
\

NT'"
em

Helen CllS r
AUTHOR OF INSIDE WINDOWS NT

Helen Cns r
AUTHOR OF INSIDE WINDOWS NT

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1994 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Custer, Helen, 1961-

Inside the Windows NT file system / Helen Custer.
p. cm.

Includes bibliographical references and index.
ISBN 1-55615-660-X
1. Operating systems (Computers)

QA76.76.063C892 1994
005.4'469--dc20

2. Windows NT. I. Title.

Printed and bound in the United States of America.

3456789 MLML 98765

94-15139
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada
Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

DEC, VAX, and VMS are registered trademarks and AlphaAXP is a trademark of Digital
Equipment Corporation. Intel is a registered trademark and Pentium is a trademark of Intel
Corporation. IBM and OS/2 are registered trademarks of International Business Machines
Corporation. Microsoft and MS-DOS are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation. MIPS is a registered trademark of MIPS Computer
Systems, Inc. Unicode is a trademark of Unicode, Incorporated. UNIX is a registered trademark
of UNIX Systems Laboratories. All other trademarks and service marks are the property of their
respective owners.

Acquisitions Editor: Dean Holmes
Project Editor: Maureen Williams Zimmerman
Manuscript Editor: Erin O'Connor
Technical Editor: Wm. Jeff Carey

Dedicated to little Kathy

and Grandpa Joe

CONTENTS

Preface . .. vii
Introduction .. 1

CHAPTER ONE

WHY CREATE ANOTHER FILE SYSTEM? 3

1.1 High-End File System Requirements 3
1.1.1 Recoverability 4
1 .1 .2 Security .. 5
1.1.3 Data Redundancy and Fault Tolerance 5
1 .1.4 Large Disks and Large Files 6

1.2 New Features in NTFS 7
1.2.1 Multiple Data Streams 7
1.2.2 Unicode-Based Names 8
1.2.3 General Indexing Facility , 9
1.2.4 Bad-Cluster Remapping 9
1.2.5 POSIX Support 9
1.2.6 Removable Disks 10

CHAPTER TWO

THE NTFS MODEL 11

2.1 The Layered Driver Model 11
2.2 Relational Database and Transaction-Processing Models 13
2.3 The Object Model 17

CHAPTER THREE

FILE SYSTEM STRUCTURE 19

3.1 NTFS Concepts and Terms 19
3.2 On-Disk Structure 24
3.3 File Name Indexing 28
3.4 NTFS Metadata Files anq the Boot File 30

INSIDE THE WINDOWS NT FILE SYSTEM

CHAPTER FOUR

RECOVERABILITY 33

4.1 Evolution of File System Design 34
4.1.1 Careful Write File Systems 34
4.1.2 Lazy Write File Systems 35
4.1.3 Recoverable File Systems 36

4.2 Logging ... 37
4.2.1 Log File Service (LFS) 38
4.2.2 Log File .. 40

4.2.2.1 Update Records 40
4.2.2.2 Checkpoint Records ~ 42

4.3 Recovery .. 44
4.3.1 Analysis Pass " 45
4.3.2 Redo Pass ' 45
4.3.3 Undo Pass 46

CHAPTER FIVE

VOLUME MANAGEMENT AND FAULT TOLERANCE 49

5.1 Volume Management Features 49
5.1.1 Volume Sets 50
5.1.2 Stripe Sets" 51

5.2 Fault Tolerant Volumes 52
5.2.1 Mirror Sets 52
5.2.2 Duplex Sets ; 53
5.2.3 Stripe Sets with Parity 53
5.2.4 Sector Sparing' ... 54

5.3 NTFS Bad-Cluster Recovery 55

CHAPTER SIX

DATA COMPRESSION .. 61

6.1 Compressing a Sparse File 62
6.2 Compressing Nonsparse Data 64

CHAPTER SEVEN

MS-DOS FILE NAME GENERATION 69

Conclusion . 73
Glossary ". 75

Bibliography. 83
Index 85

vi

PREFACE

The NT file system (NTFS) is one of several interesting Windows NT com
ponents I didn't have time to cover in my earlier book, Inside Windows NT.
I wrote this book documenting NTFS because reliable disk storage is such a
critical part of an advanced operating system. I assume throughout this book
that the reader has a basic understanding of the Windows NT architecture
and of simple disk caching and virtual memory principles.

It was a pleasure to work with the file system team on this project. Spe
cial thanks go to Tom Miller for generously sharing his expertise, his notes,
and his time, and to Gary Kimura for presenting alternative viewpoints on
the file system design and for providing technical reviews. Thanks also to
Bob Rinne, Brian Andrew, Peter Galvin, Mike Glass, David Goebel, Norbert
Kusters, Matthew Bradburn, and Bill McJohn. And thanks once again to
Dave Cutler, Lou Perazzoli, and Ron Burk for supporting my work, and to
the talented staff at Microsoft Press for their exceptional editing and pro
duction support.

Finally, many thanks to my lifting partners during the past year, es
pecially to Michael, Jill, Marsha, and Trish. You've taught me the sanity to
be found in raw physical exertion. (Never mind the torn. shoulder and
broken toes.)

Helen Custer
April,1994

vii

INTRODUCTION

The NT File System (NTFS) was created specifically for use with the Windows
NT operating system. NTFS is a new file system with advanced capabilities
that make it appropriate for the Windows NT high-end operating system
environment. Tom Miller, the architect of NTFS,l has an extensive back
ground in transaction processing and recoverable database systems, and his
expertise in those areas is manifest in the design and features of NTFS.

NTFS was written concurrently with Windows NT. Approximately two
years into the Windows NT project, the engineers started to run the emerg
ing operating system and to use it as their development environment. A year
later, NTFS was stable enough to use and the developers were encouraged to
convert their hard disks from the file allocation table (FAT) file system to
NTFS. Tom Miller describes this period with some discomfiture:

Working on file systems is probably the worst place to be [in operat
ing systems development]. If your system bug-checks or something
funny happens to your display, you can usually reboot the system and
continue working. But if something goes wrong with your disk, you
often can't work at all. People get very irate when there are file sys
tem bugs. Nobody wants their permanent storage to become imper
manent.

When an operating system under construction is also being used as the
development platform, dealing with software bugs is an everyday adventure.
Though inconvenient and often frustrating for developers, using the system
in this way ensures that bugs will be found and fixed quickly and guarantees
that more bugs will be discovered than the testing process alone would un
cover. But customers should never experience an unstable system, especially
an unstable file system. Their permanent disk storage should remain perma
nent. Losing all or part of a hard disk is one of the most traumatic kinds of
system failure an end user can experience.

It was concern for the customer's disk storage that drove the design of
NTFS. Tom and the NTFS team broke new ground in building a file system
that not only is more reliable and secure than existing file systems but has an

l. Other major contributors include Gary Kimura, Brian Andrew, and David Goebel.

1

INSIDE THE WINDOWS NT FILE SYSTEM

2

important additional feature: it is recoverable. When an operating system or
hardware failure occurs, NTFS has the ability to reconstruct itself so that the
volume (partition) remains accessible and consistent and the directory
structure is not corrupted.

NTFS is appropriate for all types of users but should be especially ap
pealing to users who have relied primarily on minicomputer and mainframe .
operating syst~ms in the past-systems whose designers gave careful consid
eration to the reliability and security of data storage. With its recovery capa
bilities, NTFS sets a new standard of reliability for file systems.

The purpose of this book is to document the design of NTFS. However,
some justification for the creation of NTFS seems in order, both because
writing a file system is a long, arduous task and because NTFS introduces a
new file storage format. Chapter One addresses why the development team,
decided to create NTFS in spite of the challenge.

Chapter Two describes the theoretical models underlying the NTFS
design, and Chapter Three details the file system's internal structure. Chap
ter Four introduces file system recoverability and explains how NTFS recov
ers a volume after a system failure occurs. Another new feature, hard disk
fault-tolerance, is available for use with all Windows NT file systems. It is es
pecially valuable when used with NTFS because it builds on NTFS recover
ability to produce particularly robust disk storage. Fault tolerance is
described in Chapter Five. Chapter Six documents NTFS data compression,
a built-in feature of NTFS that is new in Windows NT version 3.5. Chapter
Seven discusses short file name generation, an NTFS capability that allows
M5-nOS clients to access files with long names.

C HAP T E R ONE

WHY CREATE
ANOTHER FILE SYSTEM?

In 1988, Microsoft already supported two file systems-the FAT file system
for MS-DOS and Microsoft Windows and the high-performance file system
(HPFS) for OS/2-so naturally, Tom Miller and the other developers re
sponsible for Windows NT file systems thought a lot about whether NT
needed a new file system at all. Unfortunately, the FAT file system and HPFS
suffered from limitations that made them either less reliable than a file sys
tem for Windows NT should be or unable to handle the large system con
figurations that were expected to run the Windows NT operating system.
Mter careful consideration, the team decided to create a new file system, but
NTFS is nevertheless heavily influenced by the implementations of the FAT
file system and HPFS, as well as by certain features required by the POSIX
standard.!

The first section of this chapter describes the requiremen ts of high-end
client-server and business applications for a Windows NT file system. The
second section examines the advanced features NTFS implements for those
applications.

1.1 High-End File System Requirements
MS-DOS uses the FAT file system, which was originally designed for floppy
disks of a relatively small size, generally 1 MB or smaller. As hard disks be
came the standard storage device for personal computers and over time
grew larger, they began to stretch the limits of the FAT file system. The OS/2

1. A collection of international standards for UNIX-style operating system interfaces,
ISO/IEe 9945-1 (IEEE Standard 1003.1-1990).

3

INSIDE THE WINDOWS NT FILE SYSTEM

operating system introduced HPFS to address some of the limitations of the
FAT file system. HPFS, for example, greatly improved file access times for
large directories and could be used on hard disks up to 4 GB (gigabyte-a
billion bytes) in size.2

The FAT file system worked well for small disks, and HPFS added some
new capabilities, greater file access efficiency, and support for larger media.
However, neither file system was entirely suitable for Windows NT, an operat
ing system designed for sophisticated, "mission-critical" applications:

• Client-server applications such as file servers, compute servers, and
database servers

• High-powered engineering and scientific applications

• Network applications for large corporate systems

For such applications, a highly reliable and secure file system is a re
quirement. Compromising the important data in an airline scheduling sys
tem or a bank database server, for instance, could wreak great havoc.·

Corporate file system requirements include data recovery capabilities,
data security, fault tolerance, and support for even larger storage media than
HPFS provides.

1.1.1 Recoverability

4

As far as disk I/O is concerned, personal computer users have tended to
care most about speed-they've just wanted to get their work done fast. As
Windows NT moves the personal computer into more businesses and corpo
rations, however, the reliability of the data stored on the system becomes in
creasingly important relative to the speed with which a user can access data
on a disk drive. In other words, if the system fails and a disk drive is cor
rupted or becomes inaccessible, the speed of the preceding I/O operations
is largely irrelevant.

To address the requirement for reliable data storage and data access
reliability, the team designed NTFS as a recoverable file system based on a
transaction-processing model. In the event of a power failure or other sys
tem failure, NTFS reconstructs disk volumes and returns them to a consis
tent state. An NTFS recovery operation occurs automatically the first time
the disk is accessed after a failure and takes only a few seconds to be com-

2. The disk size HPFS could support was expanded later to 2 TB (terabyte-a trillion
bytes) .

ONE: Why Create Another File System?

pleted, regardless of the size of the disk. In addition, NTFS uses redundant
storage for its vital sectors, so that if one location on the disk goes bad, NTFS
can still access the volume's critical file system data. This redundancy of file
system data is in contrast to the on-disk structures of both the MS-DOS FAT
file system and the OS/2 HPFS, which have single sectors containing critical
file system data. If a read error occurs in one of these sectors, an entire vol
ume is 10st.3

1.1.2 Security
Data security is of primary importance to businesses and government agen
cies that process private or sensitive information-banks, hospitals, and
national defense-related agencies, for example. Such customers need guar
antees that their data will be secure from unauthorized access.

Security in NTFS is derived directly from the Windows NT object
model. An open file is implemented as a file object with a security descriptor
stored on disk as a part of the file. 4 Before a process can open a handle to
any object, including a file object, the Windows NT security system verifies

. that the process has appropriate authorization to do so. The security descrip
tor, combined with the requirement that a user log on to the system and pro
vide a password to identify himself, ensures that no process can access a file
unless given specific permission to do so by a system administrator or by the
file's owner.

1.1.3 Data Redundancy and Fault Tolerance
In addition to recoverability of file system data, some customers require that
their own data not be endangered by a power outage or catastrophic system
failure. The NTFS recovery capabilities do ensure that the file system on a
volume remains accessible, but they make no guarantees for complete recov
ery of user files. For banking or other applications that can't risk losing file
data, data redundancy provides an extra level of protection.

The Windows NT layered driver model enables NTFS to communicate
with a fault tolerant disk driver, which in turn communicates with a hard disk

3. The Windows NT implementations of the FAT file system and HPFS are improvements
over the original implementations because they use the Windows NT fault tolerant driver to
increase their reliability. See Chapter Five, "Volume Management and Fault Tolerance," for
more information on FtDisk, the Windows NT fault tolerant driver.

4. For more information about security descriptors and file objects, see Inside Windows
NT, Chapter 3, "The Object Manager and Object Security," and Chapter 8, "The I/O
System."

5

INSIDE THE WINDOWS NT FILE SYSTEM

driver to write data to disk. This allows a Windows NT system to establish
fault tolerant disk storage by installing an additional driver.5 The fault toler
ant driver can mirror, or duplicate, data from one disk on another disk so that
a redundant copy can always be retiieved. The fault tolerant driver also al
lows data to be written in stripes across three or more disks, using the equiva
lent of one disk to maintain parity information. If the data on one disk is lost
or becomes inaccessible, the driver can reconstruct the disk's contents by
means of exclusive-OR operations.6

1.1.4 Large Disks and Large Files

6

Engineering and other scientific applications often store and process ex
tremely large quantities of information. Hard disks with over 2 GB of storage
and disk arrays with 8 or 10GB of storage are no longer uncommon. NTFS
supports very large disks and large files more efficiently than either the FAT
file system or HPFS.

The FAT file system uses a table 16 bits wide to record the allocation
status of a disk volume. Because a volume is divided into same-size allocation
units-called cluster.r-and each cluster must be uniquely numbered using
16 bits, the FAT can support a maximum of 216, or 65,536, clusters per vol
ume (although the FAT reserves some of this space for itself). The cluster
size can be increased or decreased depending on the size of the volume.
However, volumes beyond a certain size require very large cluster sizes,
which results in wasted disk space-a problem known as internal fragmenta
tion. A cluster size of 1 KB, for example, covers a 65-MB disk, but a cluster
size of at least 10 KB would be required to cover a 640-MB disk. Given that
the cluster size must be a power of 2, a 16-KB cluster size is actually used for a
640-MB disk; that is, allocations are made in 16-KB increments. Ifafile is 512
bytes or 17 KB, for example, only a fraction of the allocated space is used to
store data. In any case, a single FAT volume is limited to containing 65,518
files (the maximum number of available clusters), regardless of the size of
the disk.

HPFS uses 32 bits to enumerate its allocation units, a strategy that
yields 232, or over 4 billion, numbers. HPFS uses signed numbers, however,

5. Fault tolerant disk support is available only in the Windows NT Advanced Server
product.

6. The mirroring capability of the fault tolerant driver corresponds to the redundant
array of inexpensive disks (RAID) level 1 definition, and the striping capability corresponds
to the RAID level 5 definition. See Patterson et al. in the bibliography at the end of this
book.

ONE: Why Create Another File System?

which reduces this number to 2 billion possible allocation units on an HPFS
volume. Rather than clusters, HPFS allocates disk space in terms of physical
sectors, each set at 512 bytes. This lack of flexibility can be a problem, par
ticularly in Asian markets, where disk drives commonly have a hardware sec
tor size of 1024 bytes. HPFS can't be used on such drives because disks can't
allocate space in increments smaller than their hardware sector size. HPFS is
also limited to a maximum file size of 4 GB.

NTFS allocates clusters and uses 64 bits to number them, which results
in a possible 264 (over 16,000,000,000,000,000,000, or 16 billion billion)
clusters, each up to 4 KB. Each file can be of virtually infinite size, that is, 264

bytes long. As in the FAT file system, the cluster size in NTFS is adjustable,
but it is not required to grow proportionally to the disk size. NTFS uses a
cluster size of 512 bytes on small disks and a maximum cluster size of 4 KB on
large disks. Although NTFS uses a 64-bit (8-byte) disk address to represent
each run (disk allocation), it "encodes" the addresses so that they occupy
only 3 to 5 bytes per run. (Look ahead to Figure 3-12 in Chapter Three to see
an example of address encoding.) HPFS uses 12 bytes to represent each run.

1.2 New Features in NTFS
In addition to making NTFS a recoverable, secure, reliable, and efficient file
system for client-server and other high-end systems, its designers added new
features to the file system that will allow it to support the broadest range of
both existing and future personal computer applications.

1.2.1 Multiple Data Streams
In NTFS, each unit of information associated with a file, including its name,
its owner, its time stamps, its contents, and so on, is implemented as a file
attribute (object attribute). Each attribute consists of a single stream, that is,
a simple sequence of bytes. This generic implementation makes it easy to
add more attributes (and therefore more streams) to a file. Because a file's
data is 'Just another attribute" of the file and new attributes can be added,
NTFS files (and file directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An ap
plication can create additional, named, data streams and access them by re
ferring to their names. To avoid altering the Win32I/O application programming
interfaces (APIs) , which take a string as a file name argument, the NTFS team
used a syntax trick to provide applications with access to multiple data

7

INSIDE THE WINDOWS NT FILE SYSTEM

streams in a file. Because the colon (:) is areservedcharacter, it can serve as
a separator between the file name and the data stream name, as illustrated in
this example:

myfile.dat:stream2

Each stream has a separate allocation size (how much disk space has been
reserved for it), an actual size (how many bytes the caller has used), and a
valid data length (how much of the stream has been initialized). In addition,
each stream is given a separate file lock used to lock byte ranges and allow
concurrent access. In order to reduce processing overhead, sharing is done
per file, rather than per stream.

One way in which NTFS uses multiple data streams is to store data origi
nating from Apple Macintosh systems. Macintosh systems use two streams
per file, one to store data and the other to store resource information, such
as the file type and the icon used to represent the file. Because NTFS allows
multiple data streams, a Macintosh user can copy an entire Macintosh folder
(analogous to a directory) to a Windows NT server, and another Macintosh
user can copy the folder from the server without losing resource informa
tion. Other applications could use the multiple data stream feature as well. A
backup utility, for example, might use an extra data stream to store backup
specific time stamps on files. Or an archival utility might implement hierar
chical storage in which files that are older than a certain date or that haven't
been accessed for a specified period of time are moved to tape. The utility
could copy the file to tape, set the file's default data stream to 0, and add a
data stream that specifies the name and location of the tape on which the
file is stored.

1.2.2 Unicode-Based Names

8

Like Windows NT as a whole, NTFS is fully Unicode enabled, using Unicode
characters to store names of files, directories, and volumes. Unicode, a 16-bit
character-coding scheme, allows each character in each of the world's lan
guages to be uniquely represented, which aids in moving data easily from
one country to another. Unicode is an improvement over the FAT and HPFS
representation of international characters; they use a double-byte coding
scheme that stores some characters in 8 bits and others in 16 bits, a tech
nique that requires loading various code pages to establish the available
characters. Unicode has a unique representation for each character and
therefore doesn't depend on which code page is loaded. Each directory and

ONE: Why Create Another File System?

file name in a path name can be as many as 255 characters long and can con
tain Unicode characters, embedded spaces, and multiple periods.

1.2.3 General Indexing Facility
The NTFS architecture is structured to allow indexing of file attributes on a
disk volume, which enables the file system to efficiently locate files that
match certain criteria-for example, all the files in a particular directory.
The FAT file system indexes file names but doesn't sort them, making look
ups in large directories slow. HPFS indexes and sorts file names as NTFS
does, but the design ofNTFS allows for indexing other file attributes as well.
If a file's author were an important indexing key, for example, NTFS could
be easily altered to efficiently locate all files with a specific author.7

1.2.4 Bad-Cluster Remapping
Ordinarily, if a program tries to read data from a bad disk sector, the read
operation fails and the data in the allocated cluster becomes inaccessible.
However, if the disk is formatted as a fault tolerant NTFS volume, the Win
dows NT fault tolerant driver dynamically retrieves a good copy of the data
that was stored on the bad sector and then sends NTFS a warning that the
sector is bad. NTFS allocates a new cluster, replacing the cluster in which the
bad sector resides, and copies the data to the new cluster. It flags the bad
cluster and no longer uses it. This data recovery and dynamic clusteJi;
remapping is an especially useful feature for file servers and fault tolerant
systems or for any application that can't afford to lose data. If the fault toler
ant driver isn't loaded when a sector goes bad, NTFS still replaces the cluster
and doesn't reuse it, but it can't recover the data that was on the bad sector.

1.2.5 POSIX Support
Windows NT contains a POSIX subsystem that runs POSIX applications and
shells. With this capability comes the need for the file system to deal appro
priately with POSIX files. In particular, the POSIX standard requires the file
system to support case-sensitive file and directory names, a "file-change
time" time stamp (which is different from the MS-DOS "time-last-modified"
stamp), and hard links. NTFS implements each of these features. NTFS does
not implement POSIX symbolic links in its first release, but it can be ex
tended to do so.

7. In the current release of NTFS, only the file name attribute is indexed.

9

INSIDE THE WINDOWS NT FILE SYSTEM

1.2.6 Removable Disks

10

NTFS is designed for use on both fixed and removable disks. Because the
FAT file system is a de facto standard for floppy disks, Microsoft has no plans
to support NTFS on floppy disks. However, NTFS can be used on other types
of removable media, such as Bernoulli disks. Windows NT is a secure operat
ing system, and NTFS extends that security to files; therefore, removable
disks formatted for NTFS are protected by the same security mechanisms as
those used for fixed disks.

C HAP T E R TWO

THE NTFS MODEL

Despite the new requirements for recoverability and security in NTFS and
the many new features its designers incorporated into it, the first and fore
most requirement was that NTFS be a reliable and fast file system. It had to
handle standard file system operations, such as booting the system and load
ing executable images, and it had to plug into the loadable, layered Win
dows NT driver model established by the I/O system. It had to do these
things while achieving performance that would meet or exceed that of exist
ing personal computer file systems. NTFS uses several models to achieve
these goals:

• From the Windows NT I/O system's point of view, NTFS is just
another driver loaded into the operating system and available for
processing I/O requests. NTFS can be layered on top of or beneath
other drivers in the I/O system's layered driver model.

• From another vantage point, NTFS is a sophisticated relational
database that incorporates the latest technical advances in data
logging and recovery as well as new features such as multiple data
streams and indexing of file attributes.

• From yet another point of view, NTFS participates in the Windows
NT object model, operating on file objects whose security is en
sured by the Windows NT object manager and security system.

2.1 The Layered Driver Model
In Windows NT, NTFS and other file systems are loadable drivers. They can
be added to or removed from the operating system as they're needed. All
drivers work within the context of the Windows NT I/O system and are

11

INSIDE THE WINDOWS NT FILE SYSTEM

12

invoked indirectly by applications that use Win32 or other I/O APIs. As Fig
ure 2-1 shows, the Windows NT environment subsystems call NT system ser
vices, which in turn locate the appropriate loaded drivers and call them.

NT
Executive

Figure 2-1. Components of the Windows NT I/O System

User Mode

Kernel Mode

1/0 Manager

Fault Tolerant
Driver

Disk Driver

The layered drivers pass I/O requests to each other by calling the NT
executive's I/O manager. Relying on the I/O manager as an intermediary
allows each driver to maintain independence so thatit can be loaded or un
loaded without affecting other drivers. In addition, the NTFS driver inter
acts with three other NT executive components, shown in the left side of
Figure 2-2, that are closely related to file systems.

The logfile service (LFS) , developed by Brian Andrew, is a module of the
Windows NT executive that provides services for maintaining a log of disk
writes. The logfileit writes is used to recover an NTFS-formatted volume in
the case of a system failure.

The cache manager is a component of the Windows NT executive written
by Tom Miller that provides system-wide caching services for NTFS and
other file system drivers, including network file system drivers (servers and
redirectors). All file systems implemented for Windows NT access cached

I/O MSlnSlI"lAr

r~
Flush the Write the

log file cache
+

TWO: The NTFS Model

Read/write
a mirrored
or striped
volume

Read/write
the disk

Load data
from disk

into L~~~~~~~
memory

Access the mapped
file or flush the cache

~

Virtual Memory
Manager ..

Figure 2-2. NTFS and Related NT Executive Components

files by mapping them into virtual memoryl and reading and writing to vir
tual memory. The cache manager provides a specialized file system interface
to the Windows NT virtual memory manager (VM manager) for this pur
pose. When a program tries to access a part of a file that is not loaded into
the cache (a cache miss), the VM manager calls NTFS to access the disk driver
and obtain the file contents from disk. The cache manager optimizes disk
110 by using its lazy writer, a set of system threads that calls the VM manager
to flush cache contents to disk as a background activity (asynchr.onous disk
writing).

The relationships shown for NTFS in Figure 2-2 are the same as those
for the other Windows NT-supported file systems: the FAT file system,
HPFS, and network file systems. The only difference is that these file systems
don't call the log file service to log transactions.

2.2 Relational Database and
Transaction-Processing Models
The usefulness of database software lies in its ability to extract information
based on any number of criteria or combinations of criteria. The most

1. See Inside Windows NT, Chapter 6, "The Virtual Memory Manager," for a discussion of
virtual memory in Windows NT.

13

INSIDE THE WINDOWS NT FILE SYSTEM

14

powerful database packages can handle complicated queries and perform
database updates with great speed.

A file system can be viewed as a type of database that applications and
utilities query for information about files. For example, the Dir command
on MS-DOS systems and the ls command on POSIX systems call their respec
tive file systems to obtain a list of the names of files and subdirectories in a
directory. Typically, a file system "query" requests a collection of file names
that fit a particular criterion. By structuring NTFS as a database, itS designers
could exploit the benefits of a database design, such as the ability to easily
select a collection of files based on some attribute or the ability to store such
collections in sorted indexes for fast retrieval.

Another aspect of the NTFS design, one closely related to the database
theme, is the NTFS use of a transaction-processing model in recording
changes to a volume. Transaction processing is a technique for handling
modifications to a database so that system failures don't affect the correct
ness or integrity of the database. The basic tenet of transaction processing is
that there are some database operations, called transactions, which are "all
or-nothing" propositions. The separate disk updates that make up the trans
action must be executed atomically; that is, once the transaction begins to
execute, all of its disk updates must be completed. If a system failure inter
rupts the transaction, the part that'has been completed must be undone, or
rolled back. The rollback operation returns the database to a previously
known and consistent state, as if the transaction had never existed.

Suppose that a bank customer is transferring $300 from a savings ac
count to a checking account using an automatic teller machine. She enters
the transfer operation, and database software begins to process the request
by subtracting $300 from the customer's savings account. Now suppose that
the power fails and the system crashes. If transaction-processing principles
were not in effect and the computer came back online with the database as it
was when the power failed, the bank's records would show $300 less in the
customer's savings account than she previously had, with nothing added to
her checking account. Clearly, failures of this kind are unacceptable in
financial software.

By specifying a funds transfer operation as an atomic transaction, the
transaction-processing software ensures that the entire set of sub
operations-withdrawing from savings and depositing into checking-is
treated as a single operation. If the system fails in the middle of this transac
tion, transaction-processing software, which has kept a record of the transac
tions in progress and how far they have gotten, can undo the half-completed

TWO: The NTFS Model

transfer of funds by crediting the customer's savings account when the sys-
tem comes back online.· .

NTFS uses the transaction-processing model to iniplement its file sys
tem recovery feature. If a program initiates an I/O operation that alters the
structure of the NTFS file system----'changes the dir~ctory structure, extends
a file, allocates space for a new file, and so on-NTFS treats that operation as
an atomic transaction. It guarantees that the transaction is either completed
or, if the system fails while executing the transaction, rolled back. Suppose,
for example, that a user creates a file and NTFS inserts the new file name
into its directory structure just before the system goes down. The directory
entry exists, but the disk space for the file has not yet been allocated. Treat
ing file creation as an atomic operation ensures that NTFS (that is, the
"database") maintains internal consistency. In the example, NTFS will roll
back the file creation operation, removing the file name from its directory
structure.

NTFS keeps track of the contents ofa volume in a relational database, a
table containing rows of records and columns of attributes. The rows of the
master file table (MFT) , as the database is called, correspond to individual files
on the disk, and the columns correspond to file attributes. A directory is
viewed as a file, with a slightly different set of attrIbutes. Figure 2-3 depicts
the logical structure of the MFT and the various attributes that can exist in a
file or a directory.

Instead of viewing a file as just a repository for textual or binary data,
the NTFS model views a file as a collection of attributes, one of which is the

Standard File Security
Information Name Descriptor

File 0

2

(d;"';") 1
Index
Root

I I
1

Data

unnamed
stream

unnamed
stream

unnamed
stream

Index
Allocation

I

HPFS
Extended
Attributes

(EAs)

Bitma(!

I I
1

Figure 2-3. File and Directory Records in the Master File Table

15

INSIDE THE WINDOWS NT FILE SYSTEM

16

data it contains. A relational database structure allows the file system to be
easily extended. If a user creates a file, NTFS simply fills in a new row in the
table. Ifa program adds an attribute2 or a second data stream, or if a file is
given an alternate MS-DOS name (see Chapter Seven), NTFS inserts an
other column in the MFT for the affected file, as Figure 2-4 shows.

File 0

2

16

Standard
Information

File Security
Name Descriptor Data

unnamed
stream

unnamed
stream

unnamed
stream

HPFS
Extended
Attributes

(EAs)

Index Index

J -~-~p I

Figure 2-4. Adding Attributes and a Data Stream to an MFT Record

Like many relational databases, NTFS can create indexes for attributes.
In a file system, an index is a c()llection of files selected for some attribute. A
directory in NTFS, for instance, is an index of file names with a particular
path prefixed to them. Internally, NTFS can create an index based on any
attribute that is specified as index-able, but currently only file names are in
dexed. NTFS sorts its file name indexes by means of an efficient data struc
ture called a h+ tree, in which file names are collated lexicographically,
allowing for quick lookup of queries such as dir str'* . * .

Although NTFS uses the relational database model for parts of its
implementation, it departs from the model when the model doesn't suit the
purposes of a file system. For example, NTFS must implement a hierarchical
directory structure like that used by the FAT file system and HPFS. By adding

2. User-defined attributes are not currently supported in Windows NT. However, the
architecture allows for the enabling of user-defined attributes in the future.

TWO: The NTFS Model

directories to the MIT and treating them as files, NTFS creates a hierarchi
cal structure within the traditional relational database table structure. As
Figures 2-3 and 2-4 showed, in place of the data attribute, a directory record
contains three attributes used to implement the directory's file name index.

2.3 The Object Model
NTFS participates in the Windows NT object model by implementing files as
objects. This allows files to be shared and protected by the object manager,
the component of Windows NT that manages all executive-level objects.

An application creates or accesses a file just as it does other NT objects:
by means of object handles. By the time an I/O request reaches NTFS, the
Windows NT object manager and security system have already verified that
the calling process has the authority to access the file object in the way it is
attempting to. The security system has compared the caller's security token
to the entries in the access control list for the file object. (See Inside Windows

NT, Chapter 3, for more information about access control lists.) The I/O
manager has also transformed the file handle into a pointer to a file object.
NTFS uses the information in the file object to access the file on disk.

Figure 2-5 on the next page shows the data structures that link the
memory-based object architecture to the file system's on-disk structure.

NTFS is called with a pointer to a file object. It follows several pointers
to get from the file object to the location of the file on disk. As Figure 2-5
shows, a file object, which represents a single call to the open-file system ser
vice, points to a stream control block (SCB) for the file attribute that the caller
is trying to read or write. In Figure 2-5, a process has opened both the data
attribute and a user-defined attribute for the file. The SCBs represent indi
vidual file attributes and contain information about how to find specific at
tributes within a file. All the SCBs for a file point to a common data structure
called a file control block (FCB). The FCB contains a pointer (actually, a file
reference) to the file's record in the disk-based MFT.

As mentioned in Section 2.2, NTFS views a file as a collection of at
tributes,just as the Windows NT object manager views an object as a collec
tion of attributes. NTFS uses the same read routine regardless of whether it
is reading a file's data attribute, its security descriptor attribute, its file name
attribute, or any of the file's other attributes. Similarly, when writing to a file,
NTFS takes an attribute as a parameter and writes to that attribute. Because
these object routines are generic, they can easily accommodate new at
tributes that may be added in the future.

17

INSIDE THE WINDOWS NT FILE SYSTEM

18

Object
Manager

Data
Structures

Handle
Table

Ef
NTFS Data
Structures

(used to manage
the on-disk
structure)

Figure 2-5. Locating an NTFS File

File
Control
Block

NTFS
Database

(on disk)

Master File
Table

~

C HAP T E R T H R E E

FILE SYSTEM STRUCTURE

Chapter Two described the software models the file system team borrowed
from as they designed NTFS. This chapter sets the models aside and delves
deeper into the NTFS implem'entation, looking especially at the on-disk
structure and at some of the data structures NTFS uses to maintain the disk
structure. It begins with an overview ofNTFS concepts and terminology and
follows that with a look at the important NTFS data structures. How NTFS
stores data, including file name indexes, on disk is described next. The last
section examines the files NTFS uses to manage the disk and to implement
recovery.

3.1 NTFS Concepts and Terms
The structure ofNTFS begins with a volume. A volume corresponds to a logi
cal partition on a disk, and it is created when you format a disk or part of a
disk for NTFS. You can also create a fault tolerant volume spanning multiple
disks by using the Windows NT Disk Administrator utility.

A disk can have one volume or several. NTFS handles each volume in
dependently of the others. Sample disk configurations for a 150-MB hard
disk are illustrated in Figure 3-1 on the next page.

A volume consists of a series of files plus any additional unallocated
space remaining on the disk partition. In the FAT file system and HPFS, a
volume also contains areas specially formatted for use by the file system. An

, NTFS volume, however, stores all file system data, such as bitmaps and direc
tories, and even the system bootstrap, as ordinary files.

NTFS is like the FAT file system in that it uses the cluster as its funda
mental unit of disk allocation. The cluster size on a volume, or cluster factor, is
established by the NTFS Format utility when a user formats the volume. The

19

INSIDE THE WINDOWS NT FILE SYSTEM

20

c: c:
(75 MB) NTFS (60 MB) FAT

Volume c: NTFS Volume 1
(150 MB) Volume

D: D: NTFS
(75 MB) NTFS (90 MB) Volume

Volume 2

Figure 3-1. Sample Disk Configurations

cluster factor varies with the size of the volume, but it is an integral number
of physical sectors, always a power of 2 (1 sector, 2 sectors, 4 sectors, 8 sec
tors, and so on), as shown in Figure 3-2. The cluster factor is expressed as the
number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.

Internally, NTFS refers only to clusters and is unaware of a disk's sector
size. Unlike HPFS, which mandates a 512-byte physical sector as its unit of
allocation, NTFS uses the cluster as its unit of allocation in order to maintain
its independence from physical sector sizes. This allows NTFS to efficiently
support very large disks by using a larger cluster size or to support nonstan
dard disks that have something other than a 512-byte sector size. On a 600-
MB or larger volume, for example, use ofa duster size greater than 512 bytes
can reduce fragmentation and speed allocation, at a small cost in terms of
wasted disk space. The NTFS Format utility automatically determines an ap
propriate cluster size, but the system administrator can modify that value'!

NTFS refers to physical locations on a disk by means of logical cluster
numbers (LeNs). LeNs are simply the numbering of all clusters from the be
ginning of the volume to the end. To convert an LeN to a physical disk ad
dress, NTFS multiplies the LeN by the cluster factor to get the physical byte
offset on the volume, as the disk driver interface requires.

As described in Section 2.2, NTFS maintains a file called the master file
table (MFT) , which is the heart of the NTFS volume structure. Logically, the
MFT contains one row for each file on the volume, including a row for the

1. The Format utility uses a cluster size of 512 bytes (or the hardware sector size if it is
larger than 512 bytes) for disks up to 512 MB. For larger disks up to 1 GB, it uses a cluster
size of 1 KB. For disks larger than 1 GB, up to 2 GB, it uses a cluster size of 2 KB. For disks
larger than 2 GB, it uses a cluster size of 4 KB. This formula balances the inherent trade-off
between the disk fragmentation that can occur with too small a cluster size and the wasted
space (internal fragmentation) that can occur with too large a cluster size.

Cluster
(4 sectors)

Figure 3-2. Sectors and a Cluster on a Disk

T H R E E: File System Structure

MFT itself. In addition to the MFT, each NTFS volume contains a boot file
(described later) and a set of files containing data called metadata that is
used to implement the file system structure. The rest of the files on an NTFS
volume are normal user files and directories, as shown in Figure 3-3.

The MFT is implemented as an array of file records. An MIT "row,"
representing one file on the disk, usually consists of one file record. How
ever, if a file has a large number of attributes or becomes highly fragmented,
more than one file record might be needed. In such a case, the first record,
which stores the locations of the others, is called the base file record.

A file on an NTFS volume is identified by a 64-bit value called afile refer
ence. The file reference consists of a file number and a sequence number.
The file number corresponds to the position of the file's file record in the
MFT minus one (or to the position of the base file record minus one if the
file has more than one file record). The file reference sequence number,

File 0 MFT

MFT copy (partial)

2 NTFS metadata files

user files and directories 1
Figure 3-3. NTFS Metadata and User File Records in the MFT

21

INSIDE THE WINDOWS NT FILE SYSTEM

22

which is incremented each time an MFT file record posItIOn is reused,
enables NTFS to perform internal consistency checks. A file reference is
illustrated in Figure 3-4.

63 47 o

I sequence
. number

file number

Figure 3-4. File Reference

A file in NTFS was defined earlier as a set of attributes, including a file
name attribute, a security descriptor attribute, arid a data attribute. NTFS
identifies an attribute by its name in uppercase letters preceded by a dollar
sign ($), as in $FILENAME or $DATA. These attribute names, however, actu
ally correspond to numeric type codes, which NTFS uses to order the attri
butes within a file record. Figure 3-5 illustrates an MFT record for a small file.

Each file attribute is stored as a separate stream of bytes within a file.
Strictly speaking, NTFS doesn't read and write files--it reads and writes at
tribute streams. NTFS supplies these attribute operations: create, delete,
read (byte range), and write (byte range). The read and write services nor
mally operate on the file's unnamed data attribute. However, a caller can
specify a different data attribute by using the named data stream syntax. (Re
fer to Figure 2-4 back on page 16.)

Master File Table

Standard File
information Name

I I
security

Descriptor

I I
Figure 3-5. MFT Record for a Small File

Data

T H R E E : File System Structure

The NTFS volume structure defines a set of standard attributes for
files. These system-defined attributes have fixed attribute names and type
codes, and NTFS determines the formats of their values. The attributes are
listed in Figure 3-6 in the order in which they appear in a file record, al
though not all attributes are present for every file.

System-Defined Attribute

Standard information

Attribute list

File name

Security descriptor

Data

Index root, index allocation,
bitmap (directories only)

HPFS extended attributes,
HPFS extended attribute
information

Description

The file's "MS-DOS" attributes (read-only,
read/write, and so on); its time stamps,
including when the file was created or last
modified; and how many directories point to
the file (its hard link count).

A list of the attributes that make up the file
and the file reference of the MIT file record
in which each attribute is located. This
seldom-used attribute is present when a file
requires more than one MFT file record.

The file's name in Unicode characters. A file
can have multiple file name attributes, as it
does when a POSIX hard link to a file exists
or when a file with a long name has an
automatically generated "short name" for
access by MS-DOS and 16-bit Microsoft
Windows applications.

The security data structure that protects the
file from unauthorized access. The security
descriptor attribute specifies who owns the
file and who can access it.

The contents of the file. In NTFS, a file has
one default unnamed data attribute and can
have additional named data attributes (that
is, a file can have multiple data streams). A
directory has no default data attribute but can
have optional named data attributes.

Three attributes used to implement file name
indexes for large directories.

Two attributes used to implement HPFS-style
extended attributes (EAs) for the OS/2 sub
system and for OS/2 clients of Windows NT file
servers.

Figure 3-6. Standard File and Directory Attributes

23

INSIDE THE WINDOWS NT FILE SYSTEM

3.2 On-Disk Structure

24

As earlier figures have shown, the rows (file records) of the MFT represent
the files on an NTFS volume, and the columns represent file attributes. All
file information is stored in attributes, and thus the rows and columns of the
MFT describe all the information stored on an NTFS volume. The size of
MFT file records for a volume-a minimum of 1 KB and a maximum of 4
KB-is determined when the volume is formatted.

The file attributes in an MFT record are ordered by (numerically) as
cending type codes, with some attribute types appearing more than once-if
a file has multiple data attributes, for example, or multiple file names. Fig
ure 3-5 back on page 22 shows the attributes that are required for a file: the
standard information attribute, the file name attribute, the security descrip
tor attribute, and the data attribute. Other attributes can also appear in an
MFT file record as they are needed for a particular file.

Each attribute in a file record has a name (optional) and a value. Names
are used primarily with the data attribute, to identify a second or third data
stream in the file. An attribute's value is the byte stream composing the at
tribute. For example, the value of the $FILENAME attribute is the file's
name; the value of the $DATA attribute is whatever bytes the user stored in
the file. If a file is small, all its attributes and the attributes' values (its data,
for example) fit in the file record. When the value of an attribute is stored
directly in the MFT, the attribute is called a resident attribute. (In Figure 3-5,
all attributes are resident.)

Each attribute begins with a standard header containing information
about the attribute, which NTFS uses to manage the attributes in a generic
way. The header, which is always resident, records whether the attribute's
value is resident or nonresident. For resident attributes, the header also con
tains the offset from the header to the attribute's value and the length of the
attribute's value, as Figure 3-7 illustrates for the file name attribute.

When an attribute's value is stored directly in the MFT, the time it takes
NTFS to access the value is greatly reduced. Instead of looking up a file in a
table and then reading a succession of allocation uni.ts to find the file's data
(as the FAT file system, for example, does), NTFS accesses the disk once and
retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be
resident in the MFT, as Figure 3-8 shows. For a small directory, the index
root attribute contains an index of file references for the files and the
subdirectories in the directory.

T H R E E: File System Structure

.. Attribute header

[::::J Attribute value

MYFILE.DAT

Data

Figure 3-7. Resident Attribute Header and Value

Of course, many files and directories can't be squeezed into an MFr
record, a l-KB, 2-KB, or 4-KB data structure. If a particular attribute, such as
a file's data attribute, is too large to be contained in the MFT file record,
NTFS allocates a 2-KB area2 on the disk, separate from the MFr. This area,
called a run (or an extent), stores the value of the attribute (the file's data, for
example). If the attribute's value later grows (if a user appends data to the
file, for instance), NTFS allocates another run for the additional data. At

. tributes whose values are stored in runs rather than in the MFr are called
nonresident attributes. The file system decides whether a particular attribute is
resident or nonresident; the location of the data is transparent to the pro
cess accessing it.

When an attribute is nonresident, as the data attribute for a large file
might be, its header contains the information NTFS needs to locate the
attribute's value on the disk. Figure 3-9 on the next page shows a nonresi
dent data attribute stored in two runs.

Standard
Information

File
Name

Security Index

,Descrl /I-.. _ --, .. .;::cinde==::..:~~o":':;~=-~..:..-Jl empty I
. . f1, f2, f3, _

Figure 3-8. MFT File Record for a Small Directory

2. 4 KB for a 4-KB cluster size.

25

INSIDE THE WINDOWS NT FILE SYSTEM

26

Standard
Information

File
Name

Security
Descriptor

I I

HPFS
Extended

Data Attributes

-.-J [~
rL1

r--------da-t-a----~~I ~I--~----d-at-a------~

Figure 3-9. MFT File Record for a Large File with Two Data Runs

Among the standard attributes, only those that can grow can be nonresi
dent. For files, the attributes that can grow are the security descriptor, the
data, the attribute list (not shown in Figure 3-9), and the HPFS extended at
tributes (EAs). The standard information and file name attributes are always
resident.

A large directory can also have nonresident attributes (or parts of at
tributes), as Figure 3-10 shows. In this example, the MFT file record doesn't
have enough room to store the index of files that make up this large direc
tory. A part of the index is stored in the index root attribute, and the rest of
the index is stored in nonresident runs called index buffers. The index root,
index allocation, and bitmap attributes are shown here in a simplified form.
They are described in more detail later. The standard information and file
name attributes are always resident. The header and at least part of the value
of the index root attribute are also resident for directories.

When a file's (or a directory's) attributes can't fit in an MFT file record
and separate allocations are needed, NTFS keeps track of the runs by means
of virtual cluster numbers (VCNs). Logical cluster numbers (LCN s), described
in Section 3.1, represent the sequence of clusters on an entire volume from

Standard File Security Index Index
Information Name Descriptor Root Allocation

I I m04 m,B
index of files

I I I
~ l

file1 file2 file3 I I fileS file6

Figure 3-10. MFT File Record for a Large Directory with a
Nonresident File Name Index

Bitmap

T H R E E: File System Structure

o through n. VCNs number the clusters belonging to a particular file from 0
through m. For example, the clusters in the runs of a nonresident data at
tribute are numbered as shown in Figure 3-11.

Standard File Security
Information Name Descriptor Data

File 16 I I : +
VCN 0 2 3 4 5 6 7

d+a d+a
LCN 1355135613571358. 1588 1589 1590 1591

Figure 3-11. Virtual Cluster Numbers (VCNs) for a Nonresident
Data Attribute

If this file had more than two runs, the numbering of the third run would
start with VCN 8. As Figure 3-12 shows, the data attribute header contains
VCN-to-LCN mappings for the two runs shown, which allows NTFS to easily
find the allocations on the disk.

Figure 3-12 shows data runs, but other attributes can be stored in runs
if there isn't enough room in the MFT file record to contain them. And if a
particular file has too many attributes to fit in the MFT record, a second

Standard File Security
Information Name Descriptor Data

File 16

VCN 0 2 3 4 5 6 7

I d+a
LCN 1 3 5 5 1 3 5 6 1 357 1 358 1588 1589 1590 1591

Figure 3-12. VCN-to-LCN Mappings for a Nonresident Data Attribute

27

INSIDE THE WINDOWS NT FILE SYSTEM

MIT record is used to contain the additional attributes (or attribute headers
for nonreSident attributes). In this case, the attribute called the attribute list,
which we saw in Figure 3-6 back on page 23, is added. The attribute list at
tribute contains the name and type code of each of the file's attributes and
the file reference of the MIT record where the attribute is located. The at
tribute list attribute is provided for those cases in which a file grows so large
or so fragmented that a single MIT record can't contain the multitude of
VCN-tq-LCN mappings needed to find all of its runs. NTFS needs this at
tribute so rarely that special dysfunctional programs had to be written to test
the NTFS code that implements attribute lists.

3.3 File Name Indexing

28

In NTFS, a file directory is simply an index of file names-that is, a collec
tion of file names (along with their file references) organized in a particular
way for quick access. To create a directory, NTFS indexes the file name at
tributes of the files in the directory. The MIT record for the root directory
ofa volume is shown in Figure 3-13.

Conceptually, an MIT entry for a directory contains in its index root
attribute a sorted list of the files in the directory. However, for large directo
ries, the file names are actually stored in index buffers, runs of either 2 KB
or the cluster size-whichever is larger-that contain and organize the file
names. Index buffers implement a h+ tree data structure, which minimizes
the number of disk accesses needed to find a particular file, especially for
large directories. The index root attribute contains the first level of the b+
tree (root subdirectories) and points to index buffers containing the next
level (more subdirectories, perhaps, or files). The index allocation attribute
maps the VCN s of the index buffer runs to the LCN s that indicate where the
index buffers reside on the disk.

Figure 3-13 shows only file names in the index root attribute and the
index buffers (file6, for example), but each entry in an index also contains
the file reference in the MFT where the file is described, and time stamp and
file size information for the file. NTFS duplicates the time stamp and file size
information from the file's MIT record. This technique, which is used by the
FAT file system, HPFS, and NTFS, requires updated information to be writ
ten in two places. However, it is a significant speed optimization for direc
tory browsing because it enables the file system to display each file's time
stamps and size without opening every file in the directory.

Standard File
Information Name

File 5 "\11

VCN 0 2 3

I fileO I file1 I file31

VCN 4 5

I file61 fileS

Index
Root

T H R E E: File System Structure

Index
Allocation

index of files
VCN-to-LCN

mappings

VCN

6 7

I file91

Figure 3-13. File Name Index for a Volume's Root Directory

The index allocation attribute contains the VCN-to-LCN mappings for
the index buffers, and the bitmap attribute keeps track of which VCNs in the
index buffers are in use and which are free. Figure 3-13 shows one file entry
per VCN (that is, per cluster), but actually file name entries are packed into
each cluster. Each 2-KB index buffer can contain about 15 file name entries
(3 or 4 per cluster for a 512-byte cluster).

The b+ tree data structure (also used by HPFS) is a type of balanced
tree that is ideal for organizing sorted data stored on a disk because it mini
mizes the number of disk accesses needed to find an entry. In the MFT, a
directory's index root attribute contains several file names that act as in
dexes into the second level of the b+ tree. Each file name in the index root
attribute has an optional pointer associated with it that points to an index
buffer. The index buffer it points to contains file names with lexicographic
values less than its own. In Figure 3-13, for example, file4 is a first-level entry
in the b+ tree. It points to an index buffer containing file names that are
(lexicographically) less than itself-the file names fileO, file1, and file3.

Storing the file names in b+ trees provides several benefits. Directory
lookups are fast because the file names are stored in a sorted order. And
when higher-level software enumerates the files in a directory, NTFS returns
already-sorted names. Finally, because b+ trees tend to grow wide rather than
deep, NTFS's fast lookup times don't degrade as directories get large.

NTFS currently indexes only the file name attribute, but later versions
of the file system might allow applications to both create new attributes and
index them. If the author of a file were added as an attribute, for example,
NTFS could maintain b+ trees of files collated by author.

29

INSIDE THE WINDOWS NT FILE SYSTEM

3.4 NTFS Metadata Files and the Boot File

30

In NTFS, all data stored on a volume is contained in a file, including the data
structures used to locate and retrieve files, the bootstrap data, and the
bitmap that records the allocation state of the entire volume (the NTFS
metadata). Storing everything in files allows the data to be easily located and
maintained by the file system, and each separate file can be protected by a
security descriptor. In addition, if a particular part of the disk goes bad,
NTFS can relocate the metadata files to prevent the disk from becoming
inaccessible.

As noted earlier, the MFT contains a record for every file on the disk,
including one for the MFT file itself. A file record in the MFT contains ei
ther all the attributes for the file or the VCN-to-LCN mappings that indicate
where on the disk the values of the file's nonresident attributes are located.
The location of the MFT file records for NTFS metadata files is illustrated in
Figure 3-14.

When it first accesses a volume, NTFS must mount it-that is, prepare it
for use. To mount the volume, NTFS looks in the boot file (described below)
to find the physical disk address of the MFT. The MFT's own file record is the
first entry in the table; the second file record points to a file located in the
middle of the disk that contains a copy of the first 16 rows of the MFT. This
partial copy of the MFT is used to locate metadata files if part of tlIe MFT file
can't be read for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to
LCN mapping information in the record's data attribute, decompresses it,
and stores it in memory. This mapping information tells NTFS where the
runs composing the MFT are located on the disk. NTFS then decompresses
the MFT records for several more metadata files and opens the files. Next,
NTFS performs its file system recovery operation (described in Section 4.3),
and finally, it opens its remaining metadata files. The volume is now ready
for user access.

As the system runs, NTFS writes to another important metadata file,
the log file. NTFS uses the log file to record all operations that affect the
NTFS volume structure, including file creation or any commands, such as
Copy, that alter the directory structure. The log file is used to recover an

'NTFS volume after a system failure.
Another entry in the MFT is reserved for the root directory (also

known as "~'). Its file record contains an index of the files and directories
stored in the root of the NTFS directory structure. When NTFS is first asked

File 0

2

3

4

5

6

7

8

16

MFT

MFT copy (partial)

log file

volume file

attribute definition table

root directory

bitmap file

boot file

bad cluster file

user files and directories

T H R E E: File System Structure

NTFS
Metadata

Files

Figure 3-14. File Records for NTFS Metadata Files in the MFT

to open a file, it begins its search for the file in the root directory's file
record. Mter opening a file, NTFS stores the file's MFT file reference so that
it can directly access the file's MFT record when it reads and writes the
file later.

NTFS records the allocation state of the volume in the bitmap file. The
data attribute for the bitmap file contains a bitmap, each of whose bits repre
sents a cluster on the volume, identifying whether the cluster is free or has
been allocated to a file.

Another important system file is the boot file, which stores the Windows
NT bootstrap code. In order for the system to boot, the bootstrap code must
be located at a specific disk address. During formatting, however, the Format
utility defines this area as a file by creating a file record for it. Creating the
boot file allows NTFS to adhere to its rule of making everything on the disk a
file. The boot file as well as NTFS metadata files can be individually pro
tected by means of the security descriptors that are applied to all Windows
NT objects. Using this "everything on the disk is a file" model also means
that the bootstrap can be modified by normal file I/O, although the boot
file is currently protected from editing.

31

INSIDE THE WINDOWS NT FILE SYSTEM

32

NTFS also maintains a bad cluster file for recording any bad spots on the
disk volume and a file known as the volume file, which contains the volume
name, the version ofNTFS for which the volume is formatted, and a bit that
when set signifies that a disk corruption has occurred and must be repaired
by the Chkdsk utility (see Section 5.3). Finally, NTFS maintains a file con
taining an attribute definition table that defines the attribute types supported
on the volume and indicates whether they can be indexed, recovered during
a system recovery operation, and so on.

C HAP T E R F 0 U R

RECOVERABILITY

The most important feature ofNTFS is undoubtedly its failure recovery ca
pability. A recoverable file system ensures that if a power failure or a cata
strophic system failure occurs, no file system operations (transactions) will
be left incomplete and the structure of the disk volume will remain intact
without the need to run a disk repair utility. 1 NTFS recoverability increases
the overall reliability of Windows NT, a boon for corporate and other high
end customers. Windows NT file system recovery actually exceeds current
corporate expectations for file system reliability, and NTFS provides this ex
tra level of stability with little sacrifice of performance. Recoverability is a
prerequisite for transaction-processing applications and for an attribute
indexing facility.

NTFS uses a transaction-based logging scheme to implement recover
ability. This strategy ensures a full disk recovery that is also extremely fast
(on the order of seconds) for even the largest disks. NTFS limits its recovery
procedures to file system data to ensure that at the very least the user will
never lose a volume because of a corrupted file system; however, user data is
not guaranteed to be fully updated if a crash occurs. The decision not to
implemenruser file recovery represents a trade-off between a fully fault tol
erant file system and one that provides optimum performance for all file
operations. User file recovery could be implemented as an extension to
NTFS.

The first section of this chapter describes the evolution of file system
reliability as a context for an introduction to recoverable file systems. The
second section details the transaction-logging scheme NTFS uses to record

1. NTFS includes a Chkdsk utility that can be used to repair catastrophic disk corruption
caused by I/O errors (bad disk sectors, electrical anomalies, or disk failures, for example) or
software bugs. With the NTFS recovery capabilities in place, Chkdsk is rarely needed. .

33

INSIDE THE WINDOWS NT FILE SYSTEM

modifications to file system data structures, and the third section explains
how NTFS recovers a volume if the system fails.

4.1 Evolution of File System Design
The development of a recoverable file system can be seen as a step forward
in the evolution of file system design. Until now, there have been two· com
mon techniques for constn,lcting a file system's I/O and caching support:
careful write and lazy write. The file systems developed for Digital Equipment
Corporation's VAX/VMS and some other proprietary operating systems
employ a careful write algorithm, while OS/2 HPFS and most UNIX file sys
tems use a lazy write file system scheme.

Careful write and lazy write file systems are prevalent on personal com
puter, minicomputer, and mainframe operating systems, but recoverable file
systems are relatively new. Before NTFS, they appeared primarily on re
search systems and a few specialized real-time or fault tolerant systems. Win
dows NT is one of the first commercial operating systems to provide a
recoverable file system.

The next two subsections briefly review the two types of file systems
most commonly used today and their intrinsic trade-offs between safety and
performance. The third subsection describes NTFS's recoverable approach
and how it differs from the two other strategies.

4.1.1 Careful Write File Systems

34

When an operating system crashes or loses power, I/O operations in
progress are immediately, and often prematurely, interrupted. Depending
on what I/O operation or operations were in progress and how far along
they were, such an abrupt halt can produce inconsistencies in a file system.
An inconsistency in this context is a file system corruption-a file name ap
pears in a directory listing, for instance, but the file system doesn't know the
file is there or can't access the file. The worst file system corruptions can
leave an entire volume inaccessible.

A careful write file system doesn't try to prevent file system inconsisten
cies. Rather, it orders its write operations so that, at worst, a system crash will
produce predictable, noncritical inconsistencies, which the file system can
fix at its leisure.

When any kind of file system receives a request to update the disk, it
must perform several suboperations before the update will be complete. In a
file system that uses the careful write strategy, the suboperations are always
written to disk serially. When allocating disk space for a file, for example, the

F 0 U R: Recoverability

file system first sets some bits in its bitmap and then allocates the space to the
file. If the power fails immediately after the bits are set, the careful write file
system loses access to some disk space-to the space represented by the set
bits-but existing data is not corrupted.

Serializing write operations also means that I/O requests are filled in
the order in which they are received. If one process allocates disk space and
shortly thereafter another process creates a file, a careful write file system
completes the disk allocation before it starts to create the file because inter
leaving the suboperations of the two I/O requests could result in an incon
sistent state.2

The main advantage of a careful write file system is that in the event of
a failure the volume stays consistent and usable without the need to immedi
ately run a slow volume repair utility. Such a utility is needed to correct the
predictable, nondestructive disk inconsistencies that occur as the result of a
system failure, but the utility can be run at a convenient time, typically when
the system is rebooted.

4.1.2 Lazy Write File Systems
A careful write file system sacrifices speed for the safety it provides. A lazy
write file system improves performance by using a ''write-back'' caching strat
egy; that is, it writes file modifications to the cache and flushes the contents
oftbe cache to disk in an optimized way, usually as a background activity.3

The performance improvements associated with the lazy write caching
technique take several forms. First, the overall number of disk writes is re
duced. Because serialized, immediate disk writes aren't required, the con
tents of a buffer can be modified several times before they are written to
disk. Second, the speed of servicing application requests is greatly increased
because the file system can return control to the caller without waiting for
disk writes to be completed. Finally, the lazy write strategy ignores the incon
sistent intermediate states on a file volume that can result when the
suboperations of two or more I/O requests are interleaved. It is thus easier
to make the file system multithreaded, allowing more than one I/O opera
tion to be in progress at a time.

2. The MS-DOS FAT file system uses a "write-through" algorithm that causes disk
modifications to be immediately written to the disk. Unlike the careful write approach, the
write-through technique does not require the file system to order its writes to prevent
inconsistencies.

3. On Windows NT, both the FAT file system and HPFS are implemented as lazy write file
systems-they write disk modifications to the cache. The cache manager, in turn, uses a lazy
write scheme to optimize disk writes for all Windows NT file systems.

35

INSIDE THE WINDOWS NT FILE SYSTEM

The disadvantage of the lazy write technique is that it creates intervals
during which a volume is in too inconsistent a state to be corrected by the
file system. Consequently, lazy write file systems must keep track of the
volume's state at all times. HPFS, for example, sets a bit called the dirty bit
during these intervals to indicate that the volume is in an inconsistent state.
If the operating system crashes while the volume is "dirty," the volume must
be reconstructed by means of the Chkdsk volume repair utility. In fact, be
cause it generally cannot be known whether the volume was actually incon
sistent at the time of a system crash, it is necessary to run Chkdsk after every
reboot when the dirty bit is set. How long the HPFS volume repair takes de
pends on how big the disk is and how much damage it has sustained.

Although a disk repair can always produce a consistent volume, the vol
ume might not always be repaired to the user's satisfaction. The HPFS
Chkdsk utility sometimes has difficulty determining whiCh directory a newly
created file belongs to, for instance, and puts the new file in a catchall
"found" directory. If the volume is severely corrupted, some files might be
corrupted beyond reconstruction and will simply be lost. In general, lazy
write file systems gain a performance advantage over careful write systems
at the expense of greater risk and user inconvenience if the system fails.

4.1.3 Recoverable File Systems

36

A recoverable file system tries to exceed the safety of a careful write file sys
tem while achieving the performance of a lazy write file system. A recover
able file system ensures volume consistency by using logging techniques
originally developed for transaction processing. If the operating system
crashes, the recoverable file system restores consistency by executing a re
covery procedure that accesses information that has been stored in a log file.
Because the file system has logged its disk writes, the recovery procedure
takes only seconds, regardless of the size of the volume.

The NTFS recovery procedure is exact, guaranteeing that the volume
will be restored to a consistent state. None of the inadequate restorations
associated with lazy write file systems can happen with NTFS.

A recoverable file system incurs some costs for the safety it provides.
Every transaction that alters the volume structure requires that one record
be written to the log file for each of the transaction's suboperations. This
logging overhead is ameliorated by the file system's "batching" of log
records-writing many records to the log file in a single I/O operation. In
addition, the recoverable file system. can employ the optimization tech
niques of a lazy write file system. It can even increase the length of the inter
vals between cache flushes because the file system can be recovered if the

F 0 U R: Recoverability

system crashes before the cache changes have been flushed to disk. This gain
over the caching performance of lazy write file systems makes up for, and
often exceeds, the overhead of the recoverable file system's logging activity.

Neither careful write nor lazy write file systems guarantee protection
of user file data. If the system crashes while an application is writing a file,
the file can be lost or corrupted. Worse, the crash can corrupt a lazy write
file system, destroying existing files or even rendering an entire volume
inaccessible.

NTFS implements several strategies that improve its reliability over the
reliability of the traditional file systems. First, NTFS recoverability guaran- .
tees that the volume structure will not be corrupted, so all files will remain
accessible after a system failure.

Second, although NTFS does not currently guarantee protection of
user data in the event of a system crash-some changes can be lost from the
cache-applications can take advantage of the NTFS write-through and
cache-flushing capabilities to ensure that file modifications are recorded on
disk at appropriate intervals. Both cache write-through-forcing write opera
tions to be immediately recorded on disk-and cache flushing-forcing cache
contents to be written to disk-are efficient operations. NTFS doesn't have
to do extra disk I/O to flush modifications to several different file system
data structures because changes to the data structures are recorded-in a
single write operation-in the log file; if a failure occurs and cache contents
are lost, the file system modifications can be recovered from the log. Fur
thermore, unlike HPFS or the FAT file system, NTFS guarantees that user
data will be consistent and available immediately after a write-through op
eration or a cache flush, even if the system subsequently fails.

Finally, NTFS has all the underpinnings to support logging for user
files in the future. In lieu of user data logging, users who require an added
measure of data reliability can use FtDisk, the Windows NT fault tolerant
disk driver, to set up and maintain redundant data storage. (See Chapter
Five, "Volume Management and Fault Tolerance," for more information
about data redundancy.)

4.2 Logging
NTFS provides file system recoverability by means of a transaction
processing technique called logging. InNTFS logging, the suboperations of
any transaction that alters important file system data structures are recorded
in a log file before they are carried through on the disk. That way, if the sys
tem crashes, partially completed transactions can be redone or undone

37

INS IDE THE WIN DOW S NT F I L E S Y S T E M

when the system comes back online. In NTFS, a transaction is defined as an
I/O operation that alters file system data or changes the volume's directory
structure. Such I/O operations include writing to the disk or deleting a file
and may be made up of several suboperations.

There are two important components of the NTFS logging facilities:
the log file itself and the log file service (LFS). The log file is a system file cre
ated by the Format command, and the LFS is a series of kernel-mode rou
tines that NTFS uses to access the log file. Separating the LFS from the rest
of the file system will allow other system components or future application
software to create separate log files to implement application-level recover
ability such as that used in transaction processing.

4.2.1 Log File Service (LFS)

38

Although designed to provide logging and recovery services for more than
one client, the LFS is initially available only to file systems, through kernel
mode interfaces. The caller-NTFS in this case-passes the LFS a pointer to
an open file object, which specifies a log file to be accessed. The LFS either
initializes a new log file or calls the Windows NT cache manager to access
the existing log file through the cache, as shown in Figure 4-1.

The LFS divides the log file into two regions: a restart area and an
. "infinite" logging area, as shown in Figure 4-2.

NTFS calls the LFS to read and write the restart area. NTFS uses the
restart area to store context information such as the location in the logging

Flus
log

Log the transaction

r
Log File Write the volume Service

updates

h the Read/write/flush
file the log file

L
t

Cache
Manager

Call the virtual memory
manager to access

the mapped file
. ~

Figure 4-1. Log File Service (LFS)

1/0 Manager

NTFS Driver

.

.

F 0 U R: Recoverability

LFS Restart Area "Infinite" Logging Area

copy 1 '~21 I~~~ ;J
~------------~

Figure 4-2. Log File

area at which NTFS will begin to read during recovery after a system failure.
The LFS maintains a second copy of the restart data in case the first becomes
corrupted or otherwise inaccessible. The remainder of the log file is the log
ging area, which contains transaction records NTFS writes in order to re
cover a volume in the event of a system failure. The LFS makes the log file
appear infinite by reusing it circularly (while guaranteeing that it does not
overwrite information it needs). The LFS uses logical sequence numbers (LSNs)
to identify records written to the log file. As the LFS cycles through the file, it
increases the values of the LSNs. The number of possible LSNs is so large as
to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log
file directly. The LFS provides services NTFS calls to open the log file, write
log records, read log records in forward or backward order, flush log records
up to a particular LSN, or set the beginning of the log file to a higher LSN.
During recovery, NTFS calls the LFS to read forward through the log
records in order to redo any transactions that were recorded in the log file
but were not flushed to disk at the time of the system failure. NTFS calls the
LFS to read backward through the log records in order to undo, or roll back,
any transactions that weren't completely logged before the crash. NTFS calls
the LFS to set the beginning of the log file to a record with a higher LSN
when NTFS no longer needs the older transaction records in the log file.

Here's how the system guarantees that the volume can be recovered:

1. NTFS first calls the LFS to record in the (cached) log file any
transactions that will modify the volume structure.

2. NTFS modifies the volume (also in the cache).

3. The cache manager calls the LFS to prompt the LFS to flush the
log file to disk. (The LFS implements the flush by calling the
cache manager back, telling it which pages of memory to flush.
Refer back to the calling sequence shown in Figure 4-1.)

39

INSIDE THE WINDOWS NT FILE SYSTEM

4. Mter the cache manager flushes the log file to disk, it flushes
the volume changes (the transactions themselves) to disk.

These steps ensure that if the file system modifications are ultimately un.:
successful, the corresponding transactions can be retrieved from the log
file and can be either redone or undone as part of the file system recovery
procedure.

File system recovery begins automatically the first time the volume is
used after the system is rebooted. NTFS checks whether the transactions that
were recorded in the log file before the crash were applied to the volume,
and if they weren't, it redoes them. NTFS also guarantees that transactions
not completely logged before the crash are undone so that they don't ap
pear on the volume.

4.2.2 Log File
Before it modifies the volume, NTFS calls the LFS to record in the log file
any transaction that will modify the NTFS volume structure. In doing so,
NTFS employs a recovery-related technique known in transaction process
ing as write-ahead logging.

The LFS allows its clients to write any kind of record to their log files.
NTFS writes s~veral types of records, two of which-update records and check
point records-are described here.

4.2.2.1 Update Records

40

Update records are the most common type of record NTFS writes to the log
file. Each update record contains these two kinds ofinformation:

• Redo information-how to reapply one suboperation of a fully
logged ("committed") transaction to the volume if a system failure
occurs before the transaction is flushed from the cache.

• Undo information-how to reverse one suboperation of a transac
tion that was only partially logged ("not committed") at the time of
a system failure.

Figure 4-3 shows three update records in the log file. Each record rep
resents one suboperation of a transaction, creating a new file. The redo en
try in each update record tells NTFS how to reapply the suboperation to the
volume, and the undo entry tells NTFS how to roll back (undo) the
suboperation.

F 0 U R: Recoverability

LFS Restart Area Logging Area

;'
Redo: Allocate/initialize an MFT file record Redo: Set bits 3-9 in the bitmap
Undo: Deallocate the file record Undo: Clear bits 3-9 in the bitmap

Redo: Add the file name to the index
Undo: Remove the file name from the index

Figure 4-3. Update Records in the Log File

Mter logging a transaction (in this example, by calling the LFS to write
the three update records to the log file), NTFS performs the suboperations
on the volume itself, in the cache. When it has finished updating the cache,
NTFS writes another record to the log file, recording the entire transaction
as complete--a suboperation known as committing a transaction. Once a trans
action is committed, NTFS guarantees that the entire transaction will appear
on the volume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through the log file
and redoes each committed transaction. Although NTFS completed the
committed transactions before the system failure, it doesn't know whether
the cache manager flushed the volume modifications to disk in time. The
updates might have been lost from the cache when the system failed. There
fore, NTFS executes the committed transactions again just to be sure that
the disk is up to date.

Mter redoing the committed transactions during a file system recovery,
NTFS locates all the transactions in the log file that were not committed at
failure and rolls back (undoes) each suboperation that had been logged. In
Figure 4-3, NTFS would first undo the TIc suboperation and then follow the
backward pointer to TIb and undo that suboperation. It would continue to
follow the backward pointers, undoing suboperations, until it reached the
first suboperation in the transaction. By following the pointers, NTFS knows
how many and which update records it must undo to roll back a transaction.

Redo and undo information can be expressed either physically or logi
cally. Physical descriptions specifY volume updates in terms of particular byte
ranges on the disk that are to be changed, moved, and so on. Logical de
scriptions express updates in terms of operations such as "delete file A.DAT."
As the lowest layer of software maintaining the file system structure, NTFS
writes update records with physical descriptions. Transaction-processing or
other application-level software might benefit from writing update records

41

INSIDE THE WINDOWS NT FILE SYSTEM

in logical terms, however, because logically expressed updates are more
compact than physically expressed updates. Logical descriptions necessarily
depend on NTFS to understand what operations such as deleting a file
involve.

NTFS writes update records (usually several) for each of the following
transactions:

1'1 Creating a file

III Deleting a file

1'1 Extending a file

III Truncating a file

• Setting file informatic .1

• Renaming a file

III Changing the security applied to a file

The redo and undo information in an update record must be carefully
designed because while NTFS undoes a transaction, recovers from a system
failure, or even operates normally, it might try to redo a transaction that has
already been done or, conversely, to undo a transaction that never occurred
or that has already been undone. Similarly, NTFS might try to redo or undo
a transaction consisting of several update records, only some of which are
complete on disk. The format of the update records must ensure that exe
cuting redundant redo or undo operations is idempotent, that is, has a neutral
effect: for example, setting a bit that is already set has no effect, but toggling
a bit that has already been toggled does. The file system must also handle
intermediate volume states correctly.

4.2.2.2 Checkpoint Records

42

In addition to update records, NTFS periodically writes a checkpoint record
to the log file, as illustrated in Figure 4-4.

A checkpoint record helps NTFS determine what processing would be
needed to recover a volume if a crash Were to occur immediately. Using in
formation stored in the checkpoint record, NTFS knows, for instance, how
far back in the log file it must go to begin its recovery. Mter writing a check
point record, NTFS stores the LSN of the record in the restart area so that it
can quickly find its most recently written checkpoint record when it begins
file system recovery after a crash occurs.

F 0 U R: Recoverability

LFS Restart Area Logging Area

I log file record$

I rn1J rn1J ~ I LSN I NTFS ",start ~ •• I 2058 I 2059 I 2060 2061
...

-~ \ \

Checkpoint Record

Figure 4-4. Checkpoint Record in the Log File

Although the LFS presents the log file to NTFS as if it were infinitely
large, it isn't. The generous size of the log file and the frequent writing of
checkpoint records (an operation that usually frees up space in the log file)
make the possibility of the log file's filling up a remote one. Nevertheless,
the LFS accounts for this possibility by tracking several numbers:

• The available log space

II The amount of space needed to write an incoming log record and
to undo the write, should that be necessary

II The amount of space needed to roll back all active (noncom
mitted) transactions, should that be necessary

If the log file doesn't contain enough available space to accommodate the
total of the last two items, the LFS returns a "log file full" error and NTFS
raises an exception. The NTFS exception handler rolls back the current
transaction and places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily halt I/O activ
ity on the system. To do so, NTFS blocks file creation and deletion and then
requests exclusive access to all open files. Gradually, active transactions ei
ther are completed successfully or receive the "log file full" exception. NTFS
rolls back and queues the transactions that receive the exception.

Once it has halted I/O activity by acquiring exclusive access to all the
open files, NTFS calls the cache manager to flush unwritten data to disk, in
cluding unwritten log file data. After everything is safely flushed to disk,
NTFS no longer needs the data in the log file. It resets the beginning of the
log file to the current position, making the log file "empty." Then it restarts
the queued transactions. Beyond the short pause in I/O processing, the "log
file full" error has no effect on executing programs.

This scenario is one example of how NTFS uses the log file not only for
file system recovery but also for error recovery during normal operation.
Error recovery is revisited in the next section.

43

INSIDE THE WINDOWS NT FILE SYSTEM

4.3 Recovery

44

NTFS automatically performs a disk recovery the first time a program ac
cesses an NTFS volume after the system has been booted. (If no recovery is
needed, the process is trivial.) Recovery depends on two tables NTFS main
tains in memory:

• The transaction table keeps track of transactions that have been
started but that are not yet committed. The suboperations of these
active transactions must be removed from the disk during recovery .

• The dirty page table records which pages in the cache contain
modifications to the file system structure that have not yet been
written to disk. This data must be flushed to disk during recovery.4

NTFS writes a checkpoint record to the log file once every 5 seconds.
Just before it does, itcalls the LFS to store a current copy of the transaction
table and of the dirty page table in the log file. NTFS then records in the
checkpoint record the logical sequence numbers (LSNs) of the log records
containing the copied tables. When recovery begins after a system failure,
NTFS calls the LFS to locate the log records containing the most recent
checkpoint record and the most recent copies of the transaction and dirty
page tables. It then copies the tables to memory.

The log file usually contains more update records following the last
checkpoint record. These update records represent volume modifications
that occurred after the last checkpoint record was written. NTFS must up
date the transaction and dirty page tables to include these operations. Mter
updating the tables, NTFS uses the tables and the contents of the log file to
update the volume itself.

To effect its volume recovery, NTFS scans the log file three times, load
ing the file into memory during the first pass to minimize disk I/O. Each
pass has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions

4. For more information about Windows NT virtual memory, see Inside Windows NT,
Chapter 6, "The Virtual Memory Manager."

F 0 U R: Recoverability

4.3.1 Analysis Pass
During the analysis pass, as shown in Figure 4-5, NTFS scans forward in the
log file from the beginning of the last checkpoint operation in order to find
update records and use them to update the transaction and dirty page tables
it copied to memory. Note in the figure that the checkpoint operation stores
three records in the log file and that update records might be interspersed
among these records. NTFS therefore must start its scan at the beginning of
the che'ckpoint operation.

, Analysis Pass

Beginning of Checkpoint Operation

End of Checkpoint Operation

Figure 4-5. Analysis Pass

Each update record that appears in the log file after the checkpoint
operation begins represents a modification to either the transaction table or
the dirty page table. If an update record is a "transaction committed" record,
for example, the transaction the record represents must be removed from
the transaction table. Similarly, if the update record is a "page update"
record that modifies a file system data structure, the dirty page table must be
updated to reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to
determine the LSN of the oldest update record that logs an operation that
has not been carried out on disk. The transaction table contains the LSNs of
the noncommitted (incomplete) transactions, and the dirty page table con
tains the LSN s of records in the cache that have not been flushed to disk.
The LSN of the oldest record that NTFS finds in these two tables determines
where the redo pass will begin. If the last checkpoint record is older, how
ever, NTFS will start the redo pass there instead.

4.3.2 Redo Pass
During the redo pass, as shown in Figure 4-6 on the next page, NTFS scans

forward in the log file from the LSN of the oldest record it has found in
the analysis pass. It looks for "page update" records, which contain volume

45

INSIDE THE WINDOWS NT FILE SYSTEM

modifications that were written before the system failure but that might not
have been flushed to disk. NTFS redoes these updates in the cache.

Redo Pass

Beginning of Checkpoint Operation

Oldest Unwritten Log Record

Figure 4-6. Redo Pass

When NTFS reaches the end of the log file, it has updated the cache
with the necessary volume modifications and the cache manager's "lazy
writer" can begin writing cache contents to disk in the background.

4.3.3 Undo Pass

46

Mter it completes the redo pass, NTFS begins its undo pass, in which it
rolls back any transactions that weren't committed when the system failed.
Figure 4-7 shows two transactions in the log file; transaction 1 was commit
ted before the power failure, but transaction 2 was not. NTFS must undo
transaction 2.

Suppose that transaction 2 created a file, an operation that comprises
three suboperations, each with its own update record. The update records of
a transaction are linked by backward pointers in the log file because they are
usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update
record for each noncommitted transaction. In this example, the transaction

k"~'~ Transaction 1

D Transaction 2

Figure 4-7. Undo Pass

Power Failure

Undo Pass

"Transaction Committed" Record

F 0 U R: Recoverability

table identifies LSN 4049 as the last update record logged for transaction 2.
As shown from right to left in Figure 4-8, NTFS rolls back transaction 2.

_ Transaction 1

D Transaction 2

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Redo: Add the file name to the index
Undo: Remove the file name from the index

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Figure 4-8. Undoing a Transaction

Each update record contains two kinds of information: how to redo a
suboperation and how to undo it. Mter locating LSN 4049, NTFS finds the
undo information and executes it, clearing bits 3 through 9 in its allocation
bitmap. NTFS then follows the backward pointer to LSN 4048, which directs
it to remove the new file name from the appropriate file name index. Finally,
it follows the last backward pointer and deallocates the MFT file record re
served for the file, as the update record with the LSN 4046 specifies. Trans
action 2 is now rolled back. If there are other noncommitted transactions to
undo, NTFS follows the same procedure to roll them back. Because undoing
transactions affects the volume's file system structure, NTFS must log the
undo operations in the log file. Mter all, the power might fail again during
the recovery, and NTFS would have to redo its undo operations!

When the undo pass of the recovery is complete, the volume has been
restored to a consistent state.5 At this point, NTFS flushes the cache changes
to disk to ensure that the volume is up to date. NTFS then writes an "empty"

5. NTFS guarantees that recovery will return the volume to some preexisting consistent
state, but not necessarily to the state that existed just before the system crash. NTFS can't
make that guarantee because, for performance, it uses a "lazy commit" algorithm, which
means that the log file is not immediately flushed to disk each time a "transaction commit
ted" record is written. Instead, numerous transaction committed records are batched and
written together, either when the cache manager calls the LFS to flush the log file to disk or
when the LFS writes a checkpoint record (once every 5 seconds) to the log file. Another
reason the recovered volume might not be completely up to date is that several parallel
transactions might be active when the system crashes and some of their transaction commit
ted records might make it to disk while others do not. The consistent volume that recovery
produces includes all the volume updates whose transaction committed records made it to
disk and none of the updates whose transaction committed records did not make it to disk.

47

INSIDE THE WINDOWS NT FILE SYSTEM

48

LFS restart area to indicate that the volume is consistent and that no recov
ery need be done if the system should fail again immediately. Recovery is
complete.

NTFS uses the log file to recover a volume after the system fails, but it
also takes advantage of an important "freebie" it gets from logging transac
tions. File systems necessarily coptain a lot of code devoted to recovering
from file system errors that occur during the course of normal file I/O. Be
cause NTFS logs each transaction that modifies the volume structure, it can
use the log file to recover when a file system error occurs and thus can
greatly simplify its error handling code. The "log file full" error described in
Section 4.2.2.2 is one example of using the log file for error recovery.

Note that most I/O errors a program receives are not file system errors
, and therefore can't be resolved entirely by NTFS. When called to create a

file, for example, NTFS might begin by creating a file record in the MFT and
then enter the new file's name in a directory index. When it tries to allocate
space for the file in its bitmap, however, it could discover that the disk is full
and the create request can't be completed. In such a case, NTFS uses the in
formation in the log file to undo the part of the operation it has already
completed and to deallocate the data structures it reserved for the file. Theri
it returns a "disk full" error to the caller, which in turn must respond appro
priately to the error.

C HAP T E R F I V E

VOLUME MANAGEMENT
AND FAULT TOLERANCE

The capabilities ofNTFS are enhanced by underlying support from a Win
dows NT driver called FtDisk, the fault tolerant disk driver developed by Bob
Rinne and Mike Glass. FtDisk lies above hard disk drivers in the I/O system's
layered driver scheme and provides volume management capabilities, re
dundant data storage, and dynamic data recovery from bad sectors on SCSI
(small computer system interface) disks.

Although FtDisk works with all of the Windows NT-supported file
systems-NTFS, FAT, and HPFS-using it with NTFS provides the highest
level of data integrity.

NTFS removes bad clusters from use when FtDisk is not installed in the
system, and NTFS provides the equivalent of FtDisk's bad-sector recovery
for non-SCSI hard disks. NTFS also monitors and detects corruption in file
system data structures and uses FtDisk to recover its own data and to ensure
its own reliability.

The first two sections of this chapter describe the volume management
and data redundancy capabilities of FtDisk. The third section describes the
additional features ofNTFS that improve data reliability and recovery.

5.1 Volume Management Features
Although FtDisk is called the fault tolerant driver, it also implements some
volume management features unrelated to fault tolerance. Volume sets and
stripe sets don't provide data redundancy, but they do aid in organizing vol
umes and increasing I/O efficiency, respectively.

49

INS IDE THE WI N DOW S NT F I L E S Y S T E M

5.1.1 Volume Sets

50

A volume set is a single logical volume composed of a maximum of 32 areas of
free space on one or more disks. The Windows NT Disk Administrator utility
combines the areas into the volume set, which can then be formatted for any
of the Windows NT-supported file systems. Figure 5-1 shows a 100-MB vol
ume set identified by drive letter D: that has been created from the last third
of the first disk and the first third of the second.

c: 0:
NTFS (100 MB)

NTFS
(50 MB)

Volume 2
Volume 'I

0: E: NTFS (50 MB) (100 MB) Volume 3

Figure 5-1. Volume Set

A volume set is useful for consolidating small areas of free disk space to
create a larger volume or for creating a single, large volume out of two or
more small disks. If the volume set has been formatted for NTFS, it can be
extended to include additional free areas or additional disks without affect
ing the data already stored on the volume. This is one of the biggest benefits
of describing all data on an NTFS volume as a file. NTFS can dynamically
increase the size of a logical volume because the bitmap that records the al
location status of the volume is just another file-the bitmap file. The
bitmap file can be extended to include any space added to the volume. Dy
namically extending a FAT volume, on the other hand, would require the
FAT itself to be extended, which would dislocate everything else on the disk.

FtDisk hides the physical configuration of disks from the file systems
installed on Windows NT. NTFS, for example, views D: in Figure 5-1 as an
ordinary 100-MB volume. NTFS consults itsbitrnap to determine what space
in the volume is free for allocation. It then calls FtDisk to read or write data
beginning at a particular byte offset on the volume. FtDisk views the physical
sectors in the volume set as numbered sequentially from the first free area
on the first disk to the last free area on the last disk. It determines which
physical sector on which disk corresponds to the supplied byte offset.

F I V E: Volume Management and Fault Tolerance

5.1.2 Stripe Sets
A stripe set is a series of partitions, one partition per disk, that the Disk Ad
ministrator utility combines into a single logical volume. Figure 5-2 shows a
stripe set consisting of three partitions, one on each of three disks. (A parti
tion in a stripe set need not span an entire disk; the only restriction is that
the partitions on each disk be the same size.)

Stripe 1

2 2

3 3

4 4

5 5

6 6

7 7

Figure 5-2. Stripe Set

To a file system, this stripe set appears to be a single 450-MB volume,
but FtDisk optimizes data storage and retrieval times on the stripe set by dis
tributing the volume's data among the physical disks. FtDisk accesses the
physical sectors of the disks as if they were numbered sequentially in stripes
across the disks, as illustrated in Figure 5-3.

Because each stripe is a relatively narrow 64 KB (a value chosen to pre
vent individual reads and writes from accessing two disks), the data tends to
be distributed evenly among the disks. Stripes thus Increase the probability

Figure 5-3. Logical Numbering of Physical Sectors on a Stripe Set

51

INSIDE THE WINDOWS NT FILE SYSTEM

that multiple pending read and write operations will be bound for different
disks. And because data on all three disks can be accessed simultaneously,
latency time for disk I/ 0 is often reduced, particularly on heavily loaded
systems.

5.2 Fault Tolerant Volumes
Volume sets make managing disk volumes more convenient, and stripe sets
spread the I/O load over multiple disks. These two volume-management fea
tures don't provide the ability to recover data if a disk fails, however. For data
recovery, FtDisk implements three redundant storage schemes: mirror sets,
duplex sets, and stripe sets with parity. Users can take advantage of these fea
tures through the Windows NT Disk Administrator utility.

5.2.1 Mirror Sets

52

In a mirror set, the contents of a partition on one disk are duplicated in an
equal-size partition on another disk. A mirror set is shown in Figure 5-4 ..

When a program writes to C:, FtDisk writes the same data to the same
location on the mirror partition. If the first disk or any of the data on its C:
partition becomes unreadable because of a hardware or software failure,
FtDisk automatically accesses the data from the mirror partition. A mirror
set can be formatted for any of the Windows NT-supported file systems. The
file system drivers remain independent and are not affected by FtDisk's mir
roring activity.

Mirror sets can aid in I/O throughput on heavily loaded systems. When
I/O activity is high, FtDisk balances its read operations between the primary
partition and the mirror partition (accounting for the number of unfin
ished II a requests pending from each disk). Two read operations can pro
ceed simultaneously and thus theoretically finish in half the time. When a

c:

." "
, ',. ," ~.' -'

- . ~-,,,- "

Figure 5-4. Mirror Set

c:
(mirror)

~':,' : ".t ."" ,

. "

" "

F I V E: Volume Management and Fault Tolerance

file is modified, both partitions of the mirror set must be 'written, but disk
writes are done asynchronously, so the performance of us~r-mode programs
is generally not affected by the extra disk update.

5.2.2 Duplex Sets
A duplex set is a variant of a mirror set in which the mirror resides on a disk
operated by a different disk controller. This configuration gives users of fault
tolerant systems an added degree of assurance that if a disk controller
(rather than just a disk) fails, the mirrored data remains available.

5.2.3 Stripe Sets with Parity
A stripe set with parity is a fault tolerant variant of a regular stripe set. Fault
tolerance is achieved by reserving the equivalent of one disk for storing par
ity for each stripe. Figure 5-5 is a visual representation of a stripe set with
parity.

. In Figure 5-5, the parity for stripe 1 is stored on disk 1. It contains a
byte-for-byte logical sum (XOR) of the first stripe on disks 2 and 3. The
parity for stripe 2 is stored on disk 2, and the parity for stripe 3 is stored on
disk 3. Rotating the parity across the disks in this way is an I/O optimization
technique. Each time data is written to a disk, the parity bytes correspondIng
to the modified bytes must be recalculated and rewritten. If the parity were
always written to the same disk, that disk would be busy continually and
could become an I/O bottleneck.

Disk 1 Disk 2 Disk 3

Stripe 1 ..
2 2

3 3

4 .. 4

5 5

6 6

7 .. 7

f$fiij Parity

Figure 5-5. Stripe Set with Parity

53

INSIDE THE WINDOWS NT FILE SYSTEM

Recovering a failed disk in a stripe set with parity relies on a simple
arithmetic principle: in an equation with n variables, if you know the value
of n - 1 of the variables, you can determine the value of the missing variable
by subtraction. For example, in the equation x + y = z, where Z represents the
parity stripe, FtDisk computes z - y to determine the contents of x; to find y,
it computes z - x. FtDisk uses similar logic to recover lost data. If a disk in a
stripe set with parity fails or if data on one disk becomes unreadable, FtDisk
reconstructs the missing data by using the XOR operation (bitwise logical
addition).

If disk 1 in Figure 5-5 fails, the contents of its stripes 2 and 5 are calcu
lated by XOR-ing the corresponding stripes of disk 3 with the parity stripes
on disk 2. The contents of stripes 3 and 6 are similarly determined by XOR
ing the corresponding stripes of disk 2 with the parity stripes on disk 3. At
least three disks (or rather, three same-size partitions on three disks) are re
quired to create a stripe set with parity.

5.2.4 Sector Sparing

54

Redundant data storage is used not only for recovering data after a complete
disk failure but also for recovering data from a single physical sector that
goes bad. In a technique called sector sparing, FtDisk uses its redundant data
storage to dynamically replace lost data when a disk sector becomes unread
able. The sector-sparing technique exploits a feature of some hard disks,
which provide a set of physical sectors reserved as "spares." If FtDisk receives
a data error from the hard disk, it obtains a spare sector from the disk driver
to replace the bad sector that caused the data error. FtDisk recovers the data
that was on the bad sector (by either reading the data from a disk mirror or
recalculating the data from a stripe set with parity) and copies it to the spare
sector. FtDisk performs sector sparing dynamically, without intervention
from the file system or the user, and sector sparing works with any Windows
NT-supported file system on SCSI-based hard disks.

If a bad-sector error occurs and the hard disk doesn't provide spares,
runs out of them, or is a non-SCSI-based disk, FtDisk can still recover the
data. It recalculates the unreadable data by accessing a stripe set with parity,
or it reads a copy of the data from a disk mirror. It then passes the data to the
file system along with a warning status that only one copy of the data remains
in a disk mirror or that one stripe is inaccessible in a stripe set with parity,
and that data redundancy is therefore no longer in effect for that sector. It's

F I V E: Volume Management and Fault Tolerance

up to the file system to respond to (or ignore) the warning. FtDisk will re
recover the data each time the file system tries to read from the bad sector.·

5.3 NTFS Bad-Cluster Recovery
FtDisk can recover data from a bad sector on a fault tolerant volume, but if
the hard disk doesn't use the SCSI protocol or runs out of spare sectors,
FtDisk can't perform sector sparing to replace the bad sector. When the file
system reads from the sector, FtDisk instead recovers the data and returns
the warning to the file system that there is only one copy of the data.

The FAT and HPFS file systems don't respond to this FtDisk warning.
Moreover, neither these file systems nor FtDisk keeps track of the bad sec
tors, so a user must run the Chkdsk or Format utility to prevent FtDisk from
repeatedly recovering data for the file system. Both Chkdsk and Format are
less than ideal for removing bad sectors from use. Chkdsk can take a long
time to find and remove bad sectors, and Format wipes all the data off the
partition it is formatting.

In the file system equivalent of FtDisk's sector sparing, NTFS dynami
cally replaces the cluster containing a bad sector and keeps track of the bad
cluster so that it won't be reused.} NTFS performs these functions when
FtDisk can't perform sector sparing or when FtDisk is not installed in the sys
tem. When FtDisk returns a bad-sector warning or when the hard disk driver
returns a bad-sector error, NTFS allocates a new cluster to replace the one
containing the bad sector. If FtDisk is present, NTFS copies the data that
FtDisk has recovered into the new cluster to reestablish data redundancy.

Figure 5-6 on the next page shows an NTFS file record for a user file
with a bad cluster in one of its data runs. When it receives a bad-sector error,
NTFS reassigns the cluster containing the sector to its bad-cluster file. This
prevents the bad cluster from being allocated to another file. NTFS then al
locates a new cluster for the file arid changes the file's VCN-to-LCNmap
pings to point to the new cluster. This procedure, known as bad-cluster
remapping, is illustrated in Figure 5-7 on page 57. Cluster number 1357,
which contains the bad sector, is replaced by a new cluster, number 1049. .

1. As Chapter 3 pointed out, NTFS maintains portability by addressing logical dusters
rather than physical sectors.

55

INSIDE THE WINDOWS NT FILE SYSTEM

56

User
File

Standard
Information

VCN o 1 2

LCN 1355 1356 1357

Figure 5-6. MFT Record for a User File with a Bad Cluster

Bad-sector errors are undesirable, but when they do occur, the combi
nation of NTFS and FtDisk provides the best possible solution. If the bad sec
tor is on a redundant volume, FtDisk recovers the data and replaces the
sector ifit can. lfit can't replace the sector, it returns a warning to NTFS and
NTFS replaces the cluster containing the bad sector.

If FtDisk is not loaded or if the volume is not configured as a redundant
volume, the data in the bad sector can't be recovered. When the volume is
formatted as a FAT or an HPFS volume and FtDisk can't recover the data,
reading from the bad sector yields indeterminate results. If some of the file
system's control structures reside in the bad sector, an entire file or group of
files (or potentially, the whole disk) can be lost. At best, some data in the af
fected file (often, all the data in the file beyond the bad sector) is lost. More
over, the FAT or HPFS file system is likely to reallocate the bad sector to the
same or another file on the volume, causing the problem to resurface.

Like the other file systems, NTFS can't recover data from a bad sector
without help from FtDisk. However, NTFS greatly contains the damage a bad
sector can cause. IfNTFS discovers the bad sector during a read operation, it
remaps the cluster the sector is in, as shown in Figure 5-7. If the volume is
not configured as a redundant volume, NTFS returns a data read error to
the calling program. Although the data that was in that cluster is lost, the
rest of the file-and the file system-remains intact; the calling program can
respond appropriately to the data loss; and the bad cluster won't be reused
in future allocations. If NTFS discovers the bad cluster on a write operation

F I V E: Volume Management and Fault Tolerance

Bad
Cluster

File

User
File

Standard File Security
Information Name Descriptor

Standard
Information

veN

LeN 1357

LeN 1355 1356

Figure 5-7. Bad-Cluster Remapping

Data

1049 1588 1589 1590

rather than a read, NTFS remaps the cluster before writing, and thus loses
no data and generates no error.

The same recovery procedures are followed if file system data is stored
in a sector that goes bad. If the bad sector is on a redundant volume, NTFS
replaces the cluster dynamically, using the data recovered by FtDisk. If the
volume isn't redundant, the data can't be recovered and NTFS sets a bit in
the volume file that indicates corruption on the volume. The NTFS Chkdsk
utility checks this bit when the system is next rebooted, and if the bit is set,
Chkdsk executes, fixing the file system corruption by reconstructing the
NTFS metadata.

57

INSIDE THE WINDOWS NT FILE SYSTEM

58

In rare instances, file system corruption can occur on even a fault toler
ant disk configuration. A double error can destroy both file system data and
the means to reconstruct it. If the system crashes while NTFS is writing the
mirror copy of an MFT file record, of a file name index, or of the log file, for
example, the mirror copy of such file system data might not be fully up
dated. If the- system were rebooted. and a bad-sector error occurred on the
primary disk at exactly the same location as the incomplete write on the disk
mirror, NTFS would be unable to recover the correct data from the disk mir
ror. NTFS implements a special scheme for detecting such corruptions in
file system data. If it ever finds an inconsistency, it sets the corruption bit in
the volume file, which causes Chkdsk to reconstruct the NTFS metadata
when the system is next rebooted. Because file system corruption is rare on a
fault tolerant disk configuration, Chkdsk is seldom needed. It is supplied as
a safety precaution rather than as a first-line data recovery strategy.2

Figure 5-8 summarizes what happens when a sector goes bad on a disk
volume formatted for one of the Windows NT-supported file systems ac
cording to various conditions that have been described in this chapter.

Note that if FtDisk is installed, if the volume on which the bad sector
appears is a fault tolerant volume, and if the hard disk is one that supports
sector sparing (and that hasn't run out of spare sectors), what file system you
are using-FAT, HPFS, or NTFS-doesn't matter. FtDisk replaces the bad
sector without the need for user or file system intervention.

If FtDisk is not installed or is installed on a hard disk that doesn't sup
port sector sparing, the file system is responsible for replacing (remapping)
the bad sector or-in the case of NTFS-the cluster in which the bad sector
resides. Neither the FAT file system nor HPFS provides sector or cluster
remapping. The benefits of NTFS duster remapping are that bad spots in a
file can be fixed without harm to the file (or harm to the file system, as the
case may be) and that the bad cluster won't be reallocated to the same or
another file.

2. Use of Chkdsk on NTFS is vastly different from its use on the FAT file system and on
HPFS. Before writing anything to disk, both FAT and HPFS set the volume's "dirty bit" and
then reset the bit after the modification is complete. If any I/O operation is in progress
when the system crashes, the dirty bit is left set and Chkdsk runs when the system is re
booted. On NTFS, Chkdsk runs only when unexpected or unreadable file system data is
found and NTFS can't recover the data from a redundant volume or from redundant file
system structures on a single volume. (The system boot sector is duplicated, as are the parts
of the MFT required for booting the system and running the NTFS recovery procedure.
This redundancy ensures that NTFS will always be able to boot and recover itself.)

Fault
Tolerant
Volumet

Non-Fault
Tolerant
Volume

F I V E: Volume Management and Fault Tolerance

FtDisk Installed ...
FtDisk Not
Installed ...

With a SCSI disk
that has spare
sectors

1. FtDisk
recovers the data

2. FtDisk performs
sector sparing
(replaces the
bad sector)

3. File system
remains unaware
of the error

1. FtDisk
can't recover
the data

2. FtDisk sends a
bad-sector error
to the file system

3. NTFS performs
cluster remapping

Data is lost t

With a non-SCSI
disk or a disk
with no spare
sectors'

With any
kind of disk

1. FtDisk N / A
recovers the data

2. FtDisk sends the
data and a bad-sector
error to the file
system

3. NTFS performs
cluster remapping

1. FtDisk
can't recover
the data

2. FtDisk sends a
bad-sector error
to the file system

3. NTFS performs
cluster remapping

Data is lost t

1. Disk driver
returns a bad
sector error
to the file system

2. NTFS performs
cluster remapping

Datais lostt

* In neither of these cases can FtDisk perform sector sparing: (1) hard disks that don't
use the SCSI protocol have no standard interface for providing sector sparing; (2) some hard
disks don't provide hardware support for sector sparing, and SCSI hard disks that do provide
sector sparing can eventually run out of spare sectors if a lot of sectors go bad.

t A fault tolerant volume is one .of the following: a mirror set, a duplex set, or a stripe set
with parity.

I In a write operation, no data is lost: NTFS remaps the cluster before the write.

Figure 5-8. Summary of FtDisk and NTFS Data Recovery Scenarios

59

C HAP T E R 5 IX

DATA COMPRESSION

"With MS-DOS versions 6.0 and 6.2, a new feature was implemented in the
FAT file system: disk file compression. Called Doublespace, the compression
utility effectively doubled the storage capacity of FAT-formatted disks, elimi
nating or at least postponing most users' need to upgrade their disk hard
ware. The files on a compressed volume are decompressed dynamically as a
user reads from them and are written back to the disk in compressed form
when a user writes to them.

Mter the first release of Windows NT, which did not include data com
pression, the NTFS team immediately began to investigate implementing
NTFS file compression. In the design of compression software, a trade-off
exists between the size of compressed files and the speed of compression
and decompression. Doublespace sacrificed some speed in order to achieve
smaller compressed files. It compressed bytes of data, packing them to the
bit to shrink file size. For NTFS, Tom Miller and Gary Kimura opted to em
phasize speed of decompression over file size and not to perform bit-level
data manipulation.

They also hoped to implement fast lookups for read operations. With a
Doublespace volume, the FAT file system had to access the disk at least three
times to locate a compressed file. By using the VCN-to-LCN mappings de
scribed in Chapter 3, NTFS can locate a compressed file in one lookup op
eration-the same number oflookups it takes to find a noncompressed file.

In addition to emphasizing performance, the file system team wanted
to provide flexibility by enabling users to select files for compression rather
than requiring them to compress entire volumes. The ability to compress
files selectively would permit system administrators, for example, to identifY
infrequently used or large files and compress just those files.

The following section introduces NTFS compression by examining the
simple case of compressing sparse files. The second section extends the dis
cussion to the compression of ordinary files.

61

INSIDE THE WINDOWS NT FILE SYSTEM

6.1 Compressing a Sparse File

62

NTFS uses virtual cluster numbers (VCNs), from 0 through m, to enumerate
the clusters ofa file. Each VCN maps to a corresponding logical cluster num
ber (LCN) , which identifies the disk location of the cluster. Figure 6-1 illus
trates the runs (disk allocations) ofa normal, noncompressed file, including
its VCNs and the LCNs they map to.

VCN 0 2 3 4 5 6 7 8 9 10 11

I d~ta I I d~ta II d+

LCN 1355 1356 1357 1358 1588 1589 1590 1591 2033 2034 2035 2036

Figure 6-1. Runs of a Noncompressed File

This file is stored in three runs, each of which is 4 clusters long, for a total of
12 clusters. Figure 6-2 shows the master file table (MIT) record for this file.
To save space, the MFT record's data attribute, which contains VCN-to-LCN
mappings, records only one mapping for each run, rather than one for each
cluster. Notice, however, that each VCN from 0 through 11 has a correspond
ing LCN associated with it. The first entry starts at VCN 0 and covers 4 clus
ters, the second entry starts at VCN 4 and covers 4 clusters, and so on. This
entry format is typical for a noncompressed file.

Sparse files are files, often large, that contain only a small amount of
nonzero data relative to their size. A sparse matrix stored on disk is one ex
ample of a sparse file. When a user selects an NTFS file for compression, one
NTFS compression technique is to remove long strings of zeros from the file.
If the file is sparse, it typically shrinks to occupy a fraction of the disk space it
would otherwise require. On subsequent writes to the file, NTFS allocates
space only for runs that contain nonzero data.

Standard
Information

Security
Descriptor Data

Figure 6-2. MFT Record for a Noncompressed File

S I X: Data Compression

Figure 6-3 depicts the runs of a compressed sparse file. Notice that cer
tain ranges ofthe file's yeNs (16-31 and 64-127) have no disk allocations.

LCN 133134135136137138139140141142143144145146147148

~ ~

I I I I I I I I d+ I I I I I I I I
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

~ ~

I I I I I I I I d+ I I I I I I I I
96 97 98 99 100101102103104105106107108109110111

128 143

I II I I I I I d+ I I I I I I I I
324325326327328329330331 332333334335336337338339

Figure 6·3. Runs of a Compressed Sparse File

The MFT record for this sparse file omits blocks ofVeNs that contain
zeros and therefore have no physical storage allocated to them. The first
data entry in Figure 6-4, for example, starts at VeN 0 and covers 16 clusters.
The second entry jumps to veN 32 and covers 16 clusters.

When a program reads data from a compressed file, NTFS checks
the MFT record to determine whether a VeN-to-LeN mapping covers the

Standard File Security
Information Name Descriptor Data

Figure 6·4. MFT Record for a Compressed Sparse File

63

INSIDE THE WINDOWS NT FILE SYSTEM

location being read. If the program is reading from an unallocated "hole"
in the file, it means that the data in that part of the file consists of zeros,
so NTFS returns zeros without accessing the disk. If a program writes non
zero data to a "hole," NTFS quietly allocates disk space and then writes the
data. This technique is very efficient for sparse files that contain a lot of
zero data.

6.2 Compressing Nonsparse Data

64

The example of compressing a sparse file in Section 6.1 is somewhat con
trived. It describes "compression" for a case in which whole sections of a file
are filled with zeros but the remaining data in the file wasn't affected by the
compression. The data in most files is not sparse, but it can still be com
pressed by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the
files in a directory. When it compresses a file, NTFS divides the file's unpro
cessed data into compression units 16 clusters long (equal to 8 KB for a 512-
byte cluster). Certain sequences of data in a file might not compress much, if
at all; so for each compression unit in the file, NTFS determines whether
compressing the unit will save at least 1 cluster of storage. If compressing the
unit won't free up at least 1 cluster, NTFS allocates a 16-cluster run and
writes the data in that unit to disk without compressing it. If the data in a 16-
cluster unit will compress to 15 or fewer clusters, NTFS allocates only the
number of clusters needed to contain the compressed data and then writes it
to disk. Figure 6-5 illustrates the compression of a file with four runs. The
unshaded areas in this figure represent the actual storage locations that the
file occupies after compression. The first, second, and fourth runs were
compressed; the third run was not. Even with one noncompressed run, com
pressing this file saved 26 clusters of disk space, or 41 percent.1

When it writes data to a compressed file, NTFS ensures that each run
begins on a virtual 16-cluster boundary. Thus, the starting VCN of each run
is a multiple of 16 and the runs are no longer than 16 clusters. NTFS reads
and writes at least one compression unit at a time when it accesses com
pressed files. However, when it writes compressed data, NTFS tries to store
compression units in physically contiguous locations so that it can read them

1. Note that a compression unit need not be stored in physically contiguous clusters,
although the diagrams in this chapter show contiguous LeNs. Runs that occupy non
contiguous clusters produce slightly more complicated MFT records than the one shown
in Figure 6-6.

S I X: Data Compression

VCN ~.,......,.......,...._ 15

LCN

31

23 24 25 26 27 28 29 30

47

I I I I I I I
97 98 99100101102103104105106107108109110111112

113114115116117 118 119 120121122

Figure 6-5. Data Runs of a Compressed File

all in a single I/O operation. The 16-cluster size of the NTFS compression
unit was chosen to reduce internal fragmentation: the larger the compres
sion unit, the less the overall disk space needed to store the data.2 Figure 6-6
shows the MFT record for the compressed file shown in Figure 6-5.

One difference between this compressed file and the earlier example
of a compressed sparse file is that three of the compressed runs in this file

Standard
Information

Security
Descriptor

starting
VCN

'': <n.h--
-}t~n~ \ ::~:;:':: :-''8",::>,
-:-~fL .>_~l.:;};·, -:)t6<>~

,+!~.J::1i~:~:./~~.·- ~-,1'({·-~

Figure 6-6. MFT Record for a Compressed File

2. This 16-cluster compression unit size represents a trade-off between producing smaller
compressed files and slowing read operations for programs that randomly access files. The
equivalent of 16 clusters must be decompressed for each cache miss. (A cache miss is more
likely to occur during random file access.)

65

INSIDE THE WINDOWS NT FILE SYSTEM

66

are fewer than 16 clusters long. Reading this information from a file's MFT
file record enables NTFS to know whether data in the file is compressed. Any
run shorter than 16 clusters contains compressed data that NTFS must de
compress when it first reads the data into the cache. A run that is exactly 16
clusters long does not contain compressed data and therefore requires no
decompression.

If the data in a run has been compressed, NTFS decompresses the data
into a scratch buffer and then copies it to the caller's buffer. NTFS also loads
the decompressed data into the cache, which makes subsequent reads from
the same run as fast as any other cached read. NTFS writes any updates
to the file in the cache, leaving the lazy writer to compress and write the
modified data to disk asynchronously. This strategy ensures that writing to a
compressed file produces no more significant delay than writing to a non
compressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever
possible. As the LeNs indicate, the first two runs of the compressed file
shown in Figure 6-5 are physically contiguous, as are the last two. When two
or more runs are contiguous, NTFS performs disk read-ahead, as it does
with the data in other files. Because the reading and decompression of con
tiguous file data take place asynchronously before the program requests the
data, subsequent read operations obtain the data directly from the cache,
which greatly enhances read performance.

NTFS is designed so that the code that compresses files (the compression
engine) is a replaceable module. This will allow NTFS to take advantage of
new compression technology over time and to compress various kinds of
files. Multimedia files, for example, require a different compression algo
rithm than text files do.

The two measures of success for data compression software are size and
speed. In the size category, NTFS compression achieves excellent results.
The early versions of Doublespace did a creditable job, compressing text
files to approximately 40 percent of their original sizes and compressing
executables and DLLs to 60 to 70 percent of their original sizes. Early ver
sions ofNTFS achieve even better compression figures: some files end up as
much as 14 percent smaller than their Doublespace-compressed counter
parts. Even though NTFS chose to trade off size in favor of speed, it still pro
duces small file sizes because it uses a large "compression window"; that is,
it sends 4 KB to the compression engine on each call. A large compres
sion window yields more efficient compression for many compression
algorithms.

5 I X: Data Compression

In terms of speed, NTFS data compression is still under development.
Executing the nonoptimized C version of the compression engine has not
significantly slowed NTFS file I/O. After the NTFS compression engine has
been rewritten in optimized assembly language, its developers expect
compression and decompression to operate several times faster than they
do now.

NTFS compression is performed only for user data, not for file system
metadata, but that could change in future system releases.

67

C HAP T E R S EVE N

MS-DOS FILE
NAME GENERATION

Both NTFS and HPFS allow each file name in a path to be as many as 255
characters long. NTFS file names can contain Unicode characters as well as
multiple periods and embedded spaces. The FAT file system is limited to 8
(non-Unicode) characters for its file names, followed by a period and a 3-
character extension. Because ofthis limitation, MS-DOS clients accessing an
HPFS-formatted disk can't view files with long names. The long names don't
show up when the MS-DOS client issues a Dir command; nor do they show
up when an MS-DOS-Windows client browses a file directory. Moreover, MS
DOS utilities such as Xcopy can't access files with long names. Businesses
that operate OS/2 servers and use MS-DOS systems as clients therefore
rarely take advantage of the long file name capability of HPFS.

Because Windows NT supports MS-DOS and MS-DOS-Windows cli
ents, the NTFS developers decided that NTFS-created files should be visible
and accessible to these clients, even if the files have names that are "illegal"
for MS-DOS systems. Figure 7-1 on the next page provides a visual represen
tation of the different file namespaces Windows NT supports and how they
intersect.

The POSIX subsystem requires the biggest namespace of all the appli
cation execution environments that Windows NT supports, and therefore
the NTFS namespace is equivalent to the POSIX namespace. The POSIX
subsystem can create names that are not visible to Win32 and MS-DOS appli
cations, including names with trailing periods and trailing spaces. Ordi
narily, creating a file using the large POSIX namespace is not a problem
because one would do that only if that file were intended to be used by the
PO SIX subsystem or by POSIX client systems.

69

INSIDE THE WINDOWS NT FILE SYSTEM

70

Figure 7-1. Windows NT File Namespaces

Examples:

"TrailingDots ... "
"SameNameDifferentCase"
"samenamedifferentcase"
"TrailingSpaces

" LongFileName "
"UnicodeName. <PL1nA"
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

"EIGHTCHR.123"
"CASEBLND.TYP"

The relationship between 32-bit Windows (Win32) applications and
MS-DOS-Windows applications is a much closer one, however. The Win32
area in Figure 7-1 represents file names that the Win32 subsystem can create
on an NTFS volume but which MS-DOS and 16-bit Windows applications
can't see. This group includes file names longer than the 8.3 format ofMS
DOS names, those containing Unicode (international) characters, those
with multiple period characters or a beginning period, and those with em
bedded spaces. When a file is created with such a name, NTFS automatically
generates an alternate, MS-DOS-style, file name for the file. Windows NT
displays these short names when a user is browsing in the File Manager with
the View menu's All File Details option selected or when a user types the Ix
option with the Dir command.

The MS-DOS file names are fully functional aliases for the NTFS files
and are stored in the same directory as the long file names. The Master File
Table (MFT) record for a file with an auto-generated MS-DOS file name is
shown in Figure 7-2.

Standard NTFS MS-DOS Security
Information File Name File Name Descriptor Data

L..---,------,--I 7' I I
New File Name Attribute

Figure 7-2. MFT File Record with an MS-DOS File Name Attribute

S EVE N: MS-DOS File Name Generation

The NTFS name and the generated MS-DOS name are stored in the
same file record and therefore refer to the same file. The MS-DOS name can
be used to open, read from, write to, or copy the file. If a user renames the
file using either the long file name or the short file name, the new name re
places both of the existing names. I If the new name is not a valid MS-DOS
name, NTFS generates another MS-DOS name for the file.

Here's the algorithm NTFS currently uses to generate an MS-DOS
name from a long file name:

1. Remove from the long name any characters that are illegal in
MS-DOS names, including spaces and Unicode characters.
Remove preceding and trailing periods. Remove all other
embedded periods, except the last one.

2. Truncate the string before the period (if present) to six charac
ters and append the string "~1". Truncate the string after the
period (if present) to three characters.

3. Put the result in uppercase letters. MS-DOS is case-insensitive,
and this step guarantees that NTFS won't generate a new name
that differs from the old only in case.

4. If the generated name duplicates an existing name in the direc
tory, increment the "~1" string.

Figure 7-3 on the next page shows the long Win32 file names from Figure
7-1 and their NTFS-generated MS-DOS versions. The current algorithm
and the examples in Figure 7-3 should give users an idea of what NTFS
generated MS-DOS-style file names look like. Application developers
shouldn't depend on this algorithm. It might change in the future.

l. POSIX hard links are implemented in a similar way. When a hard link to a POSIX file
is created, NTFS adds another file name attribute to the file's MFT file record. The two
situations differ in one regard, however. When a user deletes a POSIX file that has multiple
names (hard links), the file record and the file remain in place. The file and its record are
deleted only when the last file name (hard link) is deleted. If a file has both an NTFS name
and an auto-generated MS-DOS name, however, a user can delete the file using either name
and the file is immediately deleted.

71

INSIDE THE WINDOWS NT FILE SYSTEM

Win32 Long Name

LongFileN arne

UnicodeName.<I>~rrA

File.N arne .With.Dots

File.Name2.With.Dots

Name With Embedded Spaces

.BeginningDot

NTFS-Generated Short Name

LONGFI-l

UNICOD-l

FILENA-l.DOT

FILENA-2.DOT

NAMEWI-l

BEGINN-l

Figure 7-3. NTFS-Generated File Names

CONCLUSION

As the introduction to this book observed, the NTFS team's most impor
tant goal was to create a file system that was not only reliable but also fast.
Specifically, the goal was to achieve disk perfonnance that would meet or
exceed that of existing personal computer file systems.

Tom Miller's early contention that a recoverable file system does not
have to sacrifice performance has held up well to scrutiny. Benchmark tests
performed by various industry trade journals1 show that NTFS I/O ranges
from 1.5 to 8 times faster than I/O on Windows 3.1 (with and without
SmartDrive) and OS/2 version 2.1. The results vary depending on hardware
configuration and on whether the tested software is 16-bit or 32-bit code.

As trade journals have noted, the superlative performance of Windows
NT disk I/O is not due solely to the implementation ofNTFS. The perfor
mance achievement comes in large measure from synergy between NTFS
and the Windows NT cache manager. Together, NTFS and the cache man
ager achieve I/O performance that easily exceeds that of other PC operat
ing systems while providing an unprecedented level of reliability and
high-end data storage features for desktop and server systems.

1. Byte and PC Magazine. See the bibliography.

73

GLOSSARY

analysis pass The first of three scans NTFS makes through the log file dur
ing file system recovery. During the analysis pass, NTFS scans forward
from the last checkpoint record, using information in the log file's update
records to update its in-memory tables. Compare redo pass, undo pass; see
also checkpoint record.

API application programming interface.

application programming interface (API) A set of routines an application
program calls to request and carry out lower-level services performed by
an operating system.

atomic transaction A transaction whose multiple disk updates are treated
as a single operation. See also transaction.

attribute definition table The NTFS file that defines the attribute types sup
ported on a volume and whether they can be indexed, recovered during a
file system recovery operation, and so on.

b+ tree A balanced tree data structure that grows wide rather than deep,
thus minimizing the number of disk accesses needed to find a particular
entry. NTFS stores file name indexes in a b+ tree structure. See also index.

bad-cluster file The NTFS file that keeps track of bad clusters-those con
taining bad sectors-on a volume.

bad-cluster remapping An NTFS feature in which the file system reassigns
a cluster containing a bad sector to its bad-cluster file, preventing the clus
ter from being reallocated to another file. NTFS then allocates a new clus
ter and changes the file's VCN-to-LCN mappings to point to the new
cluster. If the bad sector is located on a disk mirror or a stripe set with par
ity, NTFS also recovers the data that was on the bad sector and copies it to
the new cluster. This cluster-remapping technique works on all types of
hard disks. See also sector sparing.

base file record The first file record in the master file table (MFT) for a file
that has multiple file records. The base file record is the record to which
the file's file reference corresponds. See also file record, file reference.

75

INSIDE THE WINDOWS NT FILE SYSTEM

76

bitmap file The NTFS file that records the allocation state of a volume. The
data attribute in the bitmap file's file record contains a bitmap, each of
whose bits represents a cluster on the volume, identifying whether the
cluster is free or has been allocated to a file.

boot file The system file that stores the Windows NT bootstrap code.

cache flushing Forcing cache contents to be written to disk.

cache manager A component of the Windows NT executive that provides
system-wide caching services. NTFS and other file system drivers call the
cache manager to read and write cached files. The cache manager calls
the virtual memory manager to map the cached files into virtual memory,
read and write them, and flush modifications back to disk.

cache miss A thread's attempt to access a part of a cached file that is not
present in the cache. When the cache manager tries to copy the data to
the user's buffer, a page fault occurs. The virtual memory manager, in
turn, calls the appropriate file system driver to access the disk driver and
copy the file contents from disk into the cache. See also cache manager.

cache write-through The process of forcing each write operation to be im
mediately flushed to disk.

careful write An algorithm for updating a disk that prevents unexpected
file system inconsistencies in the event of a system failure. A careful write
file system serializes I/O requests and orders disk modifications so that
any inconsistencies that do occur can be easily and fully repaired at a con
venient time. Compare lazy write.

checkpoint record A log file record NTFS writes periodically to help it de
termine what processing would be required to recover the volume if a
crash occurred immediately. The log file service (LFS) stores the logical
sequence number of the most recent checkpoint record in the log file's
restart area so that NTFS can quickly find the log file's last checkpoint
record when recovering from a crash. See also logfile, logical sequence num
bers (LSNs), restart area,. update record.

cluster The adjustable unit of disk allocation for the FAT file system and
for NTFS. On the FAT file system, cluster size grows in proportion to the
size of the disk. The NTFS cluster size is assignable but has a default size
that is optimized for the disk's size.

Glossary

cluster factor The size of a cluster in NTFS. The cluster factor is the num
ber of physical sectors (some power of 2) in the cluster and is generally
expressed in bytes. See also cluster.

commit a transaction To record in the log file the fact that a transaction is
complete and has been recorded in the cache. See also logfile, transaction.

compression engine Code that implements a compression algorithm.

compression unit A fixed-size quantity of disk data that is compressed, writ
ten, and read as a unit. The size of the compression unit in NTFS is 16
clusters.

dirty page table A data structure NTFS maintains in memory to record
which pages in the cache contain modifications to the file system struc
ture that have not yet been written to disk. The dirty page table is used to
implement file system recovery. See also transaction table.

duplex set A variant of a mirror set in which the two volume partitions are
on disks operated by different disk controllers-assuring data redun
dancy if a disk controller (rather than just a disk) fails. See also mirror;

mirror set.

extent See run.

FCB file control block.

file control block (FCB) An NTFS data structure used to find a file on disk,
given a pointer to a file object. A file control block represents a single
opened file and contains the file's file reference. See also file reference,
stream control block (SCB).

file namespace The set of file names that are legal in an operating system
environment. NTFS supports the file namespaces of MS-DOS-Windows,
32-bit Windows, OS/2 HPFS, and POSIX.

file record The row in the master file table (MFT) that corresponds to a
particular disk file. The file record is identified by its file reference. See
also file reference, master file table (MFr).

file reference A 64-bit value, consisting of a sequence number and a file
number, that NTFS uses to identify a file. The sequence number, used for
internal consistency checks, is incremented each time an MIT file record
position is reused. The file number corresponds to the position of the

77

INSIDE THE WINDOWS NT FILE SYSTEM

78

file's file record (or the file's base file record) in the master file table
(MFT). See also base file record, file record, master file table (MFT).

hard link count A count of the number of POSIX file system directories
that point to a file.

idempotent operation An operation that has a neutral effect if it is exe
cuted more than once. NTFS redo and undo operations are designed to
be idempotent.

index A collection of file names selected for some file attribute and stored
in a sorted order for quick access.

index buffer A run of2 KB or the cluster size (whichever is larger) that con
tains part of an index. Index buffers implement the b+ tree data structure
used to sort index entries. See also b+ tree.

lazy write An algorithm for updating a disk with the fastest possible
throughput. Lazy write file systems write disk updates to a cache and flush
the cache contents in an optimized way, often as a background activity.
Lazy write file systems often risk data safety to achieve improved perfor
mance. Compare careful write.

lazy writer . A set of cache manager threads that call the virtual memory
manager to flush cache contents to disk as a background activity. See also
cache manager.

LeN logical cluster number.

LFS log file service.

log file A file read and written by the log file service (LFS). The log file con
tains records of transaction suboperations NTFS writes to allow it to recon
struct an NTFS volume after a system failure. See also logfile service (LFS).

log file service (LFS) A component of the Windows NT executive that pro
vides services for logging disk modifications. NTFS calls the log file ser
vice to write a log file it uses to reconstruct an NTFS volume after a system
failure. See also logfile.

logging A transaction-processing technique in which the suboperations of
atomic transactions are recorded in a log file before they are written to
disk. In the event of a system crash, fully logged transactions can be re
done, and partially logged transactions can be undone, when the system
comes back online. See also logfile, transaction.

Glossary

logging area The region in the log file to which the log file service (LFS)
writes NTFS records that are used to recover a volume in case of a system
failure. The LFS makes the logging area appear infinite by reusing it cir
cularly. See also log file, logfile service (LFS), restart area.

logical cluster numbers (LeNs) Instances resulting from the numbering, 0
to n, of the clusters on a volume from beginning to end. NTFS locates a
cluster by multiplying its LCN by the volume's cluster factor, which yields
the physical byte offset of the cluster. Compare virtual cluster numbers
(VCNs); see also cluster, cluster factor.

logical sequence numbers (LSNs) Instances resulting from the numbering
of records in the log file. The log file service (LFS) increases the values of
LSNs as it writes records to the log file. The number of possible LSNs is
virtually infinite. See also log file.

LSN logical sequence number.

master file table (MFT) The database that tracks the contents of an NTFS
volume. The MFT is a table whose rows correspond to files on the volume
and whose columns correspond to the attributes of each file.

metadata The data and files NTFS uses to implement the file system structure.

MFT master file table.

mirror A disk volume used as a duplicate copy of an equal-sized or smaller
volume on another disk in order to provide data redundancy. The Win
dows NT fault tolerant driver writes disk modifications to both the pri
mary partition and its mirror partition.

mirror set A set of two partitions on different disks, on one of which NTFS
implements a mirror of the other. See also mirror.

mount To prepare a volume for use. On NTFS, the mount process includes
finding and opening file system files, copying some of their contents to
memory, and executing the file system recovery procedure.

namespace See file namespace.

nonresident attribute A file attribute whose value is contained in one or
more runs, or extents, outside the master file table (MFT) record and
separate from the MFT. Compare resident attribute; see also run.

79

INSIDE THE WINDOWS NT FILE SYSTEM

80

NT File System (NTFS) The recoverable file system designed for use with
the Windows NT operating system. NTFS uses database, transaction
processing, and object paradigms to provide data security, file system reli
ability, and advanced features not found in other mainstream file systems.
See also recovfffable file system.

NTFS NT File System. ...

recoverable file system A file system which ensures that if a power outage
or other catastrophic system failure occurs, the file system won't be cor
rupted and no disk modifications will be left incomplete. The structure of
the disk volume is restored to a consistent state when the system is
rebooted.

redo information Information in an update record that tells NTFS how to
reapply a volume update, or transaction suboperation, during file system
recovery. Compare undo information; see also logfile, update record.

redo pass The second of three scans NTFS makes through the log file dur
ing file system recovery. NTFS scans forward from the oldest logical se
quence number (LSN) it found in the analysis pass and redoes the
updates, or suboperations, of a transaction that was fully logged before
the system failure but whose updates might not have been applied to the
volume. Compare analysis pass, undo pass.

resident attribute A file attribute whose value is wholly contained in the
file's file record in the master file table (MFT). Compare nonresident at
tribute; see also file record, mastfff file table (MFT).

restart area A region at the beginning of the log file in which the log file
service (LFS) stores context information for itself and for NTFS. Informa
tion in the restart area allows NTFS to begin its volume recovery after a
system failure. See also logfile, logfile sfffvice (LFS), logging area.

roll back To undo a transaction whose logging in the log file was inter
rupted by a system failure. See also transaction, transaction processing.

run Also called an extent. A contiguous disk allocation used to store part or
all of a nonresident file attribute. See also nonresident attribute.

seB stream control block.

sector sparing A feature of FtDisk, the Windows NT fault tolerant disk
driver, in which an unreadable sector is dynamically replaced and its con
tents are restored. The data is either copied from a disk mirror or recon-

....

Glossary

structed from a stripe set with parity. Sector-sparing works only for
SCSI-based hard disks that support it. See also bad-cluster remapping.

sparse files Files, often large, that contain only small amounts of nonzero
data relative to their sizes.

stream A sequence of bytes.

stream control block (SeB) An NTFS data structure used to find a file on
disk, given a pointer to a file object. A stream control block represents
one attribute (stream) of an open file and points to the file control block
for the file. See also file control block (FeB).

stripe A 64-KB area on equal-sized partitions on each of three or more
disks. FtDisk, the Windows NT fault tolerant disk driver, writes data across
the disks along the stripe, a technique that distributes data evenly among
several disks, resulting in faster I/O performance. See also stripe set, stripe

set with parity .

stripe set A series of same-size partitions, one per disk, that a file system
accesses as a single logical volume. FtDisk, the Windows NT fault tolerant
disk driver, implements stripe sets, writing data across the disks along 64-
KB stripes. See also stripe, stripe set with parity.

stripe set with parity A fault tolerant variant of a stripe set in which the
equivalent of one disk is used to record parity information for each stripe
in the stripe set. If the data on one disk becomes inaccessible, FtDisk, the
Windows NT fault tolerant disk driver, reconstructs the disk's contents by
means of the parity information. See also stripe set.

transaction In NTFS, an atomic operation, one whose suboperations are
treated as a single operation. The suboperations, or separate updates, of a
transaction must all be completed successfully. If they aren't, those sub
operations that were completed must be rolled back. See also atomic trans

action, commit a transaction, roll back.

transaction processing A technique for modifYing a database so that sys
tem failures do not compromise the correctness or integrity of the data
base. Every transaction is logged and then executed atomically. If a system
failure occurs and interrupts the logging of the suboperations of the
transaction, the log file is used to roll back the part of the transaction that
was completed, returning the database to a previously known and consis
tent state. See also logfile, roll back, transaction.

81

INSIDE THE WINDOWS NT FILE SYSTEM

82

; transaction table A data structure NTFS maintains in memory to track
transactions that have been started but that are not yet committed. The
transaction table is used to implement file system recovery. See also com
mit a transaction, dirty page table.

undo information Information in an update record that tells NTFS how to
roll back a transaction whose updates, or suboperations, were not com
pletely logged before a system failure. Compare redo information; see also
log file, roll back, update record.

undo pass The third of three scans NTFS makes through the log file dur
ing file system recovery. NTFS scans backward, rolling back the updates,
or suboperations, of any transaction that wasn't fully logged, or commit
ted, when the system failed. Compare analysis pass, redo pass.

update record A log file record NTFS writes to register a volume update, or
transaction suboperation, before writing the change to the volume. An
update record contains redo and undo information for the volume up

, date. See also checkpoint record, redo information, undo information.

VCN virtual cluster number.

virtual cluster numbers (VCNs) Instances resulting from the numbering, 0
to m, of the clusters containing the nonresident attributes of a file. NTFS
maps a file's VCNs to LCNs in order to find the file's clusters on the disk.
Compare logical cluster numbers (LCNs); see also cluster, nonresident attribute.

virtual memory manager The component of the Windows NT executive
that implements virtual memory.

volume A logical partition on a disk, created when the disk is formatted for
a particular file system. NTFS volumes can span multiple disks. See also
volume set.

volume file The NTFS file that contains the volume's name, the version of
NTFS for which the volume is formatted, and a "dirty bit" that, when set,
signifies that a disk corruption has occurred which must be repaired by
the Chkdsk utility.

volume set A series of free areas (as many as 32) on one or more disks that
NTFS formats and accesses as a single volume. See also volume.

write-ahead logging A logging technique in which log file records are guar
anteed to be flushed to disk before any of the corresponding volume up
dates are written to disk. See also logfile, logging, update record.

BIBLIOGRAPHY

Ayre, Rick, and Robin Raskin. "Windows NT: See How It Runs." PC Magazine
12, no. 16 (September 28,1993): 211-31.

Duncan, Ray. "Design Goals and Implementation of the New High Perfor
mance File System." Microsoft SystemsJournal (September 1989): 1-13.

Duncan, Ray. Advanced MS-DOS Programming, 2d ed. Redmond, Wash.:
Microsoft Press, 1988. The "Disk Internals" chapter of this now-classic
volume contains a discussion of the FAT file system.

Karth, H. F., and A. Silberschatz. Database System Concepts, 2d ed. New York:
McGraw Hill, 1991.

Patterson, A., Garth Gibson, and Randy H. Katz. "A Case for Redundant
Arrays of Inexpensive Disks, or RAID." Univ. of California at Berkeley,
report no. UCB/CSD 87/391, December 1987.

Silberschatz, Abraham, and Peter Galvin. Operating System Concepts, 4th ed.
Reading, Mass.: Addison-Wesley, 1994.

Udell, Jon. "Is There a Better Windows 3.1 Than Windows 3.1?" Byte 18,
no. 12 (November 1993): 85-96.

The Unicode Consortium. The Unicode Standard: World-Wide Character Encod
ing, version 1.0, 2 vols. Reading, Mass.: Addison-Wesley, 1991-92. The
prepublication edition of Unicode version 1.1 (which requires version
1.0) is also available as "Unicode Technical Report no. 4," from the
Unicode Consortium (415-961-4189). The report is also available on
Internet at unicode-inc@unicode.org). The prepublication edition is also
available on the Microsoft Developer's Network compact discs.

83

INDEX

Page numbers in italics refer to figures.

Special Characters
: (colon), as separator, 8
$ (dollar sign), for attributes, 22
. (periods), in names, 9

A
aliases, file name, 70-71, 72
allocation, file. See file system; MFT (master

file table)
analysis pass in recovery operation: 45, 45,

75
Andrew, Brian, In, 12
APIs (application programming interfaces),

7, 75
Apple Macintosh data and resources, NTFS

data streams for, 8
application programming interfaces. See

APIs (application programming
in terfaces)

atomic transaction, 14-15, 75
attribute list attribute, 23, 28
attributes

definition tables for, 32, 75
identifYing, 22
indexing, 9
in the master file table (MFT) , 15-16, 16
order of, 24
resident and nonresident, 24-26, 25, 26
system-defined, 23
user-defined, 16, 16n

authorization, security descriptor for, 5, 15,
16,23

B
b+ tree structure, 16,28-29,75
bad clusters

file of, 32, 75

bad clusters, continued
recovering, 55-59
remapping, 9, 75

bad-sector errors, spare sectors for, 54-55
base file record, 21, 75
batching log records, 36
Bernoulli disks, 10
bitmap attribute

described, 23
in MFT file records, 26, 26
forVCNs,29

bitmap file
allocation data in, 31, 31
defined,76
as a volume file, 50

boot file
defined,76
as MFT file record, 21
in mounting, 30
overview, 31, 31

bootstrap code, 30-31
buffer. See also cache

decompressed data, 66
index, 26, 28-29

C
cache. See also buffer

decompressed data, 66
flushing,36-37,76
lazy write file systems and, 35-36
in recoverable file systems, 37
write-through, 37, 76

cache manager
defined,76
for log files, 38, 38, 39-40, 43
overview, 12-13, 13

cache misses, 13, 65n
careful write file systems, 34-35, 76
case-sensitive names, 9
checkpoint record, 42-43, 43, 76
Chkdsk utility

for bad sectors, 33n, 55, 57, 58
HPFS,36

cluster
bad-cluster recovery, 55-59

85

INSIDE THE WINDOWS NT FILE SYSTEM

cluster, continued
bitmap file for, 31
in compression units, 64-65
defined, 76
FAT, 6
mapping (see VCNs (virtual cluster

numbers))
size, 7, 19-20

cluster factor, 19-20, 21, 77
colon (:), as separator, 8
columns, in the master file table (MFT), 15,

15-16
committing transactions, 41,77
compression

introduction, 61
nonsparse data, 64-67, 65
sparse files, 62, 62-64, 63

compression engine, NTFS, 66, 77
compression unit, 64-65, 65n, 77
compression window, NTFS, 66
concurrent access, 8
corruption

in careful write file systems, 34
in fault tolerant volumes, 58
in lazy write file systems, 36

corruption bit, 32, 58

D
data attribute, 23
database model, 13-17
data compression

introduction, 61
nonsparse data, 64-67, 65
sparse files, 62, 62-64, 63

data redundancy, 5-6, 52-54
data security, 5, 23
data stream

attributes, 22
defined, 81
multiple, 7-8
in relational database model, 16, 16

default data stream, 7
directory

attribute, 23
file name index for, 28-29, 29

MFT entry for, 25, 25, 26, 26

86

directory, continued
name, 8-9
in relational database model, 15, 15,

16,17
root, 28, 29,30-31

dirty bit, FAT and HPFS, 36, 58n
dirty page table, 44-45, 45, 77
disk

compressing (see data compression)
floppy, 3, 10
large, 6-7
removable, 10
structure, 24-27

Disk Administrator utility, 19,50
disk corruption bit, 32
disk read-ahead, 66
dollar sign ($), for attributes, 22
Doublespace compression utility, 61
driver

fault tolerant, 5-6
file system as, 11-13
FtDisk (see FtDisk driver)

duplex sets, 53, 77
duplicate data, 6, 52, 52-53, 58
dynamic cluster remapping, 9
dynamic volume size changes, 50

E
embedded spaces in names, 9
extended attributes, 23
extents. See runs

F
failure recovery. See recovery
FAT file system

bad clusters, 56
bad-sector warnings, 55
Chkdsk on, 58n
data compression, 61
file names, 69
limitations, 3-4, 6
write-through algorithm, 35n

fault tolerant volumes
corruption in, 58
described, 5-6
duplex sets, 53

fault tolerant volumes, continued
mirror sets, 52, 52-53,
sector sparing, 54-55
stripe sets with parity, 53, 53-54

FCBs (file control blocks), 17,18,77
features, NTFS. See new features with NTFS
file control blocks. See FCBs (file control

blocks)
file names

attributes, 24-28
indexing, 28-29, 29
MS-DOS, 69-71, 72
PO SIX, 9
sorting, 9, 16,28
system-defined attribute for, 23
Unicode-based,8-9

file namespaces, 69, 70, 77
file numbers, 21, 22
file record, 20-32, 77
file references

defined,77-78
in file name indexes, 28
for MFf file records, 21-22,22

files. See also file system; MFT (master file
table)

attributes, 9, 22
bad cluster, 32, 75
bitmap, 31, 50
boot, 21, 30-31
compressing (see data compression)
large, 6-7,26
log (see logging and log files)
metadata, 21, 21, 30-32, 31, 58
names (see file names)
as. objects, 17, 18
in relational database model, 15, 15,

16,17
size, 7, 28
time stamps, 9, 28
volume, 32, 58

file system. See also MFT (master file table)
bad sectors in, 57
concepts and terms, 19-23
corruption of, 34, 36, 58
disk structure, 24-28
file name indexing, 28-29

file system, continued
as loadable driver, 11-13
metadata files, 30-32
requirements (see file system

requiremen ts)
file system requirements

Index

data redundancy and fault tolerance, 5-6
introduction, 3-4
large disks and large files, 6-7
recoverability, 4-5
security,5

floppy disks, 3, 10
flushing, cache, 37
Format utility

for bad sectors, 55
for bootstrap code, 31
for cluster factor, 19-20
for log files, 38

fragmentation, 6, 65
FtDisk driver

G

bad-cluster recovery, 55-59
fault tolerant volumes, 6n, 52-55
summary, 59
volume management, 49-52

general indexing facility, 9
Glass, Mike, 49
Goebel, David, In

H
handles, object, 17, 18
hard links, 9, 23, 71n, 78
header, attribute, 24, 25, 26
hierarchical directory structure, 16-17
HPFS file system

bad clusters, 56
bad-sector warnings, 55
Chkdsk on, 58n
dirty bit, 36, 58n
extended attributes, 23
file names, 69
limitations, 3n, 3-4, 4n, 6-7
runs, 7

87

INSIDE THE WINDOWS NT FILE SYSTEM

I
idempotent operations, 42, 78
index allocation attribute, 23

buffers for, 26
for VCN-to-LCN mapping, 28, 29

index buffers, 26, 28-29, 78
indexes

attribute, 9, 16
defined,78
file name, 28-29, 29

index root attribute
buffers for, 26
described, 23
in MFT file records, 2S:, 29
fo!" small directories, 24

infinite logging area, 38-39, 39
internal fragmentation, 6, 65
international characters, 8-9
I/O Manager, 12, 12, 13

K
Kimura, Gary, In, 61

L
large directories, 26, 26
large disks and files, 6-7, 26
layered driver model, 11-13
lazy write file systems, 13,35-36, 47n, 78
lazy writer, 78
LCNs (logical cluster numbers)

described, 20
with file name indexing, 28-29, 29
in noncompressed file, 62, 62
in nonsparse compressed file, 64-66, 65
in sparse compressed file, 62-64, 63
VCN mapping, 26-29, 27

LFS (log file service), 12, 13, 38, 38-40,43,
48,78

loadable drivers, file systems as, 11-13
locks, data stream, 8
log file service. See LFS (log file service)
logging and log files, 12

88

batching records for, 36
checkpoint records in, 42-43, 43

logging and log files, continued
defined,78
described,30
for error handling, 48
introduction, 37-38
LFS and, 38-40, 39
update records in, 40-42, 41

logging area in log files, 38-39, 39, 79
logical cluster numbers. See LCNs (logical

cluster numbers)
logical partitions, 19
logical sequence numbers. See LSNs (logical

sequence numbers)
logical volumes, 50, 50, 51
LSNs (logical sequence numbers)

in analysis pass, 45
defined,79
for log files, 39, 44
in undo pass, 45, 45-46, 46, 47

M
Macintosh data and resources, NTFS data

streams for, 8
mappings

bad-cluster, 9, 55-56, 57
cached files, 12-13
compressed files, 62"'-64, 63
noncom pressed files, 62, 62
VCN-to-LCN, 26-29, 27

master file table. See MFT (master file table)
memory for cached files, 12-13
metadata, 21, 21, 30-32, 31, 58, 79
MFT (master file table)

as array of file records, 21-22
attribute values in, 24, 25
bad dusters and, 56
defined,79
large files and dir,ectories in, 26, 26
mounting volumes and, 30
with MS-DOS file name attribute, 70,

70-71
noncompressed files in, 62, 62
nonresident attributes and, 28
nonsparse compressed files in, 65, 65-66
overview, 15, 15-17, 16, 18

)

MIT (master file table), continued
root directory in, 28, 29
small directories in, 25, 25
small files in, 22, 22
sparse compressed files in, 63, 63
for volume structure, 20-21, 21

Miller, Tom, 1,3, 12,61
mirror sets, 6, 52, 52-53, 58, 79
mission-critical applications, 4
mounting volumes, 30, 79
MS-DOS

generating names, 69-71, 72
namespace, 70, 70

multiple data streams, 7-8

N
named data streams, 7,22
namespaces. See file namespaces •
new features with NITS

bad-cluster remapping, 9
indexing facility, 9
multiple data streams, 7-8
POSIX support, 9
removable disk, NTFS support on, 10
Unicode-based names, 8-9

nonresident attributes
defined,79
described, 24-26, 26
for directories, 26
yeNs for, 26-28, 27

nonsparse data, compressing, 64-67, 65 j
NT executive, 12, 12-13, 13
NTFS (NT File System)

defined,80
layered driver model, 11-13
object model, 17, 18
overview, 11
relational database and transaction

processing models, 13-17
NT I/O system, 11-12, 12

o
object model, 17, 18
OS/2 operating system, 3-4

Index

p
"page update" records, 45-46
parity, stripe sets with, 6, 53, 53-54, 81
partitions

mirror sets, 52
size, 51
stripe sets, 51,51
and volumes, 19

passwords, 5
periods (.), in names, 9
physical sectors, HPFS, 7
pointers

to file objects, 17,38
to index buffers, 29

POSIX standard
defined,3n
file names, 69, 70,71, 71n
NTFS support for, 9

power outages, handling. See fault tolerant
volumes; recovery

R
RAIDs (redundant arrays of inexpensive

disks),6n
reading

attribute streams, 22
compressed data, 66
mirror sets, 52
restart area, 38

records
checkpoint, 42-43,43
in relational database model, 15; 15
update (see update records)

recovery
analysis pass, 45, 45
bad-cluster, 55-59
evolution of, 34-35
introduction, 4-5, 33-34
logging technique, 36-43
operation, 44-48
recoverable file systems, 36-37, 80
redo pass, 45-46, 46
transaction-processing model, 14
undo pass, 46, 46-48

89

INSIDE THE WINDOWS NT FILE SYSTEM

redo information in update records, 40-42,
41,SO

redo pass in recovery operation, 45-46,
46, SO

redundant arrays of inexpensive disks
(RAIDs),6n

redundant storage, 5-6
relational database model, 13-17
reliability. See recovery
remapping bad clusters, 9, 55-56, 57
removable disks, 10
resident attributes, 24-26, 25, SO
restart area in log files, 3S-39, 39, 48, SO
Rinne, Bob, 49
rollback operations

defined,SO
described, 14-15
LFSin, 39
undo pass for, 46, 46-4S, 47
update records for, 41

root directory, 2S, 29, 30-31
rows, in the master file table (MIT), 15,

15-16,20-21
runs

S

attributes in, 25, 26
defined, SO
noncompressed file, 62, 62
nonsparse compressed file, 64-66, 65
NTFS vs. HPFS, 7
sparse compressed file, 62-64, 63

SCBs (stream control blocks), 17, 18, SI
scratch buffers for decompressed data, 66
sectors

in cluster factor, 20, 21
HPFS, 7
recovering, 55-5S
spare,54-55,SO-SI
in stripe sets, 51, 51

sector sparing, 54-55, SO-SI
security descriptors, 4n, 5, 23
sequence numbers, 21, 22. See also LSNs

(logical sequence numbers)
sets

90

duplex, 53
mirror, 52, 52-53

sets, continued
Hripe,5L51-52,SI
stripe, with parity, 6, 53, 53-54, SI
volume, 50, 50, S2

sharing files, S
size

cluster, 7, 19-20
data compression, 61, 66
data stream, S
file, 7, 2S
partition, 51
volume, 6-7, 50

sorting file names, 9, 16, 2S
spaces in names, 9,69-72
spare sectors, 54-55, SO-SI
sparse files

compressing, 62, 62-64, 63
defined, SI

speed
data compression, 61, 66-67
lazy write file system, 35
vs. reliability, 4

standard attributes, 23
stream control blocks. See SCBs (stream

control blocks)
streams

attributes, 22
defined, SI
multiple, 7-S
in relational database model, 16, 16

stripe sets
defined,SI
with parity, 6, 53, 53-54, SI
in volume management, 51, 51-52

system-defined attributes, 23
system failures, preventing. See fault tolerant

volumes; recovery

T
time stamp information, 9, 2S
"transaction committed" records, 45, 46, 47n
transactions. See also logging and log files

analysis pass, 45, 45
committing, 41
defined,SI
described,14-15
NTFS,3S

transactions, continued
redo pass, 45-46, 46
transaction-processing model, 4-5,

13-17,81
undo pass, 46, 46-48, 47

transaction table, 44-45, 45, 82
type codes, attribute, 24, 28

U
undo information in update records, 40-42,

41,82
undo pass in recovery operation, 46,

46-48,47,82
Unicode-based names, 8-9, 69-71, 72
unnamed data attributes, 16, 16,22
update records

in analysis pass, 45, 45
and checkpoint records, 44
defined,82
described, 40-42, 41
in undo pass, 47

uppercase letters for attributes, 22
user-defined attributes, 16, 16n
user files, 21, 21

V
valid data length, streams, 8
values, attribute, 24-25, 25, 26
yeNs (virtual cluster numbers)

defined, 82
with file name indexing, 28-29, 29
mapped to LeNs, 26-29, 27
in noncom pressed file, 62, 62
in nonsparse compressed file, 64-66, 65
in sparse compressed file, 62-64, 63

Index

virtual cluster numbers. See yeNs (virtual
cluster numbers)

virtual memory for cached files, 12-13
virtual memory (VM) manager, 13, 13, 82
volume file

contents, 32
corruption bit, 58
defined,82

volumes
defined, 82
fault tolerant, 52-55
managing, 49-52
mounting, 30
names, 8-9
overview, 19-23, 20
in relational database model, 15
root directory for, 28, 29
size, 6-7, 50
stripe set, 51, 51:-52
volume set, 50, 50, 82

W
Win32 namespaces, 7, 70, 70
write-ahead logging, 40, 82
write-back caching, 35
write-through caching, 35n, 37
writing

aHribute streams, 22
compressed data, 64, 66
mirror sets, 53
restart area, 38
stripe sets with parity, 53

91

Helen Custer

Helen Custer is the author of Inside Windows NT

and of numerous articles on operating systems

and language topics. A member of the Windows

NT development team for five years, she is re

sponsible for chronicling the architecture and

design of the operating system.

COVER DESIGNER
Rebecca Geisler-Johnson

INTERIOR GRAPHIC DESIGNER

Kim Eggleston

INTERIOR GRAPHIC ARTIST
David Holter

PRINCIPAL TYPOGRAPHER

Ruth Pettis

PRINCIPAL EDITORIAL COMPOSITOR
Barb Runyan

PRINCIPAL PROOFREADER/COPY EDITOR

Alice Copp Smith

INDEXER
Ted Laux

The manuscript for this book was prepared and submitted to
Microsoft Press in electronic form. Text files were prepared using

Microsoft Word 2.0 for Windows. Pages were composed by
Microsoft Press using Aldus PageMaker 5.0 for Windows, with text in
New Baskerville and display type in Helvetica Bold. Composed pages

were delivered to the printer as electronic prepress files.

Microsoft® Windows NTTM Resource Kit
Microsoft Corporation

1hls exclusive three-volume Microsoft collection is a comprehensive source of technical information and
tools necessary to support Windows NT installations. The Microsoft Windows NT Resource Kit includes

Windows NT Resource Guide (with four 3.5-inch disks), Windows NT Messages (with three 3.5-inch disks),
and Optimizing Windows NT (with one 3.5-inch disk). The three volumes are also available separately.

BONUS! The three-volume set also includes a CD-ROM containing all the
disk-based utilities PLUS tools and utilities for RISC-based·computers.

Three-volume set boxed with eight 3.5-inch disks and one CD-ROM
$109.95 ($148.95 Canada) ISBN 1-55615-602-2

Windows NT
Resource
Guide

IWINOOVSNT
• RESouRcE KIT

Volume 1:
Windows NT Resource Guide

This complete technical guide to Win
dows NT features infonnation about in
stalling, configuring, customizing, and
troubleshooting Windows NT. It also in
cludes infonnation on applications compat
ibility and migration from Windows 3.1,
MS-DOS, OS/2, and LAN Manager, and using
database services with Windows NT. The four
disks include more than 50 tools, utilities, and
value-added software, including tools to man
age users and groups of servers, a computer
profile setup to easily set up large groups of
workstations, an adapter card Help file, an
online registry Help file, and utilities for the
POSIX subsystem.

1024 pages, with four 3.5-inch disks
$49.95 ($67.95 Canada)

ISBN 1-55615-598-0

WmdowsNT
Messages
"""""WlillII:'t'd&:>

""""M
"-'M
li~lofIl

lWINDOWSNT
• RESOURCE KIT

Volume 2:
Windows NT Messages

An alphabetic reference and online database
that provides in-depth, accessible infonna
tion about Windows NT and Windows NT
Advanced Server error and system-infonna
tion messages. Also includes detailed discus
sions about Windows NT executive mes
sages and an extensive glossary of common
message tenns and user actions. The mes
sages have been loaded into a Microsoft
Access database with a simple user interface,
which enables the user to search the data
base, add personal notes under a message,
back up the database, and print a selected
group of messages. The three disks contain a
runtime version of Microsoft Access and the
Messages database.

624 pages with three 3.5-inch disks
$39.95 ($53.95 Canada)

ISBN 1-55615-600-6

AfiCIosoftPress

NT
• REsouRcE KIT

Volume 3:
Optimizing Windows NT

The one resource that provides all the infor
mation needed to maximize the capacity and
speed of Windows NT, including infonna
tion on bottleneck detection and capacity
planning for the desktop and network. Also
includes infonnation on designing and tun
ing your Windows NT applications for high
perfonnance. Included with the book is one
disk full of software accessories and utilities
for perfonnance monitoring, troubleshoot
ing, fine-tuning, and optimizing PC perfor
mance.

608 pages with one 3.5-inch disk
$34.95 ($46.95 Canada)

ISBN 1-55615-619-7

Microsoft PresS'" books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800~MSPRESS for direct ordering information or for placing credit card orders. *

Please refer to BBK when placing your order. Prices subject to change.
'In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call1-800-667-1115.

Outside the U.S. and Canada, write to International Coordinator. Microsoft Press, One Microsoft Way, Redmond WA 98052-6399.

Informationfrom the Source

Microsoft® Windows NTTM Step by Step
Catapult, Inc.
MICROSOFT WINDOWS NT STEP BY STEP provides easy-to-use, self-paced
training for using Windows NT. Whether you are a new user or are upgrading
from Windows 3.l, this training package-complete with timesaving practice
files on disk-can teach you exactly what you need to know and when you need
to know it. In addition to mastering the basics of Windows NT, you'll quickly
learn how to use Mail, Schedule+, and Windows NT-based applications. If
you're too busy to attend class, or if classroom training doesn't make sense for
you or your office, you can train yourself with this Step by Step book from
Microsoft Press.
360 pages, softcover with one 3.5-inch disk
$29.95 ($39.95 Canada) ISBN 1-55615-573-5

Running Windows NTTM
Craig Stinson with Mike Blaszczak, Bruce McKinney, and
JoAnne Woodcock
Get up and running fast with Windows NT with this outstanding guide from PC
Magazine contributing editor Craig Stinson. Full of examples, illustrations, tips, and
strategies, RUNNING WINDOWS NT is your comprehensive guide to setting up,
using, and optimizing this powerful software. It includes expert information and
advice on Windows NT basics, networking, optimization, and security and administra
tion. Plus a table of contents for each section and chapter and an expanded, cross
referenced index with more than 1200 entries help make finding answers easier.
And when you're up and running and ready to go beyond the basics, you'll find
advanced information and undocumented tips, strategies, and solutions.
848 pages $27.95 ($37.95 Canada) ISBN 1-55615-572-7

Inside Windows NTTM
Helen Custer
Foreword by David N. Cutler
INSIDE WINDOWS NT provides an accessible, inside look at the
design of this revolutionary operating system. Written by a member of the
Windows NT team during the system's development, this book reads like a
wide-ranging, in-depth discussion with the Windows NT developers. The author
begins with a description of the Windows NT operating system and a discussion
of the design goals, providing an overview of Windows NT and the architectural
model on which it is based, and moves on to more technical topics: the NT
kernel, virtual memory manager, object management, client-server protected
subsystems, processes and threads, future directions, and much more.
416 pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-481-X

MicIUsoftPress
Microsoft Press books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.

Call1-BOO-MSPRESS for direct ordering information or for placing credit card orders. *
Please refer to HHK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, .Canada Ml S 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond WA 98052-6399.

\

This detailed, informa
tive monograph by
critically acclaimed
author Helen Custer is

an up-to-date adjunct to her
bestselling Inside Windows
NT. In this special edition,
Custer expands on her dis
cussion of the robust new Windows NT File
System (NTFS) and documents its arduous
design and creation process.

NTFS sets a new standard for reliability
and speed in PC, workstation, and server
file systems. This book includes the first
discussion of data compression in Windows
NT, describes the file system's internal
structure, and explains in detail how NTFS
recovers a volume and reconstructs itself
after a system failure. Along with clear
explanations of how NTFS works, Custer

U.S.A.
U.K.
Canada

$9.95
£9.49

$-12.95
[Recommended]

'. · , · , , . · , · , , .
MICROSOFT®
WINDOWS NT TM

provides detailed informa
tion and insights into

• The NTFS design

• Use of the layered
driver, relational data
base, transaction
processing, and object
models

• File system recover
ability

• Fault-tolerant disk
volumes

INSIDE THE WINDOWS NT FILE SYSTEM

is a must read for anyone installing or. ~-===91""
developing for Microsoft's advanced
operating system for work
stations and servers.

, , , , , , , , ,

ISBN 1-55615-660-X

90000

Microsoft and Microsoft P,"e8S are r egistered lrademnl·ks und Windows NT is it lr'ademark of Micl'osoft 601

