

ErrorBox (lpszDisconnected);
II Insert code here to close the current open line device.
I I ...
break;

break;

Chapter 3 Telephony API 51

Address Translation
A telephone number might have to be converted or translated into a dialable
address format. For example, an application can help a user to avoid dialing the
wrong number. The application can call a function and display a dialog box for a
user to change or confirm the number. Another example might be when a call
placed to a different area code is not a long-distance phone call. Some calls placed
to another exchange prefix within the same area code are long distance and
require that a 1 be added before dialing. The lineTranslateDialog function
displays a dialog box where a user can change the current phone number and
adjust the location and see the effect on a phone number to be dialed.

Following the call to lineTranslateDialog, the application must call the
lineGetTranslateCaps function to save any changes a user made to the telephony
address translation parameters, and then call1ineTranslateAddress to obtain a
dialable string based on the new user selections.

The following code example shows how to use the lineTranslateDialog and
lineGetTranslateCaps functions.

DWORD dwCounter.
dwSizeTranslateCaps;

LPLINELOCATIONENTRY lpLocationEntry;
LPLINETRANSLATECAPS lpLineTranslateCaps;

II Display the modal dialog box to adjust the location.
lineTranslateDialog (g_hLineApp.

g_dwCurrentLineID.
g_CurrentLineInfo.dwAPIVersion.
hwnd.
NU Ll) ;

dwSizeTranslateCaps = sizeof (LINETRANSLATECAPS);

II Allocate memory for lpLineTranslateCaps.
do
{

if (!(lpLineTranslateCaps (LINETRANSLATECAPS*) LocalAlloc(
LPTR. dwSizeTranslateCaps)))

return FALSE;

lpLineTranslateCaps->dwTotalSize = dwSizeTranslateCaps;

if (lineGetTranslateCaps (g_hLineApp.
g_CurrentLineInfo.dwAPIVersion.
lpLineTranslateCaps))

52 Windows CE Communications Guide

LocalFree (lpLineTranslateCaps);
return FALSE;

if (lpLineTranslateCaps->dwNeededSize <=
lpLineTranslateCaps->dwTotalSize)

break;
else

{

dwSizeTranslateCaps = lpLineTranslateCaps->dwNeededSize;
LocalFree (lpLineTranslateCaps);
lpLineTranslateCaps = NULL;
}

while (TRUE);

lpLocationEntry = (LPLINELOCATIONENTRY)
«LPBYTE)lpLineTranslateCaps +
lpLineTranslateCaps->dwLocationListOffset);

II Find the selected location.
for (dwCounter = 0;

dwCounter < lpLineTranslateCaps->dwNumLocations;
dwCounter++)

if (lpLocationEntry[dwCounter].dwPermanentLocationID
lpLineTranslateCaps->dwCurrentLocationID)

break;

II Error occurred in finding the selected location.
if (dwCounter == lpLineTranslateCaps->dwNumLocations)
{

LocalFree (lpLineTranslateCaps);
retu rn FALSE;

II Save the location name, country, and area code data.
wsprintf (g_szLocationName,

(LPTSTR)«LPSTR)lpLineTranslateCaps +
lpLocationEntry[dwCounter].dwLocationNameOffset));

wspri ntf (g_szCount ryCode, TEXT("%1 d") ,
lpLocationEntry[dwCounter].dwCountryCode);

Chapter 3 Telephony API 53

wsprintf (9_szAreaCode.
(LPTSTR)«LPSTR)lpLineTranslateCaps +
lpLocationEntry[dwCounter].dwCityCodeOffset));

LocalFree (lpLineTranslateCaps);
return TRUE;

The lineTranslateAddress function examines the registry settings to find the user
location, including the country and area code. It then produces a valid dialing
sequence by removing unnecessary portions of the number-such as the country
code or area code-and adding other digits such as a long-distance prefix or a
digit used to dial out of a local private branch exchange.

Ending a Call and Shutting Down TAPI
When a user ends the call, the application should disconnect and terminate the call
with lineDrop. The lineDrop function can also be used to drop a call in progress.

When the application receives the LINE_CALLSTATE message indicating that
the call has ended, the handle should be released before finishing the
lineDeallocateCall function.

~ To drop a line

1. Call the lineDrop function.

2. Free memory with the lineDeallocateCall function.

The following code example shows how to use the lineDrop and
lineDeallocateCall functions.

9_DropCall RequestID = 1 ineDrop (9_hCall. NULL. 0);
lineDeallocateCall (9_hCall);

Deallocating a call handle means that the system must free system-allocated
memory related to the call after the call has been dropped. The application must
call1ineDeallocatedCall to free allocated memory.

To finally close the line, the application should call1ineClose. After the line has
closed successfully, the handle is no longer valid.

54 Windows CE Communications Guide

~ To close a line

1. Cancel the call using lineDrop.

2. Close the open line using lineClose.

3. Reinitialize the variables.

The following code example shows how to use line Close to close the current line.

VOID CurrentLineClose ()
{

}

II Close the current line.
if (9_CurrentLineInfo.hLine)

lineClose (9_CurrentLineInfo.hLine);

II Reinitialize the variables.
9_CurrentLineInfo.hLine = NULL;
9_bCurrentLineAvail = TRUE;
9_hCall = NULL;

The lineShutdown function completely disconnects the application from T API. If
lineShutdown is called when the TAPI application has lines open or calls active,
the calls are closed and the line is shut down.

~ To disconnect TAPI from the application

• Call1ineShutdown to disconnect T API from the application.

The following code example shows how to use lineShutdown to disconnect.

lineShutdown (9_hLineApp):

55

CHAPTER 4

Remote Access Service

Overview

To access network resources from a remote location, a Windows CE-based device
requires the ability to connect and communicate with a remote host computer.
After the connection is established, the client can upload and download files.

The Windows CE OS includes a router, Remote Access Service (RAS), a
Windows-based application which connects a remote device, known as a client, to
a host computer, here known as a remote access server. Applications using RAS
are usually executed on the client and connect to the remote access server by way
of the telephone network, using two standard remote access protocols, point-to
point protocol (PPP) and Serial Line Internet Protocol (SLIP).

A Windows CE-based device running RAS uses PPP to connect to a remote
access server. PPP is a set of industry standard framing and authentication
protocols that enable remote access. Windows CE uses dial-up networking for
connecting to a remote access server.

Windows CE-based applications using RAS can link to Coredll.lib to resolve
RAS API entry points, the proper method for a device build, or link to the NT
RAS API set, Rasapi32.lib.

While most standard Windows-based desktop platform RAS functions are
supported by Windows CE, only one point-to-point connection at a time is
possible. Two connection types are direct serial and dial-up.

RA5 and the 051 Model
RAS operates in the upper layers of the International Organization for
Standardization Open Systems Interconnection (ISO/OSI) model for network
communications. In Windows CE, RAS supports only IP-based protocols.

56 Windows CE Communications Guide

The following illustration shows RAS in relation to other Windows CE
communications protocols within the context of the ISO/OSI model.

Presentation
layer

Session
layer

Network
layer

Physical
layer

Unimodem

When creating an application requiring a connection to a remote access server,
use Windows CE RAS functions to manipulate the transport layer of the selected
Windows CE-based device.

Remote Access Service Functions and Structures
RAS functions are used to establish a connection with a remote access server. The
functions and structures enable developers to create custom remote Windows CE
based applications that can establish a remote connection, use network resources,
and reconnect in the event of a communications link failure.

Chapter 4 Remote Access Service 57

Functions
The following table shows the RAS functions supported by Windows CEo

Function

RasDeleteEntry

RasDial

RasEnumConnections

RasEnumEntries

RasGetConnectStatus

RasGetEntry DialParams

RasGetEntry Properties

RasHangUp

RasRenameEntry

RasSetEntryDialParams

RasSetEntryProperties

RasValidateEntryName

Description

Deletes a phone-book entry in the registry.

Establishes a RAS connection.

Lists active RAS connections and returns each connection
handle and phone-book entry name.

Lists all registry phone-book entry names.

Retrieves the current specified remote access connection
status. An application can use this call to determine when a
RasDial call has completed.

Retrieves connection data saved by the last successful call
to the RasDial or RasGetEntryDialParams function for a
specified phone-book entry.

Retrieves phone-book entry properties.

Terminates a RAS connection. The connection is specified
with a RAS connection handle. RasHangUp releases all
resources associated with the handle.

Changes a phone-book entry name.

Changes connection data saved by the last successful call to
the RasDial function or the RasGetEntryDialParams
function for a specified phone-book entry.

Changes the connection data for a phone-book entry or
creates a new phone-book entry.

Validates the format of a connection entry name. The entry
name must contain at least one non-white-space
alphanumeric character.

58 Windows CE Communications Guide

Structures
The following table shows the RAS structures supported by Windows CEo

Structure

RASCONN

RASCONNSTATE

RASCONNSTATUS

RASDIALPARAMS

RASENTRY

RASENTRYNAME

Synchronous Operations

Description

This structure provides remote access connection data. The
RasEnumConnections function returns an array of
RASCONN structures.

This enumeration type contains values that specify
connection states that may occur during a RAS connection
operation.

This structure describes the current status of a remote access
connection. It is returned by the RasGetConnectStatus
function.

This structure contains parameters used by the RasDial
function to establish a connection to a remote access server.

This structure describes a phone-book entry. The
RasSetEntryProperties function and the
RasGetEntryProperties function use this structure to set
and retrieve phone-book entry properties.

This structure contains an entry name from a remote access.
phone book. The RasEnumEntries function returns an array
of RASENTRYNAME structures.

Synchronous mode provides a simple way for a client to establish a connection.
When RasDial is invoked as a synchronous operation, the function does not
return until the connection is established or an error occurs. The client application
can call RasDial, wait for the function to return, and then call the
RasGetConnectStatus function to determine if the connection operation was
successful. When the connection is established, the client application can
terminate without closing the connection. If an error occurs, it must close the
connection before temiinating.

The disadvantage of synchronous mode is that the client does not receive progress
notifications of the current connection operation state. As an alternative, a
synchronous-mode client application can use a separate thread that calls
RasGetConnectStatus to poll for and display the current state. However, for
client applications that require progress data, the preferred technique is to invoke
RasDial asynchronously.

Chapter 4 Remote Access Service 59

Asynchronous Operations
When RasDial is invoked as an asynchronous operation, the function returns
immediately. In asynchronous mode, the RasDial call must specify a notification
handler that RAS uses to inform the client application when the connection
operation state changes or an error occurs.

RAS makes its asynchronous notifications in the context of the thread that made
the RasDial call. Therefore, the calling thread must not terminate until the
connection is established or an error occurs. As in synchronous mode, the client
application can safely terminate when the connection is established, and it must
close the connection if an error occurs.

Phone-Book Files and Connection Data
A RasDial call must specify the data RAS requires to establish a connection.
Typically, the RasDial call provides the connection data by specifying a phone
book entry. The connection data in a phone-book entry includes phone numbers,
bits-per-second rate, user authentication data, and other connection data.

A client application uses RasDial function parameters to specify a phone-book
file and an entry in that file. The lpszPhonebookPath parameter can specify the
name of a phone-book file, or it can be NULL to indicate that the default phone
book file should be used. The lpRasDialParams parameter points to the
RASDIALP ARAMS structure that specifies the name of the phone-book entry to
use.

To display a list of phone-book entries from which a user can select, a client
application can call the RasEnumEntries function to enumerate the phone-book
file entries.

User Authentication Data
Before authentication, the client application sends a user name and password to
the remote access server. The server uses this data to authenticate a user. It can
use the RASDIALPARAMS structure specified in the RasDial call to specify a
user name and password.

If the server cannot authenticate with the specified data, it can enable the
connection operation to enter a paused state so that the client application can
query the user for correct authentication data.

The RASDIALPARAMS structure can also specify the network domain name on
which authentication occurs.

60 Windows CE Communications Guide

Handling Errors
When an error occurs, the RAS invokes the client notification handler. The
notification includes the connection state when the error occurred and a code that
identifies the error. In these cases, the notification handler should call the
RasHangUp function to end the RAS connection.

Informational Notifications
For running states, no action is required of the notification handler unless an error
occurs. Running states occur during the connection operations that RAS handles
automatically, such as connecting to necessary devices, user authentication, and
waiting for a callback from the remote access server. The notification serves as a
progress report to the client.

The client can pass notifications to a user. In some running states, the client might
display additional information to a user. For example, a notification handler that
receives a RASCS_ConnectDevice state can call the RasGetConnectStatus
function to get the name and type of the device connected to. Another example is
when the client receives a RASCS_Projected state. This occurs when the RAS
projection phase of the connection operation is complete.

Completion Notifications
RAS continues to process notifications until connection operations are complete.
This occurs when:

• The connection is established. The handler receives a RASCS_Connected
notification. The client application can exit without closing the connection.

• An error occurs. The handler receives a notification indicating the error and
the connection state when the error occurred.

• The connection operation is interrupted by a RasHangUp function call.

Disconnecting a RAS Connection
When a client application starts a connection operation, the RasDial function call
receives an HRASCONN connection handle to identify the connection. If the
returned handle is not NULL, the client must eventually call the RasHangUp
function to end the connection. If an error occurs during the connection operation,
the client must call RasHangUp even though the connection was never
established.

Chapter 4 Remote Access Service 61

A client application might require a connection to end even though it does not
have the handle returned by RasDial. For example, the application that called
RasDial might have exited when the connection was established. In this case, the
disconnecting application can use the RasEnumConnections function to get data
on all current connections. For each connection, RasEnumConnections returns a
RASCONN structure containing the HRASCONN connection handle and the
phone-book entry name or phone number specified when the connection operation
started. This data can be used to display a list of connections from which a user
can select the connection to close.

Phone-Book Entries
Phone-book entries, stored in the registry, contain data necessary to establish a
RAS connection.

Windows CE supports a limited set of the Windows-based desktop platform
functions for working with phone-book entries. You can use the
RasGetEntryDialParams or the RasSetEntryDialParams function to set or
retrieve the connection parameters for a phone-book entry. The RasEnumEntries
function retrieves an array of RASENTRYNAME structures that contain the
phone-book entry names.

You can use the RasRenameEntry function to rename a phone-book entry, or the
RasDeleteEntry function to delete an entry. The RasValidateEntryName
function determines if a specified string has the correct format to be used as an
entry name.

You can use the RasGetEntryProperties and RasSetEntryProperties functions
to get and set additional phone-book entry data. These functions use a
RASENTRY structure.

Accessing the Internet USing a Modem
With a modem installed, a Windows CE-based device can be used to establish a
RAS connection. If your device is not equipped with a modem, a PC Card modem
or an external modem is required to use RAS. See the modem manufacturer's
installation guide.

With a device, such as the Handheld PC running Windows CE, a user can access
the Internet. Using Windows CE and RAS, a user can make an Internet Protocol
(IP) over a PPP connection to an Internet host computer.

A corporation can establish a remote access server using Windows NT with
connections, through a router, to the Internet. The server can operate isolated from
the corporate network for added security. Users can dial one number for both
Internet access and access to the corporate local area network (LAN).

62 Windows CE Communications Guide

Sample Application
This section describes and demonstrates the RAS API set. The sample application
starts a RAS connection, dials entries from the default phone book, and closes an
active connection.

Starting a RAS Connection
The files, Ppp.dll, Afd.dll, Tcpstkl.dll, and Cxport.dll, are necessary to start a
RAS connection. They are stored in the Windows directory on the Windows CE
based device. When RAS starts, it reads the registry phone-book entries. Registry
entries contain RAS entry settings, including the device used to dial, the phone
number, and other data.

~ To start a RAS connection

1 ~ Open a RAS application, such as Remote Networking.

2. Select an entry name from the list or create a new entry.

3. Enter a user name, domain, and password.

The client logs onto the remote access server and starts the connection.

In some companies, a dial-up remote access server is provided for remote access
to the corporate LAN. On a Handheld PC, connecting to a LAN by way of RAS is
similar to connecting to an Internet service provider (ISP). You dial in and log on
with a user name and password.

Connection Operation
The following section describes how to establish and terminate a connection as
well as how to retrieve connection data.

Establishing a Connection
The Windows CE RasDial function indicates a successful connection in two
ways. If RasDial makes a successful connection:

• It returns a zero, a non-zero value indicates failure.

• In addition, the function stores a handle to the RAS connection into the
variable point to by the function parameter pRasConn.

Chapter 4 Remote Access Service 63

The RasDial function must specify data so that RAS can establish the connection
from a Windows CE-based device to a remote access server. The client uses the
RasDial function parameters to specify a phone-book file and a phone-book
entry. The IpsZPhonebookPath parameter can specify the name of a phone-book
file, or it can be NULL to indicate that the default phone-book file should be used.
The IpRasDialParams parameter points to a RASDIALPARAMS structure that
specifies the phone-book entry to use. To connect, the RasDial function must
specify the data necessary to establish a connection. Typically, the RasDial call
provides the connection data by specifying a phone-book entry using the
RASDIALPARAMS structure to provide data such as phone number, user name,
domain, and password.

The connection data includes callback and user authentication data. To make a
connection, the RasDial function can specify an empty string for the
szEntryName member of the RASDIALPARAMS structure. The szPhoneNumber
member must contain the phone number to dial.

~ To use RasDial to establish a connection

1. Set the dialExtensions parameter to NULL.

2. Set the IpszPhonebook parameter to NULL. Phone-book entries are stored in
the registry rather than in a phone-book file.

3. Set the dwNotijerType parameter to OxFFFFFFFF, specifying the IpvNotifier
parameter as a handle to the window receiving progress notification messages.
If the application requires messages from RAS, the messages must be sent to a
window handle. There is no support for callback functions.

4. Set the szEntryName, szUserName, szPassword, and szDomain members of
the RASDIALP ARAM structure. Pass a pointer to this structure into
IpRasDialParam.

Note RasDial does not automatically display the logon dialog box. This is
currently done through the Remote Networking application. Your application is
responsible for getting the data from a user.

64 Windows CE Communications Guide

The following code example shows how to establish a RAS connection.

BOOL MakeRasDial (HWND hDlgWnd)
{

BOOL bPassword;
TCHAR szBuffer[100];

if (bUseCurrent)
{

II Get the last configuration parameters used for this connection.
II If the password was saved, then the logon dialog box will not be
II displayed.
if (RasGetEntryDialParams (NULL, &RasDialParams, &bPassword) 1= 0)
{

MessageBox (hDlgWnd,
TEXT("Could not get parameter details"),
szTitle,
MB_OK) ;

return FALSE;

else
{

}

II Display the Authentication dialog box.
DialogBox (hInst, MAKEINTRESOURCE(IDD_AUTHDLG), hDlgWnd,

AuthDlgProc);

II Set hRasConn to NULL before attempting to connect.
hRasConn = NULL;

II Initialize the structure.
memset (&RasDialParams, 0, sizeof (RASDIALPARAMS»;

II Configure the RASDIALPARAMS structure.
RasDialParams.dwSize = sizeof (RASDIALPARAMS);
RasDialParams.szPhoneNumber[0] = TEXT('\0');
RasDialParams.szCallbackNumber[0] = TEXT('\0');
wcscpy (RasDialParams.szEntryName, szRasEntryName);
wcscpy (RasDialParams.szUserName, szUserName);
wcscpy (RasDialParams.szPassword, szPassword);
wcscpy (RasDialParams.szDomain, szDomain);

II Try to establish RAS
if (RasDial (NULL,

NULL,

Chapter 4 Remote Access Service 65

connection.
II Extension not supported
II Phone book is in registry

&RasDialParams,
0xFFFFFFFF,

II RAS configuration for connection
II Use this value

hDlgWnd,
&hRasConn)

MessageBox (hDlgWnd,

II Window receives notification message
!= 0) II Connection handle

TEXT("Caul d not connect us i ng RAS"),
szTitle,
MB_OK);

return FALSE;

wsprintf (szBuffer, TEXT("Dialing %s ... "), szRasEntryName);

II Set the Dialing dialog box window name to szBuffer.
SetWindowText (hDlgWnd. szBuffer);

return TRUE;

Connection Data
While connected to a remote access server, the application can use the
RasEnumConnections function to receive data about existing device
connections. The data for each connection includes a connection handle and the
name of the phone-book entry used to establish the connection. You can use the
connection handle in a call to the RasGetConnectStatus function get the current
connection status. RasGetConnectStatus retrieves data on the current status of
the specified remote access connection. An application can use
RasGetConnectStatus to determine the status of the RasDial function.
RASCONNSTATE specifies an enumerator value that indicates the current state
of the RasDial connection process and determines which part of the RasDial
function is currently executing. The application can call the
RasGetConnectStatus function to determine the name and device type, or if the
device has successfully connected.

66 Windows CE Communications Guide

The following list is an example of status values available to the application:

• A port is about to be opened.

• A port has been opened successfully.

• A device is about to be connected.

• A device has connected successfully.

• The authentication process is starting.

~ To get current status of an existing connection

• Call the RasGetConnectStatus function.

The following code example shows how to get current status of an existing
connection.

II Get the connection status.
RasStatus.dwSize = sizeof (RASCONNSTATUS);
dwReturn = RasGetConnectStatus (hRasConn. &RasStatus);

II If there is an error in getting the connection status
if (dwReturn)
{

wsprintf (szBuffer.
TEXT("Failed getting connect status. \r\n")
TEXT("Error (%ld).").
dwReturn);

MessageBox (hMainWnd. szBuffer. TEXT("Warning"). MB_OK);
break;

Connection Sequence
Understanding the RAS connection sequence helps you understand PPP.

1. PPP operations begin upon connecting to a remote access server.

2. Framing rules are established between the client and server. This enables
communication frame transfer to occur.

3. The remote access server authenticates the client using the PPP authentication
protocols in serial-link communication: Password Authentication Protocol
(PAP), Challenge Handshake Authentication Protocol (CHAP), and Microsoft
CHAP. The protocols invoked depend on the security configurations of the
client and server.

4. When the client is authenticated, Network Control Protocol (NCP) is used to
enable and configure the server for the LAN protocol used for the client.

Chapter 4 Remote Access Service 67

When the PPP connection sequence has successfully completed, the client and
server can begin to transfer data using any supported protocol, such as Windows
Sockets, remote procedure call (RPC), or NetBIOS.

Connection States
During the process of a client connecting to a remote access server, the client
performs several actions to establish the connection. Each step is identified by a
connection state. The RASCONNSTATE structure is a set of values that
correspond to these connection states. The connection states can be divided into
three groups:

• Running states

• Paused states

• Terminal states

Running states are connection operations RAS handles automatically such as
connecting to a device and authentication. Unless an error occurs, no action is
required of the client other than to pass notification to a user.

Paused states occur when the remote access server pauses the connection
operation to get additional user input. During a paused state, a user can type a
number, a different user name and password if the user authentication fails, or a
new password if the old one has expired.

Terminal states occur when the connection is successfully established, the
connection operation fails, or the connection is closed by a call to the
RasHangUp function.

There are several mechanisms a client can use to determine the current state of a
connection operation. When a client application calls the RasDial function
asynchronously, RAS sends progress notifications to the client notification
handler when the connection state changes. In addition, the client can use the
RasGetConnectStatus function to get the current state of any RAS connection
operation.

Terminating a Connection
When a RAS application starts a connection operation, the RasDial function
receives a RASCONN connection handle to identify the connection. If the
returned handle is not NULL, the client must eventually call the RasHangUp
function to end the connection. If an error occurs during the connection operation,
the client must call the RasHangUp function even though the connection was
never established.

68 Windows CE Communications Guide

A client application might require a connection to end even though it does not
have the handle returned by RasDial. For example, the application that called
RasDial might have exited when the connection was successfully established. In
this case, the disconnecting application can use RasEnumConnections to get all
the current connections. For each connection, RasEnumConnections returns a
RASCONN structure containing the RASCONN connection handle and the
phone-book entry name or phone number specified when the connection operation
was started. This data can be used to display a list of connections from which a
user can select the connection to end.

If the application exits after calling RasHangU p, there may not be enough time
for the modem to reset. To provide the modem time to reset, pause for a few
seconds while the application exits.

Before an application terminates one or more connections, it is useful to
enumerate the existing connections and hang up. The RasEnumConnections
retrieves the current connections. The RasHangUp function terminates all remote
connections.

~ To terminate a connection

1. Call RasEnumConnections to find all RAS connections.

2. Call RasHangUp to terminate the connection.

The following code example shows how to terminate a connection.

DWORD CloseRasConnections ()
{

int index;
TCHAR szError[100];
DWORD dwError,

dwRasConnSize,
dwNumConnections;

RASCONN RasConn[20];

II An integer index
II Buffer for error codes
II Error code from a function call
II Size of RasConn in bytes
II Number of connections found
II Buffer for connection state data
II Assume the maximum number of entries is
/I 20.

II Assume no more than 20 connections.
RasConn[0].dwSize = sizeof (RASCONN);
dwRasConnSize = 20 * sizeof (RASCONN);

Chapter 4 Remote Access Service 69

II Find all connections.
if (dwError = RasEnumConnections (RasConn. &dwRasConnSize.

&dwNumConnections»

wsprintf (szError. TEXT("RasEnumConnections Error: %ld"). dwError);
return dwError;

II If there are no connections. return zero.
if (!dwNumConnections)
{

wsprintf (szError. TEXTC"No open RAS connections"»;
return 0;

II Terminate all of the remote access connections.
for (index = 0; index < (int)dwNumConnections; ++index)
{

if (dwError = RasHangUp (RasConn[indexJ.hrasconn»
{

wsprintf (szEl'ror. TEXTC"RasHangUp Error: %ld"). dwError);
return dwError;

return 0;

Phone-Book Operation
Entries in the Remote Access Service phone-book contain the data necessary to
establish a RAS connection. Unlike Windows-based desktop platforms, which
keep phone-book entries in a file, Windows CE stores these entries in the registry.
Phone-book entries contain the data necessary to establish a RAS connection.

To make a connection without using a phone-book entry, RasDial can specify an
empty string for the szEntryName member of the RASDIALPARAMS structure.
The szPhoneNumber member must contain the phone number to dial.

70 Windows CE Communications Guide

RAS phone-book data includes:

• The phone number to dial, including country code and area code.

• The IP addresses to use while the connection is active.

• The network protocols.

• The type of device used to make the connection.

Windows CE supports a limited set of Window-based desktop platform functions
for working with phone-book entries. The application can use the
RasGetEntryProperties or the RasSetEntryProperties function to create or edit
a phone-book entry. The application can use the RasGetEntryDialParams and
RasSetEntryDialParams functions to set or retrieve the connection parameters
for a phone-book entry. The RasEnumEntries function lists all the phone-book
entry names using the RASENTRY structure.

The configuration file, which stores data for the RAS phone book, is kept in the
registry under the HKEY_CURRENT_USER\Comm\RasBook key. Entry
names for Windows CE must be legal registry keys and cannot exceed 20
characters.

Creating or Changing a Phone-Book Entry
RasSetEntryProperties creates or changes connection data for a phone-book
entry.

~ To use the RasSetEntryProperties to create or change registry phone-book
entries

1. Call RasValidateEntryName function to be sure that the name does not exist.

2. If you are editing an existing entry, call RasGetEntryProperties to retrieve
the existing configuration.

3. Call RasSetEntryProperties to set the new configuration. Parameters should
be set as follows:

The /pszName parameter should point to the null-terminated string containing
the entry name in the /pszEntry parameter. If the existing name matches an
existing entry, RasSetEntryProperties modifies the entry properties. If the
entry does not exist, the function creates a new entry.

The /pszEntry parameter should point to a RASENTRY structure, which
should be filled with data for the connection, including the telephone number,
device type, and name.

The /pbDevicelnfo and dwDevicelnfoSize parameters can be used to set a
Telephony API (T API) device configuration data.

Chapter 4 Remote Access Service 71

The following code example shows how to create a phone-book entry.

int CreateRasEntry (LPTSTR lpszName)
{

DWORD dwSize~
dwError;

TCHAR szError[100];
RASENTRY RasEntry;
RASDIALPARAMS RasDialParams;

II Validate the format of a connection entry name.
if (dwError = RasValidateEntryName (NULL, lpszName»
{

wsprintf (szError, TEXT("Unable to validate entry name.")
TEXT(" Error %ld"), dwError);

return FALSE;

II Initialize the RASENTRY structure.
memset (&RasEntry, 0, sizeof (RASENTRY»;

dwSize = sizeof (RASENTRY);
RasEntry.dwSize = dwSize;

II Retrieve the entry properties.
if (dwError RasGetEnt ryPropert i es (NU LL, TEXT("") ,

(LPBYTE)&RasEntry, &dwSize, NULL, NULL»

wsprintf (szError, TEXT("Unable to read default entry properties. ")
TEXT(" Error %ld"), dwError);

return FALSE;

II Insert code here to fill the RASENTRY structure.
II

II Create a new phone-book entry.
if (dwError RasSetEntryProperties (NULL, lpszName,

(LPBYTE)&RasEntry, sizeof (RASENTRY), NULL, 0»

wsprintf (szError, TEXT("Unable to create the phonebook entry.")
TEXT(" Error %1 d"), dwError);

return FALSE;

72 Windows CE Communications Guide

II Initialize the RASDIALPARAMS structure.
memset (&RasDialParams, 0, sizeof (RASDIALPARAMS));
RasDia1Params.dwSize = sizeof (RASDIALPARAMS);
_tcscpy (RasDialParams.szEntryName, lpszName);

II Insert code here to fill up the RASDIALPARAMS structure.
II

II Change the connection data.
if (dwError = RasSetEntryDialParams (NULL, &RasDia1Params, FALSE))
{

wsprintf (szError, TEXT("Unable to set the connection information.")
TEXT(" Error %1 d"), dwError);

return FALSE;

return TRUE;

Changing an Existing Phone-Book Entry
The RasRenameEntry function renames a phone-book entry in the registry,
while the RasDeleteEntry function deletes an entry. To verify if the string is in
the correct format, the application can use the RasValidateEntryName function.

~ To change a registry phone-book entry

1. Call RasValidateEntryName to verify the new name.

2. Call the RasRenameEntry function to change the name.

3. The return value is zero if successful, and a RAS error value if not.

The following code example shows how to change an existing phone-book entry.

BOOL RenameRasEntry (LPTSTR 1pszOldName, LPTSTR lpszNewName)

DWORD dwError;
TCHAR szError[120];

II Return code from functions
II Buffer for error message

if (dwError = RasValidateEntryName (NULL, lpszNewName))
{

}

wsprintf (szError, TEXT("Entry name validation failed: %ld"),
dwError) ;

return FALSE;

Chapter 4 Remote Access Service 73

if (dwError = RasRenameEntry (NUll, lpszOldName, lpszNewName»
{

wsprintf (szError, TEXT("Unable to rename entry: %ld"), dwError);
return FALSE;

return TRUE;

Enumerating Phone-Book Entries
The RasEnumEntries function is used to enumerate a list of phone-book entries.
U sing this list, a user can select a RAS connection.

~ To enumerate phone-book entries

1. Allocate an array for the RASENTRYNAME structure.

2. Call RasEnumEntries to list the names in the phone book.

3. Display the list for a user.

The follo.wing code example shows how to dial and connect to a phone-book
entry in the registry.

BOOl GetPhonebookEntries (HWND hDlgWnd)
{

int index;
DWORD dwSize,

dwEntries;
HWND hWndListBox;

II Allocate an array of RASENTRYNAME structures. Assume
II no more than 20 entries to be configured on the
II Windows CE-based device.

if (!(lpRasEntryName = new RASENTRYNAME [20]»
{

MessageBox (hDl gWnd, TEXT("Not enough memory"), szTit 1 e, MB_OK);
return FALSE;

II Initialize the dwSize member of the first RASENTRYNAME structure
II in the array to the size of the structure to identify
II the version of the structure being passed.
lpRasEntryName[0].dwSize = sizeof (RASENTRYNAME);

74 Windows CE Communications Guide

II Size of the array. in bytes
dwSize = sizeof (RASENTRYNAME) * 20;

II List all entry names in a remote access phone book.
if « RasEnumEntri es (

NULL. /! Reserved, must be NULL
NULL. II Phone book is stored in

/! regi stry.
lpRasEntryName, II Pointer to structure to
&dwSize, /! Size of lpRasEntryName,

the Windows CE

receive entries
in bytes

&dwEntries» != 0) /! Number of entries placed in array

Me s sag e Box (h D 1 9 W n d, T EXT(.. Co u 1 d not 0 b t a i n RA Sen t r i e s "). s z T it 1 e ,
MB_OK) ;

return FALSE;

II Get the HWND of the list box control.
hWndListBox = GetDlgltem (hDlgWnd. IDC_RASNAMES);

II Remove all items from a list box.
SendMessage (hWndListBox, LB_RESETCONTENT, 0, 0);

II Add the names of each RAS connection to the list box.
for (index = 0; index < (int)dwEntries; ++index)
{

SendMessage (hWndListBox. LB_INSERTSTRING, index.
(LPARAM)lpRasEntryName[index].szEntryName);

return TRUE;

Copying a Phone-Book Entry
An application can use the RasGetEntryProperties function or the
RasSetEntryProperties function to copy the configuration data to another entry.
The lpszEntryName parameter can be used to change the entry.

~ To copy a phone-book entry to the dialing list

1. Call RasGetEntryProperties to get current phone-book properties.

2. Call RasSetEntryProperties to set new phone-book properties.

3. Call RasGetEntryDialParams to retrieve current user data.

4. Call RasSetEntryDialParams to set user password data.

5. The return value is TRUE if successful, and FALSE if not.

Chapter 4 Remote Access Service 75

The following code example shows how to copy a RAS entry.

BOOL CopyRasEntry (LPTSTR lpszEntryName)
{

BOOL bPasswordSaved;
TCHAR szNewEntryName[100];
TCHAR szError[100];
DWORD dwError.

dwRasEntrySize.
dwDevConfigSize.
dwDeviceNum = 0xFFFFFFFF;

BYTE DevConfigBuf[128]:

II Name for the copied entry
II Buffer for the error message
II Return value from the functions
II Size of the RASENTRY structure
II Size of DevConfigBuf
II Telephony API device number
II Buffer for device configuration
II data

RASENTRY RasEntry; II RASENTRY structure
RASDIALPARAMS RasDialParams; II RASDIALPARAMS structure
LPVARSTRING lpDevConfig = (LPVARSTRING)&DevConfigBuf;

II Pointer to the memory location of
II the device configuration structure

II Assign the name for the copied phone-book entry.
wsprintf (szNewEntryName. TEXT("%sl"). lpszEntryName);

II Validate the format of a connection entry name.
if (dwError = RasValidateEntryName (NULL. szNewEntryName»
{

wsprintf (szError. TEXT("Unable to validate entry name.")
TEXT(" Error %1 d"). dwError);

return FALSE;

dwDevConfigSize = sizeof (DevConfigBuf):
dwRasEntrySize = sizeof (RASENTRY);
RasEntry.dwSize = dwRasEntrySize:

II Retrieve the entry properties.
if (dwError = RasGetEntryProperties (NULL.

lpszEntryName.
(LPBYTE)&RasEntry.
&dwRasEntrySize.
DevConfigBuf.
&dwDevConfigSize»

wsprintf (szError. TEXT("Unable to read entry properties.")
TEXT(" Error %ld"). dwError);

return FALSE:

76 Windows CE Communications Guide

memset (&RasDialParams. 0. sizeof (RasDialParams));
RasDialParams.dwSize = sizeof (RASDIALPARAMS);
_tcscpy (RasDialParams.szEntryName. lpszEntryName);

II Retrieve the connection data.
if (dwError RasGetEntryDialParams (NULL. &RasDialParams.

&bPasswordSaved))
{

}

wsprintf (szError. TEXT("Unable to get the connection information.")
TEXT(" Error %ld"). dwError);

return FALSE;

II Create a new phone-book entry.
if (dwError = RasSetEntryProperties (NULL.

szNewEntryName.
(LPBYTE)&RasEntry.
dwRasEntrySize.
DevConfigBuf.
dwDevCo~figSize))

{

}

wsprintf (szError. TEXT("Unable to copy the phonebook entry.")
TEXT(" Error %ld"). dwError);

return FALSE;

_tcscpy (RasDialParams.szEntryName. szNewEntryName);

II Change the connection data.
if (dwError = RasSetEntryDialParams (NULL. &RasDialParams. FALSE))
{

}

wsprintf (szError. TEXT("Unable to set the connection information.")
TEXT(" Error %ld"). dwError);

return FALSE;

return TRUE;

Chapter 4 Remote Access Service 77

Deleting a Phone-Book Entry
To delete a phone-book entry the application can use the RasDeleteEntry
function.

~ To delete a phone-book entry from the dialing list

1. Call RasDeleteEntry using the IpszName parameter to supply the entry to be
deleted.

2. The return value is TRUE if successful, and FALSE if not.

The following code example shows how to delete a RAS phone-book entry from
the dialing list.

BOOl DeleteRasEntry (lPTSTR lpszName)
{

DWORD dwError;
TCHAR szError[100];

II Return code from RasDeleteEntry
II Buffer for error message

if (dwError = RasDeleteEntry (NUll, lpszName»
{

}

wsprintf (szError, TEXT("Unable to delete entry: %ld"), dwError);
return FALSE;

return TRUE;

79

CHAPTER 5

Windows Sockets

Most Microsoft Windows CE network communications pass through the Windows
Sockets (Winsock) interface. Sockets is a general-purpose networking API. The
Microsoft Windows implementation of sockets, Winsock, is designed to run
efficiently on Windows operating systems while maintaining compatibility with
the Berkeley Software Distribution (BSD) standard, known as Berkeley Sockets.

The Windows Internet API (WinInet) uses Winsock internally to handle network
connections. However, Winsock can be used directly in applications. The
following sections discuss how to use Winsock in Windows CE-based
applications to directly control the creation and management of socket
connections. TCPIIP, upon which Winsock is built, is also discussed.

Winsock supports socket-based infrared communications using industry standard
Infrared Data Association (IrDA) protocols. This support is referred to as Infrared
Sockets (IrSock). Applications implement Infrared Sockets in the same way as
conventional Winsock, although some Winsock functions are used differently. For
more information on the using the IrDA protocols with Windows Sockets, see
Using Winsock Functions with IrDA.

Windows CE supports Private Communication Technology 1.0 and secure socket
layer (SSL) versions 2.0 and 3.0 security protocols. These protocols are available
either directly from Winsock or through WinInet. For more information on using
security protocols directly from Winsock, see Using Secure Sockets. For more
information on using security protocols through WinInet, see Internet
Connections.

Winsock and the OSI Model
In the International Organization for Standardization Open Systems
Interconnection (ISO/OSI) model for network communications, Winsock operates
at the session layer interface to the transport layer. Winsock is an interface
between applications and the transport protocol and works as a conduit for data
I/O.

80 Windows CE Communications Guide

The following illustration shows Winsock in relation to other Windows CE
communications protocols within the context of the ISOIOSI model.

Application
layer

Presentation
layer

Session
layer

Application

Winsock
applications

Win sock API

Transport :,...-______________ ...10-__

layer
TCP UDP TCP/IP

I~I

Winsock simplifies application development in the upper ISOIOSI layers by
handling the details of network data exchange at the lower layers. Winsock
provides a programmable interface between the upper layers, 5-7, and the lower
layers, 1-4. Winsock applications reside in the upper, application, presentation,
and session layers. Winsock application data is packaged and transmitted over a
network by the lower, transport, network, data-link, and physical layers.

TCP/IP

Chapter 5 Windows Sockets 81

TCPIIP and IrDA are lower layer protocols used by Winsock. Specifically, TCP
fits into the transport layer and IP fits into the network layer.

Note Winsock provides the only way for an application to access the TCPIIP or
IrDA protocols on a Windows CE-based device.

Winsock is above the TCPIIP protocol stack in the ISO/OSI network
communications model. TCPIIP is an industry standard communications protocol
that defines methods for packaging data into packets for transmission between
computing devices on a heterogeneous network. TCPIIP is the standard for data
transmission over networks, including the Internet. TCP establishes a connection
for data transmission and IP defines the method for sending data packets.

TCP/IP Transport Layer Protocols
Winsock provides direct access to services in the transport layer of the ISO/OSI
model. Two TCPIIP protocols, the TCP and the User Datagram Protocol (UDP),
provide these transport services. In Windows CE, Winsock is implemented as a
DLL that enables applications and transport services to be dynamically linked at
run time.

Tep
TCP is a connection-based, stream-oriented delivery service with end-to-end error
detection and correction. Connection-based means that a communications session
between hosts is established before exchanging data. A host is any device on a
TCPIIP network identified by a logical IP address.

TCP provides reliable data delivery and ease of use. Specifically, TCP notifies the
sender of packet delivery, guarantees that packets are delivered in the same order
in which they were sent, retransmits lost packets, and ensures that data packets are
not duplicated.

User Datagram Protocol
UDP provides connectioniess, but unreliable datagram transport services.
Connectionless means that a communications session between hosts is not
established before exchanging data. The UDP connectionless datagram delivery
service is unreliable because it does not guarantee data packet delivery and no
notification is sent if a packet is not delivered. Also, UDP does not guarantee that
packets are delivered in the same order in which they were sent.

82 Windows CE Communications Guide

Although UDP appears to have some limitations, it is useful in certain situations.
For example, Winsock IP multicasting is implemented with UDP datagram type
sockets. UDP is very efficient because of low overhead. Unreliability can be
overcome by building error handling into the application. For more information
about IP multicasting, see Creating an IP Multicast Application.

TCP/IP Network Layer Protocols
The ISO/OSI model network layer, sometimes called the Internet layer, defines
and handles the routing of datagrams. A datagram is a self-contained,
independent packet, carrying sufficient data to be routed from source to
destination without relying on exchanges between the source and destination
computer and the transporting network. TCP/IP protocols residing in the network
layer are: the Internet Protocol (IP), the Internet Control Message Protocol
(ICMP), the Internet Group Membership Protocol (lGMP), and the Address
Resolution Protocol (ARP).

Internet Protocol
IP is central to the TCP/IP stack-all other TCP/IP protocols use IP-and all data
passes through it. IP is a connectionless protocol and has some limitations. If IP
attempts packet delivery and, in the process, a packet is lost, delivered out of
sequence, duplicated, or delayed, neither sender nor receiver is informed. Packet
acknowledgment is handled by a higher-layer transport protocol, such as TCP.

IP is responsible for addressing and routing packets between hosts, and for
fragmentation. Fragmentation is the process of breaking a datagram into smaller
pieces for inter-network routing. IP fragments packets prior to sending them and
reassembles them upon receipt.

Note Winsock applications can send packets, but cannot affect packet routing or
fragmentation.

For more information, see IP Addressing.

Internet Control Message Protocol
ICMP is a network layer protocol that delivers flow control, error messages,
routing, and other data between Internet hosts. ICMP is primarily used by
application developers for a network ping, which is also known as Packet Internet
Groper. A ping is the process of sending an echo message to an IP address and
reading the reply to verify a connection between TCP/IP hosts.

Chapter 5 Windows Sockets 83

Use the following Winsock API functions to write a ping application:
IcmpCreateFile, IcmpSendEcho, and IcmpCloseHandle.

~ To send an ICMP request or determine if a host is available

1. Call IcmpCreateFile to create a handle to issue requests.

2. Call IcmpSendEcho to send an ICMP echo request.

It returns any ICMP response from the intended host recipient, or returns an
error if the network is inaccessible. A time-out value may be specified to limit
the wait time in case the destination is inaccessible.

3. Call IcmpCloseHandle to close the handle created by IcmpCreateFile.

Internet Group Membership Protocol
IGMP is used for IP multicast. A multicast is a communication between a single
sender and multiple receivers on a network. IGMP is used to exchange

. membership status data between IP routers that support multicasting and members
of multicast groups. A router is an intermediary device on a communications
network that expedites message delivery by finding the most efficient route for a
message packet within a network, or by routing packets from one subnetwork to
another. A subnetwork is a separate part of an organization's network identified
through IP addressing.

Host membership in a multicast group is reported by individual member hosts and
membership status is periodically polled by multicast routers. Multicast addresses
are reserved from within a standard specified range of all IP addresses to enable
forwarding across routers configured to permit multicasting.

IP provides a mechanism to send and receive multicast IP traffic. Multicast IP
traffic is sent to a single media access control address, but is processed by
multiple IP hosts. A specified host listens on a specific IP multicast address and
receives all packets on that address. This requires IP multicast support on the IP
routers and the ability for hosts to register themselves with the router. Host
registration is accomplished using IGMP.

For IP multicasting to span routers across networks, a protocol is required to
inform routers that hosts of a specific multicast group are available on a specified
network. This data is passed among routers through the use of multicast routing
protocols. These protocols ensure that each router that supports the forwarding of
multicasts is aware of which host groups are on which network. For more
information about IP multicasting, see Creating an IP Multicast Application.

84 Windows CE Communications Guide

Address Resolution Protocol
Address Resolution Protocol (ARP) translates IP addresses to Ethernet hardware
addresses. Each Ethernet network interface has a unique hardware address.
Address resolution maps a host IP address to its unique network interface
hardware address. An ARP request is sent to the network; the node that has the IP
address returns its hardware address.

Note ARP is used to refer to the process of finding the hardware address and its
opposite, Reverse Address Resolution Protocol (RARP). RARP finds the IP
address using the hardware address. ARP is transparent to Winsock applications,
but when address resolution fails, it usually causes a Winsock function error.

IP Addressing
A unique IP address is required for each host using TCPIIP. Network applications
that use TCPIIP identify other network hosts using IP addresses. The IP address
provides the directions to the exact location of a host device on a network.

If IP determines that a destination address is an address on the local network, IP
transmits the packet directly to the network host. If IP determines that the
destination IP address is not on the local network, IP looks for a route to a remote
host. An address on the local network is a local address and an address not on the
local network is a remote address. If a route is found, IP sends the packet using
that route. If a route is not found, the packet is sent to the source host's default
gateway. A gateway is a device that connects networks using different
communications protocols.

Note Windows CE supports one default gateway.

Each IP address defines a network identifier and a host identifier. The network
identifier identifies systems located on the same physical network. All systems on
the same physical network must have the same network identifier. The host
identifier identifies a workstation, server, router, or other TCPIIP host within a
network. The address for each host must be unique to the network identifier.

Each IP address is 32 bits long and composed of four octets, or 8-bit fields. An
octet is a decimal number in the range from 0 through 255. Each octet is separated
by a period. This format is called dotted decimal notation. The IP address
224.0.1.24 is an example of dotted decimal notation.

Chapter 5 Windows Sockets 85

Internet Protocol Address Classes
The Internet community has defined IP address classes: A, B, C, D, and E. To
accommodate varying network sizes, each address class handles network
addressing for a network of a unique size. The class defines the possible number
of networks and the number of hosts for each network. Each class also defines
which bits of the IP address are used for the network identifier and which bits are
used for the host identifier. The following illustration shows the IP address
configurations for the five IP address classes.

D Network 10 D Host 10

Network 10: 0.0.0.0 to 127.0.0.0 (126 networks)

Class A 10111111111.·.rl· •• t:l'll:III:;I:~I·t:J:JI,rn.··.11·1,1···.1·(11
Host 10:0.0.Oto 255.?55.255 (16M+hosts) ,

Network 10: 128.0.0.0 to 191.255.0.0 (16,384 networks)

Class B 111 0 I I I I I I II I I I I I I I 11:/(.:1, (:+,J', [::J.:llll·l,I·I}l<ll
Host 10:0.0 to 255.255 (65,534hosts) .

Class C

Network 10: 192.0.0.0 to 223.255.255.0 (2M+ networks)

111 110 I 1 I I I II I I I I 1 I I " I I I I I I I 111[·11:.111·1
Host 10: 0 to 255 (254 hosts)

Network 10: 224.0.0.0 to 239.255.255.255

Class D 111 111101 I I I II II I I I I I III I II II I III I I I I I I I

Network 10: 240.0.0.0 to 255.255.255.255

Class E

31 ---------------•• 0

86 Windows CE Communications Guide

The following table shows address classes supported by Windows CEo

Address class

Class A

Class B

Class C

Class D

Class E

Host Name Resolution

Description

Assigned to networks with a large number of hosts. The high-order
bit in a class A address is always set to O. The next seven bits,
completing the first octet, complete the network identifier. The
remaining 24 bits-the last three octets-represent the host
identifier. This accommodates 126 networks, 128 minus two
reserved addresses, and over 16 million hosts for each network.

Assigned to networks with a medium to large number of hosts. The
two high-order bits in a class B address are always set to 10. The
next 14 bits-completing the first two octets-complete the network
identifier. The remaining 16 bits-the last two octets-represent the
host identifier. This accommodates 16,384 networks and more than
65,000 hosts for each network.

Assigned to networks with a small number of hosts, specifically,
local area networks CLANs). The three high-order bits in a class C
address are always set to 110. The next 21 bits-completing the first
three octets-complete the network identifier. The remaining 8
bits-the last octet-represent the host identifier. This
accommodates more than 2 million networks and 254 hosts for each
network.

Used for multicasting to a number of hosts. Packets are passed to a
selected subset of hosts on a network. Only those hosts registered
for the multicast address accept the packet. The four high-order bits
in a class D address are always set to 1110. The remaining bits are
for the address that registered hosts will recognize. Windows CE
supports class D addresses for applications to multicast data to
hosts.

Reserved for future use. An experimental address. High-order bits in
a class E address are set to 1111.

Windows CE uses the Domain Name System (DNS) and the Windows Internet
Naming Service (WINS) for host name resolution. DNS is a naming service that
resolves system names to current IP addresses and uses a hierarchical model to
pass name resolutions between domains. DNS enables a TCPIIP host to find the
IP address of another host using only the host name. WINS provides a distributed
database for registering and querying dynamic name-to-IP address mappings in a
routed network environment. Also, a host name can be found using an IP address.
A Windows CE-based application can access DNS and WINS using the Winsock
functions gethostbyname and gethostbyaddr.

Chapter 5 Windows Sockets 87

Configuring Dynamic Host Configuration Protocol
The Dynamic Host Configuration Protocol (DHCP) provides a framework for
passing configuration data to hosts in a TCPIIP network, which eliminates the
problems associated with the manual TCPIIP configuration. When a DHCP server
receives a request, it automatically assigns an IP address from a pool of addresses,
as well as the address mask, the default gateway, the DNS server, the domain
name, and the WINS server.

The options to be sent are read from the registry under
HKEY _LOCAL_MACHINE\Comm\4.dapterName\Parms\Tcpip\
DhcpOptions. You must create values under this key that have the names of the
options to send. The default subkey under DhcpOptions must also be set;
otherwise, DHCP internal default options are sent.

For example, creating the value names 1,3, and 5 under the DhcpOptions subkey
causes DHCP to query for these options: address mask, domain name, and router.
The results that DHCP receives are stored as binary values under these value
names. The data format is the same as the DHCP format.

Configuring TCP/IP for Wireless Networks
Because TCPIIP stacks are designed to work efficiently on wired networks,
performance can degrade on wireless networks. For example, settings appropriate
to a 10 Mbps Ethernet connection may consume excessive bandwidth by
generating unnecessary retransmission requests.

To use wireless networking efficiently, you may need to set some TCPIIP
parameters to the characteristics of the supporting network. Because network
parameters are maintained on a per-adapter basis, your application must determine
the appropriate adapter and query the user for associated registry settings.

88 Windows CE Communications Guide

The following table shows the parameters you may need to modify.

Registry parameter

Tcp WindowSize

TcplnitialRTT

TcpDelAckTicks

Description

TCP receive window size registry key:
HKEY _LOCAL_MACHINE\Comm\4.dapterName\Tcpip\
Parms\TcpWindowSize. In general, larger receive windows
work better with high-delay, high-bandwidth networks. For
greatest efficiency, the receive window should be an even
multiple of the TCP maximum segment size. It should not
exceed the system maximum value in
HKLM\Comm\4.dapterName\Tcpip\Parms\
GlobalMaxTcp WindowSize.

Initial round-trip time (RTT) registry key:
HKEY _LOCAL_MACHINE\Comm\4.dapterName\
Tcpip\Parms\TcplnitiaIRTT. The key value sets the initial
RTT in milliseconds. The default value is 3000. The initial
RTT is generally greater for wireless networks than for wired
networks.

Delayed acknowledgment timer registry key:
HKEY _LOCAL_MACHINE\Comm\4.dapterName\Tcpip\
Parms\TcpDeIAckTicks. The default value is 200
milliseconds.

Resolving Device Suspension Issues
Connected TCP sockets, including loop back, prevent a device from suspending.
The following operations enable a device to suspend:

• Any operations on UDP sockets.

• Unconnected open sockets.

• Listening sockets; after being accepted, they will keep the device from
suspending.

Developing a Winsock Application
A socket enables 'network applications access to data on a data network. A
computing device may have only one physical connection to a network, but many
sockets may use the one physical connection simultaneously.

Winsock client and server applications provide endpoints of communication for
network applications. A server application executes, then waits to receive a packet
from the client application. Once communication is established, client and server
applications can exchange data. A server application can handle multiple clients
simultaneously.

Chapter 5 Windows Sockets 89

Note Winsock client and server applications must be of the same socket type to
communicate. They must both be using byte stream sockets that use TCP, or they
must both be using unreliable datagram sockets that use UDP.

Winsock Functions
Windows CE supports the standard Winsock 1.1 functions, except the
asynchronous functions. Some asynchronous notification support is available
through the Microsoft Foundation Classes (MFC) CCeSocket class. For more
information on the MFC for Windows CE, see the Windows CE Toolkit for
Visual C++® 6.0.

Winsock functions are defined in the Winsock.h header file. The following table
shows Winsock functions implemented for Windows CEo

Function

accept

bind

closesocket

connect

gethostbyaddr

gethostbyname

gethostname

getpeername

getsockname

getsockopt

htonl

htons

ineCaddr

ineCntoa

ioctlsocket

listen

ntohl

ntohs

recv

Description

Accepts a socket connection

Associates a local address with a socket

Closes a socket

Establishes a connection to a peer

Retrieves host data that corresponds to a network address

Retrieves host data that corresponds to a host name

Returns the standard host name for the local computer

Retrieves the address of the peer, to which a socket is connected

Retrieves the local address for a socket

Retrieves a socket option

Converts a u_Iong from host byte order to network byte order

Converts a u_short from host byte order to network byte order

Converts a string containing a dotted address into a network
address in the format of an IN_ADDR structure

Converts a network address into a string in dotted format

Controls the socket mode

Establishes a socket to listen for incoming connections

Converts a u_Iong from network byte order to host byte order

Converts a u_short from network byte order to host byte order

Receives data from a socket

90 Windows CE Communications Guide

Function Description

recvfrom Receives a datagram and stores the source address

select Determines the status of one or more sockets

send Sends data on a connected socket

sendto Sends data to a specific destination

setsockopt Sets a socket option

shutdown Disables send or receive operations on a socket

socket Creates a socket

WSACleanup Initiates no action and is provided only for compatibility

WSAGetLastError Retrieves the error status for the last Winsock operation that failed

WSAIoctl Controls the mode of a socket

WSASetLastError Sets the error value retrieved by WSAGetLastError

WSAStartup Initializes a WSADATA structure

Winsock Structures
Winsock structures are defined in the Winsock.h header file. The following table
shows Winsock structures implemented for Windows CEo

Structure Description

IN_ADDR The IP address component of the SOCKADDR_IN structure in
big-endian network byte order.

LINGER Used by an application to set the linger socket option and specify
the length of time to wait for un sent data before a socket is
closed.

SOCKADDR The generic address structure for all address families used in
Winsock communications.

SOCKADDR_IN In the Internet address family, this structure is used by Winsock
to specify a local or remote endpoint address, to which to connect
a socket. This is the form of the SOCKADDR structure specific
to the Internet address family and can be·cast to SOCKADDR.

SOCKADDR_IRDA Specifies an Infrared Sockets address.

WSADATA Used to store Winsock initialization data returned by a call to
WSAStartup. It contains data about the Winsock.dll
implementation.

Chapter 5 Windows Sockets 91

Using Winsock Functions with IrDA
Some Winsock functions work differently with IrDA than with TCP/IP. The
principal differences are described in this section.

IrSock Name Service
Conventional Winsock name service is best suited to fixed networks, in which the
group of devices that can accept a socket connection is relatively static.
Conversely, IrDA is designed to handle browsing for resources within range. It
works in an extemporary manner, and devices disconnect and connect frequently
as they move in and out of range.

Because of these differences, IrSock does not use the conventional Winsock name
service functions. Instead, name service is incorporated into the communication
stream.

IrSock Addressing
Addressing is based on Logical Service Access Point Selectors (LSAP-SELs),
numbered from 1 through 127. Because of the small range of values available, it is
usually better not to bind sockets directly to an LSAP-SEL. Instead, the
Information Access Service (lAS) provides a means for dynamic binding of
sockets to LSAP-SELs.

To use lAS, a server application binds a socket to an lAS service name. The client
application uses the service name when using the connect function. Neither
application must be notified of the LSAP-SEL assigned by the lAS.

IrSock Enhanced Socket Options
Windows CE includes socket options to access the unique features of the IrDA
protocol, IRLMP _lAS_SET, IRMP _IRLPT_MODE, and
IRLMP _EXCLUSIVE_MODE.

IRLMP _lAS_SET enables an application to set a single class in the local lAS.
The application specifies the class to set, the attribute, and the attribute type. The
application must allocate a buffer of the necessary size for the passed parameters.
For more information on the using the IrDA protocols with Windows Sockets, see
Creating an Infrared Winsock Application.

92 Windows CE Communications Guide

Using WSAStartup to Initialize Winsock
Calling the WSAStartup function initializes the Winsock.dll and a WSADATA
structure that contains the details of the Winsock implementation. When an
application or DLL has finished using the Winsock.dll, it must call WSACleanup
to enable the Winsock.dll to free any resources for the application. For every call
to WSAStartup, there must be a call to WSACleanup.

The following code example shows how to use WSAStartup:

if (WSAStartup (MAKEWORD(l.l). &WSAData) != 0)
{

MessageBox (NULL. TEXT("WSASta rtup fa il ed!"). TEXT(" Error"). MB_OK):
return FALSE;

If successful, WSAStartup returns O. After WSAStartup returns, an application
cannot call WSAGetLastError to determine the error value as is normally done
with Winsock functions.

The WSADAT A structure pointed to by lp WSAData stores Winsock initialization
data returned by a call to WSAStartup. WSADATA contains Winsock.dll
implementation data. An application or DLL can call WSAStartup repeatedly if
it needs to obtain the WSADATA structure data more than once.

The following table shows values that WSAStartup assigns to the members of
WSADATA.

WSADATA member Assigned value

wVersion 1.1

wHighVersion 1.1

szDescription NULL string

szSystemStatus NULL string

iMaxSockets . 20

iMaxUdpDg 0

lp Vendorlnfo NULL

Creating a TCP Stream Socket Application
Use TCP to provide sequenced, reliable two-way connection-based byte streams.
A TCP stream socket server application listens on the network for incoming client
request packets. A TCP stream socket client application initiates communication
with the server by sending a request packet. When the server receives the request,
it processes it and responds. After this initial sequenced message exchange, client
and server can exchange data.

Chapter 5 Windows Sockets 93

The following illustration shows the interaction between the TCP stream socket
server and TCP stream socket client.

Server Client

Send and receive data
(send receive)

Close connection
(close)

94 Windows CE Communications Guide

~ To create a TCP stream socket server application

1. Open a stream socket with the socket function.

Use AF _INET for the address format parameter and SOCK_STREAM for the
type parameter.

The following code example shows how to open a socket.

if «WinSocket = socket (AF_INET. SOCK_STREAM. 0)) == INVALID_SOCKET)
{

wspri ntf (szError. TEXT("All ocat i ng socket fa il ed. Error: %d").
WSAGetLastError ());

MessageBox (NULL. szError. TEXT("Error"). MB_OK);
return FALSE;

2. Name the socket with the bind function, using a SOCKADDR_IN structure
for the address parameter.

When you open a socket with socket, the socket has no name assigned to it.
However, a descriptor for the socket is allocated in an address family name
space. To assign a name to the server socket, call bind. To be identified by the
client socket, a TCP stream socket server application must name its socket.
However, it is unnecessary to give a client socket a name. using bind.

The bind function establishes the local socket association by assigning a local
socket name to an unnamed socket. A socket name consists of three address
fields when in the TCP/IP address family, known as the Internet address
family: the address family protocol, a host address, and a port number that
identifies the application. These address fields, sinJamily sin_addr sin-port
are members of the SOCKADDR_IN structure. You must initialize
SOCKADDR_IN before calling bind.

The following code example shows how to initialize SOCKADDR_IN, and
then use bind.

II Fill out the local socket address data.
local_sin.sin_family = AF_INET;
local_sin.sin_port = htons (PORTNUM);
local_sin.sin_addr.s_addr = htonl (INADDR_ANY);

Chapter 5 Windows Sockets 95

II Associate the local address with WinSocket.
if (bind (WinSocket,

(struct sockaddr *) &local_sin,
sizeof (local_sin» == SOCKET_ERROR)

wsprintf (szError, TEXT("Binding socket failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (WinSocket);
return FALSE;

3. Listen for incoming client connections with the listen function.

To prepare for a name association the TCP stream server must first listen for
connection requests from the TCP client with listen.

The following code example shows how to use listen.

if (listen (WinSocket, MAX_PENDING_CONNECTS) == SOCKET_ERROR)
{

wsprintf (szError,
TEXT("Listening to the client failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (WinSocket);
return FALSE;

4. Accept a client connection with the accept function.

The TCP stream server socket uses accept to accept the client connection that
completes the name association between client and server.

The accept function creates a new socket. The original socket opened by the
server continues to listen and can be used to accept more connections until
closed. Server applications must close the listening socket, in addition to any
sockets created, by accepting a client connection.

96 Windows CE Communications Guide

The following code example shows how to use accept.

accept_sin_len = sizeof (accept_sin);

II Accept an incoming connection attempt on WinSocket.
ClientSock = accept (WinSocket.

(struct sockaddr *) &accept_sin.
(int *) &accept_sin_len);

II Stop listening for connections from clients.
closesocket (WinSocket);

if (ClientSock == INVALID_SOCKET)
{

}

wsprintf (szError. TEXT("Accepting connection with client
failed.") TEXT(" Error: %d"). WSAGetLastError (»;

MessageBox (NULL. szError. TEXT("Error"). MB_OK);
return FALSE;

5. Send and receive data with a client using the send and recv functions.

Once client and server sockets are connected, you can use the send and recv
functions to exchange data.

The send function writes outgoing data on a connected socket. The recv
function reads incoming data on connection-oriented sockets. The recv
function can also be used with connectionless sockets. When using a TCP
connection-oriented stream, a socket must be connected before calling recv.

The following code shows an example of using the send and recv functions.

for (;;)
{

II Receive data from the client.
iReturn = recv (ClientSock. szServerA. sizeof (szServerA). 0);

II Verify that data was received. If yes. display it.
if (iReturn == SOCKET_ERROR)
{

wsprintf (szError. TEXT("No data is received. receive failed.")
TEXT(" Error: %d"). WSAGetLastError (»;

MessageBox (NULL. szError. TEXT("Server"). MB_OK);
break;

else if CiReturn 0)
{

MessageBox (NULL. TEXT("Finished recelvlng data").
TEXT("Server"). MB_OK);

break;

else
{

Chapter 5 Windows Sockets 97

II Convert the ASCII string to Unicode.
for (index = 0; index <= sizeof (szServerA); index++)

szServerW[index] = szServerA[index];

II Display the string received from the client.
MessageBox (NULL, szServerW, TEXT("Received From Client"),

MB_OK) ;

II Send a string from the server to the client.
if (send (ClientSock, "To Client.", strlen ("To Client.") + 1, 0)

== SOCKET_ERROR)

wsprintf (szError,
TEXT("Sending data to the client failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);

Successfully completing a call to send does not confirm that data was
successfully delivered.

6. Close the connection with the closesocket function.

When data exchange between the server and client ends, close the socket with
closesocket. To ensure that all data is exchanged on a TCP connection, an
application should call shutdown before calling closesocket.

An application should always have a matching call to c1oseso'cket for each
successful call to socket to return any socket resources to the system. For TCP
stream sockets, when a socket connection ends the server closes the socket
created by accept. The server does not close the socket originally returned by
the first call to socket. That socket continues to listen for clients. When the
server disconnects or is out of service it should call closesocket to close the
listening socket.

98 Windows CE Communications Guide

For an example of a TCP stream socket server application, see TCP Stream
Socket Server.

~ To create a TCP stream socket client application

1. Open a stream socket with socket.

Use AF _INET for the address format parameter and SOCK_STREAM for the
type parameter.

2. Connect to the server with the connect function using a SOCKADDR_IN
structure for the name parameter.

The TCP stream client associates socket names by connecting to the stream
server with connect.

The SOCKADDR_IN structure must be initialized before calling connect.
This is similar to using bind, but sin-port and sin_addr are initialized with the
remote socket name, not the local socket name used for bind.

The following code example shows the TCP client connecting with the· server.

II Establish a connection to the server socket.
if (connect (ServerSock,

(PSOCKADDR) &destination_sin,
sizeof (destination_sin» == SOCKET_ERROR)

wsprintf (szError,
TEXTC"Connecting to the server failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXTC"Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

3. Exchange data with a server, using the send and recv functions.

4. Close the connection with the closesocket.

For an example of a TCP stream socket client application, see TCP Stream Socket
Client.

Chapter 5 Windows Sockets 99

Creating an Infrared Winsock Application
The basic procedure for using IrSock is similar to that for Winsock. IrSock uses
only the TCP stream socket connection-oriented communication method. Server
applications and client applications have different procedures.

Note You must include the Af_irda.h header file in your application to access
IrSock features in the Winsock functions.

~ To create and use a socket with a server application

1. Open a stream socket with socket. Use AF _IRDA for the address format
parameter, SOCK_STREAM for the type and NULL for the protocol
parameter.

2. Bind the service name to the socket with bind. Pass a SOCKADDR_IRDA
structure for the address parameter.

3. Listen for an incoming client connection with listen.

4. Accept an incoming client with accept.

S. Use send and recv to communicate with the client.

6. Close the socket with the closesocket function.

For an example of an Infrared Sockets server application, see Infrared Sockets
Server.

~ To create and use a socket with a client application

1. Open a stream socket with socket, as with the server application. Use
AF _IRDA for the address format parameter, SOCK_STREAM for the type
and NULL for the protocol parameter

2. Search for the server, and retrieve its identifier with getsockopt.

3. Connect to the server with the connect function using SOCKADDR_IRDA
for the name parameter.

4. Use send and recv to communicate with the server.

S. Close the socket with closesocket.

For an example of an Infrared Sockets client application, see Infrared Sockets
Client.

100 Windows CE Communications Guide

Creating a UDP Datagram Socket Application
A datagram socket uses UDP, an unreliable connectionless protocol. A UDP
server does not have to listen for and accept client connections, and a UDP client
does not have to connect to a server. The following illustration shows the
interaction between the UDP server and UDP client.

Client

Close connection
(close)

~ To create a UDP datagram socket server application

1. Open a datagram socket with socket.

Use AF _INET for the address format parameter and SOCK_DGRAM for the
type parameter.

To prepare for association with a client, a UDP datagram server need only
create a socket and bind it to a name when preparing for association with a
client.

2. Name the socket with the bind function, using a SOCKADDR_IN structure
for the address parameter. .

Chapter 5 Windows Sockets 101

3. Exchange data with a client using the sendto and recvfrom functions.

The UDP datagram socket server application calls recvfrom to prepare to
receive data from a client The recvfrom function reads incoming data on
unconnected sockets and captures the address from which the data was sent.
To do this, the local address of the socket must be known.

The sendto function is used on a connectionless socket to send a datagram to a
specific peer socket identified by the to parameter. Successfully completing a
sendto function call does not confirm data was successfully delivered.

4. Close the connection with the closesocket function.

Calling the shutdown function is unnecessary for UDP sockets.

~ To create a UDP datagram socket client application

1. Open a socket with the socket function.

2. Exchange data with server using sendto and recvfrom.

A UDP datagram client socket is named when the client calls sendto.

3. Close the connection with the closesocket functions.

Calling shutdown is unnecessary for UDP sockets.

Creating an IP Multicast Application
Although IP multicast traffic is sent to a single address, it is processed by multiple
hosts. Collectively, the hosts listening to a specific IP multicast address are called
a multicast group. With IP multicasting, only hosts that belong to a multicast
group receive and process IP traffic sent to the group IP address. This process is
similar to sending an e-mail message to an alias: only members of the alias
receive the broadcast message. Multicasting is supported only on connectionless,
UDP datagram sockets. For more information on membership in a multicast
group, see Joining and Leaving a Multicast Group.

Other important aspects of IP multicasting include:

• Dynamic group membership. A host can join and leave the group at any time.

• A host can join a multicast group by sending an IGMP message.

• A group can be any size. It can have members spread out across multiple IP
networks.

• A host can send IP traffic to a multicast group IP address without belonging to
that group.

102 Windows CE Communications Guide

There are two types of messages used by IGMP:

1. Host membership report, which is used by a multicast router to poll a network
for any members of a specified group.

When a host joins a multicast group, it sends an IGMP message to the All
Hosts IP multicast address, 224.0.0.1, declaring its membership in a specific
host group.

2. Host membership query, which is used by a multicast router to poll a network
for any members of a specified group.

A router polls each network to verify members of a specific host group. If no
hosts respond after the router makes several polls, it assumes no group
members exist on that network. The router then stops propagating multicast
traffic to that network and stops advertising to other routers data that it
obtained previously about group members on that network.

The following section describes how to use Winsock functions in a Windows CE
based application to join a multicast group and receive IGMP support messages. It
also describes how to send messages to a multicast address.

Mapping an IP Multicast Address
IP multicast addresses are mapped to a reserved set of Media Access Control
multicast addresses and assigned from within the Class D address range from
224.0.0.0 through 239.255.255.255. A single IP address within the reserved range
identifies each multicast group. Each multicast group IP address is shared by all
host members of the group who listen and receive any IP messages sent to the
group IP address.

Chapter 5 Windows Sockets 103

The following table is a partial list of Class D addresses reserved for IP
multicasting and registered with the Internet Assigned Numbers Authority
(lANA).

Multicast group IP multicast address Description

Base address 224.0.0.0 Reserved

All hosts 224.0.0.1 Contains all systems on the same
physical network

All routers 224.0.0.2 Contains all routers on the same
physical network

Network Time 224.0.1.1 Distributes time-clock data used to
Protocol synchronize time on a group of

computers

RIP version 2 224.0.0.9 Distributes routing data between a
group of routers that use a version 2
raster image processor (RIP)

WINS server 224.0.1.24 Supports autodiscovery and dynamic
configuring of replication for WINS
servers

Sending an IP Multicast Datagram
To send a multicast datagram, specify an IP multicast address with a range from
224.0.0.0 through 239.255.255.255 as the destination address in a sendto function
call.

Use the setsockopt function to set options for IP multicasting.

By default, IP multicast datagrams are sent with a Time to Live (TTL) of 1, which
prevents them from being forwarded beyond a single subnetwork. The following
code example shows how to change this.

int ttl = 1 ; II Limits to subnet.
setsockopt(

sock,
IPPROTO_IP,
IP_MULTICAST_TTL,
(char *)&ttl,
sizeof(ttl»;

Multicast datagrams with a TTL of 0 are not transmitted on any subnetwork.
Multicast datagrams with a TTL of greater than 1 may be delivered to more than
one subnetwork, if there are one or more multicast routers attached to the first
subnetwork.

104 Windows CE Communications Guide

A multicast router does not forward multicast datagrams with destination
addresses from 224.0.0.0 through 224.0.0.255, inclusive, regardless of their TTL
value. This address range is reserved for routing protocols and other low-level,
topology discovery protocols, or maintenance protocols. These include gateway
discovery protocols and group membership reporting protocols.

Each multicast transmission is sent from a single network interface, even if the
host has more than one multicasting-capable interface. The following code
example shows how to use the setsockopt function to override the default for
subsequent transmissions from a specified socket.

unsigned long addr = inet_addr("157.57.8.1");
setsockopt(

sock,
IPPROTO_IP,
I P _MUL TICAST_I F,
(char *)&addr,
sizeof(addr));

The addr parameter is the local IP address of the outgoing interface. An address
of INADDR_ANY may be used to revert to the default interface. This address
may be different from that which the socket is bound.

By default, if a multicast datagram is sent to a group to which the sending host
belongs, a copy of the datagram on the outgoing interface is looped back by the IP
layer for local delivery. Any attempt to disable this multicast loop-back results in
the call failing, with the error message WSAENOPROTOOPT.

For an example of an application sending a multicast datagram, see Sending an IP
Multicast Datagram Sample.

Joining and Leaving a Multicast Group
Before a host can receive IP multicast datagrams, it must become a member of
one or more IP multicast groups.

Chapter 5 Windows Sockets 105

The following code example shows how a process requests to join a multicast
group by using the setsockopt function.

struct ip_mreq mreq;
II mreq is the ip_mreqstructure
{

struct in_addr imr_multiaddr; liThe multicast group to join
struct in_addr imr_interface; liThe interface to join on

#define RECV_IP_ADDR "225.6.7.8" II An arbitrary multicast address

mreq.imr_multiaddr.s_addr
mreq.imr_interface.s_addr
err = setsockopt(

inet_addr(RECV_IP_ADDR);
INADDR_ANY;

sock,
IPPROTO_IP,
IP_ADD_MEMBERSHIP,
(char*)&mreq,
sizeof(mreq»;

A socket must bind to an address before calling setsockopt.

Every multicast group membership is associated with a single interface. It is
possible to join the same group on more than one interface. To choose the default
multicast interface, use INADDR_ANY as the address for imr _inteiface. To
choose a specific interface capable of multicasting, use one of the host's local
addresses.

The following code example shows how to leave a multicast group.

struct ip_mreq mreq;
setsockopt(

sock,
IPPROTO_IP,
IP_DROP_MEMBERSHIP,
(char*)&mreq,
sizeof(mreq»;

The memberships associated with a socket are dropped when the socket is closed,
or the process holding the socket is terminated. However, more than one socket
may claim a membership in a particular group, and the host remains a member of
that group until the last membership is dropped.

106 Windows CE Communications Guide

Receiving an IP Multicast Datagram
The members associated with a socket do not necessarily determine which
datagrams are received by that socket. Incoming multicast packets are accepted by
the kernel IP layer if any socket has claimed a membership in the destination
group of the datagram. However, delivery of a multicast datagram to a particular
socket is based on the destination port. To receive multicast datagrams sent to a
particular port, it is necessary to bind to that local port, leaving the local address
unspecified, that is, INADDR_ANY.

More than one process may bind to the same SOCK_DGRAM UDP port if the
bind call is preceded by the following code.

int one = 1;
getsockopt(

sock.
SOL_SOCKET.
SO_REUSEADDR.
(char *)&one.
sizeof(one»;

In this case, every incoming multicast, or broadcast UDP datagram destined for
the shared port is delivered to all sockets bound to the port.

The getsockopt function retrieves the current value for a socket option associated
with a socket of any type, in any state, and stores the result in optval. Options can
exist at multiple protocol levels, but they are always present at the uppermost
socket level. Options affect socket operations. If the option was never set with
setsockopt, then getsockopt returns the default value for the option. The
definitions required for the multicast-related socket options are located in the
Winsock.h file. All IP addresses are passed in network byte-order.

For an example of an application receiving a multicast datagram, see Receiving an
IP Multicast Datagram Sample.

Chapter 5 Windows Sockets 107

Reading Socket Options
The TTL of a multicast for a socket can be determined by reading the value from
the socket options. The following code example shows how the TTL value is read.

int ttl;
int sizeofttl = sizeof(ttl);

getsockopt(
sock,
IPPROTO_IP,
IP_MULTICAST_TTL,
(char *)&ttl,
&sizeofttl);

II Allocate space for TTL.
II Create an integer that contains the
II size of the TTL value.

The ttl parameter in the preceding code example contains the current TTL set
value for the multicasts through a socket defined as sock.

Each multicast transmission is sent from a single network interface, even if the
host has more than one multicasting-capable interface. The following code
example shows how a socket option is available to determine which interface is
currently used for transmissions from a specified socket.

unsigned long addr;
int sizeofaddr = sizeof(addr);

getsockopt(
sock,
IPPROTO_IP,
IP _MULTICAST_IF,
(char *)&addr,
&sizeofaddr);

IIAllocate space for address
IICreate an inter containing size of the
II address.

The addr parameter contains the local IP address of the current outgoing interface
after a getsockopt call.

By default, if a multicast datagram is sent to a group, to which the sending host
belongs, a copy of the datagram on the outgoing interface is looped back by IP for
local delivery. Any attempt to disable this multicast loop-back results in the call
failing with the error message WSAENOPROTOOPT.

By default, if a multicast datagram is sent to a group, to which the sending host
belongs, a copy of the datagram on the outgoing interface is looped back by IP for
local delivery. This can be modified using socket options.

108 Windows CE Communications Guide

The following code example shows the option available to check the behavior
status of the socket.

unsigned long status;
int sizeofstatus = sizeof(status);

getsockopt(
sock,
IPPROTO_IP,
IP_MULTICAST_LOOP,
(char *)&status,
&sizeofstatus);

IIAllocate space for the status.
IICreate an integer.
IIContains the size of the status

The status parameter contains the status of the multicast loop-back after the
getsockopt function call.

Using Secure Sockets
Windows CE supports the Private Communication Technology protocol 1.0 and
SSL versions 2.0 and 3.0 security protocols. These protocols are available either
through WinInet or directly from Winsock. Adding security to an application
using these Winsock extensions requires few changes to an application. Once a
secure socket is connected, the application may send and receive data on that
socket unaware that the data over the wire is encoded.

Certificate Authentication
Authentication is the process of determining if a remote host can be trusted. To
establish its trustworthiness, the remote host must provide an acceptable
authentication certificate.

Remote hosts establish their trustworthiness by obtaining a certificate from a
Certification Authority (CA). The CA may, in turn, have certification from a
higher authority, and so on, creating a chain of trust. To determine whether a
certificate is trustworthy, an application must determine the identity of the root
CA, and then determine if it is trustworthy.

Windows CE maintains a database of trusted CAs. When a secure connection is
attempted by an application, Windows CE extracts the root certificate from the
certification chain and checks it against the CA database. It delivers the root
certificate to the application through a certificate validation callback function,
along with the results of the comparison against the CA database.

Chapter 5 Windows Sockets 109

Applications bear ultimate responsibility for verifying that a certificate is
acceptable. Applications can accept or reject any certificate. If a certificate is
rejected, the connection is not completed. At a minimum, a certificate should meet
two requirements: The certificate is current, and the identity contained in the
certificate matches the root CA identity.

The following root certificate authorities are included in the Windows CE 2.1x
Schannel Certificate Authority database:

• VeriSignfRSA Commercial

• VeriSignfRSA Secure Server

• VeriSign Class 2 Public Primary CA

• VeriSign Class 3 Public Primary CA

• VeriSign Class 4 Public Primary CA

• Keywitness Canada, Inc.

• GTE Cybertrust ROOT

• Thawte Server CA

• Thawte Premium Server CA

• Thawte Personal Basic CA

• Thawte Personal Freemail CA

• Thawte Personal Premium CA

• Microsoft Root Authority

• Root SGC Authority

~ To add certificates to the CA database through the registry:

1. Create the key HKLM\Comm\SecurityProviders\sCHANNEL\CAs if one
does not already exist.

2. Create a subkey with the name of the certificate, for example My Certificate.

3. Create the following values under the My Certificate key.

DWORD:Enabled = 1
DWORD:Type = 1
BINARY:CACert = X509 certificate bytes

Schannel will pick up the root certificate next time it is loaded.

110 Windows CE Communications Guide

The certificate validation callback function must be implemented by all client
applications that use secure sockets. The value it returns determines if the
connection will be completed by Winsock. It must have the following syntax:

int SslValidate
DWORD dwType
LPVOID pvArg
DWORD dwChainLen
LPBLOB pCertChain
DWORD dwFlags

) :

The parameters contain the following data:

• The dwType parameter specifies the data type pointed to by pCertChain. This
must be SSL_CERT_X.509, specifying that pCertChain is a pointer to an
X.509 style certificate.

• The pvArg parameter is the application-defined context, passed by the
SSL V ALIDATECERTHOOK structure.

• The dwChainLen parameter is the number of certificates pointed to by
pCertChain.1t will always be equal to one.

• The pCertChain parameter is a pointer to the root certificate. The BLOB struct
is defined in Sslsock.h in the SDK. The pBlobData field points to a X.509
certificate (ISO standard). The certificate is not the root certificate but the
server certificate. The caller must parse the certificate to extract the pertinent
data like the subject and issuer names.

• If the root issuer of the certificate could not be found in the CA database, the
dwFlags parameter will contain SSL_CERT_FLAG_ISSUER_UNKNOWN.
The application can either attempt to verify the issuer itself, or return
SSL_ERR_CERT_UNKNOWN.

The following table shows values returned by the callback function.

Return value

SSL_ERR_BAD _DATA

SSL_ERR_BAD _SIG

SSL_ERR_CERT_EXPIRED

SSL_ERR_CERT_REVOKED

SSL_ERR_CERT_UNKNOWN

Description

The certificate is not properly formatted.

The signature check failed.

The certificate has expired.

The certificate has been revoked.

The issuer is unknown, or some unspecified problem
arose in the certificate processing, rendering it
unacceptable.

The certificate is acceptable.

Chapter 5 Windows Sockets 111

Implementing a Secure Socket
The following procedure describes how to establish a secure socket connection.

~ To implement a secure socket

1. Create a socket with the socket function.

2. Set the socket in secure mode with the setsockopt function. Set the level
parameter to SO_SOCKET, optname to SO_SECURE, and optval to a
DWORD set to SO_SEC_SSL.

3. Specify the certificate validation callback function by calling WSAloctl with
the SO_SSL_SET_ VALIDATE_CERT_HOOK control code.

4. To specify a particular security protocol, call WSAloctl with the
SO_SSL_GET_PROTOCOLS control code to determine the default protocols.
Then call WSAloctl with the SO_SSL_SET_PROTOCOLS control code to
select the protocols to be enabled. Otherwise, Windows CE selects the
protocol.

5. Make a connection with the connect function.

The certificate callback function is automatically called. The connection can
be completed only if the callback function verifies the acceptability of the
certificate by returning SSL_ERR_OKA Y.

6. Transmit and send.

The send and recv functions automati~ally encode and decode data.

7. When finished, close the socket with the closesocket function.

Using a Deferred Handshake
A deferred handshake enables an application to create an unsecured connection
and then later convert it to a secure connection.

~ To implement secure sockets with a deferred handshake

1. Create a socket with the socket function.

2. Set the socket in secure mode with setsockopt.

The level parameter should be set to SO_SOCKET, optname should be set to
SO_SECURE, and optval should be a DWORD set to SO_SEC_SSL.

3. Specify the certificate validation callback function by calling WSAloctl with
the SO_SSL_SET_ VALIDATE_CERT_HOOK control code.

4. Set the socket in deferred handshake mode with WSAIoctl. The control code
should be set to SO_SSL_SET_FLAGS and the flag to
SSL_FLAG_DEFER_HANDSHAKE.

112 Windows CE Communications Guide

5. Establish a nonsecure connection with the remote party using connect.

6. Transmit and receive unencoded data.

7. To switch to secure mode, call WSAloctl with the
SO_SSL_PERFORM_HANDSHAKE control code passing in the target server
name.

The certificate callback function is automatically called. The handshake is
successful only if the callback function verifies the acceptability of the
certificate by returning SSL_ERR_OKA Y.

8. Transmit and receive.

The send and recv functions encode and decode the data automatically.

9. Close the socket with closesocket when finished.

Winsock Sample Applications
This section contains Winsock sample applications of both TCP stream type
sockets and UDP datagram sockets. The UDP datagram socket applications show
how to send and receive IP multicast datagrams.

Tep Stream Socket Server
This sample application shows how to implement a Winsock TCP stream socket
server. It checks an incoming message sent by the client and sends a message to
the client. This sample can be run on different Windows CE-based devices or the
same device with Client.exe.

#include <windows.h>
#include <winsock.h>

#define PORTNUM 5000
#define MAX_PENDING_CONNECTS 4

int WINAPI WinMain (

II Port number
II Maximum length of the queue
II of pending connections

HINSTANCE hInstance, II Handle to the current instance
HINSTANCE hPrevInstance,11 Handle to the previous instance
LPTSTR lpCmdLine, II Pointer to the command line
int nCmdShow) II Show state of the window

int index = 0,
iReturn;

char szServerA[100];
TCHAR szServerW[100];
TCHAR szError[100];

II Integer index
II Return value of recv function
II ASCII string
II Unicode string
II Error message string

Chapter 5 Windows Sockets 113

SOCKET WinSocket = INVALID_SOCKET, II Window socket
ClientSock = INVALID_SOCKET; II

II
SOCKADDR_IN local_sin,

accept_sin;
II
II
II
II

Socket for communicating
between the server and client
Local socket address
Receives the address of the
connecting entity
Length of accept_sin

WSADATA WSAData; II Contains details of the Winsock
II implementation

II Initialize Winsock.
if (WSAStartup (MAKEWORD(l,l), &WSAData) != 0)
{

wspri ntf (szError, TEXT ("WSASta rtup fa il ed. Erro r: %d"),
WSAGetLastError ());

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Create a TCP/IP socket, WinSocket.
if «WinSocket = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
{

}

wsprintf (szError, TEXT("Allocating socket failed. Error: %d"),
WSAGetLastError ());

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Fill out the local socket's address information.
local_sin.sin_family = AF_INET;
local_sin.sin_port = htons (PORTNUM);
local_sin.sin_addr.s_addr = htonl (INADDR_ANY);

II Associate the local address with WinSocket.
if (bind (WinSocket,

}

(struct sockaddr *) &local_sin,
sizeof (local_sin)) == SOCKET_ERROR)

wsprintf (szError, TEXT("Binding socket failed. Error: %d"),
WSAGetLastError ());

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (WinSocket);
return FALSE;

114 Windows CE Communications Guide

II Establish a socket to listen for incoming connections.
if (listen (WinSocket, MAX_PENDING_CONNECTS) == SOCKET_ERROR)
{

wsprintf (szError,
TEXT("Listening to the client failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK):
closesocket (WinSocket);
return FALSE;

II Accept an incoming connectio~ attempt on WinSocket.
ClientSock = accept (WinSocket,

(struct sockaddr *) &accept_sin,
(int *) &accept_sin_len);

II Stop listening for connections from clients.
closesocket (WinSocket);

if (ClientSock == INVALID_SOCKET)
{

}

wsprintf (szError, TEXT("Accepting connection with client failed.")
TEXT(" Error: %d"), WSAGetLastError ():

MessageBox (NULL, szError, TEXT("Error"), MB_OK):
return FALSE;

for (;:)
{

II Receive data from the client.
iReturn = recv (ClientSock, szServerA, sizeof (szServerA), 0):

II Check if there is any data received. If there is, display it.
if (iReturn == SOCKET_ERROR)
{

wsprintf (szError, TEXT("No dat.a is received, recv failed.")
TEXT(" Error: %d"), WSAGetLastError (»;

MessageBox (NU LL, szError, TEXT("Server"), MB_OK);
break;

else if (iReturn 0)
{

MessageBox (NULL, TEXT("Finished receiving data"), TEXT("Server"),
MB_OK) ;

break:

}

else
{

Chapter 5 Windows Sockets 115

II Convert the ASCII string to a Unicode string.
for (index = 0: index <~ sizeof (szServerA): index++)

szServerW[index] = szServerA[index]:

II Display the string received from the client.
MessageBox (NULL, szServerW, TEXT("Received From Client"), MB_OK):

II Send a string from the server to the client.
if (send (ClientSock, "To Client.", strlen ("To Client.") + 1, 0)

-= SOCKET_ERROR)

wsprintf (szError,
TEXT("Sending data to the client failed. Error: %d"),
WSAGetLastError (»:

MessageBox (NULL, szError, TEXT("Error"), MB_OK):

II Disable both sending and recelvlng on ClientSock.
shutdown (ClientSock, 0x02):

II Close ClientSock.
closesocket (ClientSock):

WSACleanup ():

return TRUE:

116 Windows CE Communications Guide

TCP Stream Socket Client
This sample application shows how to implement a Winsock client. It sends a
message to the server and checks the incoming message sent by the server. This
sample can be run on the same device with the TCP Stream Socket Server sample
application. In this case, define HOSTNAME as "localhost". Otherwise, define
HOSTNAME as the full server name.

#include <windows.h>
#include <winsock.h>

#define PORTNUM
#define HOSTNAME

5000 II Port number
"localhost" II Server name string

int WINAPI WinMain (

II This should be changed
II according to the server.

HINSTANCE hInstance. II Handle to the current instance
HINSTANCE hPrevInstance.11 Handle to the previous instance
LPTSTR lpCmdLine. II Pointer to the command line
int nCmdShow) II Show state of the window

int index = 0.
iReturn;

char szClientA[100];
TCHAR szClientW[100];
TCHAR szError[100];

II Integer index
II Return value of recv function
II ASCII string
II Unicode string
II Error message string

SOCKET ServerSock = INVALID_SOCKET; II Socket bound to the server
Server socket address SOCKADDR_IN destination_sin;

PHOSTENT phostent = NULL;

WSADATA WSAData;

II Initialize Winsock.

II
II
II
II
II

Points to the HOSTENT structure
of the server
Contains details of the Winsock
implementation

if (WSAStartup (MAKEWORD(l.l). &WSAData) 1= 0)
{

wsprintf (szError. TEXTC"WSAStartup failed. Error: %d").
WSAGetLastError (»;

MessageBox (NULL. szError. TEXTC"Error"). MB_OK);
return FALSE;

Chapter 5 Windows Sockets 117

II Create a TCP/IP socket that is bound to the server.
if «ServerSock = socket (AF_INET, SOCK_STREAM, 0» == INVALID_SOCKET)
{

wsprintf (szError. TEXT("Allocating socket failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Fill out the server socket's address information.
destination_sin.sin_family = AF_INET;

II Retrieve the host information corresponding to the host name.
if «phostent = gethostbyname (HOSTNAME» == NULL)
{

wsprintf (szError, TEXT("Unable to get the host name. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

II Assign the socket IP address.
memcpy «char FAR *)&(destination_sin.sin_addr),

phostent->h_addr,
phostent->h_length);

II Convert to network ordering.
destination_sin.sin_port = htons (PORTNUM);

II Establish a connection to the server socket.
if (connect (ServerSock,

(PSOCKADDR) &destination_sin,
sizeof (destination_sin» == SOCKET_ERROR)

wsprintf (szError,
TEXT("Connecting to the server failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

II Send a string to the server.
if (send (ServerSock, "To Server.", strlen ("To Server.") + I, 0)

== SOCKET_ERROR)
{

118 Windows CE Communications Guide

wsprintf (szError,
TEXT("Sending data to the server failed. Error: %d"),
WSAGetLastError (»:

MessageBox (NULL, szError, TEXT("Error"), MB_OK):

II Disable sending on ServerSock.
shutdown (ServerSock, 0x01):

for (::)
{

II Receive data from the server socket.
iReturn = recv (ServerSock, szClientA, sizeof (szClientA), 0):

II Check if there is any data received. If there is, display it.
if (iReturn == SOCKET_ERROR)
{

}

wsprintf (szError, TEXT("No data is received, recv failed.")
TEXT(" Error: %d"), WSAGetLastError (»:

MessageBox (NULL, szError, TEXT("Client"), MB_OK):
break:

else if (iReturn 0)
{

MessageBox (NULL, TEXT("Finished receiving data"), TEXT("Client"),
MB_OK) :

break:
}

else
{

}

II Convert the ASCII string to a Unicode string.
for (index = 0: index <= sizeof (szClientA): index++)

szClientW[index] = szClientA[index]:

II Display the string received from the server.
MessageBox (NU LL, szCl i entW, TEXT("Recei ved From Server"), MB_OK):

II Disable recelvlng on ServerSock.
shutdown (ServerSock, 0x00):

II Close the socket.
closesocket (ServerSock):

WSACleanup ():

return TRUE:

Chapter 5 Windows Sockets 119

Infrared Sockets Server
In this sample an IrSock server allocates a socket and binds it to the lAS name,
"ServerOne". It then allocates a single connection object and prepares the server
to listen for incoming connections. When the client contacts the server, the server
accepts the connection. It then receives a string from the client, passes one back,
and closes the connection.

#include <windows.h>
#include <af_irda.h>

int WINAPI WinMain (
HINSTANCE hInstance, II Handle to the current instance
HINSTANCE hPrevInstance,11 Handle to the previous instance
LPTSTR lpCmdLine, II Pointer to the command line
int nCmdShow) II Show state of the window

SOCKET ServerSock,
ClientSock;

II IR socket bound to the server
II IR socket bound to the client

SOCKADDR_IRDA address {AF_IRDA, 0, 0, 0, 0, "IRServer"};

int index = 0,
II Specifies the server socket address
II Integer index

iReturn;
char szServerA[100];
TCHAR szServerW[100];
TCHAR szError[100];

II Return value of recv function
II ASCII string
II Unicode string
II Error message string

II Create a socket bound to the server.
if «ServerSock = socket (AF_IRDA, SOCK_STREAM, 0)) == INVALID_SOCKET)
{

wsprintf (szError, TEXT("Allocating socket failed. Error: %d"),
WSAGetLastError ());

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Associate the server socket address with the server socket.
if (bind (ServerSock, (struct sockaddr *)&address, sizeof (address))

== SOCKET_ERROR)

}

wsprintf (szError, TEXT("Binding socket failed. Error: %d"),
WSAGetLastError ());

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

120 Windows CE Communications Guide

II Establish a socket to listen for incoming connections.
if (listen (ServerSock, 5) == SOCKET_ERROR)
{

wsprintf (szError,
TEXT("Listening to the client failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

II Accept a connection on the socket.
if «ClientSock = accept (ServerSock, 0, 0» == INVALID_SOCKET)
{

}

wsprintf (szError, TEXT("Accepting connection with client failed.")
TEXT(" Error: %d"), WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (ServerSock);
return FALSE;

II Stop listening for connections from clients.
closesocket (ServerSock);

II Send a string from the server socket to the client socket.
if (send (ClientSock, "To Client!", strlen ("To Client!") + 1, 0)

== SOCKET_ERROR)

}

wsprintf (szError,
TEXT("Sending data to the client failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);

II Receive data from the client.
iReturn = recv (ClientSock, szServerA, sizeof (szServerA), 0);

II Check if there is any data received. If there is, display it.
if (iReturn == SOCKET_ERROR)
{

}

wsprintf (szError, TEXT("No data is received, recv failed.")
TEXT(" Error: %d"), WSAGetLastError (»;

MessageBox (NU LL, szError, TEXT("Server"), MB_OK);

else if (iReturn == 0)
{

}

MessageBox (NULL, TEXT("Finished receiving data"), TEXT("Server"),
MB_OK) ;

else
{

Chapter 5 Windows Sockets 121

II Convert the ASCII string to a Unicode string.
for (index = 0; index <= sizeof (szServerA); index++)

szServerW[index] = szServerA[index];

II Display the string received from the client.
MessageBox (NULL, szServerW, TEXT("Received From Client"), MB_OK);

II Close the client and server sockets.
closesocket (ClientSock);

return 0;

Infrared Sockets Client
In this sample application, an IrSock client opens a socket and makes five
attempts to locate a server. If no server is found, it displays a dialog box to inform
the user of the failure. When a server is detected, the client queries the server for
its device identifier and sends a greeting to the service named My Server. It then
waits for the server to respond, displays a dialog box with the response, and closes
the socket.

#include <windows.h>
#include <af_irda.h>

#define NUMRETYR 5

int WINAPI WinMain (

II Maximum number of retries

HINSTANCE hInstance, II Handle to the current instance
HINSTANCE hPrevInstance,11 Handle to the previous instance
LPTSTR lpCmdLine, II Pointer to the command line
int nCmdShow) II Show window state.

122 Windows CE Communications Guide

SOCKET sock;
DEVICELIST devList;
SOCKADDR_IRDA address =

int iCount = 0,
index = 0,
iReturn,
iDevListLen = sizeof

char szClientA[100];
TCHAR szClientW[100];
TCHAR szError[100];

II Socket bound to the server
II Device list

{AF_IRDA, 0, 0, 0, 0, "IRServer"};
II Specifies the server socket address
II Number of retries
II Integer index
II Return value of recv function

(devList);
II Size of the device list
II ASCII string
II Unicode string
II Error message string

II Create a socket that is bound to the server.
if «sock socket (AF_IRDA, SOCK_STREAM, 0» == INVALID_SOCKET)
{

wsprintf (szError, TEXT("Allocating socket failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Initialize the number of devices to zero.
devList.numDevice = 0;

while ((devList.numDevice == 0) && (iCount (= NUMRETYR»
{

II Retrieve the socket option.
if (getsockopt (sock, SOL_IRLMP, IRLMP_ENUMDEVICES,

}

(char *)&devList, &iDevListLen) == SOCKET_ERROR)

wsprintf (szError, TEXT("Server could not be located, getsockopt")
TEXT(" fai 1 ed. Error: %d"), WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (sock);
return FALSE;

iCount++;

II Wait one second before retrying.
Sleep (1000);

Chapter 5 Windows Sockets 123

if (iCount > NUMRETYR)
{

MessageBox (NULL, TEXT ("Server could not be located!"),
TEXT ("Error"). MB_OK);

closesocket (sock);
return FALSE;

II Get the server socket address.
for (index = 0; index <= 3; index++)
{

address.irdaDeviceID[index] = devList.Device[0].irdaDeviceID[index];

II Establish a connection to the socket.
if (connect (sock, (struct sockaddr *)&address,

sizeof (SOCKADDR_IRDA» == SOCKET_ERROR)

wsprintf (szError,
TEXT("Connecting to the server failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (sock);
return FALSE;

II Send a string from the client socket to the server socket.
if (send (sock, "To Server.", strlen ("To Server.") + I, 0)

== SOCKET_ERROR)

wsprintf (szError,
TEXT("Sending data to the server failed. Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);

II Receive data from the server socket.
iReturn = recv (sock, szClientA, sizeof (szClientA), 0);

II Check if there is any data received. If there is, display it.
if (iReturn == SOCKET_ERROR)
{

wspri ntf (szError, TEXT("No data is recei ved, recv fail ed.")
TEXT(" Error: %d"), WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Cl i ent"), MB_OK);

124 Windows CE Communications Guide

else if (iReturn == 0)
{

MessageBox (NULL, TEXT("Finished receiving data"), TEXT("Client"),
MB_OK) ;

}

else
{

II Convert the ASCII string to a Unicode string.
for (index = 0: index <= sizeof (szClientA): index++)

szClientW[index] = szClientA[index]:

II Display the string received from the server.
MessageBox (NULL, szCl i entW, TEXT("Recei ved From Server"), MB_OK);

II Close the socket.
closesocket (sock);

return 0;

Receiving an IP Multicast Datagram Sample
The following sample application shows how to receive an IP multicast datagram.

#include <windows.h>
#include <winsock.h>

#define RECV_IP_ADDR
#define DEST_PORT

int WINAPI WinMain

"234.5.6.7"
4567

HINSTANCE hInstance, II Handle to the current instance
HINSTANCE hPrevInstance,l1 Handle to the previous instance

{

LPTSTR lpCmdLine, II Pointer to the command line
int nCmdShow) II Show state of the window.

int index = 0,
i RecvLen:

char szMessageA[100]:
TCHAR szMessageW[100]:
TCHAR szError[100]:

SOCKET Sock = INVALID_SOCKET;

II Integer index
II Length of recv_sin
II ASCII string
II Unicode string
II Error message string

II Datagram window socket

struct ip_mreq mreq;

SOCKADDR_IN local_sin,
recv_sin;

WSADATA WSAData;

II Initialize Winsock.

Chapter 5 Windows Sockets 125

II Used in adding or dropping
II multicasting addresses
II Local socket's address
II Holds the source address upon
II recvfrom function returns
II Contains details of the Winsock
II implementation

if (WSAStartup (MAKEWORD(l,l), &WSAData) != 0)
{

wspri ntf (szError, TEXT("WSASta rtup fa il ed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Create a datagram socket, Sock.
if «Sock socket (AF_INET, SOCK_DGRAM, 0» == INVALID_SOCKET)
{

wsprintf (szError, TEXT("Allocating socket failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Fill out the local socket's address information.
local_sin.sin_family = AF_INET;
local_sin.sin_port = htons (DEST_PORT);
local_sin.sin_addr.s_addr = htonl (INADDR_ANY);

II Associate the local address with Sock.
if (bind (Sock,

(struct sockaddr FAR *) &local_sin,
sizeof (local_sin» == SOCKET_ERROR)

wsprintf (szError, TEXT("Binding socket failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (Sock);
return FALSE;

II Join the multicast group from which to receive datagrams.
mreq.imr_multiaddr.s_addr inet_addr (RECV_IP_ADDR);
mreq.imr_interface.s_addr INADDR_ANY;

126 Windows CE Communications Guide

}

if (setsockopt (Sock,
IPPROTO_IP,
IP_ADD_MEMBERSHIP,
(char FAR *)&mreq,
sizeof (mreq» == SOCKET_ERROR)

wsprintf (szError, TEXTC"setsockopt failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (Sock);
return FALSE;

iRecvLen sizeof (recv_sin);

II Receive data from the multicasting group server.
if (recvfrom (Sock,

szMessageA,
100,
0,
(struct sockaddr FAR *) &recv_sin,
&iRecvLen) == SOCKET_ERROR)

wsprintf (szError, TEXTC"recvfrom failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXTC"Error"), MB_OK);
closesocket (Sock);
return FALSE;

else
{

II Convert the ASCII string to a Unicode string.
for (index = 0; index <= sizeof (szMessageA); index++)

szMessageW[index] = szMessageA[index];

MessageBox (NULL, szMessageW, TEXTC"Info"), MB_OK);

II Disable recelvlng on Sock before closing it.
shutdown (Sock, 0x00);

II Close Sock.
closesocket (Sock);

WSACleanup ();

return TRUE;

Chapter 5 Windows Sockets 127

Sending an IP Multicast Datagram Sample
The following sample application shows how to send an IP multicast datagram.

#include <windows.h>
#include <winsock.h>

#define DEST_MCAST "234.5.6.7"
#define DESTINATION PORT 4567
#define SOURCE_PORT 0

int WINAPI WinMain (

{

HINSTANCE hInstance, II Handle to the current instance
HINSTANCE hPrevInstance,11 Handle to the previous instance
LPTSTR lpCmdLine, II Pointer to the command line
int nCmdShow) II Show window state.

int iOptVal = 64;
char szMessage[] = "Multicasting message!";

II Sent message string
TCHAR szError[100]; II Error message string

II Datagram window socket SOCKET Sock = INVALID_SOCKET;

SOCKADDR_IN source_sin,
dest_sin;

II Source socket address
II Destination socket address

WSADATA WSAData; II Contains details of the Winsock
II implementation

II Initialize Winsock Sockets.
if (WSAStartup (MAKEWORD(l,l), &WSAData) != 0)
{

wsprintf (szError, TEXT("WSAStartup failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

II Create a datagram window socket, Sock.
if «Sock ~ socket (AF_INET, SOCK_DGRAM, 0» == INVALID_SOCKET)
{

}

wsprintf (szError, TEXT("Allocating socket failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
return FALSE;

128 Windows CE Communications Guide

II Fill out source socket's address information.
source_sin.sin_family = AF_INET;
source_sin.sin_port = htons (SOURCE_PORT);
source_sin.sin_addr.s_addr = htonl (INADDR_ANY);

II Associate the source socket's address with the socket, Sock.
if (bind (Sock,

{

(struct sockaddr FAR *) &source_sin,
sizeof (source_sin» == SOCKET_ERROR)

wsprintf (szError, TEXT("Binding socket failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (Sock);
return FALSE;

II Set the Time-to-Live of the multicast.
if (setsockopt (Sock,

{

}

IPPROTO_IP,
IP_MULTICAST_TTL,
(char FAR *)&iOptVal,
sizeof (int» == SOCKET_ERROR)

wspri ntf (szErro r, TEXT(" setsockopt fa il ed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);
closesocket (Sock);
return FALSE;

II Fill out the desination socket's address information.
dest_sin.sin_family = AF_INET;
dest_sin.sin_port = htons (DESTINATION_PORT);
dest_sin.sin_addr.s_addr = inet_addr (DEST_MCAST);

II Send a message to the multicasting address.
if (sendto (Sock,

szMessage,
strlen (szMessage) + 1,
0,
(struct sockaddr FAR *) &dest_sin,
sizeof (dest_sin» == SOCKET_ERROR)

Chapter 5 Windows Sockets 129

wsprintf (szError, TEXT("sendto failed! Error: %d"),
WSAGetLastError (»;

MessageBox (NULL, szError, TEXT("Error"), MB_OK);

closesocket (Sock);
return FALSE;

else
MessageBox (NU LL, TEXT("Sendi ng data succeeded!"), TEXT(" Info") ,

MB_OK) ;

II Disable sending on Sock before closing it.
shutdown (Sock, 0x01);

II Close Sock.
closesocket (Sock);

WSACleanup ();

return TRUE;

131

CHAPTER 6

Windows Networking

A Windows CE-based application can use Windows networking functions to
establish and terminate network connections and to retrieve current configuration
data for the Microsoft Network. Access to this data is made possible by way of the
Windows CE networking API (WNet). WNet communicates through the Common
Internet File System (CIFS) redirector to the remote host. A CIFS redirector is a
module through which one computer can access another. An application can use
WNet functions to manage network connections anywhere in the network
hierarchy.

An application can access network resources using the Universal Naming
Convention (UNC). UNC is a system for naming files on a network so that a file
on a computer have the same path when accessed from any other computer. For
example \\Servemame\Sharename\Filename.ext; Servemame is the server name,
and Sharename is a directory on Servemame that contains the file Filename.ext.

The Windows CE WNet API is similar to WNet for Windows-based desktop
platforms with the following exceptions:

• Windows CE does not support drive letters. WNet supports mapping a remote
UNC name to a local name, but whereas for the desktop operating systems the
local name is drive-based, for example, H:<path>, Windows CE local names
may take any form, for example, Myshare\pPath. Local names can be up to 64
characters in length, thus expanding the number of mapped network resources
beyond 26.

• The only network provider currently supported by Windows CE is the
Microsoft Windows Network.

132 Windows CE Communications Guide

• No connections are restored when the device is warm booted. A persistent
connection is stored in the registry and the connection appears in the list of
resources. This data is enumerated and retrieved by calling the
WNetOpenEnum function with the dwScope parameter set to
RESOURCE_REMEMBERED.

• Windows CE does not expose APIs for a mail slots or named pipes.

• Only a subset of the full WNet API set is supported by Windows CEo For
example, the WNet function WNetGetLastError is not supported. This
function is redundant because supported WNet functions do not return
extended error data. The user can use the GetLastError function. All WNet
functions return an ERROR_xxx value. This is not the same as Windows NT,
which returns WN_XXX error value. ERROR _XXX error values are mapped to
the appropriate WN_xxx error values for backward compatability.

• LAN Manager functions are not exposed.

• Windows CE does not support the concept of a computer or device belonging
to a specific network context.

Windows Networking and the OSI Model
In the International Organization for Standardization Open Systems
Interconnection (ISO/OSI) model for network communications, WNet functions
operate across the presentation and session layers.

Chapter 6 Windows Networking 133

The following illustration shows how WNet functions fit into the ISO/OSI model
for Windows CE communications.

Application
layer

Presentation
layer

Session
layer

Transport
layer

Network
layer

Data~link
layer

Physical
layer

L..-__ ~ __ "'"

Application

CIFS
redirector

134 Windows CE Communications Guide

Accessing Remote File Systems
Windows CE supports the CIFS redirector for accessing remote file systems and
remote printers. The CIFS protocol is also referred to as the Server Message
Block (SMB) protocol. The redin!ctor's purpose is twofold: to reestablish a
disrupted connection and to handle remote file system requests by packaging them
and sending them to the target host for processing. The target host returns results
to the computer making the request.

The Windows CE redirector supports connections to Windows-based desktop
platforms, or servers compliant with the Windows NT LM 0.12 dialect of the
CIFS specification. Applications access network drives either by way of WNet or
a standard file system API with UNC paths.

To use the WNet functions under Windows CE, the redirector DLL, known as
Redir.dll, and the NetBIOS DLL, known as Netbios.dll, must be installed in the
Windows directory. If these DLLs are not installed, WNet functions return
ERROR_NO_NETWORK.

Note The NetBIOS DLL contains only what is necessary to support the CIFS
redirector. Windows CE does not support the NetBIOS interface.

Naming a Device
To use the redirector, a Windows CE-based device must have a unique name. The
device name can be changed in the Control Panel communications properties, or
preconfigured by setting the REG_SZ value under the
HKEY_LOCAL_MACHINE\Ident\Name key. The name must include:

• From 1 to 15 characters.

• A leading character in the range 'a'-'z' or 'A'-'Z.'

• The remaining characters in the range 'a'-'z', 'A'-'Z', '0'-'9', or '-.'

Note Check with your network administrator to determine a valid name.

Control Panel does not check for invalid names, however the redirector will not
function correctly if an invalid name is entered. This restriction also applies to
other computer names accessed through the redirector, so servers whose names do
not fit the name restrictions mentioned earlier may not be accessible to
Windows CEo

Chapter 6 Windows Networking 135

This name is registered on the network the first time a file server is accessed over
the network using either UNC file operations or WNet functions. The first file
operation may take 10-15 seconds while the device name is registered. If the
device name is not changed from the default, or if there is an error registering the
name, a dialog box appears prompting the user to change the device name and
retry the operation.

Once the name has been changed in the Control Panel, any active network
connections must be reconnected before the new name is registered on the
network. For example, if a network adapter PC Card is used, it must be removed
and reinserted before the new name is registered. If an installed network adapter is
used, the device must be warm booted for the new name to take effect.

Setting a User Name and Password
For dial-up connections, the default user name and password are those used to
establish the connection. For network adapter PC Cards, default user logon data
may be configured in the network Control Panel. If no default name and password
are specified, or if an authentication error occurs while connecting to a server, the
user logon dialog box appears. Enter your name and password in the dialog box
and indicate whether to update the default values. If you choose to update the
values, another dialog box asks whether to save the password in the registry. The
password is stored in encrypted form; however, if you are concerned about having
it stored, answer no to this dialog.

Modifying Registry Keys Used by the Redirector
The following table shows the modifiable registry settings for the
HKEY_LOCAL_MACHINE\Comm\Redir key.

Registry key Description DWORD Values

ClearTxtPwdAllowed Specifies if cleartext The default value is O. If 0,
password is accepted refuse to connect to a server that

negotiates clear text passwords.

ServerTimoutMs Specifies the number of The default value is 10000.
milliseconds to wait for
5MB responses

FindCacheMaxSize Specifies the maximum The default value is 8192. A
memory to use for find value of 0 disables all caching.
caching

ResourceExpirylnt Specifies the number of The default value is 600.
seconds before releasing
unused resources

Recv BufSize Specifies the size of the The default value is 4096.
receiving buffer

136 Windows CE Communications Guide

Note If settings change, the Windows CE-based device must be warm booted
before they take effect. Exercise caution when changing default values-this may
affect system performance or the redirector operation.

Network Folder
Windows CE does not support drive letters; mounted file systems supply defined
roots exposed in a top-level directory. For the redirector file system, the reserved
root is \Network. To facilitate writing shells that are alert to network resources,
the redirector maps paths in \network to locally connected resources.

A registry key was added to enable a project to expose the \Network folder. This
is disabled by default, but can be overridden by setting the DWORD value
RegisterFSRoot under the HKEY _LOCAL_MACHINE\Comm\Redir key to a
nonzero value. If this value exists and is nonzero, the \Network folder appears in .
top-level enumerations, for example, dir *. *, on the device.

The \network folders can only be managed with the WNet API functions
FindFirstFile and FindNextFile. Create folders in \Network with the
WNetAddConnection3 function and remove folders with the
WNetCanceiConnection2 function.

Folders are added to and removed from \Network using the standard
WNetAddConnection and WNetCancelConnection functions. Only persistent
connections are enumerated in \Network, so if the device is warm booted, folders
in \Network remain the same.

WNet Functions
The WNet functions are defined in the Winnetwk.h header file. The following
table shows the WNet functions supported by Windows CEo

Function

WNetAddConnection3

WN etCanceIConnection2

WNetCloseEnum

WN etConnectionDialogl

Description

Makes a connection to a network resource
and can specify a local name for the
resource

Terminates an existing network connection

Ends a network enumeration started by
WNetOpenEnum

Displays a general browsing dialog box for
connecting to a network

Function

WNetDisconnectDialog

WNetDisconnectDialogl)

WNetEnumResource

WN etGetConnection

WNetGetUniversalName

WNetGetUser

WNetOpenEnum

WNet Structures

Chapter 6 Windows Networking 137

Description

Displays a dialog box listing all currently
connected resources and permits the user to
select which resources to disconnect

Attempts to disconnect from a network;
notifies the user of any errors

Continues a network enumeration started by
WNetOpenEnum

Retrieves the remote name of a network
resource associated with a local name

Maps a local path for a network resource to
a data structure containing the UNC based
name

Retrieves user name used to establish a
network connection

Starts an enumeration of network resources
or existing connections

WNet structures are defined in the Winnetwk.h header file. The following table
shows the WNet structures supported by Windows CEo

Structure

CONNECTDLGSTRUCT

DISCDLGSTRUCT

NETRESOURCE

Description

Specifies browsing dialog box parameters
for WNetConnectionDialogl.

Used in the WNetDisconnectDialogl
function to describe the required behavior
for the disconnect attempt.

Holds the network resource data. It is
returned during enumeration of resources
on the network and currently connected
resources.

Contains path and name data about a
network resource. The structure contains a
member that points to a UNC name string
for the resource and two members that point
to additional network connection data
strings.

Contains a pointer to a UNC name string.

138 Windows CE Communications Guide

Managing Network Connections with WNet
Applications can use WNet to control network connections and retrieve network
configuration data. Specifically, the WNet API provides functions for performing
the following tasks:

• Determining available network resources

• Connecting to a network

• Retrieving network data

• Locating a printer on a network

• Printing on a network

Determining Available Network Resources
To determine the resources available on a network, an application passes the
address of a NETRESOURCE structure to the WNetOpenEnum function.
Calling WNetOpenEnum initializes an enumeration instance with the
NETRESOURCE structure specifying the enumeration parameters.

~ To identify available network resources

1. Set up the NETRESOURCE structure to define enumeration.

To enumerate a shared directory on a server, change the lpRemoteName
member in NETRESOURCE to the name of the server. Similarly, to
enumerate servers in a domain, change the lpRemoteName to the name of the
domain.

The following code example shows how to enumerate a shared directory on a
server.

NETRESOURCE nr;

nr.dwScope = RESOURCE_GLOBALNET;
nr.dwType = RESOURCETYPE_DISK;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;
nr.lpLocalName = TEXT("");
nr.lpRemoteName = TEXT("\\\\MyServer");
n r. 1 pComment = TEXT('''') ;
nr.lpProvider = TEXT("");

EnumerateFunc (hwnd. &nr);

Chapter 6 Windows Networking 139

The following code example shows how to enumerate servers in a domain.

NETRESOURCE n r;

nr.dwScope - RESOURCE_GLOBALNET;
nr.dwType = RESOURCETYPE_DISK;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;
nr.lpLocalName ~ TEXT("");
n r. 1 pRemoteName ... TEXT("MyDoma in") ;
nr.lpComment = TEXT("");
nr.lpProvider = TEXT("");

EnumerateFunc (hwnd. &nr);

2. Call WNetOpenEnum to create an enumeration handle to the resource
defined by NETRESOURCE.

3. Call WNetEnumResource with the enumeration handle created in the
previous step to package the resource data in an array of NETRESOURCE
structures.

4. Call WNetCloseEnum to close the enumeration handle.

An application can continue enumerating any container's resources.

If the dwUsage member of NETRESOURCE returned by WNetEnumResource
is RESOURCEUSAGE_CONTAlNER, an application can continue enumerating
that container by passing the address of that structure to WNetOpenEnum. If
dwUsage is RESOURCEUSAGE_CONNECTABLE, an application can add a
connection to the resource by passing the structure address to the
WNetAddConnection3 function. For more information, see Establishing a
Network Connection.

The following code example shows how an application-defined function,
EnumerateFunc, that enumerates all the resources in a subdirectory on a
network. This function takes a pointer to a NETRESOURCE structure describing
the subdirectory. Whenever WNetEnumResource returns a NETRESOURCE
structure with the dwUsage member corresponding to
RESOURCEUSAGE_CONTAlNER, EnumerateFunc calls itself and passes a
pointer to this structure in its call to WNetOpenEnum.

140 Windows CE Communications Guide

BOOL WINAPI EnumerateFunc (HWND hwnd, LPNETRESOURCE lpnr)
{

HANDLE hEnum;

DWORD dwIndex,
dwResult,
dwBufferSize 16384,
dwNumEntries 0xFFFFFFFF; II Enumerate all possible entries.

LPNETRESOURCE lpnrLocal; II Pointer to enumerated structures.

dwResult = WNetOpenEnum (
RESOURCE_GLOBALNET, II All resources on the network
RESOURCETYPE_ANY, II All resources
0, II Enumerate all resources.
lpnr, II The container to enumerate
&hEnum) ; II Handle to resource

if (dwResult != ERROR_SUCCESS)
{

ErrorHandler (hwnd, dwResult, TEXT("WNetOpenEnum"»;
return FALSE;

II Allocate memory for NETRESOURCE structures.
if (!(lpnrLocal = (LPNETRESOURCE) LocalAlloc (LPTR, dwBufferSize»)

MessageBox (hwnd, TEXT("Not enough memory"), TEXTC"Error"), MB_OK);

do
{

dwResult WNetEnumResource (
hEnum,
&dwNumEntries,
lpnrLocal,
&dwBufferSize);

if (dwResult == ERROR_SUCCESS)
{

II Resource handle
II Number of entries
I I LPNETRESOURCE
II Buffer size

for (dwIndex = 0; dwIndex < dwNumEntries; dwIndex++)
{

II Insert code here to perform operations with lpnrLocal;
II for example, to display contents of NETRESOURCE structures.
II

Chapter 6 Windows Networking 141

II If this NETRESOURCE is a container, call the function
II recursively.
if (RESOURCEUSAGE_CONTAINER ==

(lpnrLocal[dwIndex].dwUsage & RESOURCEUSAGE_CONTAINER»

if(!EnumerateFunc (hwnd, &lpnrLocal[dwIndex]»
MessageBox (hwnd, TEXT("EnumerateFunc returned FALSE. "),

TEXT("Error"), MB_OK):

else if (dwResult != ERROR_NO_MORE_ITEMS)
{

}

ErrorHandler (hwnd, dwResult, TEXT("WNetEnumResource"»:
break:

while (dwResult != ERROR_NO_MORE_ITEMS):

LocalFree (lpnrLocal):

dwResult = WNetCloseEnum (hEnum):

if (dwResult != ERROR_SUCCESS)
{

ErrorHandl er (hwnd, dwRes ult, TEXT("WNetCl oseEnum"» :
return FALSE:

return TRUE:

Connecting to a Network
Applications can use the WNet functions to establish and terminate network
connections once they have identified available network resources.

Establishing a Network Connection
To establish a network connection, the user must know something about the
network to be connected to. At a minimum, the user must know the local name or
UNC of the network. For more information on functions you can use to retrieve
network data, see Retrieving Network Data. An application can use one of two
functions to establish network connections: WNetAddConnection3 and
WNetConnectionDialogl. Network connections are not automatically restored in
Windows CE when a user logs on.

142 Windows CE Communications Guide

If a user knows the data needed to identify the network resource, an application
can call WNetAddConnection3. The following code example shows how
WNetAddConnection3 is used to establish a connection with a network resource
described by a NETRESOURCE structure.

DWORD dwResult:

II Make a connection to the network resource.
dwResult = WNetAddConnection3 (

hwnd,
&nr,
NULL,
NULL,
CONNECT_UPDATE_PROFILE):

II Handle to the owner window
II Retrieved from enumeration
II
II
II
II

No password
Logged-in user
Update profile with
connection data.

if (dwResult == ERROR_ALREADY_ASSIGNED)
{

MessageBox (hwnd, TEXT("Already connected to specified resource."),
TEXT(" Info"), MB_OK):

return FALSE:

else if (dwResult == ERROR_DEVICE_ALREADY_REMEMBERED)
{

}

MessageBox (hwnd, TEXT("Attempted reassignment of remembered device"),
TEXT("lnfo"), MB_OK):

return FALSE:

else if (dwResult 1= ERROR_SUCCESS)
{

ErrorHandl er (hwnd, dwResult, TEXT("WNetAddConnect i on3")) :
return FALSE:

MessageBox (hwnd, TEXT("Connected to specified resource."),
TEXT("Info"), MB_OK):

The WNetConnectionDialogl fun"ction creates a dialog box that enables a user to
browse and connect to network resources. This function prompts the user to
choose a local name or UNC in a dialog box.

Chapter 6 Windows Networking 143

The following code example shows how WNetConnectionDialogl is being
called to create a dialog box that displays all disk resources on a network.

DWORD dwResult = WNetConnectionDialogl (lpConnectDlgStruc);

if (dwResult != ERROR_SUCCESS)
{

ErrorHandler (hwnd. dwResult. TEXTC"WNetConnectionDialogl"»;
return FALSE;

Terminating a Network Connection
An application can use the following functions to terminate network connections:
WNetDisconnectDialog, WNetDisconnectDialogl, or
WNetCancelConnection2. The WNetDisconnectDialog displays a dialog listing
all currently connected resources and permits user to select which resources to
disconnect from. WNetDisconnectDialogl attempts to disconnect from a network
and notifies the user of any errors presents. WNetCancelConnection2 enables
applications to disconnect from network resources and can be used to remove
remembered network connections not currently in use. The following code
example shows how WNetCancelConnection2 is being used to disconnect from
a network resource called MyDevice.

DWORD dwResult;

dwResult = WNetCancelConnection2
TEXTC "MyDevi ce") • I I Devi ce name
CONNECT_UPDATE_PROFILE. II Remove persistent connection.
FALSE);

if (dwResult == ERROR_NOT_CONNECTED)
{

MessageBox (hwnd. TEXTC"MyDevice is not connected.").
TEXTC"Info"). MB_OK);

return FALSE;

else if (dwResult != ERROR_SUCCESS)
{

ErrorHandler (hwnd. dwResult. TEXTC"WNetCancelConnection2"»;
return FALSE;

MessageBox (hwnd. TEXT("Connection closed for MyDevice").
TEXTC" Info"). MB_OK);

144 Windows CE Communications Guide

Retrieving Network Data
WNet provides functions to retrieve network data in order to connect or
disconnect from network resources. These functions perform the following tasks:

• Retrieving a connection name

• Retrieving a user name

• Retrieving network errors

Retrieving a Connection Name
WNet provides two functions for retrieving a connection name:
WNetGetUniversalName and WNetGetConnection. WNetGetUniversalName
takes a drive-based path for a network connection and obtains a more universal
name in the form of a data structure.

WNetGetConnection enables an application to retrieve the name of a network
resource associated with a local device. The following code example shows how
WN etGetConnection retrieves the network name of a local device called
MyDevice.

TCHAR szDeviceName[80];
DWORD dwResult,

cchBuffer = sizeof (szDeviceName);

dwRes ult = WN etGetConnect i on (TEXT("MyDevi ce"), szDevi ceName,
&cchBuffer);

switch (dwResult)
{

}

case ERROR_SUCCESS:
MessageBox (hwnd, szDeviceName, TEXT("Info"), MB_OK);
break;

case ERROR_NOT_CONNECTED:
MessageBox (hwnd, TEXT("MyDevice is not connected."),

TEXT("Info"), MB_OK);
break;

case ERROR_CONNECTION_UNAVAIL:
II A connection is remembered, but not connected.
MessageBox (hwnd, TEXT("Connection unavailable."),

TEXT(" Info"), MB_OK);
break;

default:
ErrorHandler (hwnd, dwResult, TEXT("WNetGetConnection"»;
break;

Chapter 6 Windows Networking 145

Retrieving a User Name
An application can use the WNetGetUser function to retrieve the name of the
user associated with a connected network resource. The following code example
shows how WNetGetUser retrieves a user name based on a device name called
MyDevice.

TCHAR szUserName[80];
DWORD dwResult.

cchBuffer = 80;

dwResult = WNetGetUser (TEXT("MyDevi ce"). szUserName. &cchBuffer);

if (dwResult == ERROR_SUCCESS)
MessageBox (hwnd. szUserName. TEXT(" Info"). MB_OK);

else
{

}

ErrorHandler (hwnd. dwResult. TEXT("WNetGetUser"»;
return FALSE;

Retrievi ng Network Errors
An application can call the GetLastError function to get extended data on an
error, including the error value. Error data is usually provider-specific; however,
the only provider supported by Windows CE is the Microsoft Windows Network
provider.

The following code example shows a sample function, ErrorHandler, for
application-defined error handling. This function calls GetLastError to get
extended error data. ErrorHandler takes two parameters: a window handle and
the name of the function that produced the error.

BOOl WINAPI ErrorHandler (HWND hwnd. DWORD dwError. lPTSTR lpszFunction)
{

DWORD dwlastError;
TCHAR szError[256].

szCaption[256];

II The following code performs extended error handling.
dwlastError = GetlastError ();

wsprintf (szError.
TEXT("%s failed with error code %ld \n")
TEXT("and extended error code %1 d.").
TEXT("M; crosoft Wi ndows Network"). dwError. dwlastError);

146 Windows CE Communications Guide

wsprintf (szCaption. TEXT("%s error"). lpszFunction);

MessageBox (hwnd. szError. szCaption. MB_OK);

return TRUE;
}

Locating a Printer on a Network
Windows CE supports basic network printing and enables a user to select a
network printer by UNC name. Specifying a printer by UNC requires a user to
provide the network printer location in the format \ \Server\Share.

Windows CE makes no attempt to retrieve data about the target printer or the type
of output that it requires. When a network print job is queued, the redirector
creates a thread to track the status of the print job. Windows CE does not support
print queue manipulation. Also, some Windows-based desktop platform print
servers do not support the Windows CE print job status completion notification.
When using these print servers the user will not receive notification when a print
job completes.

~ To find a printer on a network using WNet

1. Create a network resource list.

For more information on creating a network resource list, see Determining
Available Network Resources.

2. To enumerate only the print resources, change the dwType parameter in
WNetOpenEnum to RESOURCETYPE_PRINT.

Printing on a Network
Once you have the name of a printer, to print on a network use the CopyFile
function or the CreateFile and WriteFile functions.

~ To print using CopyFile

• Call CopyFile, specifying the network printer to use and which file to print.

CopyFile has the following syntax:

CopyFile (szSrcFile, szUNCPrinterShare, FALSE);

The file to print is szSrcFile. The network printer to use is
szUNCPrinterShare, which can accept a UNC name returned by the
WNetEnumResource function.

Chapter 6 Windows Networking 147

~ To print using CreateFile and Writefile

1. Create a file on the network printer by calling CreateFile.

2. Write the data or document to be printed to the newly created file by calling
WriteFile.

3. Close the file to queue the print job.

149

CHAPTER 7

Internet Connections

The Windows CE Internet API (WinInet), is an API used for Internet client
application development. The Wininet.dll module exports WinInet functions used
to develop'Internet applications like Web browsers and FTP applications.

WinInet is similar to WinInet for Windows-based desktop platforms with the
following exceptions:

• Microsoft® ActiveXTM controls are not supported.

• The Gopher protocol and Gopher functions are not supported.

WinInet enables multithreaded applications to make concurrent calls to WinInet
functions from different threads. WinInet functions synchronize if necessary, but
do not validate parameters.

For more information about Windows Internet programming, see the Microsoft
Developer Network Web site at http://msdn.microsoft.comJdeveloper/.

Winlnet and the OSI Model
In the International Organization for Standardization Open Systems
Interconnection (ISOIOSI) model for network communications, WinInet operates
at the session layer. WinInet handles programming Windows Sockets (Winsock),
TCPIIP, and Internet protocols.

150 Windows CE Communications Guide

>

Presentation
layer

Transport
layer

Network
layer

Data~link
layer

Winlnet SCHANNEL
WinsockAPI

TCP/IP

The Windows CE WinInet API uses the Hypertext Transfer Protocol (HTTP)
version 1.1 and FrP Internet protocols. When navigating a Web site, the Internet
browser uses HTTP to communicate with the Web server and read associated
Web page files. Transmitting HTML is the primary purpose for HTTP, although
HTTP can transmit any data format.

Chapter 7 Internet Connections 151

HTTP defines the format of a client request and a server response. A basic HTTP
transaction consists of the following steps:

1. Client establishes a TCPIIP connection.

2. Client sends a request to the server.

3. Server sends a response to the client.

4. Client closes the TCPIIP connection.

FrP is used for sending and receiving files over a network.

Secure Hypertext Transfer Protocol (HTTPS) is a communication protocol
designed to transfer encrypted data over the Internet. HTTPS is an HTTP
extension using the secure socket layer (SSL). SSL is an encryption protocol
invoked on a Web server that uses HTTPS.

Winlnet Functions
WinInet functions and structures are defined in the WinInet.h header file. HTTP
and FrP use several of the same WinInet functions to handle data. These common
functions handle tasks consistently, regardless of the protocol they are applied to.

These common WinInet functions can be used to create general-purpose functions
that handle tasks for FTP and HTTP. For example, these functions can perform
the following HTTP and FrP tasks:

• Downloading files from another computer over the Internet can be handled by
the InternetReadFile, InternetFindNextFile, and
InternetQueryDataAvailable functions.

• Viewing and changing options are handled by the InternetSetOption and
InternetQueryOption functions.

• InternetSetOption accepts an unsigned long integer value that indicates
the option to set, a buffer to hold the option setting, and the buffer length.

• InternetQueryOption accepts an unsigned long integer value that
indicates the option to query, a buffer to hold the option setting, and a
pointer that contains the variable address containing the buffer length.

• The InternetCloseHandle function closes all HINTERNET handles. For more
information about Internet handles, see HINTERNET Handles.

For applications that download multiple files or handle multiple tasks, waiting for
each task to complete before moving on to the next task can be extremely
inefficient. To avoid waiting, many of the Internet functions provide a way to
perform tasks asynchronously. For information on using the Internet functions
asynchronously, see the Microsoft Developer Network Web site at
http://msdn.microsoft.coml developer/.

152 Windows CE Communications Guide

The following table shows WinInet functions supported by Windows CEo

Function

InternetCanonicalizeUri

InternetCloseHandle

InternetCombineUri

InternetConnect

InternetCrackUrl

InternetCreateU rl

InternetErrorDlg

InternetFindNextFile

InternetGetCookie

InternetGetLastResponselnfo

InternetLockRequestFile

InternetOpen

InternetOpenUrl

InternetQueryDataA vailable

InternetQueryOption

InternetReadFile

InternetReadFileEx

InternetSetCookie

InternetSetFilePointer

InternetSetOption

Description

Converts a Uniform Resource Locator (URL) to a
canonical form, including conversion of unsafe
characters into escape sequences.

Closes a single Internet handle or a subtree of Internet
handles.

Combines a base and relative URL into a single
canonicalized URL.

Opens an FTP or HTTP session for a specified site.

Parses a URL into its component parts.

Creates a URL from its component parts.

Displays a dialog box for the error passed to the
InternetErrorDlg function.

Continues a file search from a previous call to the
FtpFindFirstFile function.

Retrieves the cookie for the specified URL.

Retrieves the last Windows CE Internet function error
description or server response on the thread calling
this function.

Enables the user to place a lock on the file being
used.

Initializes Windows CE Internet functions.

Begins reading a complete FTP or HTTP URL. For a
relative URL and a base URL separated by blank
spaces, InternetCanonicalizeUri must be called
first.

Queries for the amount of data available.

Queries for an Internet option on the specified
handle.

Reads data from a handle opened by the
FtpOpenFile, FtpFindFirstFile, or
HttpOpenRequest functions.

Reads data from a handle opened by
InternetOpenUrl, FtpOpenFile, GopherOpenFile,
or HttpOpenRequest.

Creates a cookie associated with the specified URL.

Sets a file position for the InternetReadFile
function.

Sets an Internet option.

Function

InternetSetStatusCallback

InternetTimeFromSystemTime

InternetTimeToSystemTime

InternetUnlockRequestFile

InternetWriteFile

HTTP and FTP Functions

Chapter 7 Internet Connections 153

Description

Sets up a callback function that Windows CE Internet
functions can use during an operation.

Fonnats the time and date.

Converts a HTTP time and date string to a
SYSTEM TIME structure.

Unlocks a file that was locked using the
InternetLockRequestFile function.

Writes data to an open Internet file.

The following table shows HTTP Winlnet functions supported by Windows CEo

Function

HttpAddRequestHeaders

HttpEndRequest

HttpOpenRequest

HttpQueryInfo

HttpSendRequest

HttpSendRequestEx

Description

Adds a HTTP request header to the HTTP request
handle

Ends an HTTP request

Opens an HTTP request handle

Queries for data about an HTTP request

Sends the specified request to the HTTP server

Sends the specified request to the HTTP server and
enables chunked transfers

The following table shows FrP Winlnet functions supported by Windows CEo

Function

FtpCommand

FtpCreateDirectory

FtpDeleteFile

FtpFindFirstFile

FtpGetCurrentDirectory

FtpGetFile

FtpOpenFile

FtpPutFile

FtpRemoveDirectory

FtpRenameFile

FtpSetCurrentDirectory

Description

Issues an arbitrary command to the FTP server

Creates a new directory on the server

Deletes a file on the server

Starts file enumeration in the current directory

Returns the client's current directory on the server

Retrieves an entire file from the server

Initiates access to a file on the server for either
reading or writing

Writes an entire file to the server

Deletes a directory on the server

Renames a file on the server

Changes the client's current directory on the server

154 Windows CE Communications Guide

Persistent Caching Functions
Persistent URL cache functions are used to access and manipulate data stored in
the cache. The following table shows persistent caching Winlnet functions
supported by Windows CEo

Function

CommitUrlCacheEntry

CreateUrlCacheEntry

CreateUrlCacheGroup

DeleteUrlCacheEntry

DeleteUrlCacheGroup

FindCloseUrlCache

FindFirstUrlCacheEntry

FindFirstUrlCacheEntryEx

FindNextUrlCacheEntry

FindNextUrlCacheEntryEx

GetUrlCacheEntrylnfo

GetUrlCacheEntrylnfoEx

RetrieveUrlCacheEntryFile

SetUrlCacheEntryGroup

SetUrlCacheEntrylnfo

UnlockUrlCacheEntryFile

Description

Stores data in the specified file in the
Internet cache and associates it with the
specified URL

Creates a local file name for saving the
cache entry based on the specified URL and
the file extension

Generates a cache group identification

Removes the file associated with the source
name from the cache, if the file exists

Releases the specified GROUPID and any
associated state in the cache index file

Closes the specified cache enumeration
handle

Begins the enumeration of the Internet
cache

Starts a filtered enumeration of the Internet
cache

Retrieves the next entry in the Internet
cache

Finds the next cache entry in a cache
enumeration started by
FindFirstUrlCacheEntryEx

Retrieves cache entry data

Searches for the URL after translating any
cached redirections that would be applied in
offline mode by HttpSendRequest

Locks the cache entry file associated with
the specified URL

Adds entries to or removes entries from a
cache group

Sets the specified members of the
INTERNET_CACHE_ENTRY_INFO
structure

Unlocks the cache entry locked while the
file was retrieved for use from the cache

Chapter 7 Internet Connections 155

HINTERNET Handles
Handles created and used by the WinInet functions are called HINTERNETs.
These HINTERNET handles returned by the WinInet functions in Windows CE
control only Internet functions. They are not native system handles. Therefore,
only an Internet function works with its corresponding Internet handle.
HINTERNET handles cannot be used with functions such as ReadFile or
CloseHandle. Similarly, native system handles cannot be used with the WinInet
functions. For example, a handle returned by CreateFile cannot be passed to
InternetReadFile.

HINTERNET handles are maintained in a tree hierarchy in which a higher-level
function must be called before a dependent function is called. The handle returned
by the InternetOpen function is the root node. Handles returned by the
InternetConnect function occupy the next level. Handles returned by the
FtpOpenFile, FtpFindFirstFile, and HttpOpenRequest functions are the leaf
nodes.

The following illustration shows the hierarchy of the HINTERNET handles. Each
box represents a WinInet function that returns an HINTERNET handle.

InternetOpenUrl InternetConnect

FtpOpenFile

FtpFindFirstFile

HttpOpenRequest

At the top level is InternetOpen, which creates the root HINTERNET handle.
The next level contains InternetOpenUrl and InternetConnect. The functions
that use the HINTERNET handle returned by InternetConnect make up the last
level.

All HINTERNET handles can be closed by using InternetCloseHandle. Client
applications must close all HINTERNET handles derived from the HINTERNET
handle to be closed before calling InternetCloseHandle.

156 Windows CE Communications Guide

The following code example shows the handle hierarchy for the WinInet
functions.

HINTERNET hRootHandle, hOpenUrlHandle;
hRootHandle = InternetOpen(

TEXT("Example") ,
INTERNET_OPEN_TYPE_DIRECT,
NULL,
NULL,
0) ;

hOpenUrlHandle = InternetOpenUrl(
hRootHandle,
TEXT(.. http://www.server.com/default.htm ..) ,
NULL,
0,
I NTERNET_FLAG_RAW_DATA ,
0) ;

II Close the handle created by InternetOpenUrl, so that the
II InternetOpen handle can be closed.
InternetCloseHandle(hOpenUrlHandle);

II Close the handle created by InternetOpen.
InternetCloseHandle(hRootHandle);

Note Handle values are recycled quickly. Therefore, if a handle is closed and a
new handle is generated immediately, the new handle can have the same value as
the handle just closed.

Handling Uniform Resource Locators
A Uniform Resource Locator (URL) is a compact representation of the location
and access method for a resource located on the Internet. Each URL consists of a
scheme (HTTP, HTTPS, or FIP) and a scheme-specific string. This string can
include a combination of a directory path, search string, or resource name. The
WinInet functions provide the ability to create, combine, parse, and canonicalize
URLs.

URLs must follow the accepted syntax and semantics to access resources through
the Internet. Canonicalization is the process that converts a URL, that might
contain unsafe characters, such as blank spaces, and reserved characters, into an
accepted format.

Chapter 7 Internet Connections 157

The InternetCanonicalizeUrl function can be used to canonicalize URLs.
InternetCanonicalizeUrl does not verify that the URL passed to it is
canonicalized or that the URL it returns is valid.

The URL functions operate in a task-oriented manner. The content and format of
the URL passed to the function is not verified. The calling application should
track the use of these functions to ensure the data is in the intended format. For
example, the InternetCanonicalizeUrl function would convert the character %
into the escape sequence "%25" when using no flags. If InternetCanonicalizeUrl
is used on the canonicalized URL, the escape sequence "%25" would be
converted into the escape sequence "%2525" which is invalid.

Characters that must be encoded include any characters that have no
corresponding graphic character in the US-ASCII coded character set;
hexadecimaI80-FF, which are not used in the US-ASCII coded character set, and
hexadecimal OO-IF and 7F, which are control characters; blank spaces, %, which
is used to encode other characters, and unsafe characters such as <, >, II, #, {, }, I,
\, A, ,.." [,], and '.

Note A relative URL is a compact representation of the location of a resource
relative to an absolute base URL. The base URL must be known to the parser and
usually includes the scheme, network location, and parts of the URL path. An
application can call the InternetCombineUrl function to combine the relative
URL with its base URL. InternetCombineUrl also canonicalizes the resulting
URL.

Creating and Cracking URLs
The InternetCreateUrl function uses the data in the URL_COMPONENTS
structure to create a URL.

The components that make up URL_COMPONENTS are the scheme, host name,
port number, user name, password, URL path, and additional data, such as search
parameters. Each component, except the port number, has a string member that
holds the data, and a member that holds the length of the string member.

For each required component, the pointer member should contain the address of
the buffer holding the data. The length member should be set to zero if the pointer
member contains the address of a zero-terminated string; the length member
should be set to the string length if the pointer member contains the address of a
string that is not zero-terminated. The pointer member of any components that are
not required must be set to NULL.

158 Windows CE Communications Guide

The InternetCrackUri function separates a URL into its component parts and
returns the components indicated by the URL_COMPONENTS structure passed
to the function. The scheme and port numbers have only a member that stores the
corresponding value; they are both returned on all successful calls to
InternetCrackUrl.

To get the value of a particular component in URL_COMPONENTS, the
member that stores the string length of that component must be set to a nonzero
value. The string member can be either the address of a buffer or NULL.

If the pointer member contains the address of a buffer, the string length member
must contain the size of that buffer. InternetCrackUrl returns the component
data as a string in the buffer and stores the string length in the string length
member.

If the pointer member is set to NULL, the string length member can be set to any
nonzero value. InternetCrackUri stores the address of the first character of the
URL string that contains the component data and sets the string length to the
number of characters in the remaining part of the URL string that pertains to the
component.

All pointer members set to NULL with a nonzero length member point to the
appropriate starting point in the URL string. The length stored in the length
member must be used to determine the end of the individual component's data.

To finish initializing URL_COMPONENTS properly, the dwStructSize member
must be set to the size of the URL_COMPONENTS structure.

Accessing URLs Directly
FrP and HTTP resources on the Internet can be accessed directly by using the
InternetOpenUrl, InternetReadFile, and InternetFindNextFile functions.
InternetOpenUri opens a connection to the resource at the URL passed to the
function.

When a successful connection is established, two things can happen:

1. If the resource is a file, InternetReadFile can download it.

2. If the resource is a directory, InternetFindNextFile can enumerate the files
within the directory, except when using CERN proxies.

Chapter 7 Internet Connections 159

The InternetReadFile function is used to download resources from an
HINTERNET handle returned by the InternetOpenUrl, FtpOpenFile or the
HttpOpenRequest function.

InternetReadFile accepts a void pointer variable that contains the address of a
buffer and a pointer to an unsigned long integer variable that contains the buffer
length. It returns the data in the buffer and the amount of data downloaded into
the buffer. It returns zero bytes read and completes successfully when all available
data has been read. This enables an application to use InternetReadFile in a loop
to download the data and exit when it returns zero bytes read and completes
successfully.

The InternetQueryDataA vailable function can be used with InternetReadFile.
InternetQueryDataA vailable takes the HINTERNET handle created by
InternetOpenUrl, FtpOpenFile, or HttpOpenRequest, after HttpSendRequest
has been called on the handle, and returns the number of bytes available. The
application should allocate a buffer equal to the number of bytes available and use
that buffer with InternetReadFile. This method does not always work because
InternetQueryDataAvaiiable is checking the file size listed in the header and not
the actual file. The data in the header file could be outdated, or the header file
could be missing, since it is not currently required under all standards.

For applications that need to operate through a CERN proxy, InternetOpenUrl
can be used to access FTP directories and files. FTP requests are packaged to
appear like an HTTP request, which the CERN proxy accepts.

InternetOpenUrl uses the HINTERNET handle created by the InternetOpen
function and the resource URL. The URL must include the scheme: http:, ftp:,
file:, or https: and network location, for example, http://www.microsoft.com. The
URL can also include a path, for example, /windows/feature/ and a resource
name, for example, Default.htm. For HTTP or HTTPS requests, additional
headers can be included.

InternetQueryDataAvaiiable, InternetFindNextFile, and InternetReadFile,
can use the handle created by InternetOpenUrl to download the resource.

160 Windows CE Communications Guide

The following illustration shows what handles to use with each function.

InternetQueryDataAvailable

InternetReadFile

The root HINTERNET handle created by InternetOpen is used by
InternetOpenUrl. The HINTERNET handle created by InternetOpenUrl can be
used by InternetQueryDataA vailable, InternetReadFile, and
InternetFindNextFile, which is not pictured.

Use the InternetOpenUrl function to parse the URL string, establish an Internet
connection, and prepare for data download. This is practical for applications that
are not concerned with protocol details, but only retrieve data related to a specific
URL.

~ To use InternetOpenUrl to access a URL

1. Call InternetOpen to initialize an Internet handle.

2. Call InternetOpenUrl to open a connection to the URL, using the handle
created by InternetOpen.

InternetOpenUrl returns a handle that subsequent functions can use.

3. Call InternetReadFile to download the resource file.

InternetQueryDataA vailable can use the handle returned by
InternetOpenUrl to query how much data is available to be read by a
subsequent call to InternetReadFile.

4. Call InternetCloseHandle to close the handle created by InternetOpenUrl.

5. Call InternetCloseHandle to close the handle created by InternetOpen.

InternetCloseHandle terminates existing activity on the handle and discards
remaining data. If InternetCloseHandle closes a parent handle, all child
handles are also closed. If an operation requires more than one Internet handle,
multiple calls may need to be made to InternetCloseHandle.

Chapter 7 Internet Connections 161

Handling Authentication
Authentication is sometimes required before accessing resources on the Internet.
Windows CE supports functions for server and proxy authentication for HTTP
sessions. Authentication for FTP servers must be handled by the InternetConnect
function.

HTTP Authentication
If authentication is required, the server sends a status code of 40 I-if the server
requires authentication, or 407-if the proxy requires authentication. Along with
the status code, the proxy or server sends one or more authenticate response
headers-Proxy-Authenticate, for proxy authentication, or WWW-Authenticate,
for server authentication.

Each authenticate response header contains an available authentication scheme
and a realm. If multiple authentication schemes are supported, the server returns
multiple authenticate response headers. The realm value is case-sensitive and
defines a protection space on the proxy or server. For example, the header
"WWW-Authenticate: Basic Realm="example"" would be an example of a
header returned when server authentication is needed.

The client application that sent the request can authenticate itself by including an
Authorization header field with the request. The Authorization header would
contain the authentication scheme and the appropriate response required by that
scheme.

The Windows CE Internet functions support the Basic authentication scheme,
which is based on the model that a client must authenticate itself with a user name
and password for each realm. The server services the request if it is resent with an
Authorization header that includes a valid user name and password.

For anything other than Basic authentication, you must use the Security Support
Provider Inteiface (SSPI), which enables applications to access security DLLs
called Security Support Providers (SSPs). For more information on SSPI, see
Security Support Provider Interface. The registry keys must be set up in addition
to installing the appropriate DLL(s). For more information on setting these
registry keys, see Registering Authentication Keys.

The application should call the HttpOpenRequest function if authentication is
required. The INTERNET_FLAG_KEEP _CONNECTION flag should be used for
NTLM and other types of authentication to maintain the connection while
completing the authentication process. If the connection is not maintained, the
authentication process must be restarted with the proxy or server.

162 Windows CE Communications Guide

InternetOpenUrl and HttpSendRequest complete successfully even when
authentication is required. However, the data returned in the header files and
InternetReadFile would receive an HTML page informing the user of the status
code.

Registering Authentication Keys
The INTERNET_OPEN_TYPE_PRECONFIG flag in the InternetOpen function
looks at the registry values ProxyEnable, ProxyServer, and ProxyOverride.
These values are located under the
HKEY _CURRENT _ USER\software\Microsoft\ Windows\CurrentVersion\
Internet Settings key.

For authentication schemes other than Basic, a key needs to be added to the
registry under the
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\Internet
Explorer\Security key. A string value, DLLFile, should contain the name of the
DLL that supports the authentication scheme. A DWORD value, Flags, should be
set with the appropriate value.

The following table shows the possible values for the Flags value.

Flag value

PLUGIN_AUTH_FLAGS_UNIQUE_CON
TEXT _PER_ TCPIP (value=OxO 1)

PLUGIN_AUTH_FLAGS_CAN_HANDL
E_UI (value=Ox02)

PLUGIN_AUTH_FLAGS_CAN_HANDL
E_NO_PASSWD (value=Ox04)

PLUGIN_AUTH_FLAGS_NO_REALM
(value=Ox08)

PLUGIN_AUTH_FLAGS_KEEP _ALIVE_
NOT_REQUIRED (value=OxlO)

Description

Each TCPIIP socket contains a different
context. Otherwise, a new context is passed
for each realm or block URL template.

This DLL can handle its own user input.

This DLL might be capable of doing an
authentication without prompting the user
for a password.

This DLL does not use a standard HTTP
realm string. Any data that appears to be a
realm is scheme-specific.

This DLL does not require a persistent
connection for its challenge-response
sequence.

For example, to add NTLM authentication, the subkey NTLM would need to be
added to HKEY_LOCAL_MACHINE\sOFTWARE\Microsoft\
Internet Explorer\Security key. Under the
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\
Internet Explorer\Security\NTLM key, the string value, DLLFile, and a
DWORD value, Flags, would need to be added. DLLFile would need to be set to
WinsspLdll, and Flags would need to be set to Ox08.

Chapter 7 Internet Connections 163

Server Authentication
When a server receives a request that requires authentication, the server returns a
401 status code message. In that message, the server should include one or more
WWW-Authenticate response headers. These headers include the authentication
methods the server has available. The Windows CE Internet functions pick the
first method they recognize.

Basic authentication provides weak security unless the channel is first link
encrypted with SSL or Private Communication Technology (PCT).

The InternetErrorDlg function can be used to obtain the user name and
password data from the user, or a custom control can be designed to obtain the
data.

A custom control can use the InternetSetOption function to set the
INTERNET_OPTION_PASSWORD and INTERNET_OPTION_USERNAME
values and then resend the request to the server.

Proxy Authentication
A proxy server is used as a security barrier between the internal network and the
Internet. This protects the internal network from unauthorized access. A proxy
server also enhances speed performance since it caches recently used documents.
To gain access to a proxy server, the Windows CE-based application needs a
proxy authentication scheme.

When a Windows CE-based application tries to use a proxy server that requires
authentication, the proxy returns a 407 status code message to the client. In that
message, the proxy should include one or more Proxy-Authenticate response
headers. These headers include the authentication methods available from the
proxy. The Windows CE Internet functions pick the first method they recognize.

To get user name and password from the user the application can use the
InternetErrorDlg function:

A custom interface can use InternetSetOption to set the
INTERNET _OPTION_PROXY _PASSWORD and
INTERNET_OPTION_PROXY_USERNAME values and then resend the request
to the proxy.

If no proxy user name and password are set, the Windows CE Internet functions
attempt to use the user name and password for the server.

164 Windows CE Communications Guide

Handling HTTP Authentication
When handling HTIP authentication, the application can use several functions:
InternetErrorDlg, or a function that uses InternetSetOption that sets its own
Internet options. InternetErrorDlg checks the headers associated with an
HINTERNET handle to find hidden errors, such as status codes from a proxy or
server. InternetSetOption can be used to set the user name and password for the
proxy and server.

For any customized function that adds its own WWW~Authenticate or Proxy
Authenticate headers, the INTERNET_FLAG_NO_AUTH flag should be set to
disable the Windows CE Internet API authentication.

In the example, dwErrorCode is used to store any errors associated with the call
to HttpSendRequest. HttpSendRequest completes successfully, even if the
proxy or server requires authentication. When the

. FLAGS_ERROR_UI_FILTER_FOR_ERRORS flag is passed to
InternetErrorDlg, the function checks the headers for any hidden errors. These
hidden errors would include any requests for authentication. InternetErrorDlg
displays the appropriate dialog box to prompt the user for the necessary data. The
FLAGS_ERROR_UI_FLAGS_GENERATE_DATA and
FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS flags should also be passed
to InternetErrorDlg, so that the function constructs the appropriate data structure
for the error and stores the results of the dialog box in the HINTERNET handle.

Managing Cookies
Cookies are used for tracking data settings, or data for a particular Web site. The
cookies are saved on the client device, and when the browser requests a page, it
sends the data settings for that page along with the request. The browser can only
send the data back to the server that originally created them; therefore, cookies are
a secure way of maintaining user-specific data. Cookies can be temporary or
persistent.

The Windows CE Internet functions have a persistent cookie database for this
purpose. The Windows CE Internet cookie functions are used to set cookies into
and access cookies from the cookie database. For more information, see HTIP
Cookies.

The Windows CE Internet functions InternetSetCookie and InternetGetCookie
can be used to manage cookies.

Chapter 7 Internet Connections 165

Unlike most Windows CE Internet functions, the cookie functions do not require a
call to InternetOpen. Cookies that have an expiration date, persistent cookies, are
stored in the Windows\Cookies directory. Cookies that do not have an expiration
date, session cookies, are stored in memory and are available only to the process
in which they were created.

InternetGetCookie returns the cookies for the specified URL, and all its parent
URLs. InternetGetCookie checks persistent storage for cookies and searches
memory for any cookies that do not have an expiration date, since these cookies
are not written to any files.

InternetSetCookie is used to set a cookie on the specified URL.
InternetSetCookie can create both persistent and session cookies.

HTTP Cookies
HTTP cookies provide the server with a mechanism to store and retrieve state data
on the client application's system. This mechanism enables Web-based
applications to store data about selected items, user preferences, registration data,
and other data that can be retrieved later.

Cookie-Related Headers
There are two HTTP headers, Set-Cookie and Cookie, that are related to cookies.
The Set-Cookie header is sent by the server in response to an HTTP request,
which is used to create a cookie on the user's system. The Cookie header is
included by the client application with an HTTP request sent to a server, if there is
a cookie that has a matching domain and path.

Set-Cookie Header
The Set-Cookie response header uses the following syntax:

Set-Cookie: <name>=<value>[; <name>=<value>] ...
[; expires=<date>][; domain=<domain_name>]
[; path=<some_path>][; secure]

One or more string sequences, separated by semicolons, that follow the pattern
<name>=<value> must be included in the Set-Cookie response header. The server
can use these string sequences to store data on the client's system.

The expiration date is set by using the format expires=<date>, where <date> is the
expiration date in Greenwich Mean Time (GMT). If the expiration date is not set,
the cookie expires after the Internet session ends. Otherwise, the cookie persists in
the cache until the expiration date.

166 Windows CE Communications Guide

The following table shows the expiration date format.

Format

DD-MMM-YYYY HH:MM:SS GMT

DD

MMM

YYYY

HH:MM:SS GMT

Description

Complete format.

DD is the day in the month-such as 01 for
the first day of the month.

MMM is the three-letter abbreviation for
the month: Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec.

YYYY is the year.

HH is the hour value in military time-22
would be 10:00 P.M., for example-MM is
the minute value, and SS is the second
value.

Specifying the domain name, using the pattern domain=<domain_name>, is
optional for persistent cookies and is used to indicate the end of the domain for
which the cookie is valid. Session cookies that specify a domain are rejected. If
the specified domain name ending matches the request, the cookie tries to match
the path to determine if the cookie should be sent. For example, if the domain
name ending is .microsoft.com, requests to home.microsoft.com and
support.microsoft.com would be checked to see if the specified pattern matches
the request. The domain name must have at least two or three periods in it to
prevent cookies from being set for widely used domain name endings, such as
.com and .edu. Acceptable domain names would be similar to .microsoft.com,
.someschool.edu, and .someserver.co.jp. Only hosts within the specified domain
can set a cookie for a domain.

Setting the path, using the pattern path=<some_path>, is optional and can be used
to specify a subset of the URLs for which the cookie is valid. If a path is
specified, the cookie is considered valid for any requests that match that path. For
example, if the specified path is /example, requests with the paths /examplecode
and /example/code.htm would match. If no path is specified, the path is assumed
to be the path of the resource associated with the Set-Cookie header.

The cookie can also be marked as secure, which specifies that the cookie can be
sent only to HTTPS servers.

Chapter 7 Internet Connections 167

Cookie Header
The Cookie header is included with any HTTP requests that have a cookie whose
domain and path match the request. The Cookie header has the following syntax:

Cookie: <name>=<value> [;<name)=<value>] ...

One or more string sequences, using the format <name>=<value>, contain the
data that was set in the cookie.

Generating Cookies
There are three methods for generating cookies:

• U sing the DHTML Object Model, compatible with ECMA 262 language
specification

• U sing the Windows CE Internet functions

• U sing a CGI script

All of the methods need to set the data that is included in the Set-Cookie header.

Generating a Cookie Using the DHTML Object Model
Using the DHTML object model, cookies can be set by calling the cookie
property of the document object, as shown in the following code example.

<SCRIPT language="JavaScript">
<! --

document.cookie = "SomeValueName = Some_Value";
-->
</SCRIPT>

Generating a Cookie Using the Windows CE Internet
Functions
Cookies can be created by applications using the InternetSetCookie function. For
more information about setting cookies using the Windows CE Internet functions,
see WinInet Functions.

Generating a Cookie Using a CGI Script
Cookies are generated by including a Set-Cookie header as part of a CGI script
included in the HTTP response to a request.

168 Windows CE Communications Guide

Caching

The following example is a CGI script that includes a Set-Cookie header using
Perl.

print "Set-Cookie:Test=test_value; expires=Sat, 01-Jan-2000 00:00:00
GMT;
path=/;"

The Windows CE Internet functions supports built-in caching. Any data retrieved
from the network is cached on the Windows CE-based device and retrieved for
subsequent requests. The application using the Windows CE Internet functions
can control the caching on each request. For HTTP requests from the server, most
headers received are also cached. When an HTTP request is satisfied from the
cache, the cached headers are also returned to the caller.

Using Flags to Control Caching
The Windows CE Internet function flags enable an application to control when
and how it uses the cache. These flags can be used alone or in combination with
the dwFlags parameter in functions that access data or resources on the Internet.
The Windows CE Internet functions store all data downloaded from the Internet
by default.

The following table shows values that can be used with the Windows CE Internet
functions to control caching.

Value

INTERNET_FLAG_HYPERLINK

Description

Does not cache the data, either
locally or in any gateways. Identical
to the preferred value,
INTERNET_FLAG_NO_CACHE_
WRITE.

Forces the application to reload a
resource if no expire time and no
last-modified time was returned
when the resource was stored in the
cache

INTERNET_FLAG_MUST_CACHE_REQUEST Causes a temporary file to be created
if the file cannot be cached. Identical
to the preferred value,
INTERNET_FLAG_NEED_FILE.

Causes a temporary file to be created
if the file cannot be cached

Chapter 7 Internet Connections 169

Value Description

INTERNET_FLAG_NO_CACHE_ WRITE Rejects any attempt by the function to store
data downloaded from the Internet in the
cache. This flag is necessary if the
application does not require downloaded
resources to be stored locally.

Using Persistent Caching Functions

Prevents the application from making
requests to the network. All requests are
resolved using the resources stored in the
cache. If the resource is not in the cache, a
suitable error, such as
ERROR_FILE_NOT _FOUND, is returned.

Forces the function to retrieve the
requested resource directly from the
Internet. The data that is downloaded is
stored in the cache.

Causes an application to perform a
conditional download of the resource from
the Internet. If the version stored in the
cache is current, the data is downloaded
from the cache. Otherwise, the data is
reloaded from the server.

This section describes how to use the functions used by applications that need
persistent caching services. These functions enable an application to save data in
the local file system for subsequent use, such as in situations where access to the
data is over a low-bandwidth link or the access is not available at all. The calling
application that inserts data into the persistent cache assigns a source name that is
used to do operations such as retrieve the data, set and get some properties on the
data, and delete data.

The Windows CE Internet functions use the cache functions to provide persistent
caching. Unless explicitly specified not to cache through the
INTERNET_FLAG_NO_CACHE_ WRITE flag, Windows CE Internet functions
cache all data downloaded from the network. The responses to POST data are not
cached.

Clients that need persistent caching services use the persistent caching functions
to enable their applications to save data in the local file system for subsequent
use, such as in situations where a low-bandwidth link limits access to the data or
the access is not available at all. The calling application that inserts data into the
persistent cache assigns a source name that is used to perform operations,
including retrieving, setting, and getting some properties and deleting the data.

170 Windows CE Communications Guide

Enumerating the Cache
The FindFirstUrlCacheEntry and FindNextUrlCacheEntry functions
enumerate the data stored in the cache. FindFirstUrlCacheEntry starts the
enumeration by taking a search pattern, a buffer, and a buffer size to create a
handle and return the first cache entry. FindNextUrlCacheEntry takes the handle
created by FindFirstUrlCacheEntry, a buffer, and a buffer size to return the next
cache entry.

Both functions store an INTERNET_CACHE_ENTRY_INFO structure in the
buffer. The size of this structure varies for each entry. If the buffer size passed to
either function is insufficient, the function fails, and GetLastError returns
ERROR_INSUFFICIENT_BUFFER. The buffer size variable contains the buffer
size that was needed to retrieve that cache entry. A buffer of the size indicated by
the buffer size variable should be allocated, and the function should be called
again with the new buffer.

INTERNET_CACHE_ENTRY_INFO contains the structure size; URL of the
cached data; local file name; cache entry type; use count; hit rate; size; last
modified, expire, last access, and last synchronized times; header data and header
data size; and file extension.

FindFirstUrlCacheEntry takes a search pattern, a buffer that stores the
INTERNET_CACHE_ENTRY _INFO structure, and the buffer size. Currently,
only the default search pattern, which returns all cache entries, is implemented.

After the cache is enumerated, the application should call FindCloseUrlCache to
close the cache enumeration handle.

Retrieving Cache Entry Data
The GetUrlCacheEntryInfo function lets you retrieve the
INTERNET_CACHE_ENTRY_INFO structure for the specified URL. This
structure contains the structure size, URL of the cached data, local file name,
cache entry type, use count, hit rate, size, last modified, expire, last access, and
last synchronized times, header data and header data size, and file extension.

GetUrlCacheEntryInfo accepts a URL, a buffer for an
INTERNET_CACHE_ENTRY_INFO structure, and the buffer size. If the URL
is found, the data is copied into the buffer. Otherwise, the function fails and
GetLastError returns ERROR_FILE_NOT_FOUND. If the buffer size is
insufficient to store the cache entry data, the function fails and GetLastError
returns ERROR_INSUFFICIENT_BUFFER. The size required to retrieve the data
is stored in the buffer size variable.

Chapter 7 Internet Connections 171

GetUrlCacheEntryInfo does not do any URL parsing, so a URL containing an
anchor (#) is not found in the cache, even if the resource is cached. For example,
if the URL http://example.com/example.htm#sample was passed, the function
would return ERROR_FILE_NOT_FOUND even if
http://example.com/example.htmis in the cache.

Creating a Cache Entry
An application uses the CreateUrlCacheEntry and CommitUrlCacheEntry
functions to create a cache entry.

CreateUrlCacheEntry accepts the URL, expected file size, and file extension.
The function then creates a local file name for saving the cache entry
corresponding to the URL and file extension.

U sing the local file name, write the data into the local file using standard C/C++
functions or Windows CE functions. After the data has been written to the local
file, the application should call CommitUrlCacheEntry.

CommitUrlCacheEntry accepts the URL, local file name, expire and last
modified times, cache entry type, header data and header data size, and file
extension. The function then caches data in the file specified in the cache storage
and associates it with the given URL.

Deleting a Cache Entry
The DeleteUrlCacheEntry function takes a URL and removes the associated
cache file. If the cache file does not exist, the function fails and GetLastError
returns ERROR_FILE_NOT_FOUND. If the cache file is currently locked or in
use, the function fails and GetLastError returns ERROR_ACCESS_DENIED,
and the file will be deleted when unlocked.

Retrieving Cache Entry Files
For applications that require the file name of a resource to launch, the Windows
CE Internet API provides the RetrieveUrlCacheEntryFile and
UnlockUrlCacheEntryFile functions.

RetrieveUrlCacheEntryFile accepts a URL, a buffer that stores the
INTERNET _CACHE_ENTRY _INFO structure, and the buffer size. After the
file data has been used, the application should call UnlockUrlCacheEntryFile to
unlock the file.

172 Windows CE Communications Guide

Cache Groups
The Internet functions support cache groups. To create a cache group, the
CreateUrlCacheGroup function must be called to generate a GROUPID for the
cache group. Entries can be added to the cache group by supplying the cache
entry URL and the INTERNET_CACHE_GROUP _ADD flag to the
SetUrlCacheEntryGroup function. To remove a cache entry from a group, pass
the cache entry URL and the INTERNET_CACHE_GROUP _REMOVE flag to
SetUrlCacheEntryGroup.

The FindFirstUrlCacheEntryEx and FindNextUrlCacheEntryEx functions can
be used to enumerate the entries in a specified cache group. After the enumeration
is complete, the function should call FindCloseUrlCache.

Handling Structures with Variable Size Data
The cache can contain variable size data for each URL stored. This is reflected in
the INTERNET_CACHE_ENTRY_INFO structure. When the cache functions
return this structure, they create a buffer that is always the size of
INTERNET_CACHE_ENTRY_INFO plus any variable size data. If a pointer
member is not NULL, it points to the memory area immediately after the
structure. While copying the returned buffer from a function into another buffer,
the pointer members should be fixed to point to the appropriate place in the new
buffer. The following code example shows how to copy into another buffer.

lpDstCElnfo-)lpszSourceUrlName = (LPINTERNET_CACHE_ENTRY_INFO) (
(LPBYTE) lpSrcCElnfo +
«DWORD) (lpOldCElnfo-)lpszSourceUrlName) - (DWORD) lpOldCElnfo»

Some cache functions fail with the ERROR_INSUFFICIENT_BUFFER error
message if you specify a buffer that is too small to contain the cache-entry data
retrieved by the function. In this case, the function also returns the required size of
the buffer. You can then allocate a buffer of the appropriate size and call the
function again.

Chapter 7 Internet Connections 173

Accessing the HTTP Protocol
Use the HTTP functions provided by WinInet to use the HTTP protocol to access
resources on the Internet. The following illustration shows the relationships of the
WinInet functions used to access the HTTP protocol. Shaded boxes represent
functions that return HINTERNET handles, while the plain boxes represent
functions that use the HINTERNET handle created by the function on which they
depend.

HttpAddRequestHeaders

HttpQuerylnfo

HttpSendRequest

HttpAddRequestHeaders, HttpQuerylnfo, and HttpSendRequest, are
dependent on the HINTERNET handle created by HttpOpenRequest.

The following illustration shows the WinInet functions that use the HINTERNET
handle created by HttpOpenRequest after it is sent by HttpSendRequest. The
shaded boxes represent functions that return HINTERNET handles, while the
plain boxes represent functions that use the HINTERNET handle created by the
function on which they depend.

174 Windows CE Communications Guide

InternetQueryDataAvailable

InternetReadFile

After HttpSendRequest has been used on the handle returned by
HttpOpenRequest, InternetQueryDataA vailable, and InternetReadFile, can
be used on that handle.

~ To use the HTTP WinInet functions

1. Call the InternetOpen function to initialize an Internet handle.

InternetOpen creates the root HINTERNET handle used to establish the
HTTP session. The HINTERNET is used by all subsequent functions.

2. Call InternetConnect using the HINTERNET returned by InternetOpen to
create an HTTP session.

When calling InternetConnect, specify INTERNET_DEFAULT_HTTP for
the nServerPort parameter and INTERNET_SERVICE_HTTP for the
dwService parameter.

InternetConnect uses the handle returned by InternetOpen to create a
specific HTTP session. InternetConnect initializes an HTTP session for the
specified site, using the arguments passed to it and creates HINTERNET that
is a branch off the root handle. InternetConnect does not attempt to access or
establish a connection to the specified site.

3. Call HttpOpenRequest to open an HTTP request handle.

HttpOpenRequest uses the handle created by InternetConnect to establish a
connection to the specified site.

Chapter 7 Internet Connections 175

4. Call HttpSendRequest, using the handle created by HttpOpenRequest to
send an HTIP request to the HTTP server.

5. Call InternetReadFile to download data.

-Or-

Call InternetQueryDataA vailable to query how much data is available to be
read by a subsequent call to InternetReadFile.

6. Call InternetCloseHandle to close the handle created by HttpOpenRequest.

7. Call InternetCloseHandle to close the HTIP session created by
InternetConnect.

8. Call InternetCloseHandle to close the handle created by InternetOpen.

The following example GetlnternetFile function shows how to use the HTIP
functions to establish an HTIP session and retrieve a file. Two global Boolean
variables g_bproxy, use proxy server, and g_bOpenURL, use URL, are options set
in the CeHttp application dialog.

1***

FUNCTION:
GetInternetFile

PURPOSE:
This function demonstrates how to create and submit an HTTP request.
It requests the default HTML document from the server. and then
displays it along with the HTTP transaction headers.

***1
BOOL GetInternetFile (LPTSTR lpszServer. LPTSTR lpszProxyServer)
{

BOOL bReturn = FALSE;

HINTERNET hOpen = NULL.
hConnect = NULL.
hRequest = NULL;

DWORD dwSize = 0.
dwFlags = INTERNET_FLAG_RELOAD I INTERNET_FLAG_NO_CACHE_WRITE;

TCHAR szErrMsg[200];

char *lpBufferA.
*lpHeadersA;

176 Windows CE Communications Guide

TCHAR *lpBufferW,
*lpHeadersW;

LPTSTR AcceptTypes[2] {TEXT("*I*"), NULL};

II Initialize the use of the Windows CE Internet functions.
if (g_bProxy)
{

}

hOpen = InternetOpen (TEXT("CeHttp"), I NTERNET_OPEN_TYPE_PROXY ,
lpszProxyServer, 0, 0);

else
{

hOpen I nternetOpen (TEXT("CeHttp"), INTERN ET _OPEN_ TY P E_P RECON FI G,
NULL, 0, 0);

if (!hOpen)
{

}

ws pri nt f (szEr rMsg, TEXT("%5: %x"), TEXT(" I nternetOpen Error"),

GetLastError(»;
return FALSE;

if (g_bOpenURL)
{

if (!(hRequest InternetOpenUrl (hOpen, lpszServer, NULL, 0,

}

}

else
{

INTERNET_FLAG_RELOAD, 0»)

wspri ntf (szErrMsg, TEXT("%s: %x"), TEXT("InternetOpenUrl Error"),
GetLastError(»;

goto exit;

II Open an HTTP session for a specified site by using lpszServer.
if (!(hConnect = InternetConnect (hOpen,

lpszServer,
INTERNET_INVALID_PORT_NUMBER,
NULL, NULL,
INTERNET_SERVICE_HTTP,
0, 0»)

wsprintf (szErrMsg, TEXT("%s: %x"), TEXT("InternetConnect Error"),
GetLastError(»;

goto exit;

Chapter 7 Internet Connections 177

II Open an HTTP request handle.
if (!(hRequest = HttpOpenRequest (hConnect.

TEXT("GET") •
NULL.
HTTP_VERSION.
NULL.
(LPCTSTR*)AcceptTypes.
dwFlags. 0»)

wspri ntf (szErrMsg. TEXT("%s: %x"). TEXT("HttpOpenRequest Error").
GetLastError(»:

goto exit:

II Send a request to the HTTP server.
if (!HttpSendRequest (hRequest. NULL. 0. NULL. 0»
{

wspri ntf (szErrMsg. TEXT("%s: %x"). TEXT("HttpSendRequest Error").
GetLastError(»:

goto exit:

II Call HttpOueryInfo to find out the size of the headers.
HttpOueryInfo (hRequest. HTTP_OUERY_RAW_HEADERS_CRLF. NULL. &dwSize.

NU Ll) :

II Allocate a block of memory for lpHeadersA.
lpHeadersA = new CHAR [dwSize]:

II Call HttpOueryInfo again to get the headers.
if (!HttpOueryInfo (hRequest.

HTTP_OUERY_RAW_HEADERS_CRLF.
(LPVOID) lpHeadersA. &dwSize. NULL»

wspri ntf (szErrMsg. TEXT("%s: %x"). TEXT("HttpOueryInfo").
GetLastError(»:

goto exit:

else
{

}

II Clear all of the existing text in the edit control and prepare
II to put the new information in it.
SendMessage (g_hwndEdit. EM_SETSEL. 0. -1):
SendMessage (g_hwndEdit. WM_CLEAR. 0. 0):
SendMessage (g_hwndEdit. WM_PAINT. TRUE. 0):

178 Windows CE Communications Guide

II Terminate headers with NULL.
lpHeadersA [dwSize] = '\0';

II Get the required size of the buffer that receives the Unicode
II string.
dwSize = MultiByteToWideChar (CP_ACP, 0, lpHeadersA, -1, NULL, 0);

II Allocate a block of memory for lpHeadersW.
lpHeadersW = new TCHAR [dwSize];

II Convert headers from ASCII to Unicode
MultiByteToWideChar (CP_ACP, 0, lpHeadersA, -1, lpHeadersW, dwSize);

II Put the headers in the edit control.
SendMessage (g_hwndMain, WM_PUTTEXT, NULL, (LPARAM) lpHeadersW);

II Free the blocks of memory.
delete[] lpHeadersA;
delete[] lpHeadersW;

II Allocate a block of memory for lpHeadersW.
lpBufferA = new CHAR [32000];

do
{

if (!InternetReadFile (hRequest, (LPVOID)lpBufferA, 32000, &dwSize))
{

wsp ri nt f(szErrMsg, TEXT("%s: %x"), TEXT(" I nternetReadFi 1 e Error"),
GetLastError());

goto exit;

if (dwSize != 0)
{

II Terminate headers with NULL.
lpBufferA [dwSize] = '\0';

II Get the required size of the buffer which receives the Unicode
II string.
dwSize = MultiByteToWideChar (CP_ACP, 0, lpBufferA, -1, NULL, 0);

II Allocate a block of memory for lpBufferW.
lpBufferW ~ new TCHAR [dwSize];

II Convert the buffer from ASCII to Unicode.
MultiByteToWideChar (CP_ACP, 0, lpBufferA, -1, lpBufferW, dwSize);

Chapter 7 Internet Connections 179

II Put the buffer in the edit control.
SendMessage (g_hwndMain. WM_PUTTEXT, NULL, (LPARAM) lpBufferW);

II Free the block of memory.
delete[] lpBufferW;

while (dwSize);

II Free the block of memory_
delete[] lpBufferA;

bReturn = TRUE;

exit:

}

II Close the Internet handles.
if (hOpen)
{

if (!InternetCloseHandle (hOpen»
wsprintf (szErrMsg, TEXT("%s: %x"), TEXT("CloseHandle Error"),

GetLastError(»;

if (hConnect)
{

if (!InternetCloseHandle (hConnect»
wsprintf (szErrMsg, TEXT("%s: %x"), TEXT("CloseHandle Error"),

GetLastError(»;

if (hRequest)
{

if (!InternetCloseHandle (hRequest»
wspri ntf (szErrMsg, TEXT("%s: %x"), TEXT("Cl oseHandl e Error"),

GetLastError(»;

return bReturn;

180 Windows CE Communications Guide

Accessing the FTP Protocol
Wininet.dll and the corresponding Wininet.lib do not include the FTP APls. To
develop FTP applications on a version of the Windows CE OS that does not
export FTP APls from the Wininet.dll, you can use Winsock. FTP APls are
included in the emulation library, Wininetm.lib, and will work in the emulation
environment. You can use the FTP APls with Windows CE version 2.12 which is
included in Wininet.dll and Wininet.lib.

The following illustration shows the FTP functions dependent on the FTP session
HINTERNET returned by InternetConnect. The shaded boxes represent
functions that return HINTERNETs and the plain boxes represent functions that
use the HINTERNET created by the function on which they depend.

FtpCreateDirectory

FtpDeleteFile

FtpGetCurrentDirectory

FtpGetFile

FtpPutFile

FtpRemoveDirectory .

FtpRenameFile

FtpSetCurrentDirectory

Chapter 7 Internet Connections 181

The FtpCreateDirectory, FtpDeleteFile, FtpGetCurrentDirectory,
FtpGetFile, FtpPutFile, FtpRemoveDirectory, FtpRenameFile, and
FtpSetCurrentDirectory functions use the HINTERNET handle created by
InternetConnect.

The following illustration shows the two FrP functions that return HINTERNET
handles and the functions dependent on the HINTERNET handles created by
them. The shaded boxes represent functions that return HINTERNET handles,
while the plain boxes represent functions that use the HINTERNET handle
created by the function on which they depend.

FtpFindFirstFile

InternetFindNextFile

InternetReadFile

InternetFindNextFile is dependent on the HINTERNET handle created by
FtpFindFirstFile, and InternetReadFile uses the HINTERNET handle created
by FtpOpenFile.

Use WinInet to perform the following tasks on an FrP server:

• Navigating directories

• Enumerating, creating, removing, and renaming directories

• Renaming, uploading, downloading, and deleting files

182 Windows CE Communications Guide

~ To access an FTP server with WinInet

1. Call InternetOpen to initialize an Internet handle.

InternetOpen creates the root HINTERNET handle that is used to establish
the FTP session. The HINTERNET Internet handle is used by all subsequent
functions.

2. Call InternetConnect to create an FTP session.

When calling InternetConnect specify INTERNET_DEFAULT_FTP _PORT
for the nServerPort parameter and INTERNET_SERVICE_FTP for the
dwService parameter.

This function uses the handle returned by InternetOpen to create a specific
FTP session. InternetConnect initializes an FTP session for the specified site,
using the arguments passed to it and creates a HINTERNET that is a branch
off the root handle. In the case of an FTP session, InternetConnect attempts
to establish a connection to the specified site.

3. Call FtpGetFile or FtpFindFirstFile.

InternetConnect returns a handle that subsequent functions can use, such as
FtpGetFile or FtpFindFirstFile.

Use the InternetFindNextFile function with FtpFindFirstFile to find the
next file in a file search, using the search parameters and HINTERNET handle
from FtpFindFirstFile.

To complete a file search, continue to call InternetFindNextFile using the
HINTERNET handle returned by FtpFindFirstFile until function fails with
the extended error message ERROR_NO_MORE_FILES. To get the extended
error data, call the GetLastError function.

4. Call InternetCloseHandle to close the FTP session created by calling
InternetConnect.

5. Call InternetCloseHandle to close the handle created by calling
InternetOpen.

Note Applications must specify a directory relative to the current directory or
include the full directory path.

Chapter 7 Internet Connections 183

Accessing Security Protocols
Windows CE supports Private Communication Technology (PCT) 1.0 and secure
socket layer (SSL) versions 2.0 and 3.0, and Server Gated Crypto (SGC) security
protocols. These protocols are available through WinInet or directly from
Winsock.

The simplest approach to using the security protocols is to use WinInet.

~ To access security protocols with WinInet

1. Call InternetOpen to get an Internet handle.

2. Connect with InternetConnect, using
INTERNET_DEFAULT_HTTPS_PORT as the nServerPort parameter.

3. For HTTPS, invoke HttpOpenRequest with the
INTERNET_FLAG_SECURE flag set.

4. Proceed with the remainder of the session.

185

CHAPTER 8

Security Support Provider Interface

As intranets become more secure, client applications, such as Web browsers and
e-mail applications, and their servers become more complex. Different
applications require different ways of identifying or authenticating users, and
different ways of encrypting data as it travels across a network. To avoid coding
every available security option into an application, Windows CE supports the
Security Support Provider Interface (SSPI), which enables applications to access
dynamic-link libraries (DLLs) containing common authentication and
cryptographic data schemes. These DLLs are called Security Support Providers
(SSPs). The following illustration shows the relationship of the SSP DLLs to the
SSPI Secur32.dll, Winsock, and WinInet.

Winlnet
HTTP/HTTPS

Application

Schanne I

Windows NT LMSSP

Other SSP

186 Windows CE Communications Guide

SSPs make one or more security solutions, called security packages, available to
applications. A security package maps various SSPI functions to the security
protocols specified in the package. An application implementing the SSPI can use
any security package available on a system without knowing details about the
security protocols that the security package implements. The application
programming interfaces (APIs) contained in the SSPI are divided into the
following functional areas:

• Package management

• Credential management

• Context management

• Message support

Package management functions enumerate and query the attributes of the security
packages of an SSP. They list the security packages available on a system and
enable an application to select one to support its requirements.

Credential management functions enable applications to gain access to the
credentials of a principal. A principal is an entity recognized by the security
system. This includes human users as well as autonomous processes. A credential
is data used by a principal to establish the identity of the principal, such as a
password or user name.

Context management functions enable applications to create and use security
contexts. A security context is the security data relevant to a connection, and
contains such data as a session key and the session duration. Both client and
server must cooperate to create a security context. The client and the server can
then use the security context with message support functions to ensure message
integrity and privacy during the connection.

Message support functions enable an application to transmit messages that cannot
be tampered with. The functions work with one or more buffers that contain a
message and an associated security context created by the context management
functions.

These sections describe how to initialize and use the functions contained in the
SSPI to create a secure network connection. This process contains the following
primary tasks:

• Initializing the SSPI

• Establishing an authentic connection

• Ensuring communication integrity during message exchange

• Calling the Windows NT LAN Manager Security Support Provider
(Windows NT LMSSP)

Chapter 8 Security Support Provider Interface 187

The following example shows how to update the registry to install an SSP.

[HKEY_LOCAL_MACHINE\Comm\SecurityProviders]
Providers-REG_SZ:providerl.dll, provider2.dl1 , ...

A single DLL can contain multiple providers. Provider.dll can contain two
security packages; for example, Protocoll and Protocol 2.

SSPI Functions and Structures
The following table shows the SSPI functions supported by Windows CEo

Function

AcceptSecurityContext

AcquireCredentialsHandle

ApplyControlToken

DeleteSecurityContext

EnumerateSecurityPackages

FreeContextBuffer

FreeCredentialsHandle

InitSecurity Interface

Description

Establishes a security context between the
server and a remote client.

Enables an application to acquire a handle to
preexisting credentials associated with the user
on whose behalf the call is made.

Provides a way to apply a control token to a
security context.

Deletes local data structures associated with the
specified security context.

Returns an array of SECPKGINFO structures
that describe the security packages available to
the client.

Enables callers of security provider functions to
free a memory buffer allocated by the security
provider.

Notifies the security system that the credentials
are no longer needed.

Returns a pointer to an SSP! dispatch table.

188 Windows CE Communications Guide

Function

InitializeSecurltyContext

MakeSignature

QueryContextAttrlbutes

QueryCredentialsAttributes

QuerySecurity Packagelnfo

VerifySignature

Description

Initiates the outbound security context from a
credential handle. This function establishes a
security context between the client application
and a remote peer.

Generates a cryptographic checksum of the
message and includes sequencing data to
prevent message loss or insertion. This function
enables the application to choose from several
cryptographic algorithms.

Enables a transport application to query a
security package for certain security context
attributes.

Retrieves the credential attributes.

Retrieves data about a specified security
package.

Verifies the signature of a peer client message.

The following table shows the SSPI structures supported by Windows CEo

Structure

SecPkglnfo

SecPkgContext_Sizes

SecPkgContext_Names

SecPkgContext_Lifespan

SecPkgContext_Dcelnfo

SecPkgCredentials_Names

Description

Provides general security package data, such as its name
and capabilities

Indicates the sizes of important structures used in the
message support functions

Indicates the user name associated with a security
context

Indicates the life span of a security context

Contains authorization data used by DeE services

Indicates the name of the user associated with a context

Chapter 8 Security Support Provider Interface 189

Initializing the SSPI
Before initializing the SSP!, an application must load the security provider, using
the LoadLibrary function.

The following code example shows how to load the security provider DLL.

HINSTANCE DllHandle;
TCHAR szError[100];

II load the security provider Dll.
DllHandle = loadlibrary (TEXT("secur32.dll"»;

if (!DllHandle)
{

wsprintf (szError,

return 0;

TEXT("Failed in loading secur32.dll, Error: %x"),
GetlastError (»;

When the SSP has loaded successfully, the client and the server call the
GetProcAddress function to get a pointer to InitSecurityInterface, the
initialization function for the provider. You can use InitSecurityInterface to
return a pointer to the SecurityFunctionTable function. The table contains
pointers to SSP! functions implemented by the SSP. A provider may choose not to
implement some of the SSP! functions, if the provider does not support the
underlying operation.

Before using a specific security package, both client and server must call the
EnumerateSecurityPackages function to enumerate the security packages
available from the security provider. Applications usually know which provider to
use and specify it by name in a call to the AcquireCredentialsHandle function.
EnumerateSecurityPackages returns an array of SECPKGINFO structures that
describe attributes of the available security packages. A client or server can also
use the QuerySecurityPackageInfo function to determine the attributes of the
specified security package.

The following code example shows how to initialize the SSP!.

BOOl InitSspi (HINSTANCE DllHandle)
{

DWORD dwlndex,
dwNumOfPkgs,
dwPkgToUse;

TCHAR szError[100];

190 Windows CE Communications Guide

INIT_SECURITY_INTERFACE InitSecurityInterface;
PSecurityFunctionTable pSecurityInterface = NULL;
PSecPkgInfo pSecurityPackages = NULL;
SECURITY_STATUS status;
ULONG ulCapabilities;

II Get the address of the InitSecurityInterface function.
InitSecurityInterface (INIT_SECURITY_INTERFACE) GetProcAddress

011 Handl e,
TEXT(" I nitSecurity I nterfaceW"» ;

if (IInitSecurityInterface)
{

wsprintf (szError,
TEXT("Failed in getting the function address, Error: %x"),
GetLastError (»;

return FALSE;

II Use InitSecurityInterface to get the function table.
pSecurityInterface = (*InitSecurityInterface)();

if (lpSecurityInterface)
{

}

wsprintf (szError,
TEXT("Failed in getting the function table, Error: %x"),
GetLastError (»;

return FALSE;

if (l(pSecurityInterface->EnumerateSecurityPackages»
{

}

wsprintf (szError,
TEXT("Failed in getting the function table, Error: %x"),
GetLastError (»;

return FALSE;

II Retrieve security packages supported by the provider.
status = (*pSecurityInterface->EnumerateSecurityPackages)(

&dwNumOfPkgs,
&pSecurityPackages);

if (status 1= SEC_E_OK)
{

}

wsprintf (szError,
TEXT("Failed in retrieving security packages, Error: %x"),
GetLastError (»;

return FALSE;

II Initialize dwPkgToUse.
dwPkgToUse = -1;

Chapter 8 Security Support Provider Interface 191

II Assume the application requires integrity, privacy, and
II impersonation on messages.
ulCapabilities = SECPKG_FLAG_INTEGRITY I SECPKG_FLAG_PRIVACY

SECPKG_FLAG_IMPERSONATION;

II Determine which package should be used.
for (dwIndex = 0; dwIndex < dwNumOfPkgs; dwIndex++)
{

if «pSecurityPackages[dwIndex].fCapabilities & ulCapabilities)
ulCapabilities)

dwPkgToUse = dwIndex;
break;

if (!AuthConn (pSecurityInterface, pSecurityPackages, dwPkgToUse»
{

MessageBox (NULL,
TEXT("Failed in authenticating a connection."),
TEXT("Error") ,
MB_OK);

return FALSE;

return TRUE;

Authenticating a Connection
In a typical client/server application protocol, the server waits for the client to
connect and request service. Upon connection, the server must be able to
authenticate the client and the client must be able to authenticate the server. The
protocol used to establish an authentic connection involves the exchange of one or
more security tokens between the client and server SSP. The tokens are sent as
messages by the client and the server and include protocol-specific data.

When a message is received, the application protocol reads the token from the
message and passes it to its security provider to ensure authentication is complete
or to determine if further exchange of tokens is required. The client and the server
continue to exchange messages until either the authentication is successfully
established or an error occurs.

192 Windows CE Communications Guide

To begin the authentication process, the client needs to obtain an outbound
credentials handle so that it can send an authentication request to the server. This
is accomplished by calling the AcquireCredentialsHandle function.

Using a reference to the SecurityFunctionTable function initialized during the
SSPI initialization procedure, the following code example shows how the client
obtains an outbound credentials handle.

II Get an outbound credentials handle.
status (*pSecurityInterface->AcquireCredentialsHandle)(

NULL.
pSecurityPackages[dwPkgToUse].Name.
SECPKG_CRED_OUTBOUND.
NULL.
NULL.
NULL.
NULL.
&hCredenti al .
&ts Expi ry) ;

When the client accesses credential data, it starts the authentication protocol to
establish a connection with the server. The client calls the
InitializeSecurityContext function to obtain a security token to send a
connection request message to the server.

The following code example shows how the client calls
InitializeSecurityContext.

II Initialize the OutSecBuffer structure.
OutSecBuffer.cbBuffer = BUFFERLEN;
OutSecBuffer.BufferType = SECBUFFER_TOKEN;
OutSecBuffer.pvBuffer = pszOutBuffer;

II Initialize the OutBufferDesc structure.
OutBufferDesc.ulVersion = 0;
OutBufferDesc.cBuffers = 1;
OutBufferDesc.pBuffers = &OutSecBuffer;

ulContextReq = ISC_REO_MUTUAL_AUTH I ISC_REO_CONNECTION I
ISC_REO_SEOUENCE_DETECT I ISC_REO_REPLAY_DETECT I
ISC_REO_CONFIDENTIALITY I ISC_REO_ALLOCATE_MEMORY;

II Assign the target server name.
I I wcscpy (;zTa rgetName. TEXT(" ... "));

Chapter 8 Security Support Provider Interface 193

II Get the authentication token from the security package
II to pass to the server to request an authenticated token.
status = (*pSecuritylnterface-)InitializeSecurityContext)(

&hCredenti al .
NULL.
szTargetName.
ulContextReq.
0.
SECURITY_NATIVE_DREP.
NULL.
0.
&hNewContext.
&OutBufferDesc.
&ulContextAttributes.
&ts Expi ry) :

The client uses the security token data received in the output buffer descriptor to
generate a message to send to the server. The construction of the message, in
terms of placement of various buffers, is decided by the application protocol and
is adhered to by both client and server.

Most SSPI functions have variable length arguments that enable an application to
provide message data to a security package and enable a security package to
return security data, such as a token, to the application. These functions use a
parameter type, called a buffer descriptor, to define the size and location of the
variable length data. For more information on buffers, see Memory Use and
Buffers.

When the client sends a message to the server, it checks the return status from the
call to InitializeSecurityContext to see if authentication is complete. If not, it
expects to receive an authentication token from the server in a response message
to continue the security protocol. The return status
SEC_I_CONTINUE_NEEDED, indicates that the security protocol requires
additional authentication messages ..

To establish an authenticated connection, the server must also obtain a handle to
its credentials by calling the AcquireCredentialsHandle function. When
received, you should assign a global variable to the handle to use for the duration
of the server process.

When the server receives a connection request from the client, it calls the
AcceptSecurityContext function, passing the data that it received from the client
as input. The server initializes the security buffer descriptors to refer to specific
sections of the data, rather than copying the data to an alternate buffer.

194 Windows CE Communications Guide

The server checks the return status and output buffer descriptor to ensure that no
errors exist. If errors exist, it rejects the connection request. If no errors exist, it
checks the output buffer for data. If data is present in the buffer, the server
bundles the data according to the application protocol and places it into a response
message to the client.

If the return status is SEC_I_CONTINUE_NEEDED or
SEC_I_COMPLETE_AND_CONTINUE, another message exchange with the
client is required. Otherwise, authentication is complete. If authentication must
continue, the server waits for the client to respond with another message. Place a
time out on this waiting period in case the client does not respond with a message.
This will avoid the possibility of hanging this and, subsequently, all server
threads.

When the client receives a reply from the server, it deconstructs the message and
calls InitializeSecorityContext again; be sure to use the continue status from the
previous call. Depending on the security package and the context requirements,
the transmission of messages between the client and the server can go on
indefinitely, but is usually limited to three attempts.

Context Semantics
The SSPI supports three types of security contexts: connection, datagram, and
stream contexts.

With a connection context, the caller of the function is responsible for formatting
messages. The caller also relies on the security provider to authenticate
connections and to ensure the integrity of specific parts of the message. Most
context options are available to connection contexts. These options include
mutual authentication, replay detection, and sequence detection. A security
package sets the SECPKG_FLAG_CONNECTION flag to indicate that it
supports connection semantics.

A datagram context, or connectionless context, has slightly different semantics
from a connection context. A connectionless context implies that the server has no
way of determining when the client has shut down or otherwise terminated the
connection. In other words, no termination notice is passed from the transport
application to the server, as would occur in a connection context. A security
package sets the SECPKG_FLAG_DATAGRAM flag to indicate that it supports
datagram semantics. If a client specifies the ISC_REQ_DATAGRAM flag in its
call to the InitializeSecorityContext function, the following characteristics
apply.

Chapter 8 Security Support Provider Interface 195

• The security package does not produce an authentication binary large object
(BLOB) on the first call to InitializeSecurityContext. However, the client can
immediately use the returned security context in a call to the MakeSignature
function to generate a message signature.

• The security package must enable the context to be reestablished multiple
times to enable the server to drop the connection without notice. This also
implies that any keys used in the MakeSignature and VerifySignature
functions can be reset to a consistent state. For more information on key states,
see Cryptography.

• The security package must enable the caller to specify sequence data, and must
enable the receiver to return that same sequence data back to the caller. This is
not exclusive of any sequence data maintained by the package.

A stream context is different from a connection context and a datagram context. A
stream context handles secure stream protocols. A security package that supports
stream contexts has the following characteristics:

• The package sets the SECPKG_FLAG_STREAM flag to indicate that it
supports stream semantics, just as it would set a flag to indicate support for
connection and datagram semantics.

• A transport application requests stream semantics by setting the
ISC_REQ_STREAM and ASC_REQ_STREAM flags in the calls to the
InitializeSecurityContext and AcceptSecurityContext functions.

• The application calls the QueryContextAttributes function with a
SecPkgContext_StreamSizes structure to query the security context for the
number of buffers to provide, and the sizes to reserve for headers or trailers.

• The application provides extra buffer descriptors during actual data
processing.

By specifying stream semantics, the caller indicates it will perform extra
operations so that the security provider can block messages. These extra
operations include passing a list of buffers when the MakeSignature and
VerifySignature functions are called. When a message is received from a stream
oriented channel, the caller passes a buffer. The following table shows the buffers.

Buffer Length Buffer type

Message length SECBUFFER_DATA

2 0 SECBUFFER_EMPTY

3 0 SECBUFFER_EMPTY

4 0 SECBUFFER_EMPTY

5 0 SECBUFFER_EMPTY

196 Windows CE Communications Guide

The security package then authenticates the BLOB. The following table shows
what the buffer list looks like, if the function returns successfully.

Buffer Length Buffer type

Header length SECBUFFER_STRE~_HEADER

2 Data length SECBUFFER_DATA

3 Trailer length SECBUFFER_STRE~_TRAlLER

4 0 SECBUFFER_EMPTY

5 0 SECBUFFER_EMPTY

The following table shows an alternate return value for buffer 4.

Buffer Length Buffer type

4 x

The buffer listed in the previous table indicates data in this buffer is part of the
next record, and has not yet been processed.

Conversely, the following table shows what the returned buffer list would look
like if the message function returns the SEC_E_INCOMPLETE_MESSAGE error
message.

Buffer Length Buffer type

x SECBUFFER_MISSING

The buffer described in this table indicates that more data is needed to process the
record. Unlike most errors returned from a message function, this buffer type does
not indicate that the context has been compromised. Security providers must not
update their state in this condition.

Similarly, on the sender's side of the communication, the caller can call
MakeSignature, in which case the security package may need to reallocate the
buffer. The following table shows the buffer list that the caller can provide to be
more efficient.

Buffer Length Buffer type

1 Header length SECBUFFER_STRE~_HEADER

2 Data length SECBUFFER_DATA

3 Trailer Llength SECBUFFER_STRE~_TRAILER

U sing a buffer, like the one described in the previous table, enables the caller to
use buffers more efficiently. By calling the QueryContextAttributes function to
determine the amount of space to reserve before calling MakeSignature, the
operation is more efficient for the application and the security package.

Chapter 8 Security Support Provider Interface 197

Context Requirements
Context requirements are expressed as a combination of bit flags passed to either
the InitializeSecurityContext or the AcceptSecurityContext function. These
flags affect the context many ways: not all flags apply to all contexts, some flags
are valid only for the server, and other flags are valid only for the client.

The caller uses the fContextReq parameter of the InitializeSecurityContext or the
AcceptSecurityContext function to specify a set of flags that indicate the
required capabilities. When the function returns, the pfContextAttr parameter
indicates the attributes of the established context. The caller is responsible for
determining if the final context attributes are acceptable. For example, if the caller
requested mutual authentication, but the security package indicates that it did not
perform such authentication, the caller must decide whether to cancel the context
or continue without authentication.

The following table shows the various context requirements.

Type

DELEGATE

REPLAY_DETECT

SEQUENCE_DETECT

CONFIDENTIALITY

USE_SESSION_KEY

PROMPT_FOR_CREDS

Description

Indicates that the server in the transport application
requires simple delegation rights, that is, impersonation
of the client on the node at which the server is executing.

Indicates that both client and server must authenticate the
peer identity.

Indicates that the context should be established to enable
detection of replayed packets later through the message
support functions: MakeSignature and
VerifySignature. This context implies INTEGRITY.

Indicates that the context should be established to enable
detection of out-of-order delivery of packets later
through the message support functions. This context
implies INTEGRITY.

Indicates that the context should be established to protect
data while in transit. This context type is reserved for
future use.

Indicates that a new session key should be negotiated.

Indicates that the security package should prompt the
user for the appropriate credentials to use, if possible and
if the client is an interactive user.

198 Windows CE Communications Guide

Type

ALLOCATE_MEMORY

DATAGRAM

CONNECTION

STREAM

EXTENDED_ERROR

INTEGRITY

Memory Use and Buffers

Description

Indicates that package-specific credential data is
available in the input buffer. The security package should
use these credentials to authenticate the connection.

Indicates that the security package should allocate
memory. The caller must eventually call the
FreeContextBuffer function to free memory allocated
by the security package.

Indicates that the caller expects a three transfer
authentication transaction.

Indicates datagram semantics should be used.

Indicates connection semantics should be used.

Indicates stream semantics should be used.

Indicates that if the context fails, the application
generates an error reply message for the peer.

Indicates that buffer integrity can be verified, but no
sequencing or reply detection is enabled.

Memory is handled through a list of descriptors for the buffers being passed to the
functions. Because certain protocols require access to an entire message, the entire
message is available. To ensure application integrity, however, you can prohibit a
package from modifying an area of a message.

The context functions use the SECBUFFER and SECBUFFERDESC structures
to pass memory buffers. The client creates an array of SECBUFFER structures
that references only the buffers that the application will be passing to the package.
The security package may indicate that it looks at only the security portion of a
message, and that the SSP! client need not provide the other portions of the
message. By passing only portions of a message instead of an entire message,
performance improves.

SECBUFFERDESC is a header that includes a pointer to the array of
SECBUFFER structures. The following code example shows how the serVer
initializes an array of buffers when it calls the AcceptSecnrityContext function.
The last buffer contains the opaque security token received by the client. The
SECBUFFER_READONL Y flag is also set.

SecBuffer Buffers[3];
SecBufferDesc BufferDesc;

Chapter 8 Security Support Provider Interface 199

II Set up the buffer descriptors.
BufferDesc.ulVersion = SECBUFFER_VERSION;
BufferDesc.cBuffers 3;
BufferDesc.pBuffers = &Buffers[0];

Buffers[0].cbBuffer = sizeof (Protocol_Header);
Buffers[0].BufferType = SECBUFFER_READONLY I SECBUFFER_DATA;
Buffers[0].pvBuffer = pHeader;

Buffers[l].cbBuffer = pHeader-)MessageSize;
Buffers[l].BufferType = SECBUFFER_DATA;
Buffers[l].pvBuffer = pMessage;

Buffers[2].cbBuffer = pHeader-)TrailerSize;
Buffers[2].BufferType = SECBUFFER_READONLY SECBUFFER_TOKEN;
Buffers[2].pvBuffer = pSecurityTrailer;

Securing the Message Exchange
After a security context is established, the application can use the SSPI message
support functions to transmit signed messages. The process of signing a message
ensures that the message cannot be tampered with.

If an application wants to generate signed messages, the client must set the
ISC_REQ_REPLA Y _DETECT or ISC_REQ_SEQUENCE_DETECT flag of the
context attribute argument when first calling the InitializeSecurityContext
function.

Signing messages requires that the client and the server service providers establish
a common session key used to sign messages on the sender side of the
communication and verify messages on the receiver side of the communication.
Algorithms used in message signatures are known only to the security package.

After an authenticated connection has been established, the client or server can
pass the security context and a message to the MakeSignature function to
generate a secure signature. MakeSignature generates a checksum of the message
and also provides sequencing data to prevent the message from being modified in
transit. A checksum is a calculated value used to test data for the presence of
errors that can occur when data is transmitted.

200 Windows CE Communications Guide

The following code example shows how to implement MakeSignature and how
to append the signature to the message so that the receiver can extract it when the
message is received.

SecBuffer OutSecBuffer[2];
SecBufferDesc OutBufferDesc;

II Set up the buffer descriptors.
OutBufferDesc.ulVersion - 0;
OutBufferDesc.cBuffers 2;
OutBufferDesc.pBuffers = &OutSecBuffer[0];

OutSecBuffer[0].cbBuffer = MessageLen;
OutSecBuffer[0].BufferType = SECBUFFER_DATA I SECBUFFER_READONLY;
OutSecBuffer[0].pvBuffer pMessage;

OutSecBuffer[l].cbBuffer SignatureLen;
OutSecBuffer[l].BufferType = SECBUFFER_EMPTY;
OutSecBuffer[l].pvBuffer = (pMessage + MessageLen);

II Call MakeSignature to get it signed.
status = (*pSecuritylnterface->MakeSignature) (&hContext,

0,
&BufferDesc,
ulMessageSeqNum);

The sender then uses the buffer descriptor, including the signature, to construct a
message to send to the receiver. The receiver takes the message and disassembles
it to recreate the buffer descriptor. The receiver then calls the VerifySignature
function to verify that the message received is correct according to the data in the
signature.

The following code example shows how to implement VerifySignature.

SecBuffer InSecBuffer[2];
SecBufferDesc InBufferDesc;

II Set up the buffer descriptors.
InBufferDesc.ulVersion = 0;
InBufferDesc.cBuffers 2;
InBufferDesc.pBuffers = &InSecBuffer[0];

InSecBuffer[0].cbBuffer = MessageLen;
InSecBuffer[0].BufferType = SECBUFFER_DATA I SECBUFFER_READONLY;
InSecBuffer[0].pvBuffer = pMessage;

Chapter 8 Security Support Provider Interface 201

InSecBuffer[l].cbBuffer = SignatureLen;
InSecBuffer[l].BufferType = SECBUFFER_TOKEN;
InSecBuffer[l].pvBuffer = (pMessage + MessageLen);

II Call VerifySignature to verify the message signature.
status (*pSecurityInterface->VerifySignature) (&hContext.

Deleting a Security Context

&BufferDesc.
ulMessageSeqNum.
&ulQualityProtection);

To delete a security context after the client and the server have finished
communicating, the client and the server call the DeleteSecurityContext function
with their respective context handles. The client should also call the
FreeCredentialsHandle function when it has finished communicating with any
server, or has finished using the additional credentials passed to the
AcquireCredentialsHandle function. The server should then call
DeleteSecurityContext when it is ready to shut down, but before unloading the
DLL.

Calling the Windows NT LAN Manager Security Support
Provider

Windows CE application can interact with Microsoft Windows NT workstations
that are running the LAN Manager Security Support Provider service (Windows
NT LMSSP). The Windows NT LMSSP is based on the Windows NTLM
(Windows NT LAN Manager) authentication protocol. All references to server in
this section refer to a Windows-based desktop platform server.

Client Initialization
This section describes how the client of a transport application connects to a
Windows-based desktop platform server, using Windows NT LMSSP
authentication.

To initialize, the application client calls the InitSecurity Interface function. If the
client is binding directly to Secur32.dll, it can discard the returned function table;
otherwise, it must use the function table to make subsequent calls to the security
provider functions. The cli~nt must also call the QuerySecurityPackageInfo
function to get the maximum security buffer size.

202 Windows CE Communications Guide

To make the connection, the application calls the AcquireCredentialsHandle
function, using the SEC_ WINNT_AUTH_IDENTITY structure to specify the
credentials. The application must save the credential handle for use when calling
the InitializeSecurityContext function, but it can discard the other parameters
after the call to AcquireCredentialsHandle. The following code example shows
how to make a connection.

SEC_WINNT_AUTH_IDENTITY AdditionalCredentials;
SECURITY_STATUS status;
CredHandle hCredential;
TimeStamp tsExpiry;
BOOL bSupplyCredentials;

II If there are additional credentials stored in lpszUserName,
II lpszDomainName, and lpszPassword, fill them in here.
AdditionalCredentials.Flags = SEC_WINNT_AUTH_IDENTITY_UNICODE;

if (lpszUserName != NULL)
{

AdditionalCredentials.User = lpszUserName;
AdditionalCredentials.UserLength = wcslen (lpszUserName);

if (lpszDomainName !- NULL)
{

AdditionalCredentials.User = lpszDomainName;
AdditionalCredentials.UserLength = wcslen (lpszDomainName);

if (lpszPassword != NULL)
{

AdditionalCredentials.User = lpszPassword;
AdditionalCredentials.UserLength = wcslen (lpszPassword);

status = AcquireCredentialsHandle
NULL,
TEXT("NTLM") ,
SECPKG_CRED_OUTBOUND,
NULL,
bSupplyCredentials ?

NULL,
NULL,
&hCredential,
&tsExpi ry);

II No principal name
II Package name
II Credential use flag
II No logon identifier

&AdditionalCredentials : NULL,
II Package-specific data
II No GetKey function
II No GetKey function argument
II Receives the new credential
II Receives the expiration
II time of the credential

Chapter 8 Security Support Provider Interface 203

The credential handle does not expire, so the client can ignore the expiration time
for this security package.

Next, the application calls InitializeSecurityContext to start setting up the
security context. The following code example shows how to start up the security
context.

SecBufferDesc OutputBufferDescriptor;
SecBuffer OutputSecurityToken;
ULONG ulContextRequirements.

ulContextAttributes;
SECURITY_STATUS status;
CredHandle hCredential;
CtxtHandle hNewContext;
TimeStamp tsExpiry;

II Build the output buffer descriptor.
OutputBufferDescriptor.cBuffers = 1;
OutputBufferDescriptor.pBuffers = &OutputSecurityToken;
OutputBufferDescriptor.ulVersion = SECBUFFER_VERSION;

OutputSecurityToken.BufferType = SECBUFFER_TOKEN;
OutputSecurityToken.cbBuffer = pPackageInfo-)cbMaxToken;
OutputSecurityToken.pvBuffer =

LocalAlloc (0. OutputSecurityToken.cbBuffer);

II Insert code here to check for memory allocation failure.
II

II Compute context requirements. For message integrity. request
II replay or sequence detection. For message encryption.
II request confidentiality.
ulContextRequirements = ISC_REQ_REPLAY_DETECT;

II Assume that szTargetName is the name of the target server. or NULL.
II Call the InitializeSecurityContext function.
status = InitializeSecurityContext (

&hCredenti al.
NULL.
szTargetName.
ulContextRequirements.

II No context handle
II Target name. if available

0. II Reserved parameter
SECURITY_NATIVE_DREP. II Target data representation
NULL. I I No input buffer
0. II Reserved parameter
&hNewContext. II Receives new context handle
&OutputBufferDescriptor.11 Receives output security token
&ulContextAttributes. II Receives context attributes
&tsExpiry); II Receives context expiration

II time

204 Windows CE Communications Guide

InitializeSecurityContext returns SEC_I_CONTINUE_NEEDED on success, or
an error value on failure. If the function is successful, the application passes the
token buffer to the server. The token buffer is stored in the pvBuffer member of
the OUTPUTSECURITYTOKEN structure. The cbBuffer member of the
structure specifies the buffer length. The token buffer is then sent to the server.
The server sends the output back to the client. The client then calls
InitializeSecurityContext again.

Windows NT LMSSP Server Authentication
When the application makes a second call to the InitializeSecurityContext
function, the parameters are similar to the first call. The following code example,
showing the second call to InitializeSecurityContext, assumes that the security
buffer returned from the server is in InputSecurityBuffer and the length of that
buffer is in InputSecurityBufferSize.

SecBufferDesc OutputBufferDescriptor.
InputBufferDescriptor;

SecBuffer OutputSecurityToken.
InputSecurityToken;

ULONG ulContextAttributes;
TimeStamp tsExpiry;

II Build the input buffer descriptor.
InputBufferDescriptor.cBuffers = 1;
InputBufferDescriptor.pBuffers = &InputSecurityToken;
InputBufferDescriptor.ulVersion = SECBUFFER_VERSION;

InputSecurityToken.BufferType = SECBUFFER_TOKEN;
InputSecurityToken.cbBuffer InputSecurityBufferSize;
InputSecurityToken.pvBuffer = InputSecurityBuffer;

II Build the output buffer descriptor.
OutputBufferDescriptor.cBuffers = 1;
OutputBufferDescriptor.pBuffers = &OutputSecurityToken;
OutputBufferDescriptor.ulVersion = SECBUFFER_VERSION;

OutputSecurityToken.BufferType = SECBUFFER_TOKEN;
OutputSecurityToken.cbBuffer = pPackageInfo-)cbMaxToken;
OutputSecurityToken.pvBuffer =

LocalAlloc (0. OutputSecurityToken.cbBuffer);

II Insert code here to check for memory allocation failure.
II

Chapter 8 Security Support Provider Interface 205

II Ignore the pszTargetName and fContextReq parameters on this
II call. This time. instead of passing NULL for phContext. pass
II the context handle received on the first call.
status = InitializeSecurityContext (

&hCredenti al .
&hContext.
NULL.
0.
0.
SECURITY_NATIVE_DREP.
&InputBufferDescriptor.
0.
&hContext,

II No target name
II No context requirements
II Reserved parameter
II Target data representation
II Input buffer
II Reserved parameter
II Same as the old context

&OutputBufferDescriptor.11 Receives output security token
&ulContextAttributes. II Receives context attributes
&tsExpiry); II Receives context expiration

II time

If the InitializeSecurityContext call is successful, it returns SEC_E_OK, and the
application transmits the output security buffer and buffer length to the server, as
it did after the first call to InitializeSecurityContext. If it fails, an error value
returns.

When the application has finished setting up the security context, the application
can begin using the security context in calls to the MakeSignature and
VerifySignature functions to make and verify message signatures, even though
the server has not yet finished authenticating the client.

Using a Security Context
Both the client and the server side of a transport application can use the
MakeSignature function to generate a signed message to send to the other side.
The receiving side then uses the VerifySignature function to verify that a
signature matches the received message. If the application wants to generate
signed messages, the client must have specified the
ISC_REQ_REPLA Y _DETECT or ISC_REQ_SEQUENCE_DETECT flag in its
first call to the InitializeSecurityContext function.

When the client calls MakeSignature or VerifySignature, it uses the
ClientContext handle that it obtained from its first call to
InitializeSecurityContext.

206 Windows CE Communications Guide

The following code example shows how the client side generates a signed
message to send to the server. Before calling MakeSignature, the client calls the
QueryContextAttributes function with a SECPKGCONTEXT_SIZES
structure to determine the length of the buffer needed to hold the message
signature. If the cbMaxSignature parameter is zero, the security package does not
support signing messages; otherwise, this parameter indicates the size of the
buffer to allocate to receive the signature.

SecPkgContext_Sizes ContextSizes;

status = QueryContextAttributes (&hContext,
SECPKG_ATTR_SIZES,
&ContextSizes);

II Assume the message is in the variable MessageBuffer, and
II its length is in MessageBufferSize. Build up the buffer descriptors
II to pass to the MakeSignature call.
SecBufferDesc InputBufferDescriptor;
SecBuffer InputSecurityToken[2];

II Build the input buffer descriptor.
InputBufferDescriptor.cBuffers = 2;
InputBufferDescriptor.pBuffers = InputSecurityToken;
InputBufferDescriptor.ulVersion = SECBUFFER_VERSION;

II Build a security buffer for the message. If the SECBUFFER_READONLY
II attribute is added, this buffer would not get signed.
InputSecurityToken[0].BufferType = SECBUFFER_DATA;
InputSecurityToken[0].cbBuffer MessageBufferSize;
InputSecurityToken[0].pvBuffer = MessageBuffer;

II Allocate and build a security buffer for the message signature.
InputSecurityToken[l].BufferType = SECBUFFER_TOKEN;
InputSecurityToken[l].cbBuffer = ContextSizes.cbMaxSignature;
InputSecurityToken[l].pvBuffer =

LocalAlloc (0, ContextSizes.cbMaxSignature);

II Insert code here to check for memory allocation failure.
II

II Call MakeSignature now. Specify the sequence number;
II Windows NTLM provides one. The quality of service is ignored.
status = MakeSignature (

&hContext,
0, II No quality of service
&InputBufferDescriptor, II Input message descriptor
0); II No sequence number

Chapter 8 Security Support Provider Interface 207

MakeSignature returns successfully if the context was set up to enable signing
messages and the input buffer descriptor is correctly formatted. If the function is
successful, the application sends the message buffer and its size, along with the
signature buffer and its size, to the server.

To delete the security contexts after the client and server have finished
communicating, both sides can call the DeleteSecurityContext function with
their respective context handles. The client should also call the
FreeCredentialsHandle function when it has finished communicating with any
server or has finished using the additional credentials passed to the
AcquireCredentialsHandle function. For more information on writing the server
side of the Windows NT LMSSP transport application, see the Microsoft Platform
SDK.

SSPI Sample Application
The following is an example of an SSP! application.

#include <windows.h>
#include <sspi.h>
#include <issperr.h>
#include <winsock.h>

#define BUFFERlEN 16384

BOOl InitSspi (HINSTANCE);
BOOl AuthConn (PSecurityFunctionTable, PSecPkgInfo. DWORD);

1***

FUNCTION:
WinMain

PURPOSE:
Called by the system as the initial entry point for this Windows
CE-based application.

***1
int WINAPI WinMain (HINSTANCE hInstance. HINSTANCE hPrevInstance.

lPTSTR lpCmdline. int nCmdShow)

HINSTANCE DllHandle;
TCHAR szError[100];

II load the security provider Dll.
DllHandle = loadlibrary (TEXT("secur32.dll"));

208 Windows CE Communications Guide

}

if (!Ol1Handle)
{

}

wsprintf (szError,

return 0;

TEXT("Failed in loading secur32.d11, Error: %x"),
GetlastError (»;

if (!InitSspi (OllHandle»
{

MessageBox (NUll,

return 0;

return I;

TEXT("Failed in initializing the SSP!."),
TEXT("Error") ,
MB_OK) ;

1***

FUNCTION:
InitSspi

PURPOSE:
Initializes Security Support Provider Interface.

***1
BOOl InitSspi (HINSTANCE OllHandle)
{

OWORO dwIndex,
dwNumOfPkgs,
dwPkgToUse;

TCHAR szError[100];

INIT_SECURITY_INTERFACE InitSecurityInterface;
PSecurityFunctionTable pSecurityInterface = NUll;
PSecPkgInfo pSecurityPackages = NUll;
SECURITY_STATUS status;
UlONG ulCapabilities;

II Get the address of the function InitSecurityInterface.
InitSecurityInterface (INIT_SECURITY_INTERFACE) GetProcAddress

011 Handl e,
TEXT("InitSecurityInterfaceW"»;

Chapter 8 Security Support Provider Interface 209

if (!InitSecurityInterface)
{

wsprintf (szError.
TEXT("Failed in getting the function address. Error: %x").
GetLastError (»:

return FALSE:

II Use InitSecurityInterface to get the function table.
pSecurityInterface = (*InitSecurityInterface)():

if (!pSecurityInterface)
{

wsprintf (szError.
TEXT("Failed in getting the function table. Error: %x").
GetLastError (»:

return FALSE:

if (!(pSecurityInterface->EnumerateSecurityPackages»
{

wsprintf (szError.
TEXT("Failed in getting the function table. Error: %x").
GetLastError (»:

return FALSE:

II Retrieve the security packages supported by the provider.
status = (*pSecurityInterface->EnumerateSecurityPackages)(

&dwNumOfPkgs.
&pSecurityPackages):

if (status != SEC_E_OK)
{

wsprintf (szError.
TEXT("Failed in retrieving security packages. Error: %x").
GetLastError (»:

return FALSE:

II Initialize dwPkgToUse.
dwPkgToUse = -1:

II Assume the application needs integrity. privacy. and impersonation
lion messages.
ulCapabilities SECPKG_FLAG_INTEGRITY I SECPKG_FLAG_PRIVACY

SECPKG_FLAG_IMPERSONATION:

210 Windows CE Communications Guide

II Determine which package should be used.
for (dwIndex = 0; dwIndex < dwNumOfPkgs; dwIndex++)
{

if «pSecurityPackages[dwIndex].fCapabilities & ulCapabilities)
ul Capabil it i es)

dwPkgToUse = dwIndex;
break;

if (!AuthConn (pSecurityInterface. pSecurityPackages. dwPkgToUse))
{

MessageBox (NUll.
TEXTC"Failed in authenticating a connection.").
TEXTC"Error") .
MB_OK) ;

return FALSE;

return TRUE;

1***

FUNCTION:
AuthConn

PURPOSE:
Authenticates a connection.

***1
BOOl AuthConn (PSecurityFunctionTable pSecurityInterface.

PSecPkgInfo pSecurityPackages.
DWORD dwPkgToUse)

BOOl bReturn = FALSE;
TCHAR szError[100].

szTargetName[100];
lPSTR pszOutBuffer = NUll;
UlONG ulContextReq.

ulContextAttributes;
TimeStamp tsExpiry;
SECURITY_STATUS status;
CredHandle hCredential;
CtxtHandle hNewContext;
SecBuffer OutSecBuffer;
SecBufferDesc OutBufferDesc;

II Return value of the function
II String for the error message
II Target name
II Used in security data xfr
II Required context attributes
II Receives attributes of the context
II Returned credentials' life time
II Return codes
II Handle to the credential
II Handle to the security context
II Output buffer
II Output buffer descriptor

Chapter 8 Security Support Provider Interface 211

II Check if the pointer to SecurityFunctionTable is valid.
if (lpSecurityInterface)

goto exit;

II Allocate buffer memory for pszOutBuffer.
if (l(pszOutBuffer = new char[BUFFERLEN]»

goto exit;

II Acquire an outbound credential handle.
status = (*pSecurityInterface->AcquireCredentialsHandle)(

if (status 1= SEC_E_OK)
{

wsprintf (szError,

NULL,
pSecurityPackages[dwPkgToUse].Name,
SECPKG_CRED_OUTBOUND,
NULL,
NULL,
NULL,
NULL,
&hCredenti al ,
&ts Expi ry) ;

TEXT("Failed in acquiring the credential handle: %x") ,
status);

goto exit;

II Initialize the OutSecBuffer structure.
OutSecBuffer.cbBuffer = BUFFERLEN;
OutSecBuffer.BufferType = SECBUFFER_TOKEN;
OutSecBuffer.pvBuffer = pszOutBuffer;

II Initialize the OutBufferDesc structure.
OutBufferDesc.ulVersion = 0;
OutBufferDesc.cBuffers 1;
OutBufferDesc.pBuffers = &OutSecBuffer;

ulContextReq = ISC_REQ_MUTUAL_AUTH I ISC_REQ_CONNECTION I
ISC_REQ_SEQUENCE_DETECT I ISC_REQ_REPLAY_DETECT I
ISC_REQ_CONFIDENTIALITY I ISC_REQ_ALLOCATE_MEMORY;

II Assign the target (server) name.
II wcscpy (szTargetName, TEXT(" ... "»;

II Get the authentication token from the security package to send to
II the server to request an authenticated token.

212 Windows CE Communications Guide

status (*pSecurityInterface-)InitializeSecurityContext)(
&hCredential.
NULL,
szTargetName.
ulContextReq.
0.
SECURITY_NATIVE_DREP.
NULL.
0.
&hNewContext.
&OutBufferDesc.
&ulContextAttributes.
&ts Expi ry) ;

if (status == SEC_I_CONTINUE_NEEDED)
{

SOCKET Socket = INVALID_SOCKET; II Server socket

II Add code here to connect to server. Get the server socket.
II

II Send hCredential to server
if (send (Socket. (const char *)OutSecBuffer.pvBuffer.

{

OutSecBuffer.cbBuffer. 0) == SOCKET_ERROR)

wsprintf (szError.

goto exit;

TEXT("Failed in sending hCredential to the server: %d").
WSAGetLastError (»;

II Add code here to make the second call to the
II InitializeSecurityContext function

II
}

else
{

}

if (status != SEC_E_OK)
{

}

wsprintf (szError.

goto exit;

TEXT("Failed in initiating the outbound security")
TEXT("context: %x").
status);

bReturn TRUE;

exit:

if (pszOutBuffer)
delete[] pszOutBuffer;

if (pSecuritylnterface)
(

Chapter 8 Security Support Provider Interface 213

(*pSecuritylnterface->FreeCredentialHandle)(&hCredential);
(*pSecuritylnterface->DeleteSecurityContext)(&hNewContext);
(*pSecuritylnterface->FreeContextBuffer)(&OutBufferDesc);

return bReturn;

215

CHAPTER 9

Cryptography

Cryptography provides a way to distribute files in secret code, or cipher, so they
can only be read by intended recipients. Cryptography maintains secrecy and
ensures data integrity to achieve secure communications in your Windows CE
based application.

The following aspects of cryptography are discussed:

• Encryption and decryption

• Windows CE implementation of the Microsoft Cryptographic API (CAPI)

• How to use CAPI

Encryption and Decryption
Encryption is the process of encoding data into cipher, a form that is unreadable
without a decoding key. Decryption is the reverse process of converting encoded
data to its original unencoded, plaintext, form. When a user encodes a file, a user
cannot read the file without the proper key to decode it. Adding a digital
signature, a form of personal authentication, ensures that the original message has
not been tampered with.

To encode plaintext, an encryption key is used to impose an encryption algorithm
onto the data. To decode cipher, a user must possess the appropriate decryption
key. A decryption key consists of a random string of numbers, from 40 to 2,000
bits in length. The key imposes a decryption algorithm onto the data. This
decryption algorithm reverses the encryption algorithm, returning the data to
plaintext. The longer the encryption key, the more difficult it is to decode. For a
40-bit encryption key, over one trillion possible decryption keys exist.

216 Windows CE Communications Guide

There are two primary approaches to encryption: symmetric and public-key.
Symmetric encryption is the most common type of encryption and uses the same
key for encoding and decoding data. This key is known as a session key. Public
key encryption uses two different keys, a public key and a private key. One key
encodes the message and the other decodes it. The public key is widely distributed
while the private key is kept secret.

Aside from key length and the encryption approach, other factors and variables
impact the success of a cryptographic system. For example, different cipher
modes can be used to vary the encryption along with initialization vectors and salt
values. Cipher modes define the method in which data is encrypted. The stream
cipher mode encodes data one bit at a time. The block cipher mode encodes data
one block at a time. Although it tends to execute more slowly than stream cipher,
block cipher is generally more secure. Within block ciphers, there are four
encryption modes: electronic codebook (ECB), cipher block chaining (CBC),
cipher feedback mode (CFB), and output feedback mode (OFB). For more
information on these modes, see Encrypting and Decrypting Data.

Initialization vectors are random numbers used as starting points when encoding
data. Usually, initialization vectors have the same number of bits as the block size
and do not require encryption. With initialization vectors, two identical plaintext
messages can be encoded with the same key and result in two completely different
cipher messages. This variation is done by encrypting each plaintext message with
a different initialization vector.

Salt values are most useful when transmitting or storing large numbers of nearly
identical packets by using the same encryption key. Typically, two identical
packets would encode as two identical cipher packets. However, this would
indicate to an eavesdropper that the packets are identical and, thus, the packets
could be attacked simultaneously. But if the salt value is changed with every
packet sent, a completely different cipher packet is generated, even if the plaintext
packets are the same. Salt values consist of random numbers and can be
transmitted in plaintext form.

In addition to encrypting the data, a user can digitally sign data to enable another
user to verify that the data has not been changed since it was signed. The identity
of the user that signed the data can also be verified. This digital signature consists
of a small amount of binary data, typically less than 256 bytes. A digital signature
can be bundled with signed messages or stored separately, depending on the
application.

Chapter 9 Cryptography 217

Microsoft Cryptographic System
The Microsoft cryptographic system is composed of different components. The
three executable portions are the application, the operating system (OS), and the
cryptographic service provider (CSP).

Applications communicate with the as through the cryptographic API (CAPI).
The as communicates with CSPs through the cryptographic service provider
interface (CSPI). The following illustration shows these concepts.

Application
layer

CAPI M

System
layer

CryptoSPI •

Service
provider

layer

Application A Application B Application C

J J ~

MW:W ••• WWMMW MMW_MMW.MM ••• MW.~MMW ••• W MMWW ••• WMMWW •• *WWMMW ••• ••••• M •••••

, r

Operating system

J J

......... 1M ft "" "", •• ww •• ~w •••••••••••••••• •....................•.
'w ,

Cryptographic Cryptographic Cryptographic
Service Provider Service Provider Service Provider

(CSP) #1 (CSP) #2 (CSP) #3

All cryptographic operations are performed by independent modules known as
cryptographic service providers (CSPs). CSPs communicate with applications
through Coredll.dll. A CSP is responsible for creating and destroying keys, and
using them to perform a variety of cryptographic operations. Each CSP provides a
different implementation of the CA~1. Some provide stronger cryptographic
algorithms, while others contain hardware components. .

218 Windows CE Communications Guide

The following illustration shows the relationship between applications,
Coredll.dll, and the CSPs.

RSABASE CSP

RSAENH CSP

OtherCSP

At a minimum, a CSP consists of a dynamic-link library (DLL) and a signature
file. The signature file ensures that the as recognizes the CSP. The as validates
this signature periodically to verify that the CSP has not been tampered with.

Each provider has both a name and a type. For example, the name of the CSP
currently shipped with Windows CE is Microsoft Base Cryptographic Provider
version 1.0, and its type is PROV _RSA_FULL. The name of each provider is
unique while the provider type is not.

Cryptographic standards are organized into groups known as families. Each
family includes a set of data formats and protocols. Even if they use the same
algorithm, two families will often use different cipher modes, key lengths, and
default modes. In CAPI, each CSP type represents a distinct family.

By default, when an application connects to a CSP of a particular type, each CAPI
function operates in a way prescribed by the family that corresponds to the CSP
type.

Chapter 9 Cryptography 219

The following table shows the items specified by an application's choice of CSP
type.

CSP type property Description

Key exchange algorithm Specifies one key exchange algorithm. Every CSP of a
particular type must implement this algorithm. The only
way applications can specify the key exchange
algorithm is by selecting a CSP of the appropriate type.

Digital signature algorithm This is the same as with the key exchange algorithm.
Each CSP type specifies one digital signature algorithm.

Key binary large object format Specifies the format of exported keys. Keys can be
exported out of a CSP into a key binary large object
format to securely transfer keys between CSPs.

Digital signature format Prescribes a particular digital signature format. This
ensures that a signature produced by a CSP can be
verified by any CSP of the same type.

Session key derivation scheme Specifies the method used to derive session keys

Key length Specifies the key length

Default modes Specifies a default mode for various options, such as the
block encryption cipher mode or the block encryption
padding method

Key Databases
Each CSP has a key database in which it stores its persistent cryptographic keys.
Each key database contains one or more key containers, each of which contains
all the key pairs belonging to a specific user. The following illustration shows the
relationship between CSPs, key databases, and key containers.

Cryptographic
service provider

!
I Key I database

+ +
Key container for Key container for

user #1 user #2

Signature key pair Signature key pair
Exchange key pair Exchange key pair

220 Windows CE Communications Guide

The CSP stores each key container from session to session, including all of the
public and private key pairs that it contains. However, session keys are not
preserved from session to session.

Generally, a default key container is created for each user. Default key containers
have a default name. An application can create its own key container and key
pairs, in which case the key container is given a name by the application.

Key BLOBs
A key binary large object (key BLOB) provides a way to store a key outside of
the CSP. A key BLOB is used as the medium for securely transferring a key from
one provider to another. A key BLOB is fairly secure because it is encrypted with
the key exchange public key of the intended recipient. To make it tamperproof, a
key is sometimes signed with the key exchange private key of the originating
user.

A key BLOB consists of a standard header followed by data that represents the
key itself. Key BLOBs exist in three forms: simple, public, and private. A simple
key BLOB, known as a SIMPLEBLOB, is a session key that has been encoded
with the public key exchange key of the destination user. Key exchange keys are
used to encode session keys so they can be safely stored and exchanged with other
users. This type of key BLOB is used when storing a session key or transmitting a
session key to another user. For more information on key exchange, see
Exchanging Cryptographic Keys.

A public key BLOB contains the public key portion of a public/private key pair.
Unlike simple key BLOBs, these are not encrypted.

A private key BLOB. contains one complete public and private key pair. These
key BLOBs are used by administrative applications to distribute and transport
public and private key pairs. For example, a private key BLOB transports key
pairs between a network administrator's computer and a user's computer, or
between a user's desktop computer and a laptop computer. These key BLOBs can
also be used by advanced applications to store key pairs themselves, rather than
relying on the CSP's storage mechanism.

For more information on the formats of these key BLOBs, see the Microsoft
Platform SDK.

Chapter 9 Cryptography 221

Microsoft RSA Base Provider
Rsabase.dll, the Microsoft RSA Base Provider included with Windows CE,
consists of a software implementation of the PROV _RSA_FULL provider type.
PROV _RSA_FULL supports both digital signatures and data encryption, and is
considered to be a general-purpose cryptographic tool. For more infonnation on
PROV _RSA_FULL, see Microsoft Cryptographic Service Provider
Programmer's Guide, Microsoft, 1995, and RSA Laboratories Public-Key
Cryptography Standards, RSA Data Security, November 1993.

Common Encryption Algorithms
The encryption algorithms available to an application depend on the CSP used.
Each of the encryption algorithms described here is supplied with the Microsoft
RSA Base Provider. .

The following table shows several encryption algorithms, along with some
perfonnance benchmarks. These figures are for comparison purposes only. Your
setup time and encryption speed may vary.

Cipher Cipher type Key setup time Encryption speed (bytes/second)
(microseconds)

DES 64-bit block 460 1.1 MB

RC2 64-bit block . 40 290KB

RC4 stream 151 2.4MB

RC2 and RC4 are variable-key-Iength ciphers. However, when using CAPI with
the Microsoft RSA Base Provider, these key lengths are hard-coded to 40 bits.

Key Length Comparison
When used, the Microsoft Enhanced Cryptographic Provider (Enhanced Provider)
provides an application with stronger security than is currently available with the
Microsoft Base Cryptographic Provider (Base Provider). This provides users with
a greater degree of protection in keeping their sensitive data secure.

222 Windows CE Communications Guide

Using CAPI

The following table shows the default key lengths supported by the Base Provider
and the Enhanced Provider for the shown algorithms.

Algorithm Base Provider Enhanced Provider

RSA Key Exchange 512-bit 1,024-bit

RSA Signature 512-bit 1,024-bit

RC2 40-bit 128-bit

RC4 40-bit 128-bit

DES Not supported 56-bit

Triple DES (2-key) Not supported 112-bit

Triple DES (3-key) Not supported 168-bit

The Enhanced Provider is backward-compatible with the Base Provider
distributed with CAPI version 1.0, with the following exception. For session keys,
both CSPs are limited to generating and deriving keys of default key length: 40-
bit for the Base Provider, and 128-bit for the Enhanced Provider, which precludes
the Enhanced Provider from creating keys with Base Provider--compatible key
lengths. However, the Enhanced Provider can import key lengths of any size, up
to 128-bits.

Warning If you use the Microsoft RSA Base Provider to create a certification
authority, your license to issue certificates is limited to certificates intended for
use in the context of your particular application or service.

Applications can use the Microsoft CAPI for the following tasks:

• Connecting to a CSP

• Generating cryptographic keys

• Exchanging cryptographic keys

• Encrypting and decrypting data

• Creating digital signatures

All data encryption using CAPI is performed with a symmetric algorithm,
regardless of which CSP is installed.

Chapter 9 Cryptography 223

Connecting to a CSP
The following table shows functions an application can use to connect to a CSP.
These functions also enable applications to choose a specific CSP by name or get
one with a needed class of functionality.

Function

CryptAcquireContext

CryptGetProvParam

CryptReleaseContext

CryptSetProvider

CryptSetProvParam

Description

Acquires a handle to the current user's key container within a
particular CSP

Retrieves properties of a CSP

Releases the handle acquired by CryptAcquireContext

Specifies the user default CSP for a particular CSP type

Specifies properties of a CSP

Each time an application is run, the first CAPI function that an application calls is
the CryptAcquireContext function. This function returns to the application a
handle to a particular CSP. In addition, this handle specifies a particular key
container within the CSP. If the CSP has just been installed and no key containers
yet exist, CryptAcquireContext can also be used to create a new one.

When an application uses CryptAcquireContext to obtain a CSP handle, it
specifies a CSP type and, optionally, a provider name. If both a type and a name
are specified, then the function looks for a CSP with precisely the same type and
name, loads it into memory, and returns a handle to the application.

When an application calls CryptAcquireContext specifying a CSP type but no
provider name, the function tries to find the provider name. It first searches a list
of default providers associated with the current user and, if that fails, it searches a
list of default CSPs associated with your device.

Once CryptAcquireContext has determined the provider name, it searches for
the CSP, loads it into memory, and returns a handle to the application.

Generating Cryptographic Keys
The following table shows the functions an application can use to generate
cryptographic keys.

Function

CryptDeriveKey

CryptGenKey

Description

Generates a key derived from a password

Generates· a random key

224 Windows CE Communications Guide

Although applications can create unlimited session keys, these keys are not
preserved by the CSP from session to session. To preserve a key, export the key
out of the CSP and import it into a key BLOB in the application's memory space.
For more information on exporting and importing a key, see Exchanging
Cryptographic Keys.

Session keys are created using either CryptGenKey or CryptDeriveKey. When a
session key is generated, you must specify the algorithm to use for subsequent
encoding and decoding operations. This algorithm must be one of the symmetric
algorithms supported by the CSP used.

Because public-key algorithms are slow, it is impractical to use them to encrypt a
large amount of data. In practice, symmetric algorithms are used for encoding and
decoding large amounts of data, while public-key algorithms are used only to
encrypt session keys.

For each user, the CSP usually maintains two public and private key pairs: the key
exchange key pair and the digital signature key pair. These keys are maintained
from session to session.

There are a number of reasons for having two separate key pairs. For example,
some CSPs use one algorithm for key exchange and another for digital signatures.
Also, if some data, such as a session key, is both signed and encrypted with the
same public key pair, subtle weaknesses can be introduced that make the data
vulnerable.

The exchange key and the signature key pairs are created by calling the
CryptGenKey function and specifying either AT _KEYEXCHANGE or
AT_SIGNATURE. The CSP implements these keys in an application-independent
manner. Applications are not permitted to know the details about the algorithm
used.

Exchanging Cryptographic Keys
This section discusses those situations when you must export keys from the secure
environment of the CSP into a key BLOB.

There are two occasions when it is necessary to export keys:

• To save a session key for later use by an application

For example, if your application has just encoded a database file and you want
your application to decode this file at a later time, your application is
responsible for storing the encryption key. This is necessary because CSPs do
not preserve symmetric keys from session to session.

Chapter 9 Cryptography 225

• To send a key to someone else

This would be much easier for your application if the respective CSPs could
communicate directly, but they cannot. This means that the key has to be
exported from your CSP, transmitted by your application to the destination
application, and then imported into the destination CSP.

The following table shows functions you can use to create, configure, and destroy
cryptographic keys, and to exchange them with other users.

Function

CryptDestroyKey

CryptExportKey

CryptGenRandom

CryptGetKeyParam

CryptGetUserKey

CryptlmportKey

CryptSetKeyParam

Description

Destroys a key

Exports a key from a CSP into a key BLOB in the application's
memory space

Generates random data, usually for salt values

Retrieves a key's parameters

Gets a handle to the key exchange or signature key

Imports a key from a key BLOB into a CSP

Specifies a key's parameters

Storing Session Keys
To exchange cryptographic keys, it is necessary to first store the session key
outside of the CSP because CSPs do not preserve session keys from session to
session.

~ To store a session key for future use

1. Create a simple key BLOB using the CryptExportKey function.

This transfers the session key from the CSP to your application's memory
space. Specify that your own key exchange public key be used to encrypt the
key BLOB.

2. Store the signed key BLOB.

3. Read the key BLOB from storage when you need to use the key.

4. Import the key BLOB into the CSP, using the CryptImportKey function.

If you plan to use the session key for encryption at a later time, the key BLOB
should be signed with your key exchange key before the key is stored. When you
later read the key BLOB, you should validate the signature to make sure that the
key BLOB is intact. If these steps are omitted, someone with access to your
storage media can create their own session key, encrypt it with your key exchange
public key, and substitute it for your key BLOB. You could then unknowingly use
their session key to encode files and messages, which the unauthorized user could
easily decode.

226 Windows CE Communications Guide

As an alternative to storing a random session key BLOB, you can use a derived
session key, which is created from a password using the CryptDeriveKey
function. In this way, instead of storing a particular derived key, an application
can create a derived key as needed by prompting the user for the password.

A stored key BLOB is dependent on the stability of the public and private key
pairs stored within the CSP. If these key pairs are lost through a hardware or
software incident, for example, you will be unable to decode your key BLOB.
Any data that has been encrypted using these keys will also be lost. For this
reason, a user should consider using a backup authority when storing long-term
archival data.

Using a Backup Authority
A backup authority is a trusted application running on a secure computer that
provides storage for the session keys of its clients. All session keys stored there
are encrypted, in the form of key BLOBs, with the backup authority'S public key.

~ To store session keys in a backup authority

1. Encrypt the file as usual.

2. Export the session key used to encrypt the file into a simple key BLOB,
specifying that your own key exchange public key be used to encrypt the key
BLOB.

3. Store this key BLOB with the encrypted file.

4. Export the session key again, this time specifying that the backup authority'S
public key be used to encrypt the key BLOB.

5. Send this key BLOB to the backup authority, along with the key's description,
serial number, and so on.

If at a later time you lose your key pairs, you can retrieve the session keys from a
backup authority, although you will first have to establish your identity with the
authority.

Exchanging Public Keys
Exchanging public keys is the first step that two users contemplating encrypted
communication need to do. Once this has been done, the users can send encrypted
and signed data to each other.

There are two ways to obtain each other's public keys:

• Each user can obtain the other's keys in the form of certificates. This is the
most secure way to exchange public keys that does not require user interaction.

Chapter 9 Cryptography 227

• Users can read their public keys to each other over the telephone, use certified
mail to send them to each other, or use another tamperproof method. Because
your public key is not secret, it does not matter if it is overheard by a third
party.

This method can also be used to validate the public key values that have been
exchanged in some other manner.

To exchange public keys, the sender exports his or her public key from the CSP
into a public key BLOB, using the CryptExportKey function.

When the receiver has received the key BLOB data from the sender, the
CryptImportKey function is used to import the key BLOB into its own CSP.

Exchanging Session Keys
To send another user an encrypted message, the sender must send the receiver the
session key that was used to perform the encryption. There are two ways of doing
this:

• The sender and receiver can mutually agree on a session key by exchanging
several messages back and forth. The users can then use this session key to
send encrypted messages back and forth. Because successfully designing one
of these protocols is difficult, consider it only if you are an experienced
cryptographer.

• The sender can send an encrypted session key along with the encrypted
message. The sender creates a random session key, encrypts it using the
receiver's public key, and sends the key BLOB to the receiver along with the
message. The receiver then decodes the session key with his or her private key
to decode the message.

~ To send an encrypted session key

1. Create a random session key, using the CryptGenKey function.

2. Encode the message, using the session key.

For more information on encoding a message using a session key, see
Encrypting and Decrypting Data.

3. Export the session key into a key BLOB with the CryptExportKey function.

Specify that the key be encoded with the destination user's key exchange
public key, which is the receiver's public key.

4. Send both the encoded message and the encoded key BLOB to the destination
user.

228 Windows CE Communications Guide

5. The receiver then imports the key BLOB into the esp, using the
CryptlmportKey function.

This automatically decodes the session key, provided that the destination
user's key exchange private key was specified in step three.

6. The receiver can then decode the message, using the session key; following the
procedure discussed in Encrypting and Decrypting Data.

The following illustration shows how to send an encoded message, using this
procedure.

Message
(plaintext)

Session
key

Receiver
public key

Encrypted
message
(cipher)

Encrypted
session key
(key BLOB)

Session
key

Receiver
private key

Original
message
(plaintext)

This approach is vulnerable in at least one way. An unauthorized user can acquire
copies of one of more encrypted messages and the encoded keys. Then, at some
later time, the eavesdropper can send one of these messages to the receiver and
the receiver has no way of knowing that the message did not come directly from
the original sender. This risk can be reduced by timestamping all messages or by
using serial numbers. Timestamping involves attaching the date and time to each
message. Using a three-phase key exchange protocol eliminates this problem
entirely. For more information on using this protocol, see the Microsoft Platform
SDK.

Encrypting and Decrypting Data
An encryption key is needed before invoking encryption and decryption
operations. This key is obtained by using the CryptGenKey CryptDeriveKey, or
CryptlmportKey functions. The encryption algorithm is specified when the key
is created. You can also specify additional encryption parameters, using the
CryptSetKeyParam function.

Chapter 9 Cryptography 229

For more information on CryptGenKey and CryptDeriveKey, see Generating
Cryptographic Keys. For more information on CryptImportKey, see Exchanging
Cryptographic Keys.

The following table shows the functions you can use to encode and decode a
message.

Function

CryptEncrypt

CryptDecrypt

Description

Encodes a section of plaintext, using the specified encryption key

Decodes a section of cipher, using the specified decryption key

To enable the user to decode the data in the future, the CryptExportKey function
is used to save the decryption key in a key BLOB that can only be decoded with
the user's private key. This function requires the user's key exchange public key
for this purpose, which can be obtained by using the CryptGetUserKey function.
CryptExportKey returns a key BLOB that must be stored by the application " for
use in decoding the file.

To encode a file so that only the current user can access its data, bulk encode the
file with a symmetric cipher. The key to this cipher is kept in the key BLOB that
can only be decoded with the user's private key. This technique also works for
encoding messages for specific recipients.

To encode a message, a session key must first be generated by using the
CryptGenKey function. Calling this function generates a random key and returns
a handle so that the key can encode and decode data. You should specify the
encryption algorithm at this point. Because CAPI does not permit applications to
use public-key algorithms to encode bulk data, call CryptGenKey to specify a
symmetric algorithm, such as RC2 or RC4, for your application.

Alternatively, if your application needs to encode the message in such a way that
anyone with a specified password can decode the data, the CryptDeriveKey
function should be used to transform the password into a key suitable for
encryption. In this case, CryptDeriveKey is called instead of CryptGenKey ,and
the subsequent CryptExportKey calls are not needed.

Once the key is generated, other cryptographic properties of the key can be set
with CryptSetKeyParam. For example, different sections of the file can be
encoded with different salt values, and the cipher mode or initialization vector can
be changed. Applications can generate salt values with the CryptGenRandom
function.

In block ciphers, you can change the method of encryption by setting the block
cipher properties with CryptSetKeyParam.

230 Windows CE Communications Guide

The following table shows the ciper modes.

Cipbermode

Electronic codebook (ECB)

Cipher block chaining (CBC)

Cipher feedback mode (CFB)

Output feedback mode (OFB)

Description

Encodes blocks individually. No feedback is used.

Encodes blocks, using feedback to ensure uniqueness

Encodes small increments of plaintext at a time, not
entire blocks

Encodes similarly to CFB, but uses a different method
for filling shift registers

Electronic codebook (ECB): In this cipher mode, each block is encoded
individually and no feedback is used. This means that identical blocks of plaintext
encoded with the same key are transformed into identical cipher blocks. If a single
bit of the cipher block is garbled, then the entire corresponding plaintext block is
also garbled.

Cipher block chaining (CBC): Each plaintext block in this cipher mode is
encoded, based on the cipher of the previous block. CBC ensures that even if the
plaintext contains many identical blocks, each encodes to a different cipher block.
Similarly to EBC, if a single bit of the cipher block is garbled, the corresponding
plaintext block is also garbled. Moreover, a bit in the subsequent plaintext block
in the same position as the original garbled bit, is garbled. If there are extra or
missing bytes in the cipher, the plaintext is garbled from that point on.

Cipher feedback mode (CFB): In this cipher mode, small increments of plaintext
can be processed into cipher, instead of processing entire blocks at a time. CFB is
useful in some situations. For example, data originating from a keyboard can be
encoded at each keystroke without waiting for an entire block to be typed.

This mode uses a shift register that is one block size in length and divided up into
sections. For example, if the block size is 64 bits with 8 bits processed at a time,
the shift register is divided into eight sections.

CFB follows this process for each encryption cycle:

1. The shift register is filled with the initialization vector.

2. The block in the shift register is encoded.

3. The leftmost 8 bits in the encoded shift register are matched with the next 8
bits of plaintext and sent off as 8 bits of cipher.

4. The shift register shifts 8 bits to the left.

5. The 8 bits of cipher generated in step 2 are placed in the rightmost 8 bits of the
shift register.

Chapter 9 Cryptography 231

In CAPI, the number of bits processed at a time is specified by setting the
encryption key's KP _MODE_BITS parameter using the CryptSetKeyParam
function. The default value for this parameter is typically 8 bits.

If 1 bit in the cipher is garbled, 1 bit in the plaintext is garbled, and the shift
register is corrupted. This corruption results in the corrupting of subsequent
plaintext blocks until the bad bit is shifted out of the shift register.

Output feedback mode (OFB): This cipher mode is identical to CFB, except the
shift register is filled differently. If 1 bit in the cipher is garbled, the
corresponding bit of plaintext is also garbled. If there are extra or missing bits
from the cipher, the plaintext is garbled from that point on.

If the application does not explicitly specify one of these modes, thenCBC is used.

Encode the data in the file with the CryptEncrypt function, which takes the
previously generated session key and encodes a buffer of data. As the data is
encoded, it may be slightly expanded by the encryption algorithm. The application
is responsible for remembering the length of the encoded data so the proper length
can later be given to the CryptDecrypt function.

If your application has certificates or public keys for other users, it can permit
other users to decode the file by performing CryptExportKey calls for each user
to whom it wants to give access. The returned key BLOBs must be stored by the
application, as in the previous paragraph.

Once a file or message has been encoded, the following data must be stored by the
application:

• Encoded data

• One or more key BLOBs, each containing the session key used to encode the
message

• Any salt values specified as the data was encoded

• Any initialization vectors specified as the data was encoded

All parameters that were specified with the CryptSetKeyParam function as the
message was being encoded must also be specified as the message is decoded. It
may be appropriate to store some of these parameters with the encoded message,
as well.

232 Windows CE Communications Guide

The following code example reads data from a text file named Test2.txt, encodes
it using the RC2 block cipher, and writes out the encoded data to a file named
Test.xxx. A random session key is generated to perform the encryption and is
stored to the output file along with the encoded data. This session key is encoded
with the user's key exchange public key by the CryptExportKey function.

Ilinclude <windows.h>
#include <stdio.h>
Iii ncl ude <wincrypt.h>

#define BLOCK_SIZE 1000
#define BUFFER_SIZE 1008

BaaL EncryptFile (LPTSTR, LPTSTR, LPTSTR);

1***

WinMain

***1
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPTSTR lpCmdLine, int nCmdShow)
{

}

LPTSTR 1 pszSource = TEXT("test2. txt");
LPTSTR 1 ps zDest i nat ion = TEXT ("test. xxx") ;
LPTSTR 1 pszPassword = TEXT("password");

if (!EncryptFile (lpszSource, lpszDestination, lpszPassword»
{

}

wpri ntf (TEXT("Error encrypti ng fil e! \n"»;
return 1;

return 0;

1***

EncryptFi 1 e

***1
BaaL EncryptFile (LPTSTR lpszSource, LPTSTR lpszDestination,

LPTSTR lpszPassword)

FILE *hSrcFile = NULL,
*hDestFile = NULL;

HCRYPTPROV hProv = 0;
HCRYPTHASH hHash = 0;
HCRYPTKEY hKey = 0,

hXchgKey = 0;

PBYTE pbBuffer = NULL,
pbKeyBlob = NULL;

BOOL bEOF = 0,
bReturn = FALSE;

DWORD dwCount,
dwKeyBlobLen;

II Open the source file.

Chapter 9 Cryptography 233

if «hSrcFile = _wfopen (lpszSource, TEXT("rb"») == NULl)
{

wprintf (TEXT("Error opening Plaintext file!\n"»;
goto exit;

II Open the destination file.
if «hDestFile = _wfopen (lpszDestination, TEXT("wb"») NULl)
{

}

wpri ntf (TEXT("Error openi ng Ci phertext fi 1 e! \n"»;
goto exit;

II Get the handle to the default provider.
if (!CryptAcquireContext (&hProv, NULL, NULL, PROV_RSA_FULL, 0»
{

wpri ntf (TEXT("Error %x duri ng CryptAcqui reContext! \n") ,
GetLastError (»;

goto exit;

if (lpszPassword == NULL)
{

II Encrypt the file with a random session key.

II Create a random session key.
if (!CryptGenKey (hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey»
{

}

wpri ntf (TEXT("Error %x duri ng CryptGenKey! \n"),
GetLastError (»;

goto exit;

234 Windows CE Communications Guide

II Get the handle to the key exchange public key.
if (!CryptGetUserKey (hProv, AT_KEYEXCHANGE, &hXchgKey»
{

wprintf (TEXn"Error %x during CryptGetUserKey!\n"),
GetLastError (»;

goto exit;

II Determine the size of the key BLOB and allocate memory.
if (!CryptExportKey (hKey, hXchgKey, SIMPLEBLOB, 0, NULL,

&dwKeyBl obLen»

wprintf (TEXn"Error %x computing blob length!\n"),
GetLastError (»;

goto exit;

if «pbKeyBlob = malloc (dwKeyBlobLen»
{

wprintf (TEXn"Out of memory!\n"»;
goto exit;

NULL)

II Export the session key into a simple key BLOB.
if (!CryptExportKey (hKey, hXchgKey, SIMPLEBLOB, 0, pbKeyBlob,

&dwKeyBlobLen»

wprintf (TEXn"Error %x during CryptExportKey!\n"),
GetLastError (»;

goto exit;

II Write the size of key BLOB to the destination file.
fwrite (&dwKeyBlobLen, sizeof (DWORD), 1, hDestFile);

if (ferror (hDestFile»
{

wprintf (TEXn"Error writing header!\n"»;
goto exit;

II Write the key BLOB to the destination file.
fwrite (pbKeyBlob, 1, dwKeyBlobLen, hDestFile);

if (ferror (hDestFile»
{

Chapter 9 Cryptography 235

wprintf (TEXT("Error writing header!\n"»;
goto exit;

else
{

}

II Encrypt the file with a session key derived from a password.

II Create a hash object.
if (!CryptCreateHash (hProv. CALG_MD5. 0, 0, &hHash»
{

wpri ntf (TEXT("Error %x duri ng CryptCreateHash! \n"),
GetLastError (»;

goto exit;

II Hash in the password data.
if (!CryptHashData (hHash, (PBYTE)lpszPassword,

wcslen (lpszPassword), 0»

wpri ntf (TEXT("Error %x duri ng CryptHashData! \n"),
GetLastError (»;

goto exit;

II Derive a session key from the hash object.
if (!CryptDeriveKey (hProv, CALG_RC2, hHash, 0, &hKey»
{

wprintf (TEXT("Error %x during CryptDeriveKey!\n"),
GetLastError (»;

goto exit;

II Allocate memory.
if «pbBuffer = malloc (BUFFER_SIZE»
{

wprintf (TEXT("Out of memory!\n"»;
goto exit;

NULL)

II Encrypt the source file and write to the destination file.
do
{

II Read up to BLOCK_SIZE bytes from the source file.
dwCount = fread (pbBuffer, I, BLOCK_SIZE, hSrcFile);

236 Windows CE Communications Guide

if (ferror (hSrcFile))
{

wprintf (TEXT("Error reading Plaintext!\n"));
goto exit;

bEOF = feof (hSrcFile);

II Encrypt the data.
if (!CryptEncrypt (hKey. 0. bEOF. 0. pbBuffer. &dwCount.

BUFFER_SIZE))

wprintf (TEXT("bytes required:%d\n"). dwCount);
wpri ntf (TEXT("Error %x duri ng CryptEncrypt! \n").

GetLastError ());
goto exit;

II Write the data to the destination file.
fwrite (pbBuffer. 1. dwCount. hDestFile);

if (ferror (hDestFile))
{

wprintf (TEXT("Error writing Ciphertext!\n"));
goto exit;

while (!bEOF);

bReturn = TRUE;

wpri ntf (TEXT("OK\n"));

exit:

II Close the files.
if (hSrcFile)

fclose (hSrcFile);

if (hDestFi 1 e)
fclose (hDestFile);

II Free memory.
if (pbKeyBlob)

free (pbKeyBlob);

if (pbBuffer)
free (pbBuffer);

II Destroy the session key.
if (hKey)

CryptDestroyKey (hKey);

II Release the key exchange key handle.
if (hXchgKey)

CryptDestroyKey (hXchgKey);

II Destroy the hash object.
if (hHash)

CryptDestroyHash (hHash);

II Release the provider handle.
if (hProv)

CryptReleaseContext (hProv, 0);

return bReturn;

Chapter 9 Cryptography 237

If a message was encoded for a particular user, the CryptGenKey function was
used to create a random session key before the encryption was performed. Before
decoding the message, the key BLOB containing the session key must be
imported into the CSP with the CryptlmportKey function. This function uses the
user's key exchange private key to decode the key BLOB and ensure that the
originating key BLOB was created using the matching key exchange public key.

If the message was encoded so that any password holder can access the data,
CryptlmportKey is not used. Instead, create the decryption session key with the
CryptDeriveKey function. You also need to supply the function with the
password or other access token.

The session key's parameters must be configured in the same way as when the
encryption was performed. These parameters can be specified using the
CryptSetKeyParam function. For example, if the salt value was changed one or
more times during the encryption process, it must also be changed during the
decryption process in exactly the same manner.

The message is decoded using the CryptDecrypt function. If the message is too
large to fit comfortably in memory, it can be decoded in sections, through
multiple calls to CryptDecrypt.

When the decryption is complete, be sure to destroy the session key, using the
CryptDestroyKey function. In addition to destroying the key, this frees CSP
resources.

238 Windows CE Communications Guide

The following code example decodes the file created by the previous example of
encryption. This decryption example uses the RC2 block cipher and writes out the
plaintext data to a file named Test2.txt. The session key used to perform the
decryption is read from the cipher file.

#include <windows.h>
//i ncl ude <stdio.h>
#include <wincrypt.h>

#define BLOCK_SIZE 1000
#define BUFFER_SIZE 1008

BOOL DecryptFile (LPTSTR. LPTSTR. LPTSTR);

/***

WinMain

***/
int WINAPI WinMain (HINSTANCE hInstance. HINSTANCE hPrevInstance.

LPTSTR lpCmdLine. int nCmdShow)

LPTSTR 1 pszSource = TEXT("test. xxx") ;
LPTSTR lpszDestination = TEXT("test2.txt");
LPTSTR 1 pszPassword = TEXT("password");

if (!DecryptFile (lpszSource. lpszDestination. lpszPassword»
{

wpri ntf (TEXT(" Error encrypting fi 1 e! \n"» ;
return 1;

return 0;

/***

DecryptFile

***/
BOOL DecryptFile (LPTSTR lpszSource. LPTSTR lpszDestination.

{
LPTSTR lpszPassword)

FILE *hSrcFile = NULL.
*hDestFile = NULL;

HCRYPTPROV hProv = 0;
HCRYPTHASH hHash = 0;
HCRYPTKEY hKey = 0;

PBYTE pbBuffer = NULL.
pbKeyBlob = NULL;

BOOL bEOF = 0.
bReturn = FALSE;

DWORD dwCount.
dwKeyBl obLen;

II Open the source file.

Chapter 9 Cryptography 239

if «hSrcFile = _wfopen (lpszSource. TEXT("rb"))) == NULl)
{

wprintf (TEXT("Error opening Ciphertext file!\n"));
goto exit;

II Open the destination file.
if «hDestFile = _wfopen (lpszDestination. TEXT("wb"))) NULl)
{

wprintf (TEXT("Error opening Plaintext file!\n"));
goto exit;

II Get the handle to the default provider.
if (!CryptAcquireContext (&hProv. NULL. NULL, PROV_RSA_FULL. 0))
{

wpri ntf (TEXT("Error %x du ri ng CryptAcqui reContext! \n").
GetLastError ());

goto exit;

if (lpszPassword == NULL)
{

II Decrypt the file with the saved session key.

II Read key BLOB length from the source file and allocate memory.
fread (&dwKeyBlobLen. sizeof (DWORD), 1, hSrcFile);

if (ferror (hSrcFile) I I feof (hSrcFile))
{

wpri ntf (TEXT("Error readi ng fi 1 e header! \n"));
goto exit;

240 Windows CE Communications Guide

if «pbKeyBlob = (PBYTE)malloc (dwKeyBlobLen» == NULL)
{

wpri nt f (TEXT("Out of memory or improperly formatted source")
TEXT("file!\n"»;

goto exit;

II Read the key BLOB from source file.
fread (pbKeyBlob, I, dwKeyBlobLen, hSrcFile);

if (ferror (hSrcFile) I I feof (hSrcFile»
{

wpri ntf (TEXT("Error readi ng fil e header! \n"»;
goto exit;

II Import the key BLOB into the CSP.
if (!CryptImportKey (hProv, pbKeyBlob, dwKeyBlobLen, 0, 0, &hKey»
{

else
{

wpri nt f (TEXT("Er ror %x du ri ng Crypt ImportKey ! \ n") ,
GetLastError (»;

goto exit;

II Decrypt the file with a session key derived from a password.

II Create a hash object.
if (!CryptCreateHash (hProv, CALG_MD5, 0, 0, &hHash»
{

}

wprintf (TEXT("Error %x during CryptCreateHash!\n"),
GetLastError (»;

goto exit;

II Hash in the password data.
if (!CryptHashData (hHash, (PBYTE)lpszPassword,

wcslen (lpszPassword), 0»

wprintf (TEXT("Error %x during CryptHashData!\n"),
GetLastError (»;

goto exit;

Chapter 9 Cryptography 241

II Derive a session key from the hash object.
if (!CryptDeriveKey (hProv, CALG_RC2, hHash, 0, &hKey»
{

wprintf (TEXT("Error %x during CryptDeriveKey!\n").
GetLastError (»;

goto exit;

II Allocate memory.
if «pbBuffer = (PBYTE)malloc (BUFFER_SIZE» == NULL)
{

wprintf (TEXT("Out of memory!\n"»;
goto exit;

II Decrypt the source file and write to the destination file.
do
{

II Read up to BLOCK_SIZE bytes from the source file.
dwCount = fread (pbBuffer, 1, BLOCK_SIZE, hSrcFile);

if (ferror (hSrcFile»
{

wpri ntf (TEXT("Error readi ng Ci phertext! \n"»;
goto exit;

bEOF = feof (hSrcFile);

II Decrypt the data.
if (!CryptDecrypt (hKey, 0, bEOF, 0, pbBuffer, &dwCount»
{

wpri ntf (TEXT("Error %x duri ng CryptDecrypt! \n") ,
GetLastError (»;

goto exit;

II Write the data to the destination file.
fwrite (pbBuffer, 1, dwCount, hDestFile);

if (ferror (hDestFile»
{

wprintf (TEXT("Error writing Plaintext!\n"»;
goto exit;

while (!bEOF);

242 Windows CE Communications Guide

bReturn = TRUE;

wpri ntf (TEXT("OK\n"»;

exit:

II Close the source files.
if (hSrcFile)

fclose (hSrcFile);

II Close the destination files.
if (hDestFile)

fclose (hDestFile);

II Free memory.
if (pbKeyBlob)

free (pbKeyBlob);

II Free memory.
if (pbBuffer)

free (pbBuffer);

II Destroy the session key.
if (hKey)

CryptDestroyKey (hKey);

II Destroy the hash object.
if (hHash)

CryptDestroyHash (hHash);

II Release the provider handle.
if (hProv)

CryptReleaseContext (hProv, 0);

return bReturn;

Encrypting and Decrypting Simultaneously
When encrypting or decrypting data simultaneously with the same key, the same
physical session key must not be used for both operations. This is because every
session key contains internal state data that becomes jumbled if it is used for more
than one operation at a time. A simple solution to this problem is to make a copy
of the session key so that the original key can be used for one operation and the
copy used for the other.

Chapter 9 Cryptography 243

Copying a session key is done by exporting the key with CryptExportKey and
then using CryptlmportKey to import it back in. When the key is imported, the
CSP gives the imported key its own section of internal memory, as if it were not
related to the original key.

The following code example shows how a copy of a session key can be obtained.

HCRYPTPROV hProv;
HCRYPTKEY hKey;
HCRYPTKEY hCopyKey = 0.

hPubKey = 0;

BYTE pbBlob[256];
DWORD dwBlobLen;

II Handle to a CSP
II Handle to a session key

II Get a handle to your own key exchange public key.
CryptGetUserKey (hProv. AT_KEYEXCHANGE. &hPubKey);

II Export the session key into a key BLOB.
dwBlobLen = 256;
CryptExportKey (hKey. hPubKey. SIMPLEBLOB. 0. pbBlob. &dwBlobLen);

II Import the session key back into the CSP. This is stored separately
II from the original session key.
CryptImportKey (hProv. pbBlob. dwBlobLen. 0. 0. &hCopyKey);

This technique should not be used with stream ciphers because stream cipher keys
should never be used more than once. Instead, use separate keys to transmit and
receive data.

244 Windows CE Communications Guide

Creating Digital Signatures
The following table shows the functions applications can use to compute secure
digests of data and to create and verify digital signatures.

Function

CryptCreateHash

CryptDestroyHash

CryptGetHashParam

CryptHashData

CryptHashSessionKey

CryptSetHashParam

CryptSignHash

CryptVerifySignature

Description

Creates an empty hash object

Destroys a hash object

Retrieves a hash object parameter

Hashes a block of data, adding it to the specified hash
object

Hashes a session key, adding it to the specified hash object

Sets a hash object parameter

Signs the specified hash object

Verifies a digital signature, given a handle to the hash
object that was signed

To create a digital signature from a message, create a hash value, also known as a
message digest, from the message. Then, use the signer's private key to sign the
hash value. The following illustration shows the process for creating a digital
signature.

Message

Hash value

Private key

Message Digital signature

To verify a digital signature, both the message andthe signature are required.
First, a hash value must be created from the message in the same way as it was
done when the signature was created. This hash value is then verified against the
signature, using the public key of the signer. If the hash value and the signature
match, you can be confident that the message is the one originally signed and that
it has not been tampered with.

Chapter 9 Cryptography 245

The following illustration shows the process of verifying a digital signature.

Message Digital signature

Hash value

Private key

Message Validation signature

A hash value consists of a small amount of binary data, typically 160 bits. It is
produced using a hashing algorithm.

All hash values share the following properties, regardless of the algorithm used:

• A hash value is of a fixed length, regardless of the size of the message.

• Every pair of nonidentical messages translates into a different hash value, even
if the two messages differ only by a single bit. Using today's technology, it is
not feasible to discover a pair of messages that translate to the same hash value
without breaking the hashing algorithm.

• All hashing algorithms are fully deterministic. That is, each time a particular
message is hashed using the same algorithm, the same hash value is produced.

• All hashing algorithms are one-way. Given a hash value, it is not possible to
recover the original message. In fact, none of the properties of the original
message can be determined with the hash value alone.

Signing and Verifying Messages
To sign data, a hash object must first be created using the CryptCreateHash
function. This object accumulates the data to be signed. Next, the data is added to
the hash object with the CryptHashData function.

After the last block of data is added to the hash, the CryptSignHash function is
used to sign the hash. A description of the data can also be added to the hash
object at this point. Once the digital signature data has been obtained, the hash
object should be destroyed by using the CryptDestroyHash function.

246 Windows CE Communications Guide

Hashes can be signed with either the signature private key or the key exchange
private key. The signature key should be used when the user who owns the
signature key is signing some of his or her data. The key exchange key should be
used when signing data that does not directly belong to the user. The classic
example of this is when the exchange key is used to sign session keys during a
key exchange protocol.

To verify a signature, applications must first create a hash object, using
CryptCreateHash. This object accumulates the data to be verified. The data is
then added to the hash object with CryptHashData.

After the last block of data is added to the hash, the Crypt VerifySignature
function is used to verify the signature. The signature data, a handle to the hash
object, and the description string must all be supplied to CryptVerifySignature.
A handle to the key pair that was used to sign the data must also be specified.

Once the signature has been verified, or has failed the verification, the hash object
should be destroyed by using CryptDestroyHash.

To obtain the hash value, a hash object must first be created using
CryptCreateHash. This object accumulates the data to be verified. The data is
then added to the hash object with CryptHashData.

After the last block of data is added to the hash, the CryptGetHashParam
function is used to obtain the hash value.

Once the hash value has been obtained, the hash object should be destroyed with
CryptDestroyHash.

Because CAPI handles the actual method of doing the signature, applications do
not need to be aware of how the signature is applied.

Hashing and Digital Signature Algorithms
This section lists several algorithms used to compute hashes and digital
signatures. Each of these algorithms is supported by the Microsoft RSA Base
Provider.

The MD2, MD4, and MD5 hashing algorithms were all developed by RSA Data
Security, Inc. These algorithms were developed in sequential orde~. The later
algorithms are generally more secure than the earlier ones. All three algorithms
generate 128-bit hash values.

Chapter 9 Cryptography 247

The secure hashing algorithm (SHA) was developed by the National Institute of
Standards and Technology (NIST) and by the National Security Agency (NSA).
This algorithm was developed for use with Digital Signature Algorithm (DSA) or
Digital Signature Standard (DSS). This algorithm generates a 160-bit hash value.

Message Authentication Codes are similar to hash values, but are computed using
a session key. Because of this, you must possess the session key to recompute the
hash value to verify that the base data has not changed.

The Message Authentication Codes implemented by the Microsoft RSA Base
Provider are of the most common sort. That is, they are block cipher Message
Authentication Codes. This method encodes the base data with a block cipher and
then uses the last encoded block as the hash value. The encryption algorithm used
to build the Message Authentication Code is the one that was specified when the
session key was created.

Warning The same session key should not be used for both message encryption
and Message Authentication Codes generation. Doing so greatly increases the risk
of your messages being decoded.

Administrating CAPI
This section discusses how multiple CSPs can be installed on a computer and the
default providers specified. The structure of the registry is also mentioned.

New providers are installed by running their setup applications. This copies the
CSP files to the appropriate directories and makes all needed changes to the
registry.

Overview of the CAPI Registry
CAPI uses the registry to store a database of the CSPs that have been installed on
the Windows CE-based device. Both the Windows CE-based device default
providers and the user-installed providers are recorded here.

Warning This section is included for informational purposes only. Details of the
CAPI registry use may change at any time. Under no circumstances should an
application read from or alter the registry directly.

248 Windows CE Communications Guide

Entries under the HKEY_LOCAL_MACHINE\ ... \Provider key contain data
about all of the esps that have been installed on the computer. These entries are
created by the setup application used to install a new esp. These entries are
organized under subkeys whose names indicate the provider name. For example:

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Defaults\Provider\Microsoft
Base Cryptographic Provider v1.0]

Image Path = REG_SZ:rsabase.dll
Signature = REG_BINARY:digita7 signature
Type = REG_DWORD:0x1

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Defaults\Provider\XYZ Provider]
Image Path = REG_SZ:johncsp.dll
Signature = REG_BINARY:digita7 signature
Type = REG_DWORD:0x2a

Entries under the HKEY _LOCAL_MACHINE\ ... \Provider Types key contain
the name of the machine default esp for each provider type. These entries are
also created by the setup application used to install a new esp. These entries are
organized under subkeys whose names, appearing in decimal format, indicate the
provider type. For example: .

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Defaults\Provider Types\Type
001]

Name = REG_SZ:Microsoft Base Cryptographic Provider v1.0

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Defaults\Provider Types\Type
042]

Name = REG_SZ:XYZ Provider

Entries under the HKEY_CURRENT_USER\ ... \Providers key contain the name
of the current user default esp for each provider type. These entries are created or
modified by the CryptSetProvider function. These entries are organized under
subkeys whose names indicate the provider type. For example:

[HKEY_CURRENT_USER\Comm\Security\Crypto\Providers\Type 001]
Name = REG_SZ:Microsoft Base Cryptographic Provider v1.0

Writing a CSP
Once you have decided which cryptographic algorithms and data formats are to be
included in your esp and obtained implementations for each of them, putting
together a esp is comparatively straightforward.

Chapter 9 Cryptography 249

~ To create a CSP

1. Create a DLL that exports all of the CSPI functions.

If your CSP has hardware components, this might also involve writing a smart
card device driver and/or the embedded code that runs on the card.

2. Write a setup program for the CSP that creates the appropriate registry entries.

3. Test the CSP. This can only be done using the CSP Developer's Kit and the
Microsoft Windows CE Platform Builder. Testing the CSP involves the
following substeps:

1. Sign the CSP with the Sign.exe utility, producing a debug signature file.

2. Install the CSP, using the setup program mentioned in previously.

3. Run test code that makes calls to the CSP by way of CAP!.

4. Have the CSP signed by Microsoft. This enables the CSP to be used with the
released versions of Windows CE and Windows-based desktop platforms. This
procedure is described in Getting CSPs Signed.

5. Test the CSP again. This is the same as step 3, except that the original
signature and the release version of Windows CE are used.

Writing a CSP Setup Application
At a minimum, a CSP Setup application must copy the CSP DLL to the
\ Windows\ directory and create the appropriate registry entries.

Registering the CSP
The following registry entries register the CSP with the as.
[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Defaults\Prov ider\CSP name]

Image Path = REG_SZ: CSP DLL name
Signature = REG_BINARY: digital signature
Type = REG_DWORD: CSP Type

The CSP name entry must be the textual name of the CSP. If the CSP has been
signed by Microsoft, this name must exactly match the CSP name that was
specified in the Export Compliance Certificate (ECC).

The Image Path entry must be set to the name of the CSP DLL. A fully qualified
path, such as "\windows\rsabase.dll" can also be specified here.

The Signature entry must contain a digital signature for the CSP DLL. This
signature can either be created with the Sign.exe utility, the debug signature, or
obtained from Microsoft.

250 Windows CE Communications Guide

Setting the Machine Default CSP
One machine default CSP can be specified for each CSP type. This entry is used
when an application calls the CryptAcquireContext function with only a CSP
type specified, and no user default CSP registry entry exists.

The typical CSP Setup application installs its CSP as the machine default. The
following registry entry sets the machine default CSP.

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Oefaults\ Provider Types\Type
CSP type]

Name = REG_SZ:CSP name

The CSP type portion of the key name must be in decimal format, and exactly
three digits in length. For example, if the CSP is of type 25, the key name would
be Type 025.

The Name entry must be set to the textual name of the CSP. This must exactly
match the CSP name registry key discussed in the previous section.

Setting the User Default CSP
One user default CSP can be specified for each CSP type. This entry is used when
an application calls the CryptAcquireContext function with only a CSP type
specified.

The user defaults are stored in the registry's HKEY_CURRENT_USER key.

The user default CSP is to be set by way of the CryptSetProvider function,
which internally sets the following registry entry:

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto\Oefaults\Providers\Type CSP
type]

Name = REG_SZ:CSP name

The CSP type portion of the key name must be in decimal format and exactly
three digits in length.

The Name entry must be set to the textual name of the CSP. This must exactly
match the CSP name registry key discussed earlier.

Chapter 9 Cryptography 251

Testing the CSP
Your CSP DLL must be signed each time that it is built, and the signature placed
appropriately in the registry. It is a good idea to incorporate this procedure into
your Make file, so that steps are not forgotten.

The Sign.exe utility is used to sign CSP DLLs. Given a DLL file, it produces a
signature file, whose contents can be placed into the registry as discussed in the
previous section. Sign.exe takes three arguments, as shown:

sign {slv} <filename> <signature file>

The first argument must be "s" if a signature file is to be generated, and "v" if an
existing signature file is to be verified against the DLL file. The second argument
must be the fully qualified file name of the DLL file, and the third argument the
fully qualified file name of the signature file. '

If the CSP DLL file is called Myxcsp.dll, the following command can be used to
generate a signature file for it (called Myxcsp.sig).

sign s myxcsp.dll myxcsp.sig

Getting CSPs Signed
Every CSP must be digitally signed by Microsoft to be recognized by the
operating system. The primary purpose of the digital signature is the protection of
the system and its users; the operating system validates this signature periodically
to ensure that the CSP has not been tampered with. A secondary effect of the
digital signature is that it separates applicable export controls on the CSP from the
host operating system and applications, thus allowing broader distribution of
encryption-enabled products than would be possible under other circumstances.

Generally, U.S. export law limits the export outside the United States or Canada
of products that host strong encryption or an open cryptographic interface. The
digital signature requirement effectively prevents arbitrary use of CAPI and
enables export of the host operating system and CAPI-enabled applications. By
removing encryption services from host systems and applications, CAPI places
the burden of U.S. encryption export restrictions on the CSP vendor, who is
subject to those controls regardless.

Questions and comments about the CSP signing mechanism, signing procedures
and CAPI licensing policy can be directed to cspsign@microsoft.com.

CSP vendors may wish to consult the U.S. Commerce Department, Bureau of
Export Administration, Office of Exporter Services for assistance in the
classification and/or export licensing of CSPs for export from the United States.

253

CHAPTER 10

Wireless Services

Wireless Services for Windows CE provides support for receiving e-mail
messages, pager messages, and other radio services on a Windows CE-based
device. It enables you to create DLLs to customize the application and provides
utility programs for testing custom DLLs.

Wireless Services enables multiple service inputs to a Windows CE-based device,
using radio hardware, typically a PC Card radio device. The radio hardware may
be limited to receiving signals or transmitting a simple acknowledgement, or it
may be a fully bidirectional device.

254 Windows CE Communications Guide

Processing Messages
Messages are passed among different hardware and software areas. The following
illustration shows paths a message can take.

Handler

Handler

Handler

Radiotest.exe

PageNotify

PMaii
inbox

MSDefault
handler

Parser

ITranslate

• » , w Device driver

Parser

Parser

Parser

Radio hardware is the first component of a Windows CE-based device to interact
with a message. After the radio hardware receives a message, the message is sent
through several as levels before it reaches an application in the following way:

1. The radio hardware receives a message.

The hardware receives all messages on monitored frequencies, whether
intended for the device or not.

2. The hardware verifies that the message is for the device by reading the
message address.

If the message is not intended for the device, the message is discarded.

Chapter 10 Wireless Services 255

3. The hardware passes the message to the device driver.

The hardware turns on the Windows CE-based device, if necessary.

4. The device driver sends the message to the router.

5. The router communicates with the device and reads the message address to
determine which handler to invoke.

6. The router loads the handler and passes it the message.

7. The handler processes the message.

The message can be processed by the default handler, or by a custom handler.
You can write a handler to perform decryption, store the message data in a
database, or update a calendar based on the message content.

By default, messages pass through the MSDefault message handler to PMail, a
Windows CE-based mail application that synchronizes to Microsoft® Outlook®
97, a desktop information manager.

Message Handlers
Messages are routed to the MSDefault message handler. A message handler is a
COM object that implements the ITranslate interface in an in-process COM
object. When a message is received, the router looks in the registry to determine
which handler to invoke. If no registry entry is found, the default handler,
MSDefault, is invoked.

MSDefault Message Handler
The primary purpose of MSDefault is to convert paging messages into an e-mail
format that can be stored in the PMail message store. Pager messages typically
consist of alphanumeric text, but a wireless service provider may use a proprietary
format to include additional header information. MSDefault performs the
following actions:

1. MSDefault attempts to parse and reformat the message into a format
understood by the Windows CE Messaging API (MAPI), and then passes the
message to the PMail message store.

2. If appropriate, MSDefault executes the PageNotify application, Pagenotif.exe.
This application notifies the user when a pager message is received on the
pager radio address by chiming or displaying a dialog box.

3. MSDefault can be set to limit the number of messages stored in a PMail
folder. For example old stock quotations can be discarded as new quotations
are received.

256 Windows CE Communications Guide

Each wireless service provider defines its own message format. MSDefauIt
converts these different formats into a standard MAPI format by using parser
routines stored in a DLL. These routines must be supplied by the wireless service
provider.

The parser routine that MSDefauIt calls to reformat a message is chosen based
upon the device and the address on which the message was received. The process
of identifying a parser is hierarchical:

1. MSDefauIt looks for a parser for the device and address.

2. It looks for a parser for the device only.

3. If no parser is found, it looks for a user-defined parser or uses its default
parser.

All messages received on a specified device and address must be able to be parsed
by the parser found by this process. For more information on parsers, see
Registering a Parser.

The default parser sets the From header field to the string "PAGER", sets the
Type header field to "PAGE", and sets the Subject field to the first 80 characters
of the body.

When MSDefauIt receives a message from the router, it searches the registry to
find the parser DLL associated with the device and message address. It then loads
the DLL, which must contain the ParseEmailHeaders function.

Internationalization and Unicode Support
All driver-generated fields in the message header are in Unicode. Strings that the
driver receives, however, are passed in the same format as received. If you have
set the appropriate registry keys, the message body is converted to Unicode by
MSDefauIt using carrier-supplied DLLs. The key is
HKEY _LOCAL_MACHINE\Software\Microsoft\ WIS\Control and its values
are CONVTRDLL and CONVTRP ARAM. You may set CONVTRDLL to the
name of a DLL that performs the conversion, or to the string "BUILTIN". If you
use "BUILTIN", the default Unicode conversion routine in MSDefault is used.
You may set CONVTRPARAM to A2U to convert from ASCII to Unicode, or to
U2U to indicate that no conversion is required.

You can set the subkeys so that conversions are done differently on certain
devices or addresses. For example, by setting the key
HKEY _LOCAL_MACHINE\Software\Microsoft\ WIS\Control\Devicel, you
can specify which DLL and conversion is used on messages arriving on Device 1.

Chapter 10 Wireless Services 257

The following registry key example shows how to convert incoming messages on
Addrl of Device 1 from ASCII to Unicode, using the built-in conversion routine.

HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control\Device1\Addr1
"ConvtrDll"="BuiltIn";
"ConvtrParam"="A2U";

. The Radiotest test utility, Radiotest.exe, also supports Unicode messages. For
more information, see Sending Test Messages with Radiotest.

Writing a Parser Routine
When you write a parser routine for MSDefauit, use standard MAPI function
calls to set the necessary e-mail message headers. At a minimum, set the Subject,
Type, and From fields. You must include the Wis.h header file to obtain the
interface definition and link to Wisuuid.lib to obtain the necessary universally
unique identifier (UUID). The following code example shows the default parser
that MSDefault uses when no parser is defined for a device or address.

#include <wis.h>
#include <msgstore.h>

LPWSTR ParseEmailHeaders (MailMsg *pMsg, LPCWSTR pText)
{

TCHAR
TCHAR

80 II Maximum number of characters in
II the From field in PMail

80 II Maximum number of characters in
II the Subject field in PMail

szFromText[MAX_FROM_TEXT_LEN + 1];
szSubjectText[MAX_SUBJECT_TEXT_LEN + 1];

DWORD ii, iNurn, iIndece;

ULONG
LPWSTR
ULONG
MAILHDRS

MAILHDRS

ulcch;
pwszKeyWord;
ulKeyWordsFound;
mhEMail[] = {{L"Fr:", 3, -I},

{L" I Re: ", 4, -I},
{L"IMsg:", 5, -l},

{NULL, 0, -l}};

mhWebMail[] {{L"Msg:", 4, 0}'
{NULL, 0, 0}};

II Search for e-mail signatures.
II The three are Fr:, Re:, and Msg:.
iNurn = 0;
ulKeyWordsFound = 0;
while (TRUE)
{

258 Windows CE Communications Guide

}

pwszKeyWord = mhEMail[iNum].pwszHeader;
ulcch - mhEMail[iNum].cchwszHeader;
DEBUGCHK(pMsg-)dwMsgLen)= ulcch);
for (ii = 0; ii < pMsg-)dwMsgLen - ulcch; ii++)
{

if (!memcmp (pwszKeyWord, (LPWSTR)&pText[ii], ulcch»
{

}

iNum++;

mhEMail[iNum].ulPosFound = ii;
ulKeyWordsFound++;
break;

if (!mhEMail[iNum].cchwszHeader)
break;

if (ulKeyWordsFound)= 1)
{

II Assume it is an e-mail-type message and process.

if ((mhEMail[0].ulPosFound != -1) &&
(mhEMail[2].ulPosFound != -1))

{

if (mhEMail[1].ulPosFound == -1)
{

II The delimiters Fr: and Msg: were found.
ilndece =- 2;

} else {

}

II All three delimeters were found.
ilndece = 1;

if (mhEMail[ilndece].ulPosFound

{
) (mhEMail[0].ulPosFound + mhEMail[0].cchwszHeader»

ULONG ulFrPos = mhEMail[0].ulPosFound
+ mhEMail[0].cchwszHeader;

ulcch = mhEMail[ilndece].ulPosFound
- mhEMail[0].ulPosFound - mhEMail[0].cchwszHeader;

if (pText[ulFrPos] == '\"')
{

}

ulFrPos++;
ulcch--;

if (ulcch)
{

SetSubject:

}

else
{

}

Chapter 10 Wireless Services 259

DEBUGCHK(!(ulcch < 0 I I ulcch > MAX_FROM_TEXT_LEN»;
if (ulcch > MAX_FROM_TEXT_LEN)

ulcch - MAX_FROM_TEXT_LEN ;
_tcsncpy(szFromText. &pText[ulFrPos]. ulcch);
szFromText[ulcch],= (TCHAR)'\0';
MailSetField(pMsg. L"From". szFromText):
goto SetSubject;

II $REVIEW must be in a localized file.
Mai 1 SetFi el d(pMsg. L"From". L"Unknown Sender Name");

if ((mhEMail[1].ulPosFound !- -1) &&
(mhEMail[2].ulPosFound

else
{

> (mhEMail[1].ulPosFound + mhEMail[l].cchwszHeader»

ulcch = mhEMail[2].ulPosFound
- mhEMail[1].ulPosFound - mhEMail[1].cchwszHeader;

DEBUGCHK(!(ulcch < 0 II ulcch > MAX_SUBJECT_TEXT_LEN»;
if (ulcch > MAX_SUBJECT_TEXT_LEN)

ulcch = MAX_SUBJECT_TEXT_LEN:
_tcsncpy(szSubjectText. &pText[mhEMail[l].ulPosFound

+ mhEMail[1].cchwszHeader]. ulcch);
szSubjectText[ulcch] = (TCHAR)'\0';
MailSetField(pMsg. L"Subject". szSubjectText);

II $REVIEW must be in a localized file.
MailSetField(pMsg. L"Subject". L"N/A");

pText = pText + mhEMail[2].ulPosFound

II Only one field was found.
II or only Fr: and Re:
II or only Re: and Msg:

+ mhEMail[2].cchwszHeader;

II $REVIEW must be in a localized file.
MailSetField(pMsg. L"From". L"Scrambled EMai.l message");
II $REVIEW must be in a localized file.
MailSetField(pMsg. L"Subject". L"N/A");

return (LPWSTR)pText:

260 Windows CE Communications Guide

}

II Search for the WebMail signature.
II "Msg:" should be at the start of the string.
iNurn = 0;
ulKeyWordsFound = 0;
i i = 0;
pwszKeyWord = mhWebMail[iNum].pwszHeader;
ulcch = mhWebMail[iNum].cchwszHeader;
DEBUGCHK(pMsg->dwMsgLen >= ulcch);
if ((ulcch <= pMsg->dwMsgLen)

{

}

&& (!memcmp (pwszKeyWord, CLPWSTR)&pText[0], ulcch»)

Mai 1 SetFi el dCpMsg, L"Type", L"Page");
pText = pText + 4;
return (LPWSTR)pText;

II Numeric pages that become alpha pages, due to the
II configuration of the CUE Receiver, will
II fall through to here. Change the type.
MailSetFieldCpMsg, L"Type",L"Page");
return (LPWSTR)pText;

Registering a Parser
Because each wireless service provider determines the format for e-mail messages
sent by it, parsing is done by functions stored in DLLs. MSDefault selects the
DLL to invoke, based on the device and address on which the message was
received. MSDefault uses the following criteria to determine which DLL to use:

• If a DLL is specified for a device address, the device DLL is used.

• If no DLL is specified for an address but one is specified for the device, the
device D LL is used.

• If no DLL is specified for either the address or the device but one is specified
as the default, the default parser is used.

• If no DLL is defined as the default, a system default parser is used.

The registry entries are stored under the key
HKEY _LOCAL_MACHINE\Software\Microsoft\ WIS\EmailParser. For
example, consider a Windows CE-based device that has two radio devices,
Device 1 and Device 2. Device 1 has three addresses, Tstaddrl, Tstaddr2, and
Tstaddr3.

Chapter 10 Wireless Services 261

The Windows CE-based device has the following registry entries.

HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control
"EmailParser"="empdef.dll"
HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control\Devicel
"EmailParser"="empdev.dll"
HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control\Dev;cel\Tstaddrl
"EmailParser"="empcue.dll"
HKEY_LOCAL_MACHINE\Software\M;crosoft\WIS\Control\Dev;cel\Tstaddr2
"EmailParser"="emp2.dll"

No parser has been defined for Tstaddr3 or Device 2. In this example, the
following DLLs would be selected for messages:

• If a message is received on any address of Device 2, Empdef.dll is used to
parse the message.

• If a message is received on Tstaddr2 of Device I, Emp2.dll is used to parse the
message.

• If a message is received on Tstaddr3 of Device 1, Empdev.dll is used to parse
the message.

In this example, because a default parser has been defined, the system default
parser is never called for any message.

Replacing PageNotify
By default, PageNotify, Pagenotif.exe, is defined in the registry as the application
that MSDefault invokes when a pager message arrives. PageNotify has two
modes, one to define its notification behavior when a message arrives on the
Personal Page address and one to define its notification behavior for all other
addresses. The following key and values register Addrl as the Personal Page
address and register Pagenotif.exe as the notification application.

HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Paging
; PersonalPageAddress is the Address Tag on which pages arrive.
"PersonalPageAddress"="Addrl"
; Notificat;onApp is the application MSDefault runs when a page arrives.
"NotificationApp"="PageNotif.exe"

You can replace PageNotify with a custom application to notify a user of th~
arrival of a page. For example, if a pager service features priorities, such as urgent
and normal, you might want to create a custom notification application that plays
a different sound depending on the message priority. To do this, change the
registry key to reference a different notification application. MSDefault executes
the notification application with the following command line:

<notificationapp.exe> Message_ObjectID FolderID

262 Windows CE Communications Guide

Limiting the Number of Messages
The following registry key example shows how to limit the number of messages
saved in a given folder by MSDefault.

HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control\Oevicel\Addrl
"MaxMsgs"=3
HKEY_LOCAL_MACHINE\Software\Microsoft\WIS\Control\Oevicel\Addr2
"MaxMsgs"=6

The folder used for messages that arrive on Addrl holds three messages. The
folder used for messages that arrive on Addr2 holds six messages. As more
messages arrive, the oldest messages are deleted.

Writing a Message Handler
In addition to the IUnknown interface, which must be implemented by all COM
objects, message handlers must implement the ITranslate interface in an in
process COM object. The following table shows the ITranslate methods.

Method

ProcessMSG(LPMSGINFO)

Description

This method must accept a pointer to an
MSGINFO structure from the router. It must
return one of the following values:

• TRANS_S_STOP, if the handler completes
successfully.

• TRANS_E_STOP, if the handler fails.

GetLastError(pszBufTer, dwSize) This method takes a pointer to a buffer into which
to copy the last error message, and a DWORD
gi ving the maximum length of the string that can
be copied into the buffer. The length includes one
byte for the null terminator. This method returns
S_OK.

GetInfo(LPMODULE_INFO) This method takes a pointer to a MODULE_INFO
structure, which it fills with handler data. It returns
anHRESULT.

Chapter 10 Wireless Services 263

The following code example shows the ITranslate interface members of a
message handler that writes a printable copy of the received message to a file. The
file name to which it writes the message is the first string of the message.

#include <windows.h>
#include <string.h>
#include <TCHAR.H>

#include <wis.h>

flinclude "main.h"
#include "trans.h"
#include "resource.h"

STDMETHODIMP CTrans::GetLastError (LPWSTR pszError, DWORD dwSize)
{

if (pszError && dwSize)
--dwSize;
if (m_dwLastError >= TRANS_LAST_ERRCODE)

m_dwLastError = TRANS_LAST_ERRCODE;

wcsncpy(pszError, TRANS_ERROR_STRINGS[m_dwLastError], dwSize);
pszError[dwSize] = 0;
retu rn (S_OK);

STDMETHODIMP CTrans::Getlnfo(LPMODULE_INFO lplnfo)
{

i nt i;
II Read the resources into the buffers.
if «i = LoadStringW(g_hlnst, IDS_TYPE, m_szType, MAX_INFOSTRING)))
{

m_szType[i] = 0;
if «i = LoadStringW(g_hlnst, IDS_FRIENDLY_NAME,

m_szFriendlyName, MAX_INFOSTRING)))

m_szFriendlyName[i] = 0;
if «i = LoadStringW(g_hlnst, IDS_DISCRIPTION,

m_szDiscription, MAX_DISSTRING)))
{

m_szDescription[i] = 0;
if «i = LoadStringW(g_hlnst, IDS_VERSION,

m_szVersion, MAX_DISSTRING)))

m_szVersion[i] = 0;
if «i = LoadStringW(g_hlnst, IDS_MANUFACTURER,

m_szManufacturer, MAX_DISSTRING)))

264 Windows CE Communications Guide

}

}

}

m_szManufacturer[i] = 0;
*lpInfo = m_ti;
return(S_OK);

return (E_FAI l) ;

STDMETHOD I MP
CTrans::ProcessMSG (LPMSGINFO pMSG)
{

WCHAR szDummy[] = L"\\testmsgs.txt";
BOOL bOperationComplete = FALSE;
HRESULT hr = TRANS_E_CONTINUE;
HANDLE htmp;

II Validate the file name.
if (pMSG->pszFileName == NULL I I (lstrlenW(pMSG->pszFileName) -- 0))
{ II The method should have received a valid file name.

m_dwLastError = TRANS_INVALID_IN_FILENAME:
return(TRANS_E_STOP);

}

II Ensure that the input and output file handles are NULL.
if (m_hInput!= INVALID_HANDLE_VALUE

I I m_hOutput != INVALID_HANDLE_VALUE)

m_dwLastError = TRANS_FILES_ALREADY_OPEN:
return(hr);

II Open the input file.
htmp = CreateFileW(pMSG->pszFileName. GENERIC_READ. FILE_SHARE_READ.

NULL. OPEN_EXISTING. FILE_ATTRIBUTE_NORMAL.
NULL);

if (htmp == INVALID_HANDLE_VALUE)
{

}

else
{

}

II The input file does not exist or cannot be opened.
m_dwLastError = TRANS_CANT_OPEN_IN_FILE;
return(hr):

m_hInput = htmp;

Chapter 10 Wireless Services 265

II Open the output file.
htmp = CreateFileW(szDummy. GENERIC_WRITE. FILE_SHARE_READ.

NULL. OPEN_ALWAYS. FILE_ATTRIBUTE_NORMAL.
NULL);

if (htmp == INVALID_HANDLE_VALUE)
{

else
{

II The output file cannot be opened or created.
II Close the input file.
CloseHandle(m_hInput);
m_hInput = INVALID_HANDLE_VALUE:
m_dwLastError = TRANS_CANT_OPEN_OUT_FILE;
return(hr) :

m_hOutput = htmp;

II Both the input and output files are ready.
if (pMSG->pRL->Dir == DIR_RECEIVE)
{

II Perform Untranslation on the message.
II TODO -- Replace this If statement with your call.
if (Untranslate(pMSG»
{

bOperationComplete = TRUE;

else II The other valid value is DIR_TRANSMIT.
{

II Perform translation on the message.
II TODO -- Replace this If statement with your call.
if (Translate(pMSG»
{

bOperationComplete = TRUE;

II Close the files.
CloseHandle(m_hInput);
CloseHandle(m_hOutput);
m_hInput = INVALID_HANDLE_VALUE;
m_hOutput = INVALID_HANDLE_VALUE:
if (bOperationComplete) {

hr = TRANS_S_STOP;

return (hr):

266 Windows CE Communications Guide

II Dump the MSGINFO structure and the data into a text file.
BOOl DumpToFile(HANDlE hOutFile. lPTSTR Str •...)
{

BOOl

DWORD dwBytesToWrite. dwBytesWritten;
va_l is t val;
WCHAR byBuf[BUFF_SIZE];

II Create the output string and send it to the
II debugger's output window. if requested.
va_start(val .Str);
wvsprintf(byBuf. Str. val);
va_end(val);
dwBytesToWrite = lstrlen(byBuf) * sizeof(WCHAR);
if (IWriteFile(hOutFile. byBuf. dwBytesToWrite.

{

&dwBytesWritten. NUll)
I I (dwBytesToWrite 1= dwBytesWritten»

return FALSE;

return TRUE;

CTrans::Translate(lPMSGINFO pMSG)
{

BYTE byBuf[BUFF_SIZE];
DWORD dwBytesWritten;
DWORD dwBytesRead;
SYSTEMTIME stlocalTime;
BOOl fRetValue = TRUE;

#if defined(DEBUG) && defined(DEBUG_BREAK)
DebugBreak();

#endif

II Append the message to the end of the output file.
II First. move the file pointer to the end of the output file.
if (SetFilePointer(m_hOutput. 0. NUll. FILE_END) == 0xFFFFFFFF)

m_dwlastError = TRANS_FIlE_SEEK_ERROR;
return FALSE;

Chapter 10 Wireless Services 267

II Write the message separator to the output file.
GetLocalTime(&stLocalTime):
fRetValue &= DumpToFile(m_hOutput,

II Write out
fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

fRetValue &=

L"==0--==--== Msg Log %d/%d/%d %d:%d.%d\r\n",
stLocalTime.wYear,
stLocalTime.wMonth,
stLocalTime.wDay,
stLocalTime.wHour,
stLocalTime.wMinute,
stLocalTime.wSecond):

MSGINFO structure members.
DumpToFile(m_hOutput, L"Size =%d\r\n",

pMSG->cbSize):
DumpToFile(m_hOutput, L"FileName =%s\r\n",

pMSG->pszFileName):
DumpToFile(m_hOutput, L"ErrFileName =%s\r\n",

pMSG->pszErrFileName):
DumpToFile(m_hOutput, L"ResponseFileName=%s\r\n",

pMSG->pszResponseFileName);
DumpToFile(m_hOutput, L"OEMFileName =%s\r\n",

pMSG->pszOEMFileName):
DumpToFil e(m_hOutput, L"Fol derName =%s\r\n",

pMSG->pszFolderName);
DumpToFil e(m_hOutput, L"Source =%d\r\n",

pMSG->Source):
DumpToFile(m_hOutput, L"Device =%d\r\n",

pMSG->Device):
DumpToFile(m_hOutput,

L"Systemtime =%d/%d/%d %d:%d.%d\r\n",
pMSG->DateTime.wYear,
pMSG->DateTime.wMonth,
pMSG->DateTime.wDay,
pMSG->DateTime.wHour,
pMSG->DateTime.wMinute,
pMSG->DateTime.wSecond):

DumpToFil e(m_hOutput, L"MsgType =%d\r\n",
pMSG->pXtraMsgInfo->MsgType):

DumpToFil e (m_hOutput, L"MsgPri ority =%d\r\n",
pMSG->pXtraMsgInfo->MsgPriority):

DumpToFile(m_hOutput, L"MsgFlags =0x%X\r\n",
pMSG->pXtraMsgInfo->MsgFlags);

DumpToFile(m_hOutput, L"NumParts =%d\r\n",
pMSG->pXtraMsgInfo->NumParts):

DumpToFile(m_hOutput, L"ErrorFlags =0x%X\r\n",
pMSG->pXtraMsgInfo->wErrorFlags);

DumpToFil e(m_hOutput, L"MsgSeqNum =%d\r\n",
pMSG->pXtraMsgInfo->wMsgSequenceNumber):

DumpToFil e (m_hOutput, L"==l- - - - - - -==\ r\n") ;

268 Windows CE Communications Guide

while ReadFile(m_hInput, byBuf, BUFF_SIZE, &dwBytesRead, NULL)
&& dwBytesRead)

{

}

if (!WriteFile(m_hOutput, byBuf, dwBytesRead,
&dwBytesWritten, NULL)

I I (dwBytesRead != dwBytesWritten»

fRetValue = FALSE;
break;

fRetVa 1 ue &= DumpToFil e (m_hOutput, L"\ r\n==*- - - - - - -==\ r\n") ;
return fRetValue;

II Make the untranslate function the same as the translate function.
BOOL CTrans: :Untranslate(LPMSGINFO pMSG)
{

return Translate(pMSG);
}

Installing a Message Handler
Message handlers must be registered before they can be used. The following
registry key example shows the four registry keys that you must set in order to
install and register a message handler.

[HKEY_CLASSES_ROOT\CLSID\{14EFIID0-3EC7-11d2-90BF-0000F80272E4}]
Default="stock translator"
[HKEY_CLASSES_ROOT\CLSID\{14EFIID0-3EC7-11d2-90BF-
0000F80272E4}\InprocServer32]
Default="\\windows\\stock.dll"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WIS\Routers\{14EFIID0-3EC7-11d2-
90BF-0000F80272E4}]
"Type"="Translator"
Default=hex:60,2C,2A,2A,20,53,74,6F,63,6B,73,20,2A,2A
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WIS\Control\Devicel\Stocks]
"PredefinedRouter"=hex:21,60,2C,2A,2A,3,74,6F,63,6B,73,20,2A,2A
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WIS\Control\Devicel\News]
"MaxMsgs"=dword:10

The first two keys are COM object registry entries.

Chapter 10 Wireless Services 269

The third key registers the handler as a translator and sets the tag to be used by the
router to refer to the handler. The first hexadecimal value is the constant Ox60, the
second hexadecimal value is Ox20 plus the number of bytes for the tag name, and
the rest of the values make up a unique ASCII name. Because the tag in this
example is 12 bytes long, the second value is Ox2c.

The fourth key defines how the router routes messages through the handler.
Because the first hexadecimal value is Ox20 plus the number of handlers, which is
always 1, this value is Ox21. The rest of the values are the tag from the third key.

This example shows a fifth, optional, registry entry that places a limit on the
number of messages held in a PMail folder for messages that arrive on this
address.

This information is provided in case you need to search the registry for a problem.
Wireless Services provides two functions, RegisterHandler and
UnregisterHandler, that simplify the process of registering and deregistering
message handlers. RegisterHandler enables you to register a message handler in
any of the following ways:

• As the handler for messages received by a specific radio device and address

• As the default handler for messages received by a radio device, but that do not
have an address-level handler

• As the overall default handler for any messages that do not have message
handlers specified at either the radio device or the device-and-address levels

To use these functions in your program, include the Riohlp.h header file.

~ To register a message handler

1. Specify the device for which the handler is to be registered.

2. Specify the address for which the handler is to be registered.

If this value is NULL, the handler is assigned as the default handler for the
device.

3. Specify a string containing the name of the DLL in which the handler is stored.

4. Call RegisterHandler, and check the return value for success.

If you want a message handler to stop handling messages received for an address
or device, use UnregisterHandler. You can deregister a message handler for a
specific device and address or for all device addresses.

270 Windows CE Communications Guide

~ To de register a message handler

1. Specify the device for which the handler is to be deregistered.

2. Specify the address for which the handler is to be deregistered.

If this value is NULL, the handler is deregistered for all addresses on this
device.

3. Specify the handler class identifier (CLSID).

4. Call UnregisterHandler, and check the return value for success.

Programming Considerations for Message Handlers
While the handler is executing, the router pauses while waiting, and messages can
transmit to the radio device. Because a radio device has little memory, it relies on
being able to transfer incoming data to a Windows CE-based device before its
buffer is full. The code must be written in such a way that the handler returns as
quickly as possible. Because the router does not invoke message handlers in
separate threads, handlers must not block.

A message handler should not attempt to interact with a user. Instead, it can store
a message in a queue, handle the message in real time, or execute an application
program in a separate thread.

A message handler should perform all data conversions, including those required
for internationalization, such as converting from ASCII to Unicode characters.
This ensures that any application to which the message handler passes data does
not have to convert between different formats.

Stock Quotation Sample Application.
The source code for the StockDB sample application is included with the SDK.
The following table shows the code samples used in StockDB. Each code sample
is contained in a directory of the same name.

Application section

Trans

Sdump

Stockdb

Description

A message handler that parses the messages for stock quotations
and stores the quotations in a database

A viewer application that enables a user to view the
accumulated quotations in chart form or as individual
quotations by way of a graphical user interface (GUI)

A library of helper functions used by the message handler and
the viewer

Chapter 10 Wireless Services 271

The router invokes the message handler when messages come in on a specified
address and device.

StockDB demonstrates the separation of user interface and message handler, the
use of the database to transfer data from the message to the application, and the
general handler design.

Testing a Wireless Application
The following table shows the test utility applications included in Wireless
Services.

Application

Genpgm.exe

Dopgm.exe

Radiotest.exe

Hwinfotest.exe

Description

Creates radio address data files from text files you write

Installs the radio address data files created by Genpgm.exe

Sends test messages through the device driver from text files in
which you have written the messages

Changes values that the device driver reports so that you can test
applications that monitor signal strength

Creating Radio Address Data
Genpgm.exe creates the radio address data file that tells the radio card which
addresses to use. Genpgm.exe is used with Dopgm.exe, which loads the radio
address data file into the radio card.

~ To program your radio hardware

1. Create a file on your system that contains the programming information that
you want to use.

3. Run Genpgm.exe, and pass it the name of your file through the /PGM= switch.

Specify the output file name with the IOUT= switch.

4. Copy the output file to the Windows CE directory on your Windows CE
based device using the Windows CE Services utilities.

5. Run Dopgm.exe on your Windows CE-based device, and pass it the name of
your .bin file through the /PGM= switch.

When you restart your machine, repeat steps 4 and 5.

272 Windows CE Communications Guide

When you run Genpgm.exe, it creates the programming data file in an encrypted
format using the entry identification (EID) of the radio hardware as the key. If you
do not want the file to be encrypted, use the switch "/KTYPE=N" to indicate
encryption should not be performed.

The programming data file follows a specific format. It consists of a series of
programming and deprogramming clauses for keys, addresses, and carriers. Any
type of block can be repeated to program multiple keys, addresses, or carriers.
Comments can be interspersed; a comment begins with a semicolon and extends
to the end of the line. Each clause contains a set of parameters and values. Values
consist of either strings or byte values. The following table shows the formats of
each of these.

Type Format Examples

Byte value Decimal integer from 0 through 255, 0 1 60 219 255
which must not have a leading 0

Octal integer from 0 through 0377, which 0 01 074 0333 0377
must begin with 0

String

Hexadecimal integer from OxO through
Oxff, which must begin with Ox

Single-byte character, which must be
enclosed in single quotation marks

Text within quotation marks

Comma-separated list of byte values

OxO Oxl Ox3c Oxff

'c' 'A' '.' ,

"hello, world",

"etaoin shrdlu"

'I'

Ox68, 101, 0154, Ox6c, '0'

The following example of a definition file for radio address data shows its syntax.
Any type of block can be repeated to program multiple keys, addresses, or data
structures about wireless service providers.

PROGRAM_KEY
KeyNumber=<ByteValue>
AlgCode=<ByteValue>
KeyTag=<String>
KeyValue=<String>
END

PROGRAM_ADDRESS
AddressNumber=<ByteValue>

Chapter 10 Wireless Services 273

Status=<ByteValue> ;ENABLE=0x0l. PRIORITY=0x02. AC_ONLY=0x04
ExpirationDate=CC.YY.MM.DD
AddressTag=<String>
KeyTag=<String>
AddressName=<String>
AddrDescription=<String>
AddressInfo=<String>
END

PROGRAM_CARRIER
RxFrequency=ByteValue
UserId=<String>
CarrierName=<String>
CarrierDescription=<String>
END

Reception frequency
User PIN or equivalent

; Use either KeyNumber or KeyTag.
UNPROGRAM_KEY
KeyNumber=<ByteValue>
KeyTag=<String>
END

Use either AddressNumber or AddressTag.
If there are any keys associated with the address.
and if they are not referenced by another address. they are deleted.

UNPROGRAM_ADDRESS
AddressNumber=<ByteValue>
AddressTag=<String>
END

; Use the CarrierName parameter to select which carrier to delete.
UNPROGRAM_CARRIER
CarrierName=<String>
END

The following example of a radio address definition file shows an input file for
Genpgm.exe that, when used as input for Genpgm.exe, sets up a key and two
addresses.

PROGRAM_KEY
KeyNumber=0x02
AlgCode=0x22
KeyTag="Key234"
KeyValue=0x20.0x21.0x22.0x23
END

274 Windows CE Communications Guide

PROGRAM_ADDRESS
AddressNumber=0x0
Status=0x01 : ENABLE=0x01. PRIORITY=0x02. AC_ONLY-0x04

The address will expire on August 12. 1999. August is a single digit.
: not a double digit. 8 not 08. because the zero would be interpreted
: as making it octal.
ExpirationDate=19.99.8.12
AddressTag="Addr1"
KeyTag="Key1"
AddressName="Test Addr1"
AddrDescription="Address used for personal messaging"
Addresslnfo="Addrlnfo"
END

If you save this example of a radio address definition file in a file named Card.dat,
then run Genpgm.exe, the file Card.bin is created. It contains the address
programming. The following example of a command line shows how to do this.

genpgm.exe II=card.dat

Sending Test Messages with Radictest
Radiotest.exe enables you to send a message through a device driver to emulate a
Windows CE-based device that receives a message from a radio card. You can
type the message on the command line or send it from a file. If you do not type
any command-line switches or messages, Radiotest.exe brings up a GUI with
which you can interact. This is useful on machines without a full-size keyboard.

The following table shows the switches used when you run Radiotest.exe.

Switch

lanum

latag

Imtype

Impri

lerrflags

Imseq

Imflags

Idelay

Icount

nog

Imsg

Icnvt

Description

Specifies the address number the message is sent to.

Specifies the address tag the message is sent to.

Specifies the message type (1=numeric, 2=alpha).

Specifies the MsgPriority field.

Specifies the value for the wErrFlags field.

Specifies the value for the wMsgSequenceNumber field.

Specifies the value for the MsgFlags field.

Specifies the number of seconds to delay before sending the message.

Specifies the number of times to repeat sending the message.

Specifies the file name of the activity log file.

Specifies the file name from which to read the message.

Specifies to convert the message from Unicode to ASCII if !cnvt=1.
Specifies not to convert if omitted, or if !cnvt=O.

Chapter 10 Wireless Services 275

You can specify either latag or lanum, but not both. If you specify neither, an
address of zero is assumed. If you specify lanum and you do not program the
address into the device, the tag AddrXX is used instead. For example, if you send
a message to a nonexistent lanum=4, the message is sent to an address with a tag
Addr04.

If Idelay and Icount are both specified, the delay value is used before sending
each copy of the message, including the first copy.

If no log file is given and an error occurs, a message box pops up to alert the user
of the error.

If a file name is specified for a message body, the message is read and sent exactly
as it appears in the file.

The following command line examples further explain the switches:

radiotest lanum=3 Ilog=rtst.log Hello, world!

This sends a message containing the text "Hello, world!" to address number 3,
logging any errors in the file Rtst.log.

radiotest latag=Addrl Idelay=2 Icount=5 Imsg=testmsgl.txt

This sends the contents of the file Testmsg1.txt to the address with the tag Addrl
five times, with a two-second delay before each message is sent.

radiotest Test Message

This sends a message containing the text "Test Message" to address number 0,
which is the default. If an error occurs, a dialog box alerts the user.

Testing Hardware Feedback with Hwinfotest
Hwinfotest.exe enables you to set the values that a device driver reports for a
radio receiver signal level. The application is included as sample source code so
that you can add other switches to it to suit your testing needs.

To execute Hwinfotest.exe, pass it the Irxsignallevel switch.

The following command line example sets the receiver signal level that the device
driver reports in the RADIO_HARD WARE_INFO structure to the value 5.

hwinfotest Irxsignallevel=5

Index

25-pin connectors 10-11
9-pin connectors 10-11

A
Address Resolution Protocol (ARP) 84
administering CAPI 247
Afd.dll 62
algorithms

hashing and digital signature 246
secure hashing (SHA) 247

APls
See also specific API
telephony (T API) 27

application layer, ISO/OSI model 4
applications

cryptographic data schemes 185
providing secure communications (illustration) 5
sample serial communications 22
setting communications time-outs 15
SSPI sample 208
TAPI

creating 36
ending calls, shutdown 54
getting, opening a line 42
making phone calls 45

TCP stream socket, creating 92
using modems 36
Win sock, developing 88
wireless

sending test messages 274
testing 271

ARP (Address Resolution Protocol) 84
asynchronous operations, RAS 59
authenticating connections 191
authentication

certificate 108
handling 161
HTTP 161, 164
proxy 163
RAS, user data 59
registering keys 162
server 163
SSPI, server 205
Windows NTLM protocol 201

B
backup authority, using 226
Berkeley Sockets 79
BLOBs, key 220
block cipher mode 216
buffers, memory 198

c
cables, serial, and connectors 10
caching

cache entries 171
cache groups 172
controlling with flags 168
enumerating cache 170
handling structures with variable size data 172
overview 168
persistent caching Winlnet functions (table) 154
retrieving cache data 170
using persistent functions 169

callback functions, T API 31, 50
canonicalizing URLs 156
CAPI

administering 247
application's relations with (illustration) 217
registry overview 247
relationship to application (illustration) 5
using 222

certificate authentication 108
CGI script, generating cookies using 167
CIFS redirector 131
cipher modes 216,229
ciphers described 215
classes, Internet protocol address 85
Client.exe 112
closing

phone line 54
serial ports 20

code examples
about xiv
accept function, using 96
decryption 238
disconnecting TAPI from applications 55
encryption 232
HTTP session, establishing and retrieving file 175

277

278 Index

code examples (continued)
ITranslate printing messages to file 262
loading security provider DLL 189
monitoring serial port and reading data 19
MSDefault message-handling 257
network

connections, establishing 142
resources, enumerating on subdirectory 139
resources, identifying 138

obtaining copy of session key 243
opening serial communications port 12
phone book

changing entry 72
copying RAS entry 75
creating entry 71
dialing and connecting to in registry 73

RAS connections
establishing 64
getting status of current 66
terminating 68

reading socket options 107
retrieving connection names 144
retrieving network errors 145
securing message exchange 200
serial communications sample application 22
serial port

configuring 14
configuring time-outs 16
opening 12

SSPI
client initialization 202
initializing 189
obtaining outbound credentials handle 192
using security context 207
server authentication 205

TAPI
callback function 50
initializing TapLdll 38
opening line 43
opening line and making call 47
registry key settings 35
telephone number, address conversion 52

transferring data using WriteFile 17
WinInet functions handle hierarchy 156
WSAStartup function, using 92

code samples, about xiv
communications

configuring time-outs 15
events, using 18
infrared, using 20

ISOIOSI model
data-link layer 3
(illustration) 2
network and transport layers 4
physical layer 3
session, presentation and application layers 4

models, and layers 1
overview 1
secure, providing 5
serial See serial communications

configuring serial ports 1
connecting

to CSPs 222
to networks 141

connection contexts 194
connections

authenticating 191
deferred handshakes, using 111
disconnecting RAS 60
Internet See Internet connections
network

establishing 141
managing with WNet 138

programming serial 11
RAS

connection data 65
connection operations 62
connection states 67
establishing 62
sequence described 66
terminating 67

retrieving names 144
connectors

25-pin 10-11
9-pin 10-11
and serial cables 10
mini-connectors (illustration) 10

containers, key 219
context

requirements 197
semantics 194

conventions, document xvi
Cookie header 167
cookies

described, managing 164
generating 167
headers, cookie-related 165
HTTP 165

Coredll.dll 5
cracking URLs 157

creating
applications

infrared Winsock 99
IP multicast 101
TAPI 36
TCP stream socket applications 92
UDP datagram socket 100
Winsock 88

cache entry 171
cookies 167
CSPs 248
digital signatures 244
phone-book entry 70
radio address data 271
URLs 157

cryptographic API (CAPI)
administering 247
application's relations with (illustration) 217
registeryoverview 247
using 222

cryptographic
data schemes 185
keys

exchanging 224
exchanging public keys 226
functions (table) 225
generating 223
storing session keys 225

service providers See CSPs
cryptography

algorithms, hashing and digital signature 246
backup authority, using 226
described 215
digital signatures, creating 244
exchanging session keys 227
Microsoft RSA Base Provider 220
Microsoft system 217

CSPs
and key databases, containers (illustration) 219
connecting functions (table) 222
described 217
getting signed 251
key BLOB 220
registering 249
setting machine, user default 250
testing 251
type properties (table) 218
writing 248
writing setup application 249

Cxport.dll 62
Cyptographic API See CAPI

o
data

encrypting and decrypting 228
network, retrieving 144
plaintext 215

datagram
contexts 194
described 82
sockets 100
IP multicast

receiving 106
sending 103

data-link layer, ISOIOSI model 3
decrypting

and encrypting simultaneously 242
data 215,228
described 215

deleting
cache entry 171
phone-book entry 77
security contexts 201

devices, naming 134

Index 279

DHCP (Dynamic Host Configuration Protocol) 87
DHTML object model, generating cookie using 167
digital signatures

algorithms 246
creating 244
getting CSPs signed 251
use in encryption, decryption 215

disconnecting RAS connection 60
documentation

CD content xii
code samples xiv
Communications Guide contents xiii
Preface xi
typographical conventions xvi

Domain Name System (DNS) 86
Dopgm.exe 271
Dynamic Host Configuration Protocol (DHCP) 87

E
encrypting

and decrypting simultaneously 242
data 228

encryption
common algorithms (table) 221
described 215
key length comparison 221

Enhanced Provider 221
error handling, RAS 60
errors, network, retrieving 145
events, communications, using 18

280 Index

F
folders, network, using 136
FrP

protocol, accessing 181
server authentication 161
WinInet functions (table) 153

functions

G

FrP WinInet (table) 153
HTTP (table) 153
persistent caching 169
RAS (table) 57
serial communications (table) 9
SSPI (table) 187
TAPI (table) 30
WinInet 151
WinInet (table) 152
Win sock (table) 89
WNet (table) 136

generating cookies 167
Genpgm.exe 271
groups, cache 172

H
handles, HINTERNET 155
handling authentication 161
handshakes, using deferred 111
hardware

feedback, testing with Hwinfotest 275
physical layer of ISOIOSI model 3

hashing and digital signature algorithms 246
headers, cookie-related 165
HINTERNET handles 155
host

name resolution 86
TCP/IP, described 81

HTTP
accessing protocol 173
authentication 161, 164
cookies 165
functions (table) 153
Set-Cookie and Cookie headers 165
WinInet functions, using 173

HTTPS 151
Hwinfotest.exe 27
Hypertext Transfer Protocol See HTTP

110, serial 7
ICMP (Internet Control Message Protocol) 82
IGMP message types 102
IGMP (Internet Group Membership Protocol) 83
infrared

communications, using 20
IrCOMM mode 21
raw IR 20
sample applications

Sockets client 121
Sockets server 119

initialization vectors, encryption 216
initializing

the SSPI 189
Winsock using WSAStartup 92

installing message handlers 268
interfaces, telephony service provider 29
International Organization for Standardization Open System

Interconnection (ISOIOSI) model
and WiriInet 149
and Winsock (illustration) 79

Internet connections
authentication

handling 161
HTTP 161, 164
keys, registering 162
proxy, server 163

caching
cache groups 172
controlling with flags 168
handling structures with variable size data 172
overview 168
peristent, functions 169

cookies
headers, cookie-related 165
HTTP 165
managing 164

FrP protocol, accessing 181
HINTERNET handles 155
HTTP

and FrP functions (table) 153
protocol, accessing 173

overview 149
persistent caching functions (table) 154
security protocols, accessing 184
URLs, handling 156
Winlnet functions 151

Internet Control Message Protocol (ICMP) 82
Internet functions, generating cookies using 167
Internet Group Membership Protocol (IGMP) 83
IP described 82

IP addressing
address classes supported (table) 86
described 84
Internet protocol address classes 85

IP multicast
application, creating 101
datagrams

receiving 106
receiving, sample application 124
sending 103
sending, sample application 127

mapping address 102
IR communications 20
IrCOMM 21
IrDA

IrSock name service 91
using Winsock functions with 91

IrSock
addressing 91
enhanced socket options 91
name service 91

ISO/OSI model
data-link layer 3

J

and Windows networking 132
network and transport layers 4
physical layer 3
session, presentation, and application layers 4
Windows CE communications and (illustration) 2

joining, leaving multicast groups 104

K
key binary large objects (BLOBs) 220
key databases, containers 219
keys, cryptographic

L

exchanging 224
functions (table) 225
generating 223
storing session keys 225

line devices, TAPI 37
Logical Access Point Selectors (LSAP-SELs) 91

M
mapping IP multicast address 102
media stream, TAPI 38
memory, SSPI, use described 198

message handlers
described 255
installing, registering 268
programming considerations 270
writing 262

messages
adding digital signature to 215
limiting number in given folder 262
processing (illustration) 254
sending test, with Radiotest 274
signing, verifying 245
used by IGMP 102

Microsoft cryptographic system 217
Microsoft Foundation Classes (MFC) 89
Microsoft RSA Base Provider 220
mini-connectors 10
modems

address translation 52
ending calls 54
getting, opening line 42
initializing T API 38
line devices 37
making phone call 45
media stream 38
opening multiple lines 50
Plug and Play device identifiers 32
RAS, accessing Internet using 61
registry keys

examples of settings 35
use described 32

using 36
Windows CE support 31

MSDefault message handler
described 255

Index 281

internationalization, Unicode support 256
limiting number of messages 262
parsers

registering 260
writing routines 257

replacing PageNotify 261
multicast

N

described 83
groups

described 10 1
joining, leaving 104

names
connection, retrieving 144
devices 134
user, retrieving 145

NDIS (Network Driver Interface Specification) 3
Netbios.dll 134

282 Index

network connections
establishing 141
managing with WNet 138
terminating 143

Network Driver Interface Specification (NDIS) 3
network layer, ISOIOSI model 4
networking, Windows 131
networks

connecting to 141
determining available resources 138
locating printer on 146
printing on 146
retrieving data 144
retrieving errors 145
wireless, configuring TCP/IP for 87

notifications, communications events 18

o
objects, key binary large (BLOBs) 220
Open Systems Interconnection (ISOIOSI) model

for network communications 27
and RAS 55
and serial protocols 7

opening serial ports 11
OSlmodel

p

and Windows networking 132
andRAS 55
and T API (illustration) 27
and Winlnet 149
and Winsock (illustration) 79

Packet Internet Groper (ping) 82
Pagenotif.exe 261
PageNotify, replacing in MSDefault 261
parser routines, writing for MSDefault 257
parsers, registering 260
passwords, setting user 135
persistent caching functions (table) 154
phone book, RAS

changing entry 72
copying entry 74
creating entry 70
deleting entry 77
enumerating entries 73
operation described 69
phone-book files and connection data 59

phone-book entries and RAS 61
ping described 82
Plug and Play (PNP), device identifiers 32
point-to-point protocol (PPP) 3, 55
ports, serial See serial ports

Ppp.dll 62
presentation layer, ISOIOSI model 4
printers, locating on networks 146
printing on networks 146
Private Communication Technology protocol 108
Private Communications Technology (PCT) 184
processing messages, wireless (illustration) 254
programming

message handlers, considerations 270
serial connections 11

proxy authentication 163
public-key cryptography 216

R
radio address data, creating 271
Radiotest.exe 274
RARP (Reverse Address Resolution Protocol) 84
RAS

accessing Internet using a modem 61
and OSI model 55
API set, sample application 62
asynchronous operations, mode 59
completion notifications 60
connection

connection data 65
disconnecting 60
establishing 62
operation described 62
sequence described 66
starting 62
states described 67
terminating 67

error- handling 60
functions and structures 56
in ISOIOSI model 4
informational notifications 60
overview of 55
phone book

changing entry 72
copying entry 74
creating, changing entry 70
deleting entry 77
entries 61
enumerating entries 73
files and connection data 59
operation described 69

remote access protocols 55
synchronous operations, mode 58
terminology explained 55
user authentication data 59

raw IR 20
reading from serial ports 17

receiving IP multicast datagram 106
Redir.dll 134
redirector, modifying registry keys used for 135
registering

authentication keys 162
CSPs 249
message handlers 268
parsers 260

registry
CAPI overview 247
redirector, modifying keys used by 135
keys, modem

example of settings 35
use described 32

Remote Access Service See RAS
remote file systems, accessing 134
resources, network, determining available 138
retrieving

connection names 144
network data 144
network errors 145
user names 145

Reverse Address Resolution (RARP) 84
RS-232-C standard 7, 10
RSA Base Provider 220

s
salt values 216
sample applications

Infrared Sockets client 121
Infrared Sockets server 119
RAS API set 62
receiving IP multicast datagram 124
sending IP multicast datagram 127
serial communications 22
SSPI208
stock quotation 270
TCP stream socket client 116
TCP stream socket server 112
Winsock 112

Secur32.dll 185
secure communications, providing 5
secure hashing algorithm (SHA) 247
Secure Hypertext Transfer Protocol (HTTPS) 151
Secure Socketlayer (SSL) 108, 151, 184
secure sockets

implementing 111
using 108

securing message exchange 199

security contexts
deleting 201
securing message exchange 199
types 194
using 206

security packages 186
security protocols, accessing 184

Index 283

Security Support Provider Interface See SSPI
Security Support Providers (SSPs) 185
semantics, context 194
sending IP multicast datagrams 103
serial

cables and connectors 10
protocols and OSI model 7

serial communications
functions (table) 9
generally 7
sample application 22
within ISO/OSI model (illustration) 7

serial connections, programming 11
Serial Line Internet Protocol (SLIP) 3, 55
serial ports

closing 20
configuring 12
configuring time-outs 15
mini-connectors 10
opening 11
reading from 17
writing to 16

server authentication 163
Server Gated Crypto (SGC) security protocols 184
Server Message Block (SMB) protocol 134
session keys 216
session layer, ISO/OSI model 4
Set-Cookie response header 165
setting user names, passwords 135
setup application, CSP, writing 249
shutdown, T API, ending call 54
Sign.exe 251
signature files 218
signing

CSPs 251
messages 245

5MB protocol 134
sockets

IrSock enhanced options 91
options, reading 107
secure, implementing 111

SSPI
calling Windows NT LAN Manager Security Support

Provider 201
connections, authenticating 191
context

requirements 197
semantics 194

284 Index

SSPI (continued)
functions and structures (table) 187
initializing 189
memory use and buffers 198
overview 185
relationship to application (illustration) 5
sample application 208
securing message exchange 199
security contexts

deleting 201
types supported 194
using 206

SSPs, security packages 186
starting RAS connection 62
stopping phone call 54
stream cipher mode, encryption 216
stream contexts 194
structures

RAS (table) 58
SSPI (table) 187
Win sock (table) 90
WNet (table) 137

symmetric cryptography 216
synchronous operations, RAS 58

T
TAPI

address translation 52
and OSI model (illustration) 27
callback functions, using 31, 50
creating application 36
creating Plug and Play device identifier 32
ending calls, shutdown 54
functions (table) 30
getting, opening line 42
initializing 38
line devices 37
making phone call 45
modem

using, making connection 36
registry keys 31-32,35

opening mUltiple lines 50
telephony service provider interface 29
telephony system 37
use generally 27
Windows Open System Architecture 28

Tapi.h 29

TCP
described 81
resolving device suspension issues 88
sample applications

socket application, creating 92
stream socket client 116
stream socket server 112

TCPIIP
configuring for wireless networks 87
network layer protocols 82
relation to ISOIOSI model 4
relation to Winsock 81
transport layer protocols 81

Tcpstkl.dll 62
Telephony API See TAPI
telephony system, TAPI 37
terminating network connections 143
testing

CSPs 251
wireless applications 271
wireless hardware feedback 275

time-outs, communications, configuring 15
Transmission Control ProtocollIntemet Protocol See TCPIIP
transport layer, ISOIOSI model 4
TTL values, multicast socket 107
typographical conventions xvi

u
UDP

creating datagram socket applications 100
described 81
TCPIIP transport later protocols 81

UNC (Universal Naming Convention) 131
Unicode, MSDefault message handler support 256
Uniform Resource Locators (URLs)

accessing directly 158
creating, cracking 157
handling 156

Unimodem driver 31
Universal Naming Convention (UNC) 131
URLs

accessing directly 158
creating and cracking 157
handling 156

User Datagram Protocol (UDP) See UDP
user names

retrieving 145
setting 135

w
Winbase.h header file 9
WindowsCE

communications overview
serial communcations (illustration) 7
TAPI functions supported 30
Windows Sockets See Winsock

Windows CE Networking API (WNet) See WNet
Windows Internet Naming Service (WINS) 86
Windows networking

accessing remote file systems 134
and OSI model (illustration) 132
connecting to networks 141
determining available network resources 138
modifying registry keys used by redirector 135
naming devices 134
network folders, using 136

Windows networking (continued)
. overview 131
printing

locating printer on network 146
on network 146

retrieving network data 144
setting user names, passwords 135
terminating network connections 143
WNet

functions (table) 136
managing network connections with 138
structures (table) 137

Windows NT LMSSP
calling 201
client initialization 201
server authentication 205
using security context 206

Windows Open System Architecture 28
Windows Sockets See Winsock
WinInet

accessing HTTP protocol 173
and OSI model 149
difference from WinInet for Windows-based desktop

platforms 149
functions

described 151
supported by Windows CE (table) 152

functions (table) 153
HINTERNET handles 155
persistent caching functions (table) 154
relationship of SSP DLLs to (illustration) 185
security protocols, accessing 184

Wininet.dll 149, 181
Wininet.1ib 181
Wininetm.lib 181
Winnetwk.h 136

Win sock
and OSI model (illustration) 79
applications

creating infrared 99
developing 88

configuring DHCP 87
described 79

Index 285

functions implemented in Windows CE (table) 89
host name resolution 86
implementation in Windows CE 81
Internet Protocol (IP) See IP
IP addressing

address classes supported (table) 86
described 84

IrDA, using with 91
reference to ISO/OSI model 4
relationship of SSP DLLs to (illustration) 185
resolving device suspension issues 88
sample applications 112

Winsock (continued)
structures (table) 90
TCP stream socket server 112
TCP/IP function 81
User Datagram Protocol (UDP) 81
using secure sockets 108
using WSAStartup to initialize 92

wireless networks, configuring TCP/IP for 87
Wireless Services

message handlers
described 255
installing, registering 268
programming considerations 270
writing 262

message-processing (illustration) 254
MSDefault message handler 255
overview 253
stock quotation sample application 270
testing

WNet

hardware feedback with Hwinfotest 275
sending messages with Radiotest 274
wireless applications 271

functions (table) 136
managing network connections with 138
overview 131
retrieving connection name 144
structures (table) 137

writing
CSPs 248
message handlers 262
to serial ports 16

WSAStartup, using to initialize Win sock 92

Part No. 097-0002196

~l1dows'CE
Communications

Guide
Your official guide to communications and
connectivity in Windows CE-straight from
the source.

Enable your devices to talk to desktop PCs, the Internet, or other
systems by tapping the built-in communication interfaces in
Windows CEo From basic serial and infrared communications to
RAS and the Windows networking (WinINet) API, you get definitive
information to understand your full set of communication and
connectivity options- including how to easily add drivers and
protocols to extend application functionality for specific platforms.
You 'll also delve into Windows CE security features, ranging from
password authentication to sophisticated data encryption.

Get the definitive guide to
programming the Windows CE API.

Programming Microsoft Windows CE

ISBN: 1-57231-856-2

mspress. m icrosoft.com Mictosott·Press

