
@.
Microsoft·
Windows·CE

MICROSOFT PROFESSIONAL EDmONS

The ultimate reference and toolkit for Windows CE

Device Driver Kit

Microsoft®

·WindowsCE
Device Driver Kit

Microsoft'· Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows CE Developer's Kit / Microsoft Corporation.

p. cm.
ISBN 0-7356-0619-6
1. Microsoft Windows (Computer file) 2. Operating systems

(Computers) I. Microsoft Corporation.
QA76.76.063M74515 1999
005.4'469--dc21 99-24745

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 MLML 4 3 2 1 0 9

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. ActiveSync, ActiveX, IntelliMouse, Microsoft, MS-DOS, MSN, PowerPoint, Visual Basic,
Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be

. inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Alice Turner

Part No. 097-0002205

Contents

Contents iii

Preface ix
Document Conventions. .. xii

Chapter 1 Introduction to the Windows CE Device Driver Kit. 1

Chapter 2 Developing Native Device Drivers 5
System Architecture for Native Device Drivers 7
Restrictions on Native Device Drivers 9
Interrupt Handling in Native Device Drivers 9

Registering an Interrupt Handler 12
Processing an Interrupt .. 12
Deregistering an Interrupt Handler 12

Porting the Sample Native Device Drivers 13
Sample Battery Driver ". .. 13
Sample Display Driver .. 14
Sample Keyboard Driver. .. 14
Sample Notification LED Driver. .. 16
Sample PC Card Socket Driver 16
Sample Serial Port Driver. .. 17

Power Management in Serial Port Drivers. .. 19
Automatic Detection of Docking for Serial Ports. 19

Sample Touch Screen Driver 19
Sample USB Host Controller Driver. .. 20

OHC and UHC Host Controllers .. 21
HCD Nested Hub Support 21
Suspending and Resuming .. 21
Bus-powered and Self-powered USB Devices .. 22
USB Components Supplied by Microsoft .. 23
Writing an HCD Module. .. 23

Adding Drivers for Additional Built-in Devices 25

iv Contents

Chapter 3 Developing Stream Interface Device Drivers 27
System Architecture for Stream Interface Drivers . 28
Device Manager. 30

Registry Keys Used by the Device Manager. 31
Loading Stream Interface Drivers 32
Unloading Stream Interface Drivers 33

Device File Names. .. 34
Device File Name Format .. 34
Device File Name Prefixes ... 34
Device File Name Indexes .. 35

Writing a Stream Interface Driver DLL 35
Required Entry Points for Stream Interface Driver DLLs 36
Single Access and Multiple Access . 36
Interrupt Processing. 36
Real-Time Processing ... 37
Drivers for Serial Devices .. 38
Drivers for PC Card Devices .. 39
Installing a Stream Interface Driver DLL 39

Sample Stream Interface Drivers . 40

Chapter 4 Audio Drivers 43
Sample Audio Driver. 45

Playing and Recording. 45
Interrupt Handling in Audio Drivers . 46
Power Management in Audio Drivers . 47

Audio Compression Manager Drivers 47
Types of ACM Driver . 48
ACM Format Tags and Filter Tags. 49
ACM Driver Stream I/O Functions. 49
ACM Driver Messages . 50
Porting a Windows NT ACM Driver to Windows CE 51

Chapter 5 Printer Drivers . .. 53
Functions Implemented by Printer Drivers .. 54
Port Monitor Functions Used by Printer Drivers 55
Registry Keys for Printer Drivers. 55

Global Printer Settings. 55
Printer Driver Settings. 57

Contents v

Chapter 6 Display Drivers. .. 59
Display Driver Interface. .. 60
Primary Display Driver. .. 60
Secondary Display Drivers. .. 61

Using Secondary Display Drivers with Pocket PowerPoint 62
DDI Functions. .. 63
U sing the GPE Classes 64
GDI Support Services for Display Drivers. .. 65
Accelerating Bit Block Transfers and Line Drawing. .. 66

Accelerating Bit Block Transfers 67
Emulation Library for Software-Accelerated Blits 67
Sample Blit Acceleration .. 67
Additional Accelerated Sample Drivers. .. 71

Accelerating Line Drawing. .. 72
Functions in the Emulation Library. .. 73
Supporting Antialiased Fonts .. 76
Supporting ClearType .. 76
Including Display Drivers in an OS Image. .. 77
Testing Display Drivers .. 78
Profiling Display Driver Performance. .. 78
Display Buffer Formats ... 80

Using 1 Bit per Pixel. ... 81
Using 2 Bits per Pixel ... 82
Using 4 Bits per Pixel ... 83
Using 5 or 6 Bits per Pixel ... 85
Using 8 Bits per Pixel ... 86
Using 15 or 16 Bits per Pixel 87
Using 24 Bits per Pixel .. 88
Using 32 Bits per Pixel .. 88

Display Hardware Recommendations. .. 89
Registry Keys for Display Drivers. .. 90

Registry Keys for Removable Display Adapters .. 91

Chapter 7 Universal Serial Bus Drivers 93
USB Architecture .. 94

USB Topology. .. 95
USB Transfer Types .. 96
USB Host Controller. .. 96
USB Devices .. 97

vi Contents

USB System Software. 97
Supported and Unsupported USB Features. 99
USB Power Management. '.' .. 100

Writing USB Device Drivers ... 102
USBD Interface Functions ... 102
Required Entry Points for USB Device Drivers 105
Registry Keys for USB Device Drivers. .. 105
USB Device Driver Load Process 108
USB Device Driver Installation 109
USB Device Driver Attach Processing. .. 111
Removing USB Device Drivers .. 111

Sample USB Device Drivers. .. 112
Sample HID Class Driver .. 112

Testing USB Device Drivers. .. 113

Chapter 8 NDIS Network Drivers .. 115
NDIS Support in Windows CE. .. 117
Compiling a Miniport Driver for Windows CE 118
Implementing DMA for NDIS Miniport Drivers 119
NDIS Protocol Binding .. 120
NDIS Power Management. ... 120
Registry Keys for Miniport Drivers 121
Testing NDIS Miniport Drivers. .. 123

Chapter 9 Block Device Drivers. 125
Block Device Drivers for Linear Flash Memory Devices 126
Block Device Functionality .. 127
Limitations of Linear Flash Memory for Block Devices 128
System Architecture for Block Devices 128

Block Device File Systems .. 130
Loading and Unloading a File System 130

Implementing a Block Device Driver 131
Block Device Driver Functions 131
Loading Block Device Drivers. .. 132
Registry Keys for Block Device Drivers 132

Registry Keys for PC Cards and Minicards 132
Registry Keys for Built-in Block Devices 133

Installing a Block Device Driver 134
Detecting a Block Device " 134
Accessing a Block Device ... 134

Contents vii

I/O Control Codes for Block Device Drivers 135
Power-Cycle Processing by Block Device Drivers 135
Sample Block Device Drivers 136

Sample ATADISK Driver. 136
OEM Considerations for Linear Flash Memory. .. 137

TrueFFS Driver Customization 138
Programming Considerations for Linear Flash Memory 140

Writing a Linear Flash Memory Driver. 140
Persistent Database Storage on Block Devices 140
Persistent Registry Storage on Block Devices 141
Execute-in-Place Functionality 141
Partitioning Linear Flash Memory 142
Starting Windows CE from Linear Flash Memory 143

Further Information on Using Linear Flash Memory with Windows CEo .. 143

Index 145

Preface

The Microsoft® Windows® CE Developer's Kit provides all the information you
need to write applications for devices based on the Microsoft Windows CE
operating system. The kit includes the following four books:

• Microsoft® Windows® CE Programmer's Guide

Introduces the architecture of the Windows CE operating system.

Explains the low-level details of creating a Windows CE-based application,
including handling processes and threads, managing memory and power,
accessing the object store, and modifying the registry.

ix

Provides information on connecting a Windows CE-based device to a desktop
computer, synchronizing data between a device and desktop, and transferring
files.

Provides information on using Unicode and localizing Windows CE-based
applications.

• Microsoft® Windows® CE User Interface Services Guide

Describes all tasks associated with creating a user interface (UI) for a
Windows CE-based device, including how to create windows and dialog
boxes, how to handle messages, and how to add menus, controls, and other
resources to a UI.

Discusses how to handle· various user input methods (lMs) such as keyboards
and touch screens.

• Microsoft® Windows® CE Communications Guide

Provides basic instructions for implementing communications support on a
Windows CE-based device, including how to handle infrared connections,
develop telephony applications, implement Remote Access Service (RAS)
functionality into an application, handle networking and security issues, work
with Windows Sockets, and establish an Internet connection.

x Windows CE Device Driver Kit

• Microsoft® Windows® CE Device Driver Kit

Provides procedures for writing device drivers for Windows CE-based
devices. .

Explains how to create native and stream interface drivers as well as how to
implement universal serial bus (USB) and network driver interface
specification (NDIS) drivers.

The CD that accompanies the books includes online versions of the books plus the
following content.

Content

Windows CE API

Device Driver Kit API

Microsoft Foundation Class
(MFC) Library for Windows
CE

Active Template Library
(ATL) for Windows CE

Mobile Channels

Writing applications for a
Palm-size PC

Writing applications for a
Handheld PC

Writing applications for an
Auto PC

Description

Shows the interfaces, functions, structures, messages,
and other application programming interface (API)
elements for Windows CEo

Shows the interfaces, functions, structures, messages,
and other API elements needed to create device drivers
for Windows CEo

Shows the classes, global functions, global variables,
and macros needed to create full-featured Windows CE
based applications.

Shows the classes, macros, and global functions needed
to develop small, fast Microsoft® ActiveX® controls for
platforms that run Windows CEo

Demonstrates how to use Active Server Pages (ASP)
and Channel Definition Format technology to enable
offline Web site browsing on a Windows CE-based
device.

Demonstrates how to work with the Palm-size PC shell,
handle memory and power, programmatically access
Palm-size PC navigation controls, and design the VI for
applications running on a Palm-size PC.

Demonstrates how to work with the Handheld PC
(H/PC) shell, handle memory and power, and
synchronize data between an H/PC and a desktop
computer.

Demonstrates how to implement speech, control the
audio system, interact with a vehicle computer,
communicate with a Global Positioning System (GPS)
device, and design an effective VI for an Auto PC
application.

Preface xi

This book, the Microsoft Windows CE Device Driver Kit, contains the following
chapters:

Introduction to the Windows CE Device Driver Kit

This chapter provides an overview of the various device driver models used in
Windows CEo

Developing Native Device Drivers

This chapter provides information about native drivers that have special-purpose
interfaces to other Windows CE components.

Developing Stream Interface Device Drivers

This chapter provides information about developing device drivers for generic
devices.

Audio Drivers

This chapter provides information about audio compression manager drivers and
waveform audio drivers in Windows CEo

Printer Drivers

This chapter provides information about the printing model used in Windows CE
and how to write device drivers for printers.

Display Drivers

This chapter provides information about the display driver model used in
Windows CE and how to write device drivers for display devices.

Universal Serial Bus Drivers

This chapter provides information about USB support in Windows CE, a brief
overview of the USB architecture, and information about writing device drivers
for a USB device.

NDIS Network Drivers

This chapter provides information about the network driver interface specification
(NDIS) driver model in Windows CE and how to write device drivers for
networking devices.

Block Device Drivers

This chapter provides information about block device drivers in Windows CE
and how to write device drivers for block devices, such as linear flash memory
devices.

xii Windows CE Device Driver Kit

Document Conventions
The following table shows the typographical conventions used throughout this
book.

Convention

monospace

Bold

Italic

UPPERCASE

()

Description

Indicates source code, structure syntax, examples, user input, and
application output. For example,

ptbl-)SortTable(pSort, TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Microsoft Windows operating system, C,
or C++. For example, CommandBar_Height is a function. Within
discussions of syntax, bold type indicates that text must be entered
exactly as shown.

Indicates placeholders, most often method or function parameters; these
placeholders stand for information that must be supplied by the
implementation or the user. For example, lpButtons is a function
parameter. Also indicates new terms defined in the glossary.

Indicates flags, return values, messages, and properties. For example,
WSAEFAULT is a Windows Sockets error value, MF _CHECKED is a
flag, and TB_ADDBUTTONS is a message. In addition, uppercase
letters indicate segment names, registers, and terms used at the
operating-system command level.

Indicate one or more parameters that you pass to a function, in syntax.

CHAPTER 1

Introduction to the Windows CE
Device Driver Kit

Like other operating systems, Windows CE implements software called device
drivers, whose purpose is to interface with, or drive, built-in and peripheral
hardware devices. A device driver links an operating system and a device, making
it possible for the operating system to recognize the device and to present the
device's services to applications.

Windows CE supports a wide range of device drivers that you can customize for
various Windows CE-based platforms. Windows CE also provides several models
for driver development, including driver models from other operating systems.
Because of this diversity of driver models, Windows CE accommodates most
devices, either as a built-in device or as a peripheral device.

The Microsoft Windows CE Device Driver Kit supplies documentation enabling
you to create device drivers for Windows CEo Currently, Windows CE offers four
device driver models, two that are unique to Windows CE and two that are
external models adapted from other operating systems. The two Windows CE
based models are the native device driver and the stream interface driver. The two
external models are designed for universal serial bus (USB) drivers and network
driver interface specification (NDIS) drivers.

The various driver models are differentiated only by the software interface that
they support and not by the devices that they serve. The driver model determines
the software interface that a specified driver exports. Independent of the driver
model, a device driver can be either monolithic or layered, meaning that it can
implement its software interface directly in terms of actions on the device or it can
separate the implementation of the software interface and the actions on the
device into two layers. Many of the sample drivers provided by Microsoft use this
layered organization because it reduces the amount of code that developers must
write when porting the sample drivers to new devices. Device drivers can access
their devices directly if the devices are mapped into system memory, or they may
need to use the services of lower-level device drivers in order to access their
devices.

2 Windows CE Device Driver Kit

For example, device drivers for PC Card devices need to use the services of the
PC Card socket driver to access PC Card devices. Finally, device drivers may be
interrupt-driven, may be polled, or may not require status updates from their
devices.

As their name suggests, native device drivers serve devices that are integral to a
Windows CE-based platform. Native device drivers are designed specifically for
low-level, built-in hardware, such as keyboards, screens, and PC Card sockets.
Because native device drivers generally have a strong connection to Windows
CE-based platforms and each type of native device driver has a precise,
specialized purpose, Microsoft provides support for native device drivers in the
form of custom interfaces. This means that the majority of developers do not need
to write native device drivers. The exceptions are original equipment
manufacturers (OEMs) who customize Windows CE for new platforms. They can
either create their own native device drivers or port Microsoft sample native
device drivers to their Windows CE-based platform. Native device drivers are
always loaded when the Windows CE-based platform starts up.

In contrast to native device drivers, which have custom interfaces, stream
interface drivers are a generic type of device driver. Stream interface drivers are
user-level dynamic-link libraries (DLLs) that implement a fixed setof functions
the stream interface functions-enabling an application to interact with a device
through special files in the file system. Stream interface drivers support almost
any kind of peripheral device that can be attached to a Windows CE-based
platform. For example, developers have designed stream interface drivers to
support a variety of peripherals, including pagers, printers, modems, bar code
scanners, and Global Positioning System (GPS) receivers.

The stream interface functions enable applications to interact with a device
through special files in the file system. OEMs can also create stream interface
drivers to serve devices that are designed as part of a Windows CE-based
platform when Microsoft has not defined a specific interface for a particular type
of device. For example, a Windows CE-based point-of-sale system might have a
bar code scanner built into the hardware of the system, but because Microsoft has
not yet defined a custom interface for bar code scanners, the device driver for the
scanner would be a stream interface driver, rather than a native device driver.

Some common types of built-in devices, such as serial ports, use stream interface
drivers because the functionality of the devices is well suited to the structure of a
stream interface driver. For this reason OEMs sometimes write a few stream
interface drivers. Peripheral manufacturers are responsible for providing stream
interface device drivers so that their peripherals can be used with Windows CEo

A universal serial bus driver (USBD) connects USB-compliant devices to
Windows CEo Unlike stream interface drivers, however, USBDs are not required
to export any particular set of functions to applications. Depending on the device,
a USBD can export the stream interface functions, export a custom set of

Chapter 1 Introduction to the Windows CE Device Driver Kit 3

functions, or use existing Windows CE APIs to expose the functionality of the
device. Using existing Windows CE APIs is appropriate for a pointing device or a
mass-storage device, neither of which applications need to use directly. Windows
CE has existing mechanisms, the input-event system and the block device driver
API, respectively, for managing these types of resources.

NDIS drivers are adapted from the Microsoft® Windows NT® operating system.
The NDIS driver is a driver model that enables networking protocols, such as
TCPIIP and the Infrared Data Association (IrDA) protocol, to be completely
independent of the implementation details of device drivers for network interface
cards (NICs).

The following illustration shows the current collection of driver models and
device drivers.

Windows CE-based
driver models

Touch screen PC Card socket
Keyboard
Battery
Notification LED

Serial port
Audio
FTL

External driver
models

ATADISK
PC Card GPS

Application
specific '

The remainder of this documentation explains in detail how to implement the
device driver models.

The Device Driver Kit is packaged with two different products, the Microsoft®
Windows® CE Platform Builder, which contains source code and libraries for
OEMs who build custom Windows CE-based platforms, and the Windows CE
Platform SDK, which contains the cross-compiler tools and libraries necessary to
build software for Windows CE-based platforms. In addition, the Platform
Builder includes source code for a number of sample device drivers.

5

CHAPTER 2

Developing Native Device Drivers

To port Windows CE to a target platform, you must provide device drivers for the
devices built into your platform. Some types of devices-such as keyboards,
displays, and PC Card sockets-have a custom interface to the operating system.
The drivers for these types of devices are called native device drivers because the
interfaces they use are specific to Windows CEo

In general, native device drivers are of interest only to original equipment
manufacturers (OEMs) who build Windows CE-based platforms. Independent
hardware vendors (IHVs) who develop drivers for add-on hardware have no need
to design or customize native device drivers. Therefore, the following sections
regarding native device drivers are directed primarily to OEMs.

Microsoft defines custom interfaces for each type of native device driver.
However, although each type of native device driver has a custom interface,
native device drivers present a standard set of functionality for all devices of a
particular class. This enables the Windows CE operating system to treat all
instances of a particular device class alike, despite any physical differences. For
example, many Windows CE-based platforms use some type of LCD panel as
their display. However, there are a wide variety of these panels on the market that
have different operating characteristics, such as resolution, bit depth, memory
interleaving, and so on. By making all display drivers conform to the same
interface, Windows CE can treat all display devices the same, regardless of the
physical differences between the devices themselves.

Typically, OEMs link native device drivers with the Graphics, Windowing, and
Events Subsystem (GWES) module when they build custom Windows CE-based
platforms. However, there are exceptions; not all native device drivers are linked
with GWES during the build process. For example, users install and load some
types of native device driver, such as display drivers and printers.

6 Windows CE Device Driver Kit

For a Handheld PC (HlPC), sample native device drivers are available for the
various device classes built into the platform. These device classes are the
following:

• Display

• Battery

• Keyboard

• Touch screen

• Notification LED

• PC Card socket

If your target platform contains a set of devices different from those on the HlPC,
you need to create your own native device drivers for the devices. However, if
your platform includes devices similar to those on the HlPC, consider porting the
sample native device drivers-which the Windows CE Platform Builder
provides-to your platform, rather than developing your own native device
drivers. By porting the tested device drivers, you can save time and avoid bugs.
Even so, it is not mandatory to use the sample code provided with the Platform
Builder for the native device driver or for any other driver model. The Platform
Builder supplies driver samples solely as a convenience to help you develop your
drivers rapidly.

The following sections provide information about native device drivers to help
you use and modify the driver models supplied in the Platform Builder. These
sections discuss the following:

• System architecture for native device drivers

• Restrictions on what native device drivers can do and what system APIs they
can call

• Handling of interrupt events in a native device driver

• Porting of sample native device drivers to your platform

Note The directory and paths listed are relative to the root directory of the
Platform Builder installation.

Chapter 2 Developing Native Device Drivers 7

System Architecture for Native Device Drivers
The sample device drivers included with the Platform Builder come in two types:
monolithic and layered. A monolithic driver, as the name implies, is based on a
single piece of code that exposes the functionality of the hardware device directly
to the operating system. In contrast to the monolithic driver, the layered driver
consists of two customized layers: the upper layer is the model device driver
(MDD), and the lower layer is the platform-dependent driver (PDD). Most of the
sample device drivers are configured as layered, rather than monolithic.

The following illustration shows the integration of monolithic and layered drivers
within the Windows CE operating system.

GWES

t
001 functions

t
Device driver

MOD layer

't
DDSI functions

,t
POD layer

"

J

t
001 functions

t

Monolithic device
driver

Hardware

Stream interface
functions ,

Device driver

MDDlayer
,

t
DDSI functions

t
PDD layer

J

Microsoft provides the MDD for a layered driver. The MDD is common to all
platforms and functions, both as source code and as a library. It performs the
following tasks:

• Links to the PDD layer and defines the functions it expects to call in that layer

• Exposes different sets of functions to the operating system

• Handles complex tasks, such as interrupt processing

• Communicates with the OWES module and with the kernel

8 Windows CE Device Driver Kit

Each MDD also handles a specific set of devices, such as audio hardware or touch
screens. In general, the MDD requires no changes. If you choose to modify the
MDD, be aware that Microsoft does not test, warrant, or support custom MDDs.
You are responsible for all further MDD maintenance if Microsoft supplies an
updated MDD in order to fix bugs or to support later versions of Windows CEo In
addition, if you revise the MDD you must provide support to any IHV s who use
those changes.

Unlike the MDD layer, the PDD layer, which interfaces with both the MDD and
the hardware, is meant to be tailored to your target platform. A PDD consists of
hardware-specific functions that correspond to an MDD. There is no direct one
to-one relationship between the functions in a PDD and the corresponding MDD;
the MDD functions implement discrete tasks that the MDD uses to achieve its
goals. Because the PDD is hardware-dependent, you must create a customized
PDD and port it to your platform hardware. To assist you, Microsoft provides
several sample PDD layers for various built-in devices.

You can forego the MDD and PDD layers by implementing your device driver as
a monolithic driver. For example, if performance is a critical factor, a monolithic
driver might be a better choice than a layered driver because a monolithic driver
avoids the overhead associated with the function calls that take place between the
·MDD and PDD layers. You might also choose to implement a monolithic driver if
the capabilities of the device in question are well matched to the tasks that the
functions in the MDD layer perform. In such a case, implementing a monolithic
driver might be simpler and more efficient than implementing a layered driver.
However, regardless of whether you implement a monolithic driver or a layered
driver, you can base your implementation on the source code for any of the
sample layered drivers.

As shown in the previous illustration, the device driver interface (DDI) is a set of
functions implemented in the MDD and called by the GWES module; the device
driver service-provider interface (DDSI) is a set of functions implemented in the
PDD and called by the MDD. Use DDI functions for monolithic drivers and DDSI
functions for layered drivers.

Finally, some of the sample device drivers are implemented as stream interface
drivers, which means that the drivers use the stream interface as their DDI. In this
case, you do not need to link such drivers with the GWES module. They exist as
ordinary DLLs and are loaded as needed. The audio driver is an example of a
device driver using the stream interface model. Because these drivers have an
MDD and PDD that you can use as a basis for your development efforts, they are
included here in the native device driver section, rather than in "Developing
Stream Interface Device Drivers."

Chapter 2 Developing Native Device Drivers 9

Restrictions on Native Device Drivers
Device drivers are user-level processes, which means that the driver code can call
Microsoft® Win32® APIs and access any resources available to user-level
processes. For the most part, though, device drivers need only a limited number of
simple APIs, such as memory allocators. Drivers do occasionally perform more
complex tasks, including creating threads or windows. For example, on many
Windows CE-based platforms, the battery driver presents a dialog box to users
when the batteries drop below a threshold voltage, thus notifying users to replace
the batteries.

The only time that a driver cannot call Win32 APIs is when the driver processes a
notification that the device is shutting down. In this situation, the device driver
must not perform any operations that might cause a context switch. For example,
if the driver attempts to open a file during this time, the kernel might need to
access the file system, swap pages out of memory, and use other system resources
that might depend on separate execution contexts. To avoid these problems,
restrict the device driver to the following actions when shutting down:

• Saving the device state in preallocated storage

• Issuing any commands to the device pertinent to shutting down

• Setting a flag within the driver to note that it has been shut down

When power returns, the driver can restore the device state from the saved data.

The driver can also use the SetlnterruptEvent function to generate an artificial
interrupt event. By calling SetlnterruptEvent, a driver can· force release of the
interrupt thread to continue any necessary processing. For examples of using
SetlnterruptEvent, see the HWPowerOn and HWGetlntrType functions in the
P2io.c file. Drivers should call these functions only during power cycling.

Interrupt Handling in Native Device Drivers
Like many other computer architectures, Windows CE-based platforms use
interrupts to signal the operating system when devices need servicing by their
drivers. For example, when a user presses a key or taps a screen, the keyboard
hardware or the touch screen generates an interrupt.

However, Windows CE does not support nested interrupts, meaning that
interrupts cannot occur simultaneously. Processing of one interrupt must finish
before another begins. Although this limits the real-time scheduling capabilities of
Windows CE, it vastly simplifies the process of writing interrupt handlers.

Windows CE balances performance and ease of implementation by breaking
interrupt processing into two parts, a kernel-mode part and a user-mode part. The
kernel-mode part is called the interrupt service routine (ISR), and the user-mode

10 Windows CE Device Driver Kit

part is called the interrupt service thread (1ST). The ISR is the part that cannot be
nested; therefore, keep your ISRs short and fast so that interrupts are disabled as
little as possible. The ISR resides in the OEM adaptation layer (OAL) and has
direct access to hardware registers. Its sole job is to determine which interrupt
identifier, such as SYSINTR_SERIAL, to return to the kernel interrupt handler.

Essentially, ISRs map physical interrupts onto logical interrupts. Platform
independent interrupt identifiers are declared in the Nkintr.h header file, and
platform-specific interrupt identifiers are declared in platform header files, such as
Platform \Cepc\Inc\Oalintr .h.

Because an ISR is small and does very little processing, the interrupt handler calls
an 1ST to perform the bulk of processing required to handle an interrupt. The 1ST
remains idle until it receives a signal from the WaitForSingieObject function
that an interrupt has occurred. When an 1ST receives the signal, it calls
subroutines in the PDD layer of the native device driver; these routines in tum
access the hardware to retrieve information or to set the hardware state. The 1ST is
a standard secondary thread that can be preempted and scheduled by the operating
system. However, to enhance real-time performance, Windows CE uses the two
highest thread-priority levels, THREAD_PRIORITY_HIGHEST and
THREAD_PRIORITY_TIME_CRITICAL, for ISTs. These priority levels are not
reserved for ISTs; any secondary thread can also have them.

On a Windows CE-based reference platform, which uses the Hitachi SH3
microprocessor, the system can start an ISR in 2 to 5 microseconds. The system
can start the corresponding 1ST in 90 to 170 microseconds. Many actual Windows
CE-based platforms have better response times than these, depending on factors
such as CPU type, clock speed, bus speed, and so on. Aside from hardware
performance, the 1ST start times vary from one interrupt event to the next due to
unpredictable factors, such as the state of the processor cache and whether the 1ST
happens to be the currently running thread.

If your platform is not meeting your real-time performance requirements, you
have the following options:

• Putting more processing into the ISR. This is strongly discouraged because
when an ISR is running, no other threads are scheduled and interrupts are
masked. A user might experience poor device performance or missed input if
an ISR takes too long.

• Adding buffering hardware that can store data relevant to several interrupt
events and modifying the 1ST so that it gathers the data from several interrupt
events in the buffering hardware. This enables the 1ST to process interrupts in
batches, resulting in a reduction of real-time requirements.

• U sing a higher clock frequency on the CPU, on the data bus, or on both.

• Adjusting the priorities of the platform ISTs.

Chapter 2 Developing Native Device Drivers 11

The following illustration shows the interaction of components during the
interrupt process.

Kernel mode components

Exception
handler

Interrupt
service routine

Interrupt
service handler

OAL
routines

Hardware

Native device driver

Interrupt
service thread

~ •.

POD routines

OEM
supplied
components

}

Microsoft
supplied
components

The exception handler is the primary target of all interrupts. When an interrupt
occurs, the kernel jumps directly to the exception handler. The exception handler
then calls whichever ISR is registered to handle the current interrupt.

OEMs register their ISRs with the exception handler at startup time. First, the
kernel calls the OEMlnit function in the OAL. Next, OEMlnit calls the
Hooklnterrupt function to inform the exception handler of which ISRs
correspond to individual physical interrupt lines. A few subroutines in the OAL,
such as the OEMlnterruptEnable, OEMlnterruptDisable, and
OEMlnterruptDone functions, are also used in interrupt processing.

The interrupt handler manages the details of registering a driver for a particular
interrupt and deregistering it later. It also maintains communication among the
ISR, the 1ST, and subroutines within the OAL.

Monolithic drivers can use the Interrupt Event Handler Support interface provided
by the kernel. This interface is a lightweight process-synchronization model based
on standard Win32 events. The interface consists of event-related functions, such
as CreateEvent, SetEvent, ResetEvent, and WaitForSingleObject, and the
Windows CE kernel InterruptDone, InterruptDisable, InterruptEnable, and
InterruptInitialize functions. Layered drivers use the same functions to process
interrupts, but you need not use these functions to port layered drivers because the
MDD layer-which does not require modification-already contains the proper
calls to these functions.

The following sections discuss in greater detail how to register an interrupt
handler, process it, and deregister it.

12 Windows CE Device Driver Kit

Registering an Interrupt Handler
After a native device driver is loaded, the driver creates an 1ST and registers it
with the interrupt handler. The 1ST is registered for one or more logical interrupts.

If you use the existing MDD implementation for a particular driver, the MDD
layer registers the driver for interrupts. If you write a monolithic driver ~ you need
to implement code for registering the 1ST of the driver with the interrupt handler.
To do this, use the InterruptInitialize function to create an event and associate it
with an interrupt identifier.

Processing an Interrupt
A specific sequence of events takes place when an interrupt is processed. You
should write the ISR and 1ST for your native device driver with the following
sequence of events in mind:

1. When an interrupt occurs, the kernel jumps to the exception handler.

2. The exception handler disables all interrupts and calls the appropriate ISR for
the physical interrupt line.

3. The ISR returns a logical interrupt, in the form of an interrupt identifier, to the
. interrupt handler.

4. The interrupt handler re-enables all interrupts, with the exception of the
current interrupt, and signals the appropriate 1ST.

5. The 1ST calls PDD routines to access the hardware and finish processing the
logical interrupt.

6. The 1ST calls the InterruptDone function.

7. The interrupt handler re-enables the current interrupt and calls the
OEMlnterruptDone function in the OAL.

Deregistering an Interrupt Handler
If a device driver needs to stop processing an interrupt, the driver must use the
InterruptDisable function. When the driver calls this function, the interrupt
handler removes the association between the 1ST and the specified logical
interrupt. The interrupt handler accomplishes this by calling the
OEMlnterruptDisable function to tum off the interrupt. The driver can register
for the interrupt again later, if necessary.

Chapter 2 Developing Native Device Drivers 13

Porting the Sample Native Device Drivers
To port Windows CE to a target platform, you must provide drivers for built-in
devices, such as keyboards, touch screens, PC Card sockets, serial ports, and
audio hardware.

To assist you with the porting procedure, the following sections contain
descriptions of sample MDD and PDD implementations provided with the
Platform -Builder. The actual samples appear under the Platform\ODO\Drivers and
Platform\ODO\GWE subdirectories of your installation. The following sections

. also list the DDI and DDSI functions related to the sample drivers; any native
device driver you write should use or implement the same DDI or DDSI
functions, depending on whether you write a monolithic or a layered device
driver:

• Sample Battery Driver

• Sample Display Driver

• Sample Keyboard Driver

• Sample Notification LED Driver

• Sample PC Card Socket Driver

• Sample Serial Port Driver

• Sample Touch Screen Driver

• Sample USB Host Controller Driver

Sample Battery Driver
The battery driver provides information about the power level of the battery
supply of a platform. The battery driver reports main battery status and backup
battery status, assuming that a platform has both. The battery driver is statically
linked to GWES, so it does not exist as a dynamic-link library (DLL). The battery
driver sample code is under \Platform\ODO\GWE\Battery.

The battery driver is a monolithic driver, and hence uses only DDI functions. The
following list shows the DDI functions for the battery driver:

BatteryDrvrGetLevels

BatteryDrvrGetStatus

BatteryDrvrSupportsChangeNotification

14 Windows CE Device Driver Kit

Sample Display Driver
The display driver controls all writing to the built-in display hardware of the
system. Typically, this is an LCD screen, but it can be any sort of display
hardware that is suitable to your target platform. In Windows CE 2.0 and later, the
display driver model for built-in display hardware is the same as the model for
peripheral display adapter drivers.

By default, Windows CE uses built-in display hardware that cannot be removed
by a user. Windows CE can also use removable peripheral display adapters,
usually in the form of PC Cards. For either type, your display driver DLL must be
named Ddi.dll.

Create a registry key under HKEY _LOCAL_MACHINE\Drivers\Display to
store configuration entries for your display driver. In addition, the initialization
routine of your display driver should create keys under
HKEY _LOCAL_MACHlNE\Drivers\Display\Active so that applications can
determine which display devices are available.

Sample Keyboard Driver
The keyboard driver converts input from the keyboard hardware into keyboard
events entered into the input system. Next, the driver generates the proper
Unicode characters from these keyboard events. The Platform Builder includes a
keyboard driver that is divided into blocks, which facilitates development of
keyboard drivers for international keyboard layouts. This driver can be found
under \Platform\ODO\Drivers\Keybd2.

The keyboard driver contains two functions, ScanCodeTo VKeyEx and
KeybdDriverVKeyToUnicode, that control how keyboard scan codes are
translated into virtual keys and Unicode characters. These functions are based on
translation tables, which can be customized for different languages. You can
create your own translation tables or customize the existing tables, if necessary.

The sample code shows a design that works for the standard Windows CE-based
keyboard layout. By replacing the PDD layer, developers have implemented
drivers for hardware that uses software scanning, hardware scanning, and a
dedicated keyboard controller. Unusual hardware or nonstandard keyboard
layouts might require modification of both the MDD and PDD layers. You can
change the MDD layer to build a custom Keybdmdd.lib. Source code for the
MDD layer is located under \Public\Common\Oak\Drivers.

The Windows CE input system loads the keyboard driver at startup time. When
the input system starts, it retrieves the name of the keyboard driver DLL from the
HKEY _LOCAL_MACHINElliardware\DeviceMap\KEYBD\Drivername
registry key. If no entry is found, the input system uses the default name,
Keybddr.dll. It then loads the DLL and verifies that all required entry points exist.

Chapter 2 Developing Native Device Drivers 15

Next, the input system calls the KeybdDriverlnitialize function to perform a one
time initialization. In this function, the MOD saves a local copy of the input
system callback function. The MOD also calls the KeybdPdd_lnitializeDriver
function, which starts a thread to handle keyboard interrupts, and then returns to
the input system.

In the sample MOD, the 1ST of the keyboard driver is named KeybdDriverThread.
This thread calls the InterruptInitialize function to register for the
SYSINTR_KEYBOARD interrupt, and then waits for the system to issue
SYSINTR_KEYBOARD signals. When it receives those signals, the interrupt
handler calls the KeybdPdd_GetEvent function. The interrupt handler sends the
key events returned from the POD to the input system, which queues them for
distribution to applications.

When the input system pulls the keyboard event from the queue, it invokes a
callback to the driver's KeybdDriverVKeyToUnicode routine. The driver
analyzes the specified key event and the virtual key state and generates the
corresponding characters. The input system then sends the virtual key and the
characters to the appropriate application.

The KeybdDriverGetInfo and KeybdDriverSetMode functions get and set
information about the keyboard. When the main input thread processes a
keyboard-connection event, the thread calls the KeybdDriverGetInfo function to
get the virtual-key-to-Unicode data supplied by the driver. The thread also
allocates the required memory for the virtual key state data and any extra data
required by the driver. Next, it calls the KeybdDriverInitStates function to
initialize the memory.

The following list shows the 001 functions for the keyboard driver:

KeybdDriverGetInfo

KeybdDriverInitialize

KeybdDriverlnitStates

KeybdDriverPowerHandler

KeybdDriverSetMode

KeybdDriverVKeyToUnicode

KeybdEventCallback

The following list shows the DDSI functions for the keyboard driver:

KeybdPdd_DllEntry

KeybdPdd_GetEvent

KeybdPdd_InitializeDriver

KeybdPdd_PowerHandler

16 Windows CE Device Driver Kit

Sample Notification LED Driver
The notification LED driver handles all requests to turn the system notification
LED on or off. These include queuing notification events, waiting until those
events have elapsed, and getting and setting user-notification preferences. The
sample notification LED driver code appears under
\Platforms\ODO\GWE\Nleddrv.

The following list shows the DDI functions for the notification LED driver:

CeClearUserNotification

CeHandleAppNotifications

CeRunAppAtEvent

CeRunAppAtTime

CeSetUserNotification

The following list shows the DDSI functions for the notification LED driver:

NLedDriverDllEntry

NLedDriverGetDevicelnfo

NLedDriverlnitialize

NLedDriverPowerDown

NLedDriverSetDevice

Sample PC Card Socket Driver
The PC Card socket driver manages any PC Card sockets on a Windows CE
based platform. The MDD layer of this driver exposes a number of functions that
can be used to write stream interface drivers for individual PC Cards. These
functions constitute the Card Services library. The PDD layer exposes a set of
lower-level functions that the MDD layer uses. These functions constitute the
Socket Services library. The sample PC Card driver code appears under
\Platform\ODO\Drivers\Pcmcia.

The following list shows the DDI functions for the PC Card socket driver:

CardAccessConfigurationRegister CardReleaseExc1usive

CardDeregisterClient CardReleaseIRQ

CardGetEventMask CardReleaseSocketMask

CardGetFirstTuple CardRelease Window

CardGetNextTuple CardRequestConfiguration

CardGetParsedTuple CardRequestExc1usive

CardGetStatus CardRequestlRQ

CardGetTupleData CardRequestSocketMask

CardMap Window

CardModifyWindow

CardRegisterClient

CardReleaseConfiguration

Chapter 2 Developing Native Device Drivers 17

CardRequestWindow

CardResetFunction

CardSetEventMask

The following list shows the DDSI functions for the PC Card socket driver:

PDCardGetAdapter

PDCardGetSocket

PDCardGetWindow

PDCardlnquireAdapter

PDCardlnquireWindow

PDCardReadAttrByte

PDCardReadCmnByte

Sample Serial Port Driver

PDCardResetSocket

PDCardSetAdapter

PDCardSetSocket

PDCardSetWindow

PDCardWriteAttrByte

PDCardWriteCmnByte

The serial port driver handles any 110 devices that behave like serial ports,
including those based on 16450 and 16550 universal asynchronous receiver
transmitter (UART) chips and those that use direct memory access (DMA). Many
Windows CE-based platforms have devices of this type, including ordinary nine
pin serial ports, infrared 110 ports, and PC Card serial devices, such as modems. If
multiple types of serial ports exist on a platform, you can either create several
different serial drivers, one per serial port type, or create several different PDD
layers and link them to a single MDD, thus creating one multipurpose serial
driver. Either approach is equally acceptable. Creating separate drivers can
simplify debugging and maintenance because each driver supports only one type
of port. Creating a multipurpose driver, such as the sample serial port driver for
the Windows CE reference platform, is more complex but gives a small memory
savings.

The sample serial port MDD driver code appears under
Public\Common\Oak\Drivers\Serial. The PDD code for various platforms is in
Platform\CEPC\Drivers\Ser_Pdd and Platform\Odo\Drivers\Serial. There are
sample serial port PDDs that support standard 16550, PC Card-based, and
infrared serial ports. The sample MDD also supports linking multiple PDD layers,
as was previously described, by using a function pointer array that defines the
types of supported serial port. If you add serial devices with unusual properties or
functionality, you can add new serial port PDDs. In addition, Microsoft provides
a library of functions appropriate for supporting serial ports that use 16550-
compatible UARTs under Public\Common\Oak\Drivers\Ser16550.

18 Windows CE Device Driver Kit

The COM_Open function in the serial port MOD does not support the
fErrorChar,jNull, andfAbortOnChar members of the serial device control block
(DCB) structure. You are expected to add support for this functionality in your
POD layer, if it is appropriate for your serial port hardware.

Because the functionality of serial ports maps easily to the functionality provided
by standard stream interface functions, the serial port driver uses the stream
interface functions as its 001. Like other drivers that expose stream interface
functions, it is loaded by the Device Manager.

Serial port devices make extensive use of I/O control codes to set and query
various attributes of a serial port. For example, there are I/O control codes for
setting and clearing the Data Terminal Ready (DTR) line, for purging any
undelivered data, and for getting the status of a modem device. Therefore, you
should support as many IOCTL_SERIAL I/O control codes as possible in your
implementation of COM_IOControl.

The following list shows the 001 functions for the serial port driver:

COM_Close

COM_Deinit

COM_INIT

COM_IOControl

COM_Open

COM_PowerDown

COM_PowerUp

COM_Read

COM_Write

The following list shows the DDSI functions for the sample serial port driver:

GetSerialObject HWGetlntrType HWPutBytes

HWClearBreak HWGetModemStatus HWReset

HWClearDTR HWGetRxBufferSize HWSetBreak

HWClearRTS HWGetRxStart HWSetCommTimeouts

HWClose HWGetStatus HWSetDCB

HWDeinit HWlnit HWSetDTR

HWDisableIR HWOpen HWSetRTS

HWEnableIR HWPowerOff HWTxlntrHandler

HWGetBytes HWPowerOn HWXmitComChar

HWGetCommProperties HWPurgeComm

These function names are listed as they are defined in the sample serial port code.
You can change this set of functions or the function names by modifying the
serial object table, which is a table of HWOBJ type objects, in the serial
port POD.

Chapter 2 Developing Native Device Drivers 19

Power Management in Serial Port Drivers
The minimum of power management that a serial port driver can perform is to put
the serial port hardware into its lowest power consumption state with the driver's
HWPowerOfT function, and to tum the serial port hardware fully back on with
the driver's HWPowerOn function. Both of these functions are implemented in
the serial port driver's PDD layer. Beyond that minimal processing, a serial port
driver can conserve power more effectively by keeping the port powered down
unless an application has opened the serial port. Most serial port hardware can
support reading the port's input lines even without supplying power to the serial.
Consult the documentation for your serial port hardware to determine what parts
of the serial port circuitry can be selectively powered on and off, and what parts
need to be powered for various conditions of use. If there is no need for the driver
to detect docking events for removeable serial port devices, the driver can go one
step further and remove power from the serial port's UART chip, provided that no
applications are using the port.

Automatic Detection of Docking for Serial Ports
To support automatic detection of docking events for remove able serial port
hardware, serial port drivers can monitor the Data Carrier Detected (DCD) line.
For any serial port which is subject to automatic detection, such as PC Card
based serial port hardware, the driver can use the CeEventHasOccured function
to watch for the NOTIFICATION_EVENT_RS232_DETECTED message. When
such a message occurs, the user has docked a serial port. Some Windows CE
based platforms that support Direct Cable Connect synchronization services starts
the synchronization services when this event occurs. See
Platform\Odo\Drivers\Serial\p2io.c for an example of detecting this message.

Sample Touch Screen Driver
The touch screen driver reads input from the touch screen hardware and converts
it to touch events entered into the input system. The driver is also responsible for
converting uncalibrated coordinates to calibrated coordinates that take into
account any hardware anomalies, such as skew or nonlinearity. This calibration is
generally done when the driver is first loaded, after a cold startup of a Windows
CE-based platform. The sample code appears under
\platform \ODO\Drivers\ Touchp.

The driver must submit points while the stylus is touching the touch screen. When
the stylus is removed from the touch screen, the driver must submit at least one
final event indicating that the stylus tip was removed. The calibrated coordinates
must be reported to the nearest one-fourth pixel.

20 Windows CE Device Driver Kit

The following pseudocode example shows the calibration algorithm.

TouchPanelEnable(...); II Start the panel sampling.
TouchPanelGetDeviceCaps(...): II Request number of calibration points.
for (i=0: i<4I points; i++)

{

TouchPanelGetDeviceCaps(...): II Get a calibration coordinate.
IIDraw crosshair at returned coordinate.
TouchPanelReadCalibrationPoint(...); II Get calibration data.

TouchPanelSetCalibration(...): II Calculate calibration coefficients.

After calibration, the touch screen driver sends any pen samples generated for the
touch screen to the callback function specified in the TouchPanelEnable
function. The driver must pass calibrated points to the callback function.

The following list shows the DDI functions for the touch screen driver:

Error Analysis

TouchPanelCalibrateAPoint

TouchPanelDisable

TouchPanelEnable

TouchPanelGetDeviceCaps

TouchPanelPowerHandler

TouchPanelReadCalibrationAbort

TouchPanelReadCalibrationPoint

TouchPanelSetCalibration

TouchPanelSetMode

The following list shows the DDSI functions for the touch screen driver:

DdsiTouchPanelDisable

DdsiTouchPanelEnable

DdsiTouchPanelGetDeviceCaps

DdsiTouchPanelGetPoint

DdsiTouchPanelPowerHandler

DdsiTouchPanelSetMode

Sample USB Host Controller Driver
This section describes the specific aspects of universal serial bus (USB) support in
Windows CE 2.10 and later that are relevant to OEMs who want to add USB
support to their Windows CE-based platforms. For a complete overview of USB
support in Windows CE, including information directed to IHVs, see "Universal
Serial Bus Drivers."

The primary goal of Windows CE USB support, aside from enabling IHV s to
write device drivers for USB devices, is to help OEMs expand existing USB
support on their platforms. Currently, USB support includes only the host side of

Chapter 2 Developing Native Device Drivers 21

the USB specification, which enables Windows CE to support USB peripherals.
OEMs are free to add device-side support if their Windows CE-based platforms
need to act as USB peripherals to other USB hosts.

OHC and UHC Host Controllers
The host controller, or adapter, is a hardware layer contained within the host
computer; in this case, a Windows CE-based platform. The host controller
converts data between the format used by the host computer and the format used
on the bus. There are two standard host-controller designs, open host controller
(ORC) and universal host controller (URC). OEMs are responsible for providing
driver software for the particular host controller hardware present on their
Windows CE-based platforms. Microsoft supplies a sample host controller driver
that an OEM can use as a basis for a host controller driver (RCD). For more
information about USB host controllers, see "Writing an RCD Module."

HCD Nested Hub Support
Windows CE guarantees support for connecting hub devices only up to one level
deep. In laboratory settings, the RCD module supplied by Microsoft has
supported several layers of nested hubs; however, this feature could not be
thoroughly tested and certified before the release of Windows CE 2.10. OEMs
who want to support multiple layers of nested hubs are strongly encouraged to test
the behavior and power consumption of peripherals thoroughly under a wide
variety of hub configurations before announcing support for multiple levels of
hubs in their products.

Suspending and Resuming
Windows CE supports suspending and resuming USB devices in association with
the standard Windows CE power states. When Windows CE issues a
POWER_DOWN notification, the RCD module suspends the USB host controller
hardware and all devices. To achieve this, the MDD layer of the RCD module
calls a function in the PDD layer to enable the RCD module to complete any
platform-specific processing needed to suspend the host controller hardware
properly. Suspending power to the host controller hardware typically causes USB
devices connected to a Windows CE-based platform to enter the suspended state.
Rowever, this is not recommended for all devices; USB devices that can collect
and store data while the host computer is off should not be suspended.

When the Windows CE-based platform is turned on again, Windows CE sends a
POWER_UP notification to the RCD module. Next, the MDD layer of the RCD
module calls a function in the PDD layer. Because the PDD layer is used, OEMs
can customize the RCD module to perform any necessary platform-specific
processing. Following the call to the PDD layer, the RCD module reinitializes the
host controller hardware.

22 Windows CE Device Driver Kit

When the host controller hardware has been reinitialized, the USB driver module
unloads the USB device drivers loaded prior to the POWER_DOWN notification,
identifies all the USB devices currently connected to the bus-a process called
bus enumeration-and loads the USB device drivers for those devices. This
suspend and resume processing is very similar to that performed by the Windows
CE Device Manager for PC Card-based devices.

Bus-powered and Self-powered USB Devices
Windows CE 2.10 provides full support for bus-powered and self-powered USB
devices. When a user connects a self-powered or bus-powered device to a
Windows CE-based platform, the USB system software automatically accepts or
rejects the device, based on the power requirements of the device. The power
model is the same for both bus-powered and self-powered devices.

When a USB device is attached to a Windows CE-based platform, the RCD
module sets the initial power configuration. During the device attachment
processing phase, the RCD module reads the power requirements of the USB
device configurations from the device configuration descriptor structures. In this
way, the RCD module can choose an appropriate power configuration for the
device.

Some devices may provide several configurations with different power
requirements. OEMs who port an RCD module to their hardware can implement
policies to choose the appropriate power configurations from those provided by
the USB devices.

For example, Windows CE-based platforms have a registry setting that specifies
the maximum total current draw allowable for USB devices connected to the host
computer. If enabling a device would exceed this power threshold, the device is
not configured unless the device has an alternate configuration with acceptable
power requirements. OEMs can customize the platform-specific portions of the
RCD module to choose dynamically whether to configure devices based on the
current system power level. OEMs can implement a power model suitable for
their platforms because the RCD module calls platform-specific code in its PDD
layer for all USB devices connected to the bus. Therefore, an OEM can
implement a power model that can selectively grant or deny power to individual
USB devices according to whatever criteria the OEM chooses.

Because an RCD module cannot know which configuration might be appropriate
for different uses of a USB device, a USB device driver can change its device
configuration after the device driver is loaded, to the extent that the new
configuration meets overall system power requirements. A USB device driver
uses the SetConfiguration function to change a USB device configuration. In the
unconfigured state, USB devices may not draw more than 100 mAo

Chapter 2 Developing Native Device Drivers 23

USB Components Supplied by Microsoft
Microsoft supplies the following USB software components:

• The USB driver (USBD) module, which loads USB device drivers and
manages resources in the USB subsystem.

• The complete set of USBD interface functions listed in the Universal Serial
Bus Specification, Revision 1.0 and implemented by the USBD module. The
API includes transfer functions, pipe functions, device configuration functions,
and miscellaneous functions. This API enables developers to write USB device
drivers to support any USB-compliant devices.

• A sample HCD module that works with open host controller driver (OHCD)
compliant USB host controllers. OEMs must port this module to their
hardware in order to support USB on their Windows CE-based platforms.

• A sample USB mouse device driver, which is loaded by the USBD module.
The sample driver works with most generic USB mouse devices. Microsoft
provides the sample for OEMs and IHV s to use solely as a reference while
developing USB device drivers for their own USB devices.

Source code for these components is available in
\Wince\Public\Common\Oak\Drivers\USB located in Windows CE Platform
Builder. Header files are in \Wince\Public\Oak\Inc and \Wince\Public\Ddk\Inc.
Platform sample code is in Platform\Cepc\Drivers\Usb.

Writing an HCD Module
To support USB on a Windows CE-based platform, OEMs must customize the
HCD module included with the Platform Builder. Microsoft provides a sample
HCD module that works with OHCD-compliant USB host controllers. The sample
OHCD is designed for a Windows CE-based platform. OEMs must port the
sample OHCD to their platforms as part of their OAL implementations.

To ease the porting effort, the OHCD is divided into two parts: a platform
independent MDD and a small PDD. This is similar to the MDDIPDD device
driver model used by Windows CE-based native device drivers. As with the
native device driver model, OEMs need to port only the PDD part. Furthermore,
because the specifications for OHC interface and UHC interface hardware
explicitly define the behavior of such hardware, the PDD layer does very little.
The PDD layer for most HCD modules merely has to locate the hardware address
of the host controller within memory and provide the MDD layer with the
hardware address and a pointer to a shared memory area.

24 Windows CE Device Driver Kit

However, the MDD and PDD layers in the HeD module interact more than the
MDD and PDD layers in most native device drivers. For example, in the majority
of native device drivers, the MDD layer calls DDSI functions exposed by the
PDD layer. In the HeD module, the MDD layer not only calls the DDSI
functions, but also exposes a set of functions that the PDD layer must call at
specific times during initialization.

OEMs must create a registry key within
HKEY _LOCAL_MACHINE\Drivers\Builtin\ so that the Device Manager loads
the HeD module when the platform starts. Device drivers that the Device
Manager loads must expose some of the stream interface functions. Therefore, the
PDD layer is required to include some additional DDSI functions, such as
OhcdPdd_Open and OhcdPdd_IoControl, even though the HeD module is not
a stream interface driver. The benefit of this approach is that the Device Manager
calls the HeD module's OhcdPdd_Init function, which in tum enables the HeD
module to call the required MDD functions. The following example shows the
registry key for the HeD module; it should contain the same values as other
stream interface driver keys.

[HKEY_LOCAL_MACHINE\Orivers\Builtin\OHCI]
"Prefix"="HCO"
"Oll"="ohci.dll"
"Index"=dword:l
"Order"=dword:l

The following list shows the MDD functions that the PDD layer must call:

OhcdMdd_ CreateMemoryObject

OhcdMdd_DestroyMemoryObject

OhcdMdd_ CreateOhcdObject

OhcdMdd_DestroyOhcdObject

OhcdMdd_PowerUp

OhcdMdd_PowerDown

The following list shows the DDSI functions exposed by the PDD layer:

OhcdPdd_ CheckConfigPower

OhcdPdd_ Close

OhcdPdd_Deinit

OhcdPdd_DIIMain

OhcdPdd_Init

OhcdPdd_IoControl

OhcdPdd_Open

OhcdPdd_PowerDown

OhcdPdd_PowerUp

OhcdPdd_Read

OhcdPdd_Seek

OhcdPdd_ Write

Chapter 2 Developing Native Device Drivers 25

OEMs must write their own HCD modules if their platforms contain universal
host controller driver (UHCD)-compliant host controllers, instead of OHCD
compliant host controllers. An HCD module for UHCD hardware must expose the
same interface to the USB driver module as the sample HCD module. The OHCD
sample is suitable to use as a model while developing an HCD module for UHCD
hardware.

Adding Drivers for Additional Built-in Devices
You can add hardware devices to your Windows CE-based target platform that
are not directly supported by Windows CEo However, if you do, you must supply
device drivers for the additional devices.

Windows CE currently supports several classes of devices through the GWES
module. OEMs cannot add new device classes through this module because this
would require adding code to the module to enable it to handle I/O events for the
new device classes. The Platform Builder does not include source code for the
GWES module, which means that only Microsoft can add support for new device
classes through the module.

Because the GWES module is not extensible, OEMs must provide drivers for any
new types of device by using the other Windows CE-based driver model, the
stream interface driver model. Stream interface drivers are user-mode DLLs
managed by the Device Manager. Unlike native device drivers, each of which has
its own interface to the GWES module, all stream interface drivers expose the
same basic interface to the kernel. This interface consists of a set of functions that
presents the capabilities of a device in terms of standard file I/O functions.

Windows CE versions 1.01 and later provide kernel support to enable stream
interface drivers to access additional built-in hardware devices. Stream interface
drivers can call the KernelIOControl function, which provides a generic method
for OEMs to expose new functionality on their Windows CE-based platforms.
KernelIOControl passes its parameters to the OEMloControl function in the
OAL, which OEMs can use to provide whatever hardware access is necessary.
The Platform Builder has complete documentation on KernelIOControl and on
the OAL.

For more information, see "Writing a Stream Interface Driver DLL."

CHA'PTER 3

Developing Stream Interface Device
Drivers

Stream interface drivers are dynamic-link libraries (DLLs) that typically are
loaded, controlled, and unloaded by a special application called the Device
Manager. In contrast to native device drivers, which have special single-purpose
interfaces, stream interface drivers all use the same interface and expose a
common set of functions-the stream interface functions.

27

Stream interface drivers are designed for peripheral devices that are connected to
a Windows CE-based platform. Examples of these devices are modems, printers,
digital cameras, and PC Cards. All peripheral devices must be attached through
external connectors, such as serial ports or PC Card sockets. Therefore, device
drivers for peripheral devices are like printer drivers for desktop computers: both
run as user-mode processes that access the services of built-in hardware to control
their devices. Device drivers for serial devices use the serial port. Device drivers
for PC Cards use the PC Card Services library; in tum, the PC Card Services
library controls the PC Card socket hardware. Because of these interdependencies,
a stream interface driver often uses a native device driver-specifically, the native
device driver for the external connector to which the peripheral is attached-in
order to interact with the peripheral. However, stream interface drivers can
interact directly with a peripheral if that peripheral is mapped to some portion of
the system's memory space, as do stream interface drivers for devices that are
often built into a Windows CE-based platform, such as speakers and
microphones.

The primary task of a stream interface driver is to expose the services of a
peripheral to applications by presenting the device as a special file in the file
system. This is similar to other operating systems, such as UNIX, which exposes
peripheral devices by means of special files in the file system \Dev directory.
Although the Windows CE operating system (OS) does not have a direct analog to
the UNIX \Dev directory, the device files in Windows CE are stored in the
\ Windows directory, and a special naming convention differentiates the device
files from other files.

28 Windows CE Device Driver Kit

Despite the generic characteristics of stream interface drivers, they can be
implemented in different ways. For example, even though stream interface drivers
typically are designed by independent hardware vendors (IHVs) for peripheral
devices, OEMs who customize Windows CE-based platforms sometimes write
stream interface drivers for certain built-in devices. In addition, although stream
interface drivers are usually loaded and unloaded by the Device Manager,
sometimes applications perform the loading and unloading.

Application-specific stream interface drivers present resources in ways that an
application can readily use. Peripheral devices are the most common resource that
is used by application-specific stream interface drivers, but almost any resource,
such as memory, process lists, or TCP/IP ports, can be presented in terms of a
stream interface driver. For example, a company that makes Global Positioning
System (GPS) receivers could make two versions of the receiver: one that is built
into a PC Card and one that connects to an external serial port. Rather than adding
complexity to the application that uses the GPS receiver so that the application
can use either type of receiver, the company could write a device driver that
repackages the services of one type of receiver in the interface of the other type.
Thus, the application would not need to distinguish between the two types of
receiver that are connected to the Windows CE-based platform; both types would
react identically to the application despite the different access methods used for
serial and PC Card devices.

The following sections describe how to write stream interface drivers in greater
detail. Included are explanations of the system architecture for stream interface
drivers, device file names, the Device Manager, entry points, and the relationship
of a stream interface driver to a device and to applications.

System Architecture for Stream Interface Drivers
A stream interface driver receives commands from the Device Manager and from
applications by means of file system calls. The driver encapsulates all of the
information that is necessary to translate those commands into appropriate actions
on the devices that it controls.

Chapter 3 Developing Stream Interface Device Drivers 29

The following illustration shows the relationship between a stream interface
driver and other system components.

User application I
t ~

Ir

File system Stream
code interface

driver
~

l
Kernel

f++ Device Native device
Manager driver

. l t
Windows CE-based platform

J
Peripheral device

The following definitions apply throughout the Microsoft Windows CE Device
Driver Kit:

User application
A user application includes any application that accesses a peripheral device.
Access to a peripheral is through the file system and the special files that
expose the services of peripherals.

Kernel
The kernel, which is the core of the Windows CE OS, provides basic services
to the application. To support stream interface drivers, the kernel redirects the
file I/O function calls of the application to the appropriate entry points in the
stream interface driver.

Device Manager
The Device Manager is a special application that loads and unloads stream
interface drivers. For more information, see "Device Manager."

30 Windows CE Device Driver Kit

Stream interface driver
A stream interface driver is a DLL that manages a peripheral device. It exposes
file 110 functions to applications and implements those functions by accessing
its peripheral device to map the device's capabilities to the semantics of the
file 110 functions. Stream interface drivers can either use an underlying native
device driver to access the physical peripheral devices that the driver serves or
access its device directly if the device is mapped into memory. Audio device
drivers for built-in audio hardware are an example of direct access.

Native device driver
A native device driver is a device driver that is supplied by the manufacturer
of a Windows CE-based platform: Some stream interface drivers use native
device drivers to access peripherals because peripherals are attached to
Windows CE-based platforms through connectors that are managed by native
device drivers. The native device drivers that are used by stream interface
drivers are generally drivers for various sorts of 110 ports, such as serial ports
or PC Card sockets.

Windows CE-based platform
A Windows CE-based platform consists of a CPU, memory, clock, and
possibly other hardware, such as a keyboard and touch screen. Stream
interface drivers generally use the 110 ports on a platform, whereas the kernel
can use all of a platform's hardware.

Peripheral device
A device-such as a modem, printer, microphone, keyboard, touch screen, and
so on-that is managed by a device driver.

Device Manager
This section discusses the Device Manager, its position within the Windows CE
OS, and its management of stream interface drivers. Developers do not need in
depth knowledge of the Device Manager in order to write stream interface drivers,
but a general understanding of the Device Manager and its role within Windows
CE is useful.

The Device Manager, which is a user-level process, typically runs continuously
on a Windows CE-based platform. The Device Manager is not part of the kernel,
but it is a separate application that interacts with the kernel, the registry, and
stream interface driver DLLs. More specifically, the Device Manager performs
the following tasks:

• Initiates the loading of a driver at system startup or when it receives
notification that a user has attached a peripheral to the Windows CE-based
platform. For example, when a user inserts a PC Card, the Device Manager
attempts to locate and load a device driver for that PC Card.

Chapter 3 Developing Stream Interface Device Drivers 31

• Registers special file names with the kernel that map the stream I/O functions
that are used by applications to the implementations of those functions within
a stream interface driver.

• Finds the appropriate device driver for a peripheral by obtaining a Plug and
Play identifier from the peripheral device or by invoking a detection routine to
find a driver that can handle the device.

• Loads and tracks drivers by reading and writing registry values.

• Unloads drivers when their devices are no longer needed. For example, the
Device Manager unloads a PC Card device driver when a user removes the
card.

Registry Keys Used by the Device Manager
The Device Manager uses registry keys that are stored in the
HKEY_LOCAL_MACHINE\Drivers\key. The following are the major
subkeys of the HKEY _LOCAL_MACHlNE\Drivers\ key:

Active\
The Active\ key contains subkeys that track currently active drivers that were
loaded by the Device Manager. Device driver setup routines should not modify
the Active\ key's contents, nor should they rely on the presence of any specific
values within the Active\ key.

When a device driver is loaded, the Device Manager passes to the device
driver the path to its Active\ key as the dwContext parameter in the device
driver's XXX_lnit function. The device driver can rely on the presence of the
following values:

• Hod
Device handle from the RegisterDevice function

• Name

Device file name

• Key

Registry path within HKEY _LOCAL_MACHINE to the device driver
key

The Active\ key for PC Card device drivers has the following additional
values:

• Popld
Plug and Play identifier string

• Sckt

Current socket and function pair of the PC Card

32 Windows CE Device Driver Kit

Once a device driver is loaded, it can add values to its Active\ key. However,
the Device Manager deletes the device driver Active\ key and any values in it
when the device driver is unloaded.

Builtin\
The Builtin\ key contains subkeys that govern stream interface driver DLLs
provided by the manufacturer of a Windows CE-based platform. As was stated
previously, OEMs can implement drivers for certain types of built-in devices,
by using the stream interface driver model.

PCMCIA\
The PCMCIA \ key contains subkeys that are related to PC Cards and their
stream interface drivers. The most important information in these subkeys is
the Plug and Play identifier of the PC Card, which corresponds to a specified
driver.

Detect\
The Detect\ subkey contains numbered entries that list DLL names and
detection functions. The functions identify a generic stream interface driver for
PC Cards with no Plug and Play identifier, or for PC Cards with an unknown
Plug and Play identifier.

Driver
Driver subkeys, named after generic PC Card drivers, contain values that are
used to load the drivers. The Device Manager creates individual Driver
subkeys when a generic stream interface driver detection function indicates
that it can drive a particular device. The existence of a Driver subkey indicates
detection by a driver that has an entry within the PCMCIA\Detect\ key.

Plug-and-Play ID
Plug-and-Play ID subkeys contain values that are used to load stream
interface drivers for PC Cards. Typically, the setup routine for a PC Card
driver creates these subkeys when the driver is installed on a Windows CE
based platform.

Loading Stream Interface Drivers
There are three ways to load stream interface drivers. Two of them involve the
Device Manager, but the third is specific to applications.

The first type of loading occurs at startup. When a Windows CE-based platform
starts up, it starts the Device Manager. In tum, the Device Manager reads the
contents of the HKEY _LOCAL_MACHINE\Drivers\Builtin key and loads any
stream interface drivers .listed there. For example, on many Windows CE-based
platforms, the Device Manager loads the driver for built-in serial ports (Serial.dll)
through this mechanism.

The second type of loading occurs when the Device Manager automatically
detects the connection of a peripheral device to a Windows CE-based platform. A
PC Card is the most common type of automatically detectable device because the

Chapter 3 Developing Stream Interface Device Drivers 33

PC Card socket controller notifies Windows CE when a user inserts a PC Card.
When a user inserts a PC Card into a socket, the Device Manager calls the socket
driver, which is a native device driver, to find the Plug and Play identifier. The
Device Manager then checks the
HKEY_LOCAL_MACHINE\Drivers\PCMCIA\key for a subkey matching the
Plug and Play identifier. If one exists, it loads the driver listed within that key. If
there is no match, the Device Manager calls all of the detection functions that are
listed within the HKEY_LOCAL_MACHINE\Drivers\PCMCIA\Detect key. If
one of the detection functions returns a value indicating that it can handle the PC
Card, the Device Manager loads and initializes that stream interface driver.

In the first and second types of loading, the Device Manager calls the
RegisterDevice function for the stream interface driver and creates a numbered
subkey within the HKEY _LOCAL_MACHINE\Drivers\Active\ key to track the
driver. RegisterDevice also locks the stream interface driver into working RAM.
This prevents the driver from being swapped out and prevents any paging activity
that would slow driver operation when servicing interrupts.

The third type of loading occurs when the Device Manager cannot automatically
detect the connection of a peripheral to a platform. Unrecognized devices are
often serial devices because there is no automatic way for Windows CE to detect
the connection of a serial device to a serial port. If the Device Manager cannot
automatically recognize a peripheral, the application that needs to use the
peripheral must load the peripheral's driver. The following is the standard
sequence of actions for this type of loading:

1. A user starts the application.

2. The application determines that the device driver is not loaded, either by
inspecting the file system or by receiving a failure return value from the
CreateFile function when it tries to open the device file name of the
peripheral. For more information, "see Device File Names."

3. The application calls RegisterDevice to load the stream interface driver and
lock it into memory.

4. The application continues with its usual operation.

Unloading Stream Interface Drivers
A stream interface driver DLL can be unloaded in two ways, depending on the
method by which the DLL was loaded. If the Device Manager loaded the DLL,
the Device Manager detects the disconnection of the stream interface driver's
peripheral from the Windows CE-based platform, such as when a PC Card is
ejected from its socket. At this point, the Device Manager removes the driver's
entry from the HKEY _LOCAL_MACHINE\Drivers\Active key, calls the

34 Windows CE Device Driver Kit

DeregisterDevice function to remove the peripheral's device file name from the
file system, and notifies the FreeLibrary function to unload the DLL. However,
if an application loaded the DLL, the application must unload the DLL before it
exits by calling DeregisterDevice.

Device File Names
Applications access peripheral devices through special entries in the file system.
The file system code In the Windows CE OS includes code that recognizes these
special file names and redirects file I/O operations to the appropriate stream
interface driver.

This section provides information about the file name formats, prefixes, and
indexes that you need to establish to develop stream interface drivers. For more
information on how to use device file names when developing a stream interface
driver, see "Writing a Stream Interface Driver DLL."

Device File Name Format
The file system recognizes file names as special device files if the file names
consist of exactly three uppercase letters, a single digit, and a colon (:). This
format follows the convention established in the Microsoft® MS-DOS® operating
system for serial and parallel ports. For example, COMl:, PGR7:, and GPSO: are
valid device file names, but MODEMl:, COM27:, and LPTl are not.

Device File Name Prefixes
The prefix consists of three uppercase letters that identify which special device
file name corresponds to a particular stream interface driver. The prefix is stored
in a registry value called Prefix, which is located within the key for the driver.
Typically, the setup utility that installs a driver creates this registry value, along
with the other values that stream interface drivers need.

When you create a stream interface driver, you designate the three-letter prefix. It
can be any three letters, although you should use a common prefix if your driver is
for the same class of device as other drivers already present on the Windows CE
based platform. For example, drivers for serial devices, such as modems, could
use the common prefix COM, even though other drivers might already be using
that prefix. Your driver can distinguish itself from any others with the same prefix
by using a different index.

Chapter 3 Developing Stream Interface Device Drivers 35

Windows CE uses the prefix in two ways. First, the prefix identifies all possible
device file names that can access the stream interface driver. Second, the prefix
tells the as what entry-point names to expect in the stream interface driver DLL.
For example, to implement a device driver for a PC Card pager, you could choose
PGR as the three-letter prefix, which in tum would dictate entry-point names,
such as PGR_Open, PGR_IOControl, and so on.

Device File Name Indexes
In a special device file name, the index is the digit that follows the prefix. The
index differentiates devices that are managed by a stream interface driver. By
default, the Device Manager numbers indexes logically from 1 through 9, with 1
corresponding to the first device file name. If you require a tenth device file name,
use 0 as the index.

If you need to number your device file names starting at an index other than 1,
specify a starting index in a registry value called Index within the registry key for
your driver. This is often necessary if your stream interface driver serves a device
that should use a common prefix, such as COM. For example, on many Windows
CE-based platforms, COM1:, COM2:, and COM3: correspond to built-in serial
port hardware. If your driver is for a serial device, such as a packet-radio modem,
it should appear as a COM port because modem software often assumes that
modems are connected to COM ports. You could specify an Index value of 4 to
differentiate your serial device from the ones that arebuilt into the hardware.

If you specify an index, rather than letting the Device Manager assign indexes as
needed, by default your driver supports only one device because the Device
Manager can register only one device file name. If you need to specify an index
but need more than one device file name, you have two options: the XXX_Init
function can register additional device file names with the RegisterDevice
function, or the setup utility can create additional sets of registry keys, each with a
different index, when your driver is installed.

Writing a Stream Interface Driver DLL
The following sections explain the important issues that affect your design
decisions as you implement a stream interface driver DLL. Topics covered
include how to create a DLL containing required entry points for stream interface
drivers, how to regulate either single access or multiple access to a driver, and, for
developers who implement interrupt-driven devices, how to plan for interrupt
processing and real-time processing. In addition, this section offers specific
information regarding drivers for serial devices and PC Card devices. The final
section discusses the installation of a stream interface driver on a Windows CE
based platform.

36 Windows CE Device Driver Kit

Required Entry Points for Stream Interface Driver DLLs
For every stream interface driver DLL, the required entry points implement
standard file I/O functions plus power management functions that are used by the
Windows CE kernel. The following list shows the required entry points:

XXX_Close

XXX_Init

XXX_Open

XXX_PowerUp

XXX_Seek

XXX_Deinit

XXX_IOControl

XXX_PowerDown

XXX_Read

XXX_Write

When you create a DLL, replace XXX in the entry-point names with a device file
name prefix.

Single Access and Multiple Access
Because peripheral devices are exposed to applications as special files when you
create a stream interface driver, you provide the implementation of such a file.
Therefore, consider whether it is practical, based on the capabilities of the device
that your driver serves, to enable multiple applications to have simultaneous
access to the special file; that is, consider whether your driver can have multiple
open file handles on its device. A stream interface driver can implement either
single access or multiple access by using the hOpenContext parameter that
Windows CE passes to all file I/O functions.

To enable multiple access, each call to the XXX_Open function should return a
different value for hOpenContext. The device driver must track which return
values from XXX_Open are in use. Subsequent calls by Windows CE to
XXX_Close, XXX_Read, XXX_Write, XXX_Seek, and XXX_IOControl pass
these values back to the device driver, enabling the driver to identify which
internal data structures to manipulate.

To enforce single access, only the first call to XXX_Open shquld return a valid
hOpenContext value. As long as this value remains valid, which is until Windows
CE calls XXX_Close for the value, subsequent calls to XXX_Open should return
NULL to the calling application to indicate failure.

Interrupt Processing
Some peripheral devices can cause or signal interrupts on the bus of a Windows
CE-based platform. Typically, the peripherals are PC Cards. Some Windows CE
based platforms use standard buses, such as the Peripheral Component
Interconnect (PCI) local bus, in which case expansion cards plugged into the bus
can also signal interrupts. Because these peripheral devices can cause or signal
interrupts, their stream interface drivers need code to process interrupts.

Chapter 3 Developing Stream Interface Device Drivers 37

The recommended method for processing interrupts is for the stream interface
driver to spawn a new thread, called an interrupt service thread (1ST), during its
processing of the XXX_Init call. When an interrupt occurs, Windows CE signals
the 1ST. The 1ST interacts with the peripheral device to perform whatever device
specific processing is necessary to handle the interrupt. This method is beneficial
because Windows CE versions 2.12 and earlier do not support nested interrupts.
Thus, while an interrupt service routine (ISR) is running, other interrupts are
masked for a short time. ISRs should therefore do as little processing as possible,
and should report only the logical interrupt value to the as so that Windows CE
can activate the corresponding 1ST. By separating the interrupt processing into a
very short ISR and a longer user-mode 1ST, interrupts can be masked for as little
time as possible.

ISTs generally run at a high priority so that they can respond quickly to interrupt
events. For most drivers, this thread should register to receive interrupt
notifications from the Interruptlnitialize function. For PC Card drivers,
however, the thread receives notifications from the CardRequestlRQ function.
PC Card drivers do not process interrupts directly because the built-in PC Card
socket driver gets the raw interrupts that are generated by the PC Card socket.
CardRequestlRQ allows you to specify a callback function that the PC Card
socket driver calls when an interrupt occurs.

Real-Time Processing
Hard real-time processing performance of Windows CE versions 2.12 and earlier
varies widely according to processor and bus speed. Windows CE versions 2.12
and earlier do not support nested interrupts, which greatly limits real-time
processing. On the Windows CE-based platform, which uses the Hitachi SH3
microprocessor, interrupt-driven device drivers are typically started within 90 to
170 microseconds after the interrupt occurs, yielding theoretical sampling rates of
about 5.8 to 11 kilohertz (kHz). The variability is due to factors such as what data
is currently in the processor cache and whether the device driver process happens
to be the one currently executing. On other hardware, factors such as CPU speed,
bus speed, and the speed of the manufacturer's interrupt vectoring routines
determine the lower limits of interrupt latency. Because the ISTs of device drivers
can be preempted by high-priority threads, there is no absolute upper limit. In
general, however, the latency for servicing interrupts in Windows CE is less than
the latency for Windows-based desktop platforms; device drivers are unlikely to
lose data unless they are starved for processor time by other high-priority threads
running on the as. Device drivers for polled devices may be able to achieve
higher sampling rates, because polled devices do not generate interrupts and are
therefore not subject to the same latencies.

38 Windows CE Device Driver Kit

Peripherals that connect to a Windows CE-based platform through a serial port
can do so at the maximum speed of the serial port. Most serial ports are buffered
internally by 16550-c1ass·universal asynchronous receiver-transmitters (UARTs)
capable of relaying 115 kilobits per second; consult the manufacturer for specific
information. PC Card socket speeds vary also; again, the authoritative source of
information is the manufacturer.

To reduce the time that it takes your stream interface driver to handle incoming
data, defer complicated processing. If the device driver restricts itself to collecting
the data in memory, it can leave processing of that data for later, to be handled by
a low-priority thread or user-level application.

Drivers for Serial Devices
Windows CE supports two methods of driving serial devices. The first requires
you to create a stream interface driver DLL that presents high-level information
from the device to applications. The second does not require that you write a
driver; instead, it requires the applications that use the device to interpret the
device data.

These two methods are possible because serial devices are always accessed
through built-in COM po·rts, generally COM1: through COM3:. With the first
method, you implement a serial device driver to present a new device file name to
applications, such as COM4: or another file name specific to the function of the
serial device. Internally, a device driver uses the services of the built-in COM port
to access the peripheral. You can also let user applications open a built-in COM
port to access the peripheral device directly.

The following are the factors allowing you to decide between these two strategies:

• Single access or multiple access

If the peripheral can support simultaneous access by multiple applications,
implement a stream interface driver. This greatly simplifies the user-level
applications.

• Complexity of the incoming data stream

If the incoming data stream from the peripheral is complicated and requires
considerable processing to yield usable information, you probably should write
a stream interface driver.

• Speed of the incoming data stream

If data comes from the peripheral at a very high rate, there might not be
enough processing time available to support the overhead that is required for a
stream interface driver. In this case, you might have no choice but to put all
processing into the user-level application.

Chapter 3 Developing Stream Interface Device Drivers 39

Drivers for PC Card Devices
Stream interface drivers for PC Cards are more complex than drivers for serial
devices because PC Cards themselves tend to be more complex. Stream interface
drivers access peripheral devices through built-in hardware. For PC Cards, the
built-in hardware is the PC Card socket or sockets available on a Windows CE
based platform. Specifically, these sockets are PC Card Type II sockets. The
sockets are driven by the built-in PC Card socket driver, which implements the
socket functions that you use to write stream interface drivers for PC Cards.

Most PC Card socket functions have a parameter that represents a socket and
function pair. A socket and function pair is a combination of one particular PC
Card socket and one particular function of a PC Card. Socket and function pairs
support multifunction PC Cards and platforms with more than one PC Card
socket. Drivers for multifunction cards should register one device file name for
each function. Any drivers that you create for PC Cards should also be written to
work with any PC Card socket because different platforms have different numbers
of sockets.

If you write a generic PC Card driver-one that can drive an entire class of PC
Cards adhering to a specified operating standard-you need an additional entry
point in the DLL for a detection function. The Device Manager uses the detection
function when a user inserts an unknown PC Card with no Plug and Play
identifier. This function must conform to the PFN_DETECT_ENTRYprototype
declared in Public\Common\DDK\Inc\DevLoad.h·. For more information on PC
Card detection functions, see "Device Manager."

Installing a Stream Interface Driver DLL
Installing a stream interface driver DLL on a Windows CE-based platform is a
relatively simple procedure. However, you should provide a setup application for
users because proper installation of most stream interface drivers requires changes
to the registry. The setup application runs on a host computer and connects to a
Windows CE-based platform through a serial cable or similar connection.

The setup application must perform the following steps:

1. Connect to the Windows CE-based platform or detect that a connection
already exists.

2. Copy the stream interface driver DLL into the \ Windows directory of the
platform.

3. Create registry keys and values for the driver, if necessary.

40 Windows CE Device Driver Kit

For information about connecting a host computer to a Windows CE-based
platform and copying files from a host computer to a Windows CE-based
platform, see the Windows CE Platform SDK. For information about required
registry keys for a stream interface driver, consult the Microsoft Windows CE API
Reference included in this documentation.

Sample Stream Interface Drivers
The Platform Builder contains sample device drivers that illustrate how to write
stream interface drivers for several types of device. If you implement a stream
interface driver for a device similar to one of the samples, you can base your
driver on the appropriate source code of the sample driver. The following table
shows the sample device drivers contained in the Platform Builder.

Sample

Pager Card

Modem Card

RAM Card

PC Card Test

Serial

Touch Screen

Description

Illustrates a device driver for the Motorola NewsCard pager

Illustrates a device driver for a PC Card modem

Illustrates a device driver for a Static RAM PC Card

Illustrates a device driver for testing PC Cards

Illustrates a device driver for devices that connect to a serial port

Illustrates a device driver that interacts with the screen

The following are PC Card drivers:

• 16550mod

A sample client driver for an I/O-type PC Card. A sample application included
with this driver opens,_ writes, reads, and closes a device by making calls to the
16550MOD driver.

• Pager

A sample pager PC Card driver supporting the Motorola NewsCard pager. The
Platform Builder includes a sample application that enables users to receive
and view pages.

• Ramcard

A sample driver for a memory-type PC Card. The Platform Builder includes
two sample applications for writing to and reading from the card.

• Cardtest

A sample driver and test for a block of memory on a PC Card memory card or
to dump attribute memory or tuple information from a PC Card.

Chapter 3 Developing Stream Interface Device Drivers 41

The following are serial port drivers:

• GPS

A sample serial-based client PC Card driver based on a GPS PC Card.

• TrY
A sample serial-based client PC Card driver based on a sample teletypewriter
(TrY) terminal.

For network driver interface specification (NDIS) drivers, NDIS sources consist
of source code that is compatible with Windows 95 and Windows NT
Workstation. The source code can simply be recompiled as a Windows CE-based
DLL. For more information, see "NDIS Network Drivers."

43

CHAPTER 4

Audio Drivers

A waveform audio driver is responsible for processing messages from the Wave
API Manager to play and record waveform audio. Waveform audio drivers are
implemented as stream interface drivers that are loaded by the Device Manager.
The sample waveform audio driver is named WaveDev.dll. All audio drivers use
the prefix W A V to name their stream interface functions, yielding function names
such as WAY _Open, WAY _IOControl, and so on.

Audio hardware typically supports a larger set of operations than usually apply to
files. For example, files commonly do not have volume controls or playing speed
controls, but audio hardware can and often does have them. The
DeviceIOControl portion of the stream interface allows arbitrary operations on
files, making it possible to manipulate audio hardware by means of
W A V _IOControl. To send commands to the audio hardware, the operating
system passes various messages to this function. For example, to prepare the
audio hardware for recording, Waveapi.dll uses W A V _IOControl to send the
WIDM_PREP ARE message to the audio driver. The messages sent to the audio
driver are similar to those used by user-mode audio drivers on Windows-based
desktop platforms, such as Mmdrv.dll.

Because audio drivers rely entirely on DeviceIOControl function messages, the
implementation of the remainder of the stream interface is relatively simple.
Specifically, the WA V_Read, WA V_Seek, and W A V_Write functions are
merely stubs that return constant values. The other stream interface functions
should be fully implemented and follow the conventions described in the
Microsoft Windows CE API Reference for those functions.

As an alternative to implementing the stream interface directly, you can use the
model device driver (MDD) library-Wavemdd.lib-supplied by Microsoft. This
library implements the stream interface functions in terms of the audio device
driver service-provider interface (DDSI) functions. If you use Wavemdd.lib, you
must create a matching platform-dependent driver (PDD) library that implements
the audio DDSI functions. The PDD library is generally called Wavepdd.lib,
although there is no requirement that it be called this. These two libraries can then
be linked together to form W avedev .dll.

44 Windows CE Device Driver Kit

The following illustration shows the interaction of the audio driver with the
Windows CE operating system (OS).

Playing and recording functions
+1

as kernel

i
WAVJO Control Calls

Wavedev.dll

As shown in the illustration, the first step in playing and recording sounds is a call
from an application to the as. The as translates such calls into
W A V _IOControl calls to the audio driver. The as component that performs this
translation is the Wave API Manager. The audio driver then executes the
appropriate actions on the hardware. The Device Manager only loads and registers
the audio driver at startup time. It is not directly involved in the operation of the
driver.

Like standard stream interface drivers, the audio driver uses registry keys both to
store configuration information and to advertise itself to the as. If the audio
driver is not already listed in Platform.reg, create a key called
HKEY _LOCAL_MACHINE\Drivers\Builtin\Audio to store configuration
information. The Device Manager creates a key in .
HKEY _LOCAL_MACHINE\Drivers\Active for the audio driver when the
driver is loaded at startup time. Because the Device Manager only checks for
audio drivers at startup time, drivers for add-on audio hardware still need to have
their registry entries in the \Builtin\Audio part of the registry, although their
hardware is not built into any Windows CE-based platform.

Chapter 4 Audio Drivers 45

The following list shows the stream interface functions for the audio driver:

WAV_Close

WAV_Deinit

WAV_Init

W A V _IOControl

WAV_Open

WA V _PowerDown

WA V _PowerUp

WAV_Read

WAV_Seek

WAV_Write

For more information, see "Developing Stream Interface Device Drivers."

The following list shows the DDSI functions for the audio driver:

PDD_AudioDeinitialize

PDD _AudioGetInterruptType

PDD _Audiolnitialize

PDD_AudioMessage

PDD_AudioPowerHandler

PDD_ WaveProc

Sample Audio Driver
The sample audio driver is a layered, interrupt-driven stream interface driver that
drives a built-in audio device. The layers are the typical MOD and POD layers
that native device drivers use, although the device driver interface (001)
functions in the MOD layer are the same as the stream interface functions that are
used by ordinary stream interface drivers. This code is provided as a convenience
and does not imply any restrictions in the way that audio hardware for Windows
CE must function. An audio driver could be implemented that is monolithic, is
polled, and that drives a peripheral device, if a user wants to do so. The sample
audio driver MOD layer implements a single audio device capable of playing
and/or recording pulse code modulation (PCM) waveform audio. The sample
supports simultaneous recording and playing but may also be used with audio
devices that can perform only one of those functions at a time. The POD layer is
responsible for communicating with the audio hardware to start and stop playing
and recording and to initialize and deinitialize the hardware.

Playing and Recording
The basic operation for playing involves an interrupt and two direct memory
access (DMA) buffers for output data. The Wave API Manager prepares the data
blocks and sends them to the audio driver's MOD layer. The MOD checks to see
if the block has data to be played. If so, it calls the PDD _ WaveProc function by
using the WPDM_START message. The POD is responsible for copying data
from the block to the temporary DMA buffers. Then, the DMA is started to play

46 Windows CE Device Driver Kit

the data. When the first of the two buffers is finished playing, an interrupt occurs.
The PDD should report the interrupt to be of type
AUDIO_STATE_OUT_PLAYING. If there is more data to be played, the MDD
sends the message WPDM_CONTlNUE. Otherwise, it sends
WPDM_ENDOFDATA. As data blocks finish playing, the MDD marks them as
done and sends them back to the Wave API Manager.

The PDD should alternate between the two DMA buffers, filling one buffer as the
other is playing. If the reserve buffer is not full before the first buffer's data is
finished playing, the PDD layer shQuld report this with the return value
AUDIO_STATE_OUT_UNDERFLOW. This gives the MDD layer an
opportunity to synchronize and continue playing.

Recording uses a mechanism that is similar to that used by playing, but in reverse
order. Recording starts with the PDD message WPDM_START as before, but no
data is copied until the first DMA buffer is full. Then, the PDD copies the data
from the DMA buffer into the user block. Again, as blocks are filled, the MDD
returns them to the Wave API Manager. Recording continues until the user
application requests a stop and sends the WPDM_STOP message.

Interrupt Handling in Audio Drivers
The MDD layer is responsible for interrupt handling. It creates and manages the
audio driver's interrupt service thread (1ST). The 1ST calls the
PDD _AudioGetlnterruptType function to determine the cause of the audio
interrupt. Based on the interrupt type, the MDD either performs a callback to the
Wave API Manager or sends more data or buffer space to the PDD to be played or
recorded.

The PDD layer can support simultaneous playing and recording with one interrupt
by merging the recording and playing status in the AUDIO_STATE return value
for PDD _AudioGetlnterruptType. The value can represent a state change of
either the playing or recording hardware, or both. The lower four bits of the return
code represent the input status, and the upper four bits represent the output status.
If the current interrupt is for both recording and playing, the values can be
combined using the logical OR operator. However, if the interrupt requires only
one operation, the other four bits should remain 0; otherwise, the MDD interprets
this as a change or update in the hardware's status.

If your audio device uses more than one hardware interrupt-typically, one for
playing and one for recording-the driver's interrupt service routines (ISRs)
should both return the interrupt identifier specified by the PDD layer. When
PDD _AudioGetlnterruptType is called to determine. the cause of the interrupt,
the function can access the hardware to determine the actual playing or recording
status for each interrupt event. If this mechanism is not suitable for your audio
device, you must modify the sample MDD layer to handle multiple virtual
interrupts and multiple ISTs.

Chapter 4 Audio Drivers 47

Power Management in Audio Drivers
When the system goes into the suspend state, the Device Manager calls the audio
driver's W A V _PowerDown function. This function should call the
PDD_AudioPowerHandler function to allow the PDD to put the hardware in a
low-power consumption mode, if it is available. When the system resumes, the
Device Manager calls the audio driver's W A V _PowerUp function, which should
also call PDD_AudioPowerHandler. WAY _PowerUp also calls the
SetInterruptEvent function for the audio interrupt to allow any active handles to
be released by the 1ST.

Audio Compression Manager Drivers.
Audio Compression Manager (ACM) drivers are stream interface drivers. Like
other stream interface drivers, ACM drivers are controlled by the Device Manager
and they expose standard stream 110 functions. However, unlike other stream
interface drivers, applications do not use these drivers directly. ACM drivers are
called by the ACM, which sends messages to ACM drivers when applications
need to play or record sounds.

There are several key reasons to 'write an ACM driver:

a To support a particular audio file format. For example, the . wav files on
Windows-based platforms require ACM drivers that differ from ACM drivers
for the .au files of Sun Microsystems. Similarly, audio files in other formats
need customized ACM drivers. .

• To convert audio file format to another format. The ACM driver application
programming interface (API) can be used to load an audio file into a common
format, which ACM drivers can then translate into their own format.

• To use an encoding or compression algorithm tailored to the characteristics of
a particular type of audio. For example, human speech has a relatively limited
frequency range and many essentially silent periods. An ACM driver written
with these characteristics in mind can produce recordings that require little
memory and yet retain good sound quality.

• To perform filtering of audio data. For example, an ACM driver could be used
to filter a data stream out of an audio signal that contains speech in the lower
frequencies and data in the higher frequencies.

An individual ACM driver can be written to perform a combination of these tasks.
All ACM drivers must use ACM as their device file name prefix. In Windows CE,
the Index keys in the registry settings designate individual ACM drivers. Thus,
multiple ACM drivers have special device file names such as ACMl:, ACM2:,
and so on. A maximum of eight ACM drivers can coexist on a Windows CE
based platform; Index value 9 is reserved for the PCM converter exported from
Waveapi.dll.

48 Windows CE Device Driver Kit

The ACM uses Index keys when searching for an ACM driver to perfonn fonnat
conversions. The ACM selects the first appropriate ACM driver that it finds. For
more details about device file names, and Index keys, see "Developing Stream
Interface Drivers."

ACM drivers respond to messages similar to those used by ACM drivers written
for Windows NT. In fact, the Windows CE-based ACM functions and structures
that ACM drivers use are the same as those described in the Microsoft Windows
NT Device Driver Kit. In Windows CE, the ACM uses the ACM_IOControl
function to send messages to the driver. By calling this function, the ACM
bypasses the three primary stream 110 functions: XXX_Read, XXX_Write, and
XXX_Seek. Consequently, those functions are never called in an ACM driver. The
ACM uses the other stream 110 functions only for setup and shutdown tasks.

The Microsoft Windows NT Device Driver Kit contains several sample ACM
drivers. You can port these drivers to work on any Windows CE-based platfonns
that your product targets, and you can modify the drivers to support additional
audio fonnat types and audio filter types. The Microsoft Windows NT Device
Driver Kit contains complete documentation on writing ACMdrivers. For more
infonnation, see "Porting a Windows NT ACM Driver to Windows CE."

Types of ACM Driver
There are three types of ACM drivers:

• Codec

Codecs convert one audio fonnat type to another format type; typically, a
compressed format to an uncompressed format. A codec can convert a
compressed format, such as MS-ADPCM, to an uncompressed fonnat, such as
PCM, which most audio hardware can play directly.

• Converter

Converters change one variety of a fonnat to another variety of the same
fonnat. For example, a converter can convert a PCM audio stream sampled at
44 kilohertz (kHz) to a PCM audio stream sampled at 11 kHz.

• Filter

Filters modify audio data without changing the format of the data. Filters
generally are used to add some sort of audio effect to an audio stream. Tasks
such as graphic equalization or adding an echo to an audio stream are
appropriate for filters.

Chapter 4 Audio Drivers 49

ACM Format Tags and Filter Tags
Format tags represent the names of individual formats, such as PCM. Filter tags
represent the names of individual filters. Typical ACM drivers support one or
more types of format or filter, or a combination of both. A set of formats or filters
is associated with each of an ACM driver's tags. For example, the sample
IMAADPCM driver, a codec, supports the WA VE_FORMAT_PCM format tag
for the PCM format type and WAVE_FORMAT _IMA_ADPCM for the
IMAADPCM format type. For each format tag, the driver supports a set of
individual formats, consisting of combinations of sample rates and sample sizes.

The main difference between codecs and converters is that codecs transform data
from a format belonging to one format tag into a format belonging to another
format tag, whereas converters transform data between two formats that belong to
the same format tag.

The supported format tags and filter tags are declared in the Mmreg.h header file.
If you write an ACM driver for a new format type or filter type, register your
driver with Microsoft.

ACM Driver Stream 1/0 Functions
The following table shows the ACM functions and their associated calls.

Function

ACM_Init

ACM_Deinit

ACM_Open

ACM_Close

ACM_Read

ACM_Write

ACM_Seek

ACM_PowerUp

ACM_IOControl

Description

Called by the Device Manager when the driver is loaded

Called by the Device Manager when the driver is unloaded

Called by the ACM when the driver is opened for use

Called by the ACM when the driver is no longer needed

Never called

Never called

Never called

Called by the Device Manager when the system resumes from the
suspend state

Called by the Device Manager when the system enters the
suspend state

Called by the ACM to pass messages to and receive information
from the driver

50 Windows CE Device Driver Kit

ACM Driver Messages
The ACM passes the following messages to ACM drivers:

ACMDM_DRIVER_ABOUT
Requests that the driver display its About dialog box.

ACMDM_DRIVER_DETAILS
Requests that the driver return detailed information about its capabilities.

ACMDM_DRIVER_NOTIFY
Notifies the driver of changes to other ACM drivers.

ACMDM_FILTER_DETAILS
Requests information about a filter that is associated with a specified filter tag.

ACMDM_FIL TERT AG_DET AILS
Requests information about a specified filter tag.

ACMDM_FORMAT_DETAILS
Requests information about the format that is associated with a specified filter
tag.

ACMDM_FORMAT_SUGGEST
Requests that the driver suggest a target conversion format for a specified
source format.

ACMDM_FORMA TTAG_DETAILS
Requests information about a format tag.

ACMDM_HARDWARE_ W A VE_CAPS_INPUT
Requests information about the input capabilities of the audio hardware.

ACMDM_HARDW ARE_ W A VE_CAPS_OUTPUT
Requests information about the output capabilities of the audio hardware.

ACMDM_STREAM_CLOSE
Requests that the driver close a conversion stream.

ACMDM_STREAM_CONVERT
. Requests that the driver convert an audio stream.

ACMDM_STREAM_OPEN
Requests that the driver open a new audio stream.

ACMDM_STREAM_PREPARE
Requests that the driver prepare any buffers that are associated with an audio
stream.

ACMDM_STREAM_RESET
Requests that the driver stop operations on an audio stream.

ACMDM_STREAM_SIZE
Requests that the driver return the size that is required for a source or
destination buffer.

Chapter 4 Audio Drivers 51

ACMDM_STREAM_UNPREPARE
Requests that the driver clear any prepared buffers that are associated with an
audio stream.

Porting a Windows NT ACM Driver to Windows CE
To port an ACM driver from Windows NT to Windows CE, link the driver with
the Acmdwrap.lib file, which provides the driver with the appropriate stream 110
interface. This library not only handles· all interactions with the ACM and the
Device Manager, but also passes messages from its ACM_IOControl function to
the Windows NT ACM driver's existing DriverProc function.

53

CHAPTER 5

Printer Drivers

Windows CE versions 2.0 and later include support for printing. The printing
model used by the Windows CE operating system (OS) is a subset of the printing
model defined for desktop Windows-based platforms. Only a small number of the
graphics driver functions defined for printer drivers are required in printer drivers
for Windows CEo

The following sections describe the interaction between Windows CE-based
printer drivers and Windows CE-based display mechanisms. These sections also
describe the functions that printer drivers must implement and the port monitor
functions that printer drivers call to send data to printers.

The Windows CE graphics display interface (GDI) and display driver perform
most of the work involved in printing. At the beginning of the printing process,
the GDI creates a device context with attributes that are retrieved from the printer
driver during a call to the DrvEnablePDEV function. The display driver is used
to render subsequent drawing commands that are issued from the application into
the DC; the printer driver does not render the document. Then, the GDI sends the
resulting bitmap to the printer driver so that the printer driver can format it and
send it to the printer. To conserve memory, the GDI renders the document in
bands, which are horizontal sections of the page, and the GDI makes several calls
to the printer driver to send the rendered bands to the printer.

Windows CE-based printer drivers are required to implement only those graphics·
driver functions that are necessary for gathering printer metrics, setting up the
printer, starting and ending print jobs, and preparing rendered strips for printing.
Internally, the printer driver converts the bitmap data from a GDI bitmap format
into the format that is required by the printer. This can include operations such as
color reduction to the color space of the printer, data compression, and data
conversion into the format that is used by the printer, a format sometimes known
as a printer description language. Finally, the printer driver calls the port monitor
to send the rendered strips to the printer.

54 Windows CE Device Driver Kit

Windows CE-based printer drivers are compiled as dynamic-link libraries
(DLLs). As a result, they must export the DrvEnableDriver function.

For more information about Windows CE-based printer drivers, see "Functions
Implemented by Printer Drivers" and "Registry Keys for Printer Drivers."

Functions Implemented by Printer Drivers
The following table shows the functions that Windows CE-based printer drivers
must implement.

Function

DrvCopyBits

DrvDisablePDEV

DrvDisableSurface

DrvEnableDriver

DrvEnablePdev

DrvEnableSurface

DrvEndDoc

DrvGetModes

DrvStartDoc

DrvStartPage

Description .

Called by the GDI to copy a rendered band to the printer driver.
During the call to the DrvEnablePDEV function, the printer
driver specifies the bitmap format that is used in the call to this
function.

Frees memory and resources that are used by the driver when
the printer device context is no longer needed.

Called by the GDI to inform the printer driver that the surface
created for the current printing device context is no longer
needed.

Receives two callback function pointers from the GDI and
returns GDI function pointers for the other entry points that are
implemented by the printer driver. This function is the entry
point for the printer driver DLL, which must be exported in the
.def file for the DLL.

. Used by the GDI to gather device metrics for the target printer.
The printer driver returns device specifics in the GDIINFO
structure.

Creates a surface for use in rendering by calling the
EngCreateDeviceSurface function.

Called by the GDI to finish or abort a print job.

Returns information to the GDI about the default printing mode
that is supported by the printer driver. The printer driver returns
the default configuration in the DEVMODE structure.

Called by the GDI to st~ a print job.

Called by the GDI to start printing the next page of a print job.

Chapter 5 Printer Drivers 55

Port Monitor Functions Used tly Printer Drivers
The port monitor manages all communication between printer drivers and
physical communication ports on a Windows CE-based platform. Therefore, the
printer driver does not need to support different types of printer ports explicitly;
due to the port monitor's management, the driver automatically works with any
type of printer port. The port monitor supports serial ports, infrared ports, parallel
ports, and network printing. Printer drivers should call the port monitor
application programming interfaces (APIs), instead of calling low-level
communication APIs directly.

The following table shows the port monitor functions.

Function

GetPrinterInfo

PrinterClose

PrinterOpen

PrinterSend

Description

Retrieves infonnation about the capabilities of a printer

Closes a handle to a printer

Opens a handle to a printer

Sends blocks of data to a printer

Registry Keys for Printer Drivers
Windows CE uses registry keys to store both global printer settings for the device
and configuration information for individual printer drivers. The keys are stored
under KEY _LOCAL_MA CHINE\Printers\ in the registry. For information on
registry keys that relate to the default printer and to the ports available for
printing, see "Global Printer Settings." For information on registry keys for
specific printer drivers, see "Printer Driver Settings."

Global Printer Settings
The global printer settings that are stored in the registry list the I/O ports to use
for printing, provide a global time-out value, and store which printer driver
currently is selected as the default. The default printer driver is stored as a value
for DefaultPrinter. The printer ports are stored as values in the \Ports subkey.

56 Windows CE Device Driver Kit

The following registry file excerpt defines five printer ports, two time-out values,
and the default printer driver.

[HKEY_LOCAL_MACHINE\Printers\Ports]
"Portl"="COMl: 9600"
"Port2"="COMl: 57600"
"Port3"="IRDA"
"Port4"="LPTl:"
"Port5"="NET0:"

[HKEY_LOCAL_MACHINE\Printers\Settings]
"TimeOut"=dword:lE

[HKEY_LOCAL_MACHINE\PrintSettings]
"TimeOut"=dword:2D

[HKEY_LOCAL_MACHINE\Printers]
"DefaultPrinter"="PCL Laser"

The values correspond to serial ports at 9,600 baud and 57,600 baud, an infrared
port, a parallel port, and a network printer port. For the two COM1: ports, a baud
is also specified. The port monitor parses the values to extract the baud and device
file name. In Windows CE 2.0, COM3: is assumed to be an infrared port.
However, in Windows CE 2.10 and later the new file name ~'IRDA" is reserved
for the infrared port, whereas COM3: is used for an additional serial port. When
assigning an infrared port for printing, the value of the key for the port must be
the literal string "IRDA," even though this value is not in the standard format for
special device file names. The names "LPT1:" and "NETO:" are reserved for
parallel and network printing, respectively, although the device file name indexes
in those names can be any valid value.

Windows CE versions 2.02 and later use the TimeOut key. This value is a
hexadecimal number that is measured in seconds; the example is for a 30-second
time-out. After the time-out period, the printer driver can display a dialog box to
give the user the option to retry or cancel. In this example, the default printer
driver, "PCL Laser", is the name of a subkey within
HKEY _LOCAL_MACHINE\Printers\ where Windows CE can find settings for
the Printer Control Language (PCL) laser printer driver.

For a printer that does not use the parallel port, such as an infrared or serial
printer, it is difficult for Windows CE to determine whether the printer has
received all the data to be printed. Therefore, a time-out parameter is used to
detect and report printing errors if the printer fails to give any signal that it is still
active. This time-out valu,e is stored in the PrintSettings\TimeOut key. The
default value is 45 seconds.

The value stored in the DefaultPrinter key lists the printer that is preselected in
the common print dialog box that applications display to users.

Chapter 5 Printer Drivers 57

Printer Driver Settings
Settings for individual printer drivers are stored in subkeys of the
HKEY_LOCAL_MACHINE\Printers\ key. The registry key for a printer driver
should define four keys: Driver, High Quality, Draft Quality, and Color. The
Driver value names the DLL that contains the printer driver. The High Quality
and Draft Quality values store the resolution of high-quality and draft-quality
modes, if the printer supports them. Not all printers support a draft-quality mode,
so the Draft Quality key may be omitted. The High Quality key must always be
present, and it corresponds to the highest-quality mode of the printer. The Color
value defines whether a printer can print in color or only in monochrome. If color
is supported, this key must be set to the literal string "COLOR" so that the
common print dialog box enables color printing for applications.

The following example shows settings for the PCL laser printer driver and the
PCL Inkjet printer driver.

[HKEY_LOCAL_MACHINE\Printers\PCL Laser]
"Driver"="pcl.DLL"
"High Quality"="300"
"Draft Qual ity"="150"
"Color"="Monochrome"
"Version"="0x200"

[HKEY_LOCAL_MACHINE\Printers\PCL Inkjet]
"Driver"="pcl.dll"
"High Quality"="300"
"Draft Quality"="150"
"Color"="Monochrome"

In addition, the Version key can be used to support printer drivers that serve
multiple printers.

59

CHAPTER 6

Display Drivers

The display device driver interface (DDI) is a subset of the Windows NT display
DDI. If you are unfamiliar with the Windows NT display DDI, you may find it
helpful to read the display driver sections of the Microsoft Windows NT Device
Driver Kit before writing your Windows CE-based display driver.

The Windows CE operating system (OS) uses only the basic graphics engine
functions and driver functions from the Windows NT display DDI. The
differences between Windows CE and Windows NT have the following
ramifications on Windows CE-based display drivers.

a Windows CE-based display drivers always present the same functionality;
therefore, the graphics device interface (GDI) does not query a driver for
information about its capabilities.

• A Windows CE-based display driver cannot reject an operation as too
complex, and then call back into GDI to have the operation broken into
simpler primitives. Because all Windows CE-based display drivers support the
same functionality, the GDI can break up complex operations before calling
the display driver.

• Windows CE-based display drivers are compiled as dynamic-link libraries
(DLL) rather than libraries.

In Windows CE version 2.0 and later, the GDI makes calls to the display driver,
and the display driver writes to the physical display device. All Windows CE
based display drivers must implement a set of display DDI functions, which are
used to initialize the display driver and draw to the display.

Most Windows CE display drivers use a set of C++ classes called the Graphics
Primitive Engine (GPE). The GPE classes serve as a base of code that you can use
to derive new display drivers for your hardware. The GPE classes handle all
communication within the display DDI layer. Using the GPE classes can save a
large amount of development and debugging work. The S3Virge and all other
sample display drivers included in the Microsoft Windows CE Platform Builder
use the GPE. They demonstrate how you can add extensions to the display driver;
for example, to enable hardware accelerations.

60 Windows CE Device Driver Kit

Display Driver Interface
In Windows CE, display drivers are native drivers because there is a custom
interface between them and the Graphics, Windowing, and Events subsystem
(GWES). They are loaded and called directly by their parent process, which can
be either the GWES module or the Device Manager. Windows CE display drivers
are most commonly written by using a layered architecture. The GPE library
provided by Microsoft handles all of the default drawing, acting as the display
driver's model device driver (MDD) layer. OEMs or independent hardware
vendors (IHV s) write the hardware-specific code that corresponds to the display
driver's platform-dependent driver (PDD) layer. Display driver writers can
minimize the amount of time and effort that is needed to ~reate a display driver by
customizing one of the sample drivers provided in the Platform Builder. The
display drivers in the Platform Builder represent a variety of display hardware
devices. All of the sample drivers take advantage of the GPE to provide default
drawing with hardware-specific issues addressed in the driver samples.

Primary Display Driver
If a Windows CE-based platform includes a display, Windows CE loads the
default, or primary, display driver when the system starts up. By default, GWES
loads a display driver named Ddi.dll. If the optional
HKEY _LOCAL_MACHINE\System\GDI\Drivers\Display registry key is
present, GWES loads the display driver that is indicated by that key. If the
platform's version of Windows CE is configured to include windowing, the
Window Manager uses the frame buffer that is supported by the primary dIsplay
driver for all on-screen drawing.

In order to perform a drawing operation, an application must first get a device
context for a window or the desktop by calling the Create Window and GetDC
functions. The resulting device context is the application's drawing surface. If the
application's Windows CE-based platform does not include support for
windowing, and thus has no Window Manager, the application must call the
CreateDC function with the name of the primary display driver's .dll file to

. create a device context directly.

Chapter 6 Display Drivers 61

Secondary Display Drivers
In addition to the primary display, Windows CE-based platforms can support
additional display devices. These additional controllers might be used, for
example, to support a Video Graphics Adapter (VGA) output to a CRT screen.
Display drivers for such additional display devices are called secondary display
drivers. Secondary display drivers are loaded only when an application calls the
CreateDC function with the name of the secondary display driver's .dll file.
CreateDC returns a handle to a device context that is associated with the
secondary display driver. An application can use this device context just like a
device context associated with the primary display driver; all of the text and
graphics APIs work with the device context. However, applications cannot use
any Window Manager functions with the device context because the Window
Manager was not involved in creating it. Thus, applications are responsible for
rendering the entire display on the secondary display device. If you want to create
the appearance of windows, menus, dialog boxes, scroll bars, and so on on the
secondary display, your application must draw those items itself, using the text
and graphics APIs. If you want to show the contents of the primary display on the
secondary display, your application can copy the frame buffer for the primary
display to the frame buffer for the secondary· display. The secondary display
driver is unloaded when there are no remaining device contexts associated with it.
When multiple display devices are being used, the GDI makes sure that all
drawing calls are routed to the appropriate display driver.

Windows CE-based platforms can provide a built-in secondary display controller.
The controller must be managed by a secondary display driver. The secondary
display driver must be implemented as an ordinary Windows CE display driver,
and expose the same display DDI as other display drivers.

If the display controller resides on a removable medium, such as a PC Card, the
secondary display driver can be implemented as two DLLs or as a single DLL. In
practice, most device driver writers choose to implement two separate DLLs: a
secondary display driver that exposes the native display DDI and a stream driver
that exposes the 11 stream interfaces. The Device Manager loads the stream
interface driver when a user connects the display adapter to the system and
registers the driver's special device file name; for example, "VGAl:". The
secondary display driver is loaded when an application calls CreateDC and
passes in the name of the secondary display driver's .dll file. The secondary
display driver gets a handle to the stream interface driver by calling the FileOpen
function on the "VGAl:" special device file. The secondary display driver
handles all of the graphics processing. When it needs to communicate with the
display controller, it uses the stream interface driver's IOControl function.

You may choose to create a single DLL that acts as both 'secondary display driver
and stream driver instead. In this case, the Device Manager loads this combined
driver in its own process space to serve as an ordinary stream interface driver,
whereas GWES would load the same driver in its process space to act as the

62 Windows CE Device Driver Kit

secondary display driver. If you choose to implement a combined driver, be aware
that because the driver DLL is loaded in separate process spaces, it cannot share
global data without using shared memory or a memory-mapped file. Furthermore,
having the driver loaded twice wastes system resources.

Many of the stream interface functions are not used by display device drivers
because display devices are not particularly oriented to working with streams of
data. Display drivers need only have stubs for those functions. For these
interfaces, the driver should handle the call and return. The driver's XXX_Ioit and
XXX_Deioit functions are exceptions. The driver should handle calls to these
functions correctly, as is described in "Developing Stream Interface Device
Drivers." The Device Manager calls XXX_Ioit when the display adapter is
connected to the system. When the adapter is disconnected, the Device Manager
calls XXX_Deinit. XXX_Deinit deletes any data structures and registry entries that
were created by the driver's XXX_Ioit function.

Like all Personal Computer Memory Card International Association (PCMCIA)
based drivers, the stream interface driver must create registry entries that enable
the device to be detected. For more information, see "Registry Keys for Display
Drivers."

Using Secondary Display Drivers with Pocket PowerPoint
The Microsoft Pocket PowerPoint application can use secondary displays if the
display driver maintains certain registry keys when it is loaded and unloaded. At
initialization, the driver should create a subkey for itself within the
HKEY _LOCAL_MACHINE\Drivers\Display\Active key. This key is used to
specify the secondary display driver's DLL name, as well as the driver's buffer
and tap information. For more information, see "Registry Keys for Display
Drivers." For removable display adapters, such as PC Card-based adapters, this
initialization should take place when the Device Manager calls the display
driver's XXX_Init function.

Pocket PowerPoint loads the display DDI library for the secondary display by
calling the CreateDC function with the display DDI library name for the .
secondary display. For example, if the Drivers\Display\Active\ Voyager\DlI
subkey has the value PCARDVGA.DLL, Pocket PowerPoint calls CreateDC and
passes the string PCARDVGA.DLL as an input parameter.

After the driver loads and initializes, Pocket PowerPoint calls the GetDeviceCaps
function to identify the display device's resolution and color depth. The secondary
display driver typically stores this information internally. When the driver
supports multiple resolutions and those resolutions are selected by a separate
application, such as a Control Panel application, this information may optionally
be kept in the registry.

Chapter 6 Display Drivers 63

When the secondary display driver is unloaded, it should remove the
Drivers\Display\Active subkey that it created during initialization. This indicates
that the driver is no longer available. For removable display adapters, this de
initialization should take place when the Device Manager calls the drivers
XXX_Deinit function after a user disconnects the display adapter from the system.

001 Functions
All Windows CE-based display drivers must implement the DDI functions listed
in the following table. However, only DrvEnableDriver must be exported from
the display driver's DLL, which means that only DrvEnableDriver must bear this
exact name. You can customize the names for the other functions because they are
exposed to the GDI through function pointers that are returned by
DrvEnableDriver. Of course, no matter what names you give these functions,
they must follow the prototypes in the Winddi.h header file.

Function

DrvAnyBlt

DrvBitBlt

DrvContrastControl

DrvCopyBits

DrvCreateDeviceBitmap

DrvDeleteDeviceBitmap

DrvDisableDriver

DrvDisablePDEV

. DrvDisableSurface

DrvEnableDriver

DrvEnablePDEV

DrvEnableSurface

DrvEndDoc

DrvEscape

DrvFillPath

Description

Bit block transfer, with stretching or transparency.

General bit block transfer, with clipping and masking.

Enables software adjustment of the display hardware's
contrast.

Sends a GDI-created print band to a printer driver.

Creates and manages bitmaps.

Deletes a device bitmap.

Notifies the display driver that the GDI no longer needs it
and is ready to unload the driver.

Notifies the driver that the GDI no longer needs a particular
display device.

Notifies the driver that the GDI no longer needs a particular
drawing surface.

The initial entry point that is exposed by the driver, which
returns pointers to the other DDI functions to the GDI.

Returns a PDEV structure, which is a logical representation
of a physical display device, to the GDI.

Creates a drawing surface and associates it with a PDEV.

Sends any control information that is needed to finish
printing a document.

U sed for retrieving information from a device that is not
available in a device-independent DDI. This function is the
same as in Windows NT, except that Windows CE does not
support the DrvDrawEscape function.

Fills a drawing path with a brush.

64 Windows CE Device Driver Kit

Function

DrvGetMasks

DrvGetModes

DrvMovePointer

DrvPaint

DrvPowerHandler

DrvQueryFont

DrvRealizeBrush

DrvRealizeColor

DrvSetPalette

DrvSetPointerShape

DrvStartDoc

DrvStartPage

DrvStrokePath

DrvTransparentBlt

DrvUnrealizeColor

Using the GPE Classes

Description

Gets the color masks for the display device's current mode.

Lists the display modes that are supported by the display
device.

Moves the pointer with a guarantee that the GDI will not
interfere with the operation.

Paints a specified region with a brush.

Called to handle POWER_UP and POWER_DOWN
notifications.

Gets font metric information.

Creates a brush with parameters that are specified by the
GDI.

Maps an RGB color onto the closest available color that is
supported by the device.

Sets the display device's palette.

Sets the pointer to a new shape and updates the display.

Sends any control information that is needed to start printing
document.

Sends ~my control information that is needed to start printing
a new page.

Renders a drawing path.

Bit block transfer, with transparency.

Maps a color in the display device's format onto an RGB
value.

All sample display drivers included with the Platform Builder use the GPE
classes. Although the GPE classes are optional, using them greatly facilitates the
process of writing display drivers. If you use the GPE classes, you need only
provide the new code that is necessary to make your display hardware operate
correctly and perform acceleration.

The GPE classes require that your display hardware use a flat-frame buffer; that
is, the display's memory must lie in a contiguous memory range. Modifying the
GPE classes to use a non-contiguous frame buffer would require significant effort.

~ To create a display driver based on the GPE classes

1. Create a directory for your project.

2. Copy the files from one of the sample driver directories, such as the S3Trio64
directory, to your project directory.

Chapter 6 Display Drivers 65

3. Replace all device-specific names in those files, such as S3Tri064, with your
device's name.

4. Change the Config.cpp file so that it places your display device in a linear
frame-buffer mode.

5. Disable all hardware-specific acceleration.

6. Build and test this non-accelerated driver.

7. Add your own hardware acceleration code.

For more information about GPE classes and methods, see the Microsoft
Windows CE API Reference.

GDI Support Services for Display Drivers
The Windows CE GDI provides some services to support display drivers as
predefined structures. The structures interact both with associated functions and
with a few stand-alone C functions. Predefined structures provide support for
brushes, palettes, translations, clipping regions, and stroke and fill paths. Stand
alone C functions provide support for device bitmaps and surfaces. The following
table shows the structures and functions.

Structure or function Description

BRUSHOBJ Structure that represents a brush that is used for solid or
patterned stroke and fill operations

BRUSHOBJ_pvAllocRbrush Function that allocates memory for a brush

BRUSHOBJ_pvGetRbrush Function that retrieves a pointer to the specified brush

CLIPOBJ Structure that represents a clipping region

CLIPOBJ_bEnum Function that enumerates clipping rectangles from a
clipping region

CLIPOBJ_cEnumStart Function that sets parameters for enumerating the
rectangles in a clipping region

EngCreateDeviceBitmap Function that causes the GDI to create a handle for a
device bitmap

EngCreateDeviceSurface

EngDeleteSurface

PALOBJ_cGetColors

PATHDATA

PATHOBJ_bEnum

PATHOBJ_ vEnumStart

Function that causes the GDI to create a device surface
that the display driver manages

Function that informs the GDI that a device surface no
longer is needed by the display driver

Function that copies colors into a palette

Structure that stort?s portions of a drawing path

Function that enumerates PATHDATA records from a
drawing path

Function that readies a drawing path to have its

66 Windows CE Device Driver Kit

Structure or function

PATHOBJ_ vGetBounds

XLATEOBJ

XLATEOBJ_cGetPalette

Description

component line segments enumerated

Function that returns the bounding rectangle for a .
. drawing path

Structure used in translating colors from one palette to
another

Function that retrieves colors from an indexed palette

Accelerating Bit Block Transfers and Line Drawing
Display drivers do much of their work by means of a few basic operations. Thus,
if you make those operations faster, you greatly improve the overall performance
of your display driver. The operations that account for the bulk of a display
driver's work are bit block transfers (blits) and line drawing. Any operation that
transfers a rectangular group of pixels from main memory to display memory is a
blit. Such operations include drawing rectangles that are filled with solid colors,
displaying icons, and displaying cursors. Line drawing, for the purposes of
acceleration, is limited to drawing straight lines.

These types of acceleration can be done either in hardware or in software.
Hardware acceleration for blits and line drawing is generally faster but is not
available in all display hardware. However, even if your display hardware cannot
accelerate the functions, you may still be able to achieve better performance than
the default provided by the GPE classes. For example, you can write routines that
take advantage of the specific characteristics of your display hardware to perform
blits and draw lines as efficiently as possible.

The capabilities of display hardware vary considerably. Simple display hardware
requires that every pixel of the display be set by the display driver. Such hardware
cannot accelerate blits or line drawing. Display hardware that is more complex
can effectively complete those tasks much faster than a display driver can.

The following sections describe how to support both hardware and software
acceleration of blit and line drawing operations in your display driver. The
Platform Builder includes sample display drivers that illustrate both hardware and
software acceleration.

Chapter 6 Display Drivers 67

Accelerating Bit Block Transfers
With Windows CE 2.0 and later, a display driver can use up to three levels of blit
processing: the default blit emulation that is provided by the GPE, the software
acceleration that is provided by the emulation library or by your own custom
code, and the hardware acceleration that is supported by the display device
hardware. The display driver can choose, based on the parameters of individual
operations, which method to use for each blit that it performs.

The Platform Builder provides the GPE library, which is located under
Public\Common\OAK\Lib. This class library, offered in binary form, serves as the
foundation for Windows CE-based display drivers. The GPE supplies default
processing for blits in its EmulatedBIt function.

Emulation Library for Software-Accelerated Blits
Windows CE provides sample code for creating an emulation library for software
accelerat~d blits. The sample code is located in the
Public\Common\OAK\Drivers\Display\Emul directory. The library contains
emulated blit functions with destination pixel depths of 2, 8, and 16 bits per pixel.
You can use the emulated blits to improve performance over the default blit
processing that is provided in the GPE. Of particular interest to embedded system
developers is that the source code can serve as a template for writing additional
software-accelerated blits that are tailored to the display hardware.

Sample Blit Acceleration
By default, a display driver routes all blits to the GPE. As alternatives, a display
driver can route blit handling to the emulation library or directly to the hardware.

The S3Virge display driver serves as a model to demonstrate how a display driver
can invoke all three of these methods. The S3Virge sample code is located in the
Platform \CEPC\Drivers\Display\S3 Virge directory.

The following code example is drawn from the sample S3Virge display driver
contained in the Platform Builder. It shows how blit processing begins when the
GDI calls the driver's BItPrepare function. The driver initializes the blit
parameters and determines which function to use to perform the individual blits.
Typically, the driver initializes the GPE to handle default blit processing. The
following code example shows this initialization.

SCODE
S3Virge::BltPrepare(GPEBltParms *pBltParms)
{

II Put debug messages and optional timing processing here.

pBltParms->pBlt = EmulatedBlt; II Generic BLT processing

68 Windows CE Device Driver Kit

For improved performance, BItPrepare can examine the characteristics of the blit
and the associated display surfaces to determine whether an accelerated blit is
appropriate. After the initialization code, the display driver can contain code for
hardware or software accelerations. The sample driver includes or excludes this
code at compilation time. The ENABLE_ACCELERATION preprocessor
directive specifies inclusion of the code for hardware accelerations. The
ENABLE_EMULATION directive specifies inclusion of the code for software
accelerated emulation.

After setting the default handler, the S3Virge driver dispatches blits to hardware
acceleration, if available, and then to software-accelerated emulation, if available.
The driver defines a macro that simplifies calls to functions in the emulation
library. Next, it checks whether the destination surface is in video memory. This is
an important check that most display drivers must make before using hardware
acceleration, because the GDI uses the display driver to render printer output, as
well as display output. Printer output is rendered in system memory, and not in
video memory. Most display hardware is able to perform accelerated drawing in
only two situations; when the destination surface is in video memory, for blits
without a source surface; or when both the source and destination surfaces are in
video memory, for blits with a source surface. Therefore, if the hardware has this
limitation, the driver must check the source and destination surfaces before calling
the acceleration function.

'The following code example shows how the driver evaluates the raster operation
(RaP) code and directs the blit to a supported hardware acceleration, when
available. The SRCCOPY Rap illustrates how the driver checks for a source
surface in video memory before invoking hardware acceleration.

#ifdef ENABLE_ACCELERATION

#define FUNCNAME(basename) (SCODE (GPE::*)(struct GPEBltParms
*))Emulator::Emulated##basename

if (pBltParms-)pDst-)InVideoMemory()) {

switch(pBltParms-)rop4)
{

case 0x0000: II BLACKNESS
pBltParms-)solidColor = 0x0;
pBltParms-)pBlt = (SCODE (GPE::*)

(struct GPEBltParms *)) AcceleratedFillRect;
break;

case 0xFFFF:II WHITENESS
pBltParms-)solidColor = 0xffffff;
pBltParms-)pBlt = (SCODE (GPE::*)

(struct GPEBltParms *))AcceleratedFillRect;
break;

case 0xF0F0: II PATCOPY
case 0x5A5A: II PATINVERT

Chapter 6 Display Drivers 69

if (pBltParms->pLookup I I pBltParms->pConvert) II Emulate
II Color Convertion

RETAILMSG(VIRGE_VERBOSE_MSGS. (TEXT("S3Virge::Blt -
Emulate Color Conversion\r\n"»);

b rea k;

if (pBltParms->solidColor == -1)
{

RETAILMSG(VIRGE_VERBOSE_MSGS. (TEXT("S3Virge: :Blt -
PATCOPY - patterned brush\r\n"»);

DEBUGWAIT(GPE_ZONE_BLT_LO)
pBltParms->pBlt = (SCODE (GPE::*) (struct GPEBltParms

*» AcceleratedPatCopyBlt;
}

else
{

RETAILMSG(VIRGE_VERBOSE_MSGS. (TEXT("S3Virge::Blt -
PATCOPY - solid brush\r\n"»);

DEBUGWAIT(GPE_ZONE_BLT_LO)
pBltParms->pBlt = (SCODE (GPE::*) (struct GPEBltParms

*» AcceleratedFillRect;
}

b rea k;
case 0x6666: I I SRCINVERT
case 0x8888: II SRCAND
case 0xCCCC: II SRCCOPY
case 0xEEEE: II SRCPAINT

II Cannot accelerate if src not in video memory
II Cannot accelerate color translations
if (!pBltParms->pSrc->InVideoMemory() I I pBltParms->pLookup

I I pBltParms->pConvert)
b rea k;

if (pBltParms->bltFlags & BLT_STRETCH)
{

II Stretch blit
RET AI LMSG (V I RGE_VERBOSE_MSGS. (TEXT(" St retch

Blt!\r\n"»);
break;

pBltParms->pBlt (SCODE (GPE::*) (struct GPEBltParms *»
AcceleratedSrcCopyBlt;

break;

70 Windows CE Device Driver Kit

The following code example for the S3Virge display driver shows how to use the
blit emulation library. After setting the default blit handler and handling hardware
accelerations, the driver checks for possible software accelerations. When the
accelerations are available, it sets the blit function pointer to the corresponding
function in the emulation library.

Before invoking a blit function in the emulation library, the driver must check for
conditions that would prevent the blit from using emulation. This is critical,
because the functions in the emulation library require that the driver validate the
blit before calling an emulation function. In the previous example, the driver
checked for a solid brush because the emulation library does not support pattern
brushes. The emulation library also cannot handle color conversions, bit depth
conversions, stretching, and transparency. The following code example shows
how the driver checks that none of these restrictions apply.

if (pBltParms->pBlt == EmulatedBlt) {
II
II Cancel any parameter values that would make this
II blit non-emulatable.
II
if (!(EGPEFormatToBpp[pBltParms->pDst->Format()] != 8 I I

(pBltParms->bltFlags & (BLT_TRANSPARENT I BLT_STRETCH» I I
pBltParms->pLookup I I
pBltParms->pConvert»

After confirming that the emulation library functions can perform a blit, the
display driver examines the ROPs, dispatching supported ROPs to the appropriate
function. For simplicity, the driver specifies the ROP4 value. For masking blits,
the entire WORD is relevant. For non-masking blits, only the least significant
byte-the ROP3 value-is relevant. ROPs are defined as DWORDs for
compatibility with Windows-based desktop platforms, although Windows CE
based display drivers use only the most significant WORD of a ROP value.
Windows CE-based display drivers ignore the lower WORD, which contains
ROP compiler directives. The following code example shows how the display
driver checks the ROP4 value to choose which blit function to use.

switch (pBltParms->rop4)
{

break;

b rea k;

case 0x0000: II BLACKNESS
pBltParms->solidColor = 0;
pBltParms->pBlt = FUNCNAME(BltFil108);

case 0xFFFF: II WHITENESS
pBltParms->solidColor = 0x00ffffff;
pBltParms->pBlt = FUNCNAME(BltFil108);

Chapter 6 Display Drivers 71

case 0xF0F0: II PATCOPY
if(pBltParms-)solidColor != -1)
{

pBltParms->pBlt = FUNCNAME(BltFil108);

break;

Additional Accelerated Sample Drivers
Like the S3Virge display driver, other display drivers provided in the Platform
Builder demonstrate how to invoke hardware accelerations and how to make use
of the emulation library.

The S3Tri064 driver is in the Platform\CEPC\Drivers\Display\S3Tri064 directory.
The S3Tri064 driver demonstrates support for hardware accelerations and use of
the emulation library. The driver also supports blit handling for destination
surfaces that are both 8 bits per pixel (bpp) and 16 bpp. For example, in the case
of a mask P ATCOPY text blit with a mask that is 1 bpp, the driver uses the
emulation library's BltText16 function to handle the blit. With a mask that is 4-
bpp, the driver uses the emulation library's BltalphaText16 function.

if (pBltParms->pBlt == EmulatedBlt)
ifi fdef FB16BPP

switch (pBltParms-)rop4)
{

case 0xAAF0:
II Special PATCOPY ROP for text output--fill where mask is set.

II If the brush is not a pattern brush
if((pBltParms-)solidColor != -1) &&

(pBltParms-)pDst-)Format() == gpe16Bpp)

WaitForNotBusy();
if (pBltParms-)pMask-)Format() == gpe1Bpp)
{

pBltParms-)pBlt =
FUNCNAME(BltText16);

else II Antialiased text

pBltParms-)pBlt =
FUNCNAME(BltAlphaText16);

. return S_OK;
}

break;
default: II Other ROP4s

72 Windows CE Device Driver Kit

For hardware accelerations and use of the emulation library, see the Citizen driver
in the Platform\ODO\Drivers\Display\Citizen directory.

Accelerating Line Drawing
Windows CE 2.0 and later includes support for accelerating line drawing. The
levels of accelerated line drawing are largely the same as for accelerated blit
operations. The discussion of accelerating bit block transfers in the previous
sections is relevant for line drawing as well, except that the emulation library
provided in the Platform Builder does not provide software-accelerated line
drawing. Developers can add software-accelerated line drawing functions, if
necessary.

Display drivers route line drawing to the GPE, to custom software acceleration
routines, or directly to the hardware. The following code example from the
S3Virge display driver sample shows how these methods are invoked. This source
code is very similar in design to the acceleration processing performed for blit
operations.

SCODE
S3Virge::Line(GPELineParms *pLineParms. EGPEPhase phase)
{

#ifdef ENABLE_ACCELERATION
if (phase == gpeSingle II phase == gpePrepare)
{

DispPerfStart (ROP_LINE);
pLineParms->pLine = EmulatedLine;
if (pLineParms->pDst->lnVideoMemory() && pLineParms->mix ==

0x0d0d)
{

#if VIRGE_VERBOSE_MSGS
switch (phase)
{

#endif

case gpeSingle:
RETAILMSG(VIRGE_VERBOSE_MSGS. (TEXT("in single\n\r"»);
break;

case gpePrepare:
RETAI LMSG(V I RGE_VERBOSE_MSGS. (TEXT ("i n prepa re \n \ r"») ;
break;

SelectSolidColor(pLineParms->solidColor);
pLineParms->pLine = (SCODE (GPE::*)(struct GPELineParms *»

AcceleratedSolidLine;
}

else if (phase == gpeComplete) {
Di spPerfEnd (0);

Chapter 6 Display Drivers 73

flelse
pLineParms->pLine = EmulatedLine;

flendif
return S_OK;

The S3Virge driver conditionally compiles the hardware acceleration code with
the ENABLE_ACCELERATION preprocessor directive. Line drawing begins
with a call to the driver's Line function. For improved performance, the driver's
Line function can examine the characteristics of the line drawing and the
associated surfaces to determine whether an accelerated form of line drawing is
appropriate. The default line drawing function is set to the EmulatedLine
function of the GPE. The driver checks for a destination surface in video memory
and checks the line drawing parameters. If the parameters are valid for
acceleration, the line drawing function is set to the driver's AcceleratedSolidLine
function.

Functions in the Emulation Library
The emulation library includes the following functions. Developers can add
additional functions, if necessary.

EmuiatedBItAIphaText02
Special-case fast blit function for rendering antialiased text. This function
assumes a mask surface containing the 4-bpp alpha bitmap for the glyph.

File name ROP Source bit depth Target bit depth

Ebalph02.cpp AAFO 02

EmuiatedBItAIphaText16
Special-case fast blit function for rendering antialiased text. This function
assumes a mask surface containing the 4-bpp alpha bitmap for the glyph.

File name ROP Source bit depth Target bit depth

Ebalphl6.cpp AAFO

EmuiatedBltSrcCopy0202
Implements blit(SRCCOPY)

File name ROP

Ebcopy02.cpp ecce

EmuiatedBltSrcCopy0808
Implements blit(SRCCOPY)

File name ROP

Ebcopy08.cpp ecce

16

Source bit depth Target bit depth

02 02

Source bit depth Target bit depth

08 08

74 Windows CE Device Driver Kit

EmuiatedBltSrcCopy1616
Implements blit(SRCCOPY)

File name ROP

Ebcopyl6.cpp ecee

EmuiatedBltDstlnvert02
Implements Patblt(DSTINVERT)

File name ROP

Ebdinv02.cpp 5555

EmuiatedBltDstlnvert08
Implements Patblt(DSTINVERT)

File name ROP

Ebdinv08.cpp 5555

EmuiatedBItFil102

Source bit depth Target bit depth

16 16

Source bit depth Target bit depth

02

Source bit depth Target bit depth

08

Implements Patblt(PATCOPY) for ROP FOFO, Patblt(BLACKNESS) for ROP
0000, and Patb1t(WHITENESS) for ROP FFFF

File name ROP Source bit depth Target bit depth

Ebfill02.cpp OOOO,FFFF,FOFO 02

EmuiatedBItFil108
Implements Patblt(P A TCOPY) for ROP FOFO, Patblt(BLACKNESS) for ROP
0000, and Patblt(WHITENESS) for ROP FFFF

File name ROP Source bit depth Target bit depth

Ebfill08.cpp OOOO,FFFF,FOFO 08

EmuiatedBItFill16
Implements Patblt(P ATCOPY) for ROP FOFO, Patblt(BLACKNESS) for ROP
0000, and Patblt(WHITENESS) for ROP FFFF

File name ROP

Ebfilll6.cpp OOOO,FFFF,FOFO

EmuiatedBItPatlnvert02
Implements Patblt(PATINVERT)

File name ROP

Ebpinv02.cpp 5A5A

EmuiatedBItPatlnvert08
Implements Patblt(PATINVERT)

File name ROP

Ebpinv08.cpp 5A5A

Source bit depth Target bit depth

16

Source bit depth Target bit depth

02

Source bit depth Target bit depth

08

Chapter 6 Display Drivers 75

EmuiatedBltSrcAnd0202
Implements blit(SRCAND)

File name ROP Source bit depth Target bit depth

Ebsand02.cpp 8888 02 02

EmuiatedBltSrcAnd0808
Implements blit(SRCAND)

File name ROP Source bit depth Target bit depth

Ebsand08.cpp 8888 08 08

EmuiatedBltSrcAnd1616
Implements blit(SRCAND)

File name ROP Source bit depth Target bit depth

Ebsand16.cpp 8888 16 16

EmuiatedBltSrclnvert0202
Implements blit(SRCINVERT)

File name ROP Source bit depth Target bit depth

Ebsinv02.cpp 6666 02 02

EmuiatedBltSrclnvert0808
Implements blit(SRCINVERT)

File name ROP Source bit depth Target bit depth

Ebsinv08.cpp 6666 08 08

EmulatedBItSrclnvert1616
Implements blit(SRCINVERT)

File name ROP Source bit depth Target bit depth

Ebsinv16.cpp 6666 16 16

EmuiatedBltSrcPaint0202
Implements blit(SRCP AINT)

File name ROP Source bit depth Target bit depth

EbspntD2.cpp EEEE 02 02

EmuiatedBltSrcPaint0808
Implements blit(SRCP AINT)

File name ROP Source bit depth Target bit depth

Ebspnt08.cpp EEEE 08 08

76 Windows CE Device Driver Kit

EmulatedBltSrcPaint1616
Implements blit(SRCP AINT)

File name ROP

Ebspnt16.cpp EEEE

EmuiatedBitText02

Source bit depth Target bit depth

16 16

Special-case fast blit function for rendering solid-color filled text with a mask.

File name ROP Source bit depth Target bit depth

Ebtext02.cpp AAFO 02

EmuiatedBItText08
Special-case fast blit function for rendering solid-color filled text with a mask.

File name ROP Source bit depth Target bit depth

Ebtext08.cpp AAFO 08

EmuiatedBitText16
Special-case fast blit function for rendering solid-color filled text with a mask.

File name ROP Source bit depth Target bit depth

Ebtext16.cpp AAFO 16

Supporting Antialiased Fonts
Antialiased fonts work on any device whose display driver supports them.
Typically, anti aliasing is supported on devices that are not palettized. If the
display driver supports antialiased fonts, it must notify the GDI of this capability
at system startup. It does this by returning GCAPS_GRA Y16 from the
GetGraphicsCaps function. The S3Tri064 sample display driver demonstrates
how to support antialiasing. The driver source code is located in the
Platform\Cepc\Drivers\Display\S3tri064 directory.

Supporting ClearType
Windows CE versions 2.12 and later support the ClearType font technology that
is provided by Microsoft. ClearType dramatically improves font sharpness on
color LCD displays. If the display driver supports ClearType, it must notify the
GDI of this capability at system startup by returning GCAPS_CLEARTYPE in
the call to the GetGraphicsCaps function. The Citizen sample display driver
demonstrates how to support ClearType. The driver source code is located in the
Platform\Odo\Drivers\Display\Citizen directory.

Chapter 6 Display Drivers 77

The display driver invokes a software emulation to render a ClearType glyph. For
example, in the Citizen driver, text output with a solid brush is usually routed to
the BitText08 emulation function. For the edge pixels on the glyph, the display
function pointer is set to a special BItCleartype emulation for the 3-3-2 palette
and the Halftone palette.

case 0xAAF0: II Special PATCOPY ROP for text output--fill where mask
Ilis 1.
II Not a pattern brush?

if(pBltParms->solidColor != -1
{

if (pBltParms->pMask->Format() == gpe1Bpp)
{

DEBUGMSG (GPE_ZONE_BL T_LO, (TEXT(tIC ITI ZEN: : Blt -
0xAAF0\r\n"»);

pBltParms->pBlt = FUNCNAME(BltText08);
return S_OK;

else if (pBltParms->pMask->Format() == gpe8Bpp) II
ClearType

0xAAF0\r\n"»);

II

b rea k;

DEBUGMSG (GPE_ZON E_BL T _LO, (TEXT(tIC ITI ZEN: : B It C 1 ea rType -

pBltParms->pBlt = FUNCNAME(BltCleartypeHalftoneText08);
pBltParms->pBlt = FUNCNAME(BltCleartype332Text08);
return S_OK;

Including Display Drivers in an OS Image
OEMs can include the emulation library and the OPE class library in their
Windows CE as image. The emulated blit functions are compiled and linked into
a single library called Emul.lib. The display driver links to this library through a
link directive in the driver's Sources file. For example, the Sources file for the
S3Trio64 display driver includes Emul.lib in its list of target libraries. This links
the driver with Emul.lib. The Platform Builder provides the OPE library in binary
form. The OPE library is also included in the driver's Sources file.

The Platform. bib file in the Platform\Cepc\Files directory directs the RomImage
tool, which is the tool that creates as images for Windows CE, to include the
appropriate driver in the as image. See the Platform Builder for complete
documentation on using the Romimage tool and creating as images.

78 Windows CE Device Driver Kit

If you are building a platform from one of the sample Platform.bib files that is
provided in the Platform Builder, you can change which display driver the
Romimage tool puts into the OS image. The Platform.bib file in the
Platform\Cepc\Files directory directs the Romimage tool to include the S3Tri064
driver in the OS image. Other display drivers may take the place of S364Trio. See
Platform.bib for the list of environment variables that may be set to direct the
Romimage tool to use a different display driver. The 2BPP driver is the default
display driver for the Windows CE hardware reference platform. The Platform. bib
file in the Platform\Odo\Files directory lists the environment variables that may
be set to direct Romimage to use a different display driver.

Testing Display Drivers
The Platform Builder includes a sample application, VideoApp, that the display
driver writer can use to test a display driver. The application tests the driver's
ability to draw lines, polygons, rectangles, text, cursors, and to display various
color patterns. The application source code is located in the
Platform\Cepc\Test\Videoapp directory. The VideoApp.exe is located in the
Platform \Cepc\Drivers\Display\ Test directory.

Testing a new driver with the VideoApp application verifies that the driver
correctly performs a number of common graphics operations. The application is
not intended as an exhaustive test of all possible operations. The display driver
writer is responsible for thorough testing of the driver.

Profiling Display Driver Performance
The Platform Builder includes a sample profiling tool, DispPerf, that the display
driver writer can use to profile the performance of a display driver. DispPerf
builds a table that lists, for each ROP code that is profiled, the frequency count,
elapsed time in microseconds, and average elapsed time in microseconds, for
ROPs handled by the default GPE emulation, by the software emulation library,
and by hardware accelerations. To measure these times accurately, DispPerf can
be used only on Windows CE-based platforms that support the
QueryPerformanceCounter and QueryPerformanceFrequency functions with
a recommended resolution of 1 microsecond.

Chapter 6 Display Drivers 79

The S3Virge driver demonstrates how to use the profiler for measuring
performance of blits and line drawing. The display driver writer may extend the
pro filer to measure the performance of additional display functions. Source code
for DispPerf is in the Platform\Cepc\Drivers\Display\S3virge\Dispperf directory.

The driver starts profiling of blit operations during the call to the BItPrepare
function when it calls the DispPerfStart function. The following code example
shows how the driver initializes its display function pointer to use the default
emulation that is provided by the GPE.

SCODE
S3Virge::BltPrepare(GPEBltParms *pBltParms)
{

DispPerfStart (pBltParms->rop4);

pBltParms->pBlt = EmulatedBlt; II Catch all

When the driver is able to handle the ROP with hardware acceleration or software
emulation, it changes its display function pointer appropriately. The driver also
calls the DispPerfType function to record which type of acceleration is used to
handle the ROP. For example, the following code example demonstrates how the
driver calls DispPerfType after the driver successfully sets the display function
pointer to a hardware-accelerated function.

II Performance Logging Type
if (pBltParms->pBlt != EmulatedBlt)

DispPerfType(DISPPERF_ACCEL_HARDWARE);

When the blit operation completes, the BItComplete function stops profiling with
a call to the DispPerfEnd function.

The DO_DISPPERF environment variable controls whether the code to support
profiling is compiled into the display driver. Refer to the Sources file for the
S3Virge driver to see how the environment variable causes the correct compiler
directives to be set.

DispPerf can be invoked from the Command Shell on a Windows CE-based
platform, or it can be launched remotely from the Windows CE Debug Shell. The
following example shows the command syntax for DispPerf.

dispperf [-c[w*]] [-d [> file]]

80 Windows CE Device Driver Kit

The -c option clears the profiler buffer. If the letter "w" appears one or more times
following the -c option, DispPerf calls the Create Window function that number
of times and profiles the resulting display driver operations. The -d option dumps
the profiler buffer in tabular form. If the -d option is followed by (» plus a file
name, the output is written to the named file. Otherwise, it appears on the console
where the command was issued.

The following code example shows how DispPerf clears its buffer of all profiling
information.

Dispperf -cwwwwwd

It then calls the CreateWindow function five times, profiling the performance of
the display functions. The following code example shows how DispPerf displays
its table of profiling information to the console.

Dispperf -c
Pword stat_rpt.pwd
Dispperf -d > results.txt

In this example, DispPerf clears its buffer of all profiling information. The
Microsoft® Pocket Word application is launched and opens the document
Stat_rpt.pwd. DispPerf tracks the profiled display functions that are called by
Pocket Word. Finally, DispPerf writes its table of profiling information to the
Results.txt file.

Display Buffer Formats
The Windows CE GDI supports displays with a wide variety of color depths and
color models, ranging from I-bit color to palettized color to true 32-bit red, green,
and blue (RGB) color. Each format also supports several pixel orderings,
depending on whether access to the display memory is by bytes, WORDs, or
DWORDs.

For all display buffer formats, the order of pixels on the display is from left to
right and from top to bottom. That is, pixel (0,0) appears at the upper-left corner
of the display, and pixel (width -1, height -1) appears at the lower-right corner.
For more information about the arrangement of video memory for each display
buffer format that Windows CE supports, see the following sections.

Chapter 6 Display Drivers 81

Using 1 Bit per Pixel
The I-bpp format is for simple black-and-white displays. Black is represented by
0, and white is represented by 1. Pixel (0,0) is packed into the highest-order bit of
the first byte of display memory. The following illustration shows the
arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

WORD access:
WORD 0 WORD 1

DWORD access:
DWORDO

Bit 1F Bit 18 Bit 17 Bit 10 Bit F Bit 8 Bit 7

82 Windows CE Device Driver Kit

Using 2 Bits per Pixel
The 2-bpp format is typically used for 4-level grayscale displays, although any 4-
entry palette works. The following table shows the bits for the associated gray
levels.

Bit 1 Bit 0 Gray level

0 0 Black

0 1 Dark gray

0 Light gray

White

The following illustration shows the arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

WORD access:
WORD 0 WORD 1

DWORD access:
DWORDO

Bit 18 Bit 17 Bit 10 Bit F Bit 8 Bit 7

Chapter 6 Display Drivers 83

Using 4 Bits per Pixel
The 4-bpp format is usually a palettized format. The frame buffer itself can be
implemented either as 2 pixels packed into each byte or as 1 pixel per byte.

The following illustration shows the arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

WORD access:
WORD 0 WORD 1

Bit 8 Bit 7 Bit 8 Bit 7

DWORD access:
DWORDO

Bit 18 Bit 17 Bit 10 Bit F Bit 8 Bit 7

If you choose to implement just 1 pixel per byte, the driver should represent the
display mode as 8 bpp with a 16-color palette. The relevant bits in each byte
should be the 4 lowest bits; the 4 highest bits should always be O. For more
information on formats in which single pixels do not fill entire bytes, see "Using 5
or 6 Bits per Pixel."

84 Windows CE Device Driver Kit

The following illustration shows the standard Windows CE 16-color palette,
which you should use to obtain the best results.

Color: Red Green Blue

White 255 255 255

Teal 0 255 255

Purple 255 0 255

Blue 0 0 255

Light gray 192 192 192

Dark gray 128 128 128

Dark teal 0 128 128

Dark purple 128 0 128

Dark blue 0 0 128

Yellow 255 255 0

Green 0 255 0

Dark yellow 128 128 0

Dark green 0 128 0

Red 255 0 0

Dark red 128 0 0

Black 0 0 0

Chapter 6 Display Drivers 85

Using 5 or 6 Bits per Pixel
The 5-bpp or 6-bpp format should always use a whole byte for each pixel. The
relevant bits must be the low-order bits in the pixel, with unused high-order bits
containing Os.

With displays that use 5 bpp or 6 bpp, you can choose either to palettize the colors
or to use the bits in the pixel to represent the colors directly. For example, you can
make 6 bpp a 64-entry palettized display, or you can use the 6 bits in each pixel to
represent 4 levels each of red, green, and blue directly.

The following illustration shows the arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

WORD access:
WORD 0 WORD 1

DWORD access:
DWORDO

Bit 1F Bit 18 Bit 17 Bit 10 Bit F Bit8 Bit7

86 Windows CE Device Driver Kit

Using 8 Bits per Pixel
The 8-bpp format ideally should use a software-changeable palette that maps 8-bit
values onto 24-bit colors. For better performance, compatibility, and image
quality, Microsoft recommends using a palette that contains the default Windows
CE palette, although this is not required.

The following illustration shows the arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

WORD access:
WORD 0 WORD 1

DWORD access:
DWORDO

Bit 18 Bit 17 Bit 10 Bit F Bit 8 Bit 7

Chapter 6 Display Drivers 87

Using 15 or 16 Bits per Pixel
The 15-bpp or 16-bpp format is a masked, non-palettized format. For either 15
bpp or 16 bpp, 1 pixel is stored in each 2-byte WORD. The 15-bpp format wastes
the high-order bit of each word. The following table shows the masks that
Microsoft recommends to extract red, green, and blue values.

Color

Red

Green

Blue

IS-bit mask

Ox7COO
Ox3EOO
OxOOlF

16-bit mask

OxF800
Ox07EO
OxOOlF

As the masks show for 15 bpp, the low-order 15 bits of each word contain the
pixel data. The unused bit should contain O.

The following illustration shows the arrangement of memory for the format.

WORD access:
WORD 0 WORD 1

DWORD access:
DWORDO

Bit 18 Bit 17 Bit 10 Bit F Bit 8 Bit 7

88 Windows CE Device Driver Kit

Using 24 Bits per Pixel
The 24-bpp format is a true-color format, in which each pixel stores 8 bits for red,
green, and blue. The advantage of this format is that image quality is very good.
Because each pixel occupies exactly 3 bytes, the pixels can be packed together
without wasting memory. The drawback to this format is that because half the
pixels in this scheme cross DWORD boundaries, there is a performance penalty
in accessing and decoding pixels. The following illustration shows the
arrangement of memory for the format.

Byte access:
Byte 0 Byte 1 Byte 2 Byte 3

Using 32 Bits per Pixel
Like the 24-bpp format, the 32-bpp format is a true-color format. Unlike the 24-
bpp format, however, the 32-bpp format does not cause pixels to cross DWORD
boundaries, although this format is less efficient in memory use. There are two
ways to arrange the color channels in this format. One method puts blue in the
least significant byte of each pixel, and the other method puts red in the least
significant byte. These options correspond to the P AL_BGR and P AL_RGB
modes. Microsoft recommends using P AL_RGB for slightly better performance.
The following table shows the masks that you can use to extract red, green, blue,
and alpha channels from each pixel.

Color

Red

Green

Blue

OxOOOOOOFF
OxOOOOFFOO
OxOOFFOOOO

OxOOFFOOOO
OxOOOOFFOO
OxOOOOOOFF

Chapter 6 Display Drivers 89

If your product does not use an alpha channel, use OxOOOOOOOO as the mask for
alpha. The following illustration shows the arrangement of memory for the
format.

DWORD access: PAL_RGB
DWORDO

DWORD access: PAL_BGR
DWORDO

Bit 18 Bit 17 Bit 10 Bit F Bit8 Bit 7

Display Hardware Recommendations
For display hardware used with Windows CE, Microsoft makes several
recommendations to improve performance and to facilitate driver development.
Following the recommendations enables you to implement your display driver
more easily, although you can write a fully functional driver even if your
hardware does not conform to these recommendations.

Microsoft strongly recommends that your display hardware uses a linear-frame
buffer. All the display's memory should be contiguous, and one linear-access
window should cover the entire frame buffer. If your hardware does not meet
these qualifications, you must make substantive modifications to the GPE classes,
if you choose to use them. For more information, see "Using the GPE Classes."

Your display hardware should use a supported combination of pixel format,
packing, and pixel ordering. For more information, see "Display Buffer Formats."
The display hardware's frame buffer should have the following properties:

• Top-down format, with pixel (0,0) at the top left and pixel (width -1,
height -1) at the lower right.

• The frame buffer's stride-the number of bytes in memory that it takes to
represent one scan line on the display-should be a multiple of 4 bytes, even if
this means padding the end of each scan line with unused bytes.

• The entire frame buffer must be accessible by the CPU without requiring the
CPU to perform bank selection.

• Frame buffers should not use bit planes, in which separate frame buffers are
used for each color channel or intensity component.

90 Windows CE Device Driver Kit

Microsoft also recommends using display hardware that can accelerate the
following operations, in order of decreasing importance:

• Solid-color fills, specifi~ally, blit operations whose pbo->iSolidColor member
is not OxFFFFFFFF.

• SRCCOPY blit operations.

• Cursor display, if your platform uses a cursor.

• Solid-line drawing with subpixel precision.

• Masked SRCCOPY blit operations.

Registry Keys for Display Drivers
When a Windows CE-based platform contains a display driver, it is automatically
loaded by GWES at system startup. By default, GWES loads a driver named
Ddi.dll. To change the name of the default display driver, use the
HKEY _LOCAL_MACHINE\System\GDI\Drivers\Display key to override the
default display driver DLL name. The registry key should be placed in your
Platform. reg file".

[HKEY_LOCAL_MACHINE\System\GDI\Drivers]
Display="DDI.DLL"

The device driver writer can optionally include a registry key that provides
additional information about the driver. This information is not used by the GDI,
but may be useful to application. It may also be useful to the driver when it
supports, for example, multiple resolutions, which a user can select from a
Control Panel application that is provided by the display driver writer. In this
case, the driver could examine the registry to determine which resolution to set
when the display driver loads. The following example shows a registry key for a
native display driver that supports a Color Graphix Voyager PCMCIA-based
display device. The key stores the native driver's DLL name, screen size, and
color depth.

[HKEY_LOCAL_MACHINE\Drivers\Display\PCARDVGA]
Dll="PCARDVGA.DLL"
CxScreen=Dword:280
CyScreen=Dword:F0
Bpp=Dword:8

Chapter 6 Display Drivers 91

Registry Keys for Removable Display Adapters
When a secondary display adapter is provided on removable hardware, such as a
PC Card, the display driver is typically implemented as two drivers: a native
driver that exposes the native DDI and a stream interface driver that exposes the
stream interfaces. The stream driver must initialize the registry with the keys that
allow it to be detected and loaded. When the PC Card is inserted, the Device
Manager initiates a detection sequence to determine which driver should service
the card. If the PC Card has a Plug and Play identifier, it is used to determine
which driver to load. Otherwise, the Device Manager tries the detection functions
for all the PC Card drivers that are installed on the system until one of them
reports that it recognizes the PC Card. Once the correct driver is located, the
Device Manager loads the driver whose name is provided as the registry key
along with the detection function that succeeded in detecting the PC Card. The
following example shows how the Device Manager then loads the driver, registers
its special device file name, and calls the driver's XXX_Init function.

[HKEY_LOCAL_MACHINE\Drivers\PCMCIA\VoyagerVGA]
Dll="VOYAGER.DLL"
Prefix="VGA"
Index=Dword:l

[HKEY_LOCAL_MACHINE\Drivers\PCMCIA\Detect\60]
Dll="VOYAGER.DLL"
Entry="DetectVGA"

Pocket PowerPoint application needs registry keys in order to use secondary
display adapters. During initialization, the driver should update the
HKEY _LOCAL_MACHINE\Drivers\Display\Active key with the information
that is appropriate for its driver. This includes information about the native driver
.dll name, as well as Buffer and Tap information. For removable display adapters,
this initialization should take place when the adapter is connected to the system
and the Device Manager calls the stream driver's _Init function. The following
example shows how this is done.

[HKEY_LOCAL_MACHINE\Drivers\Display\Active\Voyager]
Dll="PCARDVGA.DLL"
BufferMode=Dword:0
Tapmode=Dword:0

92 Windows CE Device Driver Kit

The following table shows the four available values for BufferMode.

Value

bmNotShared

bmTopHalf

bmSquashed

bmOff

Description

There is no common frame buffer.

The top half of the secondary display is also shown on the system's
built-in LCD display.

A scaled-down version of the secondary display is also shown on
the system's built-in LCD display.

The system's built-in display is turned off while the driver is active.

The following table shows the three available values for Tapmode.

Value

tmNone

tmScaled

tmUndefined

Description

The display driver performs no conversion of any tap coordinates.

The display driver scales tap coordinates to match the secondary
display's resolution.

The display driver always reports tap coordinates of (0,0), but still
reports tap events.

93

CHAPTER 7

Universal Serial Bus Drivers

The universal serial bus (USB) is an external bus architecture for connecting
USB-capable peripheral devices to a host computer. USB is not designed to be
used as the internal bus for connecting CPU s to main memory and to devices that
reside on a motherboard. Instead, USB is a communication protocol that supports
serial data transfers between a host system and USB-capable peripherals. USB
technology was developed as a solution to the increasing user demands on
computers and the need for flexible and easy-to-use peripherals. USB technology
directly affects a number of standard peripherals, such as keyboards, joysticks,
mouse devices, digital cameras, computer-telephony integration (CTI), and video
conferencing products.

USB offers the following benefits to system designers and users:

• USB provides a single, well-defined, standard connector type for all USB
devices. This simplifies not only the design of USB devices, but also a user's
task of determining which plugs correspond to which sockets.

• USB eliminates the need for separate mouse, modem, keyboard, and printer
ports, thus reducing hardware complexity.

• USB supports hot plugging, which means that USB devices can be safely
connected and disconnected while the host is turned on. Other generic
peripheral connection standards, such as the Small Computer System Interface
(SCSI), require that the host be turned off when peripherals are added or
removed.

• USB supports Plug and Play. When a USB device is plugged in, the host
computer identifies the device and configures it by loading the appropriate
driver.

• USB provides flexibility in how devices are powered. USB devices can draw
power directly from the USB cable (bus-powered devices), supply their own
power from batteries or from a wall socket (self-powered devices), or use a
combination of both types of power.

• USB supports power-saving suspend and resume modes.

94 Windows CE Device Driver Kit

• USB offers a high-speed 12-megabits-per-second (Mbps) mode and a low
speed 1.5-Mbps mode that support a variety of peripherals.

• USB guarantees certain amounts of bandwidth for devices that cannot tolerate
non-continuous transmission that comes in bursts, such as streaming audio and
video devices.

• USB offers four different data transfer types that are suited to the needs of
various types of peripheral.

• USB enables multiple peripherals to communicate simultaneously with the
host.

Consult the following sources for additional information about USB technology
that is important both for OEMs who add USB support to their Windows CE
based platforms and for independent hardware vendors (IHVs) who build USB
peripherals:

• USB Implementers Forum Web site

This site contains the complete USB specification, Universal Serial Bus
Specification, Revision 1.0.

• Intel Corporation Web site

This site contains information on USB hardware and microcontroller chips,
such as the 8x930Ax and 8x931xA series chips.

Note The official Universal Serial Bus Specification, Revision 1, uses the term
function to refer to USB-capable peripheral devices. However, because function
typically refers to callable units of C/C++ code, Windows CE documentation uses
the term USB device to refer to USB peripherals. In addition, the official
Universal Serial Bus Specification, Revision 1, uses the term USB client driver to
refer to device drivers for USB devices, but to avoid confusion with client/server
terminology, this documentation uses the term USB device driver.

USB Architecture
A USB system consists of a host computer, one or more USB devices, and a
physical bus. The host consists of two layers: an upper software layer, which
includes USB device drivers, and a host controller hardware layer, also known as
an adapter layer. The main responsibility of the host computer is to control data
transfers to and from USB devices. USB devices are peripherals that use the USB
electrical and data format specifications to communicate with the host computer.
The physical bus is the set of USB cables that links the controller with the
peripherals.

Chapter 7 Universal Serial Bus Drivers 95

USB Topology
USB is a tree-structured bus, which in the vocabulary of the Universal Serial Bus
Specification, Revision 1, is a star-tier topology. The host computer contains a
single root node, or hub, of the USB tree. This hub mediates between its host
computer and any peripheral devices. Hubs have exactly one connection--called
an upstream port-to higher levels in the USB tree. Hubs can have up to seven
downstream ports for connecting peripheral devices and other hubs. By
connecting hubs together, up to 127 devices can be attached to the host computer.
Peripheral devices are always leaf nodes within a USB bus. However, as a matter
of practical implementation, many USB peripheral devices have hubs integrated
into them, so users typically do not need to purchase separate USB hubs.

The following illustration shows a USB bus with several common peripherals
connected. This illustration is modeled after the diagram of a typical USB bus
configuration in the Universal Serial Bus Specification, Revision 1, but with the
hubs and peripheral devices represented more explicitly.

Host computer

Root hub'
Tier 0

Tier 1

Modem

Tier 2

1··············lntemalhub I~ ,. ~,~ l--.. ···· .. ·..·~·r
I Keyboard I· Mouse

Spea~~rs Printer

Tier 3

The association of the mouse with the keyboard's internal hub and the speakers
with the monitor's internal hub is arbitrary. For example, a user could instead
connect the mouse to the monitor's internal hub, the modem to the keyboard's
internal hub, and the speakers to the stand-alone hub in Tier 1 without affecting
the system's functionality and without having to reconfigure any software on the
host computer.

96 Windows CE Device Driver Kit

USB Transfer Types
Windows CE 2.10 supports all four types of data transfer defined in the Universal
Serial Bus Specification, Revision 1. Device drivers for USB devices can use any
of the following transfer types, as appropriate:

• Control transfers

Control transfers are bidirectional transfers that are used by the USB system
software mainly to query, configure, and issue certain generic commands to
USB devices. Control transfers can contain 8, 16,32, or 64 bytes of data,
depending on the device and transfer speed. Control transfers typically take
place between the host computer and the USB device's endpoint 0, but vendor
specific control transfers may use other endpoints.

• Isochronous transfers

Isochronous transfers provide guaranteed amounts of bandwidth and latency.
They are used for streaming data that is time-critical and error-tolerant or for
real-time applications that require a constant data transfer rate. For example,
an Internet telephony application that carries a conversation in real time is a
good candidate for isochronous transfer mode. Isochronous data requires
guaranteed amounts of bandwidth and guaranteed maximum transmission
times. For isochronous transfers, timely data delivery is much more important
than perfectly accurate or complete data transfer.

• Interrupt-driven transfers

Interrupt-driven transfers are used mainly to poll devices to check if they have
any interrupt data to transmit. The device's endpoint descriptor structure
determines the rate of polling, which can range from 1 through 255
milliseconds. This type of transfer is typically used for devices that provide
small amounts of data at sporadic, unpredictable times. Keyboards, joysticks,
and mouse devices fall into this category.

• Bulk transfers

Bulk transfers are for devices that have large amounts of data to transmit or
receive and that require guaranteed delivery, but do not have any specific
bandwidth or latency requirements. Printers and scanners fall into this
category. Very slow or greatly delayed transfers can be acceptable for these
types of device, as long as all of the data is delivered eventually.

USB Host Controller
The host controller, or adapter, is a hardware layer that is contained within the
host computer. The host controller converts data between the format that is used
by the host computer and the USB format. Only OEMs who implement Windows
CE-based products that use USB need to write drivers for USB host controllers.
For more information, see "Developing Native Device Drivers."

USB Devices

Chapter 7 Universal Serial Bus Drivers 97

USB peripheral devices consist of one or more physical components that
implement the abilities of the devices. These components are called inteifaces.
Each interface typically provides some useful grouping of functionality, but
exactly what constitutes an interface is an implementation detail. For example, a
USB mouse device could present one interface for horizontal and vertical
movement information and a separate interface for left and right button
information. As another option, the device could present a single interface
containing all of the information. Both are valid approaches, but each approach
has implications for how the device driver must operate.

Associated with each interface is a set of endpoints. Endpoints are the ultimate
producers or consumers of data that is transmitted across the bus. All USB devices
have a special endpoint, known as endpoint 0, which supports the generic USB
status and configuration protocol.

USB device drivers establish logical communication channels, called pipes, to the
various endpoints on a USB device. A pipe is a software association between a
USB device driver and an endpoint. Pipes can be thought of as communication
channels that use function calls to the USB system software to communicate with
their associated endpoints. The characteristics of a pipe, such as the direction of
communication and the required bandwidth, are determined by the endpoint
characteristics, which in tum are indicated in the endpoint descriptor structure.

The bus interface hardware on a USB device is responsible for the transmission
and reception of USB-structured data. The logical USB device corresponding to a
physical USB device consists of USB abstraction entities, such as the device
endpoints and their corresponding pipes.

USB System Software
USB system software consists of two layers: an upper layer of USB device drivers
and a lower layer of USB functions that are implemented by Windows CEo USB
device drivers use the USB functions to establish connections to the devices they
control and to configure and communicate with the devices. The lower layer of
USB functions performs several interrelated tasks:

• Manage all communication between USB device drivers and the host
computer's built-in USB root hub

• Load and unload USB device drivers at the appropriate times

• Translate data to and from the USB protocol's frame and packet formats

• Perform generic configuration and status-related tasks by establishing
communication with the generic endpoint on all USB devices

98 Windows CE Device Driver Kit

The lower layer is itself composed of two parts-the upper universal serial bus
driver (USBD) module and the lower host controller driver (HCD) module. The
USBD module implements the high-level USBD interface functions in terms of
the functionality provided by the HCD module. USB device drivers use the USBD
interface functions to communicate with their peripherals.

IHV s and manufacturers of USB devices should make use of the functions that are
provided by the USBD to implement their USB device drivers. OEMs are
responsible for providing an HCD module to their Windows CE-based platforms
so that their hardware properly interfaces with the USBD module.

The following illustration shows the two layers of software in the context of the
host's USB hardware and a peripheral device.

Peripheral Host computer
device and software

Drive~-specific ,.
pipes

t t System Device-specific No USB
communication format software

~ ~
Logical USBDmodule

Default pipe" device HeD module

t t
USB data USB data
frames frames

~ +
.- USB cable } System

hardware

Logical
connection

PhYSical
~ connection

Chapter 7 Universal Serial Bus Drivers 99

During a data transfer, the flow of operation typically proceeds in the following
sequence:

1. A USB device driver initiates transfers by using USBD interface functions to
issue requests to the USBD module.

2. The USBD module divides requests into individual transactions, based on its
knowledge of the bus and on characteristics of the USB devices that are
connected to the bus.

3. The RCD module schedules these transactions over the bus.

4. The host controller hardware performs or completes the transactions.

All transactions on the bus originate from the host side; the peripherals are totally
dependent.

The following sections on USB system software describe the various components
of USB support in Windows CE 2.10. The primary goal of the USB support
provided by Microsoft, aside from enabling IRV s to write device drivers for USB
devices, is to help OEMs expand existing USB support on their platforms.
Currently, USB support includes only the host side of the USB specification,
which enables Windows CE to support USB peripherals. OEMs are free to add
device-side support, which would enable Windows CE-based platforms to serve
as USB peripherals to other USB hosts.

Supported and Unsupported USB Features
Windows CE 2.10 supports the following USB features:

• Bus enumeration

Windows CE supports enumeration of USB devices on the bus. The bus
enumeration process is a multistep query sequence: the RCD module acquires
information from a connected device, assigns it a unique USB address, and
sets a configuration value. Once enumeration is complete, the device is
configured and ready to conduct, transmit, and receive transactions. At this
point, the USBD module attempts to load one or more USBDs to control the
device, based on the information contained in the device and interface
descriptors. If no suitable driver has been registered for the device, a user is
prompted to enter the name of a driver to control the device.

• Power management

Windows CE provides support for bus-powered and self-powered devices. For
both types of device, the USBD module reads the power requirements of the
device from the descriptor information and rejects the device if it exceeds the
maximum power threshold. OEMs can set the current-draw limit, so IHVs
should not rely on any particular amount of available current, except as
detailed in the Universal Serial Bus Specification, Revision 1.

100 Windows CE Device Driver Kit

• Transfer types

Windows CE supports all four types of data transfer defined in the Universal
Serial Bus Specification, Revision 1. USB device drivers can use any of the
transfer types that are appropriate for their peripherals. However, Windows CE
2.10 does not support the control transfers defined in the Universal Serial Bus
Specification, Revision 1 to put a USB device into the suspend state.
Depending on device capabilities, however, a USB device driver may be able
to suspend the device by using the SetConfiguration function to deconfigure
the device.

• Class drivers

The USB architecture implemented in Windows CE supports loading class
drivers, although Microsoft does not supply any sample class drivers.
Examples of device classes include the stream class and the human interface
device (HID) class, among others. OEMs or IHVs can write their own class
drivers and load them appropriately, using the registry mechanism.

There is no support on Windows CE 2.10 for making a Windows CE-based
platform itself appear as a USB peripheral to other host computers. That is, the
HCD and USBD modules supplied in Windows CE do not provide facilities to
connect a Windows CE-based platform to a desktop computer that is running as a
USB host.

USB Power Management
Windows CE provides full support for power management of USB devices, as
described in the Universal Serial Bus Specification, Revision 1. Very important
for Windows CE are support for suspending and resuming, because Windows
CE-based platforms have a power-on and startup cycle that differs from the one
on desktop computers. Support for bus-powered and self-powered USB devices is
also important because many Windows CE-based platforms have limited power
resources. For more information about power management, see "Developing
Native Device Drivers."

Windows CE supports power cycling USB devices in association with the
standard Windows CE power states. When Windows CE issues a
POWER_DOWN notification, the HCD module suspends the USB host controller
hardware and all devices. When power returns to the platform, Windows CE
sends a POWER_UP notification to the HCD module. When the host controller
hardware has been reinitialized, the USBD module unloads the USB device
drivers loaded prior to the POWER_DOWN notification, identifies all the USB
devices that are currently connected to the bus-a process called bus
enumeration-and loads the USB device drivers for those devices. This power
cycle processing is very similar to that performed by the Windows CE Device
Manager for PC Card devices.

Chapter 7 Universal Serial Bus Drivers 101

This implies that USB device drivers may need to take special action to make a
power cycle transparent to upper-level applications. For example, if a USB device
provides a file system, the device driver should preserve open file handles across
a power cycle. There are several ways to accomplish this. One solution is for the
USB device driver to register itself with the Device Manager as a stream interface
driver by calling the RegisterDevice function. This increments the reference
count on the USB device driver's dynamic-link library (DLL) so that when the
USBD module unloads the driver, the driver's code still remains in memory. The
USB device driver could keep any application file handles open and wait for the
the call to the USBDeviceAttach function, which occurs after the system resumes
and the USB device is ready to be used. The disadvantage of this approach is that
the driver remains in memory even after the USB device is detached from the
system. The second solution is to separate the USB interface from the upper-level
file system interface. For example, the PC Card file allocation table (FAT) file
system module uses this approach to separate its file system driver code, which
must manage file handles, from the PC Card driver code that actually manages the
PC Card hardware.

Windows CE versions 2.12 and later provide full support for bus-powered and
self-powered USB devices. When a user connects any self-powered or bus
powered device to a Windows CE-based platform, the USB system software
automatically accepts or rejects the device, based on the device's power
requirements and the system's overall power load. The power model is identical
for both self-powered and bus-powered devices.

When a USB device is attached to a platform, the RCD module sets the initial
power configuration. During the device attachment processing phase, the RCD
module reads the power requirements of the USB device configurations from the
device configuration descriptor structures. It then calls in to the platform-specific
portion of the RCD module to determine if the host platform can support the USB
device's power requirements. An OEM can implement code in the platform
specific portion of the RCD module to test system power status, such as whether
the system is running on batteries or is plugged into a power outlet, to assist in
making this determination. In this way, the RCD module can choose an
appropriate power configuration for the USB device from those listed in the
device's configuration descriptor structures.

At this time, Windows CE 2.10 does not support placing a USB peripheral into
suspend mode programmatically.

102 Windows CE Device Driver Kit

Writing USB Device Drivers
This section describes how to write device drivers for USB devices running on
Windows CEo USB device drivers exist to make the services of peripheral devices
available to applications. Although there are no standard mechanisms that USB
devices must use to accomplish this, there are various strategies that USBDs can
adopt, depending on the nature of the peripherals that they control:

• Use the stream interface functions

A USBD can expose the stream interface functions. Applications can then treat
the peripheral device as a file and use standard file 110 functions to interact
with the device. However, because the Device Manager is not involved in the
loading and unloading of USBDs, any USBD that exposes the stream interface
functions must register and deregister its special device file name manually,
using the RegisterDevice and DeregisterDevice functions. These functions
should be called when the USBD is loaded and unloaded, respectively.

• Use the existing Windows CE application programming interface (API)

By interacting with a Windows CE API, USB device drivers can indirectly
expose certain types of peripherals to applications if Windows CE has an
existing API that is appropriate to the peripheral. For example, USBDs for
mass storage devices, such as hard drives and CD-ROM drives, can expose
such devices through the standard installable file system interface. The sample
USB mouse driver also uses this strategy. The driver does not expose the
mouse device directly to applications; rather, it interacts with existing
Windows CE APIs to submit the correct input events to the system. Thus,
the USB nature of the mouse device is transparent to applications.

• Create a custom API specific to a particular USBD

This strategy does not place any restrictions on the way that a USBD exposes a
device. It allows you to create an API for the device that best maps to the ways
that applications are likely to use it. However, you must provide appropriate
documentation to application writers so that their applications can use the
driver.

USBD Interface Functions
USB device drivers interact with the peripherals that they control by using the
USBD interface functions. These functions, which are provided by the USBD
module, constitute the core of a USB device driver's functionality. There are
several categories of USBD interface functions, each related to a different
aspect of interacting with a USB device, including transfer, pipe, frame, and
configuration functions, as well as functions for performing other
miscellaneous tasks.

Chapter 7 Universal Serial Bus Drivers 103

Transfer functions are the most important category because they handle sending
data to and receiving data from a USB device. There are four basic types of
transfer: control, bulk, interrupt, and isochronous. For convenience, there are
several special transfer functions that provide common types of control transfer,
such as device configuration and setup requests. All transfer functions have an
optional callback parameter. If a callback function is provided, the transfer
functions return immediately, or asynchronously, without waiting for the transfer
request to complete. When the transfer request finishes, the transfer function calls
the function that is pointed to by the callback parameter. Additionally, a USB
device driver can use the USB_NO_ WAIT flag to cause the transfer functions
to return asynchronously, even if no callback is specified. USB device drivers
typically do this in situations when they queue several requests to the device
and wait for only the last one to finish. In such cases, the device driver is still
responsible for closing all transfer handles. If the USB device driver provides no
callback function and does not use the USB_NO_ WAIT flag, the transfer function
blocks until the transfer is complete.

The USBD module calls the callback function in a context that may block other
USB operations. Therefore, these callback functions should perform very minimal
processing, preferably just setting some state variables and signaling an event so
that any substantial post-processing can be handled by another thread. In
particular, such callback functions cannot call any USBD interface functions.
See the HID and mouse sample drivers for examples of using callback functions.

Internally, the USB system is optimized for a page size of 4 KB. If a platform has
a different page size, the USB system allocates an internal, contiguous 4-KB
buffer to use for data transfers. However, copying data into and out of this buffer
may impose an unacceptable limit on the performance of a USB device driver. In
such cases, the driver may pass an optional physical memory address that the USB
system uses directly for data transfers. A driver-specific buffer used in this way
must be contiguous within 4-KB segments and must not be accessed by the USB
device driver during transfer operations. The LockPages function can be used to
obtain physical address information.

The following list shows the transfer functions:

AbortTransfer

CloseTransfer

GetlsochResults

GetTransferStatus

IssueBulkTransfer

IssueControlTransfer

IssueInterruptTransfer

IssueIsochTransfer

IsTransferComplete

Issue VendorTransfer

104 . Windows CE Device Driver Kit

The following list shows the pipe functions that open and close communication
channels between a USBD and a USB device:

AbortPipeTransfers

ClosePipe

IsDefaultPipeHalted

IsPipeHalted

OpenPipe

ResetDefaultPipe

ResetPipe

The following list shows the frame functions that control how the USBD module
packages data into frames for transmission on the bus:

GetFrameLength

GetFrameNumber

ReleaseFrameLengthControl

SetFrameLength

TakeFrameLengthControl

The following list shows device configuration functions for specific kinds of data
transfers defined in the Universal Serial Bus Specification, Revision 1:

ClearFeature

GetDescriptor

GetInterface

GetStatus

SetDescriptor

SetFeature

SetInterface

SyncFrame

The following list shows miscellaneous functions for tasks related to interacting
with USB implementation:

Findlnterface

GetDevicelnfo

GetUSBDVersion

LoadGenericInterfaceDriver

OpenClientRegistryKey

RegisterClientDriver Id

RegisterClientSettings

RegisterNotificationRoutine

TranslateStringDescr

UnRegisterNotificationRoutine

Chapter 7 Universal Serial Bus Drivers 105

Required Entry Points for USB Device Drivers
All USB device drivers must expose certain entry points in their DLLs to interact
properly with the USBD module. The following entry points not only enable the
USBD module to connect a driver with its peripheral, but also enable a driver to
create and manage any registry keys that it may need:

• USBDeviceAttach

The USBD module calls this function when the USB device is connected to a
host computer. The driver's implementation of this function can decline to
control the device, in which case the USBD module attempts to find another
driver to handle the device. A driver rarely declines to control a device, though
it might under certain conditions. For example, the driver might decline to
control the device if the driver can determine from the device configuration
block that the device is newer than the driver. By doing so, the driver
indirectly gives a user an opportunity to enter the name of the correct USBD
DLL if Windows CE cannot locate another driver for the device. For more
information, see "USB Device Driver Attach Processing."

• USBlnstallDriver

This function, which is called the first time that the USB device driver is
loaded, allows the driver to create any registry keys that it needs. For more
information on the format of these keys and how they are used to load USBDs,
see "USB Device Driver Load Process."

• USBUnlnstallDriver

This function is called when a user removes the driver from a Windows CE
based platform. It is responsible for removing all registry keys that are created
by the driver's USBlnstallDriver function and for releasing any other
resources that are held by the driver. For more information, see "Removing
USB Device Drivers."

Registry Keys for USB Device Drivers
Registry keys control how USB device drivers are loaded. When a USB device is
attached, a USBD module loads the appropriate USBD to control that device,
based on the device's configuration and interface descriptor information. The
USBD module locates the correct driver by using a set of registry keys, which
track both the drivers and the devices. The registry keys are stored as subkeys of
the HKEY _LOCAL_MACHINE\Drivers\USB\LoadClients\. key.

This loading method provides a flexible framework that allows drivers to be
loaded in different contexts, depending on the range of devices that they are able
to control. For example, OEMs may decide to include a generic class driver with
their Windows CE-based platform that can control a broad range of USB devices.
However, an IHV may have a driver for the a specific USB device within that
class that is more efficient or works better than the generic class driver.

106 Windows CE Device Driver Kit

In this case, the IHV's driver could control a subset of the devices that the generic
class driver controls, while allowing other devices to continue to be controlled by
the generic driver. The structure of the LoadClients key defines a framework in
which programmers can specify driver precedence in great detail. The following
are examples of the contexts that can cause specific USB device drivers to be
loaded:

• To match every device that is connected to the bus. For example, a driver that
displays an icon in the system's taskbar can be loaded to control each USB
device that is connected to the system. In this case, the driver could purposely
fail the USBDeviceAttach call after obtaining the device information, in
which case the USBD module would continue looking for a driver to control
the device. Only one driver of this type can be registered in the system.

• To match a vendor-specific identifier. This is used for USB devices that do not
fall into any currently defined class, or to provide an enhanced driver for a
particular IHV's USB devices. It is not recommended for general-purpose
drivers that may be able to control devices from multiple IHV s.

• To control devices of a specific device class. For example, you could write a
USB device driver to control all HID class devices. The USB Working Group
has defined other device classes, including communications, audio, and mass
storage.

• To control each interface on a device. For example, a USB CD-ROM drive
that has an audio interface, as is common with CD-ROM drives that can play
audio CDs, could have separate drivers for each interface. This method is the
best for loading USB device drivers because it allows compound devices that
require multiple drivers to operate without additional reconfiguration.

The registry key for a USBD should either be part of an OEM's platform .reg file
or be created when a USB device driver is installed on a Windows CE-based
platform. At installation time, the key can be created either by a setup application
or by the driver's USBlnstallDriver function. USBlnstallDriver should create
the keys indirectly, by calling the RegisterClientSettings function, rather than by
invoking the Windows CE registry APIs. Installation by USBlnstallDriver occurs
when an unrecognized USB device is connected to the bus and the USBD module
queries a user for the name of the device driver DLL. The USBD module then
loads the driver and calls its USBlnstallDriver function.

Subkeys for each driver have the form
Groupl_ID\Group2_ID\Group3_ID\DriverName. Each of the group identifier
subkeys can be named Default to indicate that the USBD should be loaded if the
remaining group identifier subkey names match the USB device. Otherwise, the
group identifier subkey names are formed from combinations of vendor, device
class, and protocol information, separated by underscores. This information comes
from the USB device descriptor.

The following table shows the allowable combinations.

Group key

Group2_ID

Group3_ID

Chapter 7 Universal Serial Bus Drivers 107

Allowable forms

Device VendorID,
Device VendorID _DeviceProductID,
Device VendorID _DeviceProductID _DeviceReleaseNumber

DeviceClassCode,
DeviceClassCode_DeviceSubclassCode,
DeviceClassCode_DeviceSubclassCode_DeviceProtocolCode

InterfaceClassCode, .
InterfaceClassCode_InterfaceSubclassCode,
InterfaceClassCode_InterfaceSubclassCodejnterfaceProtocolCode

The following code example shows the registry key setup for the sample mouse
driver.

[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClientsJ
[DefaultJ

[DefaultJ
[3_1_2J

[Generic_Sample_Mouse_DriverJ
"DLL"="USBmouse.dll"

This code example shows that the driver contained in U sbmouse.dll called
Generic_Sample_Mouse_Driver is loaded by default for any interface on a USB
device with an InteifaceClassCode of 3 (HID class), InteifaceSubclassCode of 1
(boot interface subclass), and InteifaceProtocolCode of 2 (mouse protocol). These
values are defined in the USB HID specification.

The following code example shows the settings for the sample HID driver.

[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClientsJ
[DefaultJ

[DefaultJ
[3]

[Generic_Sample_Hid_Class_Driver]
"DLL"="USBHID.dll"

This example shows that the driver contained in Usbhid.dll is called
Generic_Sample_Hid_ Class_Driver and is loaded for any interface with an
InteifaceClassCode of 3.

According to the precedence rules for loading USB device drivers, if the settings
for both the sample mouse and the HID drivers are included in the registry, the
HID driver is loaded first because it has the more general Group3_ID subkey.

108 Windows CE Device Driver Kit

USB Device Driver Load Process
The USBD module takes the following steps when loading drivers, stopping as
soon as it finds a driver that accepts control of the device. The following rules
describe the algorithm that the USBD module uses to search for USB device
drivers. In the descriptions, GroupX_ID refers to a key with the specified group
set to one of the forms described in "Registry Keys for USB Device Drivers" and
the remaining groups set to Default. If multiple drivers are registered within the
same group, the one that contains the simplest form is loaded first. For example, a
driver specifying a Groupl_ID with device class code only, such as
Default\DeviceClass\Default, loads before a driver specifying a Groupl_ID with
device class and subclass code, such as Default\DeviceClass_Subclass\Default.
This allows Windows CE to conserve resources by loading as few drivers as
possible. This procedure takes the following steps:

1. The USBD module searches for a subkey with the name
Default\Default\Default. If present, the module loads the driver listed within
the Default\Default\Default\DriverName\DLL subkey. A driver registered in
this way is loaded for all USB devices that are connected to the system.

2. The USBD module searches for a vendor-specific driver. Vendor-specific
drivers are identified by searching for the most general Groupl_ID subkey
that matches the device descriptor information. The most general subkey is the
one that has a matching Groupl_ID subkey containing the simplest allowable
form and Default for the Group2_ID and Group3_ID subkeys. If a matching
subkey is found, the module loads the driver that is listed within the subkey's
DriverName\DLL subkey. For more information on allowable forms, see
"Registry Keys for USB Device Drivers."

3. The USBD module searches for a device class-specific driver. Class-specific
drivers are identified by searching for the most general Group2_ID subkey. If
a matching subkey is found, the module loads the driver listed within the
subkey's DriverName\DLL subkey.

The searches in steps 1 through 3 may not yield a matching USBD to control the
device as a whole; that is, the device may have mUltiple interfaces, but no driver
identified in steps 1 through 3 may match all of the interfaces present on the
device. If so, the USBD module takes the following steps to search for matching
drivers for each interface present on the device, searching for the most general
Group3_1D subkey. If the USBD module finds a matching subkey, it loads the
driver listed within the subkey's DriverName\DLL subkey.

Finally, if no appropriate USBD is located, the USBD module prompts a user to
enter the name of a DLL containing the correct driver. The USBD module then
loads the driver and calls the driver's USBlnstallDriver function.

Chapter 7 Universal Serial Bus Drivers 109

USBInstallDriver should create an appropriate subkey for the driver by calling
the RegisterClientSettings function so that the next time that the USB device
is attached, the USBD module can locate the correct driver without prompting
a user.

In some cases it may be necessary to specify the precedence order to a greater
level of detail; for example, combining a vendor and device class specifiers. In
these cases, the GroupX_ID values may be combined to generate other .
combinations. The precedence for such combinations is as follows, in descending
order:

1. Groupl_ID\Default\Default

2. Groupl_ID\Group2_ID\Default

3. Default\Group2_ID\Default

4. Groupl_ID\Group2_ID\Group3_ID

5. Groupl_ID\Default\Group3_ID

6. Default\Group2_ID\Group3_ID

7. Default\Default\Group3_ID

If multiple drivers are registered at a particular precedence level, the USBD
module loads the one with the most general form.

USB Device Driver Installation
The HKEY _LOCAL_MACHINE\Drivers\USB\LoadClients key must be set
up correctly so that the USBD module can load the appropriate driver for a device
when a device is attached to the bus. Each installed USB device driver must have
a subkey within the LoadClients key for the USBD module to load it.

For a USB device driver that is supplied by an OEM, the OEM should configure
the LoadClients key in a platform's .reg file to include suhkeys for the driver. For
third-party peripherals, however, the driver does not have appropriate subkeys
when it is first connected to the platform. In this case, the USBD module fails to
locate an appropriate USB device driver when the peripheral is attached to the
bus. The USBD module instead displays a dialog box prompting a user to enter
the name of the appropriate USB device driver DLL. The USBD then loads the
specified driver to control the peripheral and calls the driver's USBInstallDriver
function.

The USB device driver's USBInstallDriver function sets up the driver's subkey
correctly within the LoadClients key so that the USBD module can load the
driver the next time that the peripheral is attached to the bus. The driver does this
by creating a USB_DRIVER_SETTINGS structure and passing it to the
RegisterClientSettings function. The format of the USB_DRIVER_SETTINGS

110 Windows CE Device Driver Kit

structure parallels that of the LoadClients key. If all the fields in a group have
USB_NO_INFO value, the corresponding GroupX_ID is set to Default in the
registry. For example, the following example shows the
USB_DRIVER_SETTINGS for the HID class sample driver.

USB_DRIVER_SETTINGS DriverSettings;
DriverSettings->dwVendorld
DriverSettings->dwProductld
DriverSettings->dwReleaseNumber

DriverSettings->dwDeviceClass
DriverSettings->dwDeviceSubClass
DriverSettings->dwDeviceProtocol

= USB_NO_INFO;
= USB_NO_INFO;
= USB_NO_INFO;

= USB_NO_INFO;
= USB_NO_INFO;
= USB_NO_INFO;

DriverSettings->dwlnterfaceClass = USB_DEVICE_CLASS_HUMAN_INTERFACE;
DriverSettings->dwlnterfaceSubClass = USB_NO_INFO;
DriverSettings->dwlnterfaceProtocol = USB_NO_INFO;

The following example shows how calling RegisterClientSettings with this
USB_DRIVER_SETTINGS structure is equivalent to having setup this registry
key.

[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients]
[Default]

[Default]
[3]

[Generic_Sample_Hid_Class_Driver]
"DLL"="USBHID.dll"

In general, the client driver performs the following operations in
USBInstallDriver:

• Registers a unique client driver identifier string by calling t4e
RegisterClientDriverId function.

• Sets up the LoadClients registry key correctly by calling the
RegisterClientDriverSettings function.

• Creates any driver-specific registry keys under the registry key that is returned
by the OpenClientRegistryKey function. This is optional because many client
drivers may not have any driver-specific registry settings. The registry key for
driver-specific settings is
HKEY _LOCAL_MACHINE\Drivers\USB\ClientDrivers\Client Driver Id
String.

This location for driver-specific keys may change in future versions of Windows
CE, so USB device drivers should always use OpenClientRegistryKey to
manipulate the settings, rather than opening the registry key directly.

Chapter 7 Universal Serial Bus Drivers 111

After USBlnstallDriver completes these actions, it returns control to the USBD
module. The USBD module once again attempts to load a client driver for the
device, using the algorithm described in "USB Device Driver Load Process." At
this time, the USBD module calls the USB device driver's attach routine.

USB Device Driver Attach Processing
After the USBD module loads a USB device driver for a peripheral, it calls the
driver's USBDeviceAttach function. In this function, the driver performs the
following operations:

• Determines whether it can control the peripheral. If the driver can control the
peripheral, it returns TRUE to accept control. Otherwise; the driver returns
FALSE to decline control. In the latter case, the USBD module continues to
search for other drivers to control the peripheral.

• Loads additional USB device drivers for other interfaces that may be present
on the peripheral by calling the LoadGenericlnterfaceDriver function. If a
USB device driver accepts control of a peripheral, the USBD module stops
searching for drivers to control the peripheral. The driver that accepts control
must then load any other USB device drivers for other interfaces present on the
peripheral.

• Registers a callback function that is called when the peripheral is disconnected·
from the bus. USB device drivers use the RegisterNotificationRoutine
function to register callback functions.

Removing USB Device Drivers
During the USB device driver attach processing operation, the device driver
registers a callback function. When a user detaches a peripheral from the bus, the
USBD module calls the callback function within that device driver. This function
is called with the USB_CLOSE_DEVICE code, which is the only device
notification code defined in Windows CE 2.10.

The callback function also has the option of calling other functions in the USB
device driver, such as USBUnlnstallDriver. USBUnlnstallDriver removes all
registry keys that were created by the driver's USBlnstalIDriver function and
releases any other resources that are held by the driver. In this way, a user can
remove any old registry settings for a particular device when a new or updated
driver for that device is available. In Windows CE 2.10, the USBD module never
calls USBUnInstallDriver.

112 Windows CE Device Driver Kit

Sample USB Device Drivers
The Microsoft Windows CE Platform Builder contains source code for a sample
driver for USB mouse devices and an HID class driver. The mouse driver uses
interrupt-driven transfers. OEMs and IHVs are encouraged to use the source code
for these sample drivers as the basis for other USB device drivers. In the sample,
the registry keys are configured to 'load the drivers automatically; plugging in a
mouse or keyboard loads these drivers. Because the HID class driver can control
mouse devices, there is no reason to include the mouse driver DLL on platforms
that support USB keyboard and mouse devices.

After the sample USB mouse driver is loaded and the USBD module calls the
driver's USBDeviceAttach function, the driver calls an initialize function that
opens a pipe to the mouse device's interrupt endpoint. It also starts a worker
thread to handle interrupts. This thread enters a loop in which it submits interrupt
transfers by calling the IssueInterruptTransfer function. After the transfer
completes, the driver retrieves the mouse event data from the function's IpvBuffer
parameter. It then creates an appropriate mouse event to submit to the Windows
CE input system.

There are a number of USB device classes that Microsoft does not currently
supply sample drivers for. These include the audio device, storage device,
communication device, physical interface device, and power device classes.

Sample HID Class Driver
The sample USB HID class driver supports input devices such as keyboards,
mouse devices, joysticks, gamepads, steering wheels, and so on. In order to
present applications with a consistent method of accessing those devices, the HID
class driver uses the Microsoft® Directlnput® API. The HID class driver uses the
USB interrupt transfer and control transfer functions to access USB input devices.
It uses the stream interface functions to interact with the Directlnput subsystem.

In addition to sending input events from HID class devices to the Directlnput
subsystem, the HID class driver also always generates ordinary keyboard and
mouse events by using the keybd_event and mouse_event functions. This is not
necessary for interacting with the Directlnput subsystem, but it does mean that if
an application that is using the mouse or keyboard fails or stops responding, the
use of those devices is still available to other applications.

The Directlnput subsystem in Windows CE uses 110 control codes to request
various actions from the HID class driver. The following table shows the eight 110
control codes that the HID class driver must support in its IOControl function.

110 control code Description

Notifies the HID class driver that the DirectInput
subsystem no longer wants to receive events

Chapter 7 Universal Serial Bus Drivers 113

connected to a handle that was previously
obtained through use of the
IOCTL_HID_SET_FORMAT control code.

Notifies the HID class driver that an application
needs to use a device.

Return a list of devices that the HID class driver is
currently managing.

Return the number of input sources, such as
buttons, on the device.

Returns data from the device to the DirectInput
subsystem.

Requests that the HID class driver poll the device
to get the device's status.

Sets the format of data that the HID class driver
returns for a device to the Directlnput subsystem,
and acquires the device for use by an application.

Registers an event handle that the HID class
driver can use to notify the Directlnput subsystem
when the device generates data.

The implementation of the Directlnput subsystem for Windows CE is a subset of
the full Directlnput API thai is defined for desktop versions of Windows. The
following differences between these implementations affect the HID class driver:

• Windows CE supports only foreground-exclusive mode.

• Attempting to enumerate the available HID class devices fails if there are no
such devices connected to the Windows CE-based platform because the USB
subsystem unloads the HID class driver when there are no HID class devices
to control.

Testing USB Device Drivers
There is no extensive USB test suite for Windows CE at this time. The sample
USB mouse and HID drivers, the USB CD-Changer device driver for an Auto PC
device, and the USB 8x930Ax peripheral kit and evaluation board from Intel
Corporation can be used to assist in testing USB scenarios. These are the methods
used at Microsoft to test the USB system software for Windows CE version 2.10.
Further details on testing a USB system and the device drivers on an OEM
platform are available in the Platform Builder.

115

CHAPTER 8

NDIS Network Drivers

The network driver interface specification (NDIS) is the mechanism by which the
Windows CE operating system (OS) supports network connectivity. NDIS
provides a pair of abstraction layers that are used to connect networking drivers to
protocol stacks, such as TCPIIP and Infrared Data Association (IrDA), and to
network adapters, such as Ethernet cards. NDIS presents two sets of application
programming interfaces (APIs) for writers of network drivers: one set interfaces to
the networking protocol stacks and one set interfaces to network interface cards
(NICs).

Windows CE versions 2.0 and later implement a subset of the NDIS 4.0 model
that is used by Windows NT, enabling OEMs and independent hardware vendors
(lHVs) to port existing Windows NT networking drivers to Windows CEo The full
NDIS supports several types of network drivers, but Windows CE versions 2.0
and later support only miniport drivers, and not monolithic or full NIC drivers. In
addition, Ethernet and IrDA are the only NDIS media types that are supported in
Windows CE 2.10.

116 Windows CE Device Driver Kit

The following illustration shows the relationships among protocol stacks, NDIS,
NICs, and miniport drivers in Windows CEo

Protocol stacks

NDIS upper layer

Networking layer

NDIS lower layer

Hardware layer

For miniport drivers, Windows CE is largely source~code-compatible with
Windows NT. This means that, with a few exceptions, Windows CE and
Windows NT support identical NDIS APls. Consult the Microsoft Windows NT
Device Driver Kit for extended information on how to write a miniport driver.
Because full documentation is available in the Microsoft Windows NT Device
Driver Kit, this documentation does not discuss at length the process of writing
miniport drivers. Miniport drivers are complex pieces of software, and for this
reason Microsoft recommends that you adapt one of the sample miniport drivers
or port an existing miniport driver from another as, such as Windows NT, rather
than writing one from scratch.

The Microsoft Windows CE Platform Builder includes the following sample
miniport drivers:

• Proxim wireless Ethernet PC Card

• FastlR, which uses the National Semiconductor PC87338 chipset

• NE2000-compatible network adapters for PCI, ISA, and Personal Computer
Memory Card International Association (PCMCIA) buses

• IrSIR infrared serial port intermediate miniport driver

• Xircom CE 2 Ethernet PC Card

Chapter 8 NDIS Network Drivers 117

For a complete list of the NDIS APIs that are supported on Windows CE,
including infonnation on the minor differences between the Windows CE API and
its Windows NT counterpart, consult the Microsoft Windows CE API Reference.

NDIS Support in Windows CE
Windows CE versions 2.0 and later support the following NDIS features:

• A subset of the NDIS 4.0 API

• Ethernet (802.3) and IrDA media types

• Standard mini port drivers

• A subset of intennediate miniport drivers

Windows CE supports intennediate drivers that use NDIS to expose a miniport
interface to overlying protocol stacks and a custom interface to underlying
device drivers. An example of such a driver is the IrSIR driver for infrared
serial ports. Intennediate miniport drivers, unlike standard miniport drivers, do
not use NDIS functions to access NIC hardware. They use NDIS functions
only to access the protocol stack that they are bound to.

• Plug and Play loading of mini port drivers for PC Card-based NICs

Windows CE versions 2.0 and later do not support the following NDIS features:

• Monolithic or full NIC drivers.

• General direct memory access (DMA)

Windows CE versions 2.0 and later do not support the NDIS functions that are
related to DMA. However, developers can implement DMA code in their
miniport driver for a specific combination of a Windows CE-based platfonn
and an NIC. For more infonnation, see "Implementing DMA for NDIS
Miniport Drivers."

• Contiguous physical memory allocations

Miniports for built-in NICs that require contiguous physical memory for DMA
transfers can have a physical block of memory reserved for this purpose in an
OEM's device memory map.

• Intennediate miniport drivers that expose both a miniport interface for use by
overlying protocol stacks and a protocol interface for use by other, underlying
mini port drivers

• Wide area networking through NDIS

Protocols such as Serial Line Internet Protocol (SLIP) and Point-to-Point
Protocol (PPP) are implemented by libraries that directly connect the TCP/IP
protocol stack to an underlying transport medium, such as the serial port
driver.

118 Windows CE Device Driver Kit

• PC Card attribute space

Miniport drivers for PC Card-based NICs should use the PC Card Services
library to access attributes and other tuples on the PC Card.

• Multipacket sends

Multipacket sends are not supported in Windows CE versions 2.12 and earlier.

Compiling a Miniport Driver for Windows CE
The source code for miniport drivers on Windows NT is largely compatible with
Windows CEo As long as a miniport driver uses NDIS functions that are supported
by Windows CE, the process of porting a miniport driver to Windows CE is
straightforward.

The most significant difference between Windows CE and Windows NT is that
Windows CE does not support .sys or .inf files. This reduces the complexity and
size of the Windows CE loader. Therefore, a miniport driver for Windows CE is
compiled as a dynamic-link library (DLL) that exports the DriverEntry function.
DriverEntry typically performs any general or platform-specific initializations. It
also registers the miniport driver with the NDIS system by calling the
NdisMRegisterMiniport function. DriverEntry must have the following
prototype:

NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObject,
IN PUNIC ODE_STRING pRegistryPath);

For sample DriverEntry implementations, see the source code for the sample
miniport drivers.

Because Windows CE does not support the Common Network .inf file format for
installing a device driver, you must ensure that the proper registry keys are
created for the miniport driver, typically through a setup application or through
the driver's Install_Driver function. For more information, see "Registry Keys
for Miniport Drivers."

As well as general issues that are related to the structure of mini port drivers
themselves, there are also issues relating to pointers. I/O port addresses for
miniport drivers are 32-bit virtual addresses that are mapped to the miniport
driver's process address space. Do not cast I/O port addresses to non-32-bit types,
such as USHORT.

Chapter 8 NDIS Network Drivers 119

A miniport driver should be installed in the \Windows directory on a target
Windows CE-based platform. Miniport drivers need certain system DLLs in order
to load and function correctly. Ethernet miniport drivers require the Ndis.dll,
Arp.dll, and Dhcp.dll files. IrDA miniport drivers require the Ndis.dll and
Irdastk.dll files. OEMs can omit some of these files if their platforms do not have
the hardware that is used by a particular type of driver. For example, platforms
without a built-in infrared port do not require Irdastk.dll.

Miniport drivers for PC Card-based NICs can be loaded and unloaded
dynamically when the NICs are inserted or removed. This is because PC Cards are
detected automatically by the Plug and Play support in Windows CEo However,
other types of NIC hardware that cannot be detected automatically by Windows
CE require that a platform be restarted after the miniport driver is installed in
order for Windows CE to use the driver. After a platform is restarted, the NDIS
component loads all drivers that have an
HKEY_LOCAL_MACHINE\Comm\Miniport\Group value ofNDIS listed in
the registry.

Implementing DMA for NDIS Miniport Drivers
DMA is important for efficient networking because it enables the layers in the
networking architecture to share data without first copying that data. Currently,
Windows CE does not have any inherent DMA mechanisms; however, developers
can implement equivalent functionality in their miniport drivers.

There are two categories of DMA: slave DMA and busmaster DMA. Slave DMA
is appropriate for OEMs because it requires a block of memory that is pre
allocated in the device memory map of the Windows CE-based platform.
Miniport drivers can map that block of physical memory to the driver's virtual
memory space, and then use the VirtualAlloc and Virtual Copy functions to
move data in and out of that space. For an example of this type of DMA
implementation for a Windows CE OS for a Windows-based hardware
development target platform, see the National Semiconductor IrDA sample driver.

Currently, no sample miniport driver implements busmaster DMA, which is a
slightly more complex mechanism than slave DMA. To receive data, the driver
allocates a shared memory block, transfers the data to buffers within that block,
and uses NDIS functions to indicate that a packet has arrived. To send data, the
driver uses the LockPages and UnlockPages functions to map the virtual memory
to device memory, informs the NIC of the addresses of the data, and instructs the
NIC to send the data. This method can be faster for larger data block sizes.

120 Windows CE Device Driver Kit

NDIS Protocol Binding
When a miniport driver is loaded, it must bind to an appropriate protocol stack.
The binding process connects the driver to the protocol stack so that they can
operate together. Protocol binding takes place through the NdisOpenAdapter and
NdisCloseAdapter functions.

The TCPIIP protocol stack supports miniports for both built-in and PC Card
based Ethernet hardware. The TCPIIP protocol stack in Windows CE can bind to
mUltiple miniport driver instances, enabling it to use multiple NICs. In
Windows CE 2.10, the IrDA stack supports only a single built-in infrared port,
which means that the IrDA stack binds to only a single miniport driver instance.

For PC Card-based NICs and miniport drivers, protocol binding or unbinding
occurs when the NIC is inserted or removed. When the NIC is inserted into a PC
Card socket, the Device Manager identifies the card, loads its driver, and binds it
to a protocol stack after the driver initializes itself. When the NIC is removed
from the PC Card socket, the Device Manager unbinds the miniport driver from
the protocol stack, shuts down the driver, and unloads the driver's DLL.

The particular miniport instances that protocol stacks bind to are stored in the
HKEY_LOCAL_MACHINE\Comm\Protocol\Linkage\ registry key. For more
information, see "Registry Keys for Miniport Drivers."

NDIS Power Management
Power management for PC Card-based NICs is identical to power management
for other PC Cards. The miniport driver performs the same power-cycle
processing that is required of all PC Card device drivers; no additional processing
is necessary. After power returns, the Device Manager calls the appropriate
unbind and bind functions in the miniport driver.

For a miniport driver for a built-in NIC, the miniport driver's reset function is
called when power returns. Miniport drivers for IrDA must support the
OlD _IRDA_REACQUIRE_HW _RESOURCES and
OlD _IRDA_RELEASE_HW _RESOURCES messages in order to perform power
management properly. A miniport for IrDA starts without any resources; when the
first IrDA socket is created, the IrDA protocol stack acquires the miniport's
resources. When all IrDA sockets are closed, the protocol stack releases the
resources. This ensures that the miniport driver and its NIC are not consuming
power when the IrDA stack is not in use. For an example of how these object
identifiers are implemented, see the FastlR sample miniport driver.

Chapter 8 NDIS Network Drivers 121

In some cases, miniport drivers may need to prevent a Windows CE-based
platform from suspending-for example, due to lack of user input-while the
driver is engaged in active operations. In such cases, the miniport driver can use
the SystemIdleTimerReset function to prevent Windows CE from entering
suspend mode. However, if the miniport driver is active because of a high-level
protocol connection, such as an open TCPIIP socket, the miniport driver generally
can let the upper-level protocol stacks prevent Windows CE from shutting down.
The upper-level protocol stacks ensure that the system does not shut down while
there are open sockets because such connections do not survive a power cycle.

Registry Keys for Miniport Drivers
When a miniport driver is installed on a Windows CE-based platform, the setup
application should create several registry keys to expose the miniport driver to
Windows CE properly. Windows CE loads NDIS drivers listed within the
HKEY_LOCAL_MACHINE\Comm\key. Subkeys within this key are named
for the corresponding miniport driver.

The following table shows the subkeys that are contained in each Miniport\ key.

Name Type

DisplayName SZ

Group SZ

ImagePath SZ

Linkage\Route SZ

Description

A user-friendly name for the driver

The literal string "NDIS"

The name of the DLL containing the miniport driver

A set of Miniport Instance keys, separated by commas

The value of the Linkage\Route key lists additional subkeys of the Comm\ key
for each miniport instance. These subkeys in tum contain a set of keys that
describes the parameters of that miniport instance. The following table shows the
subkeys that are contained in each Miniport Instance key.

Name Type Description

DisplayName SZ A user-friendly description of the miniport instance

Group SZ The literal value "NDIS"

ImagePath SZ The name of the mini port driver's DLL

Parms subkey Subkeys for the miniport driver's parameters

The following table shows the subkeys that are contained in each Miniport
Instance\PARMS key.

Name

BusNumber

BusType

Type

DWORD

DWORD

Description

The bus number for the miniport instance

The bus type of the miniport instance

122 Windows CE Device Driver Kit

BusNumber values range from 0 to one less than the number of buses on a
Windows CE-based platform. Valid BusType values are declared in the
_INTERFACE_TYPE enumeration in the Ceddk.h header file. Use the Miniport
Instance\Parms key to store any miniport-specific values because this is the
registry location that is accessed when miniport drivers call the
NdisOpenConfiguration and NdisReadConfiguration functions.

The following example shows a set of registry keys for a miniport driver.

[HKEY_LOCAL_MACHINE\Comm]
[NE2000]

Di spl ayName="NE2000 Compati bl e Ethernet Dri ver"
Group ="NDIS"
ImagePath="NE2000.DLL"
[Linkage]

Route="NE20001. NE20002"
[NE20001]

DisplayName="NE2000 Compatible Ethernet Driver"
Group="NDIS"
ImagePath="NE2000.dll"
[Parms]

BusNumber=0
BusType=8
CardType=l
InterruptNumber=03
IOBaseAddress=0300
Transceiver=3

PC Card miniport drivers also require an
HKEY_LOCAL_MACHINE\Drivers\PCMCIA\Plug-and-Play ID\ key. This
key enables the driver to load correctly when its NIC is inserted into a PC Card
socket. The key typically is named for the Plug and Play identifier of the PC Card,
but this is not a requirement. However, if the key is not named for the NIC's Plug
and Play identifier, the driver needs additional registry keys to enable the driver
detection algorithm of the Device Manager to load the driver.

The following table shows the subkeys that are contained in the
HKEY _LOCAL_MACHINE\Drivers\PCMCIA \Plug-and-Play ID\ key.

Name

DLL

Prefix

Miniport

Type

sz
sz
sz

Description

The literal string "Ndis.dll"

The literal string "NDS"

The name of the miniport driver for the PC Card, which
corresponds to the name of the registry key within
HKEY _LOCAL_MACHINE\Comm\ for the miniport driver

Chapter 8 NDIS Network Drivers 123

The following example shows the additional keys that a PC Card network adapter
could have.

[HKEY_LOCAL_MACHINE\Orivers\PCMCIA\NICs-R-Us Inc.-Super2000-E6FE]
OLL="NOIS.OLL"
Prefix= "NOS"
Miniport="NE2000"

Ndis.dll sets values for the BusNumber and BusType keys for PC Card-based
NICs. The BusNumber key contains the socket and function pair for the network
adapter. The BusType key contains the value for the PC Card bus. Finally, if the
card information structure (CIS) of the PC Card contains a network address value,
Ndis.dll creates a \HKEY _LOCAL_MACHINE\Comm\Miniport
Instance\Parms\NetworkAddress key to store the network address.

Protocol binding for mini port drivers for PC Card-based NICs occurs
automatically when the driver is loaded. Protocol binding for miniport drivers for
built-in NICs is controlled by the registry keys stored within
HKEY _LOCAL_MACHINE\Comm\lrDA \Linkage\ and
HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage\. Each of these Linkage\
keys should contain a single key called Bind. You can set the Bind key to a list of
mini port instances that the corresponding protocol stack binds to. The following
example shows the values that the registry could contain to enable the IrDA
protocol stack to bind to the IrSIR miniport and the TCPIIP stack to bind to both
the PPP and NE2000 miniports.

[HKEY_LOCAL_MACHINE\Comm]
[IrOA\Linkage]

Bind=multi_sz:"IrSirl"
[Tcpip\Linkage]

Bind=multi_sz: "PPP","NE20001"

Testing NDIS Miniport Drivers
The Microsoft Windows CE Device Driver Test Kit for Windows CE versions 2.1
and 2.11 includes a tool called Ndistest to assist in testing NDIS Ethernet miniport
drivers. The Test Kit does not include any tools for testing IrDA miniport drivers.
The Ndistest tool is a special protocol driver that provides functionality and stress
testing. Ndistest for Windows CE is based on the test tool for Windows NT, with
the difference that the Windows CE test tool does not include a graphical user
interface (GUI) to configure and run the tests. Rather, Ndistest for Windows CE
requires that auser manually edit configuration files and start the tests by using a
command line. Dual-computer testing for Windows CE runs against an Ndistest
server running Windows NT.

124 Windows CE Device Driver Kit

Although the Test Kit is part of the Platform Builder, it was not present for
Windows CE version 2.10. The Test Kit for Windows CE version 2.10 is
available on the Windows CE Web site at
http://www.microsoft.com/windowsce/downloads/embedded/defauIt.asp. The
Ndistest tool from the Test Kit for Windows CE version 2.1 works on both
Windows CE versions 2.1 and 2.11.

125

CHAPTER 9

Block Device Drivers

Block device drivers are for devices that allow data to be read or written only in
blocks of a fixed size. Block devices do not allow individual bytes of data to be
read or written. Block sizes tend to be one or a few kilobytes; some common sizes
are 512 bytes, 1 KB, 2 KB, and 4 KB. Block devices are ideally suited to mass
storage and persistent storage applications, such as disk and tape drives or non
volatile RAM disks.

The most common block devices that are used with Windows CE are those that
use linear flash memory chips to implement persistent storage. The material in this
section, however, applies to drivers for any type of block device. Some common
types of block devices are hard disks and ATA-style flash RAM disks in
miniature card, PC Card, and compact flash card form factors. Block devices that
conform to the industry standard Advanced Technology Attachment specification
work with the Microsoft ATADisk driver, which is included with Windows CEo

Block device drivers for Windows CE are typically implemented by using the
stream interface driver model. These drivers are managed by the Device
Manager, and expose file I/O functions in order to interact with applications.
The most important of those functions for block device drivers is the driver's
DSK_IOControl function, which handles all I/O requests to block devices.
The specific I/O control codes for DSK_IOControl are the same ones that
Windows CE uses to interact with the file allocation table (FAT) file
system driver.

Block device drivers are not required to use the stream interface driver model.
They can use the file system driver model if the device that they control is to be
used for file storage. OEMs or independent hardware vendors (IHVs) may also
use the file system driver model to implement other functionality, such as secure
encrypted file systems or extended file system name spaces.

126 Windows CE Device Driver Kit

Block Device Drivers for Linear Flash Memory Devices
The first version of Windows CE was used solely on platforms with battery
backed RAM storage with a simple file system to manage the storage. However,
Windows CE versions 2.10 and later are often used on embedded systems that
require persistent storage and cannot depend on battery-backed RAM storage. As
a solution, flash memory has been implemented because it is the industry standard
for nonvolatile storage in embedded applications.

The two leading types of flash memory architecture are AT A flash and linear flash
memory. Both conform to the industry standard PC Card form factor, and they can
be used interchangeably in existing PC Card sockets. However, there are
significant differences between the two architectures that affect their performance
on Windows CEo

ATA cards emulate the behavior of an ATA-style hard drive by means of linear
flash memory components and a special microcontroller chip, which performs
hardware emulation of an ATA-style hard disk. An ATA card appears as an
ordinary hard drive to an operating system (OS). ATA-style hard disks are block
devices, and thus AT A cards require block device drivers in order to work with
Windows CEo

Linear flash memory takes its name from the fact that, unlike ATA-style flash, the
individual storage locations form a contiguous range o'f memory addresses, each
of which can be accessed directly. Thus, linear flash memory can be read directly
as though it were RAM or ROM. However, linear flash memory can only be
written to in blocks. Moreover, linear flash memory on Windows CE uses a
software driver layer to emulate a disk drive; this eliminates the need for special
controller hardware. Linear flash memory devices that operate in this block
oriented fashion use the driver layer to translate data to and from a block format
that Windows CE can understand.

This driver layer is called the flash translation layer (FfL). The underlying data
format used by FfL software has been adopted by the PC Card industry as an
official data format. The FfL software component implemented on Windows CE
is the TrueFFS driver from M-Systems, Inc. The TrueFFS driver, a stream
interface driver, exposes standard Windows CE stream interface functions to the
OS. Currently, the TrueFFS driver can access only a DiskOnChip built-in device
from M-System, Inc. Windows CE supports linear flash memory in several form
factors: minicards, industry standard PC Cards, and built-in DiskOnChip devices.

Chapter 9 Block Device Drivers 127

Block Device Functionality
Block devices can be closely integrated with Windows CE, providing the
following functionality:

• Extension of the size of the Windows CE object store

Block devices can extend the Windows CE object store beyond the size of the
system's physical RAM. Block devices appear as folders within Windows CE
Explorer. Users can perform many ordinary operations on block devices, such
as drag-and-drop operations. Users can also create and delete files and
directories, retrieve file and directory information, and even reformat the
devices. These operations are all transparent to a user, who does not need to
know that the underlying device is not the same as the system's physical
RAM. Because block device drivers interface seamlessly with Windows CE, it
is the OS's file system code that performs these operations on the block device
for a user.

• Storing both code and data

Users can store both application code and data files on a block device. In
Windows CE 2.10 and later, the as can use demand paging to load
applications into memory, as needed. Versions of Windows CE prior to 2.10
did not load applications from external block devices, using this demand
paging mechanism; instead, they loaded the entire application into RAM when
it was launched.

• Interoperability between ass

Data on block devices such as linear flash memory cards transfers seamlessly
between Windows CE, Windows 95, Windows NT, and MS-DOS. All these
ass provide support for these block devices, using their own driver layers.

• Registry storage

Windows CE versions 2.10 and later can store registry data on block devices,
although it cannot be accessed directly from those devices. Windows CE 2.10
introduced application programming interfaces (APIs) for saving and loading
registry information from block devices. Registry data must first be copied to
the RAM-based registry before it can be used. For more information, see
"Persistent Registry Storage on Block Devices."

• Database storage

Databases on Windows CE, such as Contacts or Tasks, can be stored and used
in place on block devices. Windows CE 2.10 supports new APIs for mounting
database volumes from locations other than RAM and ROM. For more
information, see "Persistent Database Storage on Block Devices."

128 Windows CE Device Driver Kit

Limitations of Linear Flash Memory for Block Devices
Although linear flash memory technology is very commonly used to implement
block devices, there are some limitations to the hardware:

• Linear flash memory typically provides read-access times similar to ordinary
DRAM but has slow write-access times and limited write-cycle lifetimes.
Linear flash memory is therefore unsuitable as a replacement for true DRAM.
Instead, linear flash memory is best suited for supplementary storage space, as
a solid-state replacement for disk drives.

• On Windows CE, new memory technology drivers (MTDs) cannot be added
dynamically to support additional types of linear flash memory hardware. Only
OEMs can add support for new types of linear flash memory hardware.

• Windows CE does not inherently support resident flash arrays (RFAs) because
there is no standard approach for handling tasks such as error correction,
interleaving, and wear leveling. OEMs can add linear flash memory hardware
directly to platforms, but they should investigate the feasibility of using a
socketed form of linear flash memory, such as DiskOnChip.

• The TrueFFS driver must be a stream interface driver.

System Architecture for Block Devices
Device drivers for block devices are generally stream interface drivers, and the
block devices appear as ordinary disk drives. Applications access files on a block
device through standard file APIs-for example, CreateFile and ReadFile
called on the appropriate device file name, such as DSKl: or DSK2:.

The following illustration shows the flow of control from an application call to
ReadFile to the actual read from various kinds of block devices, using linear flash
memory hardware.

Application

I
ReadFile

DeviceloControl

DSKloControl

TrueFFS/FTL layer

TrueFFS/FTL layer
Socket 0 . Socket 1

CardMapWindow

PC Card services
'."S'ockei'serVices"'"'''''.''''' "W""

Chapter 9 Block Device Drivers 129

Built-in linear
flash memory

The application calls ReadFile, using a handle to a file that is stored in linear
flash memory. The FAT file system, which is included with Windows CE,
translates the read request to logical blocks. The FAT file system searches the
buffer cache for the requested blocks. If these are not present, it issues an
IOControl request to read bytes from the block device. The TrueFFS driver
receives the IOControl request, and then fulfills the request by accessing the
linear flash memory block device through one of the socket layers.

130 Windows CE Device Driver Kit

Block Device File Systems
Windows CE implements a separate file system-the FAT file system-to support
block devices. The FAT file system does not read or write to block devices
directly; it uses underlying block device drivers for all access to block device
hardware. The block device driver must present the block device to the FAT file
system as a block-oriented device.

Block device drivers transparently emulate ordinary disk drives, so applications
do not need to behave differently when reading files from and writing files to
linear flash memory. The FAT file system implements a logical file system and
provides an abstraction between files in the application name space, such as \PC
Card\Excel Docs\Expense report. pxl, and devices in the device name space, such
as DSKI:. The block device driver is responsible for guaranteeing safe I/O
operations even when interrupted by a power cycle. The FAT file system accesses
the block device by calling the block device driver's IOControl function with the
appropriate I/O control codes.

OEMs can implement additional installable file systems. Any such file systems
should interact with a block device driver in the same way as the FAT file system.

Loading and Unloading a File System
Block device drivers need to perform certain tasks to work correctly with
Windows CE file systems. When the driver receives
DISK_IOCTL_INITIALIZED in its DSK_IOControl function, it also receives a
pointer to a POST_INIT_BUF structure. This structure lists the driver's registry
key, which the driver can use to retrieve the name of a file system driver. The
driver must pass that name and a device-specific handle also present in the
structure to the LoadFSD function. The Device Manager then loads the correct
file system driver. The file system driver name should never be hard-coded into a
block device driver; it should always be retrieved from the registry. Hard-coding
the file system driver name means that your block device driver could stop
working if later versions of Windows CE use different names for their file system
drivers.

The block device driver should be prepared to accept I/O control requests as soon
as it calls LoadFSD, even if LoadFSD has not yet returned. Because of the way
the Device Manager implements LoadFSD, it is possible for the file system driver
to be loaded and to issue a request to your block device driver before LoadFSD
actually returns. It is also possible for LoadFSD to return successfully, even if
there are subsequent errors initializing the file system driver. Presently, there are
no mechanisms that the block device driver can use to detect such errors.

Windows CE versions 2.12 and earlier do not support multiple file system drivers
acting on the same block device. If a Windows CE-based platform has multiple
file system drivers installed, the block device driver must determine which one to

Chapter 9 Block Device Drivers 131

load during its processing of DISK_IOCTL_INITIALIZED. A block device driver
can make only one successful call to LoadFSD; calling LoadFSD more than once
causes unpredictable behavior.

The Device Manager unloads file system drivers at the time that a block device's
driver is deregistered by the DeregisterDevice function. Once the file system
driver is loaded, the block device driver cannot force it to unload or unmount the
block device from the system's directory structure.

Because file systems are frequently unloaded just prior to system shutdown, block
device drivers must ensure that all write operations to the block device are fully
complete before the driver's DSK_IOControl function returns. Failure to do so
can cause corruption of files or directories.

Implementing a Block Device Driver
The following sections describe how to implement a block device driver for
Windows CEo Block device drivers must export the stream interface functions,
perform the correct startup sequence, support device detection, use the correct
registry keys, properly respond to power cycles, and provide an Install_Driver
function.

Block Device Driver Functions
The block device driver exposes standard stream interface functions that are
common to all drivers controlled by the Device Manager. For information about
these standard stream interface functions, see "Developing Stream Interface
Device Drivers." In addition to the common stream interface API, the block
device driver must also expose the following more specialized functions:

• MyDriverEntry

An entry point function for the device driver dynamic-link library (DLL).
After the Device Manager calls LoadLibrary to map the DLL, the system
calls MyDriverEntry. This function performs any initialization tasks that are
necessary for the block device driver. Upon successful return from
MyDriverEntry, the Device Manager associates the driver's stream interface
functions with a special device file name so that applications can access the
device. The first flash memory device is named DSKl:, the second DSK2:, and
so on. DSK_ is the device file name prefix for all block device drivers.

• MyDriverCallback

The status callback function for notification of events from removable flash
media cards. The block device driver registers this callback function with the
PC Card Services driver.

132 Windows CE Device Driver Kit

• MyDriverDetectdisk

The entry point for the block device driver's detection routine.
MyDriverDetectdisk is a detection function for sockets that support hot
insertion of block media. After the Device Manager loads the block device
driver DLL, it calls this function to perform detection on the media. Detection
typically takes place at cold start and warm start. However, for sockets that
support hot insertion, detection occurs when a device is inserted into the
socket.

Loading Block Device Drivers
Block device drivers are generally stream interface drivers, and are therefore
loaded in the same way as stream interface drivers. OEMs who include block
device drivers with their Windows CE-based platforms include keys in the
platform's \Drivers\Builtin\ registry key so that the Device Manager loads the
block device driver when the platform starts. Third-party block device drivers for
PC Card block devices or similar removable hardware uses the
\Drivers\PCMCIA\ registry key so that the Device Manager loads the driver
when the relevant block device is connected to the system.

Registry Keys for Block Device Drivers
The Device Manager uses and manages several registry keys under the
HKEY _LOCAL_MACHINE\Drivers\ key to load, track, and unload linear
block device drivers. Built-in devices, such as the DiskOnChip, rely on the
registry settings to be present at startup time; therefore, these keys must be part of
the default registry. However, you can install keys for removable block devices,
such as linear flash memory PC Cards, upon first use of the device.

Registry Keys for PC Cards and Minicards
To detect removable block devices, the Device Manager initiates a detection
sequence to determine the specific device type. A driver named MyDriver would
use the registry entries shown in the following example in Windows CE version
2.1 and later. The Device Manager requires these keys to initiate the detection
sequence.

HKEY_LOCAL_MACHINE
[Drivers]

[PCMCIA]
[MyDriver]

SZ: Prefix = DSK
SZ: Dll = MyDriver.DLL
SZ: IOCTL = (DWORD)4
SZ: FSD = FATFS.DLL
SZ: Folder = My Folder

[Detect]
[20]

Chapter 9 Block Device Drivers 133

SZ: 011 = MyDriver.DLL
SZ: Entry = MyDriverDetectdisk

The value of the Folder key within the MyDriver key is optional. Its value
determines the folder names that are associated with linear flash memory devices.
The default name is Storage Card for the first device, Storage Card2 for the
second, and so on. For example, if you use the value of the Folder key to change
the folder name to My Folder, that is the name of the first device. The second
folder is My Folder2,and so on.

The subkey 20 within the Detect key is provided only as an example; it can be .
any other number. Its value determines the order in which the Device Manager
tries the driver's MyDriverDetectdisk function relative to other drivers' detection
functions when attempting to identify an unknown type of PC Card.

Registry Keys for Built-in Block Devices
Built-in block devices, ones that are an integral part of a Windows CE-based
platform, are recognized based on the
HKEY_LOCAL_MACHINE\Drivers\Builtln\ key. A driver called My Driver
should use the registry entries shown in the following example in Windows CE
version 2.1 and later.

HKEY_LOCAL_MACHINE
[Drivers]

[BuiltIn]
[MyDriver]

SZ: Prefix = DSK
SZ: 011 = MyDriver.DLL
SZ: Index = DWORD:l
SZ: Order = DWORD:l
SZ: IOCTL = DWORD:4
SZ: FSD = FATFS.DLL
SZ: WindowBase = DWORD:D0000
SZ: Folder = My Folder

If you are building a Windows CE OS for a desktop Windows-based hardware
development target platform, set the CEPC_DISKONCHIP environment variable
to 1 prior to creation of the OS image. Otherwise, add the registry entries to one
of your registry (.reg) files.

The value of the Folder key is optional. The value of the WindowBase key is
provided only as an example; it can be any other 32-bit value, as specified in the
documentation for your block device hardware. This value determines the location
of the block device's memory window.

134 Windows CE Device Driver Kit

Installing a Block Device Driver
If a user connects an unrecognized block device to a Windows CE-based
platform, the Device Manager queries a user to locate the appropriate block
device driver DLL. The Device Manager then calls that driver's Install_Driver
entry point. The Install_Driver function should ensure that any necessary data
files are properly installed and create the relevant registry keys for the block
device within the \Drivers\ portion of the registry. Block device drivers that are
installed through other means, such as by an OEM as part of the software built
into a Windows CE-based platform or remotely by the desktop Windows CE
Services software, do not need to have an Install_Driver function.

Detecting a Block Device
At startup time or when a block device is connected to a Windows CE-based
platform, the Device Manager calls the driver's detection function, which is listed
among the driver's registry keys. The detection function attempts to recognize the
type of block device hardware that is present by querying the device. If the driver
recognizes the device, the Device Manager loads the block device driver into
memory. This detection and load process is standard procedure, not only for block
device drivers, but also for all stream interface drivers.

Accessing a Block Device
There are two methods for accessing block devices, depending on whether the
device is built into a Windows CE-based platform or whether the device is
removable by a user.

Drivers for built-in block devices access their devices by mapping the device's
address space directly into the address space of the OS. The driver should use the
MMapIOSpace function to map the block device into system memory.

Block device drivers for removable block devices need to use a memory window
to access their devices. The driver should use the VirtualAlloc and Virtual Copy
functions to create the window, which the PC Card Services library can then use
to read and write data between the driver and the block device.

Chapter 9 Block Device Drivers 135

1/0 Control Codes for Block Device Drivers
Block device drivers must respond to the 110 control codes shown in the
following table to interface properly with the FAT file system. For complete
information on these codes, see the Microsoft Windows CE API Reference.

110 control code

DISK_IOCTL_GETINFO

DISK_IOCTL_READ

DISK_IOCTL_ WRITE

DISK_IOCTL_SETINFO

DISK_IOCTL_FORMAT_MEDIA

Description

Retrieves infonnation about the block device

Reads data from the block device

Writes data to the block device

Sets infonnation about the block device

Fonnats at a low level or refonnats the block
device

Retrieves the name that file system drivers should
use as the block device's folder

Power-Cycle Processing by Block Device Drivers
The Windows CE power management protocol supports power cycles that are
transparent to applications. Therefore, it is important that block device drivers
handle the POWER_DOWN and POWER_UP system messages efficiently.

Like all device drivers, block device drivers must limit themselves to minimal,
very fast processing of the POWER_DOWN message. To accomplish this, they
should save any volatile state information in RAM, set a flag to indicate that
power is about to be turned off, and exit. POWER_ON processing is exactly like
the processing for a regular card removal that is followed by an insertion. When
power resumes, the PC Card Socket driver issues a card-removal notification for
all sockets with inserted cards. Next, it checks the socket status and issues card
insertion notices for each socket with a card. Finally, the Device Manager
launches its detection sequence and loads the appropriate driver for each card.

Block device drivers must detect whether they are being loaded either in response
to a POWER_ON message or because a block device was disconnected from, and
then reconnected to the system. This is important because the driver should
preserve state information for any handles that are held by applications to files
that are stored in the linear flash memory device across simple power cycles.
However, if the block device is removed and replaced with a different card, any
open file handles should be closed.

136 Windows CE Device Driver Kit

The following table shows how open file handles should be treated during
POWER_UP processing.

Transition

Simple power cycle

Block device removed and subsequently re
inserted

Block device removed and replaced with a
different device

Sample Block Device Drivers

Preserve open file handles

Yes

Yes, if it is possible to detect that the
contents of the device have not changed

No

The following sections describe the programming details of two sample block
device drivers in Windows CEo

Sample ATADISK Driver
In addition to the standard stream device driver functions, the ATADISK driver
also exports a PC Card Plug and Play detection function, DetectA T ADisk. The
detection function only reads the attribute space of the PC Card; no other data is
read, and no write operations are performed on the PC Card. The function looks
for disk device type 4 in the PC Card's CISTPL_FUNCID tuple and for ATA
device type 1 in the type 1 CISTPL_FUNCE tuple. The presence of the
\Drivers\PCMCIA\ATADisk\ key causes the Device Manager to call the driver's
DetectATADisk function when a PC Card is inserted and there is no driver that is
associated with the card's Plug and Play identifier. The following example shows
how this takes place.

HKEY_LOCAL_MACHINE
[Drivers]

[PCMCIA]
[Detect]

[50]
SZ: 011 = ATADisk.DLL
SZ: Entry = DetectATADisk

When DetectATADisk detects an ATA-compatible PC Card, it causes the Device
Manager to load the driver listed in the \Drivers\PCMCIA\AtaDisk\ key. The
following example shows how this is done.

HKEY_LOCAL_MACHINE
[Drivers]

[PCMCIA]
[ATADISK]

SZ: Prefix = DSK
SZ: 011 = AtaDisk.DLL
SZ: IOCTL = (DWORD)4
SZ: FSD = FATFS.DLL

Chapter 9 Block Device Drivers 137

The four values shown are required.

The following values within the ATADISK key are optional. If present, these
values affect all devices that the ATADISK driver operates on. Some of the
following values are supported so that the ATADISK driver can work with some
older ATA disk devices.

Folder
"Storage Card" causes AT ADISK to report a default volume name of "Storage
Card" in response to a DISK_IOCTL_GETNAME DeviceIOControl. You can
use a different name than "Storage Card", if desired.

Cylinders
A value of.xxx causes the AT ADISK driver to not rely on the number of
cylinders that is reported by the ATA device in response to the ATA
IDENTIFY command. The number that is specified by the Cylinders registry
value is used instead.

Heads
A value of hh causes the A TADISK driver to not rely on the number of heads
that is reported by the ATA device in response to the ATA IDENTIFY
command. The number that is specified by the Heads registry value is used
instead.

Sectors
A value of ss causes the AT ADISK driver to not rely on the number of sectors
per track that is reported by the AT A device in response to the AT A
IDENTIFY command. The number that is specified by the Sectors registry
value is used instead.

CHSMode
A value of 1 forces the ATADISK driver to use CylinderlHeadlSector (CHS)
addressing mode. If the CHSMode value is 0 or the value is not present, the
AT ADISK driver uses the addressing mode that is reported by the AT A device
in response to the ATA IDENTIFY command. The ATADISK driver uses
logical block address (LBA) mode, when available.

OEM Considerations for Linear Flash Memory
The following sections describe aspects of linear flash memory that OEMs should
be aware of when implementing Windows CE-based platforms and block device
drivers for those memory technologies. The sections include information on how
an OEM can customize the TrueFFS driver on a Windows CE-based platform.
These sections do not contain information for IHV s who want to create
applications that use linear flash memory. For this type of information, see
"Programming Considerations for Linear Flash Memory."

138 Windows CE Device Driver Kit

TrueFFS Driver Customization
The Microsoft Windows CE Platform Builder contains a core library, Tffscore.lib,
and a single source file, Flcustom.c, which together compose the TrueFFS driver.
Flcustom.c contains translation layers, socket interfaces, and MTDs. All three of
these components can be modified to conform to individual design features of a
Windows CE-based platform.

However, to integrate any of these three components into the TrueFFS driver, the
component's registration routine must be called during initialization of the driver.
This task is performed by the flRegisterComponents function, which is defined
in Flcustom.c. Prototypes for all the components' registration routines are
provided in the Stdcomp.h header file.

OEMs can modify flRegisterComponents to include the desired subset of
components for the application. The flRegisterComponents function takes no
parameters and has no return value. It simply consists of calls to each
component's registration routine.

The following sections provide additional information about the components
MTDs, translation layers, and socket interfaces-and their registration routines.

Memory technology drivers
The TrueFFS driver accesses various types of linear flash memory hardware
through MTDs. Each type of linear flash memory requires its own MTD
because individual MTDs are tailored to interact with specific linear flash
memory chips. For this reason, OEMs can omit any MTDs that are superflous.
For example, if a platform supports only built-in DiskOnChip hardware, an
OEM can omit the MTDs for Intel linear flash memory chips. By extension,
however, OEMs who need to support new types of linear flash memory
hardware must create MTDs for that hardware.

The following table shows existing MTDs and their corresponding registration
routines.

Manufacturer

M-Systems, Inc.

Intel

Product

DiskOnChip

Series 2000

FlashLite (8-bit mode)

FlashLite (16-bit mode)

Series II (8-bit mode)

Series II (16-bit mode)

Series II+

Series 100 MiniCard (8-bit mode)

Registration routine to be
called in Flcustom.c

flRegister DOC2000

flRegisterCDSN

flRegisterI28F008

flRegisterI28FO 16

flRegisterI28F008

flRegisterI28FO 16

flRegisterI28FO 16

flRegisterI28F008

Chapter 9 Block Device Drivers 139

Registration routine to be
Manufacturer Product called in Flcustom.c

Intel (continued) Series 100 MiniCard (16-bit mode) flRegisterI28F016

Translation layers

Series 200 MiniCard

Value Series 100 (8-bit mode)

Value Series 100 (16-bit mode)

Value Series 200 (8-bit mode)

Value Series 200 (16-bit mode)

flRegisterCFISCS

flRegisterI28F008

flRegisterI28FO 16

flRegisterCFISCS

flRegisterCFISCS

Translation layers provide the necessary mapping between FAT file system
data structures and the underlying data format on the linear flash memory
hardware. The most widely known and used translation layer is the flash
translation layer (FTL), a PC Card industry standard for NOR-based linear
flash memory hardware. A separate implementation of the FTL for NAND
based linear flash memory is called the NFTL translation layer. DiskOnChip
and other Series-2000 products are NAND-based products.

OEMs can omit unnecessary translation layers. For example, an OEM who
wants to use only built-in DiskOnChip hardware can omit the FTL and keep
the NTFL. However, TrueFFS supports storage of both FAT16 and FAT32
data structures.

The following table shows the registration routines of existing translation layers.

Registration routine

flRegisterFTL

flRegisterNFTL

Socket interfaces

Hardware

NOR-based linear flash memory hardware

NAND-based linear flash memory hardware

Socket interface components control the access of the TrueFFS driver to
sockets in which linear flash memory hardware resides. For PC Cards, the
interface components consist of the PC Card socket API. For built-in
DiskOnChip devices, the socket interface is a custom software component. An
OEM who provides DiskOnChip hardware but not PC Card sockets needs only
the DiskOnChip socket layer.

The following table shows the registration routines for existing socket layers.

Registration routine

flRegisterFixedFlash

flRegisterCS

Hardware

Built-in DiskOnChip hardware

PC Card-based linear flash memory hardware

140 Windows CE Device Driver Kit

Programming Considerations for Linear Flash Memory
The following sections describe programming aspects of linear flash memory
performance on Windows CE that will be useful to most OEMs and IHV s.
However, OEMs who want to customize the TrueFFS driver for a Windows CE
based platform should refer to "OEM Considerations for Linear Flash Memory."

Writing a Linear Flash Memory Driver
Although Windows CE provides a linear flash memory driver in the form of the
TrueFFS driver, OEMs or IHV s can write their own linear flash memory drivers
on Windows CE, if desired.

In general, linear flash memory drivers are stream interface drivers; therefore,
they expose stream interface functions that are common to all drivers that are
controlled by the Device Manager. For more information about stream interface
drivers and stream interface functions, see "Developing Stream Interface Device
Drivers."

DSK_IOControl is the main function in the stream interface group that handles
all 110 requests. The 110 control codes themselves are the same as those used by
the FAT file system. For details about the semantics of those codes, see the
Microsoft Windows CE Platform SDK.

A linear flash memory driver is not required to be a stream interface driver. An
OEM can implement a custom driver-for example, a monolithic driver-that
supports linear flash media as long as the driver fits the Windows CE-based
device driver model.

Persistent Database Storage on Block Devices
Linear flash memory can store and update database information, including
information contained in the Windows CE Contacts, Tasks, and Calendar
databases. Windows CE 2.10 supports databases on any mounted file system,
regardless of the file system's storage mechanism. A new database API enables
developers to create and mount an existing database volume-for example, the
volume contained in the object store-on an external storage device, such as a
linear flash memory card.

Operations on a new database volume are identical to operations on an object
store database. A new database volume contains both the data and an integrity log
that tracks changes for atomic operations. There are several database functions to
facilitate these operations, such as the CeMountDBVol function, which is used to
mount a database. There are also extended versions of existing functions, such as
the CeOpenDatabaseEx function, which opens a database on a mounted volume.
For full documentation on the database API, see the Microsoft Windows CE
Platform SDK.

Chapter 9 Block Device Drivers 141

Persistent Registry Storage on Block Devices
In addition to database information, linear flash memory cards can store registry
information. However, Windows CE cannot use registry information that is stored
in linear flash memory directly. The information must first be copied to the RAM
based registry.

Windows CE versions 2.0 and earlier implement the registry as a RAM-based
heap file. However, this means that registry information is lost if power is lost to
the Windows CE-based platform's RAM, a circumstance that forces Windows CE
to reload the registry from ROM. Windows CE 2.10 provides new functions for
saving and restoring registry information to and from any storage location, such as
linear flash memory devices. The registry is saved to nonvolatile linear flash
memory when the Windows CE-based platform is turned off and restored when
power is restored. The RegCopyFile function saves registry information, and the
RegRestoreFile function loads registry information. For full documentation on
these two functions, see the Microsoft Windows CE Platform SDK.

One solution for restoring registry information involves a dual-startup setup of the
Windows CE-based platform. In this case, the cold startup restores the registry,
and a warm startup turns on the system. A warm startup maintains RAM, which
means that the restored registry information is available to control the startup
sequence. OEMs can provide a special registry cold-startup tool to copy saved
registry information from linear flash memory into RAM after the Device
Manager loads the TrueFFS. The utility then forces a warm startup of the system.

A single-startup solution is possible if the system uses the internal ROM file
system code to restore the registry from its saved location. This is accomplished
by using the WriteRegistryToOEM and ReadRegistryFromOEM functions in
the Windows CE-based platform's OEM adaptation layer (OAL). Implementing
these two functions can be complex because, at the time they are called, very little
system support is present. The Device Manager has not yet been loaded, and no
device drivers are available. Therefore, these functions need enough
understanding of the external registry storage mechanism to locate and load the
registry information without the help of the TrueFFS device driver. For full
documentation of WriteRegistryToOEM and ReadRegistryFromOEM, see
the Platform Builder.

Execute-in-Place Functionality
Execute-in-place (XIP) functionality is the ability to run an application directly
from linear flash memory, instead of copying the application into RAM memory
and running it from there. To support XIP, a device must be linear in nature,
meaning it can be mapped into a memory window and read directly through the
window as if the linear flash memory were RAM or ROM. Among linear flash

142 Windows CE Device Driver Kit

memory devices, only NOR-based devices, such as minicards or resident flash
arrays, can be used for XIP. NAND-based devices, such as DiskOnChip do not
support XIP because they use complicated access methods to access memory cells
within the device. For example, the electrical specifications of DiskOnChip match
those of disk drives; disk drives are block devices, and therefore cannot be used to
read individual addresses.

Implementing XIP from a built-in linear flash memory device does not require use
of the TrueFFS driver. It is required only to install a file system on a linear flash
memory device and access it as a random-access storage device. XIP does not
need a file system; therefore, implementing XIP does not require use of the
TrueFFS driver. An OEM can implement XIP if the target platform provides built
in linear flash memory, such as a resident flash array, or PC Card-based linear
flash memory that can be mapped into the system's address space.

OEMs should consider the following factors when implementing XIP from a
linear flash memory device:

• Windows CE 2.10 supports XIP from only one address space, the one in which
the kernel itself runs. This is because Windows CE modifies the addresses of
many system calls, thus enabling the calls to run in the context of the calling
thread. Doing so has advantages for memory use, but it limits XIP to the
virtual memory address space of the Windows CE kernel.

• Because XIP occurs only in the kernel's address space and Windows CE itself
is executed in place, any linear flash memory that might be used for XIP must
be built in, or it must be a linear flash memory device that is memory-mapped
directly onto the kernel's address space.

For additional information about implementation, see "Starting Windows CE from
Linear Flash Memory."

Partitioning Linear Flash Memory
OEMS have the option of configuring linear flash memory as either a single
contiguous space or as multiple partitions, even though Windows CE currently
supports only single partition. The following is information about partitioning a
device for both single and multiple configurations:

• Single partition

An OEM can treat linear flash memory as a single contiguous address space.
In this configuration, linear flash memory can be used either for XIP or for
data storage. Data storage can include one or more of the following: a registry,
a database, or user data files that are managed by the FAT file system.

Chapter 9 Block Device Drivers 143

• Multiple partitions

Windows CE 2.10 does not support multiple partitions at this time; however,
multiple partitioning enables OEMs to logically divide linear flash memory
into separate partitions. In a configuration known as Code Plus Data, one
partition is used for XIP and another is used for data storage. Another
configuration, known as Data Plus Data, divides linear flash memory into two
data storage partitions: one partition provides data storage that is managed by
the TrueFFS driver, and the other partition provides data storage that is
managed by OEM-defined code.

• Partitions on a DiskOnChip device

OEMs who use the DiskOnChip device have the option of making the space
on the device appear as separate partitions, although Windows CE 2.10 does
not provide built-in support for multiple partitions on a single linear flash
memory device. M-Systems, Inc., does offer a customization toolkit enabling
OEMs to create a hidden data partition on the device. OEMs should contact
M-Systems, Inc., for further assistance on how to access this hidden partition
from within Windows CEo

Starting Windows CE from Linear Flash Memory
An OEM can use linear flash memory to store a Windows CE OS image, making
it possible to start Windows CE directly from a linear flash memory device,
instead of from ROM. Starting the OS image from linear flash memory mandates
that the platform also support XIP because Windows CE itself runs in XIP mode.
In tum, this means that startup is possible only on built-in linear flash memory
that is mapped directly into the system's main address space.

One method for implementing startup involves writing a separate startup-loader
application that copies the image to the built-in linear flash memory device, and
then executes that image. This method does not involve the use of the TrueFFS
driver because the device is accessed directly from the startup-loader application.
OEMs are free to implement their own startup solutions on linear flash memory
devices. OEMs who want to implement startup from DiskOnChip through the use
of the existing TrueFFS driver can contact M-Systems, Inc., for assistance.

Further Information on USing Linear Flash Memory with
Windows CE

Consult the following sources for further information on using linear flash
memory with Windows CE:

• Microsoft Windows CE Platform SDK

Information on the FAT file system I/O control codes.

144 Windows CE Device Driver Kit

• Microsoft Windows CE Platform Builder version 2.11

Information on building custom Windows CE ass and adapting
Windows CE to custom hardware.

• The M-Systems, Inc., Web site

Details about linear flash memory technologies and software of
M-Systems, Inc.

• The Personal Computer Memory Card International Association (PCMCIA)
Web site

Information on the mechanical, electrical, and software specifications
for PC Cards.

Index

2-bits-per-pixel display fonnat 82
4-bits-per-pixel display fonnat 83
5- or 6-bits-per-pixel display fonnat 85
8-bits-per-pixel display fonnat 86
15- or 16-bits-per-pixel display fonnat 87
24-bits-per-pixel display fonnat 88
32-bits-per-pixel display fonnat 88

A
acceleration, recommendations for display hardware 90
access,single and multiple, stream interface drivers 36
accessing block devices 134
ACM drivers

generally 47
messages (table) 50
porting from Windows NT to Windows CE 51
reasons to create 47
registering 49
samples 48
stream 110 functions (table) 49
types 48

Acmdwrap.lib 51
adapter described 21,96
adding drivers for built-in devices 25
Advanced Technology Attachment (AT A) flash 126
applications, user, defined 29
architecture

block devices 128
external bus 93
stream interface drivers and related components

(illustration) 28
system, for native device drivers 7
USB 94

attach processing, USB device drivers 111
audio drivers

interaction with Windows CE operating system
(illustration) 44

sample 43
stream interface functions (table) 45

Audio Compression Manager drivers See ACM drivers

B
battery driver, sample 13
bitmaps, device 65
block device drivers

detecting block devices 134
functions 131

block device drivers (continued)
implementing 131
110 control codes 135
power-cycle processing 135
registry keys for 132

block devices
See also block device drivers
accessing 134
detecting 134
drivers generally 125
file systems 130
installing 134
integration with Windows CE 127
system architecture 128

buffers
display, fonnats 80
flat-frame, described 64
linear-frame, display hardware 89

built-in block devices, registry keys for 133
bulk transfers, USB 95
bus enumeration 99

c
class drivers 100
code example, PCL printer driver settings 57
codecs 48-49
colon (:) device file name fonnat 34
colors, display buffer fonnats 80
compiling mini port driver for Windows CE 118
control transfers, USB 95
controller, host 21,96
conventions, document xii
converters, (ACM drivers) described 48-49
creating display drivers based on GPE classes 64
customizing TrueFFS driver 137

D
Data Tenninal Ready line, 110 control codes for 18
data transfer, types supported 100
device driver interface (DDI) functions

keyboard driver 15
PC Card socket driver 16
sample serial port driver 18
(table) 63
touch screen driver 20
use described 59

145

146 Index

DDSI functions
audio driver 45
for notification LED driver 16
RCD modules, called by PDD layer 24
keyboard driver 15
PC Card socket driver 17
sample serial port driver 18
touch screen driver 20

definitions, Device Driver Kit 29
deregistering interrupt handlers 12
detecting block devices 134
developing native device drivers 5
Device Driver Kit

definitions 29
introduction 1

device drivers
and driver models (illustration) 3
native See native device drivers
in Platform Builder 40
USB 105

device file names 34-35
device files and stream interface drivers 27
Device Manager

registry keys used by 31
use generally 30

devices
See also specific device
ACM drivers 47
built-in, adding drivers for 25
file names See device file names
peripheral, defined 30
USB 96

direct memory access (DMA), implementing for NDIS
miniport drivers 119

display device driver interface 59
display drivers

acceleration recommendations 90
creating based on OPE classes 64
DDI functions (table) 63
display buffer formats 80
ODI support services 65
generally 59
hardware recommendations 89
implementing on PC Card 61
memory layout recommendations 89
registry keys for 90
sample 14
using OPE classes 64

display system, printing involvement 53
DLLs, stream interface driver See stream interface drivers
documentation

Preface ix
typographical conventions xii

driver
functions, block 131
models (illustration) 3

drivers

E

See also specific driver
ACM See ACM drivers
adding for built-in devices 25
block 131
block devices See block device drivers
class 100
Device Driver Kit introduction 1
host controller, sample 20
memory technology driver (MTD) 138
monolithic and layered 7, 11
PC Card device 39
printer See printer drivers
samples

audio 18,43
battery 13
display 14
keyboard 14
notification LED 16
PC Card socket 16
serial port 17
touch screen 19

serial devices 38
stream interface See stream interface drivers

enabling mUltiple access to drivers 36
entry points, stream interface driver DLLs (table) 36
enumeration, bus 99
exception handler, interrupt process described 11
execute-in-place (XIP) functionality and lineat flash

memory 141

F
file systems 130
files, device 27
filters, (ACM drivers) described 48
flat-frame buffers 64
Flcustom.c 137
format

pixel 89
tags, ACM 49

formats
1-bit-per-pixel display 81
2-bits-per-pixel display 82
4-bits-per-pixel display 83
5- or 6-bits-per-pixel display 85
8-bits-per-pixel display 86
15- or 16-bits-per-pixel display 87

formats (continued)
24-bits-per-pixel display 88
32-bits-per-pixel display 88
device file name 34
display buffer 80

FfL (flash translation layer), linear flash memory 126
functions

G

ACM driver stream I/O 49
DDI

for keyboard drivers 15
for PC Card socket drivers 16
for serial port drivers 18
for touch screen drivers 20

DDSI
exposed by PDD layer 24
for audio drivers 45
for keyboard drivers 15
for notification LED driver 16
for PC Card socket drivers 17
for sample serial port drivers 18
for touch screen drivers 20

MDD, called by PDD layer 24
port monitor 55
printer driver (table) 54
stream interface, for audio drivers 45
USB

device configuration (table) 104
frame (table) 104
pipe (table) 104
transfer (table) 103

USBD interface 102
use in Universal Serial Bus Specification 94

GDI support for display drivers 65
global printer settings 55
GPE classes 64
Graphics Primitive Engine (GPE) classes 64

H
Handheld PC (HIPC) platform, sample native device

drivers 6
hardware

adding unsupported devices to target platform 25
audio, operations support 43
display, Windows CE-based recommendations 89

HCD modules
described 97
MDD and PDD layers 23
nested hub support 21
registry keys 24
writing 23

host controller, USB 21,96
hub

support, HCD 21
USB 94

I/O control codes
serial port devices 18

Index 147

implementing DMA for NDIS miniport drivers 119
indexes, device file name 35
.inffiles 118
infrared ports 56
installing

rniniport drivers 118
stream interface driver DLLs 39
USB device drivers 109
block devices 134

interrupt handlers 11-12
interrupt handling

exception handler 11
in native device drivers 9
process (illustration) 11

interrupt processing in stream interface drivers 36
interrupt service routine (ISR) 9
interrupt service thread (1ST) 9
interrupt-driven transfers, USB 95
interrupts, processing described 12
I/O control codes for block device drivers 135
IrDA (infrared port) 56
isochronous transfers, USB 95

K
kernel support, stream interface drivers 29
keyboard driver sample 14

L
layered drivers 7, 11
libraries, MDD and PDD 43
linear flash memory

devices
execute-in-place (XIP) functionality 141
persistent database storage on 140
persistent registry storage 140

drivers, writing 139
flash translation layer (FfL) 126
further information on 143
limitations on use 127
OEM considerations 137
partitioning 142
programming considerations 139
socket interfaces 139

148 Index

linear flash memory (continued)
starting Windows CE from 143
translation layers 139

loading stream interface drivers 32
localization for keyboard drivers 14

M
MDD

functions, HCD modules, called by PDD layer 24
library 43

memory
display hardware, recommended layout 89
technology drivers (MTDs) 138

messages, ACM driver (table) 50
Microsoft-supplied USB software components 22
rninicards, registry keys for 132
miniport drivers

compiling for Windows CE 118
installing 118
PC Card, registry key 122
power management, reset function 120
registry keys for 121
testing 123
writing vs. adapting 116

model device driver (MDD) 7
monitor, port, functions (table) 55
monolithic and layered drivers 7, 11
mouse, sample USBD 112
MTDs (memory technology drivers) 138

N
native device drivers

calling Win32 APIs 8
described 30
described, developing 5
Handheld PC (HlPC) 6
interrupt handling in 9
monolithic and layered 7
overview of 7
porting sample 13
registering interrupt handlers 12
restrictions on 8
use described 2

NDIS
described 115
drivers, use described 3
rniniport drivers

compiling for Windows CE 118
imlementing DMA for 119
registry keys for 121
samples 116

NDIS (continued)
miniport drivers (continued)

testing 123
Windows CE networking components 116

power management 120
protocol binding 119
relationship of protocol stacks, NICs, and rniniport drivers

(illustration) 116
support in Windows CE 117

Network Driver Interface SpeCification See NDIS
network interface cards (NICs) 115
networking components, Windows CE 116
notification LED driver, sample 16
numbering device file names 35

o
OEM adaption layer (OAL)

and interrupt handling 10
OEM, linear flash memory considerations 137
OHCD described 23
open host controller (OHC) 21

p
partitioning linear flash memory 142
PC Card

devices, stream interface drivers for 39
display driver registry keys 90
driver samples 40
implementing display drivers on 61
rniniport drivers 122
registry keys for 132
socket driver, sample 16

PCM filter tags 49
peripheral devices

defined 30
interrupt processing 36
USB, described 96
and stream interface drivers 27

persistent storage on linear flash memory devices 140
pipes described 97
pixel format, packing, ordering 89
Platform Builder

keyboard drivers included 14
sample stream interface drivers 40

platform-dependent driver (PDD) 7
platforms, Windows CE-based 30
port monitor functions used by printer drivers (table) 55
porting

ACM drivers to Windows CE 51
sample native device drivers 13
Windows CE to target platforms 5

ports
infrared 56
serial, driver 17

power management
block device drivers 135
miniport drivers 120
NDIS 120
USB 99,100

prefixes, device file name 34
printer drivers

functions implemented by (table) 54
generally 53
global printer settings 55
port monitor functions used by (table) 55
registry keys for 55
settings 56
time-out parameter 56

printing display system involvement 53
processes

bus emulation 99
USB device driver load 108

processing
interrupt in stream interface drivers 36
interrupts 12
power-cycle, by block device drivers 135
real-time 37
USB device driver attach 111

programming, linear flash memory considerations 139
protocol binding, mini port drivers 119

R
real-time processing 37
registering

ACM drivers 49
device file names 35
interrupt handlers 12

registry keys
built-in block devices 133
Device Manager, used by 31
display drivers 14,90
for block device drivers 132
for PC Card miniport drivers 122
HCD modules 24
miniport drivers 118, 121
PC Cards, minicards 132
printer drivers 55
stream interface drivers 39
USB device drivers 105

removing USB device drivers 111
resident flash arrays (RF As) 127

Index 149

s
samples

ACM drivers 48
device drivers, native, Handheld PC 6
drivers

audio 43
battery 13
display, keyboard 14
notification LED 16
PC Card socket 16
serial port 17
touch screen 19

host controller driver 20
miniport drivers 116
stream interface drivers 40
USB mouse driver 112

screen, touch 19
serial devices, drivers for 38
serial port

peripherals using, real-time processing 38
driver samples 17, 40

settings
global printer 55
printer driver 56

setup application, stream interface driver 39
single and multiple access, peripheral device drivers 36
starting Windows CE from linear flash memory 143
stream I/O functions, ACM driver (table) 49
stream interface drivers

and linear flash memory drivers 140
application-specific 28
audio compression manager See ACM drivers
described, use 27,30
device file name prefix 34
Device Manager, tasks performed by 30
DLLs

for serial "devices 38
required entry points (table) 36
installing 39
writing 35

for PC Card devices 39
implementation exceptions 28
interrupt processing 36
kernel support 29
loading 32
real-time processing 37
relationship with other system components

(illustration) 28
samples 40
single and multiple access 36
unloading 33
use described 2

150 Index

support
data transfer types 100
device bitmaps, surfaces 65
hub devices, HCD 21
linear flash memory 126
NDIS 117
printer drivers 53

suspend and resume processing, USB 21, 100
.sys files 118
system architecture, block devices 128

T
tags

ACM format and filter, described 49
PCM filter, described 49

TCPIIP protocol stack, miniport support 120
testing

NDIS miniport drivers 123
USB device drivers 113

Tffscore.lib 137
time-outs, printers 56
topology, USB 94
touch screen driver, sample 19
transfer types, USB

described 95
support 100

TrueFFS driver
customization 137
memory technology drivers 138

typographical conventions xii

u
universal host controller (UHC) 21
universal serial bus See USB
unloading stream interface drivers 33
unregistering interrupt handlers 12
USB

architecture 94
bus with peripherals attached (illustration) 95
components supplied by Microsoft 22
described, benefits offered 93
device configuration functions (table) 104
device drivers

attach processing III
installing 109
load process 108
registry keys for 105
removing 111
required entry points for 105
sample mouse 112
testing 113

USB (continued)
device drivers (continued)

use described 2
writing 102

devices
bus-powered, self-powered 22, 100
described 96

frame functions (table) 104
function defined 94
HCD modules, writing 23
host controllers 21, 96
pipes

described, use 97
functions (table) 104

power management 99, 100
software layers with peripheral device (illustration) 97
supported, unsupported features 99
suspend and resume processing 21, 100
system software, operations described 97
topology 94
transfer

functions (table) 103
types 95

USBD interface functions 102
Web sites with information about technology 94

USBD interface functions 102
user application defined 29

w
Wavemdd.lib 43
Web sites

linear flash memory, information on 143
with information about USB technology 94

Win32 API, native device driver restrictions 8
Windows CE

audio driver interaction (illustration) 44
-based platform 30
block devices integration 127
Device Driver Kit introduction
device file name prefixes 35
Device Manager, use 30
difference from Windows NT 118
drivers for serial devices 38
NDIS support 117
networking components 116
porting to target platforms 5, 13
processing

interrupt in stream interface drivers 36
real-time 36-37

starting from linear flash memory 143
Windows NT

difference from Windows CE 118
display device driver interface and Windows CE 59

writing

x

HCD modules 23
linear flash memory drivers 139
stream interface driver DLLs 35
USB device drivers 102

XIP (execute-in-place) functionality, linear flash
memory 141

Index 151

The
definitive guide

to programming
the Windows CE API

U.S.A. $49.99

'DOUG'S CODE

L
DEMONSTllA1tS
A PERFECT GRASP
OF WINDOWS CE
CRAFTY AND ELEGANT.'

-O'!ar!e~Petlold';-"lth(:r.
Frogt',tirtlrninIlWinO<'",,,

~
he

definitive
guldo to
programming
the Windows CE
API

Douglas Boling

U.K. £46.99 [VAT. included)

Canada $71.99
ISBN 1-57231-856-2

Design sleek, high-performance applications
for the newest generation of smart devices with
PROGRAMMING MICROSO~ WINDOWS® CEo This
practical, authoritative reference explains how
to extend your Windows or embedded program
ming skills to the Windows CE environment.
You'll review the basics of event-driven develop
ment and then tackle the intricacies and
idiosyncrasies of Windows CE's modular,
compact architecture. With Doug Boling's expert
guidance and the software development tools
on CD-ROM, you'll have everything you need to
mobilize your Win32® programming efforts for
exciting new markets!

~rosoft Pressill> products are available worldwide wherever quality computer books are
d. For more information, contact your book or computer retailer, software reseller, or
al Microsoft Sales Office, or visit our Web site at mspress.mjcrosoft com. To locate your
3rest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
i U.S. (in Canada, call 1-800-268-2222).

:es and availability dates are subject to change.

MicTOSott~
mspress.microsoft.com

Getmovin
with

IndowsCE.

U.S.A. $29.99

In-depth detaUs

of the history,

architecture, and

evcr-cxp,:mding:

!)otenti4l1 of thls.

remarkable

operating system

John Murray

U.K. £27.49 [V.A.T. included]
Canada $42.99
ISBN 1-57231-854-6

From roadside computing and pocket PCs to smart
appliances and rich multimedia home theater,
Microsoft® Windows® CE opens dynamic new
development vistas for work, home, and everywhere
in between. This modular, customizable operating·
system extends the Windows platform far beyond
the desktop to the realm of smaller, mobile, and
more specialized devices-while its Windows pedi
gree ensures compatibility and support for an
expansive developer base. Find conceptual frame
works to help you understand your design options,
and see real-world examples that demonstrate the
flexibility and potential of this remarkable operating
system. INSIDE MICROSOFT WINDOWS CE is the
developer's key to understanding how Windows CE
will spring new computing concepts into motion.

:rosoft PressOl> products are available worldwide wherever quality computer books are
j. For more information, contact your book or computer retailer, software reseller, or
31 Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
Irest source for Microsoft Press products, or to order directly, call1-800-MSPRESS in
U.S. (in Canada, call 1-800-268-2222).

:es and availability dates are subject to change. mspress.microsoft.com

The

gUI e
to the Win32 API

~:
",

1

': ComPleteiY f

~
Programming

"··~~i.>
l., .. ~ J

i WS

U.S.A. $59.99

Fifth Edition

harles
etzold
The definitive
guide to the
Win32' API

U.K. £56.49 [V.A.T. included]
Canada $86.99
ISBN 1-57231-995-X

"Look It up In Petzold" remains the decisive

last word in answering questions about

Microsoft® Windows® development. And in

PROGRAMMING WINDOWS, Fifth Edition, the es

teemed Windows Pioneer Award winner revises

his classic text with authoritative coverage of the

latest versions of the Windows operating sys

tem-once again drilling down to the essential

API heart of Win32® programming. Packed as

always with definitive examples, this newest

Petzold delivers the ultimate sourcebook and

tutorial for Win.~ows programmers at all levels

working with Windows 95, Windows 98, or

Windows NT~ No aspiring or experienced devel

oper can afford to be without it.

crosoft Press~ products are available worldwide wherever quality computer books are
Id. For more information, contact your book or computer retailer, software reseller, or
:al Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
a rest source for Microsoft Press products, or to order directly, call1-800-MSPRESS in
3 U.S. (in Canada, call 1-800-268-2222).

ices and availability dates are subject to change. mspress.microsoft.com

Part No. 097-0002205

CE
Device Driver Kit

Your official guide to device driver development
direct from the Windows CEteam.

Quickly write code that ports the Windows CE operating system
to built-in hardware-or almost any conceivable peripheral-with
this official Device Driver Kit (DDK). Available for the first time
in print, this DDK explains how to implement four models for
driver development- native, stream, Universal Serial Bus (USB),
and network driver interface specification (NDIS).

Get the definitive guide to
programming the Windows CE API.

Programming Microsoft Windows CE

ISBN: 1-57231-856-2

mspress.microsoft.com

